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ABSTRACT 

Today’s automotive manufacturing environment is dynamic, not long ago, 

plants produced engines for decades, with minor modifications warranting slight 

manufacturing line rework. Conversely, today’s changing trends require machines 

and complete engine line overhauls rendering initial setups obsolete. Automakers 

compete to satisfy government regulations for best mileage and also lower 

manufacturing cost, thus the adoption of Reconfigurable Manufacturing Systems 

(RMS). Information Technology (IT) and Controls are growing closer with the line 

of demarcation disappearing in manufacturing. Controls are benefiting from 

opportunities in IT, hardware and software. Component-based software suitable for 

RMS modularity and plug-and-play hardware/software components has gained 

decades of popularity in the software industry. This thesis implements distributed 

controls imbedding component-based technology and IEC 61311-3 function block 

standard for automotive engine assembly, which will contribute to these 

developments. The control architecture provides reconfigurability which is lacking 

in current manufacturing systems. The research imbeds: 1- Reconfigurability - 

Fitting RMS-designed hardware towards new manufacturing, 2- Reusability - 

Building software library for reuse across assembly lines, and 3- Plug-and-Play - 

Embedding easy to assemble software components (function blocks).  
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CHAPTER 1: 

Engine Assembly Lines and Machines 

1 Introduction 

This chapter focuses on automobile engine manufacturing plants. It presents different 

layouts for engine assembly and stations composing production lines. The need for 

Reconfigurability is also discussed.  

1.1  Engine Assembly Overview 

An engine assembly line is a complex manufacturing system composed of a few hundred 

stations linked with a conveyor on which pallets travel from station to station. Each 

station performs an assembly operation by adding a component or a subassembly to the 

engine manufactured. The process begins by loading an engine block to an empty pallet, 

then parts are added in sequence till final assembly; it ends by offloading the finished and 

tested engine to a shipping rack.  

1.2   Engine Assembly Layouts  

The layout chosen for an engine assembly depends on production volumes. Two different 

layouts are common in the industry, single and multiple loops. 

A Single Loop Layout: This type of layout is better suited for low volume 

lines, where cycle time is long and disturbances resulting from downtime have 

little effects. An example of a single layout for engine assembly is shown on 

Figure 1.1. 

B Multiple Loops Layout: An engine assembly is divided into multiple 

loops, usually three or four. A first short block loop consists of engines without 

cylinder heads and timing component. A second long block loop may encompass 

two loops for an engine before dressing. A later or final dress loop installs wire 

harness and vacuum hoses. Figure 1.2 illustrates an example of multiple loop 

engine assembly. 
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Figure 1.1: Single Loop Engine Assembly Line (from J.A. Krause Machinenfabrik GmbH) 

 

 

Figure 1.2: Three-loop Engine Assembly Line (private communication) 
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1.3 Engine Assembly Station Types  

There are two types of engine assembly stations: 1- Manual and 2- Automatic. 

A Manual Assembly Stations: Today’s engine assembly lines involve 150 to 180 

workers performing manual tasks using specific tools for each station (powered 

equipment like rundown tools, or manual ones to handle parts for assembly). This 

type of station is the most flexible, as operators adapt easily to any situation. A 

human has better dexterity than any machine or robot; he or she also learns and gains 

experience by helping detect potential anomalies and developing solutions. An 

example of a manual station is shown on Figure 1.3. 

 

Figure 1.3: Typical Manual Work Station used in assembly line 

Each manual station is built as a module, fitted with a Human Machine Interface 

(HMI) controlled by a Programmable Logic Controller (PLC), while hosting tooling 

suitable for the assembly task. 
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B Automatic Assembly Stations: These stations include fully automatic machines 

which complete tasks without operator intervention, and semi-automatic stations 

where machines perform portions of an assembly leaving the remainder for operators 

to complete by unloading or loading the assembly in progress to other machines for 

performing complementary tasks. Automation is usually assigned to repetitive and 

tedious tasks which are difficult on operators. Engine assembly lines include many 

types of automatic stations such as: 

 Robotic Cells: Typically consisting of an industrial six-axis robot 

performing tasks, for instance a material handling function such as 

pick and place; 

 Conveyors: Properly fitted with stops and controlled by PLC to 

move pallets from station to station; 

 Buffers: Usually used to store pallets in process; 

 Elevators: Properly placed to transfer pallets over lines between 

loops; 

 Bolt and Dowel Feeders: Automatically embedded to sort bolts or 

dowels and feed them to machines for install and rundown; 

 Poke Yoke: Relied upon to assure Quality Control (QC) functions, 

in terms of simple probing or vision system detecting assembly 

errors; 

 Test Stations: Introduced at certain stages of an assembly to check 

functionality throughout production, for leaks, compression, 

running torque, or complete engine also called Cold Test using an 

electrical drive to test the produced engine at certain speeds; 

 Rundown Stations: Automatically inserted to run down bolts for 

instance, to specification; 

 Press: Crafted to consistently press dowels into an engine block or 

cylinder head following a specified depth and/or force; 

 Room Temperature Vulcanizing (RTV) Applications: Engineered 

robot stations applying a controlled amount of RTV to a surface - 
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Vision systems are used to guide presence and location of RTV - 

An example of an automatic station is shown on Figure 1.4.  

 

Figure 1.4: Automatic Assembly Cell (Hirata Assembly Systems, 

http://www.hirata.co.jp/en/) 

Automatic stations are more complex than manual stations; they are also built as 

modules with each machine hosting PLC and HMI. 

1.4  Engine Variants  

A typical engine assembly line is designed to run many variants, usually 2+1; where +1 

refers to a future engine within the same family yet to be designed. An example of an 

existing line is illustrated on Figure 1.5.  Note that beginning with one engine block could 

result in multiple engine derivatives. The first stations on the short block handle one part 

type while stations in the first and final handle all engine derivatives. Derivatives 

multiply by adding more engine blocks to the production line, and could reach 15 to 20 at 

any point in the life cycle of the manufacturing system. Consequently the +1 variant 

forces the engine assembly designers to implement the RMS paradigm to facilitate 

integration of anticipated changes and variants. 

http://www.hirata.co.jp/en/
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Figure 1.5: Engine Variants through a Typical Engine Assembly Line 

1.5  Enablers for Reconfigurability in Engine Assembly Lines  

Many characteristics of Reconfigurable Manufacturing Systems (RMS) are implemented 

in the design of new assembly lines in order to manage perceived complexities resulting 

from variants and future products. A new engine line needs hardware and software 

enablers to produce required variants.  Hard enablers typically used in engine assembly 

lines are listed below: 

a) Nested Pallet: Designers use adaptor plates with two faces to handle 

potentially completely different engine blocks when running multiple 

engine blocks on a same pallet: Each face is designed with proper locators 

for a given block, to rotate when another block type is produced; 

b) Modular Station: Modularity is an RMS characteristic allowing relocation 

of stations if required, while duplicating stations and installing them in 

parallel for volume increases; 
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c) Space Protect: Spaces are left for future stations handling +1 variety with 

conveyors to insert strategically throughout a line in order to 

accommodate additional stations. 

d) Manual Stations: Operator stations are most flexible: Humans handle any 

assembly with proper tooling.  

e) Industrial Robots: Fitting a six DOF robot in an assembly cell with a 

changeable end effector provides necessary flexibility to handle multiple 

variants. 

Today’s trends in controls software evolve towards modularity to accomplish desired 

architectures. Figure 1.6 shows an example of Enterprise PC distributed Control System. 

 

Figure 1.6: Enterprise PC Distributed Control System (MGroover, 2000) 

A controls system of an engine assembly line is complex and composed of hardware 

elements connected through a communication bus. Figure 1.7 depicts typical hardware 

for a distributed control system. Such hardware multiplies by at least a hundred for a 

typical engine assembly system indicating associated complexities. 
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Figure 1.7: Distributed Control System Hardware (http://ab.rockwellautomation.com) 

1.6 Motivation for Research   

In current automotive assembly circles, control software is usually customized to each 

machine; similar machines could have different pieces of control logic. Programmers 

usually use experience from previous projects. They consider similar machines coded in 

the past then modify the associated coding to suit the new machinery. The result is 

always a tailored program that is rigid, station specific, and inflexible to change in case of 

machine hardware modification. This approach triggers high costs and decreases 

innovation. Control systems need to adopt the latest developments in IT for increased 

effectiveness while responding quickly to reconfigurability requirements. Modularity is 

an essential ingredient in controls software to translate from station to station.  

