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ABSTRACT 

    The work envelope of a robot does not capture the effect of tool orientation. 

Applications will require the tool to be at a certain orientation to perform the tasks 

necessary. It is therefore important to introduce a parameter that can capture the effect of 

orientation for multiple robots and configurations. This is called the functional work 

space, which is a subset of the work envelope would capture the effect of orientation. 

This research discusses the development of establishing an assessment tool that can 

predict the functional work space of a robot for a certain tool-orientation pair thus aiding 

in proper tool, tool path, fixture, related configuration selection and placement. 

     Several solutions are studied and an analytical and a geometric solution is presented 

after a detailed study of joint dependencies, joint movements, limits, link lengths and 

displacements through visual, empirical and analytical approaches. The functional 

workspace curve for a manipulator with similar kinematic structure can be created using 

the geometrical solution discussed in this research. It is difficult to derive a general 

paradigm since different parameters such as, joint limits, angles and twist angles seem to 

have a different effect on the shape of the workspace.  The geometrical solution 

employed is simple, easy to deduce and can be simulated with a commercial software 

package. Design decisions pertaining to configuration and reconfiguration of 

manipulators will benefit by employing the solution as a design/analysis tool. A case 

study involving an X-ray diffraction technique goniometer is presented to highlight the 

merits of this work. 
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         CHAPTER 1 

1. INTRODUCTION 

    In today‘s manufacturing scenario, product life cycles are decreasing and customers 

are demanding cheaper and high quality products in a timely manner.  To satisfy a variety 

of customer needs, companies need to introduce the option of customizability to their 

portfolio by making their operations more flexible. Flexibility in manufacturing today 

plays a vital role and can decide the future of an organization. Adaptation to the ever 

changing market will ensure profits and growth while lack of innovation and variety will 

lead to stagnation. Flexibility of a manufacturing system can be defined as the ability to 

produce a variety of products with minimum or no changes to the layout, manufacturing 

cells and the machines that are part of that system. There is a constant need to better the 

existing flexible systems to meet the production demands. Furthermore, the automation in 

the system needs to be aimed at reducing cycle times, lead times and handling while 

increasing production and maintaining quality. It is therefore, important to automate in a 

resourceful and reliable manner.  

    To achieve the above said characteristics, effective and robust systems are required. An 

effective system should be a well-designed system that is well tested leading to minimum 

or no errors during operation wherein most parameters are already set. This particularly 

applies to machine and robot cells. For example, in a robotic work cell there are various 

parameters such as link length, payload, range, accuracy, workspace etc. that have to be 

defined for it to be able to work in synchronized manner with others on the required 

tasks.  
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    The assessment of the reach of the robot and the feasibility of its kinematic structure 

for the tasks to be performed is of prime importance amongst decisions pertaining to 

sensor selection and location, the control systems, power supplies, manipulators and the 

software used to run the robot. It is important to know whether the robot end-effector can 

reach a particular point in its workspace at a desired orientation to allow modification or 

change in the placement or configuration (in case of reconfigurable robots) before setting 

up the robot on the shop floor. Currently, this reach problem is solved by visual 

inspection, simulation packages, by manually operating a teach pendant and by visually 

analysing the workspace of the robot. The work space of a kinematic structure can be 

defined as the set of all points that it can reach in space. Workspaces are of different 

complicated shapes. Some workspaces are flat, some spherical and some cylindrical 

depending on the coordinate geometry of a kinematic structure. It is important to know 

the workspace of a kinematic structure, to be able to assess its flexibility and workability 

(Panda, et al., 2009). Defining the workspace is very evidently important for more than 

one reason; pertaining to, but not limited to design, optimization, safety and layout of a 

kinematic structure. The work envelope, however, does not provide a solution for a 

desired configuration, as the effect of orientation is not captured. Consider the ABB 6R 

robot in Fig.1-1. On the left is the complete work envelope of the robot. On the right is 

the figure of all the reachable points of joint-5 at 90° to the work piece(normal to the 

base). It can be seen that at this particular orientation the robot arm cannot reach all the 

points in the work envelope.  
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Figure 1-1 Functional work space of a ABB 6R robot as a subset of the three joint work 

envelope 

    The depiction of the work envelope does not capture the effect of orientation of joint-5. 

The fixed orientation of the tool is important in many machining and deposition 

applications. Consider another scenario, shown in Fig.1-2, where, for a robot, tool and 

travel path configuration, joint-5 or θ5 has reached it limits.  

 

Figure 1-2 Failed robot simulation due to Joint-5 at its limit. Reference: Urbanic, J., Gudla, 

A., 2012 
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    This fault can be corrected by rotating the tool by 90° around the Y axis, while keeping 

all the other parameters fixed. The manipulator can now access the complete work piece 

and the simulation is successful (Fig. 1-3).  

 

             Figure 1-3 Successful robot simulation after changing joint 5 orientation 

1.1 Problem Definition 

    There is a need for an assessment methodology to visualise the effect of orientation 

that can better define the flexibility and limitation of a kinematic structure leading to 

subsequent downstream optimization; introduced in this work as the functional work 

space. The functional work space introduced in this research is the subset of the work 

envelope of a robot defined as the valid functional space for a configuration to allow a 

kinematic structure (robot, machine tool, and so forth) to follow a desired orientation to 

the part or base, or both.  Defining a valid solution space for a particular orientation will 

enable down-stream optimization for path planning, robot structure. The objective of this 

research is to develop an assessment methodology leading to a design tool that will help 

process planners, select configuration/reconfiguration solution alternatives during the 

design phase.  

The research aims to: 
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 Study the relation between the tool(s), object/work piece(s) and the production 

space, which involves many coordinate frames. Using forward kinematics, the 

correlation between two or more different coordinate frames can be assessed, 

which can show the correct object/work piece placement and the tool placement. 

 Obtain the relation between different entities within a system by evaluating the 

position and orientation of each entity relative to any selected frame. 

 Study in detail the frame transformations and forward kinematics to understand 

the joint dependencies and movements. 

 Perform shape analyses of the functional work space of an ABB IRB 140 robot 

arm through visual, empirical, analytical and geometrical methods. 

 Reduce the kinematic structure into the essential links and joints to obtain the 

functional work space of the robot. 

 Develop an algorithm to project the functional work space in two dimensions for 

serial 6R robots. 

 Automate a geometric and an analytical solution that can be further developed as 

a design/analysis tool and can be extended into the 3D domain. 

    This research is aimed to be a foundational study in deriving a methodology to find the 

functional work space of a robotic arm for multiple orientations of the tool. This work 

includes the serial manipulators case and does not involve study of parallel manipulators. 

The research solution is arrived at in reference to a six axis rotational ABB IRB 140 

industrial robot. This solution will apply to any robot that can be reduced to a four bar 

linkage in the two dimensional space. Each robot configuration has to be treated as a 

special case and a variety of configurations need to be studied to derive a general and all 
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inclusive solution for the functional work space problem. The approach taken in the 

research is to study the forward kinematics and geometry of the robot and project the 

functional work space in a two dimensional environment. Factors such as joint speeds, 

linear velocities of the links and joints, inverse kinematics and singularities have not been 

studied. It must be noted that, before considering these factors, the problem of the 

functional work space itself needs to be well understood; which should be done by 

considering the most important and basic parameters that effect the functional work 

space.  

    A Fanuc LR MATE 200iC robot was used to understand and emulate the problem. The 

LR MATE also helped visually infer possible solutions by programming it to perform 

various tasks. Teach Pendant programming was done to make the robot reach different 

points of a rapid prototyped work piece with complex geometry at certain orientations to 

understand the complexity involved in the task. Workspace5™ was used to derive an 

empirical solution. CATIAV5™ was used to arrive at a geometric solution. MATLAB™ 

was used to program the solution algorithm and simulate the equations. 

    The following chapter presents the review of literature and discusses the research gap 

in this area. Chapter 3 deals with kinematic analysis and frame transformations needed to 

relate the end effector with the base frame and forward kinematics of ABB IRB 140 

robot. Chapter 4 discusses the visual, empirical and analytical approaches establishing the 

need for decomposition of the robotic structure and how that helps to achieve the two 

dimensional depiction of functional work space. This is followed by a case study of an X-

Ray diffraction Goniometer in Chapter 5. The summary and conclusions are presented in 

Chapter 6 followed by future work in Chapter 7. 
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CHAPTER 2 

2. LITERATURE REVIEW 

 

    Considerable research has been done on the nature and optimization of workspace, 

with respect to different robotic manipulators (Zacharias, F., et al.), (Gupta, K.C. 1984), 

(Szep, C., et al., 2009), (Carbone, G., et al., 2010), (Gupta, K.C., et al., 1982), (Cebula, 

A.J., et al., 2006), (Ceccarelli, 1995), (Cao, Y., et al., 2009), (Abdel-Malek, Harn-Jou 

Yeh, 1997), (Lee, et al., 2011), (Bi, Z.M., Lang, S.Y.T., 2007), (Cao, Y., et al., 2011), 

(Vijaykumar, R., et al., 1986), (Borcea, Streinu, 2011), (Badescu, Mavroidis, 2003).  Cao, 

et al., (2009) provided an integrated approach in presenting and analyzing the workspace 

of robot manipulator based on Monte Carlo method and modeling capabilities of popular 

commercially-available 3D software. A 5R robot was used as an example to demonstrate 

the generality and feasibility of the method. The approximate boundary points in the main 

working plane are obtained by dividing the planar robot‘s workspace into a series of rows 

and searching for the needed points in each row. A tool for optimizing the workspace of a 

3R robot manipulator has been discussed by Panda, (2009). The optimization problem is 

formulated considering the workspace volume as the objective function, while constraints 

are imposed to control the total area. Four different optimization techniques, SQP, 

fminmax, goal attainment and constrained non -linear minimization were used to solve a 

numerical example with the same conditions imposed to demonstrate the efficiency of 

optimization processes.  

    Gupta (1984) in his paper, ―On the Nature of Robot Workspace‖ defined the 

workspace Wi (P) with respect to i
th

 axis, as the totality of points that can be reached by 
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the gripper point or tool tip P. The total workspace is divided into primary (or dexterous) 

and secondary workspaces. In the primary workspace, all tool orientations around the tool 

tip point P are possible. A robot configuration with six degrees of freedom consists of a 

three-degrees-of-freedom positioning of a wrist point H, followed by a three-roll wrist (or 

equivalent configuration with three revolutes cointersecting at a wrist point) has been 

considered. A method to calculate the primary workspace in such cases is mentioned in 

the paper. First, the workspace W1 (H) of the wrist point H is determined. Next a sphere 

of radius HP is moved with its center on the boundary of the workspace W1 (H). The 

inner and outer envelopes are the boundaries of primary and total workspaces, 

respectively.  The paper further discusses the use of geometric inversion method for the 

prediction of the number of solution sets, the existence of solution transition boundaries 

within the workspace (dexterous or total), and the influence of joint variable limits on the 

workspace and the multiplicity of solution sets. Much of the current research classifies 

the work space into a primary and secondary workspace. There is, however, no feasible 

work region or a functional work space derivation for a set of robotic configurations that 

will help define the valid space for an end effector orientation. 

    A new method to calculate the boundary workspace was developed by Djuric, A.M., 

ElMaraghy, W.H., (2008) called the Filtering Boundary Points (FBP). This method 

enabled the calculation of the workspace boundary surface so that the user can ensure that 

all the points along the trajectory of a robot arm lie inside the robot‘s workspace before 

the set points of the robot joints are generated.  A generic robotic model that could be 

easily reconfigured to identify a specific kinematic model for a specific robot was 
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developed for this purpose. This research did not take into account the functional work 

space based on orientation of the tool. 

    Djuric, A.M., Urbanic, J., (2009) first defined the work window as the functional 

subset of the work window. A basic algorithm to calculate the work window for a 

configuration was presented in this paper. The shape of the work window of a few 

selected configuration pairs was also shown. 

    An important problem in robotic cell design is the optimal placement of the robot 

structure.  Feddema, (1996) discussed an algorithm to determine the correct placement of 

a robotic manipulator in an industrial scenario. Optimal placement of a robot or a 

machine is a very common problem in the manufacturing scenario, which if solved can 

result in substantial cost and time savings.  

 

Figure 2-1 Optimal Robot Placement on shop floor. Reference: Feddema (1996) 

    W
Tb is to be moved to a position which can minimize the time required to move 

between 
W

Ts, and 
W

Te. The optimization algorithm presented uses kinematics and the 

maximum acceleration of each joint. The research considers FANUC robots as case 

studies; each vendor uses a different method for trajectory generation and also the settling 
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times are different. The research shows several discrepancies between the estimated and 

the actual experimental times due to the above mentioned reason.  

    The specification of the position and orientation of a base of a robotic manipulator in a 

predefined work environment is necessary in placement of a robotic manipulator, (Abdel-

Malek, Yu, 2004). Using dexterity as a measure, a method for determining the exact 

boundary of the workspace was described. An algorithm was presented and implemented 

in computer code to solve the case study of a three DOF manipulator with three revolute 

joints.  

