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ABSTRACT 

In today's dynamic environment, particularly the manufacturing sector, the necessity of being agile, 

and flexible is far greater than before. Decision makers should be equipped with effective tools, 

methods, and information to respond to the market's rapid changes. Modelling a manufacturing 

system provides unique insight into its behavior and allows simulating all crucial elements that 

have a role in the system performance.  

Max-Plus Algebra is a mathematical tool that can model a Discrete Event Dynamic System in the 

form of linear equations. Whereas Max-Plus Algebra was introduced after the 1980s, the number 

of studies regarding this tool and its applications is fewer than regarding Petri Nets, Automata, 

Markov process, Discrete Even Simulation and Queuing models. Consequently, Max-Plus Algebra 

needs to be applied and tested in many systems in order to explore hidden aspects of its function 

and capabilities. 

To work effectively; the production/assembly line should be balanced. Line balancing is one of the 

manufacturing functions that tries to divide work equally across the production flow. Car Headlight 

Manufacturing Line as a Discrete Manufacturing System is considered which is a combination of 

manufacturing and assembly lines composed of different stations. Seven system scenarios were 

modeled and analyzed using Max-Plus to balance the car headlights production line. Key 

Performance Indicators (KPIs) are used to compare the various scenarios including Cycle Time, 

Average Deliver Rate, Total Processing Lead Time, Stations' Utilization Rate, Idle Time, 

Efficiency, and Financial Analysis. FlexSim simulation software is used to validate the Max-Plus 

models results and its advantages and drawbacks compared with Max-Plus Algebra.  

This study is a unique application of Max-Plus Algebra in line balancing of a manufacturing system. 

Moreover, the problem size of the considered model is at least twice (12 stations) that of previous 

studies. In the matter of complexity, seven different scenarios are developed through the 

combination of parallel stations and buffers. Due to that the last scenario is included four parallel 

stations plus two buffers 

Based on the findings, the superiority of scenario 7 compared to other scenarios is proved due to 

its lowest system delivering first output time (14 seconds), best average delivery rate (24.5 

seconds), shortest cycle time (736 seconds), shortest total processing lead time (11,534 seconds), 

least percentage of idle time (12%), lowest unit cost ($6.9), and highest efficiency (88%). However, 

Scenario 4 has the best utilization rate at 75%. 
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CHAPTER ONE 

INTRODUCTION 

1.1.Motivations 

To be sustainable in today's global environment, industries have become more competitive and 

must minimize their costs. The manufacturing sector is under intense pressure not only to add more 

variety to its products but also to improve its systems and operations to achieve increased 

productivity, customer responsiveness, quality, and to minimize manufacturing costs. To manage 

this situation, new methods have been developed to model, analyze, and control complex 

manufacturing systems.  

A manufacturing system is defined as a method to make a product (output) by considering the 

interaction of several factors, such as cost, time, equipment, operations, and material (input). Line 

balancing is a strategy to make production lines operation smooth and flexible; it involves planning 

a set of operations or designing procedures to fabricate an output in a designated timeframe using 

the available capacities. In general, mathematical modelling of a manufacturing system is based on 

physical laws that govern its behaviour.  

Max-Plus Algebra as a mathematical tool that has begun to receive heightened attention in the field 

of manufacturing systems modelling. It is composed of a set of linear equations used to express the 

event timing dynamics of any deterministic manufacturing system. Therefore, our aim is to model 

line balancing of manufacturing systems using an efficient mathematical tool like Max-Plus 

Algebra to simplify and develop the modelling phase and apply the output of the model in the 

analysis phase. 

1.2.System Attributes  

A system is defined as an aggregation of objects, either through regular interactions or 

independently, that perform a function. To analyze a system quantitatively, a set of mathematical 

means need to be defined or developed. A model is defined as a tool that approximates the 

behaviour of a system. The processes in a simple system described by Cassandras and Lafortune 

(2010) is shown in Figure 1.1. 

The state of a system is defined as a set of variables 𝑋 (computable) used to describe the system's 

conditions throughout the formulation. The modelling process is composed of a set of mathematical 
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relationships including input 𝑢(𝑡), the state 𝑥(𝑡), and output 𝑦(𝑡). The systems can be classified 

using different attributes (Cassandras & Lafortune, 2010). 

A system is called dynamic if the output of the system, 𝑦(𝑡), is time-dependent. In this case, the 

system's output 𝑦(𝑡) is dependent on the past values of input, 𝑢(𝑡). In contrast, a static system is a 

system in which its output is absolute and non-aligned with the past values of the input. 

If the behaviour of the system changes over time, the system is classified as Timed (i.e. Time-

Variant), otherwise, Untimed (i.e. Time-Invariant). More precisely, if the same input results in 

different output during the time, the system is called Time-Variant. Back to Figure 1.1, in Timed 

system 𝑔(. ) is dependent on the variable 𝑡 and is represented as 𝑔(𝑢, 𝑡). 

Based on the nature of this mathematical relationship, a system is classified as either Linear or 

Nonlinear. If the model behaviour satisfies the additivity, homogeneity, and superposition 

properties, then the system is called Linear; otherwise, it is Nonlinear. 

If a system includes random variables, it is called a Stochastic System. This type of system is 

defined as a random process in which behaviour changes probabilistically. Consider as an example 

a dam, the input is rainfall, but building a model of when and how much rain will fall is not feasible. 

Otherwise, a system is classified as a Deterministic System if the set of input is known and results 

in a unique output.  

The nature of the state space classifies systems differently as Continuous and Discrete. In Discrete 

systems, the state variables change at a discrete set of points in time. For instance, the state variables 

such as the number of pieces of equipment in the production line change only when the line faces 

bottlenecks and requires balancing. In contrast, if the states variables change continuously over 

SYSTEM
OUTPUT INPUT 

MODEL 𝑦 = 𝑔(𝑢) 𝑢(𝑡) 

 

Feedback 

 

Figure 1.1 A General Modelling Process Structure (Cassandras & Lafortune, 2010) 

Environment 
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time, the system is called Continuous. In the study of water stored behind the dam, the water level 

is a state variable that is changing continuously over time. The water level rises after a rain and 

goes down due to evaporations and dam control. 

In addition to above-explained conditions and behaviour of the system state's variables, other 

characters are considered in the literature such as size, scale, logic, language, rules, feedback, 

stability, function, etc. 

1.3.Classifications of Discrete Event System (DES) 

Based on the system characteristics, different classifications have been presented in the literature. 

Discrete Event System (DES) is one of the most common systems that have been studied in 

academics. Discrete event dynamic system (DEDS) consider events and includes the evolution of 

the system over the time which is strong to cover many aspects of reality. Discrete Event Dynamic 

Systems (DEDSs) such as Flexible Manufacturing System (FMS), logistic systems, and traffic 

control systems are characterized by a set of states X and a set of events E. The set of events cause 

DEDS to change its state at discrete time instances (Hruz & Zhou, 2007).  

 

There are two types of DEDS: timed and untimed. In untimed system models, the system's 

evolution is merely viewed as a sequence of states, while in timed models, a sequence of states is 

assigned to the time instances at which states' transitions take place (Cassandras & Lafortune, 

SYSTEMS 

STATIC DYNAMIC 

TIME-VARYING 

NONLINEAR 

TIME-INVARIANT 

Figure 1.2 Major Systems Classification (Cassanderas & Lafortune, 2010) 

DISCRETE-STATE 

LINEAR 

EVENT-DRIVEN TIME-DRIVEN 

CONTINOUS-STATE 

DISCRETE- CONTINOUS-

DETERMINISTIC STOCHASTIC 

DISCRETE EVENT 
SYSTEM (DES) 



4 
 

2007). Different modelling methods are used for DEDS analysis such as Petri nets, generalized 

semi Markov processes, nonlinear programming, automata, computer simulation models and so on. 

It should be noted that the models used to describe DEDS are nonlinear in the conventional algebra. 

Recently, a class of DEDS called Max-Plus Linear has been defined (Seybold et al., 2015).  

1.4.Discrete Event Systems Modeling Methods (Formal Methods) 

DES has been applied to several fields of science and engineering. These fields of research apply 

different terminologies for DES methods. For example, in the field of industrial engineering, they 

are known as modelling methods. However, these methods are known as mathematical tools and 

formal methods in the fields of mathematics and computer science, respectively. Campos et al. 

(2014) define formal methods as mathematical techniques, often supported by tools, for developing 

“man-made systems”. These methods include Petri nets, Automata and Max-Plus Algebra. In 

another study, Li and Al-Ahmari (2013) call formal methods major mathematical tools for system 

development. They classify Automata, State Charts, Petri nets, Graph Theory, Process Algebra, 

Queueing Networks, and Temporal Logic as formal methods.  

Although these methods are known as modelling methods in the fields of electrical, automation and 

control engineering, there are some other differences in the subdivision of terminologies. For 

instance, node definition in the control field is similar to merging point, and the rout is the sequence 

of series stations in the field of industrial engineering. Cassanderas and Lafortune (2010), 

Heidergott et al. (2006), and Baccelli et al. (1992) provide more information. Some of the most 

important and famous modelling methods in DES are considered below. 

1.4.1. Petri Nets 

Petri nets models were developed by C.A Petri in the early 1960s. Petri Net is a weighted bipartite 

graph (𝑃, 𝑇, 𝐴, 𝑤) where 𝑃, 𝑇, 𝐴 and 𝑤 are a set of places, transitions, arcs, and weighted functions 

on the arcs respectively. Transitions represent events that may occur, places are the input of the 

transitions, and finally, arcs define which places are preconditions or post conditions for each 

transaction. Arcs never connect two places or transactions together. Input and output places of a 

transition are places from which and to which an arc runs to a transition. Places might possess a 

discrete number of marks called token, which are fired by transitions as an input and turn to tokens 

in output places (Cassandras & Lafortune, 2010). 

The Petri Net graph is represented in Figure 1.3, then the Petri Net is specified as; 
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 𝑃 = {𝑝 , 𝑝 , 𝑝 }   𝑇 = {𝑡 , 𝑡 , 𝑡 } 

𝐴 = {(𝑝 , 𝑡 ), (𝑝 , 𝑡 ), (𝑝 , 𝑡 ), (𝑝 , 𝑡 )} 

𝑤(𝑝 , 𝑡 ) = 1, 𝑤(𝑝 , 𝑡 ) = 1, 𝑤(𝑝 , 𝑡 ) = 1, 𝑤(𝑡 , 𝑝 ) = 1, 𝑤(𝑡 , 𝑝 ) = 1, 𝑤(𝑡 , 𝑝 ) = 1, 

𝑤(𝑝 , 𝑡 ) = 1, 𝑤(𝑡 , 𝑃 ) = 1, 

 

The two main drawbacks of modelling DEDS with Petri Nets are: 1) graphic representation of 

complex systems is quite intricate, and 2) Indicating priorities and order is important; however, it 

is hard to manage when the system is complex.  

1.4.2. Automata 

DES is comprised of a set of states (𝑋) and events (𝐸) that cause transactions of these states. The 

event sequences describe the behaviour of a system and the order in which the events arise. 

However, the time of events' occurrence is unspecified, which associates it to an untimed and 

logical level of DES abstraction. This kind of DES is modelled by a language. If an even 𝐸 is 

assumed as the alphabet, the sequence of events can configure strings (words). Finally, a language 

is a set of those strings (Cassandras & Lafortune, 2010).  

Automata is a tool that represents a language based on the comprehensible rules. It is comprised of 

an even set 𝐸, 𝑋, transition functions, in the initial state 𝑋  and marked state 𝑋 .  

 

𝑡  

𝑡  

𝑝  

𝑝  

𝑝  

𝑡  

Figure 1.3 Simple Petri Net Model 

Figure 1.4 Simple Example of Automata Model 

𝑗 

𝑘 
𝑖, 𝑘 

x 

y 

z 
𝑗 𝑖 
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Assume 𝐸 = {𝑖, 𝑗, 𝑘}, then the transaction function of 𝑓: 𝑋 × 𝐸 → 𝑋 is represented graphically by 

arcs:  

𝑓(𝑥, 𝑗) = 𝑥,  𝑓(𝑥, 𝑘) = 𝑦,  𝑓(𝑧, 𝑗) = 𝑥 , 𝑓(𝑧, 𝑖) = 𝑖,  𝑓(𝑦, 𝑖) = 𝑓(𝑧, 𝑘) = 𝑧 

The notation 𝑓(𝑥, 𝑘) = 𝑦 means that if the automaton is in state 𝑥, then upon of event 𝑘 occurrence, 

the automaton will make a transition to state 𝑦 .  

The main drawback of this way of modelling DES is space explosion, which occurs when a large 

number of automata are composed. A detailed description of automata can be found in Cassandras 

and Lafortune (2010) chapter two. 

1.4.3. Markov Process 

Suppose a sequence of possible events 𝑥 , 𝑥 , 𝑥 , … , 𝑥  observed at times 𝑡 , 𝑡 , 𝑡 , … , 𝑡  . Let 𝑥  

be the present state of the process at 𝑡  and past history as {𝑥 , 𝑥 , 𝑥 , … , 𝑥  }; then the future 

states {𝑥 , 𝑥 , 𝑥 , … } is completely independent of the past. Each event relies on the 

previous event. This is referred to as the memoryless property of the Markove Process. Markov 

Chain is a stochastic model of the Markove Process in which the future is conditionally independent 

of past events. In other words, the past and present information is summarized in the present state 

to probabilistically attain the future. There are two types of Markove Chains called Discrete-Time 

and Continuous-Time. In the Discrete-Time Markove Chain, the events happen at time instances; 

however, in Continuous-Time the state transitions occur at time intervals.  

1.4.4. Queuing Model 

A basic queuing model includes customers who arrive from time to time to the buffers (queues) to 

get served and eventually leave the system. A queuing model includes three main components: 1) 

Arrival and service processes (the probability distribution of events), 2) System Capacity such as 

the capacity of buffers, number of servers, and 3) operating policies and the conditions under which 

the customers are served, for example, can a customer leave the system before he or she gets 

served? How many customers get served by each server? 
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1.4.5. Discrete Events Simulation 

Simulation is an imitation of a real-world process/system over time by generating the history of a 

system. The system behaviour is studied by developing a simulation model. In some cases, the 

developed model can be solved using mathematical methods, differential calculus, algebraic 

methods etc. However, in reality, some systems are too complex to yield analytical methods. In 

these cases, simulation can be used to emulate the behaviour of the system over the time.  

1.5.Max- Plus Algebra 

Max-Plus Algebra is a new mathematical tool that has been developed in theoretical and practical 

subjects. For example, Max-Plus has been used in theories such as Set theories, Graph theories, 

Queuing theories and Computational theories. More details about Max-Plus Algebra can be found 

in Chapter 2. The relevant literature is expressed in three groups as follows. 

Since 1996, De Schutter and his research group they have published 46 articles and books in the 

field of Max-Plus Algebra and discrete event system such as linear systems modeling (2014), 

computational techniques (2015), approximation approaches (2011), Model Predictive Control 

(2001), and practical studies in traffic, transportation, automation and control systems issues 

(2016). 

Gaubert. S (1997) has classified tropical semirings and the family of Max-Plus. He introduced basic 

techniques to solve Max-Plus linear equation. This is followed by studies in the field of graph 

theory as well as language theory. Later, Marianne et al. (2001) have declared Convex map that is 

monotone (preserve the product ordering) and no expansive. They presented the fixed point set 

when it is nonempty is isomorphic and its dimension strongly connected to components of a critical 

graph. 

Cohen et al. (1998) have summarized the theoretical aspects of Max-Plus achievements through 

examples. The state space equations, canonical equations, transfer functions, asymptotic behaviour 

and eigenvalues, stabilization and resource optimization, geometric theories, etc. were discussed as 

some part of Max-Plus dependent contents.  

Goto et al. between 2002 and 2017, have published 19 articles. Their focus is to reduce the number 

of equations and iterations to make Max-Plus Algebra easier to use. In 2009, Goto and Kasahara 

proposed an efficient computation method for calculation of Kleene Star (more details are included 
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in section 2.3. Consequently, a High-Speed algorithm is suggested by Goto and Ichige, (2010) to 

speed up the effect of calculating the Kleene Star for a weighted adjacency matrix. Moreover, they 

have studied applications of Max-Plus Algebra in other fields such as integer programming (2017), 

feedback control approach (2010), output constraints (2009), and linear systems (2007).  

Adzkiya et al. (2016) have studied Max-Plus Linear (MLP) systems calculation tools. The proposed 

procedure is based on partitioning the state space and dynamics into regions. The results present 

finite-state transition systems that either simulate or bi-simulate the original MPL system.  

Bi-simulation equivalence aims to identify transition systems with the same branching structure, 

and which thus can simulate each other in a stepwise manner (Baier and Katoen, 2008). 

Two optimization problems in Max-Plus Algebra related to the minimization of a product of 

triangular matrices have been defined by Bouquard et al. (2006). The first problem is a polynomial 

time optimization algorithm for scheduling a single or two-machine flow shop problem in 2×2 

matrices products. The second problem considers the 3×3 matrices, which are shown as NP-hard. 

They have used a branch-and-bound algorithm to solve it. 

Hardouin et al. (2017) have designed an observer-based controller for Max-Plus Linear systems 

solved in two steps: first, an observer computes the state estimation by using input and output 

measurements; afterwards these estimates are used to compute the state-feedback control system. 

This method provides better control than output feedback control, which was common.  

Leela-Apiradee et al. (2017) have introduced a closed form of the L-localized solution set of Max-

Plus interval linear system and its application to the optimization problem. The feasible set of an 

optimization problem has been simplified by the number of union set reduction.  

Imaev and Judd (2008, 2009) have simplified and reduced the Max-Plus equations. The network 

connection of blocks was transferred to compose one block that has the same input and output 

structure. This means, a block defined as a combination of several stations instead of one station. 

In a block diagram the interconnection of a station with other stations were specified using routing 

matrices. Furthermore, a new topological method for evaluating the results of the synchronous 

matrix have been examined (2010). Properties of signal flow graphs (SFGs) over Max-Plus Algebra 

are investigated, which are referred to as synchronous. Finally, a theory of synchronous a matrix 

signal flow graph (MSFG), as a pictorial presentation of a set of linear matrix equations, has been 

addressed in their studies. After proving the hypothesis, a single machine or a factory was used as 

a sample of the block diagram. 
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Adzkiya et al. (2016) have developed a software tool called VeriSIMPL2 for Max-Plus Linear 

(MPL) systems. The proposed procedure is based on partitioning the state space and dynamics into 

partitioning regions. This open-source software generates finite abstractions of autonomous MPL 

systems and enables formalization of general properties to be logical. The results present finite-

state transition systems that either simulate or bisimulate the original MPL system. 

Dealing with stochastic systems have enforced researchers to define uncertain conditions. Using 

statistical distribution likewise Poisson or Binomial are common in queueing network. Kaise and 

McEneaney (2015) have applied idempotent methods included Max-Plus basis-expansion 

approaches as well as curse-of-dimensionality-free methods to stochastic control and games. Curse 

of dimensionality refers to nonlinear modelling because in this modelling the computational cost 

and space dimension expanded exponentially. To conquer uncertainty using intervals instead of 

deterministic variables is extended among Max-Plus studies. In one of the latest studies, Wang and 

Tao (2016) have proved existence and uniqueness of a strong solution through a polynomial 

algorithm for such Max-Plus Linear equations. Other than that, Imaev and Judd (2010), Leela-

Apiradee et al. (2017), Seybold et al. (2015) and Majdzik et al. (2016) have worked in the domain 

of stochastic system using Max-Plus. Table 1-1 provides a summary of Max-Plus Algebra theories 

and relevant research. 

