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Abstract

The measurement of redshifts for gamma-ray bursts (GRBs) is an important issue for

the study of the high redshift universe and cosmology. We developed a program to estimate

the redshifts for GRBs from the original light curves and spectra, aiming to get redshifts

for bursts without spectroscopic or photometric redshifts. We derive the luminosity indi-

cators from the light curves and spectra of each burst, including the lag time between low

and high photon energy light curves, the variability of the light curve, the peak energy of

the spectrum, the number of peaks in the light curve, and the minimum rise time of the

peaks. These luminosity indicators can each be related directly to the luminosity, and we

combine their independent luminosities into one weighted average. Then with our combined

luminosity value, the observed burst peak brightness, and the concordance redshift-distance

relation, we can derive the redshift for each burst. We test the accuracy of our method on

107 bursts with known spectroscopic redshift, which shows that our error bars are good and

our estimates are not biased. This method was then applied to all Swift long GRBs, and a

complete Swift long GRB redshift catalog was constructed. Our redshift catalog and catalog

of luminosity indicators has many applications in the demographic studies. An investigation

of long lag GRBs was made to test the hypothesis that most long lag GRBs are from our

local supercluster. An unbiased GRB luminosity function evolution was estimated, and the

constraint on the massive star formation rate was made. We also imported the calculation

code of luminosity indicators and redshift into the Fermi GBM data analysis software RM-

FIT, with which the all the luminosity indicators and the redshift can be calculated within

half an hour after the raw data are generated from the pipeline.

viii



1. Introduction

1.1 GRB History and Current Status

Gamma-Ray Bursts (GRBs) are brief flashes of gamma-radiation coming from random points

on the sky. When a GRB flashes, it is the brightest source in the Gamma Ray sky. As

the Gamma Ray radiation can be easily absorbed by the earth atmosphere, GRBs cannot

be detected by the instruments on the ground. Until now, thousands of GRBs have been

detected by Gamma Ray detectors in space. The current detection rate of GRBs are roughly

two to three per week, with their times and directions being completely random and isotropic

with no repetition. GRBs are not produced in any repeatable mechanism, and for each of the

GRBs they happen only once, hence the explosion of GRBs are completely unpredictable.

Their durations range from fractions of a second up to minutes, followed by a long-lived

afterglow in longer wavelengths. The photon energy of their spectral peak (Epeak) ranges

from tens of keV to well over a MeV, so they are truly bursts of gamma-rays. With the

redshift of 0.008 to 8.2, we know that they are from billions of light years away from earth,

and their are huge amount of energy involved in the forming of GRBs.

GRBs were originally discovered in the late 1960s with the Vela satellites. Vela satellites

were a group of satellites developed by the United States to monitor compliance with the

1963 Partial Test Ban Treaty by the Soviet Union. The satellites were launched and operated

in pairs with two identical satellites on opposite sides of a circular orbit so that it would be

able to cover the whole sky. On board of the Vela satellites, there are X-ray, Gamma ray and

neutron detectors as well as a variety of optical and EMP detectors. During the operation of

Vela Satellites, events that triggered the detectors but were clearly not signatures of nuclear

detonations were carefully filed away for the future studies. In 1969, an event recorded by

1
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Vela 4a, b was discovered while looking over the Vela 4 data prior to the launch of Vela 5.

This event was recorded on July 2, 1967, and it also triggered the Vela 3 satellites which were

still operating. This event appeared to be a cosmic gamma ray burst, but the direction of

the source was not able to be determined accurately due to the fair timing resolution at the

trigger. It was believed as the first “Gamma-Ray Burst”. With the later Vela satellites which

have better timing resolution, the deduced direction of these gamma ray events rule out the

sun and the earth as orbits. These gamma ray events were then published in (Klebesadel et

al., 1973).

To explain the existing of these GRBs, many progenitor models were proposed, most of

which were pointed to the sources within our Milky Way Galaxy. These models were not able

to be tested without much observational features obtained from the GRBs. In 1991, with

the launch of the Compton Gamma Ray Observatory and its on board instrument Burst and

Transient Source Experiment (BATSE), thousands of GRBs were detected, with their posi-

tion resolution to a few degree level. The distribution of these GRB positions on the sky, as

shown in Figure 1.1, shows no tendency towards either the plane or the center of the Galaxy.

It is completely isotropic, without any bias towards any particular direction in the space.

This discovery was a strong evidence towards GRBs being cosmological distance sources,

and excludes most Milky Way models, however, some of the Milky Way models, which are

constrained to an extremely close distance, were still consistent with this distribution.

On April 22, 1995, a “Great Debate” was held by Robert Nemiroff at the Smithsonians

Natural History Museum, with the topic on the distance scale to Gamma-Ray Bursts. The

debate was between Bohdan Paczynski and Donald Q. Lamb. Paczynski started from the

distribution of BATSE, and listed the sky distribution of possible progenitor mechanisms

at different distances, e.g. inner solar system, planetary and galactic halo objects, sources

from nearby galaxies, and extragalactic radio sources. With none of these distributions

accounts for the BATSE result, he concluded that the only two possible distance left are
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Figure 1.1 Sky distribution of 2704 BATSE GRBs. The distribution is isotropic, without
bias towards any particular region of the sky.

within 100 parsec or above 1 Gigaparsec. In this case the cosmological distance was strongly

favored, but was not proven. In Lamb’s opinion, GRBs are originate from the high velocity

neutron stars in the galactic corona. Actually, the magnetic neutron stars model was the

most preferred one before BATSE era, with a strong evidence of Cyclotron lines detected in

the GRB spectrum. Similar line has been seen in the spectra of accretion-powered pulsars,

which are known to be magnetic neutron stars. Magnetic neutron stars in the Galactic

corona appear able to produce cyclotron lines, , while these lines is a difficult problem for

cosmological models. Besides the Cyclotron lines, Lamb pointed out several other arguments

supporting the high-velocity neutron star model, e.g. a distribution plot from 1005 bursts

from a Galactic corona of high velocity neutron stars in comparison of BATSE GRB sky

distribution, evidence that high velocity neutron stars can produce burst-like behavior: soft

gamma-ray repeaters, evidence that high-velocity neutron stars produce an event like GRBs:

1979 March 5 gamma-ray transient, the lack of bright optical counterparts, etc. One weak

point for the high-velocity neutron star model is that repeating is naturally expected to
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account for the number of GRBs detected every year, which is not seen in the BATSE

result. And a disadvantage on cosmological distance models is the huge amount of energy

ejected during the burst.

With both the high-velocity neutron star model and the cosmological distance star idea

have strong evidence as well as inevitable troubles, the progenitor model problem has not

been solved after the debate. This situation continues until 1997, when the first X-ray and

optical afterglow detected for a Gamma-Ray Burst (GRB970228, detected by BeppoSAX,

an ItalianDutch satellite for X-ray astronomy). After the GRB optical afterglow faded, a

distant host galaxy was revealed from the deep imaging of the William Herschel Telescope. A

few months later, another GRB detected by BeppoSAX, GRB970508, was localized within

hours of the triggered and observed in X-ray, optical and radio wavelength (Costa et al.,

1997; van Paradijs et al., 1997; Frail et al., 1997). The spectrum of the afterglow revealed

a redshift of z = 0.835, which means the GRB is at a distance of about 6 billion light years

from the Earth. Both of these evidences proved that GRBs are from a cosmological distance,

and the controversy about the GRB distance ended.

Although GRBs were successfully placed at the cosmological distance, the huge amount

of energy released from a GRB within seconds to minutes is still a mystery to us. Combining

the brightness and the distance of a GRB, an extremely energetic source is needed. Assuming

the gamma-ray explosion is spherical, the total energy ejected from a GRB would be on the

order of the total rest mass energy of the Sun, which is the energy released if we convert

the Sun entirely into radiation. No known process is able to produce this amount of energy

during such a short time scale. One alternative model was proposed, suggesting that GRBs

are highly focused explosions which are produced in an extra high relativistic jet which travels

near the speed of light. With this model, the total energy required in a GRB explosion is

released by a factor of a few hundred. With a jet break time detected in the optical afterglow
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of several GRBs hours to days after the trigger, this relativistic jet model was confirmed (Sari

et al., 1999).

Various dedicated instruments and spacecraft have been flown by NASA. In November

2004, NASA launched a dedicated GRB satellite named Swift. It has three instruments

onboard: Burst Alert Telescope (BAT), X-ray Telescope (XRT) and UV/Optical Telescope

(UVOT), which allows Swift to observe a GRB and its afterglows in gamma-ray, X-ray,

ultraviolet, and optical wavebands together. BAT is a wide-field gamma-ray detector that

detects and positions the burst within seconds, and then slew the entire spacecraft so that

the narrow-field X-ray and UV/optical telescopes are imaging the burst within about one

minute. Ground-based telescopes are also notified within seconds of the beginning of the

burst and slew to start their own detailed observations. As such, Swift has allowed the burst

community to get impressively complete ‘panchromatic’ light curves and spectra from the

start of the burst until the end of the afterglow. During its first five years of operation,

Swift has triggered more than 500 GRBs. The distribution of the 500 GRBs also shows an

isotropic feature, which is not surprising. It will keep working for the foreseeable future.

Fermi, formerly known as GLAST (Gamma-Ray Large Area Space Telescope), was

launched June 11th, 2008. It is another NASA major mission for observations of high

energy gamma rays. Its main instrument, the Large Area Telescope (LAT), will provide

unprecedented sensitivity to gamma rays in the energy range of ∼ 20 MeV to ∼ 300 GeV.

The GLAST Burst Monitor (GBM) complements the LAT in its observations of transient

sources and is sensitive to X-rays and gamma rays with energies between 8 keV and 25 MeV.

The combination of the GBM and the LAT provides a powerful tool for studying gamma-ray

bursts, particularly for time-resolved spectral studies over a very large energy band. The

detection rate of Fermi GBM is around 2 − 3 per week, and during the first two years of

operation, about 200 GRBs have been triggered by GBM. The detection rate of LAT is
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relatively fewer. All Swift and Fermi data are open to public, and can be downloaded from

the legacy ftp site 1.

For a long time in the past, there was a huge debate about whether these GRBs are

located in our galaxy or at cosmological distance. In 1997, the first X-ray, optical, and radio

counterparts of bursts was detected , and the redshifts of these bursts were measured. With

the launch of Swift in late 2004, the accurate positions of GRBs can be measured and then

distributed to the community quickly through the Gamma-ray bursts Coordinates Network

(GCN) Circulars, and more optical and infrared follow-ups can be performed. Currently,

more than 100 GRBs have been reported with spectroscopic redshifts ranging from 0.008

(GRB980425) to 8.2 (GRB090423). With the spectroscopic/photometric redshift measured,

the energy from the GRBs is then calculated to be typically within the range 1049−1053ergs.

The redshift distribution of long GRBs with redshifts from optical spectroscopy (zspec)

has a 90% range of 0.5 < z < 5. Before Swift the typical redshift was z ∼ 1, while Swift is

more sensitive and ‘sees’ further with an average of z ∼ 2.3. These averages are based on only

the minority of bursts with spectroscopic redshfits. For Swift, only ∼ 30% of its GRBs have

been reported with spectroscopic or photometric redshifts. Various strong selection effects

work to distort the observed distribution from the real underlying distribution. For example,

redshifts from host galaxies are only likely for z ∼< 2 as more distant galaxies are too faint for

discovery or spectroscopic measures. Also, GRBs with z > 7 are strongly selected against

as they will be invisible in the optical band due to the Lyman break being redshifted to the

far red. In principle, Swift can detect GRBs out to z ∼ 20 should there be any bursts out

there. The real upper limit on z is the epoch of the first star formation, as bursts come from

massive stars within a few million years after their birth, and this is apparently somewhere

around z ∼ 10. Detailed calculations of star formation models says that ∼ 10% of Swift

bursts should have z > 5, and 5%− 10% have z > 7 (Bromm & Loeb , 2006).

1ftp://legacy.gsfc.nasa.gov
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So we expect > 5% of Swift bursts to be at z > 7, which is a very exciting prospect.

These GRBs will then become the farthest objects ever seen. As such, their light carries

great amounts of information about the earliest Universe. The information comes from the

bursts themselves, such as their numbers (giving the star formation rate) and their maximum

redshift (giving the epoch of the first star formation), from absorptions in the optical light

from the afterglows as they are absorbed by intervening gas clouds (giving the ionization

state of the Universe from the Gunn-Peterson troughs) as well as the metallicity from the

absorption lines, from sub-arc-second positions of the afterglows (giving a confident place

to discover z > 7 galaxies), and also from the brightness of the bursts (giving the Hubble

diagram as dependent on the nature of the Dark Energy). Modern cosmology has flourished

in the past decade, but, as always, deep and important questions remain. Here are the

highlights of many of the primary questions now confronting cosmologists: What is the

nature of the Dark Energy? When did the first stars form? When was the Universe re-

ionized? What are the first galaxies like? How does the star formation history of our

Universe change with redshift? When were the heavy elements sprayed back into the gases

of the Universe? GRBs can provide a tool to answer all of these fundamental and front-line

questions. But for this strong promise to be realized, we need to know the redshifts of these

GRBs.

1.2 GRB Observation

1.2.1 GRB Prompt Emission

By plotting the fluence as a function of energy, we will be able to obtain the fluence of a GRB.

The peak of the spectrum shows us a typical photon energy value in the GRB explosion.

Most of the photons from the prompt emission of GRBs fall in the energy range of a few

keV to MeV, and most of the spectrum of the prompt emission is a broken power law, which

consists of a shallow power law (with an index of ∼ 1) at low energies and a sharp power



8

Epeak 

Figure 1.2 GRB spectrum and Epeak

law (with an index of ∼ 2) at high energies. Various models have been proposed to fit GRB

spectra, including a simple power law model, broken power law, broken power law with two

breaks, smoothly broken power law, comptonized power law model, etc. The most commonly

used spectral model is the one proposed by Band et al. (1993), with which a peak photon

energy Epeak, a low energy power law index α and a high energy power law index β are used

as the parameters. The spectrum and Epeak is shown in Figure 1.2.

If we plot out the photon flux as a function of time during the burst, we will be able to

obtain the light curve of the GRB. Figure 1.3 shows a few examples of GRB light curves. A

few parameters are used to characterize the light curve of a GRB, e.g. rise time of a pulse,

decay time of a pulse, pulse width, time duration of the whole light curve, etc. The light

curves of the detected GRBs are very chaotic, with a duration ranging from milliseconds up

to tens of minutes. A lot of work has been done in the past to study the shape of GRB light

curves and to classify GRBs with their shapes, but all failed. Conventionally, the duration of

a GRB is measured by T90, which is defined as the time interval over which the middle 90%
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of the total background-subtracted counts are observed. The T90 distribution of GRBs in log

space shows a bimodel distribution feature, with a minimum at around 2 s, and two peaks at

around 0.3 s and 30 s. As a result, our detected GRBs are divided into two distinct goups:

bursts with T90 > 2s are classified as long GRBs and those with T90 < 2s as short GRBs.

Normally, short GRBs have a larger hardness ratio (measured by the hard (50-100 keV) to

soft (25-50 keV) fluence ratio) than long GRBs, so the two types are also called “long soft

bursts” and “short hard bursts”. Another parameter which is always used to distinguish

different type of GRBs are called ‘hardness ratio’, which is calculated as the fluence ratio

between the hard and soft light curves. The hardness ratio of short GRBs are generally

larger than those of long GRBs, which means that short GRBs are generally ‘harder’ than

the long GRBs. As a result, these two classes are also notified as short hard GRBs and long

soft GRBs.

Both the T90 and hardness ratio were measured in the observer rest frame. Due to the

redshifts of GRBs, their time duration have been dilated, with different GRBs at different

redshifts having different time dilation effect. In the BATSE era, only a few GRBs have their

redshifts measured, so the time dilation effect cannot be excluded. With the launch of Swift,

a large fraction of GRB redshift was measured from the spectral analysis of the afterglow,

and we will be able to make the correction on the T90, and obtain a GRB rest frame time

duration histogram. The histogram is shown in Figure 1.4. The distribution also shows a

bimodal function of T90, with a minimum at 0.56 second and two peaks at ∼ 0.2 second

and 30 − 40 second. The bimodal function is not as significant as that in the BATSE T90

distribution plot, because Swift has a lower short GRB detection rate, and the short GRBs

has a lower rate of spectroscopic redshift measured, as compared with the long GRBs.

Recently, a third group has been observed (Norris & Bonnell, 2006), which has a short

hard spike followed by long soft extended emissions. If the short spike and the long extended

emission are plotted separately on the hardness ratio versus T90 plot, it will obviously showing
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Figure 1.3 A few examples of GRB light curves. Credit: J.P. Norris (NASA/GSFC)
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N
 

Figure 1.4 Distribution of T90 in GRB rest frame for Swift GRBs with spectroscopic redshift
measured. A bimodal feature is shown in this plot, with a minimum at 0.56 second, and two
peaks at ∼ 0.2 second and 30− 40 second.
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that the short spike falls into the short hard region, while the extended tail falls into the

long soft region.

In the BATSE sample, short hard bursts constitute ∼ 30% of the total, and this number

have been decreased to ∼ 10% in the Swift sample. Short bursts tend to have prompt burst

energy much smaller than that of long bursts, which restricts us from detecting short hard

bursts at high redshift, and it might be the most important reason why they have been found

at lower redshift than typical long bursts. With the discovery of counterparts of the bursts

recently, there is no evidence showing short hard bursts in active star formation regions.

1.2.2 GRB Follow-up Observations

The first X-ray, optical and radio band afterglow of GRBs were made in 1997 (Costa et al.,

1997; van Paradijs et al., 1997; Frail et al., 1997). After the launch of Swift, the on-board

XRT is able to make the X-ray afterglow detection just a few seconds after the trigger. A

large sample of GRB X-ray afterglow has been made. A typical X-ray afterglow assumes the

form of a power-law with three break points. The power law decay would then be separated

to four different power-law segments. These three break points appear between 102 − 104

seconds. Various flares are superposed on these power-law decays, which makes different

segments difficult to be distinguished. A typical GRB X-ray afterglow is shown in Figure

1.5.

Another on-board instrument of the Swift satellite is UVOT, which is used to make

follow-up observations in UV and optical band. The response time for UVOT is also less

than 100 seconds, which allows it to detect the optical afterglow before it faded too faint.

Besides UVOT, a lot of groups around the world are using their ground telescopes to make the

follow-up observations. A large sample of optical afterglow light curve has been made from

the observations of different groups, and a large fraction of the GRBs have their redshifts

measured from the spectral analysis of the afterglow or the GRB host galaxies (Xiao &
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Figure 1.5 X ray afterglow of GRB, from which we can specify different power law segments,
break points between these segments and flares superposed on them. Credit: O’Brien et al.
(2006)
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Figure 1.6 Optical afterglow spectrum of a GRB.

Schaefer, 2010). The spectrum of optical afterglow of a GRB is also a power-law as it is

produced. However, after traveling through layers of gas and dusts, the fluence of the power

law spectrum is mostly absorbed by the nearby star-forming region, and interstellar medium

filled with gas and metals will imprint their spectral features on the spectrum, which is used

for the redshift measurements. A typical spectrum of GRB optical afterglow in shown in

Figure 1.6. Another feature in the optical afterglow is the jet break shown in the light curve.

By having a significant break in the afterglow light curve hours to days after the trigger time,

it is confirmed that GRBs are not formed from a isotropic explosion, but from a relativistic

jet with a Lorentz factor of ∼ 100− 1000. It also helped constrain the total energy emitted

from the GRB explosion to be within ∼ 1053 ergs. Figure 1.7 shows an example of a GRB

optical afterglow light curve, from which we can clearly specify two segment of power law

decay and a significant jet break. The detection of jet break time is not only a strong

evidence to confirm the relativistic jet model of a GRB as we stated, and the jet break time

is also of important use in the GRB luminosity relations, which we will talk in details in the

next section.
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Figure 1.7 Optical afterglow light curve of a GRB, from which we can specify two segment
of power law decay, and a significant jet break.
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1.3 GRB Theory

Long GRBs are found in star-forming regions, suggesting that they might be related to the

death of massive stars, and to the explosion of supernovae (SNe). There is some direct evi-

dence connecting long GRBs and SNe (Type Ic), including the observed pairs of GRB980425

and SN98bw, GRB030329 and SN2003dh, and late red bumps in the light curves of several

GRBs (Galama et al., 1998; Stanek et al., 2003; Price et al., 2003). It is believed that GRBs

are generated from core collapse Supernovae. However, the rate of GRBs is one per 3× 105

yr per galaxy (Podsiadlowski et al., 2004), which is ∼ 1/3000 the rate of SNe, so only a small

fraction of supernovae have the conditions required to produce a burst of gamma rays. The

reason for this is that to produce a GRB, one do not only need a core collapse supernovae,

it is also required to deliver a focused jet with large amount of energy far away from the

progenitor star. The jet must escape the host star without losing much of its energy. The

time period for the escape is a few to tens of seconds for the jet, and if the jet is interrupted

or change its orientation significantly during this time, it will degrades to subrelativistic

energies and the producing of GRBs will fail.

The association of long GRBs and supernovae as well as the fact that their host galaxies

are rapidly star-forming offer very strong evidence that long gamma-ray bursts are associated

with massive stars. The generally accepted progenitor model for long GRBs is the collapsar

model. This model starts with a very massive, low metallicity, fast rotating star. The

massive star is able to fuse material in the center all the way to iron, and at the point

when it is not able to generate energy by fusion, it start collapse, and immediately forms

a black hole. Materials around the core then rains down towards the center, and the high

angular momentum then drives them into a high density accretion disk. While for the short

GRBs, they are shown to be in the less star forming regions, the progenitor star of the

relativistic jet might be different. A popular progenitor model for short GRBs involves the
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collision of two neutron stars in a tight binary system (with inspiral caused by the emission

of gravitational waves), with a resulting ultra-relativistic jet creating the observed burst of

gamma radiation. A system of two compact object will slowly lose their energy due to the

gravitational radiation and the two neutron stars will spiral closer and closer to each other.

To some point that they are close enough, tidal forces will rip the neutron stars apart, and

a large amount of energy will be released before the matter plunge into a single black hole.

This whole process is extremely fast and can be complete within seconds. Due to the small

samples of short hard GRBs, especially those with measured spectroscopic redshift, it has

been difficult to confirm this model. It is believed that the twisting of magnetic fields in

the accretion disk collimates the outflow along the rotation axis of the central object, so

that when conditions are suitable, a jet will emerge from each face of the accretion disk.

Materials in the accretion disk falls into the black hole continuously, which drives a pair of

relativistic jet out along the rotation axis towards the pole of the star, and pummel all the

way to the stellar surface. As the density of the stellar materials decreases, the leading shock

accelerates all the way to the surface, and by the time it reaches the surface of the star, it

will be traveling with a Lorentz factor of 100− 1000. It breaks out into the space, and much

of its energy will be released into the form of Gamma-Ray Bursts. Figure 1.8 shows the

collapse of the core of a rapidly rotating high mass Wolf-Rayet star and the break out of the

relativistic Gamma ray burst jet after it is launched from the center of the Wolf-Rayet star.

It is believed that the Gamma ray prompt emission and longer wavelength afterglows of

GRBs are produced from the material collisions in the relativistic jet. Different packages

of materials with slightly different travel velocity in the relativistic jet will interact as inner

collisions. The collision of the two shells immediately heat the matter, which convert the

huge amount of kinetic energy into the random motion of particles. The physical mechanism

that produced the observed Gamma ray photons is still under debate, but the most accepted

ones are the synchrotron radiation, which produce high energy photons as a particle traveling
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Figure 1.8 Collapse of the core of a rapidly rotating 14 Solar Mass Wolf-Rayet star and the
break out of the relativistic Gamma ray burst jet.

in a high magnetic field, or inverse Compton scattering, where low energy photons produced

in the thermal spectrum are scattered to higher energies by relativistic electrons (Rees &

Mészáros , 1992, 1994). The internal collision to produce the GRB and the external collision

to produce the afterglow in longer wavelengths is shown in Figure 1.9 Models for long GRBs

must generate energies as high as 1051ergs, and a relativistic flow with jet opening angles

1◦ < θ < 20◦ and Lorentz factors of 100 − 1000. The model described above is the most

popular one, but it is not able to be confirmed by the observational features yet. Various

alternative models exist, which are also able to produce a GRB from a relativistic jet. The

energy in the jet can either be carried by kinetic energy of baryons expanding at relativistic

velocities or by Poynting flux driven by the magnetic and rotational energies of collapsing

stellar core (Usov, 1992, 1994).

After the prompt emission, all the materials ejected will coalesce into a single shell trav-

eling outwards, and when the shell of materials hit the surrounding interstellar gas, then
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Figure 1.9 Blast wave model of GRB. From this model, GRBs are generated by the internal
collisions between different packages of materials in the relativistic jet, and the afterglow of
GRBs are generated by the external collisions between the coalesced package of material in
the relativistic jet and the surrounding interstellar gas. Credit: unknown.

interstellar gas will be heated to very high temperature, although how it happens is still

poorly understood. Materials in the shell would be relativistally moving outwards in a

strong local magnetic field. The particles will be accelerated in the magnetic field, which

cause them to radiate through synchrotron radiation.

1.4 GRB as Cosmology Tool

At the 5th Huntsville GRB Symposium, two groups put forward relations whereby the

luminosity of a burst can be determined from properties of the burst’s light curve. The

first relation gives the time lag between hard and soft photons (τlag) as being inversely

proportional with the burst isotropic peak luminosity (L), as calibrated with eight GRBs

with spectroscopic redshifts (Norris et al., 2000). In the second relation, the variability of

the burst light curve (V, taken as the normalized RMS scatter of the light curve about a

smoothed light curve) was found to be correlated with the burst L for the same sample of

GRBs with known redshifts (Fenimore & Ramirez-Ruiz, 2000). With this, high luminosity
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bursts appear spiky with near-zero lags, while low luminosity bursts appear smooth with

long lags. The reality of both relations was proven when a large sample of BATSE bursts

was shown to have the predicted lag-variability relation. Since then, five other luminosity

relations have been discovered, four of which had been predicted on the basis of theoretical

arguments before they were empirically confirmed (Lloyd-Ronning et al., 2002; Schaefer,

2002; Schaefer et al., 2003b). These relations involve the photon energy of the spectral

peak (Epeak), the minimum rise time in the light curve (τRT ), and the number of peaks

in the light curve (Npeak). These relations yield either the isotropic peak luminosity (L),

the isotropic energy emitted in gamma rays (Eγ,iso), or the energy emitted in gamma rays

after correction for the beaming of the jet (Eγ). Thus, with the luminosity of GRBs simply

calculated from the observed parameters of the light curve, GRBs became standard candles

(or standardizable candles) and could, in principle, be used for many purposes in cosmology.

The Hubble diagram is a plot of luminosity distance versus redshift, with the slope giving

the expansion history of the universe. As the expansion history depends on the amount

of mass in our universe (both normal and dark matter) as well as the Dark Energy, the

measurement of the universe’s expansion history is a good way to understand the properties

of the Dark Energy. Type Ia supernovae are now playing an important role in the Hubble

diagram work, which gives accurate distance and redshift measurements up to redshift of

∼ 1.7 (Riess et al., 2004). However, different cosmological models (concordance cosmology,

the best-fit cosmology from the supernovae “golden sample” with w(z) = -1.31+1.48z, and

alternatives like Weyl gravity, Chaplygin gas, etc.) show small differences at low redshift

region (z < 1.5), which could easily get hidden by systematic errors and makes it hard

to distinguish them. In contrast, in the high redshift (z > 3), these cosmological models

differ a lot, as shown in Figure 1.10. GRBs are a standard candles which can extend the

Hubble diagram work to redshifts of 8.2. Given the luminosity relations mentioned above, the

luminosity of a GRB can be calculated from its light curve and spectrum features, and with
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the measured brightness of the GRB, the distance can be calculated. For those bursts with

an independent redshift calculated from spectroscopic studies of the afterglow or the host

galaxy, a Hubble diagram can be constructed. This expanded GRB Hubble diagram goes

up to redshift of 8.2. The 1σ scatter σµ of the GRBs about the concordance cosmological

model is 0.65 mag in the distance moduli. Comparing with the 0.36 mag for supernovae

(Perlmutter et al. 1999) or 0.29 mag for supernovae “gold sample” (Riess et al., 2004),

we see that a single GRB has an accuracy that is ∼ 2.1 times worse than that of a single

supernova. However, as stated above, the models with small differences at z = 1 will have

large difference at z = 6. For example, the difference between the concordance cosmology

and the best-fit cosmology from “gold sample” differs by -0.03 mag at z = 0.5, 0.04 mag at z

= 1, 0.15 mag at z = 1.7, 0.44 mag at z = 3, and 1.00 mag at z = 6, as a result, a single z =

1.7 SN with σµ = 0.30 mag can distinguish between the two models at a 0.5σ level, whereas

a z = 6.6 GRB with σµ = 0.65 mag can distinguish the two models at a 1.5σ level. Due to

the long lever arm in the HD, a single high redshift GRB is three times better than a single

maximal-redshift SN.

A 69 GRB Hubble diagram has been made by (Schaefer, 2007), with bursts prior to

July, 2006. There have been ∼ 70 more GRBs with measured spectroscopic redshifts since

then, and I have a full catalog of all parameters needed (all luminosity indicators calculated,

peak flux and fluence values, and spectroscopic redshifts). This increase in number of GRBs

is critical for three reasons. The first reason is simply that a doubling of the number of

GRBs will substantially improve the accuracy on the constraints for the fitted cosmological

parameters. The second reason is that the new sample bursts will provide an independent

sample against which the results from the first sample can be compared. The third reason is

that the many new Swift bursts can be combined with the 31 Swift bursts (from the 69-GRB

Hubble diagram) to make a large homogenous sample. This is in contrast to the current case

where GRBs in the Hubble diagram come from six satellites and the largest contributor only
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gives 45% of the sample. In such a case, there is always a worry that the differing energy

bands, the various procedures for deriving Epeak (peak energy in the spectrum) and other

luminosity indicators might cause systematic offsets in the calibrations of the luminosity

relations.

As long GRBs are thought to be formed by the collapsing of fast-rotating massive stars

with a very short main sequence lifetime, their occurrance must happen in close time and

position association with star formation. As such, the rate of GRBs should be proportional

to the star formation rate, or more certainly, the massive star formation rate. The various

other methods for measuring the star formation rates (and its variation with redshift) all

are measuring the massive star formation rate, plus they have severe problems with the

extinction of optical and ultraviolet (in the galaxy rest frame) light. With GRBs out to

redshift larger than 7, we will be able to measure the massive star formation rate as a

function of redshift out to z > 7 with no extinction problems.