According to Chan et al. (2000), Object-oriented Programming (OOP) is the dominantly 

used software technology in the design of manufacturing controls; Mehrabi et al. (2002) 

believes that OOP is also the choice for RMS controls. Agent-based technologies are very 

effective in dealing with unexpected events. Agents could be added or replaced with ease, 

leaving the built system flexible and adaptive (Ferber, 1999) (Kendall, 2000). Agent-

based systems are not an exception to the rule. In spite of many desirable features, they 

still have shortcomings, like the inability of global optimization and an unpredictable 
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system performance. A potential problem for large systems is deterioration of 

performance from excessive required communications between agents. Component-based 

software technology became widely popular because of ease of development and 

integration. Component-based software architecture provides reconfigurable software 

coding for RMS controls, and is able to adapt to physical changes in manufacturing. 

1.7  Objectives and Problem Statement  

It is imperative to seek designs of reconfigurable controls to build true RMS lines 

producing families of products with many variants of engines. The possibility of reusing 

the same coding with minimal interventions makes this as important as the development 

of the manufacturing system hardware. The literature is unfortunately limited in applying 

reconfigurable control to automotive manufacturing. Very few publications are found on 

engine assembly manufacturing, because of the proprietary nature of such undertakings 

by each manufacturer.  

This research aims at studying and developing a modular control architecture using newly 

emerged information technologies - such as component-based software technology and 

IEC 61311-3 Standard - towards building function blocks for controls. The proposed 

software architecture offers all RMS characteristics of modularity, flexibility, and 

robustness. Features used in coding the control methodologies used in this thesis include:  

• Reconfigurability: Coding suited for RMS designed hardware, which considers 

modularity and ease of adaption to new manufacturing scenarios.; 

• Reusability: Software collecting a library of components to reuse across entire 

assembly lines; 

• Robustness: Programming which maintains system operability to counter 

malfunctions; 

• Immunity to Disturbances: Controls handling machine malfunctions/errors yet 

retaining production, and 

• Plug and Play: Software components (function blocks) which are easy to 

assemble, to build control systems for Reconfigurable ManufacturingS systems. 

Benefits of the proposed architecture are demonstrated on an actual case study from the 

industry, in chapter 5. 
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CHAPTER 2 

Literature Survey 

 

Controls’ architecture design should mimic the hardware design of a system. Evolutions 

in manufacturing paradigms and innovations of the microprocessor and Information 

Technology (IT) further transformed controls in manufacturing. The latter introduced 

hardware, software solutions and advanced algorithms for machines and systems while 

the former dictated controls’ architecture. This chapter presents literature related to 

controls architecture and software. 

2.1  Traditional Control Architectures 

(Diltis et al. (1991) traced the evolution of controls’ structures for Automated 

Manufacturing Systems (AMS).  Three main controls’ architectures were presented: 1- 

Centralized, 2- Hierarchical, and 3- Heterarchical.  The authors also reviewed 

characteristics, advantages, and drawbacks of each of the topologies. 

2.1.1 Centralized Architecture 

This appears to be widely used in continuous process controls, to concentrate planed and 

processed information in a single decision node. The architecture requires powerful 

processing to handle large amounts of recourses. Advantages include simplicity of central 

startup, shutdown, and program archiving.  Coding is extensive and difficult to develop 

and maintain, making codes unsuitable for Reconfigurable Manufacturing Systems 

(RMS).  Figure 2.1 presents an example of centralized architecture.  

 

Figure 2.1: Centralized Architecture System Sample 

Control

ler 

STA 1 STA 2 STA 3 STA 4 
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2.1.2  Hierarchical Architecture 

The International Standard Organization (ISO) and National Bureau of Standards (NBS) 

establish hierarchical controls models (Bauer et al., 1994). Both are similar from top to 

bottom, but differ in the number of stages. The former breaks the organization into six 

levels: 1- Enterprise, 2- Plant, 3- Area, 4- Cell, 5- Station, and 6- Equipment, while the 

latter into five levels: 1- Facility, 2- Shop, 3- Cell, 4- Station, and 5- Equipment. This 

architecture is recognized for its efficiency and robustness, due to an easy structure. 

Figure 2.2 demonstrates an example of hierarchical architecture. 

 

 

Figure 2.2: Hierarchical Controls System Sample (http://ab.rockwellautomation.com) 

 

 

2.1.3 Heterarchical Architecture 

Heterarchical architecture consists of a distributed control system, grouped independently 

but cooperating as “agents”. Tasks are performed by exchanging information among 

agents. Duffie and Prabhu (1996) presented major works and design principals relating to 

heterarchical controls to promote extensibility, self-configuration, and adaptation, to real-

time events such as in equipment failures. Figure2.3 shows an example of heterarchical 

architecture. 
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Figure 2.3: Heterarchical Controls System Sample 

 

 

2.2 Holonic Manufacturing Systems (HMS) 

Koestler developed the Holon concept, inspired by social organizations and living 

organisms. He was inspired by the hybrid form of modules or components in actual these 

systems. Koestler (1969) defined Holons as self-contained wholes of subordinated parts, 

related inversely. The HMS consortium arranged Koestler’s proposal into a series of 

concepts for manufacturing systems. The objective was to enable production outcomes 

according to Holonic organisms and societies in life that have similar characteristics in 

terms of stability in adversity, and adaptability and flexibility to fluctuations (Van 

Brussel et al., 1998).  Valckenaers et al. (1994) define HMS as:  

 Holon: An autonomous and cooperative block for manufacturing, such as in 

transformation, transportation, storage, data validation, and actual objects like 

date and processing components - A Holon can be part of another Holon as well.  

 Holarchy: A series of Holons readily cooperating for a target or purpose, setting 

fundamental rules to associate Holons and establishing freedoms.  

Farid (2004) surveyed HMS literature related to architectures, methodologies, protocols, 

algorithms, and interactions.  He also highlighted open research challenges and 

roadblocks to industrial adoption. Babiceanu et al. (2006) reviewed the public domain as 

well, and included development and applications of Holonic systems. 
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The HMS concept combines best features of hierarchical and heterarchical organizations 

(Diltis et al., 1991), in academic circles. However applications in industry are scarce, 

with a single study by Bussmann and Sieverding (2001). The latter applied the Holonic 

paradigm for Mercedes-Benz V6 and V8 engines. The study consists of: 1- Introduction 

of flexible buffers to decouple production line, 2- Addition of concurrent multi-functional 

stations for machine backup to overcome potential breakdown or production scalability, 

and 3- Development of Holonic controls for assembly, as in a Holon per Docking Station 

(DS Holon), per Manufacturing station (MF Holon), per Engine Block buffer (EB 

Holon), and Automatic-guided Vehicle (AGV Holon). Figure 2.4 shows the resulting 

layout. The new assembly profile and control system contrasted an existing assembly 

system based on simulation and plant data. Results showed the new layout to deliver a 

more robust and scalable system.  

 

Figure 2.4: Holonic System Layout (Bussmann and Sieverding, 2001)  

 

 



 

14 
 

2.3 RMS Controls System State-of-the-art 

Mehrabi et al. (2000) presented two main characteristics for RMS withmost influence on 

systems’ software architecture:  

a- Modularity: To guide design components of all systems, codes, and supporting 

platforms, as modular, and 

b- Integrability: To design with readiness for new technology introduction into 

components and systems.  

Software design modularity and integrability co-exist. The former enables scalability and 

simplicity in software design.  The latter facilitates plug-and-play concepts. Open-

architecture controllers proved essential for reconfiguration in manufacturing (Proctor, 

1998) (Koren, 1999).  

2.3.1  Open Control Architecture Systems  

The IEEE Guide POSIX Open System Environment (OSE) defines “an open system” in 

section 2.2.2.28 as one that imbeds general specifications and standards related to 

interfaces, as well as services and supporting formats, to rightfully create application 

software in terms of: 

 Portability with minimal changes across supplier systems; 

 Interoperability with applications to in-house and third-party systems as well, 

and 

 Interaction with operators facilitating portability. 

Pritschow et al. (2001) indicate that software fulfilling IEEE’s requirement should 

satisfy: 1- Vendor neutrality, 2- Consensus drivability (interest group), 3- Standards-basis 

(National/international), and 4- Free availability. 

Since 1990, several research projects (OSACA/HUMNOS, OMAC, OSEC, OCEAN, 

ORCOS, JOP) have targeted Open Architecture Control or OAC for machines (Brecher et 

al., 2010) (Pritschow et al., 2001) (Katz et al., 2000) (West, 2003). The Unified 

Reconfigurable Open Controls Architecture (UROCA) borrowed a concept from human’s 

left/right brain intelligence. ElBeheiry and ElMaraghy (2006) used a Design Approach 
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for Real-Time Systems (DARTS) and Real-Time Specification Methodology (RTSM) to 

propose UROCA. One relevant project, the Open Modular Architecture Controls at GM 

Powertrain (OMAC), was adopted by all major automakers. Publication Motors (1996) 

describes OMAC’s concept architecture and standard Application Programming Interface 

(IPA) as externally linked to various OMAC building blocks. A generic PC running 

Windows operating system is recommended for hardware platform; Profibus DP and 

Interbus are selected for networking and specify flowchart/IEC 61131-3 compatible 

languages for programming.  

