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Abstract

In this thesis, I study two topics in quantum information theory from the per-

spective of algebra and geometry. The first relates to exploring the geometry of

unitary operators for small quantum systems, specifically three-level systems. Such

an understanding of the space over which quantum systems evolve is central to un-

derstanding the detailed dynamics of quantum systems and to understand the

correlation properties of subsystems that compose a given quantum system. The

geometry of unitary operators also allows for the calculation of path-dependent

phases called geometric phases. These geometric phases are central to understand-

ing a variety of experiments. I present a general technique, called unitary integra-

tion to handle operator equations1 and employ it to study various physical systems

in quantum optics and quantum information. Unitary integration employs an in-

ductive program to solve for the time-evolution of a system in terms of a unitary

integration solution of smaller systems. The solution to the smallest system in-

volving just a phase is easily solved, hence truncating the program and providing

a solution to the initial problem. Unitary integration is developed in chapters 2

and 3 and this technique is applied to three-level systems in chapter 4.

The second topic involves quantum systems involving many subsystems2. Under-

standing the correlation properties of the subsystems that compose such systems

has been of interest in the recent past. A useful tool in furthering this understand-

ing has been parametrized families of states3. Such states depend on a smaller set

of parameters than a general state in the system and hence are easier to study

1Such equations tell us how a quantum system evolves and hence “where” it travels in this space over which
quantum systems evolve.

2Each subsystem is made up of “qubits”, an object defined later.
3Examples of which include Werner states, GHZ states, Dicke states, etc.
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and manipulate. I will present an iterative procedure to define such a parametric

family of states called X states. I discuss the algebraic characterization for such

states and develop a geometric picture for the algebra of such states. This geomet-

ric picture involves generalizations of triangles called “simplexes”. X states are

developed along with their algebraic characterization and connections to geometry

in chapters 5 and 6.

The central theme that is common to both topics is the use of algebraic and

geometric concepts to solve for various specific problems in quantum information

iteratively. While the first topic deals with the iterative decomposition of opera-

tor equations, the second topic deals with the iterative definition of parametrized

families of quantum states.

vii



Chapter 1
Introduction

“All our knowledge has its
origins in our perceptions”

Leonardo di ser Piero da
Vinci (1452-1519)

In the last decade, there has been a significant body of work that has involved

ideas from both physics and computer science. Much of this work culminated as a

result of some important algorithms that pointed out that certain computational

tasks can be performed in significantly lesser time on machines that exploit specific

rules of quantum mechanics in comparison to machines that do not. Examples of

such algorithms include the Deutsch-Josza algorithm[30], Shor’s algorithm [85] and

Grover’s search algorithm [40]. These resulted in not just an effort to build “proof

of principle” demonstrations of the algorithmic speedup suggested but an attempt

at better understanding the subtle principles of quantum mechanics that give rise

to the advantages exploited by these examples. Soon many other instances of tasks

that offered this “quantum advantage” were pointed out. Examples of this include

metrology [23], imaging [87], cryptography [64], steganography [62] etc. In some of

the aforementioned cases, claims of a “quantum advantage” have sparked classical

algorithms that have matched their quantum counterparts. As a part of this work,

many new concepts have been invented and a plethora of new phenomenon have

either been discovered or discussed in a new light.

This thesis details the study of certain geometric and algebraic aspects of quan-

tum mechanics with an eye on applications in this branch of physics named “quan-

tum information theory”. This chapter will provide a broad overview of the branch

1



of physics relevant to understanding the rest of the material in this thesis while

being accessible to the reader not versed in quantum information. As a brief in-

troduction to quantum information, we discuss two interrelated themes: quantum

mechanics and information. To this effect, section 1.1. will introduce the fields of

quantum mechanics and section 1.2. will introduce information. We note that each

of these topics considered is very vast and a through account of any one topic is

beyond the scope of this thesis. An attempt has been made only to provide a flavor

for questions, concepts and techniques employed by each field. In section 1.3 we

will present concluding remarks.

1.1 Quantum Mechanics

Quantum theory describes a set of rules obeyed by any modern fundamental theory

that describes the interaction of matter with energy and with itself1. Since any

theory begins by writing down a representation for what is observed, we must write

down a representation for what is observed when one considers a given physical

system. The representation of a physical system in quantum mechanics is given by a

so-called “quantum state”. Hence the state of a physical system is described by this

quantum state in quantum mechanics in contrast with the position and momentum

variables in classical mechanics. These physical quantities are then derived from

the quantum state( this will be explained below). For a single particle, such a state

is given by a ray in a space called a Hilbert space2. The state is represented as |ψ〉

and the states associated with the dual space (the space that is endowed as a result

of having an inner product) are represented by 〈ψ|. Such states can be expanded in

terms of basis vectors |i〉. Basis vectors are defined as vectors that decompose the

1The only exception to this to date is a consistent quantum theory of gravity.
2A complex inner product space that is a Cauchy(Augustin-Louis Cauchy(1789-1857)) metric space induced

by the inner product.
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identity (I = |i〉〈i|) and that are linearly independent(
∑

i ci|i〉 = 0 ⇒ ci = 0 ∀i).

The first condition simply states that there should be enough basis vectors to

represent any state in the space and the second condition makes sure that there

are not too many. Note that there are an infinite number of choices for the basis

vectors in any dimension and that changing the basis changes the coefficients ci so

that the state is unchanged.

From this abstract formalism, predictions are made via Born3’s rule. This rule

states that the probability of the state |ψ〉 being in the state |i〉 is given by |ci|2.

Stated differently, the probability that any quantum state |ψ〉 is present in a state

|ϕ〉 is given by |〈ϕ|ψ〉|2. Given this and from the conservation of probability, we can

see that 〈ψ|ψ〉 = 1. Besides states, two other quantities have to be introduced in

quantum mechanics, namely observables and measurements. Observables (such as

position and momentum) are represented by self-adjoint operators(operators which

equal their Hermitian4 conjugate). This is because the eigenvalues of Hermitian op-

erators are real. Indeed, there exist a set of self-adjoint operators that represent

the unique observations that characterize the representation of the system. Mea-

suring any one of the physical properties associated with one of these observables

does not change the other compatible observables that also characterize the sys-

tem. These set of operators are called a “complete set of commuting observables”

and are eigen-operators of the state |ψ〉. In fact |ψ〉 is just an eigenvector that is

constructed from the eigenvalue labels corresponding to each of these operators

that belong in the complete set of commuting observables.

3Max Born(1882-1970).
4Charles Hermite(1822-1901).
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Measurements are represented by a set of operators Ei such that E†
iEi is a

positive operator5 and
∑

iE
†
iEi = I. The post-measurement state is given by

|ψ′〉 = Ei√
||Ei|ψ〉||

|ψ〉. (1.1)

The time-evolution of this state is given by the so-called Schrödinger6’s equation

i~|ψ̇〉 = H(t)|ψ〉. (1.2)

Here ~ is Plank’s constant7 and H(t) is the called the Hamiltonian8 and is the self-

adjoint operator that corresponds to the energy of the system. Finally, consider a

quantum state |ψ〉 =
∑

i ψi|i〉 being transformed to a state |ϕ〉 =
∑

i ϕi|i〉. Here

we have denoted the expansion coefficients of |ψ〉 by the functions ψi, an overload-

ing of notation that is quite common in linear algebra and quantum mechanics.

Such a transformation preserves probability since 〈ψ|ψ〉 = 〈ϕ|ϕ〉. This evolution

of the system can be represented by a unitary matrix U such that U †U = I and is

known as the “evolution operator”. The transformation above is given by the uni-

tary operator U =
∑

ij ψ
∗
iϕj and corresponds simply to |ϕ〉〈ψ|. Thus the problem

of discussing the transition between quantum states that represents the change

in the properties of a physical system can be restated as a problem of determin-

ing the evolution operator. Chapters 2-4 deal with a technique for evaluating the

time-evolution operator( the evolution operator that captures the evolution of the

physical system in time) for small quantum systems and extract the geometry of

the evolution operator involved.

Let us consider an important example that highlights the axioms presented

above. Consider a system described by the rules of quantum mechanics which

5Strictly speaking only the operators Mi = E†
iEi exist for the most general measurement( see [100]).

6Erwin Schrödinger(1887-1961).
7Max Planck(1858-1947).
8William Hamilton(1805-1865).
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is represented by a two-dimensional vector. Such a system is called a two-level

system or a “qubit”(quantum bit) and is represented by a vector written explicitly

as

|ψ〉 =




c0

c1


 . (1.3)

Here {c0, c1} ∈ C and |c0|2 + |c1|2 = 1. 〈ψ| is given by

〈ψ| =
(
c∗0 c∗1

)
. (1.4)

A choice of basis that will exemplify the remarks made earlier are given either

by

|0〉 =




0

1


 . (1.5)

|1〉 =




1

0


 , (1.6)

while another choice of basis is given by

|+〉 =




1√
2

1√
2


 . (1.7)

|−〉 =




1√
2

− 1√
2


 . (1.8)

An example9 of a measurement performed on this system is given byM1 = |ψ〉〈ψ|

and M2 = I − M1. Finally, an example of a Hamiltonian that determines the

9Note that in this example M1.M2 = 0 because M2
1 = M1. Such measurements are called von-Neumann

measurements and form a subset of general measurements.

5



dynamics of this system is given by

H(t) =




E0(t) H01(t)

H10(t) E1(t)


 . (1.9)

Since 〈ψ|H(t)|ψ〉 = |c0|2E0(t) + |c1|2E1(t), E0,1 are the energies associated with

the states {c0 = 1, c1 = 0} and {c0 = 0, c1 = 1} respectively. The former state is

called the “ground state” and the latter the “excited state” because of convention.

H01 = H∗
10 is the coupling that induces transitions between the two states.

Until now, we have focused on the representation of the quantum state associ-

ated with a single particle. Such states, as was explained above, are represented

by a vector |ψ〉. Let us now consider a generalization of this idea involving a col-

lection of systems whose description is sought. A collection of physical systems, all

characterized by the state |ψ〉 are said to be a “pure ensemble” characterized by

|ψ〉 and hence this state is also called a “pure state”. But this is not the only way

to prepare a collection of N quantum systems. Indeed, we can prepare n := pN

of them in a state |ψ〉 and N − n = (1 − p)N in a state |ϕ〉. This can be done

for instance by choosing each quantum system and tossing a biased coin (with

probability p of yielding “heads”) and preparing |ψ〉 when the outcome is “heads”

and likewise |ϕ〉 when the outcome is “tails”. Such a state is now represented not

by a state vector but by a Hermitian operator given by

ρ = p|ψ〉〈ψ|+ (1− p)|ϕ〉〈ϕ|. (1.10)

ρ is called a density matrix and is the most general description of a quantum

system. Such an ensemble is called a “mixed ensemble” and the corresponding

state of the system is described to be in “a mixed state”. Note that Tr(ρ) = 1 and

Tr(ρ2) ≤ 1. The value of an observable A in this state is now given by Tr(Aρ).

The post-measurement state in the density matrix description of physical systems

6



is given by

ρ′ =
1

Tr(EiρE
†
i )
EiρE

†
i . (1.11)

The analogue of Schrödinger’s equation for density matrices is known as the

Liouville10 von-Neumann equation and is given by

ρ̇ =
−i
~
[H(t), ρ]. (1.12)

Here [A,B] = A.B −B.A is the commutator11 of two matrices and is given by the

antisymmetrized product of the two matrices.

This highlights the second theme of this thesis, namely the role of algebra in

quantum mechanics. In this case, the algebra involves that of the various operators

along with the commutation operation. Clearly the way the commutator works out

is central in deciding how the quantum system evolves. If ρ(0)H(δt) = H(δt)ρ(0),

then clearly the initial quantum system is unchanged for all times. Having paused

to highlight the central role the algebra of operators plays in the evolution of

quantum systems, we will postpone a detailed discussion of the role of algebra to

later chapters.

Having introduced some of the basic axioms of quantum mechanics, we will take

up a brief discussion of the geometry of unitary operators. By “geometry of a

quantum state ” is meant a representation of all possible quantum states as points

(or some other general curves) in some space such that there is a unique point

associated with each quantum state. This way quantum operators that transform

a quantum system from |ψ〉 to |ϕ〉 can be thought of as going from “here” to “there”

10Joseph Liouville(1809-1882).
11One way to think about why these antisymmetric operators appear in physics is to note that the product

of exponents of antisymmetric matrices multiplied by real parameters is the most general way of writing unitary
operators. These operators, as we noted above, represent the general evolution of a quantum system subject only
to the conservation of probability. We can also infer that since we wish to discuss infinitesimal time evolution, the
real parameters that multiply each antisymmetric operator is a continuous function of time.

7



in this space and hence the dynamics of a quantum system can be “visualized”.

Since every transformation between quantum states is also captured by a unitary

operator, the geometry of quantum states is identical to the geometry of evolution

operators in that space. Understanding this geometry of state space had proven

very fruitful in the early days of quantum mechanics for the design of simple

schemes in spin resonance (for example, the spin-echo scheme[35]). But the ability

to visualize dynamics is not the only reason why the geometry of state space is

studied. The geometry of a quantum state can have a measurable impact on the

quantum state. This point will be explained by considering once more the quantum

state associated with a two-level system.

The quantum state of a two-level system can be written as |ψ〉 = ψ0|0〉+ ψ1|1〉,

where the two levels are labeled 0 and 1 respectively. Since |ψ0|2 + |ψ1|2 = 1, we

can rewrite this state as |ψ〉 = eiγ(cos (θ/2)|0〉 + eiφ sin (θ/2)|1〉) with 0 ≤ θ < π,

0 ≤ φ < 2π and 0 ≤ γ < ∞. Hence we can represent a general quantum state

in terms of these three parameters {γ, θ, φ}. The two parameters θ and φ define a

point on a unit sphere in three dimensions while the parameter γ is a line associated

with each point on this sphere. This phase γ can be measured experimentally if

a general two level system is evolved around a random closed curve and then

compared with an identical state that did not traverse this closed path. It can be

shown in this example that part of the phase γ is given simply by half the area of

the loop traversed by the quantum state. Since this part of the phase depends on

the geometry of the path traversed in state space, it is referred to as a “geometric

phase” in quantum physics.

We will end this section with an introduction to the correlation among sub-

systems that compose a quantum system. To study these correlations, consider

a quantum system composed of two physically distinct subsystems. Initially( i.e.,

8



at t = 0), if we assume that they are independent systems, then each system

is in a physical state and hence is represented by a state vector |ψ〉A and |ψ〉B.

in fact the consistent thing to do is to write the state of the entire system as

|Ψ〉AB = |ψ〉A|ψ〉B. Such a state is called a “product state”. Writing the two rep-

resentations of the states side by side highlights the fact that each system comes

bearing its own quantum labels initially. Mathematically speaking, the state |Ψ〉AB

is given by the Cartesian12 product of the two vectors. Similarly, if the observables

relating to the two subsystems are given by AA and AB, then the observables for

the system are given by the tensor product of the two observables AA ⊗AB. Now

consider a case where such a system which is initially in a product state evolves to

an (unnormalized) state given by |Ψ〉AB = |ψ〉A|ψ〉B + |ϕ〉A|ϕ〉B. Then it is unrea-

sonable to assume that each subsystem still retains a representation of “what is

observed” independent of the other subsystem. This is because if we measure the

first subsystem and find it to be in a state |ψ〉A, then the quantum state of the

second subsystem is given by |ψ〉B. Hence the representation that assigns unique

measurable properties to each subsystem does not exist since measuring one sub-

system can affect what is observed in the other subsystem. Indeed, this issue is not

resolved if one measures the subsystems simultaneously.

There are in fact two “issues” here. Firstly, there is the issue that representa-

tions of subsystems in quantum mechanics are no longer assigned independent of

the whole system13 and second is the issue that the state of a subsystem can be

affected instantaneously by measuring the other subsystem14. We will simply note

12René Descartes(1596-1650).
13Some thought will clarify that this is never the case in classical physics. For instance, irrespective of the nature

of the interaction of a red ball with a green ball, all of the attributes that define each of the two balls are well
defined at all times for each ball.

14This is an issue if the subsystems are physically separated because it “seems” like one is violating causality.
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that the first of these issues is resolved by noting that for most systems15 in quan-

tum mechanics, subsystems can no longer be assigned representations independent

of other subsystems. This is a major departure from classical mechanics and the

central reason for this departure lies with the nonlocal superposition implied by the

example presented above. Schrödinger famously [81] called this non-local superpo-

sition “the hallmark of quantum mechanics” and coined the word “entanglement”

to highlight this unique feature of quantum mechanics. A state is considered en-

tangled if it can not be written as a product state in some basis. Separable density

matrices are written as

ρ =
∑

i

pi|ψi〉AB〈ψi|, (1.13)

with 0 ≤ pi ≤ 1 with
∑

i pi = 1. While for simple examples one might infer if

a state is entangled by inspection, the question of whether a state is entangled

or not becomes very hard to establish for mixed states in general. We will define

a set of measures that distinguish between probability distributions in the next

section and present generalizations them to yield functions of the density matrix

of a bipartite system that evaluate the amount of entanglement in a given state.

Note that entanglement is not the only kind of “quantum” correlation that

is present in a quantum system. Consider a state given by ρ = |ψϕ0〉〈ψϕ0| +

|ψ⊥ϕ1〉〈ψ⊥ϕ1| where 〈ψ|ψ⊥〉 = 0 but 〈ϕ0|ϕ1〉 6= 0. While it is separable by the

criterion stated above, the measurement outcomes on the subsystems of this state

are clearly still correlated. Such states are said to have non-zero “quantum discord”

[43, 65].

15the states for which this is not true are of measure zero.
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1.2 Information Theory
1.2.1 Classical Information Theory

Information theory evolved around questions relating to the transmission and re-

ception of messages. Consider a message comprised of a string of letters. It is of

interest to know if this message can be compressed( i.e., made into a smaller mes-

sage with the same amount of information by removing redundancies) so that it

maybe transmitted at faster rate and at a lower cost. It is also of interest to know at

what rate this message can be communicated over a noisy transmission line( chan-

nel ) reliably. Questions such as these are the topic of classical information theory.

By “information”, we mean the knowledge that can be derived from the message.

While for simple examples, these questions maybe answered by inspection, notions

such as “information” have to be quantified if the intention is to develop a general

theory. To this effect, many new concepts were introduced in classical information

theory. Classical information theory deals with answers to questions posed about

messages that are transmitted via physical systems wherein the laws of quantum

mechanics are not required to explain any part of the communication protocol.

One of the most important ideas developed in classical information is the idea of

Shannon16 entropy [84]. We will introduce this idea along with some other ideas

that will prove fruitful in understanding ideas in quantum information theory.

Let us consider two probability distributions pi and qi. These probability distri-

butions may represent two a priori distributions from which letters i are derived

to write down two messages respectively. To elaborate, in the limit that we have

a very long message, with N letters in it, if the number of times that a letter i

is repeated is asymptotically given by ni, then this message is said to be charac-

terized by pi := LimN→∞(ni/N). We wish to know if the messages represented

16Claude Shannon(1916-2001)
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by pi and qi are similar. The answer to this question relates to the “closeness” of

the probability distribution, i.e., the closer the two probability distributions are to

each other, the more similar the two messages will be.

To further clarify the notion of closeness, assume that we know pi and are trying

to guess qi. Since we know nothing about qi, we assume that the probability of each

letter being present in the second message is also given by pi and try to ascertain

by how much our guess deviates from the actual probability distribution qi. This

deviation represents our “surprise” about qi given that we assumed pi = qi. To

quantify our surprise about qi relative to pi, we note that a quantity such as pi/qi

is useful. This is because the closer qi is to pi, the closer this ratio is to 1. Hence, if

there is a letter k for which say pk >> qk, then our surprise in not finding as many

of the letters k in the message as predicted by pk is captured by the smallness of

the ratio. Hence, we can quantify our surprise by saying that the closer the ratio

pi/qi is to 1, the less surprised we will be by the actual probability distribution qi.

One problem with using a ratio such as pi/qi is that it is not additive. To fix this,

we can consider the quantity log2(pi/qi) = log(pi/qi) to quantify the surprise with

respect to each letter i. Now, the average “surprise” is given by

H(p||q) =
∑

i

pi

(
log(

pi
qi
)

)
. (1.14)

H(p||q) =
∑

i

pilog(pi)−
∑

i

pilog(qi). (1.15)

H(p||q) = −H(p) +Hcr(p, q). (1.16)

This average surprise [31] is known as the “Kullback-Liebler divergence17” [53]

or the “relative entropy” while the quantity H(p) = −∑
i pilog(pi), known as the

Shannon entropy quantifies the average surprise of the probability distribution pi

and hence quantifies the “information” in the message derived from this distribu-

17Solomon Kullback(1907-1997) and Richard Liebler(1914-2003)
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tion. Note that unlike measures of distance, the Kullback-Liebler divergence is not

symmetric in its entries( hence the name “divergence”). The last term Hcr(p, q)

is called the “cross-entropy” of the distributions pi and qi. Thus Shannon entropy

and relative entropy can be used to quantify the average surprise associated with

a distribution and the average surprise discrepancy between two distributions.

These definitions can be generalized in many ways. Firstly, these quantities can

be defined for continuous probability distributions in which case all the summation

symbols are replaced by integrals. The second generalization involves multivariate

distributions. Examples of such distributions involving more than one variable

arise in describing a system involving subsystems or a system characterized by

more than one attribute. Correlations between such subsystems of a given system

are of interest. To this effect, consider a joint probability distribution P (xi, yj) :=

Pij. Such a probability distribution can be used to describe a message with two

attributes(letters of a certain color, for instance). The probability distribution of

the individual subsystems is given by p(xi) := pi =
∑

j Pij and q(yj) = qj =
∑

i Pij .

As before, the entropy of the entire system is defined asH(x, y) = −
∑

ij Pijlog(Pij)

and the entropies of the subsystems are defined as before as H(x) = −
∑

i pilog(pi)

and H(y) = −
∑

j qjlog(qj). Now several questions can be answered immediately.

Firstly, the amount of information that is common to both subsystems is given by

the “mutual information” and is defined as

I(x : y) = H(x) +H(y)−H(x, y). (1.17)

On the other hand, the reduction in the uncertainty in x given y is quantified by

the “conditional entropy” given by

I(x|y) = H(x, y)−H(y). (1.18)
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These ideas have been generalized to discuss the “surprise” associated with prob-

abilities and measurement outcomes relating to quantum systems. This general-

ization will be the topic of the next subsection.