1.5 This Work

In my thesis, I will present my measurement on all the luminosity indicator values, and

my derived luminosity relations. The GRB redshift measurement based on these luminosity

relations will be introduced, and the calculated redshift values for all GRBs with spectro-

scopic redshift and all Swift long GRBs will be presented. I will also introduce the project

of importing my program into the Fermi GBM data analysis software RMFIT, and a trial

test on a few Fermi GRBs with spectroscopic redshift is then presented. A few applications

of my redshift catalog and my catalog of luminosity indicators will be presented in the last

section.
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Figure 1.10 Comparison of different cosmological models in the Hubble diagram. From
the plot we see that the best fitting model from the ‘gold’ sample of Supernovae shows a
significant offset from the concordance cosmological model, and Weyl Gravity shows also
shows a significant different from either of these two.



2. GRB Luminosity Indicators and Relations

2.1 GRB Luminosity Indicators

For long GRBs, it has been proved that some of the parameters from the light curve or the

spectrum are related to the luminosity of the burst. These parameters are called luminosity

indicators. So far, many single and multiple luminosity indicators have been proposed, and

in my work, I choose five well-understood ones. These indicators are the spectral lag (τlag),

variability (V), peak energy in the spectrum (Epeak), minimum rise time (τRT ), and number

of peaks (Npeak) of the light curve. Details of these indicators and corresponding relations

are described below.

(1) The spectral lag, τlag, is the delay time between the soft and hard light curves of

a burst. By shifting the hard and soft light curves of a GRB and calculating the cross

correlation between them, we are able to get a cross-correlation versus offset plot. The offset

corresponding with the peak value of the cross-correlation is the lag time we need. The

τlag − L relation was first proposed by (Norris et al., 2000), and is a simple consequence of

the conservation of energy in the shock material.

(2) The variability, V, a quantitative measure of ‘spikiness’ in the light curve, has a

fairly scattered correlation with the luminosity (Fenimore & Ramirez-Ruiz, 2000). It can

be obtained by calculating the normalized variance of the original light curve around the

smoothed light curve. The calculation of V is as shown in (Schaefer, 2007):

V =< [(C − Csmooth)2 − σ2
C ]/C2

smooth,max > (2.1)

where C is the count per time bin in the background subtracted light curve, with an uncer-

tainty of σC . Csmooth is the count in the smoothed light curve, with a box-smoothing width

24
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to be 30% of Tup, as the time duration of the burst Tup is calculated as the summation of the

time with the light curve brighter than 10% of its peak flux. Csmooth,max is the peak value of

Csmooth.

(3) Epeak is the photon energy at which the νFν spectrum is brightest. By fitting the

GRB spectrum with a smoothly broken power law (Band et al., 1993) as

Φ(E) =

{
A Eα e−(2+α)E/Epeak if E ≤ [(α− β)/(2 + α)]Epeak
B Eβ otherwise

(2.2)

the peak energy Epeak and corresponding parameters α (the asymptotic power law index for

photon energies below the break) and β (the power law index for photon energies above the

break) can be obtained. Here Φ is the differential photon spectrum (dN/dE) as a function of

the photon energy (E). A GRB spectrum can also be fit with a power-law with exponential

cutoff model:

dN/dE = A Eαe−(2+α)E/Epeak (2.3)

with Epeak and α values obtained from the fitting parameters. Here A and B are normalizing

constants to indicate the brightness and constructed to ensure the continuity of the model

spectrum.

(4) The minimum rise time in the light curve, τRT , was proposed for use in a luminosity

relation by (Schaefer, 2002). The minimum rise time of a burst is taken to be the shortest

time over which the light curve rises by half the peak flux of the pulse. Normally, the

minimum rise time of a pulse is measured by taking the shortest time for the light curve to

rise by 1/2 of the pulse, and the minimum of the whole light curve is taken as the smallest

minimum rise time of multiple pulses, if there is any.

(5) Npeak is defined as the number of peaks in the light curve. With Cmax as the overall

maximum of the background-subtracted light curve, we define a peak to be a local maximum

that rises higher than Cmax/4 and is also separated from all other peaks by a local minimum

that is at least Cmax/4 below the local lower peak.
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2.2 Improving GRB Luminosity Indicator Measurements

2.2.1 Spectral Lag

The spectral lag, τlag, is the delay time between the soft and hard light curves of a burst. By

convention, we use the soft and hard energy bands to be those of BATSE channels 1 and 3,

or Swift channels 2 and 4, covering roughly 25-50 keV and 100-350 keV. For τlag, by shifting

the hard and soft light curves of a GRB, and calculating the cross correlation between them,

we are able to get a cross-correlation versus offset plot. The offset corresponding with the

peak value of the cross-correlation is the lag time we need. The calculation is simple and easy

for bright bursts, while for those faint ones, since the plot has significant scatters, the offset

with the peak correlation (i.e. τlag) is hard to evaluate under these noisy conditions. To find

the offset when the cross-correlation achieves its peak value, we need to make a reasonable

fit to the peak region of the cross correlation. As the shape and scatter of the plot varies

from burst to burst, we cannot simply fit it with some specific function. If we fit it with

a parabola, then any asymmetry in the cross correlation (as is often seen) will incorrectly

shift the peak in the model by an amount depending on the range of offset included in the

fit. And if we fit it with a high-order polynomial function, then the high-order terms will

be unstable as they are trying to follow noise and regions far from the peak. What we did

was to fit the cross correlation by polynomials with different orders (normally from 3 to 9),

and choose the one which fits best in the very central region (around the peak) of the curve.

Two examples are shown in Figure 2.1.

A bootstrap procedure was previously used to calculate the uncertainties on the τlag

(Norris 2002). In our work, we are using a simple propagation method. The uncertainties on

the cross-correlation amplitude points are calculated by simply evaluating the RMS scatters

of these data points around the fitted curves. We are then able to generate the uncertainties

for each of the fitting parameters, and the coefficient errors. Then the uncertainty for our
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Figure 2.1 τlag calculation – Cross-Correlation versus Offset plots. The left panel is the plot
for GRB051111, which is a moderately bright burst without much noise in the light curve.
But we can see that although the curve is relatively smooth, the peak region is quite ‘broad’
so that we still need an accurate fitting of the curve, especially for the central region of the
curve. Had we simply taken the offset of the highest measured cross-correlation, we would
have the peak at -14 bins (with τlag equal to 0.90 seconds), with this value being determined
by noise in the cross correlation. Instead, we fitted a 7-order polynomial (smooth curve) and
found a peak at -23.1 bins (with τlag equal to 1.48 seconds), and this model fit is avoiding
most of the random noise in the cross correlation. Note, for our choice of bands, the lag will
be negative in bins but expressed as positive in time. The right panel is for GRB050820,
which is a noisy burst. There is much scatter in the cross-correlation versus offset plot,
from which we cannot determine the position of the peak without making a fit around the
peak region. In this case, the highest cross correlation is at +23 bins (corresponding to a
negative lag of -1.47 seconds), with the model fit (a 7-order polynomial also) providing a
more reasonable peak at -15.7 bins (τlag = 1.00 seconds).
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τlag value, στlag , is generated by propagation of the uncertainties on the fitting parameters

and the coefficients.

2.2.2 Minimum Rise Time

The minimum rise time in the light curve, τRT , was proposed for use in a luminosity relation

by (Schaefer, 2002). The minimum rise time of a burst is taken to be the shortest time over

which the light curve rises by half the peak flux of the pulse. In practice, especially for faint

bursts with large Poisson noise, the rate difference between two close bins might be larger

than half of the peak flux. As a result, we have to smooth the light curve before we calculate

the rise time. The problem is then that if we smooth it too little, the apparent fastest rise

time might be dominated by the Poisson noise, resulting in a too-small rise time, and if we

smooth it too much, the smoothing effect will dominate, resulting in a rise time near the

smoothing time bin.

As the light curves vary greatly among different bursts, there is no specific box smoothing

width that can satisfy a majority of bursts. Instead, we vary the box smoothing width from

0 bins (that is, no binning) up to a relatively large number, say 50 bins, and for each of

these smoothing widths, we generate a smoothed lightcurve from which a minimum rise

time can be calculated. Of course, some of these light curves are over-smoothed and some

are under-smoothed. In a minimum rise time versus smoothing width plot, we will have a

monotonically rising curve, as shown in Figure 2.2. Although the shape of the curve varies

amongst bursts, for most of the bursts there will be a region where the curve appears flat, or

with a slightly increasing slope, which we call a plateau. It is easy to explain the existence

of the plateau: in this region, the smoothing is enough that Poisson noise is negligible in

determining the minimum rise times, while the smoothing is not so much that it determines

the minimum rise time. On a plot of minimum rise time versus smoothing width, we can

identify three regions: a fast rising region where the Poisson noise dominates, a nearly flat
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plateau region where we are seeing the real minimum rise time, following by another rising

region for large box smoothing widths where the smoothing is dominating. We can make use

of this plateau region by extrapolating it back to the zero-smoothing case (where the box

smoothing width is zero), as shown in Figure 2.2. The intercept on the y-axis corresponds

with the minimum rise time where the smoothing is effectively zero. With the extrapolation,

we are sidestepping the regime where the Poisson noise dominates. As a result, the value of

the intercept is just the minimum rise time we need, not affected by either the Poisson noise

effect or the smoothing effect.

For some of the extremely faint bursts, the Poisson noise dominant region and the smooth-

ing effect dominant region will overlap with each other, and we are unable to find a plateau

in the minimum rise time versus smooth width plot, for which the extrapolation cannot be

made. Thus, our technique does not produce τRT values for the faintest bursts.

The uncertainty of the minimum rise time is calculated by simple propagation from

the fitting parameters and the uncertainties on each individual point on the minimum rise

time versus smoothing width plot. The uncertainties on each of the individual point are

dominated by the noise on each original data points in the light curve. The noise on the

peak flux will affect our criteria, by some factor of σC/max(C), where C is the rate, and σC is

the uncertainty of the rate. In addition to that, random noise will affect our determination,

i.e. the real rise time between two data points may be larger/smaller than half of the peak

flux. This effect is also reflected in our criteria, by a factor of ∼ 2 × σC/max(C). As a

result, for determine the uncertainties on each of the individual rise time on RT-smoothing

width plot, we can change our criteria from 0.5 by a factor of 2.25×σC/max(C), and record

how much the resulted minimum rise time values changes. The uncertainties on the fitting

parameters and the minimum rise time value can then be calculated from propagation.
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Figure 2.2 The calculation of τRT and Npeak. We can see an apparent ’plateau’ in the lower
plot, for box smoothing widths of more than 5. By simply extrapolating the plateau back to
the y-axis (see dashed line), we get a minimum rise time (see circle at intercept on y-axis)
which is appropriate for zero smoothing, and which is not affected by the Poisson noise.
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2.2.3 Number of Peaks

Npeak is defined as the number of peaks in the light curve. With Cmax as the overall maximum

of the background-subtracted light curve, we define a peak to be a local maximum that rises

higher than Cmax/4 and is also separated from all other peaks by a local minimum that is at

least Cmax/4 below the lower peak. In principle, Npeak is easy to count, either automatically

or manually. In practice, we have the same problem of the Poisson noise and the smoothing

factor effect, as we had in the calculation of τRT . Faint bursts will have their unsmoothed

light curves dominated by apparent peaks produced by Poisson noise, resulting in large

numbers of false peaks. A random noise spike can satisfy our definition for a peak if we

do not smooth the light curve, yet if we smooth it too much there will always be just one

peak. Here we adopted the same procedure of calculation as that in the calculation of τRT .

We vary the box smooth width from 0 bins to a relatively large number, and calculate the

number of peaks for each of the smoothed light curves. As in the case for τRT , we see a

fast falling curve (where Poisson noise is contributing spurious peaks), with a plateau, where

neither the Poisson noise effect nor the smoothing effect dominates. By extrapolating the

plateau back to the y-axis, we get an Npeak value for an unsmoothed case of the light curve,

with the effects of Poisson noise removed.

2.3 GRB Luminosity Relations

Each of the luminosity indicators discussed above has one or more corresponding luminosity

relations. In these luminosity relations, the indicators shows correlations either with the

luminosity L, the total emitted energy assuming an isotropic explosion Eγ,iso, or the total

energy with the jet beaming angle correction Eγ. These relations are τlag−L, V −L, Epeak−L,

Epeak−Eγ,iso (so called Amati relation) and Epeak−Eγ (so called Ghirlanda relation), τRT−L,

and Npeak−L relation, which are described and explained in detail in (Schaefer, 2007). There
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Table 2.1. Luminosity Relations

Indicator Relation σa
a σb

a σsys
a

τlag logL = 52.21− 0.98 log[τlag(1 + z)−1/0.1s] 0.04 0.03 0.48
V logL = 51.06 + 1.35 log[V (1 + z)/0.02] 0.09 0.09 0.87
Epeak logL = 52.10 + 1.88 log[Epeak(1 + z)/300keV ] 0.03 0.01 0.57
Epeak logEγ = 50.57 + 1.63 log[Epeak(1 + z)/300keV ] 0.09 0.03 0.16
τRT logL = 52.84− 1.70 log[τRT (1 + z)−1/0.1s] 0.04 0.05 0.53
Npeak logL ≥ 50.32 + 2 log[Npeak] for Npeak ≥ 2 . . . . . . . . .

aThe σa, σb are the 1 − σ uncertainties of the fitting parameters, while a is the
intercept on the y-axis, and b is the slope of the fitting line. σsys is the systematic
uncertainty added in quadrature to the measurement errors, with which the χ2

red

of the points about the best fit line is unity.

is another luminosity relation which relates Epeak, an effective duration (called T45), and the

luminosity by Firmani et al. (2006). However, with more GRBs and Epeak data added in,

it is realized that this luminosity relation is not making any improvement on the Epeak − L

relation (Collazzi & Schaefer , 2008). The equation of those luminosity relations are shown

in Table 2.1

(1) τlag−L relation. It is a simple consequence of the conservation of energy in the shock

material (Schaefer, 2004).The delay time between the soft and hard light curves indicates

the cooling off time of the material. For the shocked material being dominated by radiative

cooling, the cooling of the shocked material is what generates the luminosity of the burst.

That is, high-luminosity bursts will have fast radiative cooling and hence short lags, while

low-luminosity bursts will have slow radiative cooling and hence long lags (Schaefer, 2003a).

This general result predicts that the burst luminosity should be proportional to τ−1
lag and that

is exactly what is observed.

(2) V − L relation. According to the relativistic shocked jets model, luminosity is a

moderately-high power law function of the bulk Lorentz factor of the jet (Γjet). At the same
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time, the rise times and durations of the light curve pulses will be proportional to a power

of Γjet through the angular size of the visible region in the jet. The variability in the light

curve is primarily a function of the rise times and the pulse duration. Both L and V depend

on Γjet, so L and V should be correlated. Detailed predictions gave L ∝ V 2, and this is close

to the observed relation (Schaefer, 2007). As a result, the light curves of high luminosity

bursts will be spiky with a high V value and those of low luminosity bursts will be smooth

with a low V value.

(3) Epeak is correlated with the luminosity L, the total isotropic energy Eγ,iso, and the

total collimation-corrected energy Eγ. The Epeak −L relation was first predicted and shown

by (Schaefer, 2003a), and is related to the instantaneous physics at the time of the peak

luminosity. Since both the luminosity and Epeak vary as some power function of Γjet, with

detailed analysis, the relation between Epeak and luminosity can be written as L ∝ [Epeak(1+

z)]N/(M+1), with N/(M + 1) ∼ 2.5. The observed slope is somewhat more shallow than this

prediction, with an exponent more like 1.7 (Schaefer, 2007).

Amati et al. (2002) introduced the relationship between Epeak and Eγ,iso, while Ghirlanda

et al. (2004) found a much tighter relation between Epeak and Eγ, which corrects for the effect

of the jet opening angle. The physics of the Epeak −Eγ relation is completely different from

that of Epeak − L relation. It can be easily explained as the relativistic effects within a

standard model, the details of which is shown by Eichler & Levinson (2004); Yamazaki et

al. (2004); Rees & Mészáros (2005); Levinson & Eichler (2005).

Of the three relations for Epeak, we adopt the Epeak−L relation and Ghirlanda’s Epeak−Eγ

relation. We are not including Amati’s relation for the following two reasons: First, Amati’s

relations has been challenged as it returns ambiguous redshifts (Li , 2007), while the Epeak−L

relation (also the τlag − L, V − L, τRT − L, and Npeak − L relations) passed the same test

(Schaefer & Collazzi, 2007). Second, the physics of the Amati’s relation is nearly the same
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as that of Ghirlanda’s Epeak − Eγ relation, except that Ghirlanda’s Epeak − Eγ relation has

a correction for the jet opening angle, while the latter is much tighter.

(4) τRT −L relation. The rise time is taken to be more fundamental than the variability,

and its physics is much more apparent than that of variability. In the shocked jet model,

for a sudden collision of a material within a jet, the minimum rise time represents the time

delay between the arrival time of photons from the center and the edge of the visible region.

As the delay time depends on the angular size of the visible region, which depends on Γjet,

and through this is related to the luminosity. The relation between τRT and luminosity has

been predicted by Schaefer (2002) as L ∼ τ
−N/2
RT , with N ≈ 3. This is reasonably close to

the observed luminosity relation (Schaefer, 2007).

(5) Npeak − L relation provides us with a lower limit on the luminosity. The peaks of a

GRB are caused by the collisions of isolated clouds of materials in the relativistic jet, and it

depends on many different factors. However, a limit can be placed on the number of peaks

that are distinguishable. This limit arises because the individual peak rise times (and hence

durations) are determined by the size of the visible region (and hence an Γjet). For high-

luminosity bursts (with high Γjet and small visible regions), the pulse rise times and durations

will be short, so there will be no overlap between pulses. In this case, every internal collision

will result in a distinct peak in the light curve. Whereas, for low-luminosity bursts (with

low Γjet and a large visible region), the pulse rise times and durations will be long. In this

case, the individual pulses will likely overlap with each other, resulting in few distinct peaks

in the light curve. If we see a light curve with many peaks, it must be of high luminosity,

because that is the only way that the pulses can be narrow enough to be distinguished. But

if we see a light curve with few peaks, then we cannot conclude much about its luminosity,

because the burst could either be a low-luminosity event with all its peaks smeared together

or it could be a high-luminosity event with few collisions. It is this last point that forces the

Npeak − L relation to provide only a lower limit on the luminosity. A detailed analysis give
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Figure 2.3 Luminosity relation between spectral lag τlag and the luminosity L. τlag shows a
inverse power law relation with L after the redshift correction.

a limiting function, which is well approximated as L > cN2
peak for a constant ’c’. And this

theoretical prediction was strongly confirmed with observation (Schaefer, 2007).

2.4 Instrument Detection Threshold Effect?

Butler et al. (2007) estimated the Amati’s relation (Epeak −Eγ,iso) with Swift and pre-Swift

data. They report an inconsistency in the relations from the two data sets, which they then

attributed to differences in threshold between Swift and earlier detectors. Their claimed

difference has not been reproduced by other groups (including Cabrera et al. 2007; Schaefer

2007b; Krimm et al. 2009), while their claimed threshold effects have been found to not

significantly affect the observed Amati relation (Schaefer 2007b; Nava et al. 2008; Ghirlanda

et al. 2008; but see Shahmoradi & Nemiroff 2009). Indeed, their analysis is based on Bayesian

priors which systematically push high-Epeak values below ∼ 400 keV, as demonstrated by

detailed comparisons with Konus, Suzaku, and RHESSI measures. Nevertheless, here we
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Figure 2.4 Luminosity relation between variability V and luminosity L. V showed a loose
power law relation with L in the previous studies using BATSE and early Swift data. How-
ever, when we expanded the sample with more Swift GRBs, the relation gets even looser,
and no significant relation was found with the expanded sample.
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Figure 2.5 Luminosity relation between peak photon energy in the spectrum Epeak and lu-
minosity L, with Epeak showing a power law relation with L after the redshift correction.
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Figure 2.6 Ghirlanda’s Relation, which is the relation between peak photon energy of the
spectrum Epeak, jet break time in the optical afterglow tjet, and total energy emitted from
the GRB explosion after the beaming angle correction Eγ. This is the tightest among all of
these luminosity relations. However, only a small fraction of GRBs have their jet break time
measured, so this relation is not able to be used for a large fraction of GRBs.
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Figure 2.7 Luminosity relation between the minimum rise time τRT and luminosity L, with
τRT showing an inverse power law relation with L after the redshift correction.
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Figure 2.8 Luminosity relation between number of peaks in the light curve Npeak and lumi-
nosity L, with Npeak providing a strict lower limit of L.

can perform yet another test to see whether the claimed threshold differences between Swift

and pre-Swift bursts cause any significant change in the luminosity relations. Butler et al.

(2007) include Swift BAT bursts between GRBs 041220 and 070509, 77 of which have a

spectroscopic redshift measured, while in our analysis on Swift GRBs, we are including all

bursts with spectroscopic redshift between 050126 and 080721. With both samples being

based on largely overlapping samples selected in a nearly identical manner, we conclude that

the flux limits of the two samples are essentially identical.

To this end, we have separately fitted the pre-Swift and Swift data. This test was only

done for four luminosity relations (τlag − L, V − L, Epeak − L, and τRT − L), with the

Epeak − Eγ relation having too few bursts, and the Npeak − L relation not being usable for

the comparison as a limit. The best fit luminosity relations are given in Table 2.2. The data

and best fit models are displayed in Figure 2.9. At first glance, we see that the difference
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Figure 2.9 Comparison of the luminosity relations for pre-Swift and Swift bursts. The filled
diamonds are for pre-Swift bursts, while the open squares are for Swift bursts. From the plot
we can tell that the luminosity relations are identical between pre-Swift and Swift bursts to
within the usual uncertainties. Ghirlanda’s relation is not compared because the sample of
bursts with both Epeak and jet break time is too small.

between the two best fit lines are small compared to the scatter in the data, and a detailed

analysis is described below.

We made a F-test for the fitting results for these four relations. First we made a bisector

linear fit on the combined data with both pre-Swift and Swift bursts, and recorded the χ2

value of the fit as χ2
JOINT . Then we separate the data to two sample sets, pre-Swift and

Swift, and made the same bisector linear fit separately on each set of the data. The sum

of the two χ2 values for the separately fitted lines are recorded as χ2
SEPARATE. Then the F

value can be calculated as
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F =
χ2
JOINT/(Npre +Nsw − 2)

χ2
SEPARATE/(Npre +Nsw − 4)

(2.4)

where Npre is the number of pre-Swift bursts, and Nsw is the number of Swift bursts. Npre +

Nsw − 2 is the degree of freedom of the fitting on the combined data, and Npre +Nsw − 4 is

the degrees of freedom of the fitting on separated data.

These F values for each of the luminosity relations are listed in Table 2.2. If the pre-Swift

and Swift relations differ much from each other, the separate fitting has been significantly

improved over the fitting on the mixed data, the F value would be much larger than unity.

Otherwise, if there is no significant difference between pre-Swift and Swift relations, the F

value would be around unity. From Table 2.2 we see that F is rather close to unity. All

of the results shows that the separately fitted result is not significantly improved over the

fitted results on all data mixed together, which means that luminosity relations for pre-

Swift luminosity relations and Swift luminosity relations do not significantly differ from each

other. And by looking at the plots in Figure 2.9, we see that (1) the envelope of squares

and diamonds are indistinguishable and (2) the pre-Swift and Swift best fit lines are close to

each other compared to the scatter in the data. And hence, we have no significant evidence

that these four luminosity relations differ for Swift bursts.

The 1− σ range on the normalization difference between Swift and pre-Swift bursts for

all these four luminosity relations are also listed in Table 2.2. We can make an analysis

with the normalization difference on Amati’s relation claimed by Butler et al. (2007), which

corresponds to a 0.39 difference in log space. By making the comparison between Butler’s

factor (0.39) and our normalization difference, we can exclude Butler’s factor at a 2.5 sigma

level for the τlag −L relation, a 3.7 sigma level for the τRT −L relation, a 1.3 sigma level for

the Epeak−L relation (which is not significant), and we cannot exclude the Butler factor for

V − L relation.
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3. GRB Redshift Estimation

3.1 Method

Our aim is to test our method of redshift calculation. No matter whether we are dealing

with the bursts with known zspec or not, these known zspec are only involved in the fitting of

luminosity relations, and this effect is negligible in our calculation.

Below we will describe how our method applies on one Gamma-Ray Burst step by step:

(1) First, we measure each of the luminosity indicators of the burst. The definition and

method of calculations have been discussed in Sections 2. The results of the indicators for

all bursts in the sample are listed in Table 3.1 & Table 3.2.

(2) We next derive the luminosity values for each luminosity relation. A complexity

is that the luminosity relations depend on the redshift of the burst (so as to correct the

luminosity indicators back to the burst rest frame), so we have to perform this calculation

for an array of trial redshifts (we take it to be from redshifts of 0 to 20 at intervals of 0.005),

and then we will obtain a list of luminosities (or isotropic energies for Ghirlanda’s relation)

values depending on the list of trial redshifts for each of the indicators. We notate each of

these calculated luminosities (as a function of redshift ztrial) for the ith relation as Li(ztrial)

(or Eγ,i for the Ghirlanda’s relation).

(3) With the values of the peak flux P, fluence S, Epeak and the power law indices in

the broken power law model α and β (or α from the power law with exponential cutoff

model), the bolometric peak flux Pbolo and fluence Sbolo can be calculated. The range for

‘bolometric’ is set to be 1 keV to 10000 keV in the GRB rest frame, and the equations for the

detailed calculation are taken from Schaefer (2007). As a result, for each burst, we calculated

Pbolo(ztrial) and Sbolo(ztrial) for each trial redshift value from 0 to 20.

42
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Table 3.1. Temporal Luminosity Indicators.

GRB Satellite τlag(sec) V τRT (sec) Npeak

970228 Konus . . . 0.016 ± 0.010 . . . 2
970508 BATSE 0.49 ± 0.02 0.018 ± 0.004 0.65 ± 0.07 1
970828 Konus . . . 0.052 ± 0.005 0.36 ± 0.14 4
971214 BATSE 0.03 ± 0.05 0.048 ± 0.002 . . . 2
980703 BATSE 0.69 ± 0.02 0.024 ± 0.001 3.00 ± 0.19 1
990123 BATSE 0.07 ± 0.01 0.059 ± 0.003 . . . 3
990506 BATSE 0.04 ± 0.01 0.337 ± 0.001 0.13 ± 0.01 12
990510 BATSE 0.03 ± 0.01 0.118 ± 0.001 0.13 ± 0.01 8
990705 Konus . . . 0.097 ± 0.004 0.62 ± 0.37 4
991208 Konus . . . 0.023 ± 0.003 0.27 ± 0.01 4
991216 BATSE 0.03 ± 0.01 0.062 ± 0.003 0.09 ± 0.01 5
000131 Konus . . . 0.056 ± 0.005 0.84 ± 0.39 2
000210 Konus . . . 0.018 ± 0.002 0.45 ± 0.03 1
000911 Konus . . . 0.122 ± 0.013 0.07 ± 0.22 5
000926 Konus . . . 0.326 ± 0.034 . . . 4
010222 Konus . . . 0.143 ± 0.004 0.45 ± 0.01 6
010921 HETE 1.00 ± 0.04 0.008 ± 0.006 4.31 ± 0.71 1
020124 HETE 0.07 ± 0.06 0.266 ± 0.040 0.59 ± 0.17 3
020405 Konus . . . 0.104 ± 0.007 0.48 ± 0.09 2
020813 HETE 0.15 ± 0.01 0.164 ± 0.004 0.59 ± 0.05 5
021004 HETE 0.71 ± 0.19 0.035 ± 0.067 1.23 ± 0.96 2
021211 HETE 0.31 ± 0.01 0.006 ± 0.003 0.57 ± 0.01 1
030115 HETE 0.44 ± 0.06 0.020 ± 0.020 0.70 ± 0.40 1
030226 HETE 0.31 ± 0.22 0.033 ± 0.029 1.76 ± 1.15 3
030323 HETE . . . 0.021 ± 0.338 . . . 2
030328 HETE 0.08 ± 0.08 0.024 ± 0.003 1.69 ± 0.81 2
030329 HETE 0.15 ± 0.01 0.065 ± 0.002 0.66 ± 0.01 2
030429 HETE 0.03 ± 0.17 0.220 ± 0.135 . . . 2
030528 HETE 12.56 ± 0.14 0.017 ± 0.010 2.13 ± 0.42 1
040924 HETE 0.90 ± 0.01 0.060 ± 0.003 0.33 ± 0.17 1
041006 HETE . . . 0.050 ± 0.002 1.28 ± 0.01 3
050408 HETE 0.31 ± 0.02 0.082 ± 0.005 0.49 ± 0.02 1
051022 Konus . . . 0.088 ± 0.008 0.19 ± 0.04 1
050126 Swift 2.74 ± 0.02 -0.010 ± 0.065 1.58 ± 1.91 1
050223 Swift . . . 0.111 ± 0.094 . . . 1
050315 Swift . . . 0.032 ± 0.016 1.97 ± 1.62 2
050401 Swift 0.06 ± 0.02 0.187 ± 0.019 0.25 ± 0.16 3
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Table 3.1 (cont’d)

GRB Satellite τlag(sec) V τRT (sec) Npeak

050406 Swift . . . 0.020 ± 0.274 . . . 2
050416A Swift . . . 0.021 ± 0.030 0.54 ± 0.06 1
050505 Swift 0.71 ± 0.13 0.076 ± 0.031 0.60 ± 0.21 3
050525A Swift 0.12 ± 0.01 0.093 ± 0.003 0.32 ± 0.01 2
050603 Swift -0.01 ± 0.01 0.125 ± 0.014 0.19 ± 0.01 1
050730 Swift . . . 0.027 ± 0.066 . . . 2
050802 Swift . . . 0.070 ± 0.036 2.03 ± 1.02 4
050814 Swift . . . -0.009 ± 0.180 . . . 2
050820A Swift . . . 0.061 ± 0.033 1.01 ± 0.75 3
050824 Swift . . . 0.289 ± 0.640 . . . 1
050826 Swift . . . 0.063 ± 0.105 1.11 ± 2.28 1
050908 Swift . . . -0.017 ± 0.046 1.10 ± 1.47 1
050922C Swift 0.06 ± 0.01 0.015 ± 0.003 0.13 ± 0.01 2
051016B Swift . . . 0.008 ± 0.030 . . . 2
051109A Swift . . . -0.006 ± 0.025 0.70 ± 1.25 1
051111 Swift 1.70 ± 0.07 0.009 ± 0.004 1.80 ± 0.24 1
060108 Swift . . . 0.006 ± 0.040 . . . 2
060115 Swift . . . 0.019 ± 0.029 1.11 ± 1.71 2
060206 Swift 0.01 ± 0.03 0.007 ± 0.004 1.16 ± 0.18 1
060210 Swift 0.15 ± 0.17 0.183 ± 0.033 0.73 ± 0.50 4
060223A Swift . . . 0.036 ± 0.021 0.41 ± 0.23 4
060418 Swift 0.22 ± 0.03 0.104 ± 0.008 0.67 ± 0.08 2
060502A Swift 4.90 ± 0.11 0.004 ± 0.010 2.94 ± 1.19 1
060510B Swift . . . 0.110 ± 0.060 . . . 4
060512 Swift . . . 0.043 ± 0.173 . . . 1
060522 Swift . . . 0.034 ± 0.185 . . . 1
060526 Swift 0.17 ± 0.09 0.085 ± 0.030 0.38 ± 0.11 2
060604 Swift . . . 0.080 ± 0.338 . . . 2
060605 Swift . . . -0.013 ± 0.068 1.22 ± 0.72 3
060607A Swift 1.98 ± 0.11 0.025 ± 0.008 1.23 ± 0.68 1
060707 Swift . . . 0.050 ± 0.054 . . . 2
060714 Swift . . . 0.125 ± 0.022 . . . ≥ 3
060729 Swift . . . 0.092 ± 0.041 . . . 2
060814 Swift 0.29 ± 0.03 0.040 ± 0.003 1.65 ± 0.24 2
060904B Swift 0.36 ± 0.09 0.003 ± 0.008 1.00 ± 0.16 1
060908 Swift 0.26 ± 0.06 0.061 ± 0.008 0.52 ± 0.09 3
060926 Swift 1.03 ± 0.11 0.148 ± 0.050 . . . 2
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Table 3.1 (cont’d)

