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Abstract

Numerical simulations of Kerr black holes are presented and the excitation of quasinormal

modes is studied in detail. Issues concerning the extraction of gravitational waves from

numerical space-times and analyzing them in a systematic way are discussed.

A new multi-block infrastructure for solving first order symmetric hyperbolic time de-

pendent partial differential equations is developed and implemented in a way that stability

is guaranteed for arbitrary high order accurate numerical schemes. Multi-block methods

make use of several coordinate patches to cover a computational domain. This provides

efficient, flexible and very accurate numerical schemes.

Using this code, three dimensional simulations of perturbed Kerr black holes are car-

ried out. While the quasinormal frequencies for such sources are well known, until now

little attention has been payed to the relative excitation strength of different modes. If an

actual perturbed Kerr black hole emits two distinct quasinormal modes that are strong

enough to be detected by gravitational wave observatories, these two modes can be used

to test the Kerr nature of the source. This would provide a strong test of the so called

no hair theorem of general relativity. A systematic method for analyzing ringdown wave-

forms is proposed. The so called time shift problem, an ambiguity in the definition of

excitation amplitudes, is identified and it is shown that this problem can be avoided by

looking at appropriately chosen relative mode amplitudes. Rotational mode coupling, the

relative excitation strength of co- and counter rotating modes and overtones for slowly

and rapidly spinning Kerr black holes are studied.

A method for extracting waves from numerical space-times which generalizes one of

the standard methods based on the Regge-Wheeler-Zerilli perturbation formalism is pre-

sented. Applying this to evolutions of single perturbed Schwarzschild black holes, the

accuracy of the new method is compared to the standard approach and it is found that

the errors resulting from the former are one to several orders of magnitude below the ones

from the latter. It is demonstrated that even at large extraction radii (r = 80M), the
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standard extraction approach produces errors that are dominantly of systematic nature

and not due to numerical inaccuracies.
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1 Introduction

1.1 Background and Outline

Gravitational wave astronomy – the detection and systematic observation of gravitational

waves – has the potential to open a new window to our universe. Einstein’s theory

of general relativity [13, 14], which is the standard theory of gravity today, postulates

that the gravitational interaction between two masses acts with finite speed, the velocity

of light. This is one of the fundamental differences to Newtonian gravity for which the

gravitational field generated by a mass changes instantaneously everywhere in the universe

if the mass is for example accelerated. A related consequence of general relativity is

the existence of gravitational waves. If a massive body is accelerated, it will generate

fluctuations in space-time that propagate as waves with the speed of light. These waves

transport energy and will therefore reduce the energy content of their source. For example

a binary star systems binding energy is dissipated via gravitational radiation, with the

effect of a shrinking orbital radius.

Gravitational waves have the remarkable property that due to their weak interac-

tion with all known matter, they do not get absorbed or scattered significantly as they

propagate through the universe. This makes them interesting for answering questions

in cosmology about very distant objects. The generation of gravitational waves is fun-

damentally different from generation of electromagnetic radiation, on which virtually all

astronomical observations are based today. Therefore it is expected that formerly unob-

servable astronomical processes will become visible, if gravity waves can be systematically

observed and interpreted.

With gravitational wave observatories like LIGO now operating at design sensitivity

[15] and more sensitive next generation detectors like advanced LIGO or the space based

LISA [16] in planning, chances are good that first detections will be possible during the

next decade. This progress causes an increased interest in numerical relativity.
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Numerical relativity is a discipline of gravitational physics that attempts to solve the

Einstein equations numerically. Its importance is due to the very limited number of closed

analytic solutions to the non-linear but also to linearized Einstein equations, especially

solutions that describe actual astrophysically interesting systems. One of its primary

goals in the context of gravitational wave physics is to provide waveform templates that

will help to filter actual signals out of the background noise in the data streams from

the observatories. It also tries to give some insight into the physical properties of the

sources that could become observable. Typical questions are how, for a given source, the

spectrum of the radiation would look like and how it depends on physical parameters of

the source or how much energy, linear and angular momentum is radiated. The hope is

that numerical relativity will help to understand what processes will generate what kind

of waveforms.

There are numerous possible sources for detectable gravitational waves. Among them

are binary neutron star or black hole systems that inspiral and finally merge due to binding

energy carried away by gravitational radiation, stellar collapse and supernovae explosions.

A long standing project in numerical relativity is to solve the two body problem,

i.e. the final orbits and the merger of two black holes, a process that is among the

strongest expected sources of gravitational waves and therefore a likely candidate for

detection. This turned out to be an extremely complicated problem that requires very

specific formulations of the Einstein equations, well chosen coordinate conditions and

large amounts of computational resources. Contrary to Newtonian physics, there are no

analytic solutions to this problem.

This thesis attempts to shine some light on how to extract physical relevant informa-

tion from simulations like this by looking at some issues concerning gravitational radiation:

What is the spectrum of certain types of sources, how strong is the presence of differ-

ent modes and how accurately can gravitational waves be computed from numerical data.

These questions are difficult to pose in an unambiguous way since the answers will depend

2



on details of the physical model and the numerical methods. Therefore a very specific test

case namely a single perturbed Kerr black hole is studied. While the complexity involved

in for example binary black hole simulations is avoided, looking at single black holes gives

answers that are still relevant for more general situations. The argument is that the end

product of a binary black hole or black hole - neutron star collision always is a single

perturbed black hole. Perturbed black holes emit gravitational waves with a character-

istic spectrum that is composed of the so called quasinormal modes. A consequence of

the so called no-hair theorem of general relativity is that the frequencies of these modes

depend only on the black hole parameters, namely the mass, the spin and the electrical

charge, where the latter is not expected to play a role for astrophysical relevant objects,

which are generally expected to be electrically neutral [17]. The existence of quasinormal

modes makes perturbed black holes very interesting for observations, since one can in

principle extract the physical quantities of the black hole by analyzing the spectrum (see

introduction to Chap. 4).

For the computational work presented here, a new multi-block infrastructure for nu-

merical relativity was developed, which allows to cover the computational domain with

several non-singular coordinate patches. This is analogous to differential geometry that

in general has to use multiple patches to define a regular coordinate system for a whole

manifold. One of the original motivations for multi-block methods was that they allow for

domains with smooth, especially spherical, boundaries in finite differencing and spectral

simulations. Also non-trivial topologies can be realized with them. It turns out though

that for the work presented here, the main advantage of multi-block is that it makes the

use of coordinates possible, that are well adapted to the physics that is modeled. Com-

pared to methods based on Cartesian grids, this makes three dimensional simulations

of single black holes computational more efficient in terms of performance and memory

requirements and simplifies wave extraction algorithms. High order (up to order eight) ac-

curate finite differencing operators were implemented and applied in a way that numerical

3



stability is guaranteed. The infrastructure was realized using the Cactus computational

toolkit [18] and extending Carpet [19], a driver for Cactus. This choice ensures that the

new code is modular, efficient and flexible.

The single perturbed black hole simulations shown in this thesis are only a first step in

using multi-block methods for numerical relativity. The infrastructure is general enough

that it can handle more complicated physical situations. Attempts to use it for binary

black hole simulations are undertaken currently.

This thesis is organized as follows. In Chap. 2 a description of the newly developed

and implemented numerical methods is given. These include an infrastructure for doing

multi-block simulations (Chap. 2.2), inter block boundary conditions (Chap. 2.3.2), high

order accurate finite differencing operators (Chap. 2.3) and time integration (Chap. 2.4).

In Chap. 3 accuracy and convergence of the methods described in Chap. 2 are tested

in actual non-trivial numerical simulations.

Chap. 4 is a thorough numerical study of the quasinormal mode excitation for scalar

perturbations of Kerr black holes. A systematic way of extracting physical quantities

like quasinormal frequencies and excitation strength from numerical waveforms in a very

accurate manner is proposed. Rotational mode mixing, relative excitation amplitudes of

co- and counter-rotating modes and extraction of overtones for rapidly spinning black

holes is studied in detail.

In Chap. 5 different wave extraction methods for numerical space-times are described

and the question is raised, how far an observer has to be located from the black hole to

obtain a certain accuracy in the waveform. This is done by solving the full non-linear

field equations in a generalized harmonic formulation. Initial data that represent a single

perturbed Schwarzschild black hole are evolved. These initial data are constructed in a

way that they satisfy the linearized constraints. The wave extraction methods used are

all based on the Regge-Wheeler (RW) formalism, and the comparison is done between the

standard RW extraction using different assumptions about the background space-time
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and a new generalized approach that allows for a more general form of the background

metric. The multi-block technique is especially well suited for such tests since, due to its

efficiency, waves can be extracted at larger radii than it is possible with current state of the

art mesh refinement codes. It is shown that standard assumptions about the background

metric produce errors in the extracted waveforms which are larger than the numerical

ones.

Detailed introductions to each of these topics are given in the beginning of the corre-

sponding chapters.

1.2 Notation and Conventions

Unless explicitly mentioned otherwise, the following notation is used throughout this

thesis:

Abstract index notation is used for vectors and tensors. The number of indices indi-

cates the rank of a tensor, lower indices denote covariant and upper indices contravariant

components. Greek indices (µ, ν, ...) are used for four dimensional objects and run from 0

to 3. The index value 0 typically labels a time like and (1,2,3) space like directions. Latin

indices (i, j, ...) label components of three dimensional purely space like objects and run

from 1 to 3. In places where four and three dimensional objects can be confused easily,

the latter are sometimes marked by an additional superscript (3) in front of the corre-

sponding symbol. The four dimensional metric is denoted by gµν , the three dimensional

one intrinsic to a space-like hypersurface by γij.

Throughout this thesis, frequent use of Einsteins summation convention is made: if

the same index appears twice in the same term, once as a lower and once as an upper

index, summation over this index is implied. For example AiBi =
∑3

i=1 AiBi. The range

of the summation should be obvious from the context. Most of the time, Greek indices

are summed from 0 to 3 and Latin indices from 1 to 3.

Partial and covariant derivative operators are represented by the standard symbols ∂

and ∇ respectively. Discrete derivative operators (finite differencing) are denoted by D.
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There are two different unit normal vectors that are used frequently and that are not to

be confused. One is four dimensional, time like and is normal to three dimensional space

like hyper surfaces. The symbol n̄µ is used for it. The second one is a three dimensional,

space like vector that is orthogonal to a boundary of a three dimensional domain. It is

called ni.

The geometrized unit system is used throughout this thesis. In geometric units the

speed of light c and the gravitational constant G equal one.
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2 A Multi-Block Infrastructure for Numerical

Relativity

2.1 Introduction

A major part of the work that went into this thesis was to develop and implement high

order accurate multi-block methods for solving time dependent partial differential equa-

tions and apply them to numerical relativity. This chapter gives an overview of these

techniques.

The paradigm here is to stick as closely to mathematically robust methods as possible.

Most of the statements about stability for the continuum and discrete equations are

valid for completely general linear symmetric hyperbolic equations, even with variable

coefficients. In the vacuum Einstein equations, no shocks are expected and it can be

argued through a localization procedure that if a discretization is stable for the linear,

variable coefficients problem, the non-linear case is stable as well. This is justified because

the evolution equations can be formulated in quasilinear form

∂tu
α = Aiα

β(u)∂iu
β + lower order terms. (1)

for a state vector uα and the principal part Aiα
β that depends only on the field variables

but not their spatial derivatives.

That the stability proofs are not rigorous manifests itself in high frequency instabilities

that can show up in numerical solutions, but the pragmatic approach to suppress them

using a small amount of artificial high order numerical dissipation which vanishes with

increasing resolution, has been successful.

Some of the most advanced numerical relativity codes today use finite differencing or

spectral methods on structured grids. While it does not seem to be necessary to switch

to completely unstructured grids, for the reasons given later in this chapter and the
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introduction to this thesis, the semi-structured grids that multi-block methods provide

are a promising approach.

Due to the extensive experience with them, finite differencing methods are applied

here, where high order accurate operators and boundary conditions that allow for proofs

of numerical stability are used. A so called multi-block method that allows to cover the

computational domain with an arbitrary number of coordinate patches is implemented.

By doing that one gains the flexibility to better adapt coordinates to specific physical

models and to set up domains with arbitrarily shaped boundaries. The numerical inter

block boundary conditions are formulated in a way that global stability is guaranteed.

Chap. 2.2 gives an overview of what multi-block methods are, which kind of choices one

has when implementing them and explains details about the multi-block scheme that was

implemented for this thesis. How interblock numerical boundary conditions are applied

in a stable way using the penalty method is described in Chap. 2.3.2. Details about the

finite differencing operators and their implementation are given in Chap. 2.3.1 and 2.3.3.

Chap. 2.3.4 describes two possible ways of adding artificial dissipation compatible to the

finite differencing operators to the system. Issues about the time integration are described

in Chap. 2.4 and finally a short overview of the actual implementation, parallelization

and infrastructure is given in Chap. 2.5. A detailed description of the implementation is

published in [20].

2.2 Topologies and Coordinate Systems for Multi-Block
Simulations

2.2.1 How Can Numerical Relativity Profit from Multi-Block Methods?

A multi-block system is a set of touching or overlapping computational grids that, taken

together, cover the whole simulation domain. Each single one of these grids can be looked

at as an independent computational mesh on which numerical solutions are found using

standard methods like for example finite differencing. Information can propagate through

the interface between neighboring blocks, by applying suitable boundary conditions. The
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main ingredients of a multi-block code as opposed to a single block one are these boundary

conditions together with the definition of the topology of blocks, i. e. the information

which faces of each block are connected to which faces of other blocks. In addition to

that coordinates need to be defined on each block and, if possible, it can be useful to

specify the geometry of the multi-block grid structure in a global coordinate system. This

chapter describes several motivations for implementing such an infrastructure.

Many of the space-times of interest in numerical relativity are asymptotically flat.

Ideally a domain for these has its outer boundaries at infinity. In practice often one has

to place the boundaries at a finite but as large as possible distance. For initial boundary

value problems to be well posed, generally smooth boundaries are required [21]. In many

applications of numerical relativity a natural shape for the boundary is a sphere. Spherical

boundaries have not yet been successfully implemented using Cartesian grids, but there

have been attempts to approximate them, for example by the blending method for the

outer boundary [22, 23].

A second type of boundary that is frequently needed in numerical relativity is the so

called excision boundary. Excision is a method to avoid pathological behavior at black

hole singularities by cutting regions that contain the singularities out of the computational

domain. A proper chosen excision region lies within the event horizon of the black hole and

has a boundary at which all characteristic modes are pointing out of the computational

domain and therefore no boundary conditions have to be applied. Since the region outside

of the event horizon is causally disconnected from the inside part of the space-time,

excising a region that is contained by the horizon will not affect the results outside of the

black hole. Still non-physical modes (gauge modes) can escape the black hole region and a

badly chosen excision treatment can lead to instabilities. This technique was first applied

by Thornburg [24]. On cartesian grids, a natural choice is to excise a cubical region.

However there are several connected causality problems [25, 26, 27]. For Schwarzschild in

Eddington-Finkelstein coordinates it was shown that the excision region has to be very
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small to guarantee purely outgoing characteristics. For a Kerr space-time in Kerr-Schild

coordinates for most spin parameters there is no cubical excision region that guarantees

causality. Dynamical space-times make the situation even more difficult. For that reason

excision boundaries are often constructed to approximate a sphere on the cartesian grid

by excising all grid points that are within a certain distance from the singularity. The

resulting excision region resembles a sphere built out of Lego blocks [23, 28, 29, 30]. Some

numerical problems are attributed to that complicated shape [31]. It is especially not

fully understood yet how to construct stable discretization schemes for a case like that.

A spherical coordinate system with the standard coordinates (r, θ, φ) would provide

a truly spherical excision region and spherical outer boundaries. Unfortunately these

coordinates are singular along the z-axis. This is a manifestation of the fact that in

general it is not possible to cover a differentiable manifold with just a single regular

coordinate system. On the other hand this is always possible using multiple coordinate

patches.

One of the original motivations for introducing multi-block methods to numerical

relativity is that they can provide smooth outer and excision boundaries while avoiding

coordinate singularities. Each constituent of a multi-block grid structure has it’s own

local coordinate system. Therefore one can create any geometry and cover it with regular

coordinate systems, including domains with spherical outer boundaries and any number

of spherical excision regions.

Besides providing smooth boundaries, multi-block methods come with a number of

additional advantages. These are closely related to multi-block systems adapted to some

of the most common space-times and matter configurations that are studied by numerical

relativity, namely compact sources for gravitational waves and the near and far wave

zones. Sources can be a large variety of very different objects like black hole or neutron

star binaries, collapsing stars, supernovae, accretion discs etc.. Each of these will require

its own complicated numerical model as well as computational grids that adapt to its
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specifics either by mesh refinement, multiple blocks or smart coordinate transformations.

Once the radiation is leaving the zone close to the central source, it is not expected to

develop new features especially in the directions normal to its propagation, i.e. the angular

directions. In the wave zone it is therefore sufficient if the surfaces of spheres with different

radii are resolved by the same number of grid points. Standard spherical coordinates are

capable of doing that, but – as mentioned before – they have a coordinate singularity along

the z-axis. Using multi-block this singularity can be avoided while keeping coordinates

that have the desirable property of constant angular resolution. Such coordinates will

be called quasi spherical in the following text. In standard Cartesian coordinates on the

other hand, the number of grid points on constant radius spheres scales like r2. Effectively

this means that if a reasonably high resolution is chosen close to the center of the grid,

the angular part of the radiation will be over-resolved at large radii and computational

resources are wasted that could otherwise be used to either increase the radial resolution

or to move the outer boundaries to a larger radius. While in some situations this effect

can be weakened by using adaptive mesh refinement, the principal problem persists. For

example, with the computational resources available today, simulations as presented in

Chap. 5 could not have been done with a comparable accuracy on a cartesian grid. Multi-

block and quasi spherical coordinates offer a simple, efficient and elegant solution for a

numerical treatment of systems like these.

A related issue that is solved in an elegant and efficient way by quasi spherical coor-

dinates, is related to rotating coordinate systems. Rotating coordinate systems are used

in numerical relativity mainly to prevent orbiting black holes from moving on the grid.

The hope is that holding the excision regions fixed will avoid numerical problems. The

velocity of grid points on a rotating mesh is proportional to the distance from the rota-

tion axis and can get large, even super luminal in some regions. While conceptually this

is unproblematic, stability will require a Courant factor that decreases linearly with the

coordinate speed. The Courant factor λ determines how the global time step scales with
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the spatial grid spacing by the relation ∆t = λ∆x. On a quasi spherical grid, the grid

spacing in angular direction grows linearly with the radius and therefore with the coordi-

nate velocity. The effect is that as λ has to be decreased, ∆x increases at the same rate so

that ∆t stays constant. On the other hand, on a Cartesian grid where ∆x is constant, the

time step decreases with λ, slowing down the effective simulation speed (evolved physical

time per wall clock time).

Finally it should be pointed out that with quasi spherical multi-block systems, the

radial resolution can be adapted easily without distorting the coordinates. Together with

the constant angular resolution this can make the use of the principally more flexible but

also more complicated mesh refinement obsolete in many situations.

Considering these points it is clear that a large group of problems in numerical rela-

tivity are handled in a very efficient way by multi-block methods. One can even think

of cases with non-trivial topologies that cannot be immersed in cartesian grids at all and

therefore require multi-block or a similar approach. There are of course situations where

other methods are preferable. For example, to track shocks in a star, adaptive mesh

refinement provides more flexibility and simplicity. Hybrid methods could potentially

be interesting in some cases. A Cartesian grid with mesh refinement could be used for

a hydro simulation, a quasi spherical multi-block system could be connect to the outer

boundary to propagate the gravitational radiation to large radii or even to null infinity.

Methods using multiple grid patches in numerical relativity were pioneered in 1987

by Thornburg [24, 32], where he also introduced excision as inner boundary conditions

for black holes. Gómez et al. [33] implemented two overlapping stereographic patches to

discretize the angular direction using the eth formalism. This was later used by Gómez et

al. [34] to evolve a single, non-stationary black hole in a stable manner in three dimensions

with a characteristic formulation. Thornburg [27] evolved a stationary Kerr black hole in

three dimensions with the BSSN formalism using multiple grid patches. Unfortunately

that code does not yet run in parallel and therefore cannot be used efficiently on parallel
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machines. With a similar approach Reisswig et al applied multi-block methods to a

characteristic formulation of the Einstein equations [35]. Kidder, Pfeiffer, and Scheel [36]

have developed a multi-block pseudo-spectral code to evolve first-order hyperbolic systems

on conforming (neighboring patches share grid points), touching, and overlapping patches.

Scheel et al. [37] used this method with multiple radial grid patches to evolve a scalar

field on a Kerr background. Kidder et al. [38] applied it to multiple radial grid patches

for evolutions of a distorted Schwarzschild black hole and black hole binaries (Scheel et al.

[39]). This code uses overlapping grids (see Chap. 2.2.2) and most of the computational

time is spent for the interpolation operations necessary to apply inter-block boundary

conditions. Work in axisymmetry was done by Calabrese et al who evolved a scalar field

around boosted Schwarzschild and Kerr black holes [40, 25].

The code developed for the project described here distinguishes itself by being com-

pletely parallelized, efficient due to the lack of overlapping grids (interpolation is not

needed) and guaranteed numerical stability for arbitrary high order schemes, whenever

the evolution equations are symmetric hyperbolic. All of these points are discussed in

detail in the following chapters.

2.2.2 Design Choices for Multi-Block Grid Structures

As stated in the previous chapter, the core of a multi-block method is how the different

grids are connected and how information is propagated from one block to its neighbor.

There are two basic methods to arrange the blocks, each one with it’s own distinct ad-

vantages and disadvantages: overlapping and touching grids. At this point it should be

mentioned that in the literature different names are used for these different methods. In

this text the convention is adapted to use multi-block for touching and multi-patch for

overlapping grids.

If the boundary region of each grid reaches into the domain covered by its neighbor

grid, one talks about overlapping grids or multi-patch schemes (Fig. 1 (a)). Applying

inter-patch boundary conditions is conceptually simple. Ghost zones are added to the

13



computational grid on each patch. Values of all the fields in the ghost zones are provided

by interpolating from the interior of the adjacent patches. Obviously this boundary treat-

ment requires the patches to overlap at least by the size of their ghost zones. Simplicity

and flexibility are the advantages of overlapping grids. Since the inter-patch boundaries

are simply a number of interpolation operations, ignorant of the specifics of the equations

that are solved, this scheme can be used naively with any hyperbolic and even elliptic set

of equations. Creating multi-patch systems, i.e. finding a topology of grids and coordinate

systems is in principle simple and flexibility is high because there are almost no restric-

tions to the way the grids are allowed to overlap. A disadvantage of applying boundary

conditions via interpolation is that even for linear equations it was not yet possible to

show stability. This is especially an issue whenever the discretization method is changed.

It is for example known that instabilities can show up when going to higher order finite

differencing operators.

An interesting application of overlapping grids was described and tested by Calabrese

and Neilsen [40, 25]. A moving spherical excision region is realized by a spherical patch

that is moving together with the black hole on a Cartesian background grid. The Cartesian

grid is again surrounded by a number of patches that taken together have a spherical outer

boundary.

It is possible to construct schemes that provide more insight into their mathematical

and numerical properties. Furthermore numerical stability can be guaranteed for arbitrary

high order differencing operators. This is done by setting up touching grids and was first

used for numerical relativity by Lehner, Reula and Tiglio [26]. As mentioned before this

approach is called multi-block method.

One talks about touching grids, if apart from coinciding faces there are no overlaps

between the domains covered by neighboring blocks. Inter-block communication could be

done by adding ghost zones and interpolating from the boundary region of one block into

the ghost zones of its neighbor (Fig. 1 (b)). This would be very similar to the overlapping
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grids approach, with all of its advantages and disadvantages. Thornburg was able to

do stable evolutions of single black holes with this method [27] using the Baumgarte-

Shapiro-Shibata-Nakamura (BSSN) system, a second order in space formulation of the

Einstein equations [41, 42]. Reisswig et al did evolutions with a harmonic formulation

on the same grid structure [35]. To show global stability, a different approach has to

be taken, by letting the boundary grid points coincide with boundary grid points from

the neighbor block (Fig. 1 (c)) and computing derivatives utilizing asymmetric finite

differencing stencils that do not reach across inter block boundaries. Boundary conditions

are applied by communicating information from the outgoing characteristic modes on one

block to the corresponding incoming modes on its neighbor. One can construct a method

– the so called penalty method – to do that for which in the case of linear equations with

variable coefficients stability can be shown with the energy method [43, 44, 45] (see also

App. A). A requirement for stability is a symmetric hyperbolic set of evolution equations.

Setting up the multi-block topology and coordinates is – compared to overlapping grids

– conceptually a more involved procedure because block boundaries and grid points on

them have to match up perfectly between blocks. On the other hand, with tools like

GridPro [46] for constructing multi-block grid structures available, it is easy to set up

any desired geometry. It should be noted that, from the computational point of view,

the touching blocks approach is more efficient, since due to the lack of ghost zones and

overlapping grid points, less operations are involved in evolving to the next time step. It

is also more robust since stability is guaranteed for arbitrary high order finite differencing

operators. For these reasons, in this thesis, the touching blocks approach is followed.

2.2.3 Examples for Multi-Block Grid Structures

A variety of multi-block systems for the most common problems in numerical relativity

have been coded within this effort.
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(a) Overlapping patches with ghost zones

(b) Touching blocks with ghost zones

(c) Touching blocks without ghost zones

Figure 1: The three basic configurations for multi-patch and multi-block grid structures.
Panel (a) shows overlapping patches. Boundary conditions are applied through ghost
zones that are updated by interpolating from the interior points of the neighbor patch.
The same type of boundary condition is applied to the touching blocks that are shown in
panel (b). The difference here is that the interior points of the grids do not overlap. Panel
(c) shows touching blocks, for which only the boundary points coincide. These points are
updated using one sided finite differencing stencils , so that no ghost zones are needed.
Information is propagated through the interface between blocks via the penalty method.

The most simple multi-block systems were designed for testing and debugging of the

code and consist of a single Cartesian block with periodic boundaries for some of the

faces. The periodic boundaries can be applied via penalty terms.

The number of excision regions needed and the spherical shape of the outer boundary

determine the design of the more complicated grid structures for actual physics simula-

tions. For immediate and near future projects, grids with zero, one or two excision regions

are in use, depending on the number of black holes that are present.

The block system of choice for single black hole evolutions consists of six blocks ar-

ranged like the faces of a cube that is then deformed to a sphere. It has one spherical

excision region in the center. Since this is the multi-block system used for almost all of the

work in this thesis, Chap. 2.2.4 is dedicated to it. A sketch of an equatorial cut through

this system is shown in Fig. 2.
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If no excision is needed, a seventh block is added to the center that covers the formerly

excised region. To avoid a coordinate singularity at the origin, Cartesian coordinates are

used for the central block and the coordinates of the surrounding six blocks are distorted

so that they connect to the now cubical central block. Note that the outer boundary is still

spherical. This system can be useful for example in simulations of massive stars without

singularity or in simulations where the space-time is compactified and the outer boundary

represents null infinity (which has spherical topology). It was also used extensively for

evolutions of the scalar wave equation for testing of the infrastructure and the finite

differencing methods in Chap. 3. Fig. 3 illustrates that system.

For binary black holes, two excision regions are needed and the grid structure becomes

considerately more complicated. An example is shown in Fig. 4. The general strategy to

follow is to surround each excision region by six blocks, just like in the single excision case,

and then glue together the two six block systems by a number of additional coordinate

blocks. The example in Fig. 4 consists of 27 different blocks and was generated using

GridPro, a commercial grid generation software [46]. Tools like that become necessary for

systems with a large number of blocks that make it more and more difficult to keep track

by hand of how the different blocks connect to each other. Another advantage of these

tools is that they automatically distribute grid points evenly throughout the domain to

avoid clustering.

2.2.4 The Cubed Sphere Coordinates

This chapter gives a more detailed description of the six block system and the cubed

sphere coordinates, used for evolutions describing single black holes. As in [26], a six-

block setup with a global topology of S2 ×R+, referred to as cubed sphere coordinates is

applied. This topology and the corresponding coordinates on each block are well adapted

for modeling a single central object and the outgoing radiation that is generated at or

close to that object. The outer and the excision boundary are both spherical.
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Figure 2: A cut in the equatorial plane of six blocks, in which four blocks are visible.
The outer and inner domain boundaries are spheres. There is one radial coordinate
spanning r = const surfaces, and two angular coordinates perpendicular to that. The
radial coordinate is smooth across block boundaries.
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Figure 3: A cut in the equatorial plane of seven blocks, in which five blocks are visible.
The outer boundary is a sphere, the inner block is a cube. There is again one radial
coordinate, but it does not span r = const surfaces and it is not smooth across block
boundaries except at the outer boundary. The two angular coordinates are the same as
in the six-block system.
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Figure 4: A cut in the equatorial plane of the imported binary black hole block system.
The outer and inner boundaries are spheres. Near the boundaries, the coordinate system
is similar to spherical coordinates, i.e., there is one coordinate direction perpendicular to
and two direction tangential to the boundary.

