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Preface

The work presented in this thesis has been done during the period from August,

2003 till June, 2007 at the Department of Physics and Astronomy, Louisiana State

University, under the supervision of Dr. James Matthews.

This thesis contains work on the experimental study of ultra-high energy comic

rays (UHECR). In Chapter 1, I give the general introduction to this subject, giv-

ing an outline both of the general study of cosmic rays, and of the work done in

this thesis. In Chapter 2, I give the general history of the study of cosmic rays,

including a discussion of possible methods of acceleration. In Chapter 3, I intro-

duce the Pierre Auger Obvservatory (PAO), the data from which will be analyzed

in this work. Chapters 4-5 cover the research done for my major work–submitted

to Astroparticle Physics in June, 2007–as well as the modeling done for two talks

given to the PAO during its semiannual meetings in March and November, 2006.

• M. McEwen Angular Power Spectra of Ultra-High Energy Cosmic Rays Trav-

eling Through The Galactic Magnetic Field Astropart. Physics

• M. McEwen “C(l) Signatures of Galactic Magnetic Field Clustering” Malargue,

Argentina (2006).

• M. McEwen “Computing C(l) Values for Full- and Half-Sky Exposures” Malargue,

Argentina (2006).

Ultra-high energy cosmic rays are still a mystery today. As the largest cosmic

ray detector ever constructed, the PAO hopes to increase the statistics, thereby

iv



providing us with more information as to their origins and compositions. Chapter

6 shows a method of weighting possible source distributions after taking particle

trajectories’ bending through magnetic fields into account. These weighted dis-

tributions can then yield angular power spectra which can be easily compared to

the data obtained by the PAO. These spectra contain valuable information about

the anisotropy of observed distributions, and comparing the data’s spectrum sig-

natures to that of possible sources can help solve the mystery of where UHECR

come from.
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Abstract

The origins and compositions of ultra-high energy cosmic rays (UHECR) remain

a mystery to this day. The Pierre Auger Observatory (PAO) is being constructed

now in the hopes that it will help solve this mystery by detecting more UHECR

than any previous experiment. In this dissertation, I will discuss this experiment,

and analyze the data collected so far by comparing it with simulated data from

possible source distributions. In these simulations, I will track antiprotons, along

with other possible cosmic ray primaries, through various models of galactic and

extragalactic magnetic fields. Once they reach a certain distance, I will record

their positions on the sky. These final positions will determine the weight of that

position on the sky. This weight will then be applied to possible source distri-

butions, and the particles will be reinjected back to the earth’s surface, and the

simulated arrival directions will be analyzed. I will be using the method of cal-

culating spherical harmonics coefficients to analyze the data. The method of us-

ing these angular power spectra is an attempt to provide a common language for

model builders and experimentalists. Anisotropies of any size are easily detected

using these coefficients, making them an ideal way to look at observed events that

might not be coming from single, point sources. I will compare the results of this

analysis with data obtained by the PAO by calculating spherical harmonics coeffi-

cients. After comparing the events collected to date by the PAO with three possible

source distributions–isotropic, Active Galactic Nuclei, and nearby galaxies–I have

observed that the data looks consistent with either nearby galaxies or AGNs as

xi



sources. However, there does exist an extra dipole moment inherent to a half-sky

exposure, such as the PAO currently has, which adds in an uncertainty that funda-

mentally limits the capabilities of large-scale anisotropy analysis. In the absence

of clear point-like sources, construction of a detector in the Northern hemisphere

will be necessary in order to know the origins of UHECRs with any confidence.
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Chapter 1: Introduction

1.1 Introduction to the Dissertation

Although discovered generations ago, the origins and nature of cosmic rays remain

mysterious. The mechanisms by which they are formed, along with their exact

origins, have proven difficult to pin down. Part of the problem in determining the

latter stems from the lack of an exact knowledge of both the galactic magnetic

field (GMF) and extragalactic magnetic field (EGMF), which cause the trajectories

of charged particles to curve. The highest energy cosmic rays are extremely rare,

detectable at earth at a rate only of the order of km−2century−1. The so-called GZK

effect, first pointed out by Greisen [1], and by Zatsepin and Kuzmin[2], limits the

distances at which these particles can travel. At energies above about 3 × 1019

eV, protons begin to interact with the cosmic microwave background (CMB) in

reactions such as

p + γCMB → π0 + p (1.1)

Heavier nuclei also experience severe losses due to photodisintegration at sim-

ilar energy thresholds. The result is that unless cosmic ray particles originate

within d ∼ 50 Mpc, the flux at ultra high energies should be greatly suppressed.

The fact that they have been observed, without an obvious source within 50 Mpc,

underlines the importance of and interest in collecting sufficient statistics to study

their arrival directions more effectively.
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Furthermore, the distribution of arrival directions thus far recorded appears to

be isotropic. Since there has yet to be collected a statistically compelling number

of events at the highest energy, however, this apparent isotropy could be mislead-

ing [3][25]. We can estimate the angular deflection observed at earth of a proton

traveling through a constant magnetic field as

sin θ ≈ θ = 2.7◦
LkpcBµG

E19
= 2.7◦

LMpcBnG

E19
. (1.2)

where E19 is the energy in units of 1019e, L is the straight-line distance to the

source in units of either kpc or Mpc, and B is the magnetic field strength ei-

ther in µG or nG units. Estimates of extra-Galactic fields are often around 10−12G

(BnG = 0.001)[5]. The deflection from the Galactic field therefore is probably much

larger than that from extra-Galactic fields, for sources within the GZK-survival

radius of about 50 Mpc. But extra-Galactic fields are very poorly known. If they

are significantly stronger, or if there are regions with stronger fields, then the

deflections due to the EGMF may be much greater than anticipated.

Since the deflection within the Milky Way Galaxy (MWG) is relatively small

at these energies, and because we don’t see multiple, uniform possible sources

in the sky, the question of what produced them initially becomes more difficult

to answer. For ultra-high energy particles (UHECRs), we can expect an almost

direct arrow to their origins. For the purpose of this analysis, we will assume that

the primary UHECR particles are protons, electrons, gamma rays, or iron nuclei,

though, in reality, the chemical composition of the primaries is uncertain. We will

concentrate only on the GMF deflecting the particles in question. The aim of this

work is to provide a technique by which to evaluate the anisotropy of a distribution

of arrival directions in order to compare to expectations based on some assumed

source distributions, magnetic fields, and energies.

On of the biggest obstacles to the study of UHECR has traditionally been their

2



low flux. Occuring only in amounts ≃ a few handfuls km−1 century−1, there have

only been a very small number of events recorded by experiments to date. Pro-

posed to be the largest cosmic ray detector ever built, the Pierre Auger Obser-

vatory (PAO) was created to solve this problem. Spanning 3000 km2 in both the

Southern and Northern hemispheres upon completion, the PAO will use two meth-

ods of detection to harness information about these elusive particles. 1600 surface

detectors (SDs) will process extensive air showers (EAS) incident upon the ground,

while 4 fluorescence detectors (FDs) will look over the SD array, searching for the

nitrogen fluorescence in the atmosphere inherent to EAS. These two methods will

act as an internal cross-check for event detection and calibration. Once fully func-

tional, the PAO will offer a brand new way to look at UHECR, and quite possibly

the best statistics by which to do so.

In order to evaluate the anisotropies in the distributions detected and simu-

lated, we have calculated their angular power spectra. This method of analysis [6]

is based on the simple fact that any distribution of discrete points on a sphere can

be represented by a sum of spherical harmonics. The intensity of these events can

then be shown to be:

I(θ, φ) =
∞
∑

ℓ=1

ℓ
∑

m=−ℓ

aℓmYℓm(θ, φ)

where the coefficients aℓm are obtained from the observed intensity by

aℓm =
∫

I(θ, φ)Ylm(θ, φ)dΩ

The angular power spectrum, or Cl values, is represented by taking the average of

the spherical harmonics’ coeffecients mentioned above.

Cl =
1

2l + 1

l
∑

m=−l

a2
lm

We can use the values of Cl to determine not only whether or not anisotropy exists

3



in any given collection of points, but also the scale of it. The values of Cl are

sensitive to variations over angular scales of about 1/l radians. Therefore, by

studying which Cl values are heightened or suppressed in a given distribution,

we can determine what kind of anisotropy we’re looking at, whether it be a large-

scale dipole or small-scale clustering. As such, this is a powerful analysis tool for

large-scale searches for anisotropy.

In order to trace the particles, we will use the method of reverse trajectory,

by which we will inject anti-protons from the earth’s surface through a magnetic

field model, then record their final positions on a spherical shell of a given radius.

These final positions will be evaluated to “weight” the initial distribution, and the

particles will be assigned these weights. Once properly weighted, the particles will

be reinjected to the earth’s surface, and their Cl values will be recorded. We will

do this for three source distributions: (i) isotropic sources, (ii) AGNs as sources,

and (iii) nearby galaxies as sources.

After evaluating the anisotropies of these various source distributions, we will

then compare the results to the data thus far obtained by the Pierre Auger Obser-

vatory. By comparing signatures of the Cl values, we will then draw conclusions

about the primary particles likely causing the extensive air showers, the most

thorough method of detecting them, and their most likely sources.
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Chapter 2: The History of Cosmic

Rays

2.1 Introduction

In 1912, Victor Hess [26] discovered, through a series of balloon flights, cosmic

radiation. Because the radiation increased with altitude, he concluded that the

source of the radiation must be extraterrestrial. And so, the study of cosmic rays

was born.

2.2 Cosmic Ray Discoveries

Because of the high energies of these cosmic rays, early particle physicists were

able to make new and exciting advances. There are forces in the galaxy acceler-

ating particles to energies unattainable by earth-bound accelerators. As a result,

these high energy particles hitting the earth became the ”fathers” of as-yet undis-

covered, short-lived, and exotic particles. For instance, Dirac proposed the idea

of an anti-electron, or positron. He postulated that there exists a sea of electrons

with negative energy states and that, if an electron leaves said sea, there will be

a hole. This hole will correspond to a positively-charged particle with the same

mass as an electron, or a positron. This theory was proven, however, by Anderson

in 1931 [8], who did so using cosmic rays. Anderson and Hess later shared the

1936 Nobel Prize for their research.

Likewise, Yukawa proposed the existence of a particle associated with the

5



strong nuclear force. However, two groups studying cosmic rays thought they had

found the particle first. Both Anderson/Neddermeyer and Street/Stevenson [9] an-

nounced the discovery of the particle in 1937. However, in 1947 it was proven that

there are actually two particles with similar masses associated with the strong

nuclear force, and that both abound in cosmic ray air showers: the muon and the

pion. The pion turned out to be the particle Yukawa had proposed over a decade

earlier.

In December of 1947, a completely different particle was discovered through

cosmic ray research. It had more than double the mass of pions and behaved very

differently from any previously discovered particles. It was called the kaon, and

was the first in a series of similar discoveries of particles produced on a short

time scale (lifetime is around 10−23 s.), but decayed relatively slowly (at around

10−10 s.). These particles were all created using the strong nuclear force, but

decayed through weak nuclear interactions. Because of the odd behavior, they

were dubbed the ”strange” particles. And so the idea of ”strangeness” (and, later,

strange quarks) was born.