GRB Satellite τlag(sec) V τRT (sec) Npeak

060927 Swift 0.12 ± 0.04 0.094 ± 0.010 0.46 ± 0.12 2
061007 Swift 0.11 ± 0.01 0.066 ± 0.003 0.38 ± 0.02 4
061110A Swift . . . -0.038 ± 0.050 . . . 1
061110B Swift 0.24 ± 0.36 0.155 ± 0.064 0.79 ± 0.64 9
061121 Swift 0.03 ± 0.01 0.050 ± 0.003 0.98 ± 0.19 2
061222B Swift . . . 0.024 ± 0.043 . . . 2
070110 Swift . . . -0.010 ± 0.031 . . . 1
070208 Swift . . . 0.083 ± 0.211 . . . 2
070318 Swift . . . 0.037 ± 0.008 0.72 ± 0.24 1
070411 Swift . . . 0.041 ± 0.029 . . . 2
070506 Swift 2.52 ± 0.04 0.010 ± 0.030 0.12 ± 0.06 1
070508 Swift 0.04 ± 0.01 0.106 ± 0.003 0.20 ± 0.01 4
070521 Swift 0.04 ± 0.01 0.116 ± 0.004 0.58 ± 0.06 5
070529 Swift . . . 0.170 ± 0.091 . . . 1
070611 Swift . . . 0.053 ± 0.080 . . . 1
070612A Swift . . . 0.032 ± 0.023 2.49 ± 1.48 2
070714B Swift 0.03 ± 0.01 0.164 ± 0.021 0.45 ± 0.04 1
070802 Swift . . . -0.156 ± 0.150 . . . 1
070810A Swift 1.09 ± 0.23 -0.006 ± 0.015 0.73 ± 0.22 1
071003 Swift 0.38 ± 0.05 0.072 ± 0.007 0.88 ± 0.07 4
071010A Swift . . . -0.076 ± 0.153 . . . 1
071010B Swift 0.84 ± 0.04 0.010 ± 0.003 1.21 ± 0.03 1
071031 Swift . . . -0.038 ± 0.108 . . . 2
071117 Swift 0.60 ± 0.01 0.009 ± 0.003 0.20 ± 0.02 1
071122 Swift . . . 0.391 ± 0.392 . . . 1
080210 Swift 0.53 ± 0.17 0.019 ± 0.013 0.57 ± 0.44 3
080310 Swift . . . 0.038 ± 0.021 0.41 ± 0.55 3
080319B Swift 0.02 ± 0.01 0.031 ± 0.003 0.14 ± 0.01 10
080319C Swift . . . 0.042 ± 0.007 0.21 ± 0.12 4
080330 Swift . . . 0.109 ± 0.060 . . . 3
080411 Swift 0.21 ± 0.01 0.167 ± 0.003 0.65 ± 0.01 2
080413A Swift 0.13 ± 0.03 0.078 ± 0.004 0.23 ± 0.03 3
080413B Swift 0.23 ± 0.01 0.004 ± 0.003 0.50 ± 0.03 1
080430 Swift 0.68 ± 0.08 0.009 ± 0.004 0.76 ± 0.12 1
080516 Swift 0.15 ± 0.01 0.168 ± 0.055 . . . 2
080520 Swift . . . 0.037 ± 0.098 . . . 1
080603B Swift 0.08 ± 0.01 0.283 ± 0.010 0.22 ± 0.03 6
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Table 3.1 (cont’d)

GRB Satellite τlag(sec) V τRT (sec) Npeak

080605 Swift 0.11 ± 0.01 0.057 ± 0.003 0.22 ± 0.01 4
080607 Swift 0.04 ± 0.01 0.035 ± 0.003 0.18 ± 0.06 6
080707 Swift . . . 0.093 ± 0.032 . . . 2
080721 Swift 0.13 ± 0.05 0.048 ± 0.009 0.09 ± 0.04 4
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Table 3.2. Spectral Luminosity Indicators.

GRB Satellite Epeak (keV)a αa βa Ref.b tjet(day) Ref.b

970228 Konus 115+38
−38 −1.54± 0.08 −2.5± 0.4 . . . . . . . . .

970508 BATSE 389+[40]
−[40] −1.19± [0.1] −1.83± [0.4] 2 25.00± 5.00 40

970828 Konus 298+[30]
−[30] −0.704± [0.1] −2.07± [0.4] 2 2.20± 0.40 40

971214 BATSE 190+[20]
−[20] −0.78± [0.1] −2.57± [0.4] 2 . . . . . .

980703 BATSE 254+[25]
−[25] −1.31± [0.1] −2.4± [0.4] 2 3.40± 0.50 40

990123 BATSE 604+[60]
−[60] −0.9± [0.1] −2.48± [0.4] 2 2.04± 0.46 41

990506 BATSE 283+[30]
−[30] −1.37± [0.1] −2.15± [0.4] 2 . . . . . .

990510 BATSE 126+[10]
−[10] −1.28± [0.1] −2.67± [0.4] 2 1.60± 0.20 42

990705 Konus 189+15
−15 −1.05± 0.21 −2.2± 0.1 1 1.00± 0.20 40

991208 Konus 190+[20]
−[20] [−1.1]± [0.4] [−2.2]± [0.4] 3 . . . . . .

991216 BATSE 318+[30]
−[30] −1.23± [0.1] −2.18± [0.4] 2 1.20± 0.40 40

000131 Konus 163+13
−13 −1.2± 0.1 −2.4± 0.1 4 . . . . . .

000210 Konus 408+14
−14 [−1.1]± [0.4] [−2.2]± [0.4] 5 . . . . . .

000911 Konus 986+[100]
−[100] −0.84± [0.1] [−2.2]± [0.4] 6 . . . . . .

000926 Konus 100+7
−7 [−1.1]± [0.4] −2.43± [0.4] 5 . . . . . .

010222 Konus 309+12
−12 −1.35± 0.19 −1.64± 0.02 5 0.93± 0.10 40

010921 HETE 89+22
−14 −1.6± 0.1 [−2.2]± [0.4] 7 . . . . . .

020124 HETE 87+18
−12 −0.8+0.2

−0.1 [−2.2]± [0.4] 7 3.00± 0.40 43
020405 Konus 364+90

−90 [−1.1]± [0.4] −1.87± 0.2 8 1.67± 0.52 44
020813 HETE 140+14

−13 −0.94± 0.03 −1.57+0.03
−0.04 7 0.43± 0.06 40

021004 HETE 80+53
−23 −1± 0.2 [−2.2]± [0.4] 7 4.74± 0.50 45

021211 HETE 46+8
−6 −0.9± 0.1 −2.2+0.1

−0.3 7 . . . . . .
030115 HETE 83+53

−22 −1.3± 0.1 [−2.2]± [0.4] 7 . . . . . .
030226 HETE 97+27

−17 −0.9± 0.2 [−2.2]± [0.4] 7 1.04± 0.12 46
030323 HETE 44+90

−26 −0.8± 0.8 [−2.2]± [0.4] 9 . . . . . .
030328 HETE 130+14

−13 −1.14± 0.03 −2.1+0.2
−0.4 7 0.80± 0.10 47

030329 HETE 68+2
−2 −1.26± 0.02 −2.28± 0.06 7 0.50± 0.10 43

030429 HETE 35+12
−8 −1.1+0.3

−0.2 [−2.2]± [0.4] 7 1.77± 1.00 48
030528 HETE 32+5

−5 −1.3+0.2
−0.1 −2.7+0.3

−1.0 7 . . . . . .
040924 HETE 67+6

−6 −1.17± [0.1] [−2.2]± [0.4] 10, 11 . . . . . .
041006 HETE 63+13

−13 −1.37± [0.1] [−2.2]± [0.4] 11 0.16± 0.04 49
050126 Swift 47+23

−8 [−1.1]± [0.4] [−2.2]± [0.4] 12 . . . . . .
050223 Swift 62+[10]

−[10] −1.46± [0.1] [−2.2]± [0.4] 13 . . . . . .
050315 Swift 39+7

−7 [−1.1]± [0.4] [−2.2]± [0.4] 14 . . . . . .
050401 Swift 118+18

−18 −0.9± 0.3 −2.55± 0.3 15 . . . . . .
050406 Swift 25+35

−13 [−1.1]± [0.4] −2.56± 0.35 16 . . . . . .
050408 HETE [100]+[100]

−[50] [−1.1]± [0.4] [−2.2]± [0.4] . . . . . . . . .
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Table 3.2 (cont’d)

GRB Satellite Epeak (keV)a αa βa Ref.b tjet(day) Ref.b

050416A Swift 15+2
−3 [−1.1]± [0.4] −3.4± 0.4 17 . . . . . .

050505 Swift 70+140
−24 −0.31± 1 [−2.2]± [0.4] 12 . . . . . .

050525A Swift 81+1
−1 −1.01± 0.06 −3.26± 0.2 15 0.40± 0.10 50, 51

050603 Swift 344+52
−52 −1.03± 0.06 −2.03± 0.1 15 . . . . . .

050730 Swift 124+26
−26 [−1.1]± [0.4] [−2.2]± [0.4] 14 . . . . . .

050802 Swift 121+28
−28 [−1.1]± [0.4] [−2.2]± [0.4] 14 . . . . . .

050814 Swift 60+24
−6 0± 0.6 [−2.2]± [0.4] 18 . . . . . .

050820A Swift 246+76
−40 −1.25± 0.1 [−2.2]± [0.4] 15 18g± 2.00 52

050824 Swift 15+5
−5 [−1.1]± [0.4] [−2.2]± [0.4] 14 . . . . . .

050826 Swift 105+47
−47 [−1.1]± [0.4] [−2.2]± [0.4] 14 . . . . . .

050908 Swift 41+9
−5 [−1.1]± [0.4] [−2.2]± [0.4] 12 . . . . . .

050922C Swift 198+38
−22 −0.95± 0.07 [−2.2]± [0.4] 15 0.11± 0.03 53

051016B Swift 24+7
−7 [−1.1]± [0.4] [−2.2]± [0.4] 14 . . . . . .

051022 Konus 510+22
−20 −1.18± 0.02 [−2.2]± [0.4] 19 2.90± 0.20 54

051109A Swift 161+130
−35 −1.25+0.27

−0.36 [−2.2]± [0.4] 20 0.60± 0.10 55
051111 Swift 220+1703

−48 −1± 0.18 [−2.2]± [0.4] 18 0.0080± 0.0003 56
060108 Swift 65+600

−10 [−1.1]± 0.4 [−2.2]± [0.4] 13 . . . . . .
060115 Swift 62+19

−6 −1± 0.3 [−2.2]± [0.4] 21 . . . . . .
060206 Swift 78+23

−8 −1.2± 0.18 [−2.2]± [0.4] 22 0.57± 0.06 57, 58
060210 Swift 149+400

−35 −1.18± 0.03 [−2.2]± [0.4] 13 . . . . . .
060223A Swift 71+100

−10 −1.18± 0.31 [−2.2]± [0.4] 13 . . . . . .
060418 Swift 230+[20]

−[20] −1.5± [0.1] [−2.2]± [0.4] 23 . . . . . .
060502A Swift 156+400

−33 −1.18± 0.15 [−2.2]± [0.4] 13 . . . . . .
060510B Swift 95+[60]

−[30] −1.47± 0.18 [−2.2]± [0.4] 13 . . . . . .
060512 Swift 22+6

−6 [−1.1]± [0.4] [−2.2]± [0.4] 14 . . . . . .
060522 Swift 80+382

−12 −0.7± 0.48 [−2.2]± [0.4] 18 . . . . . .
060526 Swift 25+[5]

−[5] [−1.1]± [0.4] [−2.2]± [0.4] 13 2.41± 0.06 59

060604 Swift 40+[5]
−[5] −1.34± [0.3] [−2.2]± [0.4] 13 . . . . . .

060605 Swift 90+91
−12 −0.3± 0.42 [−2.2]± [0.4] 18 0.24± 0.02 60

060607A Swift 120+190
−17 −1.06± 0.18 [−2.2]± [0.4] 13 . . . . . .

060707 Swift 63+13
−6 −0.6± 0.42 [−2.2]± [0.4] 22 . . . . . .

060714 Swift 103+21
−16 [−1.1]± [0.4] [−2.2]± [0.4] 24 0.12± [0.01] 24

060729 Swift 61+9
−9 [−1.1]± [0.4] [−2.2]± [0.4] 25 0.50± 0.06 61

060814 Swift 257+74
−35 −1.43± 0.09 [−2.2]± [0.4] 26 . . . . . .

060904B Swift 80+770
−12 −1± 0.42 [−2.2]± [0.4] 18 . . . . . .

060908 Swift 151+112
−25 −1± 0.18 [−2.2]± [0.4] 22 . . . . . .

060926 Swift 20+11
−11 [−1.1]± [0.4] [−2.2]± [0.4] 14 . . . . . .
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Table 3.2 (cont’d)

GRB Satellite Epeak (keV)a αa βa Ref.b tjet(day) Ref.b

060927 Swift 72+15
−7 −0.9± 0.24 [−2.2]± [0.4] 22 . . . . . .

061007 Swift 399+12
−11 −0.7± 0.02 −2.61± 0.09 14 . . . . . .

061110A Swift 90+13
−13 [−1.1]± [0.4] [−2.2]± [0.4] 14 . . . . . .

061110B Swift 517+53
−53 [−1.1]± [0.4] [−2.2]± [0.4] 14 . . . . . .

061121 Swift 606+55
−44 −1.32+0.02

−0.03 [−2.2]± [0.4] 27 1.16± [0.16] 62
061222B Swift 49+8

−8 [−1.1]± [0.4] [−2.2]± [0.4] 14 . . . . . .
070110 Swift 110+30

−30 [−1.1]± [0.4] [−2.2]± [0.4] 28 . . . . . .
070208 Swift 51+10

−10 [−1.1]± [0.4] [−2.2]± [0.4] 14 . . . . . .
070318 Swift 154+19

−19 [−1.1]± [0.4] [−2.2]± [0.4] 14 . . . . . .
070411 Swift 83+11

−11 [−1.1]± [0.4] [−2.2]± [0.4] 14 . . . . . .
070506 Swift 31+2

−3 −5.00± 1.82 2.01± 0.22 18 . . . . . .
070508 Swift 233+7

−7 −0.96± 0.13 [−2.2]± [0.4] 14 . . . . . .
070521 Swift 222+16

−12 −0.93± 0.07 [−2.2]± [0.4] 14 . . . . . .
070529 Swift 180+52

−52 [−1.1]± [0.4] [−2.2]± [0.4] 14 . . . . . .
070611 Swift 92+30

−30 [−1.1]± [0.4] [−2.2]± [0.4] 14 . . . . . .
070612A Swift 87+17

−17 [−1.1]± [0.4] [−2.2]± [0.4] 14 . . . . . .
070714B Swift 1120+473

−230 −0.86± 0.06 [−2.2]± [0.4] 14 . . . . . .
070802 Swift 70+25

−25 [−1.1]± [0.4] [−2.2]± [0.4] 14 . . . . . .
070810A Swift 44+9

−9 [−1.1]± [0.4] [−2.2]± [0.4] 14 . . . . . .
071003 Swift 799+75

−61 −0.97± 0.04 [−2.2]± [0.4] 14 . . . . . .
071010A Swift 27+10

−10 [−1.1]± [0.4] [−2.2]± [0.4] 14 . . . . . .
071010B Swift 52+6

−8 −1.25+0.45
−0.30 −2.65+0.18

−0.30 29 3.44± 0.39 63
071031 Swift 24+7

−7 [−1.1]± [0.4] [−2.2]± [0.4] 14 . . . . . .
071117 Swift 278+143

−48 −1.53± 0.09 [−2.2]± [0.4] 30 . . . . . .
071122 Swift 73+30

−30 [−1.1]± [0.4] [−2.2]± [0.4] 14 . . . . . .
080210 Swift 73+15

−15 [−1.1]± [0.4] [−2.2]± [0.4] 14 . . . . . .
080310 Swift 28+6

−6 [−1.1]± [0.4] [−2.2]± [0.4] 14 . . . . . .
080319B Swift 651+8

−8 −0.82± 0.01 −3.87+0.27
−0.66 31 . . . . . .

080319C Swift 307+85
−56 −1.01± 0.08 −1.87+0.09

−0.38 32 . . . . . .
080330 Swift 20+9

−9 [−1.1]± [0.4] [−2.2]± [0.4] 14 . . . . . .
080411 Swift 259+21

−16 −1.51+0.02
−0.03 [−2.2]± [0.4] 33 . . . . . .

080413A Swift 170+48
−24 −1.20± 0.06 [−2.2]± [0.4] 34 . . . . . .

080413B Swift 73+10
−10 −1.26± 0.16 [−2.2]± [0.4] 35 . . . . . .

080430 Swift 80+15
−15 [−1.1]± [0.4] [−2.2]± [0.4] 14 . . . . . .

080516 Swift 66+24
−24 [−1.1]± [0.4] [−2.2]± [0.4] 14 . . . . . .

080520 Swift 12+5
−5 [−1.1]± [0.4] [−2.2]± [0.4] 14 . . . . . .

080603B Swift 85+55
−18 −0.94+0.73

−0.45 −1.96± [0.4] 36 . . . . . .
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Table 3.2 (cont’d)

GRB Satellite Epeak (keV)a αa βa Ref.b tjet(day) Ref.b

080605 Swift 246+14
−11 −1.02± 0.06 [−2.2]± [0.4] 37 . . . . . .

080607 Swift 394+35
−33 −1.06± 0.05 [−2.2]± [0.4] 38 . . . . . .

080707 Swift 73+20
−20 [−1.1]± [0.4] [−2.2]± [0.4] 14 . . . . . .

080721 Swift 485+41
−36 −0.93+0.06

−0.05 −2.43+0.15
−0.25 39 . . . . . .

aThe values reported in square brackets are conservative estimations for uncertainties
not reported in the original paper.

Reference of Table 3.2: ( 1 ) Amati et al. 2002; ( 2 ) Jimenez, Band, & Piran 2001; ( 3 )

Golenetskii 2005, private communication; ( 4 ) Andersen et al. 2000; ( 5 ) Ulanov et al. 2005; ( 6 )

Price et al. 2002a; ( 7 ) Sakamoto et al. 2005; ( 8 ) Price et al. 2003a; ( 9 ) Atteia et al. 2005; ( 10 )

Golenetskii et al. 2004; ( 11 ) HETE Bursts 2006, available at http://space.mit.edu/HETE/Bursts/;

( 12 ) Krimm 2005, private communication; ( 13 ) Krimm 2006, private communication; ( 14 )

calculated from the relation in Zhang et al. 2007; ( 15 ) Krimm et al. 2006a; ( 16 ) Schady et al.

2006; ( 17 ) Sakamoto et al. 2006; ( 18 ) Butler et al. 2007; ( 19 ) Golenetskii et al. 2005a; ( 20 )

Golenetskii et al. 2005b; ( 21 ) Barbier et al. 2006a; ( 22 ) Sakamoto et al. 2008; ( 23 ) Golenetskii

et al. 2006a; ( 24 ) Krimm et al. 2007; ( 25 ) Rykoff et al. 2006; ( 26 ) Golenetskii et al. 2006b;

( 27 ) Golenetskii et al. 2006c; ( 28 ) Amati et al. 2007; ( 29 ) Golenetskii et al. 2007a; ( 30 )

Golenetskii et al. 2007b; ( 31 ) Golenetskii et al. 2008a; ( 32 ) Golenetskii et al. 2008b; ( 33 )

Golenetskii et al. 2008c; ( 34 ) Ohno et al. 2008; ( 35 ) Barthelmy et al. 2008; ( 36 ) Golenetskii

et al. 2008d; ( 37 ) Golenetskii et al. 2008e; ( 38 ) Golenetskii et al. 2008f; ( 39 ) Golenetskii et

al. 2008g; ( 40 ) Bloom et al. 2003b; ( 41 ) Kulkarni et al. 1999; ( 42 ) Israel et al. 1999; ( 43 )

Berger et al. 2003; ( 44 ) Price et al. 2003a; ( 45 ) Holland et al. 2003; ( 46 ) Klose et al. 2004; (

47 ) Andersen et al. 2003; ( 48 ) Jakobsson et al. 2004; ( 49 ) Stanek et al. 2005; ( 50 ) Liang et

al. 2008; ( 51 ) Mirebel et al. 2007; ( 52 ) Cenko et al. 2006a; ( 53 ) Li et al. 2005; ( 54 ) Racusin

et al. 2005; ( 55 ) Yost et al. 2007; ( 56 ) Guidozi et al. 2007; ( 57 ) Curran et al. 2007; ( 58 )
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Stenik et al. 2005; ( 59 ) Thoene et al. 2008c; ( 60 ) Ferrero et al. 2009; ( 61 ) Grupe et al. 2007;

( 62 ) Page et al. 2007; ( 63 ) Kann et al. 2007;

For those bursts with tjet values, the jet opening angle θjet (in units of degrees) can be

calculated as

θjet = 0.161× [
tjet

1 + ztrial
]3/8[

nηγ
Eγ,iso,52

]1/8, (3.1)

where tjet is the jet break time in the unit of days, n is the density of the circumburst medium

in particles per cubic centimeter, ηγ is the radiative efficiency, and Eγ,iso,52 is the isotropic

energy in units of 1052 erg (Rhoads 1997 & Sari et al. 1999). We simply adopt ηγ = 0.2 and

n = 3cm−3 in Equation 3.1. The beaming factor Fbeam, is then calculated as

Fbeam = 1− cos θjet. (3.2)

From above we see that, since both θjet and Eγ,iso are redshift sensitive, our calculated Fbeam

value also varies between different ztrial values.

(4) From all the parameters above, for each of the indicators, a list of the luminosity

distances can be calculated as

dL,i(ztrial) =

√√√√ Li(ztrial)

4π × Pbolo(ztrial)
. (3.3)

For Ghirlanda’s relation, the list of luminosity distances is calculated as

dL,i(ztrial) =

√√√√Eγ,i(ztrial)[1 + ztrial]

4πFbeamSbolo(ztrial)
. (3.4)

Then from each list of luminosity distance above, the distance modulus can be obtained:

µi(ztrial) = 5 log[dL,i(ztrial)]− 5, (3.5)

with dL,i(ztrial) expressed in units of parsecs. The uncertainties are propagated strictly

following the calculation.
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From all above, we are able to get up to four lists of measured distance moduli µi(ztrial)

with their 1 − σ uncertainties: µτlag ± σµτlag , µEpeak ± σµEpeak , µEpeak−Eγ ± σµEpeak−Eγ , and

µτRT ± σµτRT . As we have asymmetric uncertainties for Epeak, we carry the uncertainties

on both directions in the calculation, and generated both plus and minus uncertainties for

µEpeak and µEpeak−Eγ . µNpeak is also calculated, as a lower limit on the distance modulus. All

of these distance moduli are a function of the assumed ztrial for 0 < ztrial < 20.

(5) Given each trial redshift, we can calculate its distance modulus directly from the

cosmological model, µcos(ztrial). Here we adopt the concordance model, with equation of

state for dark energy p = wρc2, w = −1, ΩM = 0.27, ΩΛ = 1 − ΩM = 0.73, and H0 =

70(km/s)/Mpc. In this case, the luminosity distance can be expressed as

dL(ztrial) = cH−1
0 (1 + ztrial)

∫ ztrial

0
dz′[(1 + z′)3ΩM + ΩΛ]−1/2. (3.6)

From the equation above and our list of trial redshifts, a list of luminosity distances

dL(ztrial) will be calculated, and also a list of distance modulus µcos(ztrial) which equals

5 log[dL(ztrial)]− 5. The µcos(ztrial) values are only depending on the trial redshift (running

from 0 to 20) and the cosmological model we choose.

(6) For each of the trial redshifts from 0 to 20, we have distance moduli lists of µτlag , µEpeak ,

µEpeak−Eγ , µτRT along with their 1 − σ uncertainties as well as µcos. We can then compare

these µi(ztrial) with µcos(ztrial) in a χ2 sense. Thus, χ2
τlag

= [(µτlag − µcos)/σµτlag ]2 and so on

for the other relations. We get a χ2
i versus ztrial plot, as shown in the left panel of Figure 3.1.

Then sum over all the χ2
i , we get a χ2

total (χ2
total = χ2

τlag
+ χ2

Epeak
+ χ2

Epeak−Eγ + χ2
τRT

+ χ2
Npeak

)

versus ztrial plot , as in the right panel of Figure 3.1. Our best redshift (zbest) corresponds

with the minimum χ2
total, where the luminosity relations and the cosmological model agree

with each other best. We are also able to find the uncertainties of our zbest. By searching

through the χ2
total− ztrial plot, we can find the redshifts with which the χ2

total = χ2
total,min + 1,

which corresponds with the edges of the 1− σ range of our redshift. Similarly, the redshifts
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with χ2
total = χ2

total,min + 4 gives us the 2− σ range and that with χ2
total = χ2

total,min + 9 gives

the 3− σ range of our redshift.

3.2 GRBs with Spectroscopic Redshift

We have 107 long GRBs with their spectroscopic/photometric redshifts measured, ranging

from Feb. 28, 1997 (GRB970228) to July 21, 2008 (GRB080721), observed by BATSE,

Konus, HETE, and Swift. The average redshift for pre-Swift bursts is about 1.50 and that

of the Swift bursts is 2.15.

The light curves of Swift GRBs are generated from the original data published on the

legacy ftp site1, and the Swift Software ver 2.9 (HEAsoft 6.5). To generate a background-

subtracted light curve of a GRB, we downloaded an event file sw00xxxxxx000.bevshsp uf.evt.gz

and a mask file sw00xxxxxx000bcbdq.hk.gz, with xxxxxx being the six digit Swift trigger

number. By running a task ‘batbinevt’, we can specify the time interval, energy bins, time

bin method, output file name and format on generating the light curve. In our work, we

adopted a time interval of 0.064 s with uniform time bins, and four continuous energy bands

(15-25 keV, 25-50 keV, 50-100 keV and 100-350 keV). For the calculation of V, τRT and

Npeak, we have been using the light curve over the whole energy range (15-350 keV), and for

the calculation of τlag value, we use 25-50 keV and 100-350 keV. The light curves of pre-Swift

bursts are obtained from previous work (Schaefer, 2007).

We calculated the τlag, V, τRT , and Npeak values for each of these bursts, as listed in

Table 3.1. The first column lists the ID number of the GRBs. The second column lists

the satellite with the detection of the burst. Columns three to six show all the calculated

indicator values, with the name of the indicators shown on the header row. Indicators not

measured due to low signal-to-noise ratio of the burst are represented as ‘. . .’.

The values of Epeak as well as the power law indexes α, β in Band’s smoothly broken

1ftp://legacy.gsfc.nasa.gov/swift/data/obs
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Figure 3.1 One example of the χ2 plot in our calculation. Taking the µcos as model value and
each of the µi as observed value, we can have the χ2 for each of the indicators, as shown in
the top panel. Each of the luminosity relations corresponding with these curves are labeled
just beside the lines, and the vertical line on the left is the luminosity lower limit given by
the Npeak − L relation. We sum up all the included χ2s to get a total χ2 plot, as shown in
the bottom panel. Then the minimum χ2 corresponds with our zbest, and χ2 = χ2

min + 1, 4,
9 gives us the 1,2,3-σ range of our estimated redshifts.
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power law model (Band et al. 1993) or Epeak and α values in a power law with exponential

cutoff model are obtained from various sources, as shown in Table 3.2. The first column in

Table 3.2 lists the ID number of the GRBs. The second column lists the satellite with the

detection of the burst. Column three to six are the values of Epeak and the power law index

α and β values, as well as the reference sources of these values. Our jet break time (tjet)

values from optical observations and their sources are also listed in Table 3.2, column seven

and eight. Bursts without measured jet break time are filled by ‘. . .’ also. From the table

we see that only 33 of the bursts have their optical tjet reported. Various jet break time in

the X-ray afterglows have been reported, however, as there are usually multiple breaks for

the X-ray afterglows, which are not well understood and distinguished for their causes, we

are not including any of these reported tjet values from X-ray detections. Values in square

brackets for α and β are assumed values for those bursts without exact α and β values

measured, which is taken to be the average value of known α and β (Schaefer et al. 1994;

Krimm, et al. 2009; Kaneko et al. 2006; Band, et al. 1993). Some uncertainties of Epeak

and tjet are also quoted in square brackets. These uncertainties are conservative assumed

values, which are normally 10% of the measured Epeak or tjet values. All of the peak flux (P)

and fluence (S) values of pre-Swift bursts we use here are the same as were used in Schaefer

(2007), and those of Swift bursts are from the data table on the Swift webpage2. All the

quoted error bars in Table 3.1 and Table 3.2 are converted to 1− σ level.

The resulting values of zbest and 1− σ range of z for each burst are shown in Table 3.3.

We have also collected the spectroscopic redshifts for these bursts (see values and references

in Table 3.3). The last column of Table 3.3 lists the effective luminosity relations we used

for each burst in our calculation. The number of luminosity indicators used in the redshift

calculation for each of the burst is listed in Table 3.3. A comparison can be made between

2http://swift.gsfc.nasa.gov/docs/swift/archive/grb table/
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our calculated redshifts and their spectroscopic (or photometric) redshifts. The comparison

plot is shown is Figure 3.2, and below are some of the conclusions after we made the analysis:

(1) Of the total 115 bursts, 8 have only a lower z limit that can be calculated. For the

remaining 107 bursts, we took the spectroscopic redshifts zspec as the model value, and our

calculated redshift zbest as a measured value, with the 1−σ uncertainty of σzPlus and σzMinus
.

Then the χ2 can be calculated as

χ2 =
Nburst∑
j=1

(zj,best − zj,spec)2/σ2
j , (3.7)

with σj equals to σj,zPlus or σj,zMinus
, depending on whether our zi,best is smaller or larger

than the zi,spec. Each j represents an index number identifying the burst. The number of

degrees of freedom in this comparison equals the number of bursts (Nburst), so the reduced

χ2 is χ2/Nburst. The reduced χ2 value is 1.28, which is somewhat larger than unity. While

after excluding one 3−σ outliers GRB010222, whose contribution to χ2 is as high as 44, our

reduced χ2 is equal to 0.86. This is certainly not a significant deviation from unity. So we

conclude that the scatter in Figure 3.2 is consistent with our quoted error bars being correct.