Each block has local coordinates a, b and c, as opposed to the Cartesian global co-

ordinates, here called x, y, z. The local coordinates are scaled in a way that all three of

them range from -1 to +1. Coordinate c is a scaled radial coordinate c = (−2r + rmin +

rmax)(rmin − rmax)
−1 with r =

√
x2 + y2 + z2. rmin is the radius of the excision region,

rmax the radius of the outer boundary. The blocks are denoted by numbers between 0 to

5. Block number 0 and 2 cover the neighborhood of x = ±1, block number 1 and 3 the

neighborhood of y = ±1 and block number 4 and 5 the neighborhood of z = ±1. The

angular coordinates are explicitly given by

block 0 : a = z/x, b = y/x (2)

block 1 : a = z/y, b = −x/y (3)

block 2 : a = −z/x, b = y/x (4)

block 3 : a = −z/y, b = −x/y (5)

block 4 : a = −x/z, b = y/z (6)
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block 5 : a = −x/z, b = −y/z (7)

The inverse transformation is given by

block 0 : x = c/F, y = cb/F, z = ac/F (8)

block 1 : x = −bc/F, y = c/F, z = ac/F (9)

block 2 : x = −c/F, y = −cb/F, z = ac/F (10)

block 3 : x = bc/F, y = −c/F, z = ac/F (11)

block 4 : x = −ac/F, y = cb/F, z = c/F (12)

block 5 : x = ac/F, y = cb/F, z = −c/F (13)

with F :=
√

1 + a2 + b2.

Fig. 5 shows the angular distribution of grid points on a constant radius sphere, an

equatorial cut with data from a scalar wave evolution and the inter block boundary planes

and a zoom to the excision region.

Cubed spheres are also used in climate research to model the spherical surface of the

earth [47]. In that reference a related definition of the cubed sphere coordinates is given.

2.2.5 Coordinates and Tensor Bases

If the manifold that underlies the physics that is modeled has a non-trivial topology, it

can be impossible to embed the computational domain in a cartesian one. In this case

it is necessary to use multi-block methods. On the other hand, if this embedding is

actually possible, it is convenient to define a global coordinate system that covers the

whole domain. This makes it easy to set up initial data and to interpret and visualize

output for coordinate dependent quantities like vectors and tensors. In addition to that, a

graphical representation of the location of the grid points in a common coordinate frame

is often necessary to get an intuitive picture about properties of the simulation.
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Figure 5: Illustration of the six-block grid structure and the cubed sphere coordinates
that are used for the simulations in this thesis. The left panel shows the distribution of
grid points on a sphere of constant radius. The central panel shows a snapshot from a
scalar wave evolution on an equatorial cut. The plot refers to an ` = m = 2 mode on the
background of a Kerr black hole with spin j = 0.9 at t = 92.2M (these simulations are
described in detail in Chap. 4). Also shown are the locations of the inter-block boundaries.
The right panel magnifies the central region of the domain in the equatorial plane, showing
the grid structure around the spherical excision boundary. The four dark lines mark the
interfaces between blocks.

On the other hand there always are multiple local coordinate systems, one on each

block, which do not necessarily coincide among each other or with the global coordinates.

They are adapted to the block geometry and the underlying physical models. That was

a crucial feature of the whole multi-block construction.

The global and the patch-local coordinates are two natural choices for a coordinate

basis in which vector and tensor components are expressed. Since it is known how to evolve

a system on a single block, using the patch-local basis reduces the multi-block method to

a fancy way of applying boundary conditions. At the inter-block boundaries coordinate

transformations into a common coordinate system for both blocks are necessary. These

transformations are very complicated, since formulations of Einstein’s equations used in

numerical relativity are in general not covariant. Therefore, by using different coordinates

on each block, the characteristic variables on each side of an interblock boundary are

different, even at the continuum level. The part of the code that defines the evolution
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variables would not only have to provide the characteristic variables but also specify how

they behave under coordinate transformations.

Using a global tensor basis makes almost all of those coordinate transformations un-

necessary when applying boundary conditions. Not only is the implementation more

transparent, it is also more efficient due to the reduced number of necessary operations

needed for transformations between coordinate systems. Instead, only the time evolution

equations have to be modified as described next.

The local coordinate indices are labeled by the letters (a, b, c) and the global coordi-

nates by (i, j, k). When the partial derivatives are computed by finite differencing they

are given in the patch-local coordinate basis, since the derivatives are naturally taken

along the local coordinate lines. If one wants to express the evolution equations in a

global coordinate basis, a transformation of the derivatives by inserting Jacobians in the

correct places needs to be done. Since the right hand sides of the evolution equations

contain only first derivatives, these are the only objects that need to be transformed in

that manner. The change to the actual code is straight forward. The partial derivative

operators ∂a are redefined as

∂i =
∂xa

∂xi
∂a. (14)

While the implementation of this transformation is trivial, one has to be aware of the

fact that it effectively changes the system of evolution equations. It was found that when

evolving in the global basis this can manifest itself in high frequency instabilities, which

can be suppressed by small amounts of high order numerical dissipation (see Chap. 2.3.4).

In Chap. 3 and 4 for solving the scalar wave equation a patch-local basis was used.

Chap. 3.5 shows a comparison between both coordinate choices. For the non-linear Ein-

stein equations described in Chap. 5 a switch to a global coordinate frame was done to

simplify the code and minimize debugging during the development phase.
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2.3 Stable Discretization of Hyperbolic Partial Differential
Equations

2.3.1 The Summation by Parts Condition

A scalar product of two discrete functions ui and vi (the index is labelling grid points)

can be defined by a matrix σ as

〈u, v〉 = h

n∑
i,j=1

uiviσij (15)

The scalar product or norm is called diagonal if

σij = σijδij (16)

and it is said to be restricted full if for points at the boundary, here denoted by ib it

satisfies

σibj = σibibδibj, (17)

that is σij is diagonal on the boundary but does not need to be diagonal in the interior.

A finite differencing operator D is said to satisfy summation by parts (SBP) with

respect to a positive definite scalar product σ if, on a computational domain [a, b], it

satisfies the condition

〈u, Dv〉+ 〈v, Du〉 = (uv) |ba (18)

for all grid functions u and v. Summation by part can be seen as the discrete version of

integration by parts that is obtained by exchanging integrals by finite sums and partial

derivatives by finite differencing operators.

The motivation for using summation by parts finite differencing operators comes from

the way stability is shown for a set of symmetric hyperbolic equations using the energy

method (see for example [48] and App. A). The central ingredient for computing the

growth of the energy over time for the continuum equations is to use integration by parts
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to interchange derivatives with integrals. If the differencing operators in the semi discrete

equations – i.e. discretized in space but not in time – satisfy summation by parts, energy

estimates that are valid in the continuum case carry over directly.

Restricting the scalar product norm σij to some subclass (for example to a diagonal

norm), instead of keeping it completely general, influences the properties of the corre-

sponding finite differencing operator, including the convergence order at the boundary,

the stencil width or the spectral radius.

The straightforward choice of a diagonal norm and one dimensional differencing opera-

tors already provides a lot of advantages that makes this construction very attractive and

therefore widely used. The summation by parts property is guaranteed to hold in several

space dimensions by simply applying the 1D operator along each direction [49, 50, 51].

In addition to the SBP property, to compute the energy estimate for showing numerical

stability one needs to be able to bound the norm of the commutator between the differ-

ence operator and the principal part of the equations for all resolutions. This is always

possible in the diagonal case [52]. On the other hand if the accuracy of the diagonal norm

operators is of order 2p in the interior it is only of order p near the boundary, i.e. only

half of the interior [53, 54, 55]. This will considerably lower the global and local conver-

gence order, as errors originating from the boundaries propagate into the interior of the

computational domain. For example in numerical experiments using the D8−4 operator

a global convergence order of about 5 was found, which is actually the expected value

[56, 57].

The problem of lower convergence order near the boundaries can be partly overcome

by giving up on using a diagonal norm. Summation by parts operators that are only one

order less accurate at the boundary than they are in the interior were implemented. The

corresponding norm is called restricted full and is defined by Eq. (17). Unfortunately for

this norm, the advantages that were described for the diagonal norm operators disappear.

It is no longer guaranteed that summation by parts holds in several dimensions if 1D SBP
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operators are simply applied along all directions [49, 50, 51]. In systems with variable

coefficients, the commutator between the principle part of the equations and the derivative

operator is not necessarily bounded for all resolutions [52]. The consequence is that

stability can no longer be guaranteed in three dimensional or even one dimensional systems

with variable coefficients. Improving the convergence order near the boundary therefore

makes it necessary to stabilize the scheme by means of numerical high order artificial

dissipation. A detailed description of the dissipation operators used in the work presented

here can be found in Chap. 2.3.4.

Using a diagonal norm, differencing operators of order two, four, six, eight and ten in

the interior and, as mentioned above of half order at the boundaries were implemented.

They are denoted by D2−1, D4−2, D6−3, D8−4 and D10−5 respectively. Using a non-diagonal

restricted full norm, the operators D4−3, D6−5 and D8−7 of order four, six and eight

respectively in the interior and one order less at the boundaries were implemented. In

general the construction of these operators is not unique. Only in the second order in the

interior case there is a unique operator satisfying SBP, and its norm is diagonal. With

respect to higher order operators, the following holds for the diagonal norm based ones:

D4−2 is unique, while D6−3, D8−4 and D10−5 comprise a one-, three-, and ten-parameter

family, respectively. In the restricted full case, D4−3, D6−5 and D8−7 have three, four and

five free parameters, respectively. Chap. 2.3.3 describes how this ambiguity can be used

to improve certain properties of the operators.

The operator used most widely throughout this thesis is D8−4 because of its relatively

good accuracy (see Chap. 3) and robustness. At least for linear equations, stability

is guaranteed and the problem of choosing good dissipation operators and parameters

can safely be ignored. D6−5 is used some places. Numerical experiments show that, as

predicted by Gustafsson [56, 57], global sixth order convergence can be achieved with it

and its accuracy is often superior to D8−4 in the cases that were used for comparison.
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Results are shown in Chap. 3. A comparison of convergence and accuracy of different

SBP operators in 1D can be found in [58].

2.3.2 Penalty Boundary Conditions

As mentioned above the core of a multi-block method is how to transfer information from

one block to it’s neighbor, or in other words, how to apply interblock boundary conditions.

Global numerical stability can be shown for semi discrete – i.e. discretized in space but not

in time – linear symmetric hyperbolic equations, given finite differencing operators that

satisfy summation by parts (see 2.3.1) and penalty interblock boundary conditions. Given

a stable semi-discrete scheme, stability for the completely discretized system follows, if a

time integrator which is what is called locally stable is used [59]. Examples for locally

stable time integrators are third and fourth order accurate Runge-Kutta methods (RK3

and RK4). An introduction about analyzing stability using the energy method is given

in Chap. A.

It is known for single block systems how to construct outer boundary conditions that

are well posed in the continuum. A simple, but still widely used boundary type is the

maximally dissipative boundary condition. The evolved fields are decomposed into their

characteristic modes and at the outer boundaries the incoming modes are chosen to inject

less energy to the system than the outgoing modes dissipate from it. This could be

imposed numerically by just overwriting the incoming modes. This scheme is unstable

though. To remedy that problem, the penalty method was first introduced.

At the interface between two blocks, one might naively follow a similar strategy. The

fields, this time on both blocks, would be decomposed into their characteristic fields and

the outgoing fields of one block would be copied into the ingoing fields of it’s neighbor and

vice versa. It turns out though that – analogous to the outer boundary case – with this

algorithm the energy estimate is violated and instabilities show up in actual simulations.

The idea behind the penalty method is to allow for a mismatch between characteristic

modes on the face of one block and it’s neighbor block. Terms that penalize this mismatch
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are added to the discretized right hand sides of the equations and they are chosen in a way

that the mismatch is converging towards zero over time and further, so that an energy

estimate, and therefore numerical stability, is guaranteed, for an arbitrary high order of

accuracy [43, 44, 45].

This paragraph illustrates with a simple example how the penalty method works and

how the energy estimate showing stability follows by constructing a numerical scheme to

solve the one dimensional advection equation for a state vector u(t, x)

∂tu = Λ∂xu. (19)

The spatial domain is (−∞, +∞) with appropriate fall off conditions. That domain is

covered with two blocks, block one for the range (−∞, 0] and block two for [0, +∞). The

discretized grid function ui at each point is labeled ul
i for points on block one and ur

i

for points on block two, where the index i labels the grid points (on each grid i = 0 is

the point on the interface). The two blocks are discretized by regular grids with grid

spacing hl and hr which do not have to be equal and derivatives are approximated by

finite differencing operators Dl and Dr that satisfy summation by parts (see Chap. 2.3).

The scalar products on the two blocks are written as

〈
ul, vl

〉
= hl

0∑
i,j=−∞

σl
iju

l
iv

l
j, (20)

〈ur, vr〉 = hr

+∞∑
i,j=0

σr
iju

r
i v

r
j . (21)

If the norm is diagonal, the semi-discrete evolution equations including penalty terms at

the boundary are

∂tu
l
i = ΛDlul

i +
δi0S

l

hlσl
00

(
ur

0 − ul
0

)
, (22)
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∂tu
r
i = ΛDrur

i +
δi0S

r

hrσr
00

(ur
0 − ur

0) . (23)

The non-diagonal case is more complicated and for simplicity is left out of the discussion

at this point. Sl and Sr are parameters that for a certain energy estimate need to be

restricted by two conditions to guarantee stability. These conditions are now derived.

For this simple example, a natural way to define an energy is

E ≡
〈
ul, ul

〉
+ 〈ur, ur〉 . (24)

The time derivative of E is taken and with Eq. (22), (23) and the summation by parts

property one gets

Ė = (Λ− 2Sl)(ul
0)

2 + (−Λ− 2Sr)(ur
0)

2 + 2(Sl + Sr)ul
0u

r
0. (25)

To get an energy estimate, the right hand side of that expression must be non-positive

for all ul
0 and ur

0, which results in the following three conditions:

Λ− 2Sl ≤ 0 (26)

−Λ− 2Sr ≤ 0 (27)

(Λ + Sr − Sl)2 ≤ 0. (28)

It follows directly that Λ + Sr − Sl = 0 and a second constraint to the choice of Sl and

Sr that depends on the signature of Λ. For positive Λ one gets

Sl = Λ + δ, Sr = δ, for any δ ≥ −Λ

2
. (29)
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Negative Λ results in the condition

Sr = −Λ + δ, Sl = δ, for any δ ≥ Λ

2
, (30)

while a vanishing Λ results in a degeneration of these conditions and can be seen as the

limiting case. For the minimum value of δ allowed by the above constraints, the global

energy estimate is the same as for a single grid without an interface. In particular for

that value of δ the scheme is conservative (the energy is preserved). For larger values of

δ there is damping in the energy, proportional to the mismatch at the interface.

The more general case of systems of equations in higher dimensions follows the same

principle, applying the 1D treatment to each characteristic field.

2.3.3 Construction of Summation-by-Parts Finite-Differencing Operators

Stability is not the only concern when developing a numerical scheme. Others are for

example computational efficiency and accuracy. In the construction of SBP finite differ-

encing operators there are free parameters that can be used to enhance efficiency and

accuracy. Optimization criteria that were used for that are discussed here. More details

are given in [60].

First some notation has to be fixed. If the accuracy of the difference operator D in the

interior is 2p, then there are b points at and near the boundaries where the order of D is

only q. In the diagonal case one has q = p, and in the restricted full case it is q = 2p− 1.

b is called the boundary width. The difference operator at these b points uses (up to) s

points to compute the derivative. s is called the boundary stencil size.

When expanding D in a Taylor series one has

Du|xi
=

du

dx

∣∣∣∣
xi

+ cih
q dq+1u

dxq+1

∣∣∣∣
xi

for i = 1 . . . b (31)

where h is the grid spacing and xi = ih. One calls ci the error coefficients.
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In what follows, three cases for each family of operators of a given order are considered,

denoted by:

• Minimum bandwidth: If there are n free parameters, it is always possible to set n

of the derivative coefficients to zero, thereby minimizing the computational cost of

evaluating the derivatives in the boundary region.

• Minimum spectral radius: In this case, the eigenvalues of the amplification matrix

are calculated numerically for a test problem, and the parameters chosen to minimize

the largest eigenvalue. That largest eigenvalue essentially determines the CFL limit.

By minimizing the former, the latter is maximized, resulting in a increased allowed

time step and an effective performance improvement.

• Minimum ABTE: The average boundary truncation error (ABTE) is minimized,

which is defined as

ABTE :=

(
1

b

b∑
i=1

c2
i

)1/2

. (32)

The test problem that is used to compute the spectral radius of the amplification

matrix is the same one that was used in [26]: an advection equation propagating in

a periodic domain. Periodicity is enforced through an artificial interface boundary via

penalties.1 The penalty parameter is chosen to be δ = −1/2 (see Chap. 2.3.2), which

means that the semi-discrete energy is strictly preserved, and that the amplification matrix

is anti-Hermitian, and therefore the real part of all eigenvalues is zero.

Another option would be to compute the spectral radius of the discrete difference

operator itself [61]. In this case, the spectrum is in general not purely imaginary, since

the boundary conditions have not been imposed yet. In practice it was found, though,

that both approaches lead to similar operators, in the sense that a derivative operator

1Truly periodic domains (that is, without an interface) do not require boundary derivative operators,
and therefore do not constitute a useful test here.
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with small spectral radius usually also leads to amplification matrices for the above test

problem with small spectral radii as well.

It is worth pointing out that for the diagonal operator case the bandwidth and the

ABTE can be globally minimized by analytically choosing the parameters, since the ABTE

is a quadratic function of the parameters and therefore has a global minimum. This is not

the case for the spectral radius. Therefore, when it is referred to minimizing the spectral

radius, a numerical minimization is performed and it cannot be claimed that a global

minimum is actually found.

It is now illustrated how these optimization criteria work in practice on the two most

accurate operators that were made available for actual simulations: D8−4 , which is con-

structed from a diagonal norm and D6−5 which is based on a restricted full norm. The

family of D8−4 operators has three free parameters. There are no restrictions how to

choose those, since the norm of D8−4 is independent of them and always positive defi-

nite. The three dimensional parameter space was searched for minima in the bandwidth,

spectral radius and ABTE. For the latter, instead of a unique minimum one finds a one

parameter family of operators that minimize the ABTE. This is fortunate because it al-

lows to use the free parameter to decrease the spectral radius as far as possible. Tab. 1

shows the spectral radius, ABTE and the error coefficients for the operators constructed

using different optimization criteria. The minimum ABTE and minimum spectral radius

operators have similar properties in these quantities and one can expect comparable be-

havior in their numerics. A numerical comparison of these operators is shown in Fig. 9.

It shows – at least for the test that is specified in Chap. 3 that even though the error

coefficients are quite close, the errors with the minimum ABTE operator are roughly

a factor of two below the errors when minimizing spectral radius. The features of the

minimum bandwidth are a very large spectral radius (which translates into a small time

step for stable evolutions) and some error coefficients that are very large compared to
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Table 1: Properties of the diagonal norm D8−4 operators.

Minimum Minimum Minimum
Operator bandwidth spectral radius ABTE

Spectral radius 16.0376 2.229 2.231
ABTE 1.2241 0.3993 0.3474
c1 -0.5878 -0.8277 -0.8086
c2 0.1068 0.3682 0.3439
c3 3.1427 -0.3819 0.0228
c4 -0.7918 -0.2186 -0.3086
c5 0.9886 -0.3412 0.0225
c6 0.3304 0.3619 0.2970
c7 -0.1995 -0.1097 -0.0823
c8 -0.0211 -0.0465 -0.0497

the other two operators. Due to these undesirable properties an implementation was not

considered.

Contrary to the diagonal norm operators, the restricted full norm is not necessarily

positive definite. Therefore fixing the free parameters in the construction of the differ-

encing operators is subject to the constraint that they define a positive definite norm.

There are four independent parameters in the construction of the D6−5 operator. As for

the D8−4 one finds parameter values that minimize the bandwidth, spectral radius or the

ABTE. In addition one needs to check if these minima result in a positive definite norm. A

comparison of the resulting operators is shown in Tab. 2. In spite of its comparably small

spectral radius, the error coefficients of the minimum spectral radius operator are large

enough that it was not possible to stabilize it, even when adding considerable amount

of dissipation to it. The minimum bandwidth and minimum ABTE operators can be

stabilized, where for the latter, a significantly smaller amount of dissipation is needed. In

addition to that, the errors of the ABTE operator are less. This is reflected in the smaller

error coefficients, compared to the minimum bandwidth operator.
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Table 2: Properties of the restricted full norm D6−5 operators.

Minimum Minimum Minimum
Operator bandwidth spectral radius ABTE

Spectral radius 2.940 1.458 3.194
ABTE 0.0986 0.5380 0.0648
c1 0.1667 1.3692 -0.0154
c2 -0.1558 -0.2682 -0.0507
c3 0.0672 -0.2118 0.1336
c4 0.0953 0.0097 0.0532
c5 -0.0433 0.0702 -0.0733
c6 0.0141 0.1434 0.0187
c7 -0.0163 -0.0972 -0.0123

2.3.4 Artificial Dissipation

Two types of dissipation operators are used, both compatible with the described finite

differencing operators.

One type was introduced by Mattson, Svärd and Nordström in [62] and it is referred

to as MSN operator. The key property of these operators is that they are semi-negative

definite with respect to the corresponding SBP scalar product, and that this holds for

any SBP operator of arbitrary high order. Semi-negative definite dissipation operators

do not spoil energy estimates. Naive prescriptions such as Kreiss-Oliger dissipation in

the interior and zero at and close to boundaries do spoil energy estimates and one can

show that they cause numerical instabilities in concrete examples. The MSN dissipation

operators are

AMSN
2p = − ε

22p
h2pΣ−1DT

p BpDp (33)

where Σ is the scalar product of the 2pth-order accurate summation by parts operator.

Here h is the grid spacing and ε a free parameter. Dp is a consistent approximation to the

pth derivative with minimal width – minimal width means that the stencil must contain

as few points as possible – and Bp is a diagonal matrix, the so called boundary operator.
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The boundary operator is positive semi-definite and allows boundary points to be

treated differently from interior points. It cannot be chosen freely but rather is subject

to certain restrictions.

For the diagonal norm, Bp can simply be chosen to be a unit matrix. This choice

guarantees that pth order accuracy is reached at and close to the boundary. The accuracy

of the dissipation operator is the same as for the summation by parts operators, thus the

dissipation is consistent with the discretization method.

In the case of restricted full norm operators, the accuracy requirement near the bound-

ary is more strict. The dissipation operator should have order 2p − 1 at the boundary

and order 2p in the interior, which requires a different choice of Bp. Again following [62]

Bp is chosen to be a diagonal matrix, where the diagonal is the restriction onto the grid

of a piecewise smooth function. The numerical domain is divided into three regions in

each dimension: an interior part and on either side two transition regions containing the

boundaries. The transition region has a fixed size that is independent of the resolution.

Within the transition region the function, Bp, increases from O(hp−1) at the outer bound-

ary to a constant value 1 at the boundary with the interior region in such a way that

the derivatives of Bp up to order p − 2 vanish at either ends. In the interior region the

function has the constant value 1.

For the D4−3 operator, Bp has the value h at the boundary and increases linearly

to 1 in the transition region. For the D6−5 operator, a cubic polynomial with vanishing

derivatives is used at either end of the transition region to increase the value of Bp from

h2 at the boundary to 1 in the interior. For the D8−7 operator, the boundary values for

the transition region are h3 and 1, and a fifth order polynomial is used to make the first

and second derivatives vanish at either end of the transition region.

For the parameter ε one makes the choice ε = 2−2p, since then the parameter used

to specify the strength of the dissipation has approximately the same allowed numerical

range, independently of the order of the operator.
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Note that for the diagonal case up to order eight in the interior, the scalar product Σ is

independent of the free parameters in the construction of the finite differencing operators,

while for the higher order diagonal operators and the restricted full norm operators a

unique dissipation operator has to be constructed for each parameter choice.

A disadvantage of the MSN dissipation operators is that their dissipation parameter

in some cases has to be scaled with changing numerical resolution to maintain stability.

In the interior the MSN operators do not reduce to Kreiss-Oliger ones, for which the

amplification factor is constant for a fixed dissipation parameter. While this is not a

problem of principle, it can turn out to be unpractical since fine tuning of the parameter

might be necessary for production runs. For this reason Kreiss-Oliger (KO) dissipation

operators [63] that do not need adjustments at different resolutions were implemented.

They are constructed according to

AKO
2p = − ε

22p+2
h2p+1Σ−1DT

p+1BpDp+1. (34)

Again Σ is the norm of the 2pth accurate summation by parts derivative operator. In this

form, the KO operator is compatible with the finite differencing operators. The accuracy

is the same as the one of the SBP operator near the boundary and one order higher in the

interior and they are semi-definite with respect to the SBP scalar product. A disadvantage

of KO type dissipation compared to the MSN one is a slightly larger stencil size.

2.4 Time Integrator

Unless noted otherwise a fourth order accurate Runge-Kutta time integrator (RK4) is

used. The choice of time step is crucial to the stability of the numerical solution. The

CFL condition for a uniform grid is

∆t = λ∆x (35)
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where the constant λ is the so called Courant factor. In the framework of multiple blocks

one has to note that the time step should not be determined by the local spatial grid

spacing but rather by the proper distance between the grid points. This proper distance

can vary significantly over the computational domain and in the case of dynamical gauge

functions also in time. This makes finding the correct time step not impossible but

cumbersome and time consuming.

To avoid this problem for some simulations an adaptive RK4 time stepping algorithm

is applied that picks the step size automatically for a given error tolerance [64]. The idea

behind this method is to evolve from t = tn to t = tn+1 = tn + ∆t, with the time step size

∆t and again with half the time step size ∆t/2. The difference between both results is a

measure for the truncation error. If the truncation error is above the specified tolerance,

the time step size is decreased, if it is below, the time step is increased. That helps to

avoid unnecessary small time steps and can give considerable performance improvements.

In [64] it is claimed that performance often can improve by two orders of magnitude or

more. In the same reference it is also shown that the computational overhead due to

extra evolution steps necessary for estimating the truncation error, is only a factor of

1.375 compared to a fixed time step RK4 integrator. The adaptive time step also allows

to control how much of the total error is due to time integration. For example, for the sake

of testing convergence one can choose a very small error tolerance in the time integration

to make sure that the total error and thus the convergence factor is dominated by the

spatial differencing.

2.5 Computational Infrastructure and Parallelization

The choice was made to base the implementation on the Cactus infrastructure [18]. Cac-

tus is a framework for doing scientific computation and especially for solving partial

differential equations numerically. The core of Cactus is the so called flesh, a system of

scripts that manages modules, so called thorns and lets them interact and work together.

Any functionality needed to solve a specific scientific problem is provided by thorns, from
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low level computational functions, like providing memory for meshes or distributing data

among compute nodes on parallel machines, to the actual physics thorns that contain

solvers for specific equations and analysis tools.

Cactus comes together with a set of thorns that provide basic functionality, like I/O

routines, time integrators, a parallel driver for uniform grids and an interface for applying

boundary conditions.

The main motivation to use an infrastructure like this is that it allows to write code

in a modular way. It makes it comparably easy to for example use the infrastructure

part of a multi-block code together with any evolution code, that was designed without

multi-block in mind, given that it was written with a certain degree of generality. Another

selling point for Cactus is the large amount of available modules that were written and

well tested in the past, like I/O routines or analysis tools, which typically can be used

out of the box with almost no modifications necessary.

As a driver, i.e. the module that is responsible for memory allocation and load dis-

tribution, Erik Schnetters Carpet [65] was chosen. Carpet is designed to implement fixed

and adaptive mesh refinement in Cactus and was, as part of the effort described here,

extended to assign storage, handle inter processor communication and provide I/O func-

tionality for multi-block simulations. A benefit of using Carpet is that combining multi-

block with mesh refinement is in principle possible using already existing infrastructure

code. This has not been tested yet.

It should be stressed that all of the major modules necessary for doing multi-block sim-

ulations had to be newly written or at least extended significantly for the effort described

in this thesis. This includes extensions to Carpet, parallelization, data output and newly

developed boundary conditions, an interface to derivative operators, high order SBP finite

differencing operators and two evolution codes, one for the scalar wave equation and one

for a generalized harmonic formulation of the Einstein equations.
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Following is a description of the main modules that were developed in the described

effort to make Cactus and Carpet multi-block enabled. To be as modular as possible, the

infrastructure part has been split up between several thorns:

The thorn MultiPatch defines the topology of the multi-block system. It specifies the

number of blocks and how they connect to each other, i.e. which face of one block is

adjacent to which face of which other block, how the faces are rotated with respect to

each other and which faces coincide with the outer boundary. Apart from the topology,

MultiPatch also knows the location of the blocks in the global coordinate space and can

do mappings from global to local block coordinates.