This potential for studying high energy particles without having to generate

them, along with this ground-breaking research in particle physics, fueled the

interest in cosmic rays. Obviously, the study of cosmic rays was worthwhile; the

difficulty in it lay in detecting these high energy particles. Direct detection is

possible for particles with energies up to 1-10 TeV. This detection is done through

high altitude detectors (such as balloons), and is relatively easier than detecting

higher energy particles since the flux of the radiation is much higher at lower

energies. Because flux is dependent both on intensity of radiation and size of

detector, then, one can detect a high number of lower energy cosmic rays using

a fairly small detector. Though the intensity of the radiation is always dropping,

above around 1000 TeV it drops more drastically; the only option left is to increase

the size of the detector. In 1938, Pierre Auger made a ground-breaking discovery
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which would enable the study of cosmic rays to grow [10]: He recorded coincidences

in arrays of particle counters. In other words, he and his group were able to record

multiple counter coincidences at the same altitude while using electronics with

microsecond timing. From this, he deduced that these coincidences must be due

to a sort of pancake of particles arriving at the detectors simultaneously, and the

idea of the extensive air shower (EAS) was born. These EAS’s are caused by high

energy cosmic rays interacting with the atmosphere. These interactions cause a

cascade of particles to fall to the earth’s surface at the same time, in the sort of

”pancake” shape predicted. From electromagnetic cascade theory, he deduced that

the energies of these particles must be around 1015 eV.

In 1953, Bassi et. al. [11] used timing information from arrays of scintillation

detectors to reconstruct the original direction of the cosmic ray. This provided,

then, a direct link between the observed shower at the earth’s surface and the cos-

mic ray incident on the atmosphere. In 1962, Suga and Chudakov said that the

atmosphere, then, could be used as a large scintillator for air shower detection,

which would yield more information about high energy particles that had been dif-

ficult to study before. Consequently, in 1963, Linsley [12] used the Volcano Ranch

array to report the first 1020 eV cosmic ray. This energy corresponds to about 16

Joules of energy packed into one nucleus. Five years later, Tanahashi detected

an air shower with an incident cosmic ray of the energy 1019 eV using a different

method: fluorescence in the atmosphere [13]. Volcano Ranch also recorded a fluo-

rescence event later, which coincided with an event detected by the ground array

[14]. This was the first ”hybrid” event: an event recorded by two different methods

of detection at the same time and at the same location. This is the technique that

the Pierre Auger Observatory–named for the father of air shower detection–will

implement.
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2.3 Cosmic Ray Physics

Even though the study of cosmic rays is 100 years old, the most fundamental ques-

tions about them have yet to be answered. What they are and where they come

from is still not entirely known. To put the former problem in a more technical

manner, the chemical composition and energy spectrum of these particles is still

an open question at energies ≥ 1015 eV, at the so-called “knee” of the spectrum,

which is clearly illustrated in Figure 2.1.

Figure 2.1: Cosmic Ray Spectrum. Figure from [15]

The latter is also an interesting question, since the manner of these parti-

cles’ acceleration through space, as well as their initial creation, is still somewhat

a mystery. Finally, the study of the distribution of cosmic rays observed at the

earth’s surface, along with the study of the distribution of cosmic ray sources, can
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tell us about the magnetic fields encountered by these particles, as well as giving

us more information about their acceleration to the earth’s surface.

Obviously, each of these areas of study are interdependent on one another. The

source of a cosmic ray is related to its chemical composition, the manner of acceler-

ation is related to the final energy spectrum, and the distribution of particles once

they arrive at the earth’s surface is necessarily related to both the composition and

the energy. For example, if the particle at the earth were ”pointing” directly back

to its source, we would know it is a neutral particle, and is therefore unaffected by

the extragalactic magnetic field (EGMF) or the galactic magnetic field (GMF). To

use another example, if the particles are discovered to be heavy nuclei, the source

must be something that would have both access to heavy nuclei and the capability

to accelerate them to fantastic energies.

The energy spectrum contains much information necessary to form any con-

clusions about the cosmic rays observed at the earth’s surface, as well as their

propagation thereto. Overall, the power spectrum appears to follow a basic power

law, but has two major signatures: the ”knee,” which occurs at around 1015 eV,

and the ”ankle,” which occurs at around 1018 eV. Obviously, then, the sources in

question must generate a power law spectrum. The two signatures, however, im-

ply significant departures from that spectrum that could be due to differences in

chemical composition, location of sources, or both. The energy density has been

calculated to be 1eV/cm3, while the energy density of starlight and GMF’s are

around 0.6eV/cm3 and 0.2eV/cm3, respectively [16]. This calculation shows, then,

that these cosmic rays must be non-thermal, due to the large amount of energy

that would be required. They must, therefore, be either accelerated or created.
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2.4 Composition

Between 0.1 - 100 TeV, direct detection of cosmic rays can yield valuable informa-

tion about their composition. This detection is done through spectrometers and

calorimeters, and they measure the composition of these lower energy cosmic rays

to be about 50% protons, 25% alpha particles, 13% CNO, and 13% iron nuclei. If

compared in more detail to the solar system abundances known, it can be seen

that cosmic rays are deficient in H and He, though why this is has yet to be fully

understood. Two possible reasons are that heavy elements are easier to ionize and

accelerate, or that the source composition is reflected by the cosmic rays coming

from it. Li, Be, B, Sc, Ti, V, Cr, and Mn are all over-abundant, however, given our

models. This is easier to understand, given the spallation of C and O for the first

group (Li, Be, and B) and Fe spallation for the second (Sc, Ti, etc.).

At higher energies, the flux is too low to measure composition directly. There-

fore, indirect measurements must suffice. These measurements are done through

ground arrays and fluorescence detectors, as said previously. A commonly used

method for composition studies is by using the depth of shower maximum (Xmax)

as measured by fluorescence detectors, which is related directly to the primary

composition of cosmic rays. Using data from the HiRes detector, measured Xmax

data has been compared to simulated Xmax values for protons and iron nuclei using

different hadronic models [17]. The data seems to point to a mixed composition of

these high energy cosmic rays, with a tendency toward lighter nuclei for the high-

est energies.

2.5 Sources

The sources of cosmic rays, especially the highest energy ones, are still a mystery.

One possibility is that cosmic rays are protons or nuclei which are then acceler-
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ated up to their observed energies by the source itself. Such a possibility is called

a “bottom-up” method. Another possibility is that the cosmic rays are created at

these energies in the first place, either from the decays of super heavy dark mat-

ter or by massive particles released by topological defects or some other exotic

phenomenon. These theories are known as top-down models. I will be focusing on

the former model for this chapter, or the bottom-up models.

Particle acceleration can occur in one of two ways: directly, or through a statis-

tical process. Direct acceleration occurs through a strong electromagnetic field, for

example, if there exists a strong rotating magnetic field which results in a large

electromotive force, or EMF. This force both, then, traps the particle and accel-

erates it to high energies. However, this method of acceleration does not yield a

power law energy spectrum, and also necessarily occurs in regions of high mat-

ter or radiation density in space where energy losses could occur quickly. Where

optical photons are dense, meson photoproduction, photonuclear fission, and pair

creation can occur easily, thereby depleting the cosmic rays of their initial energy

by the time they reach the earth. This would not only effect the energy spectrum,

but would obviously also affect the final composition of the cosmic rays.

Fermi [18] also proposed a so-called statistical acceleration process. In this

process, the build-up of energy is slow and takes place over a long period of time.

It takes place in collisions with magnetic clouds or in shockwaves from supernovae,

active galactic nuclei (AGN’s), or gamma-ray bursts (GRB’s). This process would

force a power law spectrum, as opposed to the direct acceleration model.

Collisions with magnetic clouds, as originally proposed by Fermi, accelerate

particles through repeated collisions with plasmas. During these collisions, the

particles can either gain or lose energy. Since the acceleration goes as the square

of the velocity of the magnetic cloud (δ E/E = β2), the process is known as second-

order Fermi acceleration. It is a slow process, and the energy loss (mainly caused

by the radiation generated when the particles’ trajectories bend) is large for slow
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particles. This makes it difficult to efficiently accelerate particles to the observed

energies.

Shockwave acceleration is much more efficient as an acceleration mechanism.

This type of acceleration is linear with the speed of the shockwave (δ E/E = β), and

is therefore known as first-order Fermi acceleration. Since it is a linear relation,

particles can be accelerated more quickly than in the second-order case. As a

shockwave passes through gas or dust, it creates a density gradient at the shock

front. This then creates kinetic energy in the medium, and there will be a resulting

net motion as the wave passes. The particles can diffuse and randomly travel

through the medium, in which they will have a probability to hit the shock front

and be accelerated. They could then back-scatter downstream, thereby passing

the shock front again and gaining more energy. This acceleration will continue

until the energy losses match the energy gains. This stop-time will depend on

ambient conditions. The final results will be a power law spectrum for the particles

emerging from the shock front.

In a paper by Drury [19], it was shown that the maximum energy attainable

through this type of diffusive shock acceleration is:

E = kZeBRβc (2.1)

where B is the magnetic field of the shockwave, R is the size of the shock re-

gion, βc is the shock speed, and k is an efficiency factor, related to efficiency. For

example, in the case where the acceleration is limited by the age of the shock (and

not the particle’s escape from the region), k = 3/20. If one assumes k = β = 1, op-

timal acceleration is reached. This would lead to the equation of highest possible

attainable energy, given R and its associated B:

E = 0.9ZBR (2.2)
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where E is expressed in EeV, B is in µG, and R is in kpc. Given these equations,

we can estimate the conditions necessary to accelerate a given particle to a certain

energy.

Obviously, there are only a few objects capable of accelerating cosmic rays to

the highest energies that have been observed. Another difficulty in figuring out

the sources of these particles is that the objects capable of this sort of acceleration

are located far away from the earth. During a particle’s trip from one of these

objects, it would necessarily interact with the cosmic microwave background radi-

ation (CMBR), and would lose its high energy before we observed it. Also, charged

particles would be bent in the EGMF (and GMF), thereby making the source iden-

tification more difficult.

2.6 Propagation

Particles traveling through space to reach the earth will definitely interact with

the CMBR, but may also interact with other ambient radiation, dust, or gases.

These interactions would change both the composition and the energy of the ob-

served cosmic rays. For example, assuming the cosmic ray is a heavy nucleus, such

as iron, there is a probability that the nucleus will photodisintegrate or pair create

on the CMBR as follows:

A + γ2.7K → (A − 1) + N (2.3)

A + γ2.7K → (A − 2) + 2N (2.4)

A + γ2.7K → A + e+ + e− (2.5)

Each of these interactions would lessen the energy of the observed particle.

Also, the nucleus may interact with the infrared photon background, although
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this is only important for primary cosmic rays with energies less than 5 × 1019 eV.

The interaction of the particle with the CMBR (and its subsequent energy loss) is

more important for energies above 5×1019 eV [20]. Energy loss due to pair creation

is dominant in the energy range in between these two values. For example, the

typical attenuation length for Fe and Si in the aforementioned energy range (i.e.

between 40-100 EeV) is between 10 - 103 Mpc [21]. This attenuation length is

comparable to that of nucleons at around the same energy. This results in an

observed energy spectrum that differs from the energy spectrum at the source,

since it would contain features due to the aforementioned interactions, and would

also contain fewer high energy particles than were originally created. We would

also observe more light nuclei than existed originally at the source.