(2) Of the 107 bursts with their zbest calculated, 73 have their zspec falling into the 1− σ

range of our z. The ratio of the numbers is about 70%, which is slightly larger than the ideal

case 68.5%. And for the 8 bursts with only lower z limit calculated, 6 of them have their

zspec larger than our 1− σ lower limit of z. This is another way of testing our quoted error

bars, and as in the previous item, we find no significant deviation from the expected results.

As such, to a close degree, we see that our derived error bars are accurate.

(3) We can test to see whether our zbest is biased high or low. For this, we calculated

the average value of log10(zbest/zspec). If our result is unbiased, the average should be zero

to within the error bars. We find the average is 0.01. This demonstrates that our zbest is not

biased to within the 1% level.
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Figure 3.2 Comparison of our redshifts with spectroscopic redshifts. The diamonds are our
zbest and the error bars gives the 1-σ redshift range. We can see that 70% of the spectroscopic
redshifts fall in our 1-σ range, and our zbest scatter uniformly around the spectroscopic
redshift (with 〈log(zbest/zspec)〉 = 0.01). This demonstrates that our method has accurate
error bars and negligible biases.
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Table 3.3. Our Redshifts and Spectroscopic Redshifts.

GRB Experiment zspec Ref.a zbest zmin zmax Nrel

970228 Konus 0.84 1 0.38 0.18 0.86 2
970508 BATSE 0.84 2 1.51 1.11 2.09 4
970828 Konus 0.96 3 1.10 0.73 1.83 4
971214 BATSE 3.42 4 5.21 2.00 20 3
980703 BATSE 0.97 5 0.84 0.66 1.11 4
990123 BATSE 1.61 6 0.91 0.67 1.27 4
990506 BATSE 1.31 7 1.16 0.77 1.84 4
990510 BATSE 1.62 8 2.47 1.69 3.66 5
990705 Konus 0.84 9 0.63 0.45 0.94 4
991208 Konus 0.71 10 0.46 0.29 0.78 3
991216 BATSE 1.02 11 0.60 0.47 0.79 5
000131 Konus 4.50 12 1.75 0.90 4.41 3
000210 Konus 0.85 13 0.59 0.35 1.04 2
000911 Konus 1.06 14 2.88 1.06 18.31 3
000926 Konus 2.07 15 0.60 0.31 1.41 2
010222 Konus 1.48 16 0.45 0.35 0.61 4
010921 HETE 0.45 17 0.40 0.28 0.59 3
020124 HETE 3.20 18 5.27 3.24 8.12 5
020405 Konus 0.70 19 0.90 0.64 1.32 4
020813 HETE 1.25 20 0.98 0.72 1.36 5
021004 HETE 2.32 21 2.41 1.53 4.06 5
021211 HETE 1.01 22 0.71 0.49 1.07 3
030115 HETE 2.50 23 2.24 1.34 4.12 3
030226 HETE 1.98 24 2.39 1.59 3.58 5
030323 HETE 3.37 25 1.52 0.55 20 2
030328 HETE 1.52 26 1.28 0.80 2.34 5
030329 HETE 0.17 27 0.24 0.19 0.29 5
030429 HETE 2.66 28 4.62 2.41 8.25 4
030528 HETE 0.78 29 0.77 0.53 1.14 3
040924 HETE 0.86 30 0.61 0.42 0.91 3
041006 HETE 0.71 31 0.64 0.48 0.89 4
050126 Swift 1.29 32 1.64 1.00 2.91 3
050223 Swift 0.59 33 2.80 0.94 20 1
050315 Swift 1.95 34 0.82 0.45 1.78 3
050401 Swift 2.90 35 2.02 1.23 3.63 4
050406 Swift 2.44 36 1.68 0.71 20 2
050408 HETE 1.24 37 1.43 0.90 2.40 3
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Table 3.3 (cont’d)

GRB Experiment zspec Ref.a zbest zmin zmax Nrel

050416A Swift 0.65 38 0.73 0.43 1.33 2
050505 Swift 4.27 39 2.73 1.68 4.67 4
050525A Swift 0.61 40 0.92 0.71 1.21 5
050603 Swift 2.82 41 1.24 0.69 2.69 2
050730 Swift 3.97 42 > 2.53 2
050802 Swift 1.71 43 1.09 0.61 2.41 3
050814 Swift 5.30 44 2.70 0.89 20.00 2
050820A Swift 2.61 45 2.97 1.96 4.80 4
050824 Swift 0.83 46 0.61 0.30 1.50 1
050826 Swift 0.30 47 > 2.42 2
050908 Swift 3.35 48 2.02 0.84 9.23 2
050922C Swift 2.20 49 1.51 1.20 1.90 5
051016B Swift 0.94 50 0.65 0.32 1.52 2
051022 Konus 0.80 51 0.95 0.66 1.51 3
051109A Swift 2.35 52 1.33 0.74 2.34 3
051111 Swift 1.55 53 1.09 0.79 1.48 4
060108 Swift 2.03 54 2.96 0.74 20 2
060115 Swift 3.53 55 2.63 0.99 20 3
060206 Swift 4.05 56 1.73 0.93 4.02 4
060210 Swift 3.91 57 2.54 1.95 3.97 4
060223A Swift 4.41 58 > 2.06 3
060418 Swift 1.49 59 1.41 0.92 2.25 4
060502A Swift 1.51 60 0.86 0.55 1.37 3
060510B Swift 4.90 61 > 1.72 2
060512 Swift 0.44 62 0.64 0.31 1.69 1
060522 Swift 5.11 63 7.24 1.08 20 1
060526 Swift 3.21 64 3.50 2.07 6.57 5
060604 Swift 2.68 65 2.72 0.97 20 2
060605 Swift 3.80 66 6.79 1.96 20 4
060607A Swift 3.08 67 1.47 0.92 2.48 3
060707 Swift 3.43 68 2.15 0.78 20 2
060714 Swift 2.71 69 3.77 1.09 20 3
060729 Swift 0.54 70 1.66 0.81 3.48 3
060814 Swift 0.84 71 0.93 0.63 1.43 4
060904B Swift 0.70 72 1.89 0.81 5.46 3
060908 Swift 2.43 73 2.13 1.30 3.84 4
060926 Swift 3.21 74 1.44 0.83 2.71 3
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Table 3.3 (cont’d)

GRB Experiment zspec Ref.a zbest zmin zmax Nrel

060927 Swift 5.60 75 3.24 1.81 6.44 4
061007 Swift 1.26 76 0.94 0.65 1.42 4
061110A Swift 0.76 77 > 1.82 1
061110B Swift 3.44 78 8.28 3.35 20 4
061121 Swift 1.31 79 0.79 0.58 1.11 5
061222B Swift 3.36 80 1.10 0.50 3.68 2
070110 Swift 2.35 81 > 1.995 1
070208 Swift 1.17 82 1.76 0.70 10.15 2
070318 Swift 0.84 83 3.42 1.43 18.32 2
070411 Swift 2.95 84 2.73 1.53 4.72 2
070506 Swift 2.31 85 2.73 1.80 4.38 3
070508 Swift 0.82 86 1.25 0.81 2.02 4
070521 Swift 0.55 87 2.08 1.27 3.73 4
070529 Swift 2.50 88 > 1.67 1
070611 Swift 2.04 89 5.55 1.24 20 1
070612A Swift 0.62 90 1.82 0.85 5.61 3
070714B Swift 0.92 91 3.12 1.74 6.97 3
070802 Swift 2.45 92 9.37 1.51 20 1
070810A Swift 2.17 93 1.53 0.97 2.56 3
071003 Swift 1.10 94 0.83 0.56 1.25 4
071010A Swift 0.98 95 0.86 0.38 2.88 1
071010B Swift 0.95 96 0.76 0.53 1.12 4
071031 Swift 2.69 97 1.10 0.52 3.40 2
071117 Swift 1.33 98 1.13 0.76 1.74 3
071122 Swift 1.14 99 > 1.05 1
080210 Swift 2.64 100 2.35 1.37 4.42 4
080310 Swift 2.43 101 1.19 0.60 3.22 3
080319B Swift 0.94 102 1.45 0.95 2.34 4
080319C Swift 1.95 103 3.62 1.31 20 3
080330 Swift 1.51 104 0.79 0.37 1.94 2
080411 Swift 1.03 105 0.51 0.36 0.74 4
080413A Swift 2.43 106 2.42 1.47 4.36 4
080413B Swift 1.10 107 0.73 0.50 1.11 3
080430 Swift 0.77 108 1.56 1.00 2.60 3
080516 Swift 3.20 109 3.62 1.86 7.96 3
080520 Swift 1.55 110 0.52 0.25 1.21 1
080603B Swift 2.69 111 4.55 2.40 9.88 4



61

Table 3.3 (cont’d)

GRB Experiment zspec Ref.a zbest zmin zmax Nrel

080605 Swift 1.64 112 1.06 0.71 1.65 4
080607 Swift 3.04 113 1.32 0.82 2.29 4
080707 Swift 1.23 114 2.35 0.77 20 2
080721 Swift 2.60 115 1.13 0.72 1.86 4

References of Table 3.3. — ( 1 ) Djorgovski et al. 1997; ( 2 ) Metzger et al. 1997; ( 3 )

Djorgovski et al. 2001a; ( 4 ) Kulkarni et al. 1998; ( 5 ) Djorgovski et al. 1998a; ( 6 ) Kelson et

al. 1999; ( 7 ) Bloom et al. 2003a; ( 8 ) Vreeswijk et al. 1999a; ( 9 ) Le Floc’h et al. 2002; ( 10 )

Dodonov et al. 1999; ( 11 ) Vreeswijk et al. 1999b; ( 12 ) Andersen et al. 2000; ( 13 ) Piro et al.

2002; ( 14 ) Price et al. 2002b; ( 15 ) Fynbo et al. 2000; ( 16 ) Calkins 2000; ( 17 ) Djorgovski et

al. 2001b; ( 18 ) Hjorth et al. 2003; ( 19 ) Masetti et al. 2002; ( 20 ) Price et al. 2002a; ( 21 )

Chornock & Filippenko 2002; ( 22 ) Vreeswijk et al. 2002; ( 23 ) Levan et al. 2006; ( 24 ) Price et

al. 2003b; ( 25 ) Vreeswijk et al. 2003; ( 26 ) Martini et al. 2003; ( 27 ) Greiner et al. 2003; ( 28

) Weidinger et al. 2003; ( 29 ) Rau, Salvato, & Greiner 2005; ( 30 ) Wiersema et al. 2004; ( 31 )

Fugazza et al. 2004; ( 32 ) Berger et al. 2005a; ( 33 ) Berger & Min-Su Shin 2006; ( 34 ) Kelson &

Berger 2005; ( 35 ) Fynbo et al. 2005a; ( 36 ) Schady et al. 2006; ( 37 ) Berger et al. 2005c; ( 38 )

Cenko et al. 2005; ( 39 ) Berger et al. 2005b; ( 40 ) Foley et al. 2005; ( 41 ) Berger & Becker 2005;

( 42 ) Chen et al. 2005; ( 43 ) Fynbo et al. 2005b; ( 44 ) Jakobsson et al. 2005b; ( 45 ) Prochaska

et al. 2005b; ( 46 ) Fynbo, et al. 2005c; ( 47 ) Halpern & Mirabal et al. 2005; ( 48 ) Fugazza et

al. 2005; ( 49 ) Jakobsson et al. 2005a; ( 50 ) Soderberg et al. 2005; ( 51 ) Gal-Yam et al. 2005;

( 52 ) Quimby et al. 2005; ( 53 ) Hill et al. 2005; ( 54 ) Melandri et al. 2006; ( 55 ) Piranomonte

et al. 2006; ( 56 ) Fynbo et al. 2006a; ( 57 ) Cucchiara et al. 2006a; ( 58 ) Berger et al. 2006a;

( 59 ) Dupre et al. 2006; ( 60 ) Cucchiara et al. 2006b; ( 61 ) Price et al. 2006; ( 62 ) Bloom et

al. 2006a; ( 63 ) Cenko et al. 2006b; ( 64 ) Berger & Gladders 2006; ( 65 ) Castro-Tirado et al.

2006; ( 66 ) Peterson et al. 2006; ( 67 ) Ledoux et al. 2006; ( 68 ) Jakobsson et al. 2006a; ( 69 )
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Jakobsson et al. 2006b; ( 70 ) Thoene et al. 2006a; ( 72 ) Fugazza et al. 2006; ( 73 ) Rol et al.

2006; ( 74 ) D’Elia, et al. 2006; ( 75 ) Fynbo et al. 2006b; ( 76 ) Osip et al. 2006; ( 77 ) Thoene et

al. 2006b; ( 78 ) Fynbo et al. 2006c; ( 79 ) Bloom et al. 2006; ( 80 ) Berger 2006; ( 81 ) Jaunsen et

al. 2007a; ( 82 ) Cucchiara et al. 2007; ( 83 ) Jaunsen et al. 2007b; ( 84 ) Jakobsson et al. 2007a;

( 85 ) Thoene et al. 2007a; ( 86 ) Jakobsson et al. 2007b; ( 87 ) Hattori et al. 2007; ( 88 ) Berger

et al. 2007; ( 89 ) Thoene et al. 2007b; ( 90 ) Cenko et al. 2007a; ( 91 ) Graham et al. 2007; ( 92

) Prochaska et al. 2007a; ( 93 ) Thoene et al. 2007c; ( 94 ) Perley et al. 2007; ( 95 ) Prochaska, J.

X. et al. 2007b; ( 96 ) Cenko et al. 2007b; ( 97 ) Ledoux et al. 2007; ( 98 ) Jakobsson et al. 2007c;

( 99 ) Cucchiara et al. 2007b; ( 100 ) Jakobsson et al. 2008a; ( 101 ) Prochaska, et al. 2008a; (

102 ) Vreeswijk et al. 2008a; ( 103 ) Wiersema et al. 2008; ( 104 ) Malesani et al. 2008; ( 105 )

Thoene et al. 2008a; ( 106 ) Thoene et al. 2008b; ( 107 ) Vreeswijk et al. 2008b; ( 108 ) Cucchiara

& Fox 2008; ( 109 ) Filgas et al. 2008; ( 110 ) Jakobsson et al. 2008b; ( 111 ) Fynbo et al. 2008a;

( 112 ) Jakobsson et al. 2008c; ( 113 ) Prochaska, et al. 2008b; ( 114 ) Fynbo et al. 2008b; ( 115 )

D’Avanzo et al. 2008;

(4) To test the accuracy of our zbest comparing with the zspec, we calculated the RMS

scatter of log10(zbest/zspec). The result comes out to be 0.26, while the RMS scatter of

log10(zspec) is 0.30. In Schaefer (2007) it was pointed out that the accuracy of the redshift

estimation is 26% (corresponding to a log10(zbest/zspec) RMS of 0.11), which is better than

what we are claiming here. The reason for the larger RMS scatter is, although we are

dealing with the GRBs with known zspec, we are not making any use of the zspec in our

whole calculation, and our luminosity L, luminosity distance dL, distance modulus µind,

as well as the bolometric flux and fluence Pbolo and Sbolo are all varying with our trial

redshift. This brought us one extra degree of freedom in the calculation, which caused larger

uncertainties in our result. When the known zspec value is used (as for the Hubble diagram

work in Schaefer 2007), the scatter becomes substantially small as compared to our work
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in this paper. Another reason for the large RMS is because it is mostly dominated by the

very noisy bursts (those bursts with low signal to noise ratio, inaccurate measurement of

luminosity indicators, and large error bars for zbest results), which are not able to be used

for the notification of the redshifts. If we make a selection on bursts with relatively accurate

redshift estimation, say bursts with σzminus/zbest < 0.5 and σzplus/zbest < 1, we get the RMS

of log(zbest/zspec) of 0.19, which is much smaller, and the RMS scatter of log10(zspec) for this

subsample is 0.28.

(5)We made the same calculation with pre-Swift luminosity relations for calculating Swift

redshifts and Swift luminosity relations for calculating pre-Swift redshifts, which we call

zbest,II . Our calculation of zbest,II is totally independent of the spectroscopic redshifts, as for

each burst, the luminosity relations used in the calculation are calibrated independent of the

zspec for any individual burst. The comparison between zbest and zbest,II will also show the

difference between Swift and pre-Swift luminosity relations. The comparison plot between

zspec and zbest,II is shown on Figure 3.3. From the comparison between Figure 3.3 and Figure

3.2 we see that, the scatter and distribution of zbest and zbest,II do not differ significantly

from each other. Actually, from our calculation, the average value of log10(zbest,II/zspec) is

-0.02, and the RMS scatter of log10(zbest,II/zspec) is 0.27, both of which are equal to those of

our zbest value within error bars. This result demonstrate that those two sets of zbest values

do not differ from each other, which means that these two sets of luminosity relations do

not have significant difference. It also tells us that the effect of redshift involved in our

calculation (in fitting luminosity relations) is negligible.

(6)We need to verify whether our result is effective in selecting high redshift bursts. If our

predicted redshift is z, the possibility of a real redshift to be higher than z and lower than z

are both 50%, which cannot be used as a test. However, by considering our uncertainties of

zbest, if our predicted redshift is 2z, we can make a test by counting how many of the GRBs

are with real redshifts larger than z. As there are not many bursts with high redshifts, a
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Figure 3.3 We made a comparison between our zbest and zbest,II . zbest,II are the calculated
redshift values when we apply Swift luminosity relations on pre-Swift data and pre-Swift
relations on Swift data. The analysis on zspec,II and zspec data shows that the average value
of log10(zbest,II/zspec) is -0.02, and the RMS scatter of log10(zbest,II/zspec) is 0.27, both of
which are equal to those of our zbest value within error bars. From this we see that these
two sets of redshifts do not differ much from each other, which also means that the pre-Swift
luminosity relations and Swift luminosity relations do not have significant difference. It also
tells us that the effect of redshift involved in our calculation is negligible.
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test is done on a relatively lower redshift region, where most of the GRBs are involved. We

picked up all our GRBs with predicted z > 4, the total number is 12, and 0 out of 12 have

their spectroscopic redshift z < 2. This result tells us that our method is actually effective

in demographic studies and in picking up high z bursts, if we take into account the error

bars before we make the prediction.

From all the analysis above, we can conclude that our zbest is not biased on average, and

our 1 − σ error bars are accurate. We can claim that our method works well on the bursts

with known spectroscopic redshifts, and can be applied to all long GRBs (even without their

zspec measured).

3.3 Swift GRB Redshift Catalog

3.3.1 Our Data

We collected all the Swift GRBs from 2004, December 20 (GRB041220) to 2008, July 23

(GRB080723A). Most of the data are downloaded from the legacy ftp site3, and the Swift

software ver 2.9 (HEAsoft 6.5) is used.

The total number of GRBs within the time range is 339. Several types of GRBs are

not included in our catalog, which are listed as below. Some of these GRBs are those with

short time duration and hard spectrum, which are classified in the short-duration class.

These short-duration GRBs do not follow the luminosity relations that we are using in our

analysis, and we are not able to generate their redshifts from the light curve and spectrum.

Some of the GRBs are reported by the detection from the ground analysis or from the Swift

BAT slew survey, for which the BAT light curve can not be obtained from either of these

sources listed above. Some of the bursts are marked as ’possible burst’ in their original

discovery. These bursts either have abnormal light curves, or the signal to noise ratio is too

low to be identified as a burst. Some of the bursts are originally included in our sample, and

3ftp://legacy.gsfc.nasa.gov/swift/data/obs
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were later found out to be too noisy or too faint that no useful information can be obtained

from the light curve and the spectrum. By excluding all the these GRBs listed above, the

number of remaining GRBs in our catalog is 277. Bursts not included in our catalog are

listed in Table 3.4. Of those 277 bursts, 83 have their spectroscopic/photometric redshift

reported, which accounts for about 30% of the sample. Redshifts of bursts with multiple or

conflicted reported values are not counted.

Epeak values as well as the power law indexes α and β are drawn from various sources, and

the remaining luminosity indicators (τlag, V , τRT and Npeak) are directly calculated from the

light curves. Peak flux P and fluence S values between energy band 15 keV to 150 keV with

90% measurement errors are all downloaded from the Swift data table4. To be consistent in

our whole calculation, we converted the 90% measurement error to 1 − σ errors. All of the

indicator values and their sources are listed in Table 3.6.

3.3.2 Our Redshift Measurements

Besides our method of measuring GRB redshift through the luminosity indicators and rela-

tions, we also collected some other information which will be useful to make an estimation

or a constraint on the GRB redshift. These information are mostly from the UVOT detec-

tion and from the community with photometric or spectroscopic observations of the GRB

afterglow.

As described in the first section, Swift is a multi-wavelength GRB detection satellite which

has fast localizing with a wide field Gamma ray alert instrument BAT, and two narrow field

fast responding instrument in X-ray and UV/optical bands (XRT and UVOT). The accurate

position is then distributed to the community through GCN, and large ground telescopes

will be able to make their own observations. With the analysis of the spectroscopic features

(e.g. absorption lines) of the afterglows, redshifts of the GRBs are measured, with relatively

4http://swift.gsfc.nasa.gov/docs/swift/archive/grb table/
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high accuracy. We collected all the reported spectroscopic redshifts from the GCN Circulars

archive and the literature. Some of the GRBs have multiple or conflicted redshifts reported

and we did not include them. All the spectroscopic redshifts and their sources are listed in

Table 3.7.

Detections from optical telescopes are also used to put the upper limit on redshifts of

given GRBs. As we know, in the rest frame of a GRB, a complete break exists in the

spectrum at a wavelength of around 912Å due to the ionization edge of hydrogen, known as

the Lyman break. In the observers’ rest frame, this 912Å Lyman break line will be redshifted.

The wavelength of the break line λ would be

λ = 912Å× (1 + z), (3.8)

where z is the redshift of the GRB. For GRBs with z > 1, the Lyman break line will be

redshifted to the optical and observable ultraviolet region. If we search through the optical

and observable UV detections and find the break at wavelength λ, the photometric redshift

will be

zphot = λ/912Å− 1. (3.9)
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Table 3.4. Bursts not included in our catalog.

GRBs Cause GRBs Cause

050202 short burst 050318 incomplete light curve
050507 incomplete light curve 050509B short burst
050724 short burst 050813 short burst
050906 short burst 050911 short burst
050922B too noisy 050925 short bursta

051012 ground analysis discovery 051105A short burst
051114 ground analysis discovery 051210 short burst
051221A short burst 051227 possibly short burst
060123 BAT no trigger 060124 incomplete light curve
060218 incomplete light curve 060219 too noisy
060313 short burst 060323 incomplete light curve
060502B short burst 060505 possible short burst
060516 too noisy 060614 possible short burst
060728 questionable burst 060801 short burst
060906 too noisye 061006 short burst
061027 questionable burst 061201 short burst
061210 short burst 061217 short burst
061218 too noisy 070126 too noisy
070129 too noisy 070209 short burst
070224 too noisy 070227 ground analysis discovery
070326 BATSSc 070406 short burst
070419A too noisy 070429B short burst
070610 questionable burst 070714B short burstb

070724A short burst 070729 short burst
070809 possible short burst 070810B short burst
070923 short burst 071006 ground analysis discovery
071010C ground analysis discovery 071013 too noisy
071018 questionable burst 071028A too noisy
071028B ground analysis discovery 071112B short burst
071112C no event files 071118 too noisy
071227 possible short burst 080121 short burstd

080123 short burst 080129 too noisy
080130 BATSSd 080207 too noisy
080218A too noisy 080315 questionable burst
080325 too noisy 080405 ground analysis discovery
080503 short burstb 080524 ground analysis discovery
080604 too noisy 080702A short burst
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Table 3.4 (cont’d)

GRBs Cause GRBs Cause

080702B BATSSc 080710 too noisy

asuggested a probable Soft Gamma-Ray
Reperter

bshort hard burst with long extended
emissions

cSwift BAT slew survey discovery

dbelow Swift threshold
epossible incomplete light curve

In most cases, optical fluxes are detected in some energy band (e.g. R), and not in the

adjacent energy band (e.g. V). It might be because the Lyman break is somewhere between

V and R band, in which case the photometric redshift of the GRB can be determined. There

are some other factors that might affect the results, e.g. detection time after the discovery

of the burst (the afterglow fades fast after the burst), magnitude limit of the detection (no

detection in some certain energy band might be just because the detector cannot go deep

enough), etc. As a result, we cannot simply claim that the Lyman break is between energy

bands R and V. What we can claim is that at least the Lyman break is redshifted to a

wavelength which is shorter than the typical wavelength of R band, because at least the

Lyman break did not show up in R band. In this case, an upper limit on λ and hence the

redshift of the GRB can be calculated. It is complex to choose the wavelength of each energy

band that can produce a detection. To be conservative, we take the maximum wavelength

of the bluest band with afterglow detection as the limit wavelength of the Lyman break, and

a loose limit on the redshift of the GRB is then calculated from equation (2), the maximum

wavelength for each energy band and the corresponding redshift limits are listed in Table
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Table 3.5. Optical Detection Redshift Limit

Energy Band Typical Wavelength Redshift Limit

R 6900 6.57
V 5500 5.03
B 4300 3.71
U 3500 2.84
W1 2500 1.74
M2 2200 1.41
W2 1900 1.08
g’ 4900 4.37
r’ 6300 5.91
I’ 7700 7.44
z’ 8800 8.65

3.5. The first column of the table is the energy band. The second is the typical wavelength

we choose, and the third column is the corresponding redshift upper limit for the GRB.

In our work, we collected all the reported optical detections of each GRB, most of which

are UVOT detections of Swift, and the others are typically from various ground telescopes.

The energy bands that UVOT is using are V, B, U, UVW1, UVM2, and UVW2, from long

to short wavelength. Other energy band that have been using by ground telescopes are the

sloan filters i’, r’, g’, u’. All the redshift limits from the photometric observations are shown

in Table 5, labeled as zphot,lim.

3.3.3 Our Results

For those bursts with spectroscopic redshifts, we made a cumulative redshift distribution

comparison plot for zspec and our zbest, as shown in Figure 3.4. The figure shows slight differ-

ence between these two cumulative distributions. By running a Kolmogorov-Smirnov test,

we find that the maximum difference between these two cumulative distribution functions

is 0.15, and the p value for the test is 0.30. The difference between these two cumulative
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Figure 3.4 Redshift distribution plot for GRBs with spectroscopic redshift. The comparison
is made between zspec and our zbest. The figures show no big difference between these two
cumulative distributions. By running a Kolmogorov-Smirnov test between these two dis-
tribution, we find that the maximum difference between these two cumulative distribution
function is 0.15, and the p value for the test is 0.30, which means that these two cumula-
tive distributions agree well with each other, hence it is evidence to show that our redshift
distribution is not biased.

distribution plot is mostly contributed by the high redshift tail, where the typical offset is

about 5%. This high redshift tail is simply caused by the random offset of our zbest on zspec,

which is mainly caused by the noise effect. This effect is simulated by running a Monte Carlo

process.



72
T

ab
le

3.
6.

L
u
m

in
os

it
y

In
d
ic

at
or

s.

G
R
B

τ l
a
g
(s
ec

)
V

ar
ia

bi
lit

y
τ R

T
(s

ec
)

N
p
ea
k

E
p
ea
k
(k

eV
)a

α
a

β
a

R
ef

.
t j
et

(d
ay

)
R

ef
.

04
12

20
0.

35
±

0.
03

0.
03

5
±

0.
01

1
0.

21
±

0.
09

1
92

+
2
0

−
2
0

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

04
12

23
0.

09
±

0.
01

0.
12

3
±

0.
00

3
0.

29
±

0.
04

8
40

0+
2
4
2

−
6
1

0.
9
±

0.
06

[-
2.

2]
±

[0
.4

]
2

..
.

..
.

04
12

24
0.

54
±

0.
42

0.
05

7
±

0.
01

2
0.

65
±

0.
80

3
74

+
1
0

−
5

-1
.1
±

0.
18

[-
2.

2]
±

[0
.4

]
3

..
.

..
.

04
12

26
..

.
-0

.0
74
±

0.
09

1
1.

35
±

1.
08

1
17

1+
1
1
7

−
1
1
7

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

04
12

28
..

.
0.

00
1
±

0.
02

0
1.

28
±

1.
26

2
10

5+
1
9

−
1
9

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

05
01

17
0.

14
±

0.
02

0.
32

1
±

0.
01

5
0.

77
±

0.
25

14
14

3+
6
5

−
2
0

-1
.2
±

0.
12

[-
2.

2]
±

[0
.4

]
3

..
.

..
.

05
01

24
0.

03
±

0.
02

0.
03

9
±

0.
00

8
0.

15
±

0.
04

2
95

+
2
4

−
1
0

0.
7
±

0.
24

[-
2.

2]
±

[0
.4

]
3

..
.

..
.

05
01

26
2.

74
±

0.
02

-0
.0

10
±

0.
06

5
1.

58
±

1.
91

1
47

+
2
3

−
8

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
4

..
.

..
.

05
01

28
-0

.0
6
±

0.
03

0.
15

2
±

0.
01

6
0.

58
±

0.
36

4
11

3+
2
8

−
1
2

-0
.7
±

0.
24

[-
2.

2]
±

[0
.4

]
3

..
.

..
.

05
02

15
A

..
.

0.
14

6
±

0.
10

0
..

.
2

14
7+

6
1

−
6
1

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

05
02

15
B

..
.

0.
90

0
±

1.
03

0
..

.
1

18
+

6
−

1
3

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
5

..
.

..
.

05
02

19
A

1.
99
±

0.
21

0.
01

3
±

0.
00

7
4.

09
±

1.
01

1
92

+
7
−

5
-0

.1
±

0.
18

[-
2.

2]
±

[0
.4

]
3

..
.

..
.

05
02

19
B

0.
97
±

0.
03

0.
03

6
±

0.
00

5
0.

59
±

0.
17

3
10

8+
2
1

−
1
0

-1
±

0.
18

[-
2.

2]
±

[0
.4

]
3

..
.

..
.

05
02

23
..

.
0.

11
1
±

0.
09

4
..

.
1

62
+

[1
0
]

−
[1

0
]

-1
.4

6
±

[0
.1

]
[-

2.
2]
±

[0
.4

]
6

..
.

..
.

05
03

06
..

.
0.

13
4
±

0.
02

5
..

.
6

14
0+

7
3

−
1
8

-0
.9
±

0.
18

[-
2.

2]
±

[0
.4

]
2

..
.

..
.

05
03

15
..

.
0.

03
2
±

0.
01

6
1.

97
±

1.
62

2
39

+
7
−

7
[-

1.
1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

b
78

,
79

,
80

05
03

26
0.

12
±

0.
01

0.
15

1
±

0.
00

5
0.

40
±

0.
04

3
20

1+
1
5

−
1
5

-0
.7

4
±

0.
05

-2
.4

9
±

0.
1

7
..