 

Figure 2-2 Algorithm for achieving placement using dexterity as a measure. Reference: 

Abdel-Malek, Yu 2004 

    A solution to determine the optimal path and workspace has also been researched.  

Ghoshray (1997) aimed at developing an algorithm that determines a collision-free path 

for a robot or a set of robots. Using Quadtree, a geometrical hierarchical decomposition 

method, a region was divided into four quadrants. A quadrant was said to be full if the 
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area defined by the quadrant is filled with a 2D object, empty if area is devoid of the 

object and mixed if the object is partially inside the region and partially outside. Li, 

(2006) used random probability to generate the boundary curves of a spatial robot in a 

two dimensional plane. The kinematic relationship of the joint spaces to the workspace 

was studied. The differential geometry between 2D and 3D figures, analytical in nature, 

was studied and the 3D space is addressed by enveloping the boundary curves and 

displaying it graphically.  

    Cao, (2011) used the Monte Carlo method and the Beta distribution to determine the 

valid two dimensional workspace of a three axis planar and spatial robot manipulator.  A 

point cloud of non-uniform densities in the Monte Carlo method is generated using 6000 

random numbers with uniform distribution for revolute joints. To improve the accuracy 

of the workspace boundary, the density distribution of Monte Carlo points has to be 

known and then the reason for such problems analyzed. 

 

Figure 2-3 Monte Carlo distribution of points in planar workspace. Reference: Cao (2011) 

 

    The density of the points of one block in the workspace was analyzed using the 

following equation:  
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ρD =  Z(Height of histogram)
                      

                            
 X 100%                      (2.1) 

    Where, Z (height of histogram) means the point number in the histogram block. 

Furthermore, using the beta distribution method, a smoother workspace curve with less 

error was obtained. The curve shown in the figure below was obtained by searching the 

boundary points and connecting them to construct a closed polygon. Although the figure 

is not completely representative of the exact workspace and contains some error, the 

results are certainly better than when uniform distribution is used.  

 

Figure 2-4 Boundary curve of workspace obtained with Beta distribution. Reference: 

Cao(2011) 

    With an increasing adaptation of flexible manufacturing systems and the need to 

reduce setup and launch times, it is important to know beforehand the possible limitations 

of a robotic manipulator, eliminating the need for trial and error and repeated adjustments 

in either the virtual or physical domains.  The depiction of the workspace is thus very 

important. It is also; however, very important to figure out a methodology to show the 

functional work space of a robot that includes the orientation. This is important in several 

applications such as Non-Destructive testing (NDT), welding, deposition techniques, etc. 
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An analysis considering the geometric and kinematic characteristics combined to solve 

the functional work space problem has not been done yet. A methodology needs to be 

developed to define the functional work space for a configuration, and any potential 

reconfigurations. A literature matrix table has been shown in Appendix A showcasing the 

research gap in this area. 
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CHAPTER 3 

3. DESIGN METHODS 

 

3.1 Geometrical assessment of functional workspace problem1 

    The functional workspace of a manipulator is essentially a subset of the work envelope 

that takes into consideration the orientation of the end-effector. Examining this subset 

will provide the user/ designer with enough data to evaluate the valid functional space of 

the tool at a particular or multiple orientations. Many analytical methods are in place to 

determine the closed work envelope boundary of the robotic manipulator. However, the 

analytical and mathematical solutions are often complicated by the use of non-linear 

equations and matrix inversions. Another viable approach, in this case, would be to assess 

the geometry of the kinematic structure.  

    A 3D functional workspace of a 6R manipulator is obtained by revolving joint-1 along 

the Z axis. The 3D functional workspace boundary is essentially an envelope of the 

planar or 2D curves. The functional workspace is generated by the union of the curves 

that can be traced by the points of a sequence of arcs or line segments that are caused by 

the revolution. Therefore, any manipulator that has revolute and prismatic joints can 

always be geometrically reduced and described by circular arcs and lines while obeying 

the constraints of the manipulator. The projection of the kinematic structure in 2D 

                                                           

 

 

 

 

 
1 Section 3.1 incorporates the outcome of a joint research undertaken in collaboration with  

Jill Urbanic, University of Windsor, Windsor, ON, Canada.   
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geometrically does not dissolve the legitimacy of the manipulator. Care has to be taken, 

however, to maintain the uniformity of selecting the axes. This is demonstrated below 

with the kinematic structure of a six-axis revolute serial manipulator – ABB IRB 140.  
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Figure 3-1 Geometric Assessment of the ABB IRB140 
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    When the structure is observed from the side view, it can be reduced into essential 

links and joints. The problem is broken down into concentrate on only the necessary 

elements and solution is derived from the first principles. The solution can be engineered 

further by including the effect of varying joint angles, 4 and 6. The objective here is to 

find out a solution space, but not to optimise an existing reach issue. Several optimisation 

techniques such as Monte Carlo method and Beta distribution (Alciatore 1994), (Y. L. 

Cao 2011), (Ghoshray 1997) have been used to reduce a 3D dimensional problem into 

2D. These methods however, require a huge set of data and are not always accurate. 

Although this research does not intricately deal with path generation and optimal path 

models, it is possible to reduce a 3D path in the geometrical approach into a set of points 

in 2D and the functional space assessed. A detailed explanation of the geometrical 

method is given in Section 4.4. 

3.2 ABB IRB 140 

    The approach in this research is to first explain the frame transformations that are 

needed to understand the kinematic analysis. The forward kinematic equations are then 

applied to the ABB IRB-140 robot which is studied in this research. Further, the effect of 

end-effector positioning is discussed followed by a visual approach taken to adapt θ5 to 

be at the required orientation. A working of the empirical approach with the aid of a 

previously derived formula (Djuric, Urbanic-2009) is then discussed with an adapted 

manual point generation algorithm. The problem solved using an analytical approach in 

MATLAB. Several geometric approaches that were tried to find the functional work 

space are discussed in Appendix C. A projection of two dimensional work space, solved 

with a geometrical approach, proposed as a solution is then explained with a MATLAB 
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visual simulation. The change in the functional work space with the change in the 

orientation of θ5 is also discussed. 

    ABB is a leading robot manufacturer that has more than 200,000 robots installed 

worldwide (Ref: Manufacturer website- www.abb.com; Sep2012). The robot model IRB 

140 used in this research is a compact, powerful industrial robot that can handle a variety 

of applications such as arc welding, spraying, material handling, cutting/deburring, die 

casting etc. It is a 6 rotational axis robot with a payload of 5kg and multiple mounting 

options. The axis 5 reach of the IRB 140 is long at 810mm. 

 

Figure 3-2 ABB IRB 140. Reference: ABB IRB 140 Datasheet 

    Also, the IRB 140 represents the configuration of most widely used six-axis industrial 

robots. The IRB 140 has good flexibility (with respect to joint limits) and a large work 

envelope which is useful in solving the functional work space problem. The table below 

shows the joint limits of the IRB 140. 
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Table 3-1 Joint limits of the ABB IRB 140 

Joint Type Limits () 

1 Rotational +180 to -180 

2 Rotational +110 to -90 

3 Rotational +50 to -230 

4 Rotational +200 to -200 

5 Rotational +120 to -120 

6 Rotational +400 to -400 

 

    The Denavit-Hartenberg or the D-H parameters are commonly used in the robotics 

domain. Using the D-H parameters the rotation and the position vectors of the end-

effector can be found. Each joint in a serial kinematic chain is assigned a coordinate 

frame. Using the D-H notations, four parameters are needed to describe how a frame i is 

connected to a previous frame i-1. This is used as a foundation to develop the forward 

kinematic representation. The D-H parameters of the IRB 140 are given in the Table 3-2.  

The manufacturer stipulated work envelope of the ABB IRB 140 is detailed in Fig.3-4. 

Table 3-2 D-H Parameters of the ABB IRB 140 at home position 

Joint 
 

() 

D 

[mm] 

A 

[mm] 
 () 

1 0 352 70 -90 

2 -90 0 360 0 

3 180 0 0 90 

4 0 380 0 -90 

5 0 0 0 90 

6 -90 65 0 90 
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The forward kinematic equations for IRB 140 are solved in Section 3.3.5. 

 

 

Figure 3-3 Notations used in D-H Parameters 

 

 

Figure 3-4 Working range(work envelope) of the ABB IRB 140 
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3.3 Frame Transformations 

    Before proceeding with kinematic analysis, it is important to understand the frame 

transformations. Once the homogenous transformation matrix is obtained the forward 

kinematic equations can be applied to the robot to obtain the coordinates of the end-

effector with respect to the base frame. The point ‗P‘ in the Fig.3-5 is described with 

respect to two co-ordinate frames x, y, z and x*, y*, z*. Note that, the frame x*, y*, z* is 

nothing but a simple rotation of the frame x, y, z. Though, this rotation does not affect the 

vector, its co-ordinates and components are changed. These new descriptions which 

involve different frames are of interest and are used to define different frames and rigid 

bodies with a base frame as well as each other. Considering the case of the rigid bodies 

(Fig.3-6), ‗Q‘ is the frame at a point on the rigid body. ‗O‘ is a fixed frame with respect 

to which the frame ‗Q‘ needs to be defined. The position of frame ‗Q‘ can be found by 

drawing a vector, OP between the origins of the two frames. The orientation of the frame 

‗Q‘ is given by the vectors }ˆ,ˆ,ˆ{ Q
O

Q
O

Q
O zyx . These vectors can be used to describe the 

orientation of ‗Q‘ in any frame. In this case, the vectors are used to describe frame ‗Q‘ 

with respect to frame ‗O‘. These vectors define the rotation of frame ‗Q‘ with respect to 

frame ‗O‘. The notation Q
O x̂   should be read as ―xQ in frame O‖ meaning that this is the 

coordinate of xQ in frame ‗O‘. 
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Figure 3-5 Rotation of frame `O` to obtain a new frame x*, y*, z* 

 

Figure 3-6 Description of frame Q with respect to frame O 

    The rotation matrix needs to be obtained to describe the rotations of the frame ‗Q‘ with 

respect to frame ‗O‘. To arrive at the rotation matrix, consider only the rotation of frame 

‗Q‘ neglecting the distance between the frames, 
O
P. 
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Figure 3-7 Rotation of frame Q 

 

The rotation of frame Q is given by a rotational matrix: 

                                



















333231

232221

131211

rrr

rrr

rrr

RQ
O                                                                 (3.1) 

With the help of this rotation matrix we can transform the description of x* in Q to Q
O x̂  

as follows: 

                                                 Q
Q

Q
O

Q
O xRx ˆ.ˆˆ                                                           (3.2) 

 

Qx̂ in frame Q is given by matrix:

















0

0

1

 since the x-vector in its own frame has a unit value 

along the x-axis. Hence, 
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Q
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Similarly, 
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Q
O Ry                                                            (3.4) 

and,                        

                                        

                                                 



















1

0

0

ˆˆ Q
O

Q
O Rz                                                             (3.5) 

 

The rotation matrix is therefore, defined as,  

 

                                          Q
O

Q
O

Q
O

Q
O ZYXR ˆˆˆ                                 (3.6) 

 

The rotation matrix in Eq. (3.6) is nothing but the component(s) of xQ, yQ and zQ in frame 

O. 

                                               



















OQ

OQ

OQ

Q
O

zx

yx

xx

X

ˆ.ˆ

ˆ.ˆ

ˆ.ˆ

ˆ                                                    (3.7) 

Therefore, the rotation matrix 
O
RQ can be written as, 

                                                



















OQOQOQ

OQOQOQ

OQOQOQ

Q
O

zzzyzx

yzyyyx

xzxyxx

R

ˆ.ˆˆ.ˆˆ.ˆ

ˆ.ˆˆ.ˆˆ.ˆ

ˆ..ˆˆ..ˆˆ..ˆ

                             (3.8) 

From the matrix above it is evident that, 
O
RQ = 

Q
RO

T
. An important property can be 

derived from the above statement, which is, 

                                                    
T 

Q
O

O
Q 1- O R = R= RQ  

                                                            
(3.9) 

As stated above, 
O
RQ = 

Q
RO 

T
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The columns of the rotational matrix represent the components of x*, y* and z* in frame 

O while and the rows are simply,
T

Q
O X̂ , 

T
Q

OŶ and
T

Q
OẐ .  