Shortly after the discovery of the CMBR, Greisen [?], Zatsepin, and Kuz’min

[?] first computed an actual cutoff for protons undergoing such interactions with

the CMBR, named the GZK cutoff. For instance, a particle of energy 5 × 1019 eV

will ”see” a CMBR photon as a 300 MeV photon, which means it would exist at

the threshold for photopion production. The temperature of the CMBR is 2.74 K

[22](corresponding to an energy of 2.36 × 10−4 eV), the threshold energy becomes

about 1020 eV for protons to undergo the following interaction:

p + γ2.7K → ∆+ → N + π+ (2.6)

p + γ2.7K → ∆+ → p + π0 (2.7)

Assuming the cross-section for the delta resonance to be 10−28 cm−2, and the

photon density to be 420(1 + z3)cm−3, the mean free path for this interaction is

around 8 Mpc. In each interaction, the proton will lose about 20% of its energy.

After a certain distance, the energy of the proton will decrease to an energy below

the delta resonance threshold no matter what its original energy was at the source.
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At lower energies, protons can also pair create with the CMBR as:

p + γ2.7K → p + e+ + e− (2.8)

This effect is smaller, since the energy loss per interaction is much smaller

than the previously discussed interaction. Still, it may contribute to the shape of

the final observed energy spectrum below the GZK cutoff if the primary particles

are protons from relatively distant sources.

If the primary cosmic ray is a photon, this pair creating with the CMBR will

be the dominant form of energy loss. Above 4 × 1014 eV, this attenuation due to

pair creation is important, whereas attenuation due to pair creation with the radio

background dominates energy losses above 2×1019 eV [23]. The attenuation length

for photons with an energy of about 1020 eV is 10-40 Mpc, depending on the radio

background photon density.

2.7 Extensive Air Showers

Once the cosmic ray reaches the earth, the method of detection depends on the

energy of the incident particle. For low energies, 0.1-100 TeV, direct detection

methods can be used due to the comparatively large flux of these particles. Once

higher energies are reached, though, the flux decreases markedly, and the detec-

tion of the particles is better accomplished by looking for the extensive air showers

which occur when the cosmic ray interacts with the molecules in the atmosphere.

The resultant air shower can be observed through the fluorescence caused by elec-

trons and positrons exciting the nitrogen in the atmosphere, or by measuring the

shower particles incident upon the ground.
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2.8 Electromagnetic Cascade

When a cosmic ray enters the atmosphere, it collides with a nitrogen or oxygen

nucleus, producing pions as well as the fragments of the original nucleus. Among

the pions created, about one third will be neutral pions, which subsequently decay

into two so-called ”decay” photons. This effect is clearly illustrated in Figure 2.2.

Assuming that an initial photon has an energy E0 and travels a distance R

before creating an electon/positron pair, the resulting particle will have an energy

of E = E0/2. The electron/positron pair must then travel another distance R before

they bremsstrahlung and generate one photon each. This photon will take half

the initial energy of the electron or positron. After a distance of nR, finally, there

will be 2n particles, each with an energy of E0/2n. This process will continue until

the average energy of the particles is below a critical energy, Ec. For electrons and

positrons, Ec is the energy where the cross section for bremsstrahlung is smaller

than the cross section for ionization. For photons, however, Ec is the energy where

Compton scattering is the dominant interaction, rather than pair production.

For high energies, the length for pair production, ǫo, is approximately equal to

the radiation length for bremsstrahlung. If R is the distance at which the proba-

bility of pair production or bremsstrahlung is 1/2, the R = ǫo/ln2. The number of

distances, then, for the shower to travel in order to reach the maximum number

of particles is:

Nmax =
E0

Ec

Xmax ∝ ln
E0

Ec

The depth of the shower maximum (Xmax), or the depth at which the number

of charged particles reaches a maximum (Nmax), is proportional to the log of the

initial energy, while Nmax is proportional to the energy of the incident particle.
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Figure 2.2: Electromagnetic Air Shower

2.9 Hadronic Cascade

An extensive air shower initiated by a hadron is just a superposition of electro-

magnetic cascades from neutral pion decays fed by a hadronic core. In addition

to electromagnetic cascades, charged pions will either interact strongly or decay

to muons. These decays occur in the region in which the probability to decay is

greater than the probability to interact. The majority of the muons which then

arrive at the ground detectors are created in the initial stages of the extensive air

shower. Deep in the shower development, electrons and positrons are created by
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the decay of muons. Therefore, the electromagnetic cascade is not fully attenuated

deep in the shower development; it will persist due to the muon decays.

Since the neutral pions are fed by the hadronic core, Xmax will depend on the

hadronic interaction model, as well as the cosmic ray’s initial composition. Protons

have a longer mean free path (MFP) in the atmosphere than an iron nucleus, for

example. Also, since energy is divided amongst nucleons as E0/Z for a cosmic ray

of initial energy E0, the average energy per nucleon will be much lower for heavier

nuclei than light ones. This will result in a shallower Xmax for iron than for a

proton, but one that will fluctuate less. The study of Xmax, then, is integral to the

understanding of the primary cosmic ray composition.

2.10 Conclusions

The field of cosmic ray physics has had a distinguished past, present, and a still-

evolving future. Many basic questions have yet to be answered definitively, such

as the nature of the rays or their sources. The end goal will be to discover the

composition of these rays, determine their sources, and define their acceleration

methods. The energy spectrum, specifically the knee and ankle thereof, is indica-

tive of the source distribution. Whatever the source of the UHECR’s, the fact that

their energies exceed the GZK cutoff indicate that they come from nearby. This

could mean that there are top-down sources of ultra-high energy cosmic rays, or

that there are enormous acceleration mechanisms that have gone undetected so

far, located relatively close to Earth.

The method of detecting ultra-high energy cosmic rays depends on the proper-

ties of the extensive air showers. Fluorescence detectors depend on the develop-

ment of the electromagnetic cascade, with the energy of the incident particle being

related to Nmax and the composition related to Xmax. Ground detectors sample the

shower at one particular depth, thereby gathering information about the lateral
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distribution of the shower’s particles. Some of the observables on the ground also

relate directly to the energy and composition of the incident cosmic rays.
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Chapter 3: The Pierre Auger

Observatory

3.1 Introduction

The Pierre Auger Observatory (PAO) has been conceived of as a way to solve the

mystery of the origin and nature of ultra-high-energy cosmic rays. The design

incorporates two proven measurement techniques: detecting the nitrogen fluores-

cence generated in the atmosphere by an extensive air shower, as well as measur-

ing the particles that reach the ground. This hybrid technique, as seen in Figure

3.3, of detecting extensive air showers is part of what sets PAO apart.

Figure 3.1: Hybrid Nature of PAO Detector
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The size of the observatory is also unprecedented [24].

The PAO will have an array of water Cherenkov detectors that will cover 3000

km2 that will encompass 1600 tanks, as seen in the plan in Figure 3.2. . Each will

be spaced 1.5 km apart from one another, forming a triangular “cell.”

Figure 3.2: Map of Southern PAO Detector

Surrounding the surface detector array will be 4 fluorescence telescopes which

will scan the sky directly above the array for the nitrogen fluorescence inherent

to extensive air showers passing through the atmosphere. Each will view up to 30

degrees in elevation and 180 degrees in azimuth. The surface detectors (SD’s) will

operate 24 hours a day, 365 days a year, then, whereas the fluorescence detectors

(FDs) can only operate a small fraction of the time, due to their need for clear,

moonless nights. Thus, for a small subset ( ≃ 10%) of cosmic rays, the air showers

will be recorded with both techniques.

Since each method of detection has systematic errors associated with it, the

hybrid nature of the observatory will be valuable in cross-checking estimated en-

ergies and arrival directions internally. The hybrid results will also provide more

information in determining particle type by comparing results to hadronic inter-

action models. To use the two types of detectors as cross-checks for one another’s

errors, we must first understand the systematic errors of each.
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Figure 3.3: Hybrid Detector

The fluorescence detector energy measurement relies on the photon yield, or

the number of photons fluoresced per unit length for an electron in the electro-

magnetic air shower (EAS). Any systematic error in this measurement will then

propagate to the energy estimate made using fluorescence data. Another possible

source of systematic error using fluorescence detectors comes from the need for

an accurate determination of atmospheric conditions at the time of a given cosmic

ray shower. Since the light that reaches the detector must travel through kilome-

ters of atmosphere, the atmosphere will necessarily attenuate the intensity of the

light. The attenuation length must be known to calculate the number of photons

created at a given location in the air shower. Without an accurate estimation of

atmospheric influence on this attenuation length, the estimate for the energy or

arrival direction of the cosmic ray shower could be vastly different than reality.

Another possible source of systematic error lies in calculating the absolute

number of photons at the detector. The signal measured from the readout elec-
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tronics must be converted into an absolute number of photons at the detector.

All of these possible errors are constantly being assessed. The atmospheric mon-

itoring and absolute calibration of the detector will be discussed further in this

chapter.

The SD is calibrated by the constant flux of single, uncorrelated muons from

low energy showers. Thus, the possible errors described above do not apply to

the ground array. However, there are systematic uncertainties in the energy es-

timates from these surface detectors. These uncertainties arise mainly from the

unknown composition of the cosmic ray and hadronic models used in the Monte

Carlo simulations.

The main difference, then, between the uncertainties listed for fluorescence

and those for the ground array are that the fluorescence errors may be reduced

through careful measurements, while the uncertainty in the composition and hadronic

models in the simulations remains regardless of the care taken in calibrating and

monitoring the detector. Thus, the two techniques in the PAO have different sys-

tematics and different systematic errors. By combining the data from both, we

will be able to constrain the problem such that the uncertainties will be minimal.

3.2 The Fluorescence Detector

As electrons and positrons pass through the air, they excite the nitrogen in the

air, which then fluoresces. We can then study the shower development from this

fluorescence by charting it at different atmospheric depths. From this analysis, the

depth of shower maximum (Xmax) and the number of charged particles at shower

maximum (Nmax) can be calculated. The PAO will have 4 fluorescence detectors

(FD) overlooking the SD that will measure these parameters. Since the principal

purpose of the FD is to measure the longitudinal profile of the shower development

(i.e. Xmax and Nmax), there is a certain minimum resolution in atmospheric depth
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necessary for any useful results to be derived. A resolution of 20 g/cm2 is desirable

to distinguish between iron and proton primaries which have a mean Xmax that

differs by ≃100 g/cm2. An energy resolution of 10% is achieved by certain signal

to noise measurements which also lead to a 20 g/cm2 resolution

Figure 3.4: Sketch of Fluorescence Detector

The base design of the FD, as seen in Figure 3.4, meets these objectives. Each

FD building, or ”eye”, has six telescopes, each composed of 440 pixels. Each pixel

covers a 1.5 degree area of the sky. The pixels are arranged in a 22x20 matrix so

that the resulting coverage is 30 degrees in azimuth and 28.6 degrees in elevation.

This “fly’s eye” design is shown in Figure 3.5. The light detector for each pixel is a

hexagonal photomultiplier tube (PMT) that is sampled by a 12-bit ADC every 100

ns.
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Figure 3.5: Camera of Fluorescence Detector

There is a data acquisition system at each ”eye” that records all the data from

these six cameras and checks to see if the raw pixel information meets certain

geometric requirements. If so, a trigger is created. This data is then transferred

to a central data acquisition system (CDAS) for the entire observatory that checks

for coincidence with the SD (or another FD ”eye”), then builds the events from

the trigger data from all the detectors. The design of the telescope is driven by

the desire to increase the signal to noise ratio while maintaining good angular

resolution. However, due to cost considerations, the pixel size cannot exceed 1.5

degrees. A good geometric reconstruction is necessary to determine correctly the

longitudinal profile, which then determines the Xmax accuracy. Fluorescence light

enters the telescope through a 1.1 m radius diaphragm and is collected using a 3.5

m. x 3.5 m. spherical mirror, as seen in Figure 3.6.