Table 1-1 Max-Plus Algebra developed theories 

References Subjects 

Van den Boom and De Schutter (2008); Goncalves et al. 

(2017); Soudjani et al. (2016); Spacek et al. (1995) 

Systems (Linear, Dynamical, and Stochastic) 

Singh et al. (2012); Judd et al. (2011); Goto (2014); 

Gaubert et al. (2007)  

Theories and proofs (Set, Graph, Queuing, and 

Computational) 

Goto et al. (2017); Baccelli et al. (2016); Shinzawa et al. 

(2016); Gavalec et al. (2009); Cohen et al. (1998) 

Mathematical Equation and Eigen Function 

(Operators, Vectors, Eigenvalues, State Space 

and Partial Differential) 

Adzkiya et al. (2016); McEneaney (2007); (Leela-

Apiradee et al., 2017); Fahim et al. (2017); Imaev and 

Judd (2008,2009, and 2010) 

Algorithms and Computation (Numerical 

Methods, Problem Solving, Simulation, and 

Programming) 

In this part, the application of Max-Plus Algebra in the manufacturing system is discussed.  

Febbraro et al. (1994) have solved scheduling problems by applying Max-Plus Algebra in the 

manufacturing system. It is assumed that a nominal 'semi-schedule' is available which have 
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composed sequences to be executed by the various machines are fixed. They proved that 

computational tools coming from Max-Plus Algebra provide an effective way to write the 

performance indexes in terms of the decision variables representing the binary alternatives.  

In addition to developing mathematical theories, Imaev and Judd (2008 & 2009) have developed 

several modelling approaches in manufacturing systems using Max-Plus Algebra. At first they 

proposed hierarchical modelling for any deterministic manufacturing system. Then Block 

Diagram-Based modelling is suggested. A manufacturing system constitutes a network of 

processing elements. A block with two inputs and two outputs expresses one of the processing 

elements. A block is defined as a single manufacturing operation, a single machine, a single part, 

or a factory. Combination of two or more blocks which have same input/output structure, can be 

seen as a hierarchical model. In such way a huge and complex manufacturing system can be broken 

into smaller ones (sub-system).  

Beyond these studies Imaev and Judd (2010) have defined a block as a 3×3 matrix. Moreover, a 

class of signal flow graphs (SFGs) was introduced called matrix signal flow graphs (MSFGs). They 

have called a SFG over Max-Plus Algebra a synchronous SFG, because maximization operation 

represents synchronization phenomena in discrete event systems. Three topological methods: 1) 

basic graph reduction rules, 2) return loop method, and 3) basic manufacturing blocks; are applied 

to evaluate the results of synchronous. Also, machine-based and part-based modelling approaches 

have been introduced and compared. The part-based approach is preferred for scheduling 

application; however, machine-based is suggested for buffer allocation. Both approaches give the 

same result for makespan. 

Seleim and ElMaraghy (2014a) developed a method to model manufacturing flow lines using Max-

Plus equations. The generated equations can be applied to any size and structure of flow line by 

considering finite buffers and parallel identical stations. This method is based on the observation 

that a flow line can be decomposed into different additive features. They suggest that the presented 

method automatically generates Max-Plus equations and that the use of Max-Plus Algebra can be 

extended to the large-scale problems. A backflushing control valve is used as a case study where 

Max-Plus equations are used to model three assembly line configurations. Configurations are 

composed of five to seven stations and two different number of buffers. To verify the Max-Plus 

equations, the results have been compared with discrete event simulation and were identical with 

simulation while the processing time of all stations was deterministic. Compared to discrete event 

simulation, the developed model ran quicker. The equations have been generated in a few minutes 
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and then using these equations, data analysis only took a few seconds. However, generating and 

executing discrete event simulation models requires many runs and takes days.  

In another study, Seleim and ElMaraghy (2014b) have modelled Mixed-Model Assembly Lines 

(MMALs) with both closed and open stations by using Max-Plus Algebra. For verification, two 

numerical examples have been presented. In the first example, an assembly line containing four 

stations with three different outputs were considered. Three possible product mix variants 

sequences have been compared and the optimal point for each sequence was founded. The second 

example studied the effect of changing launching rate of work units of line performance. Their 

parametric analysis as a method has provided a better understanding for designers. It allows 

designers to analyze stations sensitivity to the changes in assembly line and their effects on idle 

time and line length. In addition, decision makers can use the presented analyses to assess whether 

the improvements can affect the current sequence optimality and if it is needed to increase line 

capacity by changing launching rate.  

Seybold et al. (2015) have introduced a predictive control framework to fault-tolerant control and 

used Max-Plus Algebra to model battery assembly system. This system is included five stations 

and two input. The robustness issues which are inevitable in real production systems have been 

discussed. They show an illustrative example which clearly exhibits the high performance of the 

proposed approach while all productivity demands are incorporated within the constraints.  

Afterward, Majdzik et al. (2016) have represented a framework for fault-tolerant of a battery 

assembly line (9 stations and considering transportation time). The proposed approach is based on 

an interval analysis approach, which along with Max-Plus Algebra allows describing uncertain 

discrete event system such as production line. As a result, the performance of the pilot 

implementation has validated the recommended strategy for advanced battery assembly system. 

The recommended approach examined single as well as simultaneous fault concerning processing, 

transportation and mobile robots. 

The proposed solution by Leela-Apiradee et al. (2017) has been applied in product pricing problem 

that is composed of, 6 parameters (3 products and 3 customers) and 9 constraints. By considering 

customer purchasing power and cost of transportation an acceptable solution is presented. 

Lee et al. (2016) have used Max-Plus Algebra based solution method to compare the performance 

of three types of WIP-controlled line production systems with constant processing times, such as 

Kanban, Constant Work in Progress (CONWIP) and Drum-Buffer-Rope (DBR) with a unique 
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analytical approach. A system composed of 6 stations with Poisson arrival and bottleneck placed 

at the fifth station was considered. To minimize the capacity of the buffer, various models were 

designed by changing the placement of the bottleneck and the sequence of processing times. They 

expressed, the actual sojourn times are affected by the buffer capacities and processing time 

sequence. Table 1-2 illustrates some of the latest research on Max-Plus Algebra. 

Table 1-2 Max-Plus Algebra Application 

References Application Group 

Imaev and Judd (2007,2008,2009); Seleim and ElMaraghy 

(2014a,2014b); Majdzik et al. (2017) 

Modelling (Mathematical and Systems ) 

Bouquard et al. (2005); Seybold et al. (2015); Adzkiya et al. 

(2016); Hochang et al. (2016); Kersbergen et al. (2016); Han et 

al. (2017); Leela-Apiradee et al. (2017) 

Performance and System Optimization, 

evaluation and Simulation 

Febbraro et al. (1994); Yun-Xiang et al. (2016); Singh et al. 

(2012 & 2013) 

Scheduling, Planning (Real-Time Systems) 

and Computer Simulation 

Hardouin et al. (2017); Song et al. (1998); Dias et al. (2015, 

2016) 

Control (Theory, Systems, Feedback, 

Predictive Robotics and Automation) 

Modelling DES can be classified based on industrial applications. Particularly, a number of articles 

focused on the industrial applications of Max-Plus Algebra have been mentioned below. 

A predictive controller model, as well as railway traffic for online traffic management of railway 

networks with a periodic timetable, have been considered by Kersbergen et al. (2016). The railway 

system is described by a switching Max-Plus Linear Model. The measurement of running, dwell 

times and future running times are assumed to be available. The switching Max-Plus linear model 

for the railway is used to determine optimal dispatching actions, by recasting that problem as a 

Mixed Integer Linear Programming (MILP) problem. 

Heidergott et al. (2006) have applied the foregoing technique for Dutch passenger train network. 

Consequently, Case (2010) has modelled a simple railway network as a part of the Dutch train 

transportation system. Two transit stations supposed to have interconnection plus their connection 

with outside. This model is involved at least for 440 trains. 

Han et al. (2016) have applied a Max-Plus Algebra model to develop a general framework for 

resolving resource utilization conflicts of air traffic system. The developed optimization system 

considered six different types of model with and without buffer in view of different purposes such 
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as fuel consumption and flight delay. The constraints between input and output variables based on 

the observation that jet route can be divided into different sub-segments were obtained. The 

performance of system resources proposed by Max-Plus has been verified through simulations. 

Table 1-3 represents some of the related researches in different industries. 

Table 1-3 Max-Plus Algebra industries usages 

Industrial Applications References 

Automation and Control Van den Boom et al. (2000-2018); Addad et al. (2008-2012); Armstrong 

et al. (2014), Ahmane et al. (2006); Goto et al. (2010) 

Transportation Kersbergen et al. (2008); Van den boom et al. (2000-2016); Han et al. 

(2017, 2016); Haddad et al. (2016); Shang et al. (2010); Case J (2010) 

Manufacturing  Febbraro et al. (1994); Seleim and ElMaraghy (2014 a, 2014b); Majdzik 

et al. (2017); Hochang et al. (2016); Imaev et al. (2007,2008,2009); Gorji 

et al. (2013) 

1.6. Advantages and Drawbacks of Max-Plus Algebra 

A tool like Max-Plus Algebra certainly has some advantages and drawbacks; these are discussed 

below. 

Advantages: 

 The event timing dynamics of any deterministic system can be expressed by a set of linear 

equation (Imaev & Judd, 2009; Muijsenberg, 2015; Seleim, 2016). 

 Provides computational engine to calculate system's quantitative characteristics (Imaev & 

Judd, 2009). 

 Provides a strong framework for both modelling and analysis (Cassandras & Lafortune, 

2010). 

 The set of possible solutions can be obtained directly under a set of initial conditions 

(Adzkiya et al., 2016; Imaev & Judd 2009). 

 Can study the periodicity of a system in order to characterize the system behaviour 

(Cassandras & Lafortune, 2010). 

 Can be used in the analysis and control of manufacturing systems (Seleim, 2016).  

 Can describe the order of the system's events (Wetjens, 2004). 

 Researchers have benefited from the guidelines and concepts provided by Max-Plus 

Algebra (Cohen, 1997). 
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 Max-Plus is an appropriate method to model a system for short-term and small-sized 

systems (Di Febbraro et al., 1994). 

Drawbacks: 

 The model should be defined for a certain level of complexity (Wetjens, 2004). 

 Simultaneously, a model designer should deal with several difficulties such as 

manufacturing structure and entities as well as mathematical formulation and calculate 

solution by Max-Plus operations over matrices (Seleim, 2016). 

 The model structure is not flexible, whereby any changes in the system's structure will be 

required to develop from the bottom (Muijsenberg, 2015). sometimes minor changes lead 

to an increase in the number of equations and dimensions of matrices (Seleim, 2016). 

 The number of studies involved in this new area of the system theory for DES has remained 

small compared with other tools (Cohen, 1997).   

 There is not any available tool or software to facilitate modelling and analysis process 

(Seleim, 2016). 

 The type of models in the Max-Plus framework is limited to marked graphs and extensions 

to stochastic DES are not easy (Cassandras & Lafortune, 2010). 

 Performance evaluation is not executed in the field of comparison of Max-Plus with other 

modelling methods, particularly for large instances (Houssin, 2011). 

 Some fundamental shortages slow down the progress of the model (Cohen, 1997).  

The weakness of DES modelling methods: 

 Generally, DES modelling methods lead to nonlinear models. 

 Discrete event simulation is usually computationally expensive and does not supply 

equations needed to analyze and predict systems behaviour (Imaev & Judd 2008). Also, it 

is time-consuming and can give information only for the given simulated parameters of the 

system; numerous simulation runs would be required (Seleim, 2016). 

 Queueing network and Markov chains are used to evaluate long-term performance 

characteristics of systems, especially stochastic ones (Imaev & Judd 2008; Seleim, 2016). 

 Timed-event graph and directed graphs are subclasses of Petri nets in which each place is 

limited only to one incoming and one outgoing arc (Imaev & Judd, 2008).  

 Simulation is certainly the most common tool for DESs and requires a high level of detail, 

which leads to an increase in the complexity of the system. Furthermore, simulation is not 

an appropriate tool to explain the effects of parameters on system behaviour.   
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1.7. Research Gap Analysis 

In this section the relevant literature is considered critically. Recently, Max-Plus Algebra has been 

expanded among scholars and academics. Since this high interest in the Max-Plus tool is limited to 

the last two decades, Max-Plus Algebra requires further justifications and verifications.  

Since the 1980s, Max-Plus Algebra has broadly been developed in theories. However, few 

researchers have examined the application of Max-Plus in engineering fields, particularly in 

manufacturing systems (Leela-Apiradee et al., 2017). In spite of that, the use of Max-Plus Algebra 

in practical and real-life systems has not been expanded sufficiently. Cohen et al. (1998) declare 

that the application of Max-Plus did not receive enough attention. This phenomenon is clear by 

comparison of the number of publication in theories and applications. 

Despite progress in Max-Plus theories, developed algorithms and proposed computational methods 

(Seleim, 2016; Imaev, 2009), there are still difficulties with its calculation steps. Max-Plus is 

constructed by matrices and numerous equations. Difficulties in calculation have limited users to 

those who have enough knowledge in mathematics (Bouquard et al., 2006). In addition, due to these 

complex calculation steps, Max-Plus Algebra is suggested and applied for small-size problems. 

To tackle the difficulties of Max-Plus calculation steps, the mathematical software has been used. 

The majority of researchers have benefited from Matlab and Mathematica as general software. 

However, this requires sufficient knowledge of language programming. Thus, to solve one issue 

another issue is raised. Consequtively, Adzkiya et al. (2016) have introduced an open-source 

software for verification of Max-Plus Linear (MLP) systems. 

It is clear that Max-Plus Algebra as a linear mathematical modelling tool has not been expanded to 

accommodate the stochastic systems (Seleim, 2016). Interval system is a prominent method applied 

in the majority of suggested stochastic systems. To solve these linear systems, different heuristic 

models have been developed. Hence, there is a lack of application of a linear mathematical tool 

such as Max-Plus Algebra in this type of systems. 

In light of previous research, Max-Plus Algebra is suggested for small size problems (Seleim, 2016; 

Leela-Apiradee et al., 2017; Seybold et al., 2015; Majdzik et al., 2016; Bouquard et al., 2006) and 

hardly ever the model developed in matters of size (Imaev, 2009).  
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Discrete Event Simulation is the most popular method to model DES. However, the comparison of 

this method with Max-Plus has hardly been discussed in previous research. 

By looking into the application of Max-Plus Algebra in industries, it has been noticed that most of 

the studies have been done in the fields of transportation, control, and automation. However, it is 

believed that there have not been enough studies in the field of manufacturing systems. 

There have been a few scholars who applied Max-Plus Algebra in flow-line discrete manufacturing 

systems (Majdzik et al., 2016; Seybold et al., 2015; Seleim, 2016). However, there are other types 

of manufacturing systems processes and configurations, such as repetitive, continuous, cellular 

manufacturing, and job shop, that need to be modelled and tested using this mathematical tool. 

Behaviour of a manufacturing system are broad and require more studies such as bypassing, 

disturbance (breakdown and downtime), backtracking/reentrancy (close and open loops, reworks 

and reschedule), alternative process, sourcing/allocation policies, buffer (converge and diverge) 

transportation method, etc. (Seybold et al., 2015; Majdzik et al., 2016; Imaev, 2009).  

Finally, Max-Plus Algebra has been applied in optimization (Bouquard et al., 2006; Xiaoping et 

al., 2013), simulation (Becker & Latovetsky, 2011), scheduling (Di Febbraro, 1994; Kubo & 

Nishinari, 2018), planning (Abbou et al., 2017), performance evaluation (Singh & Judd, 2012) 

reconfiguration (Zhu et al., 2004), etc.  

This study is a unique application of Max-Plus Algebra in line balancing of a manufacturing 

system. In this research, Line balancing a manufacturing system is modelled using Max-Plus 

Algebra. To do that seven scenarios are designed to find out the best combination of adding parallel 

identical stations and bottleneck. To analyze the designed scenarios, some Key Performance 

Indicators are defined. Finally, FlexSim as simulation software is used to verify the outcome of the 

Max-Plus model. 

1.8.Research Scope 

This study Max-Plus Algebra has been used to model the line balancing of a manufacturing system. 

The considered manufacturing system is a flow line system with no machine failure rate. The 

manufacturing system is deterministic and discrete flow with no backtracking. This research has 

provided a couple of tools to be used in this application domain that is explained below. 
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Firstly, this research provided a general method of line balancing a manufacturing system that can 

be extended to other types of discrete manufacturing systems. This model will help the 

manufacturer and industries to find the best answer to balance their manufacturing lines without 

changing the configuration of their flow line. 

Secondly, the developed line balancing included seven scenarios. The first scenario was a simple 

flow line. Next scenarios have been designed based on previous scenarios by identifying bottleneck 

and critical path. The scenarios became more complex by adding parallel stations to the bottleneck 

and adding a finite buffer to the stations that their downstream process is a bottleneck. 

Thirdly, several manufacturing Key Performance Indexes (KPIs) have been defined, such as 

Product Completion Time (Average Delivery Rate by the system in seconds), Total Processing 

Lead Time, Station's Utilization Rate, Idle Time and Efficiency of the System. Financial Analysis 

is formulated to compare all scenarios by using a combination of total processing lead time, 

utilization rate and etc.; these are used to evaluate the different scenarios. These KPIs can be 

extended to other modelling purposes. 

Finally, the scenarios were tested using discrete event simulation tool (Flexim). Same data, 

parameters, variables and conditions, etc. were applied when simulating the scenarios to make the 

comparison with results from Max-Plus valid. Both Flexim and Max-Plus Algebra have resulted in 

the same outcomes. However, Max Plus Algebra was quicker and easier to manage. 

1.9.Research Contributions  

Firstly, this study represents a practical approach to use Max-Plus Algebra and proves how this 

method is easy to understand for decision makers with a little background or basic knowledge of 

mathematics.  

Secondly, this research is the first study of the application of Max-Plus Algebra in line balancing 

of a discrete manufacturing system. This method is applied to different structures/configurations of 

a manufacturing system such as Series, Merged, Paralleled, Buffered and Combined.  

Thirdly, the problem size of the developed model is at least twice that of previous studies (seven 

stations). The last scenario composed of 12 stations, 4 parallel identical stations and two buffers.  

Fourthly, seven scenarios are developed to optimize the line balance of the considered 

manufacturing system. Several KPIs are defined to analyze and test the designed scenarios.  
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Finally, discrete event simulation like FlexSim is used to verify and compare the results obtained 

by using Max-Plus Algebra.  

1.10. Thesis statement 

The thesis statement of this research could be formulated as follows: 

Max-Plus Algebra could be a competitive and fast tool in the field of modelling manufacturing 

system and analyze its line balancing results. 

The competitive term in this study refers to the being easy to use for model designer and easy to 

change the structure, size and complexity of a system. The fast term refers to the time consumed 

for modelling process of a system. This research considered the period of time from designing point 

to analyze the results of modelled system under equal conditions in comparison with discrete event 

simulation tool like FlexSim. The advantages of Max-Plus Algebra are demonstrated in the Car 

Headlight manufacturing system as a practical case study. 