The thorn PenaltyPatchBoundary applies boundary conditions by adding penalty

terms to the right hand sides of the of the equations. It requires the characteristic fields

as input and is therefore independent of the particular evolution system. It can be used

for inter block boundaries as well as for outer boundaries. A more detailed description of

the penalty method is given in Chap. 2.3.2.

The thorn SummationByParts computes high order finite differences using operators

that satisfy summation by parts. This thorn was developed as part of the multi-block effort

but actually provides a generic interface for computing numerical derivatives. Operators

up to order ten have been coded. Close to the boundaries one sided stencils can be used.

The current implementation parallelizes a domain by splitting and distributing each

block separately onto all available processors. This is not optimal, and it would be more

efficient to split blocks only if there are more processors than blocks, or if the blocks have

very different sizes. This optimization was not implemented at the time most simulations

for the thesis were done, but is available now.

A scaling test on multiple processors has been performed by solving a simple test

problem on a multi-block grid structure and measure the time it takes to evolve 100 time
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Figure 6: Wall clock time vs. numbers of processors for 100 time steps of a test problem.
The load of each processor is kept approximately constant at 125000 and 194500 grid
points, respectively. The implementation scales up to at least 128 processors.

steps.2 With increasing number of processors, the number of grid points is increased as

well, so that the load per processors remains approximately constant. This is realistic,

because one chooses the number of processors that one uses for a job typically depending

on the problem size. Fig. 6 shows the results of the scaling tests for two such problem

sizes. It was found that the implementation scales well up to at least 128 processors, and

would probably continue to scale to larger numbers. See [66] for a comparison of other

benchmarks using Cactus and Carpet.

It would also be possible to distribute the domain onto the available processors by

giving (at least) one domain to each processor. This would mean that one splits domains

when one adds more processors, introducing additional inter-block boundary conditions.

Penalty inter-block boundary conditions are potentially more efficient than using ghost

2This test was performed with a 4th order Runge–Kutta integrator, the scalar wave equation for-
mulated in a patch-local tensor basis, a seven-block system, the D6−5 differencing operators, and a
Mattsson–Svärd–Nordström dissipation operator. The number of grid points per block was varied from
653 to 2533 to keep the load per processor approximately constant.
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zones, since they require an overlap of only one single grid point. An nth order accurate

finite differencing scheme, on the other hand, requires in general an overlap of 2n grid

points. Penalty boundary conditions thus require less communication between the blocks.

A disadvantage of this scheme is that the exact result of a calculation then depends

on the number of processors. Of course, these differences are only of the order of the

discretization error.

Such differences are commonly accepted when e.g. elliptic equations are solved. Many

efficient algorithms for solving elliptic equations apply a domain decomposition, assigning

one domain to each processor, and using different methods for solving within a domain

and for coupling the individual domains. The discretization error in the solution depends

on the number of domains. For hyperbolic equations that are solved with explicit time

integrators, it is often customary to not have such differences. On one hand, this may not

be necessary to achieve an efficient implementation, and on the other hand, it simplifies

verifying the correctness of a parallel implementation if the result is independent of the

number of processors. However, there are no fundamental problems in allowing different

discretization errors when solved on different numbers of processors, especially if this may

lead to a more efficient implementation. This parallelization method has partly been

implemented and preliminary numerical tests with the code described in Chap. 5 indicate

that a factor or roughly two in speed can be gained from it.
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3 Numerical Accuracy and Convergence

3.1 Linear Scalar Wave Equation on a Minkowski Background

In Chap. 2 an overview of the numerical techniques that were implemented was given.

As a proof of concept and to check the correctness of the fairly complex code, a thorough

numerical study of convergence and accuracy is presented in this chapter. There are

a number of requirements on such tests to make them general enough to incorporate

all the key parts of the new infrastructure. Inter-block boundaries must be present so

that the according boundary conditions are applied. Furthermore the block coordinate

systems should be non-trivial, so that the boundary conditions are tested in fairly general

situations. Finally to make error estimates easier, one wants a physical system for which

the analytic solution is known at all times.

In this chapter such a test is specified and realized with a variety of different order

accurate summation by parts finite differencing operators.

Also shown is a numerical comparison of simulations using a patch-local and a global

tensor basis as described in Chap. 2.2.5 , investigating which tensor base is preferable.

The results presented in this chapter are described in more detail in [60].

Numerical evolutions of the scalar wave equation on a Minkowski background serve

as an ideal test case. The form of the equations is given in Chap. 3.2. These simulations

are suitable for testing and verifying the robustness of the multi-block implementation,

penalty boundary conditions and summation by parts operators. In addition to that

analytic solutions are known. The evolution is done on a multi-block grid structure

that consists of seven components (see Chap. 2.2.3). Because of the non-cartesian local

coordinate systems, even in the case of a Minkowski background, the components of the

metric are non-trivial and their spatial derivatives do not equal zero. Conceptually this is

as challenging to the code as choosing a curved background metric, since the components

of the Minkowski metric in arbitrary coordinates are non-trivial and due to different local
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coordinate systems on the different blocks all the coordinate transformations that one

needs in the most general case need to be done when applying boundary conditions. For

that reason one can test the functionality of all the key elements of the multi-block code

using a setup like that.

3.2 Formulation of the Evolution Equations, Initial Data and
Boundary Conditions

The wave equation for a massless scalar field Φ is written as

∇µ∇µΦ = 0 (36)

where ∇µ is the covariant derivative compatible to the four metric. The metric can

generally be written as (see App. C)

gµν = α−2

 −1 βi

βi α2H ij

 (37)

where, given the inverse three metric γij, the definition H ij = γij −βiβj/α2 is used. Here

γ is the determinant of the three metric. α and βi are the lapse and the shift, respectively,

and they are defined in App. C. For simplicity, and since only linear effects are of interest

here, the metric is assumed to be time independent, and the evolution equations in first

order symmetric hyperbolic form become

Φ̇ = Π (38)

Π̇ = βi∂iΠ +
α
√

γ
∂i

(√
γ

α
βiΠ + α

√
γH ijdj

)
(39)

ḋi = ∂iΠ. (40)

This formulation is described in more detail in [67] and [26].
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The non-zero characteristic speeds λ± and eigenmodes w± with respect to a vector ni

are

λ± = βini ± α
√

γijninj (41)

w± = [βini ± α
√

γijninj, H ijnj]
T . (42)

The zero speed eigenmodes are

w0 = di − nidjn
j. (43)

Reference [67] describes a number of useful features of this formulation. Equations (38)-

(40) are symmetric with respect to the physical energy. Whenever maximally dissipative

boundary conditions are applied, this energy does not grow. Maximally dissipative bound-

ary conditions are automatically constraint preserving. The Leibniz rule is not needed

to show that the energy does not grow, thus the discretization is strictly stable. The

physical energy however is not positive definite in the interior of a black hole, where the

Killing vector becomes space-like. Only for a computational domain that does not in-

clude the black hole, long term stability is guaranteed. Formulations that are globally

symmetric hyperbolic and that conserve the physical energy outside of a black hole can

be constructed [68].

Solutions to the wave equation on a flat background space-time are analytically known

for all times. The difference between these solutions and the numerical data from simu-

lations with according initial data are computed and it is checked that these differences

converge towards zero with the correct rate when increasing the resolution. The solution

represents plane waves traveling along an arbitrary direction. Corresponding initial data

are

Φ(t = 0) = A cos(2πk · x) (44)

Π(t = 0) = −2πA|k| sin(2πk · x) (45)
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di(t = 0) = −2πAki sin(2πk · x). (46)

k is the wave vector pointing in the propagation direction and the wave length is λ =

2π/|k|. x is the coordinate vector. The units are chosen so that the wave propagates

with a global coordinate speed of one. In all of the simulations presented here, the wave

amplitude is A = 1.0 and the wave vector k = (0.2, 0.2, 0.2)T so the wave is propagating

along the main diagonal.

At the outer boundaries the analytically known solution is injected via penalty terms.

For that one needs to compute the ingoing characteristic modes from the analytic solution

and penalize the incoming numerical characteristic modes against them.

With these boundary conditions the numerical results should converge towards the

analytic solution.

3.3 Grid Structure

To avoid dealing with holes in the domain but keeping a smooth outer boundary the

simulations are done on a spherical domain using the seven block geometry described in

Chap. 2.2.3. Fig. 7 shows schematically the geometry of that setup and how it relates

to the parameters r0 and r1 that determine the domain size. The seven block system

is derived from the six blocks cubed sphere system and is used when no excision region

is required. The hole in the center of the six block system is filled up with a seventh

block. To avoid coordinate singularities, this block is chosen to be cubical with standard

cartesian coordinates. The rest of the seven blocks are a slightly deformed variation of

the cubed sphere blocks to make them connect to the central cube without gaps but still

provide a spherical outer boundary.

r1 is the radius of the global spherical domain and r0 the half edge length of the central

cubical block. In the simulations presented in this chapter these parameters are set to

r0 = 1.0 and r1 = 3.0.
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2 r0

r1

Figure 7: Sketch of an equatorial cut through the seven block system (see also Fig. 3).
The edge length of the central cubical block is 2r0, the total radius of the spherical domain
called r1. The center of this spherical block system coincides with the origin of the global
coordinate system. For runs in this chapter the dimensions of the domain are specified
by r0 = 1 and r1 = 3.
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For doing convergence tests resolutions of ∆a = ∆b = ∆c = 0.1 to ∆a = ∆b = ∆c =

0.0125 are used which correspond to grid points per block of between 213 to 1613.

The simulations were stopped at time t = 10. As mentioned above the units are chosen

so that the propagation speed of the waves is one. Given that the diameter of the domain

is 6, t = 10 corresponds to about 1.67 crossing times.

3.4 Results

Accuracy and convergence with respect to the known plane wave analytic solution were

tested using the setup described above with a wide variety of finite differencing opera-

tors. The operators looked at are D2−1, D4−2, D4−3, D6−3, D6−5 and D8−4. The first

number denotes the convergence order in the interior of a grid and the second number

the convergence order at the boundaries.

For all of the operators the expected convergence order was found. Details about all

these runs are given in reference [60]. As an example the D8−4 and D6−5 operators are

discussed here – these are the ones that are later used for the black hole simulations – and

then a comparison of accuracy for most of the other implemented operators is shown.

Fig. 8 displays the convergence exponent for D8−4 computed from runs with two

different resolutions and comparing the errors with respect to the exact solution. The

convergence exponent n is then computed as

n =
log
(

E1

E2

)
log
(

h1

h2

) (47)

where h1 and h2 denote the local grid spacing in either of these runs and E1 and E2 are a

measure for the error with respect to the analytic solution. Since it is the strongest test

for convergence and accuracy , typically the infinity norm is used, i.e. the maximum of

the error.
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Three convergence tests have been performed with increasing resolution and all of

these tests show fifth order accuracy as expected [56, 57]. The periodicity that is seen

in the plots corresponds to the periodicity of the wave solution and can be explained

by a changing number of maxima and minima in the wave as it propagates through the

simulation domain.
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Figure 8: Convergence exponents for the minimum spectral radius (top) and the minimum
ABTE (bottom) D8−4 operators.
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Figure 9: Comparison of the accuracy of the two D8−4 operator types shown in the previ-
ous figure in the L∞ norm. Although both operators have quite similar error coefficients,
there is up to a factor of two difference in the errors seen in the actual runs.

Fig. 9 is a comparison of the L∞ norm of two D8−4 operators constructed by applying

different optimization criteria. For one of them the free parameters were chosen so that
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Figure 10: Convergence for the optimized D6−5 operator with dissipation and Runge–
Kutta time integrators of order four (top) and six (bottom), respectively. A slightly lower
convergence order for the highest resolution is seen when RK4 is used. This effect is
not present with the RK6 integrator. The lower convergence order indicates that the
accuracy of the spatial finite differencing operators is high enough, so that the overall
error is dominated by the accuracy of the time integrator.

they minimize the bandwidth of the operator, the other one was constructed to minimize

the average boundary truncation error (ABTE). Even though both operators have com-

parable error coefficients, in the actual numerical results roughly a factor of two difference

can be seen.

Convergence exponents for runs using the D6−5 operator are shown in Fig. 10. When

using an RK4 time integrator the spatial truncation error at the highest resolutions gets

so small that the global accuracy is affected by the lower convergence order of the time

integration. That manifests itself in the left plot of Fig. 10. For the highest resolution

runs the global convergence order drops down from the expected value of six to a number

between five and six. If a sixth order accurate Runge Kutta time integrator (RK6) is

used, as shown on the right panel, the truncation error in the time integrator gets smaller

and even for the highest resolution runs that were done the spatial differencing errors

dominate. The global convergence exponent stays at approximately six for all three tests

that were done.

48



Fig. 11 compares the errors resulting from using a larger selection of finite differencing

operators at two different resolutions ∆x = 0.1 and ∆x = 0.0125. Fig. 12 again compares

the errors resulting from different operators this time at a fixed t = 4.4, all the resolutions

that were used in the convergence tests and two choices for an error measure: the infinity

norm and the L2 norm. This plot can be used as a guideline for which operator to choose

for a given resolution. Note that the errors change by orders of magnitude depending on

the choice of operator at a given resolution. For the tests shown here, D6−5 is the best

choice, in terms of convergence order as well as accuracy. It should be noted that the

higher order methods only pay off when going to high enough resolutions. In the same

way the errors converge faster with increasing resolution, they also grow faster when

decreasing resolution compared to lower order operators. For example at h = 0.1, the

errors of D8−4 are a bit larger D4−3 (which is computationally cheaper to compute), while

at the highest resolution it is about one order of magnitude less.
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Figure 11: Comparison of the L∞ errors for all the new, optimized, differencing operators
constructed in this thesis. The left (right) plot shows a comparison of all the unique
and optimized operators at low (high) resolutions. The most successful operators are the
optimized D6−5, D4−3, and D8−4.

3.5 Local vs. Global Coordinate Basis

In Chap. 2.2.5 the point was made that the basis in which the tensor components are

expressed does not need to be identical to the coordinates in which the partial derivatives
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Figure 12: Comparison of the errors at t = 4.4 for all resolutions. The left (right) plot
shows the L∞ (L2) errors.

and finite differencing operators are written. Using a different basis for the tensor com-

ponents requires to transform the spatial partial derivatives in the evolution equations

according to Eq. (14). Choosing a global tensor basis, i.e. one that is common to all

of the individual blocks will simplify the treatment of inter block boundary conditions

considerably.

Shown is a numerical comparison between runs following the specifications given in

Chap. 3.3. A numerical resolution of 21 × 21 × 21 grid points on each block, including

the central cubical one is used. The test is done applying the D6−5 finite differencing

operators.

With a patch-local tensor basis and diagonal norm operators, the system is strictly

stable. The numerical error at a given resolution is bounded by a constant. With a

global tensor basis on the other hand, strict stability has not been shown and a small

amount of artificial dissipation is required for stability. Because of the D6−5 operators

being constructed from a restricted full norm, dissipation is required here for both types

of tensor bases. Therefore compatible artificial dissipation is added to the system of

both Mattson-Svärd-Nordström and Kreiss-Oliger type. A description of these dissipation

operators is given in Chap. 2.3.4. The dissipation coefficient is chosen to be ε = 3.0, the
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L∞ norm of the solution error vs. time for a coarse resolution on a seven-block system.
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coefficients. For this particular value of the dissipation strength ε, using a global tensor
basis is unstable with the MSN dissipation operators, but stable with the KO operators.
With higher values of ε, the system is stable for both dissipation operators.

size of the transition region is 0.3 times the size of the block. The whole system is then

sixth order accurate.

The numerical results are shown in Fig. 13. Shown is the L∞ norm of the numerical

error function, i.e. the difference between the numerical and the known exact solution.

The simulation was run up to a time of t = 50 where as previously the crossing time is

about 1.67M . The discretization using MSN dissipation is unstable with the global tensor

basis formulation. It was found that increasing the dissipation parameter ε to values above

3.0 will stabilize the system. In the patch-local tensor basis formulation even for ε = 3.0

instabilities are not seen. Using the Kreiss-Oliger dissipation operators, a dissipation

strength of 3.0 is sufficient for both tensor bases to keep the simulation stable. In terms

of accuracy, i.e. the actual value of the numerical error, all cases, except when going

unstable, are similar. The influence of the tensor basis on global accuracy does not seem

to be relevant. Therefore the choice of the tensor basis changes the numerical simulation
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mainly in the sense that depending on the choice, a different amount of dissipation is

necessary for stability. That justifies the pragmatic approach to use a global basis for the

more complicated general relativistic code, where the added simplicity makes the code

more readable and debugging simpler.
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4 Quasinormal Mode Excitation of Kerr Black Holes

4.1 Introduction

One of the most useful methods to explore the response of black holes to external per-

turbations is based on wave scattering [69]. Early studies identified three main stages in

the dynamics of a wave propagating on a black hole background, as observed at a fixed

spatial point. In a first, transient phase the observed wave depends on the structure of

the initial pulse. Vishveshwara and Press discovered that this initial “burst” is invari-

ably followed by a second phase characterized by exponentially decaying oscillations: this

phase is usually referred to as “quasinormal ringing” [70, 71]. In the third and last stage

of the evolution, waves slowly die off as a power law tail [72].

Astrophysical black holes should be well described by the Kerr solution, since charge

is unlikely to play a major role in astrophysical scenarios (see e.g. [17] for a discussion).

As a consequence of the “no hair theorem”, if general relativity is the correct theory of

gravity, the quasinormal mode (QNM) frequencies of a Kerr black hole depend only on its

mass and angular momentum. Earth-based and space-based gravitational wave detectors

have the potential to measure the frequency and damping time of a QNM. From these

two observables one can infer the black hole’s mass and angular momentum [73, 74]. For

the space-based Laser Interferometer Space Antenna (LISA) and possibly also for second-

generation ground-based detectors, the signal-to-noise ratio can be large enough that one

will be able to identify two or more QNM frequencies in the signal [75]. A multi-mode

detection would provide a striking, direct test of the Kerr nature of the source (i.e., of the

no-hair theorem). The basic idea is quite simple. Roughly speaking, the first mode in the

pair is used to determine the black hole’s mass and angular momentum, and the other

mode(s) to verify that the QNM spectrum is indeed consistent with a general relativistic

Kerr black hole [76].
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The combined observation of supermassive black hole binary inspiral and ringdown

with LISA can provide even more information [77]. Parameter estimation during the

inspiral phase can be very accurate, depending on the black holes’ masses, spins and

distance [78]. Combining information from the inspiral and ringdown phases one can

estimate the energy radiated in the merger, and possibly improve parameter estimation

from both phases (see e.g. [79] for a preliminary study of this effect in the context of

earth-based detectors).

In the last thirty years the development of gravitational wave astronomy motivated a

detailed investigation of the QNM frequency spectrum [80, 81, 82]. In comparison, the

problem of the relative excitation of QNMs received very little attention (see e.g. [83] and

references therein). One especially needs information about relative excitation ampli-

tudes for physically realistic, strong sources of gravitational waves like binary black holes

which have good chances of being detected by current or next generation interferometers.

Therefore, ideally, the relative QNM excitation should be determined by general relativis-

tic simulations of (for example) binary black hole mergers. Despite recent progress, this

information is not yet available [84]. Given the recent progress of numerical relativity, by

the time LISA flies one could have a good knowledge of the multipolar distribution of the

energy and angular momentum radiated in a black hole merger under generic conditions.

Knowing in advance which modes should be excited in a realistic merger will not only be

useful to probe the Kerr nature of the source, but also to reduce the number of templates

needed to perform matched filtering on ringdown waveforms.

In this chapter a quantitative investigation of QNM excitation is presented studying a

simple model problem: the scattering of scalar waves on a Kerr background. This problem

can be studied in the framework of black hole perturbation theory analytically. Instead

of that, here the scalar field is evolved with a three dimensional finite differencing code

that applies the multi-block methods described in the previous chapters. The results are

compared with results from analytic perturbation methods, partly to test the accuracy of
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the applied methods in cases for which the perturbative results are known to be correct

to a high accuracy and partly to provide independent numerical results in cases for which

it is not clear how well approximations and assumptions that go into the perturbative

calculations hold. An example for the first case is the quasinormal frequency spectrum of

a Schwarzschild black hole; an example for the second case is the excitation strength of

quasinormal modes for an observer at a finite distance from the black hole. From here on,

analytic results from perturbation theory are just called perturbative results as opposed

to the numerical results from the simulations.

Even though the work was done in three dimensions, due to the advantages of

the multi-block code, the results are more accurate than previous studies using two-

dimensional codes [85, 86]. Krivan et al. [85] studied the late time dynamics and the

rotational coupling of massless scalar fields in a Kerr background, but not their quasinor-

mal ringing. Later they extended the analysis to gravitational perturbations, considering

both the late time tail and the quasinormal ringing phase [86]. For large rotation the

damping times of corotating fundamental modes in [86] are accurate within ∼ 3% when

compared to results from perturbation theory; the accuracy reached with the 3D code

(∼ 0.3%) is roughly an order of magnitude better. In fact, it was possible to extract the

frequencies of some overtones with an error of the order of a few percent or less.

Given the high accuracy of the multi-block infrastructure, a careful extraction of the

QNM content of the waveforms becomes necessary. The so-called time-shift problem (ex-

ponential dependence of the quasinormal amplitudes on the time at which the quasinormal

ringing regime starts) is discussed in detail, how it affects the determination of both abso-

lute and relative QNM amplitudes, and how to choose pairs of modes so as to decrease the

uncertainty on relative amplitudes. A general criterion (based on minimizing a suitably

defined residual) to determine the optimal fitting window to extract QNM frequencies

and amplitudes is introduced. These tools are used to study the absolute and relative

amplitudes of corotating and counterrotating modes for Gaussian initial data located in
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the far zone. The dependence of these amplitudes on the radial shape of the initial data

is looked at, and excellent agreement with results from perturbation theory [83] is found.

Also discussed is the problem of extracting overtones for modes with a given angular de-

pendence, finding that the first overtones of corotating modes (e.g. modes with l = m = 2)

contribute significantly to the waveform for rapidly rotating black holes.

4.2 The Continued Fractions Method for Computing
Quasinormal Modes

In this chapter perturbations of black holes are studied by evolving the time dependent

wave equation directly as opposed to analytical perturbative calculations. The first at-

tempts to compute quasinormal frequencies took this approach [70] and due to the ever

increasing computational resources and development of numerical schemes and codes, this

approach can still provide new results today. The advantage of numerical evolutions is

mainly that they can produce results for fairly general physical situations, for which it

is not necessarily known how well perturbative approximations hold. For example pre-

dictions about initial perturbations and observers at finite distances from the black hole

can be performed and, given that the numerical details are under control, will converge

towards the correct solution. Also how to apply boundary conditions to these kind of

initial value problems is well understood. The disadvantage is higher computational cost,

compared to other methods and problems extracting enough information about the modes

from the data. As described in Chap. 4.9, modes can be extracted by Fourier transfor-

mations or by fitting to a quasinormal ringdown function. With both methods it is only

possible to reliably extract the two or three strongest modes in the waveform. This is not

at all due to insufficient numerical accuracy but because higher overtones typically decay

so fast that their contribution is extremely small during most of the quasinormal ringing

phase.

An alternative method for computing quasinormal mode frequencies was presented in

1985 by Leaver [87]. It can be applied to Schwarzschild, Kerr and with some modifications
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Reissner-Nordström black holes and it is very accurate even for very high overtones. In

the following subsections numerical results from simulations will frequently be compared

to results computed by that method. Here a quick overview of the basis of this method

is given. This discussion follows closely the more detailed description in [88].

The one dimensional wave equation for the function Φ(r) with a potential V (r) can

be written as

∂2
t Φ +

(
−∂2

r + V (r)
)
Φ = 0. (48)

The Regge-Wheeler equation that describes odd parity linear perturbations of a

Schwarzschild black hole (for other types of perturbations the discussion and analysis

is similar) is of that form. In that case Φ would be the so called Regge-Wheeler function

that represents the perturbation and V (r) is a potential that depends on the black hole

parameters and the spin and angular structure of the perturbing field.

For simplicity this discussion is restricted to smooth solutions with compact support.

Also the potential is chosen to be positive V (r) ≥ 0 and vanishing for |r| > r0. Note

that this is generally not the case for the potentials that show up in the Regge-Wheeler

formalism. All solutions with compact support are bounded, i.e. |Φ| < C. The Laplace

transform of the of Φ is

Φ̂(s, x) =

∫ ∞

0

e−stΦ(t, x)dt. (49)

Eq. (48) for the transformed field is

s2Φ̂− Φ̂′′ + V Φ̂ = sΦ(0, r) + ∂tΦ(0, r). (50)

Solutions to that equation are

Φ̂(s, r) =

∫ ∞

−∞
G(s, r, r′)j(s, r′)dr′ (51)
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with the Green function

G(s, r, r′) =
1

W (s)

 f−(s, r′)f+(s, r), (r′ < r)

f−(s, r)f+(s, r′), (r′ > r),
(52)

two arbitrary solutions to the homogeneous part (i. e. the right hand side set to zero)

of Eq. (50), f− and f+, and their Wronskian W (s). j is the inhomogeneity of Eq. (50).

The quasinormal frequencies are defined as the complex numbers sn for which the two

solutions to the homogeneous equations become linearly dependent:

f+(sn, r) = c(sn)f−(sn, r). (53)

The corresponding f+(sn, r) are the so called quasi eigenfunctions and the Green function

is singular at s = sn. The solution to the Regge-Wheeler equation is computed by the

inverse Laplace transform

Φ(t, r) =
1

2πi

∫ ∞

−∞
e(a+is)tΦ̂(a + is, x)ds, (54)

a complex line integral (a > 0).

In Leaver’s method, also called continued fractions method, a series representation of

f− is assumed to represent also f+ for the values of the quasinormal frequencies. This

method may work if f+ is bounded which would be the case for normal modes. For

quasinormal modes this is generally not clear, since f+ grows exponentially. In spite of

that, the method works very well numerically. With an improved version of it Nollert was

able to compute quasinormal modes up to a mode number of 100000 and could numerically

show the asymptotic distribution of modes [89]. Some insight about how that method

works is given in [90].
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For Kerr black holes this leads to two coupled equations, one for the radial and one

for the angular dependence of the perturbation. For both of them recurrence relations for

the coefficients of the series expansion can be found and used to compute the quasinormal

modes.

4.3 Evolution Equations and Background Geometry

The evolution equations used in this chapter to study scalar quasinormal modes, are

identical to the ones described in Chap. 3.2 except that the flat background metric is

replaced by the metric of a single rotating black hole in Kerr Schild coordinates. Explicitly

the background metric is given as

ds2 = ηµν + 2Qlµlνdxµdxν (55)

with ηµν the Minkowski metric, and

Q =
Mr

r2 + a2 (z/r)2 , (56)

r2 =
1

2
(ρ2 − a2) +

√
1

4
(ρ2 − a2)2 + a2z2 , (57)

ρ2 = x2 + y2 + z2 . (58)

Here M is the mass and a = jM is the angular momentum per unit mass of the black

hole (j is the dimensionless spin parameter, 0 ≤ j ≤ 1). In Cartesian coordinates, the

null vector lµ is given by

lµdxµ = dt +
rx + ay

r2 + a2
dx +

ry − ax

r2 + a2
dy +

z

r
dz . (59)

This form of the Kerr-Schild metric has become of common use in numerical relativ-

ity. However, in these coordinates the shape of the Cauchy and event horizons become
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more and more ellipsoidal with increasing spin3. For j & 0.96 it is not possible to fit

a spherical excision boundary between these horizons any more. This is illustrated in

Fig. 14. Although one could in principle choose a different shape for the excision bound-

ary within the code, instead coordinates for which both horizons are always spherical, and

therefore an excision sphere can always fit between them are used. This version of the

Kerr Schild coordinates is related to the “standard” one defined above by the following

transformation:

x̃ = x− ay

r
, (60)

ỹ = y +
ax

r
, (61)

z̃ = z . (62)

Figure 14: Event and Cauchy horizons for a Kerr black hole with spin j & 0.96 in
“standard” Kerr-Schild coordinates (as defined in the text), here shown in the x-z plane.
The horizons have an ellipsoidal shape; it is therefore not possible to fit a spherical excision
region (dotted line) between the two horizons.

4.4 Initial and Boundary Conditions

The QNM excitation depends on the structure of the scalar field that is used as a per-

turbation. To excite certain modes in a controlled way, one chooses initial data of the

form

Φ = A exp

(
−(r − r0)

2

σ2

)
Y (`,m) , (63)

3The author thanks Harald Pfeiffer for pointing this out.
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Π = B exp

(
−(r − r0)

2

σ2

)
Y (`,m) , (64)

di = ∂iΦ . (65)

Unless otherwise stated, throughout this chapter the initial data location is fixed to

r0 = 20M and σ = M . Y (`,m)(θ, φ) denotes the ordinary spherical harmonics. Since the

Kerr background is not spherically symmetric, one should really expand the perturbation

in terms of spin-weighted spheroidal harmonics (s)S(`,m)(jω) of spin weight s = 0. Using

spherical harmonics weakly excites other modes through rotational mode mixing; this

point will be discussed in more detail below, in Chap. 4.10.