                                                       





















010

100

000

Q
O R  

   

 

After having defined the rotational matrix, the location of the rigid body Q with 

orientation and position needs to be defined. Frame {Q} can now completely be defined 

as: Q
O X̂ , Q

OŶ  and Q
O Ẑ  

                                       PRQ O
Q

O}{                                                                (3.10) 

 

3.3.1 Mapping 

    Consider the initial case where a point P in space was described (Fig-3.3) with respect 

to two frames, O and Q. The vector P was expressed in relation to both the frames and 

also one frame was expressed with respect to the other frame and also vice-versa. This is 

called mapping. The description of vector P is changed from frame to frame although the 

vector remains the same. The description of vector P can be given with regard to frame O 

as 

                                P

Z

Y

X

PZ

PY

PX

P

T
O

T
O

T
O

O

O

O
O
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ˆ

ˆ

ˆ

.ˆ
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.ˆ





































                                                           (3.11)  
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This equation can be used to describe the vector P not only in frame O but any 

other frame. If P is given in frame Q, 
Q
P would be given as, 

                               P

Z

Y

X

PZ

PY

PX

P

T
Q

T
Q

T
Q

Q

Q

Q
Q .

ˆ

ˆ

ˆ

.ˆ

.ˆ

.ˆ





































                                                            (3.12) 

3.3.2 Translations 

    In the figure below, the orientation of the {O} and {Q} are same but the position of the 

two frames is different. A vector is drawn to point P and is located at a distance QP from 

the origin of frame Q. The distance of point P from the origin of {O} is OP. The distance 

between the origins of {O} and {Q} is PQORG. The same point P is described here with 

respect to two frames O and Q. QP=> OP (Two different vectors). 

    When performing translations, the description of a vector is changed by changing the 

vectors involved in the description. 

 

Figure 3-8 Distance of point P with respect to frame O and Q 

Here,  

                                                   QORG
QO PPP                                                       (3.13) 
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3.3.3 General transformation when rotation and translation are involved 

    In this case there is an arbitrary frame Q which is not only translated but also rotated 

about the frame O. The above equation would then be modified to,  

                                               

                                             QORG
Q

Q
OO PPRP      

                                                                       
(3.14) 

 

 

Figure 3-9 Translation and orientation of Q with respect to frame O 

 

This is the general transform. 

3.3.4 Homogenous transformation 

    Using the general transform we can compute and propagate between links. But the 

description is not easy to carry forward in case of multiple links. Hence, we need a 

homogenous transform. A homogenous form is not possible to achieve with 3-D space. 
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To overcome this problem a dimension needs to be added i.e. 4-D. The above equation 

can then be modified as, 

                           







































110001

PPRP Q
QORGQ

OO

                                         (3.15) 

    The homogenous property is captured in the above equation using the rotation and the 

translation matrix. The above equation is rewritten as,  

                                          )14()44()14( X
Q

XQ
O

X
O PTP                                                                       

(3.16) 

  Where, 
O
TQ is called the homogenous transformation. 

3.3.5 Forward Kinematics 

    Each link frame is completely described with its pose matrix with reference to the 

preceding link, and sequence of pose matrices are used to compute the pose matrix of the 

end-effector frame with respect to the base frame 
0
A. 

    The D-H Parameters are used to explain the relationship between two links, 
i-1

Ai , 

where ‗i‘ is the number of joints. The homogenous transformation matrix is given as:  

 

1000

dicosαsinα0

sinθaicosθisinαcosθcosαsinθ

cosθaisinθisinαsinθcosαcosθ

A

ii

iiiii

iiiii

i

1i




























                   (3.17) 

The D-H parameters for ABB family of robots with the 6R configuration are given below 

in Table 3-3. 
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Table 3-3 D-H Parameters of ABB IRB 140 robot 

Z di i ai i 

1 
352 

1° 
70 

-90° 

2 
0 

2° 
360 

0° 

3 
0 

3° 
0  90° 

4 
380 

4° 
0  -90° 

5 
0 

5° 
60 

90° 

6 
65 

6° 
0  90° 

 

The coordinates of the end effector frame, 
0
An is obtained by consecutively applying the 

homogenous transformations:  

                             n
n

i
i

n AAAAAA 11
3

2
2

1
1

00 ............                                             (3.18) 

Where, 
0
An is the end-effector frame with respect to the base frame, 

i-1
Ai is the frame 

transform of the i
th

 joint with respect to i-1, and n is the number of links.  
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1000
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1000

0010

θ sinaθ cos-0θ sin

θ cosaθ sin0θ cos
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dα cosα  sin0

θ sinaθ cosα sinθ cosα cosθ sin

θ cosaθ sinα  sinθ sinα cosθ cos
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1000

0010

0θ cos-0θ sin

0θ sin0θ cos
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The pose matrix of the end-effector with relation to its base frame is thus obtained as 

given in the equation below: 
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                                                    (3.25) 

    The upper 3x3 matrix represents the rotational matrix while the 3x1 matrix represents 

the position of the end-effector. To help visualize the frame transforms, the end–effector 

matrix is shown below with the D-H Parameters given in Table 3-4. 

Table 3-4 D-H Parameters at a particular position for the ABB IRB 140 ROBOT 

I di i ai i 

1 352 0° 70 -90° 

2 0 40° 360 0° 

3 0 180° 0  90° 

4 380 50° 0  -90° 

5 0 0° 60 90° 

6 65 -90° 0  90° 



























1000

1634.1964109.07719.04850.0

6506.467645.00020.06446.0

0813.354966.06357.05909.0

6
0 A                                      (3.26) 

    The position and orientation of the end effector with respect to its base is well 

translated through the homogenous transformations. The forward kinematic equations are 

used to describe, analytically, all the joint positions and orientations of the manipulator in 

order to obtain a feasible solution within the limits of the manipulator.  
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CHAPTER 4 

4.  METHODS FOR DETERMINATION OF THE FUNCTIONAL WORKSPACE 

 

4.1 Manual approach to project three dimensional functional workspace 

    To create a valid solution space, it is important to understand the joint movements, 

joint dependencies, and orientation of the end effector. Furthermore, it is necessary to 

visually represent the functional work space so that a more analytical and mathematical 

methodology can be established.  

    Workspace5 simulation software was used to explore the functional workspace 

manually. Multiple orientations were investigated for this purpose and the results from 

the tool orientation considered being at 90° facing down and normal to the work piece 

has been shown. To keep the tool at this orientation it was observed that θ5 has to be 

adjusted/ adapted to be normal to the work piece every time there was a rotation in θ2 or 

θ3. A flow chart explaining the initial algorithm used to create a functional work space is 

given below. The notations used in the flowchart (Fig.4-1) are as follows:  

ϕ = Desired orientation angle. 

Δ = Increment/decrement of 10° 

θmax = Maximum rotational limit of the joint  

θmin = Minimum rotational limit of the joint 
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Figure 4-1 Three dimensional functional workspace algorithm 

 

    The increment Δ is considered to be 10°. This is considered to be an optimum value 

because a value lesser than 10° will populate the point cloud without any contribution to 

value or shape of the workspace set. A value higher than 10° will result in a scattered 
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illustration of the functional workspace which will result in an inaccurate shape. The 

orientation angle, ϕ is the required orientation set by the user, considered to be 90° 

vertically downwards in this case. 

    To visually construct the functional workspace, θ1, θ2 and θ3 are moved to their 

maximum limits, i.e. +180, +90 and +50 respectively. θ5 is then visually adjusted to be 

exactly 90° vertically downwards. A Geometric Point (GP) is recorded at this position. 

The value of θ3 is then reduced by a decrement of 10° and θ5 is adjusted again to achieve 

desired orientation, ϕ. The process is repeated till θ3 reaches it minimum limit. Now, the 

joint angle, θ2 is decremented by Δ till its minimum limit and θ3 is moved from its 

maximum limit to minimum limit while θ5 is adjusted to be at ϕ. For an IRB140, 

approximately 300-400 GPs are created between the maximum and minimum limits of θ2.  

This process is repeated for all values of θ1, θ2 and θ3. The joint angles θ4 and θ6 are kept 

constant in this process as they do not contribute to achieve a desired orientation of the 

tool. 

    Each point thus created can be also be evaluated using the forward kinematic equations. 

The kinematic equations can reveal the position of the robot in space which can further 

help with understanding the physical boundaries of the functional workspace, distance of 

a point from the boundary of the functional workspace etc. Fig.4-2 shows a step-by-step 

process of how each point is created in a commercial simulation software package.  
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Step-1: Move theta 2 and theta 3 to 

maximum 

 

Step-2: Visually adjust theta 5 to required  

orientation 

 

Step-3: Move theta 3 through decrement 

while adjusting theta 5 

 

Step-4: Create functional work space for all 

possible values of theta 2 and theta 3 

Figure 4-2 Steps invloved for visually sketching the functional workspace at 90° (normal to 

the base) orientation 

    The visual representation helps in understanding the possible geometry of the 

functional workspace. It provides an appreciation of the size and space of the functional 

workspace with an understanding of how the joint limits of the robot affect the functional 

workspace. Several parameters are used to describe the geometry of the robot. Some of 
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these are; the distance ‗a‘ between two joints i and i+1, the angle ‗θ‘ between the vectors 

i and i+1. All these geometric parameters are bound by constraints.  

    For example, the angle θ must be such that di  coscos    where θd is the orientation 

of the joint. This shows that the functional workspace can possibly be restricted to lie in a 

specific region of space and this region will define all the position/orientation(s) that can 

be reached.  For example, the link length ‗a‘ of joint-2 should always lie between its 

limits 0 ≤ a ≤ 360 and cosθi (90 in this case) should always lie between 110cos90cos 
 
 

to obtain the functional work space. 

    The investigation of the visual plotting of the functional work space can be separated 

into two parts. The one geometrical, the other mechanical (related to joints). The robotic 

functional work space can then be investigated without the causes of motion and can be 

represented with analytical formulae which will define the position of each point on the 

body. This separation from geometry with joint motion and links will enable the problem 

to be broken down into much simpler and basic form where the mechanics and geometry 

can be solved separately. 
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Figure 4-3 3D functional workspace with iteration in θ1 

 

    Creating a complete 3D map of the functional work space is tedious and complex. The 

number of points needed to sketch is many and is time consuming. The visual method is 

not foolproof and it is often difficult to judge if θ5 is at the required orientation. There is 

often a risk of missing a point in the cloud and the high density of points at certain areas 

makes it difficult to understand a new point plot. A figure showing a partial sketch of the 

functional workspace in 3D is shown in Fig.4-3. The visual depiction does help in 

creating a methodology and developing an empirical approach that will help validate an 

analytical and a geometrical solution. 
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4.2 Empirical interpretation to project two dimensional functional workspace 

    Creating a three dimensional workspace is complex and can be confusing when 

considering multiple orientations. The inclusion of different constraints for θ4 and θ6 

increases the complexity even for the 2D (Refer Table-4-2). It can be seen from Fig. 4-3, 

that the slices of functional work space region that are created for every increment of θ1 

are similar  to each other. The shift in the plot depends on the movement of joint-1 across 

the 3D space in this case. Hence, it is viable to create a two dimensional functional 

workspace plot in the X-Y plane and further extend the 2D shape into 3D.  This will not 

only reduce the complexity but will help in standardizing a methodology that can be used 

to create the functional workspace for a family of robots.  

    The cloud of points is considerably reduced and simplified leading to a better 

understanding of the position and orientation of the robot in space through forward 

kinematics. Additionally, the projection of the functional workspace in 2D will not 

undermine the kinematics or the parameters of the robot that are needed to be studied in 

creating a functional workspace. In fact, the 2D geometry will help understand which 

parameters are important to create an accurate representation of the functional workspace 

and which joints and links are to be studied to obtain an accurate shape.  

    Special cases that result in disjoint and irregular shaped 3D workspaces are discussed 

in subsequent chapters. An empirical approach algorithm for manual point generation 

was presented by Djuric, Urbanic; 2009 which has been adapted to suit this research. 

Also, a functional workspace formula to find out a resulting θ5 angle for a set of θ2 and θ3 

values was also presented.  
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Figure 4-4  : Manual point generation algorithm. Reference: Djuric, Urbanic (2009) 

 

    The algorithm considers two different types of output depending on whether θ1 is 

considered to be varying or fixed. A formula to calculate a resultant θ5 value for a value 

of θ2 and θ3 is derived. The visual algorithm wherein θ5 is adjusted to be at a particular 

orientation, compliments the formula. The terms in the formula are as explained below: 
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Where, 

K= cosα2 

α = Twist angle  

ϕ = Desired orientation angle.  

    The above algorithm has been further simplified and adapted for this research. This 

modified algorithm is given in Fig. 4-6. θ1, θ4 and θ6 are kept constant and these joint 

angles do not affect the functional workspace. These angles do not contribute to the 

construction of functional workspace. θm in the algorithm (Fig.4-6), is the rotation angle 

for a particular increment. A comparison of the functional workspace created by this 

algorithm and a two joint (θ2 and θ3) work envelope is given in Fig. 4-5. 

 

Figure 4-5 : Comparison of functional workspace for 90° orientation with two joint work 

envelope 

    In Fig.4-5 the black net represents the work envelope while the green points represent 

the functional workspace. The functional workspace exceeds the work envelope in the 
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lower right region since the whole kinematic structure is assessed for the functional 

workspace while only two joints – 2 and 3 are considered while creating work envelope.  