1.2.2 Quantum Information Theory

Consider a quantum system characterized by the density matrix ρ. The quantum

analogue of the Shannon entropy is given by

H(ρ) = −Tr(ρlog(ρ)). (1.19)

and is known as the von-Neumann18 entropy. Since unitary transformations do

not affect the trace of the density matrix, we can unitary transform the above

formula to the diagonal representation of the density matrix wherein the formula

is given by H(ρ) = −
∑

i λilog(λi). Here λi are the eigenvalues of the density

matrix and the formula is reminiscent of Shannon entropy(and indeed identical to

it for a classical system characterized by a diagonal density matrix). This quantity

is central to quantum information and to quantum statistical mechanics. Note that

this formula for calculating entropy in terms of eigenvalues is relevant only in the

diagonal basis.

To discuss correlations between subsystems, consider a bipartite system whose

density matrix is given by ρAB. Each subsystem is characterized by the reduced

density matrix given respectively by ρA = TrB(ρAB) and ρB = TrA(ρAB). Like

before, we wish to quantify the correlations between the subsystems. “Quantum

mutual information” [64] can be defined analogous to classical mutual information

as

I(ρAB) = H(ρA) +H(ρB)−H(ρAB), (1.20)

18John von Neumann(1903-1957)

14



and represents the information common to both subsystems. For pure states(i.e.,

ρ2AB = ρAB), the entropy of each subsystem is known as the “entropy of entanglement”[64]

and is given by

E0(ρAB) = H(TrB(ρAB)) = H(TrA(ρAB)). (1.21)

This quantity is an entanglement measure for pure states. For mixed states, the

following trick is used. Consider a mixed bipartite state ρAB. This density matrix

can be written in a pure-state decomposition as

ρAB =
∑

i

pi|Ψi〉〈Ψi|. (1.22)

The generalization of the definition of the entropy of entanglement for mixed states

is given by

EoF (ρAB) = Infpi

∑

i

piE0(|Ψi〉〈Ψi|). (1.23)

Here, EoF stands for the “entanglement of formation” [12] and Infpi stands for

minimizing the resulting quantity over all possible pure-state decompositions.

An entanglement measure that is related to EoF is the concurrence of two-qubit

systems [101] defined as,

C(ρAB) := Max{0, λ1 − λ2 − λ3 − λ4}, (1.24)

where, λi are the eigenvalues of the matrix
√√

ρAB(σ2 ⊗ σ2)ρ∗AB(σ2 ⊗ σ2)
√
ρAB

arranged in decreasing order of magnitude. Note that EoF is the asymptotic cost

per copy of the state ρAB needed to transform a given Bell19-state20 into the state

ρAB using local operations and classical communication (LOCC). LOCC represents

the set of operations wherein local operations are performed on subsystems and the

19John Bell(1928-1990).
20A maximally entangled two-qubit state. Explicit forms of the four Bell states are given in Section 5.2.
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results of that operation is communicated classically to other subsystems [63]. We

conclude our discussion on measures of entanglement based on entropy by defining

two measures of entanglement based on a generalization of the Kullback-Liebler

divergence. The classical relative entropy may be generalized simply to yield,

H(ρ||σ) = −Tr(ρlog(ρ)− ρlog(σ)). (1.25)

This quantity is known as the quantum relative entropy and is a measure of the

“closeness” of two density matrices. We state without proof that 0 ≤ H(ρ||σ) ≤ ∞.

If we minimize H(ρ||σ) for the choice ρ = ρAB and σ ∈ S, where S is the space

of separable states, then we obtain a measure of the “closeness” of a given state

ρAB to the set of separable states. Clearly this is an entanglement measure and

is defined as the relative entropy of entanglement. Likewise if σ ∈ C, where C is

the set of classical states, then we obtain a measure of quantum correlations. This

measure is an alternative definition of quantum discord[59].

Finally, we will present one more measure of entanglement that is commonly

used21 in quantum information. This measure of entanglement is called negativity

[93] and is defined as

N(ρ) =
||ρTB || − 1

2
. (1.26)

Here ||A|| := Tr(
√
A†A) and ρTB is the partial transpose [67] of ρ with respect to

the subsystem B22.

1.3 Conclusions

In the previous sections, we discussed how the geometry of quantum states is de-

fined by considering an example and separately we discussed entanglement. These

21In chapter 5, for instance.
22defined as (ρTB )ijkl := ρkjil
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topics are closely related. As we noted in the previous section, many measures

of entanglement are geometric measures that measure the “closest distance” of a

given quantum state to the set of all separable states. Likewise, we stated briefly

that quantum discord, a measure of non-classical correlations can also be defined

in terms of a distance measure. Hence entanglement and quantum discord are

related to “how close” a given quantum state is to other states, an intrinsically

geometric idea. Likewise the geometry of the space of observables and of the mea-

surement operators have a profound influence on various properties of quantum

algorithms. The fact that the algebra of the operators involved plays a crucial role

can readily be ascertained by looking at the definition of the different measures of

entanglement and discord provided.

This thesis is roughly separated into two parts. In chapters 2-4, we will discuss

in detail the geometry of time evolution operators for N -level systems with an

emphasis on small quantum systems (N = 2, 3, 4). This will be done by introducing

a new technique to handle Schrödinger’s equation . In chapters 5,6 we will take

up the study of a class of N -qubit states and highlight how the algebra of these

quantum states makes some hard calculations easy to perform. We will present a

scheme of “visualizing” the operator algebra and present connections to various

fields of physics and mathematics.
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Chapter 2
Unitary Integration I

“Problems worthy of
attack prove their worth
by fighting back”

Paul Erdös(1913-1996)

2.1 Introduction

In classical probability theory, the properties of a system are captured by the prob-

ability distribution. Important questions of interest like the dynamical behavior of

the system and correlation properties of subsystems can be inferred from this prob-

ability distribution. For quantum systems, the probability distribution is replaced

by the density operator ρ(t). For a closed system, the evolution of this density

operator is governed by the Heisenberg equation of motion, given by

ρ̇(t) = − i

~
[H(t), ρ(t)] = − i

~
(H(t)ρ(t)− ρ(t)H(t)). (2.1)

Here H stands for the Hamiltonian of the system. Since probability is conserved,

the dynamics of a closed system can be described in terms of a unitary operator

U(t). Such an operator satisfies U(t)U †(t) = U †(t)U(t) = I. Here I is the unit

operator and U † stands for the conjugate transpose of U . Operators such as the

density operator are transformed by the rule ρ(t) = U(t)ρ(0)U †(t) and the equation

of motion is written as

U̇(t) = − i

~
H(t)U(t). (2.2)

The equation above captures two aspects of quantum systems that are essential.

The first aspect is the dynamical nature of quantum systems. The second is the

notion of incompatibility of observables. This refers to the fact that the order in
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which certain observations are performed greatly influence the outcomes on the

state being observed.

Some special cases of this equation of motion are easy to solve. If the Hamiltonian

does not change in time, then the integration can be done formally and we obtain

U(t) = e−
i
~
HtU(0). (2.3)

It is customary to assume that the U(0) = I, though not necessary. For this choice

of initial conditions, the general evolution of the eigenstate of the Hamiltonian can

be written as |n(t)〉 = e−
i
~
Ent|n〉. hence the general element of the density matrix

evolves according to ρnm(t) = e−
i
~
(En−Em)tρnm(0), which completes the solution.

Another class of problems of physical interest involve Hamiltonians that neither

commute with the unitary operator, nor have trivial time dependance. We will

briefly mention a technique often employed to deal with problems like this in the

next section. We will then present the unitary integration solution and discuss the

solution for various small quantum systems.

2.2 Time-dependent Perturbation Theory

In this section we will briefly mention time-dependent perturbation theory, the

technique used to handle time-dependent Hamiltonians when the perturbations in-

volved are small. Perturbation theory deals with obtaining the solution of Schrödinger’s

equation when a Hamiltonian which can be exactly diagonalized is perturbed by

a small time dependent Hamiltonian. Let us discuss this approximation technique

from the standpoint of Schrödinger’s equation written for a wavefunction and given

by (in units where ~ = 1)

i|Ψ̇(t)〉 = H(t)|Ψ(t)〉. (2.4)
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Let us assume that the Hamiltonian is written as H = H0 + H1(t) and that the

eigenvectors for the unperturbed Hamiltonian are given by the equation H0|n〉 =

En|n〉. The eigenvectors |Ψ(t)〉 for the full Hamiltonian H(t) is expanded in the

unperturbed eigenbasis and is written as |Ψ(t)〉 =
∑

nCn(t)e
−iEnt|n〉. Substituting

this into Schrödinger’s equation above gives

i
∑

n

Ċn(t)e
−iEnt|n〉 =

∑

n

Cn(t)e
−iEntH1(t)|n〉,⇒

iĊm(t) =
∑

〈m|H1(t)|n〉e−i(En−Em)tCn(t). (2.5)

Assuming that the initial state of the system is in one of the eigenstates of the

unperturbed Hamiltonian, say |i〉, we get Cn(0) = δni. Here δni stands for the

Kronecker symbol. Substituting this into the right hand side of the above equation

gives the first order equation namely.

iĊm(t) = 〈m|H1(t)|i〉e−i(Ei−Em)t. (2.6)

This can be formally integrated to yield

Cm(t) = −i
∫ t

0

dt′〈m|H1(t
′)|i〉e−i(Ei−Em)t′ . (2.7)

Assuming different forms of the perturbation Hamiltonian H1(t) allows us to solve

for the coefficients which determine the eigenvector at all times. In the next section,

we will introduce a technique that does not rely on the relative magnitude of the

perturbation and is a general technique to handle arbitrary time-dependence.

2.3 Basic Theory of Unitary Integration

Consider again the Liouville equation,

U̇(t) = −iH(t)U(t). (2.8)

for a two-level system. We can write an arbitrary time dependent Hamiltonian

in terms of the unit matrix in two dimensions and the three Pauli matrices as

20



H(t) =
∑3

j=0 hj(t)σj with σ0 = I and hj(t) = Tr(H(t)σj). Such Hamiltonians are

often written while discussing physical systems such as spin resonance. Hence, we

can write Schrödinger’s equation as

U̇(t) = −i(
3∑

j=0

hj(t)σj)U(t). (2.9)

Now let us choose an ansatz whereby we write

U = e−iµ0(t)σ0e−iµ1(t)σ1e−iµ2(t)σ2e−iµ3(t)σ3 . (2.10)

Such an ansatz is justified not only by the completeness of the su(2) algebra,

but further justification will be provided by explicit construction of time-evolution

operator for arbitrary Hamiltonians. Unitarity implies that µi are real and if the

Hamiltonian is traceless then there are only three real parameters needed to define

U(t). This is commensurate with the fact that the density matrix for a two level

system is characterized by three parameters: the population difference(which is one

real number) and the coherence(which is one complex or two real numbers). The

derivative of U(t) with respect to time has four terms and is given by

U̇(t) = −iµ̇0(t)U(t)− iµ̇1(t)σ1U(t)− ie−iµ0(t)σ0e−iµ1(t)σ1 µ̇2(t)σ2e
−iµ3(t)σ3

−iµ̇3(t)e
−iµ0(t)σ0e−iµ1(t)σ1e−iµ2(t)σ2σ3e

−iµ3(t)σ3 . (2.11)

This means that Eq. (2.8) can be written as

µ̇0(t)U(t) + µ̇1(t)σ1U(t) + e−iµ0(t)σ0e−iµ1(t)σ1 µ̇2(t)σ2e
−iµ3(t)σ3

+µ̇3(t)e
−iµ0(t)σ0e−iµ1(t)σ1e−iµ2(t)σ2σ3e

−iµ3(t)σ3 = (
3∑

j=0

hj(t)σj)U(t). (2.12)

As it stands, the equation above does not seem to be any more revealing than

the original Schrödinger’s equation. To complete the solution, we wish to collect

all of the exponential factors together in the equation above so that U(t) is made
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the last factor on the right hand side of all terms. This way, we can compare the

terms attached to different Pauli matrices to reduce the matrix equation above

to a set of differential equations. Hence we recall the Baker-Campbell-Hausdorff

(BCH) lemma [76] given by

eXY e−X = Y + [X, Y ] +
1

2!
[X, [X, Y ]] +

1

3!
[X, [X, [X, Y ]]] + · · · . (2.13)

This formula relates the transformation eXY e−X of an operator Y by another

operator X that it does not commute with to a series of nested commutators.

To use this, consider the third term in Eq. (2.12). This term is given by

e−iµ0(t)σ0e−iµ1(t)σ1 µ̇2(t)σ2e
−iµ3(t)σ3 .

Noting that σ0 commutes with all operators and that eiµ1(t)σ1e−iµ1(t)σ1 = I, we can

insert the identity element after σ2 to get,

µ̇2(t){e−iµ1(t)σ1σ2e
iµ1(t)σ1}e−iµ0(t)σ0e−iµ1(t)σ1e−iµ3(t)σ3 . (2.14)

Now we can apply the BCH lemma to the term in the curly braces. This will yield

e−iµ1(t)σ1σ2e
iµ1(t)σ1 = σ2 − iµ1(t) [σ1, σ2]−

µ2
1(t)

2!
[σ1, [σ1, σ2]] + · · · (2.15)

Using [σl, σm] = 2iεlmnσn, we get,

e−iµ1(t)σ1σ2e
iµ1(t)σ1 = σ2 + 2µ1(t)σ3 − 22

µ2
1(t)

2!
σ2 + · · · (2.16)

Collecting terms, we can write,

e−iµ1(t)σ1σ2e
iµ1(t)σ1 = σ2

(
1− (2µ1(t))

2

2!
+

(2µ1(t))
4

4!
· · ·

)
+ σ3

(
(2µ1(t))−

(2µ1(t))
3

3!
· · ·

)

We can sum the infinite series in the above equation to write

e−iµ1(t)σ1σ2e
iµ1(t)σ1 = σ2 cos (2µ1(t)) + σ3 sin (2µ1(t)). (2.17)
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Hence, noting that e−iµ0(t)σ0e−iµ1(t)σ1e−iµ3(t)σ3 = U(t), we can write Eq. (2.14) as

µ̇2(t){σ2 cos (2µ1(t)) + σ3 sin (2µ1(t))}U(t) (2.18)

The last term on the LHS of Eq. (2.12) can be handled in a similar way, which

we shall present here for completeness. This term is given by

µ̇3(t)e
−iµ0(t)σ0e−iµ1(t)σ1e−iµ2(t)σ2σ3e

−iµ3(t)σ3 =

µ̇3(t)e
−iµ0(t)σ0e−iµ1(t)σ1{e−iµ2(t)σ2σ3}e−iµ3(t)σ3 =

µ̇3(t)e
−iµ0(t)σ0e−iµ1(t)σ1{e−iµ2(t)σ2σ3e

iµ2(t)σ2}e−iµ2(t)σ2e−iµ3(t)σ3 =

µ̇3(t)e
−iµ0(t)σ0e−iµ1(t)σ1{σ3 cos (2µ2(t))− σ1 sin (2µ2(t))}e−iµ2(t)σ2e−iµ3(t)σ3 =

µ̇3(t)e
−iµ0(t)σ0e−iµ1(t)σ1σ3 cos (2µ2(t))e

−iµ2(t)σ2e−iµ3(t)σ3

−µ̇3(t)e
−iµ0(t)σ0e−iµ1(t)σ1σ1 sin (2µ2(t))e

−iµ2(t)σ2e−iµ3(t)σ3(2.19)

Thus the term under consideration is the sum of two terms. The second of these

terms is easily rearranged to yield

µ̇3(t)e
−iµ0(t)σ0e−iµ1(t)σ1σ1 sin (2µ2(t))e

−iµ2(t)σ2e−iµ3(t)σ3 =

µ̇3(t) sin (2µ2(t))σ1e
−iµ0(t)σ0e−iµ1(t)σ1e−iµ2(t)σ2e−iµ3(t)σ3 =

µ̇3(t) sin (2µ2(t))σ1U(t) (2.20)

The first term is also computed by this “inductive” procedure whereby
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µ̇3(t)e
−iµ0(t)σ0e−iµ1(t)σ1σ3 cos (2µ2(t))e

−iµ2(t)σ2e−iµ3(t)σ3 =

µ̇3(t) cos (2µ2(t)){e−iµ1(t)σ1σ3}e−iµ0(t)σ0e−iµ2(t)σ2e−iµ3(t)σ3 =

µ̇3(t) cos (2µ2(t)){e−iµ1(t)σ1σ3e
iµ1(t)σ1}e−iµ1(t)σ1e−iµ0(t)σ0e−iµ2(t)σ2e−iµ3(t)σ3 =

µ̇3(t) cos (2µ2(t)){σ3 cos (2µ1(t))− σ2 sin (2µ1(t))}e−iµ1(t)σ1e−iµ0(t)σ0e−iµ2(t)σ2e−iµ3(t)σ3 =

µ̇3(t) cos (2µ2(t)){σ3 cos (2µ1(t))− σ2 sin (2µ1(t))}e−iµ0(t)σ0e−iµ1(t)σ1e−iµ2(t)σ2e−iµ3(t)σ3 =

µ̇3(t) cos (2µ2(t)){σ3 cos (2µ1(t))− σ2 sin (2µ1(t))}U(t).

(2.21)

To further simplify, we collect the terms simplified in Eqs. (2.18,2.20,2.21) and

write Eq. (2.12) as

µ̇0(t) = h0(t) (2.22)

µ̇1(t) + µ̇3(t) sin (2µ2(t)) = h1(t) (2.23)

µ̇2(t) cos (2µ1(t))− µ̇3(t) cos (2µ2(t)) sin (2µ1(t)) = h2(t) (2.24)

µ̇2(t) sin (2µ1(t)) + µ̇3(t) cos (2µ1(t)) cos (2µ2(t)) = h3(t) (2.25)

Note that the initial condition U(0) = I implies µi(0) = 0. Thus the problem of

solving Schródinger’s equation with a Hamiltonian with arbitrary time dependence

has been reduced to solving a set of coupled equations. Substituting the solutions

into Eq. (2.9) will yield the time evolution operator for all times and completes the

solution. Without loss of generality, let us assume that the Hamiltonian is traceless

h0(t) = 0 from now on. Then, we have captured all of the dynamics of this general

two-level system in terms of three coordinates µi(t). Hence we can “visualize”

the dynamics of two-level systems in terms of a coordinate in three dimensions,

governed by the equations of motion for µi(t). As we will show in Section 3.2, the
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first two angles µ1(t) and µ2(t) can be mapped onto points on a sphere (using a

technique called “inverse stereographic projection”) and hence can be thought of

as a point traversing the surface of a sphere. The third coordinate µ3(t) will be

visualized as an infinite line attached to each point on this sphere.

2.4 Choice of Basis in Unitary Integration

Before we discuss solving for the unitary operator, let us look at Eq. (2.22) more

closely. Though Schrödinger’s equation is a linear equation, the final differential

equations have high non-linearities. This is due to our choice of exponential trans-

formation implied by the ansatz for the unitary operator and the basis {σ1, σ2, σ3}.

The reason for this is because all terms in the BCH lemma survive and hence the

resulting equations have all powers of µi(t). Note that this level of non-linearity

is not a problem (i.e., does not give rise to “chaotic behavior” in unitary dynam-

ics) since we know the initial condition µi(0) = 0 with infinite precision. This

being the case, this exponential non-linearity has two implications: first, outside

the most trivial example, the equations in Eq. (2.22) are not solvable analytically

and second, the numerical solution for a given choice of hi(t) is governed not by

the infinite precision of the initial condition but the machine precision with which

that initial condition is recorded. This means that for long times, one might expect

the numerical solution to deviate from the actual solution. Hence it is useful to

consider other choices of basis whereby the non-linearity of the subsequent equa-

tions of motion is as small as possible. We will consider one such choice of basis

below.

Consider the alternative basis {J+ = σ+/2, J− = σ−/2, J3 = σ3/2}, where

σ± = σ1 ± iσ2. The Lie algebra of these operators is given by [σ+, σ−] = 4iσ3 ⇒

[J+, J−] = 2iJ3 and [σ±, σ3] = ∓2iσ± ⇒ [J±, J3] = ∓iJ±. In this basis, let us
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write H(t) = h+(t)J+ + h−(t)J− + h3(t)J3. Since J± are not Hermitian matrices,

h±(t) are complex functions of time and h3(t) is real because J3 is Hermitian. Since

H(t) is Hermitian, it follows that h∗+(t) = h−(t). Thus there are again only three

real parameters that are needed to define a traceless Hamiltonian operator. Now,

following our ansatz, let us write

U = e−iµ+(t)J+e−iµ−(t)J−e−iµ3(t)J3 . (2.26)

Since J2
+ = J2

− = 0, we can write this ansatz explicitly as

U(t) =




1 −iµ+(t)

0 1







1 0

−iµ−(t) 1







e−iµ3(t) 0

0 eiµ3(t)


 (2.27)

U(t)U †(t) = I implies that



1 −iµ+(t)

0 1







1 0

−iµ−(t) 1







1 iµ∗
−(t)

0 1







1 0

iµ∗
+(t) 1


 =




1 0

0 1




(2.28)

The choice µ− = µ∗
+/(1+|µ+|2) and eI(µ3(t)) = 1+|µ+|2 satisfies the above equation.

Hence the number of independent coefficients is reduced from the six of three

complex numbers to three, z(t) and R(µ3(t)).

Let us see how the structure of commutators affects the non-linearity of the

equations governing the evolution of {µ±(t), µ3(t)}. The derivative of Eq. (2.26)

with respect to time yields

U̇(t) = −iµ̇+(t)J+U(t)− iµ̇−(t)e
−iµ+(t)J+J−e

−iµ−(t)J−e−iµ3(t)J3

−iµ̇3(t)e
−iµ+(t)J+e−iµ−(t)J−J3e

−iµ3(t)J3 . (2.29)

To simplify the second term on the right hand side of the above equation, we have

to consider

e−iµ+(t)J+J−e
−iµ+(t)J+ = J− − iµ+(t) [J+, J−]−

µ2
+

2!
[J+, [J+, J−]] + · · · (2.30)
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Since the commutator [J+, J−] ≈ J3, this means that [J+, [J+, J−]] ≈ [J+, J3] ≈ J+.

This means that the next term in the BCH lemma [J+, [J+, [J+, J−]]] = 0 and

hence the infinite series terminates after the quadratic term in µ+(t). Thus the

nonlinearity of the final evolution equations is greatly reduced and is never more

than quadratic. Applying the BCH lemma as outlined above yields the following

equations,

µ̇+(t) + iµ+(t)h3(t)−
1

2
h+(t)µ

2
+(t) =

1

2
h−(t), (2.31)

µ̇−(t)− iµ−(t)µ̇3(t) =
1

2
h+(t), (2.32)

µ̇3(t)− iµ+(t)h+(t) = h3(t). (2.33)

Along with the initial conditions µ±(0) = µ3(0) = 0, these differential equations

represent a recasting of Schrödinger’s equation. The solution to these equations

when substituted into the expression in Eq. (2.26) yields the time evolution opera-

tor at arbitrary times. Note that this reduced( quadratic) non-linearity is desirable

to the equations obtained for the parameters at the end of the previous section.