The changes in the characteristic length scale in the radial direction are usually small

over time. To accurately resolve the propagating waves all the way to the outer boundary

a constant resolution in the radial direction of the cubed sphere coordinates is used. As

mentioned, the coordinates are set up so that the spherical inner (excision) boundary

is placed between the event and Cauchy horizons, and no boundary conditions need to

be applied there. For global stability maximally dissipative boundary conditions are

chosen at the outer boundary, and they are applied through penalty terms as described in

Sec 2.3.2. That works analogous to the inter-block boundary treatment, except that the

ingoing modes (that enter the computational domain) are not taken from a neighboring

block but constructed according to the type of boundary condition one wants to apply.

4.5 Multi-Block Setup

The setup laid out in the previous chapters is inherently an axisymmetric problem that

could be solved for each m independently with a two dimensional code. Nonetheless the

approach is taken to evolve the full set of three dimensional equations, making use of the

multi-block infrastructure described above. The following considerations will make clear

that this problem can be treated numerically in an efficient way by that approach:
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The goal is to model the ring down of the scalar field, before the power law tail

decay sets in at late times. To get a sufficiently complete picture of that phase, an

observer located at a certain radius robs needs to be able to monitor the field for a time

of about 100M from the moment on that the first signal from the black hole reaches him,

while still being causally disconnected from the outer boundary and errors that might

get induced there. Given that the center of the Gaussian in the initial data is typically

around 2M − 20M and the observer location between 2M − 30M , an evolution time of

around 150M is required with outer boundaries located at about 200M .

The excision sphere is placed between the event and the Cauchy horizon and will be,

depending on the spin of the black hole, located between 1M and 2M .

To resolve the dynamics going on close to the horizon it was found that a radial

resolution of at least ∆r = 0.1M is necessary, i.e. 2001 grid points in radial direction

are needed. In the angular directions 21 × 21 grid points are used. On the other hand,

the characteristic feature length of the data in the angular directions is not expected to

change much during the course of the evolution. Given that the angular part of the initial

data is resolved well, the angular resolution should be sufficient for all times and all radii.

As it is clear from the description of the cubed sphere coordinates in Chap. 2.2.4 this

multi-block grid structure fulfills exactly those requirements. The fact that it provides a

constant angular resolution is the primary reason why three dimensional simulations of

the outlined problem can be done in an efficient way.

An additional benefit coming from the cubed sphere coordinates is that waves can

be extracted from the numerical data easily without the need for interpolation or similar

more complicated methods, since one can use constant r coordinate spheres for the wave

extraction.

4.6 Specifications for the Simulations

Spatial finite-differencing operators that satisfy summation by parts are used; they are

eighth order accurate in the interior and fourth order accurate at and close to the bound-
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aries. With those operators a global accuracy of order five is expected [56, 57] (see Chap. 3

and reference [60] for more details on the operators that are used). A fourth order accurate

Runge Kutta time integrator is applied. This does not spoil the expected global fifth order

spatial convergence, since a small enough time step is chosen so that the truncation errors

generated by the time integration are smaller than those that originate from the spatial

finite differencing (see Chap. 3 and reference [60] for details on the code’s convergence).

In multi-block simulations one does not necessarily have a uniform or isotropic grid

spacing in a global coordinate system. Since in all of the simulations presented the global

grid spacing in the radial direction is smaller than in the angular directions, the radial

direction is used for the time step criterion ∆t = λ∆r, where λ —usually referred to as

the Courant factor— is chosen to be λ = 0.25.

Fig. 15 shows a typical waveform that results when extracting the real part of the

` = 2, m = 2 mode from the simulations. The initial data are set up according to Eq. (4.4),

with the specific choice A = 0, B = 1, σ = M and r0 = 20M . The background Kerr black

hole has a spin j = 0.9. The strongest modes in this waveform are (` = 2, m = 2, n = 0)

and (` = 2, m = −2, n = 0), where n labels the overtones, n = 0 being the fundamental

mode. A fit for those two modes is shown together with the numerical data. For details

about how that fit was done, see Chap. 4.9. The third strongest component in the data

is the (` = 2, m = 2, n = 1) mode, i.e. the first overtone. Since this mode is decaying

much faster than the fundamental mode, it only plays a role at early times. That is the

reason why the fit, done for only the two fundamental modes, is drifting away from the

numerical data at times below 50M (overtones will be analyzed explicitly in Chap. 4.12).

4.7 Overview of Quasinormal Mode Extraction

The time evolution of perturbations of a Kerr black hole can be split into three stages.

After a first burst of radiation depending on the source of the excitation, the perturbation

field Φ undergoes exponentially damped oscillations (ringdown phase). Finally, in the tail

phase (caused by back-scattering of radiation off the background gravitational potential)
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Figure 15: The left panel shows the ` = m = 2 component of the waveform extracted at
radius r = 5M on a Kerr black hole background with a spin of j = 0.9. The waveform is
a superposition of the corotating and the counterrotating mode, and the beating of two
different frequencies is clearly visible. The right panel shows the waveform for t ≥ 40M
as well as a QNM fit with the fundamental ` = |m| = 2 modes. The interval used for the
fit is [74.5M, 150M ]. The inlay shows the absolute value of the difference between the fit
and the data. At times between the excitation of the QNM (t ∼ 25M) and about 70M
the differences are mainly due to the presence of the (l = 2, m = 2, n = 1) mode (i.e.
the first overtone), the exponentially decaying mode that can be seen in the inlay (a fit
of this mode yields quasinormal frequencies in agreement with perturbation theory). At
times t . 25M the difference is due to the initial burst.
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the field follows a power-law decay. In this thesis the focus is on the ringdown stage. The

different multipole components of the solution are extracted by integrating the scalar field

against different spherical harmonics over surfaces of constant observer radius r:

Φ(`,m)(r, t) =

∫
Ȳ (`,m)(θ, φ)Φ dΩ , (66)

where the bar denotes complex conjugation. Usually multipole components are considered

up to ` = 4 and all values of m (|m| ≤ `). By adding up the contributions of all multipoles

one should recover the full scalar field:

∫
r

Φ2dΩ =
∞∑

`=0

∑̀
m=−`

(Φ(`,m))2 . (67)

As already mentioned, the rotation of the black hole and numerical errors can excite

multipole components which are not present in the initial data. The above property can

be used to check for the existence of overtones or modes with ` > 4 that are not explicitly

extracted but might be present in the solution (e.g. due to rotational mode mixing,

numerical errors, or both). Multipoles with m 6= 0 require some care. The spherical

harmonics Y (`,m)(θ, φ) are given by

Y (`,m)(θ, φ) =

√
2` + 1

4π

(`−m)!

(` + m)!
P (`,m)(cos θ)eimφ , (68)

where P (`,m)(θ) is a real function (an associated Legendre polynomial). Therefore the

initial data of a pure multipole with m 6= 0 will be complex. Given that the evolution

equations are linear, one can evolve the real and imaginary parts of Φ separately, and

obtain the complex solutions for positive and negative m by linear combinations of the

form

Φ(`,m) = R(Φ(`,m)) + iI(Φ(`,m)) , (69)
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Φ(`,−m) = R(Φ(`,m))− iI(Φ(`,m)) . (70)

R(Φ(`,m)) and I(Φ(`,m)) are the real and imaginary parts of Φ(`,m) respectively. This point

is important for the extraction of the relative amplitude of corotating and counterrotating

modes. In fact, as stressed (for example) in Ref. [75, 87], QNMs of Kerr black holes

always come “in pairs”. In the Kerr case, for a given multipole (`, m) one has to solve

an eigenvalue problem to determine both the quasinormal frequencies ω(`,m,n) and the

angular separation constant A(`,m,n) (not to be confused with the mode amplitude A(`,m,n)

introduced below), used to separate the angular and radial dependence of the Teukolsky

equation and write it as two ordinary differential equations. For each (`, m 6= 0) and j 6= 0

the eigenvalue problem admits two sets of solutions. In addition to (`, m), one labels the

modes of each set by the overtone index n, denoting the frequencies by ω
(`,m,n)
(i) (i = 1, 2).

For given (`, m, n), the solutions corresponding to the two different sets have different

values of ω(`,m,n) (and also of A(`,m,n)):

ω
(`,m,n)
(1) 6= ω

(`,m,n)
(2) .

Both the real and imaginary parts are different. In fact, the real part of one of the

frequencies is positive and the other one is negative:

R(ω
(`,m,n)
(1) ) > 0 , R(ω

(`,m,n)
(2) ) < 0 .

If one considers instead the frequencies corresponding to the pair (`,−m), they are related

to those of (`, m) by a simple symmetry property:

−R(ω
(`,m,n)
(i) ) = R(ω

(`,−m,n)
(j) ) , I(ω

(`,m,n)
(i) ) = I(ω

(`,−m,n)
(j) ) ,

Ā
(`,m,n)
(i) = A

(`,−m,n)
(j) , (i, j = 1, 2 ; i 6= j) . (71)
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In this sense, any solution with positive m is nothing but the “mirror image” of a solution

with opposite real part and opposite m (see Fig. 6 of [75] for an illustration of this).

For m = 0 (or for any value of m in the Schwarzschild case) the two “mirror solutions”

are degenerate in modulus of the frequency and damping time. However, in general, a

multipolar component with a given (`, m) will always contain a superposition of at least

two different damped exponentials. Because of this, it is enough to consider only one

frequency for each mode [(`, m) or (`,−m)], since the other two frequencies are obtained

through this symmetry property; the standard convention of considering, for each mode,

the frequency with positive real part is followed. Below is a detailed discussion of the

excitation of these modes, extending previous work by Krivan et al. [86].

When the perturbation field is in the quasinormal ringing regime, it can be expanded

as a QNM sum of the form

Φ(`,m)(r, t) ≈ R

{
∞∑

n=0

A(`,m,n)eic(`,m,n)

e−iω(`,m,n)(t−t0)

}
, (72)

where A(`,m,n) is the amplitude of the n-th overtone with angular structure given by the

pair (`, m), c(`,m,n) its phase, ω(`,m,n) its complex quasinormal frequency and t0 (which to

a first approximation is assumed to be the same for all modes) marks the time at which

the quasinormal regime starts.

The extraction of gravitational waves from numerical simulations of the full Einstein

equations requires the observer to be located far away (in the wave zone). This aspect is

covered in detail in Chap. 5. For the extraction of QNM frequencies, on the other hand,

it is not problematic to place the observer close to the black hole, since an observer at any

point in the space-time is in general expected to measure the same frequencies. In fact, a

small r is better suited for extracting quasinormal frequencies from the simulations simply

because outer boundary effects pollute the waveform later, and the ringing regime can be
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observed for a longer time. The availability of a longer ringdown waveform improves the

accuracy of the fitting procedure that is applied to extract the frequencies.

Table 3: Quasinormal frequencies computed by Leaver’s continued fraction method (here
labeled “perturb.”) and by the time domain simulations, with the associated relative
differences. 21×21 points are used in the angular direction on each block and a resolution
of 0.1M in the radial direction. For j = 0.9 the frequencies as seen by observers located at
different radii r are compared. Observers at larger radii measure frequencies with larger
errors, since boundary effects start to contaminate the waveform earlier.

r j l, m ωperturb. ωnumerical rel. difference (Re,Im)

5M 0.0 2, 0 0.48364− 0.09676i 0.48364− 0.09676i < 10−5

0.5 2, 0 0.49196− 0.09463i 0.49190− 0.09469i 4.27× 10−4, 6.34× 10−4

0.5 2, −2 0.42275− 0.09562i 0.42281− 0.09569i 1.42× 10−4, 7.32× 10−4

0.5 2, 2 0.58599− 0.09349i 0.58589− 0.09339i 1.71× 10−4, 1.07× 10−3

0.9 2, 0 0.51478− 0.08641i 0.51471− 0.08646i 1.36× 10−4, 5.79× 10−4

0.9 2, −2 0.38780− 0.09379i 0.38781− 0.09339i 2.58× 10−5, 4.26× 10−3

0.9 2, 2 0.78164− 0.06929i 0.78144− 0.06955i 2.56× 10−4, 3.75× 10−3

0.98 2, 2 0.89802− 0.04090i 0.90940− 0.04018i 1.27× 10−2, 1.76× 10−2

0.98 2, −2 0.38177− 0.09338i 0.38234− 0.09743i 1.49× 10−3, 4.34× 10−2

20M 0.9 2, −2 0.38780− 0.09379i 0.38694− 0.09471i 2.22× 10−3, 9.81× 10−3

0.9 2, 2 0.78164− 0.06929i 0.78244− 0.06670i 1.02× 10−3, 3.74× 10−2

40M 0.9 2, −2 0.38780− 0.09379i 0.38406− 0.09958i 9.64× 10−3, 6.17× 10−2

0.9 2, 2 0.78164− 0.06929i 0.78292− 0.06618i 1.64× 10−3, 4.49× 10−2

The effect of the observer’s location on the result is illustrated in Table 3, where

the frequencies of (` = 2, m = ±2) fundamental modes for a Kerr black hole with spin

j = 0.9 as measured by observers at radii r = 5M , 20M and 40M are listed. t0 = r + r0

in Eq. (72) and A = 0, B = 1 in Eq. (4.4) was chosen. The results presented in this

Table are discussed in more detail below (Chap. 4.9). Here it is simply pointed out

that quasinormal frequencies measured at different radii are very close to the analytical

predictions, supporting the statement that the observer does not need to be far away from

the black hole to extract the correct ringdown frequencies. Indeed, for these particular

simulations the relative error increases with r: the main reason, as explained, is that
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observers located at large radii see boundary effects earlier, so they can only measure a

shorter ringdown waveform with respect to observers closer to the black hole.

4.8 The Time-Shift Problem

Here the so-called time-shift problem is discussed, how it affects the extraction of quasinor-

mal frequencies and amplitudes from numerical simulations, and a possible way to address

it. Even though in this chapter scalar perturbations are considered, the discussions of this

and other chapters apply also to other types of black hole perturbations.

The standard approach is to choose t0 in Eq. (72) using some approximate calculation

based, for example, on the location of the initial data and the time it would take for

initial data to be scattered by the black hole potential and reach the observer, usually

assuming that perturbations propagate with coordinate speed one (as they would in flat

space-time). Criteria like this are well motivated and provide a good guess, but there

is still an uncertainty in t0. For example, the coordinate speed of the perturbation in

a curved background in general will not be one. One might expect that such a small

uncertainty would not influence the extraction of physically relevant quantities. However,

as discussed below, this is not the case: there are quantities of interest to gravitational

wave detection which have a strong dependence on t0. Following the existing literature,

this is called the time-shift problem.

Suppose the starting time t0 is subject to an uncertainty δ0. Under a change

t0 → t0 + δ0 , (73)

the amplitude and phase of each mode change according to

A(`,m,n) → A′(`,m,n)
= A(`,m,n)e−δ0I(ω(`,m,n)) , (74)

c(`,m,n) → c′
(`,m,n)

= c(`,m,n) + δ0R
(
ω(`,m,n)

)
. (75)
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That is, an uncertainty in t0 induces a linear uncertainty in the phase, and an exponential

uncertainty in the amplitude. Fortunately other quantities are largely independent of this

uncertainty: for example, the QNM frequencies ω(`,m,n) are unaffected by δ0.

How large can one allow this exponential amplification of errors to be? Impose the

requirement on the amplitude uncertainty induced by the starting-time uncertainty δ0 to

be less than some small number ε, that is

∣∣∣∣∣A′(`,m,n) −A(`,m,n)

A(`,m,n)

∣∣∣∣∣ =
∣∣∣e−δ0I(ω(`,m,n)) − 1

∣∣∣ < ε .

For small ε this implies

|δ0| .
∣∣∣∣ ε

I (Mω(`,m,n))

∣∣∣∣M . (76)

For the ` = 2 fundamental scalar mode in the Schwarzschild background (which is spher-

ically symmetric, so that the choice of m becomes irrelevant) |I
(
Mω(2,0,0)

)
| = 0.09676 '

10−1. In other words, if one wants to determine the amplitude of this mode within 1%

(ε = 10−2) one needs to know t0 with an uncertainty δ0 . 0.1M . Constraints on δ0 are

even tighter for overtones, since they decay faster and the exponential propagation of

errors is more dramatic.

In practice, what is most interesting is the relative amplitude between different modes.

Under a change of the form (73) this relative amplitude changes according to

A(`,m,n)

A(`′,m′,n′)
→
(
A(`,m,n)

A(`′,m′,n′)

)′
=
A(`,m,n)

A(`′,m′,n′)
e
−δ0I

“
ω(`,m,n)−ω(`′,m′,n′)

”
. (77)

Following the same reasoning one finds the constraint

|δ0| .
∣∣∣∣ ε

MI (ω(`,m,n) − ω(`′,m′,n′))

∣∣∣∣M . (78)
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Consider for example the relative amplitude between the fundamental mode and the first

overtone. For Schwarzschild black holes and small values of n the typical difference in the

imaginary part of the frequency for two consecutive overtones (`′ = `, m′ = m, n′ = n+1)

is

MI
(
ω(`,m,n) − ω(`′,m′,n′)

)
' 0.2 .

Setting again ε = 10−2 the maximum allowed uncertainty on the starting time would be

quite small: δ0 . 0.05M (this presumably already precludes assuming that the perturba-

tion propagates with speed one, as in flat space-time).

Suppose one wants to resolve corotating and counterrotating components of the

fundamental mode with ` = 2 (say, the components with m = ±`). In the case

of a spinning black hole background these QNM frequencies are different, but their

imaginary parts are actually quite close for most values of the rotation rate [87, 75].

For example, looking at Tab. 3 one can see that for spin j = 0.5 the difference is

|MI
(
ω(2,2,0) − ω(2,−2,0)

)
| ' 0.00212, so that δ0 . 4.7M . Even for a rapidly rotating

black hole with j = 0.9 the difference is not as large as between a fundamental mode and

its overtone: MI
(
ω(2,2,0) − ω(2,−2,0)

)
' 0.0245, and δ0 . 0.4M .

Critical starting-time uncertainties for ε = 10−2, general values of the spin and different

pairs of modes are plotted in Fig. 16. Determining the relative amplitude of a fundamental

mode and of the first overtone is generally harder, unless corotating modes and near-

extremal black holes are considered, as it is done in Chap. 4.12. The spin dependence of

δ0 is quite weak for overtones, but δ0 can change by orders of magnitude for modes with

different angular dependence (` 6= `′ or m 6= m′). For j . 0.5 the time-shift problem,

as defined here, becomes irrelevant when one wants to determine the relative amplitude

of components with the same l and different m’s. The reason is simply that modes with

different m’s have the same QNM frequency in the Schwarzschild limit, so that δ0 →∞.

As a rule of thumb, determining the relative amplitude of angular components with the
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Figure 16: Critical uncertainty in the starting time, as defined by Eq. (78), assuming
ε = 10−2. In the left panel the critical δ0 is given for fundamental modes (n = n′ = 0)
with different angular dependence. For the first mode ` = m = 2 is assumed; the second
mode has `′ = 2 and different values of m′ = 1, 0,−1,−2 (lines from top to bottom). In
the right panel the critical uncertainty in the relative amplitude of the fundamental mode
and first overtone, i.e., n = 0 and n′ = 1 is shown. Here ` = `′ = 2 is set, all values of
m = m′ are considered and once again ε = 10−2 is assumed.

same l and different m’s is harder for large rotation. However, as said before, even for

j = 0.9 the critical uncertainty is δ0 & 0.4M , an order of magnitude larger than the typical

uncertainty to resolve overtones (which in most cases is ∼ 0.05M). Most of the qualitative

features of Fig. 16 are also seen in the experimental problem of resolving different QNMs

in the actual detection of a ringdown signal (compare e.g. Figs. 3, 4 and 18 of [75]).

In Chap. 4.11 and Chap. 4.12 the extraction of corotating and counterrotating modes

and of overtones will be studied in more detail, respectively. In preparation for this study,

in the next chapter the general method by which we extract quasinormal frequencies from

the numerical waveforms is outlined.

4.9 Optimal Choice of Fitting Interval

Once one has the different multipole components of the numerical solution, one can ana-

lyze them by applying a fitting procedure to each of these components. Since each mode

decays exponentially while oscillating with its quasinormal frequency, the obvious function

to fit the numerical waveform is Eq. (72), where the free parameters are the amplitudes,
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phases and frequencies. As discussed in Chap. 4.12, only in some cases it was possible to

fit for overtones, in the sense of getting their expected quasinormal frequencies with rea-

sonable accuracy. However, as described below, the residual that one gets by truncating

the sum at the fundamental mode is already quite small (see also Fig. 15).

This subsection deals with extracting the quasinormal frequencies from the numerical

data. To a very good approximation the frequencies are independent of t0, and one can

therefore pick any value for the latter. One still needs to find a good choice for the time

interval [Ti, Tf ] over which the ringdown dominates and the fitting procedure works best.

Since in principle the parameters obtained from the fitting might depend on the choice of

this time interval, the procedure applied here will be described in detail.

Only during the ringdown phase does the waveform have the functional behavior of

Eq. (72), so the time interval [Ti, Tf ] should not include the transient regime and the tail

phase. For the simulations described here it was found reasonable to pick Tf = 150M ,

since for T > Tf the system typically goes into the tail phase. The choice of Ti is more

delicate: small values would bring the fitting time window out of the ringdown phase,

but large values would make the fitting interval small and the resulting fit inaccurate. It

was decided to take a pragmatic approach: for different values of Ti one computes the

(relative) residual R(Ti, t0) between the fitted function and the numerical data, which is

defined as

R(Ti, t0) =

 Tf∑
tj=Ti

|Φdata(tj)− Φfit(tj, t0)|

 Tf∑
tj=Ti

|Φdata(tj)|

−1

(79)

Then a value of Ti that minimizes the residual is chosen. In a very well defined sense, this

gives an optimal choice for Ti. In principle one could use other norms (for example, a sum

over squares instead of a sum over absolute values), but it was checked that this does not

affect significantly the results of presented here. Choosing the value of Ti that minimizes
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the residual defined above should not be confused with the minimization procedure done

at each Ti to get the fit itself.

Instead of extracting the quasinormal frequencies through a fitting procedure, in prin-

ciple one could also perform a Fourier transform of the solution, as in Ref. [86]. However

it was found that the fitting procedure provides a far superior accuracy, even in cases

with relatively few sampling points. Nonetheless a comparison to the results that were

obtained by Fourier analysis has been done and consistency between both methods was

confirmed.

Fig. 17 shows the residual as a function of Ti for one of the simulations (the one

corresponding to spin j = 0.5 and ` = m = 2 initial data in Tab. 3). The residual is

independent of the choice of excitation time t0, since a change in t0 is just absorbed in

the amplitude of the fitting function, leaving the other fitting quantities unaffected.

Since the black hole’s spin is non-zero, both m = 2 and m = −2 modes are present

in the solution. Here the discussion is restricted to the m = 2 part of the numerical

solution. The m = −2 part behaves similarly (in Chap. 4.11 a detailed study of the

relative amplitudes of corotating and counterrotating modes is presented).

From Fig. 17 it can be seen that R(Ti, t0) has a rather sharp local (and global) mini-

mum. By computing the derivative (through finite differences) of the residual with respect

to Ti one finds that the minimum is located at Ti = (59.65 ± 0.025)M . The uncertainty

refers to the difference between two consecutive values of Ti, which is in turn given by the

time step for this simulation: ∆t = 0.025M .

Fig. 18 shows the real and imaginary parts of the frequency extracted from the same

simulation as a function of Ti. By evaluating them at Ti = (59.65 ± 0.025)M one gets

ωR = 0.585887± 1× 10−6 and ωI = 0.0933851± 5× 10−7.

Fig. 18 also reveals that ω changes very little within the interval 50M . Ti . 80M .

Since the choice of Ti is by no means unique —for example a different definition of the

residual would slightly shift Ti— this plateau in the frequencies guarantees that the phys-
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ical quantities that are extracted are not too sensitive to that uncertainty. This means

that the errors in the numerically extracted QNM frequencies due to the choice of Ti are

quite small.

 0.0001

 0.001

 0.01

 0.1

 30  40  50  60  70  80  90  100  110

R
es

id
ua

l

Ti

 0.000828

 0.000832

 0.000836

 0.00084

 59.4 59.6 59.8  60

Figure 17: Residual in the fit, as defined in Eq. (79), as a function of the initial time for
the fitting Ti. Looking at the minimum of the residual one can determine Ti with high
precision. This plot corresponds to a simulation with spin j = 0.5, ` = m = 2 initial data
with A = 0, B = 1 and a radial resolution ∆r = 0.1M .

The quasinormal frequencies obtained from the numerical data can now be examined

in the way just described. Tab. 3 shows the frequencies computed in [83] using Leaver’s

continued fraction method for perturbed Kerr black holes with spin j = 0, 0.5, and

0.9 (here labeled perturb.). Along with these frequencies values extracted from the time

domain evolutions (labeled numerical) and the relative differences between the two are

listed. The numerical values were obtained by evolving different initial data sets with A =

0 and (` = 2, m = 0, ±2) in Eq. (4.4), and fitting for the multipoles present in the initial

data (additional multipoles generated by rotational mode mixing are discussed below).

For j = 0 the frequencies do not depend on m, therefore only results for m = 0 are shown.

Even with a relatively modest resolution, the differences on quasinormal frequencies from

the three-dimensional simulations in Tab. 3 are between one and two orders of magnitude

smaller than the ones reported in previous two-dimensional, axisymmetric simulations of

gravitational perturbations [86].

75



 0.578

 0.58

 0.582

 0.584

 0.586

 0.588

 0.59

 0.592

 0.594

 0.596

 20  30  40  50  60  70  80  90  100

fr
eq

ue
nc

y,
 r

ea
l p

ar
t (

m
=

2 
m

od
e)

Ti

 0.585872

 0.58588

 0.585888

 0.585896

 0.585904

 59.4  59.6  59.8

 0.065

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 20  30  40  50  60  70  80  90  100

fr
eq

ue
nc

y,
 im

ag
in

ar
y 

pa
rt

 (
m

=
2 

m
od

e)

Ti

 0.093376

 0.093384

 0.093392

 59.4  59.6  59.8

Figure 18: The left and right panels show the real and imaginary parts of the quasinormal
frequencies extracted from the simulations in Fig. 17. From the optimal starting time
determined by minimizing the residual, Ti = (59.65± 0.025)M (see previous figure), one
finds ωR = 0.585887± 1× 10−6 and ωI = 0.0933851± 5× 10−7.

4.10 Rotational Mode Mixing

In Chap. 4.4 the initial data family sets are described, which were expanded in spheri-

cal harmonics. Since the Kerr background is not spherically symmetric one should not

expand the perturbation in terms of spherical harmonics, but (more rigorously) in terms

of the spin-weighted spheroidal harmonics (s)S(`,m)(aω), where s is the spin weight of the

perturbing field, a = jM is the black hole spin per unit mass, and ω is the frequency

in a Fourier expansion of the perturbation (a quantitative discussion of spin-weighted

spheroidal harmonics and more references can be found in [91]). However, as first shown

by Press and Teukolsky [92], the (s)S(`,m)’s may be expanded as a power series in aω:

(s)S(`,m) = (s)Y (`,m) + (aω)
∑
`′ 6=`

c`′`m
(s)Y (`′,m) +O(aω)2 . (80)

Here (s)Y (`,m) denotes a spin-weighted spherical harmonic of spin-weight s. The focus of

this chapter lies on scalar perturbations (s = 0), in which case the spin-weighted spherical

harmonics reduce to ordinary spherical harmonics. The coefficients c`′`m are related to

the more familiar Clebsch-Gordan coefficients [92, 91]. As a result of (80), and because of
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the orthogonality of the (spin-weighted) spherical harmonics, inner products of different

spheroidal harmonics will be given by inner products of spherical harmonics with higher-

order corrections in aω. At least for small aω, one may expect these contributions to be

small. In fact, the corrections turn out to be small even for moderately large values of

aω (see [91] for an explicit calculation of the inner products at the QNM frequencies).

Nevertheless, using spherical harmonics instead of spheroidal harmonics can induce a

small amount of mode-mixing in the initial data.

For a spherically symmetric background space-time, initial data with different values of

` evolve separately and the angular structure of each mode is preserved during evolution.

On the other hand, for a Kerr background with non-zero spin, modes with different

values of ` do couple and furthermore, modes that are not present in the initial data

can be excited during evolution. This may make it necessary to increase the angular

resolution compared to the non-rotating case to resolve the higher ` modes generated

during evolution. However, the decay rate of these modes increases with `, so even when

modes with higher values of ` are generated during evolution, they do not dominate.

Therefore, it was found that if one accurately resolves the angular structure initially, the

same is in general true for the whole evolution.

Fig. 19 illustrates rotational mode coupling for non-zero spin backgrounds (see also

[93] and [94] for numerical studies of mode-mode coupling). Since modes with same m

but different ` can couple to each other, the extracted (` = 4, m = 2, n = 0) waveform is

shown (for three simulations with different spin parameters) excited by initial data whose

angular dependence is given by an ` = m = 2 spherical harmonic. As expected, the

rotationally-induced excitation of the (` = 4, m = 2) mode typically increases with spin.