1.11. Research overview 

This research is organized into six chapters as follows. In chapter 2, the basic context in the field 

of DEDS, the introduction of Max-Plus Algebra and numerical examples have been noted. In 

chapter 3, the definition of the system elements, variables and equations are discussed. Moreover, 

the general mathematical formulation by Max-Plus Algebra used in modelling of a manufacturing 

system for different structures is presented in this section. Chapter 4, includes the application of 

Max-Plus Algebra to model a manufacturing system for a Car Headlight flow line. The brief 

explanation of the Car Headlight process, equipment and parts and other related issues for a better 

understanding of the flow line have been described in this chapter. Seven scenarios are developed 

by having varied system structures to balance manufacturing line. Max-Plus Algebra as a tool is 

used and compared with discrete event simulation. At the end of chapter 4, several analyses were 

carried out based on scenarios output. In chapter 5, a confirmation and comparison are presented 

using Flexim as a simulation tool. Finally, the conclusion, contribution and research highlights, 

limitations of the current work, overview and future work are stated in chapter 6.  
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CHAPTER TWO  

BASICS OF MAX-PLUS ALGEBRA AND MATHEMATICAL CONCEPTS  

2.1. Introduction 

This chapter presents an introduction to Max-Plus Algebras and shows their application in 

manufacturing systems.  

2.2. Max-Plus Algebras 

A Max-Plus Algebra is the set ℝ = ℝ ∪ {−∞}, where ℝ is the set of real numbers, 

together with the binary operators ⊕ and ⊗, where 𝑥⨁𝑦 = 𝑚𝑎𝑥(𝑥, 𝑦) and 𝑥⨂𝑦 = 𝑥 + 𝑦. 

For convenience we use the symbols ℯ = 0 and 𝜀 = −∞.  

The following properties are satisfied by Max-Plus Algebras. 

1. Associativity. For all 𝑥, 𝑦, 𝑧 ∈ ℝ  we have 𝑥 ⊕ (y ⊕ z) = (𝑥 ⊕ y) ⊕ z and 

𝑥 ⊗ (y ⊗ z) = (𝑥 ⊗ y) ⊗ z. 

2. Commutativity. For all 𝑥, 𝑦 ∈ ℝ  we have 𝑥 ⊕ y = y ⊕ x and 𝑥 ⊗ y = y ⊗ x.  

3. Distributivity of ⊗ over ⊕. For all 𝑥, 𝑦, 𝑧 ∈ ℝ  we have  

𝑥 ⊗ (y ⊕ z) = (𝑥 ⊗ y) ⊕ (x ⊗ z). 

4. Idempotency of ⊕. For all 𝑥 ∈ ℝ  we have 𝑥 ⊕ 𝑥 = 𝑥. 

5. Zero element: For all 𝑥 ∈ ℝ  we have 𝑥⨁ε = 𝑥. 

6. Unit element: For all 𝑥 ∈ ℝ  we have 𝑥⨂𝑒 = 𝑥. 

7. Zero absorption for ⊗: For all 𝑥 ∈ ℝ  we have 𝑥 ⊗ ε = ε ⊗ 𝑥 = 𝜀. 

In future chapters we will need to use exponentiation. We define  

𝑥⨂ = 𝑥⨂𝑥⨂ … ⨂𝑥
 

 = 𝑥 + 𝑥 + ⋯ + 𝑥
 

 = 𝑛𝑥. 

2.3. Max-Plus Algebra over Matrices 

Let 𝐴, 𝐵, 𝐶 ∈ ℝ ×  and let [𝐴]  be the 𝑖, 𝑗th element, that is, the element in row ⅰ and 

column 𝑗, of the matrix 𝐴. Thus, we have that, if 𝐶 = 𝐴⨁𝐵 then  

[𝐶] = [𝐴⨁𝐵] = max [𝐴] , [𝐵] . 



 

20 
 

The 𝑚 × 𝑛 zero matrix is denoted by ℰ ×  and is given by [ℰ × ] = 𝜀. Note that 

 𝐴⨁ℰ = 𝐴.    

Now we define  matrix multiplication. Let 𝐴 ∈ ℝ
×  and 𝐵 ∈ ℝ

× . If  𝐶 = 𝐴⨂𝐵 then  

[𝐶] = [𝐴⨂𝐵] =
𝑝
⨁

𝑙 = 1
[𝐴] ⨂[𝐵] . 

The 𝑛 × 𝑛 identity matrix is denoted by 𝐸  and is given by [𝐸 ] = 𝑒, if 𝑖 = 𝑗, and 

[𝐸 ] = 𝜀, otherwise. For any matrices 𝐴 ∈ ℝ ×  and 𝐵 ∈ ℝ
×  we have that  

𝐴⨂𝐸 = 𝐴 and 𝐸 ⨂𝐵 = 𝐵. 

For matrix exponentiation, we have  𝐴⨂ = 𝐸  and       

𝐴⨂ = 𝐴⨂𝐴⨂ … ⨂𝐴
 

 . 

The Kleene star operator on A ∈ ℝ ×  is denoted by 𝐴∗ and is given by 

𝐴∗ = 𝐴⊗ ⊕ 𝐴⊗ ⊕ … ⊕ 𝐴⊗ =
∞
⊕

𝑛 = 0
𝐴⊗ . 

Through the rest of the thesis, the ⊗ operator will be omitted whenever its use is obvious, 

thus 𝑎 ⊗ 𝑏 ⊕ 𝑐 ⊗ 𝑑 will be written as 𝑎𝑏 ⊕ 𝑐𝑑 or 𝐴⊗  as 𝐴 . 

A set of linear equations in a Max-Plus Algebra, see, for example, Heidergott et al. (2006) 

and Baccelli et al. (2001), can be written as 

𝑋 = 𝐴𝑋 ⊕ 𝐵𝑈      (2.1) 

which has the solution 

    𝑋 = 𝐴∗𝐵𝑈. 

2.4. Modelling A Manufacturing System Using Max-Plus Algebra 

Using a development is similar to  

We now give small example showing the use of Max-Plus Algebra to model a 

manufacturing system (Seleim, 2016). In Figure 2.1 we see a simple manufacturing system 

with four stations. Stations 1 and 2 have inputs 𝑈  and 𝑈 , respectively and there is no 

specified starting time. Stations 1 and 3 are in series and station 4 is a merged point. The 

system has no buffer and no parallel stations.  
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Let the processing times for stations 1, 2, 3 and 4 be 𝑡 , 𝑡 , 𝑡 , and 𝑡 , respectively. The 

time instants that raw material for part 𝑘 is fed to the stations 1 and 2 are 𝑢 (𝑘) and 𝑢 (𝑘) 

respectively. The starting time of operation for processing part 𝑘 in stations 1, 2, 3 and 4 

are denoted by 𝑥 (𝑘), 𝑥 (𝑘), 𝑥 (𝑘) and 𝑥 (𝑘), respectively. The time instants of the 

finished part 𝑘 at the last station is 𝑦(𝑘). 

The equations for each stations 1 and 2 are 

𝑥 (𝑘) = 𝑢 (𝑘)⨁𝑥 (𝑘 − 1)𝑡 , and    (2.2) 

𝑥 (𝑘) = 𝑢 (𝑘)⨁𝑥 (𝑘 − 1)𝑡 .     (2.3) 

Since station 3 is in series after station 1 we have 

𝑥 (𝑘) = 𝑥 (𝑘)𝑡 ⨁𝑥 (𝑘 − 1)𝑡 .     (2.4) 

Combining (2.2) and (2.4) we have  

𝑥 (𝑘) = 𝑢 (𝑘)𝑡 ⨁𝑥 (𝑘 − 1)𝑡 ⨁𝑥 (𝑘 − 1)𝑡 .    (2.5) 

Since the station 4 is a merging point we use (2.3) and (2.5) to get 

𝑥 (𝑘) = 𝑥 (𝑘)𝑡 ⨁𝑥 (𝑘)𝑡 ⨁𝑥 (𝑘 − 1)𝑡 .   (2.6) 

By substituting (2.3) and (2.5) into (2.6) we get 

𝑥 (𝑘) = 𝑢 (𝑘)𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 ⨁𝑢 (𝑘) 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 ⨁𝑥 (𝑘 − 1)𝑡 . (2.7) 

Since the arrival time of the finished product 𝑘 is equal to the starting time of processing 

at station 4 plus processing time of station 4 we get 

𝑌 =  𝑥 (𝑘)𝑡 .      (2.8) 

We combine equations (2.2), (2.4), (2.5) and (2.7) to get 

𝑋 = 𝐴𝑋 ⨁𝐵𝑋 ⨁𝐷𝑈      (2.9) 

and we can rewrite (2.8) to get 

 𝑌 = 𝐶𝑋 ,     (2.10)  

where 

𝑋 =

𝑥
𝑥
𝑥
𝑥

, 𝑈 =
𝑢
𝑢 , 

Figure 2.1 A mixed manufacturing system 

Station1 

U1 

U2 

 Station 3 Station 2 

Station 4 Y 
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𝐴 =

𝜀 𝜀 𝜀 𝜀
𝜀 𝜀 𝜀 𝜀
𝑡
𝜀

𝜀
𝑡

𝜀
𝑡

𝜀
𝜀

, B=

𝑡 𝜀 𝜀 𝜀
𝜀 𝑡 𝜀 𝜀
𝜀
𝜀

𝜀
𝜀

𝑡
𝜀

𝜀
𝑡

, 𝐷 =

𝑒 𝜀
𝜀
𝜀
𝜀

𝑒
𝜀
𝜀

 

and 

𝐶 = [𝜀 𝜀 𝜀 𝑡 ]. 

Since 𝐴 = ℰ for 𝑛 > 3,   

𝐴∗ =

𝑒 𝜀 𝜀 𝜀
𝜀 𝑒 𝜀 𝜀
𝜀
𝜀

𝜀
𝜀

𝑒
𝜀

𝜀
𝑒

⨁

𝜀 𝜀 𝜀 𝜀
𝜀 𝜀 𝜀 𝜀
𝑡
𝜀

𝜀
𝑡

𝜀
𝑡

𝜀
𝜀

⨁

𝜀 𝜀 𝜀 𝜀
𝜀 𝜀 𝜀 𝜀
𝜀

𝑡 𝑡
𝜀
𝜀

𝜀
𝜀

𝜀
𝜀

=

𝑒 𝜀 𝜀 𝜀
𝜀 𝑒 𝜀 𝜀
𝑡

𝑡 𝑡
𝜀
𝑡

𝑒
𝑡

𝜀
𝑒

. 

We define 

𝐴 = 𝐴∗𝐵 =

𝑒 𝜀 𝜀 𝜀
𝜀 𝑒 𝜀 𝜀
𝑡

𝑡 𝑡
𝜀
𝑡

𝑒
𝑡

𝜀
𝑒

𝑡 𝜀 𝜀 𝜀
𝜀 𝑡 𝜀 𝜀
𝜀
𝜀

𝜀
𝜀

𝑡
𝜀

𝜀
𝑡

=

𝑡 𝜀 𝜀 𝜀
𝜀 𝑡 𝜀 𝜀
𝑡

𝑡 𝑡
𝜀
𝑡

𝑡
𝑡

𝜀
𝑡

 and 

𝐵 = 𝐴∗𝐷 =

𝜀 𝜀 𝜀 𝜀
𝜀 𝜀 𝜀 𝜀
𝑡

𝑡 𝑡
𝜀
𝑡

𝜀
𝑡

𝜀
𝜀

𝑒 𝜀
𝜀
𝜀
𝜀

𝑒
𝜀
𝜀

=

𝑒 𝜀
𝜀
𝑡

𝑡 𝑡

𝑒
𝜀
𝑡

. 

According to Seleim (2016), equation (2.9) can be rewritten as: 

𝑋 = 𝐴𝑋 ⨁𝐵𝑈     (2.11) 

where 𝐴 = 𝐴∗𝐵 and 𝐵 = 𝐴∗𝐷. 

For  example, if we set 𝑡 = 2, 𝑡 = 3, 𝑡 = 4, and 𝑡 = 1 we get 

𝐴∗ =

𝑒 𝜀 𝜀 𝜀
𝜀 𝑒 𝜀 𝜀
2
6

𝜀
3

𝑒
4

𝜀
𝑒

, 𝐴 =

2 𝜀 𝜀 𝜀
𝜀 3 𝜀 𝜀
2
6

𝜀
3

4
4

𝜀
1

, and 𝐵 =

𝑒 𝜀
𝜀
2
6

𝑒
𝜀
3

 

giving the main equation of the system  

𝑋 =

2 𝜀 𝜀 𝜀
𝜀 3 𝜀 𝜀
2
6

𝜀
3

4
4

𝜀
1

𝑥
𝑥
𝑥
𝑥

⊕

𝑒 𝜀
𝜀
2
6

𝑒
𝜀
3

𝑢
𝑢 . 

2.5. Summary 

In this chapter, the basics of Max-Plus Algebra were introduced followed by an example 

showing the application of modeling manufacturing system with Max-Plus linear 

equations. In the following chapters, we will use Max-Plus Algebra to model a 

manufacturing system and a case study will be presented.  



 

23 
 

CHAPTER THREE  

MODELLING OF MANUFACTURING SYSTEM BY MAX-PLUS ALGEBRA 

3.1. Introduction  

In chapter two, the basic context of Max-Plus Algebra were discussed. In this chapter, variables, 

state space description, assumptions, and modelling the different structure of a manufacturing 

system using Max-Plus Algebra are explained.  

3.2.General Proposition of a Model using Max-Plus Algebra 

3.2.1. Variables  

To model a manufacturing system, the definition of entities needs to be clear. Inputs, variables and 

output of the station i as a member of the manufacturing system are modelled and assumed as 

below:  

K: an event counter, which is the number of parts (jobs), 

𝑡 : denotes processing time of station i, 

𝑈 (𝑘): denotes the time instants at which incoming part k is fed to the station i, 

𝑥 (𝑘): denotes the time instants when station i starts processing part k, 

𝑦(𝑘): stands for the time instants at which part k is completed and leaves the line as a finished 

product.  

 

3.2.2. State Space Description 

In the systems theory, the term state has a precise meaning and it describes behaviour of a system 

at a time instant in a measurable way. The state space of a system is the set of all possible values 

Figure 3.1 A simple structure of a system  

X(k) 

t 
M Y(k) U(k) 
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(usually denoted by 𝑋)  (Cassandras & Lafortune, 2010). In this study, corresponding state variables 

such as U(k), X(k), Y(k), rely on part 𝑘 which makes the system dynamic by considering events of 

such system that evolve in time. Two primary conditions are assumed in this system. First, the input 

(U), such as raw material or part, is available with no arrival time. Second, each station starts 

processing part 𝑘 + 1 when part 𝑘 leaves the station. As discussed in chapter two, the state 

equations are represented in several different forms. However, the common form is based on 

differential equations as below: 

𝑋(𝑘 + 1) = max (𝑈(𝑘 + 1), 𝑋 (𝑘) + 𝑡 ) or 

𝑋(𝑘 + 1) = 𝑚𝑎𝑥(𝑋 (𝑘 + 1) + 𝑡 , 𝑋 (𝑘) + 𝑡 )   

3.2.3. Assumptions in the Manufacturing System  

The following assumptions are considered in the developed general model; otherwise, it will be 

noted. 

1- Process time of stations is deterministic and fixed. 

2- All stations have infinite buffers. 

3- First In, First Out (FIFO) operation rule is followed. 

4- The process sequence is based on production flow line. 

5- The station only processes one part at a time. 

6- Stations do not have any failure, downtime or stoppage. 

7- The process time includes loading time, operation time, and unloading time. 

3.3.Modelling of a Manufacturing System 

A manufacturing system can be modelled using different structures, such as splitting, merging, by-

passing, back-tracking, batching, re-entrance, etc. Max-Plus Algebra can be used to model those 

structures to make it simpler and more understandable. In this research, different structures of a 

manufacturing system, such as Series, Merged, Parallel, Finite Buffer and the combination of those 

are studied and modelled using Max-Plus Algebra. For more details, we refer the readers to Imaev 

(2009); Muijsenberg (2015); Adzkiya et al. (2016); Seleim (2016). 
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3.3.1. Modelling "n" Series Stations 

In this structure, stations are laid out consecutively. There is no merged point, parallel station or 

buffer. Parts are processed by passing through all stations. This structure is shown in Fig. 3.2 can 

be explained by Max-Plus equations as follows: 

 

By following the main equation (2.8) the main state equation is: 

𝑋(𝑘) = 𝐴𝑋(𝑘 − 1) ⊕ 𝐵𝑈(𝑘)        (3.1) 

   

where: 

𝐴 = 𝐴∗ ⊗ 𝐵 =

⎣
⎢
⎢
⎡

𝑡 𝜀 … 𝜀

𝑡 𝑡 𝜀

⋮ ⋮ ⋱ ⋮ 
𝑡 𝑡 . . 𝑡 𝑡 𝑡 . . 𝑡 … 𝑡 𝑡 ⎦

⎥
⎥
⎤

 

and  B =  A∗ ⊗ D =

e
t
⋮

t t . . t

 

From the main equation it can be deduced that for any station i, the state equation for the part k is 

equal to: 

X , = t X ,  ⊕ t X , ⊕ t t X , ⊕ … ⊕ t t … t X , ⊕ t t … t U   

Therefore, the Max-Plus equation can be generated directly by state equation (3.1) with any number 

of stations. 

3.3.2. Modelling "n" Merged Stations 

The merged station is a station that receives input from more than one station. Hence, state of part 

k at station ⅰ is calculated by considering the main state equation as (3.1), where A  and  B will be: 

 𝑡  

X 1 X i 

U 
𝑡  𝑡  

X n 

Y 

Figure 3.2 n series stations 
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𝐴 = 𝐴∗ ⊗ 𝐵 =

⎣
⎢
⎢
⎢
⎢
⎡
𝑡 𝜀 … 𝜀

𝜀 𝑡 𝜀

⋮  ⋱ ⋮ 
𝜀 𝜀 𝑡 𝜀

𝑡 𝑡 … 𝑡 𝑡 ⎦
⎥
⎥
⎥
⎥
⎤

, and  𝐵 =  𝐴∗ ⊗ 𝐷 =

⎣
⎢
⎢
⎢
⎡

𝑒 𝜀 … 𝜀
𝜀 𝑒 𝜀
⋮  ⋱ ⋮ 
𝜀 𝜀 𝑒 𝜀

𝑡 𝑡 … 𝑡 ⎦
⎥
⎥
⎥
⎤

 

3.3.3. Modelling Parallel Identical Stations 

In section 3.3.1, modelling n series stations, it has been assumed that there is no parallel station in 

the system. However, adding a parallel station is one of the ways to reduce idle time, which is a 

priority for manufacturers. In other words, the bottleneck station gets one or more identical stations, 

which lead to tasks distribution among those parallel stations. For example, if an identical station 

is added to station i, while this station is processing part k, the identical station processes the next 

part (k+1).  

 

As shown in figure (3.4), m parallel stations are added to station i. These stations can be assumed 

to be one station for the purpose of modelling. Therefore, the condition that the station should have 

finished processing part 𝑘 − 1, would be replaced by 𝑘 − 𝑚.  The conditions for the first and last 

stations are unchanged. Thus, all variables are similar to the series model, except matrix B, which 

would be represented by two matrices. The first matrix is the same as matrix B, but the difference 

is that all entities in the corresponding column of the parallel station are replaced with 𝜀.  

Likewise,   𝐵 =  

𝑡 𝜀 𝜀
𝜀 𝜀 𝜀
𝜀 . . ⁞. . 𝑡

 and  𝐵 =  
𝜀 𝜀 𝜀
𝜀 𝑡 𝜀
𝜀 𝜀 𝜀

  

The main equation will have an extra nominal for each group of parallel stations and evolves to: 

Y 

𝑡  𝑡  𝑡  

U 11 U 1i U 1n 

𝑡  

𝑡  

 𝑡  
X 1 

X i 

U 

X n 

Y 
𝑡  

𝑡  

Figure 3.4 Flow line with the parallel identical station 

Figure 3.3 "n" merged stations 

𝑡⁞ 
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𝑿 = 𝑨𝑿  ⊕ 𝑨𝑷𝒊𝑿 ⊕ 𝑩𝑈     (3.2)  

3.3.4. Modelling A Station with Finite Buffer 

Buffering is one of the ways that manufacturers are using to account for fluctuations and variations 

in their systems. Buffers can be raw material storage, finished part inventories, and unfinished parts. 