.
..

.
05

04
01

0.
06
±

0.
02

0.
18

7
±

0.
01

9
0.

25
±

0.
16

3
11

8+
1
8

−
1
8

-0
.9
±

0.
3

-2
.5

5
±

0.
3

8
c

78
,

81
,

82
05

04
06

..
.

0.
02

0
±

0.
27

4
..

.
2

25
+

3
5

−
1
3

[-
1.

1]
±

[0
.4

]
-2

.5
6
±

0.
35

9
..

.
..

.
05

04
10

..
.

-0
.0

13
±

0.
02

9
..

.
3

74
+

1
2

−
5

-0
.8
±

0.
24

[-
2.

2]
±

[0
.4

]
3

..
.

..
.

05
04

12
..

.
0.

09
3
±

0.
05

4
2.

86
±

5.
59

1
17

06
+

8
9
0

−
8
9
0

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

05
04

16
A

..
.

0.
02

1
±

0.
03

0
0.

54
±

0.
06

1
15

+
2
−

3
[-

1.
1]
±

[0
.4

]
-3

.4
±

0.
4

10
c

78
,

81
,

82
05

04
16

B
0.

56
±

0.
01

0.
02

4
±

0.
01

4
0.

10
±

0.
01

1
94

+
4
0

−
1
1

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
3

..
.

..
.

05
04

18
0.

84
±

0.
10

0.
01

2
±

0.
00

5
2.

98
±

0.
27

4
13

0+
6
2
4

−
2
4

-1
.3
±

0.
18

[-
2.

2]
±

[0
.4

]
2

..
.

..
.

05
04

21
..

.
0.

08
7
±

0.
36

1
..

.
2

11
6+

7
2

−
7
2

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

05
04

22
..

.
0.

06
4
±

0.
09

1
..

.
2

16
6+

5
4

−
5
4

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

05
05

02
B

0.
47
±

0.
04

0.
02

9
±

0.
01

4
1.

04
±

0.
31

1
10

8+
2
6

−
2
6

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

05
05

05
0.

71
±

0.
13

0.
07

6
±

0.
03

1
0.

60
±

0.
21

3
70

+
1
4
0

−
2
4

-0
.3

1
±

1
[-

2.
2]
±

[0
.4

]
4

bc
79

,
62



73
T

ab
le

3.
6

(c
on

t’
d
)

G
R
B

τ l
a
g
(s
ec

)
V

ar
ia

bi
lit

y
τ R

T
(s

ec
)

N
p
ea
k

E
p
ea
k
(k

eV
)a

α
a

β
a

R
ef

.
t j
et

(d
ay

)
R

ef
.

05
05

09
A

0.
39
±

0.
12

0.
04

8
±

0.
04

3
..

.
2

39
+

9
−

9
[-

1.
1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

05
05

25
A

0.
12
±

0.
01

0.
09

3
±

0.
00

3
0.

32
±

0.
01

2
81

+
1
−

1
-1

.0
1
±

0.
06

-3
.2

6
±

0.
2

8
0.

40
±

0.
10

78
,

83
05

05
28

..
.

0.
01

7
±

0.
11

7
..

.
3

30
+

9
−

9
[-

1.
1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

05
06

03
-0

.0
1
±

0.
01

0.
12

5
±

0.
01

4
0.

19
±

0.
01

1
34

4+
5
2

−
5
2

-1
.0

3
±

0.
06

-2
.0

3
±

0.
1

8
d

84
,

81
,

82
05

06
07

0.
85
±

0.
13

0.
04

1
±

0.
03

4
0.

54
±

0.
37

4
55

+
1
3

−
1
3

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

05
07

01
..

.
0.

02
4
±

0.
00

6
0.

47
±

0.
15

1
85

+
1
6

−
1
6

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

05
07

12
..

.
-0

.0
15
±

0.
16

9
..

.
2

13
3+

4
0

−
4
0

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

05
07

13
A

0.
01
±

0.
07

0.
02

7
±

0.
00

6
0.

64
±

0.
17

3
31

2+
3
0

−
3
0

-1
.1

2
±

0.
05

[-
2.

2]
±

[0
.4

]
11

..
.

..
.

05
07

13
B

..
.

0.
05

3
±

0.
10

1
..

.
1

17
5+

5
3

−
5
3

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

05
07

14
B

..
.

-0
.6

48
±

0.
67

2
..

.
1

23
+

7
−

7
[-

1.
1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

05
07

15
..

.
0.

08
1
±

0.
05

0
0.

93
±

0.
57

3
10

5+
2
6

−
2
6

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

05
07

16
..

.
0.

03
4
±

0.
01

7
3.

23
±

2.
55

4
12

3+
3
7

−
1
5

-0
.8
±

0.
18

[-
2.

2]
±

[0
.4

]
3

..
.

..
.

05
07

17
0.

01
±

0.
04

0.
10

4
±

0.
00

7
0.

20
±

0.
02

1
18

90
+

9
7
0

−
4
6
1

−
1.

12
+

0
.0

8
−

0
.1

0
−

1.
71

+
0
.1

3
−

0
.5

8
12

..
.

..
.

05
07

21
..

.
0.

01
1
±

0.
04

9
..

.
1

57
+

1
3

−
1
3

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

05
07

26
..

.
0.

01
8
±

0.
09

1
..

.
1

84
2+

4
4
5

−
4
4
5

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

05
07

30
..

.
0.

02
7
±

0.
06

6
..

.
2

12
4+

2
6

−
2
6

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

0.
12

ef
78

05
08

01
..

.
-0

.0
38
±

0.
07

3
..

.
1

48
+

1
5

−
1
5

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

0.
00

22
±

0.
00

02
f

22
05

08
02

..
.

0.
07

0
±

0.
03

6
2.

03
±

1.
02

4
12

1+
2
8

−
2
8

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

05
08

03
..

.
..

.
0.

06
±

0.
03

5
18

0+
4
0

−
4
0

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

b
79

05
08

14
..

.
-0

.0
09
±

0.
18

0
..

.
2

60
+

2
4

−
6

0
±

0.
6

[-
2.

2]
±

[0
.4

]
2

b
79

05
08

15
..

.
0.

04
7
±

0.
09

5
..

.
1

44
+

5
−

4
-0

.9
±

1.
15

[-
2.

2]
±

[0
.4

]
3

..
.

..
.

05
08

19
..

.
0.

15
1
±

0.
34

1
..

.
1

16
+

5
−

5
[-

1.
1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

05
08

20
A

..
.

0.
06

1
±

0.
03

3
1.

01
±

0.
75

3
24

6+
7
6

−
4
0

-1
.2

5
±

0.
1

[-
2.

2]
±

[0
.4

]
8

18
g ±

2.
00

76
05

08
20

B
0.

15
±

0.
03

0.
02

2
±

0.
00

3
1.

41
±

0.
05

1
11

1+
1
3

−
8

-0
.6
±

0.
12

[-
2.

2]
±

[0
.4

]
3

..
.

..
.

05
08

22
..

.
0.

12
4
±

0.
09

0
..

.
3

26
+

5
−

5
[-

1.
1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

05
08

24
..

.
0.

28
9
±

0.
64

0
..

.
1

15
+

5
−

5
[-

1.
1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

05
08

26
..

.
0.

06
3
±

0.
10

5
1.

11
±

2.
28

1
10

5+
4
7

−
4
7

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

05
08

27
..

.
0.

06
0
±

0.
01

3
4.

46
±

1.
26

1
18

0+
3
8

−
3
8

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.



74
T

ab
le

3.
6

(c
on

t’
d
)

G
R
B

τ l
a
g
(s
ec

)
V

ar
ia

bi
lit

y
τ R

T
(s

ec
)

N
p
ea
k

E
p
ea
k
(k

eV
)a

α
a

β
a

R
ef

.
t j
et

(d
ay

)
R

ef
.

05
09

04
..

.
0.

04
4
±

0.
07

9
..

.
1

43
6+

2
0
0

−
9
0

-1
.1

1
±

0.
06

[-
2.

2]
±

[0
.4

]
8

2.
60
±

1.
00

65
05

09
08

..
.

-0
.0

17
±

0.
04

6
1.

10
±

1.
47

1
41

+
9
−

5
[-

1.
1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
4

..
.

..
.

05
09

15
A

..
.

0.
18

5
±

0.
06

9
0.

48
±

0.
65

6
17

5+
5
3

−
5
3

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

05
09

15
B

0.
29
±

0.
24

0.
02

8
±

0.
01

3
1.

06
±

0.
64

3
61

+
1
0

−
5

-1
.4
±

0.
18

[-
2.

2]
±

[0
.4

]
3

..
.

..
.

05
09

16
..

.
..

.
..

.
1

75
+

2
2

−
2
2

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

05
09

22
C

0.
06
±

0.
01

0.
01

5
±

0.
00

3
0.

13
±

0.
01

2
19

8+
3
8

−
2
2

-0
.9

5
±

0.
07

[-
2.

2]
±

[0
.4

]
8

0.
11
±

0.
03

66
05

10
01

..
.

0.
00

8
±

0.
06

8
..

.
1

48
+

1
2

−
6

-1
.2
±

0.
42

[-
2.

2]
±

[0
.4

]
2

..
.

..
.

05
10

06
0.

19
±

0.
03

0.
28

1
±

0.
05

7
..

.
3

13
0+

3
7

−
3
7

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

05
10

08
0.

03
±

0.
05

0.
02

9
±

0.
00

4
1.

16
±

0.
19

1
86

5+
1
0
8

−
8
2

-0
.9

75
±

0.
05

[-
2.

2]
±

[0
.4

]
13

b
79

05
10

16
A

..
.

0.
00

2
±

0.
06

5
1.

33
±

1.
56

1
58

+
2
0

−
2
0

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

05
10

16
B

..
.

0.
00

8
±

0.
03

0
..

.
2

24
+

7
−

7
[-

1.
1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

b
78

05
10

21
B

1.
46
±

0.
01

0.
02

0
±

0.
04

0
2.

27
±

1.
32

2
72

+
2
7

−
8

-0
.6
±

0.
48

[-
2.

2]
±

[0
.4

]
3

..
.

..
.

05
11

09
A

..
.

-0
.0

06
±

0.
02

5
0.

70
±

1.
25

1
16

1+
1
3
0

−
3
5

−
1.

25
+

0
.2

7
−

0
.3

6
[-

2.
2]
±

[0
.4

]
14

0.
60
±

0.
10

67
05

11
09

B
..

.
0.

06
2
±

0.
09

5
2.

11
±

3.
96

1
50

+
2
4

−
6

0
±

0.
61

[-
2.

2]
±

[0
.4

]
2

..
.

..
.

05
11

11
1.

70
±

0.
07

0.
00

9
±

0.
00

4
1.

80
±

0.
24

1
22

0+
1
7
0
3

−
4
8

-1
±

0.
18

[-
2.

2]
±

[0
.4

]
2

0.
00

80
±

0.
00

03
68

05
11

13
1.

24
±

0.
70

0.
04

4
±

0.
03

6
1.

15
±

0.
40

1
81

+
1
9

−
1
9

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

05
11

17
A

..
.

0.
02

0
±

0.
02

4
5.

52
±

8.
71

2
66

+
1
1

−
1
1

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

05
11

17
B

..
.

-0
.0

01
±

0.
23

2
0.

91
±

0.
72

1
12

4+
5
8

−
5
8

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

05
12

13
..

.
0.

16
5
±

0.
16

7
..

.
2

70
+

2
1
8

−
1
2

-0
.6
±

0.
55

[-
2.

2]
±

[0
.4

]
2

..
.

..
.

05
12

21
B

..
.

0.
04

9
±

0.
13

7
..

.
1

20
0+

6
8

−
6
8

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

06
01

02
1.

12
±

0.
15

0.
09

4
±

0.
09

3
0.

90
±

0.
88

1
27

3+
1
9
3

−
1
9
3

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

06
01

05
0.

01
±

0.
01

0.
09

8
±

0.
00

4
0.

12
±

0.
01

15
39

6+
2
9

−
2
9

−
0.

79
+

0
.0

4
−

0
.0

3
−

2.
7+

0
.2

1
−

0
.4

4
15

b
79

06
01

08
..

.
0.

00
6
±

0.
04

0
..

.
2

65
+

6
0
0

−
1
0

[-
1.

1]
±

0.
4

[-
2.

2]
±

[0
.4

]
6

..
.

..
.

06
01

09
..

.
-0

.0
42
±

0.
17

3
..

.
2

31
+

4
−

3
[-

1.
1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
2

b
79

06
01

10
0.

95
±

0.
13

0.
01

7
±

0.
00

8
0.

64
±

0.
14

1
96

+
1
7

−
1
7

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

06
01

11
A

0.
58
±

0.
18

0.
00

2
±

0.
00

7
1.

09
±

0.
66

1
74

+
1
2

−
6

-0
.9
±

0.
18

[-
2.

2]
±

[0
.4

]
3

..
.

..
.

06
01

11
B

..
.

0.
12

1
±

0.
04

2
0.

32
±

0.
31

4
55

5+
1
1
3

−
1
1
3

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

06
01

15
..

.
0.

01
9
±

0.
02

9
1.

11
±

1.
71

2
62

+
1
9

−
6

-1
±

0.
3

[-
2.

2]
±

[0
.4

]
16

..
.

..
.



75

T
ab

le
3.

6
(c

on
t’

d
)

G
R
B

τ l
a
g
(s
ec

)
V

ar
ia

bi
lit

y
τ R

T
(s

ec
)

N
p
ea
k

E
p
ea
k
(k

eV
)a

α
a

β
a

R
ef

.
t j
et

(d
ay

)
R

ef
.

06
01

16
..

.
0.

04
7
±

0.
11

7
..

.
4

13
9+

4
0
0

−
3
6

-1
.0

2
±

0.
38

[-
2.

2]
±

[0
.4

]
6

..
.

..
.

06
01

17
0.

04
±

0.
01

0.
08

4
±

0.
00

3
0.

22
±

0.
01

3
89

+
3
−

3
−

1.
52

+
0
.0

5
−

0
.0

4
−

2.
91

+
0
.1

5
−

0
.3

0
17

..
.

..
.

06
02

02
..

.
0.

25
0
±

0.
16

6
..

.
3

83
+

1
8

−
1
8

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

06
02

03
..

.
0.

00
1
±

0.
27

5
..

.
2

10
3+

3
6

−
3
6

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

06
02

04
B

0.
50
±

0.
28

0.
03

1
±

0.
01

4
8.

62
±

4.
09

1
10

0+
4
5

−
1
3

-0
.8
±

0.
24

[-
2.

2]
±

[0
.4

]
3

b
79

06
02

06
0.

01
±

0.
03

0.
00

7
±

0.
00

4
1.

16
±

0.
18

1
78

+
2
3

−
8

-1
.2
±

0.
18

[-
2.

2]
±

[0
.4

]
3

0.
57
±

0.
06

69
,

85
06

02
10

0.
15
±

0.
17

0.
18

3
±

0.
03

3
0.

73
±

0.
50

4
14

9+
4
0
0

−
3
5

-1
.1

8
±

0.
03

[-
2.

2]
±

[0
.4

]
6

bh
70

,
85

06
02

11
A

..
.

-0
.0

97
±

0.
10

1
..

.
3

58
+

1
1

−
5

-0
.9
±

0.
36

[-
2.

2]
±

[0
.4

]
3

..
.

..
.

06
02

11
B

..
.

0.
03

2
±

0.
07

9
0.

50
±

1.
07

2
11

3+
3
7

−
3
7

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

06
02

23
A

..
.

0.
03

6
±

0.
02

1
0.

41
±

0.
23

4
71

+
1
0
0

−
1
0

-1
.1

8
±

0.
31

[-
2.

2]
±

[0
.4

]
6

..
.

..
.

06
02

23
B

0.
03
±

0.
03

0.
06

8
±

0.
01

0
0.

12
±

0.
03

3
13

6+
2
4

−
2
4

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

06
03

06
0.

09
±

0.
01

0.
05

0
±

0.
00

8
0.

19
±

0.
01

3
70

+
5
5

−
6

-1
.2
±

0.
3

[-
2.

2]
±

[0
.4

]
2

..
.

..
.

06
03

12
..

.
0.

02
1
±

0.
01

1
0.

22
±

0.
94

2
63

+
1
3

−
1
3

-1
.3

5
±

0.
21

[-
2.

2]
±

[0
.4

]
18

..
.

..
.

06
03

19
1.

78
±

0.
17

0.
04

0
±

0.
05

2
0.

52
±

0.
41

1
27

+
8
−

8
[-

1.
1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

06
03

22
0.

29
±

0.
19

0.
16

5
±

0.
01

4
0.

71
±

1.
29

3
96

+
5
5

−
1
1

-1
.1
±

0.
18

[-
2.

2]
±

[0
.4

]
3

..
.

..
.

06
04

03
2.

38
±

0.
25

0.
00

1
±

0.
01

4
2.

33
±

1.
04

1
17

0+
1
2
1

−
3
0

-0
.4
±

0.
24

[-
2.

2]
±

[0
.4

]
2

..
.

..
.

06
04

13
..

.
0.

00
4
±

0.
01

0
11

.1
0
±

3.
91

1
88

+
1
6

−
1
6

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

b
79

06
04

18
0.

22
±

0.
03

0.
10

4
±

0.
00

8
0.

67
±

0.
08

2
23

0+
[2

0
]

−
[2

0
]

-1
.5
±

[0
.1

]
[-

2.
2]
±

[0
.4

]
19

h
86

06
04

21
0.

13
±

0.
01

0.
06

5
±

0.
00

7
0.

25
±

0.
07

5
12

0+
1
2
7

−
1
8

-1
.1
±

0.
18

[-
2.

2]
±

[0
.4

]
2

..
.

..
.

06
04

24
..

.
0.

16
6
±

0.
05

1
0.

23
±

0.
08

4
70

+
2
7
3

−
1
2

-0
.8
±

0.
48

[-
2.

2]
±

[0
.4

]
2

..
.

..
.

06
04

27
..

.
0.

00
1
±

0.
28

2
..

.
1

60
+

2
2

−
2
2

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

06
04

28
A

0.
56
±

0.
11

0.
00

6
±

0.
01

0
0.

89
±

0.
23

2
50

+
1
8

−
1
2

-1
.5
±

0.
3

[-
2.

2]
±

[0
.4

]
2

b
79

06
04

28
B

..
.

0.
08

3
±

0.
18

1
..

.
1

23
+

3
−

8
-0

.8
±

0.
97

[-
2.

2]
±

[0
.4

]
3

..
.

..
.

06
05

01
1.

00
±

0.
12

0.
04

2
±

0.
02

5
0.

98
±

0.
87

1
15

0+
3
8

−
3
8

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

06
05

02
A

4.
90
±

0.
11

0.
00

4
±

0.
01

0
2.

94
±

1.
19

1
15

6+
4
0
0

−
3
3

-1
.1

8
±

0.
15

[-
2.

2]
±

[0
.4

]
6

b
78

06
05

07
..

.
0.

00
4
±

0.
03

8
3.

80
±

3.
87

1
65

+
1
2

−
1
2

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

06
05

10
A

0.
24
±

0.
06

0.
04

9
±

0.
00

7
0.

21
±

0.
10

4
18

4+
2
2

−
1
5

-1
.6

6
±

0.
04

[-
2.

2]
±

[0
.4

]
20

..
.

..
.

06
05

10
B

..
.

0.
11

0
±

0.
06

0
..

.
4

95
+

[6
0
]

−
[3

0
]

-1
.4

7
±

0.
18

[-
2.

2]
±

[0
.4

]
6

..
.

..
.



76

T
ab

le
3.

6
(c

on
t’

d
)

G
R
B

τ l
a
g
(s
ec

)
V

ar
ia

bi
lit

y
τ R

T
(s

ec
)

N
p
ea
k

E
p
ea
k
(k

eV
)a

α
a

β
a

R
ef

.
t j
et

(d
ay

)
R

ef
.

06
05

12
..

.
0.

04
3
±

0.
17

3
..

.
1

22
+

6
−

6
[-

1.
1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

06
05

15
0.

99
±

0.
10

0.
11

3
±

0.
10

4
..

.
1

11
0+

9
7

−
1
8

0
±

0.
48

[-
2.

2]
±

[0
.4

]
2

..
.

..
.

06
05

22
..

.
0.

03
4
±

0.
18

5
..

.
1

80
+

3
8
2

−
1
2

-0
.7
±

0.
48

[-
2.

2]
±

[0
.4

]
2

..
.

..
.

06
05

26
0.

17
±

0.
09

0.
08

5
±

0.
03

0
0.

38
±

0.
11

2
25

+
[5

]
−

[5
]

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
6

2.
41
±

0.
06

87
06

06
02

A
..

.
-0

.0
46
±

0.
11

2
..

.
1

25
7+

8
0

−
8
0

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

06
06

04
..

.
0.

08
0
±

0.
33

8
..

.
2

40
+

[5
]

−
[5

]
-1

.3
4
±

[0
.3

]
[-

2.
2]
±

[0
.4

]
6

..
.

..
.

06
06

05
..

.
-0

.0
13
±

0.
06

8
1.

22
±

0.
72

3
90

+
9
1

−
1
2

-0
.3
±

0.
42

[-
2.

2]
±

[0
.4

]
2

0.
24
±

0.
02

88
06

06
07

A
1.

98
±

0.
11

0.
02

5
±

0.
00

8
1.

23
±

0.
68

1
12

0+
1
9
0

−
1
7

-1
.0

6
±

0.
18

[-
2.

2]
±

[0
.4

]
6

b
79

06
06

07
B

2.
70
±

0.
23

0.
01

3
±

0.
03

5
1.

47
±

0.
76

2
94

+
2
0

−
2
0

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

06
07

07
..

.
0.

05
0
±

0.
05

4
..

.
2

63
+

1
3

−
6

-0
.6
±

0.
42

[-
2.

2]
±

[0
.4

]
3

..
.

..
.

06
07

08
0.

12
±

0.
09

0.
02

1
±

0.
01

0
0.

40
±

0.
35

1
10

0+
1
0
9

−
1
2

-1
±

0.
3

[-
2.

2]
±

[0
.4

]
2

..
.

..
.

06
07

12
..

.
0.

11
7
±

0.
26

8
..

.
1

10
1+

4
7

−
4
7

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

06
07

14
..

.
0.

12
5
±

0.
02

2
..

.
>

3
10

3+
2
1

−
1
6

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
21

0.
12
±

[0
.0

1]
I

21
06

07
17

0.
70
±

0.
19

0.
02

9
±

0.
09

8
0.

55
±

0.
97

1
50

+
3
6

−
6

0
±

1.
21

[-
2.

2]
±

[0
.4

]
2

..
.

..
.

06
07

19
0.

80
±

0.
09

0.
10

5
±

0.
01

4
0.

47
±

0.
10

2
56

+
1
1

−
1
1

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

06
07

29
..

.
0.

09
2
±

0.
04

1
..

.
2

61
+

9
−

9
[-

1.
1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
22

0.
50
±

0.
06

f
72

06
08

04
..

.
0.

08
5
±

0.
09

6
..

.
2

80
+

2
9

−
2
9

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

06
08

05
..

.
0.

02
3
±

0.
27

1
..

.
1

30
+

3
−

3
[-

1.
1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
2

..
.

..
.

06
08

07
..

.
0.

04
2
±

0.
07

9
0.

13
±

1.
49

2
11

0+
3
6

−
3
6

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

b
79

06
08

13
0.

01
±

0.
02

0.
01

9
±

0.
00

3
0.

57
±

0.
08

1
19

2+
1
2

−
1
1

−
0.

53
+

0
.1

0
−

0
.0

8
−

2.
65

+
0
.1

6
−

0
.3

0
23

b
79

06
08

14
0.

29
±

0.
03

0.
04

0
±

0.
00

3
1.

65
±

0.
24

2
25

7+
7
4

−
3
5

-1
.4

3
±

0.
09

[-
2.

2]
±

[0
.4

]
24

b
78

06
08

25
0.

29
±

0.
07

0.
03

2
±

0.
00

9
0.

62
±

0.
21

2
73

+
1
7

−
7

-1
.2
±

0.
18

[-
2.

2]
±

[0
.4

]
3

..
.

..
.

06
09

04
A

0.
11
±

0.
02

0.
03

1
±

0.
00

3
0.

29
±

0.
05

6
16

3+
1
9

−
1
9

−
1+

0
.1

4
−

0
.1

0
−

2.
57

+
0
.2

2
−

0
.6

1
25

..
.

..
.

06
09

04
B

0.
36
±

0.
09

0.
00

3
±

0.
00

8
1.

00
±

0.
16

1
80

+
7
7
0

−
1
2

-1
±

0.
42

[-
2.

2]
±

[0
.4

]
2

..
.

..
.

06
09

08
0.

26
±

0.
06

0.
06

1
±

0.
00

8
0.

52
±

0.
09

3
15

1+
1
1
2

−
2
5

-1
±

0.
18

[-
2.

2]
±

[0
.4

]
3

b
78

06
09

12
0.

07
±

0.
01

0.
01

0
±

0.
00

3
0.

45
±

0.
01

1
78

+
1
4

−
1
4

-1
.7

4
±

0.
09

[-
2.

2]
±

[0
.4

]
1

..
.

..
.

06
09

19
0.

27
±

0.
11

-0
.0

04
±

0.
02

0
0.

36
±

0.
20

1
62

+
1
7

−
1
7

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

06
09

23
A

..
.

0.
15

5
±

0.
10

8
0.

51
±

0.
65

3
50

+
2
4

−
6

0
±

0.
61

[-
2.

2]
±

[0
.4

]
2

..
.

..
.



77
T

ab
le

3.
6

(c
on

t’
d
)

G
R
B

τ l
a
g
(s
ec

)
V

ar
ia

bi
lit

y
τ R

T
(s

ec
)

N
p
ea
k

E
p
ea
k
(k

eV
)a

α
a

β
a

R
ef

.
t j
et

(d
ay

)
R

ef
.

06
09

23
B

..
.

0.
23

1
±

0.
17

8
1.

09
±

1.
72

1
21

+
6
−

6
[-

1.
1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

06
09

23
C

..
.

0.
24

4
±

0.
45

4
..

.
1

34
+

5
−

1
0

0
±

0.
61

[-
2.

2]
±

[0
.4

]
2

..
.

..
.

06
09

26
1.

03
±

0.
11

0.
14

8
±

0.
05

0
..

.
2

20
+

1
1

−
1
1

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

06
09

27
0.

12
±

0.
04

0.
09

4
±

0.
01

0
0.

46
±

0.
12

2
72

+
1
5

−
7

-0
.9
±

0.
24

[-
2.

2]
±

[0
.4

]
3

j
89

06
10

02
..

.
-0

.1
57
±

0.
16

9
..

.
1

75
+

2
2

−
2
2

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

06
10

04
..

.
0.

01
8
±

0.
00

7
0.

49
±

0.
07

1
68

+
1
3

−
1
3

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

06
10

07
0.

11
±

0.
01

0.
06

6
±

0.
00

3
0.

38
±

0.
02

4
39

9+
1
2

−
1
1

-0
.7
±

0.
02

−
2.

61
+

0
.0

9
−

0
.1

3
26

>
1.

7d
90

,
82

06
10

19
..

.
0.

02
5
±

0.
15

4
..

.
2

55
+

1
8

−
1
8

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

06
10

21
0.

23
±

0.
02

0.
03

1
±

0.
00

4
0.

53
±

0.
03

1
77

7+
3
3
3

−
1
4
4

−
1.

22
+

0
.0

7
−

0
.0

8
[-

2.
2]
±

[0
.4

]
27

..
.

..
.

06
10

28
..

.
0.

51
8
±

0.
48

9
..

.
1

80
+

3
2

−
3
2

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

06
11

02
..

.
0.

11
1
±

0.
36

2
..

.
1

11
6+

6
2

−
6
2

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

06
11

10
A

..
.

-0
.0

38
±

0.
05

0
..

.
1

90
+

1
3

−
1
3

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

06
11

10
B

0.
24
±

0.
36

0.
15

5
±

0.
06

4
0.

79
±

0.
64

9
51

7+
5
3

−
5
3

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

06
11

21
0.

03
±

0.
01

0.
05

0
±

0.
00

3
0.

98
±

0.
19

2
60

6+
5
5

−
4
4

−
1.

32
+

0
.0

2
−

0
.0

3
[-

2.
2]
±

[0
.4

]
28

1.
16

k ±
[0

.1
6]

77
06

11
26

0.
10
±

0.
01

0.
09

2
±

0.
00

5
0.

81
±

0.
09

2
93

5+
2
1
8

−
2
1
8

−
0.

95
+

0
.1

8
−

0
.1

4
[-

2.
2]
±

[0
.4

]
29

..
.

..
.

06
12

02
..

.
0.

02
8
±

0.
00

4
0.

90
±

0.
41

2
13

0+
3
3
9

−
2
4

-1
.2
±

0.
18

[-
2.

2]
±

[0
.4

]
2

b
79

06
12

22
A

0.
08
±

0.
01

0.
05

2
±

0.
00

3
0.

22
±

0.
03

2
28

3+
3
6

−
2
5

-0
.9

4
±

0.
08

−
2.

41
+

0
.1

7
−

0
.7

3
30

b
79

06
12

22
B

..
.

0.
02

4
±

0.
04

3
..

.
2

49
+

8
−

8
[-

1.
1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
01

03
0.

52
±

0.
13

0.
31

0
±

0.
09

8
0.

31
±

0.
28

2
52

+
1
5

−
1
5

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
01

07
1.

10
±

0.
02

0.
04

1
±

0.
01

5
2.

01
±

3.
04

1
20

6+
4
4

−
4
4

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

b
79

07
01

10
..

.
-0

.0
10
±

0.
03

1
..

.
1

11
0+

3
0

−
3
0

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
31

b
78

07
02

08
..

.
0.

08
3
±

0.
21

1
..

.
2

51
+

1
0

−
1
0

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
02

19
..

.
0.

08
7
±

0.
10

1
..

.
1

72
+

2
2

−
2
2

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
02

20
..

.
0.

06
6
±

0.
00

4
0.

90
±

0.
18

8
29

9+
1
2
4

−
7
9

−
1.

21
+

0
.1

8
−

0
.1

2
−

2.
02

+
0
.1

6
−

0
.2

7
32

b
79

07
02

23
..

.
0.

05
8
±

0.
08

4
0.

92
±

1.
44

3
60

+
1
1
5

−
6

-1
.2
±

0.
36

[-
2.

2]
±

[0
.4

]
2

..
.

..
.

07
03

06
1.

27
±

0.
07

0.
01

1
±

0.
00

3
2.

77
±

0.
81

1
92

+
1
8

−
1
8

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

b
79

07
03

18
..

.
0.

03
7
±

0.
00

8
0.

72
±

0.
24

1
15

4+
1
9

−
1
9

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
03

28
0.

28
±

0.
02

0.
03

4
±

0.
00

3
2.

06
±

0.
32

2
49

6+
1
0
4

−
7
1

−
0.