Some additional mode mixing is an artifact of the symmetry of the computational grid.

This “spurious” mode mixing is present also for j = 0, but it converges to zero as the

angular resolution is increased. All other extracted modes, up to ` = 4 and all allowed

values of m, are within roundoff error throughout the simulations.
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Figure 19: The left panel shows the extracted (` = 4, m = 2, n = 0) waveform for three
simulations with different spin parameters as seen by an observer at robs = 5M . The
initial data are a pure (` = m = 2) mode and are set up according to Eq. (4.4) with
A = 0, B = 1 and r0 = 20M . For zero spin the different multipole components of the
solution should evolve independently and no modes besides the one in the initial data
should be excited, while for non-zero spin modes with different ` but same m do couple
[86]. In the Schwarzschild case the (` = 4, m = 2, n = 0) waveform differs from zero
due to the used grid structure and discretization errors, but it converges to zero with
increasing resolution. This is illustrated by the right panel, which shows the extracted
(` = 4, m = 2, n = 0) amplitude for j = 0 and j = 0.9 from runs with two resolutions
(20×20×1000 and 30×30×1500 points per block and outer boundaries at 100M). Only
for j = 0.0 the mode converges to zero.
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Since QNMs are extracted only up to ` = 4 one needs to test whether there is a

relevant contribution from higher modes that are not extracted explicitly. In the absence

of ` > 4 modes, summing up all extracted modes up to ` = 4 one should recover the full

field, according to Eq. (67). The result of this test for a spinning black hole with j = 0.9

is shown in Fig. 20: at the level of accuracy needed in the presented work, extracting

modes with ` ≤ 4 is sufficient.
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Figure 20: Results from a run with initial data parameters ` = m = 2 and spin j = 0.9.
The left panel shows the amplitude of all modes up to ` = 4 which are not within the
roundoff error. The right panel shows the sum over those modes compared to the full
field: the two curves lie on top of each other, and there is no relevant contribution from
higher modes.

4.11 Excitation Factors for Co- and Counterrotating Modes

It is known that in the quasinormal ringing regime, the field will behave according to

Eq. (72). In the previous subsection the values predicted in Ref. [83] for the frequencies

were verified through simulations. Now also the amplitudes of each mode, as predicted in

that same reference, are tested against the numerical simulations.

Assume that the observer and the initial data are located far away from the black

hole (these assumptions underlie the “asymptotic approximation” adopted in [95, 83]).

From Eq. (4.15) of [83], when B = 0 the response of the black hole in the ringdown phase
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should be well approximated by a QNM decomposition of the form

Φ(`,m)(r, t) ≈ −r0

r

√
πσR

{
∞∑

n=0

(iAω(`,m,n))B(`,m,n)e−
1
4(σω(`,m,n))

2

e−iω(`,m,n)(t−r0−r∗)

}
, (81)

In the simulations done here A = 0 is set, in which case it can easily be shown that the

previous expression becomes

Φ(`,m)(r, t) ≈ −r0

r

√
πσBR

{
∞∑

n=0

B(`,m,n)e−
1
4(σω(`,m,n))

2

e−iω(`,m,n)(t−r0−r∗)

}
, (82)

With respect to [83] an extra factor r0/r has been added. This is because Eq. (4.15)

in [83] refers to the Sasaki-Nakamura function X
(`,m)
(0) (r, t), which is related to the Teukol-

sky function Φ(`,m)(r, t) that is used in the evolutions by the relation X
(`,m)
(0) (r, t) =

(r2 + a2)
1/2

Φ(`,m)(r, t) (see the discussion in App. C of [83]). The focus lies on large

values of r, for which the asymptotic approximation holds and X
(`,m)
(0) (r, t) ' rΦ(`,m)(r, t).

The transformation between the Teukolsky and Sasaki-Nakamura functions must also be

taken into account when comparing the initial data in Eq. (4.14) of [83] with the initial

data used, Eq. (4.4). Assuming σ � r0 and r � 1 this comparison yields the normaliza-

tion factor r0 in the equations above.

The scalar QNM frequencies ω(`,m,n) and the scalar excitation factors B(`,m,n) are listed

in Table I and Table III of [83], respectively. In that reference and in Eq. (81) Boyer-

Lindquist coordinates are used; since in the simulations Kerr-Schild coordinates are used

one needs to transform Eq. (81) appropriately. Since Φ is a scalar, the transformation

is straightforward. The transformation of the initial data is more subtle, since the slices

are different. One would expect that whenever the asymptotic approximation is valid the

difference between the slices should not be too important. The results discussed below

and explicit comparisons between evolutions using both coordinate systems in the non-
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spinning case [96] confirm this expectation. Details on how the transformation of the

initial data and the field itself is done are given in App. B.

To check the accuracy of Eq. (82), for rest of this chapter an analysis of evolutions of

different initial data sets is done, all of them consisting of a combination of (` = 2, m = 2)

and (` = 2, m = −2) modes with A = 0 and B = 1. The dependence of the amplitudes

of the counter- and co-rotating fundamental modes (in the next subsection overtones will

be studied) on the width σ of the initial data [cf. Eq. (4.4)] is explored numerically. In

order to assess more quantitatively the effect of the time-shift problem (see Chap. 4.8)

first the value of the width maximizing these amplitudes is compared. Given that all

the initial data sets that are considered are centered at the same radius, the reasonable

assumption can be made that locally (that is, around the width for which the amplitudes

are maximal) t0 is approximately the same for each set. If t0 were exactly the same, the

value of t0 used would not change the width at which the maximum amplitude is located,

since changes in t0 would only involve a global rescaling of all amplitudes, as discussed in

Chap. 4.8. Therefore the hope is that within the setting described for the simulations the

width for which the amplitudes are maximal does not depend too sensitively on t0.

The numerical results shown here were obtained with the same number of points in the

angular direction as above. Half of the radial resolution was used (that is, ∆r = 0.2M)

for a rough scan of a large σ range, and again the original resolution around the maxima

of the amplitudes. Initial data with varying widths σ and r0 = 20M were chosen (as

in the simulations above) and an observer placed at r = 40M , for which the asymptotic

approximation holds reasonably well [96]. t0 = rinitial data+r was chosen (that is, t0 = 60M

in the cases considered), which is approximately the time the initial data pulse needs to

propagate to the black hole and back to the observer.

Fig. 21 and (more quantitatively) Tables 4 and 5 show the excitation amplitudes as

functions of the width of the Gaussian σ from our numerical simulations. At first the

results given here could be interpreted as an approximate verification of the predictions of
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Figure 21: Numerically obtained excitation amplitudes of the ` = |m| = 2 fundamental
modes assuming an observer location robs = 40M and a ringdown starting time t0 = 60M .
The left panel refers to a black hole with spin j = 0.5. According to predictions from
perturbation theory in the asymptotic approximation [cf. Eq. (81) and the following
discussion] the maximum for m = 2 should be located at σ(2,2,0) = 2.445, while the value
that obtained from the simulations is σ(2,2,0) = 2.55 ± 0.05 (the uncertainty describing
the difference between consecutive values of σ used in the simulations here: ∆σ = 0.05).
Similarly, for m = −2 the width at the maximum should be σ(2,−2,0) = 3.434, while the
simulations give a value of σ(2,−2,0) = 3.875± 0.075. The right panel, in turn, refers to a
black hole with spin j = 0.9. In this case the theoretical (numerical) maxima are located
at σ(2,2,0) = 1.816 (σ(2,2,0) = 1.85 ± 0.05) and σ(2,−2,0) = 3.758 (σ(2,−2,0) = 3.85 ± 0.05),
respectively. The inset in the left panel is a zoom around the maximum for j = 0.5
and m = 2. As discussed in the text, an uncertainty in the excitation time of 0.09M
would already explain the difference between the predicted location of the maxima and
the numerical results shown here.
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Table 4: Excitation amplitudes for j = 0.5, ` = 2 and n = 0 for initial perturbations of
variable Gaussian width σ, as displayed in Fig. 21. The observer location in these runs is
r = 40M . Highlighted are the maxima in the amplitudes of the different m-modes. Also
shown are the relative amplitudes of the two modes, and the relative differences between
the values predicted by perturbation theory and the ones extracted from the numerical
simulations. The amplitudes are given for the wave expressed in Boyer-Lindquist coordi-
nates (see appendix B for details) and are multiplied by a factor of r/r0 to get them in
an observer independent form.

numerical results perturbation theory relative difference
σ A(2,2,0) A(2,−2,0) A(2,−2,0)

A(2,2,0) A(2,2,0) A(2,−2,0) A(2,−2,0)

A(2,2,0)
A(2,−2,0)

A(2,2,0)

2.30 0.3357 0.411 1.22 0.315 0.419 1.33 0.080
2.35 0.3369 0.410 1.22 0.314 0.423 1.35 0.097
2.45 0.3385 0.420 1.24 0.311 0.430 1.38 0.103
2.50 0.3389 0.425 1.25 0.310 0.433 1.40 0.102
2.55 0.3390 0.430 1.27 0.308 0.436 1.42 0.104
2.60 0.3388 0.435 1.28 0.306 0.439 1.43 0.105
3.30 0.315 0.476 1.51 0.253 0.449 1.77 0.149
3.35 0.311 0.478 1.54 0.248 0.448 1.81 0.149
3.40 0.308 0.480 1.56 0.243 0.446 1.84 0.151
3.45 0.304 0.481 1.58 0.238 0.445 1.87 0.154
3.50 0.301 0.482 1.60 0.233 0.443 1.90 0.158
3.55 0.297 0.483 1.63 0.228 0.441 1.93 0.159
3.60 0.293 0.484 1.65 0.223 0.439 1.97 0.161
3.65 0.289 0.484 1.67 0.217 0.437 2.01 0.168
3.70 0.285 0.4843 1.70 0.212 0.434 2.05 0.170
3.75 0.281 0.4848 1.73 0.207 0.432 2.09 0.173
3.80 0.276 0.4850 1.76 0.202 0.429 2.12 0.173
3.85 0.272 0.4851 1.78 0.196 0.425 2.17 0.178
3.90 0.267 0.4851 1.82 0.191 0.423 2.21 0.180
3.95 0.263 0.4849 1.84 0.186 0.419 2.25 0.182
4.00 0.259 0.4831 1.87 0.180 0.416 2.31 0.193
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Table 5: Same as Tab. 4 for j = 0.9.

numerical results perturbation theory relative difference

σ A(2,2,0) A(2,−2,0) A(2,−2,0)

A(2,2,0) A(2,2,0) A(2,−2,0) A(2,−2,0)

A(2,2,0)
A(2,−2,0)

A(2,2,0)

1.60 0.1594 0.3156 1.98 0.1768 0.3683 2.08 0.05
1.70 0.1615 0.3319 2.06 0.1766 0.3857 2.18 0.06
1.75 0.1621 0.3399 2.10 0.1755 0.3990 2.27 0.08
1.80 0.1625 0.3476 2.14 0.1752 0.4022 2.30 0.07
1.85 0.1626 0.3553 2.18 0.1740 0.4101 2.36 0.07
1.90 0.1625 0.3629 2.23 0.1725 0.4177 2.42 0.08
2.00 0.1617 0.3775 2.33 0.1725 0.4323 2.51 0.07
3.60 0.0800 0.5173 6.47 0.0566 0.5259 9.30 0.30
3.70 0.0743 0.5192 6.99 0.0507 0.5235 10.32 0.32
3.75 0.0714 0.5204 7.29 0.0479 0.5220 10.89 0.33
3.80 0.0688 0.5204 7.56 0.0452 0.5203 11.51 0.34
3.85 0.0661 0.5212 7.89 0.0427 0.5184 12.15 0.35
3.90 0.0636 0.5208 8.19 0.0402 0.5162 12.85 0.36
4.00 0.0590 0.5194 8.81 0.0355 0.5114 14.41 0.39
4.10 0.0590 0.5184 8.79 0.0312 0.5059 16.20 0.46
4.20 0.0505 0.5144 10.19 0.0274 0.4997 18.25 0.44
4.30 0.0469 0.5098 10.88 0.0239 0.4929 20.64 0.47
4.40 0.0433 0.5047 11.65 0.0207 0.4854 23.41 0.50
4.50 0.0433 0.4991 11.52 0.0179 0.4774 26.63 0.57
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[83]. However, if one takes into account the limitations imposed by the time-shift problem,

the agreement can in fact be considered excellent. For example, take the j = 0.5, m = −2

case, which is the one where the difference between the theoretical and numerical values is

largest. The theoretical maximum is located at σ = 3.434M , while the numerical value is

σ = (3.875±0.075)M (the uncertainty indicating the difference between consecutive values

of σ). The relative numerical amplitude between σ = 3.45M and σ = 3.85M−3.9M from

the simulations is ≈ 1.008 (see Tab. 4). If the values of t0 for these two widths differ by

≈ 0.09M , the amplitude corresponding to σ = 3.45M would actually be larger than the

one of σ = 3.85M − 3.9M and would therefore shift the maximum to the predicted value

of 3.45M . Recalling that t0 = 60M was used, a very modest uncertainty in the relative

ringdown starting time (≈ 0.4%) would shift the maximum to the theoretical value. It was

also assumed that the excitation time t0 is the same for all the initial data sets when fitting

the numerical data. Whenever such assumption is a good approximation, the precise value

of t0 should not affect the location of the width for which the excitation amplitudes are

maximal. In particular, the approximation should be good if the initial data pulses are

relatively narrow. However, as σ increases, the possibility of the excitation time t0 shifting

around has to be taken into account, because the interaction time of the pulse with the

black hole becomes longer and the interaction sets in well before the center of the pulse

reaches the black hole. Taking all this into account, the agreement between numerical

and perturbative results for the location of the maxima can be considered excellent. The

situation for the amplitudes themselves is different, as discussed next.

Tables 4 and 5 show the predicted and extracted absolute and relative amplitudes for

the co- and counter-rotating modes A(m=2), A(m=−2). As expected, the prediction from

perturbation theory works better for sharp pulses. The differences between the predicted

and absolute values are of order a few percent for sharp pulses and grow with σ. For σ = 4

the difference is as large as ∼ 20% and ∼ 60% for j = 0.5 and j = 0.9, respectively (the

actual amplitudes being larger than the predicted ones). These large differences in the
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relative amplitudes are mostly due to the amplitude of the corotating mode, the predicted

and extracted amplitudes for the counterrotating one agree quite well. The fact that the

location of the maxima, as discussed above, agrees very well despite the large differences

in the amplitudes for larger σ can be easily explained: the location of the maxima for

the corotating mode takes place at σ ≈ 1.85M , which corresponds to a pulse which is

sharp enough for perturbation theory to give a good prediction, while the maximum for

the counterrotating mode is at a larger value of σ but, as discussed before, the agreement

between predicted and measured amplitudes is quite good for that mode.

Could this large difference in amplitudes be explained by the time-shift problem, as

discussed in Chap. 4.8? Using Eq. (77) and assuming that t0 is roughly the same for both

modes it is found that an uncertainty in the excitation time as large as δ0 = ±5M would

imply an uncertainty on the relative amplitudes of about ±1.1% for j = 0.5, and ±13%

for j = 0.9. Therefore the uncertainty δ0 does not seem to account for the differences that

are found with respect to the predicted amplitudes. One possibility is that the excitation

time t0 is different for the two modes in a pair; but, if so, it is not clear then why the naive

choice of t0 is very good for the counterrotating mode and quite bad for the corotating

one. It is actually not clear why such a large disagreement happens only for the corotating

mode, and not for the counterrotating one. The possibilities that the initial data and/or

the observer are not far enough away for the asymptotic approximation to be valid, or that

the disagreement is due to a lack of resolution, seem to be ruled out by one-dimensional

studies in the non-spinning case [96]. Summarizing, even though the exact mechanism is

not clear, all this suggests that the predicted amplitudes for the corotating mode in the

asymptotic approximation are simply valid only for very sharp pulses, as the black hole

spin increases.

To conclude this subsection, it is interesting to discuss one aspect of the simulations,

as shown in Fig. 21. One can see a rather large discrepancy between the amplitudes

resulting from runs with resolution ∆r = M/5 and ∆r = M/10, especially for j = 0.9.
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That is a direct effect of decreasing accuracy in I(ω(`,m,n)) when going to high spins and

the need for more resolution in those cases. The location of the maximum, however, is

always consistent (that is, within the differences in σ used in the different initial data sets)

between runs of different resolution. That is not surprising since the measured ω(`,m,n) at

a fixed resolution is roughly the same for all values of σ, and the value of σ that maximizes

A(`,m,n) only depends on the value of R(ω(`,m,n)).

4.12 Rapidly Spinning Black Holes and Overtones

As discussed in the introduction to this chapter, a single complex quasinormal fre-

quency contains enough information to determine the two parameters of a Kerr black

hole (namely, its mass M and spin j). If one is able to detect a second mode from

the same source, one can use this extra information for a consistency check that would

increase the confidence in the interpretation of the measured data as signals from a per-

turbed black hole. An important question that might be answered by numerical relativity

is whether more than one mode will be detectable by Earth- and space-based gravitational

wave detectors. In Chap. 4.11 the relative amplitude of corotating and counterrotating

modes were considered; here the simulations are used to determine the relative excitation

of overtones with the same angular dependence and m > 0. According to perturbation

theory, in this case the damping time of the first overtone becomes comparable to the

damping time of the fundamental mode for large spins (see Fig. 16). In addition, the

excitation factor of higher overtones is usually larger than the excitation factor of the

fundamental mode for large j [83]. This means that higher overtones are more likely to

be detectable for fast spinning black holes. A detailed study of this topic is beyond the

scope of this chapter and this thesis, but here a brief discussion is presented on how one

can extract information about overtones from numerical data and determine which modes

contribute most significantly to the waveform.

Simulations for different spins (j = 0, 0.5, 0.9, and 0.98) are performed. The initial

data and numerical procedure are the same as in Chap. 4.4 and 4.6, with one exception: for
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spins j ≥ 0.9 it was found necessary to increase the angular resolution. The simulations

presented here used a resolution of 31 × 31 grid points on each block in the angular

directions. This is not surprising, since for fast rotation one expects more dynamics in

the angular directions.

The extraction of modes is done in principle according to Chap. 4.7 and 4.9. Extracting

information about all modes present in the data can turn into a subtle problem, especially

when the contributions of some modes is weak. One option is to first fit for the strongest

mode present in the data, subtract the fit, fit for the next dominant mode and so on,

repeating the procedure as long as an oscillatory exponential decay is seen in the data.

However, when there are several modes with similar contributions one can just fit for all

of them at the same time. This is exactly what has been done for fundamental modes

with different m in the previous subsection. When a single mode dominates the waveform

the first strategy not only seems to be more meaningful, but also turns out to work better

in practice. The results of this chapter were computed by a hybrid of these two methods,

depending on the contribution of each mode (something that one can find out by, for

example, looking at the dominant frequencies of the signal to fit).

Tab. 6 shows the quasinormal frequencies of the overtones that were obtained from

the simulations, using (A = 0, B = 1), σ = M, r0 = 20M and an observer at r = 60M .

It was found that the overtones for the m = −2 mode do not contribute enough to the

waveforms to extract them from the data with decent accuracy, especially for high spins.

The reason for this is that the imaginary part of their frequency is generally smaller than

the one for the corresponding m = 2 mode, which makes them decay faster. The decay

of the m = 2 mode, on the other hand, slows down considerably when increasing the

spin. Numerically one can find that the excitation amplitude (at fixed t0) increases with

increasing spin. Those two effects combined make the extraction of overtones easier and

more accurate in the high spin cases. Quite remarkably, for runs with spin j = 0.9 and
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above one can extract the quasinormal frequency for n = 2 with reasonable accuracy (see

Table 6).

Tab. 7 compares the amplitudes of the three most dominant l = 2 modes, (m = 2, n =

0), (m = −2, n = 0) and (m = 2, n = 1), with the predicted asymptotic amplitudes of

Eq. (81). Except for the j = 0.98 case, the difference between the predicted and extracted

values for the relative amplitudes between a given mode and the fundamental ` = 2 = m

one is of the order of a few percent for the fundamental mode and one order of magnitude

larger for the first overtone.

Table 6: Comparison of quasinormal frequencies for the first overtones (n = 1, 2) of an
` = 2, m = 2 mode, for black holes with varying spin, as predicted by perturbation theory
and as extracted from the numerical simulations, along with their relative differences. This
table is complementary to Tab. 3, where the frequencies associated to the fundamental
modes are shown. The extraction of overtones becomes easier for rapidly rotating black
holes, as explained in the text, allowing to extract the frequencies of two overtones for
high spins.

j n ωperturb ωnumerical rel. difference (Re, Im)

0.0 1 0.46385− 0.29560i 0.45651− 0.28859i 1.58× 10−2, 2.37× 10−2

0.5 1 0.57344− 0.28334i 0.54718− 0.31722i 4.58× 10−2, 1.20× 10−1

0.9 1 0.77768− 0.20801i 0.73737− 0.19558i 5.18× 10−2, 5.98× 10−2

0.9 2 0.77043− 0.34720i 0.52473− 0.35319i 3.19× 10−1, 1.73× 10−2

0.98 1 0.89622− 0.12214i 0.93152− 0.12406i 3.94× 10−2, 1.57× 10−2

0.98 2 0.89358− 0.20244i 0.88668− 0.25850i 7.72× 10−3, 2.77× 10−1

4.13 Summary

The chances of a multi-mode detection by either Earth- or space-based gravitational wave

detectors will depend on the relative amplitude of those modes. Knowing in advance which

modes should be excited under a realistic binary merger would reduce the dimensionality

of the template bank needed to perform matched filtering on ringdown waveforms. An

answer that numerical relativity might provide is precisely which modes are likely to be

dominant. This involves predicting the relative amplitudes of different pairs of modes
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Table 7: Absolute and relative amplitudes as a function of the black hole spin and an-
gular dependence of the perturbations, as predicted by perturbative calculations and as
extracted from the numerical evolutions. The amplitudes are given for the wave expressed
in Boyer Lindquist coordinates (see appendix B for details) and are multiplied by a factor
of r/r0 to get them in an observer independent form. The last column presents the rela-
tive difference between perturbative and numerical results for relative amplitudes. In the
corotating case the amplitude of the first overtone are also extracted. The differences in
the relative amplitudes are considerably smaller when one looks at corotating and coun-
terrotating modes, compared to the case of fundamental mode and first overtone with
the same angular dependence. This can be explained by the relative magnitude of their
damping frequencies, as discussed in Chap. 4.8 (see also Tab. 6). This difference becomes
less pronounced at very large spins, as expected from the analysis of Chap. 4.8.

mode numerical result perturbation theory relative difference

j l m n A(`,m,n) A(`,m,n)

A(2,2,0) A(`,m,n) A(`,m,n)

A(2,2,0)
A(`,m,n)

A(2,2,0)

0.00 2 2 0 0.211 1.00 0.221 1.00 0.00
0.00 2 2 1 0.316 1.50 0.504 2.28 0.342
0.50 2 2 0 0.201 1.00 0.213 1.00 0.00
0.50 2 -2 0 0.208 1.03 0.228 1.07 0.037
0.50 2 2 1 0.525 2.61 0.768 3.61 0.277
0.90 2 2 0 0.137 1.00 0.148 1.00 0.00
0.90 2 -2 0 0.211 1.54 0.246 1.66 0.072
0.90 2 2 1 0.533 3.89 0.98 6.62 0.412
0.98 2 2 0 0.0833 1.00 0.068 1.00 0.00
0.98 2 -2 0 0.263 3.16 0.257 3.78 0.164
0.98 2 2 1 0.634 7.61 0.416 6.12 0.243
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under a variety of scenarios. In this chapter a first step towards understanding the issues

involved in such a prediction has been taken.

First a systematic way of extracting QNMs from a given signal has been presented.

The procedure has a number of built in self-consistency checks, to make sure that when

one keeps adding modes to the fit one is fitting a true signal and not numerical noise. One

of these self-consistency checks is to make sure that one extracts the correct quasinormal

frequency of each mode within a certain accuracy. If the data being analyzed comes from

a numerical simulation, consistent frequencies can be used to monitor the accuracy of the

code. If the data is experimental, consistency of the frequencies allows for a test of the no

hair conjecture. In more detail: during the fitting procedure one first fits for the dominant

mode(s), looks at the residual (defined as the difference between the original signal and

the fit), makes sure that it has a consistent quasinormal ringing behavior and only then

fits for the next set of modes, repeating the procedure as long as it makes sense to do so.

By following this procedure it was hardly possible to go beyond the first few dominant

modes, and this was only possible in very special cases. The results seem to indicate that

this will likely happen in most numerical simulations

The so-called time-shift problem was addressed in some detail. In essence, this is

the fact that the quasinormal amplitudes depend exponentially on the quasinormal ring-

ing excitation time, which is not defined unambiguously (not even in the continuum).

Furthermore, examining this problem quantitatively using actual values of quasinormal

frequencies it was shown that this exponential dependence is an important factor to take

into account in practice. To (partially) get rid of this exponential dependence it was pro-

posed to look at relative amplitudes: choosing pairs of modes whose damping frequency

is as close as possible, one can partially cancel each others’ exponential dependence. The

exponential dependence of different pairs of modes as a function of the black hole spin was

analyzed in detail. In particular, it was found that the time-shift problem becomes more

important as one increases the spin. For modes with the same value of `, for example, the
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problem is not very relevant for spins j . 0.5. On the other hand, an accurate extraction

of the relative amplitude between the fundamental mode and the first overtone only seems

feasible for very high spins and m > 0.

Keeping this in mind, first the fundamental quasinormal frequencies for different values

of spin, ranging from j = 0 to a rapidly rotating black hole with j = 0.98 were extracted.

Even using modest resolutions the frequencies agree with those obtained from perturbation

theory within one part in 105 to one part in 102, depending on the black hole spin, location

of the observer and angular dependence. To the authors knowledge this is the first time

that quasinormal frequencies for scalar perturbations of Kerr, as predicted by perturbation

theory, have been confirmed by numerical evolutions of the field equations.

Next the relative amplitude of corotating and counterrotating fundamental modes was

analyzed in detail, as a function of the width of the initial perturbation and the black

hole spin, making it possible to quantify (within the limitations imposed by the time-shift

problem) under what conditions the asymptotic approximation of Ref. [83] is valid. In

particular, it was possible to verify the widths of the initial perturbation corresponding

to the maximal QNM excitation. Finally, the excitation of overtones was studied. It was

found that, according to expectations from perturbation theory [83], they get significantly

excited for corotating modes and very high spins. In this particular case it was possible to

extract the complex QNM frequency for the fundamental mode and the first two overtones,

with a difference with respect to the predicted values by perturbation theory of the order

of a tenth of a percent to ten percent, depending on the mode and the black hole spin.

The author expects the techniques and results of this chapter to be general enough to be

useful for future work on ringdown waveforms.
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5 Comparison of Wave Extraction Methods in

Non-Linear Black Hole Evolutions

5.1 Introduction

One of a major motivation for numerical relativity is to predict and analyze the gravi-

tational radiation emitted from some physical process. One difficulty is how to separate

the radiation content of a numerical space-time from the background geometry. This in

fact is a non-trivial problem that can be solved rigorously only for very specific situa-

tions. If the computational domain includes null infinity, radiation can be defined and

extracted in an unambiguous way (see for example [97] and references therein, and [98]).

Due to extra complexity that arises when handling null infinity in numerical simulations,

many relativity codes truncate the domain and place an artificial boundary at a finite,

hopefully large distance. This implicates that the extraction radius is finite as well and

one has to rely not only on the assumption that the observer is far enough in the wave

zone to compute reasonably accurate waveforms but also on some approximations in the

way gravitational radiation is computed in terms of the space-time metric. In general one

expects that for an asymptotically flat space-time the differences between the extracted

waves and the correct solution decay as the extraction radius is moved further out. A

question that naturally arises is – for a given wave extraction method – at which radius

one has to do the extraction so that the errors in the wave form are dominated by nu-

merical discretization error and not by systematic errors originating from the extraction

algorithm itself.

The extraction methods that are compared here are based on the theory of perturbed

single Schwarzschild black holes. In a linear treatment, the perturbations are well de-

scribed by the Regge-Wheeler (RW) and Zerilli equations, for odd and even parity waves

respectively. These equations are wave equations for a single scalar quantity, namely the

Regge-Wheeler function for odd parity perturbations [99] and the Zerilli function for even

parity ones [100]. If the mass of the black hole is known, these functions can be extracted
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from a numerical space-time and serve as a measure for its radiation content. This method

goes back to Abrahams and Evans [101, 102, 103] and has been used extensively in nu-

merical relativity since then (see [104] for early work on that and [105] for a review). For

example, the accuracy of simulations of distorted black holes was tested by comparing

extracted waveforms against perturbative calculations [106, 107, 108, 109, 110], and often,

also technical improvements (such as excision) were tested by studying their effects on

waveforms [111, 112]. Recently, [113] reported Zerilli waveforms from unequal mass binary

black hole inspirals. In hydrodynamical simulations, gravitational waves are often deter-

mined via the quadrupole formula, which usually gives more accurate information in these

particular situations (unless a black hole is present), since the wave amplitude is typically

very small and thus difficult to detect from the space-time metric [114, 115, 116]. Another

popular approach to wave extraction, which will not be discussed here, is based on the

Weyl scalar Ψ4 (see for example [117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127]).