This quadratic non-linearity owes itself to the algebra of the matrices {σ±, σ3}. We

will show in the next chapter that this algebraic characteristic of yielding quadrati-

cally non-linear equations can be generalized to N -level systems to yield equations

similar to Eq. (2.31). Returning to the case of two-level systems, let us now look

at some examples of unitary integration solutions to physical problems.

2.5 Solution for Some Specific Systems
2.5.1 Constant Hamiltonian

Let us start by considering the simplest case wherein the Hamiltonian is time

independent. In this case, we can write hi(t) = hi(0) = hi. Substituting this into
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Eq. (2.31) yields

µ̇+(t) + iµ+(t)h3 −
1

2
h+(t)µ

2
+(t) =

1

2
h−, (2.34)

µ̇−(t)− iµ−(t)µ̇3(t) =
1

2
h+, (2.35)

µ̇3(t)− iµ+(t)h+ = h3. (2.36)

Let us consider the first of these equations. This equation

µ̇+(t) + iµ+(t)h3 −
1

2
h+µ

2
+(t) =

1

2
h−. (2.37)

is known as a Ricatti equation and is solved as follows. Written in its canonical

form, the Ricatti equation is given by

µ̇+(t) =
1

2
h− − ih3µ+(t) +

1

2
h+µ

2
+(t). (2.38)

τ(t) = 1
2
h+µ+(t) obeys the equation

τ̇(t) = τ 2(t) + i∆τ(t) +
A2

4
, (2.39)

where ∆ = −h3 and A2 = h+h−. Substituting τ(t) = − λ̇(t)
λ(t)

yields

λ̈(t) + i∆λ̇(t) +
A2

4
λ(t) = 0. (2.40)

For the trial solution λ(t) = eiκt, we get two solutions

κ± =
1

2
(∆±

√
∆2 + A2). (2.41)

This means that

λ(t) = c+e
iκ+t + c−e

iκ−t. (2.42)

2.5.2 Rabi Oscillations

Let us now look at a Hamiltonian of the form

H(t) =
Ω0

2
σ3 − A cos (Ωt)σ1 =

~Ω0

2
σ3 −

A

2
cos (Ωt)σ+ − A

2
cos (Ωt)σ−. (2.43)
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This Hamiltonian represents a two-level system whose energy levels are separated

by Ω0 and which is driven by a transverse sinusoidal field whose amplitude is given

by A and frequency is Ω. Eq. (2.31) for this case is given by

µ̇+(t) + i
Ω0

2
µ+(t)−

A

4
cos (Ωt)µ2

+(t) =
A

4
cos (Ωt), (2.44)

µ̇−(t)− iµ−(t)µ̇3(t) =
A

4
cos (Ωt), (2.45)

µ̇3(t)− iµ+(t)
A

2
cos (Ωt) =

Ω0

2
. (2.46)

Again, let us consider the first of the above equations. The transformation µ+(t) =

e−iΩ0t/2ν+(t) yields,

e−iΩ0t/2ν̇(t)− A

4
cos (Ωt)e−iΩ0tν2+(t) = e−iΩ0t/2

A

4
cos (Ωt) ⇒ (2.47)

ν̇(t)− A

4
cos (Ωt)e−iΩ0t/2ν2+(t) =

A

4
cos (Ωt) ⇒ (2.48)

ν̇(t) =
A

4
cos (Ωt)(1− e−iΩ0t/2ν2(t)). (2.49)

Upon solving these differential equations and substituting into the ansatz dis-

cussed, one can obtain the familiar Rabi oscillation solution of the two-level sys-

tem.

2.6 Unitary Integration in Higher Dimensions

In the previous section, we outlined the basic technique of unitary integration

within the context of two-level systems. In this section, we will discuss how this

technique can be extended to N-level systems. Let us begin by considering three-

level systems. A general Hamiltonian for three-level systems can be written as

H(t) =
8∑

j=1

hj(t)λj . (2.50)
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Here λj are the Gell-Mann matrices detailed in the Appendix(see appendix for

details). Written explicitly, this Hamiltonian is given by

H(t) =




h3(t) +
h8(t)√

3
h1(t)− ih2(t) h4(t)− ih5(t)

h1(t) + ih2(t) −h3(t) + h8(t)√
3

h6(t)− ih7(t)

h4(t) + ih5(t) h6(t) + ih7(t) −2h8(t)√
3



. (2.51)

The time-evolution operator corresponding to three-level systems is closed under

the SU(3) group, characterized by 32 − 1 = 8 operators. Again, we can proceed as

before by writing the time evolution operator as

U(t) = Π8
i=1e

−µiλi . (2.52)

This allows us to use the BCH lemma as outlined in the previous section and derive

a set of differential equations that govern the evolution of µi(t). Before we attempt

this, let us consider a special case where

H(t) =




h3(t) h1(t)− ih2(t) 0

h1(t) + ih2(t) −h3(t) 0

0 0 0



. (2.53)

This Hamiltonian suggests a general two level system accompanied by an uncoupled

third level(the column and row of zeros). As we concluded in the previous section,

from the standpoint of numerical stability, the choice of basis σ1,2,3 (or alternatively

λ1,2,3) involves high non-linearities in µi(t). A better choice of basis is given by

b± = 1/2(λ1± iλ2), b3 = λ3/2. This choice of basis can be generalized to the entire

algebra by the choice of the eight operators a± = 1/2(λ6±iλ7), b± = 1/2(λ1±iλ2),

c± = 1/2(λ4 ± iλ5), a3 = 1/2(
√
3λ8 − λ3) and c3 = 1/2(

√
3λ8 + λ3). This basis

is related to the “spherical representation” of SU(3) given by T± = b±, V± = c±,

U± = a±, T3 =
1
2
λ3 and Y = 1√

3
λ8.
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The choice of this alternative basis is not the only choice that has to be made

before we present the unitary integration solution. We must also specify the order in

which the operators defined above appear in the time evolution operator in order

to derive the equations whose solutions determine the time evolution operator

for three-level systems driven by arbitrary time dependent Hamiltonians. Since

[c±, c3] = ∓2c±, we would like to arrange c3 to be to the right of c±. This is

done so that the infinite series given by the BCH lemma terminates after the

quadratic term in this case. Since the operator c3 acts similarly on a± and b±, we

should choose to place c3 to the right of all of these operators. One can conclude

similarly that a3 should be placed to the right hand side of {a±, b±, c±} as well.

Since [a3, c3] = 0, either of these operators can be placed to the right of the other

operator. Thus, motivated by the algebraic structure of the operators, we can now

choose the ansatz for the unitary operator as

U(t) = eiδe−iµ8b+e−iµ7b−e−iµ6c+e−iµ5c−e−iµ3a+e−iµ2a−e−iµ1a3e−iµ4c3. (2.54)

As outlined in the previous section, differentiation by parts followed by repeated

application of the BCH lemma can be used to solve for the dynamics of an ar-

bitrary time dependent Hamiltonian driving a three-level system. The coefficients

of the operators I, b+, b−, c+, c−, a+, a−, a3, c3 in the operator sum upon repeated
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application of the BCH lemma are given by

δ̇

µ̇8 + iµ5s + µ2
8w + iµ8(−iµ3r + ṁu1 − 2µ5µ7s− µ̇4 + iµ6v),

w = µ̇7 − iµ6r + iµ5µ
2
7 − iµ7(−iµ3r + ṁu1 + iµ6v − µ̇4),

u = ṁu6 + µ2
6v + iµ6(−iµ3r + µ̇1 + 2µ̇4)− iµ7(1− µ5µ6)s,

v + iµ8(r + iµ7v),

−iµ8u+ (1− µ5µ6)s,

r + iµ7v,

µ̇1 − iµ8w − iµ3r − µ5µ7s,

µ̇4 + iµ8w − iµ6v + µ5µ7s (2.55)

respectively. Here r = µ̇2 − iµ2(µ̇4) + 2µ̇1, s = µ̇3 + µ2
3r + iµ3(µ̇4 + 2µ̇1) and

v = µ̇5 − iµ5(−iµ3r + µ̇1 + 2µ̇4). Like before, each of the rows above is equated to

the term in the Hamiltonian corresponding to the operator whose coefficients each

term is to yield a set of nine differential equations.

As a final example of extending unitary integration to higher dimensions, let

us discuss the choice of basis in the extension of unitary integration to four-level

systems. Let us again choose the tensor Pauli basis for four-level systems Oi defined

as σ⊗ I, I ⊗ τ, σ⊗ τ(for details see appendix). A general four-level Hamiltonian is

now written as H(t) =
∑15

i=1 hi(t)Oi. Such a system is characterized by 42−1 = 15

operators and the evolution is closed in the SU(4) group. The unitary integration

solution proceeds as before by differentiation of the time-evolution operator written

as a product of the 15 linearly independent operators Oi written in the exponent

accompanied by functions µi(t). For the rest of this section, we will consider two

important special cases of the su(4) unitary integration procedure outlined above.
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The two special cases relate to two non-trivial sub-algebras of the su(4) namely

su(2)⊗u(1)⊗su(2) and so(5). The first of these sub-algebras is characterized by

seven operators and the second is characterized by ten operators. The operators

that define the su(2)⊗u(1)⊗su(2) algebra1 are given by {O13 = σ1 ⊗ τ1/4, O15 =

σ1 ⊗ τ2/2, O16 = σ2 ⊗ τ1/2, O14 = σ2 ⊗ τ2/4, O3 = I ⊗ τ3/2, O2 = σ3 ⊗ I/2, O4 =

σ3⊗τ3/2}. Note that this set is not unique( there are fifteen different such subgroups

in SU(4). For details please see the appendix). Note also that if a Hamiltonian

obeys a certain symmetry and the initial density matrix belongs in that symmetry

group, subsequent unitary evolution will keep the density matrix in the subspace

defined by that symmetry. This means that if we consider a Hamiltonian written

as a sum of the operators that define the su(2)⊗u(1)⊗su(2) algebra, then given

that U(0) = I trivially belongs in the same algebra, we can conclude that the

unitary operator at all times belongs in the given sub-algebra too. Similar to the

unitary integration solution for two-level and three-level systems, we anticipate

that the non-linearities involved in using the basis noted above is exponential and

instead choose the basis S± = (σ1 ± iσ2)(τ1 ± iτ2)/2, s± = (σ1 ± iσ2)(τ1 ∓ iτ2)/2,

S3 = (σ3 + τ3)/2, s3 = (σ3 − τ3)/2 and σ3τ3. The relevant commutation relations

are given by

[S±, S3] = ∓2S± (2.56)

[s±, s3] = ∓2s± (2.57)

[S+, S−] = 4S3 (2.58)

[s+, s−] = 4s3. (2.59)

1We will follow the usual convention of denoting algebras in lowercase and groups in uppercase letters.
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Each member of the triplet {S±, S3} commutes with each member of {s±, s3}. For

this reason, the solution is similar to two copies of the unitary integration solution

for the two-level system outlined before.

Finally, consider the so(5) subalgebra of su(4). An example of the ten operators

that close under such a sub-algebra are given by {O2, O3, O5, O6, O11, O13, O14, O15, O16}.

Once again, a unitary integration solution can be built analogous to the technique

outlined above.

2.7 Including Dissipation and Decoherence

Dissipation and decoherence are introduced within the framework of the Liouville

equation by writing a master equation for the density matrix namely

iρ̇ = [H(t), ρ] +
i

2

∑

m

γm(A
†
mAmρ+ ρA†

mAm − 2AmρA
†
m). (2.60)

The operatorsAm are called Lindblad operators and the coefficients γm are positive.

This equation preserves the trace of the density matrix and the positivity of the

eigenvalues and is called the Liouville von-Neumann Lindblad (LvNL) equation.

The LvNL equation is a generalization of Schrödinger’s equation and incorporates

a given quantum system along with the environment that it is interacting with. The

equation hence simulates the evolution of a quantum system wherein it interacts

with an “external” environment. We will discuss in this section how to obtain the

unitary integration solution for the evolution operator(which is no longer unitary)

for arbitrary time dependence of both the Hamiltonian and the Lindblad operators.

For a detailed derivation of Lindblad equations, see [20].

Let us illustrate the procedure to apply the unitary integration procedure to solve

the LvNL equation by considering a two-level system subject to phase decoherence.

The Hamiltonian for a such a system was studied in the context of clarifying
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dynamics in the presence of Landau2-Zener3-Stueckelberg4 transitions [54, 88, 103]

and is given by H(t) = ǫ(t)σ3/2 + Jσ1. There is only one Lindblad operator in

this case and is given by σ3. γ determines the rate of decoherence in this case. The

LvNL equation can now be written as

iρ̇ = [ǫ(t)σ3/2 + Jσ1, ρ] + iγ(ρ− σ3ρσ3). (2.61)

The solution for this full master equation is obtained by writing an evolution

equation for the population difference and the coherence of the density matrix

from Eq. (2.61). This equation is given by

i
d

dt




ρ21 + ρ12

ρ21 − ρ12

ρ11 − ρ22




=




−iγ −ǫ(t) 0

−ǫ(t) −iγ 2J

0 2J 0







ρ21 + ρ12

ρ21 − ρ12

ρ11 − ρ22




(2.62)

This equation represents the evolution of the elements of the density matrix, albeit

the “Hamiltonian” is non-Hermitian. This does not pose an issue as the coefficients

can be assumed to be complex and linearly independent. For instance,in the two

qubit example µ− was determined by µ+ due to the Hermiticity of the Hamiltonian.

Since this is no longer the case, all coefficients in the exponents are independent

and to be determined from the evolution equations. The solution for the above

LvNL equation maybe obtained by writing a time-evolution operator in the form

presented in Eq.(2.54) and solving the subsequent set of differential equations. Note

that arbitrary time dependence in the Hamiltonian in Eq. (2.62) can be handled

in this way

Furthermore, this method can be extended to N -level systems. First, the LvNL

equation is written for the given system. Next, this evolution is recast in terms of

2Lev Landau(1908-1968)
3Clarence Zener(1905-1993)
4Ernst Stueckelberg(1905-1984)

35



the N−1 diagonals and N(N−1) real off-diagonal terms (real and imaginary parts

of the N(N − 1)/2 coherences) to obtain a Schrödinger-like equation in N2 − 1

dimensions. This evolution equation is then solved by writing the (non-unitary)

time-evolution matrix as a product of exponents of coefficients multiplied by op-

erators that form a basis and the resulting equations are solved. This technique

of solving the LvNL equation for a N-level system by embedding it in a (N2 − 1)

dimensions is called “dimensional embedding”.

Note that dimensional embedding is not a recasting of the “Steinspring dilation

theorem” [86]. Consider any positive and trace preserving map Φ : S(H) → S(H)

acting on a density matrix in finite dimensional Hilbert space H . The Steinspring

dilation theorem states that this map is equivalent to unitary operations in a higher

dimensional Hilbert space H ⊗K such that Φ(ρ) = Trk{U †(ρ⊗ |0〉〈0|)U} ∀ρ such

that dim(k) < dim2(H). This means that general positive maps acting on density

matrices of N-level systems can be thought of as unitary operations on atmost

N more ancillary modes, followed by the ancillary modes being traced over. On

the other hand, dimensional embedding is an algebraic technique that facilitates

obtaining the unitary integration solution of LvNL equations.

2.8 Conclusions

In this chapter we presented a semi-analytic method to solve time-dependent prob-

lems in quantum mechanics. While techniques such as perturbation theory provide

very good approximate solutions when the perturbing Hamiltonian is small, a more

general technique such as variational principle has to be employed for solving non-

perturbative problems in physics. Such problems have been of interest in recent

years because of the availability of strong lasers that can subject atomic systems to

very strong fields. The technique of unitary integration presented here separates the
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non-commutativity of the operators involved from the dynamics to provide “clas-

sical” equations that can be visualized. We also presented a systematic method to

include dissipation and decoherence to a general N -level system’s dynamics and

obtain unitary integration solutions for the same, though the evolution operator is

no longer unitary. In the next chapter, we will provide a further generalization of

this technique that allows us to visualize dynamics on curved manifolds.
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Chapter 3
Unitary Integration II

“We defend ourself with
descriptions and tame the
world by generalizing.”

Iris Murdoch (1919-1999)

3.1 Introduction

In the previous chapter we introduced a semi-analytic technique to handle the evo-

lution of arbitrary time-dependent Hamiltonians of N -level systems. We will briefly

recall that procedure to solve for the evolution operator since we will modify it

in this chapter. The solution is obtained by introducing N2 linearly independent

operators that form a basis to describe su(N) operators. The evolution operator is

written as a product of exponents each of which involves one of the basis operators

and a time-dependent parameter. The solution is then obtained using repeated ap-

plication of the BCH lemma so that the original Schrödinger’s equation is reduced

to N2 differential equations in the time dependent parameters.

This procedure, though capable of solving for the time-evolution operator of an

N -level system, grows quadratically in N . This quadratic growth in the number

of coupled non-linear differential equations is undesirable in practice. In this chap-

ter, we will outline an alternative procedure to handle arbitrary time-dependent

Hamiltonians for a N -level system. Though the final number of coupled differential

equations cannot be reduced from N2 − 1, the procedure outlined in this chapter

will be shown to be fruitful in other ways. Firstly, the technique introduced in

this chapter will allow us to solve for the evolution operator by a bootstrapping

process that requires solving a smaller set of differential equations at each step in
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the process. Secondly, we will show how a geometric picture of unitary dynamics

can be built up from this procedure. Since the new procedure is a variant of the

one presented in the previous chapter, we will retain the use of the phrase “unitary

integration” to describe this new procedure.

We will begin by briefly discussing the technique for two-level systems. The

next section will outline how the technique can be generalized to N -level systems.

We will present some technical details in the next section and will present some

analysis relating this work to geometric phases. We will conclude the chapter with

some important remarks relating to the SU(4) group.

3.2 su(2) Solution as a Prelude to su(N).

Let us, once again, consider an arbitrary two-level Hamiltonian written as H(t) =

−B+σ+ − B−σ− − B3σ3. The Schrödinger’s equation for such a system is written

as

U̇(t) = −iH(t)U(t). (3.1)

The evolution operator, as described in the previous chapter was written as

U = e−iµ+(t)σ+e−iµ−(t)σ−e−iµ3(t)σ3 , (3.2)

and the solution was obtained by the repeated application of the BCH lemma.

Before we proceed any further, with an eye to generalizing the solution to su(N),

we will rename −iµ+ as z(t), −iµ− as w∗(t). Note that though the functions

z(t) and w∗(t) are scalar functions of time, they will be generalized to matrices

eventually. With this in mind, the two functions have been written in boldface.
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With this change in notation , noting that σ2
± = 0, we can write the above

time-evolution operator explicitly as

U(t) =




1 z(t)

0 1







1 0

w∗(t) 1







e−iµ3(t) 0

0 eiµ3(t)


 . (3.3)

Again, one can verify that UU † = I implies that w∗(t) = −z∗(t)/(1 + |z(t)|2)

and exp(I(µ3(t))) = 1 + |z(t)|2. This completes the unitary integration solution,

as detailed in the previous chapter. Before we present the generalization of this to

N -level systems, we note that the above solution can be transformed into the so-

called “Bloch 1-sphere” representation of su(2) dynamics. This is done by defining

the vector ~m such that m1 + im2 = −2w∗(t) and m3 =
√
1− |m1 + im2|2. m3

can be shown to be equal to (1 − |z(t)|2)/(1 + |z(t)|2). Note that we arranged for

|~m|2 = 1. Thus ~m is a unit vector whose dynamics is determined by the dynamics

of z(t) and vice versa. The dynamics of ~m can be derived by using the form of

the Hamiltonian H(t) = −~σ. ~B and using the differential equations that govern

the dynamics of z(t) and R(µ3(t)). It can be verified that this dynamical equation

is given by ~̇m = −2 ~B × ~m. We emphasize that exploring the geometry of the

time evolution operator for two-level systems thus involves what amounts to an

inverse-stereographic projection of the complex matrix z(t) onto the surface of

a three-dimensional sphere. In the next chapter, we will generalize this “Bloch-

sphere” representation by a similar inverse stereographic projection technique for

larger N .

Note that the dynamics of the two-level system is now given by two angles

corresponding to the position of the unit vector ~m on the “Bloch-sphere” and an

additional phase given by R(µ3(t)). This is depicted in Fig. (3.1). While the unit

1Felix Bloch(1905-1983)
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vector on the Bloch-sphere is familiar in the description of a two-level system,

the phase R(µ3(t)) is an additional u(1) phase that is usually not accessible in

experiments since it is a “global phase”. This global phase is accessible only if the

there is a phase reference relative to which one can measure it.

FIGURE 3.1. Bloch or Poincare sphere representation for SU(2). The base manifold is
the S2 sphere while the fiber is given by the U(1) phase at each point on that sphere.
Together, we have the fiber bundle SU(2) ≃ S2×U(1).