99
+

0
.0

8
−

0
.0

7
−

1.
99

+
0
.1

1
−

0
.2

4
33

..
.

..
.



78
T

ab
le

3.
6

(c
on

t’
d
)

G
R
B

τ l
a
g
(s
ec

)
V

ar
ia

bi
lit

y
τ R

T
(s

ec
)

N
p
ea
k

E
p
ea
k
(k

eV
)a

α
a

β
a

R
ef

.
t j
et

(d
ay

)
R

ef
.

07
03

30
2.

15
±

0.
24

0.
08

3
±

0.
05

9
..

.
1

36
+

4
−

4
-0

.3
3
±

1.
07

[-
2.

2]
±

[0
.4

]
34

..
.

..
.

07
04

11
..

.
0.

04
1
±

0.
02

9
..

.
2

83
+

1
1

−
1
1

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

l
73

07
04

12
..

.
0.

11
9
±

0.
08

6
0.

43
±

0.
29

3
15

0+
5
0

−
5
0

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
04

19
B

1.
51
±

0.
15

0.
06

2
±

0.
00

7
1.

66
±

0.
86

4
85

+
1
4

−
1
4

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
04

20
0.

86
±

0.
36

0.
01

8
±

0.
00

6
3.

96
±

2.
60

1
14

7+
1
8

−
1
2

-1
.2

3
±

0.
11

[-
2.

2]
±

[0
.4

]
35

..
.

..
.

07
04

27
0.

23
±

0.
09

0.
03

4
±

0.
01

1
0.

22
±

0.
40

1
41

+
8
−

8
[-

1.
1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
04

29
A

..
.

0.
02

4
±

0.
09

0
..

.
1

39
+

1
2

−
1
2

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
05

06
2.

52
±

0.
04

0.
01

0
±

0.
03

0
0.

12
±

0.
06

1
31

+
2
−

3
-5

.0
0
±

1.
82

2.
01
±

0.
22

2
..

.
..

.
07

05
08

0.
04
±

0.
01

0.
10

6
±

0.
00

3
0.

20
±

0.
01

4
23

3+
7
−

7
-0

.9
6
±

0.
13

[-
2.

2]
±

[0
.4

]
36

..
.

..
.

07
05

09
0.

57
±

0.
46

0.
02

0
±

0.
06

0
0.

83
±

0.
40

1
27

+
8
−

8
[-

1.
1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
05

17
..

.
-0

.0
21
±

0.
04

6
..

.
2

68
+

2
2

−
2
2

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
05

18
..

.
0.

03
5
±

0.
05

4
0.

34
±

0.
37

1
39

+
1
2

−
1
2

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
05

20
A

..
.

-0
.0

47
±

0.
18

0
..

.
1

10
5+

5
0

−
5
0

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
05

20
B

..
.

-0
.1

05
±

0.
10

3
..

.
1

34
7+

1
4
7

−
1
4
7

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
05

21
0.

04
±

0.
01

0.
11

6
±

0.
00

4
0.

58
±

0.
06

5
22

2+
1
6

−
1
3

-0
.9

3
±

0.
07

[-
2.

2]
±

[0
.4

]
37

..
.

..
.

07
05

29
..

.
0.

17
0
±

0.
09

1
..

.
1

18
0+

5
2

−
5
2

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
05

31
..

.
0.

00
9
±

0.
05

7
1.

68
±

0.
63

1
16

6+
5
7

−
5
7

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
06

11
..

.
0.

05
3
±

0.
08

0
..

.
1

92
+

3
0

−
3
0

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
06

12
A

0.
77
±

0.
43

-0
.0

10
±

0.
03

0
2.

10
±

1.
79

1
87

+
1
7

−
1
7

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
06

12
B

..
.

-0
.0

01
±

0.
01

5
2.

24
±

0.
93

1
11

8+
2
5

−
2
5

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
06

16
..

.
0.

15
6
±

0.
00

6
0.

03
±

0.
00

7
10

3+
1
6

−
1
6

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
06

21
0.

51
±

0.
03

0.
02

4
±

0.
01

0
2.

52
±

1.
82

4
11

3+
1
9

−
1
9

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
06

28
1.

11
±

0.
20

0.
00

3
±

0.
00

4
2.

03
±

0.
56

1
56

+
1
0

−
1
0

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
07

04
0.

12
±

0.
09

0.
00

1
±

0.
00

5
1.

52
±

0.
21

3
70

+
1
3

−
1
3

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
07

14
A

..
.

0.
01

2
±

0.
00

9
0.

27
±

0.
07

1
18

+
4
−

4
[-

1.
1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
07

21
A

..
.

0.
08

7
±

0.
07

7
0.

80
±

1.
54

1
22

+
9
−

9
[-

1.
1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
07

21
B

..
.

0.
03

2
±

0.
02

3
2.

49
±

1.
48

2
20

0+
4
5

−
4
5

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
07

31
..

.
0.

06
7
±

0.
03

2
..

.
1

94
+

3
2

−
3
2

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.



79
T

ab
le

3.
6

(c
on

t’
d
)

G
R
B

τ l
a
g
(s
ec

)
V

ar
ia

bi
lit

y
τ R

T
(s

ec
)

N
p
ea
k

E
p
ea
k
(k

eV
)a

α
a

β
a

R
ef

.
t j
et

(d
ay

)
R

ef
.

07
08

02
..

.
-0

.1
56
±

0.
15

0
..

.
1

70
+

2
5

−
2
5

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
08

05
..

.
0.

08
1
±

0.
06

8
..

.
1

64
+

1
8

−
1
8

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
08

08
0.

54
±

0.
14

0.
03

3
±

0.
01

6
0.

88
±

0.
12

1
14

3+
3
6

−
3
6

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
08

10
A

1.
09
±

0.
23

-0
.0

06
±

0.
01

5
0.

73
±

0.
22

1
44

+
9
−

9
[-

1.
1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
09

11
0.

15
±

0.
04

0.
10

1
±

0.
00

3
0.

55
±

0.
15

7
17

0+
1
7
0

−
3
0

-1
.6

0
±

0.
06

[-
2.

2]
±

[0
.4

]
39

..
.

..
.

07
09

13
..

.
0.

14
7
±

0.
06

5
..

.
1

10
3+

3
1

−
3
1

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
09

17
0.

06
±

0.
01

0.
01

7
±

0.
00

3
0.

21
±

0.
01

1
21

1+
5
8

−
2
9

−
1.

36
+

0
.1

3
−

0
.1

5
[-

2.
2]
±

[0
.4

]
40

..
.

..
.

07
09

20
A

..
.

0.
09

8
±

0.
12

9
..

.
1

87
+

2
7

−
2
7

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
09

20
B

..
.

0.
01

9
±

0.
01

6
5.

77
±

2.
36

1
41

+
3
−

3
-0

.6
7
±

0.
35

[-
2.

2]
±

[0
.4

]
41

..
.

..
.

07
10

01
..

.
0.

04
1
±

0.
02

7
0.

51
±

1.
00

3
10

1+
2
7

−
2
7

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
10

03
0.

09
±

0.
04

0.
07

2
±

0.
00

7
0.

88
±

0.
07

4
79

9+
7
5

−
6
1

-0
.9

7
±

0.
04

[-
2.

2]
±

[0
.4

]
42

..
.

..
.

07
10

08
..

.
-0

.0
03
±

0.
07

9
..

.
1

32
+

1
0

−
1
0

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
10

10
A

..
.

-0
.0

76
±

0.
15

3
..

.
1

27
+

1
0

−
1
0

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
10

10
B

0.
84
±

0.
04

0.
01

0
±

0.
00

3
1.

21
±

0.
03

1
52

+
6
−

8
−

1.
25

+
0
.4

5
−

0
.3

0
−

2.
65

+
0
.1

8
−

0
.3

0
43

3.
44
±

0.
39

74
07

10
11

..
.

0.
23

1
±

0.
05

8
0.

92
±

0.
44

4
16

6+
3
9

−
3
9

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
10

20
0.

09
±

0.
01

0.
05

0
±

0.
00

3
0.

13
±

0.
01

2
32

2+
4
8

−
3
2

−
0.

65
+

0
.1

6
−

0
.1

9
[-

2.
2]
±

[0
.4

]
44

..
.

..
.

07
10

21
..

.
0.

03
9
±

0.
05

3
..

.
1

85
+

2
6

−
2
6

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
10

25
..

.
0.

03
8
±

0.
01

0
..

.
3

70
+

1
1

−
1
1

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
10

31
..

.
-0

.0
38
±

0.
10

8
..

.
2

24
+

7
−

7
[-

1.
1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
11

01
2.

36
±

0.
47

0.
07

8
±

0.
09

9
0.

39
±

0.
52

1
31

+
1
8

−
1
8

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
11

17
0.

60
±

0.
01

0.
00

9
±

0.
00

3
0.

20
±

0.
02

1
27

8+
1
4
3

−
4
8

-1
.5

3
±

0.
09

[-
2.

2]
±

[0
.4

]
45

..
.

..
.

07
11

22
..

.
0.

39
1
±

0.
39

2
..

.
1

73
+

3
0

−
3
0

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

07
11

29
..

.
0.

00
7
±

0.
03

4
..

.
1

53
+

1
2

−
1
2

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

08
02

05
..

.
0.

20
7
±

0.
05

2
0.

71
±

0.
71

6
41

+
8
−

8
[-

1.
1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

08
02

10
0.

53
±

0.
17

0.
01

9
±

0.
01

3
0.

57
±

0.
44

3
73

+
1
5

−
1
5

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

08
02

12
..

.
0.

03
4
±

0.
05

4
..

.
2

68
+

8
−

8
-0

.3
1
±

0.
39

[-
2.

2]
±

[0
.4

]
46

..
.

..
.

08
02

18
B

..
.

0.
11

0
±

0.
07

9
..

.
1

24
+

9
−

9
-0

.1
1
±

1.
48

[-
2.

2]
±

[0
.4

]
47

..
.

..
.

08
02

29
A

0.
24
±

0.
03

0.
04

8
±

0.
00

3
0.

46
±

0.
09

3
56

+
9
−

9
[-

1.
1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.



80
T

ab
le

3.
6

(c
on

t’
d
)

G
R
B

τ l
a
g
(s
ec

)
V

ar
ia

bi
lit

y
τ R

T
(s

ec
)

N
p
ea
k

E
p
ea
k
(k

eV
)a

α
a

β
a

R
ef

.
t j
et

(d
ay

)
R

ef
.

08
03

03
0.

89
±

0.
15

0.
06

9
±

0.
03

2
0.

33
±

0.
16

1
12

1+
4
6

−
4
6

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

08
03

07
..

.
-0

.0
35
±

0.
09

5
..

.
1

72
+

2
1

−
2
1

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

08
03

10
..

.
0.

03
8
±

0.
02

1
0.

41
±

0.
55

3
28

+
6
−

6
[-

1.
1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

08
03

19
A

..
.

-0
.0

04
±

0.
04

5
0.

82
±

1.
23

5
10

5+
2
4

−
2
4

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

08
03

19
B

0.
02
±

0.
01

0.
03

1
±

0.
00

3
0.

14
±

0.
01

10
65

1+
8
−

8
-0

.8
2
±

0.
01

−
3.

87
+

0
.2

7
−

0
.6

6
48

..
.

..
.

08
03

19
C

..
.

0.
04

2
±

0.
00

7
0.

21
±

0.
12

4
30

7+
8
5

−
5
6

-1
.0

1
±

0.
08

−
1.

87
+

0
.0

9
−

0
.3

8
49

..
.

..
.

08
03

19
D

..
.

-0
.1

22
±

0.
30

3
..

.
1

55
+

2
3

−
2
3

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

08
03

20
..

.
0.

01
1
±

0.
06

0
0.

81
±

0.
99

1
85

+
2
7

−
2
7

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

08
03

28
0.

17
±

0.
02

0.
17

3
±

0.
00

7
..

.
5

28
9+

5
6

−
3
5

−
1.

13
+

0
.1

0
−

0
.1

2
[-

2.
2]
±

[0
.4

]
50

..
.

..
.

08
03

30
..

.
0.

10
9
±

0.
06

0
..

.
3

20
+

9
−

9
[-

1.
1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

08
04

09
0.

17
±

0.
05

0.
04

9
±

0.
01

0
0.

47
±

0.
06

2
40

+
1
0

−
1
0

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

08
04

11
0.

21
±

0.
01

0.
16

7
±

0.
00

3
0.

65
±

0.
01

2
25

9+
2
1

−
1
6

−
1.

51
+

0
.0

2
−

0
.0

3
[-

2.
2]
±

[0
.4

]
51

..
.

..
.

08
04

13
A

0.
13
±

0.
03

0.
07

8
±

0.
00

4
0.

23
±

0.
03

3
17

0+
4
8

−
2
4

-1
.2

0
±

0.
06

[-
2.

2]
±

[0
.4

]
52

..
.

..
.

08
04

13
B

0.
23
±

0.
01

0.
00

4
±

0.
00

3
0.

50
±

0.
03

1
73

+
1
0

−
1
0

-1
.2

6
±

0.
16

[-
2.

2]
±

[0
.4

]
53

..
.

..
.

08
04

26
..

.
0.

01
2
±

0.
00

4
0.

15
±

0.
01

1
49

+
1
0

−
1
0

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

08
04

30
0.

68
±

0.
08

0.
00

9
±

0.
00

4
0.

76
±

0.
12

1
80

+
1
5

−
1
5

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

08
05

06
..

.
-0

.0
02
±

0.
14

3
..

.
1

60
+

1
6

−
1
6

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

08
05

15
..

.
-0

.0
11
±

0.
04

2
..

.
1

25
+

9
−

9
-0

.9
4
±

0.
73

[-
2.

2]
±

[0
.4

]
54

..
.

..
.

08
05

16
0.

15
±

0.
01

0.
16

8
±

0.
05

5
..

.
2

66
+

2
4

−
2
4

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

08
05

17
..

.
-0

.0
11
±

0.
11

0
..

.
1

12
1+

5
9

−
5
9

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

08
05

20
..

.
0.

03
7
±

0.
09

8
..

.
1

12
+

5
−

5
[-

1.
1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

08
05

23
..

.
-0

.0
09
±

0.
04

9
0.

45
±

0.
31

10
94

+
2
6

−
2
6

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

08
06

02
..

.
0.

18
0
±

0.
03

2
0.

53
±

0.
27

5
66

7+
9
7
7

−
9
7
7

−
0.

96
+

0
.3

2
−

0
.4

6
[-

2.
2]
±

[0
.4

]
1,

55
..

.
..

.
08

06
03

B
0.

08
±

0.
01

0.
28

3
±

0.
01

0
0.

22
±

0.
03

6
85

+
5
5

−
1
8

−
0.

94
+

0
.7

3
−

0
.4

5
-1

.9
6
±

[0
.4

]
56

h
75

,
92

08
06

05
0.

11
±

0.
01

0.
05

7
±

0.
00

3
0.

22
±

0.
01

4
24

6+
1
4

−
1
1

-1
.0

2
±

0.
06

[-
2.

2]
±

[0
.4

]
57

..
.

..
.

08
06

07
0.

04
±

0.
01

0.
03

5
±

0.
00

3
0.

18
±

0.
06

6
39

4+
3
5

−
3
3

-1
.0

6
±

0.
05

[-
2.

2]
±

[0
.4

]
58

..
.

..
.

08
06

13
B

0.
01
±

0.
01

0.
14

1
±

0.
00

8
..

.
2

73
3+

1
7
3

−
1
2
1

-1
.0

5
±

0.
11

-2
.0

5
±

[0
.4

]
59

..
.

..
.

08
06

23
0.

38
±

0.
01

0.
15

3
±

0.
04

5
..

.
3

19
5+

5
5

−
5
5

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.



81
T

ab
le

3.
6

(c
on

t’
d
)

G
R
B

τ l
a
g
(s
ec

)
V

ar
ia

bi
lit

y
τ R

T
(s

ec
)

N
p
ea
k

E
p
ea
k
(k

eV
)a

α
a

β
a

R
ef

.
t j
et

(d
ay

)
R

ef
.

08
07

01
0.

65
±

0.
18

0.
00

4
±

0.
01

2
1.

24
±

0.
17

1
31

+
7
−

7
[-

1.
1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

08
07

03
..

.
0.

09
9
±

0.
07

5
..

.
2

12
4+

4
3

−
4
3

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

08
07

07
..

.
0.

09
3
±

0.
03

2
..

.
2

73
+

2
0

−
2
0

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

08
07

14
0.

19
±

0.
05

0.
00

5
±

0.
00

5
0.

99
±

0.
13

1
13

7+
6
1

−
2
1

−
1.

24
+

0
.2

8
−

0
.2

4
[-

2.
2]
±

[0
.4

]
60

..
.

..
.

08
07

21
0.

13
±

0.
05

0.
04

8
±

0.
00

9
0.

09
±

0.
04

4
48

5+
4
1

−
3
6

−
0.

93
+

0
.0

6
−

0
.0

5
−

2.
43

+
0
.1

5
−

0
.2

5
61

..
.

..
.

08
07

23
A

..
.

0.
02

8
±

0.
03

1
0.

60
±

0.
54

1
73

+
2
2

−
2
2

[-
1.

1]
±

[0
.4

]
[-

2.
2]
±

[0
.4

]
1

..
.

..
.

a
T

he
va

lu
es

re
po

rt
ed

in
sq

ua
re

br
ac

ke
ts

ar
e

co
ns

er
va

ti
ve

es
ti

m
at

io
ns

fo
r

un
ce

rt
ai

nt
ie

s
no

t
re

po
rt

ed
in

th
e

or
ig

in
al

pa
pe

r.

b
Je

t
br

ea
k

ti
m

e
re

po
rt

ed
fr

om
X

-r
ay

da
ta

on
ly

,
no

t
be

in
g

us
ed

in
th

is
w

or
k.

c
M

ul
ti

-v
al

ue
s

fo
r

je
t

br
ea

k
re

po
rt

ed
,d

ue
to

th
e

co
nf

us
in

g
co

nd
it

io
n

of
th

e
af

te
rg

lo
w

lig
ht

cu
rv

e,
no

t
us

in
g

an
y

of
th

es
e

va
lu

es
in

th
is

w
or

k.
d
G

ru
pe

et
al

.
(2

00
6)

sh
ow

s
no

br
ea

k
be

tw
ee

n
0.

4-
2.

5
da

y,
w

it
h

th
e

sl
op

e
of

th
e

lig
ht

cu
rv

e
su

gg
es

ti
ng

a
br

ea
k

be
fo

re
0.

4
da

y,
w

hi
le

bo
th

G
hi

rl
an

da
et

al
.

(2
00

7)
an

d
C

am
pa

na
et

al
.

(2
00

7)
su

gg
es

t
a

br
ea

k
af

te
r

2.
5

da
y,

ba
se

d
on

G
hi

rl
an

da
’s

re
la

ti
on

e
V

al
ue

ob
ta

in
ed

fr
om

L
ia

ng
et

al
.

(2
00

7)
fig

ur
e

an
d

te
xt

.

f W
it

h
a

pr
e-

br
ea

k
sl

op
e

to
o

sh
al

lo
w

fo
r

th
e

fo
rw

ar
d

sh
oc

k
m

od
el

,
no

t
be

in
g

us
ed

as
a

je
t

br
ea

k
ti

m
e.

g
O

nl
y

on
e

po
st

-b
re

ak
da

ta
re

po
rt

ed
.

h
O

pt
ic

al
br

ea
k

no
t

re
st

ri
ct

iv
e.

i B
re

ak
no

t
de

te
ct

ed
in

X
-r

ay
da

ta
.

j O
pt

ic
al

da
ta

co
nf

us
in

g,
no

t
ab

le
to

m
ak

e
de

ci
si

on
w

he
re

th
e

je
t

br
ea

k
lie

s.

k
O

nl
y

ta
ki

ng
R

ba
nd

je
t

br
ea

k,
as

la
te

r
da

ta
is

la
ck

ed
in

V
ba

nd
.



82

R
ef

er
en

ce
of

T
ab

le
3.

6:
(

1
)

ca
lc

ul
at

ed
fr

om
th

e
re

la
ti

on
in

Z
ha

ng
et

al
.

20
07

;
(

2
)

B
ut

le
r

et
al

.
20

07
;

(
3

)
Sa

ka
m

ot
o

et
al

.
20

07
;

(
4

)
K

ri
m

m
20

05
,

pr
iv

at
e

co
m

m
un

ic
at

io
n;

(
5

)
N

ak
ag

aw
a

et
al

.
20

05
;

(
6

)
K

ri
m

m
20

06
,

pr
iv

at
e

co
m

m
un

ic
at

io
n;

(
7

)
G

ol
en

et
sk

ii
et

al
.

20
05

a;
(

8
)

K
ri

m
m

et
al

.
20

06
a;

(
9

)
Sc

ha
dy

et
al

.
20

06
;

(
10

)
Sa

ka
m

ot
o

et
al

.
20

06
;

(
11

)
G

ol
en

et
sk

ii
et

al
.

20
05

b;
(

12
)

G
ol

en
et

sk
ii

et
al

.
20

05
c;

(
13

)
G

ol
en

et
sk

ii
et

al
.

20
05

d;
(

14
)

G
ol

en
et

sk
ii

et
al

.
20

05
e;

(
15

)
G

ol
en

et
sk

ii
et

al
.

20
06

a;
(

16
)

B
ar

bi
er

et
al

.
20

06
a;

(
17

)
G

ol
en

et
sk

ii
et

al
.

20
06

b;
(

18
)

K
ri

m
m

et
al

.
20

06
b;

(
19

)
G

ol
en

et
sk

ii
et

al
.

20
06

c;
(

20
)

G
ol

en
et

sk
ii

et
al

.
20

06
d;

(
21

)
K

ri
m

m
et

al
.

20
07

;
(

22
)

R
yk

off
et

al
.

20
06

;
(

23
)

G
ol

en
et

sk
ii

et
al

.
20

06
e;

(
24

)
G

ol
en

et
sk

ii
et

al
.

20
06

f;
(

25
)

G
ol

en
et

sk
ii

et
al

.
20

06
g;

(
26

)
G

ol
en

et
sk

ii
et

al
.

20
06

h;
(

27
)

G
ol

en
et

sk
ii

et
al

.
20

06
i;

(
28

)
G

ol
en

et
sk

ii
et

al
.

20
06

j;
(

29
)

B
el

lm
et

al
.

20
06

;(
30

)
G

ol
en

et
sk

ii
et

al
.

20
06

k;
(

31
)

A
m

at
ie

t
al

.
20

07
;(

32
)

G
ol

en
et

sk
ii

et
al

.
20

07
a;

(
33

)
G

ol
en

et
sk

ii
et

al
.

20
07

b;
(

34
)

Fe
ni

m
or

e
et

al
.

20
07

;(
35

)
G

ol
en

et
sk

ii
et

al
.

20
07

c;
(

36
)

U
eh

ar
a

et
al

.
20

07
;(

37
)

G
ol

en
et

sk
ii

et
al

.
20

07
d;

(
38

)
O

hn
o

et
al

.
20

07
;

(
39

)
B

ar
bi

er
et

al
.

20
08

;
(

40
)

G
ol

en
et

sk
ii

et
al

.
20

07
e;

(
41

)
B

ar
th

el
m

y
et

al
.

20
07

;
(

42
)

G
ol

en
et

sk
ii

et
al

.
20

07
f;

(
43

)
G

ol
en

et
sk

ii
et

al
.

20
07

g;
(

44
)

G
ol

en
et

sk
ii

et
al

.
20

07
h;

(
45

)
G

ol
en

et
sk

ii
et

al
.

20
07

i;
(

46
)

M
cL

ea
n

et
al

.
20

08
;

(
47

)
K

ri
m

m
et

al
.

20
08

;
(

48
)

G
ol

en
et

sk
ii

et
al

.
20

08
a;

(
49

)
G

ol
en

et
sk

ii
et

al
.

20
08

b;
(

50
)

G
ol

en
et

sk
ii

et
al

.
20

08
c;

(
51

)
G

ol
en

et
sk

ii
et

al
.

20
08

d;
(

52
)

O
hn

o
et

al
.

20
08

;
(

53
)

B
ar

th
el

m
y

et
al

.
20

08
;

(
54

)
Fe

ni
m

or
e

et
al

.
20

08
;

(
55

)
G

ol
en

et
sk

ii
et

al
.

20
08

e;
(

56
)

G
ol

en
et

sk
ii

et
al

.
20

08
f;

(
57

)
G

ol
en

et
sk

ii
et

al
.

20
08

g;
(

58
)

G
ol

en
et

sk
ii

et
al

.
20

08
h;

(
59

)
G

ol
en

et
sk

ii
et

al
.

20
08

i;
(

60
)

G
ol

en
et

sk
ii

et
al

.
20

08
j;

(
61

)
G

ol
en

et
sk

ii
et

al
.

20
08

k;
(

62
)

H
ur

ke
tt

et
al

.
20

06
;

(
65

)
T

ag
lia

fe
rr

i
et

al
.

20
05

;
(

66
)

L
i

et
al

.
20

05
;

(
67

)
Y

os
t

et
al

.
20

07
;

(
68

)
G

ui
do

zi
et

al
.

20
07

;
(

69
)

C
ur

ra
n

et
al

.
20

07
;

(
70

)
D

ai
&

St
an

ek
20

06
;

(
72

)
G

ru
pe

et
al

.
20

07
;

(
73

)
D

ai
et

al
.

20
08

;
(

74
)

K
an

n
et

al
.

20
07

;
(

75
)

Z
hu

ch
ko

v
et

al
.

20
08

;
(

76
)

C
en

ko
et

al
.

20
06

a;
(

77
)

P
ag

e
et

al
.

20
07

;
(

78
)

L
ia

ng
et

al
.

20
08

;
(

79
)

P
an

ai
te

sc
u

20
07

;
(

80
)

V
au

gh
an

et
al

.
20

05
;

(
81

)
G

hi
rl

an
da

et
al

.
20

07
;

(
82

)
C

am
pa

na
et

al
.

20
07

;
(

84
)

G
ru

pe
et

al
.

20
06

;
(

86
)

M
ol

in
ar

i
et

al
.

20
07

;
(

87
)

T
ho

en
e

et
al

.
20

08
c;

(
88

)
Fe

rr
er

o
et

al
.

20
08

;
(

89
)

R
ui

z-
V

el
as

co
et

al
.

20
07

;
(

90
)

Sc
ha

dy
et

al
.

20
07

;
(

92
)

K
an

n
et

al
.

20
08

;



83

Table 3.7. Our Redshifts and Spectroscopic Redshifts.