Assuming the station has a buffer with B parts changes the main state equation as below: 

𝑿 = 𝑨𝑿  ⊕ 𝑩𝑈 ⊕ 𝑨𝑩𝒊𝑿      (3.3)  

 In which matrices 𝐴, and 𝐵 are same as before and  𝐴𝐵  is added as below: 

  𝑨𝑩𝒊 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝜀 … 𝜀  𝜀 … 𝜀
⋮ ⋮ ⋮ ⋮

𝜀
 𝜀 … 𝜀 𝑒 𝜀 
 ⋮ ⋮ 𝜀 ⋮ ⋮ 

⋮
𝜀 … 𝜀 𝜀 𝜀 𝜀 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 

3.3.5. An Integrated Model (Series, Merged, Parallel Stations and Finite Buffer) 

The last structure is the combination of all the previous station models. In the real world, a 

manufacturing system takes advantage of using both parallel station(s) and buffer(s) to balance the 

production line. By using the parallel station at a bottleneck and buffers at stations whose upstream 

process is the bottleneck, the production flow would be smoother. By having all systems structures 

such as series, merged, parallel station and finite buffer in one system, the main equation is changed 

as below: 

𝑿 = 𝑨𝑿  ⊕ 𝑩𝑈 ⊕ 𝑨𝑷𝒊𝑿 ⊕ 𝑨𝑩𝒊𝑿     (3.4) 

The matrices’ structure should be similar to those matrices that were discussed in previous models. 

 𝑡  

𝐁𝐮𝐟𝐟𝐞𝐫 

X 1 X i 

U 

X n 

Y 
𝑡  𝑡  

Figure 3.5 Flow line with the buffer station 



 

28 
 

 

3.4.The General form of Modelling Formulation using Max-Plus Algebra 

In this research, a general form of the manufacturing system is composed of three parallel stages 

each of which has three stations in series, two merged stations, and a series of finishing stations. 

Figure 3.7 represents the overall view of the considered manufacturing system. To make it easy to 

understand, the general framework does not include any parallel stations or buffers. In this section, 

the Max-Plus Algebra equations related to this framework are explained, and more details will be 

discussed in chapter 4. 

 

Using Max-Plus Algebra, the system's framework and behaviour can be modelled by the next state 

equations. Variables, state space and assumptions are the same as the general form explained in 

section (3.2). 

The following equations are applied for each station:  

Group 1, stations A, B and, V: 

Station A:    𝑥 (𝑘) = 𝑢 (𝑘)⨁𝑥 (𝑘 − 1)𝑡                        (3.5)    

m 

 𝑡  
X 1 

X i 

U 

X n 

Y 
1 𝑡  

Figure 3.6 An integrated model (Series, Merged, Parallel Stations and, Finite Buffer) 

𝑡  
𝐁𝐮𝐟𝐟𝐞𝐫 

Merging point 

X 
-- 

Name of Station 

Group 

Processing Time(sec) 

 

Figure 3.7 The General Structure of modelled manufacturing system 
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Station B:    𝑥 (𝑘) = 𝑥 (𝑘)𝑡 ⨁𝑥 (𝑘 − 1)𝑡       (3.6) 

Expanding equation (3.5) into the (3.6) would result in the following: 

𝑥 (𝑘) = (𝑢 (𝑘)⨁𝑥 (𝑘 − 1)𝑡 )𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑥 (𝑘) 

    𝑥 (𝑘) = 𝑢 (𝑘)𝑡 ⨁𝑥 (𝑘 − 1)𝑡 ⨁𝑥 (𝑘 − 1)𝑡      (3.7) 

By following the same procedure, the equation for station V is expanded as follows: 

Station V:    𝑥 (𝑘) = 𝑥 (𝑘)𝑡 ⨁𝑥 (𝑘 − 1)𝑡 = 

𝑢 (𝑘)𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 ⨁𝑥 (𝑘 − 1)𝑡   (3.8) 

Group 2, stations D, E and, F: 

Station D:    𝑥 (𝑘) = 𝑢 (𝑘)⨁𝑥 (𝑘 − 1)𝑡         (3.9) 

Station E:    𝑥 (𝑘) = 𝑥 (𝑘)𝑡 ⨁𝑥 (𝑘 − 1)𝑡       (3.10) 

in group 2 and 3, the same as group 1, calculations are made by expanding (3.9) into (3.10): 

𝑥 (𝑘) = 𝑢 (𝑘)𝑡 ⨁𝑥 (𝑘 − 1)𝑡 ⨁𝑥 (𝑘 − 1)𝑡           (3.11) 

Station F:    𝑥 (𝑘) = 𝑥 (𝑘)𝑡 ⨁𝑥 (𝑘 − 1)𝑡         (3.12) 

(3.12) and (3.11):  

𝑥 (𝑘) = 𝑢 (𝑘)𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 ⨁𝑥 (𝑘 − 1)𝑡       (3.13) 

Merging point M, (3.8) and (3.13):  𝑥 = 𝑥 (𝑘)𝑡 ⨁𝑥 (𝑘)𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑥 = 

𝑢 (𝑘)𝑡 𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 ⨁𝑥 (𝑘 − 1)𝑡 ⨁𝑢 (𝑘)𝑡 𝑡 𝑡 ⨁𝑥 (𝑘 −

1)𝑡 𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 ⨁𝑥 (𝑘 − 1)𝑡                                       (3.14) 

Group 3, stations C, I and, L: 

Station C:    𝑥 (𝑘) = 𝑢 (𝑘)⨁𝑥 (𝑘 − 1)𝑡     (3.15) 

Station I:    𝑥 (𝑘) = 𝑥 (𝑘)𝑡 ⨁𝑥 (𝑘 − 1)𝑡    (3.16) 
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(3.15) and (3.16) :  𝑥 (𝑘) = 𝑢 (𝑘)𝑡 ⨁𝑥 (𝑘 − 1)𝑡 ⨁𝑥 (𝑘 − 1)𝑡        (3.17) 

Station L:    𝑥 (𝑘) = 𝑥 (𝑘)𝑡 ⨁𝑥 (𝑘 − 1)𝑡  

(3.17) and (3.16): 𝑥 (𝑘) = 𝑢 (𝑘)𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 ⨁𝑥 (𝑘 − 1)𝑡     (3.18) 

Merging point T    𝑥 = 𝑥 (𝑘)𝑡 ⨁𝑥 (𝑘)𝑡 ⨁𝑥 (𝑘 − 1)𝑡  (3.19) 

(3.19), (3.14) and (3.18):  

𝑥 = 𝑢 (𝑘)𝑡 𝑡 𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑡 𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑡  ⨁ 

𝑢 (𝑘)𝑡 𝑡 𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑡 𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑡 ⨁ 

𝑥 (𝑘 − 1)𝑡 ⨁𝑢 (𝑘)𝑡 𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 ⨁𝑥 (𝑘 − 1)𝑡   (3.20) 

Station W:    𝑥 (𝑘) = 𝑥 (𝑘)𝑡 ⨁𝑥 (𝑘 − 1)𝑡   (3.21) 

(3.20) and (3.21): 

𝑥 (𝑘) = 𝑢 (𝑘)𝑡 𝑡 𝑡 𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑡 𝑡 𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑡 𝑡 ⨁ 

𝑢 (𝑘)𝑡 𝑡 𝑡 𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑡 𝑡 𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑡 𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑡 𝑡 ⨁ 

𝑥 (𝑘 − 1)𝑡 𝑡 ⨁𝑢 (𝑘)𝑡 𝑡 𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑡 𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑡 𝑡 ⨁𝑥 (𝑘 −

1)𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 ⨁𝑥 (𝑘 − 1)𝑡               (3.22) 

Station Y:    𝑥 (𝑘) = 𝑥 (𝑘)𝑡 ⨁𝑥 (𝑘 − 1)𝑡 = 

𝑢 (𝑘)𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑡 𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑡 𝑡 𝑡  

⨁𝑢 (𝑘)𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑡 𝑡 𝑡 𝑡  

⨁𝑥 (𝑘 − 1)𝑡 𝑡 𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑡 𝑡 ⨁𝑢 (𝑘)𝑡 𝑡 𝑡 𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑡 𝑡 𝑡 𝑡  

⨁𝑥 (𝑘 − 1)𝑡 𝑡 𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 𝑡 ⨁𝑥 (𝑘 − 1)𝑡 ⨁𝑥 (𝑘 − 1)𝑡  (3.23) 

All above equations have described the state of a manufacturing system and can be extracted into 

the state equation form as: 
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𝑋 = 𝐴𝑋 ⨁𝐵𝑋 ⨁𝐷𝑈  

𝑌 = 𝐶𝑋  

Where:   

𝑋 = [𝑥 , 𝑥 , … , 𝑥 ]   

𝑈 = [𝑢 , 𝑢 , 𝑢 ]  

𝐶 = [Ɛ, Ɛ … , 𝑡 ]  
 

A=    

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

𝑡  Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ 𝑡  Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ 𝑡  Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ 𝑡  Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ 𝑡  Ɛ Ɛ 𝑡  Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 𝑡  Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 𝑡  Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 𝑡  Ɛ Ɛ 𝑡  Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 𝑡  Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 𝑡 Ɛ 

 

B=    

𝑡  Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ 𝑡  Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ 𝑡  Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ 𝑡  Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ 𝑡  Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ 𝑡  Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 𝑡  Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 𝑡  Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 𝑡  Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 𝑡  Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 𝑡  Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 𝑡  Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 𝑡  

 

D=    

e Ɛ Ɛ 

Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ 

Ɛ e Ɛ 

Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ 

Ɛ Ɛ e 

Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ 

According to equation (3.1), the implicit equation can be transformed into the main state equation 

(𝑋 = 𝐴𝑋 ⨁𝐵𝑈 ). where, 𝑨 = 𝑨∗𝑩, 𝑩 = 𝑨∗𝑫 and 𝑨∗,  𝑨 and 𝑩 can be calculated as:  

 

𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝑡   

𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝑡  𝑡   

𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝑡  𝑡  𝑡 𝑡   

𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝑡  𝜀 𝜀 𝜀  

𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝑡  𝜀 𝜀 𝜀 𝜀  

𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝑡  𝜀 𝜀 𝜀 𝜀 𝜀  

𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝑡  𝑡  𝑡  𝑡  𝑡  𝑡 𝑡  𝑡 𝑡 𝑡  𝑨 = 

𝜀 𝜀 𝜀 𝜀 𝜀 𝑡  𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  

𝜀 𝜀 𝜀 𝜀 𝑡  𝑡  𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  

𝜀 𝜀 𝜀 𝑡  𝑡  𝑡 𝑡  𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  

𝜀 𝜀 𝑡  𝑡  𝑡 𝑡  𝑡 𝑡 𝑡  𝑡  𝑡 𝑡  𝑡 𝑡  𝑡 𝑡  𝑡 𝑡  𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡   

𝜀 𝑡  𝑡  𝑡 𝑡  𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡  𝑡 𝑡  𝑡 𝑡 𝑡  𝑡 𝑡 𝑡  𝑡 𝑡 𝑡  𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡 𝑡   

𝑡  𝑡  𝑡 𝑡  𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡𝑡 𝑡 𝑡 𝑡 𝑡𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 
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𝜀 𝜀 𝑒  

𝜀 𝜀 𝑡   

𝜀 𝜀 𝑡 𝑡   

𝜀 e 𝜀  

𝜀 𝑡  𝜀  

𝜀 𝑡 𝑡  𝜀  

𝜀 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡  𝑩 = 𝑨∗𝑫 = 

e 𝜀 𝜀  

𝑡  𝜀 𝜀  

𝑡 𝑡  𝜀 𝜀  

𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡   

𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡 𝑡   

𝑡 𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡 𝑡 𝑡   

𝐀 and 𝑩 provide the process time of the stations, meaning that all the equations will have a solution, 

which is the starting time for each part in all stations. All these equations as a part of a dynamic 

system can be applied in the analysis phase as well as control or optimization. In case of changes 

to the processing time of station, or even changes to a finished product, as long as the structure of 

the system does not change, all equations and calculations are similar and can still be used on the 

structure. 

3.5. Summary  

In this chapter, the different structures of a manufacturing system were considered. The 

mathematical formulation in the general structure was presented and matrices based on Max-Plus 

equations were constructed. In chapter 4, different scenarios of the real and practical case study 

will be modelled and analyzed. 
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CHAPTER FOUR  

CAR HEADLIGHT MODELING AND LINE BALANCING BY MAX-PLUS 

ALGEBRA 

4.1.Introduction  

In the previous chapter, parameters, conditions, assumptions and different structures of the 

manufacturing systems were explained. In this chapter, the basic structure of a Car Headlight 

manufacturing system and mathematical model formulation, equations and matrices by Max-Plus 

Algebra are presented. Car Headlight as a practical manufacturing system, which is a combination 

of manufacturing and assembly line, is analyzed and balanced by considering several operation 

scenarios. Finally, the results of this analysis have been demonstrated. 

4.2. Car Headlight Manufacturing System 

Based on the system classification discussed in the chapters 2 and 3, Car Headlight manufacturing 

system attributes are described below.  

Based on Figure 1.2, the Car Headlight manufacturing system is classified as a dynamic system 

and due to this fact the output of the system is time-dependent on the past values of input. Since 

the considered manufacturing system changes over time, the system is recognized as a Time-

Variant system. As discussed in previous chapters, Max-Plus Algebra makes the modelled systems 

linear, hence modelling Car Headlight manufacturing system using Max-Plus Algebra would be a 

linear system. Additionally, this system is deterministic as there are no random variables or 

uncertainty conditions. Finally, the Car Headlight manufacturing system is known as a Discrete 

Event System because the state variables change at discrete set of points over time. 

4.2.1. Manufacturing Flow Line 

Manufacturing Flow Line is a process of using machines and labour to make goods that are sold to 

end customers. Generally, the manufacturing line is composed of a sequence of processes. Each 

process includes the operation(s) that makes a part closer to a finished product. On the other hand, 

the production line is a broad term including lines that transform the raw material into finished 

products like car production lines. Specifically, a type of manufacturing or production line in which 

parts and components are added together in a series of steps with no changes to their features or 
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identifications is called an assembly line. The considered manufacturing system is a Car Headlight 

flow line, which is a combination of the manufacturing line, for reflector and frames produced by 

moulding machines, and assembly line for lights, kits, units and other parts joined to the frames. 

The Car Headlight manufacturing line is shown in Figure 4.1 and an exploded view of the Car 

Headlight is shown in Figure 4.2.  

The Car Headlight manufacturing line includes plastic moulding, milling, vacuum, heating 

machines, press, automated and programmed robots, adhesive guns, and fixtures arranged in 12 

stations with different tools such as a screwdriver, air compressor, wrench, gauge, printer, and tape 

machine. In addition, Ultraviolet (UV) coating, lumen adjuster and laser are used for quality 

control. Some of the machines and stations of the Car Headlight flow line are presented in Figures 

4.3 to 4.8.  

4.2.2. Components, Parts and Modules  

To make driving safer and more convenient, auto manufacturers take advantage of technology by 

adding/removing components and parts to the basic configuration of a Car Headlight. These 

additional parts, such as sensors and control kits, make headlight structure more complex, which is 

beyond of the scope of this research. The list of standard parts is given in Table 4-1. 

Group 2 

Group 3 

C 

23 

I 

47 60 

L 

D 

15 

E 

38 

F 

32 
Merging point 

X 
-- 

Name of Station 

Group 

Processing Time(sec) 

 

Group 1  

Figure 4.1 Scenario 1, The General Structure of modelled manufacturing system 

 

T 

26 

W 

14 
Y 

M 

25 

A Reflector Moulding Machine B Laser Cutting Machine V Quality Inspection 

D Middle Frame Moulding Machine E Assembly Station (Lights and Bulbs) F Assembly Station (Covers, Socket and Kit) 

C Back Frame Moulding Machine I 
Assembly Station (HVAC, Sockets,  
Bolt and Washer) 

L 
Assembly Station (Control Unit, LED and 
Directional Light) 

M 
Assembly Station (Reflector to 
Middle Frame) 

T 
Assembly Station for (Projector Lens 
and Cover) 

W Final Quality Inspection and Labeling 

 

A 

28 

B 

18 12 

V 
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Table 4-1 List of Car Headlight Parts and Components  
1 Lamp cower low beam 13 Screw-Trox-Bolt with 

washer 2 Cover high beam/daytime running lights 14 Socket housing 

3 Bulb socket, turn insider 15 Repair kit headlight 

4 Control unit xenon light 16 Lamp holder for xenon 
lamp 5 Control unit directional light 17 LED lights 

6 Parts set parking-light bulb, halogen 18 Cover  

7 Repair kit, HVAC servomotor 19 Seal washer 

8 Bulb xenon light with an ignition element 20 Projector lens 

9 Bulb yellow/blue 21 Headlight lens 

10 Bulb 22 Reflector 

11 Long-life Bulb 23 Socket Wire 

12 Bulb 24 Housing 

 

4.2.3. Car Headlight Assembly Process Plan Description 

As shown in Figure 4.1, the Car Headlight flow line is composed of 12 stations. It includes three 

moulding machines (e.g. Figure 4.3), which produce frames such as reflector, middle frame and cover. 

The reflector is the main component of Car Headlight, which is moulded and finished by Stations A 

Figure 4.2 Exploded view of Car Headlight (workshop-manuals.com) 
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(Moulding Injection Machine) and B (Laser Cutting Machine), respectively. Raw materials are Poly 

Carbonate Resin, Plexiglas and Acrylic. They are sucked from a container by vacuum machines to the 

moulding injection machine (Station A). 

 

The outcome of station A is a moulded part, which is taken by automated robots to Station B (Laser 

Cutting Machine). This station cuts and sands the edges (Figure 4.4). Finally, the reflector is delivered 

to the Quality Inspection (Station V).  

 

Figure 4.3 Moulding Injection Machine (Haishi-machinery.com) 

Figure 4.4 Laser Cutting Machine (masscuttingsystems.com) 
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Table 4-2 Process Plan Car Headlight Manufacturing Line 

S
tation

 

C
od

e 

P
art N

o 

Part Name Operation Description 
W

orkstation
 

T
otal tim

e 

P
reced

en
ce 

A 10 22 Reflector Poly Carbonate Resin, Plexiglas and 
Acrylic are injected into Molding Machin. 
The robot takes out two reflectors and 
places them on the conveyor. 

A1 28 - 

B 15 22 Reflector (Cutting sharp edge 
and Finishing) 

Operator loads reflector. Extra parts are cut 
and removed. Unloading by the robot.  

A2 18 10 

V 20 - Quality Inspection Quality tests: checking edges, holes, shape, 
laser wave 

P1 12 15 

D 30 25 Middle Frame The chemical mix is sucked in and cast  A3 15  

E 40 6,8,10
,11,12
, 

Set Parking-Light Bulb, 
Halogen, Xenon Light 
Ignition, Long-life Bulb 

Parts picked up from the shelves. screws 
used to fasten on middle frame. 