Schmidt optics are used to eliminate coma aberration, which is a problem in

spherical mirrors covering a large solid angle. Each telescope diaphragm has a

UV transparent filter that restricts the incoming light to the range of wavelengths

in fluorescent light (300 ≤ λ ≤ 420 nm). This filter also reduces night-sky noise.

To correctly determine the size (i.e. number of electrons) of the shower at a
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Figure 3.6: Fluorescence Detector

given depth of development, there are several factors that must be accounted for.

First, the number of photons emitted per meter via nitrogen fluorescence for an

electron that travels through a certain distance in the atmosphere, or the photon

yield, must be known. Next, the attenuation of this fluorescent light through

scattering in the atmosphere must be measured and corrected for. Finally, the

calibration of the detector must be such that for a given pixel the integrated signal

can be converted into an absolute number of photons. The photon yield has been

measured by independent experiments. We have used those values in our data

analysis. The atmosphere must be monitored during data taking to parameterize

attenuation lengths and scattering due to aerosols. The absolute calibration of the

detector itselfis done 3 or 4 times a year, but there is a relative calibration that
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is run nightly to monitor any changes in the system. The absolute calibration of

the FD is an end-to-end calibration, in that it accounts for all the components of

the system from mirrors to PMTs to the readout electronics. The calibration is

done with a diffuse light source that is 2.5 m in diameter and is placed in the

aperture of the telescope. The light intensity and uniformity are measured in the

lab. The light intensity is measured using NIST-calibrated (National Institute of

Standards and Technology) photodiodes while the uniformity is measured using a

CCD (charge coupled device) camera. The diffuse light source is able to uniformly

illuminate all the pixels in the camera with a known light intensity. Knowing

the light intensity at the pixel makes it possible to calculate the conversion from

integrated signal to number of photons incident on the pixel. This calibration

currently has 12% uncertainties. It is not possible to perform this calibration

every night as it is labor and time intensive, and therefore steals valuable time

away from observing.

The calibration must be monitored on a nightly basis to track any changes

in the performance of the telescopes and correct for these changes in the data

analysis. Calibration monitoring is accomplished using an array of LED and a

diffuser located at the collector mirrors. Light pulses are fed into the pixels and,

at the same time, a portion of the light is directed into a calibrated photodiode

to monitor the light source. Correcting for the stability of the LED array, any

changes in the response of the optical system (mirror, PMT, and readout) can be

monitored on a nightly basis. From the absolute calibration of the optical system

in the telescope, there is still a need to correct for the distance the light travels to

the telescope, in order to calculate the absolute number of photons emitted at the

shower axis.

Atmospheric conditions must be monitored closely, specifically the aerosols in

the air and atmospheric depth and temperature profiles. Aerosols can strongly

effect the propagation of fluorescence light in the atmosphere. Several methods
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are used to characterize the aerosols present in the air at any given time during

data taking. Backscatter LIDARs are steerable UV lasers located at each FD eye.

Each LIDAR has a PMT that detects the backscattered light from the UV laser

pulses. The timing information from the PMT gives information about the aerosol

content of the air at any given spot along the path of the laser. This system is able

to check various locations and directions in the sky and eventually will be able

to ”shoot the shower”. Every time a large event is recorded by a FD, the LIDAR

will shoot laser pulses along the reconstructed track to measure the backscattered

light and calculate the attenuation length along the path of the shower. There are

also cloud monitors and star monitors to detect clouds and track the stars and any

changes in their intensity due to changing atmospheric conditions.

In addition to the aerosol content of the atmosphere, it is important to know

the atmospheric depth and temperature profiles. Photon yield has both a small

pressure and temperature dependence, which change with altitude. In the past, a

parameterized atmosphere was assumed in analyzing data based on the assump-

tion that atmospheric conditions were relatively stable. In Malargue, meteoro-

logical radio soundings have been performed as well as monitoring ground based

weather stations to understand the atmosphere. Radiosondes are launched with

helium balloons above the PAO and data is taken every 20 m in altitude until

reaching 25 km above sea level. The profiles are recorded and then compared

to the parameterization used previously. If the parameterized values are used

instead of the measured profiles, Xmax values change on average 15 g/cm2 while

energy changes less than 1%.

A useful tool to cross-check the calibration and atmospheric monitoring is the

central laser facility (CLF). The CLF, as indicated by the name, is located in the

center of the array. It has a steerable UV laser with an optical fiber that injects

a portion of the calibrated, pulsed laser light into a surface detector. The CLF is

used to check angular reconstruction, atmospheric conditions, the relative timing
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between the SD and FD, and the calibration of the telescopes. The pulsed laser

light is scattered by the air and is detected in the FD providing a ”test beam” to

cross-check all important quantities in determining the properties of an extensive

air shower.

3.3 The Surface Detector

The surface detector is made up of 1600 individual particle detectors. Each particle

detector is a water Cherenkov detector that is a cylindrical tank with a top area

of 10 m2 and a height of 1.5 m, as seen in Figure 3.7. Each detector is completely

independent from all other detectors and is driven by two 12 V batteries that are

recharged by solar panels. Each detector communicates with the central data

acquisition system (CDAS) via a wireless communications system. Thus, when a

detector is deployed in the array, it can begin data taking immediately, regardless

of the status of other detectors.

The water Cherenkov detector, also called a tank or station, is filled with puri-

fied water to a height of 1.2 m, or 12 cubic meters of purified water for each tank.

The water is contained within a bag that has a diffuse reflective “Tyvek” bag in-

terior with three windows on top. In these windows sit three 9” PMTs used to

detect the Cherenkov light when particles pass through the detector. The signal

from each PMT is split into two channels, a high gain and a low gain channel. The

high gain channel comes from tapping the last anode in the PMT anode chain and

amplifying it by a factor of 40. The low gain channel is the signal straight from

the dynode. These signals are then passed through filters and read out by a flash

analog to digital converter (FADC) that samples at a rate of 40 MHz. Thus, each

station has six signals associated with it, two from each PMT. The relative timing

between tanks, as well as the absolute event times for each station, comes from a

GPS system located on each tank, and the timing resolution is better than 20 ns.
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Figure 3.7: Surface Detector

The design of the station allows detection of a wide range of signal sizes, from a

few to around 105 photoelectrons, limited by FADC saturation. It is this dynamic

range that allows the calibration of the station to occur using single particles while

still detecting, without readout saturation, large extensive air showers that de-

posit thousands of particles in a station. The dynode to anode ratio of a tank is the

ratio of the high gain to low gain signals, and is routinely monitored. It is neces-

sary to measure and monitor this ratio to be able to extend the calibration values,

small signals typically, to the detected signals of large air showers. Monitoring

this ratio is also necessary for the health of the PMT and readout electronics. Cal-

ibrating the stations is accomplished via atmospheric muons. Nature provides

these particles at a rate which allows frequent calibration of the stations. Each

physics signal is measured in units of vertical equivalent muon (VEM or QV EM ),

which is the charge deposited by a vertical, through-going (one that does not stop

inside the tank) muon in a station. In nature, the muons (and other particles)

come from many different directions so the calibration is done by setting a low

threshold, 3 PMT coincidence trigger for the station and making a histogram of

the charge deposited. The relationship between the peak in the charge histogram

(Qpeak,V EM ) and the charge deposited by a vertical through-going muon (QV EM ) can
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be studied in a reference tank and is expected to vary little between detectors be-

cause it is a geometrical factor. Arneodo, et al, performed this study by using a

muon telescope as a trigger for the reference tank. They determined the factor

to be Qpeak,V EM = 1.05 QV EM . Local station triggers are not set using integrated

FADC traces because of strict timing requirements. To calculate the sum of a trace

would require too many clock cycles on the CPU and would retard the data tak-

ing of a station. Thus, local triggers are set using the maximum pulse height in

FADC channels. Channels in the FADC are a measure of the photocurrent from

the PMTs.

A vertical through-going muon induces a certain maximum photocurrent in the

PMTs (IV EM ), and the trigger is set relative to that value. The procedure is the

same as determining QV EM . A histogram is made of maximum pulse heights using

a low threshold 3-fold coincidence trigger which is then compared to a histogram of

maximum pulse heights for only vertical through-going muons. The relationship

between the peak of the pulse height histogram (Ipeak, VEM) and the average

maximum pulse height for a VEM (IV EM ) follows the relationship between Qpeak,

VEM and QV EM . The trigger is set relative to IV EM , but it is desirable that this

trigger is similar, if not the same, for all stations in the array in units of FADC

channels. This is desirable to achieve a similar dynamic range in all the stations

and uniform triggering. A similar trigger level is achieved using a rate-based

calibration method.

For a given station, the voltages on the PMTs are adjusted so that the rates

of events with a peak signal above a threshold are identical. The target rate is

approximately 100 Hz and the threshold is 150 channels above baseline. From a

reference tank, a 100 Hz rate at 150 channels above baseline corresponds to IV EM

being 50 channels above baseline. Requiring that all the PMTs satisfy the above

condition, the end to end gains of the PMTs are roughly identical, where the end to

end gain means that for an identical energy deposit in a tank, the electronic signal
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(i.e. number of FADC channels) is identical. The trigger thresholds are dynam-

ically changed when the station is operating. Changing temperatures, PMT and

electronics drifts, or any other effects may change the triggering rate of a station.

Assuming, to first order, that the rate of particles hitting the detector is constant,

any significant change in the triggering rate can be attributed to changes in the

station. To maintain a constant trigger rate, the threshold value for the trigger is

changed dynamically, where the changes are on the order of a single FADC chan-

nel. This does not effect calibration, however, since absolute physics calibration

is done using charge histograms as explained in the previous paragraphs. The

changing trigger threshold ensures uniformity in the triggering across the array

in that it compensates for any possible changes in the electronics or PMTs that

would effect where the QV EM is determined to be. As long as the individual sta-

tion triggers are set such that the entire array is triggering on the same physical

quantity (related to QV EM ), uniform behavior can be expected which simplifies

the calculation of important quantities such as the aperture and trigger efficiency.

Since the trigger thresholds may change with time, it is necessary to monitor the

calibration quantities. Calibration quantities are taken every 3 minutes and are

sent back to CDAS every 6 minutes. These values can be monitored for each sta-

tion in the array. In addition, high statistics (≃150,000 events) charge histograms

are sent back to CDAS with every physics event, providing a method of checking

the calibration when doing physics analysis.