2.4  Control Software Development for RMS 

Design and implementation research for RMS control software is common in literature. 

All modelling methodologies and programing languages are implemented as controls to 

reduce the gap with IT. 

2.4.1 Object Oriented Programming (OOP): OPP is a software technology 

established to design production controls, and is popular in academia (Grabot and 

Huguet, 1996) (Howard et al., 1998). Ka et al. (1998) highlighted a simulation 

framework based on objects to develop and evaluate multi-agent manufacturing 

architectures. Chan et al. (2000) established a similar architecture to design and 

implement reconfigurable controls. Holons, in Holonic manufacturing systems, 

are often programmed as objects using OOP.  

2.4.2 Unified Modeling Language (UML): UML is an open smulation 

language used to create abstract models for systems. Advantages of UML 

diagrams include simplicity and standardization.  Huang et al. (2001) designed 

modular real-time control system architectures based on UML. Panjaitan and Frey 

(2007) combined UML and IEC 61499 in a distributed control system. 

2.4.3 Petrinets (PNs):  A PN is a modeling script in distributed control system 

and process analysis. Petrinets proved important in modeling, analysis, and 

simulation and control of industrial automated systems (Peng and Zhou, 2004).   

Park et al. (1998) used Petrinets to combine modular logic controls with 

Sequential Function Charts (SFC) implementation logic. Holloway et al., (2000) 
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allowed Petrinets in PC software to control systems. Lee and Hsu (2000) designed 

logics with Petrinets, as Ladder diagrams for industrial PLCs 

2.4.5 Agent-based methodology: Some developers consider agents as objects; 

others differentiate between agents and objects even if commonalities are shared.  

Both approaches however envision using objects and agents together in 

developing software systems (Odel, 2002). Cândido et al. (2007) described a 

multi-agent implementation to manufacturing floor controls, with plug-and-play 

and system reconfiguration. Shop floor components were identified for improved 

adaptability and interaction to environmental requests. Monostori et al. (2006) 

introduced agents and multi-agent systems in coding for manufacturing 

applications. Their comprehensive survey emphasised methodological issues and 

agent deployment in industrial systems. Agent technologies and manufacturing 

evolutions were to proceed together. Vrba et al. (2011) presented methodologies 

to design agent-based control systems, related tools supporting implementation 

and validation, and agent applications for industrial systems. Metzger and 

Polakow (2011) surveyed technical applications in automating continuous 

industrial processes. Analysis of the literature followed main trends in research, 

such as agent-based supervisory controls shifting interests to low-level agent-

based control algorithms. 

2.5  Component-based Software Technology (CBS) 

Reuse and development of Component-based Software (CBS) improve productivity and 

software quality.  Building distributed systems based on component software increased 

over the past two decades (Mei et al., 2003). Chirn and Duncan (2000) implemented CBS 

in an automatic assembly cell with plug-and-play through the Internet.  Morton et al. 

(2002) introduced a methodology to design and implement software components as 

building blocks. Brennan et al. (2002) described a scheme for dynamic and intelligent 

reconfiguration of distributed control systems for IEC61499 function blocks. Xia et al. 

(2004) called on IEC61499 standard to specify components and implement control 

system. Harisson et al. (2006) harmonized modularity in reconfigurable automation 

systems using functional analysis (dual space and bag-definition). Vyatkin (2013) 
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reviewed software engineering in industrial automation, standards and norms, as well as 

models and methods and strategies to develop industrial software. The survey was geared 

to academia not industry. Mahmood et al. (2007) presented an extensive literature survey 

where many facets of CBD were presented in the software development field, including 

risks, benefits, selection and identification methodologies, in addition to means and tools 

of development. The survey concluded that CBD still requires support and research to 

achieve a full potential and economically viability. 

2.6  Industrial Control in Automotive Sector: State-of-the-art  

Clearly, PLCs are widespread in the Automotive Industry.  They were introduced when 

General Motors (GM) looked for a robust replacement of the relay logic. A first 

commercial PLC by Bedford Associates was the Modular Digital Controller 

(MODICON) (Segovia and Theorin, 2012). Both PLC hardware and programing have 

since evolved throughout the manufacturing industry. Initially PLCs were programmed 

using Ladder logic, consisting of a structure similar to the relay logic which simulated 

electrical wiring control circuits. Today, PLC programing follows the IEC 61131-3 

Standard and five programming languages (Karl-Heinz and Tiegelkamp, 2010): 

1. The Ladder Diagram (LD): A graphical language widespread in automotive 

plants throughout North America due to\ simplicity of use by maintenance 

staff for troubleshooting and adjustments; 

2. The Function Block Diagram (FBD): A graphical language used to 

encapsulate pieces of logic for reuse where the logic itself can be written in 

Ladder or other languages; 

3. Structured Text (ST): An advanced programming method resembling Pascal in 

PCs, used for implementing complex algorithms to control uncommon 

machinery; 

4. Instruction List (IL): A language similar to machine language when 

programing microprocessors, that uses registers and basic logic instruction, 

and 

5. Sequential Function Chart (SFC): More of a sequencing tool than a 

programming language, with graphical representation in Grafcet. 
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Programmers use more than one of the IEC 61133-3 languages to write a PLC program 

for a complex machine. Ljungkrantz et al. (2010) studied controls coding for PLC 

programming in two Swedish automotive companies, Volvo and Saab. They reported 

that: 1- PLC programs are mainly written in Ladder diagrams and SCF, frequently as 

reused function blocks, and 2- Although function blocks were adopted, their behaviors 

were lightly detailed. Di Giovanni et al. (2013) described a methodology for automatic 

generation of Ladder Logic Diagrams (LLDs). The five-step method relies on a unique 

model generated from the entire manufacturing process specifications. Lee et al. (2006) 

overviewed frameworks for automatic generation of PLC codes. The project was not 

implemented, in spite of cooperation with Ford Motor Company, mainly because of a 

need for manual intervention to adapt and integrate coding with existing programs. 

Ryssel et al. (2009) proposed a methodology that generates function blocks based on web 

technologies.  The approach faced hurdles for adoption in the Automotive Industry, the 

major being a need for high programing skills - not readily the case among maintenance 

personnel in production plants.  Breslin et al. (2010) introduced another methodology that 

promotes the use of Semantic Web Computing (SWC), and aside from similar shortfalls 

encountered by Ryssel et al., the authors agree that the methodology needs to mature 

before any further expansion.  Ljungkrantz et al. (2010) proposed a framework called 

Reusable Automation Components (RAC). The methodology offers verification tools for 

programing, applied only to basic examples so more development is required to satisfy 

industry requisites.  Hirsch (2010) proposed the use of SysML technology which was 

implemented using IEC61499 Standard on a modular manufacturing cell, but such 

technology remains challenging for plant personnel to support and use. Many of the 

presented concepts induce a paradigm shift in software controls’ development methods 

rooted in the industry thus the resistance to adoption. 

2.7  Summary 

Topics and subject areas relevant to controls architecture and software were reviewed in 

this chapter. The literature is abundant in academia, but does not directly satisfy industry 

requirements or allow building a controls system for a machine fulfilling promises of 
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Reconfigurable Manufacturing Systems control systems. Most existing publications use 

Object Oriented Programming to develop manufacturing control systems. The IEC 61499 

Function block standard gained popularity in academia but remains unused in the 

Automotive Industry because of perceived steep learning curve. The following chapter 

presents a methodology to design reconfigurable control software for machines. 

Subsequent chapters include details and a case study. 
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CHAPTER 3 

System Engineering Approach to Control Software Design 

The primary objective of this research is to design a reconfigurable software control 

system for an engine assembly line.  Because of the design complexity of such a 

manufacturing system, requiring teams of engineers to work concurrently to create a 

reliable production line following multi-phase processing, an effective and systematic 

methodology remains greatly needed. 

3.1  System Engineering to Design Controls Software  

Over the past few decades new paradigms were introduced, like Flexible manufacturing, 

Changeable manufacturing, Reconfigurable manufacturing, in response to manufacturing 

systems and controls system’s continuous increases in complexities.  Limitations in 

programming languages readily understood by shop floor personnel when creating 

control systems in the manufacturing industry remain current.  Academia is more 

advanced regarding controls modeling and coding methodologies, but they are yet to 

demonstrate efficiency when implemented on bigger scales in industrial settings.  