GRB zspec Ref. zbest zmin zmax zphot,limit Ref. zfinal

41220 . . . . . . 3.79 2.47 6.16 . . . . . . 3.79
41223 . . . . . . 1.74 1.23 2.53 . . . . . . 1.74
41224 . . . . . . 2 1.29 3.24 . . . . . . 2
41226 . . . . . . > 4.38 . . . . . . . . . . . . > 4.38
41228 . . . . . . 2.38 1.15 6.65 . . . . . . 2.38
50117 . . . . . . 4.71 2.98 8 . . . . . . 4.71
50124 . . . . . . 3.72 2.34 6.44 < 6.68 85 3.72
50126 1.29 1 1.64 1 2.91 . . . . . . 1.29
50128 . . . . . . 1.67 1.03 2.94 . . . . . . 1.67
050215A . . . . . . > 8.66 . . . . . . . . . . . . > 8.66
050215B . . . . . . 5.58 1.9 20 < 5.47 86 5.47
050219A . . . . . . 0.65 0.48 0.89 . . . . . . 0.65
050219B . . . . . . 0.51 0.38 0.68 . . . . . . 0.51
50223 . . . . . . 2.8 1.03 20 . . . . . . 2.8
50306 . . . . . . 4.01 1.82 12.21 . . . . . . 4.01
50315 1.95 3 1.4 0.86 2.46 < 6.68 87 1.95
50326 . . . . . . 1.4 1.05 1.94 . . . . . . 1.4
50401 2.9 4 2.48 1.69 3.85 < 6.68 88 2.9
50406 2.44 5 1.92 0.89 20 < 5.47 89 2.44
50410 . . . . . . 1.04 0.72 6.19 . . . . . . 1.04
50412 . . . . . . 5.05 2.3 13.77 . . . . . . 5.05
050416A 0.65 6 1 0.67 1.58 < 3.28 90 0.65
050416B . . . . . . 1.715 1.22 2.485 . . . . . . 1.72
50418 . . . . . . 0.88 0.6 1.3 . . . . . . 0.88
50421 . . . . . . > 4.03 . . . . . . . . . . . . > 4.03
50422 . . . . . . > 4.59 . . . . . . . . . . . . > 4.59
050502B . . . . . . 2.67 1.8 4.15 . . . . . . 2.67
50505 4.27 7 2.73 1.68 4.67 . . . . . . 4.27
050509A . . . . . . 4.15 2.41 7.69 . . . . . . 4.15
050525A 0.61 8 0.97 0.75 1.27 < 2.29 91 0.61
50528 . . . . . . 0.92 0.49 2.3 . . . . . . 0.92
50603 2.82 9 2.44 0.71 2.84 < 5.47 92 2.82
50607 . . . . . . 3.45 2.21 5.73 < 6.68 93 3.45
50701 . . . . . . 2.14 1.34 3.72 . . . . . . 2.14
50712 . . . . . . > 3.3 . . . . . . < 3.28 94 3.28
050713A . . . . . . 1.41 0.95 2.21 < 6.68 95 1.41
050713B . . . . . . 5.88 1.84 20 . . . . . . 5.88
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050714B . . . . . . > 5.17 . . . . . . . . . . . . > 5.17
50715 . . . . . . 5.74 2.72 16.25 . . . . . . 5.74
50716 . . . . . . 1.5 0.92 2.66 . . . . . . 1.5
50717 . . . . . . 2.23 1.36 4.32 . . . . . . 2.23
50721 . . . . . . 1.17 0.56 3.02 < 6.68 96 1.17
50726 . . . . . . 9.61 2.53 20 < 5.47 97 5.47
50730 3.97 10 4.89 0.59 20 < 5.47 98 3.97
50801 1.56 11 3.34 0.68 6.51 < 2.29 99 1.56
50802 . . . . . . 1.63 1.01 2.85 < 2.29 100 1.63
50803 . . . . . . 7.15 3 20 < 6.68 101, 102 6.68
50814 5.3 12 2.86 1.19 20 < 6.68 103 5.3
50815 . . . . . . 3.62 1.43 17.58 . . . . . . 3.62
50819 . . . . . . 1.55 0.78 4.51 . . . . . . 1.55
050820A 2.61 13 2.84 1.6 5.94 < 2.84 104 2.61
050820B . . . . . . 1.38 1 1.97 . . . . . . 1.38
50822 . . . . . . 1.63 0.87 3.52 . . . . . . 1.63
50824 0.83 14 1.36 0.71 3.65 < 1.96 105 0.83
50826 0.3 15 > 2.42 . . . . . . . . . . . . 0.3
50827 . . . . . . 1.38 0.9 2.22 . . . . . . 1.38
50904 6.29 16 8.92 4 17.9 . . . . . . 6.29
50908 3.35 17 3.69 1.08 8.1 < 5.47 106 3.35
050915A . . . . . . > 8.53 . . . . . . . . . . . . > 8.53
050915B . . . . . . 1.95 1.29 3.09 . . . . . . 1.95
50916 . . . . . . 5.19 1.5 20 . . . . . . 5.19
050922C 2.2 18 1.51 1.2 1.9 < 2.84 107 2.2
51001 . . . . . . 3.15 1.15 20 . . . . . . 3.15
51006 . . . . . . 6.96 3.92 13.63 . . . . . . 6.96
51008 . . . . . . 0.94 0.67 1.34 < 6.68 108 0.94
051016A . . . . . . 1.76 0.85 4.82 . . . . . . 1.76
051016B 0.94 19 0.7 0.45 1.55 < 2.29 109 0.94
051021B . . . . . . 2.19 1.44 3.5 . . . . . . 2.19
051109A 2.35 20 1.45 0.94 2.25 < 5.47 110 2.35
051109B . . . . . . 5.44 1.9 20 . . . . . . 5.44
51111 1.55 22 0.96 0.52 1.81 < 2.84 111 1.55
51113 . . . . . . 1.6 1.1 2.4 . . . . . . 1.6
051117A . . . . . . 2.12 1.09 5.02 < 5.47 112 2.12
051117B . . . . . . > 3.08 . . . . . . . . . . . . > 3.08



85

Table 3.7 (cont’d)

GRB zspec Ref. zbest zmin zmax zphot,limit Ref. zfinal

51213 . . . . . . > 6.4 . . . . . . . . . . . . > 6.4
051221B . . . . . . > 4.36 . . . . . . . . . . . . > 4.36
60102 . . . . . . 5.09 2.84 9.94 . . . . . . 5.09
60105 . . . . . . 3.43 2.26 5.65 . . . . . . 3.43
60108 2.03 23 1.66 0.56 10.96 . . . . . . 2.03
60109 . . . . . . 2.68 0.85 6.99 . . . . . . 2.68
60110 . . . . . . 1.95 1.37 2.88 < 6.68 113 1.95
060111A < 5.0 2 2.01 1.32 3.24 < 5.47 114 < 5.0
060111B . . . . . . 9.36 3.66 20 < 5.47 115 5.47
60115 3.53 24 2.92 1.37 9 . . . . . . 3.53
60116 6.6 25 7.05 1.75 20 < 6.68 116 6.6
60117 . . . . . . 0.98 0.74 1.3 . . . . . . 0.98
60202 . . . . . . > 10.06 . . . . . . . . . . . . > 10.06
60203 . . . . . . > 2.22 . . . . . . . . . . . . > 2.22
060204B . . . . . . 1.55 1.07 2.35 < 5.47 117 1.55
60206 4.05 26 1.39 1.01 1.97 < 4.37 118 4.05
60210 3.91 27 2.63 1.76 4.03 < 6.68 119 3.91
060211A . . . . . . > 4.91 . . . . . . . . . . . . > 4.91
060211B . . . . . . 9.16 2.48 20 . . . . . . 9.16
060223A 4.41 28 5.38 2.49 14.86 < 5.47 120 4.41
060223B . . . . . . 8.04 4.41 16.96 . . . . . . 8.04
60306 . . . . . . 3.16 2.09 4.94 . . . . . . 3.16
60312 . . . . . . 1.97 1.08 4.13 . . . . . . 1.97
60319 . . . . . . 2.01 1.33 3.15 . . . . . . 2.01
60322 . . . . . . 4.44 2.57 8.46 . . . . . . 4.44
60403 . . . . . . 1.35 0.91 2.09 . . . . . . 1.35
60413 . . . . . . 0.82 0.53 1.32 . . . . . . 0.82
60418 1.49 29 1.63 1.19 2.3 < 1.96 121 1.49
60421 . . . . . . 4.24 2.68 7.15 . . . . . . 4.24
60424 . . . . . . > 6.99 . . . . . . . . . . . . > 6.99
60427 . . . . . . > 2.18 . . . . . . . . . . . . > 2.18
060428A . . . . . . 1.65 1.14 2.49 . . . . . . 1.65
060428B . . . . . . 1.55 0.73 4.1 < 5.47 122 1.55
60501 . . . . . . 1.83 1.24 2.84 . . . . . . 1.83
060502A 1.51 30 0.9 0.62 1.34 < 2.84 123 1.51
60507 . . . . . . 1.38 0.74 3.01 . . . . . . 1.38
060510A . . . . . . 1.12 0.83 1.55 < 3.28 124 1.12
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060510B 4.9 31 > 6.81 . . . . . . < 6.68 125 4.9
60512 . . . . . . 0.89 0.53 2.11 < 3.28 126 0.89
60515 . . . . . . 3.35 1.96 6.25 . . . . . . 3.35
60522 5.11 32 7.45 1.41 20 . . . . . . 5.11
60526 3.21 33 3.5 2.07 6.57 < 4.37 127 3.21
060602A . . . . . . > 4.54 . . . . . . . . . . . . > 4.54
60604 2.68 34 3.81 1.39 20 . . . . . . 2.68
60605 3.8 35 5.6 2.35 20 < 4.37 128 3.8
060607A 3.08 36 1.74 1.2 2.59 < 3.28 129 3.08
060607B . . . . . . 1.37 0.94 2.04 . . . . . . 1.37
60707 3.43 37 3.68 1.56 13.91 < 4.37 130 3.43
60708 . . . . . . 3.69 2.13 7.08 < 2.84 131 2.84
60712 . . . . . . 4.22 1.35 20 . . . . . . 4.22
60714 2.71 38 4.66 2.24 12.43 < 5.47 132 2.71
60717 . . . . . . 5.02 2.75 10.06 . . . . . . 5.02
60719 . . . . . . 2.71 1.86 4.1 . . . . . . 2.71
60729 0.54 39 1.66 0.81 3.48 < 2.29 133 0.54
60804 . . . . . . 5.86 2.05 20 < 5.47 134 5.47
60805 . . . . . . 2.19 0.92 8.29 . . . . . . 2.19
60807 . . . . . . 7.41 2.17 20 < 6.68 135 6.68
60813 . . . . . . 1.03 0.74 1.49 . . . . . . 1.03
60814 0.84 40 0.98 0.74 1.33 . . . . . . 0.84
60825 . . . . . . 2.32 1.59 3.51 . . . . . . 2.32
060904A . . . . . . 2.55 1.8 3.76 . . . . . . 2.55
060904B 0.7 41 1.88 1.28 2.88 < 2.29 136 0.7
60906 3.69 42 . . . . . . . . . < 6.68 137 3.69
60908 2.43 43 2.41 1.65 3.69 < 2.84 138 2.43
60912 0.937 2 1.38 1 1.975 < 1.96 139 0.94
60919 . . . . . . 3.19 1.96 5.67 . . . . . . 3.19
060923A . . . . . . 8.17 2.88 20 . . . . . . 8.17
060923B . . . . . . 2.48 1.26 6.32 . . . . . . 2.48
060923C . . . . . . 2.67 1.13 10.19 . . . . . . 2.67
60926 3.21 44 3.05 1.9 5.2 < 6.68 140 3.21
60927 5.47 45 4.04 2.57 6.71 . . . . . . 5.47
61002 . . . . . . > 3.85 . . . . . . . . . . . . > 3.85
61004 . . . . . . 2.08 1.32 3.53 . . . . . . 2.08
61007 . . . . . . 0.92 0.71 1.23 < 2.29 141 0.92
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61019 . . . . . . 1.2 0.55 3.41 . . . . . . 1.2
61021 . . . . . . 1.2 0.89 1.66 < 2.29 142 1.2
61028 . . . . . . > 9.7 . . . . . . . . . . . . > 9.7
61102 . . . . . . > 5.32 . . . . . . . . . . . . > 5.32
061110A 0.76 46 > 1.82 . . . . . . < 6.68 143 0.76
061110B 3.44 47 8.28 3.35 20 < 6.68 144 3.44
61121 1.31 48 1 0.78 1.3 < 2.29 145 1.31
61126 . . . . . . 0.86 0.63 1.18 < 1.96 146 0.86
61202 . . . . . . 1.9 1.15 3.46 . . . . . . 1.9
061222A . . . . . . 1.83 1.32 2.63 . . . . . . 1.83
061222B 3.36 49 1.48 0.74 3.61 . . . . . . 3.36
70103 . . . . . . 6.9 4.04 12.68 . . . . . . 6.9
70107 . . . . . . 1.71 1.15 2.67 . . . . . . 1.71
70110 2.35 50 4.34 2.03 20 < 3.28 147 2.35
70208 1.17 51 2.81 1.11 13.46 < 6.68 148 1.17
70219 . . . . . . > 3 . . . . . . . . . . . . > 3
70220 . . . . . . 1.21 0.82 1.88 . . . . . . 1.21
70223 . . . . . . 8.29 2.24 20 . . . . . . 8.29
70306 1.5 21 0.78 0.58 1.06 . . . . . . 1.5
70318 0.84 52 2.96 1.75 5.66 < 2.29 149 0.84
70328 . . . . . . 0.87 0.66 1.18 . . . . . . 0.87
70330 . . . . . . 2.4 1.53 3.95 < 5.47 150 2.4
70411 2.95 53 2.86 1.69 4.55 < 4.37 151 2.95
70412 . . . . . . > 7.48 . . . . . . . . . . . . > 7.48
070419A 0.97 54 . . . . . . . . . < 5.47 152 0.97
070419B . . . . . . 2.08 1.45 3.12 < 6.68 153 2.08
70420 . . . . . . 0.66 0.48 0.93 < 3.28 154 0.66
70427 . . . . . . 3.89 2.36 6.87 . . . . . . 3.89
070429A . . . . . . 3.03 1.12 18.12 . . . . . . 3.03
70506 2.31 55 2.73 1.8 4.38 < 4.37 155 2.31
70508 . . . . . . 1.22 0.9 1.7 < 5.47 156 1.22
70509 . . . . . . 3.63 2.11 7.02 . . . . . . 3.63
70517 . . . . . . 5.48 1.06 16.88 . . . . . . 5.48
70518 . . . . . . 5.15 2.09 20 < 5.47 157 5.15
070520A . . . . . . 8.56 2.64 20 . . . . . . 8.56
070520B . . . . . . > 6.82 . . . . . . . . . . . . > 6.82
70521 . . . . . . 2.1 1.47 3.1 . . . . . . 2.1
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70529 2.5 56 > 1.67 . . . . . . < 5.47 158 2.5
70531 . . . . . . 2.5 1.33 5.74 . . . . . . 2.5
70611 2.04 57 5.55 1.24 20 < 2.84 159 2.04
070612A . . . . . . 1.72 1.17 3.13 < 5.47 160 1.72
070612B . . . . . . 1.13 0.69 2.02 . . . . . . 1.13
70616 . . . . . . 1.88 1.22 3.1 < 3.28 161 1.88
70621 . . . . . . 1.54 1.07 2.3 . . . . . . 1.54
70628 . . . . . . 0.69 0.5 0.95 < 4.37 162 0.69
70704 . . . . . . 2.14 1.38 3.52 . . . . . . 2.14
070714A . . . . . . 2.11 1.28 3.79 . . . . . . 2.11
070721A . . . . . . 3.77 1.63 12.85 < 5.47 163 3.77
070721B 3.63 84 1.98 1.16 3.8 < 5.47 164 3.63
70731 . . . . . . 6.01 2.46 20 . . . . . . 6.01
70802 2.45 59 9.37 1.51 20 < 5.47 165 2.45
70805 . . . . . . 9.48 3.06 20 . . . . . . 9.48
70808 . . . . . . 2.12 1.46 3.2 . . . . . . 2.12
070810A 2.17 60 1.76 1.19 2.69 . . . . . . 2.17
70911 . . . . . . 2.64 1.83 4.06 . . . . . . 2.64
70913 . . . . . . > 3.69 . . . . . . . . . . . . > 3.69
70917 . . . . . . 1.91 1.36 2.76 < 6.68 166 1.91
070920A . . . . . . > 6.95 . . . . . . . . . . . . > 6.95
070920B . . . . . . 1.36 0.86 2.27 . . . . . . 1.36
71001 . . . . . . 6 2.51 20 . . . . . . 6
71003 . . . . . . 1.11 0.82 1.53 < 3.28 167 1.11
71008 . . . . . . 1.62 0.74 6.25 . . . . . . 1.62
071010A 0.98 61 3.06 0.71 6.97 < 5.47 168 0.98
071010B 0.95 62 0.81 0.62 1.06 . . . . . . 0.95
71011 . . . . . . 6.07 2.94 17.18 < 6.68 169,170 6.07
71020 2.15 63 1.6 1.15 2.3 < 6.68 171 2.15
71021 . . . . . . 6.44 2.17 20 < 5.5 172 5.5
71025 . . . . . . 2.71 1.42 6.16 < 6.68 173 2.71
071028A . . . . . . > 2.56 . . . . . . . . . . . . > 2.56
71031 2.69 64 2.27 0.71 5.05 < 3.28 174 2.69
71101 . . . . . . 3.79 2.28 6.73 . . . . . . 3.79
71117 1.33 65 0.99 0.74 1.33 < 2.1 65 1.33
71122 1.14 66 > 1.05 . . . . . . . . . . . . 1.14
71129 . . . . . . 2.04 0.87 7.43 . . . . . . 2.04
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80205 . . . . . . 6.74 2.96 20 < 5.47 175 5.47
80210 2.64 67 2.51 1.64 4.03 . . . . . . 2.64
80212 . . . . . . 2.61 1.16 8.72 . . . . . . 2.61
080218B . . . . . . 1.46 0.76 3.27 . . . . . . 1.46
080229A . . . . . . 1.1 0.83 1.48 . . . . . . 1.1
80303 . . . . . . 3.35 2.18 5.43 < 2.29 176 2.29
80307 . . . . . . 4.87 2.21 20 < 6.68 177 4.87
80310 2.43 68 2.21 1.21 4.67 < 2.84 178 2.43
080319A . . . . . . 3.8 1.52 20 . . . . . . 3.8
080319B 0.94 69 1.04 0.78 1.4 < 1.96 179 0.94
080319C 1.95 70 1.75 1.08 3.17 < 3.28 180 1.95
080319D . . . . . . > 6.66 . . . . . . . . . . . . > 6.66
80320 . . . . . . 6.93 2.22 20 . . . . . . 6.93
80328 . . . . . . 2.34 1.55 3.72 < 4.37 181 2.34
80330 1.51 71 0.79 0.37 1.94 < 3.28 182 1.51
80409 . . . . . . 2.37 1.62 3.6 . . . . . . 2.37
80411 1.03 72 0.61 0.47 0.79 < 2.29 183 1.03
080413A 2.43 73 2.59 1.79 3.94 < 3.28 184 2.43
080413B 1.1 74 0.67 0.5 0.9 < 2.29 185 1.1
80426 . . . . . . 1.09 0.76 1.63 . . . . . . 1.09
80430 0.77 75 1.53 1.1 2.19 < 1.96 186 0.77
80506 . . . . . . 6.26 1.72 20 < 4.37 187 4.37
80515 . . . . . . 0.56 0.28 0.93 . . . . . . 0.56
80516 3.2± 0.3 58 3.62 1.86 7.96 . . . . . . 3.2± 0.3
80517 . . . . . . > 2.29 . . . . . . . . . . . . > 2.29
80520 1.55 76 0.75 0.62 1.73 < 2.4 76 1.55
80523 . . . . . . > 5.11 . . . . . . < 4.37 188 4.37
80602 . . . . . . 2.84 1.28 7.99 . . . . . . 2.84
080603B 2.69 77 2.68 1.93 3.68 < 2.84 189 2.69
80604 1.42 78 . . . . . . . . . . . . . . . 1.42
80605 1.64 79 1.05 0.78 1.43 < 3.28 190 1.64
80607 3.04 80 1.04 0.78 1.44 < 5.47 191 3.04
080613B . . . . . . 9.36 4.36 20 . . . . . . 9.36
80623 . . . . . . 3.45 2.12 6.02 . . . . . . 3.45
80701 . . . . . . 1.42 0.99 2.12 . . . . . . 1.42
80703 . . . . . . 11.6 3.7 20 < 5.47 192 5.47
80707 1.23 81 2.35 0.77 8.87 . . . . . . 1.23
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80710 0.85 82 . . . . . . . . . < 1.96 193 0.85
80714 . . . . . . 1.36 0.96 1.98 . . . . . . 1.36
80721 2.6 83 1 0.75 1.39 < 3.28 194 2.6
080723A . . . . . . 4.61 2.11 14.23 . . . . . . 4.61
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Fynbo et al. 2005b; ( 15 ) Halpern & Mirabal et al. 2006; ( 16 ) Kawai et al. 2005; ( 17 ) Fugazza
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) Boyd et al. 2006; ( 119 ) Mundell et al. 2006; ( 120 ) Blustin et al. 2006b; ( 121 ) Schady et al.

2006a; ( 122 ) De Pasquale et al. 2006a; ( 123 ) Poole et al. 2006; ( 124 ) Holland et al. 2006b; (

125 ) Melandri et al. 2006b; ( 126 ) De Pasquale et al. 2006b; ( 127 ) Brown et al. 2006a; ( 128

) Blustin et al. 2006c; ( 129 ) Oates et al. 2006a; ( 130 ) Schady et al. 2006b; ( 131 ) Schady et

al. 2006c; ( 132 ) Boyd et al. 2006; ( 133 ) Grupe et al. 2006; ( 134 ) Pandey et al. 2006; ( 135 )

Malesani et al. 2006; ( 136 ) Oates et al. 2006b; ( 137 ) Cenko et al. 2006c; ( 138 ) Morgan et al.

2006; ( 139 ) Brown et al. 2006b; ( 140 ) Kiziloglu et al. 2006; ( 141 ) Schady et al. 2006d; ( 142 )

Holland et al. 2006c; ( 143 ) Chen et al. 2006; ( 144 ) Melandri et al. 2006c; ( 145 ) Marshall et

al. 2006; ( 146 ) Schady et al. 2006e; ( 147 ) Roming et al. 2007; ( 148 ) Halpern et al. 2007; (

149 ) Marshall et al. 2007a; ( 150 ) Kuin et al. 2007; ( 151 ) Oates et al. 2007; ( 152 ) Landsman

& Stamatikos et al. 2007; ( 153 ) Schmidt & Mackie et al. 2007; ( 154 ) Immler et al. 2007; ( 155

) Landsman & Pagani et al. 2007; ( 156 ) Marshall & Grupe et al. 2007; ( 157 ) Cucchiara et al.



92

2007c; ( 158 ) Holland et al. 2007; ( 159 ) Landsman et al. 2007a; ( 160 ) Barthelmy et al. 2007; (

161 ) De Pasquale et al. 2007a; ( 162 ) Landsman et al. 2007b; ( 163 ) Marshall et al. 2007b; ( 164

) De Pasquale et al. 2007; ( 165 ) Malesani et al. 2007; ( 166 ) Klotz et al. 2007; ( 167 ) Misra et

al. 2007; ( 168 ) Kocevski et al. 2007; ( 169 ) Cenko et al. 2007; ( 170 ) Iizuka et al. 2007; ( 171 )

Updike et al. 2007; ( 172 ) Piranomonte et al. 2007; ( 173 ) Williams et al. 2007; ( 174 ) Breeveld

et al. 2007; ( 175 ) Oates et al. 2008a; ( 176 ) Breeevld et al. 2008; ( 177 ) Xin et al. 2008; ( 178 )

Hoversten et al. 2008; ( 179 ) Holland et al. 2008a; ( 180 ) Holland et al. 2008b; ( 181 ) Fatkhullin

et al. 2008; ( 182 ) Kuin et al. 2008a; ( 183 ) Oates et al. 2008b; ( 184 ) Oates et al. 2008c; ( 185

) Oates et al. 2008d; ( 186 ) Landsman et al. 2008a; ( 187 ) Oates et al. 2008e; ( 188 ) Fynbo et

al. 2008c; ( 189 ) Kuin et al. 2008b; ( 190 ) Kuin et al. 2008c; ( 191 ) Schady et al. 2008; ( 192 )

Ward et al. 2008a; ( 193 ) Landsman et al. 2008b; ( 194 ) Ward et al. 2008b;

We ran a Monte Carlo simulation on a sample of all Swift GRBs with zspec. The typical

uncertainty of our zbest is ∼ 0.69 × zbest in the positive direction and ∼ 0.35 × zbest in

the negative direction. In our simulations, we added random noises on zspec, which were

chosen to be normally distributed on both sides, with standard deviations of 0.69×zbest in

the positive direction and 0.35×zbest in the negative direction. Whether a positive or a

negative uncertainty was added on zspec is also randomly chosen, with the chance half and

half. The resultant redshifts were then recorded as zsimulated. A comparison between the

cumulative distribution of the zsimulated , zbest and our zbest was then made, as shown in

Figure 3.4. A Kolmogorov-Smirnov test was made between zbest and zsimulated, with the

maximum difference of 0.06 between these two cumulative distribution function, and a p

value of 0.97. From both the comparison plot and the Kolmogorov-Smirnov test, we see that

the distribution of zsimulated and zbest agrees well enough with each other.

From the catalog of our zbest, we made a cumulative redshift distribution plot for all Swift

long GRBs, as shown in Figure 3.5. This is a redshift distribution for Swift long GRBs,
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Figure 3.5 Left panel: Cumulative distribution plot of bursts with zspec, zbest for bursts
with zspec and zfinal for all Swift GRBs. For zfinal plot, about ∼ 20% of the total have
their redshift larger than 5. A K-S test is done on bursts with zspec and all Swift bursts,
a difference of 0.14 is found, and the p value is 0.20. Right Panel: comparison of redshift
distribution for GRBs with zspec and all Swift GRBs. The bias of the spectroscopic redshift
is not as large as expected.
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Figure 3.6 Efficiency versus redshift plot, from which we see that the redshift detection
efficiency at high redshift is significantly low comparing with that at low redshift.
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without any spectroscopic detection threshold effect. However, as stated before, the random

noise might cause an offset of our zbest distribution from the real GRB redshift distribution.

A de-convolution process was then taken to eliminate the noise effect from our zbest and to

obtain the intrinsic GRB redshift distribution zintrinsic. First, take zbest distribution as the

GRB redshift distribution, by adding a normally distributed random noise on zbest, a new

distribution of zI can be calculated. The noise added on zbest is randomly selected from a

normal distribution of N(0.69×zbest) in positive direction and N(0.35×zbest) in the negative

direction. The difference between the distributions of zI and zbest is then an estimate of

the noise effect on zbest. By subtracting the noise effect from zbest, a distribution of zbest,I

was calculated. zbest,I can be taken as the first estimated intrinsic distribution. A better

estimate of the noise effect can then be obtained by adding random normally distributed

noise on the distribution of zbest,I , where the standard deviation of the noise is 0.69×zbest,I

in positive direction and 0.35×zbest,II in the negative direction. By taking the new noise

effect off the distribution zbest, the second estimation of the intrinsic redshift distribution,

zbest,II , was then obtained. A Kolmogorov-Smirnov test was then taken between zbest,I and

zbest,II distribution. If the difference between zbest,I and zbest,II is smaller than 0.10, we then

adopt the zbest,II as the intrinsic GRB redshift distribution. Otherwise, we will continue from

zbest,II for a new round of noise effect evaluation and GRB redshift distribution calculation,

until we get a zbest,i distribution which is within 0.10 from zbest,i−1 distribution, and zbest,i was

then the intrinsic redshift distribution that we were looking for. By running this converging

process, the intrinsic redshift distribution of our redshift catalog was obtained. The resulting

GRB redshift distribution plot is also shown in Figure 3.4. A Kolmogorov-Smirnov test was

taken between the cumulative distribution of zspec and zbest,i, and a 0.14 difference is found,

with a p value equals 0.20. A significant difference between these two distributions was

found in the high redshift region. The efficiency of redshift detection can be evaluated by

taking the ratio of GRBs with spectroscopic redshift versus all GRBs at a given redshift. The
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efficiency versus redshift plot is shown in Figure 3.6, from which we see that the efficiency

is significantly lower at high redshifts.

In Bromm & Loeb (2006), redshift distributions of all GRBs by different instruments

(BATSE and Swift) were predicted based on the star formation rate of the universe and the

flux-limited detection threshold of these instruments. Their predicted redshift goes up to

z = 17, and with a fraction f(z > 5) for Swift to be ∼ 10%. Our zintrinsic distribution shows

a f(z > 5) = ∼ 10%, which is consistent with what Bromm & Loeb (2006) predicted.

3.4 Fermi GRB Redshift Estimation

Fermi, formerly known as GLAST (Gamma-Ray Large Area Space Telescope), launched June

11th, 2008, is another NASA major mission for observations of high energy gamma rays. Its

main instrument, the Large Area Telescope (LAT), will provide unprecedented sensitivity to

gamma rays in the energy range of ∼ 20 MeV to ∼ 300 GeV. The GLAST Burst Monitor

(GBM) complements the LAT in its observations of transient sources and is sensitive to

X-rays and gamma rays with energies between 8 keV and 25 MeV. The combination of the

GBM and the LAT provides a powerful tool for studying gamma-ray bursts, particularly for

time-resolved spectral studies over a very large energy band. With LAT and GBM, more

than 200 bursts per year are expected to be detected by Fermi, and near-real-time location

information are expected to be distributed to other observatories for afterglow searches.

With our success on the Swift long GRBs, we are confident to extend our programs on

Fermi GRBs. The data pipeline of Fermi is able to provide the light curve and spectrum

of each GRB, which is all we need for the calculation of our redshifts. One possible option

is to import my code into the data analysis software of Fermi GRBs, in which case we can

make a redshift alert to the community fast (∼ 10 mins after a raw light curve and spectrum

are produced). The fast (∼ 10 mins) notification will alert people to possible high-z events

(for immediate followup with big telescopes) as the only way that the > 5% high-z bursts
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will likely get looked at with optical and IR spectroscopy. Also, it will alert observers to any

low-z bursts for followup by looking for Supernovae.

In Feb. and Mar. 2009, I spent two months visiting the Fermi GBM team in Huntsville,

AL, and imported my code into the Fermi software RMFIT. A few Fermi GRBs with

known spectroscopic redshifts have been tested. For GRBs detected by GBM, there are

four different types of data formats. The TRIGDAT data is produced and transmitted by

GBM immediately after the trigger, which consists of a time history of the burst for all

detectors with eight channel energy resolution and time resolution varying between 64 ms

and 8 s. Three other types of science data packages will be produced half an hour to a few

hours later. The CTIME data, consisting of accumulated spectra from each detector with 8

channel pulse height resolution, has an accumulating time interval from 64 to 1024 ms, with

a default value of 256 ms. The CSPEC data, consisting of accumulated spectra from each

detector with 128 channel pulse height resolution, has an accumulating time interval from

1.024 s to 32.768 s, with a default value of 4.096 s. The TTE data has the same 128 channel

boundaries, and the time interval is 0.1 s. With high energy and low temporal resolution,

the CSPEC is mostly used for spectral analysis. TRIGDAT data is fast enough for our rapid

alert, however, both the energy and temporal resolutions are too low, and the calculated

luminosity indicators and redshifts have large uncertainties, which will be shown later. TTE

data is the most precise format in our calculation, but it takes much longer to be produced,

by which time the follow-up telescopes might not be able to detect the afterglow. As as

result, the most ideal case for us is to use CTIME for the temporal analysis to calculate

temporal luminosity indicators, CSPEC for the spectral analysis to calculate peak photon

energy and fluences, and then combine these results to calculate the redshift.

The software that GBM Burst Advocators have been using is RMFIT. The Graphic User

Interface and simple analysis of the software was written in IDL, and the spectral fitting

part ‘mfit’ was programmed in fortran. The Graphical User Interface is shown in Figure 3.7.
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All TRIGDAT, CTIME and CSPEC data can be loaded into RMFIT, and the light curves

will be depicted in the main frame. Various analysis can be done on these different formats

of data. The source can be located by using TRIGDAT data. With a better location of the

source, the dynamic response matrix will be generated from the pipeline (which is out of

the RMFIT program), and by using the CTIME, CSPEC data and the generated response

file, the spectral fit can be done. Various human judgements are needed in the analysis, e.g.

choosing the energy range, the time range, and function for the background fitting, double

check χ2 plot, etc. I converted all my calculation of luminosity indicator values and GRB

redshift calculation into IDL, and made my own Graphical User Interface, which can be well

fitted into the existing User Interface of RMFIT. All my programs are compressed into the

’Redshift Calculation’, which includes exporting the original data to the format we need, lag

calculation, variability calculation, minimum rise time and number of peak calculation, and

the final redshift calculation.

There are a few troubles with the Fermi fast alert. One of the troubles is that the

only available data format within minutes of the trigger is TRIGDAT. However, both the

energy and time accumulated interval are too large in TRIGDAT data. The calculated

temporal luminosity indicators (τlag, Variability, τRT , and Npeak) show uncertainties which

are much larger than expected. Without a reliable dynamic response matrix and low energy

resolution, the spectral fit cannot be done accurately. As a result, we will not be able to

estimate the redshift based upon the TRIGDAT data. Both CTIME and CSPEC data have

high resolutions suitable for our calculation. However, it takes half an hour to a few hours

before we can obtain the CTIME and CSPEC data, with the delay time varying depending on

the pipeline processing and the Burst Advocator. Another trouble which is more important

is that the on board localization of Fermi GRBs has an accuracy of 10◦ − 15◦, and the

ground localization after delicate calculation is still a few degrees, which is too large for

ground optical telescope to follow up. In this case, even if we are able to obtain a CTIME
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Figure 3.7 Graphical User Interface of GBM software RMFIT. A light curve with format
TRIGDAT, CTIME, and CSPEC can be loaded and depicted in the main frame. Various
options can be chosen by user, e.g. zoom in and out, change the bin size, choose the time
range and function to fit the background, and do spectral fitting. My ’Redshift Calculation’
is the program added to do all the temporal analysis and calculate the redshift.
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Table 3.8. Fermi GRB Redshifts.

GRB zspec Ref a zbest zmin zmax

080916 0.689 1 1.47 0.81 3.08
081121 2.512 2 1.63 0.98 3.03
081222 2.77 3 0.72 0.49 1.10
090102 1.547 4 1.92 1.16 3.67
090323 3.57 5 8.56 1.88 20
090328 0.736 6 1.13 0.73 1.86
090423 8.26 7 1.72 0.74 5.98
090424 0.54 8 0.45 0.32 0.65
090618 0.54 9 0.32 0.26 0.46

aReferences: —( 1 ) Fynbo et al. (2008d); ( 2
) Berger & Rauch (2008); ( 3 ) Cucchiara et al.
(2008); ( 4 ) de Ugarte Postigo et al. (2009); ( 5 )
Chornock et al. (2009a); ( 6 ) Cenko et al. (2009a);
( 7 ) Tanvir et al. (2009); ( 8 ) Chornock et al.
(2009b); ( 9 ) Cenko et al. (2009b);

and CSPEC light curve and spectrum, our rapid alert cannot be followed by the ground

telescopes, and our prediction of high redshift GRBs cannot be confirmed.