One simple way to apply the RW formalism is to assume that the background is the

Minkowski space-time. This is justified by the fact that the leading order of the metric

in an expansion of 1/r is flat. To decrease the errors one can incorporate the next order

in the expansion, which is described by the Schwarzschild solution. Even higher orders

can be taken into account to incorporate for example the spin contribution. It is obvious

that all these methods will give the same result at an infinite radius.

A property of the standard RW approach is that it is gauge invariant only with re-

spect to infinitesimal first order changes of coordinates, which keep the background co-

ordinates fixed. In other words, the background metric has to represent the geometry

of the Schwarzschild space-time, and the metric components have to be expressed in the

Schwarzschild coordinate base. This is not necessarily the case in numerical simulations.

Even if the background metric is close to the Schwarzschild geometry, it does not need to

be close to Schwarzschild in Schwarzschild coordinates. An example are simulations that
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use coordinates – contrary to the Schwarzschild ones – that are regular at the horizon.

This is typically done in combination with excision.

Here also a generalized RW wave extraction method is implemented that is fully covari-

ant in the sense that it is independent of the coordinates of the Schwarzschild background,

assuming those coordinates are aligned with the spherical symmetry of the background.

In other words, it is assumed that there is no angular shift. Therefore the generalized

RW wave extraction can give correct waveforms for perturbations of Schwarzschild black

holes independent of the slicing. It is based on ideas formulated in [128, 129, 130].

It could be argued that the improvement from this method is marginal, since it is only

a higher order correction in powers of 1/r compared to the order to which the extraction

method is valid anyway. One reason why the author still believes that this method is

useful is that for example in binary black hole simulations the space-time decays to that

of a stationary black hole but in generally unknown coordinates.

The wave extraction methods are compared in a very particular scenario, that the au-

thor believes has relevance for more general cases, namely perturbations of a Schwarzschild

black hole. Here the focus is on the odd parity sector. A similar study for even parity

perturbations is currently being worked on. It is especially interesting to investigate the

dependence of the errors on the observer location for extraction radii that are chosen in a

range that is commonly used for example in state or the art binary black hole simulations.

Due to the efficiency of multi-block methods it is easily possible to choose domains with

outer boundaries located at several hundred or even up to 1000M (such simulations are

shown in [26], using very similar methods to the ones presented here) at relatively small

computational cost. For example in the simulations shown later in this chapter, bound-

aries were placed at 250M , far enough that the waveforms extracted at radii up to 80M

(which is larger than used with most current evolution codes) were uncontaminated by

reflections from the boundaries for more than 250M of evolution time.
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The initial data are constructed in a way that they satisfy the linearized constraints.

The evolutions are done with a first order generalized harmonic formulation of the Einstein

equations. Wave extraction is greatly simplified by the use of a six-block grid structure

with cubed-sphere coordinates (see Chap. 2.2.4), which allows integrations over coordinate

spheres without the need for interpolation.

It is found that for the standard RW approach even at the largest extraction radius that

was used (r = 80M), the errors are dominated by systematic errors in the extraction and

not by numerical truncation error. Also analyzed are the quasinormal frequencies of the

waves, using the methods described in Chap. 4 and compared against the results known

from perturbation theory and excellent agreement was found in all cases. Additional

details can be found in [131].

5.2 Generalized Harmonic System

The actual system of equations that is used for the simulations is the so called generalized

harmonic system.

The name harmonic system comes from a special choice of coordinates, the so called

harmonic coordinates, that have the property that they satisfy the harmonic wave equa-

tion. Besides their use in a variety of disciplines within general relativity they have been

used to find numerical solutions to the Einstein equations, for example fairly recently by

Garfinkle [132] and by Winicour et al. [133, 134, 135]. A generalization of the harmonic

system that allows for arbitrary coordinate systems was described by Friedrich [136]. The

attractiveness of using harmonic coordinates comes from their property of bringing the

Einstein equations into a manifestly hyperbolic form. The principal part of the evolution

equations of the four metric is identical to the second order wave equation.

As one of the first persons Pretorius in 2005 presented seminal evolutions that follow

a binary black hole system through the last few orbits, the plunge and the final merger

[137], using a harmonic formulation with built in constraint damping that was described
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by Gundlach [138]. This constraint damping mechanism is based on the lambda proposal

by Brodbeck, Hübner, Frittelli and Reula [139].

Here a first order symmetric hyperbolic implementation of the generalized harmonic

system is used. It is described in detail by Lindblom et.al. in [140] and was, combined

with pseudo spectral methods, successfully used for binary black hole simulations by

Scheel et.al.[39]. The option to control the evolution of the constraints is built into this

formulation and this seems to be a crucial feature for long term stable evolutions. In

outlining the properties of this system the description given in [140] is followed closely.

5.2.1 Harmonic Coordinates

Coordinates xµ are called harmonic if they satisfy the standard harmonic wave equation

− Γµ ≡ gµν∇ρ∇ρx
ν = 0. (83)

Here ∇µ is the covariant derivative and Γµ = gνρΓµνρ with Γµνρ being the standard

Christoffel symbol. If the Ricci tensor Rµν is computed using these definitions, all terms,

except the ones containing second derivatives vanish and the vacuum Einstein equations

Rµν = 0 become manifestly hyperbolic. Explicitly they are given as

gρσ∂ρ∂σgµν = 2gρσgτη (∂τgρµ∂ηgσν − ΓµρτΓνση) . (84)

5.2.2 Gauge Sources

Friedrich [136] (Garfinkel applied this to cosmology simulations [132]) worked out a vari-

ation of the harmonic system that allows for arbitrary coordinates while preserving the

hyperbolic form of the Einstein equations. The coordinates have to satisfy the following

inhomogeneous wave equation:

− Γµ ≡ gµν∇ρ∇ρx
ν = Hµ(x, g) (85)
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Hµ is an arbitrary function of the coordinates and the metric but is not allowed to contain

first or higher derivatives of either. Using that condition with the Ricci tensor one obtains

the Einstein equations in the form

gρσ∂ρ∂σgµν = 2gρσgτη (∂τgρµ∂ηgσν − ΓµρτΓνση)− 2∇(µHν). (86)

The extra terms including Hν are given algebraic functions that do not contain derivatives

and therefore to not change the principal part of the equations. Therefore the hyperbolic

structure of the evolution equations is untouched by specifying the coordinates in this

way.

5.2.3 Relation Between Standard 3+1 Quantities and Evolution Variables of
the Generalized Harmonic System

Traditionally the standard 3+1 ADM quantities gij and Kij together with the gauge quan-

tities, the lapse α and the shift vector βi have been used frequently in numerical relativity.

See App. C for details. It is therefore instructive to establish the relation between these

quantities and the variables of the generalized harmonic system. As described in App. C,

in the frame work of the 3+1 formalism the four dimensional space-time is foliated by

t = constant three dimensional space-like hypersurfaces with associated coordinates xi,

i = 1, 2, 3. The general four metric can be written in terms of the three metric γij on each

slice, the lapse and the shift as (see also App. C)

ds2 = −α2dt2 + γij

(
dxi + βidt

) (
dxj + βjdt

)
. (87)

The extrinsic curvature is defined as

Kij = −1

2
Ln̄γij (88)
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where n̄ is the time-like unit vector normal to the three dimensional hyper surface. The

three metric γij simply is the spatial part of the four metric gµν used in Eq. (86).

The relation between the gauge quantities α, βi and Hµ unfortunately are not as

straight forward. To obtain them one has to use the metric of the form given in Eq. (87)

with the generalized harmonic coordinate condition Hµ = Γµ to arrive at the equalities

∂tα− βk∂kα = −α
(
Ht − βiHi + αK

)
(89)

∂tβ
i − βk∂kβ

i = αγij
[
α
(
Hj + γklΓjkl

)
− ∂jα

]
. (90)

Note that the index t in Ht labels the zeroth component of the four dimensional object

H. K = γijKij is the trace of the extrinsic curvature. From Eq. (89)-(90) it is clear

that instead of determining α and βi directly Hµ acts as a source term in a set of partial

differential equations that govern the evolution of these quantities. Due to the absence

of derivatives in Hµ the principal part and therefore the hyperbolic structure of these

evolution equations is unchanged when choosing a different Hµ. Since Hµ can be an

arbitrary time dependent function, it is clear that by choosing it accordingly any behavior

of the lapse and the shift can be enforced. This illustrates the statement made earlier that

arbitrary coordinate systems can be represented by the generalized harmonic coordinates.

5.2.4 Constraint Evolution System

General relativity is a theory with constraints. In numerical work, the constraints serve

as an error measure, even though – besides the requirement that they converge to zero

with increasing resolution – there is no general criterion for how much constraint violation

is acceptable for a given physics problem. It is understood though that large constraints

mean large errors and that for example exponentially growing constraints indicate a

numerical solution that is drifting away from solutions to the Einstein equations and

therefore is becoming unphysical quickly. This behavior has been observed in numerical

relativity for a long time.

99



It is now described how to analyze the evolution of the constraints off the constraint

surface and to modify the main evolution system in a way that it is void of growing

constraint modes. The propagation of the constraints as a non-linear system was presented

by Friedrich in 2005 [141].

In the generalized harmonic system, the condition that the coordinates satisfy the

inhomogeneous wave equation serves as a set of four constraints

Cµ = Hµ + Γµ. (91)

For the following discussion the evolution Eq. (86) are modified by adding derivatives of

the constraints.

Rµν −∇(µCν) = 0 (92)

To derive the evolution equations for the constraints, one first takes the trace of Eq. (92)

and subtract it from Eq. (92) to arrive at

Rµν − 1
2
gµνR−∇(µCν) + 1

2
gµνg

ηρ∇(ηCρ) = 0 (93)

⇒ −1
2
∇ν∇µCν + 1

2
∇µ∇νCν − 1

2
∇ν∇νCµ = 0. (94)

To get to the second line, the contracted Bianchi identities ∇νRµν = 1
2
∇µR are used. The

definition of the Riemann tensor is applied ∇[µ∇ν]C
η = Rη

τµνC
τ (assuming a torsion free

metric) to replace the first two terms in Eq. (94) and arrive at

RµνCν +∇ν∇νCµ = 0. (95)

Finally by plugging Eq. (92) into Eq. (95) one gets

∇ν∇νCµ + Cν∇(µCν) = 0. (96)
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From that equation it is obvious that the constraints will stay zero for all times if they are

satisfied on any space-like hypersurface and if on that hypersurface ∂tCµ = 0. Therefore

the generalized harmonic system is consistent. That is of course only true in the absence of

boundaries. If boundaries are present, constraint-preserving boundary conditions have to

be applied to keep the system consistent on the continuum level [142, 143, 144, 145, 146].

In numerical simulations, due to truncation error, the discrete constraints get excited and

tend to grow in time at a fixed resolution. In the following chapters it is discussed how

to modify the equations to prevent such a growth.

5.2.5 Relation Between the Generalized Harmonic Constraints and the
Standard Hamiltonian and Momentum Constraints

Again one wants to see the relation between the widely used ADM quantities and the

generalized harmonic ones. The goal is to express the Hamiltonian H and the momentum

Mi constraints (defined in App. C) in terms of the constraints Cµ that show up in the

generalized harmonic system and are defined by Eq. (91).

It is convenient to introduce a four dimensional momentum constraint

Mµ ≡
(

Rµν −
1

2
gµνR

)
n̄ν (97)

where again n̄µ is the unit time-like normal vector to the t = constant hypersurface.

This new object has the standard Hamiltonian constraint as its zeroth component and

the standard three dimensional momentum constraints as its second, third and fourth

component. By using the definition in Eq. (92) one finds

n̄ν∇νCµ = 2Mµ +
(
(gνη + n̄νn̄η)n̄µ − (gν

µ + n̄νn̄µ)n̄η
)
∇νCη. (98)

5.2.6 Modified Generalized Harmonic System with Constraint Damping

Until now a manifestly hyperbolic formulation of the Einstein equations has been estab-

lished, with complete freedom of coordinate choice, as long as they are written in the
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generalized harmonic form. The constraints were defined and their evolution equations

computed, which revealed that the formulation is consistent. It was also shown how the

generalized harmonic variables, especially the gauge functions and the constraints are

related to the more widely used 3+1 formalism. Following [138], a further adjustment

is added to the formulation of Einsteins equations in generalized harmonic coordinates

(Eq. (92)):

Rµν −∇(µCν) + ζ0

[
n̄(µCν) −

1

2
gµνn̄

σCσ

]
= 0. (99)

ζ0 is a free parameter. The principal part of these equations is identical to the formulations

(92) and (86) so one knows that the system of equations is still symmetric hyperbolic.

The constraint evolution equations are derived following the recipe given in

Chap. 5.2.4. Like for the evolution equations, the principal part of the constraint evolu-

tion system is unchanged compared to the unmodified generalized harmonic system. The

explicit form of the equations is

∇ν∇νCµ + Cν∇(µCν) − 2ζ0∇ν
[
n̄(νCµ)

]
− 1

2
ζ0n̄µCνCν = 0. (100)

Also the relation to the four dimensional momentum constraint Mµ stays the same in

the sense that on a t = constant hyper surface setting Cµ = ∂tCµ = 0 is equivalent to

Cµ = Mµ = 0.

A linearized analysis of that constraint propagation system has been executed by

Gundlach et.al. [138]. Since one is interested in how the constraints behave close to

zero, i.e. what happens in case of an initially small constraint violation, introduced for

example by numerical truncation error, the terms quadratic in Cµ or it’s derivative can

be ignored. Gundlach found that short wavelength solutions to this linearized problem

are damped like e−ζ0t or e−ζ0t/2. Choosing a positive ζ0 in Eq. (99) guarantees small

constraint violations to decay in time and therefore the numerical solution to be physical,
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in the sense that it satisfies the constraints. A similar analysis for the long wave length

solutions is not available at this moment.

5.2.7 First Order Generalized Harmonic System

The numerical methods described in this thesis demand that the partial differential equa-

tions that are solved are first order in time and spatial derivatives. To rewrite a second

order system into a first order one (for which stability and hyperbolicity is well under-

stood) is straightforward.

To rewrite Eq. (99) in first order form, new variables that replace all second derivatives

are introduced.

Ψiµν ≡ ∂igµν (101)

Πµν ≡ −n̄σ∂σgµν (102)

These definitions give rise to 40 new constraints

Ciµν ≡ Ψiµν − ∂igµν (103)

Cµν ≡ Πµν + n̄σ∂σgµν (104)

Using these definitions with Eq. (99), one gets a set of 50 coupled equations. For the

following analysis of these equations it is sufficient to look at their principal part which is

∂tgµν =̇ βi∂igµν (105)

∂tΠµν =̇ βi∂iΠµν − αγij∂iΨjµν (106)

∂tΨiµν =̇ βj∂jΨiµν − α∂iΠµν . (107)

While this system is known to be symmetric hyperbolic, it shows two fundamental prob-

lems. The additional constraint Ciµν is not damped and can generally show exponential
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growth. Also mathematically the formation of shocks in the gauge variables cannot be

ruled out. For example writing the principal part for gti in terms of the 3+1 quantities

on gets terms like ∂tβ
i − βj∂jβ

i = 0, one of the most basic examples for a differential

equation that forms shocks in the solution.

A solution to these issues is to add multiples of the constraints to the right hand sides

of the evolution equations in a proper way. Following Lindblom et al [140], one adds

ζ1β
iCiµν to Eq. (105), ζ2αCiµν to Eq. (107) and ζ3β

iCiµν to Eq. (106). ζ1, ζ2 and ζ3 are free

parameters. This choice of modifications changes the principal part of Eq. (105)–(107)

to

∂tgµν = (1 + ζ1)β
i∂igµν (108)

∂tΠµν = βi∂iΠµν − αγij∂iΨjµν + ζ3β
i∂igµν (109)

∂tΨiµν = βj∂jΨiµν − α∂iΠµν + ζ2α∂igµν . (110)

The full system of equations, containing all non-linear terms is

∂tgµν = (1 + ζ1)β
i∂igµν − αΠµν − ζ1β

iΨiµν (111)

∂tΠµν = βi∂iΠµν − αγij∂iΨjµν + ζ3β
i∂igµν

+2αgστ
(
γijΨiσµΨjτν − ΠσµΠτν − gηρΓµσηΓντρ

)
−2α∇(µHν) −

1

2
αn̄σn̄τΠστΠµν − αn̄σΠσiγ

ijΨjµν

+αζ0

[
2δσ

(µn̄ν) − gµνn̄
σ
]
(Hσ + Γσ)− ζ1ζ2β

iΨiµν (112)

∂tΨiµν = βj∂jΨiµν − α∂iΠµν + ζ2α∂igµν +
1

2
αn̄σn̄ρΨiσρΠµν

+αγjkn̄σΨijσΨkµν − αζ2Ψiµν . (113)
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One can project these equations to an unit vector ni normal to the space-like boundary

and write the resulting principal part symbolically as

∂tu
α = Anα

β∂nu
β (114)

where the notation ∂n ≡ ni∂i and Anα
β ≡ Aiα

βni is used. The eigenvalues of Anα
β are

v1 = βn − α (115)

v2 = βn + α (116)

v3 = v4 = βn (117)

v5 = βn(1 + ζ1). (118)

The eigenvalues are real, thus the system of equations is hyperbolic. Symmetric hyper-

bolicity requires the existence of a hermitian symmetrizer Hαβ. This symmetrizer can in

fact be found and can be written as

H =



Λ2 −ζ2 0 0 0

−ζ2 1 0 0 0

0 0 γ11 γ12 γ13

0 0 γ12 γ22 γ23

0 0 γ13 γ23 γ33


(119)

where γij label the components of the inverse spatial metric. The matrix resulting from

the product HA is symmetric only with the choice of ζ3 = ζ1ζ2 and therefore, for this

choice of parameters, the first order generalized harmonic system is symmetric hyperbolic.

The characteristic fields are given by

û1
µν = gµν (120)
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û2
iµν = −njΨjµνni + Ψiµν (121)

û3
µν = −ζ2gµν + Πµν + njΨjµν (122)

û3
µν = ζ2gµν − Πµν + njΨjµν . (123)

5.3 The Background Metric and Tensor Spherical
Decomposition of the Perturbations

This and the following chapters summarize the results of the generalized Regge-Wheeler

formalism relevant for this part of the thesis. It follows closely the notation and presen-

tation of ref. [128].

This formalism assumes that the total metric can be written as

gtot
µν = gµν + δgµν (124)

where gµν describes the Schwarzschild geometry and δgµν is, in some sense, a “small”

correction. Further, it is assumed that the four-dimensional manifold can be decomposed

as the product of a two-dimensional manifold M parametrized with coordinates xa (a =

0, 1) and a unit 2-sphere S2 with coordinates xA (A = 2, 3), such that the background

Schwarzschild metric takes the form

ds2 = g̃ab(t, r) dxadxb + f 2(t, r) ĝAB dxAdxB . (125)

Capital Latin indices refer to angular coordinates (θ, φ) on S2, while lower-case ones refer

to the (t, r) coordinates. Here ĝAB is the standard metric on the unit sphere, g̃ab denotes

the metric tensor on the manifold M, and f 2 is a positive function. If one uses an areal

radius coordinate, then f = r, but such an assumption is not made here. Actually, as

discussed below, the fact that the formalism is general enough to allow for f = f(t, r)

has practical advantages in the wave extraction procedure. For simplicity, the metric on
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the unit 2-sphere S2 is assumed to be in standard coordinates: ĝAB = diag(1, sin2 θ).

Summarizing, the assumption is made that the background Schwarzschild metric is given

in a coordinate system in which there is no angular shift, but there can be a radial shift.

Note that there is no assumption about the shift in the perturbation.

From a numerical relativity point of view, it is usually convenient to deal with the

variables that appear in the 3 + 1 split of space-time. To this end, the notation of

ref. [128] is followed and the components of the background Schwarzschild metric explicitly

expanded as

ds2 = (−α2 + γ2β2)dt2 + 2γ2βdt dr + γ2 dr2 (126)

+ f 2(dθ2 + sin2 θ dφ2)

where α and β ≡ βr are the background lapse and radial shift vector, respectively, and

γ2 ≡ g̃rr. Since the background is spherically symmetric, it is convenient to expand the

perturbations in spherical harmonics,

δgµν =
∞∑

`=1

∑̀
m=−`

δg(`,m)
µν . (127)

In the odd-parity sector there is no perturbation for ` = 0. The dipole term, ` = 1,

corresponds to the linearization of the Kerr metric using the angular momentum of the

space-time as a parameter. Thus, for gravitational wave extraction one only needs to

consider perturbations with ` ≥ 2. These quantities can be parametrized according to

δβ
(`,m)
A = b(`,m)S

(`,m)
A (128)

δg
(`,m)
rA = h

(`,m)
1 S

(`,m)
A

δg
(`,m)
AB = h

(`,m)
2 S

(`,m)
AB

δK
(`,m)
rA = π

(`,m)
1 S

(`,m)
A
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δK
(`,m)
AB = π

(`,m)
2 S

(`,m)
AB .

Using the covariant derivative ∇̂A compatible with the metric ĝAB on the unit sphere S2

and its associated Levi–Civita tensor ε̂AB (with non-vanishing components ε̂θφ = sin θ =

−ε̂φθ), the definition SA = ε̂B
A∇̂BY (the first index in ε̂ raised with the inverse of ĝ) and

SAB = ∇̂(ASB) is applied. Here, Y ≡ Y (`,m) are the standard spherical harmonics. The

quantities SA and SAB form a basis on S2 for odd-parity vector and symmetric tensor

fields, respectively. For completeness, a detailed and self-consistent description of how to

use these to decompose vectors and tensors into spherical harmonics is given in App. D.

From now on, the super-indices (`, m) and the sum over them are suppressed, since

modes belonging to different pairs of (`, m) decouple from each other in the perturbation

formalism.

5.4 Extraction of the Regge-Wheeler Function from a Given
Geometry

To define the background metric, the ` = 0 component (that is, the spherically symmetric

part) of the numerical solution gtot
µν is extracted. This is done by decomposing the metric

g̃ab of the two-dimensional manifold M into spherical harmonics. These metric compo-

nents behave like scalars under a rotation of coordinates. Thus, the background metric is

computed as

g̃ab =
1

4π

∫
gtot

ab dΩ , (129)

where dΩ is the standard area element on S2. The function f can be computed through

f =
√

A/4π, with

A =

∫ √
ĝ dθ dφ , (130)

where the integration is performed over the extraction 2-sphere, and ĝ is the determinant

of ĝAB.
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Similarly, the perturbed quantities are computed by extracting the ` ≥ 2 components

of the numerical metric gtot
µν , in the way explained in App. D.

Once one has obtained the multipoles b, h1, h2, π1, π2 defined above in Eq. (128) and

the background quantities f , α, γ, β defined in eq. (126), one can find the generalized

gauge-invariant Regge–Wheeler (RW) function ΦRW . It is given by [128]

ΦRW =
2f

λαγ

(
α π1 −

∂0f

f
h1

)
. (131)

where ∂0 ≡ ∂t−β∂r and λ = (`− 1)(`+2). Notice from eq. (131) that the only multipole

components appearing in the RW function ΦRW are h1 and π1, so that there is no need

to compute the others.

Previous approaches to compute waveforms with the standard RWZ formalism have

typically been considerably more involved than what has just been described. The stan-

dard approach is sketched briefly here. Einstein’s equations are usually solved using

Cartesian coordinates on a Cartesian grid. The numerically obtained metric is first trans-

formed to polar-spherical coordinates. Performing the multipole decomposition on a given

coordinate sphere requires a numerical integration over that sphere, which in turn requires

interpolating the metric to the spherical surface, which does not coincide with the grid

points of the Cartesian grid. Integrating over the sphere also allows computing the areal

radius and its radial derivatives. These quantities are then used to transform the metric

in a second step to its final form in “Schwarzschild-like” coordinates. This is done by first

changing from the coordinate radius to an areal radius (which requires the numerically

calculated radial derivatives), and then identifying the (t, r) components of the metric in

this new coordinate system, which is assumed to be a perturbation of the Schwarzschild

metric in Schwarzschild coordinates. With all this in place, the waveforms are then com-

puted using standard RWZ formulae.
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In the case here, the multi-block grid structure naturally allows for spherical surfaces.

Hence, no interpolation is required. The generalized perturbation formalism allows to

compute the RW function ΦRW without transforming the metric to Schwarzschild coordi-

nates. In particular, the transformation to an areal radial coordinate is not required at all.

Thus, the extraction procedure amounts simply to numerical integrations at a given value

of the radial coordinate to compute the multipoles, and then using eq. (131) to compute

the RW function. An additional improvement is that the high order accurate derivative

operators are naturally associated with a high order accurate discrete norm, leading to

an integration procedure which has the same accuracy as the derivative operators.

5.5 Construction of Initial Data for Perturbed Black Holes

Initial data representing a single black hole with an arbitrary perturbation added to it

are constructed. In this chapter it is described how to set up these initial data on a

spherically symmetric background in a way that they satisfy the linearized constraints.

This discussion follows closely the description given in [128].

If a function Φ(r, t) satisfies the generalized Regge-Wheeler equation

Φ̈ = c1Φ̇
′ + c2Φ

′′ + c3Φ̇ + c4Φ
′ − α2V Φ (132)

one can find the corresponding four metric that will satisfy the the linearized Einstein

equations from this so called Regge-Wheeler potential Φ. The expression above is valid

for spherically symmetric backgrounds and the prime denotes partial derivatives in the

radial direction. The coefficients ci are

c1 = 2β

c2 =
α2 − γ2β2

γ2

c3 =
γα̇− γβα′ + αβγ′ − αγ̇ + γαβ′

γα

110



c4 =
1

γ3α

(
−γ3βα̇− α3γ′ + γ3β2α′ − 2γ3αββ′ + γ3αβ̇ + γ2αβγ̇ + γα2α′ − γ2αβ2γ′

)
.

If the background is Schwarzschild in Schwarzschild coordinates, the generalized RW equa-

tion reduces to the standard one. The corresponding potential depends on the multipolar

mode of the perturbation as well as on the coordinate choice of the background. For

Kerr-Schild coordinates it is

VRW =
1

f 2

[
`(` + 1)− 6M

f

]
. (133)

For ` ≥ 2 the metric perturbations expressed in terms of the Regge-Wheeler function

are

δgrθ =

[
γ

α

(
−f Φ̇ + βfΦ′ + Φ(βf ′ − ḟ)

)
+

fk′ − 2kf ′

f

]
Yφ

sin θ

δgrφ = −
[
γ

α

(
−f Φ̇ + βfΦ′ + Φ(βf ′ − ḟ)

)
+

fk′ − 2kf ′

f

]
sin θYθ

δgθθ =
2k

sin2 θ
[− cos θYφ + sin θYθφ]

δgθφ = k
[
cos θYθ + sin−1 θYφφ − sin θYθθ

]

δgθt =

[
1

γα

(
−γ2βf Φ̇ + f(γ2β2 − α2)Φ′+

(−α2f ′ − ḟβγ2 + f ′γ2β2)Φ
)

+
fk̇ − 2kḟ

f

]
Yφ

sin θ

δgφφ = 2k [cos θYφ − sin θYθφ]
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δgφt = −
[

1

γα

(
−γ2βf Φ̇ + f(γ2β2 − α2)Φ′+

(−α2f ′ − ḟβγ2 + f ′γ2β2)Φ
)

+
fk̇ − 2kḟ

f

]
sin θYθ.

k is an arbitrary gauge function and the choice k = 0 generates a metric in the so called

Regge-Wheeler gauge. For making the equations more readable all (`, m) indices were

suppressed and the notation Yθ ≡ ∂θY and Yφ ≡ ∂φY was used.

How can a specific type of initial data be implemented through this formalism? One

can look at Eq. (132) as an initial value problem for which, since the equation is second

order in the time derivatives, specifying any arbitrary Φ(r, t = 0) and Φ̇(r, t = 0) is allowed

and sufficient for constructing a solution Φ(r, t) at all times. That means that one can

choose Φ and Φ̇ freely and construct the corresponding metric through the equations

given above. Doing this one replaces all Φ̈ by the right hand side of the Regge-Wheeler

Eq. (132).

If the RW function ΦRW satisfies the RW Eq. (132), then the perturbed metric

constructed above satisfies the linearized Einstein equations. Furthermore, it can be

explicitly shown that this metric initially satisfies the linearized constraints around the

Schwarzschild geometry for any initial values ΦRW (t = 0, r) and Φ̇RW (t = 0, r).4 One

takes advantage of this property and constructs initial data in a simple way as a test for

the new wave extraction method. For the simulations below, Kerr–Schild coordinates for

the Schwarzschild background were used, and the distortion was set to ` = 2, m = 0 with

the RW function

ΦRW (t = 0, r) = 0 ,

Φ̇RW (t = 0, r) = A e(r−r0)2/σ2

(134)

4When constructing initial data for the 3 + 1 quantities, one also needs to take time derivatives of the
four-metric; where second time derivatives of ΦRW appear, one uses the RW equation to trade these for
space derivatives.
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with parameters r0 and σ. This corresponds to a Gaussian pulse of width σ centered at

r = r0.