Controls must be included as an integral part of systems engineering design.  

Traditionally complex software used systems engineering for design, testing, and 

implementation.  Many systems engineering methodologies and approaches are widely 

used in software engineering literature, such as the Vee model, Waterfall or Linear 

model, the Spiral or Incremental model (Kossiakoff, 2011).  Each approach has 

applications, benefits, and limitations.  The Vee model was chosen in this research, due to 

simplicity of use and most importantly testing before coding which saves time as defects 

are identified at early stages.  In addition, system and user requirements are clear and do 

not change during the life cycle of a project (Sage and Cuppan, 2001).  Figure 3.1 

presents the traditional Vee model as per the Institute of Electrical and Electronics 

Engineers (IEEE) for software engineering.  Some steps shown on the graph do not apply 

to developing the model in this thesis, because of specificity of controls logic software.  

The Vee model consists of two main steps: 1) A top to bottom design, starting with the 

definition of software requirements and design parameters, then 2) A bottom-up design, 

namely software modules compilation and testing (Ould, 1990). 
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Figure 3.1:  IEEE Vee Model for Software Systems Engineering Process (Kossiakoff, 2011) 

3.2  Design Steps for Engine Assembly 

With product design reaching a specific millstone, manufacturing teams get involved in 

reviewing product design for manufacturability (DFM) prior to beginning the design of 

manufacturing system.  Subsequently, many teams join efforts and work concurrently to 

design an engine assembly line.  The main steps of such an undertaking are: 

3.2.1  Design of Assembly Process  

Assembly sequence and precedence graph are first defined (Henrioud et al., 2003).  

Product differentiation is always delayed in processing, for a family of engines 

(AlGeddawy and ElMraraghy, 2010)  Tasks are identified and assigned to multiple 

stations, requiring manual operators, or semi-automatic to fully automatic operations, 

depending on the complexity of operations, ergonomics, and safety factors.  Process 

designers tend to allocate repetitive and most demanding operations to automatic stations, 

to prevent operators’ injuries.  Quality assurance test stations are also identified and 

strategically located throughout an assembly process.  Every engine manufacturer uses its 

specific internal processes; for example Ford Motor Company uses Ford’s Production 

System (FPS), and Toyota uses Toyota’s Production System (TPS) - both encompass all 

production philosophy and influence the design of assembly process, and assembly line 

in general. 
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3.2.2  Design of Mechanical Machinery and Tooling   

Machine designers start conceptualizing an associated assembly system upon completing 

the process design.  They begin with an assembly line layout, conveyor system, and 

pallets to use in producing an engine.  A conveyor system includes “pallet rotates” and 

“pallet transfers”.  Some engine assembly systems are equipped with Automatic Guided 

Vehicles (AGVs) for part deliveries and pallet transportations to add parts routing 

flexibility to the line.  Mechanical designers use the same base design and footprint for all 

manual stations and tooling. Automatic stations are more complex to design and 

depending on the operation a designer has few options. Robotic cells using industrial 

robot arms are most common stations for flexibility, but dedicated machines offer 

specialized tasks such as dowel or cup plug presses, more repeatable and reliable when 

built on rigid structures.  Part and pallet transfers for long distances require the use of 

gantries.  Test stations are semi-automatic with operator interventions to connect an 

engine to test probes using electrical wires or air hoses, but at times they can be fully 

automatic.  Buffers and Automatic Storage and Retrieval Systems (ASRS) are also part of 

an engine assembly system.  Finally, mechanical parts, like tools, are designed by tooling 

engineers for the engine assembly line.  These range from a simple hand tool an operator 

uses for a determined task, to a complex end effector of a robot arm.   

3.2.3  Design of Controls Hardware System 

Controls engineering teams work with machine designers to comprehend intended 

functionality and determine sensors for controls system, such as limit switches, speed 

sensors, proximity switches, temperature sensors, etc.  Other items to design include 

actuators, like valves for pneumatic cylinders, servo motors, contactors, and relays.  Such 

electrical components are controlled by PLCs.  The mechanical assembly system dictates 

a controls’ architecture.  A distributed controls system best fits a RMS system.  All 

stations have the same functionality of processing a part from a controls system’s 

perspective where each station is fitted with a Process Logic Controller (PLC) that 

orchestrates physical devises (actuators) and is responsible for the station’s functionality.  

A communication routine is also chosen for networking the PLCs.  Each PLC 

manufacturer has proprietary protocols. Profinet is a main protocol dominantly used for 

deterministic characteristics.  A Radio Frequency Identification (RFID) is used to track 
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an engine from station to station.  Each pallet has a tag storing all production data for the 

engine carried over, and each station is also equipped with a reader/writer to scan tag 

data, determine required tasks, and update tags with status of operations (failed or 

successful).  Tags hold serial numbers identifying engines as well. 

3.2.4  Design of Controls Software System  

Controls run from PLCs that scan all field sensors (inputs) for statuses, and execute logic 

program, and updates outputs to actuate all field actuators.  All station PLCs are 

networked in an engine assembly system. Figure 3.2 highlights a grouping of PLCs 

communicating through Ethernet switches to exchange production data.   

 

Figure 3.2:  Network of PLCs in Engine Assembly 

 

Designing controls begins with thorough reviews to understand process and functionality 

of each station.  A station’s functionality is decomposed into basic steps to follow while 

executing related tasks.  The PLC logic mainly sequences steps to control statuses of 

machines, set before the commencement of coding (control logic writing).  Programing 

language, machine interface, and machine interlock signals are chosen, and then a 

program structure is set prior to coding.  Presently more than 90% of logic programmers 

in North America use Ladder logic (Bolton, 2009). 
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The process of engine assembly design is multi-phase.  Figure 3.3 illustrates the 

Axiomatic Design (AD) model encompassing the four steps presented. It is worth 

mentioning that such steps are not completely sequential, as teams work simultaneously, 

yet interface constantly to accommodate changes and alleviate roadblocks potentially 

facing project’s life cycle. 

 

Figure 3.3: Design Framework Extended from Yien and Tsang (1996) 

The last step of controls software system design is of primary importance in this thesis. 

Control Software System Design (CSSD-FR) denotes functionality of software modules 

and originates from Control Hardware System Design (CHSD-DP) or controls hardware 

modules in Figure 4.3.  Any CSSD-DP reflects on the structure of controls system, the 

interaction of Input/output (I/O) and their statuses with program running.   Process 

Variables PVs for CHSD-PV enable software design parameters and constrain CSSD-DP, 

while CSSD-PV represents controls software for program development.   
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3.3  Controls Software Design Process 

This research focuses on the design of controls, using systems engineering and Axiomatic 

Design. The systematic design process is decomposed into a set of sequential activities: 

1. Define  user requirements for controls system; 

2. Identify a controls hardware system; 

3. Design a controls software system according to users’ requirements (this is the 

most important step, to decompose in tasks); 

4. Code and test Function blocks  

5. Combine Function Blocks to form a machine program and test protocol; 

6. Deploy machine programs and test the assembly line, and 

7. Integrate and validate the system for the production line. 

It is possible to shift back and forth between steps while designing a system, especially 

when testing fails.  Experience confirms that changes to well-structured software are 

effortless, a matter of altering a few lines of code. Unfortunately experience also 

confirms the contrary, with unpredictable outcomes.  A simple software change usually 

requires a complete retest of system (Blanchard et al., 1990).  Figure 3.4 shows design 

phases that form the present research’s methodology. 