 

Figure 4-6 : Modified point generation algorithm 

    This empirical investigation provides a complete idea of the geometry and makes it 

easier to extract a particular point and assess the orientation and position of the robot 

using forward kinematics. Furthermore, the empirical investigation reaffirms the findings 
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of the manual method and helps achieve a methodology and a formula to solve the 

functional workspace problem. The empirical formula is well suited to capture the 

complexity and contextual data. It is verified that θ2, θ3 and θ5 are responsible in 

projecting the functional workspace while θ1, θ4 and θ6 can be kept constant. Based on the 

parameters that affect the functional workspace the geometrical and mechanical aspects 

of the problem can now be well demarcated.   

     The algorithm is applied to another robot, Nachi SC80LF. The D-H parameters of the 

80LF are given below.  

Table 4-1 D-H Parameters Nachi SC80LF 

 

i 

di 

(mm) 

 

i°
 

ai 

(mm) 

 

i°
 

1 1070 180° -340 -90° 

2 0 180° 910 0° 

3 0 90° 200 90° 

4 1860 0° 0  -90° 

5 0 0° 0 90° 

6 215 -90° 0  90° 

 

    The same exact algorithm is found to be inapplicable to the Nachi SC80LF. θ2, θ3 and 

θ5 need to be pushed to minimum and then incremented by Δ to sketch the functional 

workspace. The formula to know the θ5 angle is also to be changed to suit the Nachi. The 

formula is adapted as below:  
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)( 325  kk                                                  (4.2)                                

Where, 

K= -cosα2 

α = Twist angle  

ϕ = Desired orientation angle. 

    The difference is in the constant, K, which is now equal to - cosα2. Also, )( 32  k in 

the formula is changed to )( 32  k . The shape of the functional workspace thus 

generated is given in Fig. 4-7.  

    The empirical investigation although helps with create a methodology for the IRB 140, 

the same exact methodology is inapplicable to a robot with similar configuration. The 

realisation of important parameters through the empirical method also requires that more 

information be provided with respect the necessary parameters, to enable solving for 

different configurations and also orientations. To adapt and enable inclusion of a new 

configuration requires going back to the visual approach again to modify the empirical 

solution.  

     A more inclusive and generalised approach that can include a family of robots, i.e. 

said to be similar through their kinematic structure will enable a better solution. Although 

it will require little modification, it will be less complex and will take shorter time to 

develop. Additionally, the solution needs to be simpler and rudimentary to be applied and 

understood while retaining the limitation inferred by the structural kinematics of the 

robot. The next section deals with adopting a more analytical approach that considers the 

Equation 4.1.  
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Figure 4-7 Functional workspace of 90° orientation for Nachi SC80LF 
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4.3 Analytical approach to project two dimensional functional workspace 

    The analytical approach is adopted to reduce the system to the elements necessary to 

plot the functional work space curve and study the type of interactions that exist between 

these elements. Each variable, such as joint angles are modified one at a time and the 

results are inferred. The analytical approach allows for the isolation of each joint angle. 

MATLAB, a math based programming environment is used to visualize and simulate the 

analytical approach. The results obtained are compared to the empirical and geometrical 

approaches.  

    The empirical investigation needs much information to be able to arrive at a solution 

and also needs visualisation of what the user is doing at every step. The aim of the 

analytical approach is to arrive at a visual shape of the functional workspace just from the 

D-H parameters and the joint limits, which lends itself to automation for various robot 

configurations, reconfigurations and other related scenario analyses. 

    Programming a solution also eliminates the need for having to calculate the forward 

kinematic equations for each point and orientation. Using the D-H parameters and the 

forward kinematic equations (Eq. 3.18- Eq.3.25) the position vectors of the X and Z 

coordinate for the end-effector of the IRB 140 is extracted for every point between the 

limits and sketched on a 2D graph. The code in MATLAB with D-H parameters and joint 

limits of IRB 140 is given in Appendix B.  A flowchart describing the logic is presented 

in Fig. 4-8.  
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Figure 4-8 Logic used to program analytical approach for functional workspace in 

MATLAB 
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    The D-H parameters for the IRB 140 are first declared, followed by the minimum and 

maximum limits for the joints 2, 3 and 5. The homogenous matrices are then computed 

for all the points within the maximum and minimum limits of the joints. The condition 

for orientation of θ5 is then applied to all the feasible points using the formula in Eq. 4.1.  

For all the possible values between the limits of θ2 and θ3 at every increment of Δ = 10°, 

θ5 is calculated between its own limits. From all such points, the position vectors for X 

and Z are extracted and plotted on an X-Y plane. The algorithm in Fig. 4-6 is replicated 

in the program. The result of the program is given below:  

 

Figure 4-9 Analytical MATLAB functional workspace result for the 6R robot with the end 

effector at 90° (normal to the base). Note the robot origin is at 0,0 for this plot 

    The plot seen above is of all the points that passed the θ5 condition and are within the 

limits. The robot base is positioned at (0, 0) on the grid. Each point in the graph 

represents the X and Z position of the end –effector. The plot represents all the points in 
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the X-Z plane that the robot can reach at 90° orientation. It has to be noted that, θ6 is held 

constant and is actually an offset and the points generated are based on the θ2, θ3 and θ5 

values. It can be seen from the figure that several, ‗C‘ shaped arcs are generated 

throughout. This is due to θ3 being varied through it limits for every value of θ2. It is 

observed that the points are generated, one after the other in the same manner as in the 

empirical approach when the robot is moved through each joint limit.  

    The graph is extended to -400 on the Y plane due to θ2 and θ3 minimum limits of -90 

and -230 respectively. In the empirical methodology, the inner and outer boundaries are 

generated when θ2, θ3 or θ5 is at its maximum limits and does not consider the effects of 

θ4 and θ6. The inner boundary is solely generated when θ3 is at its maximum. A 

comparative figure with the results obtained in the empirical investigation and the 

analytical approach is detailed below. It is evident that, the analytical functional 

workspace (Fig. 4-10) curve is larger than the one obtained through the empirical 

investigation.  

    While constructing the functional workspace curve using the empirical method, θ1, θ4 

and θ6 are constrained and are always kept constant. θ2, θ3 and θ5 are moved 

independently without changing θ1, θ4 and θ6 values. This captures the majority of the 

points that are reachable at a said orientation with the empirical method but does not 

present the points that are reachable with a particular orientation when θ1, θ4 and θ6 are 

varied. However, no change is observed in θ1 since the curve generated is 2D and as 

mentioned rotation about θ1 will help generate a three dimensional curve and is not a part 

of this research. 
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    These constraints are not applied in the analytical approach; the forward kinematic 

equations that are computed include variations in θ1, θ4 and θ6. X and Z positions for the 

tool when there is a change in θ1, θ4 and θ6 are also included. Fig. 4-11 shows the position 

of the robot when θ1, θ4 and θ6 are varied in the empirical method to reach a point in curve 

obtained from the analytical approach. 

 

Figure 4-10 Comparison of functional workspace between empirical investigation and 

analytical approach    
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Figure 4-11 θ1, θ4 and θ6 angles in the empirical method are varied to reach a point outside 

of the functional workspace curve 

    Due to constrained joint angles, the curve generated by empirical method looks to be a 

subset of the functional work space curve that is generated analytically as the analytical 

method captures the variation in θ4 and θ6 values as well. Fig. 4-12 shows the boundary 

of the curve generated by the empirical method within the analytical approach functional 

work space curve. 
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Figure 4-12  Functional workspace points generated by empirical method with constrained 

θ4 and θ6  overlaid on analytical approach functional workspace curve  

    The curve terminates at the same points on the right side of the curve. This is obvious 

since the robot reaches its geometric limits at that point and cannot travel beyond that 

point. The points that are present beyond the empirical method functional workspace 

curve are reachable when θ4 and θ6 are varied. The position of the robot and the theta 

angles for a set of random points in and out of the functional workspace is given in Table 

4-2 below. 
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Table 4-2  Robot position for a set of X-Z points in and out of the functional work space  

generated by empirical method 

Position 
Joint 

angles (θ°i) 

X-Z position on 

analytical approach 

curve 

Robot position for the X- 

Z position X Z 

636.8 202.9 

θ1= 0° 

  

θ2= 60° 

θ3= 0° 

θ4= 0° 

θ5= 30° 

θ6= 0° 

-307.5 -2.531 

θ1= 0° 

  

θ2= -78.8° 

θ3= -181.1° 

θ4= 180° 

θ5= 10.0° 

θ6= -180° 

725.7 518.5 

θ1= 0° 

  

θ2= 50° 

θ3= -50° 

θ4= 0° 

θ5= 90° 

θ6=0° 
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-59.23 729.8 

θ1= 0° 

  

θ2= -37.1° 

θ3= -192.9° 

θ4= 180° 

θ5= 114.2° 

θ6=180° 

   

     From the values of joint angles (θ°i) it is clear that the points that are inside the 

functional workspace curve generated by the empirical method when θ4 and θ6 are zero. 

The points are outside the functional workspace curve generated by the empirical method 

when θ4 and θ6 values are varied.  

 

4.3.1 Error analysis of empirical and analytical functional workspace curves  

   The error between the functional workspace curves generated by empirical method and 

analytical approach is found to be minimal. It is to be noted that the accuracy of points 

plotted through analytical approach can be increased by decreasing the increment, Δ. This 

will result in a curve that is consists of more points thus resulting in a more accurate 

representation. Fig. 4-13 shows the analytical functional workspace plot with Δ = 5° i.e 

θ2 and θ3 are incremented by 5° between their limits instead of the previous increment of 

10°. The analytical plot is overlaid by the boundary X and Z positions (represented by ‗+‘ 

on the plot) obtained through the empirical method.  
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Figure 4-13 Overlaid empirical functional workspace boundary points on analytical result 

showing minimal error between methods with Δ = 5° 

    It can be seen that the majority of the ‗+‘ points close or above the dots ‗.‘. This shows 

minimal distance between the points that are obtained. The user can further increase the 

accuracy of the analytical plot by decreasing the Δ. A thicker cloud of points can be 

obtained, which would reduce the error to 10
-2to-3

 decimal places. 

    However, to quantify the error for a sample of 25 points, the distance formula is used 

and the distance between X and Z positions of the points are obtained for the analytical 

and the empirical functional workspace curves that are generated with a Δ of 10°. The 

sample points used are the boundary points of the empirical method shown by ‗+‘ in 

Fig.4-13. The distance formula is used in analytical geometry to describe how far two 

points are from each other. In this case, the distance formula is employed to find the 

distance between the boundary point obtained through the empirical method and the 
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closest point to that boundary point in the analytical approach. The distance formula is 

given by:  

                                           2
21

2
21 )()( yyxxd                                               (4.3) 

Where,  

d = distance between two points 

x1, y1=  x,z coordinates for one point (Empirical method) 

x2, y2=  x,z coordinates for one point (Analytical approach) 

Table 4-3 shows the average error computed for a sample of 25 points. It can be seen 

that, at a Δ of 10° the error is approximately 6mm. This error is representative and not 

comprehensive. As stated, this can error can be further reduced by decreasing Δ.  

Table 4-3 Distance between X-Z positions in functional workspace curves obtained thourgh 

empirical and analytical methods 

 
Empirical method 

Analytical 

approach 
Distance 

between two 

points (mm) S.No x1 z1 x2 z2 

1 44.559 539.513 42.5 538.4 2.3406 

2 60.8 600.127 68.54 598 8.0269 

3 167.686 752.776 162.7 748.3 6.7004 

4 219.09 788.769 221 791.2 3.0916 

5 336.576 831.531 343.3 832.2 6.7572 

6 461.603 831.531 459.1 832 2.5466 

7 579.09 788.769 575.7 792.5 5.0411 

8 674.866 708.404 681.2 709.8 6.4860 

9 738.852 596.968 746.4 602.8 9.5386 

10 765.373 540.095 768.6 533.7 7.1631 

11 798.758 415 802.4 418.9 5.3361 

12 810 287 803.9 290 6.7978 

13 798.758 158.5 793.6 160.3 5.4631 

14 765.373 33.905 763.6 27.24 6.8968 

15 652.549 -127.224 655.3 -122.2 5.7279 
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16 474.276 -210.354 475.1 -206 4.4313 

17 278.322 -193.21 278.8 -191.1 2.1635 

18 117.192 -80.387 121.7 -76.26 6.1118 

19 51.206 33.905 49.55 37.61 4.0582 

20 180.271 58.416 183.4 54.23 5.2262 

21 279.79 144.177 283.3 146 3.9552 

22 322.513 312.441 325 321.1 9.0091 

23 275.962 435.289 269.4 440.5 8.3794 

24 212.823 496.79 219 493 7.2470 

25 132.458 532.986 132.4 544.4 11.4141 

    
AVERAGE = 5.9964 

 

    The error between the functional workspace curve obtained analytically and the one 

developed through empirical method is minimal. The depiction of points is close and the 

empirical results match with the functional workspace obtained analytically. This 

validates the joint dependencies and the effect of the joint angles on the functional 

workspace. The confirmation of the same results obtained through analytical approach 

and the empirical method eliminates the need to have a visual simulator to sketch the 

functional workspace curve.  Furthermore, the analytical approach can be used to include 

more kinematic structures involving translational joints and wrist manipulators.  