3.4 Conclusions

The baseline design of the PAO is a hybrid detector for the highest energy cosmic

rays. The hybrid technique will provide invaluable cross-checks between the fluo-

rescence detection method and the ground particle detection method for extensive

air showers. Each method has inherent systematic uncertainties, but also adds
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another dimension of information. Using both detectors together should provide

an illuminating look into ultra high energy cosmic rays. The bulk of the data will

be taken using the array of surface detectors. A small subset (≃10%) will be events

detected with both the FD and SD. This small subset will be used for determining

systematic uncertainties in energy measurements, composition studies, and com-

paring hadronic interaction models. With these detectors, the puzzles behind the

composition and origin of ultrahigh energy cosmic rays will begin to be resolved.
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Chapter 4: Magnetic Fields

4.1 Introduction

Observations have established that there exist magnetic fields throughout the

known universe. Since cosmic rays can be charged particles, we must be able

to understand the magnitudes and directions of these fields so that we can prop-

erly simulate the true trajectories of the rays, which must include bending due to

magnetic fields encountered. The Extragalactic Magnetic Field (EGMF) is likely

much weaker than the Galactic Magnetic Field (GMF), since the GMF exists in an

area of much more concentrated matter and charge. However, since the particles

travel for up to 50 Mpc, I will model the EGMF as well, in order to ascertain if

such a relatively small field can still bend the particles measurably before they

reach the galaxy. First, though, I will concentrate on the stronger of the two fields

by modeling the GMF.

4.2 Galactic Magnetic Field

By looking at the Faraday rotation of the starlight in the galaxy, the GMF’s large

scale structure has been ascertained [28][5]. The regular component of the GMF

can be represented by spiral fields with either a 2π or π symmetries.

These models are called axisymmetric (ASS) or bisymmetric (BSS), respec-

tively [29]. The BSS model is shown in Figure 4.1. The GMF also displays either

dipole (A) or quadropole (S) parity across the galactic plane in the z-direction [28].
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Figure 4.1: Spiral Structure of Galactic Magnetic Field [27]

In the bisymmetric model, at l = 00, there are two reversals of the GMF inher-

ent to the model. The first occurs at a distance of 0.5 kpc, and the second at ≃ 3

kpc [30, 31]. This model of the field has a magnitude in the galactic plane of:

B(r, θ) = B0(r)cos(θ − β × ln(
r

r0
)) (4.1)

We, however, have assumed the field to have 2π symmetry with no field rever-

sals and a quadropole (even) parity across the galactic plane. This model is called

the ASSS model. Therefore, at any point (r, θ) in the galactic plane, the magnitude

of the field is defined to be:

B(r, θ) = B0(r)|cos(θ − β × ln(
r

r0

))| (4.2)

where β = cot(p) = -5.67, where p = the pitch angle = −10o. The r and θ compo-

nents of the field are defined in terms of the pitch angle to be:

Br = B(r, θ) × sin(p) (4.3)
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Bθ = B(r, θ) × cos(p) (4.4)

The GMF has been taken to be on the order or B ≃ 2 µ G in the direction

of galactic longitude (l) = 90o at the solar system, which is at the galactocentric

distance of R = 8.5 kpc. We take r0 = 10.55 kpc, which is the galactocentric distance

at which the magnetic field is the greatest at l = 0o, and B0(r) = 3R
r

µG . To avoid

the formula blowing up at the origin, the magnetic field has been forced constant

within r = 4.0 kpc, such that B0(rmin) = 6.375 µG [32].

Above and below the galactic plane, the field falls off exponentially as

|B(r, θ, z)| = |B(r, θ)|e
−z
z0 (4.5)

where z0 = 1 kpc for |z| < 0.5 kpc, and z0 = 4 kpc for |z| > 0.5 kpc [29].

In addition to the above field, we have included a dipole component [33], such

that:

B(x) =
3.0mgal sin(θ) cos(θ) cos(φ)

r3
(4.6)

B(y) =
3.0mgal sin(θ) cos(θ) sin(φ)

r3
(4.7)

B(z) = mgal(
1 − 3.0sin2 θ

r3
) (4.8)

where mgal is the magnetic moment of the galaxy, and is valued at 184 µG kpc3.

The value of the magnetic field, then, is on the order of 0.3 µG within the solar

system.

If we are to compare the effect of the dipole part of the field to the total, we

can see the results in Figure 4.2, which was generated by sending a single particle

straight into the plane of the galaxy, then tracking it out to 100 kpc. This ratio

behaves as we would expect: the particle crosses the magnetic spiral “arms” in the
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plane, as is evidenced by the slight squiggles in the plot. As expected also, the

total ratio drops by 2 orders of magnitude as we go out from our initial position, at

about 10 kpc, to the final, at 100 kpc.

Figure 4.2: Ratio of B(dip)/B(tot)

4.3 Extragalactic Magnetic Field

It has been established that magnetic fields permeate the universe. These fields

will obviously effect the trajectories of the charged particles therein. However, ob-

servations have also established there to be a small-but-pervasive magnetic field

existent between the clusters of galaxies. This field could be evidence of a pri-

mordial field. This field grows as galaxies form. This growth, along with its om-

nipresence, begs the question: Could this field be contributing noticeably to the
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trajectories of charged UHECR primaries as they travel to Earth?

Philip Kronberg, and others, have set a strict constraint on the large-scale

extra-galactic magnetic field (EGMF) [5]. This upper limit is derived by study-

ing the Faraday rotation of light coming to the earth from distant quasars. By

studying the variation in the angle of polarization of radio emission of a variable

astronomical object with a known frequency, Kronberg was able to set the upper

limit of the EGMF to 10−9 G. There also exist weaker constraints on the EGMF,

which are derived from synchrotron emission from nearby galaxy clusters (Kim

1989), as well as that of the cosmic microwave background (CMB), as defined by:

dE

dt
= −2e

3
r2
0B

2
(

E

mec2

)2

(4.9)

≃ −3.8 × 107(
B

10−9G.
)2(

E

1020
)2eV s−1 (4.10)

where B = |BEGMF |, ro = the classical electron radius, and me = the mass of the

electron.

Kronberg has recently revised this previous idea by adding that there could ex-

ist randomly-placed filaments of higher magnetic field. The magnitude of this field

is less than 10−6 G. Therefore, we have two outside estimates for the magnitude of

the EGMF: 10−12 G ≤ BEGMF ≤ 1 µG.

In order to check if this primordial field will noticeably effect the observed tra-

jectories of the UHECR in which we are interested, I set the magnetic field outside

the immediate galactic neighborhood to be equal to either of these two extreme

values. I then traced the trajectories of anti-protons through said constant fields,

and out to 50 Mpc (the furthest distance from which the primaries could be com-

ing, due to GZK constraints). I computed the power spectra for these results, as

well as looked at the angular distribution on the sky that would be characteristic

to each of these EGMF models. I compared these results to the same calculations
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made if I simply extended the calculation of the GMF out to 50 Mpc. I found all of

the results to be so similar, that I was sure that I could discount the bending done

to the particles outside the galaxy as negligible when compared to the bending of

the trajectories done by the GMF.

In order to ascertain that the simulation was working correctly, I then checked

the values of the magnitude of B at 50 Mpc, given only the GMF calculation. I

found them to be on the order of 1 µG - 1 nG.

4.4 GMF vs. EGMF

We can estimate the magnitude of the bending of a charged particle trajectory by

first considering a simple case with a constant magnetic field. As shown below

in Fig.4.3, take a source located a distance L from the observer on earth emitting

protons. A constant magnetic field B is oriented into the plane of the page.

R
L

R
L

L

Src

Obs

Figure 4.3: Circular trajectory of a charged particle in a magnetic field

Charged particles travel along a circular path with radius of curvature RL, the

Larmor radius. The angle α is the deflection angle of the particle trajectory with
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respect to its initial trajectory. But note that the angle θ is the observed deviation

of the arrival direction of the proton with respect to the line-of-sight direction to

the source. The angle θ is what concerns us. It is simply related to α: inspecting

Fig.4.3, θ + β = 90◦ and α + 2β = 180◦, so α = 2θ.

The Larmor radius RL is easily obtained by inspecting the central-force which

causes a circular path:

F = qvB =
mv2

RL

RL =
mv

qB
=

p

qB

where p is the proton momentum. Our concern is with extremely relativistic pro-

tons, so

RL ≈ E/c

qB

with E the proton energy and c the speed of light. To obtain this expression in a

more convenient form, explicitly calculate RL for E = 1019e and a magnetic field

strength typical of the Galaxy, B = 1µG :

RL ≈ (1019e)(1.6 × 10−19J/e)/(3 × 108m/s)

(1.6 × 10−19C)(1µG)(10−10T/µG)
= 3.33×1020m× 1pc

3.085 × 1016m
= 10.8 kpc,

giving a simple formula for RL:

RL = 10.8 kpc
E19

ZBµG
(4.11)

where E19 is the energy in units of 1019e, BµG is the magnetic field strength in µG,

and Z is the charge of the particle in units of e (for protons, Z = 1). An alternative

form for much smaller fields follows trivially:

RL = 10.8 Mpc
E19

ZBnG
(4.12)

with BnG the field in nanogauss.
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The observed angular deviation θ can be computed by inspecting Fig.4.3:

RL sin(α/2) = L/2

or using the relation α = 2θ,

2RL sin θ = L.

Then

sin θ =
1

2

L

RL

=

(

L

21.6kpc

)

BµG

E19
= 0.046

LkpcBµG

E19
(4.13)

using Eq.4.11, with Lkpc the straight-line distance to the source in kpc. If the

deviation is small,

sin θ ≈ θ = 2.7◦
LkpcBµG

E19
= 2.7◦

LMpcBnG

E19
(4.14)

showing the deviation when using either (kpc − µG) or (Mpc − nG) units. We

now can compare the deviations expected due to Galactic and extra-Galactic fields.

Suppose a 1019e proton travels from an extra-Galactic source at 50 Mpc through a

presumably typical field strength of 10−3nG . Eq. 4.14 gives an observed deflection

θ = 0.14◦ [5]. But when it enters our Galaxy, it will traverse a typical distance of

perhaps 5 kpc (an effective “source” distance of Lkpc = 5) through a typical field

strength of 2µG. The angular deviations from the Galaxy is then θ = 28◦. Clearly

the Galactic bending dominates the two effects.

The ratio of the extra-Galactic and Galactic deflections, θEG/θG, is

θEG

θG

=
LMpcBnG

LkpcBµG
= 0.005

using the field strengths and distances assumed above. Since it is very unlikely to

observe any particles from distances greater than 50 Mpc due to the GZK effect,

the dominant factor in the ratio is the relative strengths of the magnetic fields. The
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strength of the Galactic field is reasonably well known, but the extra-Galactic field

is understood much less well. If it were significantly stronger than 10−12G (i.e.,

BnG ≫ .001), then the ratio of the two deflections may become comparable. The

actual deviations are the subject of this thesis, and we’ll simulate them in great

detail. The previous discussion used an order of magnitude estimate to justify why

we neglected the extra-Galactic field. It is a fair question to ask if that estimate

is not good for the extra-Galactic case, since that field is likely not a constant over

such vast distances.

Suppose we assume that the large-scale field is arranged into “cells”. Inside of

each cell the field is assumed to be constant, each cell’s field has the same magni-

tude, but the orientation of the fields in the cells are all completely independent of

each other. We assume that characteristic size of such cells are given by a “coher-

ence length” parameter ℓ. It is reasonable to take ℓ = 1Mpc.

Since the deflection in a very weak field is quite small over 1 Mpc (see Eq.