With an eye towards generalizing the derivation to N dimensions, let us write

the Hamiltonian as

H(t) =




H̃(2−1)(t) V(t)

Y∗(t) H̃(1)(t)


 . (3.4)

Here H̃(2−1)(t) refers to the fact that we are partitioning a two-dimensional Hamil-

tonian into a (2− 1)-dimensional(i.e., one-dimensional) upper diagonal block and

a (1)-dimensional lower diagonal block, which is given by H̃(1)(t). The overhead

tilde denotes that H(t) can be non-Hermitian, a further generalization we will

discuss in the future, and likewise V(t) and Y†(t) reflect the possibility that the

off-diagonal terms are not related for a general non-Hermitian Hamiltonian. Note

once again that though all the elements of this 2 × 2 Hamiltonian written above

are scalar functions of time, they have been written in boldface in anticipation of

the generalization to N -dimensions.
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Likewise let us write the unitary operator as U(t) = Ũ1(t)Ũ2(t), where

Ũ1(t) =




I(2−1) z(t)

0 I(1)







I(2−1) 0

w∗(t) I(1)


 , (3.5)

and

Ũ2(t) =




Ũ (2−1)(t) 0

0 Ũ (1)(t)


 . (3.6)

Here, the matrices Ũ (2−1)(t) and Ũ (1)(t) have an overhead tilde to denote that

they are individually not unitary operators, while their product is guaranteed2

to be unitary for Hermitian Hamiltonians. Substituting U(t) = Ũ1(t)Ũ2(t) into

Schrödinger’s equation yields

i(
˙̃
U 1(t)Ũ2(t) + Ũ1(t)

˙̃
U 2(t)) = H(t)Ũ1(t)Ũ2(t). (3.7)

This can be rearranged to yield

i
˙̃
U 2(t) = Heff(t)Ũ2(t), (3.8)

whereHeff(t) = Ũ
(−1)
1 (t)H(t)Ũ1(t)−iŨ (−1)

1 (t)
˙̃
U 1(t) is the effective Hamiltonian that

describes the dynamics of Ũ2(t). Since Ũ2(t) was assumed to be block-diagonal, the

off-diagonal blocks of Eq. (3.8) can be set to be equal to zero. This equation is

given by

iż(t) = H̃(2−1)(t)z(t) +V(t)− z(t)(Y†(t)z(t) + H̃(1)(t)). (3.9)

Note that this equation depends only on the Hamiltonian and z(t) and hence

solving this equation yields z(t)( and w(t), which is related to z(t) for Hermitian

Hamiltonians). This solution can hence be substituted into the diagonal blocks of

2It follows from Schrödinger’s equation.
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Eq. (3.8), which is given by

i
˙̃
U 2(t) =




H̃(2−1)(t)− z(t)Y†(t) 0

0 H̃(1)(t) +Y†(t)z(t)


 Ũ2(t). (3.10)

Finally, let us combine the equations relating z(t) and w(t) and assume that

H(t) = −B+σ+ − B−σ− − B3σ3 to write the two terms whose product is the

unitary operator explicitly [73] as

Ũ1(t) =




1
1+|z(t)|2 z(t)

z∗(t)
1+|z(t)|2 1


 (3.11)

and

Ũ2(t) =




Ũ (2−1)(t) 0

0 Ũ (1)(t)


 . (3.12)

Similarly, Heff(t) is given by the difference of Ũ−1
1 (t)H(t)Ũ1(t) and iŨ

−1
1 (t)

˙̃
U1(t),

where the first term is given explicitly in terms of z(t) by,



z∗(t)B−+z(t)B+−(1−|z(t)|2)B3

2(1+|z(t)|2) −z(t)B3 − 1
2
B− + 1

2
z2(t)B+

−2z∗(t)B3−B+−|z(t)|2B−

2(1+|z(t)|2)
−2(1+|z(t)|2)B+−z

∗(t)B−+(1−|z(t)|2)B3

2(1+|z(t)|2)


 , (3.13)

and iŨ−1
1 (t)

˙̃
U 1(t) is given by




z∗(t)B−−z∗(t)|z(t)|2B++2|z(t)|2B3

2(1+|z(t)|2) −z(t)B3 − 1
2
B− + 1

2
z2(t)B+

−2z∗(t)B3−B+−|z(t)|2B−

2(1+|z(t)|2)
z∗(t)(z∗(t)2B++iB−−2iz∗(t)B3)

2(1+|z(t)|2)


 . (3.14)

The difference of the above two matrices leaves the effective Hamiltonian as a

diagonal matrix given by Heff = (−B3 + zB+)σ3/2.

Solving for Ũ2(t) given the effective Hamiltonian above yields the unitary oper-

ator for arbitrary Hamiltonians. Note that this formalism lends itself to two kinds

of generalizations. The first generalization allows us to extend this solution to non-

Hermitian Hamiltonians. In this case, z(t) and w(t) are unrelated. In this case,
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along with Eq. (3.9), the equation that governs w(t) is independently derived, and

is given by

iẇ† = w†(zY† − H̃(2−1)) + (H̃(1) +Y†z)w† +Y†. (3.15)

Since V†(t) 6= Y(t), the form of the effective Hamiltonian is more complicated.

Furthermore, the imaginary part of Ũ2(t) is no longer related to z(t). The four

complex scalar functions z(t), w(t), Ũ (2−1)(t) and Ũ (1)(t) parametrize the non-

Hermitian evolution of a general two-level system.

The second generalization involves solving for the time-evolution operator for a

general su(N) Hamiltonian. This will be the topic of the next section.

3.3 Unitary Integration Solution for su(N)

Hamiltonians

Consider the N-dimensional Hamiltonian H(N) given by

H(N) =




H(N−n) V

V† H(n)


 . (3.16)

The diagonal blocks are (N−n)- and (n)-dimensional square matrices, respec-

tively, while V is an (N − n)× (n)-dimensional matrix.

The evolution operator U(N)(t) for such a H(N) is written as a product of two

operators U(N)(t) = Ũ1Ũ2, where

Ũ1 =




I(N−n) z(t)

0† I(n)







I(N−n) 0

w†(t) I(n)


 , (3.17)

Ũ2 =




Ũ(N−n) 0

0† Ũn


 .
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For any N , n is arbitrary with 1 ≤ n < N , and tilde denotes that the matrices

need not be unitary. The product of three factors parallels the product of expo-

nentials in three Pauli matrices. Note that the structure of the unitary operator

is a generalization of the unitary operator ansatz presented for two-level systems.

Equations defining the rectangular matrices z(t) and w†(t) are developed and the

problem is reduced to the two residual (N − n)- and (n) dimensional evolution

problems sitting as diagonal blocks of Ũ2. z(t) and w†(t) are related to each other

through the unitarity of U(N)(t) [90, 91]:

z = −γ1w = −wγ2, (3.18)

with γ1 = Î(N−n) + z.z† and γ2 = Î(n) + z†.z.

With U(N)(t) in such a product form, the Schrödinger equation is written as

i
˙̃
U2(t) = HeffŨ2, (3.19)

Heff = Ũ−1
1 H(N)Ũ1 − iŨ−1

1
˙̃
U 1.

Since Ũ2 is block diagonal, the off-diagonal blocks of Eq. (3.19) define the equation

satisfied by z given by

iż = H(N−n)z+V − z(V†z+H(n)). (3.20)

Note that the initial condition UN (0) = IN implies that Ũ1(0) = I(N−n), Ũ2(0) =

I(n) and z(0) = 0(N−n). Eq. (3.20), along with the initial condition can be solved

to determine z and thereby Ũ1 and Heff for subsequent solution of Eq. (3.19) for

Ũ2. In this manner, the procedure iteratively determines U (N)(t).

Before discussing the geometry of the time evolution operators for this unitary

case, we briefly mention the procedure to deal with non-Hermitian Hamiltonians.
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For such a non-Hermitian Hamiltonian,

H(N) =




H̃(N−n) V

Y† H̃(n)


 , (3.21)

where tilde denotes possibly non-Hermitian character, and the off-diagonal com-

ponents V and Y are independent. In this case, Eq. (3.20) is replaced by

iż = H̃(N−n)z+V − z(Y†z+ H̃(n)), (3.22)

and there is a separate equation governing the evolution of w given by

iẇ† = w†(zY† − H̃(N−n)) + (H̃(n) +Y†z)w† +Y†. (3.23)

The diagonal terms of the time-evolution operators are governed by

i
˙̃
U 2(t) =




H̃(N−n) − zY† 0

0 H̃(n) +Y†z


 Ũ2. (3.24)

Returning to the case where the Hamiltonian is Hermitian, it is convenient to

render the two matrices Ũ1 and Ũ2 themselves unitary [90, 91]. For this purpose,

a “gauge factor” b is chosen such that the unitary counterparts of Ũ1 and Ũ2 are

defined via U1 = Ũ1b and U2 = b−1Ũ1. Since Ũ
†
1 Ũ1 = diag(γ

(−1)
1 , γ2), this would

imply that b is the “Hermitian square-root” of diag(γ
(−1)
1 , γ2). This “Hermitian

square-root” is defined by the relation (b(−1))†b(−1) = diag(γ
(−1)
1 , γ2). Inspection of

the power series expansion of γ
(± 1

2
)

1 = (Î + z.z†)(±
1

2
) and γ

(± 1

2
)

2 = (Î + z†.z)(±
1

2
)

show that since each term in the expansion is Hermitian, matrices γ
± 1

2

1 and γ
± 1

2

2

are Hermitian and have non-negative eigenvalues. Because of this, it is sufficient

to define b as the inverse square root via b(−2) = diag(γ
(−1)
1 , γ2).

Furthermore, Heff in Eq. (3.19) is Hermitian for the unitary counterpart U1. The

upper diagonal block of this Hermitian Hamiltonian accompanying the decompo-

sition U = U1U2 is given by

i

2
[
d(γ

− 1

2

1 )

dt
, γ

1

2

1 ] +
1

2

(
γ
− 1

2

1 (H̃(N−n) − zV†)γ
1

2

1 +H.c.
)
, (3.25)
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where [,] represents the commutator and H.c. stands for the Hermitian conjugate.

The lower diagonal block is similarly given by

i

2
[
d(γ

− 1

2

2 )

dt
, γ

1

2

2 ] +
1

2

(
γ
− 1

2

2 (H̃(n) + z†V)γ
1

2

2 +H.c.
)
. (3.26)

In this section, we outlined a general technique to solve for the time-evolution

of an N -level system driven by an arbitrary time-dependent Hamiltonian. The

solution involved successive partitioning of the problem into smaller blocks and

solving for the matrix z(t) at each stage. This solution is then used to write the

effective Hamiltonian that determines the time-evolution of Ũ2(t). Each block of

the Ũ2(t) equation is now solved according to the same technique.

For example, consider a general seven-level problem. This can be broken up using

a N = 7, n = 1 decomposition. z(t) is now a 6 × 1 matrix and Ũ2(t) is a block

diagonal matrix with a 6 × 6 block and a 1 × 1 block. Furthermore, the effective

Hamiltonian also has a block structure similar to that of Ũ2(t). Having obtained the

solution for z(t), we can substitute the solution to obtain the effective Hamiltonian.

The 1× 1 part of the Ũ2(t) solution is now easily solved and the 6× 6 part of the

Ũ2(t) is handled as a “new” unitary integration problem with N = 6 and n < 6

problem. This bootstrapping method hence provides a solution to the problem.

The choice of the dimensionality of the decomposition is made at each step of the

bootstrapping algorithm based on either special symmetries the problem affords

or based on a simplification afforded in solving for Ũ2(t), given a choice of n. In

the next section, we will expand upon the n = 1 case of the unitary integration

solution and state some simplifications that arise in the gauge factor γ2 for this

choice of decomposition.
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3.4 Simplification of “Gauge Factors” for n = 1

For n = 1, the SU(N) problem is decomposed into SU(N −1) and U(1). This U(1)

sector of the solution provides a simplification in evaluating the corresponding

gauge factor γ2 since it is a scalar given by γ2 = 1 + z†z( in fact γ1 can also

be simplified significantly by using the fact that z†(t)z(t) is a scalar). This yields

γ̇2 = ż†z + z†ż. Substituting for ż(t) from Eq. (3.20), we can verify the relation

γ̇2 = iγ2(V
†z(t)− z†(t)V). Furthermore, this equation can be used to evaluate the

lower-diagonal block of the effective Hamiltonian that governs the dynamics the

unitary matrix U2(t) defined in Eq. (3.26). This one-dimensional equation is given

by H̃(1) + 1
2
(z†(t)V +V†z(t)). Thus the lower block of the unitary operator U2(t)

is given by

U (1)(t) = Exp

(
−i

∫ t

t′=0

dt′{H̃(1) +
1

2
(z†(t′)V +V†z(t′))}

)
. (3.27)

In this way, the dynamics of the N-level system can be decomposed into a series

of phases. The dynamics of these phases is governed by an effective Hamiltonian,

transformed by a gauge factor when the time evolution operator is decomposed

into the product of unitary matrices. This effective Hamiltonian is the difference

of two terms, which will be discussed in the next section.

3.5 Effective Hamiltonian and Geometric Phase

As outlined in the previous section, the equation that governs the dynamics of

Ũ2(t) is given by Eq. (3.19), where

Heff = Ũ−1
1 H(N)Ũ1 − iŨ−1

1
˙̃
U 1. (3.28)

This equation has two terms, the second of which does not depend on the Hamilto-

nian explicitly. This term records the geometric (i.e., path dependent) effect on the
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time-evolution matrix and is hence significant in recording the geometric phases ac-

quired by the physical system as it traverses state space. We will present a detailed

derivation of the geometric phase part of the time-evolution matrix for three-level

systems in the next chapter. For the rest of this section, we will try to understand

the significance of the form of Eq. (3.28) by presenting two related derivations.

To understand the significance of this equation, let us look at the solution to

Schrödinger’s equation involving a Hamiltonian H(~λ) which depend continuously

on a set of parameters that is varied adiabatically [99]. Assume the existence of an

m-fold degenerate subspace whose energy is equal to zero, and which evolves as the

parameters ~λ are varied from ~λi at t = 0 to ~λf at t = T . Assume furthermore that

these degenerate levels do not cross other levels. In the limit of adiabatic variation,

the solutions of

H(~λi)|ψ〉 = 0, (3.29)

adiabatically transform into the solutions of

H(~λf)|η〉 = 0. (3.30)

If the adiabatic variation of the parameter is done over a closed path such that

~λi = ~λf , then the initial solutions are mapped onto themselves. Now since we

assumed an m-fold degeneracy to begin with, these m-states can be mapped onto

themselves not trivially (i.e. |ηi〉 = |ψi〉) but rather non-trivially. This non-trivial

transformation can be written as

|ηi〉 =
∑

j

Uij |ψj〉. (3.31)

Since Schrödinger’s equation implies that |η̇i〉 = −iH(~λf)|ηi〉 = 0, we get

0 = |η̇i〉 =
∑

j

U̇ij |ψj〉+
∑

j

Uij |ψ̇j〉. (3.32)
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This implies

0 = 〈ηk|η̇i〉 =
∑

j

〈ηk|U̇ij |ψj〉+
∑

j

〈ηk|Uij|ψ̇j〉. (3.33)

This equation can be written as

〈ηk|U−1U̇ |ηi〉 = 〈ψk|ψ̇i〉 := Aki, (3.34)

and solved formally,

U(t) = P{Exp(
∫ t

0

dt′A(t′))}. (3.35)

In the equation above, P refers to path ordering.

If we now imagine that |ψi〉 is transformed according to |ψ′
i〉 = U(t)|ψi〉, then A

transforms to

A′(t) = U̇(t) U−1(t) + U(t) A U−1(t). (3.36)

This transformation has the same form as Eq. (3.28) and A is said to transform

like a “gauge potential”.

This name derives from the following argument relating to preserving the equa-

tions of motion under local gauge transformations, which is a generalization of the

example presented above. Suppose that we have a Lagrangian of a scalar complex

field written in the form L = ∂µϕ∂
µϕ−F (ϕ†ϕ). Then if we transform the “coordi-

nate system” such that ϕ → Uϕ, the Lagrangian is preserved. But if we consider

a transformation of the type ϕ → U(xµ)ϕ, the kinetic energy term is no longer

invariant. The relevant transformation is given by ∂µ(U(xµϕ)) = U(xµ){∂µϕ +

(U †(xµ)∂µU(xµ))ϕ}. If we now define a “new” derivative Dµ called a covariant

derivative such that Dµϕ = ∂µϕ − iAµ(xµ)ϕ and demand that DµU(xµ)ϕ →

U(xµ)Dµϕ, then the transformation equation for Aµ can be worked out to be ex-

actly equal to Eq. (3.36). Aµ is called a gauge potential since it preserves the
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equations of motion under a “gauge transformation” (i.e., Rescaling the coordi-

nate system at each point in spacetime xµ). This notion of the gauge invariance

of the Lagrangian and hence the equations of motion is a central feature of all

modern field theories.

Thus we understand the effective Hamiltonian as being composed of two terms.

The first is a “dynamic term” that relates the Hamiltonian to the evolution of

Ũ2(t) while the second term is a “geometric term” that records path dependent

phases acquired as the system evolves.

3.6 Conclusions

In the previous sections, we presented a bootstrapping approach to solve for the

dynamics of N -level systems and illustrated how the technique can be used to

derive the Bloch sphere representation for a single qubit. We note that such a

procedure has been implemented for various other subgroups of SU(4) [90, 91]. We

also presented in this chapter, important remarks relating the technique of unitary

integration to geometric phases.

In the next chapter, we will use much of the technology developed here to solve

for the time evolution operator of three-level systems. We will present detailed

applications and present connections to geometric phases in physics.
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Chapter 4
Bloch Sphere Like Representations for
su(3) Hamiltonians

“What is the use of a
book, thought Alice,
’without pictures or
conversations?’”

Lewis Carroll(1832-1898)

4.1 Introduction

1 Three-level systems are of fundamental importance in many branches of physics.

While two levels give the simplest model for the dynamics of discrete systems, three

levels illustrate the role that an intermediate state can play in inducing transitions

between the other two. Canonical examples of this include applications in quantum

optics that use three-level atoms to control quantum state evolution [82]. Such

laser control is used, for instance, to transfer population between two states using

stimulated Raman2 adiabatic passage (STIRAP) [52, 66] and chirped adiabatic

passage (CARP) [26]. In some of these systems, the interaction of the radiation

with the atom is represented as a time-dependent Hamiltonian inducing an energy

separation between the two states that varies with time. For a non-zero sweep

rate, it can be shown that there is finite transition probability between the states

[54, 88, 103]. The study of Landau-Zener-Stueckelberg transitions in multilevel

systems is of interest to understand the interplay between various level crossings

[46]. Particle physics represents another example where three-level systems play a

central role as, for example, the oscillations of neutrino flavor eigenstates [51].

1This chapter is based on [95].
2Chandrasekhara Venkata Raman(1988-1970).
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The general Hamiltonian of a three-level system involves 8 independent opera-

tors. Such a set can also naturally arise as a subgroup of higher level systems where

there is some degeneracy involved. Thus, several important two-qubit problems in

quantum computing and quantum information can be so written in terms of eight

operators that form a subalgebra of the full fifteen operators that describe two

spins. The Hamiltonian describing anisotropic spin exchange is an example of one

such important physical problem. While isotropic spin exchange has been explored

to design two-qubit gates in quantum computing, anisotropic spin exchange has

been studied as a possible impediment to two-qubit gate operations [17, 48]. Such

a SU(3) Hamiltonian is given by

H(t) = J(t)(~σ.~τ + ~β(t).(~σ × ~τ) + ~σ.Γ(t).~τ ), (4.1)

when written in terms of a scalar, a vector and a symmetric tensor operator ex-

pressed in terms of two Pauli spins. Here, ~β(t) is the Dzyaloshinksii-Moriya vector

[33, 60] and Γ(t) is the (traceless) symmetric interaction term. While the first

term is the familiar Ising interaction Hamiltonian [25], the last two terms are due

to spin-orbit coupling.

Given this wide applicability, a geometrical picture of the dynamics of three-

level systems can be useful. For a two-level system, the geometry of the evolution

operator is well known. Any density matrix can be written as ρ = (I(2) + ~n.~σ)/2,

where ~σ are the Pauli matrices. Unitary evolution of ρ is represented as the vector

~n rotating on the surface of the three dimensional unit sphere called the Bloch

sphere [37] discussed in chapter 3. This vector, along with a phase, accounts for

the three parameters describing the time evolution operator of a two-level system.

The vector ~n, along with the phase factor, is shown again in Fig. (4.1) for con-

venience. The vector ~n shown traces out the “base manifold” and together with
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the global phase factor or “fiber” at each point on that manifold is referred to as

a “fiber bundle” [11]. While the density matrix is independent of it, the complete

description of the system requires this phase as well. The aim of this chapter is to

provide an analogous geometrical picture for a three-level system with appropriate

generalizations of the base and fiber.

Some work already exists regarding the geometry of SU(3). Following Wei and

Norman [97], Dattoli and Torre have constructed the “Rabi matrix” for a general

SU(3) unitary evolution in [29]. Mosseri and Dandoloff in [61] described the gen-

eralization of the Bloch sphere construction of single qubits to two qubits via the

Hopf fibration description. This method relies upon the homomorphism between

the SU(2) and SO(3) groups and likewise between the SU(4) and SO(6) groups.

In [89], the authors propose a generalized Euler angle parameterization for SU(4).

This decomposition is similar to the work in [68, 69, 72, 74, 75, 83, 104] into which

fits our treatment of SU(3) in this chapter.

Another well known choice of the (N2 − 1) generators sj of the SU(N) group

was studied in [28, 45]. Consider sj , chosen to be traceless and Hermitian such

that [si, sj ] = 2ifijksk and Tr{sisj} = 2δjk. Here, fijk is the completely antisym-

metric symbol which for a two-level system is the Levi-Civita symbol ǫijk, and

a repeated index is summed over. In this basis, the Hamiltonian is written as

H(t) = Γisi. With this choice, the Liouville-Von Neumann equation for the den-

sity matrix ρ = I/N + Sjsj/2 becomes Ṡi = fijkΓjSk. Note that for the N=2 case,

this is the familiar Bloch sphere representation. But, for SU(3), this representation

differs from the one we present in two aspects. Firstly, the “coherence vector”,

whose elements are real and are given by Sj, experiences rotations in a (N2 − 1)

dimensional space. For instance, for SU(3), the coherence vector undergoes rota-

tions in an eight-dimensional space. Arbitrary rotations in eight dimensions are
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characterized by 28 parameters. But since a three-level Hamiltonian is only char-

acterized by 8 real quantities, this means that the coherence vector is not permit-

ted arbitrary rotations and is instead constrained. Secondly, the coherence vector

representation does not differentiate between local and non-local operations. Our

decomposition of the time evolution operator into a diagonal and an off-diagonal

term in this chapter is more suited for this differentiation. Such a parameterization

of the time evolution operator in terms of local and non-local operations can be

useful in understanding quantum entanglement discussed in chapter 1. The aim

of this chapter is to discuss the geometry of two-qubit time evolution operators in

terms of such a decomposition. The authors in [34] discuss an alternative decom-

position of two-qubit states in terms of two three-vectors and a 3 × 3 dyadic to

discuss entanglement.

A series of papers presented a systematic approach to studying N-level systems

using a program of unitary integration [68, 69, 72, 74, 75, 83, 90, 91, 104] as dis-

cussed in chapter 3. Continuing this program, we present a complete analytical

solution to the three-level problem that generalizes the Bloch sphere approach to

three levels in this chapter. Below, we define the fiber bundle via two different

decompositions which allows us to extract the geometric phases associated with a

three-level system (for a discussion on the quantum phases of three-level systems,

see [10, 49]). These fiber bundles are {SU(3)/SU(2)× U(1)} × {SU(2)×U(1)} and

{SU(4)/[SU(2)×SU(2)]}×{SU(2)×SU(2)}. The structure of this chapter is as fol-

lows: Section 4.2 outlines the unitary integration program to solve time-dependent

operator equations. Section 4.3 uses this technique for the solution of a general

time-dependent SU(3) Hamiltonian completely analytically. Section 4.4 presents

the geometry of the time evolution operator for SU(3) with some applications.