A4 38 30 

F 50 1,2,3,
9,13,1
5,16, 

Lamp Cower Low Beam 
(cap), Cover High 
Beam/Daytime Running 
Lights, Lamp holder, Bulb 
Socket, Turn Insider, 
Headlight Repair Kit  

Parts in this station are installed with a 
universal wrench to middle frame equipped 
by lights. Dust and scrap are cleaned by an 
air compressor 

A5 32 40 

M 60  Screws Finished reflector and middle frame with 
all parts is moved by conveyor through the 
station. All parts are visually checked by 
the operator 

A6 25 20, 
50 

C 70 24 Headlight Housing(back 
frame) 

Back frame is cast in molding machine  A7 23  

I 80 7,13,2
3 

Repair Kit, HVAC 
Servomotor, Screw-Trox-
Bolt With Washer, Socket 
Wire, Socket Housing 

The repair kit is supported by Trox-bolt, 
screwed to frame. Back cover is picked up 
and is screwed at each corner. A socket 
wire is connected 

A8 47 70 

L 90 4,5,17
,18,19 

Xenon Control Unit,  
Directional Light, washer, 
LED lights & Cover 

A seal washer is placed under the frame 
and closed by screw Washer. LED and its 
cover is closed on the back frame. 

A9 60 80 

T 100 20, 21 Projector Lens, Headlight 
Lens (Front cover) 

Unfinished Headlight, Projector Lens, and 
headlight lens are picked up and placed on 
the heating machine and glued 

A10 26 60, 
90 

W 110 - Quality inspection, 
Labeling(sticker)  

approved function of products, box on 
pallet filled with finished products 

P2 14 100 

Middle frame and Cover are moulded at Stations D and C respectively. Light Set, Kits, Holders, 

and Socket are connected to Middle Frame in the Assembly Stations E and F. 
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In the first merging assembly station (M), the approved reflector (Stations A, B and V) is screwed 

to the output sub-assembly of Station F (Figure 4.5). which Is Middle Frame with Lights, Bulbs 

and Kit. 

Parts and modules such as Wires, Control Unit, Sockets and Lights (Figure 4.6) are installed into 

the moulded Back Frame coming from station C in Stations I and L.  

In the second merging assembly Station T, the output from station M, which were Reflector and 

Middle Frame is connected to the Back Frame assembled with lights, HVAC, Kits, Sockets, etc. 

 

Finally, Projector Lens and Headlight Lens (Front cover) are stacked with adhesive under pressure 

(heat and glue) to the unfinished headlight (Figure 4.7).  

Figure 4.6 Projector Lens and Headlight Lens Holder Sub-Assembly Station (eooeintl.com) 

 
Figure 4.5 Reflector Sub-Assembly Station into Lamp Seat (eooeintl.com) 
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At the end of line, by running several tests in Quality Inspection station such as Air Tightness 

(Figure 4.8), Lumen adjusting, Ultraviolet and lights Direction tests, a finished headlight comes out 

with a label and is ready to ship at Station W. Completed process plan and the rest of stations are 

provided in Appendices 3 and 4 respectively.  

4.3.Line Balancing Scenarios  

Manufacturing line is composed of different stations. Each station performs at a specific rate/speed. 

Line balancing is one of the manufacturing functions that try to divide works equally across the 

production flow. The advantages of line balancing are productivity improvement, and reductions 

in Work in Process (WIP), labour idle time, bottlenecks, etc. Line balancing can be achieved in 

different ways such as combining a couple of stations into one station, and adding parallel stations 

Figure 4.7 Plasma Spray and Adhesive Gluing (eooeintl.com) 

 

Figure 4.8 Air Tightness Test (Quality Inspection) (eooeintl.com) 
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and/or buffers. In this research, seven scenarios are proposed and tested to balance the considered 

manufacturing line. 

4.3.1. Scenario 1 - No Buffer or Parallel Identical Station 

The first scenario is a simple flow line as shown in figure 4.1. There is no buffer or parallel station. 

The main Max-Plus Algebra equation of this scenario is the same as equation 2.8 and is as below: 

𝑿𝒌 = 𝑨𝑿𝒌 𝟏 ⊕ 𝑩𝑼𝒌 

Numerical matrices for 𝐴 and 𝐵 are provided in Appendix 2. 

4.3.2. Scenario 2 - Parallel Stations Used at Bottleneck (Station L) 

In this scenario, the bottleneck station is detected and an identical parallel station is added to the 

bottleneck station in the manufacturing line. Station L is the bottleneck and a parallel identical 

station at station L (L-1 and L-2) is added (Figure 4.9,). 

 

The main equation is as follows. Matrix 𝐵 has to deal with k parts (the part that is leaving station i 

is unchanged). The only change is to Matrix 𝐴, which represents upcoming parts as k-1 in regards 

to the corresponding column of the parallel station. Therefore, the 10th column of the matrix 𝐴, 

X 
-- 

Name of Station 

 

 

Time(sec)Processing  

Figure 4.9 The Structure of Scenario 2, Parallel Identical Station  
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which is representative of Station L, is replaced by 𝜀, which is minus infinity (-∞) in Max-Plus 

Algebra. Finally, an additional matrix (𝐴𝑃 ), related to those parallel stations, is inserted and 

multiplied by the vector 𝑋 . 𝐴𝑃  and indicates the 10th column of 𝐴.  

𝑿𝒌 = 𝑨𝑿𝒌 𝟏 ⊕ 𝑩𝑼𝒌 ⊕ 𝑨𝑷𝑳𝑿𝒌 𝟐 

 

𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝐴𝑃 = 
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝑡  𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝑡  𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝑡 𝑡  𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝑡 𝑡 𝑡  𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  

4.3.3. Scenario 3 - Buffer is added at Station T 

The manufacturing system uses a buffer to avoid variation in the manufacturing process. Having a 

buffer ensures manufacturers that there are enough supplies to run the manufacturing line smoothly 

without interruption for shortage of parts. Generally, there are three kind of buffers, such as raw 

material, finished product and unfinished product (WIP). By buffering raw material and finished 

products, manufacturers guard against fluctuations in the supply chain. Unfinished product 

inventory is usually placed at the station whose upstream stations frequently break down or have 

limited capacity. In other words, by adding a buffer to those stations, the operators will not 

experience any idle time during production. Based on the result of Scenario 1, Station L is the 

𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝑡   
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝑡  𝑡   
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝑡  𝑡  𝑡 𝑡   
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝑡  𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝑡  𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝑡  𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝑡  𝑡  𝑡  𝑡  𝑡  𝑡 𝑡  𝑡 𝑡 𝑡  𝐴 = 
𝜀 𝜀 𝜀 𝜀 𝜀 𝑡  𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝑡  𝑡  𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝑡  𝑡 𝑡  𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝑡  𝜀 𝑡 𝑡  𝑡 𝑡 𝑡  𝑡  𝑡 𝑡  𝑡 𝑡  𝑡 𝑡  𝑡 𝑡  𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡   
𝜀 𝑡  𝑡  𝜀 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡  𝑡 𝑡  𝑡 𝑡 𝑡  𝑡 𝑡 𝑡  𝑡 𝑡 𝑡  𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡 𝑡   
𝑡  𝑡  𝑡 𝑡  𝜀 𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡𝑡 𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡 𝑡 𝑡   



 

42 
 

bottleneck. Hence, a buffer of 10 parts is added to station T, which is placed right after the 

bottleneck (Figure 4.10). 

 

Matrices 𝐴, 𝐵 are unchanged. However, an additional matrix, 𝐴𝐵  with the same dimension as 

matrix 𝐴, is inserted. Matrix 𝐴𝐵  is multiplied by vector 𝑋 , where (b=10) is the buffer size.  

𝑿𝒌 = 𝑨𝑿𝒌−𝟏 ⊕ 𝑩𝑼𝒌 ⊕ 𝑨𝑩𝑻𝑿𝒌 𝟏𝟎 

 

𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝑒 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝐴𝐵 = 
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝑒 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝑡 ⊕ 𝑡  𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 (𝑡 ⊕ 𝑡 )𝑡  𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 (𝑡 ⊕ 𝑡 )𝑡 𝑡  𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  

X 
-- 

StationName of  

 

 

Processing Time(sec) 

Figure 4.10 Structure of Scenario 3, Buffer at Station T 
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4.3.4. Scenario 4 - Buffer and Parallel Station 

Scenario 4 is the combination of Scenarios 2 and 3 (Figure 4.11). In other words, an identical 

parallel station and buffer are added to Station L and T respectively. The main Max-Plus equation 

for this scenario is as follows:  

𝑿𝒌 = 𝑨𝑿𝒌−𝟏 ⊕ 𝑩𝑼𝒌 ⊕ 𝑨𝑷𝑳𝑿𝒌 𝟐 ⊕ 𝑨𝑩𝑻𝑿𝒌 𝟏𝟎 

The structure of matrices 𝑨, 𝑩, 𝑨𝑷𝑳, 𝒂𝒏𝒅 𝑨𝑩𝑻 are the same as those were demonstrated in 

scenarios 2 and 3.  

 

4.3.5. Scenario 5 - Three Parallel Stations at Bottleneck 

Adding a parallel station to the bottleneck will not always lead to improving efficiency and 

reduction in idle time. This scenario is an extension of the second scenario, by having three parallel 

stations at the bottleneck (Figure 4.12). The main Max-Plus equation and matrices are same as the 

scenario 2, with a difference at the index of X changed to k-3. 

X 
-- 

Name of Station 

 

 

Processing Time(sec) 

Figure 4.11 Structure of Scenario 4, Combination of Parallel Identical Station and Buffer 
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𝑿𝒌 = 𝑨𝑿𝒌 𝟏 ⊕ 𝑩𝑼𝒌 ⊕ 𝑨𝑷𝑳𝑿𝒌 𝟑 

This scenario is chosen to show that having parallel stations at a bottleneck is beneficial; otherwise, 

it cannot improve efficiency parameters.  

4.3.6. Scenario 6 - Parallel Stations in Two Different Stations 

By reconsidering Scenario 2, Station I is also found to be a bottleneck. Therefore, two parallel 

stations are added in Stations I and L (Figure 4.13). 

X 
-- 

Name of Station 

 

 

Processing Time(sec) 

Figure 4.12 Structure of Scenario 5 Three Parallel Identical Stations 
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Similar to Scenario 2, matrix 𝐵 is unchanged. However, two columns of the matrix 𝐴, which 

correspond to the parallel stations, are changed. In this scenario, these columns are columns 9 and 

10, which represent Stations I and L. Finally 𝐴𝑃  should be constructed by two equivalent columns 

for Stations I and L as below: 

𝑿𝒌 = 𝑨𝑿𝒌 𝟏 ⊕ 𝑩𝑼𝒌 ⊕ 𝑨𝑷𝑰𝑳𝑿𝒌 𝟐 

𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝐴𝑃 = 
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝑡  𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝑡  𝑡  𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝑡  𝑡 𝑡  𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝑡 𝑡  𝑡 𝑡 𝑡  𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝑡 𝑡 𝑡𝑡 𝑡 𝑡 𝑡𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  

4.3.7. Scenario 7 – Combination of Four Parallel Stations and Two Buffer  

This scenario is the extension of Scenarios 6 and 3. Identical stations are added to Stations E, F, I, 

L and five parts in buffers of Stations T and W (Figure 4.14). 

Figure 4.13 Structure of Scenario 6 Two Parallel Identical Station at I and L 
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Each parallel identical station or buffer participates in the main Max-Plus equation of this scenario 

as below by an extra matrix: 

𝑿𝒌 = 𝑨𝑿𝒌 𝟏 ⊕ 𝑩𝑼𝒌 ⊕ 𝑨𝑷𝑬𝑿𝒌 𝟐 ⊕ 𝑨𝑷𝑭𝑿𝒌 𝟐 ⊕ 𝑨𝑷𝑰𝑿𝒌 𝟐 ⊕ 𝑨𝑷𝑳𝑿𝒌 𝟐 ⊕ 𝑨𝑩𝑻𝑿𝒌 𝟓 ⊕ 𝑨𝑩𝑾𝑿𝒌 𝟓 

The above equation can be simplified by combining AP  matrices which are multiplied by the 

same vector index. This state can be applied to AB  as well. Thus: 

𝑿𝒌 = 𝑨𝑿𝒌 𝟏 ⊕ 𝑩𝑼𝒌 ⊕ 𝑨𝑷𝑬𝑭𝑰𝑳𝑿𝒌 𝟐 ⊕ 𝑨𝑩𝑻𝑾𝑿𝒌 𝟓 

For those parallel stations, 𝑨 receives 𝜀 in the correspondent columns, instead of 𝑨𝑷𝑬𝑭𝑰𝑳 including 

those stations.  

𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝑡  𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝑡  𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝑡  𝑡  𝜀 𝜀 𝜀 𝜀 𝐴𝑃 = 
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝑡  𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝑡  𝑡  𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝑡  𝑡 𝑡  𝜀 𝜀 𝜀 𝑡 𝑡  𝑡 𝑡  𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝑡 𝑡  𝑡 𝑡 𝑡  𝜀 𝜀 𝜀 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡  𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡𝜀 𝜀 𝜀 𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡  𝜀 𝜀 𝜀 𝜀  

Figure 4.14 Structure of Scenario 7 the Combination of Four Parallel Identical Station and Two Buffers 
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Also, the 𝐴𝐵   the structure covers two stations (T and W) and index of X is k-5. 

𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝑒 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝐴𝐵 , = 
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝜀 𝑒 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝑒 𝑡 ⊕ 𝑡  𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝑡  (𝑡 ⊕ 𝑡 )𝑡  𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  
𝜀 𝑡 𝑡  (𝑡 ⊕ 𝑡 )𝑡 𝑡  𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  

4.4. Analysis and Results 

In the previous section, seven scenarios were introduced to consider different combinations of the 

flow line, parallel stations, and buffers. These scenarios can be extended/modified into any kind of 

manufacturing flow line. Manufacturers can use those scenarios to simulate and optimize their 

manufacturing lines and also to find out how well the line is balanced. To do that, they need to 

study the manufacturing line performance to find out which stations are bottlenecks and which 

stations require a buffer. Parallel stations can be added to a bottleneck, and buffers can be allocated 

to stations whose upstream stations are a bottleneck.  

In this section, the defined scenarios are tested and analyzed to find out the best way to balance the 

Car Headlight manufacturing line effectively. The scenarios are tested for 30 finished Car 

Headlights using Matlab to solve the corresponding Max-Plus Algebra models. The considered 

manufacturing systems assumptions were mentioned in section 3.2.3.  

To analyze the results, Key Performance Indicators (KPIs) are defined and applied including Cycle 

Time, Average Delivery Rate, Total Processing Lead Time, Stations' Utilization Rate, Idle Time 

and System Efficiency. Finally, a Financial Analysis is carried out and the results are discussed to 

evaluate these scenarios.  

4.4.1. Cycle Time (CT) and Average System Delivery Rate  

Cycle Time (CT) is defined as a period of time to make a product(s), such as a part, set, pack, 

bundle or batch in a manufacturing system. Cycle time is different than the process time which only 

includes the time instance at a particular station to process one part. However, Cycle Time (CT) 

accounts for the total time taken for part(s) to be processed at entire manufacturing line from first 
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to the last stations. The System Delivery Rate measures the capability of a system to deliver a 

finished part over the time. Average Delivery Rate (ADR) of a system is defined as the average 

time taken from the start to the end of the manufacturing/assembly process.  

To reduce Cycle Time of the system, it is crucial to recognize which station(s) is a bottleneck by 

finding out the critical path. In a manufacturing system, a bottleneck is a machine/process that 

slows down or reduces the capacity of the production line due to its long process time and/or limited 

capacity. The group of stations that the bottleneck belongs to is called Critical Path (CP), which 

has the longest processing time in total. All other machines/processes must wait for the bottleneck 

to complete its process. Therefore, the bottleneck can definitely impact system key performance 

indicators. Moreover, the critical path (CP) reorganization is necessary to calculate the required 

number of parallel stations, and to find out which station(s) requires a buffer.  

"When would all 30 parts be completed in the manufacturing/assembly system?" is the critical 

question that should be answered by system designers while modelling and examining results of 

different scenarios. The Cycle Time for 30 parts in all seven scenarios are demonstrated in Figure 

4.15. The shortest CT (736 seconds) belongs to the scenario 7 and the longest (1910 second) relates 

to the scenario 1. Principally, additional stations or buffers should be assigned only to a bottleneck 

station on and critical path; otherwise, not only can the system's indicators not be improved but 

also some system parameters will be negatively affected. For instance, Scenario 5 has one more 

station, and its corresponding cost, in comparison to Scenario 2, whereas CT is equal for both 

scenarios. 
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Figure 4.15 Cycle Time of batch (30 parts) in different scenarios
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According to Table 4-3, the first and seventh scenarios have the most and least Average Delivery 

Rate for 30 parts with 63.7 and 24.5 seconds, respectively. This proves the beneficial impact of 

adding the required number of parallel stations at bottlenecks and buffers at stations whose 

upstream is the bottleneck. 

Based on the first scenario outcomes, station L is identified as a bottleneck. As for Scenario 2, by 

adding one parallel station to station L, Average Delivery Rate (ADR) is reduced to 51.1 seconds 

and the bottleneck is moved to station I. Before adding more identical stations, buffer allocation is 

tested in the third scenario. Station T is recognized as requiring a buffer due to its upstream process, 

station L, which is a bottleneck. As the third scenario indicates, the buffer has a significant impact 

on ADR reduction (43.7 seconds compared with the scenario 1; 63.7 seconds).  

Once the effect of the buffer is proved, the combination of adding a parallel station to the bottleneck 

which is station L, and allocating a buffer to station T is tested. Based on the fourth scenario, the 

ADR is lowered down to 35.4 seconds.  

Table 4-3 General Findings of modelling system scenarios 

Scenario 
No. 

The First 
Output 

Average 
Delivery 

Rate 

Bottlen
eck 

Critical  
Path 

Stations 

No. 
Station

s 

No. of 
Parallel 
Station 

Station
s with 
Buffer 

1 170s 63.7 L CILTW 12 - - 
2 170s 51.1 I CILTW 13 L - 
3 40s 43.7 L CILTW 12 - T 
4 40s 35.4 I CILTW 13 L T 
5 170s 51.1 I CILTW 14 L(2) - 
6 170s 41.7 E DEFMTW 14 I,L - 
7 14s 24.5 L CILTW 16 E (2), F (2), 

I(2), L(2) 
T, W  

In scenario 5, adding one more identical station to station L is assessed. In this scenario, the buffer 

is not considered to enable us to evaluate the impact of just adding more parallel stations. Scenario 

5 shows ADR, and delivering time of the first output are increased substantially to 51.1 and 170 

seconds respectively. For all five scenarios, the critical path is the same chain of stations C, I, L, T, 

and W (CILTW). By comparing these five scenarios, it can be concluded that adding buffer(s) has 

a significant impact on the reduction of first output time.  
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In Scenario 6, one parallel station is added to stations L and I each, which are recognized as a 

bottleneck. Subsequently, the bottleneck is moved to station E and ADR is reduced to 41.7 seconds, 

which is lower than previous scenarios. Also, the critical path is altered to become DEFMTW. As 

shown in Figure 4.16, the first headlight output is delivered at the 40th second in Scenario 6. 

However, buffer allocation alone will not lead to having a substantial reduction in ADR. Based on 

Scenario 4, it is clear that the combination of parallel station and buffer is more effective in the 

reduction of ADR. 

Hence, by evaluating all previous scenarios, Scenario 7 is designed. In this scenario, parallel 

stations are added to stations E, F, I, and L; also buffers of five parts are added to each of stations 

T and W. The results are superior. The significant reductions in ADR of 62% from 63.7 to 24.5 

seconds and the first output delivery decrease from 170 to the 14th second prove that the appropriate 

combination of parallel stations and buffers will result in more balanced production line flow in the 

manufacturing system.  

Approximately, after the 20th part, when the effect of buffers is gone, the Delivery Rate of scenarios 

would be constant and dependent to the minimum processing time (30 seconds) of the 

manufacturing line (station L). In other words, by adding just enough number of parallel stations, 

170
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the capability of the system delivery rate is doubled (Deliver a part every 30 seconds in scenario 7 

in contrast deliver a part every 60 seconds in scenario 1). The bottleneck returned to station L and 

the critical path became CILTW. 