However, without the rapid notification service of high redshift GRBs, we can still test

our luminosity relations and redshift calculations on this completely independent sample.

From the launch of Fermi on June, 11, 2008 until August, 2009, there are 13 GRBs with

spectroscopic redshift in total. One of the 13 GRBs is a short GRB, which is not applicable

in our method, and 3 of the GRBs are so faint and noisy that no useful information can

be drawn from either the light curve or the spectrum. I calculated the luminosity indicator

values and the redshift value for the remaining 9 GRBs, using my updated version of RMFIT.

All my redshift value with comparison to the spectroscopic redshifts are shown in Table 3.8.

Five of the nine GRBs in the table have their spectroscopic redshifts falling into our

1 − σ region, which means that our evaluated error bars are smaller than the real scatters.
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The χ2 value is 4.19, which is significantly larger than unity. However, most of the χ2 value

comes from one GRB, GRB081222, which has a relatively small σ evaluated. As a result,

we conclude that due to some reason, the redshift or the uncertainty of GRB081222 does

not work well in our method, and if we take it as an outlier, for the remaining 8 GRBs, the

redshifts and uncertainties are reasonable. And by excluding GRB081222, the average value

of log(zbest/zspec) is -0.02, which means our zbest is not biased to within the 2% level.

From all above analysis, we conclude that for Fermi GRBs, our measured redshifts are

uncertainties are reasonable, and the scatter is comparable with the Swift GRBs. The

improvement on Epeak measurement due to better spectrum resolution and larger energy

range did not help much in improving the accuracy of our method. With the data and the

uncertainty at hand, we are not confident to send out the rapid high redshift notifications

to the community yet.



4. Applications of GRB Redshift Catalog

4.1 Long Lag GRBs and the Local Supercluster

The τlag analysis on BATSE and INTEGRAL samples shows a distribution from ∼ 0 − 10

s for long GRBs (Norris , 2002; Foley et al., 2008), with most of these τlag concentrated in

the 0 - 1 s region. According to the τlag − L relation, a long τlag corresponds with a low

luminosity, and for a low luminosity GRB to be detected by our instruments, it should be

relatively nearby. Norris (2002) pointed out that GRB980425 might represent a subclass of

long GRBs, with long τlag, soft spectrum, ultra-low luminosity, and nearby. In this case, a

possible break might exist in the τlag−L relation in the long τlag region, which would indicate

that these long τlag GRBs are even closer than what is predicted by the L ∝ τ−1
lag relation.

Indeed, two long τlag bursts are confidently known to be at distances close enough to be

inside the Local Supercluster. GRB980425, with τlag = 2.8 s, had an ultra-low luminosity,

and lies in a galaxy only ∼ 38 Mpc away (Galama et al., 1998). GRB830801, is the all-time

brightest GRB yet has a long τlag (2.2±0.2 s), so a very low redshift of z ∼ 0.01 is calculated

from the τlag − L relation (Schaefer et al., 2001). GRB830801 also happens to be from a

direction close to the Virgo Cluster.

Given that these long τlag GRBs might be nearby, is there any local structure of galaxies

to host these GRBs? The Local Supercluster was proposed by de Vaucouleurs (1953), from

an investigation of spatial distribution of galaxies. It was first named as ‘Supergalaxy’, which

was later changed to be ‘Local Supercluster’ (de Vaucouleurs , 1958). More detailed studies

show that the main body of the Local Supercluster is a filamentary structure extending over

∼ 40 h−1 Mpc, and is centered on the Virgo Cluster (Tully & Fisher , 1987; Karachentsev &

Makarov , 1996; Lahav et al., 2000). Around 60% of the luminous galaxies in the volume of

101
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Local Supercluster are within the structure that defines the plane of the Supercluster (20%

in Virgo Cluster and 40% in Virgo II Cloud and Canes Venatici Cloud), and most of the

remaining 40% lies within five clouds off the plane, which is called a ‘halo’ (Tully , 1982).

Our Local Group is in the outskirt of this region.

Norris (2002) presented a catalog of τlag values for 1429 BATSE long GRBs, from which a

sample of 64 long τlag GRBs (with τlag > 2 s) was selected. These τlag values were calculated

in the observer’s rest frame, without making the time dilation correction (which should be

small for local bursts). By plotting these long τlag bursts on a sky map in Supergalactic

coordinates, a concentration towards the Supergalactic plane was found, with three-fourth

of these bursts located in the half of the sky between −30◦ and 30◦ of Supergalactic latitude.

Quantitatively, the quadrupole moment of these GRBs is roughly −0.10±0.04, which shows

a 2.5σ deviation from isotropy. This result implies that long τlag value will be an indicator

for local GRBs. From the solid long GRB-SN connection (e.g. GRB980425 & SN1998bw,

GRB030329 & SN2003dh) and the model of massive SN (from the collapsing in highly non-

axisymmetric modes), strong gravitational waves can be produced at a rate of ∼ 4 yr−1, and

these gravitational waves might be able to be detected by LIGO (Norris , 2003).

An independent catalog of long τlag bursts discovered by INTEGRAL has been created

by Foley et al. (2008), with 11 long τlag (τlag > 0.75 s) GRBs being pulled out from the

whole INTEGRAL sample. They found that 10 of the 11 long τlag bursts are located within

the −30◦ to 30◦ Supergalactic latitude region. The quadrupole moment of the 11 GRBs is

−0.225 ± 0.090. This result is confirmed by Vianello et al. (2009). By comparing with the

simulation based on INTEGRAL sky coverage, the quadrupole moment isQ = −0.271±0.089

for long τlag GRBs and Q = −0.007 ± 0.042 for the whole sample. The INTEGRAL result

is broadly consistent with the conclusion of Norris (2002), however, in Norris (2002), the

quadrupole moments for the samples of τlag > 0.5 s and τlag > 1 s have a substantially

lower significance (Q = −0.022± 0.020 for the τlag > 0.5 s sample and Q = −0.043± 0.026
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for the τlag > 1 s sample). With three results on two independent samples (pointing to a

concentration towards the Supergalactic plane), another sample is needed to test the Local

Supercluster hypothesis.

The accurate localizations of Swift GRBs make possible the search for hosts of long τlag

bursts in Local Supercluster galaxies. The GRB redshift will also directly tell us the distances

of these GRBs. From our Swift GRB redshift and luminosity indicators catalog (ranging

from Dec. 2004 (GRB041220) to Jul. 2008 (GRB080723A)), 18 GRBs with long τlag values

(τlag > 1 s) are pulled out. Data for these 18 GRBs are listed in Table 4.1. Column 1 gives

the six digit identification numbers of each GRB. Column 2 lists our measured τlag values

with their 1−σ uncertainties. Column 3 gives the spectroscopic redshifts for 6 of these GRBs

and our calculated redshifts zind with 1−σ uncertainties for the remaining 12. The references

for these redshifts are listed in column 4. The celestial right ascension and declination of

these GRBs from BAT localizations are listed in columns 5 and 6, and the corresponding

latitude and longitude in Supergalactic coordinate systems are listed in columns 7 and 8.

The conversion from celestial coordinate system to the Supergalactic coordinate system is

done by using the online tools provided on a NASA website1. Column 9 lists the galaxy

information within the field of the GRBs, with all the references given in column 10. All

information of the galaxies are drawn from the reports on GCN Circulars and the Digital

Sky Survey2. The sky distribution of these long τlag GRBs in Supergalactic coordinates are

plotted in Figure 4.1. At first glance, there is no tendency of concentration either towards

the Supergalactic plane or towards the Virgo or Coma Cluster. More detailed analysis is

presented below.

1http://lambda.gsfc.nasa.gov/toolbox/tb coordconv.cfm
2http://archive.stsci.edu/cgi-bin/dss form
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Figure 4.1 Sky distribution of the 18 long τlag Swift GRBs, the Virgo Cluster, and the Coma
Cluster. The GRBs are marked as filled triangles, and the Virgo and Coma Clusters are
marked as empty squares (upper: Coma, lower: Virgo). GRB060218, the Virgo and Coma
Clusters are all marked on the right. From this figure we do not see any tendency either
towards the Supergalactic plane (the horizontal line running through the middle) or towards
the Virgo or Coma Clusters.

4.1.1 Concentration Towards Supergalactic Plane

Our Local Supercluster has a flattened distribution, with 60% of its luminous galaxies in

the structure which is called the plane of the Local Supercluster, and the other 40% lies in

five clouds off the plane, called the ‘halo’. If long τlag GRBs reside in galaxies in our Local

Supercluster, they will show a tendency of concentration towards the Supergalactic plane.

To quantitatively measure the tendency of the concentration, a quadrupole moment of

the distribution can be calculated, with Q =< sin2 b−1/3 > and σQ =
√

4/(45NGRB) (Briggs

et al., 1996), where b is the latitude of GRBs in Supergalactic coordinate and NGRB is the

number of GRBs. A significant concentration towards the plane will result in a negative Q

value, while an isotropic distribution will result in a near-zero Q value. Both the quadrupole

moments of Norris (2002) (Q ∼ −0.10±0.04) and of Foley et al. (2008) (Q = −0.225±0.090)

show low-moderate significance (with |Q| = 2.5σQ in both cases) of a concentration towards

the Supergalactic plane.
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For our long τlag burst sample from Swift, by simply counting the number of GRBs, we

get only 8 of a total of 18 (∼ 44%) lying between -30◦ and 30◦ in Supergalactic latitude,

which covers 50% of the whole sky. The calculated quadrupole moment of this distribution

is Q = −0.02± 0.07. It is not significantly negative. Instead, the Q value equals zero within

1 − σ uncertainty and this is an indication of a homogeneous distribution. We also raised

the lower limit of the ‘long τlag’ criteria to τlag > 1.5 s and τlag > 2 s, and calculated the

quadrupole moment for these subsamples. The results of Q = −0.02 ± 0.08 for τlag > 1.5 s

and Q = −0.06± 0.09 for τlag > 2 s also show no tendency towards the Supergalactic plane.

The samples and our results are shown in Table 4.2. A real-time sky map of Swift GRBs3

shows a nearly isotropic sky distribution for Swift bursts, and the quadrupole moment for

all short τlag (τlag < 1 s) long duration GRBs (Q = −0.03±0.02) also shows an isotropic sky

distribution, with no tendency either towards or away from the Supergalactic plane. With

this, we see that Swift has a uniform sky coverage for the purpose of this paper, and so our

quadrupole moment of the long τlag bursts needs no correction for sky coverage. As such,

we find no concentration towards the Supergalactic plane, and the Supergalactic hypothesis

fails our first test.

4.1.2 Concentration Towards Virgo or Coma Cluster

The majority of the mass in our Local Supercluster is towards the Virgo Cluster and the

Coma Cluster (which is in about the same direction as the Virgo Cluster, but with much

larger distance from the Earth). So if these long τlag GRBs are from the Local Supercluster,

there should be a tendency of concentration towards the Virgo and Coma Clusters. A dipole

moment can be calculated to quantitatively measure the concentration, with D =< cos θ >

and σD =
√

1/(3NGRB) (Briggs et al., 1996), in which θ is the angle between the GRB and

the Virgo or Coma Cluster. A concentration towards the Virgo or Coma Cluster will result

3http://grb.sonoma.edu/
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Table 4.2. Dipole and quadrupole Statistics

Sample NGRB Qa D for Virgob D for Comab

τlag < 1 s 331 -0.03 ± 0.02 -0.03 ± 0.03 -0.01 ± 0.03
τlag > 1 s 18 -0.02 ± 0.07 -0.25 ± 0.14 -0.14 ± 0.14
τlag > 1.5 s 14 -0.02 ± 0.08 -0.30 ± 0.15 -0.20 ± 0.15
τlag > 2 s 11 -0.06 ± 0.09 -0.28 ± 0.17 -0.18 ± 0.17

aThe quadrupole moment is sensitive to measuring a concentra-
tion towards the Supergalactic plane (Q � 0), while an isotropic
distribution yields Q ' 0.

bThe dipole moment is sensitive to measuring a concentration
towards either the Virgo Cluster or the Coma Cluster (D � 0),
while an isotropic distribution yields D ' 0.

in a positive dipole moment, while an isotropic distribution would result in a near-zero dipole

moment. D values for a majority of long Swift GRBs (331 bursts with τlag < 1 s) shows no

tendency towards or away from Virgo and Coma Clusters, as shown in Table 4.2. The fact

that the dipole for the τlag < 1 s bursts is closely zero tells us that the Swift sky coverage

is sufficiently uniform for the purpose of this paper and no correction to our measured D

values is needed.

We calculated the dipole moment of our long τlag GRBs, towards both the Virgo and

Coma Clusters. For the Virgo Cluster, the dipole moments are −0.25 ± 0.14 for τlag > 1

s sample, −0.30 ± 0.15 for the τlag > 1.5 s subsample, and −0.28 ± 0.17 for the τlag >

2 s subsample. While for Coma Cluster, the calculated dipole moments are respectively

−0.14 ± 0.14, −0.20 ± 0.15, and −0.18 ± 0.17 for the three cuts on τlag. With the negative

dipole moments, Swift long τlag bursts are showing a tendency away from the Virgo and

Coma clusters. Hence the hypothesis that these GRBs are from the Local Supercluster fails

our second test. By checking Figure 5 in Norris (2002) and Figure 3 in Foley et al. (2008),

we do not see any tendency towards the Virgo or Coma Cluster.
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4.1.3 Host Galaxy of These GRBs

As long GRBs are formed by the collapsing of fast-rotating massive stars, they should be

located in the star forming region of galaxies (e.g. in the spiral arms of the spiral galaxies),

and these galaxies should appear within the small Swift-XRT 90% error circles. If these

galaxies are members of the Local Supercluster, given the scale of the Local Supercluster

(∼ 40 h−1 Mpc), they should be rather nearby, and hence relatively bright. If we adopt the

R-band Schechter luminosity function with M∗ = −21.2 (for a Hubble constant of 65 km

s−1 Mpc−1; Lin et al. (1996)), a galaxy in our Local Supercluster with luminosity of L∗/10

will have its absolute magnitude of M = −18.7. This limit of L∗/10 is somewhat arbitrary,

but it does include 90% of the mass in a standard luminosity function. Such a galaxy on

the far edge of Local Supercluster (for which we adopt a distance of ∼ 56 Mpc) will have an

apparent magnitude of m = 15.0 or brighter. An increasing of Hubble constant from 65 km

s−1 Mpc−1 to 72 km s−1 Mpc−1 will cause a slightly decrease of the distance, and hence a

brighter apparent magnitude for the threshold. As a result, if the long τlag GRBs reside in

our Local Supercluster, we should be able to find their host galaxies with m ≤ 15. That is,

any GRB from our Local Supercluster should be immediately obvious by having its bright

host galaxy in the Swift-XRT error circle.

We checked all the GCN reports regarding to these long τlag GRBs, and all these 18

GRBs have follow up observations reported except for GRB060607B (which was too close to

the Sun). Possible host galaxies are found for GRB050126 and GRB060218, with redshifts

of 1.29 and 0.0331. With accurate positions reported by XRT, no galaxies are found to be

within the XRT 90% error circles for the remaining 16 GRBs. We also searched through the

Digital Sky Survey for the fields of these GRBs, and no galaxies are found to be within the

XRT error circle for all of the 18 GRBs in POSS II-F archive, the limit magnitude of which

is 20.8. Hence the Supergalactic hypothesis fails this test also.



109

GRB060218 is a very long and smooth burst with a very long lag (Liang et al., 2006).

An optical transient was speedily discovered with UVOT (Marshall et al., 2006) and with

ROTSE (Quimby et al., 2006). The burst position is coincident with a nearby galaxy at z =

0.0331 (Mirabal et al., 2006). Later, a supernova (SN2006aj) was found at the same position

(Masetti et al., 2006; Soderberg et al., 2006). The position is on the edge of the constellation

Taurus, with θ = 128◦ to the Virgo Cluster and θ = 125◦ to the Coma Cluster. For the

redshift and a Hubble constant of H0 = 72 km s−1 Mpc−1, the burst is ∼ 140 Mpc distant

from the Earth. This is close, but certainly outside our Local Supercluster. As such, this

long τlag burst is an example of an extremely under-luminous event, but is not associated

with any concentration towards the Supergalactic plane.

4.1.4 Redshifts

Given that the distance of galaxies in Local Supercluster are less than 56 Mpc from the

Earth (for the Hubble constant H0 = 72 km s−1 Mpc−1), the corresponding upper limit on

the redshift is z < 0.013. If the long τlag GRBs are from the Local Supercluster, they should

be at redshift z < 0.013 or so.

Of our 18 long τlag GRBs, 5 have their spectroscopic redshift reported, ranging from 1.29

to 3.08 (as listed in Table 4.1). These bursts are certainly far outside the Local Supercluster.

The redshift of GRB050126 is measured from the spectrum of its host galaxy, while the other

4 are all from multiple absorption lines in the optical afterglow spectra, hence these redshift

values have high confidence. The sixth GRB with a spectroscopic redshift is GRB060218,

with z = 0.0331, which is also too far to be inside our Local Supercluster (see previous

section). With six out of six long τlag GRBs having their spectroscopic redshift much larger

than the upper limit redshift of Local Supercluster (0.013), we are very confident to make

the conclusion that the Supergalactic hypothesis fails this test also for the Swift sample.

While for the remaining 12 GRBs lack spectroscopic redshifts, our redshift calculated from
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luminosity indicators zind are within the range of 0.6 to 5.0 (Xiao & Schaefer, 2009), and

the 1− σ lower limit of redshifts for all these GRBs are z > 0.5. In summary, all these Swift

long τlag bursts are certainly outside the Local Supercluster, with 17 out of 18 at z > 0.5.

Hence the Supergalactic hypothesis fails the fourth test for all of 18 long τlag GRBs.

Moreover, if we check the whole Swift GRB catalog (with long and short τlag values),

it is easy to see that only one of all the GRBs (GRB980425) with reported spectroscopic

redshift are close enough to be in our Local Supercluster. The lack of low redshift GRBs in

the catalog also indicates that it is impossible to have a large fraction of long τlag of GRBs

in Local Supercluster.

4.1.5 Implications

The Local Supercluster hypothesis strongly failed all of our four tests. Although some small

fraction of long τlag GRBs can still be local (e.g. GRB980425, GRB830801), our analysis

on Swift data puts a limit of < 5% on the fraction of long τlag GRBs to be in our Local

Supercluster.

Both the results of Norris (2002) and Foley et al. (2008) show a tendency of concentration

towards the Supergalactic plane (with a significance of |Q| = 2.5σQ in both cases), which is

not significantly convincing. Given that BATSE positions have had many selections of GRBs

examined for anisotropies in many directions (Briggs et al., 1996), with this large number of

trials, we can expect that some will be significant at this level.

From our analysis, only a small fraction of long τlag GRBs (less than one out of eighteen

or so) could be in the Local Supercluster. Hence, the rate of long τlag GRBs in the Local

Supercluster is greatly smaller than what has been reported by Norris (2003), and should

not be included in the calculation of LIGO’s detection rate.

From Table 4.1 we see that redshifts for these long τlag GRBs (< z >= 1.61) are not

greatly lower than for other GRBs (< z >∼ 2.3). From the logic that long τlag corresponds
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with low luminosity, one might be curious as to how we can detect a τlag > 1 s GRB at redshift

as high as z = 3 ? GRB980425 is an example of long τlag and low redshift (z ∼ 0.008) GRB,

and it is very under-luminous (with its γ-ray peak luminosity L = 5.5± 0.7× 1046 erg s−1

according to Galama et al. (1998)). Of course if we put GRB980425 to the redshift of z = 3,

its luminosity distance will be increasing by a factor of ∼ 730, and its peak flux will be

decreasing by a factor of 5.3× 105. With such a low peak flux, we will definitely not be able

to detect it. However, GRB980425 is not a typical GRB. Its energy is much lower than a

‘normal’ GRB, and it falls far below the τlag−L relation curve by a factor of several hundred.

GRB980425 might represent a subclass of long GRBs with long τlag, soft spectrum and low

luminosity, as suggested by Norris (2002), but with only one example, it is unreasonable for

us to take all long τlag GRBs as ultra-low luminosity bursts.

Consider a ‘normal’ long GRB that has τlag = 1 s and redshift z = 3. Its τlag,rest in

the GRB rest frame would be 0.25 s. Assuming that it fits well with the τlag − L relation

from Table 2.1, its luminosity value L would be 8.40 × 1051 erg s−1. From the concordance

cosmological model (Equation (3.6)), the luminosity distance dL at a given redshift is calcu-

lated, with H0 = 72 km s−1 Mpc−1, c = 3 × 105 km s−2, ΩM = 0.27 and ΩΛ = 0.73. The

luminosity distance for z = 3 is dL ∼ 2.5 × 104 Mpc. Then from the inverse square law for

light, P = L/(4πd2
L), the bolometric peak flux would be Pbolo = 1.12 × 10−7 erg cm−2 s−1.

From the luminosity and the Epeak−L relation from Table 2.1, a low Epeak value Epeak ∼ 57

keV can be adopted. From the Epeak and average values of the low-energy power law index

α = −1.1 and high-energy power law index β = −2.2 (Band et al., 1993), a peak flux value in

the energy range 15 keV to 150 keV can be calculated, with the result of P = 4.93×10−8 erg

cm−2 s−1, which is ∼ 0.54 ph cm−2 s−1. It is significantly higher than the trigger threshold

of Swift. As a result, there is no doubt that we can detect long τlag GRBs at a high redshift

(z=3). Indeed, the long τlag GRBs at z > 1 are consistent with the unbroken τlag−L relation.

Thus, it appears that the ultra-low luminosity ‘class’ of bursts is quite rare (roughly fewer
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than one-in-eighteen), and the usual L ∝ τ−1
lag relation should be used for normal long τlag

bursts with reasonable confidence.

4.2 GRB Luminosity Function Evolution

Another important application from my redshift catalog and catalog of luminosity indicators

is the evaluation of the luminosity function evolution. A luminosity function is a measure

of the number of objects per unit luminosity, and it is therefore connected with the energy

budget and the physical parameters determining the emission mechanism. As many GRBs

(especially long GRBs) are associated with star-forming regions according to observations,

and long GRBs are generated from the collapse of fast-rotating massive stars according to

the current model, the measurement of GRB luminosity function will help us not only in

understanding GRBs themselves, but also in other astrophysical problems, e.g. the massive

star formation rate at high redshifts. One of the questions in the GRBs luminosity function

studies is whether the luminosity function varies with redshift, for which a test of correlation

between luminosity and redshift should be performed. With our catalog, we have redshift

values for all Swift long GRBs calculated, with or without a spectroscopic redshift.

With our catalog, we have a bivariate GRB distribution of luminosity and redshift

Ψ(L, z). An estimation of Ψ(L) depending on z would be an measurement of the luminosity

function evolution. In Fenimore & Ramirez-Ruiz (2000), an evaluation of the luminosity

function evolution was made using the luminosity and redshift values calculated from the

L-V relation. They first assumed the independence between variables L and z, and then

constructed z-L bins which are parallel to the L and z axis. A luminosity function Ψ(L) was

estimated within each redshift bin, and an evolution function of Ψ(L) was found, shown as

ρ(z) ∝ (1 + z)3.3±0.3. However, this evaluation is based on the assumption of ‘no luminos-

ity function evolution’. As a result, although the result proved that there is evolution of

luminosity function, the exact function form is not well evaluated.
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There is a better statistical method to evaluate a strongly truncated sample (by the flux

threshold of Swift), which was proposed by Efron & Petrosian (1992). A few tests have been

done with this method, as applied to redshift surveys. In Lloyd-Ronning et al. (2002), this

method was used for the specific problem of luminosity function evolution. However, the

redshift and luminosity values that Lloyd-Ronning et al. (2002) used were totally calculated

from the Luminosity-Variability relation, which has been shown to be the least-constrained

luminosity relation among all the proved ones, and the data sample they have been using

is all BATSE GRBs. Now with a completely independent Swift sample and a much better

calculated redshift catalog (with accurately measured uncertainties on each redshift), we will

be able to make an improved, independent test of the luminosity function evolution.

The idea of this method is simple. If there is no evolution of the GRB luminosity function,

for an nontruncated data sample (GRBs), the GRBs would be uniformly distributed in

the two dimensional L-z space. If there is a truncation function of the flux threshold, for

each given redshift, GRBs with luminosity smaller than some specific value (defined by the

truncation function, say L(z, truncated)) will not be detected. If we separate the variables

z and L, for a given redshift zi, all GRBs with L larger than L(z, truncated) would have the

same possibility to be with redshift of zi, and the luminosity of the real GRB with redshift

zi would tend to be near the median value of all possible luminosity values. The offset

between the real luminosity value and the median value of all possible luminosity values

varies, however, for a large sample of hundreds of GRBs, the weighted average of the offset

would be near zero. A few functions and variables are used to evaluate the offset, the details

of which are referred to Efron & Petrosian (1992).

This method provides an effective evaluation of whether there is an evolution of the

luminosity function. To exactly measure the function of the evolution, we need to construct

a new variable Ψ(L,Z) = ρ(Z)φ(L/λ(Z)), where Z = (1 + z), φ(L/λ(Z)) is the luminosity

function and λ(Z) parameterizes the correlation between L and (1+z). Assuming λ(Z)
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Figure 4.2 Luminosity function evolution with a strong truncation. The Llimit is the trunca-
tion caused by the flux threshold of our sample, and each of the red solid dots is a GRB with
a measured redshift z and luminosity L. An evolution is found from the statistic method
proposed by Efron & Petrosian (1992), and the function for the evolution is evaluated to be
λ(Z) = (1 + z)1.7±0.3.

can be written as λ(Z) = (1 + z)α, by varying the value of α, we will be able to find a

Ψ(L,Z), which shows no correlation between redshift z and luminosity L, and this λ(Z)

with λ(Z) = (1 + z)α would be the evolution function we are trying to measure. The details

of this measurement are in to Lloyd-Ronning et al. (2002).

By running this method on our Swift sample of GRBs, we are able to evaluate the α

value with no correlation between Z and L for variable Ψ(L,Z). The corresponding evolution

function is λ(Z) = (1 + z)1.7±0.3, which agrees well with the result of Lloyd-Ronning et al.

(2002), λ(Z) = (1+z)1.4±0.2, to within error bars. Our result confirms the claim of Fenimore
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& Ramirez-Ruiz (2000) and Lloyd-Ronning et al. (2002) that the evolution of the luminosity

function with redshift exists, and our result with an improved and independent data set

confirms the result of Lloyd-Ronning et al. (2002) at the 1− σ level.



5. Conclusions

We developed a method to calculate the redshifts for long GRBs, using their light curves

and spectra. We applied our method to bursts with known spectroscopic redshifts, detected

by BATSE, HETE, Konus and Swift. By comparing our calculated redshifts with their

spectroscopic redshifts, we are able to examine the accuracy of our method.

We compared each of the luminosity relations for pre-Swift and Swift bursts by making

a F-test. With the F values close to unity, we have significant evidence against any claim

that the relations are caused by the detection threshold effects or any other artificial effects

of the instruments.

We compared our results with the spectroscopic redshifts. We find that our zbest are not

biased (with the average value of log10(zbest/zspec) equal to 0.01), and our reported 1 − σ

error bars are good (with χ2
red = 0.86, and 70% of the zspec fall into the 1 − σ region of

zbest). Our accuracy on the redshifts are not as accurate as those from spectroscopy, yet

nevertheless have a reasonable accuracy for demographical and statistical studies, with the

RMS of log10(zbest/zspec) is 0.26. The RMS value is about twice what was found in Schaefer

(2007). One of the reasons is, in Schaefer (2007), the accuracy is calculated assuming a known

zspec, and in this paper, as we are treating the unknown-redshift case, so extra degrees of

freedom have been brought in the calculation, which caused the accuracy to get worse by

about a factor of 2. Another reason is that the large RMS is dominated by faint and noisy

bursts, and for a subsample with σzminus/zbest < 0.5 and σzplus/zbest < 1, we get the RMS

of [log(zbest/zspec)] of 0.19, which is much smaller. As our zbest are from the light curves,

the spectra and the concordance cosmological model, it is independent of the spectroscopic

redshift. As a result, our method can be applied to all long GRBs.

For Swift bursts, as we are measuring over a relatively narrow energy band (15 keV - 350

116
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keV), the uncertainties in the calculation of peak energy Epeak is large, and it becomes one

of the main restrictions on our accuracy.

We applied the same method to all the Swift long bursts. This method has been developed

and tested on bursts with spectroscopic redshift in Xiao & Schaefer (2009). We calculated

the values for all the luminosity indicators and our zbest with 1 − σ uncertainties for 263

Swift long GRBs (out of a total number of 277 in our sample). By combining zbest with the

spectroscopic redshifts and the photometric redshift limits from multi-wavelength detections

of UVOT and some ground telescopes, a nearly complete Swift GRB redshift catalog is

constructed.

We compared the redshift distribution for those bursts with spectroscopic redshift (zspec)

between our redshift zbest and the reported zspec. The Kolmogorov-Smirnov test result shows

a maximum difference of 0.15 and p value of 0.30. The differences between these two distri-

butions mostly appeared in the high redshift tail in our redshift distribution. The existence

of the high redshift tail is caused by the intrinsic distribution of GRB redshifts, and that our

uncertainties are not following the distributions. A Monte Carlo simulation is made, with

a difference between the intrinsic distribution and noise the result showing the same high

redshift tail.

From these values, we made a redshift distribution plot for all the Swift long GRBs. A

de-convolution process was taken to get rid of the noise effect on the high redshift tail, and

an intrinsic Swift GRB redshift distribution was made. The distribution shows a significant

offset from the distribution of zspec, especially in the high redshift region. About 10% of

all Swift GRBs shows a redshift larger than 5. This percentage is consistent with what is

predicted by Bromm & Loeb (2006).

Our program was also imported in the Fermi GBM data analysis software RMFIT. The

combination of our temporal analysis and the original spectral analysis as well as our redshift

calculation works well. However, due to the constraint of the GRB localization and the long
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time delay of the Fermi pipeline product, we are not able to send out reliable fast alerts

on high redshift GRBs. However, the program has been tested on a few Fermi GRBs with

known spectroscopic redshift, with the results showing that the accuracy of our redshift

values is reasonable, but not as high as expected to be used in the rapid high redshift alert.

Our catalog is then used to test the hypothesis that a large fraction of long-lag GRBs are

from the Local Supercluster. With four independent test failed, this hypothesis is disproved.

Hence these long-lag GRBs can not be counted in the calculation of LIGO detection rates.

An explanation of why we can detect long-lag GRBs at high redshift is presented.

Our catalog is also used to make an evaluation of the GRB luminosity function evolution.

By using a non-parametric statistic method on the truncated sample of GRBs, we find a

significant evolution of the GRB luminosity function at different redshift. A power law

function of z is then constructed to parameterize the evolution. Our result is consistent with

the result of Lloyd-Ronning et al. (2002) using the BATSE sample and luminosity-Variability

relation only.
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