4.3.2 Functional workspace behaviour 

    θ5, θ2 and θ3 are at their maximum joint limits for a fixed θ1, θ4 and θ6 (Fig. 4-10) it can 

be seen that the three angles reach their maximum limits at three different places in the 

functional workspace. As seen in Section-4.2 the solution algorithm will further needed 

to be adapted to fit another robot.  
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Figure 4-14 Maximum limits in functional workspace of ABB IRB 140 through empirical 

approach 

 

    Industrial robots are often operated with linked ‗elbow‘ and ‗shoulder‘ joints for 

applications such as pick and place, palletizing, material handling and packaging. In the 

case of the ABB IRB 140 joint 2 and 3 are linked. Linking the ‗elbow‘ and ‗shoulder‘ 

joints of the robot is not used by default at the design phase of the robot and in case of 

simulation. The ‗joint frame‘ is used to design and study the properties of the robot. In 

joint frame each joint can move individually, independent of the preceding link and joint.  

    Most often, while using the Teach Pendant to jog the robot to a required point in space 

‗joint frame‘ is used.  Once, the point is recorded the robot can be jogged to the point in 

various modes such as ‗tool frame‘, ‗world frame‘ or ‗user frame‘. In these frames, the 

robot moves as a linked joint. Studying the linked aspect of the robot is beneficial since it 

gives a projection of the work envelope in two dimensional space when θ1 is kept 



 

 

 

 

58 

 

 

 

constant and provides a slice of work. An analytical program is created to depict this 

linked work envelope with an overlay of the functional workspace. A 2-3 joint envelope 

was depicted by Djuric, ElMaraghy, 2008 and the idea has been extended to the IRB 140 

and programmed in this research.  

    The blue points (‗.‘s) represent the work envelope points generated when the joints 2 

and 3 are linked. The ‗X‘s are the functional workspace projection points. It is observed 

that, the work envelope and the functional workspace are relatively placed the same way 

as seen in the empirical approach. The functional workspace points extend beyond the 

work envelope in 2D since the whole kinematic structure is assessed. This does not 

however, signify that the functional workspace points are outside of the work envelope. 

The functional workspace points are inside the 3D work envelope of the manipulator. The 

density of points is high near the origin as observed previously. The work envelope 

obtained is also identical to the manufacturer defined work envelope given in Fig. 3-3.  

The comparison below shows the 90° orientation functional workspace with respect to 

the linked work envelope.  
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Figure 4-15 Comparison of shoulder and linked (constrained) joint space to the analytical 

functional workspace 

 

    The code used to obtain the linked work envelope is given in Appendix B. The D-H 

parameters are declared for the IRB 140. The increment Δ = 10° as with the functional 

workspace. θ2 and θ3 are varied between their limits. If the sum of θ2 and θ3 is between 

the least possible value and the maximum possible value of θ2 and θ3, then the 

homogenous transformations to obtain the end-effector value are calculated after the new 

θ2 and θ3 values calculated. For each end-effector value obtained the X and Z position 

vectors are plotted in an X-Z plane.  

    The analytical solutions provided help to create a visual representation using just D-H 

parameters and joint limits. Plotting the solutions in an X- Z plane gives a clear 

representation of a particular point in space. This representation also makes it easier to 
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understand the movement of the robot through the plotting pattern. All the constraints and 

conditions are mathematically represented, leaving room for manipulation if need arises. 

Automating the solution also eliminates the need to calculate the end-effector position for 

every increment of joints-2, 3and 5.   

    The constraints and conditions for the analytical approach need to be changed for a 

different robot and this will need referring to the empirical approach to change the 

formula for the functional workspace. The purpose of obtaining a solution from a 

minimum set of parameters is hence defeated.   

    A much simpler solution that can be deduced from the kinematic structure will 

eliminate the need to cross-reference empirical or visual approaches. The functional 

workspace needs to be looked at from a geometric standpoint that considers the kinematic 

structure of the robot. The information obtained through analytical and the empirical 

approach can then be merged into the geometrical solution so as to retain the limitations 

of the robot.  

4.4 Geometrical approach to project two dimensional functional workspace2 

    To obtain a geometrical solution, the robot‘s kinematic structure needs to be assessed. 

The reduction of the IRB 140 kinematic structure into only the required joints and links 

has been detailed in Section- 3.1 and Fig. 3.1. Through the geometry it can be observed 

that θ2, θ3 and θ5 are the rotation angles that are analysed, which is also echoed through 

                                                           

 

 

 

 

 
2 Section 4.4  incorporates the outcome of a joint research undertaken in collaboration with        

Jill Urbanic, University of Windsor, Windsor, ON, Canada.   
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the visual, empirical and analytical approaches. A similar analysis can alternately be 

performed by varying θ4and θ6.  

    The primary outer boundary of the functional workspace can be obtained by rotating a2 

and d4 with its centre on the joint 2 rotary axis. It can thus be defined as:  

                                                    42 daOBr                                                               (4.3)                 

   

Figure 4-16 Outer boundary curve for 90 orientation Reference: Urbanic, J., Gudla, A 

(2012) 

     

    The boundary of the functional workspace can be trimmed using the joint limits of θ2. 

The smaller right and the left circles ORC and OLC have their centres located at a2 when 

rotated. ORC is positioned at the θ2max and OLC  is located at θ2min. The radius for both 

these circles is d4. At the points of intersection of these three circles, the curve is trimmed 

to obtain one continuous boundary curve. It can be seen from Fig. 4-10 that the inner 

boundary curve is generated when θ3 is maximum. Geometrically, the inner circle radius 
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can be determined using the Cosine Law, as the two sides (a2 and d4) and θ3max are 

known. The inner boundary curve thus obtained is given in Fig.-4-13. 

                       ])90,90cos(min[2 min3max342
2
4

2
2

2   dadaIBr                (4.4) 

 

Figure 4-17 Inner boundary curve derived from θ3 limits Reference: Urbanic, J., Gudla, A 

(2012) 
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A process flow to geometrically obtain the functional workspace is given in Fig. 4-14.

Create Outer Boundary curve from Link 3 & Link 

4 (a2, d4)

Create Right Outer Boundary curve 

Create Left Outer Boundary curve 

Create Inner Boundary curve  from Joint 3 

limits, Link 3 & Link 4 using the Cosine Law

Determine intersection points and trim the 

boundaries

Select an end effector orientation

Set  2   0 (vertical) and calculate joint angle 

3
*  for 5  max. 

Top Orientation Outer Boundary center point: 

x = cos(3
*)*d4             y = sin(3

*)*d4 – a2

Radius a2

Trim boundaries to bound feasible regions

Determine intersection 

points and trim the 

boundaries

Offset boundary by Link 6 + tool 

length in tool orientation

Trim to Link 1 axis

Boundary crosses 

Link 1 axis

New tool & 

orientation

Done

No

No

Yes

Yes

Perform Boolean 

intersection to generate 

final boundary curve

If disjoint condition - Set  2  co-linear to 3
*: 

create arc Radius a2 @ junction a2 a- d4 (3 ) 

Reference: 2  

rotary axis center 

Rotate 3
*  180  for -3

* and 5  min. 

Bottom Orientation Outer Boundary center point: 
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Figure 4-18 Flowchart to obtain the functional workspace for a given orientation Reference: 

Urbanic, J., Gudla, A (2012) 
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    MATLAB is used to simulate this geometrical solution. As mentioned before, the 

manipulator still needs to obey the constraints and the limits. This is well imitated in the 

MATLAB simulation by imbibing the forward kinematic equations and extracting the 

position vectors for an increment between the joint limits. The code for the simulation is 

given below. For visual ease and understandable representation the length of the links is 

taken to be 1000. The code for the geometrical approach programming is given in 

Appendix B. 

    In the program the θ2 and θ3 are varied between their limits while θ5 is fixed at 90°. 

The position vectors for these varying angles are then extracted and are plotted in the X-

Y plane. The result of this program is given in Fig. 4-15. 

 

Figure 4-19 Functional workspace for 90° orientation using geometrical approach 
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    The obtained result is a projection of the functional workspace region of the reduced 

kinematic structure. The plot of points represents all the reachable points by the 

manipulator at the 90° orientation. This representation of the boundary can impact the 

design and placement of a robotic manipulator in an environment. The functional 

workspace curve can be thus generated for different orientation angles. A common 

functional workspace region can be derived when the curve intersection points of two 

different orientations are overlaid. A Boolean intersection is then performed to determine 

the contour of the curve. In the Fig. 4-16, two orientations ϕ = -90° and ϕ = -45° are 

overlaid and the curves are shifted due to the end effector length and co-linear tool offsets 

along the end effector vector. Fig.4-16 shows a unique offset length for each orientation 

to illustrate this. If the curves intersect the vertical axis, θ3, they are trimmed to this line.  

 

 

Figure 4-20 Trimming the functional workspace for common orientations Reference: 

Urbanic, J., Gudla, A (2012) 
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    Automating this process would reduce the time and provide a solution to the reach 

problem. Fig-4-17 shows the overlay of ϕ = 90° and ϕ = 45°. The ‗.‘s are for the 45° end 

effector orientation and the ‗X‘s are for 90° orientation. The common region of these 

points is very clearly visible, hence making it very easy to interpret the functional 

workspace region. 

 

 

Figure 4-21  Functional workspace comparison of ϕ= 45° (red ‘.’s) and ϕ=90°(‘X’s) 

 

    The next comparison that can be made is to keep θ2 at its maximum and vary θ3 for a 

fixed orientation of θ5. A much defined and a crisp functional workspace can be obtained. 
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A simple modification in the code will enable us to this result which is shown in Fig. 4-

22. 

 

Figure 4-22 Functional workspace at θ2 maximum ϕ= 45° (red) and ϕ=90°(blue) 

 

    It is geometrically understandable due to the θ5 orientation that the functional 

workspace for ϕ = 45° (red) is larger than ϕ = 90°. This solution to obtain the functional 

workspace is simple and easy to arrive at. A good understanding of the kinematic 

structure and joint limits will enable to represent a filtered kinematic structure that can be 

used to project the functional work region for a set of desired orientations.  

    The solution is rapid and does not need any physical trial and error or complicated 

simulations. The solution presented here will work for any configuration that is similar. 

This solution is foundational to build upon different configurations and families of serial 
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manipulators. As mentioned before, the aim is to be able to come up with a simple 

solution that can aid in designing and not to optimise a reach issue.  

    The geometric solution simplifies the problem by taking into consideration the most 

necessary joints to construct the functional workspace. The kinematic structure is reduced 

into a four bar linkage indicating the valid functional space for a particular orientation. 

This does not imply breaking up the kinematic chain. It has been detailed in the sections 

above that the joint 2, 3 and 5 are the only joints that contribute to the 2D functional 

workspace shown in this research for a constant θ4 and θ6. Adding a different tool or a 

length to joint-6 will introduce an offset that can be incorporated in the valid space 

(Fig.4-20). Hence, the limitations and constraints of the robot are captured. This method 

is derived from and builds upon the kinematic analysis of the 6R manipulator. 

4.4.2 Comparison of the analytical and geometric functional workspace 

    Analytically, to arrive at a solution the effect of θ4 and θ6 has to be considered since, 

the problem is computed on the basis of D-H parameters and homogenous matrices from 

the base to the end-effector. θ4 and θ6 are unconstrained resulting in a larger functional 

workspace region for the manipulator.  These pose matrices increase the computational 

complexity that can be avoided by adopting the geometrical solution. The figure below 

highlights the results of the analytical and the geometrical approach.  
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Figure 4-23 Analytically unconstrained functional workspace in comparison with the 

geometrical functional workspace solution  

    The solution obtained in the geometrical solution is representative of the most valid 

functional workspace at a particular orientation. In the analytical solution, although the 

D-H parameters of θ4 and θ6 are considered the joint limits of these two joints are not 

taken into account. This results in a much larger functional workspace region. All the 

points in this solution while are reachable by the robot, the most valid functional 

workspace region is not highlighted. On the other hand, locking the joints-4 and 6 and 

considering only the joints that contribute to the 2D workspace details the ease of 

representing the functional workspace region in the geometrical solution. Also, the 

position matrices of joints 2, 3 and 5 are only considered resulting in a valid 

representation of the functional workspace. 
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4.4.2 Functional workspace in a robotic workcell 

    Consider a robotic work cell with three serial manipulators arranged parallel next to 

one another. There are several factors the need to be considered while designing such a 

work cell such as repeatability, accuracy, link length, range and payload capabilities. One 

of the most important parameters that need to be judged carefully is the functional 

workspace of the manipulators if they two are working together. Being able to design a 

non-interfering and well synced robotic work cell that can work in tandem can increase 

productivity. 