Section 4.5 presents a coordinate description that is useful to define the geometric

55



FIGURE 4.1. Bloch or Poincare sphere representation for SU(2). The base manifold is
the S2 sphere while the fiber is given by the U(1) phase at each point on that sphere.
Together, we have the fiber bundle SU(2) ≃ S2×U(1).

phase for three-level systems, and Section 4.6 will present an alternative analytical

solution to the three-level problem by exploiting the natural embedding of SU(3)

in SU(4). Section 4.7 presents the conclusions.

4.2 Unitary Integration

In the previous chapter, we discussed in detail the basic technique of unitary inte-

gration. We presented the unitary integration solution in terms of a product of two

operators, namely Ũ1 and Ũ2 and presented a gauge transformation that rendered

each matrix unitary. While the first matrix Ũ1 consisted of off-diagonal elements,

the second matrix Ũ2 was diagonal. For N = 3, n = 1, these diagonal blocks define

an SU(2)- and a U(1) Hamiltonian and z is a pair of complex numbers.The SU(2)

Hamiltonian is in turn rendered in terms of its fiber bundle in Fig.(4.1) and the U(1)

Hamiltonian corresponds to a phase. Together, they describe a four-dimensional

fiber for SU(3) over the base manifold, also four dimensional, of z.

Alternatively, N = 3 SU(3) problems may be conveniently seen as a part of

N = 4 SU(4) problems, making contact with two-qubit systems that are extensively

studied. In this case, for N = 4, n = 2, these diagonal blocks define two SU(2)

Hamiltonians and z is a 2 × 2 matrix representable in terms of Pauli spinors.
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Generally, it is 8-dimensional while the fiber has seven dimensions (two SU(2) and

a mutual phase) but for the SU(3) subgroup of SU(4),both the base and manifold

again reduce to four dimensions each. With z a pair of complex numbers, the

non-trivial part of geometrizing SU(3) is thereby reduced to describing this four-

dimensional manifold. Exploring this for the N = 3, n = 1 decomposition will

be the content of the next section whereas Section 4.6 gives the alternative SU(4)

rendering.

4.3 Geometry of General SU(3) Time Evolution

Operator

A general time-dependent three-level Hamiltonian may be written in terms of eight

linearly independent operators of a three-level system. Such a Hamiltonian can also

be written in terms of a subgroup of 15 operators of a four-level system. Before the

time evolution operator is presented in the SU(3) basis in terms of a N = 3, n = 1

decomposition, we will note that it can be rendered in a few alternative ways.

First, a general time-dependent four-level Hamiltonian may be written asH(t) =

∑
i ciOi. Here ci are time-dependent and Oi are the unit matrix and 15 linearly

independent operators of a 4-level system that may be chosen in a variety of ma-

trix representations. One choice used in particle physics are the so called Greiner

matrices [39, 68, 74, 75, 83]. Another choice consists of using ~σ, ~τ , ~σ ⊗ ~τ and the

4×4 unit matrix. Such a choice was discussed in [69, 72] and will be used through-

out this chapter. As it stands, the above Hamiltonian describes a general four-level

atom with 4 energies and 6 complex couplings. Note that only the three differences

in energies are important. Restricting the 15 coefficients ci to a smaller number al-

lows this Hamiltonian to describe various physical Hamiltonians, forming different

subalgebras of the su(4) algebra [72]. For example, if two of the six complex cou-
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plings are zero (levels 1 and 4 and levels 2 and 3 of a four-level atom not coupled),

then the Hamiltonian may be recast such that the operators involved belong to

an so(5) subalgebra [72]. On the other hand, if levels 2 and 3 are degenerate and

level 4 is uncoupled from the rest, then the problem may be recast in terms of only

eight operators belonging to the su(3) subalgebra of su(4). This is illustrated in

Fig. 4.2 and is one of the systems of interest in this chapter.

È4\

È3\
È2\

È1\

FIGURE 4.2. Levels |2〉 and |3〉 couple equally to |1〉 and to |4〉, which are themselves
coupled. The three complex coupling matrix elements and two energy positions define
such an SU(3) system.

Alternatively, after one arrives at the linear equation for the N = 4, n = 2

decomposition, one can represent the resulting vector in terms of six homogeneous

coordinates. This is the so-called “Plücker coordinate” representation for the SU(3)

Hamiltonian. These coordinates as well as the alternative derivation are presented

in Section 4.6. The N = 3, n = 1 decomposition will be the content of the rest of

this section.

Consider the Hamiltonian in the basis of the Gell-Mann lambda matrices [36]

H(t) =
∑

i aiλi. The N = 3, n = 1 decomposition consists of writing the time

evolution operator in terms of a product of two matrices U = Ũ1Ũ2 where Ũ1 is

composed of a (2×1)-dimensional z, as explained in Sec. II. The equation that
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governs the evolution of z, equation (3.20), can be written in this case as

żµ = −iVµ − iFµνzν + iV ∗
ν zνzµ; µ, ν = 1, 2. (4.2)

Here, the symbols used in defining ż are defined as V = (a4 − ia5, a6 − ia7), and

F =




a3 +
√
3a8 a1 − ia2

a1 + ia2 −a3 +
√
3a8


 .

Using the transformation equations m1,2 = −z1,2(Deiφ)−1, m3 = (Deiφ)−1 and

|m1|2+|m2|2+|m3|2 = 1 leads to the evolution equation for ~m = (m1r, m2r, m3r, m1i, m2i, m3i)
T :

~̇m =




0 −a2 a5 a3 +
√
3a8 a1 −a4

a2 0 a7 a1 −a3 +
√
3a8 −a6

−a5 −a7 0 −a4 −a6 0

−a3 −
√
3a8 −a1 a4 0 −a2 a5

−a1 a3 −
√
3a8 a6 a2 0 a7

a4 a6 0 −a5 −a7 0




~m, (4.3)

which describes the rotation of a unit vector in a six dimensional space of the real

and imaginary parts of ~m defined by mµ = mµr + imµi. In the above equations,

D = (1 + |z1|2 + |z2|2)1/2 and iφ̇ = i(V ∗
ν zν + Vνz

∗
ν). The phase φ is real and

determined only up to a constant factor. Since the real and imaginary parts of m3

are not independently defined, the geometrical description of the base manifold for

the N = 3, n = 1 decomposition may be thought of as a point on the surface of a

constrained six-dimensional unit sphere.

The two constraints, namely |m1|2+ |m2|2+ |m3|2 = 1 and the “phase arbitrari-

ness” of φ, reduce the 6-dimensional manifold of the three-dimensional complex

vector ~m to a four-dimensional manifold in agreement with there being only four

independent parameters in z.The first condition defines the base as a vector on
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an S5 sphere while the phase arbitrariness serves as an additional constraint. The

fiber, on the other hand, is an SU(2) block, evolving as a vector on S2 Poincare-

like sphere with a phase at each point, and a U(1) block that amounts to an extra

phase.This is presented schematically in Fig.(4.3), as the product of three matrices

of the evolution operator.

FIGURE 4.3. The base and fiber for the SU(3) group. The first two factors give the
base manifold, an S5 sphere with a phase arbitrariness defined in the text. The fiber,
described by the third matrix, is composed of a Bloch sphere and a phase associated
with each of its points, and the second an extra phase represented by a vertical line.

The alternative N = 4, n = 2 decomposition in the appendix yields the equation

of motion for mµ = −zµ/Deiφ in Eq. (4.30). Following Eq. (3.25) and Eq. (3.26),

we see that for this case, the two remaining blocks of the time evolution operator,

namely Ũ (4−2) and Ũ (2), can be transformed into unitary matrices for SU(2). The

fiber evolves as vectors on two identical S2 Bloch-like spheres with a mutual phase,

whose evolution is coupled to the base that evolves as a vector on an S5 sphere.

This is illustrated in Fig. (4.4). Either decomposition can be used to study various

physical processes as will be discussed in the next section.

4.4 Applications

It is often desirable to control the time evolution of quantum states to manipulate

an input state into a desirable output state. In [57, 58], the authors considered a
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FIGURE 4.4. The base and fiber for the SU(3) group via theN = 4, n = 2 decomposition.
The base again is given by an S5 sphere as in Fig. (4.3). The fiber is composed of two
identical SU(2) Bloch spheres plus phase, and an extra mutual phase between them.
The four parameters each of base and fiber again account for all eight parameters of the
SU(3).

Hamiltonian of the formH0−µE(t), where H0 is a free-field Hamiltonian and µE(t)

is a control field. To illustrate the “Hamiltonian encoding” scheme to control quan-

tum systems, the authors considered a three-level system and studied stimulated

Raman adiabatic passage (STIRAP), an atomic coherence effect that employs in-

terference between quantum states to transfer population completely from a given

initial state to a specific final state. This is done through a “counterintuitive” pulse

sequence. Consider the Hamiltonian

H(t) =




0 G1(t) 0

G1(t) 2∆ G2(t)

0 G2(t) 0



. (4.4)

Here G1,2(t) = 2.5exp[−(t − t1,2)
2/τ 2] and ∆ = 0.1. The initial population is in

the upper state. For t1 = τ , t2 = 0 and τ = 3, it is seen that the two empty states

are coupled first via G2(t) and then the levels |1〉 and |2〉 are coupled through G1.

The dynamics of the populations reveal complete population transfer. A complete

solution as per Section 4.3 was constructed for this model and the results are

presented in Fig. 4.5 in total agreement with the results of [58].
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FIGURE 4.5. Population P1j = |〈1|j〉|2 plotted as a function of time. The initial popu-
lation in state |1〉 is completely transferred to |3〉. Both the unitary integration solution
and the direct numerical solution [58] are plotted and they coincide at all times.

Quantum control can also be achieved by understanding the nature of tun-

neling. The famous Landau-Zener-Stueckelberg formula [54, 103, 88] predicts the

transition probability of the ground state of a two-level system when the energy

levels adiabatically undergo a crossing. The study of level crossings has since been

extended to multi-level systems. For example, in [42], the authors considered a

three-level atom to study population trapping by manipulating the phase acquired

as a three-level system evolves under the influence of frequency modulated fields

[4]. Such a frequency modulated field is given by

E(t) = E1e
−i[ω1t+ϕ1(t)] + E2e

−i[ω2t+ϕ2(t)] + c.c. (4.5)

ϕi(t) =Mi sinΩit. (4.6)

Here, c.c. stands for complex conjugation. The phase ϕi(t) in the exponent can be

written in terms of Bessel functions as [1]

eMj sinΩjt =
∞∑

k=−∞
Jk(Mj)e

ikΩjt. (4.7)

For large values of Ωj , the leading contribution for slow time scales would come

from J0(Mj). Hence, for large Ωj , the interaction Hamiltonian can be written as

Hint(t) = −d.(E1J0(M1) + E2J0(M2). (4.8)
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Hence, for values of M1,2 that are zeros of the zeroth-order Bessel functions, the

interaction Hamiltonian is zero and population trapping is observed. Under this

assumption, consider the full Hamiltonian under the rotating-wave approximation,

H(t) =




E1(t) G1(t) 0

G∗
1(t) 0 G2(t)

0 G∗
2(t) E3(t)



.

Here, E1(t) = ∆1 −M1Ω1 cos(Ω1t+ θ) and E3(t) = −∆2 +M2Ω2 cos(Ω2t). Results

are presented in Fig. 4.6, and for the parameter values Ω1,2 = 1, ∆1 = −∆2 = 10,

θ = 0 and G1,2 = 6, demonstrate the phenomenon of population localization

discussed in [42].

As a final illustration of the unitary integration technique applied to three-level

systems, let us consider the example discussed in [47]. Here, a three-level system

is subject to strong fields and the correlation between the scattered light spectrum

and the atom dynamics is discussed. The authors consider the Hamiltonian

H(t) =




0 0 G1(t)

0 0 G2(t)

G∗
1(t) G∗

2(t) 0



. (4.9)

Here, G1,2(t) = −V1,2e−iδt. The time evolution of the states calculated as per our

procedure in Section 4.3 is plotted in Fig. 4.7 for different values of the parameters.

All of these results agree with those given in [47]. Further features of the base and

fiber will be presented at the end of the next section.

4.5 Geometric Phase for SU(3) Group

Many physical systems give rise to a measurable phase that does not depend di-

rectly on the dynamical equations that govern the evolution of the system, but

depends only on the geometry of the path traversed by vectors characterizing the
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FIGURE 4.6. (a) For M1,2 = 7 and the other parameter values given in the text, there is
no population trapping observed. (b) The energy landscape for M1,2 = 30.6346 showing
energy level crossing. (c) Population trapping is observed with M1,2 = 30.6346 which
corresponds to the tenth zero of the zeroth-order Bessel function. Note that the thick
line is P11 and the thin line corresponds to P12. The results agree completely with [42].

state of the system. This geometric phase is denoted by γg and is given by the

integral [14],

γg =

∫
dR .〈n(R(t))|i∇R|n(R(t))〉, (4.10)

where the state evolution is governed by a set of internal coordinates that parame-

terize the Hamiltonian R(t), and ∇R is the gradient in the space of these internal

coordinates. This phase has been generalized to non-cyclic non-adiabatic evolution

of quantum systems [5, 78, 99]. The purpose of this section is to present this phase
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FIGURE 4.7. (a) Populations P1j = |〈1|j〉|2 for δ = 5, V1 = 2 and V2 = 1. P11 is given
by the solid line and P12 is given by the thin line. (b) Same as (a), for δ = 12. Note that
P13 oscillates close to zero at all times. (c) P1j for δ = 12, V1 = 1 and V2 = 2.
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in terms of coordinates on the Bloch sphere for two-level systems and extend it to

three-level systems.

In two-level systems, the time evolution operator is described by three parame-

ters as described in Section 4.1. Two of these parameters describe a point on the

Bloch sphere. Traversing closed loops on this Bloch sphere returns the quantum

system to its initial state as described by the two parameters on the Bloch sphere

but not the third parameter of an overall phase. Hence, general closed loops on

the Bloch sphere do not correspond to closed loops in the space of the full unitary

operator. This discrepancy in the phase between the initial and final state corre-

sponds to the geometric phase given above and amounts to changes along the fiber

at each point on the sphere. To formalize this, consider U1, given by Eq. (3.17) as

unitarized through the matrix b in Section 4.2, which for N = 2, n = 1 takes the

form

U1 =
1√

1 + |z|2




1 z

−z∗ 1


 . (4.11)

By identifying cos θ
2
= (1 + |z|2)− 1

2 and sin θ
2
e−iǫ = −z(1 + |z|2)− 1

2 , we get the

usual description of the base manifold in terms of the angles 0 ≤ θ < π and

0 ≤ ǫ < 2π that are associated with the Bloch sphere, namely,

U1 =




cos θ
2

− sin θ
2
e−iǫ

sin θ
2
eiǫ cos θ

2


 . (4.12)

In terms of the parameters θ and ǫ, the Hamiltonian H(t) = −~a.~σ is given by

H(t) =




− cos θ − sin θe−iǫ

− sin θeiǫ cos θ


 . (4.13)
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Eq. (3.19) governing the evolution of the fiber U2 has two terms. The first term is

evaluated as

U †
1H(t)U1 =




−1 0

0 1


 , (4.14)

which corresponds to the eigenvalues of the Hamiltonian. To evaluate the second

term, consider the case whereby the vector on the Bloch sphere traverses a closed

path defined by a constant θ. The second term is then given by

U †
1

∂U1

∂(−iǫ) =




− sin2 θ
2

−1
2
sin θe−iǫ

−1
2
sin θeiǫ sin2 θ

2


 . (4.15)

Integrating ǫ from 0 to 2π yields

∫ 2π

0

dǫU †
1

∂U1

∂(−iǫ) =




π(1− cos θ) 0

0 −π(1 − cos θ)


 ,

which is the correct agrees with the geometric phase of a two-level system [14].

To extend this analysis to three-level systems, we consider the N = 3, n = 1

decomposition. The matrix U1 = Ũ1.b is now given by

U1 =




I(2) − 1
D(D+1)

zz† z

D

−z†

D
1
D


 , (4.16)

where z is a complex column vector (z1, z2)
T and D =

√
1 + |z|2. Care has to be

taken in assigning angles to elements of this matrix such that the transformation

satisfies two conditions: the U1 matrix should not depend on φ and the transforma-

tion must be commensurate with the definition of ~m. To this effect, we transform z

into polar coordinates: z1 = − tan θ1
2
cos θ2

2
eiǫ1, z2 = − tan θ1

2
sin θ2

2
eiǫ2 . These trans-

formation equations imply that D =
√

1 + |z|2 = sec θ1
2
, m1 = sin θ1

2
cos θ2

2
ei(ǫ1−φ),
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m2 = sin θ1
2
sin θ2

2
ei(ǫ2−φ) and m3 = cos θ2

2
e−iφ. The U1 matrix is given by

U1 =




1− 2 sin2 θ1
4
cos2 θ2

2
− sin2 θ1

4
sin θ2e

i(ǫ1−ǫ2) − sin θ1
2
cos θ2

2
eiǫ1

− sin2 θ1
4
sin θ2e

−i(ǫ1−ǫ2) 1− 2 sin2 θ1
4
sin2 θ2

2
− sin θ1

2
sin θ2

2
eiǫ2

sin θ1
2
cos θ2

2
e−iǫ1 sin θ1

2
sin θ2

2
e−iǫ2 cos θ1

2



.(4.17)

In the above equation, the range on the angles 0 ≤ θi < π and 0 ≤ ǫi < 2π are

chosen so that the absolute value of each element of the time-evolution operator

is positive [8]. Hence U1 can be represented as two vectors on a sphere, at angles

(θ1, ǫ1) and (θ2, ǫ2) respectively. This is represented in Fig. (4.8). Since the columns

FIGURE 4.8. The base manifold U1 is characterized by two sets of angles 0 ≤ θi < π,
0 ≤ ǫi < 2π which can be represented as two vectors with polar angles (θ1, ǫ1) and
(θ2, ǫ2).

of a unitary operator correspond to normalized eigenvectors, we can consider the

last column of the matrix above, |ψ〉 = (− sin θ1
2
cos θ2

2
eiǫ1,− sin θ1

2
sin θ2

2
eiǫ2 , cos θ1

2
)T ,

and evaluate the so-called connection 1-form given by [16]

A = −i〈ψ|d|ψ〉. (4.18)
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The Abelian geometric phase, given by γg =
∫
A is evaluated to be

γg = −1

2

∫
sin2 θ1

2
((dǫ1 + dǫ2) + cos θ2(dǫ1 − dǫ2)). (4.19)

If the various angles are relabelled ǫ1 → −γ − α, ǫ2 → −γ + α, θ1 → 2θ and

θ2 → 2β, the formula above agrees with [21] and [8]. The time-evolution operator

above can now be used as in the case of SU(2) to evaluate the dynamic contribution

∫
U †
1H(t)U1 and the geometric contribution to the time evolution operator which

is given by −i
∫
U †
1dU1, where dU1 =

dU1

dθi
dθi +

dU1

dǫi
dǫi, i = 1, 2.

This description of the base manifold in terms of (θi, ǫi) can now be used to

describe the dynamics of various physical processes. Fig. (4.9) represents the base

manifold corresponding to the results in Fig. (4.7). (θ1, ǫ1) depend on all the pa-

rameters that define the system while (θ2, ǫ2) depend only on the ratio V1/V2. Also

note that the maximum value of ǫ2, corresponding to the maximum latitude tra-

versed by the black curve, is inversely proportional to δ. Such observations can be

used to control the dynamics of this system.

4.6 Alternative Derivations for a General SU(3)

Hamiltonian.

Consider a three-level Hamiltonian written in terms of the Gell-Mann matrices [36]

as H(t) =
∑8

i=1 aiλi. To exploit the fact that this Hamiltonian is a subgroup of

four-level problems, it is represented in terms of the O matrices [72] as

2
a8√
3
O2 + (a3 −

a8√
3
)O3 + (2a3 + 2

a8√
3
)O4 + a4O5 + a5O6 + 2a4O7 +

2a5O8 + a1O9 + a2O10 + 2a1O11 + 2a2O12 + 2a6O13 + 2a6O14 − 2a7O15 + 2a7O16.

(4.20)

This embeds the Hamiltonian H(t) =
∑

i aiλi as a 4×4 matrix with zeros along

the last row and column. In such a representation, the various entries of the Hamil-

69



FIGURE 4.9. The base manifold corresponding to the results in Fig. (4.7) for the three-
-level system of [47]. For the first column, V1 = 1, V2 = 2. The second column corresponds
to V1 = 2, V2 = 2 and the third to V1 = 2, V2 = 1. The rows correspond to δ = 1, δ = 5
and δ = 50. The thin black curve describes (θ1, ǫ1) and the thick red curve the set (θ2, ǫ2).

tonian in Eq. (3.16) are given by

H(4−2) =
1√
3
a8I

(2) + a1σ1 + a2σ2 + a3σ3, (4.21)

H(2) = − 1√
3
a8I

(2) − 1√
3
a8σ1, (4.22)

V =
1

2
(a4 − ia5)I

(2) +
1

2
(a6 − ia7)σ1 (4.23)

−i1
2
(a6 − ia7)σ2 +

1

2
(a4 − ia5)σ3.

Writing z in the standard Clifford basis as z = 1
2
z4I

(2) − i
2

∑
i ziσi, it follows from

equation (3.20) that z1 = iz2 and z3 = iz4 and the equation reduces precisely to

Eq. (4.2). The geometry described in Section 4.3 can thus be derived from either

of these decompositions of the time evolution operator.
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The SU(3) subgroup in Eq. (4.20) is one among many SU(3) subgroups embed-

ded in SU(4). Another choice corresponds to the Dzyaloshinskii-Moriya interaction

Hamiltonian [33, 60] and is also of interest because the 4×4 matrices now do not

have a trivial row and column of zeros. In the two-spin basis, this Hamiltonian is

given by

H(t) = a1(O2 +O3) + 2a2(O15 +O16) + 2a3(O14 −O13) + 2a4(O7 +O11)

+a5(O6 +O10) + a6(O5 +O9) + 2a7(O8 +O12) +
2a8√
3
(2O4 −O13 −O14).(4.24)

The correspondence between the coefficients in terms of O and in terms of the λ

matrices is : c1 = 0, c2 = a1, c3 = a1, c4 = 4a8/
√
3, c5 = a6, c6 = a5, c7 = 2a4,

c8 = 2a7, c9 = a6, c10 = a5, c11 = 2a4, c12 = 2a7, c13 = −2a3 − 2a8/
√
3, c14 =

2a3 − 2a8/
√
3, c15 = 2a2 and c16 = 2a2. Relabeling of the states 1 → 2, 2 → 3,

3 → 4 and 4 → 1 expresses the Hamiltonian as

H(4−2) =
1√
3
a8I

(2) − a3σ1 − a2σ2 − a1σ3, (4.25)

H(2) = − 1√
3
a8I

(2) − 1√
3
a8σ1, (4.26)

V =
1

2
(a6 − ia7)I

(2) +
1

2
(a6 − ia7)σ1 (4.27)

−1

2
(a5 + ia4)σ2 −

1

2
(a4 − ia5)σ3.