 

Figure 3.4: Vee Model Design of the Controls System  
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3.3.1  Software Requirements Definition 

At this stage, customer requirements are documented, in terms of enumerating system’s 

roles.  The RMS controls system sought in this research must not only integrate the 

software, but the hardware system as well.  By analogy to characteristics defined for an 

RMS system by Merhabi et al. (2000), five traits are proposed in reconfigurable control 

systems to enable integration to physical RMS.  Such properties are to embed in the 

designed controls system for system re-configurability: 

 

a) Modularity: System components should be modular and easy to build upon in a 

larger coherent system.  The main enabler is the standard interface for control 

components.  Modularity is achieved for controls software, using subroutines, 

databases, and Function Blocks that interface with one another. 

b) Integrability: Integrating modules and components rapidly, with abilities for 

new technology assimilation, is quite important.  Therefore a controls system 

should be designed with an open architecture. 

c) Diagnosibility: The potential to identify anomalies quickly for corrections and 

resuming operations is crucial.  Controls software should have fault messaging 

displays on Human Machine Interfaces (HMIs) besides faults’ storage on servers 

for historical tracing. 

d) Convertibility: Transforming functionality of existing systems to allow for 

quick product changes is key.  A controls system should thus track each model to 

produce, by identifying each product with a Radio Frequency Identification 

(RFID) tag or a barcode to scan. 

e) Customization: The ability to respond to changing production capacity and 

flexibility within a product family falls under customization.  A controls system 

should orchestrate speeds of different motions within machines and transport 

systems such as conveyors to cope with volume demand and product variants.  
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Table 3.1: Hardware and Software Characteristic Requirements for RMS System 

 

RMS  Characteristic 

Customer requirements 

(CR) 

Hardware characteristic Control software characteristic 

Modularity -Modular machines 

-Modular system 

-Use of subroutines 

-Use of function blocks 

Integrability -Using ISO components same foot 

print, can be interchangeable 

-Open architecture 

Diagnosability -Use sensors for feedback on all 

actuators 

-HMI to display faults 

-Server to store faults 

Convertibility -Flexible tooling, 

-Changeable end effectors 

-Flexible layout 

-Use RFID technology for tools and 

end effector identification 

 

Customization -Ability to scale production volume 

-Ability to run a family of product 

variants 

-Use variable speed control on 

transport system 

-Use servo slides for motions 

-Use RFID technology to identify 

variants  

 

3.3.2  Controls Hardware Identification 

By analogy to human anatomy, controls hardware represents the nervous system.  A 

controls hardware system is usually dictated by mechanical design.  Configurability, 

entailing modularity of design for system and individual machines, as a main 

characteristic, is to build from the ground up.  Using reconfigurable machines definitely 

helps establish a reconfigurable system.  Selected field sensors and actuators must assure 

good functionality of equipment and safe use of machinery.  Safety of operators is crucial 

in manufacturing and controls industry, and is incorporated in many Government 

regulations such as OSHA in North America or the Machine Directive and ISO Standards 

in Europe. Safety requirements are well documented and guidelines should be followed 

by designers and programmers alike.  In this phase, interlock signals, exchanged between 
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machines such as “machine is ready for part”, “machine cycle done”, etc., are defined and 

standardized.  All engine assembly lines use RFID to track product evolution during 

production; stations are equipped with readers and pallets with tags.  Figure 4.5 shows a 

typical machine with PLC, sensors, and interfaces.   

 

  

 

Figure 3.5: PLC Rack Connected to Field Sensors and IT  

3.3.3  Control Software Design 

An objective in controls development is the ease of rewriting or modifying software each 

time a Reconfigurable Manufacturing System changes, thus the need for a reconfigurable 

controls program.  Major automotive manufacturers plan to run multiple engine 

architectures on engine production lines for two reasons: 1) To optimize the enormous 

investment required to build a new engine line, and 2) To cope with the short life cycle of 

internal combustion engines according to the increasingly stringent regulations for fuel 

consumption.  An engine life cycle has over last decade been shortened from 10 years on 

average to only three years.  Automotive manufacturers consequently retool lines every 

two to three years.  It is challenging to retool a manufacturing facility such as an engine 

assembly line in full production, hence, the search for control system flexibility and 

reconfigurabily.  The industry has a “2+1 specification” for new engine lines, which is 
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the capability to build two current products architectures and still able to run a future 

model.  This is possible by embedding reconfiguration principles in both system software 

and hardware.  A literature survey within this research field indicates attempts to develop 

required logics for RMS using different methodologies and languages.  Nevertheless, 

none could successfully replace the mature PLC Ladder logic which electricians master.  

The methodology chosen for this research is inspired by component-based software 

technology, meeting requirements for re-configurability, while being based on Ladder 

logic for programming.   

3.3.4  PLC Functions in Production Machine 

PLCs dominate controls and automation as the brains to a production machine, since their 

invention. They have evolved from basic functions as replacements to the relay logic, to 

more sophisticated devices, with multiples functions, due to technological advances in IT 

and electronics and the constant demand for additional functionality.  The major tasks 

that a PLC supports are: 

a- Operation sequencing: Hardware design of PLCs and physical I/O cards allow 

for signal collections from controlled systems and generation of output signals 

applying to the system.  Inputs are usually discrete signals from different 

components of machinery occurring in responding to PLC outputs or external 

factors.  PLC programs produce desired outputs in right sequence  for machines 

control. 

b- Safety devices monitoring: Every production machine has devices ensuring 

safety of operators and preventing damage to components in case of unforeseen 

events or malfunctions.  Emergency stops, light curtains, safety mats, etc. are 

constantly monitored. 

c- Error handling: A PLC program should detect any malfunction in a machine 

component, and act according to a programmed response to the fault.  The 

response could be an error message, a controlled shutdown of machine, or other 

preprogrammed reactions. 
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d- HMI messages: The most automated cells in production still require human 

intervention to reset a fault from malfunction or simply run a manual cycle for 

maintenance: HMI are used to enable such human-machine interactions. They 

display cell statuses and faults and other data of interest to production or 

maintenance personnel.  The function of a PLC is to generate these messages and 

send them to the HMI; a PLC also takes inputs from HMI and processes them. 

e- Part tracking: PLCs are gaining similar computing power and memory to those 

of PCs, due to advances in technology.  Tasks are also becoming more complex as 

programmers are constantly requested to add new features to satisfy machine 

users.  Part tracking is an example of task a PLC controls. 

f- Data transfer via Ethernet to a corporate network for reports: PLCs are 

integral in the corporate network.  They are monitored and programmed remotely 

from anywhere, with programs uploaded for archiving and data exchange for 

production supervision or otherwise, as deemed necessary. 

Each of the above functions is programmed in PLCs, based on many function blocks for 

each associated task. 

3.4  Component-based Software Technology  

Component-based software is a mature concept in software engineering, as it aims at 

reusing proven coding to ensure savings and guaranty reliability.  Databases of built 

software components render new program developments a matter of assembling standard 

components (Szyperski, 1998).  Software components emerge as communication network 

boxes linked with connecting wires, similar to physically interconnected hardware 

components (Cox and Song, 2001). 

3.4.1  Software Components Definition  

A software component is an independent entity that executes a predefined task.  It is a 

standard software element fitting a model with the ability of independent deployment 

without modifications (Councill, 1998).  A software component is a unit with specified 

interfaces and content facilitating integration of third-party developments. 
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3.4.2  Software Component Characteristics  

Coding for Software components should be: 

 Standard, yet conform to class specifications like interface, meta-data, 

programming language, documentation, and means of deployment; 

 Independent, for launch and composition without needing other specific 

components - Components need external services, at instances, in which case they 

should be declared and grouped separately; 

 Composable, interacting with environments with predefined interfaces, yet 

allowing external components to access information and attributes; 

 Deployable, to function alone as self-contained entities, and 

 Documented, for users: Documentation should encompass interface and complete 

programming details including syntax and semantics. 

 

Logic function blocks if used correctly, as described in IEC 61131-3, have all of the 

above characteristics, and could be geared at developing a component-based controls 

system. 

3.5  Summary  

In this chapter, benefits of using systems engineering in the design of controls systems 

for hardware and software are discussed. The Vee model was chosen in this thesis due to 

its simplicity. Component-based software was also introduced with advantages 

elucidated. A methodology of software control system is introduced in next chapter 
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CHAPTER 4 

 

Control Software Development Methodology 

A methodology to design and develop controls software is presented in this chapter. A 

case study “Manual work station”; is detailed, all steps are demonstrated sequentially. 

4.  Component-based Approach to Machine Controls Software 

Distributed architecture accommodates best this proposed research: Each machine is 

controlled separately, to run in a standalone mode, and can also be considered as a 

module in building an engine assembly line.  Machines are mechanically built as modular 

as possible, for 

 

Figure 4.1: Modular Design for Manual Workstation 

reconfigurability.  Controls logic should be modular for each mechanical module.  The 

granularity of a controls system depends on that of the mechanical design. Granularity 

means to what extent to decompose a mechatronic system.  Granularity of reconfigurable 

controls software must be equal or lower than that of the mechanical design.  A 

cladogram methodology is used herein to decompose controls software into required 

granularity.  Figure 4.1 presents a modular design for a manual work station equipped 

with all controls hardware. A pragmatic approach should create a system with least 

granularity while providing all necessary system variants, like minimizing the number of 
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modules required within a given system and still remaining able to build any desired 

machine configuration (Harrison et al., 2007).  In practice, special attention should be 

made to the desired functionality for reuse, while maintaining modularity. 