    The 2D functional workspace zones can be rotated around θ1 to create a 3D 

representation. This will enable the user/designer to visualise the common work regions. 

A Boolean intersection will reveal the common regions where multiple kinematic chains 

can come in contact for the end effector orientations used in the 2D analysis (ϕ = -45° 

and ϕ = -90°).  Fig.4-23 shows the overlap regions for this case when θ1 is rotated. This 

effectively shows the use of having a design tool that can find the functional work region 

of a manipulator in a work cell. As stated earlier, the developed design tool is not meant 

to optimise a reach issue but to indicate the valid functional space for multiple tool 

orientations. 
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Figure 4-24 Overlap regions for robotic manipulators in a work cell Reference: Urbanic, J., 

Gudla, A (2012) 

4.4.2 Errors in the geometrical projection methodology for the functional workspace 

    This research is foundational and a pre-cursor to the development of a 3D solution. In 

future, several additional parameters such as velocity of joints, manipulator 

configurations, acceleration, tools with offset, speed and acceleration, inverse kinematics, 

singularities etc. need to be considered. The error in the depiction of the functional 

workspace will be affected by some or all of these parameters. However, a short 

description how error in the curve of the functional workspace can be found is presented.   

    The points on the boundary of the functional workspace physically represent robot 

path. In this case the robot path is represented as a set of one closed polyline. The 

polyline is made up of many lines. In reality these lines can be lines or splines, arcs.  
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Figure 4-25 Error between two points on functional workspace 

Fig. 4-24 shows a replicated shape of a functional workspace. On magnification of the 

curve, it can be seen that it is made up of many lines. In reality, the distance between any 

two points, ‗x’ can be a line, arc or spline. The error in the shape of the real and projected 

functional workspace will be the difference between the approximated line and the real 

line or arc or spline. 

    It is also difficult to get an accurate functional workspace curve since the analytical 

and geometrical points provide the whole functional workspace rather than just the 

boundaries. That is to say, that the distribution of the points on the boundary is sparse.  

However, the increment, Δ between the joint variations can be further decreased to 

resulting in a much thicker curve. The boundary points thus obtained can then be 
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connected to generate a closed polyline. Since, the points will be much closer, the 

approximation between these points by a line, arc or spline will result in a smaller error 

and a more accurate functional workspace curve. The figure below shows the error 

between the empirical and the analytical functional workspace for different Δ‘s.  

 

Figure 4-26 Reduction in error between the empirical and analytical functional workspace 

curves due to change in Δ 

   The ‗.‘s represent the analytical X-Z points and the ‗+‘s represent the empirical 

boundary points. It can be seen that the error between the empirical and the analytical 

points is visible at Δ=10°. This error is further reduced as the increment; Δ is reduced to 

5°. The error is not visible to the naked eye when the Δ is further reduced to 1°. Hence, 

the increment can be changed depending on the level of accuracy needed between the two 

curves. However, as the Δ is reduced, the time to plot the points is increased. 
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5. CASE STUDY 

The case study focuses on an application for a local manufacturing company, which 

performs non-destructive testing and residual measurements. The company also develops 

high speed X-Ray diffraction equipment that is used for residual stress measurements. 

The X-Ray tubes are mounted on a goniometer that is used for measuring angles between 

crystal faces.  

    The measuring system consists of two rotary and three translational axes. One 

rotational axis is used for positioning along with the translational axes and the other 

rotary axis is used measurement. A ±30° sweep is made from the surface normal. Data 

from this sweep is collected and the process is repeated for reliable results. The company 

is not only in need of an alternative system for an effective automated multi-measurement 

system but also requires a design tool that can facilitate measurements of curvilinear 

surfaces.  

    The company deals with complex geometrical surfaces such as those in turbine blades. 

The X-Ray goniometer needs to be at a normal to the surface orientation to achieve the 

required results (Fig-5-1). It is important to find a robotic manipulator that has high 

flexibility of θ2 and θ3 so as to reach curved and complex shaped work piece(s). The 

company can use the functional workspace solution to find an optimal solution for this 

problem. Fig. 5-2 highlights different lengths and orientations of links 2, 3 and 5. 

Accuracy for this application is ideal and having a constant θ4 and θ6 will provide a 

constrained functional workspace region. The link lengths are considered to be 1000 mm 

for easy representation and understanding in all cases. 
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Figure 5-1 Goniometer attempting to measure a curvilinear surrface at a normal 

oreintation 

  

  
 

Figure 5-2 Different set of joint limits and link lengths of 1000 mm 

θ5 = 90° 

θ2 limits: 

-90 to 110 

θ3 limits: 

-230 to 50 
 

a 

θ5 = 45° 

θ2 limits: 

-50 to 120 

θ3 limits: 

-130 to 150 
 

b 

θ5 = 60° 

θ2 limits: 

-100 to 70 

θ3 limits: 

-200 to 30 
 

c 

θ5 = 135° 

θ2 limits: 

-70 to 150 

θ3 limits: 

-120 to 120 
 

d 
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    The best joint limits and link lengths can now be selected based on the application. 

This information is available from any robotic manufacturer. There still will be the need 

to carry out tests pertaining to accuracy and repeatability but different trials to emulate 

reachability by simulation or visual inspection is eliminated. Even after selecting the 

most viable manipulator option, the company can use the functional workspace solution 

to setup different work pieces with complicated shapes and determine the best orientation 

and joint angles to reach a point on the work piece.  

    Furthermore, the solution can be used to overlay different orientations with respect to 

the end-effector for various tool designs. This will enable the designer to find out the 

most common or largest functional work space region. The work piece can then be placed 

appropriately near this region to ensure minimal or no reach issues. It is to be noted that a 

solution space is developed and further optimisation of the work piece placement is not a 

part of this research and the issue should be analysed separately in its entirety. Fig. 5-3 

shows the overlay of three orientations, 90° (‗.‘), 120° (‗X‘) and 60° (‗+‘). Placing the 

work piece in the recommended zone with the common functional workspace region 

(where all the three colors are present) will ensure maximum reach of the end-effector at 

these orientations. The error calculation and accuracy of the common region is not being 

studied. 



 

 

 

 

77 

 

 

 

 

Figure 5-3 Overlay of reachable points for three orientations- 120°(‘X’s), 90°(‘.’s) 

and 60°(‘+’s) 

 

      This enables more tests and experiments to be conducted in a simulated environment 

which should lead to increase in productivity and also eliminate the error in visual 

judgement.  
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6. SUMMARY AND CONCLUSIONS 

 

    The work envelope of a serial 6 DOF robot does not convey information regarding the 

feasibility of a tool reaching at a desired orientation. The functional workspace plays an 

important role in the decision making of designing a robotic manipulator for a particular 

application and also work cell. An assessment methodology to capture the effect of 

orientation can enable downstream optimization for path planning and robot structures. 

This can further help process planners help select configuration/reconfiguration solution 

alternatives based on the task at hand. The functional workspace will vary based on 

kinematic structure, end-effector, tool characteristics, tool orientation and joint limits. A 

summary with the advantages and disadvantages of the manual, empirical and analytical 

methods used in this research to determine the functional workspace is presented below.  

Table 6-1 Summary of advantages and disadvantages of using manual, empirical and 

analytical method to sketch functional workspace  

Method/ Approach Advantages Disadvantages 

Manual Point 

generation Method 

 Size and shape of the 

functional workspace is 

demonstrated. 

 Parameters affecting the 

functional workspace are 

known. For e.g.:  joint 

angles, orientation angles 

etc. 

 The functional workspace 

problem can be separated 

into – 

 Geometrical (causes 

of motion are not 

 The manual approach is 

tedious and complex. 

 A number of points are 

required to obtain 

complete functional 

workspace. 

 Manual point generation 

lends itself to error. 
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studied) 

 Mechanical (related 

to joints). 

Empirical method  The empirical method is 

methodology based 

 The cloud of points 

required to construct 

functional workspace curve 

is reduced. 

 The joint dependencies are 

highlighted through the 

formula to obtain a 90° 

orientation, normal to the 

base. 

 

 This method requires 

referring to visual 

approach to plot the 

functional workspace for 

a new robotic structure. 

 The formula depicted 

needs to be adapted for a 

new manipulator. 

 θ4 and θ6 are constrained 

and the effect of these 

joint angles is not 

evident. It has to be 

repeated for another set 

of joint values, which is 

time consuming and 

repetitive. 

Analytical approach  Only D-H parameters and 

joint limits are needed to 

create the functional 

workspace curve. 

 The representation is clear 

on a 2D grid with X-Z 

positions of the end-

effector. 

 The solution is 

programmed in a software 

package, making it easy to 

modify variables and assess 

results. 

 

 The solution provided is 

only for the 6R 

manipulator involved in 

this research.  

 

Geometrical Solution  The solution is easy to 

reproduce in a commercial 

simulation software 

package. 

 Different tool offsets and 

 The effect of θ4 and θ6 is 

constrained in this case 

showing limited 

functional workspace. 

 The solution is in 2D. 
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orientations can be 

programmed with minor 

modifications. 

 The solution is feasible for 

manipulators with similar 

kinematic structure. 

 The functional workspace 

for multiple tool 

orientations can be found. 

 Alternate scenarios have 

to be explored to obtain a 

complete representation.  

 

   A 3D functional workspace of a 6R manipulator can be obtained by revolving a 2D 

functional workspace curve along the joint-1, Z axis as shown in the manual point 

generation approach. The reduction of the problem to 2D helps in concentrating on the 

necessary joints and links required to obtain the functional workspace for a given 

application. 

The analytical solution presented is comprehensive. The effect of joints 4 and 6 are well 

captured by forward kinematic equations. The solution however, incorporates points that 

although are reachable, but should be avoided due to hard to reach positions of the 

manipulator and possible interference with the work piece or surroundings or additional 

rotary motions that may not be desired. It may be desirable to obtain a smaller and more 

representative valid functional workspace as you cannot predict the effect of θ4 and θ6. 

    The kinematic structure when studied in 2D enables visualisation of the required links 

to construct the functional workspace. Reduction of the problem to the first principles 

facilitates a geometric solution that can be used to represent the functional workspace for 

multiple orientations. This method is simple, easy to interpret, and can be readily 

implemented within a commercial software package unlike the analytical approach, 
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where, it is important to develop a visual and an empirical understanding first. The 

common region for multiple orientations has also been visualised using both the 

analytical and geometric solutions. This is a narrow region which would facilitate the 

reach of all the orientations. The region does not lend itself to any predictable geometric 

shape and is complicated. However, it is the optimal region for the placement of the work 

piece allowing the robot to reach at multiple orientations. For a complete representation 

the effect of θ4 and θ6 should be included.  

    The error between the points obtained from the empirical, geometrical and analytical 

approach is explored. The magnitude of the error varies between 2-8 mm for an 

increment, Δ of 10° which is minimal, validating the approach taken in this research. 

    A brief discussion on the impact of functional workspace in a work cell and the error in 

functional workspace curve has also been presented. The valid solution space for a 

particular orientation set will enable down-stream optimization for path planning, robot 

structures and tool orientations. Applications that require the tool to be at a certain 

orientation will benefit by being able to understand the functional work space limitations 

of the machine so as to plan and execute operations better, potentially saving both time 

and money. In conclusion, this solution should be implemented as a part of a 

design/analysis environment to evaluate initial configurations and reconfiguration 

options.  

 

7.  

8.  

9.  
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10. FUTURE WORK 

 

    The research presented here is not mature. The geometrical solution should be 

extended to include joint-1 providing a 3D solution. The areas of transitional functional 

workspace between different sets of orientations of a manipulator, that will help 

designers visualise the regions of common valid space for multiple orientations needs to 

be explored. The regions of high and low density of points in the functional workspace 

should be further examined. The effect of singularities in the robot will reveal zones of 

redundancies and methods to avoid these zones should be further developed.  

    Most 6 DOF industrial robots have last three joints intersecting at a point allowing the 

Jacobian (6X6) matrix to be decoupled into two determinants of (3X3). This can facilitate 

in generating a formula for internal boundary to find the reasons for singularity.  Disjoint 

workspace will occur for specific end effector orientations and configurations with co-

linear tools that are not straight and possess a normal or angular offset on axis-6. These 

regions of disjoint workspace needs to be investigated leading to a more ideal 

representation functional workspace. 

    Finding a solution for multiple kinematic chains and reconfigurable manipulator will 

enable an inclusive solution. Addition of inverse kinematics will lead to a more dynamic 

design tool that can assess the reach of the manipulator at a desired orientation. Motion 

and path planning can also be done using functional workspace solution, transforming the 

motion plan into the required joint actuator and orientation trajectories for the robot.  