If z is written in terms of the standard Clifford basis (Î,−i~σ) as z = 1
2
z4I

(2) −
i
2

∑3
i=1 ziσi , it follows from Eq. (3.20) that z1 = iz4 and z2 = iz3. This is consistent

with the parameter count that since the inhomogeneityV has only two free complex

parameters (namely V1 = a6− ia7 and V2 = a4− ia5), the complex z matrix should

be composed only of two independent complex parameters, z1 and z2. With the

above analysis, equation (3.20) becomes for the pair of complex numbers

1

2
żµ =

1

2
Xµ − iFµνzν + 2Gνzνzµ; µ, ν = 1, 2. (4.28)
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Here X = (V1/2,−iV2/2), G = (2V ∗
1 , 2iV

∗
2 ) and

−iF =




ia3 −
√
3ia8 a1 + ia2

−a1 + ia2 −ia3 −
√
3ia8


 .

Paralleling the technique employed to solve an SO(5) Hamiltonian in [90, 91],

we transform z into a complex vector ~m: mµ = −2zµeiφ

D
and m3 = eiφ

D
such that

|m1|2 + |m2|2 + |m3|2 = 1,with D = (1 + 4(|z1|2 + |z2|2))1/2. This leads to the new
set of evolution equations

~̇m =




ia3 −
√
3ia8 a1 + ia2 −a6 + ia7

−a1 + ia2 −ia3 −
√
3ia8 a5 + ia4

a6 + ia7 −a5 + ia4 0


 ~m. (4.29)

This can be written as an equation describing the rotation of the real and imagi-

nary components of the vector ~m = (m1r, m2r, m3r, m1i, m2i, m3i)
T ,

~̇m =




0 a1 −a6 −a3 +
√
3a8 −a2 −a7

−a1 0 a5 −a2 a3 +
√
3a8 −a4

a6 −a5 0 −a7 −a4 0

a3 −
√
3a8 a2 a7 0 a1 −a6

a2 −a3 −
√
3a8 a4 −a1 0 a5

a7 a4 0 a6 −a5 0




~m.

(4.30)

Here, the coefficients ci are written in terms of the coefficients ai, whose cor-
respondence was given earlier in this section. Also note that mµ = mµr + imµi,

D = (1+|z1|2+|z2|2)
1

2 and φ̇ = (V ∗
ν zν+Vνz

∗
ν). Simplifying this leads to the equation

iφ̇ = −2(Xµz
∗
µ −X∗

µzµ) for the evolution of φ which is clearly real but determined
only to within a constant. A little algebra yields for the effective Hamiltonian given
by equation (3.25),

H(4−2) − 1

(D + 1)
(zV† +Vz

†)− 1

2(D + 1)2
(zV†

zz
† + zz

†
Vz

†),

and for the effective Hamiltonian given by equation (3.26), the expression H(2) +

(z†V +V†z)/2.

Another representation of the SU(3) subgroup of SU(4) Hamiltonians is given by

the so called “Plücker coordinate” representation of the SU(4) group discussed in
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[90, 91]. For an arbitrary SU(4) matrix, the Plücker coordinates are defined as a set

of six parameters (P12, P13, P14, P23, P24, P34) such that P12P34−P13P24+P14P23 = 0

and
∑ |Pij|2 = 1. They can be written in terms of the unit vector ~m and are given

by 


P12

P13

P14

P23

P24

P34




=
1

2




im6 −m5

im1 +m2

−im3 +m4

−im3 −m4

−im1 +m2

im6 +m5




. (4.31)

The linear equation of motion for ~m translates into an evolution equation for

P = (P12,−P13, P14, P23, P24, P34) of the form iṖ = HPP. Here, HP is given by

HP =




HP1 VP

V†
P HP2


 , (4.32)

where

HP1 =




2a8/
√
3 a64− + ia75− a64− + ia75−

a64− − ia75− −a1 a8/
√
3

a64− − ia75− a8/
√
3 −a1



,

HP2 =




a1 −a8/
√
3 −a64− − ia75−

−a8/
√
3 a1 −a64− − ia75−

−a64− + ia75− −a64− + ia75− −2a8/
√
3



,

VP =




−a64+ − ia75+ a64+ + ia75+ 0

a32− 0 −a64+ − ia75+

0 −a32− a64+ − ia75+



.

In the above equation, aij± denotes ai ± aj .
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4.7 Conclusions

The ability to decouple the time dependence of operator equations from the non-

commuting nature of the operators is the central feature of unitary integration and

also characterizes the Bloch sphere representation for the evolution of a single spin.

By doing so, the quantum-mechanical evolution is rendered a “classical” picture of

a rotating unit vector. For a two-level atom, the Bloch sphere representation along

with a phase completely determines the time evolution operator. In this chapter,

we have extended this program to deal with the time evolution operator belonging

to the SU(3) group. This complements the work in [90] for SU(4) Hamiltonians of

two-qubit systems. We have also extended the analysis of geometric phase to three-

level systems by providing an explicit coordinate representation for the SU(3) time

evolution operator.
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Chapter 5
X States for Two Qubits

“There is no royal road to
geometry.”

Euclid of Alexandria
(325BCE-265BCE)

5.1 Introduction

In Chapters 2-4, we focused on a technique to solve for the evolution operator for

N -level systems with a special emphasis on three-level systems. This technique

focussed only on operators (specifically, the evolution operator) and the states

were evolved from an initial state to a final state according to the prescription

outlined in Chapter 4.1. The algebra of the operators played an important role

in establishing the unitary integration solution. The geometry of the operators

involved the parameters that defined a general unitary operator. In this chapter,

we will study a special class of two-qubit quantum states called X states. We will

present some motivation and discuss some earlier work that exists relating to the

calculation of entanglement in these states. Then, we will analyze these states in

terms of their algebraic properties and present an algebraic characterization of

X states. Furthermore, we will discuss a geometric representation of the operator

algebra that characterizes two-qubit X states. Finally we present some connections

to octonions and some concluding remarks.

5.2 Two Qubit X States

Consider a two-qubit system given in Fig. (5.1). Besides the three energy differ-

ences that define the relative energy scales of the four states, there are six complex
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couplings that determine the Hamiltonian. Since a quantum state is strongly influ-

c12 c34

c14 c23

c13

c24

|2〉 |4〉

|1〉 |3〉

FIGURE 5.1. Diagram representing the different couplings for two interacting qubits.
Three non-zero energies along with six complex couplings presented in the diagram
define the fifteen real parameters that define an arbitrary two-qubit Hamiltonian. Note
that some of these couplings are always zero because of selection rules.

enced by the symmetry of the Hamiltonian that drives it, let us consider these six

complex couplings. Quantum mechanical selection rules are a set of rules derived

from symmetry that constrain transitions between quantum states. These selec-

tion rules can be used to infer that some of these six couplings are always zero. To

explain this, assume that the Hamiltonian physically represents a set of magnetic

fields coupling to magnetic dipoles and that we consider two identical physical sys-

tems as qubits. The selection rule for such magnetic dipole transitions state that a

transition is only allowed when the states involved differ in their parity. Let us also

assume that states |1〉 and |2〉 differ in their parity and likewise |3〉 and |4〉. Under

these assumptions, the transitions related to the coefficients c12, c34, c14 and c41 are

non-zero. But now this means that |1〉 and |3〉 share the same parity and likewise

|2〉 and |4〉.The corresponding coefficients c13 and c24 are hence zero. Finally, we

assume that c12 = c34 = 01. This simple argument based on selection rules implies

1in fact this too is not the most general case. General symmetry conditions would imply that c12 = c34 and
c14 = c23. The parameter count then adds up to seven for a general non-degenrate two-qubit system.
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that a fairly general two-qubit state is characterized by three energy differences

and two complex couplings, a total of seven parameters. Such a Hamiltonian can

be written as

H(t) =




E11 0 0 c14

0 E22 c23 0

0 c∗23 E33 0

c∗14 0 0 E44




. (5.1)

If the initial density matrix is a product state2, then the most general density

matrix that describes the state of this system is given by

ρ =




ρ11 0 0 ρ14

0 ρ22 ρ23 0

0 ρ32 ρ33 0

ρ41 0 0 ρ44




, (5.2)

with ρij = ρ∗ji, Tr(ρ) = 1 and Tr(ρ) ≤ 1. This density matrix is determined by

seven parameters and the structure of the density matrix is related to the fact that

a Hamiltonian’s symmetry group strongly influences the symmetry group of the

density matrix at all times3. Since the density matrix resembles the letter X, such

a state is called an X state.

Let us consider another example which gives rise to X states. Consider a spin

chain [79] evolving under some generic Hamiltonian. Let the symmetric ground

state of this system, which has the same symmetry as the Hamiltonian, be given

by the density matrix ρ. Now, if we wish to study any two spins with labels i and

j, and if the reduced density matrix of these two spins is given by ρij , then this

2this is a special case of a more general condition that we will discuss below.
3Indeed these symmetry groups are identical if the initial density matrix belongs in the same symmetry group

as the Hamiltonian.
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density matrix can be written as

ρij =




〈P+
i P

+
j 〉 〈P+

i σ
−
j 〉 〈σ−

i P
+
j 〉 〈σ−

i σ
−
j 〉

〈P+
i σ

+
j 〉 〈P+

i P
−
j 〉 〈σ−

i σ
+
j 〉 〈σ−

i P
−
j 〉

〈σ+
i P

+
j 〉 〈σ+

i σ
−
j 〉 〈P−

i P
+
j 〉 〈P−

i σ
−
j 〉

〈σ+
i σ

+
j 〉 〈σ+

i P
−
j 〉 〈P−

i σ
+
j 〉 〈P−

i P
−
j 〉




. (5.3)

Here P±
i = (I±σ3,i)/2, σ±

i = (σ1,i±σ2,i)/2 and each element of the density matrix

represents the expectation value of of the operator indicated. For instance, 〈σ−
i P

−
j 〉

is given by

〈σ−
i P

−
j 〉 = Tr{ρI ⊗ I · · ·σ−

i ⊗ I · · ·P−
j ⊗ I · · · }. (5.4)

Now assuming that the Hamiltonian under which the system evolves is symmet-

ric under the transformation σ1,2 → −σ1,2, which amounts to a π rotation about

the z-axis, we see that P±
i → P±

j and σ±
j → −σ±

j . Since the reduced density matrix

is also invariant under this transformation, the off-diagonal terms with a single σ±
i,j

are zero and we get,

ρij =




〈P+
i P

+
j 〉 0 0 〈σ−

i σ
−
j 〉

0 〈P+
i P

−
j 〉 〈σ−

i σ
+
j 〉 0

0 〈σ+
i σ

−
j 〉 〈P−

i P
+
j 〉 0

〈σ+
i σ

+
j 〉 0 0 〈P−

i P
−
j 〉




. (5.5)

Examples of Hamiltonians invariant under such transformations include

H(t) = −
∑

〈i,j〉
(σ1,iσ1,j) + hz

∑

i

σ3,i (5.6)

H(t) = −
∑

〈i,j〉
(σ1,iσ1,j + σ2,iσ2,j) + ∆σ3,iσ3,j . (5.7)

The first is the Hamiltonian of the so-called transverse Ising model and the second is

the Hamiltonian for the XXZ model [77]. We note that 〈i, j〉 stands for summation

over nearest neighbors.
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Having motivated the density matrix, let us look at some correlation properties

of Eq. (5.2) by looking at specific examples. An example of two-qubit X states are

the Bell states. These states are maximally entangled states and are given by

|Φ+〉〈Φ+| = 1

2




1 0 0 +1

0 0 0 0

0 0 0 0

+1 0 0 1




, (5.8)

|Φ−〉〈Φ−| = 1

2




1 0 0 −1

0 0 0 0

0 0 0 0

−1 0 0 1




, (5.9)

|Ψ+〉〈Ψ+| = 1

2




0 0 0 0

0 1 +1 0

0 +1 1 0

0 0 0 0




, (5.10)

|Ψ−〉〈Ψ−| = 1

2




0 0 0 0

0 1 −1 0

0 −1 1 0

0 0 0 0




. (5.11)

The maximally mixed state ρ = I/4 is also an example of an X state. Werner

states, a single parameter family of states are defined as ρ = (1−p)I/4+p|Ψ+〉〈Ψ+|.

These states are known to be entangled for p > 1/3. Furthermore, a measure of

quantum correlations that is different than entanglement, namely discord, varies

smoothly from 0 to 1 as p is varied from 0 to 1 [6]. Bell diagonal states, defined as

ρ = x|Ψ+〉〈Ψ+| + y|Ψ−〉〈Ψ−| + z|Φ+〉〈Φ+| + (1 − x − y − z)|Φ−〉〈Φ−|, is a three-
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parameter family of states whose correlation properties have been studied before.

These are clearly a three-parameter subset of X states.

Hence X states serve to describe fairly general correlation properties. When en-

tanglement is studied, X states vary from maximally entangled states to maximally

mixed states. X states also have been shown to exhibit fairly general behavior in

terms of quantum discord.

5.3 Algebraic Characterization of Two-Qubit X

States

Once again, let us consider the two qubit X state, given by Eq. (5.2). Such a state

can be written in terms of the standard two-qubit Pauli basis as

ρ =
1

4
(I +

7∑

i=1

giXi). (5.12)

Here, the operators X1 = σ3τ3, X2 = σ2τ1, X3 = τ3, X4 = −σ2τ2, X5 = σ1τ2,

X6 = σ3 and X7 = σ1τ1. It is convenient to also define X0 = I. The coefficients gi

are related to the elements of the density matrix ρij and are explicitly given by

g1 = (ρ11 + ρ44)− (ρ22 + ρ33), (5.13)

g2 = 2i(ρ14 − ρ41) + 2i(ρ32 − ρ23), (5.14)

g3 = (ρ11 − ρ44)− (ρ22 − ρ33), (5.15)

g4 = 2(ρ14 + ρ41)− 2(ρ32 + ρ23), (5.16)

g5 = 2i(ρ14 − ρ41)− 2i(ρ32 − ρ23), (5.17)

g6 = (ρ11 − ρ44) + (ρ22 − ρ33), (5.18)

g7 = 2(ρ14 + ρ41) + 2(ρ32 + ρ23). (5.19)

These seven operators are closed both under multiplication and commutation. The

multiplication( Clifford4 ) table is given by table (5.1),

4William Clifford(1845-1879)
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TABLE 5.1. Multiplication (Clifford) table for su(2)×u(1)×su(2).

∗ X0 X1 X2 X3 X4 X5 X6 X7

X0 X0 X1 X2 X3 X4 X5 X6 X7

X1 X1 X0 X5 X6 X7 X2 X3 X4

X2 X2 X5 X0 iX4 −iX3 X1 iX7 −iX6

X3 X3 X6 −iX4 X0 iX2 −iX7 X1 iX5

X4 X4 X7 iX3 −iX2 X0 iX6 −iX5 X1

X5 X5 X2 X1 iX7 −iX6 X0 iX4 −iX3

X6 X6 X3 −iX7 X1 iX5 −iX4 X0 iX2

X7 X7 X4 iX6 −iX5 X1 iX3 −iX2 X0

while the commutator (Lie) table is given by table (5.2).

TABLE 5.2. Commutation (Lie) table for su(2)×u(1)×su(2).

[ , ] X0 X1 X2 X3 X4 X5 X6 X7

X0 0 0 0 0 0 0 0 0

X1 0 0 0 0 0 0 0 0
X2 0 0 0 2iX4 −2iX3 0 2iX7 −2iX6

X3 0 0 −2iX4 0 2iX2 −2iX7 0 2iX5

X4 0 0 2iX3 −2iX2 0 2iX6 −2iX5 0

X5 0 0 0 2iX7 −2iX6 0 2iX4 −2iX3

X6 0 0 −2iX7 0 2iX5 −2iX4 0 2iX2

X7 0 0 2iX6 −2iX5 0 2iX3 −2iX2 0

Besides X0 = I( which commutes trivially with any operator), one operator

namely X1 commutes with all other operators. This implies that the seven opera-

tors that characterize the two-qubit X state are closed under a su(2)×u(1)×su(2)

algebra with X1 serving as the u(1) element. Once we have understood the alge-

braic characterization of the operators that define the X state, we can generalize

the definition of two-qubit X state as a state characterized not by these seven spe-

cific operators, but by the sub-algebra of su(4) namely su(2)×u(1)×su(2). Each

family of X states is now characterized by the commuting element. This definition

yields many different types of X states with distinct correlation properties. In fact,

each of the fifteen operators that form the two-qubit Pauli basis commutes with
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six other operators. Thus, there are fifteen distinct su(2)×u(1)×su(2) sub-algebras

in su(4), each characterized by the operator that forms the commuting element.

For the reminder of this section, we will consider examples of two-qubit X states

that differ from the one presented in Eq. (5.2).

An alternative set of seven operators that close under the su(2)×u(1)×su(2)

sub-algebra of su(4) are given by X1 = σ1τ1, X2 = σ3τ2, X3 = τ1, X4 = −σ3τ3,

X5 = σ2τ3, X6 = σ1 and X7 = σ2τ2. This sub-algebra is characterized by X1 as the

commuting element and represents another X state, given by Eq. (5.12), written

explicitly as

ρ =
1

4




1− g4 g3 − ig2 g6 − ig5 g1 − g7

g3 + ig2 1 + g4 g1 + g7 g6 + ig5

g6 + ig5 g1 + g7 1 + g4 g3 + ig2

g1 − g7 g6 − ig5 g3 − ig2 1− g4




. (5.20)

Another example is given by the set of operators σ3, ~τ and σ3 ⊗ ~τ . These seven

operators yield a density matrix that is block diagonal and looks explicitly like

ρ =




ρ11 ρ12 0 0

ρ21 ρ22 0 0

0 0 ρ33 ρ34

0 0 ρ43 ρ44




. (5.21)

Hence X states can have either all of the elements of the density matrix being

non-zero or can have their non-zero elements present not just along the diagonal

and the anti-diagonal of the density matrix.

We will conclude this section by briefly presenting an abstract interferometric

scheme to generate two-qubit X states from two copies of arbitrary density ma-

trix ρ. In the above examples, the commuting element was given by X1. This
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operator commutes with the seven operators (including itself) that are in the

su(2)×u(1)×su(2) sub-algebra and anticommutes with the other 8. This means

that the operation XρX† will switch the sign of those elements of the density

matrix that are not in the sub-algebra. Hence the combination (ρ+XρX†)/2 rep-

resents a prescription that adds to ρ, a unitarily transformed copy of itself to yield

an X state.

5.4 Algebra of X States and Projective

Geometry

Consider once more, the sub-algebra su(2)×u(1)×su(2) of su(4). The seven oper-

ators involved close both under commutation and multiplication and the corre-

sponding tables were presented in the last section. In this section, we will present

a compact way to represent this algebra in terms of seven points and seven lines.

These seven points correspond to the seven operators in the sub-algebra whereas

each of the seven lines connect three operators and represent both their multipli-

cation and commutation tables in a compact way. Such a diagram is presented

in Fig. (5.2) below. Note that the circle inscribed in the triangle is taken to be a

“line” as well. Each line with an arrow is used to represent the rule that product

of any two operators is the third operator, while if the order of the product is

taken against the arrow, the third operator is accompanied by a minus sign. The

figure represented above, without the arrows, is the finite projective plane with

the smallest number of points and lines possible and is called a Fano5 plane. A

projective plane is a set of lines and points such that any two lines meet at a point,

any two points are connected by a unique line and that there exist at least four

points, no three of them that belong on the same line. The number of points equals

5Gino Fano(1871-1952)
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FIGURE 5.2. The multiplication and commutation table of the su(2)×u(1)×su(2) sub-
-algebra represented diagrammatically using seven points and seven lines.The product
of any two operators connected by a line is the third operator. When the line is arrowed,
the product of any two operators is represented by ±1 times the third operator, +1 being
assigned along the arrow. The commutator is simply worked out from this rule. The or-
der of operation does not matter when the lines are not arrowed. Hence, these operators
commute and the commutator of any two operators is zero. The figure with seven lines
and seven points presented is called a Fano plane. Note that σ1τ2 is represented as X1Y2

in the diagram for clarity.

the number of lines for a finite projective plane geometry. This number is given by

1 + n+ n2 where n is called the order of the finite projective plane geometry [24].

The smallest such diagram has seven lines and points and is said to be a finite

projective plane of order 2( since 1 + 2 + 22 = 7). This figure allows calculations

such as partial transposition (used to compute negativity) and the product ρσ2τ2ρ
∗

(used to compute concurrence) to be performed by inspection. We emphasize again

that the diagram represents multiplication and commutation relations of a set of

seven operators that are closed under the su(2)×u(1)×su(2) and hence represents

many families of X states, each characterized by their commuting elements.

Finally, we note that the connection between finite geometry and algebra is a

well established one. For instance, the non-associative non-commuting extension
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TABLE 5.3. Multiplication (Clifford) table for octonions.

∗ e1 e2 e3 e4 e5 e6 e7

e1 −1 e4 e7 −e2 e6 −e5 −e3
e2 −e4 −1 e5 e1 −e3 e7 −e6
e3 −e7 −e5 −1 e6 e2 −e4 e1
e4 e2 −e1 −e6 −1 e7 e3 −e5
e5 −e6 e3 −e2 −e7 −1 e1 e4
e6 e5 −e7 e4 −e3 −e1 −1 e2
e7 e3 e6 −e1 e5 −e4 −e2 −1

of the algebra of quaternions are known as octonions. Octonions [9] are the last of

the so-called “consistent arithmetics”, the other three being reals, complex num-

bers and quaternions. While reals and complex numbers are ubiquitous in physics,

quaternions have proven useful in discussing classical physics and quantum me-

chanics. Octonions are somewhat less used in physics. There are seven of them and

are denoted by e1 − e7 and their multiplication table is given in table (5.3). These

operators can be represented in terms of a Fano plane as well, but owing to the

symmetry of all octonions, all lines are now arrowed. Such a diagram is represented

in Fig. (5.3).