Mechanically, a manual station as that on Figure 4.6 decomposes into: 

1. A conveyor body; 

2. A pallet stop, and 

3. An electric motor. 

Controls wise the station can be decomposed into: 

1. A PLC station controller (Controller/Brains); 

2. An electrical motor control (Output 1); 

3. A pallet stop control (Output 2); 

4. A HMI for operator interface (Output3/Input 4); 

5. A RFID antenna for pallet identification (Output4/Input 5); 

6. A proximity switch to detect presence (Input 1); 

7. A proximity switch to detect any stop raised state (Input 2); 

8. A proximity switch to detect stop lowered state (Input 3); 

9. Feedback to indicate motor running (Input4); 

10. A feedback for motor faulted (Input5), and 

11. A feedback for stop faulted (Input 6). 

4.1  Decomposition of Controls System 

Distributed controls architecture for hardware system is chosen for this research, to allow 

creation of modular controls system satisfying RMS needs.  Moreover, PLC 

programming should follow components-based software technology as a prerequisite to 

satisfy RMS principals, hence, the need to decompose the controls system into optimum 

granularity. It is possible to create more complex products varieties by defining a finite 

number of basic production tasks.  A production system can be seen as a set of controls 

components with devices in control of basic tasks, then combining the basic mechatronic 

components can result in complex assemblies.  Basic mechatronic components can be 

reused to create different assembly systems with complex activities, merely by 
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reconfiguring simple components (Harrison et al., 2007).  A cladogram could be used to 

granulize controls and decompose it into basic components. 

4.1.1  Decomposition of Controls System using Cladistics 

Many methodologies are used in the literature to decompose systems.  Systematically, 

DSM is frequently used in systems engineering for modularization.  Systems are dealt 

with easily if decomposed into basic elements.  Such approach is very effective for 

analysis, representation, and modeling (Browning, 2001).  An original method was used 

by AlGeddawy and ElMaraghy (2013) for system decomposition and optimum 

granularity for modular product design.  The methodology lends itself very well to the 

current research seeking the best granularity of built blocks (Logic Function Block) for 

designing complex systems. The manual station of Figure 4.1 is used as a case study to 

explain the Methodology which is divided in multiple sequential steps: 

A STEP 1 – Identification of Control System Components 

Table 4.2 contains all controls hardware components of a manual assembly system. 

Associated numbers or letters are used to ease the manipulations.  The table shows the 

modules for the manual work station in Figure 4.1. 

Table 4.1: BOM for Manual Work Station 

Number Component Name Symbol 

1 An electrical motor control A 

2 A pallet stop control B 

3 A HMI for operator interface C 

4 An RFID antenna for pallet identification D 

5 Proximity switches to detect pallet presence E1,E2 & E3 

6 A proximity switch to detect stop raised state F1 and F2 

7 A proximity switch to detect stop lowered state G 

8 A Feedback to indicate motor running H 

9 A feedback for electrical motor faulted I 

10 A feedback for stop faulted J 
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B STEP 2 – Building DSM to Capture Data Relationships 

Interaction between components includes many types: Spatial interaction consists of 

components sharing the same or adjacent space to be linked mechanically; by exchanging 

energy such as electrical power; or by exchanging material or information, namely data 

and signals (Eppinger and Browning, 2012).  A controls system is more of an information 

exchange as used in this case study: “1” is chosen to represent an element exchanging 

information while “0” is used for no information exchange. 

The original DSM matrix is shown in Table 4.2. The matrix is 13x13 in size per system 

architecture and few inputs are shared by different modules or appear duplicated. 

 

Table 4.2: Original DSM Matrix 
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C STEP  3– Cladogram Generation using Phylip Software 

 

The Original DSM matrix is inputted to the Phylip cladistics software analysis tool to 

build a most parsimonious classification (Cladogram) for system components 

(http://www.phylip.com). The result is shown on Figure 4.2. 

 

Figure 4.2: clustering results from the Phylip Software Analysis tool 

(http://evolution.genetics.washington.edu/phylip.html) 

 

The cladogram of Figure 4.3 shows five levels of granularity. 

 

Figure 4.3: Manual Station Cladogram with Levels of Modularity 

1 

http://www.phylip.com/
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D STEP 4 – DSM Matrix Rearrangement  

The DSM matrix is rearranged according to the cladogram results, from left to right.  

Table 4.3 shows the rearranged DSM matrix. 

 

Table 4.3: Rearranged DSM Matrix 

 

 

E STEP 5 – Calculation of Modularity Index 

To determine the optimum granularity for a system, a modularity index, MI, is calculated 

for each level of granularity.  The smallest MI corresponds to the best granularity. 

                                       MI=I+Z                                      (4 .1)  

I: Is the number of “1” elements in the DSM outside a given cluster, and  

Z: is the Number of “0” elements inside the cluster. 
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Granularity level one results in two clusters shown on Table 4.4: MI1= 86+2 = 88. 

Table 4.4: Granularity Level 1 

 

Granularity level two as presented on Table 4.5, indicates MI2 = 44+2 = 46. 

 

Table 4.5: Granularity Level 2 
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Granularity level three is shown on Table 4.6, and MI3 = 14+8 = 22. 

Table 4.6: Granularity Level 3 

 

Granularity level four is shown on Table 4.7, leading to MI4 = 4+18 = 22. 

Table 4.7: Granularity Level 4 
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Granularity level five is presented on Table 4.8, and MI5 = 4+22 = 26. 

Table 4.8: Granularity Level 5 

 

Levels 3 and 4 have similar modularity indexes with the only difference being one 

connection.  Level 3 is adopted in this case as system decomposition to four elements.  

The extra component generated by Level 4 (J, B) does not have a specific functionality 

by itself. Components (H, I, A), (J, B, E, G, F), (C, E2, F2), and (E3, D) are basic 

components in the manual workstation: (Motor), (Stop), (RFID), and (HMI).The system 

encompasses four Function Blocks  

 FB200: Motor Control Function Block; 

 FB220: Stop Function Block; 

 FB230: HMI Function Block, and 

 FB240: RFID Function Block. 

Function blocks are developed in Chapter 5 as applied to a case study.  The 

decomposition methodology presented is straightforward, and can be applied to any 

control system, regardless of size. 
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4.2  Conceptual Design of PLC Logic using Axiomatic Design  

Controls programs are designed and implemented based on programmers’ experiences, 

similar to software design.  Programs often begin with a program’s draft copied from a 

similar existing machine which is then adapted, tested many times, and subjected to 

extensive debugging.  At times, resources (time and money) are wasted unnecessarily, 

and projects’ budgets end-up exceeding estimates.  This results from the lack of use of 

fundamental principles and methodologies for software design, despite the availability of 

various methodologies (Suh et al., 1999).  Axiomatic Design was first introduced as a 

general solution to design then adapt software design.  It imposes a systematic thinking to 

satisfy customers’ requirements.  The methodology in itself is simple, but requires 

experience and practice to master. 

4.2.1  Axiomatic Design Principles  

The Axiomatic Design methodology is built on two “axioms”: 

1) Independence Axiom: This assures the independence of functional requirements, 

with best designs being decoupled, and 

2) Information Axiom: This keeps information content to a minimum, where best 

designs have the highest probability of satisfying functional requirements. 

Axiomatic Design divides relies on four domains, as shown on Figure 4.4.  

 

              Figure 4.4: Axiomatic Design Domains (http://www.axiomaticdesign.com)  
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Mapping between four domains is referred to as “Zigzagging” and brings system’s 

decomposition to a cellular level.  Cladograms decompose a control system to the best 

granularity. Axiomatic Design further decomposes it to basic components: 

 

 

 

 

 

 

 

 

 

 

 

 

       Figure 4.5: Zigzagging between Domains in Axiomatic Design (http://www.axiomaticdesign.com) 

 

Axiomatic Design decomposes manual work station components. Figure 4.6 represents 

the matrix and Figure 4.7 shows zigzagging. 
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Figure 4.6: Axiomatic Design Matrix for Assembly Station Stop in Acclaro 

 

 

Figure 4.7: Tree FR-DP Zigzagging  
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4.3  Control Logic Programming Language 

 The literature review on controls within this research proved to be abundant in 

programming languages especially in academia, but unfortunately none of such 

languages are used in industry. The reasons for this were discussed previously, but most 

important being limitations of available languages in PLC platforms provided by major 

manufacturers.  This consequently limited alternatives for controls language development 

in this research.  All major PLC manufacturers follow IEC 61131-3 Standard for 

programming, established by the International Electrotechnical Commission (IEC). The 

intent is achieving program portability from one PLC brand to another, without changes, 

which is a goal yet to be attained.  The standard defines five standard programming 

languages for PLC: 

a- Ladder Logic (LL): This originated in the USA, and uses graphics in Relay 

Ladder Logic (RLL) - It is the most used language due to simplicity; 

b- Sequential Function Charts (SFC): These were developed from the Grafcet 

theory, and break sequential tasks into Steps, Transitions, and Actions - 

Advantages include easiness of following a machine sequence, with the approach 

usually combining with other languages to produce complete programs; 

c- Function Block Diagram (FBD): This is widely used in process industry to 

express the behavior of functions, like circuit diagrams in electronics - It sees a 

system as a flow of signals through processing elements; 

d- Instruction List (IL): This is a machine language that resembles an assembler 

programming for microprocessors and uses text  for complex functions, and 

e- Structured Text (ST): This can be seen as an advanced language, with modern 

essential elements for coding. It is very effective in defining complex function 

blocks for third-party usage. 
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These Programming languages divide into two distinct categories, graphical and textual, 

yet can be combined into the same program if needed (Hajarnavis and Young, 2008).  