4.14 ), we can treat this as a series of independent small-angle scatterings as

the particle traverses the arc length drawn in Fig. 4.3. In each cell, we can use

the constant-field approximation that we just developed, but each cell’s field is

oriented differently. In such a random-walk, after N steps or cell-traversals the

average angular displacement will be
√

N times the deviation in each individual

step. This will actually give less net deviation at the end than if all the cells’ fields

were oriented the same, in which case the final deviation would be N times the

deviation of one cell.1

1This is similar to the well-known case of multiple scattering of charged particles, where the

r.m.s. deflection is proportional to
√

x/X◦, with x the thickness of material and X◦ the radiation

length in that material; in other words the square root of the number of “steps” in units of radiation

lengths [34]. Explicitly, the number of steps is approximately

N =
s

ℓ

where s is the total length of path traveled from the source to the observer. If we assume as before

that the net deflection is so small that the chord-length L in Fig. 4.3 is approximately the same

as the actual arc-length path, then the angular deviation in Eq. 4.14 should be modified to be
√

N
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4.5 Origin of the Random Walk

Consider a two-dimensional random-walk. This is a series of steps, each of the

same distance, but each one is randomly oriented with respect to the previous

step. Do it as a sum of unit vectors (i.e., step size 1.0). A unit vector in the xy

plane has this form: n̂ = (x, y) = (cos θ, sin θ) where θ is the angle of n̂ from the x-

axis. If these are randomly oriented, that is the same as saying that θ is a random

number between zero and 2π.

The magnitude of the vector is the square root of |n̂|2 = n̂ · n̂ = x2 + y2 =

cos2 θ+sin2 θ = 1.0. An equivalent representation of this vector can be as a complex

number:

z = x + iy = cos θ + i sin θ = eiθ

then the square of the vector magnitude is simply

zz∗ = eiθ e−iθ = 1.0

Suppose I add N of these vectors together, the resultant is

Z =
N
∑

j=1

eiθj

with squared magnitude

ZZ∗ =
N
∑

j=1

ei(θj−θj) +
N
∑

j,k=1(j 6=k)

ei(θj−θk) = N +
N
∑

j,k=1(j 6=k)

ei(θj−θk)

The second term has (θj − θk), each angle of which is random. The difference

times the deviation over small cell (of size ℓ) giving

sin θ ≈ θ = 2.7◦
[

LMpc

ℓMpc

]1/2
ℓMpcBnG

E19

= 2.7◦
(ℓMpcLMpc)

1/2BnG

E19

So our previous discussion using constant extra-Galactic fields is still giving a fair order-of-

magnitude estimate of the effects.
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between two random numbers is also a random number, so call it φ and it is dis-

tributed just like θ, over zero to 2π. That sum is then just like taking averages of

the components:
∑

eiφ ∝ 〈cos φ〉 + i 〈sin φ〉 = 0 + i 0 = 0.

So that second term vanishes. Hence the resultant vector Z has magnitude
√

ZZ∗ =
√

N. This 2-d random walk on a plane applies to our problem with deflection angles

too. Since the scattering angles are small, the deviations of one trajectory vector

to the next on the surface of a sphere is like a little vector on a plane surface, just

like above. The total deviation is then
√

N times the magnitude of an individual

scatter.

4.6 Active Galactic Nuclei

The leading candidates for the source of UHECR are large, energetic structures

where strong shocks are expected to be found. The most well known of these are

supernova remnants, which have long been suspected to generate cosmic rays. In

1995, Japan’s ASCA X-ray Satellite reported positive observations of non-thermal

X-ray emissions from the Supernova Remnant SN1006. The observed emission

spectrum is consistent with synchrotron emission by accelerated charged parti-

cles. This report is widely seen as confirmation of supernova remnants as a known

source of cosmic rays. The observed emission from SN1006, with some fine tun-

ing of the emission models, can explain the existence of cosmic rays up to ≃ 1015

eV. However, it is difficult to explain the existence of cosmic rays above 1018 eV,

because supernovae are simply not large enough to maintain acceleration to the

UHE regime. Furthermore, no positive correlation has been observed between the

arrival directions of UHE cosmic rays and supernova remnants.

There are many larger objects in the sky where strong shocks are expected.

For example, strong shocks are possible around colliding galaxies such as NGC
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Figure 4.4: Active Galactic Nucleus

4038/9. However, there is no evidence to indicate these objects are sources of UHE

cosmic rays. Another class of objects which are candidate sources of UHE cosmic

rays are active galactic nuclei (AGN), which is represented by Figure 4.4. AGN is

the generic name given to a class of galaxies which are suspected to have at their

center a supermassive black hole. AGNs are typically accompanied by jets which

can extend 15-30 kpc. Roughly one of every ten known galaxy has an AGN. It is

therefore always possible to find an AGN within error of the arrival direction of

most UHECR.

To accelerate a charged proton to E = 1019eV one needs an electric potential dif-

ference of 1019eV over some spatial distance. If the distance is small, it is relatively

easy to set up an electric field (i.e., the voltage divided by that distance) with such

high intensity. Hillas [35] gave a useful way to get an order of magnitude estimate

of the situation.

On the left side of Fig. 4.5 is a classic freshman-physics problem. A loop of

wire is being pulled into a region where there is a constant magnetic field. The

magnetic flux through the loop is increasing, causing an electric field to be induced
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Figure 4.5: Left: a loop of wire being pulled into a region with a uniform mag-

netic field B into the page. Right: A shock wave with an embedded magnetic field

moving into a region indicated by the (imaginary) lines.

around the loop, by Faraday’s law. Notice the similarity with the situation on the

right side of the figure: a plasma shock wave with an embedded magnetic field

is entering a region of space indicated with the dotted lines. The geometry is the

same, so Faraday’s Law applies here too, and we will see an induced electromotive

force as well.

The loop has a width L and is being pulled in the y-direction at speed v. The

magnetic flux through the loop ΦB = B(Ly) is increasing as the overlap region

y increases. There is an induced voltage ∆V around one traversal of the loop

according to Faraday’s Law

∆V =
dΦB

dt
= BL

dy

dt
= BLv

The energy of a particle with charge q in the wire after it accelerates through one

revolution is q∆V = qBLv. Comparing to the shock-wave situation on the right

side of the Figure, Hillas gives his estimate for the maximum energy that can be
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obtained when a particle of charge Ze is accelerated by shock-waves:

Emax = Ze(βc)BL

where B,L,β are characteristic values for the field strength, size, and speed (v =

βc) of the accelerating engine. Figure 4.6 plots the characteristic sizes (L) and field

strengths (B) of a number of astrophysical objects.

Figure 4.6: Size and magnetic field strength of possible sites of particle accelera-

tion. Objects below the diagonal lines cannot accelerate particles beyond 1020 eV

by shock acceleration. Dashed line is for protons (Z=1) and the lower solid line is

for iron nuclei (Z=26), each for shock speed β = 1. Also shown (upper solid line) is

the case for 1021eV (1 ZeV) protons.

It is clear that it is difficult to find objects capable of getting particles to 1020 eV.

Active Galactic Nuclei and the jets sometimes found with them have the requisite

size and field strength. Neutron stars have very strong fields and so also look
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like they could do the job. But this argument has not taken into account the

environments of the accelerator. The intense radiation in the neighborhood of a

neutron star would likely prevent the escape of an accelerated proton - it tends to

collide with the photons in the field and lose energy. The lobes at the tips of the

jets from AGN seem like a better choice, as they are well away from the central

engine and its own intense radiation fields. That’s why AGNs - especially those

with long radio jets with intense lobes - are favored sites for acceleration to 100

EeV and beyond.

4.7 Calculation of the Power Spectrum

Any collection of points on a sphere can be represented by a sum of spherical

harmonics (assuming the whole sphere to be populated). The method of using

power-spectra coefficients is an attempt to provide a common language for model

builders and experimentalists. If cosmic ray sources are not bright point-sources,

then this method gives a well-defined way for various models to be tested against

data. Therefore, by analyzing these spherical harmonics, and their coefficients, we

can draw conclusions about the anisotropy patterns of the distribution of (θ, φ) we

see. In general, the intensity function over the sphere is defined to be:

I(θ, φ) =
∞
∑

l=1

l
∑

m=−l

almYlm(θ, φ) (4.15)

where the coefficients alm are then

alm =
∫

I(θ, φ)Ylm(θ, φ)dΩ (4.16)

There are intrinsically imaginary parts to Ylm, but these can be replaced by

following [6]:
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eimφ →































√
2sin(mφ) (m < 0)

1 (m = 0)
√

2cos(mφ) (m > 0)

For the purposes of simulating real data, we’ll assume a non-uniform exposure,

ωi. We’ll then be able to characterize the alm values for a discrete set of N events

as:

alm =
1

N

N
∑

i=1

1

ωi

Ylm(~ui) (4.17)

where ωi is the relative exposure at arrival direction ~ui, and N is the sum of

the weights 1
ωi

.

The calculation of this exposure will be discussed later.

The intensity function can then be characterized for a discrete distribution of

points as:

I(θ, φ) =
20
∑

l=1

+l
∑

m=−l

almYlm (4.18)

The angular power spectrum, or Cl values, is represented by taking the average

of the spherical harmonics’ coeffecients mentioned above.

C(l) =
1

2l + 1

l
∑

m=−l

a2
lm (4.19)

We can use the values of Cl to determine not only whether or not anisotropy

exists in any given collection of points, but also the scale of it. The values of Cl

are sensitive to variations over angular scales of about 1/l radians. Therefore, by

studying which Cl values are heightened or suppressed in a given distribution, we

can determine what kind of anisotropy we’re looking at, whether it be a large-scale
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dipole or small-scale clustering. As such, this is a very powerful analysis tool for

large-scale searches for anisotropy.

In the analysis in question, I have first tested this method of quantifying

anisotropies by generating simple distributions of particles and looking at the Cl

values yielded. I used the random number generator included in the C++ standard

library to generate random values for cos(θ) and φ. The random number generator,

rand(), produces a random number between 0 and a maximum constant defined

by the implementation. In my package, the maximum value is 2147483647. I seed

the random number generator with the system time, in order to ensure that each

set of random numbers is different.

First, I generated a homogeneous distribution over the entire sky by using the

random number generator in C++. I generated 1000 random values between 0 and

1 to represent the values of the cosine of the zenith angle, θ and between 0 and 2π

to represent the values of the azimuthal angle, φ. I then randomly selected half

of the points and forced their cos(θ) = − cos(θ). This yielded an even distribution

of random points between −1 ≤ cos(θ) ≤ 1 and 0 ≤ φ ≤ 2π. By distributing the

particles evenly throughout any given solid angle (cos θ, phi), I could ensure that

the entire celestial globe was covered evenly.

After generating this distribution, I took each particle and recorded its (cos θ, phi)

value and computed its Ylm for 0 ≤ l ≤ 20 and −l ≤ m ≤ +l. The l values corre-

spond to angular resolution on the sky as l ≃ 1/θ (in radians). Therefore, by setting

the upper limit of l to be 20, I could be sure that I was only looking at the upper

limit of angular resolution of the Pierre Auger Observatory, which is taken to be

≃ 1 deg. From these values of Ylm, I used the above-mentioned formulae for a dis-

crete distribution of points to compute the alm and Cl values. For the homogeneous

distribution, I obtained the distributions of values seen in Figure 4.7.

There is obviously no signature of the Cl values, which is what we expected, as

per Figure 4.7. Now that it appears evident that this simple simulation is working
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Figure 4.7: Cl Values For a Homogeneous Full-Sky Distribution of Events

on a full-sky distribution, we have to make sure that the same analysis will yield

the same results for a half-sky distribution. Since the detector currently under

construction is only in the southern hemisphere, we can only see half the sky.