5.5 Conclusions

In this chapter, we introduced a family of states called X states. Bell states, Werner

states and Bell-diagonal states are examples of two-qubit X states. These states

were physically motivated in a variety of contexts from spin chains to atomic

physics. We analyzed the algebra of a set of operators that were used as a basis to

write these states. This algebra was shown to be the su(2)×u(1)×su(2) sub-algebra

of su(4). Furthermore, we noted that both the multiplication and commutation

tables for this sub-algebra can be represented diagrammatically in terms of seven

lines and seven points. This diagram involving seven lines and seven points is a

finite projective plane with the smallest number of points (and lines) and is known
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FIGURE 5.3. The multiplication table of octonions represented diagrammatically using
seven points and seven lines, with arrows on each line to indicate that when two octonions
are considered such that they run along the arrow on a line, their product is the third
octonion on the line. When the order of the product runs against the arrow, a minus
sign accompanies the product, which is the third octonion on the line. The figure with
seven lines and seven points presented is called a Fano plane.

as a Fano plane. Finally, we noted that this connection between algebra and finite

geometry is a well known one and presented a related example of presenting the

algebra of octonions in terms of the Fano plane as well.

In the next chapter, we will extend these parametric family of X states beyond

two qubits to N qubits. We will present both the algebra of these N -qubit X-states

and a diagrammatic representation of the operators involved in defining N -qubit

X states in terms of simplexes, which are generalizations of triangles.
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Chapter 6
X States for N Qubits

“Geometry is not true, it
is advantageous.”

Henri Poincaré(1854-1912)

6.1 Introduction

1 In the previous chapter, we introduced X states for two qubits and presented the

connection of the algebra of these states to the Fano plane. In this chapter, we will

reintroduce two-qubit X states in a new notation that will allow us to generalize

these family of states to N qubits. One of the key motivations for studying N -

qubit states is to study multipartite entanglement. Entanglement is a key feature

of multipartite quantum systems and has been studied as a resource in varied fields

such as computing [64], teleportation [13], metrology [23], secret sharing [44] and

imaging [87]. Consequently, the characterization and the evolution of multipartite

entanglement have generated a lot of interest in recent years.

One question concerns the transformation between any two multipartite states.

This question is related to the number of entanglement classes that exist for a given

N -qubit state. There is only one class of two-qubit states since it is well known

that a Bell state can be probabilistically transformed to any two-qubit state via

stochastic local operations and classical communication through which we define

equivalence classes [64]. This is not true for a more general multipartite state. For

instance, three-qubit pure states can be classified into two classes [32], three-qubit

1This chapter is based on [96]
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mixed states can be classified into four separate classes [3] and four-qubit states

into nine [92]. We will elaborate on this point below.

For two qubits, the Werner state [98] is an example of a one-parameter family

that encompasses both separable and entangled states. The Bell-diagonal states

are a three-parameter family of states which have maximally mixed marginals

[56]. All these are subsets of a seven-parameter family, called X states, that occur

in a variety of contexts such as entanglement and its decay under decoherence [102]

and in describing other quantum correlations besides entanglement such as discord

[6]. They were defined [102] for two-qubit systems as states whose density matrix

has non-zero elements only along its diagonal (three real parameters) and anti-

diagonal (two complex parameters) in resemblance to the letter X. Recently [70],

an algebraic characterization was provided based on the symmetries of the sub-

algebra of the states and operators involved as discussed in chapter 5. Extending

this algebraic characterization to N -qubit X states, we present several aspects of

the algebra of the operators involved and some applications.

These alternative subsets of seven X states describe a wide variety of physics in

quantum information while still restricted to about half the number of parameters

(7 vs. 15) of the general two-qubit system. This restriction helps to calculate entan-

glement and other correlations analytically [6, 71], allowing for more insight than

numerical computations. It can be expected, therefore, that for N qubits, with an

exponential increase in the number of parameters, that similar subsets of N -qubit

X states with fewer parameters but still embracing most of the phenomena of

interest will be worth studying. We develop such a description here.

Before turning to geometric and group theoretic structures of the states and

operators involved, note from the elementary viewing as discussed in chapter 5 for

N = 2 of the density matrix in the form of the letter X, that 2N−1 real parameters
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along the diagonal and 2N−1 complex values on the anti-diagonal add to a total of

2N+1 − 1 real parameters in the X state. In terms of a 2N -level system in atoms,

molecules or quantum optics, degeneracies and selection rules that restrict the

couplings also lead to a consideration of such X states.

In the next section, we will rewrite two-qubit X states in a way that will allow

is to generalize it to N qubits. We will then present a diagrammatic representation

for the algebra that characterizes N -qubit X states and discuss the example of

three-qubit X states in explicit detail. We will finally conclude the chapter by

talking about detecting different kinds of entanglement with X states.

6.2 Algebraic Characterization of Two-Qubit X

States

A two-qubit system is the simplest model to study entanglement. Its 16 operators

form a group under multiplication and commutation. A suitable representation

involves Pauli matrices and was presented in [69] and in chapter 3. We will use

the notation whereby σx ⊗ τz is written as X1Z2. With this notation, two-qubit X

states can be rewritten as

ρ =
1

22

22−1∑

i=0

(diD̂i + aiÂi). (6.1)

Here D̂i stands for the operator obtained by replacing 0 with I and 1 with Z in

the binary rendering of i. The operator Âi is obtained by replacing similarly 0 with

X and 1 with Y . For example, since the number 2 is represented in binary as 10,

we have D̂2 = I1Z2 = Z2. Similarly, Â2 = X1Y2. Note that since Tr(ρ) = 1, the

coefficient d0 = 1.

The two-qubit density matrix ρ is Hermitian which implies that {ai, di} are real.

Various choices of the coefficients lead to different states that are of interest. For

instance, the Bell density matrix |Φ+〉〈Φ+| corresponds to d3 = a0 = 1, a3 = −1
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and d1 = d2 = a1 = a2 = 0. The Werner state [98] is given by |ψ〉 = 1−p
4
I1I2 +

p|Φ+〉〈Φ+|. The choice a1 = a2 = d1 = d2 = 0 corresponds to the general Bell-

diagonal state, characterized by the three non-zero coefficients (a0, a3, d3), and has

been studied in the context of quantum correlations and decoherence [56].

Two-spin X states arise in various physical systems. In [18], the authors consid-

ered entanglement of an atom interacting with a quantized electromagnetic field.

In [80], the author studied X states in condensed matter systems for the role of

quantum correlations in driving a quantum phase transition. In [102], the authors

studied the evolution of entanglement in X states that were subject to spontaneous

emission. They showed that X states preserve their form under general forms of

decoherence [102] and that some disentangle at finite time. In [71], it was shown

that this “sudden death of entanglement” can be hastened, delayed or averted by

using local operations.

6.3 Connection to Geometry

We will use the notation from convex geometry whereby the m-face of an N -

dimensional polytope refers to an m-dimensional sub-polytope [27]. Also, the N -

simplex is an N -dimensional polytope with N+1 vertices, an example of which in

two dimensions is the triangle. With this notation, we see that the operators of

G2 are associated with three 0-faces (vertices), three 1-faces (edges) and one 2-face

(the “face” of the triangle) of a 2-simplex. These definitions will be generalized to

understand the diagram related to N -qubit X states in the next section. Motivated

by the two-qubit X state, we introduce the N -qubit generalization of X states as

ρ =
1

2N

2N−1∑

i=0

(diD̂i + aiÂi). (6.2)

As before, {ai, di} are real and d0 = 1. Note that the commuting elements for the

N -qubit X state are given by
(
N
2

)
operators ZiZj where i 6= j and i, j = 1 . . .N ,
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plus
(
N
4

)
quadruple products ZiZjZkZl, etc., for a total of 2N−1 − 1 U(1) oper-

ators. The larger set of 2N operators D̂i that includes all products of Zi com-

mute with each other, but not with all the operators Âi as do the U(1) ele-

ments. The invariance group for N -qubit X states GN is iteratively constructed

from that of the (N -1)-qubit X state by concatenation: GN = GN−1×U(1)×GN−1.

For example, G1 is the SU(2) group of a single qubit X state , the two-qubit X

state is given by G2 =SU(2)×U(1)×SU(2), and the three-qubit X state is given

by G3=SU(2)×U(1)×SU(2)×U(1)×SU(2)×U(1)×SU(2) consisting of 15 operators,

three of them, the U(1) elements ZiZj , commuting with every member of the set

of fifteen. GN includes 2N−1 SU(2)s in its total of 2N+1−1 operators. In projective

geometry, it corresponds to PG(N ,2), generalizing the Fano plane for two qubits.

In the related subject called design theory [15], it is called a 2 − (2N+1 − 1, 3, 1)

design.

This approach extends to the geometry of the operators involved. First, a general

single qubit state is trivially an X state. The three Pauli operators involved in

defining this state (besides the unit operator) can be associated with the two

endpoints X and Y of a line and the center Z of the line: see bottom line of Fig.

6.4. Such a line is a 1-simplex, whose two 0-faces and one 1-face are associated

with the operators involved in defining a single-qubit X state. Next, the triangle

involved in defining the two-qubit X state can be thought of as the addition of a 0-

face (third vertex). The addition of this 0-face Z2, and simultaneously multiplying

by Y2 (or alternatively X2) the end-points of the initial 1-simplex that forms the

base of the triangle, brings in two additional 1-faces (vertices) and one 2-face (in-

center Z2Z1). The density matrix of the X state can now be written as a sum over

the seven 4 × 4 matrices as noted in [70] and chapter 5. Fig. 1 of that reference,

now incorporated as the base of the tetrahedron in Fig. 6.4, renders compactly the
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states, operators and multiplications between them so that all manipulations and

calculations of two-qubit X states reduce to inspection.

6.4 Extension to N-Qubits

In this manner, the operators {D̂i, Âi} of an N -qubit X state can be constructed

by adding a 0-face to the (N -1)-simplex describing the (N -1)-qubit X state. The

number of m-faces of an N -simplex is given by
(
N+1
m+1

)
. The sum of all m-faces for

m ≤ N is
∑N+1

m=0 = 2N+1−1. These number counts agree with the ones given above

of the SU(2) and U(1) operators. Hence, we can associate the states and operators

of generalized X states with the m-faces of an N -simplex.

As an example, we consider in detail the three-qubit X states, written explicitly

as

ρ =
I1I2I3
8

+
1

8
(d1Z1 + d2Z2 + d3Z1Z2 + d4Z3 + d5Z1Z3

+d6Z2Z3 + d7Z1Z2Z3)

+
1

8
(a0X1X2X3 + a1Y1X2X3 + a2X1Y2X3 + a3Y1Y2X3 + a4X1X2Y3 + a5Y1X2Y3

+a6X1Y2Y3 + a7Y1Y2Y3).(6.3)

The 15 operators involved may be identified with the four vertices, mid-points of

six edges, four face-centers and one body center of a tetrahedron. This diagram is

given in the two figures presented.

As in the case of two-qubit X states, different choices of the parameters {ai, bi}

lead to different states that are of physical interest. The choice of d4 = 1 = d5 =

d6 = a0 = 1, a3 = a5 = a6 = −1 and the other parameters equal to zero cor-

responds to a GHZ state [38]. Tracing over any subsystem of this density matrix

yields a completely mixed state.

There are three commuting elements now, namely Z1Z2, Z2Z3 and Z1Z3, instead

of just one for a two-qubit X state. Any two of these are the so-called stabilizers
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FIGURE 6.1. The tetrahedron or 3-simplex associated with three-qubit X states. In this
figure, the 15 operators in Eq. (6.3) are identified with the points of the simplex(vertices,
mid-points of edges, face centers and body center of the tetrahedron). For clarity, only
a few points are labeled.

FIGURE 6.2. The tetrahedron or 3-simplex associated with three-qubit X states. The
same tetrahedron in Fig. 6.4 is opened out into a planar diagram in (b), resulting in
the vertex associated with D̂4 repeated three times. Six lines connecting pairs of face
centers and all seven lines through the body center are omitted for clarity. Arrowed lines
connecting three operators denote that the product of any two gives the third operator
in a cyclic fashion, with a multiplicative ±i. Unarrowed lines denote the product of any
two as the third operator, regardless of the order.
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of the GHZ state (since the product of any two is the third operator). As with two

qubits [70], other choices of commuting operators yield different classes of tripartite

X states. Specifically, the choice of Y1Y2, Y2Y3 and Y1Y3 yields an X state all of

whose elements are non-zero, a generalization of a similar two-qubit example in

[70]. This matrix is explicitly written as

ρ =
1

8




1 + a0 a1 − id1 a2 − id2 a3 − d3 a4 − id4 a5 − d5 a6 − d6 a7 + id7
a1 + id1 1 − a0 a3 + d3 −a2 − id2 a5 + d5 −a4 − id4 a7 − id7 −a6 − d6
a2 + id2 a3 + d3 1 − a0 −a1 − id1 a6 + d6 a7 − id7 −a4 − id4 −a5 − d5
a3 − d3 −a2 + id2 −a1 + id1 1 + a0 a7 + id7 −a6 + d6 −a5 + d5 a4 − id4
a4 + id4 a5 + d5 a6 + d6 a7 − id7 1 − a0 −a1 − id1 −a2 − id2 −a3 − d3
a5 − d5 −a4 + id4 a7 + id7 −a6 + d6 −a1 + id1 1 + a0 −a3 + d3 a2 − id2
a6 − d6 a7 + id7 −a4 + id4 −a5 + d5 −a2 + id2 −a3 + d3 1 + a0 a1 − id1
a7 − id7 −a6 − d6 −a5 − d5 a4 + id4 −a3 − d3 a2 + id2 a1 + id1 1 − a0


 .

(6.4)

Tracing over any one of the qubits now yields a reduced density matrix whose

coherences are non-zero unlike in the previous paragraph. We will return to the

importance of this result below.

Consider a GHZ state shared between three parties, Alice, Bob and Charlie. A

GHZ state (|000〉 + |111〉)/
√
2 that is subject to a fairly general model of deco-

herence ( such as amplitude damping, phase damping, or spontaneous emission)

involves all the operators in Eq. (6.3) and hence evolves as a three-qubit X state.

Alternatively, a GHZ state may be defined as (| + ++〉 + | − −−〉)/
√
2, where

|±〉 = (|0〉 ± |1〉)/
√
2. While the first definition corresponds to the commuting el-

ements ZiZj, the latter definition corresponds to the commuting elements XiXj(a

similar result pertains to YiYj). Note that the two definitions of the GHZ state

are related by local unitary transformations. If the qubit held by Alice is now

traced over, it can be verified that the remaining two-qubit state has no entangle-

ment. But, as the coherences of the two-qubit density matrix are non-zero, there

are non-classical correlations that are present between Bob and Charlie that can

be quantified by a measure of quantum correlations such as quantum discord [43].

Hence X states characterized by different commuting elements can have drastically
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different correlation properties in their marginals. These non-classical correlations

may provide speedup for certain tasks [50].

6.5 Witnessing Entanglement in X States

Multipartite entanglement involves exploring entanglement in quantum systems

composed of several qudits (D-level systems). The goal in enumerating “types” of

multipartite entanglement involving qubit subsystems is to understand classes of

states in-equivalent under stochastic local operations and classical communication

(SLOCC). While in two-qubit systems, states are either entangled or separable, in

three-qubit systems, there can be four distinct classes of entanglement. These four

classes can be identified by inspection( for a detailed derivation, see [32]). The first

relates to product states in all three qubits. Such states are separable states in all

three physical qubits, examples of which are states of the form |ψ〉 ⊗ |ϕ〉 ⊗ |χ〉.

The second class of states is actually three classes of states that belong in an

equivalence class. States that are entangled in two of the three physical qubits

belong in this class. States of the type |Φ+〉 ⊗ |0〉 are examples of these so called

“biseparable states”. The three classes in this biseparable class stated earlier refer

to states of the form AB-C, AC-B and BC-A, where AB-C refers to a bipartite

entangled state in AB in a product state with respect to C. Having examined

separable and biseparable states, the only set of states yet to be classified belong

to states not separable with respect to any one qubit. In this set of states, two

in-equivalent classes exist. The way to see that is to note that |W 〉 = (|001〉 +

|010〉 + |100〉)/
√
3 cannot be written as a sum of two product terms. Hence |W 〉

cannot be converted to |GHZ〉 by SLOCC alone. Hence there are four classes ,

namely GHZ, W, biseparable and separable classes of three qubit pure states. Each

of these classes can be extended to mixed states as well [2].
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Given that multipartite entanglement is characterized by different classes of

entanglement, it is desirable to determine whether a given state belongs in a given

class of entanglement or not. One simple way of doing this is through the use of

“entanglement witnesses” [41]. Given a class of entangled states C, an operator

W is called an entanglement witness if ∀ρ 6∈ C, tr(Wρ) = 0 and for at least

one ρ′ ∈ C, tr(Wρ′) < 0. Such entanglement witnesses have been constructed for

many classes of entanglement. To detect different types of entanglement in three

and four qubits, we consider witness operators that detect GHZ-type entanglement,

W-type entanglement and the witness corresponding to symmetric Dicke states [41]

for N = 3, 4 qubits. N -qubit X states characterized by products of Z operators

as in Eq.(6.3) are readily seen to possess GHZ-type entanglement for arbitrary N.

Consider an X state characterized by products of X operators with a0 = a3 = a5 =

a6 = d1 = d2 = d4 = d7 = 0 and −a1 = −a2 = −a4 = a7 = d3 = d5 = d6 = 1. For

this state, Tr(W3ρ) = 3/4 where W3 is the three-qubit W state. Thus the witness

operator 2I/3 −W3 detects W-type entanglement in this state. Furthermore, the

four-qubit X state characterized by products of X operators with d1 = d2 = d4 =

d7 = d8 = d11 = d13 = d14 = a1 = a2 = a4 = a7 = a8 = a11 = a13 = a14 = 0 and

d3 = d5 = d6 = d9 = d10 = d12 = d15 = a0 = −a3 = −a5 = −a6 = −a9 = −a10 =

−a12 = a15 = 1 is a state with 〈D2,4|ρ|D2,4〉 = 3/4. Here |D2,4〉 is the symmetric

Dicke state2 and 2I/3− |D2,4〉〈D2,4| detects entanglement of the symmetric Dicke

type in the given four-qubit X state.

6.6 Conclusions

In summary, we have introduced a family of states called X states for N qubits

analogous to those discussed for N = 2, and have characterized them by a set of

2|D2,4〉 = (|0011〉 + |0101〉 + |0110〉 + |1001〉 + |1010〉 + |1100〉)/
√
6. For details see [41].
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commuting operators. The algebra of the operators involved defines the family of

states and also serves to describe operations on them. We have also presented a

scheme for this algebra in terms of N -simplexes. Various entanglement witnesses

were shown to detect entanglement in these states.
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Chapter 7
Conclusions

“Let this be my last word,
that I trust in your love.”-
Rabindranath
Tagore(1861-1941)

Quantum theory has been an active area of investigation for over a century now.

Much of this investigation is devoted to understanding various branches such as

atomic, molecular and optical systems and the interactions between them. Specific

problems in quantum theory have benefited from the perspectives offered by other

branches of study. Quantum information theory represents one such perspective

wherein the answers sought( and the techniques employed to find these answers

) have been influenced by computer science. Algebra and geometry, central to

understanding both quantum theory and computer science have also been central

to quantum information theory for this reason.

This thesis documents the solutions to specific problems in quantum informa-

tion theory by employing techniques of algebra and geometry. The first part of the

thesis (consisting of chapters 2-4 ) dealt with a semi-analytic technique to solve

operator equations in quantum mechanics. This technique, called unitary integra-

tion, separates the non-commuting nature of the operators, a hallmark of quantum

mechanics, from the dynamical equations that determine the evolution of systems.

By doing this, the geometry of the evolution operator for three-level systems was

explored. Specific applications of this solution to geometric phases and other ap-

plications in quantum optics and atomic physics were explored. The second part of

the thesis ( consisting of chapters 5-6 ) dealt with a class of N -qubit states called

98



X states. These states are parametrized by 2N+1 − 1 parameters and is defined by

an equal number of operators. These 2N+1 − 1 operators are closed in an algebra.

This algebra was explored and was represented geometrically by N -simplexes and

connections to other branches of study were presented.

Clearly, there are many interesting and unanswered questions that remain in

this field of investigation. For instance, the connection of geometry as explored by

unitary integration to entanglement is an open question. A measure of entangle-

ment derived from such a geometric picture would be geometrically and intuitively

appealing. Exploration of the geometry of unitary operators belonging to other

unitary groups is also an unexplored area of interest. though we have established

a class of N qubit states, there are many interesting questions that are yet to be

answered. Analytic formulae for multipartite entanglement and quantum discord

of multi-qubit systems [94] have to be derived in order to put these parametric

family of states to use in quantum information.
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Appendix A
Some Algebras, Sub-Algebras and
Groups Behind it all is surely an

idea so simple, so
beautiful, that when we
grasp it - in a decade, a
century, or a millennium -
we will all say to each
other, how could it have
been otherwise? How could
we have been so stupid?-
John Wheeler(1911-2008)

We enumerate the algebra of su(2), su(3) and su(4) with some sub-algebras. For

a detailed introduction to group theory, we refer the readers to [7, 36, 55].

su(2)

The su(2) algebra is defined by the three Pauli matrices σi given by

σ1 =




0 1

1 0


 , (7.1)

σ2 =




0 −i

i 0


 , (7.2)

σ3 =




1 0

0 −1


 . (7.3)

These three matrices, along with the unit matrix I are a basis. These matrices

are closed with respect to multiplication and commutation.

The algebra can be written compactly as [σi, σj ] = 2iεijkσk where εijk is the

completely antisymmetric symbol with three indices. Exponentiation of these ma-

trices generates the SU(2) group. A typical element of the SU(2) group1 can be

1we use the standard notation of using lowercase to denote algebras and uppercase to denote groups
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TABLE 7.1. Multiplication table for su(2) algebra

∗ I σ1 σ2 σ3

I I σ1 σ2 σ3
σ1 σ1 I iσ3 −iσ2
σ2 σ2 −iσ3 I iσ1
σ3 σ3 iσ2 −iσ1 I

TABLE 7.2. Commutation table for su(2) algebra

[, ] I σ1 σ2 σ3

I 0 0 0 0

σ1 0 0 2iσ3 −2iσ2
σ2 0 −2iσ3 0 2iσ1
σ3 0 2iσ2 −2iσ1 0

written as U = e−iθ1σ1e−iθ2σ2e−iθ3σ3e−iθ0I . Note that U †U = I. Any one of the

Pauli matrices and the unit matrix forms a sub-algebra of the su(2) algebra. For

instance, I, σ3 is a u(1) sub-algebra of su(2) and hence e−iθσ3 is a U(1) subgroup

of SU(2).

su(3)

We use the standard Gell-Mann basis for three-level systems. They are given by

I =




1 0 0

0 1 0

0 0 1




;λ1 =




0 1 0

1 0 0

0 0 0




;λ2 =




0 −i 0

i 0 0

0 0 0



.