Hajarnavis and Young evaluated the use of PLC programming languages by five teams 

with different levels of experience in implementing simple process changes. They 

concluded that Ladder logic was the easiest to use and still produced the best results.  

Hence, Ladder logic was adopted as a programming language in this research. 

4.4. Function Block Development  

A limitation of this research is programming language. The thesis is focused on industrial  

 

Figure 4.8: Manual Station Function Blocks 

use, thus the choice of Ladder logic amongst five programming languages offered in 

IEC61311-3.  Decomposition of manual work station resulted in four distinct objects: 

Motor, Stop, HMI, and RFID.  Figure 4.8 lists the function blocks developed for the 

manual workstation.  

The aim of this thesis is to create a library of Function Blocks for each possible 

mechatronic component on an engine assembly line.  A survey of controls hardware was 

completed by a major car manufacturer in North America. Table 4.9 lists the mechatronic 
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components used.  The plant adopts Siemens hardware.  The logic for simple components 

is easy to write, then encapsulate as function blocks and store in a library for use when  

 

needed.  Architecture has to be defined for block communication.  Block input and output 

signals must be identified and carried out through the project.  Upon finishing building 

the project’s library, writing logics becomes easier, consisting of assembling logic blocks 

in a sequence to form a machine program: Sequential Function Charts are adopted for this 

purpose.  Figure 4.9 shows an example of program using SFCs for a manual work station; 

it calls and executes FBs sequentially. 

  

             Figure 4.9: Sequential Flow Chart for a Manual Work Station 



 

47 
 

   

4.5  Function Block Testing 

Each function block needs debugging and testing before implementation.  Every PLC 

manufacturer has built-in debugging functionality in programmed logics.  The program 

detects syntax errors and signals them during compilation.  Some software include 

simulation to validate written programs.  Siemens Step 7 programming software for 

instance has a module for simulation to run without updating all physical outputs - 

allowing a programmer to try a program without fear of damaging a machine in case of 

coding error.  Indeed it is easier to debug simple Function Blocks before running them on 

actual machinery, but testing complicated FBs such as RFID blocks remains challenging 

and requires field trials because of complexity. 

4.6  Machine Logic Testing 

Function blocks are assembled in sequence to form a machine program after they are 

written.  Simple machines can be easily debugged and tested, while complex machinery 

requires time and efforts to prove the functionality of programming.  Many tools are 

available to test machine logic before trials in the field.  Hardware in the loop consists of 

creating 3D simulation for a complete machine. All Computer-aided Design (CAD) files 

for standard equipment like robots are provided by manufacturers, for simple imports for 

simulations and integrations with other devices for complete systems.  An Input/Output 

(I/O) map is then generated to link each component in the system to be prepared to run on 

a computer screen.  An HMI is often added to validate manual functions of the machine, 

and screen messages.  Such tool produces value to the development of software (Gu et 

al., 2007) in terms of: 

 Helping evaluate control strategies implemented very early and before a machine 

is physically built; 

 Assisting failure testing without fear of damaging equipment; 

 Allowing simulations of worst case scenarios without potentially harming 

operators or machinery; 

 Helping investigate interaction between all devices, and 
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 Ensuring high quality levels. 

4.7  Engine Assembly General Controls Hardware  

Many mechatronic devices are used in an engine assembly.  A survey by a major car 

manufacturer in North America helped focus this research on key components.  Table 4.9 

lists the related hardware.  Each of these components requires at least one Function Block 

for controls.  It is worth compiling them in a library to use when required. 

Table 4.9: Survey on Mechatronic Components in an Assembly Line 

Controls Device Maker 

Industrial Robots ABB 

RFID Siemens 

Servomotors Siemens 

AC Motors Eurodrive 

Vision systems Cognex 

Press Promess 

Variable Frequency Drive Siemens 

Machine Human Interface Siemens 

Pneumatic valves  Festo 

Pallet Stop ABB 

Audible alarm Siemens 

Barcode reader EMS 

Barcode Printer Sato 

Contactors Siemens 

Bolt Rundown Atlas Copco 

 

Each machine is mainly composed of a few basic components listed in Table 4.9.  The 

objective is to create a library of function blocks for each component, to store for use 

when needed. 
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4.8  Formalization of Controls Software Modularity Method 

 The methodology presented in this chapter involves systems engineering design for 

controls software.  It can be recapitulated in: 

 Step 1: Define the mechatronic devices used in an assembly machine; 

 Step 2: Follow the DSM methodology presented in this research to decompose the 

mechatronic system into the best granularity; 

 Step 3: Use Axiomatic Design to decompose the resulting DSM module into 

cellular level: I/O and holding memories; 

 Step 4: Use Ladder logic (IEC61131-3) to create logics for each module and 

encapsulate the resulting code in a Function Block; 

 Step 5: Debug the FBs using Siemens Step 7 software then store them in a library; 

 Step 6: Use Sequential Function Charts programming language to build a machine 

controls program from the designed library; 

 Step 7: Test  machine control logics with hardware in the loop simulation then on 

the physical machine, and 

 Step 8: Document each FB after validation and deploy the rest of machines in the 

assembly line. 

4.9  Summary  

This chapter presented a methodology for modular and reconfigurable control software 

design and implementation.  A Vee model process was adopted from a systems 

engineering approach to develop a RMS controls system.  A Design Structure Matrix for 

the system was built allowing decomposition of the mechatronic system into basic 

modules using cladistics.  The control system modules were then further decomposed 

using Axiomatic Design.  All design parameters were identified and used to write the 

controls Function Blocks (FB).  Resulting FBs were stored in a library then retrieved as 

needed to build a control program for a manual work station.  This way writing machine 

programs became a matter of using ready and tested FBs, thus achieving the goal of 

modular design that satisfies the reconfigurability requirements of a changeable engine 

assembly system.  Chapter 5 is dedicated to implementing the developed methodology in 

a case study and presents related results. 
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CHAPTER 5 

Manual Workstation Code Generation 

The manual station presented in this chapter constitutes a case study #1 of building a 

complete program for the station. Function Blocks (FBs) are generated using Axiomatic 

Design (AD) before assembly to form a machine program. Case study #2 consists of 

modifying the machine hardware used by including a new component; a stop is chosen 

for this purpose. The ability to modify the controls system easily and allow the new 

functionality is demonstrated in this chapter.  

5  Case Study 1: Manual Workstation Program Generation 

5.1  Motor Control FB Development 

The process of developing a motor control FB begins with the design of logic. Axiomatic 

Design is used to define the machine’s Functional Requirements (FRs), Design 

Parameters (DPs), and Design Matrix (DM).Acclaro software is used to help generate a 

flowchart showing relationships between components. The process is demonstrated step 

by step for one Function Block, FB 200, or “Motor Control”. 

5.2  Design Matrix for Motor Control FB 

The design matrix in AD builds relationships between FR and DP vectors.  Customer 

Requirements (CRs) derive from FRs by asking ‘What’ and DPs by asking ‘How’ 

questions. Matrix D represents mapping between domains, and can be written as: 

{FR} = [D] {DP}                                                                     5.1 

{FR} represents the FR vector; 

{DP} gathers the DP vector, and 

[D] is the design matrix. 

Acclaro Software V5.3 is used to represent design matrix and flow chart. First, FRs and 

DPs are generated through series of what and how queries while zigzagging between the 

two domains; Table 5.1 shows Motor Control FB decomposition: 
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Table 5.1: Motor Control FB Decomposition FR1- DP1 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 5.1: FR1 - DP1 Motor Design Matrix 

 

FR1 decomposes into: 

Table 5.2 Motor Control FB Decomposition FR1Xs- DP1Xs 

FR1: Drive Conveyor  DP1: Run Conveyor Forward 

FR2: Provide Motor Status DP2: Display Status on HMI 

FR11: Start Motor DP11: HMI Start Button 

FR12: Stop Motor DP12: HMI Stop Button 

FR13: Jog Motor DP13: HMI Jog Button 
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Each FR follows the same process, as shown on Figure 5.2 shows the next level of 

decomposition FR1X DP1X . 