Therefore, we need to know how this will affect the power spectra computed from

the distribution of observed events.

Obviously, even a completely homogeneous distribution of points visible on only

half the sky will appear anisotropic, and, more specifically, dipolar in nature. The

distribution is simulated by using a simple procedure, in which I took the original

homogeneous distribution that I generated and read in only points where cos(θ) ≥

0. I then computed the Cl values as usual and obtained Figure 4.8.

It is immediately obvious that this cut has made the sky look like a dipole, and
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Figure 4.8: Cl Values For a Homogeneous Half-Sky Distribution of Events

this is supported by the Cl values, where the l = 1 value has greatly increased in

comparison to the rest of the values.

The next logical step is to test an actual dipole distribution, which is simple

to generate. For this, I simply re-generated the 1000 random points between 0 ≤

φ ≤ 2π for the azimuthal angle and betweeen 0 ≤ cos(θ) ≤ 1 for the zenith angle.

This time, I took
√

cos(θ) to be the zenith angle, in order to force a dipole-like

distribution. To cover the entire sky, I assigned cos(θ) = 2. cos(θ) − 1. This kept

the dipole distribution, but forced it to go from −1 ≤ cos(θ) ≤ 1. I then computed

the Ylm values again, and from them computed the alm and Cl values again. The

Cl distribution became that seen in Figure 4.9.

After testing these two distributions, I generated a quadropole. This distribu-
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Figure 4.9: Cl Values For a Full-Sky Dipole Distribution of Events

tion can be easily approximated by taking the cube root of the random values for

cosθ. Again, I forced the distribution into a full-sky set of points by randomly gen-

erating a number between 0 and 1, then comparing it to the points. If the value of

cos(θ) was lower than the random number, I made it negative. This forces around

half of the particles to have their initial solid angle value switched from cosθ to

−cosθ. I obtained the following results. For the values of Cl, I obtained Figure

4.10.

For the alm values, I obtained the values in Figure 4.11.
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Figure 4.10: Cl Values For a Full-Sky Quadrupole Distribution of Events
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Figure 4.11: alm Values For a Full-Sky Quadrupole Distribution of Events
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Chapter 5: Propagation

5.1 The Simulation

In order to trace the trajectories of particles through the universe, we have em-

ployed the standard practice of tracing the reverse trajectories of antiprotons

[36, 37]. In the method, we generate a random, flat distribution of negatively-

charged protons at the earth’s surface (9.202 kpc removed from the galactic cen-

ter, taken for these purposes to be along the y axis). We then assign them random

initial orientations before injecting them into the galaxy. An Aitoff projection of

the initial positions of the particles is shown in Figure 5.1.

Simply using the Lorentz force equation,F = q(v × B) we can find the force

exerted by the assigned magnetic field which is felt by the particles as they travel.

It is then a simple matter to integrate the equations of motion for charged

particles, in order to trace their trajectories, and obtain:

∆~p

∆t
=

qc2

E
(~p × ~B) ≈ qc

|~p|(~p × ~B) (5.1)

∆~x

∆t
=

c2~p

E
≈ c~p

|~p| (5.2)

as long as ∆x is not too large [38], and in the ultra-relativistic limit. By adding

this small increment to the previous value of x (or by adding ∆px to px), we find

the next position or momentum, respectively.
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Figure 5.1: Initial Positions of Particles – Aitoff Projection

Since F = mẍ, it can be approximated to be equal to the change in the particle’s

momentum or velocity over a very small period of time. In other words, one can

approximate the change in momentum of the particle over a small distance to be:

~pnew − ~pold =

(

c2 × ∆t

E

)

(~p × ~B) (5.3)

The calculation of ∆t is straightforward. I simply calculate the magnitude of

the magnetic field at any given point. The radius of curvature for any particle

feeling only that constant magnetic field would be:
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rcurve =
1

q

pmag

Bmag

(5.4)

I define then a small ratio. When multiplying this ratio by rcurve, we can then

define the size of the “step” taken by the particle. Simply, then, ∆t = ∆s/c. After

many trials to see how small the ratio needed to be in order to be both accurate

and efficient, I settled on 10−2.

Once the new momentum is found by the above method, it is a simple matter

to compute the new position of the particle, using

∆x = ∆t ×
(

c × px

ptot

)

(5.5)

∆y = ∆t ×
(

c × py

ptot

)

(5.6)

∆z = ∆t ×
(

c × pz

ptot

)

(5.7)

I then compute magnitude of the position of the particle, since r =
√

x2 + y2 + z2.

I defined the final value of r to be various distances, from as close as 25 kpc to as

far as 50 Mpc. Taking the particles out to a distance of 100 kpc, we obtain the

full-sky distribution of particles visible in Figure 5.2.

5.2 Exposure of the Detector

In general, for a cosmic ray observatory, exposure is a function of declination on

the celestial sphere. The measurement of the exposure (in km2/yr.) gives the time-

integrated effective collecting area for a given flux from a given sky position. For

the purpose of this dissertation, I will concern myself with what’s known as the

relative exposure. The relative exposure is a dimensionless function on the sphere

with a maximum value of 1. It is, therefore, equivalent to computing the exposure

at the point in question, then dividing that exposure by the maximum exposure on
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Figure 5.2: Final Positions of Particle – Aitoff Projection

the sky. In other words, if we are to calculate the relative exposure at any point on

the sky, the value will be between 0 and 1. In the more general sense, “exposure”

refers to the total exposure integrated over the celestial sphere, and is in units

of km2sr−1yr−1. In practice, the observatory’s exposure varies with energy, and

should be re-evaluated for each energy bin. My concern is only in the post-GZK

cutoff range, and so the exposure need only be calculated for that energy bin.

Since the energy spectrum is defined by the number of observed events divided

by total exposure, one can use the measured spectrum to get the expected number

of cosmic rays for any given total exposure. In the case of the Auger surface ar-
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rays, the continuous acceptance is approximately 10, 000km2sr yr, independent of

energy above 1019 eV. After operating for 5 years, they will have a total exposure of

70, 000km2sr yr. The integral cosmic ray intensity above 1019 eV is approximately

0.5 km2sr yr, and it falls roughly like E2 (perhaps less rapidly, but the energy

dependence is not well determined above 6 × 1019 eV.) Using this simple E2 de-

pendence gives the following estimates for Auger cosmic ray counts after 5 years:

35,000 above 1019 eV, 2200 above 4 × 1019 eV.

Cosmic ray air shower detectors steadily operational for a full year will have a

uniform exposure in right ascension, α. Such a detector, taken to be at latitude a0

with full detection efficiency for θ ≤ θmax will have a relative exposure dependent

on declination as:

ω(δ) ∝ cos a0 cos δ sin αmax + αmax sin a0 sin δ (5.8)

where αmax, the local hour angle at which the zenith angle becomes equal to

θmax, is given by:

αmax =































0 (ξ > 1)

π (ξ < −1)

cos−1ξ (otherwise)

with

ξ ≡ cos θmax − sin a0 sin δ cos a0 cos δ (5.9)

where, for the Southern detector of the PAO, latitude is a0 = −35.50 and the

maximum value of θ for full detector efficiency is θmax = 600.
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Figure 5.3: Exposure of the PAO Detector in Argentina
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Chapter 6: Results

6.1 Results of Simulations

The lowest energy particles tried, at E = 1019 eV, were markedly bent by the GMF.

We found the distributions became both more skewed and sparse as we moved out

in distance, tending to cluster on large scales.

We started out each time with a randomly generated distribution of points, as

seen in Figures 6.1 and 6.2.

The trajectory of a single 10 EeV particle is shown in Figure 6.3, showing cur-

vature which basically traces out the GMF in the plane of the disk. 5000 such

particles were then released into the GMF and traced out to 100 kpc, yielding the

final solid angle distribution seen in Figures 6.5 and 6.4.

The clustering level is easier to analyze for our purposes in Figure 6.4 than it is

in Figure 6.5, so we will continue on using this type of plot to look at the clustering

of particles at their final shells.

We can see that the particles have become clustered. At 1020 eV, of course, there

is less curvature due to the magnetic field. However, there appears to be a slight

suppression of particles in the direction of the GC due to the very high field there.
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Figure 6.1: Initial Directions

6.2 Different Magnetic Field Models

6.2.1 Bisymmetric Galactic Magnetic Field Model

As previously stated, we have been using the ASS (axisymmetric) model of the

galactic magnetic field. In order to make sure our results are consistent with both

models, we ran some simulations using the BSS (bisymmetric) model of the field

as well. We randomly generated 5000 particles of 1020 eV at the earth’s surface, as

we can see in Figure 6.7.

We then tracked the particles, once again, out to 100 kpc and recorded their

final postions on the sky, obtaining Figure 6.8.
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Figure 6.2: Initial Directions – 10 EeV

As we can see, the clustering of particles is similar in both models, though

different enough to warrant running them both if we were looking for the direction

of the clustering. However, since the power spectra scan the skies only looking for

size of clusters, and the clustering is on order of the same size in both simulations,

we can proceed choosing to run one or the other (in our case, the ASS model).

6.2.2 Extragalactic Magnetic Field Modeling

As has been discussed before, we are upper and lower limits on the extragalactic

magnetic field. The upper limit is 1 nG, and the lower limit will be 10−12 G. Though

even the upper limit seems small, we cannot discount the effect of the field out-

right, since the particles will be in contact with it for longer distances than they
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Figure 6.3: Single Particle Trajectory

will in the GMF. And, so, we generated 5000 particles, each with energy 1020 eV,

and recorded their initial positions, as seen in Figure 6.9.

We then first applied the ASS model of the GMF. After the particle reached r =

25 kpc (around the edge of our galaxy), we turned on a constant EGMF. The first

one tried was an upper limit of the EGMF (BEGMF ≃ 1 nG). After 100 kpc in this

field, we recorded the positions again, obtaining Figure 6.10.

We then tried a lower limit EGMF after 25 kpc, meaning that the EGMF would

be a constant value of ≃ 0.001 nG out to 100 kpc. This yielded the final directions

visible in Figure 6.11.

If we turn off the EGMF, and keep the GMF on all the way out to 100 kpc, we

find the final directions of particles to be what we see in Figure 6.12.

Obviously, the GMF provides the greatest bending, with little additional bend-

ing coming from the EGMF. We will therefore focus on the GMF as we proceed.

6.3 Error Bars

In order to understand the results accumulated from the simulations, we must

know how accurate they are. From simulation to simulation, results will always
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Figure 6.4: Final Positions – Aitoff

vary, and it is this variance we must quantify if we are to be sure that our results

are conclusive. There are two ways we have done this here: the first is to simply

run a large number of simulations, then compute the root-mean-square (RMS) of

the results obtained and use that as the error bar; the second is to smear the

points obtained in a Gaussian fashion.