  

 



 

 

 

 

83 

 

 

 

11. APPENDICES 

APPENDIX A LITERATURE REVIEW MATRIX 

LEGEND:   

5-Strongest reference 

to the key word   

4- Strong reference to 

the keyword   

3- Moderate reference 

to the keyword   

2- Weaker reference 

to the keyword   

1- Weakest reference 

to the keyword   

0- No reference to the 

keyword   

Most Important 

Reference-    

 

S. 

NO 
Authors 

 

Workspace 
Dexterity 

General 

open 

Kinematic 

chain 

Optimal 

robot/machine 

Placement 

Forward 

Kinematics 

Specific 

Kinematic 

chain 

Functional 

Workspace 

1 
Abdel-Malek, 

Yu (2004) 
5 5 0 5 3 5 0 

2 
Abdel-Malek, 

Yeh (1997) 
5 2 0 0 3 5 2 

4 
Borcea, 

Streinu(2011) 
5 0 3 3 3 0 0 

5 Cao et.al (2009) 5 3 4 2 4 3 0 

6 Cao et.al (2011) 5 0 4 0 0 0 0 

7 
Badescu, 

Mavroidis,(2004) 
5 3 0 4 3 5 0 

8 Bi, Lang (2007) 5 0 0 3 4 5 2 

9 
Cebula, Murray 

(2006)  
5 3 0 0 3 5 3 

10 Ceccarelli (1995) 5 0 4 0 4 5 0 

11 

Ceccarelli, 

Vinciguerra 

(1995) 

5 0 0 4 0 5 0 

12 
Djuric et.al 

(2010) 
0 0 5 0 3 0 0 
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13 
Urbanic, Djuric 

(2009) 
3 0 5 5 0 0 5 

14 Feddema (1996)  5 3 0 5 3 5 2 

15 
Gilpin, Rus 

(2010) 
0 0 5 0 0 0 0 

16 Gupta (1984) 5 3 4 2 3 4 4 

17 
Gupta, Roth 

(1981) 
5 1 4 2 4 5 2 

18 
Hideg, Juad 

(1987) 
5 4 4 2 4 3 3 

19 Lee et.al (2011) 5 2 0 0 3 5 0 

20 Liu et.al (2011)  5 0 0 3 3 5 0 

21 
Mansuer, Doty 

(1995)  
2 0 4 0 1 5 0 

22 
Moon, Kota ( 

2002)  
4 3 0 0 0 5 0 

23 
Pamanes, 

Zeghioul (1991) 
3 0 4 5 3 0 0 

24 
Panda et.al, 

(2009) 
5 0 0 3 4 5 3 

25 
Szep et.al, 

(2009)  
5 0 0 0 4 5 0 

26 
VijayKumar 

et.al, (1986) 
5 5 0 3 3 5 4 

27 
Yang et.al, 

(2008)  
5 3 4 0 3 0 0 

28 
Zacharias et.al 

(2007)  
5 4 0 0 0 5 0 

  
Total (Out of 

140) 117 44 54 51 68 95 30 
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APPENDIX B MATLAB CODE 

 

1. MATLAB code for analytical approach 

%% 

  
clc 
clear  

  
% declaration of the dh parameters 

  
a1 = 70;   d1 = 352;    alpha1 = -pi/2;     th1 = 0; 
a2 = 360;  d2 = 0;      alpha2 = 0;         th2 = -pi/2; 
a3 = 0;    d3 = 0;      alpha3 = pi/2;      th3 = pi; 
a4 = 0;    d4 = 380;    alpha4 = -pi/2;     th4 = 0; 
a5 = 0;    d5 = 0;      alpha5 = pi/2;      th5 = 0; 
a6 = 0;    d6 = 65;     alpha6 = pi/2;      th6 = -pi/2; 
k = cos(alpha2); 
phi = pi/2; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Limits of th2, th3 and th5 

  
th2_min = -pi/2; 
th2_max = +110*pi/180; 
th3_min = -230*pi/180; 
th3_max = 50*pi/180; 
th5_min = -120*pi/180; 
th5_max = 120*pi/180; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Homogenous Transformation Matrices 

  
A01  = @(th2,th3,th5) [cos(th1) -cos(alpha1)*sin(th1) 

sin(alpha1)*sin(th1) a1*cos(th1);sin(th1) cos(alpha1)*cos(th1) -

sin(alpha1)*cos(th1) a1*sin(th1);0 sin(alpha1) cos(alpha1) d1;0 0 0 1]; 

  
A12  = @(th2,th3,th5) [cos(th2) -cos(alpha2)*sin(th2) 

sin(alpha2)*sin(th2) a2*cos(th2);sin(th2) cos(alpha2)*cos(th2) -

sin(alpha2)*cos(th2) a2*sin(th2);0 sin(alpha2) cos(alpha2) d2;0 0 0 1]; 

  
A23  = @(th2,th3,th5) [cos(th3) -cos(alpha3)*sin(th3) 

sin(alpha3)*sin(th3) a3*cos(th3);sin(th3) cos(alpha3)*cos(th3) -

sin(alpha3)*cos(th3) a3*sin(th3);0 sin(alpha3) cos(alpha3) d3;0 0 0 1]; 

  
A34  = @(th2,th3,th5) [cos(th4) -cos(alpha4)*sin(th4) 

sin(alpha4)*sin(th4) a4*cos(th4);sin(th4) cos(alpha4)*cos(th4) -

sin(alpha4)*cos(th4) a4*sin(th4);0 sin(alpha4) cos(alpha4) d4;0 0 0 1]; 
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A45  = @(th2,th3,th5) [cos(th5) -cos(alpha5)*sin(th5) 

sin(alpha5)*sin(th5) a5*cos(th5);sin(th5) cos(alpha5)*cos(th5) -

sin(alpha5)*cos(th5) a5*sin(th5);0 sin(alpha5) cos(alpha5) d5;0 0 0 1]; 

  
A56  = @(th2,th3,th5)  [cos(th6) -cos(alpha6)*sin(th6) 

sin(alpha6)*sin(th6) a6*cos(th6);sin(th6) cos(alpha6)*cos(th6) -

sin(alpha6)*cos(th6) a6*sin(th6);0 sin(alpha6) cos(alpha6) d6;0 0 0 1]; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%Iteration of th2,th3 and th5 

  
A06=A01(th2,th3,th5)*A12(th2,th3,th5)*A23(th2,th3,th5)*A34(th2,th3,th5)

*A45(th2,th3,th5)*A56(th2,th3,th5) 
X=[0 0 a1 a1 a1 a1-d4 a1-d4-d6]; 
Z=[0 d1 d1 d1+a2 d1+a2-a3 d1+a2-a3 d1+a2-a3]; 
Tool = plot(X,Z,'r','LineWidth',8,'XDataSource','X','YDataSource','Z'); 
axis([-2.5*(a1+a2) 2.5*(a1+a2) -(a1+a2) 3*(a1+a2)]); 
set(gca, 'DataAspectRatio',[1 1 1]) 
grid on 
hold('all') 
disp ('Arun') 

  
for k_1 = [th2_min:10*pi/180:th2_max] 

  
    for k_2 = [th3_min:10*pi/180:th3_max] 

        
        th5 = k*phi-((k_1)+(k*k_2)) 

        
        if (th5 >=th5_min) 

         
           

A06=A01(k_1,k_2,th5)*A12(k_1,k_2,th5)*A23(k_1,k_2,th5)*A34(k_1,k_2,th5)

*A45(k_1,k_2,th5)*A56(k_1,k_2,th5) 

             
           X=A06(1,4) 

            
           Z=A06(3,4) 

             
           hold 'all' 

             
           Envelope_1 = plot(X, Z,'g.') 
           refreshdata(Tool,'caller') 
           drawnow 
           disp ('plotted') 
        end 
     end 
   end 
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2. Linked work envelope 

%ABB Linked 

  
clc 
clear all 

  
% D-H Parameters 

 
a1 = 70;   d1 = 352;    alpha1 = -pi/2;     theta1 = 0; 
a2 = 360;  d2 = 0;      alpha2 = 0;         theta2 = -pi/4; 
a3 = 0;    d3 = 0;      alpha3 = pi/2;      theta3 = 3*pi/4; 
a4 = 0;    d4 = 380;    alpha4 = -pi/2;     theta4 = 0; 
a5 = 0;    d5 = 0;      alpha5 = pi/2;      theta5 = pi/2; 
a6 = 0;    d6 = 65;     alpha6 = pi/2;      theta6 = 0; 
 

% Axis Properties 

 
X=[0 0 a1 a1 a1 a1-d4 a1-d4-d6]; 
Z=[0 d1 d1 d1+a2 d1+a2-a3 d1+a2-a3 d1+a2-a3]; 
Tool = plot(X,Z,'r','LineWidth',4,'XDataSource','X','YDataSource','Z'); 
axis([-2.5*(a1+a2) 2.5*(a1+a2) -(a1+a2) 3*(a1+a2)]); 
set(gca, 'DataAspectRatio',[1 1 1]) 
grid on 
hold('all') 

 

% Iteration of th2,th3 within maximum and minimum limits 

 
for theta2_0 = -90:10:110; 
   for theta3_0 = -230:10:50; 
 

      if (((theta2_0+theta3_0) >= -230) && ((theta2_0+theta3_0) <= 110)) 

     
theta2 = (-90+theta2_0)*pi/180; 
theta3 = (180+theta3_0+theta2_0)*pi/180; 

  
A01 = [cos(theta1), -cos(alpha1)*sin(theta1), sin(alpha1)*sin(theta1), 

a1*cos(theta1); sin(theta1), cos(alpha1)*cos(theta1), -

sin(alpha1)*cos(theta1), a1*sin(theta1); 0, sin(alpha1), cos(alpha1), 

d1; 0, 0, 0, 1 ]; 

  
A12 = [cos(theta2), -cos(alpha2)*sin(theta2), sin(alpha2)*sin(theta2), 

a2*cos(theta2); sin(theta2), cos(alpha2)*cos(theta2), -

sin(alpha2)*cos(theta2), a2*sin(theta2); 0, sin(alpha2), cos(alpha2), 

d2; 0, 0, 0, 1 ]; 

  
A23 = [cos(theta3), -cos(alpha3)*sin(theta3), sin(alpha3)*sin(theta3), 

a3*cos(theta3); sin(theta3), cos(alpha3)*cos(theta3), -

sin(alpha3)*cos(theta3), a3*sin(theta3); 0, sin(alpha3), cos(alpha3), 

d3; 0, 0, 0, 1 ]; 

  
A34 = [cos(theta4), -cos(alpha4)*sin(theta4), sin(alpha4)*sin(theta4), 

a4*cos(theta4); sin(theta4), cos(alpha4)*cos(theta4), -
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sin(alpha4)*cos(theta4), a4*sin(theta4); 0, sin(alpha4), cos(alpha4), 

d4; 0, 0, 0, 1 ]; 

  
A45 = [cos(theta5), -cos(alpha5)*sin(theta5), sin(alpha5)*sin(alpha5), 

a5*cos(alpha5); sin(theta5), cos(alpha5)*cos(theta5), -

sin(alpha5)*cos(theta5), a5*sin(theta5); 0, sin(alpha5), cos(alpha5), 

d5; 0, 0, 0, 1 ]; 
A56 = [cos(theta6), -cos(alpha6)*sin(theta6), sin(alpha6)*sin(theta6), 

a6*cos(theta6); sin(theta6), cos(alpha6)*cos(theta6), -

sin(alpha6)*cos(theta6), a6*sin(theta6); 0, sin(alpha6), cos(alpha6), 

d6; 0, 0, 0, 1 ]; 

  
A06 = A01*A12*A23*A34*A45*A56; 

  
Envelope_1 = plot(A06(1,4), A06(3,4),'g.') 
refreshdata(Tool,'caller') 
drawnow 

  
pause(.1) 

  
else 

  
fail = 1; 

  
      end 
   end 
end 
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3. Functional workspace matlab code for geometrical solution 

%% 
clc 
clear all 
close all 

 

% Link length- can be changed 

 
a2 = 1000; % length of first arm 
a3 = 1000; % length of second arm 
a5 = 1000; % length of third  arm 
hold('on') 

 
% Axis Properties 

 
X=[0 a2 a2+a3 a2+a3+a5]; 
Y=[0 0 0 0]; 
Tool = plot(X,Y,'r','LineWidth',4,'XDataSource','X','YDataSource','Y'); 
axis([-(a2+a3+a5) 1.5*(a2+a3+a5) -(a2+a3+a5) (a2+a3+a5)]); 
set(gca,'DataAspectRatio',[1 1 1]) 
grid on 
hold('on') 
 

% Movement of links between maximum and minimum limits- Limits can be 

changed to suit the manipulator 

 
for theta1 = -90*pi/180:0.1:110*pi/180 
    for theta2 = -230*pi/180:0.1:50*pi/180 
        for theta3 = 90*pi/18 

 

X= [0 a2 * cos(theta1) a2 * cos(theta1) + a3 * cos(theta1 + theta2)  

a2*cos(theta1) + a3*cos(theta1+theta2)+a5*cos(theta1+theta2+theta3)]; 
 

Y=[0 a2 * sin(theta1) a2 * sin(theta1) + a3 * sin(theta1 + theta2)  

a2*sin(theta1) + a3*sin(theta1+theta2)+a5*sin(theta1+theta2+theta3)]; 

     
X1= [0 a2 * cos(theta1) + a3 * cos(theta1 + theta2)+ a5 * cos(theta1 + 

theta2 + theta3)]; 
 

Y1= [0 a2 * sin(theta1) + a3 * sin(theta1 + theta2)+ a5 * sin(theta1 + 

theta2 + theta3)]; 

    
plot (X1, Y1, 'g.') 
refreshdata(Tool,'caller') 
drawnow 
 

        end 
    end 
end 
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APPENDIX C OTHER MATLAB TRIALS 

 

1. MATLAB Trial #1: 

    A plotter function is introduced in this trial with the D-H parameters and homogenous 

transformations.  The TRIAL#1 program calls the result of this program at every 

increment Δ of θ2, θ3 or θ5. In TRIAL#1 the minimum and maximum limits of each joint 

are defined. The value of θ5 using the formula, )( 325  kk   (Eq. 4.1) is first 

checked. If the result is within the limits it is then plotted.  If not, θ2 is decremented by Δ 

and the loop is run again. Once the loop reaches the minimum value of θ3 or θ2 reaches 

minimum the values of the homogenous transformation matrices are plotted. If not, the 

loop is run again while a decrement of Δ is applied to θ2 and θ3. The result of the 

program is presented in the Appendix Fig.-1. 