4.4.2. Total Processing Lead Time 

The processing /production lead time of station i, (𝑃𝐿𝑇 ) is the time between the initiation and 

completion of a process at the station. Therefore, the total processing time of station i is calculated 

as follows: 

𝑃𝐿𝑇 = 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝐿𝑎𝑠𝑡 𝑃𝑎𝑟𝑡 𝑎𝑡 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 𝑖 − 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 𝑜𝑓 𝐹𝑖𝑟𝑠𝑡 𝑃𝑎𝑟𝑡 𝑎𝑡 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 𝑖 

based on Max-Plus definition  𝑃𝐿𝑇 = 𝑋 (𝑘) + 𝑡 − 𝑋 (1) where, 

𝑘: is the total number of parts, 

𝑛: is the total number of stations   𝑖 = 1, … , 𝑛  , 

𝑡 : is the process time of station i, 

𝑋 (𝑘): is the time instants when station i starts to process part k, 

The total processing lead time of the system (𝑃𝐿𝑇 ) is defined as the sum of all stations’ processing 

lead times. 

𝑃𝐿𝑇 = 𝑃𝐿𝑇  

As shown in Figure 4.17, Scenario 5 has the longest PLT, which is 15,198 seconds. It proves that 
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Figure 4.17 Total Processing Lead Time of Scenarios (Sec) for 30 parts
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having more parallel stations will not always improve the performance of the system. Parallel 

stations are required to be added to the bottleneck station. Furthermore, Scenario 7 has the shortest 

PLT, 11,534 seconds. This predicates that adding parallel stations to the bottlenecks and buffers to 

the stations whose upstream stations are bottlenecks will lead to balancing the manufacturing 

system efficiently.  

4.4.3. Stations Utilization Rate (UR) 

Utilization Rate of station i (𝑈𝑅 ) measures the proportion of the available time at which station i 

is being used. Utilization rate compares the operation time of the station to the available time from 

the start to the end of process. 

𝑈𝑅 =
𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 𝑖

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑆𝑦𝑠𝑡𝑒𝑚 
 

𝑈𝑅 =
𝑋 (𝑘) + 𝑡 − 𝑋 (1)

𝑋 (𝑘) + 𝑡
 

In addition, the Utilization Rate of the system (𝑈𝑅 ) is defined as the average of the utilization rate 

of all stations. 

 𝑈𝑅 =
∑

 

Figure 4.18 displays scenarios’ Average Stations Utilization Rate. Scenario 4 results in the best 

average stations utilization rate with 75% and the lowest rate belongs to the simple flow line without 

buffer or parallel station (scenario 1), being 60%. By way of explanation, adding a parallel station 

and a buffer results in the average stations utilization rate of the system is improved by 15%.  
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Buffers support utilization rate by preventing delay or idle time in the early times as well as having 

a constant and smooth flow line. In contrast, the analysis shows that having more parallel stations 

cannot guarantee the improvement in utilization rate. In spite of all the previous analyses, Scenario 

4 has the best average stations utilization rate even in contradiction of having fewer stations and 

buffers than Scenarios 6 and 7. 

4.4.4. Idle Time and Efficiency of the System 

No manufacturing system runs with 100% efficiency. There is some unproductive time when either 

operators or machines will not to be used. Idle time is any period of time at which the production 

is not engaged. Idle time is inevitable, but manufacturers try to minimize its impact on the system. 

Idle time (IDT) is calculated by the subtraction of actual Processing Lead Time (PLT) of a system 

from available time to produce k parts. 

If the actual time to produce k part at station i is defined as: 

𝑅𝑇 = 𝑘 × 𝑡  

Then, actual PLT for k parts in the system will be: 

  𝑅𝑇 =  ∑ 𝑅𝑇  

Thus, the idle time of station i (𝐼𝐷𝑇 ) and the system (𝐼𝐷𝑇 ) are calculated as follows: 

𝐼𝐷𝑇 = 𝑃𝐿𝑇 − 𝑅𝑇   

 𝐼𝐷𝑇 = ∑ 𝐼𝐷𝑇 , 

The efficiency of a system is defined as the productive time of available time and is calculated as: 

𝑆𝑦𝑠𝑡𝑒𝑚 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 1 − 𝐼𝑑𝑙𝑒 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑎 𝑆𝑦𝑠𝑡𝑒𝑚 

Station i takes 𝑘 × 𝑡  to produce k units. For example, station A takes 30 × 28 = 840 seconds, 

station B takes 30 × 18 = 540 seconds to makes 30 parts and so on. To extend it to the entire 

production line, 10,140 seconds are required to produce 30 parts. Idle time is in contrast with 

efficiency. The higher idle time, the lower efficiency. As declared in Figure 4.19, Scenarios 7 and 

5 have the best and the least efficiency at 81 and 67 percent, respectively. 
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4.4.5. Financial Analysis 

The manufacturer requires finding in an efficient way to utilize the equipment and operators. To 

measure the appropriate number of stations and labours, managers take advantage of different 

financial KPIs. These KPIs help the investors to have a deeper understanding of business. In this 

research, Manufacturing Cost Per Unit (UC) is used to analyze how much a company's process is 

efficient and how much overhead costs must be paid to make a finished part.  

To calculate the Unit Cost (UC), two vital costs are considered: fixed cost and variable cost. Fixed 

cost relates to machines and other hardware (MC). The more equipment, the higher cost of 

maintenance, investment, etc. Furthermore, Unit Labor Cost (ULC) is considered a variable cost, 

which measures the efficiency of labour. This KPI is defined as the average cost of labour per part 

and calculated as total hours cost over the total units. 

Therefore, the projected unit cost (UC) of the system for d amount of market demand is the 

summation of total equipment cost, and the total labour cost over market demand and is calculated 

as below: 

𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝑈𝑛𝑖𝑡 =
𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐿𝑎𝑏𝑜𝑟 + 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 𝑜𝑓  𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡

𝑀𝑎𝑟𝑘𝑒𝑡 𝐷𝑒𝑚𝑎𝑛𝑑
 

𝑇𝐶 =
𝑇𝑀𝐶 + 𝐿𝐶

𝑑
 

Which 𝑇𝑀𝐶 and 𝐿𝐶 are calculated as: 
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𝑇𝑀𝐶 = 𝑀𝐶 × 𝑛 

𝐿𝐶 = 𝐿𝑊 × 𝑃𝐿𝑇  

Where 

𝑇𝑀𝐶: is the total equipment cost 

𝑀𝐶: is the cost per equipment 

𝑛: is the total number of stations 

𝐿𝐶: Total Labor Cost 

𝐿𝑊: Labor Wage per labour hour 

𝑃𝐿𝑇: Total Processing Lead Time to make d amount of demand 

To analyze the projected financial costs of any proposed scenario financially, these assumptions 

are considered: 

 Market demand is 300,000 parts per year, 

 Average annual equipment cost of each station is $10,000 and is nonrefundable,  

 Average Labour wage is $60 per hour. 

As discussed earlier, the number of stations is modified in each scenario. According to the table (4-

4), Scenario 7 has the highest cost of equipment caused by the number of stations. The cost of 

labour depends on the unit process time. Scenario 5 has the longest unit process time, 8.44 minutes, 

which leads to the highest labour cost of over two million dollars. In contrast, the seventh scenario 

with the least unit process time has the lowest labour cost of $1,889,666 and unit labour cost of 

$6.8.  

Table 4-4 Financial Analysis 

Scenario No. 1 2 3 4 5 6 7 

Process time 
(Unit/Minute) 

7.64 7.75 7.12 7.37 8.44 6.91 6.40 

No Of Station 12 13 12 13 14 14 16 

Cost Of Station 120,000 130,000 120,000 130,000 140,000 140,000 160,000 

Cost Of Labor 2,294,166 2,327,167 2,137,500 2,213,833 2,533,000 2,074,833 1,922,333 

Cost per Part 8.0472 8.1905 7.525 7.8127 8.91 7.3827 6.9411 
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Since the total cost is the combination of equipment cost and labour cost, any changes to the 

equipment cost and labour wage may vary the results. However, as long as the proportion of 

labour cost is higher than the cost of stations, it will play a crucial role in financial results. 

 

 

Lastly, evaluating all financial KPIs (Figure 4.20), Scenario 7 has the lowest cost per part ($6.94) 

and was chosen by decision makers. However, by having any changes, the optimal financial 

solution will be changed. For instance, if the cost of stations increases from $10k to $100k, the best 

scenario would be Scenario 4. 

4.5.Summary 

The manufacturing system is composed of different stations that operate at a specific speed/rate. 

To avoid labour idleness, reductions in manufacturing costs and improve efficiency, manufacturers 

try to balance the manufacturing system and divide tasks into equal portions. Line balancing can 

be done in different ways, such as merging a couple of low processing time stations into one station, 

adding parallel stations to bottleneck stations with long processing time, and/or adding buffers to 

stations following the bottleneck stations. In this chapter, different manufacturing scenarios have 

been modelled and analyzed using Max-Plus Algebra. Car Headlight assembly is chosen as the case 

study to evaluate the scenarios with different structures.  

To balance the system, seven scenarios have been introduced. These scenarios consider different 

combinations of series stations, parallel stations and buffers. Adding parallel stations and buffers 

help system designers to improve KPIs. It is crucial to determine which station(s) is a bottleneck 

and which group of stations represent a critical path (CP) which requires the buffer, and how many 

parallel stations are required to achieve more balanced production flow. Several manufacturing 

KPIs such as Cycle Time (CT), Average Delivery Rate, Total Processing Lead Time (PLT), 
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Average Stations Utilization Rate, Idle Time (IDT) and Efficiency were applied. Unit product Cost 

(UC) was calculated and used as a financial KPI to analyze the system financially.  

In conclusion, Scenarios 3 and 4 represent buffer allocation reducing the first output cycle time 

substantially by 130 seconds. Additionally, in Scenario 7, by having two buffers, the first output 

comes after the 14th second. Scenario 5 indicates that only adding a parallel station to a bottleneck 

will enhance system KPIs. Based on the sixth scenario, adding adequate parallel stations lowers the 

Average Delivery Rate of the entire process substantially. 

In addition to these, the combination of parallel stations and buffers lead to the greatest reduction 

in ADR as well as delivering first output. Scenario 7 is a complete structure, which includes both 

parallel stations and buffer. The superiority of scenario 7 to other scenarios is proved and it was 

chosen due to its lowest system delivering first output time (14 seconds), shortest total processing 

lead time (11,534 seconds), least percentage of idle time (12%), lowest unit cost ($6.9), and highest 

efficiency (88%). However, Scenario 4 has the best Average Stations Utilization Rate at 75%. 



58 
 

CHAPTER FIVE 

DISCRETE EVENT SIMULATION (FLEXSIM) COMPARISON BY MAX-PLUS 

ALGEBRA 

5.1. Introduction 

In the previous chapter, seven different system configuration scenarios were modelled and 

analyzed using Max-Plus Algebra. In this chapter, the same seven scenarios are simulated by 

FlexSim to compare the performance of modelling the manufacturing system scenarios using 

Discrete Events Simulation tools versus using the Max-Plus Algebra method. Also, it has been 

attempted to show how modelling with the simulation method is useful and in what kind of 

conditions it will help decision makers. The advantages and drawbacks of these two methods 

are compared at the end of this chapter. It should be noted that similar assumptions, variables 

and parameters are considered for both methods. The laptop specifications used for modelling 

the designed DES are as follows: 

Windows 10 Enterprise; Processor: Intel® Core™ i7-6700 HQ CPU @ 2.6 GHz; RAM: 16 

GB; HDD: 1TB; and Graphics: NVIDIA GeForce GTX 960. Several pieces of software have 

been used for simulating the discrete manufacturing system scenarios. MATLAB version 8.5 

and FlexSim version 18.0.2 that was released on March 5, 2015 and 2018 were applied to solve 

Max-Plus equations and simulate DES models, respectively.  

5.2. FlexSim as a Discrete Event Simulation tool 

FlexSim is one of the common Discrete Event Simulation Software packages founded in 1993 

and developed by FlexSim software products, Inc. For more than three decades of providing a 

3D object-oriented simulation engine, it has been used in many industries and services from 

manufacturing, transportation, and logistic to the oil industry and mining. 

Cai (2015) declared that FlexSim is user-friendly, flexible, Open Graphic Language (Open GL) 

and analytically accurate software. Because of its accuracy and sensitivity of data running, 

complex models take a long time and much modelling effort to set and run. 

5.3. Analysis  

To demonstrate modelling with FlexSim, some results are presented in detail. The software 

developer believed users' needs are varied. Sometimes, FlexSim is used to generate data and 

sometimes to make one particular decision (FlexSim.com, n.d.). Therefore, in the considered 

version, FlexSim provides analysis through the Dashboard charting system as well as the 
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possibility to export data to other tools such as Excel and Tableau. One drawback of graphical 

outputs is its ambiguity and inflexibility. The available version of the software does not allow 

customizing and manipulating figures efficiently based on the user’s interests. Therefore, the 

Data Export module is inserted in FlexSim to work with data in a flexible and efficient way.  

The dashboard charting system has two different parts: statistics collector and calculator table. 

In this Section, the main scheme of each scenarios’ layout is presented. In addition, Gantt charts 

are used to extract the simulation data such as cycle time, delivery rate, average stations 

utilization rate, system efficiency and idle time.  By using Gantt charts, we would be able to 

observe how smooth the manufacturing line is; and how often the stations need to wait for 

downstream to finish their process and pass the unfinished part. In the following, the related 

outputs and results obtained by FlexSim for the previously used seven scenarios tested for 30 

parts are demonstrated. 

5.3.1. Scenario 1- No Buffer or Parallel Identical Station 

Figure 5.1 represents the simulation layout of the first scenario. As it can be seen, the total 

simulation run time is 1910 seconds that is the same as cycle time obtained by Max-Plus. Tables 

5-1 and 5-2 summarize the results obtained by using FlexSim and Max-Plus. Both models 

report the same KPIs output such as Average Stations Utilization Rate (60.06%), Total 

Processing Lead Time (13765 sec) and System Efficiency (74%) and System Idle time (26%).  

Table 5-1 FlexSim Data Transferred into The Excel for Scenario 1 

Station 
Start 
Time 

End 
Time 

Lead 
Time 

Part 
Process 

 Time(Sec) 
Efficient 

Time(Sec) 
Idle 

Time(Sec) 
Utilization 

Rate 

A 0 840 840 30 28 840 1070 43.98% 

B 28 858 830 30 18 540 1370 43.46% 

V 46 870 824 30 12 360 1550 43.14% 

D` 0 450 450 30 15 450 1460 23.56% 

E 15 1155 1140 30 38 1140 770 59.69% 

F 53 1187 1134 30 32 960 950 59.37% 

M 85 1212 1127 30 25 750 1160 59.01% 

C 0 690 690 30 23 690 1220 36.13% 

I 23 1433 1410 30 47 1410 500 73.82% 

L 70 1870 1800 30 60 1800 110 94.24% 

T 130 1896 1766 30 26 780 1130 92.46% 

W 156 1910 1754 30 14 420 1490 91.83% 

The First Output 
(Sec) 

170 Cycle Time (Sec) 1910 Average Stations 
Utilization Rate 

60.06% 

Average Delivery 
Rate (Sec) 

63.7 Total Processing 
Lead Time (Sec) 

13765 
System Efficiency 0.74 

System Idle Time 0.26 

Table 5-2 KPIs Outputs for Scenario 1 Obtained by Max-Plus Model 
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The First 
Output(Sec) 

170 Cycle Time (Sec) 1910 Average Station 
Utilization Rate 

60.06% 

Average Delivery 
Rate (Sec) 

63.7 Total Processing 
Lead Time (Sec) 

13765 
System Efficiency 0.74 

System Idle Time 0.26 
 

 
Figure 5.1 Final Results for Scenario 1  
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Figure 5.2 FlexSim Gantt Chart for Scenario 1 
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Scenario 2- Two Parallel Stations at Stations L 

As it is shown in Figure 5.3, the total simulation run time is the same as cycle time obtained by 

Max-Plus,1533 sec. The simulation model has verified KPIs output of Max-Plus model by 

obtaining 70.06% as Average Stations Utilization Rate, 13963 seconds for Total Processing 

Lead Time, 73% and 27% as System Efficiency and Idle Time, respectively More details are 

represented in Tables 5-3 and 5-4.  

Table 5-3 FlexSim Data Transferred into The Excel for Scenario 2 

Station 
Start 
Time 

End 
Time 

Lead 
Time 

Part 
Process 

 Time(Sec) 
Efficient 

Time(Sec) 
Idle 

Time(Sec) 
Utilization 

Rate 

A 0 840 840 30 28 840 693 54.79% 

B 28 858 830 30 18 540 993 54.14% 

V 46 870 824 30 12 360 1173 53.75% 

D` 0 450 450 30 15 450 1083 29.35% 

E 15 1155 1140 30 38 1140 393 74.36% 

F 53 1187 1134 30 32 960 573 73.97% 

M 85 1212 1127 30 25 750 783 73.52% 

C 0 690 690 30 23 690 843 45.01% 

I 23 1433 1410 30 47 1410 123 91.98% 

L1 70 1446 1376 15 60 900 633 89.76% 

L2 117 1493 1376 15 60 900 633 89.76% 

T 130 1519 1389 30 26 780 753 90.61% 

W 156 1533 1377 30 14 420 1113 89.82% 
The First Output 
(Sec) 

170 Cycle Time (Sec) 1533 Average Stations 
Utilization Rate 

70.06% 

Average Delivery 
Rate (Sec) 

51.7 Total Processing 
Lead Time (Sec) 

13963 
System Efficiency 0.73 

System Idle Time 0.27 
 

Table 5-4 KPIs Outputs for Scenario 2 Obtained By Max-Plus Model 

The First 
Output(Sec) 

170 Cycle Time 
(Sec) 

1533 Average Stations 
Utilization Rate 

70.06% 

Average 
Delivery Rate 
(Sec) 

51.7 

Total 
Processing 
Lead Time 
(Sec) 

13963 

System Efficiency 0.73 

System Idle Time 0.27 
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Figure 5.3 Final Results for Scenario 2, Two Parallel Stations at L 
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Figure 5.4 FlexSim Gantt Chart for Scenario 2, Two Parallel Stations at L 
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5.3.2. Scenario 3- Buffer at Station T 

According to Figure 5.5, the total simulation run time is the same as cycle time obtained by 

Max-Plus,1310 sec. The simulation output and KPIs results are shown in Table 5-5. By 

comparing these results with what have been obtained with the Max-Plus model (Table 5-6), it 

can be confirmed that both models result the same outcomes such as Average Stations 

Utilization Rate 0f 63.58%, Total Processing Lead Time of 12825 seconds, System Efficiency 

of 79%, and System Idle time of 21%. 