λ3 =




1 0 0

0 −1 0

0 0 0




;λ4 =




0 0 1

0 0 0

1 0 0




;λ5 =




0 0 −i

0 0 0

i 0 0



.

λ6 =




0 0 0

0 0 1

0 1 0




;λ7 =




0 0 0

0 0 −i

0 i 0




;λ8 =
1√
3




1 0 0

0 1 0

0 0 −2



.

(7.4)
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These matrices are Hermitian and obey Tr(λiλj) = 2δij . Like su(2) algebra, the

commutation relations between different Gell-Mann matrices is given by [λi, λj] =

2ifijkλk. Here fijk is completely antisymmetric with f123 = 1, f147 = f165 = f246 =

f257 = f345 = f376 = 1/2, and f458 = f678 =
√
3/2.

su(4)

su(4) algebra is represented in terms of the tensor product of two Pauli matrix

sets. The sixteen matrices are given by I = I ⊗ I, ~σ = ~σ ⊗ I, ~τ = I ⊗ ~τ and

~σ ⊗ ~τ . These sixteen operators are closed with respect to both multiplication and

commutation. The explicit matrix representations of operators proportional to the

sixteen matrices defined above are given in Eq. (7.5). Their multiplication table

is presented in table 7.5 and the commutation table of the sixteen operators is

presented in table 7.6.

Various sub-algebras can be identified from the tables presented upon inspec-

tion. Trivially, the matrices ~σ and ~τ form a su(2)⊗su(2) sub-algebra of su(4). The

operators {σ1τ1, σ2τ2, σ3τ3, σ1τ2, σ2τ1, σ3, τ3} are closed under a su(2)⊗u(1)⊗su(2)

sub-algebra. Note that there are many other sets of seven operators correspond-

ing to the operators that commute with any given operator that are also exam-

ples of the same sub-algebra. Similarly, the operators {O9 +O11, O10 + 2O12, O3 +

2O4, O5+2O7, O6+2O8, 2O13+2O14, 2O16−2O15, (2O2−O3+2O4)/
√
3} are closed

under a su(3) subalgebra of su(4). Finally, one can verify that the ten operators

{O2, O3, O5, O6, O11, O12, O13, O14, O15, O16} are closed under the so(5) sub-algebra

of su(4). Since so(n-1) ∈ so(n), we can also readily identify various so(4), so(3) and

so(2) sub-algebras of su(4).

A general SU(4) operator can hence be written as U = Π16
i=1e

iθiOi. All of the ma-

trices identified above as belonging to different sub-algebras immediately can be ex-
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ponentiated to yield various subgroups. Thus the subgroups SU(2)×U(1)×SU(2),

SU(3), SO(5) etc can be written down by exponentiating various matrices identified

as sub-algebras before.

The Algebra g3

The group GN was defined in chapter 6 iteratively as GN = GN−1 × U(1)× GN−1.

The algebra gN involves a set of 2N+1 − 1 operators. For N = 3, g3 is defined as

g3 =su(2)×u(1)×su(2)×u(1)×su(2)×u(1)×su(2). The 24 − 1 = 15 operators are

explicitly given by D̂0 = I, D̂1 = Z1, D̂2 = Z2, D̂3 = Z2Z1, D̂4 = Z3, D̂5 =

Z3Z1, D̂6 = Z3Z2, D̂7 = Z3Z2Z1, Â0 = X3X2X1, Â1 = X3X2Y1, Â2 = X3Y2X1,

Â3 = X3Y2Y1, Â4 = Y3X2X1, Â5 = Y3X2Y1, Â6 = Y3Y2X1 and Â7 = Y3Y2Y1.

Their multiplication table is presented in table 7.7 and their commutation table is

presented in table 7.8.
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TABLE 7.3. Multiplication table for su(3) algebra

∗ I λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

I I λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8
λ1 λ1

2I
3
+ λ8√

3
iλ3 −iλ2 λ6

2
+ iλ7

2
λ7

2
− iλ6

2
λ4

2
+ iλ5

2
λ5

2
− iλ4

2
λ1√
3

λ2 λ2 −iλ3 2I
3
+ λ8√

3
iλ1 −λ7

2
+ iλ6

2
λ6

2
+ iλ7

2
λ5

2
− iλ4

2
−λ4

2
− iλ5

2
λ2√
3

λ3 λ3 iλ2 −iλ1 2I
3
+ λ8√

3
λ4

2
+ iλ5

2
λ5

2
− iλ4

2
−λ6

2
− iλ7

2
−λ7

2
+ iλ6

2
λ3√
3

λ4 λ4
λ6

2
− iλ7

2
−λ7

2
− iλ6

2
λ4

2
− iλ5

2
2λ0

3
+ λ3

2
− λ8

2
√
3

iλ3

2
+ 1

2
i
√
3λ8

λ1

2
+ iλ2

2
−λ2

2
+ iλ1

2
− λ4

2
√
3
− 1

2
i
√
3λ5

λ5 λ5
λ7

2
+ iλ6

2
λ6

2
− iλ7

2
λ5

2
+ iλ4

2
− iλ3

2
− 1

2
i
√
3λ8

2I
3
+ λ3

2
− λ8

2
√
3

λ2

2
− iλ1

2
λ1

2
+ iλ2

2
− λ5

2
√
3
+ 1

2
i
√
3λ4

λ6 λ6
λ4

2
− iλ5

2
λ5

2
+ iλ4

2
−λ6

2
+ iλ7

2
λ1

2
− iλ2

2
λ2

2
+ iλ1

2
2I
3
− λ3

2
− λ8

2
√
3

1
2
i
√
3λ8 − iλ3

2
− λ6

2
√
3
− 1

2
i
√
3λ7

λ7 λ7
λ5

2
+ iλ4

2
−λ4

2
+ iλ5

2
−λ7

2
− iλ6

2
−λ2

2
− iλ1

2
λ1

2
− iλ2

2
iλ3

2
− 1

2
i
√
3λ8

2I
3
− λ3

2
− λ8

2
√
3

− λ7

2
√
3
+ 1

2
i
√
3λ6

λ8 λ8
λ1√
3

λ2√
3

λ3√
3

− λ4

2
√
3
+ 1

2
i
√
3λ5 − λ5

2
√
3
− 1

2
i
√
3λ4 − λ6

2
√
3
+ 1

2
i
√
3λ7 − λ7

2
√
3
− 1

2
i
√
3λ6

2I
3
− λ8√
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TABLE 7.4. Commutation table for su(3) algebra

[, ] I λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

I 0 0 0 0 0 0 0 0 0

λ1 0 0 2iλ3 −2iλ2 iλ7 −iλ6 iλ5 −iλ4 0
λ2 0 −2iλ3 0 2iλ1 iλ6 iλ7 −iλ4 −iλ5 0

λ3 0 2iλ2 −2iλ1 0 iλ5 −iλ4 −iλ7 iλ6 0

λ4 0 −iλ7 −iλ6 −iλ5 0 iλ3 + i
√
3λ8 iλ2 iλ1 −i

√
3λ5

λ5 0 iλ6 −iλ7 iλ4 −iλ3 − i
√
3λ8 0 −iλ1 iλ2 i

√
3λ4

λ6 0 −iλ5 iλ4 iλ7 −iλ2 iλ1 0 i
√
3λ8 − iλ3 −i

√
3λ7

λ7 0 iλ4 iλ5 −iλ6 −iλ1 −iλ2 iλ3 − i
√
3λ8 0 i

√
3λ6

λ8 0 0 0 0 i
√
3λ5 −i

√
3λ4 i

√
3λ7 −i

√
3λ6 0
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O1 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




;O2 =




1
2

0 0 0

0 1
2

0 0

0 0 −1
2

0

0 0 0 −1
2




;O3 =




1
2

0 0 0

0 −1
2

0 0

0 0 1
2

0

0 0 0 −1
2




;O4 =




1
4

0 0 0

0 −1
4

0 0

0 0 −1
4

0

0 0 0 1
4




O5 =




0 0 1
2

0

0 0 0 1
2

1
2

0 0 0

0 1
2

0 0




;O6 =




0 0 − i
2

0

0 0 0 − i
2

i
2

0 0 0

0 i
2

0 0




;O7 =




0 0 1
4

0

0 0 0 −1
4

1
4

0 0 0

0 −1
4

0 0




;O8 =




0 0 − i
4

0

0 0 0 i
4

i
4

0 0 0

0 − i
4

0 0




O9 =




0 1
2

0 0

1
2

0 0 0

0 0 0 1
2

0 0 1
2

0




;O10 =




0 − i
2

0 0

i
2

0 0 0

0 0 0 − i
2

0 0 i
2

0




;O11 =




0 1
4

0 0

1
4

0 0 0

0 0 0 −1
4

0 0 −1
4

0




;O12 =




0 − i
4

0 0

i
4

0 0 0

0 0 0 i
4

0 0 − i
4

0




O13 =




0 0 0 1
4

0 0 1
4

0

0 1
4

0 0

1
4

0 0 0




;O14 =




0 0 0 −1
4

0 0 1
4

0

0 1
4

0 0

−1
4

0 0 0




;O15 =




0 0 0 − i
4

0 0 i
4

0

0 − i
4

0 0

i
4

0 0 0




;O16 =




0 0 0 − i
4

0 0 − i
4

0

0 i
4

0 0

i
4

0 0 0




(7.5)
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TABLE 7.5. Multiplication table for su(4) algebra

∗ O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O16

O1 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O16

O2 O2
O1

4
O4

O3

4
iO6

2
− iO5

2
iO8

2
− iO7

2
O11 O12

O9

4
O10

4
iO16

2
− iO15

2
iO14

2
− iO13

2

O3 O3 O4
O1

4
O2

4
O7 O8

O5

4
O6

4
iO10

2
− iO9

2
iO12

2
− iO11

2
iO15

2
− iO16

2
− iO13

2
iO14

2

O4 O4
O3

4
O2

4
O1

16
iO8

2
− iO7

2
iO6

8
− iO5

8
iO12

2
− iO11

2
iO10

8
− iO9

8
−O14

4
−O13

4
O16

4
O15

4

O5 O5 − iO6

2
O7 − iO8

2
O1

4
iO2

2
O3

4
iO4

2
O13 O15 − iO16

2
− iO14

2
O9

4
iO12

2
O10

4
iO11

2

O6 O6
iO5

2
O8

iO7

2
− iO2

2
O1

4
− iO4

2
O3

4
O16 O14

iO13

2
iO15

2
− iO11

2
O10

4
− iO12

2
O9

4

O7 O7 − iO8

2
O5

4
− iO6

8
O3

4
iO4

2
O1

16
iO2

8
iO15

2
− iO13

2
O14

4
−O16

4
iO10

8
O11

4
− iO9

8
−O12

4

O8 O8
iO7

2
O6

4
iO5

8
− iO4

2
O3

4
− iO2

8
O1

16
iO14

2
− iO16

2
−O15

4
O13

4
O12

4
− iO9

8
−O11

4
iO10

8

O9 O9 O11 − iO10

2
− iO12

2
O13 O16 − iO15

2
− iO14

2
O1

4
iO3

2
O2

4
iO4

2
O5

4
iO8

2
iO7

2
O6

4

O10 O10 O12
iO9

2
iO11

2
O15 O14

iO13

2
iO16

2
− iO3

2
O1

4
− iO4

2
O2

4
− iO7

2
O6

4
O5

4
− iO8

2

O11 O11
O9

4
− iO12

2
− iO10

8
iO16

2
− iO13

2
O14

4
−O15

4
O2

4
iO4

2
O1

16
iO3

8
iO6

8
O7

4
−O8

4
− iO5

8

O12 O12
O10

4
iO11

2
iO9

8
iO14

2
− iO15

2
−O16

4
O13

4
− iO4

2
O2

4
− iO3

8
O1

16
O8

4
− iO5

8
iO6

8
−O7

4

O13 O13 − iO16

2
− iO15

2
−O14

4
O9

4
iO11

2
− iO10

8
O12

4
O5

4
iO7

2
− iO6

8
O8

4
O1

16
−O4

4
iO3

8
iO2

8

O14 O14
iO15

2
iO16

2
−O13

4
− iO12

2
O10

4
O11

4
iO9

8
− iO8

2
O6

4
O7

4
iO5

8
−O4

4
O1

16
− iO2

8
− iO3

8

O15 O15 − iO14

2
iO13

2
O16

4
O10

4
iO12

2
iO9

8
−O11

4
− iO7

2
O5

4
−O8

4
− iO6

8
− iO3

8
iO2

8
O1

16
O4

4

O16 O16
iO13

2
− iO14

2
O15

4
− iO11

2
O9

4
−O12

4
− iO10

8
O6

4
iO8

2
iO5

8
−O7

4
− iO2

8
iO3

8
O4

4
O1

16
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TABLE 7.6. Commutation Table for su(4) matrices

[, ] O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O16

O1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
O2 0 0 0 0 iO6 −iO5 iO8 −iO7 0 0 0 0 iO16 −iO15 iO14 −iO13

O3 0 0 0 0 0 0 0 0 iO10 −iO9 iO12 −iO11 iO15 −iO16 −iO13 iO14

O4 0 0 0 0 iO8 −iO7
iO6

4
− iO5

4
iO12 −iO11

iO10

4
− iO9

4
0 0 0 0

O5 0 −iO6 0 −iO8 0 iO2 0 iO4 0 0 −iO16 −iO14 0 iO12 0 iO11

O6 0 iO5 0 iO7 −iO2 0 −iO4 0 0 0 iO13 iO15 −iO11 0 −iO12 0

O7 0 −iO8 0 − iO6

4
0 iO4 0 iO2

4
iO15 −iO13 0 0 iO10

4
0 − iO9

4
0

O8 0 iO7 0 iO5

4
−iO4 0 − iO2

4
0 iO14 −iO16 0 0 0 − iO9

4
0 iO10

4

O9 0 0 −iO10 −iO12 0 0 −iO15 −iO14 0 iO3 0 iO4 0 iO8 iO7 0
O10 0 0 iO9 iO11 0 0 iO13 iO16 −iO3 0 −iO4 0 −iO7 0 0 −iO8

O11 0 0 −iO12 − iO10

4
iO16 −iO13 0 0 0 iO4 0 iO3

4
iO6

4
0 0 − iO5

4

O12 0 0 iO11
iO9

4
iO14 −iO15 0 0 −iO4 0 − iO3

4
0 0 − iO5

4
iO6

4
0

O13 0 −iO16 −iO15 0 0 iO11 − iO10

4
0 0 iO7 − iO6

4
0 0 0 iO3

4
iO2

4

O14 0 iO15 iO16 0 −iO12 0 0 iO9

4
−iO8 0 0 iO5

4
0 0 − iO2

4
− iO3

4

O15 0 −iO14 iO13 0 0 iO12
iO9

4
0 −iO7 0 0 − iO6

4
− iO3

4
iO2

4
0 0

O16 0 iO13 −iO14 0 −iO11 0 0 − iO10

4
0 iO8

iO5

4
0 − iO2

4
iO3

4
0 0
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TABLE 7.7. Multiplication table for g3
∗ D̂0 D̂1 D̂2 D̂3 D̂4 D̂5 D̂6 D̂7 Â0 Â1 Â2 Â3 Â4 Â5 Â6 Â7

D̂0 D̂0 D̂1 D̂2 D̂3 D̂4 D̂5 D̂6 D̂7 Â0 Â1 Â2 Â3 Â4 Â5 Â6 Â7

D̂1 D̂1 D̂0 D̂3 D̂2 D̂5 D̂4 D̂7 D̂6 iÂ1 −iÂ0 iÂ3 −iÂ2 iÂ5 −iÂ4 iÂ7 −iÂ6

D̂2 D̂2 D̂3 D̂0 D̂1 D̂6 D̂7 D̂4 D̂5 iÂ2 iÂ3 −iÂ0 −iÂ1 iÂ6 iÂ7 −iÂ4 −iÂ5

D̂3 D̂3 D̂2 D̂1 D̂0 D̂7 D̂6 D̂5 D̂4 −Â3 Â2 Â1 −Â0 −Â7 Â6 Â5 −Â4

D̂4 D̂4 D̂5 D̂6 D̂7 D̂0 D̂1 D̂2 D̂3 iÂ4 iÂ5 iÂ6 iÂ7 −iÂ0 −iÂ1 −iÂ2 −iÂ3

D̂5 D̂5 D̂4 D̂7 D̂6 D̂1 D̂0 D̂3 D̂2 −Â5 Â4 −Â7 Â6 Â1 −Â0 Â3 −Â2

D̂6 D̂6 D̂7 D̂4 D̂5 D̂2 D̂3 D̂0 D̂1 −Â6 −Â7 Â4 Â5 Â2 Â3 −Â0 −Â1

D̂7 D̂7 D̂6 D̂5 D̂4 D̂3 D̂2 D̂1 D̂0 −iÂ7 iÂ6 iÂ5 −iÂ4 iÂ3 −iÂ2 −iÂ1 iÂ0

Â0 Â0 −iÂ1 −iÂ2 −Â3 −iÂ4 −Â5 −Â6 iÂ7 D̂0 iD̂1 iD̂2 −D̂3 iD̂4 −D̂5 −D̂6 −iD̂7

Â1 Â1 iÂ0 −iÂ3 Â2 −iÂ5 Â4 −Â7 −iÂ6 −iD̂1 D̂0 D̂3 iD̂2 D̂5 iD̂4 iD̂7 −D̂6

Â2 Â2 −iÂ3 iÂ0 Â1 −iÂ6 −Â7 Â4 −iÂ5 −iD̂2 D̂3 D̂0 iD̂1 D̂6 iD̂7 iD̂4 −D̂5

Â3 Â3 iÂ2 iÂ1 −Â0 −iÂ7 Â6 Â5 iÂ4 −D̂3 −iD̂2 −iD̂1 D̂0 −iD̂7 D̂6 D̂5 iD̂4

Â4 Â4 −iÂ5 −iÂ6 −Â7 iÂ0 Â1 Â2 −iÂ3 −iD̂4 D̂5 D̂6 iD̂7 D̂0 iD̂1 iD̂2 −D̂3

Â5 Â5 iÂ4 −iÂ7 Â6 iÂ1 −Â0 Â3 iÂ2 −D̂5 −iD̂4 −iD̂7 D̂6 −iD̂1 D̂0 D̂3 iD̂2

Â6 Â6 −iÂ7 iÂ4 Â5 iÂ2 Â3 −Â0 iÂ1 −D̂6 −iD̂7 −iD̂4 D̂5 −iD̂2 D̂3 D̂0 iD̂1

Â7 Â7 iÂ6 iÂ5 −Â4 iÂ3 −Â2 −Â1 −iÂ0 iD̂7 −D̂6 −D̂5 −iD̂4 −D̂3 −iD̂2 −iD̂1 D̂0
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TABLE 7.8. Commutation table for g3

[, ] D̂0 D̂1 D̂2 D̂3 D̂4 D̂5 D̂6 D̂7 Â0 Â1 Â2 Â3 Â4 Â5 Â6 Â7

D̂0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D̂1 0 0 0 0 0 0 0 0 2iÂ1 −2iÂ0 2iÂ3 −2iÂ2 2iÂ5 −2iÂ4 2iÂ7 −2iÂ6

D̂2 0 0 0 0 0 0 0 0 2iÂ2 2iÂ3 −2iÂ0 −2iÂ1 2iÂ6 2iÂ7 −2iÂ4 −2iÂ5

D̂3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D̂4 0 0 0 0 0 0 0 0 2iÂ4 2iÂ5 2iÂ6 2iÂ7 −2iÂ0 −2iÂ1 −2iÂ2 −2iÂ3

D̂5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D̂6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D̂7 0 0 0 0 0 0 0 0 −2iÂ7 2iÂ6 2iÂ5 −2iÂ4 2iÂ3 −2iÂ2 −2iÂ1 2iÂ0

Â0 0 −2iÂ1 −2iÂ2 0 −2iÂ4 0 0 2iÂ7 0 2iD̂1 2iD̂2 0 2iD̂4 0 0 −2iD̂7

Â1 0 2iÂ0 −2iÂ3 0 −2iÂ5 0 0 −2iÂ6 −2iD̂1 0 0 2iD̂2 0 2iD̂4 2iD̂7 0

Â2 0 −2iÂ3 2iÂ0 0 −2iÂ6 0 0 −2iÂ5 −2iD̂2 0 0 2iD̂1 0 2iD̂7 2iD̂4 0

Â3 0 2iÂ2 2iÂ1 0 −2iÂ7 0 0 2iÂ4 0 −2iD̂2 −2iD̂1 0 −2iD̂7 0 0 2iD̂4

Â4 0 −2iÂ5 −2iÂ6 0 2iÂ0 0 0 −2iÂ3 −2iD̂4 0 0 2iD̂7 0 2iD̂1 2iD̂2 0

Â5 0 2iÂ4 −2iÂ7 0 2iÂ1 0 0 2iÂ2 0 −2iD̂4 −2iD̂7 0 −2iD̂1 0 0 2iD̂2

Â6 0 −2iÂ7 2iÂ4 0 2iÂ2 0 0 2iÂ1 0 −2iD̂7 −2iD̂4 0 −2iD̂2 0 0 2iD̂1

Â7 0 2iÂ6 2iÂ5 0 2iÂ3 0 0 −2iÂ0 2iD̂7 0 0 −2iD̂4 0 −2iD̂2 −2iD̂1 0
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Appendix B
Copyright Information

The passage below is from the copyright FAQ of the Institute of Physics website

on the policy of use of articles in thesis.

Q:After the copyright in my article has transferred to IOP, may I still use the

article for teaching or in a thesis or dissertation?

A:The Assignment of Copyright document sets out the rights that IOP authors

retain in clause 3. These include copying the article (all or part) for teaching

purposes, and including the article (all or part) in research theses or dissertations.

These rights must be exercised for non-commercial purposes. If possible citation

information and IOPs copyright notice should be displayed and for electronic use

best efforts must be made to include a link to the online abstract in the journal.
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Appendix C
Symbols and Abbreviations
ẋ dx

dt

R Real part of

I Imaginary part of

BCH Baker-Campbell-Hausdorff

su(N) Special unitary Lie algebra in N dimensions

SU(N) Special unitary Lie group in N dimensions

H.c. Hermitian conjugate

LOCC Local operations and classical communication
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