PLOTTER 

function [X,Y  ] = trial5( a,b,c,n) 
% this function contains the homogeneous transformations and a plotter 

  
a1 = 70;   d1 = 352;    alpha1 = -pi/2;     th1 = 0; 
a2 = 360;  d2 = 0;      alpha2 = 0;         th2=a; 
a3 = 0;    d3 = 0;      alpha3 = pi/2;      th3=b; 
a4 = 0;    d4 = 380;    alpha4 = -pi/2;     th4 = 0; 
a5 = 0;    d5 = 0;      alpha5 = pi/2;      th5=c; 
a6 = 0;    d6 = 65;     alpha6 = pi/2;      th6 = -pi/2; 

  
A01  = @(th2,th3,th5) [cos(th1) -cos(alpha1)*sin(th1) 

sin(alpha1)*sin(th1) a1*cos(th1);sin(th1) cos(alpha1)*cos(th1) -

sin(alpha1)*cos(th1) a1*sin(th1);0 sin(alpha1) cos(alpha1) d1;0 0 0 1]; 

  
A12  = @(th2,th3,th5) [cos(th2) -cos(alpha2)*sin(th2) 

sin(alpha2)*sin(th2) a2*cos(th2);sin(th2) cos(alpha2)*cos(th2) -

sin(alpha2)*cos(th2) a2*sin(th2);0 sin(alpha2) cos(alpha2) d2;0 0 0 1]; 

  
A23  = @(th2,th3,th5) [cos(th3) -cos(alpha3)*sin(th3) 

sin(alpha3)*sin(th3) a3*cos(th3);sin(th3) cos(alpha3)*cos(th3) -

sin(alpha3)*cos(th3) a3*sin(th3);0 sin(alpha3) cos(alpha3) d3;0 0 0 1]; 
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A34  = @(th2,th3,th5) [cos(th4) -cos(alpha4)*sin(th4) 

sin(alpha4)*sin(th4) a4*cos(th4);sin(th4) cos(alpha4)*cos(th4) -

sin(alpha4)*cos(th4) a4*sin(th4);0 sin(alpha4) cos(alpha4) d4;0 0 0 1]; 

  
A45  = @(th2,th3,th5) [cos(th5) -cos(alpha5)*sin(th5) 

sin(alpha5)*sin(th5) a5*cos(th5);sin(th5) cos(alpha5)*cos(th5) -

sin(alpha5)*cos(th5) a5*sin(th5);0 sin(alpha5) cos(alpha5) d5;0 0 0 1]; 

  
A56  = @(th2,th3,th5)  [cos(th6) -cos(alpha6)*sin(th6) 

sin(alpha6)*sin(th6) a6*cos(th6);sin(th6) cos(alpha6)*cos(th6) -

sin(alpha6)*cos(th6) a6*sin(th6);0 sin(alpha6) cos(alpha6) d6;0 0 0 1]; 

  
A06=A01(th2,th3,th5)*A12(th2,th3,th5)*A23(th2,th3,th5)*A34(th2,th3,th5)

*A45(th2,th3,th5)*A56(th2,th3,th5); 

   

             
           X=A06(1,4) 

            
           Y=A06(3,4);   

            

            
           hold 'all' 

             
           plot(X,Y, 'rx') 

            

   
end 

  

 

TRIAL#1 

%% 
clear 
clc 
k= 1 
phi = pi/2 
th2_min = -pi/2; 
th2_max = +110*pi/180; 
th3_min = -230*pi/180; 
th3_max = 50*pi/180; 
th5_min = -120*pi/180; 
th5_max = 120*pi/180; 
th2 = th2_max; 
th3=th3_max; 
dec = 10*pi/180; 
while (1) 
 disp('onto function') 
 th5=k*phi-(th2+k*th3); 
 fprintf(' theta 5 in %f degrees  calculated at the head \n',th5*180/pi) 
 if ( (th5>=th5_min && th5<=th5_max)==1) 
   mint=th5>=th5_min 
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   maxt=th5<=th5_max 
   pause(0.01) 
   trial5(th2,th3,th5) 
       if th2<=th2_min 
        break 
           else 
               th2=th2-dec; 
                fprintf(' theta 2 in %f degrees \n',th2*180/pi) 
           end 
   else 
       if th3<=th3_min 
           trial5(th2,th3,th5) 
           if th2<=th2_min; 
                fprintf(' theta 2 in %f degrees \n',th2*180/pi) 
               break 
           else 
               th2=th2-dec; 
               fprintf(' theta 2 in %f degrees \n',th2*180/pi) 
           end 
       else 
           th3=th3-dec; 
           fprintf(' theta 3 in %f degrees \n',th3*180/pi) 
           pause(0.1) 
       end 

        

        
   end   
end 

 

 

Figure A-11-1 Plot result for MATLAB Trial#1 
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2. MATLAB Trial #2 

In this trial, an attempt was made to find the two dimensional work envelope of the robot. 

Every point between the limits of θ2 and θ3 is plotted. The result is given in Appendix 

Fig.-2.  

clc 
clear  

  
% declaration of the dh parameters 

  
a1 = 70;   d1 = 352;    alpha1 = -pi/2;     th1 = 0; 
a2 = 360;  d2 = 0;      alpha2 = 0;         th2 = -pi/4; 
a3 = 0;    d3 = 0;      alpha3 = pi/2;      th3 = 3*pi/4; 
a4 = 0;    d4 = 380;    alpha4 = -pi/2;     th4 = 0; 
a5 = 0;    d5 = 0;      alpha5 = pi/2;      th5 = 0; 
a6 = 0;    d6 = 65;     alpha6 = pi/2;      th6 = 0; 
k = cos(alpha2); 
phi = pi/2; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Limits of th2, th3 & th5 

  
th2_min = -pi/2; 
th2_max = +110*pi/180; 
th3_min = -230*pi/180; 
th3_max = 50*pi/180; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Homogenous Transformation Matrix 
for th2 = [th2_min:10*pi/180:th2_max] 

  
   for th3 = [th3_min:10*pi/180:th3_max] 

  
A01  =  [cos(th1) -cos(alpha1)*sin(th1) sin(alpha1)*sin(th1) 

a1*cos(th1);sin(th1) cos(alpha1)*cos(th1) -sin(alpha1)*cos(th1) 

a1*sin(th1);0 sin(alpha1) cos(alpha1) d1;0 0 0 1]; 

  
A12  =  [cos(th2) -cos(alpha2)*sin(th2) sin(alpha2)*sin(th2) 

a2*cos(th2);sin(th2) cos(alpha2)*cos(th2) -sin(alpha2)*cos(th2) 

a2*sin(th2);0 sin(alpha2) cos(alpha2) d2;0 0 0 1]; 

  
A23  =  [cos(th3) -cos(alpha3)*sin(th3) sin(alpha3)*sin(th3) 

a3*cos(th3);sin(th3) cos(alpha3)*cos(th3) -sin(alpha3)*cos(th3) 

a3*sin(th3);0 sin(alpha3) cos(alpha3) d3;0 0 0 1]; 

  
A34  =  [cos(th4) -cos(alpha4)*sin(th4) sin(alpha4)*sin(th4) 

a4*cos(th4);sin(th4) cos(alpha4)*cos(th4) -sin(alpha4)*cos(th4) 

a4*sin(th4);0 sin(alpha4) cos(alpha4) d4;0 0 0 1]; 
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A45  =  [cos(th5) -cos(alpha5)*sin(th5) sin(alpha5)*sin(th5) 

a5*cos(th5);sin(th5) cos(alpha5)*cos(th5) -sin(alpha5)*cos(th5) 

a5*sin(th5);0 sin(alpha5) cos(alpha5) d5;0 0 0 1]; 

  
A56  =  [cos(th6) -cos(alpha6)*sin(th6) sin(alpha6)*sin(th6) 

a6*cos(th6);sin(th6) cos(alpha6)*cos(th6) -sin(alpha6)*cos(th6) 

a6*sin(th6);0 sin(alpha6) cos(alpha6) d6;0 0 0 1]; 

  
A06=A01*A12*A23*A34*A45*A56; 

  
X=A06(1,4) 
Y=A06(3,4); 
hold 'all' 
plot(X,Y, 'xr') 

                 
    end 
end 

  
%th2 = between limits 
%th3 = between limits  
%all else constant 
%vary th2 and th3 between limits  

 

 

Figure A-11-2 Plot result for MATLAB Trial#2 
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3. MATLAB Trial#3 

In Trial#3, for every increment Δ of θ2 and θ3 the Eq. 4-1 is checked and the matrix 

obtained with the new Δ value of θ2 and θ3 is plotted. 

dec = 10*pi/180; 
th2_min = -pi/2; 
th2_max = +110*pi/180; 
th3_min = -230*pi/180; 
th3_max = 50*pi/180; 
th5_min = -120*pi/180; 
th5_max = 120*pi/180; 
th2 = th2_max 
th3=th3_max; 
dec = 10*pi/180; 
k = 1; 
phi = pi/2; 
for l= (th3_min: dec: th3_max) 
      th5=k*phi-(th2+k*th3); 
      plotter(th2,l,th5) 
end 
th3= th3_min; 
for l= (th2_min: dec: th2_max-2*dec) 
      th5=k*phi-(th2+k*th3); 
      plotter(l,th3,th5) 
end 

 

Figure A-11-3 : Plot result for MATLAB Trial#3 
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APPENDIX D OTHER GEOMETRICAL APPROACHES 

 

    Many additional approaches were tried before the geometrical solution presented in the 

research. It is essential to discuss some of the important approaches so as to aid the future 

development of this research. 

Approach #1: Minimum and Maximum X, Y Points 

    An alternative geometrical approach was to find out the functional workspace curve 

through the minimum and maximum X, Y positions. These X, Y positions can be derived 

from the homogenous transformation matrices applied for every increment, Δ of θ2 and 

θ3. The Appendix Fig.- 4 shows these points on a X-Y plane. 

 

Figure A-11-4 X and Y minimum and maximum points 
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    It was assumed that the shape between these minimum and maximum points could be 

interpolated as arcs. Although, the minimum and the maximum X and Y positions could 

be found, there is no way to find the inner boundary curve. Also, not every functional 

workspace curve has a unique Xmin value on the top and bottom part of the curve (Refer 

Fig. 4-7). This means only one Xmin is not enough to depict the whole curve. It is not 

possible to find all the ends of the functional workspace curve with this approach. Also, 

interpolating between the curves is always not feasible. It is not guaranteed that the shape 

between two points will always be a perfect arc. This can lead to confusion on deciding 

which arc to consider and also present an inaccurate curve. 

 

Approach #2: Dividing the plane  

    The plane was next divided into two parts. The division was made based on the 90° 

position of the joints- 2 and 5 and -90° for joint-3. At this position, the robot is parallel to 

the X-axis. The line parallel to the Y-axis is made through the joint-3 axis. Appendix 

Fig.- 5 details this type of demarcation.  

    Consider the plane divided into four zones numbered clockwise. Homogenous matrices 

are calculated in batches based on the joint angles. For example, the joint limits are 

restricted to increment between -90° and 0° of joint-3. These points can then be joined 

through arcs. Although, this does break up the curve into smaller zones, there exists more 

than one minimum X and Y point in one quadrant which makes it difficult to decipher the 

right point to consider. The example of this can be seen in quadrant-4 and 1 where the 

inner boundary produces conflict in deciding the minimum X position. 
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Figure A-11-5 Divison of functional workspace 
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