Table 5-5 FlexSim Data Transferred into The Excel for Scenario 3 

Station 
Start 
Time 

End 
Time 

Lead 
Time 

Part 
Process 

 Time(Sec) 
Efficient 

Time(Sec) 
Idle 

Time(Sec) 
Utilization 

Rate 

A 0 840 840 30 28 840 1030 46.41% 

B 28 858 830 30 18 540 1330 45.86% 

V 46 870 824 30 12 360 1510 45.52% 

D` 0 450 450 30 15 450 1420 24.86% 

E 15 1155 1140 30 38 1140 730 62.98% 

F 53 1187 1134 30 32 960 910 62.65% 

M 85 1212 1127 30 25 750 1120 62.27% 

C 0 690 690 30 23 690 1180 38.12% 

I 23 1433 1410 30 47 1410 460 77.90% 

L 70 1870 1800 30 60 1800 70 99.45% 

T 0 1296 1296 30 26 780 1090 98.93% 

W 26 1310 1284 30 14 420 1450 98.02% 
The First Output 
(Sec) 

40 Cycle Time (Sec) 1310 Average Stations 
Utilization Rate 

63.58% 

Average 
Delivery Rate 
(Sec) 

43.7 Total Processing 
Lead Time (Sec) 

12825 
System Efficiency 0.79 

System Idle Time 0.21 

 

Table 5-6 KPIs Outputs for Scenario 3 Obtained by Max-Plus Model 

The First Output 
(Sec) 

40 Cycle Time (Sec) 1310 Average Stations 
Utilization Rate 

63.58% 

Average 
Delivery Rate 
(Sec) 

43.7 Total Processing 
Lead Time (Sec) 

12825 
System Efficiency 0.79 

System Idle Time 0.21 
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Figure 5.5 Final Results for Scenario 3, Buffer at Station T 
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Figure 5.6 FlexSim Gantt Chart for Scenario 3, Buffer at Station T 
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5.3.3. Scenario 4- Two Parallel Stations at Station L and Buffer at Station T 

As it is shown in Figure 5.5, the total simulation run time is the same as cycle time obtained by 

Max-Plus,1533 seconds. Table 5-7 and Table 5-8 are summarized the results obtained using 

FlexSim and Max-Plus. Both models output and KPIs are the same.  

Table 5-7 FlexSim Data Transferred into The Excel for Scenario 4 

Station 
Start 
Time 

End 
Time 

Lead 
Time 

Part 
Process 

 Time(Sec) 
Efficient 

Time(Sec) 
Idle 

Time(Sec) 
Utilization 

Rate 

A 0 840 840 30 28 840 653 56.26% 

B 28 858 830 30 18 540 953 55.59% 

V 46 870 824 30 12 360 1133 55.19% 

D` 0 450 450 30 15 450 1043 30.14% 

E 15 1155 1140 30 38 1140 353 76.36% 

F 53 1187 1134 30 32 960 533 75.95% 

M 58 1212 1154 30 25 750 743 75.49% 

C 0 690 690 30 23 690 803 46.22% 

I 23 1433 1410 30 47 1410 83 94.44% 

L1 70 1446 1376 15 60 900 593 92.16% 

L2 117 1493 1376 15 60 900 593 92.16% 

T 0 1049 1049 30 26 780 713 98.68% 

W 26 1063 1037 30 14 420 1073 97.55% 
The First Output 
(Sec) 

40 Cycle Time (Sec) 1063 Average Stations 
Utilization Rate 

75.20% 

Average 
Delivery Rate 
(Sec) 

35.4 Total Processing 
Lead Time (Sec) 

13283 
System Efficiency 0.76 

System Idle Time 0.24 
 

Table 5-8 KPIs Outputs for Scenario 4 Obtained By Max-Plus Model 

The First Output 
(Sec) 

40 Cycle Time (Sec) 1063 Average Stations 
Utilization Rate 

75.20% 

Average 
Delivery Rate 
(Sec) 

35.4 Total Processing 
Lead Time (Sec) 

13283 
System Efficiency 0.76 

System Idle Time 0.24 
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Figure 5.7 Final Results for Scenario 4, Two Parallel Station at L and Buffer T  
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Figure 5.8 FlexSim Gantt Chart for Scenario 4, Two Parallel Station at L and Buffer T 
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5.3.4. Scenario 5- Three Parallel Stations at L  

In this scenario, simulation KPIs output are slightly different than the Max-Plus model. As it 

has been discussed in section 4.3.5, having more parallel stations will not always improve the 

performance of the system. Parallel stations are required to be added to the bottleneck. As it is 

shown in Figure 5.10, station L2 is redundant; and the workload is divided between stations L1 

and L2. However, the Max-Plus model has utilized all three stations of L1, L2, and L3. That’s 

why the Total Processing Lead Time of simulation model is 13963 seconds which is 8% less 

than Max-Plus Total Processing Lead Time, 15198 seconds. In contrast, Average Stations 

Utilization Rate of the Max-Plus model is 70.81% which is 0.7% more than simulation model, 

70.10%. The Max-Plus model has better results as of System Efficiency and Idle Time. Max-

Plus Model’s System Efficiency is 67% that is 7% more than System Efficiency of Simulation 

model, 60%; also, Max-Plus Model’s Idle Time is 33% that is 7% less than Idle Time of 

simulation model (40%). The rest KPIs such as Cycle Time (1533 sec) and Average Delivery 

Rate (51.1%) are equal.  

Table 5-9 FlexSim Data Transferred into The Excel for Scenario 5 

Station 
Start 
Time 

End 
Time 

Lead 
Time 

Part 
Process 

 Time(Sec) 
Efficient 

Time(Sec) 
Idle 

Time(Sec) 
Utilization 

Rate 

A 0 840 840 30 28 840 653 54.79% 

B 28 858 830 30 18 540 953 54.14% 

V 46 870 824 30 12 360 1133 53.75% 

D` 0 450 450 30 15 450 1043 29.35% 

E 15 1155 1140 30 38 1140 353 74.36% 

F 53 1187 1134 30 32 960 533 73.97% 

M 85 1212 1154 30 25 750 743 73.52% 

C 0 690 690 30 23 690 803 45.01% 

I 23 1433 1410 30 47 1410 83 73.52% 

L1 70 1446 1376 15 60 900 593 45.01% 

L2 0 0 0 0 0 0 0 0 

L3 117 1493 1376 15 60 900 593 89.76% 

T 0 1049 1049 30 26 780 713 90.61% 

W 26 1063 1037 30 14 420 1073 89.76% 
The First Output 
(Sec) 

170 Cycle Time (Sec) 1533 Average Stations 
Utilization Rate 

70.10% 

Average 
Delivery Rate 
(Sec) 

51.1 Total Processing 
Lead Time (Sec) 

13963 
System Efficiency 0.60 

System Idle Time 0.40 
 

Table 5-10 KPIs Outputs for Scenario 5 Obtained By Max-Plus Model 

The First Output 
(Sec) 

170 Cycle Time (Sec) 1533 Average Stations 
Utilization Rate 

70.81% 

Average 
Delivery Rate 
(Sec) 

51.1 Total Processing 
Lead Time (Sec) 

15198 
System Efficiency 0.67 

System Idle Time 0.33 
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Figure 5.9 FlexSim Cycle Time for Scenario 5, Three parallel stations at L 
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Figure 5.10 FlexSim Gantt Chart for Scenario 5, Three Parallel Stations at L 
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5.3.5. Scenario 6- Two Parallel Stations at I and L 

As it is shown in Figure 5.11, the total simulation run time is the same as cycle time obtained 

by Max-Plus,1252 seconds. Table 5-11 and Table 5-12 are summarized the results obtained 

using FlexSim and Max-Plus. Both models result in same KPIs such as Total Processing Lead 

Time of 12449 seconds, 71% Average Stations Utilization Rate, 81% and 29% system 

efficiency and idle time.  

Table 5-11 FlexSim Data Transferred into The Excel for Scenario 6 

Station 
Start 
Time 

End 
Time 

Lead 
Time 
(Sec) 

Part Process 
 Time(Sec) 

Efficient 
Time(Sec) 

Idle 
Time(Sec) 

Utilization 
Rate 

A 0 840 840 30 28 840 412 67.09% 

B 28 858 830 30 18 540 712 66.29% 

V 46 870 824 30 12 360 892 65.81% 

D` 0 450 450 30 15 450 802 35.94% 

E 15 1155 1140 30 38 1140 112 91.05% 

F 53 1187 1134 30 32 960 292 90.58% 

M 85 1212 1127 30 25 750 502 90.02% 

C 0 690 690 30 23 690 562 55.11% 

I1 23 728 705 15 47 705 547 56.31% 

I2 46 751 705 15 47 705 547 56.31% 

L1 70 970 900 15 60 900 352 71.88% 

L2 93 993 900 15 60 900 352 71.88% 

T 130 1238 1108 30 26 780 472 88.50% 

W 156 1252 1096 30 14 420 832 87.54% 

The First Output 
(Sec) 

170 Cycle Time (Sec) 1252 Average Stations 
Utilization Rate 

71.02% 

Average 
Delivery Rate 
(Sec) 

41.7 Total Processing 
Time (Sec) 

12449 
System Efficiency 0.81 

System Idle Time 0.19 

 

Table 5-12 KPIs Outputs for Scenario 6 Obtained by Max-Plus Model 

The First Output 
(Sec) 

170 Cycle Time (Sec) 1252 Average Stations 
Utilization Rate 

71.02% 

Average 
Delivery Rate 
(Sec) 

41.7 Total Processing 
Time (Sec) 

12449 
System Efficiency 0.81 

System Idle Time 0.19 
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Figure 5.11 FlexSim cycle time for Scenario 6, Two Parallel Stations at I and L 
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5.3.6. Scenario 7, Four Parallel Stations at E, F, I, and L Plus Two Buffers at T and W 

The total simulation run time, 736 seconds is the same as the cycle time obtained by Max-Plus. 

According to Tables 5-11 and 5-12 the KPIs output obtained using FlexSim and Max-Plus are 

the same with the Total Processing time of 11534 seconds, 72.36% Average Stations Utilization 

Rate, 88% and 12% system efficiency and idle time.  

Table 5-13 FlexSim Data Transferred into The Excel for Scenario 7 

Station 
Start 
Time 

End 
Time 

Lead 
Time 
(Sec) 

Part Process 
 Time(Sec) 

Efficient 
Time(Sec) 

Idle 
Time(Sec) 

Utilization 
Rate 

A 0 840 840 30 28 840 153 84.59% 

B 28 858 830 30 18 540 453 83.59% 

V 46 870 824 30 12 360 633 82.98% 

D` 0 450 450 30 15 450 543 45.32% 

E1 15 585 570 15 38 570 423 57.40% 

E2 30 600 570 15 38 570 423 57.40% 

F1 53 617 564 15 32 480 513 56.80% 

F2 68 632 564 15 32 480 513 56.80% 

M 85 895 810 30 25 750 243 81.57% 

C 0 690 690 30 23 690 303 69.49% 

Figure 5.12 FlexSim Gantt Chart for Scenario 6, Two Parallel Stations at I and L 
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I1 23 728 705 15 47 705 288 71.00% 

I2 46 751 705 15 47 705 288 71.00% 

L1 70 970 900 15 60 900 93 90.63% 

L2 93 993 900 15 60 900 93 90.63% 

T 0 876 876 30 26 780 213 88.22% 

W 0 736 736 30 14 420 573 74.12% 

The First Output 
(Sec) 

14 Cycle Time (Sec) 736 Average Stations 
Utilization Rate 

72.36% 

Average 
Delivery Rate 
(Sec) 

24.5 Total Processing 
Time (Sec) 

11534 
System Efficiency 0.88 

System Idle Time 0.12 

 

Table 5-14 KPIs Outputs for Scenario 7 Obtained by Max-Plus Model 

The First Output 
(Sec) 

14 Cycle Time (Sec) 736 Average Stations 
Utilization Rate 

72.36% 

Average 
Delivery Rate 
(Sec) 

24.5 Total Processing 
Time (Sec) 

11534 
System Efficiency 0.88 

System Idle Time 0.12 
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Figure 5.13 FlexSim cycle time for Scenario 7, Four Parallel Station at E, F, I, and L Plus Two 
Buffers at T and W 
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5.3.8. Collecting Time 

Flexsim measures collecting time at merging point such as Station M and T as a part of 

processing time. The collecting time is the total time since a merging station receives a part of 

sub-assembly and waits for the rest of parts to start processing. The results of collecting times 

at merged stations T and M is summarized in Table 5-15. As the outcomes prove how the 

combination of adding parallel stations at bottleneck and buffers have reduced the total 

collecting time significantly. Scenario 1 as a simple flow line without any parallel stations and 

buffer results in the most collecting time of 1671.1 seconds. As the paralle1 station is added to 

station T, scenario 2, the total collecting time falls to 1164.01. The third scenario, confirms the 

benefits of adding buffer by lowering the total collecting time to 712 seconds. The combinations 

of parallel stations and buffers are tested through scenarios 5 to 7. As scenario 5 indicates, only 

adding parallel stations will not end to a reduction in collecting time. The trend of reduction in 

cycle time through scenarios 4, 6, and 7 affirms that adding an adequate number of parallel 

stations and buffers would decrease total collecting time significantly from 673 seconds to 123 

seconds. 

  

Figure 5.14 FlexSim Gantt Chart for Scenario 7, Four Parallel Station at E, F, I, and L Plus Two 
Buffers at T and W 
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5.4. Comparison of Max-Plus Algebra with FlexSim Results 

The same computer was used to run both models. Max-Plus Algebra was designed in Matlab 

and for discrete event simulation FlexSim was applied. In the following, some similarities, 

advantages and drawbacks of these two methods are discussed. 

Firstly, Max-plus Algebra finds the results quicker compared to FlexSim.  The time required to 

run scenarios using the Max-Plus Algebra and Simulation method is provided in Table 5-16.  

Although several preparation steps such as constructing models, setting up stations ports are 

required to model a simulation, FlexSim provides a button to customize run speed and run time. 

Hence, users can adjust the run speed to process the model faster. This feature is useful for 

complex and large size problems. In contrast, Matlab does not have this advantage. As the 

problem size increases, the number of matrices increases. This leads to the significant growth 

in model size and complexity that results in an increase in run time. Therefore, as mentioned in 

the gap analysis (1.7), not having a specialized application software for the Max-Plus Algebra 

method is one of the drawbacks. 

Table 5-16 The required time needed to solve scenarios using Max-Plus Algebra 

Scenario (i) 1 2 3 4 5 6 7 

Max-Plus Algebra 

Time (sec) 

90 280 200 350 480 450 600 

Simulation (Sec) 1910 1533 1310 1063 1533 1252 736 

Delta 4.71% 18.26% 15.27% 32.93% 31.31% 35.94% 81.52% 

Table 5-15 Total collecting time (sec) at stations M and T 

Scenario Station M Station T Total Collecting Time 

Scenario 1 651 1020.1 1671.1 

Scenario 2 521 643.01 1164.01 

Scenario 3 443 530.01 712 

Scenario 4 404 269 673 

Scenario 5 521 643.01 1164.01 

Scenario 6 404 24 428 

Scenario 7 27 96 123 
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Secondly, graphically FlexSim is designed for simulation. Resources, tasks, and conveyors are 

prepared for all types of systems, which provides a variety of views of a designed system. 

Definitely, FlexSim as an object-oriented software provides incredible animation to users. 

Thirdly, model preparation and any changes in model specifications, such as adding buffers and 

parallel stations, are easier and faster in Matlab for Max-Plus; however, FlexSim can be 

remodelled and be changed graphically.  

Finally, in the data entry phase, Max-Plus uses the elementary information of a manufacturing 

system to design, develop or analyze a model. However, Discrete event simulation software 

requires a great deal of information to draw, model and run a system model.  

5.5. Summary 

In this chapter, some outcomes obtained by FlexSim as a confirmation of results using Max-

Plus are presented. A comparison of using Max-Plus Algebra and FlexSim for modelling and 

analysis phase demonstrates both methods are useful and have advantages and drawbacks such 

as time, size of the model, data availability, access to software, and requirement of sufficient 

knowledge about mathematics and modelling. 
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CHAPTER SIX 

DISCUSSION AND CONCLUSIONS 

6.1. Discussion and Overview 

Today's global competitive environment has motivated industries to find solutions and alternatives 

to minimize their manufacturing costs, add more variety to their products and improve their systems 

and operations to achieve increased productivity, customer responsiveness, and high quality. To 

manage this situation, manufacturers have tried to use new methods to model, analyze, and control 

their manufacturing systems.  

There have been different tools for modelling discrete event systems such as Petri Net, Markov 

Chains, Queuing Theory, Discrete Event Simulation, Automata, Supervisory Control, and Max-

Plus Algebra.  

Discrete Event Simulation is the most popular tool to model discrete event systems over time by 

generating the history of a system. This method provides a graphical view of systems for the users. 

However, running a system model repeatedly using a simulation method might take a long time 

particularly for large problems. Additionally, any changes to the developed simulation model 

require a great deal of effort.  

Max-Plus Algebra as a mathematical tool is composed of a set of linear equations used to express 

the event timing dynamics of any deterministic manufacturing system. Since the introduction of 

Max-Plus Algebra in the late 1980s, many researchers have tried to apply this mathematical tool in 

different fields. By looking into the application of Max-Plus Algebra in industries, the majority of 

the studies have applied this method in the fields of transportation, control, and automation. 

However, there have not been enough studies in the field of manufacturing systems.  

One of the critical subjects in manufacturing system optimization is line balancing. Line balancing 

is a strategy to make production lines running constant and flexible; it involves planning a set of 

operations or designing procedures to fabricate an output in a designated timeframe using the 

available capacities. This research, to the best of the author’s knowledge, for the first time a model 

for line balancing a discrete flow line manufacturing system using Max-Plus Algebra is developed. 

In the developed model, station process times (load time, operation time, and unloading time) are 

assumed to be deterministic. Stations have infinite buffers and the system receives parts one at the 

time. Parts are required to be processed according to the production process sequence. No failure, 

downtime, stoppage or back tracking is assumed for the stations.  
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A practical manufacturing case study- the manufacture and assembly of Car Headlights is 

considered. This manufacturing line is composed of 12 stations. Seven configuration scenarios have 

been designed to model different structures of the manufacturing system, such as series, merged, 

paralleled, buffered and combined configurations. Scenarios have been developed based on 

previous scenarios after identifying bottlenecks and critical paths. The scenarios have become more 

complex by adding parallel station(s) to the bottleneck station(s) and adding a finite buffer to the 

stations when their downstream process is a bottleneck. 

The first scenario is a simple flow line. In the second scenario, the bottleneck station L is 

recognized. Therefore, the parallel identical station is added at station L. The third scenario is 

designed to test adding a buffer to the line. Hence, a buffer of ten parts is added right after the 

bottleneck at station T. The fourth scenario is the combination of scenarios 2 and 3 by having an 

identical parallel station and buffer at station L and T, respectively. The fifth scenario is an 

extension of the second scenario by having three parallel stations at the bottleneck. By 

reconsidering the second scenario, the station I is recognized as the second bottleneck. Therefore, 

two different parallel stations are added to the sixth scenario at Stations I and L. This seventh 

scenario is the extension of scenarios 6 and 3. Identical parallel stations are added to stations E, F, 

I, L and five parts have been allocated to the buffer of stations T and W. 

To test and compare the developed scenarios, several manufacturing Key Performance Indices 

(KPIs) such as Cycle Time, Average System Delivery Rate, Total Processing Lead Time, Station's 

Utilization Rate, Idle Time and Efficiency of the System have been defined and used. Additionally, 

a Financial Analysis is formulated and conducted to compare all scenarios by unit cost using a 

combination of total processing lead time, utilization rate, number of stations etc.  

Based on the scenario 5 results, only adding an adequate number of parallel stations to the 

bottleneck will lead to improving efficiency and reduction in idle time. Accordingly, scenario 7 is 

determined to be the best system structure/configuration, which includes both parallel stations and 

buffers. The superiority of scenario 7 compared to other scenarios is evident due to its lowest time 

to deliver first output (14 seconds), shortest total processing lead time (11,534 seconds), least 

percentage of idle time (12%), lowest unit cost per part ($6.9), and highest efficiency (88%). 

However, scenario 4 has the best Utilization Rate at 75%. 