Under the assumption that one can Taylor–expand (a suitable norm of) the discrete

non-linear constraints in terms of the perturbation amplitude A for any fixed grid spacing

h, one has

C(A, h) = C(A, h)|A=0 + A
∂C(A, h)

∂A

∣∣∣∣
A=0

+
A2

2

∂2C(A, h)

∂A2

∣∣∣∣
A=0

+O(A3) . (135)

Since in the continuum the linearized constraints are satisfied, the first two terms in the

above expansion vanish for h → 0, but otherwise are of the order of the truncation error.

For small enough A the first term (that is, the background contribution) dominates, and

the term C(A, h) appears to be independent of A. For large enough A, on the other hand,

the quadratic term in the expansion given by Eq. (135) will dominate.

Fig. 22 presents numerical evidence that this expected behavior is indeed the case.

Numerical data are set up according to Eq. (134), with perturbation amplitudes A be-

tween 10−6 and 10−1. The radial domain extent is 1.8 ≤ r ≤ 7.8, the perturbation is

centered around r0 = 4.8 M and has a width of σ = 1.0 M . The discrete Hamiltonian and

momentum constraints H and Mi for these initial data sets are then computed, using

the same (high) resolution, namely 109 × 109 grid points on each block in the angular

direction and 406 points in the radial direction, corresponding to ∆r ≈ 0.0148 M . Due

to the symmetry of the six-block structure and the axisymmetry of the initial data, two

components of the discrete momentum constraints coincide, Mx = My, and the latter is

therefore not shown. The behavior of the constraints in the L2 and the L∞ (not shown in

the figure) norms agrees with Eq. (135): for small amplitudes A, the discrete constraints

at a fixed resolution appear to be independent of A, while for large amplitudes they show

the expected quadratic dependence on A. Also shown is that the discrete constraint vi-

olations of the initial data sets have the expected dependence on resolution. For small
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Figure 22: Discrete constraint violations for various perturbation amplitudes A at a fixed
(high) resolution. Shown is the L2 norm for the Hamiltonian constraint and for two
components (x and z) of the momentum constraint (which turn out to be very close
to each other, as the plot shows). The numerical resolution is 109 × 109 grid points per
block in the angular directions and ∆r ≈ 0.0148 in the radial direction. The behavior is as
expected and as described in the body of this thesis: for sufficiently small amplitudes, the
background contribution dominates the discretization error in the constraints, which then
appear to be independent of A. For large enough amplitudes, the constraint violation
has a quadratic dependence on A (with an exponent of 2.01 ± 0.01 for the resolution
shown in this figure), since for the initial data only the linearized constraints (around
Schwarzschild) are satisfied.

amplitudes and coarse resolutions, the contribution of the quadratic term in Eq. (135) is

sufficiently small, so that the constraints seem to converge towards zero. However, for

any given amplitude A a fine enough resolution h reveals that the convergence is actually

towards a small but non-zero value, determined by the quadratic term in the expansion

Eq. (135). This behavior is shown in Fig. 23. As an illustration a convergence test is

shown for H by comparing initial data for different resolutions. The highest resolutions

are identical to those used in Fig. 22. The other four resolutions shown are 73× 73× 271,

49 × 49 × 181, 25 × 25 × 91, and 17 × 17 × 61 grid points per block, corresponding to

∆r ≈ 0.0222 M , 0.0333 M , 0.0667 M , and 0.1 M , respectively.
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Figure 23: L2 norm of the Hamiltonian constraint for different amplitudes A of the
perturbation and for different numerical resolutions h. The coarsest resolution uses 17×17
points per block in the angular directions and ∆r = 0.1 M in the radial direction. The
resolution in all directions is increased up to 109×109 points in the angular directions and
∆r ≈ 0.0148 M in the radial direction. Since only the linearized constraints are satisfied,
the non-linear constraints do not converge to zero. For sufficiently large perturbation
amplitudes and for sufficiently fine resolutions, the non-linear effects become visible, and
the constraint violations converge to a constant value which depends on the amplitude A.
As shown in Fig. 22, this dependence is quadratic, as expected.
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5.6 Description of the Simulations

The D8−4 operator constructed in Chap. 3 is used, a summation by parts operator [53, 54]

which is eighth order accurate in the interior and fourth order accurate at the boundaries,

optimized to minimize its spectral radius and boundary truncation errors. Fifth order

global convergence is expected [147, 57]. The integration in time is done with a fourth

order Runge–Kutta integrator with adaptive time stepping as described in Chap. 2.4 and

[64]. To guarantee well posedness and numerical stability, maximally dissipative outer

boundary conditions are applied. These boundary conditions are not physical in the

sense that they violate the constraints and do not include back-scattered radiation from

outside of the simulation domain. For that reason in the simulations shown below, the

outer boundaries are placed at large enough distances so that the extracted waves are

causally disconnected from boundary effects.

In order to test both the long term stability and the convergence of the code, first a

Kerr black hole in Kerr–Schild coordinates with spin j = 0.5 is evolved. Fig. 24 shows the

L2 norm of the Hamiltonian constraint vs. time for two different resolutions. The radial

domain extent is 1.8 M < r < 11.8 M . The coarse resolution corresponds to ∆r = 0.2 M

and 16×16 points per block in the angular directions, and the fine resolution increases the

number of points in all directions by a factor of 1.5. Approximate fifth order convergence

is seen, as expected.

In the simulations discussed below, the inner boundary is placed at r = 1.8 M and the

outer boundary at r = 251.8 M . This allows for observer locations up to r = 80 M , which

are still causally disconnected from the outer boundary for times long enough to follow

the ringdown, namely up to t = 280 M . Initial data are set up according to Eq. (134)

with A = 0.01, σ = 1.0 M , and r0 = 20 M , where M is the mass of the black hole when

the perturbation is switched off. The coarse resolution uses 16×16 points per block in the

angular directions and 1251 points in the radial direction, corresponding to ∆r = 0.2 M .

The fine resolution uses 1.4 times as many grid points in all directions.
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Figure 24: L2 norm (top panel) and convergence factor (bottom panel) for the Hamiltonian
constraint for evolutions of a Kerr black hole with spin j = 0.5. The coarse resolution
corresponds to 16× 16 points per block in the angular directions and ∆r = 0.2 M in the
radial direction. The fine resolution a factor of 1.5 higher in all directions. Fifth order
convergence is seen, as expected for the difference operators used.

One of the goals of the analysis that follows is to study the effect of the choice of the

background metric on the accuracy of the waveforms. Since for this scattering problem

solutions in closed form are not known, the waves which we extract from the three-

dimensional simulations are compared to results obtained with an independent fourth

order accurate one-dimensional code which solves the Regge-Wheeler Eq. (132). These

1D results were obtained with a resolution of ∆r = 0.0125 M . The relative difference in

this Regge-Wheeler function to a result from twice this resolution lies roughly between

roundoff error and 10−7, which is far below the numerical errors that are expected from

the 3D simulations. Therefore, one can consider these 1D results in the following to be

exact for all practical purposes.

5.7 The Standard and Generalized RW Approaches: Numerical
Comparisons

Now the results of evolving distorted black holes as described above and extracting grav-

itational waves with different methods can be analyzed.

Fig. 25 shows Regge-Wheeler functions for observers at r = 20 M , 40 M , and 80 M ,

extracted with both the generalized approach and the standard one. The data have been

117



scaled by a factor of 100 to normalize to an initial data amplitude A = 1 in Eq. (134).

Recall that weak waves of amplitude A = 0.01 were used for these simulations to avoid

non-linear effects, and to be able to compare with the exact solution, which is only known

in the linear regime.

Five waves are shown in Fig. 25 for each observer location. Apart from the exact

solution, two results obtained from the generalized approach are shown, which coincide

with each other in the continuum limit. They differ in how the background metric is

computed: in one case the exact expressions for the Kerr–Schild background is used, and

in the other case these coefficients were numerically calculated by extracting the ` = 0

part of the metric, as explained in sect. 5.4.

Finally, two waveforms were extracted using the standard approach with two different

assumptions for the background, as found in the literature: a Minkowski space-time in

Minkowski coordinates, and a Schwarzschild space-time in Schwarzschild coordinates. An

interesting feature which can easily be seen in eq. (131) should be highlighted. For any

observer location, the waves extracted with these two background should differ only by a

factor which is constant in time:

ΦMin
RW = κΦSch

RW , (136)

where κ2 = gSch
rr is radial component of the Schwarzschild metric in Schwarzschild coordi-

nates. Such a simple relationship is a direct consequence of the vanishing radial shift for

these backgrounds. This expected behavior is confirmed numerically with high accuracy:

at all times and for all observers one recovers this expected ratio between the two waves

to double precision roundoff error.

Figure 25 suggests that, as expected, the differences between waves extracted with

different methods decrease as the extraction radius increases. At r = 80 M , the curves

show excellent agreement and cannot be distinguished by eye. For a more thorough com-
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Figure 25: Extracted waveforms for observers at 20 M , 40 M , and 80 M . Shown is the
Regge-Wheeler function obtained from the standard RW approach and the generalized
one. For the former both a Minkowski background and a Schwarzschild background in
Schwarzschild coordinates were assumed, labeled as RW Min and RW Sch, respectively.
For the generalized approach the results for two cases, in which the background metric is
dynamically computed from the numerical solution (Generalized RW I ), and where it is
prescribed analytically (Generalized RW II ) are shown. Also shown is the exact waveform.
These simulations were performed with a resolution of 16× 16 grid points in the angular
directions on each block and ∆r = 0.2 M in the radial direction. See the main text for
more details.
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parison, one looks at the differences between the extracted waves and the exact solution

in Fig. 26. For consistency with Fig. 25, the errors were also scaled relative to the initial

amplitude of the perturbation.

Perhaps the most notable feature in Fig. 26 is that the differences between the waves

obtained from generalized approach either with a numerically obtained background metric

or with the exact (Kerr–Schild) background metric are smaller than the difference to the

exact solution. For all practical purposes one can therefore consider them identical to

each other, and for the rest of this chapter the latter is left out of the discussion.

Fig. 26 also shows that the standard approach—with either a Minkowski or

Schwarzschild background—leads to errors which are considerably larger than the er-

rors in the generalized approach, even for an observer at r = 80 M . For the specific

resolution that was used for Fig. 26, the errors at r = 20 M with the standard method

are roughly three orders of magnitude larger than the errors with the generalized method.

For r = 40 M and 80 M , the ratio of the errors is of the order 103 to 101 and 102 to 100,

respectively.

The previous discussion only analyzes the errors introduced by the standard method

at a fixed resolution. Next the dependence of these results on the resolution is discussed.

It turns out that the difference between the different methods is even more striking for

higher resolutions. By construction, the generalized wave extraction method should give

the exact waveform in the continuum. At the discrete level, its associated errors should

converge away with increasing resolution. Fig. 27 shows that this is actually the case. On

the other hand, the errors in the standard approach do not converge to zero, as shown in

Fig. 27. In other words, the accuracy of the extracted waves with the standard method

is dominated by the extraction procedure and not by the numerical resolution.

Fig. 27 as well as the second panel of Fig. 26 show another interesting feature. Con-

trary to expectation, assuming Schwarzschild–like coordinates instead of a Minkowski

background does not necessarily lead to smaller errors in the waveforms. For example, for
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Figure 26: Errors for the waveforms shown in Fig. 25.
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Figure 27: Shown is a convergence test for the simulations presented in the previous two
figures. The plots labeled with “low res” coincide with the ones shown in the previous
figures, while the plots labeled with “high res” correspond to 1.4 times that resolution.
The error in the generalized wave extraction method, which by design gives the correct
waveform in the continuum for these simulations, converges towards zero as expected. On
the other hand, the errors in the standard wave extraction method are almost unaffected
by the increased resolution. This indicates that these errors are dominated by the extrac-
tion method itself, not by the numerical truncation error. These results correspond to an
observer at 40 M , but they look similar for the other extraction radii that are considered
in this thesis.

an observer at r = 40M and during the time interval of about 25M < t < 50M , the errors

are actually up to one order of magnitude larger for the Schwarzschild–like coordinates.

However, as can be seen from Fig. 26, this feature depends on the observer location. One

can assume that this feature is only a coincidence.

The plateau in the errors seen in the last 100 M to 200 M in Fig. 26 is due to an

offset in the waveform. It is found that, once the wave function decays to a small enough

amplitude, it no longer oscillates around zero, but instead oscillates around a certain offset.

This can be seen more clearly from the top panel in Fig. 25. This offset is present for

both the standard and the generalized extraction methods; however, there are important

differences. The first is that the offset for the generalized extraction the offset converges

to zero with increasing resolution, unlike for the standard method. The other is that

the offset for generalized method is orders of magnitude smaller than for the standard

method. As it will be discussed in the next subsection, that has direct consequences when
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attempting to extract quasinormal frequencies. This offset is reminiscent of the one that

is present in RWZ waveforms when there is spin [148, 149].

The oscillatory feature of the wave can be followed for a longer time if the offset is

subtracted from the waveform by hand, that is, if the wave is shifted along the vertical

axis so that it oscillates around zero at late times. This is done by fitting the data to

an exponentially decaying wave with an offset. (Details about the fit are given in the

following subsection) The actual values that were determined for the offset are given in

Tab. 8. As expected, the offset is decreasing with increasing radius for both standard RW

wave extraction methods. This offset is mainly a result of the wrong assumption about

the background metric, not of numerical error. There is no such clear dependence on the

radius when using the new generalized extraction. Here the offset originates solely from

truncation error, and converges to zero with increasing resolution. This behavior can also

be seen in Fig. 27.

Table 8: Values of the offset for different wave extraction methods and observers at 20M ,
40M and 80M .

Extraction Method Observer Offset

Generalized RW 20M −7.1× 10−5

Generalized RW 40M 5.6× 10−4

Generalized RW 80M 8.9× 10−5

RW Min 20M −5.4× 10−2

RW Min 40M −8.3× 10−3

RW Min 80M −4.4× 10−4

RW Sch 20M −5.1× 10−2

RW Sch 40M −8.1× 10−3

RW Sch 80M −4.3× 10−4

Fig. 28 shows the difference between the waveforms shifted by different offset values

and the exact solution, for the same observers as before. As can be seen from the figure,

the qualitative statements about the accuracies of the different wave extraction methods

remain unchanged, if you consider the time span during which the amplitude of the wave
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is significant.5 It is concluded that the main errors in Fig. 26 are not caused by an overall

offset in the whole waveform.

5.8 Quasinormal Frequencies

Now attention is turned to extracting quasinormal frequencies from the waveforms just

discussed. The primary goal is to find out whether these frequencies are affected by the

choice of a specific wave extraction method, which may have some presumably small but

non-vanishing systematic error for any finite extraction radius, and if so, by how much.

Data from the lower resolution run that we already analyzed in the previous chapter are

used. The accuracy of the frequency does not change significantly if one uses the higher

resolution run instead.

The angular part of the initial data is a pure ` = 2, m = 0 mode. Since the background

has no angular momentum, there is no mode–mode coupling at the linear level, while non-

linear coupling can be neglected for the current study, because only weak perturbations

are evolved. Therefore the only dominant multipole mode present in the data at all times

should be the one injected initially. At the numerical level, ` = 4 modes can be generated

by the six-block grid structure. However, in Chap. 4 it was found that in the absence of

angular momentum, these modes not only converge to zero with resolution, but are also

very small for the resolutions considered in this chapter. In the above reference and in

[83] it was also shown that overtones are not significantly excited unless the black hole

is very rapidly rotating. Based on all this, the fit is done only for a single ` = 2, m = 0

mode:

Ψfit
RW = A sin(ωrt + χ) eiωi(t−t0) − ξ (137)

where A is the excitation amplitude, ω = ωr + iωi is the complex quasinormal mode

frequency, χ is a phase shift, ξ is the offset and t0 is the starting time of the quasinormal

ringing regime. The latter is not unambiguously defined (the so called time-shift problem),

5Of course, because the offset is subtracted by hand to decrease the errors at late times, one can
naturally follow the oscillatory part of the wave for longer times before.
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Figure 28: Shown are the same quantities as in Fig. 26, except that an offset is subtracted
from each waveform before calculating the errors. See the main text for details.
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and as a consequence neither are the amplitudes of quasinormal modes. In Chap. 4 it

was proposed to minimize the uncertainties due to this time-shift problem by looking at

carefully chosen relative amplitudes. In order to fit numerical data to Eq. (137), one fixes

t0 to an educated guess6 and then fit for ω, A, χ, and ξ. Any difference in t0 is absorbed

in A (in which is not important at this point) and does not change the other extracted

parameters. One finds the time-window of optimal fitting by looking for a local minimum

in the relative residual between the original waveform and its fit. In Chap. 4.9 it was

found that such a local minimum is usually quite sharp and therefore gives a good criteria

for choosing the window of time where the quasinormal ringing dominates. Similarly, the

uncertainties in this minimum are used to quantify the errors in the parameters obtained

in the fit. More details about the fitting procedure that is used to extract quasinormal

parameters are given in Chap. 4.

The previous subsection discussed the presence of an offset in the extracted waves

with the standard method. If such an offset is not taken into account when fitting for the

quasinormal frequencies (i.e., for a fixed ξ = 0), Eq. (137) does not represent the behavior

of the numerical data well enough, and no reasonable results can be obtained from the

fit. This is especially the case at medium to late time intervals when the amplitude

becomes smaller than the offset, so that the wave does not cross zero any more. When

one tries to fit for these cases, the obtained frequency has no relation at all to the correct

QNM frequency. For example, at r = 20M the offset in the waves obtained from the

standard RW wave extraction is of order 10−2 for both a Minkowski background and for

Schwarzschild–like coordinates. Without taking the offset into account, the value of ωr

that the fit determines lies between 10−14 and 10−4, and ωi is of order 10−3 to 10−6. In

contrast, the offset resulting from the generalized RW wave extraction is of order 10−5

6For example, taking into account where the initial data and observer are located, and assuming a
propagation speed of one
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for this resolution. This is small enough that the problems described above do not play a

noticeable role.

Table 9: Quasinormal frequencies of the ` = 2, m = 0 mode as measured by an observer
at r = 20 M . Results are given for waveforms resulting from the different extraction
methods used. The predicted frequency from perturbation theory, which it is assumed
to be exact because the perturbation amplitude is small, is ωexact = 0.37367 − 0.08896i
[87]. The uncertainties in the extracted frequencies originate from variations in them
depending on which interval of the waveform is used for the fit. The relative error is
defined as |(ω − ωexact)/ωexact|.

Extraction Method ω relative error

Generalized RW 0.3736− 0.0890i± (3 + 3i)× 10−4 1.9× 10−4 + 4.5× 10−4i
RW Min 0.3733− 0.0889i± (3 + 3i)× 10−4 9.9× 10−4 + 6.7× 10−4i
RW Sch 0.3733− 0.0889i± (3 + 3i)× 10−4 9.9× 10−4 + 6.7× 10−4i

Tab. 9 shows the complex quasinormal frequencies that were obtained from the gener-

alized and from the standard RW methods. As mentioned above and discussed in detail

in ref. [150], the error bars are estimated from changes in the frequency when changing

the time interval that is used for the fit of the waveform. It is assumed that the predicted

frequency from perturbation theory for the fundamental ` = 2, m = 0 mode is exact

because a small amplitude for the perturbation is used. This frequency is known to be

ωexact = 0.37367− 0.08896i (see for example [87]). The frequency obtained from the new

generalized wave extraction is consistent with this exact value within the accuracy to

which one can obtain these numbers from the fit itself. For the standard wave extraction

method, one only finds agreement to three significant digits in the real part, but better

agreement with the exact value in the imaginary part of the waveform. Note that, since

the waveforms only differ by a constant factor (see Chap. 5.7), the frequencies obtained

with a Minkowski and a Schwarzschild background agree to roundoff error. The reason for

the lower accuracy in the real part of ω might be due to the fact that the waveforms are

slightly distorted due to the wrong assumption for the background metric. This causes a

larger residual between the data and the fit—it is about a factor of two larger than with
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the generalized wave extraction—and some degradation in how accurately certain fitting

unknowns like ω can be determined. That may also explain the larger relative error for

the waves extracted with the standard RW wave method, which is shown in the right

column of the same table. There the relative error is defined as |(ω − ωexact)/ωexact|.

5.9 Summary

The question was addressed how certain approximations that are commonly done in wave

extraction algorithms affect the accuracy of the extracted waveforms. It was studied how

sensitive results are to the location of the observer and to certain assumptions made about

the background geometry. The question was posed if one can locate observers far enough

away from the radiation source, so that the total errors in the waveforms are dominated by

numerical truncation error, instead of systematic errors from the wave extraction method.

To avoid some of the complexities in asking these kind of questions, a very specific

physical system was looked at, a perturbed Schwarzschild black hole, where the pertur-

bation is of odd parity. It can be argued that statements made in this chapter have some

relevance for more complicated cases, like black hole binaries, since many of such systems

develop into a single perturbed black hole.

The wave extraction methods that were compared are based on the Regge-Wheeler

formalism which was used in it’s standard form, assuming Minkowski and Schwarzschild

background geometries and in a generalized covariant form for which the black hole pa-

rameters were extracted directly from the numerically computed metric.

It was found that for the standard RW wave extraction method even at observer loca-

tions of r = 80M the errors are indeed of systematic nature. By doing tests with different

resolutions it was possible to show that they do not converge to zero with decreasing

grid spacing. On the other hand, the errors in the waves extracted using the generalized

formalism showed numerical convergence which indicates that they originate from the

discretization. It should be stressed that even for the standard method the errors in the

waveforms are small enough so that the method can give useful results. Also one needs
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fairly accurate numerical methods to see the effects that were presented. Nonetheless it is

important to notice that there is a fundamental limit in accuracy that cannot be overcome

by refining the numerics beyond a certain point when using the traditional RW wave ex-

traction. The errors decay with increasing the extraction radius, but in a very slow way,

typically with 1/r (which is in fact the decay found in the simulations). For example,

in order to decrease the systematic errors for an observer at 40 M shown in Fig. 27 by,

say, two orders of magnitude, by just moving the observer out and extracting at a single

extraction radius, the latter would have to be located at ' 4, 000 M . This means that, if

similar uncertainties show up in other simulations, as the results of this chapter suggest

(and which can be tested), then decreasing those uncertainties by moving the observer

further out does not seem feasible, and other ideas would have to be explored.

The generalized formalism that was used here solved that problem in the specific setup

of a single black hole. This is no surprise since it is adapted to exactly that situation.

For more general cases like spinning black holes or even binaries, the errors with this

formalism will be larger, but it can be argued that at least for the ring-down phase of the

black hole, it will give more accurate results than the traditional approach.

What is not clear, however, is whether the wave zone resolution currently used by

mesh refinement codes is sufficient to see the differences that were demonstrated in this

chapter. For example, the spatial resolutions in the wave zone of current binary black

hole inspiral and coalescence simulations are usually much coarser than the resolutions

that were used above. Some radial resolutions h in the wave zone of binary black hole

system simulations are: [151] h = 0.5 M , [113] h = 0.5 M (but the extraction is performed

very close in at R = 16M) [152] h = 0.75 M (but h = 1.5 M for calculating the radiated

angular momentum J), [153] h = 0.85 M , [154] h = 0.87 M [117] h = 0.82 M , [118]
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h = 0.56 M , [155] h = 0.56 M . Some of these codes are 4th order accurate, but many

have at least certain components that are only 2nd order accurate.7

By subtracting offsets in the waveforms via postprocessing, the quasi normal modes

could be extracted using a fitting procedure. For all extraction methods they agreed to

high accuracy with the expected values. However it was demonstrated that the largest

errors in the waveforms were not due to an overall offset in the whole wave. Even after

removing the offset by hand, at early and intermediate times in the ringing regime the

errors remained at roughly the same order. It should be stressed that for the postpro-

cessing some a priori knowledge about the waveforms was used, namely that they should

oscillate around zero. In more general scenarios such features might not be known and a

similar method might not be applicable.

7While it is currently common practice to report the finest resolution (near the horizons) and the
coarsest resolution (near the outer boundary) in such simulations, the resolution in the wave zone, i.e., at
the location where the gravitational waves are extracted, is often not explicitly listed, and can sometimes
not be inferred. Some publications also do not report at which coordinate radius the wave information
is extracted.
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6 Conclusions

This thesis presented a careful study of some aspects of gravitational wave physics. First

a description of a new multi-block infrastructure for numerical relativity was given and

numerical evidence was shown that it is suitable for highly accurate and efficient simu-

lations. The primary reason for this new code to be that successful is that it gives the

opportunity to better adapt coordinates to the specific physical systems that are modeled.

Also by using and extending very recently developed techniques in numerical analysis, it

is guaranteed that the code is numerically stable for arbitrary high order schemes. In the

specific case of single perturbed black holes, computational performance and accuracy was

gained because of the possibility to choose angular and radial resolution independently.

This is a feature that can not be achieved with mesh refinement codes that are based on

cartesian grids and coordinates. The multi-block method also provides spherical excision

and outer boundaries. In the work done here, no attention was payed to the construction

of physical outer boundary conditions, since it was possible to have them causally dis-

connected from the regions from which the physical information was extracted. Instead

in most simulations maximally dissipative boundary conditions were applied to guaran-

tee well posedness and therefore numerical stability. The excision boundary condition

could be set in a very straightforward way due to its spherical shape. The choice of a

six block system also simplified wave extraction on the technical side, since the necessary

integrations could be done on constant coordinate radius spheres without the need for

interpolation. These advantages are so striking that the author is convinced that the

effort to develop such an infrastructure and numerical methods will pay off in the long

term and make numerical relativity more efficient, accurate and robust.

The new infrastructure was used for a numerical study of quasinormal mode exci-

tation of Kerr black holes. The relative excitation strength of co- and counter-rotating

modes, and how they depend on the shape of the initial perturbation was investigated.

A quantitative analysis of linear mode-mode coupling due to the spin of the black hole
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was given. Finally the excitation of overtones for rapidly rotation black holes with spin

up to j = 0.98 was looked at. For analyzing the data in a precise and correct way, a well

defined procedure to extract frequencies and excitation amplitudes from the numerical

waveform was proposed, which is based on fitting the data to a superposition of expo-

nentially decaying sine functions with different frequencies and decay rates. It was found

that the general correctness and accuracy of the results as well as the number of modes

that can be extracted from the data depend in a sensitive way on how this fit is done

in detail, for example on the number of modes that one is fitting at the same time and

on the time interval of the data that is used for the analysis. A detailed description of

all the related issues that were encountered was given. Furthermore the so called time

shift problem was identified, a conceptual problem in giving a precise definition for the

excitation amplitudes. The tests were designed in a way that the effect of this problem is

minimal. The details of the fitting procedure, especially finding an optimal time window

for it, as well as the time shift problem have been widely ignored in all numerical stud-

ies to date. A comparison between the quasinormal frequencies computed with the new

multi-block code and independent perturbative predictions was done to test the accuracy

of the methods. By comparing excitation amplitudes computed by both methods it could

be tested to what extend assumptions that are required by the perturbative predictions

hold.

Then the problem of wave extraction in full non-linear evolutions of the Einstein

equations was looked at. For that a generalized harmonic evolution system was imple-

mented and initial data that represent a single distorted Schwarzschild black hole were

evolved. Odd parity waves were extracted using the standard and a generalized covariant

Regge-Wheeler formalism at a number of different extraction radii between r = 20M and

r = 80M . The errors with respect to the exact solution were investigated and how they

depend on the observer location and the assumption about the background metric. It was
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found that even at large radii, the systematic errors due to the assumption of a wrong

background dominate over numerical discretization error.

There are many directions in which the research presented here could be continued.

The multi-block infrastructure as well as the generalized harmonic code are in a fairly

complete state and should in principle be capable of doing binary black hole simulations.

There are several approaches for doing that. One can use a global coordinate frame that

rotates in a way that the two black holes are kept fixed on the numerical grid [39]. This has

the advantage of avoiding moving excision regions, a concept that is somewhat difficult to

realize with the touching grids method implemented for this thesis. During the merger,

one could simply drop some of the grids in the center of the multi-block system to get a

single spherical excision region. A more straight forward way to treat binaries might be to

build on the expertise from recent successful moving puncture evolutions and evolve the

black holes on a central cartesian block which is then surrounded by a number of blocks

so that at larger radii the coordinates become almost spherical. This would preserve the

advantage of constant angular and radial resolution at least in the wave zone, simplified

wave extraction and smooth outer boundaries. However, one would loose the adapted

grid structure close to each black hole. As a result, in order for the simulations to be

accurate one would need mesh refinement in the central block. In principle this could be

done with the code described in this thesis, since Carpet allows for both.