The first method is the more straightforward of the two, both to understand

and to execute. First, the simulation is run with 105 particles of E = 1020eV . We

track each particle through the galactic magnetic field out to a spherical “shell” of

500 kpc. We do not take the extragalactic magnetic field into account here, since
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Figure 6.5: Final Directions at 100 kpc for E = 1019 eV

it is relatively insignificant, but rather extend the galactic magnetic field out past

the galactic halo and usual cutoff of 20 kpc. This effectively makes the field con-

stant, at a value on the order of |B| ≃ 1 µG. After finding the final positions of

each particle, we compute the power spectrum of the distribution as previously

discussed. In order to find the root-mean-square (RMS) deviation, we repeat this

process 100 times, using 100 randomly-assigned homogeneous starting distribu-

tions. We keep track of each final distribution’s Cl values, then find the RMS by

the usual method:
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Figure 6.6: Final Directions at 100 kpc for E = 1020 eV

σrms =

√

∑n
trial=1 Cl

n
(6.1)

where n is the total number of trials.

The second method involves taking each point in the aforementioned final dis-

tribution and smearing it a little bit in a Gaussian fashion. In order to do this, we

first generate a Gaussian distribution of numbers from 0 to 1. We then assume the

error in the angular measurement to be of order ≤ 1.5o. We finally have a simple

equation to smear the final distribution:
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Figure 6.7: Initial Directions for E = 1020 eV – BSS Model

θnew = θold + (∆θ ∗ y) (6.2)

where y is the Gaussian-generated point. By doing this over and over and

looking at the RMS of the distribution of points obtained, we have another way to

estimate the error inherent to the distribution.

The error bar calculations were integrated into the power spectra calculations

and yielded the following graphs:

The error bars of Figure 6.13 are on the order of 10−5 and are obviously negli-
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Figure 6.8: Final Directions at 100 kpc for E = 1020 eV – BSS Model

gible.

Since these are on the same order, we can assume all error bars negligible in

the calculations to follow.

6.4 Weighting the Final Distributions

Given an initial distribution of particles, we divided up the earth’s surface into

equally-sized solid angle bins. We then found out which bin each particle belonged

in, and assigned its position to be the center of that bin. And so we have a starting
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Figure 6.9: Initial Directions for 5000 Particles of E = 1020 eV

distribution consisting of roughly equal numbers of particles in each solid angle

bin.

The size of the starting bins is determined by the angular resolution of the

Pierre Auger Observatory, which is between 1o and 2o. So,

dΩ = 2π(1 − cos 2o) (6.3)

where dΩ is equal to the area of each solid angle bin. Another way to say this is

that the number of bins corresponds directly to the angular resolution of the bins

as:
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Figure 6.10: Final Directions for 5000 Particles of E = 1020 eV – Upper Limit of

EGMF

nbins =

√

2

1 − cos α
(6.4)

where α is the angular resolution. For α = 1o, nbins = 115. For α = 2o, nbins = 57.

In order to match up the angular resolution of the solid angle bins with the angular

resolution of the PAO, then, we chose to form 60 equally-sized bins for cos θ and φ,

meaning we wound up with 3600 total initial starting bins.

We can see, then, that, if we are to begin with 5000 particles, there should

be an average of 5000/3600 particles per bin, or roughly 1.4, which is what we’ve

72



Figure 6.11: Final Directions for 5000 Particles of E = 1020 eV – Lower Limit of

EGMF

obtained in Figure 6.15.

Once the initial positions have been set, we tracked the particles out to a “shell”

at a certain distance, and record their final positions on the sky. Once again, we

divided up the sky into equally-sized solid angle bins, and found out which bin

each particle has ended up in. Again, we assign the center of that bin to be the

particle’s final coordinate.

Obviously, after the particles have undergone bending due to the GMF for long

distances, they are no longer going to be equally spaced. As such, there will no

73



Figure 6.12: Final Directions for 5000 Particles of E = 1020 eV – Only GMF

longer be equal numbers of particles in each bin in the final distribution. Instead,

there will be clustering in some places, and no particles in others. If there are

no particles in a particular bin, we ignore it, since a particle from there won’t

be detected at the earth’s surface. Otherwise, we simply count up the numbers of

particles in each bin, and use them as weights. For example, if one of the final bins

turns out to have 20 particles clustered in it, that bin will have a weight of 0.05.

This means that, were a single particle to come from that bin, it would be smeared

into 20 initial bins on the earth’s surface, with each of those bins inheriting 0.05 of

that initial particle. In this manner, we can find the probable distributions at the
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Figure 6.13: Gaussian Smear Error Bars

earth’s surface of any distribution of sources on the sky, so long as we’ve discovered

the weighted values of the bins at the distance they are from us.

With this in mind, we have chosen the following distributions on which to fo-

cus: (1) an isotropic distribution of sources, (2) the distribution of nearby galax-

ies, taken from the Tully-Fisher catalogue [40], and (3) the distribution of nearby

AGNs [39].

6.5 Isotropic Distribution

In order to see what the power spectrum from an isotropic distribution of sources

will likely appear to be at the earth’s surface, we then take the final generated

distribution of weights assigned to bins and assign those weights to the initial

distribution of bins. These weights are the ones that will be passed to the power

spectrum calculation, in order to find out what the weighted power spectrum of an

isotropic distribution of sources would look like at the earth’s surface.
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Figure 6.14: Multiple Trial Error Bars – 1000 Trials

For an isotropic distribution of sources corrected for detector exposure, then,

we find a relatively dipolar power spectrum with fewer lower order signatures, as

seen in Figure 6.16.

6.6 Different Primaries

Since the composition of the UHECR primary is still a matter of debate, we also

tried following the trajectories of other primary particles. Specifically, we tried

iron nuclei, electrons, and gamma rays.

As expected, the gamma rays were not bent at all by the magnetic field, since

they are uncharged (see Figures 6.17 and 6.17).

In contrast, the electrons and iron nuclei are both noticeably bent, as we can

see in Figures 6.19 and 6.20.

Since the gamma rays were not bent at all, there was no need to see how the

weighting process would change the initial distribution of points at the earth’s
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Figure 6.15: Initial Entries Per Bin

surface. The electrons’ final positions appeared to be so similar to the protons’, as

expected, that repeating the weighting process seemed redundant. However, the

iron nuclei were bent more even than the protons, and so the final positions and

weights associated therewith were recorded. Assuming an isotropic distribution

of sources once again, we then calculated the weighted power spectrum for iron

nuclei.

The iron nuclei appear different than the protons previously analyzed, in that

their lower order moments appear to be enhanced in places when compared to the

lower order moments of the proton primaries. This can be seen more easily in

Figure 6.22.
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Figure 6.16: Weighted Power Spectrum for an Isotropic Source Distribution

6.7 Comparison to AGN Distribution

Since the appreciable bending due to the GMF only occurs within 100 kpc, we can

reapply the weights calculated at that distance and find a new power spectrum

(see Figure 6.23).

Obviously, there appears to be an enhancement of the l = 1 value, indicating a

possible dipole distribution of arrival directions at the Earth’s surface. Iron nuclei

also display this enhancement, as we can see in Figure 6.24.

Again, comparing the two results on the same plot with a log scale displays the

enhancement of the bending and clustering experienced by the iron nuclei, as can

be seen in Figure 6.25.
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Figure 6.17: Initial Directions for Gamma Rays

6.8 Comparison to Matter Distribution

Alternately, we can consider all galaxies from the Tully-Fisher catalogue [40]

within 50 Mpc to be possible sources, weight them the same way, and obtain Figure

6.26.

Once again, there appears to be a dipole-like enhancement, though this time it

appears even more pronounced. The iron nuclei, in particular, seem to be the most

affected, as can be clearly seen in Figure 6.28.
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Figure 6.18: Final Directions for Gamma Rays at 100 kpc

6.9 Comparison to PAO Data

The PAO has been collecting data for the last few years, yielding an event list with

over 800,000 values thus far. Using all values, we have calculated the power spec-

tra for the data collected at different energy cuts, after correcting for the exposure

of the detector as previously discussed. We concentrate on particles of 1019 eV and

higher, obtaining Figure 6.29 for the 2140 events recorded. If instead we only look

at post-GZK events only, we obtain Figure 6.30 for the 34 events obtained to this

date.
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Figure 6.19: Final Directions for Electron Primaries at 100 kpc

The obvious dipole moment confirms our thoughts of how the data will look on

half the sky, which is what we saw in Figure 4.8.

6.10 Conclusions

The results obtained for the higher energy particles detected appear to coincide

with the results obtained for nearby galaxies and AGNs very well. However, as

previously shown, since the results of the data are for only half the sky, the dipole

moment is enhanced greatly. The fact that the dipole moment is not as pronouced
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Figure 6.20: Final Directions for Iron Nuclei at 100 kpc

as we saw for iron nuclei coming from the nearby matter distribution can allow

us to draw some tentative conclusions about the composition of these particles.

Namely, it appears likely at this point that the majority of the particles incident

on the earth’s surface are lighter than iron nuclei, or, more to the point, protons.

As for the particles’ origins, we can only definitively conclude whether or not these

particles are indeed resultant from AGN acceleration, or the acceleration of some

other galactic origin, once the proposed Northern site of the PAO is constructed.
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Figure 6.21: Weighted Power Spectrum for an Isotropic Source Distribution – Iron

Nuclei
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Figure 6.22: Weighted Power Spectrum for an Isotropic Source Distribution – Iron

Nuclei vs. Protons
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Figure 6.23: Weighted Power Spectrum for the AGN Distribution
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Figure 6.24: Weighted Power Spectrum for the AGN Distribution – Iron Nuclei
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Figure 6.25: Weighted Power Spectrum for the AGN Distribution – Iron Nuclei vs.

Protons
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Figure 6.26: Weighted Power Spectrum for Nearby Matter Distribution
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Figure 6.27: Weighted Power Spectrum for Nearby Matter Distribution – Fe Nu-

clei
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Figure 6.28: Matter Distribution – Iron Nuclei vs. Protons
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Figure 6.29: Power Spectrum for PAO Data with E above 10 EeV
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Figure 6.30: Power Spectrum for Post-GZK PAO Data
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Chapter 7: Summary

7.1 Conclusions and Discussion

The PAO hopes to provide the data we will need to ascertain the origins and com-

positions of the highest energy cosmic rays. By being the largest cosmic ray exper-

iment ever built, the PAO will be the first to provide enough statistics to mean-

ingfully analyze the arrival directions of these UHECR. In addition, the hybrid

nature of the experiment will make it the first that can utilize the pros of both de-

tection methods, while helping to alleviate the cons. These data, and the analysis

thereof, will be groundbreaking in the study of cosmic rays of the highest energy.

A deeper understanding of the fields through which these charged particles

travel is also integral to understanding their origins. By modeling different mag-

netic fields, we have discovered that the galactic magnetic field (GMF) provides

the most significant bending of the trajectories of the particles, even when they

travel through large expanses of space, since the extragalactic magnetic field is so

much smaller.

By tracking particles through the GMF, we have discovered the relative proba-

bilities of the detections of UHECR from various points on the celestial sphere. We

have applied these probabilities to possible source distributions, in order to more

realistically simulated what UHECR would look like if coming only from these

sources. Calculating the angular power spectra of the events (both simulated and

actually detected) has provided us with a powerful tool by which to analyze the
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clustering of particles on the earth’s surface.

Although the results obtained by calculating these power spectra look con-

sistent with AGNs or nearby galaxies as source distributions, the extra dipole

moment inherent to a half-sky exposure, such as the PAO currently has, adds

in an uncertainty that fundamentally undermines the capabilities of large-scale

anisotropy analysis. In the absence of clear point-like sources, construction of a

detector in the Northern hemisphere will be necessary in order to know the origins

of UHECRs with any confidence.
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