Finally, the scenarios have been tested using a discrete event simulation tool (Flexim). The same 

data, parameters, variables and conditions, etc. were applied when simulating the scenarios to make 

the comparison valid. Both Flexim and Max-Plus Algebra have resulted in the same results. 

However, Max-Plus Algebra was quicker and easier to use and manage. 
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6.2. Novelties and Contributions 

The conducted research fills some gaps in previous research in the modelling phase as well as the 

analysis phase. First, this study presents a practical approach to use Max-Plus Algebra. The method 

is easy to understand for decision makers with little background or basic knowledge of 

mathematics.  

Second, in this research, Max-Plus Algebra is used to balance the flow of a manufacturing system 

that has not been covered in previous studies. To achieve this, different scenarios are developed by 

adding parallel stations and finite buffer. Bottlenecks have found and then the critical path has been 

assessed. Then by adding a parallel identical station to the bottleneck, it has been tried to decrease 

the cycle time. On the other hand, to cut idle time, finite buffers are allocated to the next station 

after the bottleneck to keep the flow line smooth and constant. 

Third, the size of the considered manufacturing system is larger compared to the other studies. As 

discussed in the gap analysis, most studies used small size problems, while the last scenario in this 

research is developed for 16 single and parallel identical stations. However, it is possible to model 

a system with more stations and complexities. Furthermore, the modelled scenarios ran for 30 parts 

while, there is no limitation for the number of parts in Max-Plus Algebra. 

Fourth, in the analysis phase of this research studied several manufacturing Key Performance 

Indices (KPIs) defined to evaluate the results of developed scenarios, such as Product Completion 

Time (Average Delivery Rate by system in second), Total Processing Lead Time, Station's 

Utilization Rate, Idle Time and Efficiency of the System, and Financial analysis. 

Fifth, in contrast to most of the previous research, which has illustrated numerical examples, the 

modelled system is a practical and real example of a manufacturing system. In order to do this, as 

a case study, the Car Headlight manufacturing system is considered. 

Finally, the output of this thesis is several functional codes that result from Matlab and can be 

generalized to all similar systems. The codes are enabled to generate equations and require the least 

information of a system, which is competitive compared to Discrete Event Simulation or other 

similar tools. Furthermore, the method of using modelling output and defined KPIs can apply to 

similar manufacturing systems. 

6.3. Limitations  

As it is discussed in previous chapters, there are some unanswered questions and uncovered 

subjects in the field of Max-Plus Algebra. The number of publications compared with other 
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modelling tools are limited. Different types of manufacturing systems such as continuous 

manufacturing system, or the behaviour of manufacturing systems such as stochastic processing 

time, have not been covered appropriately. Additionally, having conditions in the system structure 

such as reworks and defects have not been studied sufficiently. 

Furthermore, there are some limitations to use Max-Plus Algebra. A model designer should know 

about Max-Plus and how a system can be modelled, simulated and analyzed. Formulating equations 

and afterward construct matrices followed by lots of calculations are not possible without good 

knowledge of mathematics and algebra. Particularly by developing a system in the aspect of size 

and entities relations, require lots of programming techniques. Also by changing the model 

structure all calculations for equations and matrices should be re-done. 

6.4. Recommendations for Future Studies 

Max-Plus Algebra is a strong tool in the field of modelling manufacturing systems. Particularly, its 

application has not been covered enough in previous studies. The following recommendations 

provide the main direction for future work.  

 Developing special software or module to tackle calculation difficulties of Max-Plus equations 

and constructing matrices. 

 Comparison (advantages and drawbacks) of Max-Plus Algebra application with other 

mathematical tools such as Automata, Markov chain, Petri nets, Discrete Event Simulation and 

Queuing theory to model practical systems. 

 Expanding an innovative algorithm to simplify Max-Plus modelling steps. 

 Using Max-Plus Algebra in practical manufacturing systems with stochastic behaviours such 

as random variables and statistic distribution. 

 Applying Max-Plus Algebra for different type of manufacturing systems that have not been 

covered enough, such as job shop, cellular, continuous, and especially those manufacturing systems 

that have closed loops like backtracking and reentrancy. 

 Adding new features to the manufacturing systems, for example breakdown and downtime, 

set-up time, alternative process, reworks and reschedule, sourcing/allocation policies, etc. 

 Modelling systems larger than previous studies with hierarchical and block diagram 

algorithms and comparing these with regular modelling methods. 
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APPENDIX ONE  

MATLAB CODE 

Referred to chapter 2,3 and 4. 
TotalStation=13; 
Part=20; 
FST=3; 
c=0; 
PST=10; 
BST=11; 
NBuf=10; 
  
AT=zeros(TotalStation,FST); 
AU=sym('AU%d%d',[TotalStation,1]); 
BU=zeros(TotalStation,1); 
BufU=sym('AU%d%d',[TotalStation,1]); 
Uk=zeros(FST,Part); 
Uk1=zeros(FST,1); 
IST=zeros(FST,Part); 
Y=sym('Y%d%d',[TotalStation,Part+NBuf]); 
Y1=sym('Y1%d%d',[TotalStation,1]); 
  
for k=1 : Part 
    if k==1 
        %first part 
        Y(BST,1)=0; 
        Y1(BST,1)=T(BST,1); 
        for i=BST+1 : TotalStation 
            Y(i,1)=Y1(i-1,1); 
            Y1(i,1)=Y1(i-1,1)+T(i,1); 
        end 
        for i=1 : BST-1 
            Y(i,1)=0; 
            Y1(i,1)=0; 
        end  
        Y; 
        Y1; 
        for i=BST : TotalStation 
            Y1(i,1)=Y(i,1); 
        end 
        Y1; 
    else 
   %second part until last part of buffer 
   if  k <= NBuf && k >1 
       k; 
       Y1; 
       BufU(BST,1)=Y1(BST,1)+T(BST); 
       for j=BST+1 : size(Buf,1) 
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             c=max(BufU(j-1,1)+T(j-1),T(j,1)+Y1(j ,1)); 
             BufU(j,1)=c;             
        end 
        BufU; 
        for i=1 : BST-1 
            BufU(i,1)=0; 
        end 
        for i=1 : size(B,1) 
            Y(i,k)=BufU(i,1); 
        end 
        BufU; 
        for i=1 : size(B,1) 
           Y1(i,1)=Y(i,k); 
        end 
        Y; 
        Y1; 
   else 
    
   if k==NBuf+1 
        for i=1 : FST 
            Uk1(i,1)=Uk(i,1); 
        end 
        for i=1 : size(B,1) 
            for j=1 : size(Uk1,2) 
                c=B(i,1)+Uk1(1,j); 
                for v=1 : size(B,2) 
                    c=max(c,B(i,v)+Uk1(v,j)); 
                end 
                BU(i,j)=c; 
            end 
        end 
        %make BU(i,k) to BU(i,k-NBuf) to fix the dimensions and start 
from 
        %1 
        %for i=1 : size(B,1) 
            %Y(i,k)=BU(i,k-NBuf); 
        %end 
        for i=1:BST-1 
            Y(i,k)=BU(i,1); 
        end 
        Y(BST,k)=max(Y1(BST+1,1),BU(BST,k-NBuf)) 
        for i=BST+1 : size(B,1) 
            Y(i-1,k)+T(i-1,1); 
            Y1(i,1); 
            BU(i,k-NBuf); 
            Y(i,k)=max(Y1(i,1),max(Y(i-1,k)+T(i-1,1),BU(i,k-NBuf))) 
        end 
         
        for i=1 : FST 
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            IST(i,k-NBuf)=Uk1(i,k-NBuf); 
        end       
         
    else 
        for i=1 : size(B,1) 
            Y1(i,1)=Y(i,k-1); 
        end 
        Y1 
        for i=1 : size(A,1) 
            for j=1 : size(Y1,2) 
                c=A(i,1)+Y1(1,j); 
                for v=1 : size(A,2) 
                    c=max(c,A(i,v)+Y1(v,j)); 
                end 
                AU(i,j)=c; 
            end 
        end 
        AU; 
         
        for i=1 : FST 
            Uk(i,k-NBuf)=IST(i,k-NBuf-1)+T(i,1); 
        end 
        Uk; 
        for i=1 : FST 
            Uk1(i,1)=Uk(i,k-NBuf); 
        end 
        Uk1; 
        for i=1 : size(B,1) 
            for j=1 : size(Uk1,2) 
                c=B(i,1)+Uk1(1,j); 
                for v=1 : size(B,2) 
                    c=max(c,B(i,v)+Uk1(v,j)); 
                end 
                BU(i,j)=c; 
            end 
        end 
         
        if k > NBuf+1  
            for i=1 : size(A,1) 
                for j=1 : size(Y1,2) 
                    c=Buf(i,1)+Y1(1,j); 
                    for v=1 : size(A,2) 
                        c=max(c,Buf(i,v)+Y1(v,j)); 
                    end 
                    BufU(i,j)=c; 
                end 
            end 
            BufU 
        end 
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        for i=1 : size(AU,1) 
            for j=1 : size(AU,2) 
               % if k > NBuf+1 
                    %AT(i,j)=max(BufU(i,j),max(AU(i,j),BU(i,j))); 
                %else 
                    AT(i,j)=max(AU(i,j),BU(i,j)); 
                %end 
            end 
        end 
        AT; 
        for i=1 : size(B,1) 
            Y(i,k)=AT(i,1); 
        end 
         
         
   end 
   end 
    end 
    Y 
end 
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APPENDIX TWO 

NUMERICAL MATRICES FOR STUDIED SCENARIOS 

The Elementary Matrices A, B, D, 𝐴 and 𝐵 (Referred to chapter 3 and 4 ) 

A=    

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

𝑡  Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ 𝑡  Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ 𝑡  Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ 𝑡  Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ 𝑡  Ɛ Ɛ 𝑡  Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 𝑡  Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 𝑡  Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 𝑡  Ɛ Ɛ 𝑡  Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 𝑡  Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 𝑡  Ɛ 
 

B=    

𝑡 Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ 𝑡  Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ 𝑡  Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ 𝑡  Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ 𝑡  Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ 𝑡  Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 𝑡  Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 𝑡  Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 𝑡  Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 𝑡  Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 𝑡  Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 𝑡  Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 𝑡  
 

D=

e Ɛ Ɛ 

Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ 

Ɛ e Ɛ 

Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ 

Ɛ Ɛ e 

Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ 

    
 

A=    

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

28 Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ 18 Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ 15 Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ 38 Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ 12 Ɛ Ɛ 32 Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 23 Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 47 Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 25 Ɛ Ɛ 60 Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 26 Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 14 Ɛ 
 

B=    

28 Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ 18 Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ 12 Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ 15 Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ 38 Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ 32 Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 25 Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 23 Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 47 Ɛ Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 60 Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 26 Ɛ Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 14 Ɛ 

Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 0 
 

D=    

0 Ɛ Ɛ 

Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ 

Ɛ 0 Ɛ 

Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ 

Ɛ Ɛ 0 

Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ 

Ɛ Ɛ Ɛ 
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𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝑡   

𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝑡  𝑡   

𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝑡  𝑡  𝑡 𝑡   

𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝑡  𝜀 𝜀 𝜀  

𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝑡  𝑡  𝜀 𝜀 𝜀  

𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝑡  𝑡  𝑡 𝑡  𝜀 𝜀 𝜀  

𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝑡  𝑡  𝑡 𝑡  𝑡 𝑡 𝑡  𝑡  𝑡 𝑡  𝑡 𝑡 𝑡  𝑨 = 𝑨∗𝑩 
𝜀 𝜀 𝜀 𝜀 𝜀 𝑡  𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  

𝜀 𝜀 𝜀 𝜀 𝑡  𝑡  𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  

𝜀 𝜀 𝜀 𝑡  𝑡  𝑡 𝑡  𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  

𝜀 𝜀 𝑡  𝑡  𝑡 𝑡  𝑡 𝑡 𝑡  𝑡  𝑡 𝑡  𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡  𝑡 𝑡  𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡   

𝜀 𝑡  𝑡  𝑡 𝑡  𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡  𝑡 𝑡  𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡 𝑡   

𝑡  𝑡  𝑡 𝑡  𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡 𝑡𝑡 𝑡 𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡 𝑡 𝑡   

 

 

 

 

𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 28  

𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 18 56  

𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 12 36 74  

𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 15 𝜀 𝜀 𝜀  

𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 38 30 𝜀 𝜀 𝜀  

𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 32 76 68 𝜀 𝜀 𝜀  

𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 25 64 108 100 24 48 86 𝑨 = 𝑨∗𝑩 
𝜀 𝜀 𝜀 𝜀 𝜀 23 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  

𝜀 𝜀 𝜀 𝜀 47 46 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  

𝜀 𝜀 𝜀 60 94 93 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀  

𝜀 𝜀 26 120 154 153 50 89 133 125 49 73 111  

𝜀 14 52 146 180 179 76 110 159 151 75 99 137  

0 28 66 160 194 193 90 124 173 165 89 113 151  
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𝜀 𝜀 𝑒  

𝜀 𝜀 𝑡   

𝜀 𝜀 𝑡 𝑡   

𝜀 e 𝜀  

𝜀 𝑡  𝜀  

𝜀 𝑡 𝑡  𝜀  

𝜀 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡  𝑩 = 𝑨∗𝑫 = 

e 𝜀 𝜀  

𝑡  𝜀 𝜀  

𝑡 𝑡  𝜀 𝜀  

𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡   

𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡 𝑡   

𝑡 𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡 𝑡 𝑡   

 

𝜀 𝜀 0  

𝜀 𝜀 28  

𝜀 𝜀 46  

𝜀 0 𝜀  

𝜀 15 𝜀  

𝜀 53 𝜀  

𝜀 85 58 𝑩 = 𝑨∗𝑫 = 
0 𝜀 𝜀  

23 𝜀 𝜀  

70 𝜀 𝜀  

130 110 83  

156 136 108  

170 150 122  
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APPENDIX THREE 

 PROCESS PLAN FOR AUTOMOTIVE HEADLIGHT ASSEMBLY (REFERRED TO SECTION 4.2.3) 

Process Plan Automotive headlight assembly line 

Station 

C
ode 

Part N
o (Is 

based on 
exploded 
view

) 

Part Name Operation Description W
orkstation 

(m
achine) 

Setup tim
e 

(second) 

Process tim
e 

(second) 

U
nloading 

tim
e 

(second) 

T
otal tim

e 

E
quipm

ent 
&

T
ools 

T
ransfer  or 

M
aterial 

H
andler 

Precedence  

A 10 22 Reflector Poly Carbonate Resin, Plexiglas 
and Acrylic are sucked from pack 
to Injection Molding Machin. 
Robot takes out reflector from 
press and place it on conveyor. 

A1 0 23 5 28 Press, 
molding 
machine, 
Vacuum 
and Robot 

Pipe &  
conveyo
r 

- 

B 15 22 Reflector (Cutting 
sharp edge and 
Finishing) 

Operator loads reflector then cuts 
and removes extra parts. robot 
picks it up and puts it on conveyor  

A2 5 8 5 18 Milling 
Machine 
and Robot 

conveyo
r 
 

10 

V 20 - Quality Inspection physical and appearance test such 
as checking edges , holes and 
shape of reflector and laser wave 

P1 0 12 0 12 Manual 
by worker 

 15 

D 30 25 Middle Frame Chemical Material is sucked and 
casted in Frame 

A3 0 10 5 15 Press, 
molding  

(Buffer: 
Cart) 

 

E 40 6,8,10,11,
12, 

Set Parking-Light 
Bulb ,Halogen , 
Bulb Yellow/Blue, 
Xenon Light With 
Ignition Element, 
Long-life Bulb, 
Two Bulb,  

parking light bulb, long life bulb 
and other parts like halogen pick 
up from the shelves and boxes. 
screws are taken to fast parts on 
middle frame. 

A4 5 28 5 38 Screw 
driver , 
Air 
Compress
or, 
,Wrench 
and 
Gauge 

(Buffer: 
Cart) 

30 
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F 50 1,2,3,9,13
,15,16, 

Lamp Cower Low 
Beam (cap), Cover 
High 
Beam/Daytime 
Running Lights, 
Lamp holder for 
xenon lamp, Bulb 
Socket, Turn 
Insider, Headlight 
Repair Kit  

Mentioned Part installed on 
previous output. Parts with their 
designed teeth –retainer and 
screws are placed and installed to 
the frame, all cover with universal 
wrench are fasted. Dust and scrap 
clean by air compressor 

A5 5 22 5 32 Wrench 
and 
Gauge, 
Air 
Compress
or, Screw 
driver 

(Buffer: 
Cart) 

40 

M 60  Screws,  Finished reflector and middle 
frame with all parts moved by 
conveyor through the station. All 
parts visually checked operator 
screwed closed these two module 
together 

A6 5  5 25   20,
50 

C 70 24 Headlight 
Housing(back 
frame) 

Back frame is casted in molding 
machine  

A7 5 23 5 23 Screw 
driver and 
Air 
Compress
or 

Convey
or 

 

I 80 7,13,23 Repair Kit, HVAC 
Servomotor 
,Screw-Trox-Bolt 
With Washer, 
Socket Wire, 
Socket Housing 

Repair kit is supported by Trox-
bolt with washer and screwed to 
the back frame. Back cover pick 
up from cart and is screwed with 
at each corners. Operator gets a 
piece of socket wire from box and 
connect it to socket housing 
Placement by robot 

A8 5 37 5 47 Wrench, 
Screw 
driver and 
Air 
Compress
or 

conveyo
r 

70 

L 90 4,5,17,18,
19 

Control Unit Xenon 
Light+ Control 
Unit Directional 
Light+ Seal washer 
,LED lights ,LED 
Cover 

Unit with a seal washer uses 
under the frame and closed by 
screw Washer is placed in 
housing hole and screws are used 
to tight the back frame. LED and 
its cover closed on Back frame. 

A9 5 14 5 60 Screw 
driver, 
lumen 
adjusting, 

conveyo
r 

80 
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T 100 20, 21 Projector Lens, 
Headlight Lens 
(Front cover) 

Unfinished Headlight, Projector 
Lens, and headlight lens are 
picked up from conveyor and 
shelves. placed on machine whole 
edge heats and glues (adhesive 
substance)  with machine and 
finally to parts pressed together  

A1
0 

5 16 5 26 Robot, 
lumen 
adjusting, 
Heating 
machine, 
and Glue 
gun, press 

conveyo
r 

60,
90 

W 110 - Quality inspection, 
Labeling(sticker)  

approved function of products , 
Box on pallet filled with finished 
products 

P2 5 13 5 14 UV 
coating 
and Laser, 
Printer, 
Tape 
Machine 

(Buffer: 
Cart) 

100 

 

 Work station codes are used based on manufacturer assembly line system and the list is showed below. 
 Operation 20 is the precedence of four independent operations namely 30, 40, 50, 60. The operations can be combined as one 

operation or considered separately. The same condition is supposed for operation code 80,90, 100, 110 and 120. 
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APPENDIX FOUR 

 CAR HEADLIGHT MANUFACTURING STATIONS 

Referred to section 4.2.3 

 Name 
(Code) 

Description (automotive frame sub-assembly line- eooeintl.com) 
1 A1 Adjusting rod press fitting  
2 A2 Reflector adjustment press fitting 
3 P1 Decorative Frame sub-assembly 
4 P2 Decorative Frame sub-assembly 
5 P3 Decorative Frame sub-assembly 
6 A3 Wiring harness collating & motor installation 
7 A4 Lens and lens holder sub-assembly 
8 A5 Install reflector sub-assembly into lamp seat  
9 A6 Install decorative frame sub-assembly into the lamp seat 

10 A7 Vibration & electrostatic precipitation 
11 A8 Plasma spray and adhesive gluing  
12 A9 lamp seat and lamp seat housing press fitting 
13 A10 Install the lamp housing screws 
14 A11 Full-automatic beam adjusting 
15 A12 Air tightness test 
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