There is a wide range of different research areas in general relativity and astrophysics

that can profit from multi-block methods and also from the specific implementation pre-

sented here. Recently attempts were started to apply the new code to general relativistic

hydrodynamics simulations, for example of collapsing stars. Other interesting applica-

tions are simulations of compactified space-times that include null infinity, which has a

spherical topology. In fact for any computation on a manifold with non-trivial topology

multi-block or similar methods are necessary.
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Predicting excitation amplitudes for quasinormal modes certainly is of interest to the

gravitational wave observatories and data analysis efforts. There is a need to further

explore the effect of initial configurations on the mode excitation especially for physically

relevant situations. An interesting question would be, what the dominant modes in the

ringdown waveform after a binary black hole merger are. For that further numerical

experiments are necessary and it has to be investigated how they relate to analytical

predictions.

The work on quasinormal mode and wave extraction was a step towards a better un-

derstanding of how one should analyze numerical waveforms in a systematic way. This

is an important issue that is often neglected in numerical relativity. The physical sys-

tems investigated here were comparably simple and it is an open question how well the

statements made will carry over to more challenging situations, for example nonlinear per-

turbations or even binary merger cases. In addition to that a study like in Chap. 5 should

be repeated for perturbations of even parity and a comparison to extraction methods

based on the Weyl scalar Ψ4 would be important to do.
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Appendix A Energy Method

This appendix sketches out how – in the continuum – well posedness of first order linear

symmetric hyperbolic systems of partial differential equations (PDEs) are analyzed using

the energy method and how boundary conditions are constructed in a stable manner.

Details can be found for example in [48] and [156]. Equations of the form

∂tu
α = Aiα

β∂iu
β + Bα

βuβ + Cα (138)

are studied, where uα = uα(x, t) is the state vector and Greek indices label evolution

variables while Latin indices correspond to the spatial coordinates. A, B and C are

functions of uα but not it’s derivatives. A system like this is called quasi linear, since it is

linear in the first derivatives. Virtually all of the basic mathematical properties regarding

well posedness of a system like this are encoded in the principal part, i.e. the first term

on the right hand side of the previous equation. The lower order terms function as source

terms and can be ignored in the following discussion.

To analyze hyperbolicity, one picks an arbitrary unit normal vector ni, njn
j = 1 and

project the partial derivatives onto that vector. The principal part of Eq. (138) becomes

∂tu
α = Anα

β∂nu
β (139)

where one uses the notation ∂n ≡ ni∂i and Anα
β ≡ Aiα

βni. The same notation will be

used for all vectors and matrices that are projected onto ni.

If for any unit normal vector ni the eigenvalues of Anα
β are real and if Anα

β is symmetric,

Eq. (138) is called symmetric hyperbolic. Symmetric hyperbolic systems are convenient

for numerical methods because they are known to be well posed. Further, the numerical

approach described in this thesis makes use of symmetric hyperbolicity to construct multi-

block schemes of arbitrary high order that are guaranteed to be numerically stable. Well
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posedness, roughly speaking means the solutions at any time depend continuously on the

initial data. A consequence of well posedness is that norms of the solution ||u|| grow in

a way that is bounded, with the same bound for all initial data. This obviously does not

guarantee long term stability, but it is quite obvious that it is a necessary condition for a

convergent numerical method.

The stability of the system of equations written down in Eq. (138) is not only de-

termined by it’s principal part – it was already mentioned that a symmetric hyperbolic

system is convenient – but also by the boundary conditions. The importance of the

boundary conditions is not surprising, since through them energy can dissipate out of or

be injected into the domain of the solution.

For constructing boundary conditions, the so called characteristic modes play a crucial

role. Following is a brief description of the construction of these modes how they enter

the stability analysis of partial differential equations.

One looks for a way to express Eq. (139) in terms of variables v = v(u) for which

(139) takes the form of k of decoupled advection equations, where k is the number of

primary variables u. The principal part of the transformed PDEs would be diagonal,

and each diagonal element a real number, either positive, negative or zero, corresponding

to characteristic modes propagating in the direction or the opposite direction of ni, and

orthogonal to ni, respectively.

A transformation like that can always be found for symmetric hyperbolic systems of

equations. Let Λ be the diagonalizer for An. For readability indices of An are suppressed.

One multiplies Λ and its inverse into Eq. (139) in strategic places to get

∂t(Λ
−1u) = Λ−1AnΛ∂n(Λ−1u) (140)

∂tv = Ân∂nv. (141)
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The assumption that Λ does not explicitly depend on the coordinates and on time is used

and one introduces the definitions v ≡ Λ−1u and Ân ≡ Λ−1AnΛ. Ân is diagonal and the

diagonal elements are the eigenvalues of An. The diagonalizer is a matrix constructed

from the eigen-vectors e
(κ)
α of An. The upper index (κ) labels the κ-th eigen-vector, α

labels each vectors components. The diagonalizer is given explicitly as Λκ
α =

(
e
(κ)
α

)
.

It was described how to write a symmetric hyperbolic system in terms of its charac-

teristic variables. Now it will be shown how boundary conditions are applied to these

variables at the continuum in a way that makes the system well posed and stable.

The following description is only a sketch of some ideas and methods and is in no sense

a complete discussion. More details can be found in [48] and [156]. For simplicity from

here on only a one dimensional system of equations is discussed and the spatial domain is

chosen to be 0 ≤ x ≤ 1. One considers the principal part of the same first order evolution

system as above for fields u = (u1...um) and in the one dimensional case it is written as

∂tu = A∂xu, (142)

where A is a matrix with m × m entries. For readability indices running over the field

variables uα are suppressed.

As shown above, one can diagonalize the system using a matrix Λ, composed of the

eigen-vectors of A to get

Λ−1AΛ = Â =


ÂI 0 0

0 ÂII 0

0 0 ÂIII

 (143)

with ÂI = diag (λ1, ..., λr), ÂII = diag (λr+1, ..., λm−s) and ÂIII = 0. λi are the eigenvalues

or characteristic speeds of A and are numbered in a way that λi > 0 for i = 1, ..., r, λi < 0

for i = r + 1, ...,m− s and λi = 0 for i > m− s.
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The characteristic fields are

v = Λ−1u (144)

and the evolution system in terms of these fields is a system of m decoupled equations

∂tv = Â∂xv. (145)

To understand how one has to apply boundary conditions to the characteristic variables,

one groups these evolution equations into a part with modes that have positive speed,

one with negative speed modes and in one that describes the zero speed modes.

∂tv
I = ÂI∂xv

I (146)

∂tv
II = ÂII∂xv

II (147)

∂tv
III = 0. (148)

Fig. A gives an intuitive geometric picture of how to apply boundary conditions to

the characteristic variables. vI represents the modes with a negative characteristic speed,

vII the ones with a positive speed. Zero speed modes can be left out of the discussion

since they do not cross the boundaries. At the lower boundary x = 0 vI is outgoing and

no boundary condition needs to be applied to it. vII is ingoing and can in principle be

specified arbitrarily. For example if it is known that in the physics that is modeled there

exists no incoming radiation, all vII would be set to zero. If an analytic solution at the

boundary is known it can be imposed through the incoming modes. Another widely used

option is to choose them in a way that freezes the time derivative of the incoming mode.

That will keep the boundary points at the value they are given in by the initial data. The

analog situation with vI and vII interchanged is found at the upper boundary x = 1.
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x0

t

1

vI

vII vI

vII

Figure 29: Geometric interpretation of the characteristic modes. vI represents the modes
with a negative characteristic speed, vII the ones with a positive speed. Zero speed modes
do not play a role in this picture. At the lower boundary x = 0 vI is outgoing and no
boundary condition needs to be applied to it. vII is ingoing and can in principle be
specified arbitrarily. For example if it is known that in the physics that is modeled there
exists no incoming radiation, all vII would be set to zero. The same situation with vI and
vII interchanged is found at the upper boundary x = 1.
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Following is a discussion about the stability for the characteristic evolution system of

Eq. (148). For that one needs to define a L2 scalar product of two fields and norm as

〈v, w〉 ≡
∫

Ω

v̄wdΩ (149)

||v|| = 〈v, v〉1/2 =

(∫
Ω

|v|2dΩ

)1/2

(150)

where v̄ is the complex conjugate of v and the integration is done over the whole domain

Ω. One also needs an Euclidian scalar product and norm for finite dimensional vector

spaces. In an m-dimensional vector space consisting of all u = (u1, ..., um)T the scalar

product and norm is defined by

(u, v) =
m∑

j=1

ūjvj (151)

|u| = (u, u)1/2 . (152)

Two useful properties of these norms are

〈u, Avx〉 = −〈ux, Av〉 − 〈u, Axv〉+ [(u, Av)]10 (153)

and

|〈u, Av〉| ≤ ||A||∞ ||u|| ||v||. (154)

It is used that ||A||∞ = supx |A|. Eq. (153) simply is the integration by parts rule,

Eq. (154) follows from the definition of the scalar product.

The idea of proving stability with the energy method is to define an energy norm

E =< u, σu > and compute its time derivative. One can then see if the energy growth

is bounded and how boundary conditions have to be chosen to gain stability. Finding a

good energy norm is specific to the evolution system and since here it is just sketched
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briefly how this mechanism works, only the simple case of σ = I is discussed, I being the

unit matrix.

The time derivative of the energy norm is

Ė = ||v||2t = 〈vt, v〉+ 〈v, vt〉

=
〈
Âvx, v

〉
+
〈
v, Âvx

〉
= −

〈
v, Âxv

〉
+
[(

v, Âv
)]1

0

≤ ||Â||∞ ||v||2 +
[(

v, Âv
)]1

0
. (155)

Eq. (153) has been used to get from the second to the third line, and Eq. (154) to find

the final inequality. The role of the boundary conditions for stability is clear form the

expression above. To study boundary effects, one expresses the boundary conditions on

the incoming modes in terms of the outgoing ones:

vII(0, t) = RI(t)vI(0, t) (156)

vI(1, t) = RII(t)vII(1, t). (157)

RI(t) and RII(t) are arbitrary functions of t. With these boundary conditions, the min-

uend and subtrahend encoded in the last term of equation (155) become respectively

(
v(1, t), Â(1, t)v(1, t)

)
=

(
vI(1, t), ÂI(1, t)vI(1, t)

)
+(

vII(1, t), ÂII(1, t)vII(1, t)
)

=
(
vII(1, t), CII(1, t)vII(1, t)

)
(
v(0, t), Â(0, t)v(0, t)

)
=

(
vI(0, t), CI(0, t)vI(0, t)

)
(158)
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where

CII(1, t) = ÂII(1, t) + R̄II(t)ÂI(1, t)RII(t) (159)

CI(0, t) = ÂI(0, t) + R̄I(t)ÂII(0, t)RI(t). (160)

Now, if possible RI and RII are chosen suitably small so that Ė ≤ 0 to get a bounded

energy norm and therefore a globally stable evolution system. These boundary conditions

are called maximally dissipative.
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Appendix B Notes on Comparing Numerical Results

from Chap. 4 with the Semi-Analytic

Predictions

To compare the numerical results with predictions from perturbation theory a switch from

the usual Boyer-Linquist coordinates (as used, for example, in [83]) to the Kerr-Schild

coordinates used in the code has to be done. Let (r∗, t) denote the Boyer-Lindquist radial

tortoise coordinate and time, and (r̄, t̄) the Kerr-Schild coordinates. The transformation

needed is given by

t(t̄, r̄) = t̄− Ω(r̄) + t̃ , (161)

r∗(r̄) = r̄ + Ω(r̄) , (162)

with the definitions

Ω(r) =
2Mr+

r+ − r−
ln

(
r − r+

2M

)
− 2Mr−

r+ − r−
ln

(
r − r−
2M

)
, (163)

r+ = M +
√

M2 − a2 , (164)

r− = M −
√

M2 − a2 . (165)

(166)

The reference time t̃ can in principle be freely chosen and is used to define where t(r̄, t̄)

crosses zero. It is fixed here by the condition that in both coordinate systems the initial

pulse is at the same physical distance from the black hole, i.e. t(t̄ = 0, r̄ = r̄0) = 0:

t̃ = Ω(r̄0) . (167)

The location of the initial pulse in these coordinates becomes

r0 = r̄0 + Ω(r̄0). (168)
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For consistency, the value of σ has to be adjusted to tortoise coordinates. As a rough

approximation

σ =
1

2
[r∗(r̄ + σ̄)− r∗(r̄ − σ̄)] (169)

is set.

From Eq. 72 and 82 one reads of the exponential decay of each modes amplitude in

Boyer-Lindquist coordinates and then substitute them by the Kerr-Schild coordinates.

t0 = r∗ + r0 is chosen.

A`mne
t−r∗−r0 = A`mne

−2Ω(r̄)I(ωlmn)et̄−r̄−r̄0 ≡ Ā`mne
t̄−r̄−r̄0 (170)

This equation relates the amplitudes as seen in Boyer-Lindquist coordinates A`mn with

the ones found in the simulations that were done in Kerr-Schild coordinates Ā`mn.
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Appendix C 3+1 Split

The Einstein equations describe the dynamics of space-time in the form of four dimensional

second order covariant partial differential equations for a metric gµν which quantifies the

infinitesimal distance of points on a manifold M. The effect of matter or fields (for

example electro-magnetic fields) can be taken into account by coupling the space-time

equations to the so-called stress energy tensor which again incorporates the equation of

state for the matter or fields. The concern here are vacuum space-times and any discussion

involving stress energy tensors is left out.

A commonly used and very intuitive way to solve the Einstein equations numerically

is the Cauchy approach, which is often referred to as the 3 + 1 split and was first for-

mulated by Arnowitt, Deser and Misner in 1962 [157] in an attempt to quantize gravity.

The space-time equations are described as an initial value problem. The initial data are

set on a three dimensional purely space like hypersurface and have to satisfy four elliptic

partial differential equations, namely the scalar Hamiltonian constraint H and the vec-

tor momentum constraint Mi, i = 1, 2, 3. Initial data, given everywhere on the three

dimensional hypersurface, fully determine the metric on all other space-like slices and

therefore the whole four dimensional space-time. The different slices are connected via a

set of hyperbolic equations, the evolution equations, that tell how the intrinsic quantities

of each slice evolve along a time like vector.

In this chapter a more precise description of how this mechanism works is given and

the involved equations are given in a very basic form, the so called Arnowitt, Deser,

Misner (ADM) formulation [157]. Here the very detailed treatment of the 3+1 split given

by York [158] is followed loosely.

The full four dimensional space-time (M, gµν) is foliated into three dimensional space

like hypersurfaces Σ labeled by a number t. t can be interpreted as a time coordinate

and each of the slices represents the space-time at a constant time. On each point of
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each of the hypersurfaces a normal vector n̄µ can be defined, which is time like and in the

convention used here points in the future direction.

For a given foliation Σ a complete description of the space-time (M, gµν) can be

given by three dimensional tensor quantities intrinsic to the space like slices. These are

the three metric γij that defines the geometry on each hypersurface and the so called

extrinsic curvature Kij that describes the embedding of the three dimensional manifolds

in the four dimensional one.

These tensors are constructed using a projection operator hµν which is defined as

hµν ≡ gµν − n̄µn̄ν . (171)

It is symmetric in its two indices, purely space like hµνn
µ = 0 and has the desired property

to project all four dimensional geometric objects into the hypersurface. This can be seen

easily by projecting hµν on n̄µ:

n̄µn̄νh
ν
σ = n̄µn̄νg

ν
σ − n̄µn̄νn̄

νn̄σ

= n̄µn̄σ − n̄µn̄σ = 0.

The three metric simply is the projection of the four metric

γij = hµ
ih

ν
jgµν (172)

where as usual Latin indices label space like coordinates x1, x2 and x3. The inverse of

the three metric is defined through γijγjk = δi
k and the three metric is used to raise and

lower indices of three dimensional vectors and tensors on the three manifold.

Since the normal vector n̄µ is defined on all points in the four dimensional space-time

it fully determines the embedding of the slicing. The shape or the extrinsic curvature of a

surface in a higher dimensional space is described by the infinitesimal change of between
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the normal vectors on two neighboring points on the manifold. This can be expressed in a

covariant, i.e. coordinate independent way by the covariant derivative ∇νn̄
µ which again

can be projected into the hypersurfaces to get the definition of the extrinsic curvature

tensor

Kij ≡ hµ
ih

ν
j∇νn̄µ. (173)

The extrinsic curvature can be rewritten as

Kij = −1

2
Ln̄γij, (174)

where Ln̄ is the Lie derivative with respect to the normal vector n̄µ. This relation suggests

to interpret Kij as a generalized time derivative or momentum of the three metric and in

fact in many formulations the evolution equation for the three metric is a direct result of

Eq. (174). Also in analogy to classical mechanical systems that are determined by spec-

ifying for example positions and momenta of particles at an initial time t0, it intuitively

makes sense that on an initial slice, the metric and the curvature has to be specified.

Until now a given foliation Σ of space-time was assumed. The actual choice of a

foliation does not change the physical content of the space-time but rather corresponds

to the coordinate freedom present in general relativity. Constructing a good slicing is of

crucial importance to numerical simulations. The construction is done by introducing a

time direction tµ = ∂t and its projections on the hypersurface and the normal vector:

βµ = hµ
νt

ν (175)

α = n̄µt
µ. (176)

tµ expressed in terms of these projections is

tµ = αn̄µ + βµ. (177)
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Fig. 30 illustrates the geometrical meaning of these quantities. α, usually called lapse

function or simply lapse carries the information about the proper distance between neigh-

boring slices, βµ, the shift vector, encodes how coordinate points move when going from

one slice to the next in time. It has to be stressed again, that lapse and shift are pure gauge

functions that specify a coordinate system and can be chosen freely. Since βµn̄µ = 0, it

is usually expressed as a three dimensional vector βi.

βi

αnµ tµ

nµ

Σ(t = t0)

Σ(t = t0 + δt)

_

_

Figure 30: Illustration of the quantities involved in the 3+1 split of a space-time. Shown
are two slices at consecutive times t0 and t0 + δt. The lapse α measures the distance
between the two slices along the normal n̄µ. The shift βi is space like and moves coordinate
points within a hyper surface. Also shown is the time direction tµ.

The gauge functions α and βi together with the three metric gij and the extrinsic

curvature Kij are often called 3+1 quantities. The full four dimensional metric expressed

160



in terms of these quantities is

ds2 = −(αdt)2 + γij(dxi + βidt)(dxj + βjdt) (178)

where the notation dt ≡ dx0 is used.

The three metric γij determines a natural covariant derivative operator on Σ that

is called (3)∇i and that is metric compatible, i.e. (3)∇igjk = 0. Furthermore three

dimensional Christoffel symbols (3)Γi
jk and a curvature tensor (3)R l

ijk can be constructed

on Σ, by applying the usual definitions. One now needs to express (3)∇i and (3)R l
ijk in

terms of the four dimensional quantities. This relations are the so called Gauss-Codazzi

equations.

The covariant derivative operator (3)∇i can be written as the projection of the four

dimensional covariant derivative onto the three dimensional hypersurface:

(3)∇iT
µ1...µk

ν1...νl
= hµ1

η1
... hµk

ηk
h σ1

ν1
... h σl

νl
h ρ

i ∇ρT
η1...ηk

σ1...σl
(179)

It is straight forward to show that this derivative operator is indeed the covariant deriva-

tive compatible with the three metric (see for example [159]). For that the property

(3)∇ihjk = hl
ih

m
jh

o
k

(3)∇l(γmo − n̄mn̄o) = 0 (180)

is used.

The curvature tensor on Σ is defined in the same way the curvature tensor of the four

dimensional space-time is often introduced. If ωi is a dual vector field on Σ, one defines

(3)R l
ijk ωl = (3)∇i

(3)∇jωk − (3)∇j
(3)∇iωk. (181)
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The partial derivatives on the right hand side are replaced by Eq. (179) and the relation

hj
ih

l
k

(3)∇jh
m
l = Kikn̄

m (182)

is used which follows directly from the definition of the extrinsic curvature (173). One

then arrives at

(3)R l
ijk = h µ

i h ν
j h η

k hl
ρR

ρ
µνη −KikK

l
j + KjkK

l
i . (183)

In a similar manner starting from the left hand side doing similar substitutions one can

derive the relation

(3)∇jK
j
i − (3)∇iK

j
j = Rµνn̄

νhµ
i. (184)

Eq. (183) and (184) are the Gauss Codazzi relations mentioned above.

Inserting the Gauss Codazzi relations into the Einstein equations, a simple formulation

of the latter in terms of the 3+1 quantities can be written down. These equations are

the so called ADM equations. They are a set of 16 partial differential equations, four of

elliptic type and 12 of hyperbolic type. They are explicitly given by

H ≡ (3)R + K2 −KijKij = 0 (185)

Mi ≡ (3)∇j(K
ij − γijK) = 0 (186)

and

d

dt
γij = −2αKij (187)

d

dt
Kij = − (3)∇i

(3)∇jα + α( (3)Rij + KKij − 2KikK
k
j). (188)

The time derivative operators on the left hand sides of these equations are defined as

d

dt
=

∂

∂t
− Lβ. (189)
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(3)R is the scalar curvature constructed from the three metric γij.

Eq. (185) and (186) do not contain second derivatives in time and therefore are not

evolution equations. They are elliptic and can be treated as a boundary value problem

on each three dimensional hyper surface. They impose constraints on the system, namely

the hamiltonian constraint H and the momentum constraints Mi. Using the contracted

Bianchi identities it can be shown that if the constraints are satisfied on one time slice,

the same will be the case for all times, i.e. on all other slices of the space-time. In

numerical simulations due to discretization errors and their propagation properties, the

constraints will be violated either at the initial time or after evolving for one time step.

In many cases the constraint violation are used to measure the error that is done during

the simulation. Even though there is no general rule telling how much accuracy is lost

in the numerical data, when a certain level of constraint violation is present, generally

the constraint violations will indicate how far the numerical solution is drifting away from

physical solutions, i.e. solutions that satisfy the Einstein equations. The elliptic equations

defining the constraints can also be solved at each time step to ensure that the constraints

stay at zero. In that case one speaks about constraint enforcement.

Eq. (187) and (188) are the actual evolution equations for the three metric and the

extrinsic curvature. They are in hyperbolic form. Because of the constraints, initial data

cannot be chosen freely but they need to satisfy Eq. (185)–(186).

It has been explicitly shown in [160] that the ADM formulation is not stable for nu-

merical evolutions. The reason is that the evolution equations are only weakly hyperbolic.

The instability of the ADM system was noted in countless simulations even before it was

formally proved. This spawned a whole industry of reformulating the equations to make

them suitable for stable numerical schemes. One of the more successful reformulations

is the so called Baumgarte-Shapiro-Shibata-Nakamura (BSSN) system, a second order in

space formulation of the Einstein equations [41, 42], and its advantages have been shown

numerically first before attempts to analyze the equations themselves have been under-
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taken (see [161] and references given there). In [162] the well posedness of the BSSN

system is investigated. A different approach is to formulate the equations in the better

understood first order form and modify it by adding constraints to the evolution equations

in a way that the system is symmetric hyperbolic. The first order generalized harmonic

system described in Chap. 5 is an example for that approach. Even though at this time it

is not known what the best formulation is, it is understood well enough how to formulate

the evolution equations to suppress instabilities so that they are no longer the limiting

factor in numerical simulations.
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Appendix D Vector and Tensor Harmonics

This appendix describes how vectors and tensors are expanded into spherical harmonics.

In what follows the methodology is developed for vector fields and then generalized to the

case of tensor fields. As in Chap. 5, capital Latin indices denote angular coordinates and

objects with a hat (for example ∇̂) are two dimensional objects on S2.

A vector field VA defined on a manifold S2 can be decomposed into spherical harmonics

using the expression

VA =
∞∑

`=1

+∑̀
m=−`

α(`,m)Y
(`,m)
A + β(`,m)S

(`,m)
A (190)

where Y
(`,m)
A are the even and S

(`,m)
A the odd parity basis vectors tangent to the manifold.

The explicit form of the basis vectors is

Y
(`,m)
A = ∇̂AY (`,m) (191)

S
(`,m)
A = ε̂B

A∇̂BY (`,m) (192)

and called vector spherical harmonics. They satisfy the orthogonality relations

∫
ĝABȲ

(`,m)
A Y

(`′,m′)
B dΩ = `(` + 1)δll′δmm′ (193)∫

ĝABS̄
(`,m)
A S

(`′,m′)
B dΩ = `(` + 1)δll′δmm′ (194)

where the integration is done over the unit sphere and dΩ = sin θdθdφ. From Eq. (190)

and (194) the multipole modes are computed to

α(`,m) =
1

`(` + 1)

∫
ĝABVAȲ

(`m)
B dΩ (195)

β(`,m) =
1

`(` + 1)

∫
ĝABVAS̄

(`m)
B dΩ. (196)
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The discussion about vector fields is completed by showing the explicit expression for

the multi pole expansion in spherical coordinates. The components of the even vector

spherical harmonics are Y
(`,m)
θ = ∂θY

(`,m) and Y
(`,m)
φ = ∂φY

(`,m). Accordingly for the odd

sector one gets S
(`,m)
θ = − sin−1 θ∂θY

(`,m) and S
(`,m)
φ = sin θ∂φY

(`,m). Expanding in these

components yields

α(`,m) =
1

`(` + 1)

∫
VθȲ

(`,m)
θ +

1

sin2 θ
VφȲ

(`,m)
φ dΩ (197)

β(`,m) =
1

`(` + 1)

∫
1

sin θ

(
VφȲ

(`,m)
θ − VθȲ

(`,m)
φ

)
dΩ. (198)

One can now generalize the previous definitions to tensor fields. For simplicity of

notation and because it is sufficient for the problems that are studied in this thesis, the

discussion is restricted to tensors with two components. Let VAB be a tensor on S2.

The multipole decomposition into the tensor spherical harmonics Y
(`,m)
AB , S

(`,m)
AB and the

standard spherical harmonics Y (`,m) is written as

VAB =
∞∑

`=2

+∑̀
m=−`

κ(`,m)ĝABY (`,m) + γ(`,m)Y
(`,m)
AB + η(`,m)S

(`,m)
AB . (199)

The first two terms in the sum of the previous expression is the even part of the expansion,

the third term corresponds to the odd part. The tensor spherical harmonics are defined

as

Y
(`,m)
AB = ∇̂A∇̂BY (`,m) +

1

2
`(` + 1)ĝABY (`,m) (200)

S
(`,m)
AB =

1

2

(
∇̂AS

(`,m)
B + ∇̂BS

(`,m)
A

)
. (201)

The orthogonality relations for these objects are

∫
ĝAC ĝBDȲ

(`,m)
CD Ȳ

(`′m′)
AB dΩ =

1

2
`(`− 1)(` + 1)(` + 2)δ``′δmm′ (202)
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∫
ĝAC ĝBDS̄

(`,m)
CD S̄

(`′m′)
AB dΩ =

1

2
`(`− 1)(` + 1)(` + 2)δ``′δmm′ . (203)

As in the case of vector fields, one computes the multipole modes using the expansion in

spherical harmonics together with the orthogonality relations and get

κ(`m) =
1

2

∫
VABgABȲ (`m)dΩ (204)

γ(`m) =
2

`(`− 1)(` + 1)(` + 2)

∫
ĝAC ĝBDVABȲ

(`,m)
CD dΩ (205)

η(`m) =
2

`(`− 1)(` + 1)(` + 2)

∫
ĝAC ĝBDVABS̄

(`,m)
CD dΩ. (206)

Finally again the expansion is given explicitly for the case of standard spherical coor-

dinates. The components of the basis are

Y
(`,m)
θθ =

1

2
W (`,m) (207)

Y
(`,m)
θφ =

1

2
X(`,m) (208)

Y
(`,m)
φφ = −1

2
sin2 θW (`,m) (209)

S
(`,m)
θθ = − 1

2 sin θ
X(`,m) (210)

S
(`,m)
θφ =

1

2
sin θW (`,m) (211)

S
(`,m)
φφ =

1

2
sin θX(`,m). (212)

Here the definitions

W (`,m) = 2

[
∂2

θ +
1

2
`(` + 1)

]
Y (`,m) (213)

X(`,m) = 2∂φ (∂θ − cot θ) T (`,m) (214)

were used.
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For the physical situations that are of interest in this thesis, it is safe to assume VAB

to be a symmetric tensor, namely the three metric or the extrinsic curvature. Introducing

L = `(`− 1)(` + 1)(` + 2) one gets the multi pole components in the fairly simple form

κ(`,m) =
1

2

∫ (
Vθθ +

Vφφ

sin2 θ

)
Ȳ (`,m)dΩ (215)

γ(`,m) =
1

L

∫
VθθW̄

(`,m) +
1

sin2 θ

(
2VθφX̄

(`,m) − VφφW̄
(`,m)

)
dΩ (216)

η(`,m) =
1

L

∫
Vφφ

sin3 θ
X̄(`,m) + 2

Vθφ

sin θ
W̄ (`,m) − Vθθ

sin θ
X̄(`,m)dΩ. (217)

On the S2 manifold the Y (`,m) are normalized with respect to the two metric ĝAB for all

` ≥ 2. For ` = 1 ∫
Y (1,m)Ȳ (1,m)dΩ =

4π

3
(218)

and for ` = 0 ∫
Y (0,0)Ȳ (0,0)dΩ = 1 (219)

is chosen.
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