 

Figure 5.3: FR1X - DR1X Motor Design Matrix 

Decomposition continues till all FRs and DPs are determined, resulting in a complete 

design matrix for Motor Control. The resulting DM is shown on Figure 5.4. It is clear that 

the system is uncoupled, which will result in a viable design.  A flow diagram is 

generated using Acclaro software, to serve as a blueprint for the FB development. The 

flow diagram shows sequences and system decomposition as well as Inputs and Outputs 

and internal memory registry to hold data for faults and HMI. Figure A.1 and A.2 

attached in Appendix A present more detail on such developments. 
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           Figure 5.4: Complete Motor Design Matrix 
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5.3  Motor Control FB Development  

The flow chart in Appendix A delimits all elements the Motor Control FB encompasses, 

I/Os, and internal holding memory registers for the program to develop. The flow of the 

program is also demonstrated. The diagram provides the programmer with a roadmap for 

FB coding. The FB program is included in Appendix B for reference. , FB 200 (Motor 

Control) is archived and stored for future use. 

The same steps are duplicated to generate FB 220 (Stop Control FB), FB 230 (HMI 

Control), and FB 240 (RFID Control). These blocks are stored in a library, as shown on 

Figure 5.6. 

 

 

 

Figure 5.6: Function Block Library for Created Function Blocks 

 

5.4  Manual Work Station Program Building 

Creation of machine program is effortless after gathering all building blocks. Siemens S7 

software is used to create a program that calls all developed FBs. The task relies on a FC 

(Function Call) block that reaches out to all FBs following a machine sequence. A 

manual work station series of operations is described hereafter. 

A pallet enters a station, while a mechanical stop holds it in position with a proximity  
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switch detecting its presence; then a ‘RFID read’ is trigged to identify the required task.  

Once the work is completed, the FRID updates the status to the tag, and an operator 

releases the pallet by pressing a programed button on the HMI. The stop is actuated and 

the pallet is set for transfer. Once a pallet leaves the station, the cycle repeats. Figure 5.7 

illustrates the related FC program. 

In sequence: 

 

 FB200: Motor Control Function Block runs the machine conveyor; 

 FB220: Stop Function Block controls the stop; 

 FB240: RFID Function Block reads all required tasks; 

 Work In progress completes; 

 FB240: RFID Function Block writes operations’ status; 

 FB230: HMI Function Block triggers display and releases the pallet, and 

 FB220: Stop Function Block releases the pallet. 

The complete program is attached in Appendix C. 

5.5  Case Study 2: Addition of Stop to Work Station 

5.5.1  Re-configurability Capability 

Reconfigurability is the ability to add flexibility on demand.  This case study 

demonstrates reconfigurability by adding a stop to the manual work station case study. 

One goal of this research is to highlight the claim of reconfigurability of methodology 

developed by including a new module. A stop is selected herein because of the 

availability of its FB.   All FBs can be easily added and deleted when a machine is altered 

due to the program structure modularity. 
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Figure 5.7: Manual Station FC Program Sequence 

  

Run Conveyor   Read RFID  

Task Time Write RFID 

Stop Release 

 

HMI Control 
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Added Stop #2 

5.5.2  Addition of New Module to Machine 

Controls software updates are required when adding hardware to a machine. Today in the 

Automotive Industry, any hardware change unfortunately necessitates extensive 

programming, due to programs’ architecture and structure.  Programs are written in 

Ladder Logic, and are specifically coded for prescribed tasks. It is certainly very 

challenging to rework a machine, by adding functionality, which entails addition of 

mechanical components that in turn drive changes in programming. Downtime is not 

permitted in manufacturing, especially in the Automotive Industry, because of associated 

prohibitive costs. The purchase of complete new machines is in fact preferred in 

manufacturing plants as they get delivered with prescribed software programs (already 

written).   

 

 

 

 

 

 

 

 

         Figure 5.8: Reconfigured Manual Work Station 

Introducing such new preprogrammed machines to production lines is better seen by 

production personnel instead of reworking or reprogramming existing production 

machinery existing on production floors.  The work proposed in this research alleviates 

this problem: The addition of a stop for the manual station case study is shown to result 

in a station with two positions that can handle more tasks. Figure 5.5 represents the new 

machine layout. 
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An approach similar to that in 5.1.4 is to use, first, by defining the sequence of operations 

then designing a FC responsible for calling all FBs in sequence to accomplish the new 

predefined tasks. In this instance the RFID is assumed not to be required: No task is 

getting done at the station; it is only a trafficking stop. The said stop is to add 

downstream of engine flow, keeping the first sequence of operation for the first stop 

intact. Only additional stop FB needs incorporation at the end of the first program:  

Figure 5.9 highlights the program sequence; the new station is delimited by a red dashed 

line. 

 FB200: Motor Control Function Block runs the machine conveyor; 

 FB240: RFID Function Block reads the required tasks; 

 Work In progress completes; 

 FB240: RFID Function Block writes the operations’ status; 

 FB230: HMI Function Block displays the status and releases the pallet; 

 FB220: Stop Function Block releases the pallet; 

 FB220: Stop Function Block controls the stop; 

 FB230: HMI Function Block, triggers display again and to release once more the 

pallet, and 

 FB220: Stop Function Block releases the pallet. 

The new machine setup only requires minor program changes on the FC already running 

the station. With countable keyboard stokes the new FC gets modified. It then becomes a 

matter of inserting the FBs sequentially. The new FC is attached as Appendix C. 
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Figure 5.9: Reconfigured Manual Workstation Program 
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5.6  Summary  

This chapter discussed two case studies. Case study #1 introduced in Chapter 4 explained 

a methodology essential to this research, and all stages were discussed. A logic program 

for a machine is easy to write as proven herein, once a mechatronic library is completed. 

Related programs are left to appendices because of size limitations. Case study #2 proves 

that modifying the controls logic of a running program is simple.  All steps are also 

discussed here, while programs are left to the appendices. 
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CHAPTER 6 

Conclusions and Future Work 

 

6 Conclusions 

A design process is presented in this thesis to help controls engineers develop 

reconfigurable codes for reconfigurable machines and systems. Chapter 1 introduced the 

motivation for the design of a reconfigurable control system for an engine assembly line, 

and outlined objectives and motivation for the thesis. Chapter 2 presented a thorough 

literature survey investigating various academic methods and researches, but none of the 

methodologies were industry ready. Chapter 3 investigated systems engineering approach 

for control software design. Chapter 4 proposed a novel method to design and develop a 

reconfigurable and industry-applicable controls system. A case study to support the 

methodology was presented in Chapter 5. Chapter 6 contains conclusions and discusses 

the entire thesis while proposing continuations to this work.  

The proposed design method for in this thesis requires reconfigurability of mechanical 

system as a condition for use, in terms of modularity. A distributed architecture for 

controls is also required. Best results are obtained if mechanical hardware and controls 

are closely coordinated at the development stage. The methodology proposed in this 

thesis offers several benefits, such as time savings for control software designs, retooling 

time minimization for machinery compared to current industrial practices, maintenance 

of actual tools and programming languages known on production floors. The proposed 

metrology resulting from this research leads to a robust control software, especially when 

reused many times. Ladder logic is currently the most valuable element for plant floor 

personnel and the only language every electrician and most controls engineers use and 

master per resemblance to electrical diagrams. Other high level language seems to add 

abstraction to reasoning, and can cause major challenges to production if and when 

problems arise during the life cycle of manufacturing system. The second axiom in the 

Axiomatic Design encourages minimization of information content in any design, and 

considers as best design that containing the least amount of information, or the simplest. 

The methodology presented herein is systematic and easy to use, and can conclusively be 
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adapted to develop coding, using existing tools and programming methods, in a 

systematic manner geared to production reconfigurability.  

6.1  Contributions 

Main contributions from academic and industrial perspectives of the research presented 

herein include: 

 Adoption of Component Based Software ideas to develop a machine control 

program; 

 Introduction of DSM matrix and Cladograms, modularity measurement, and 

modularity indexing as a new contribution to control logic design; 

 Implementation of a systematic methodology for the decomposition of 

mechatronic devises into modules for the creation of logic Function Blocks; 

 Conceptualization of design for Function Blocks using Axiomatic Design, to 

simplify designs resulting in robust and reliable coding with minimum 

information; 

 Development of conceptual design further into the creation of Library of Function 

Blocks using Ladder Logic; 

 Creation of a machine program using Function Blocks, by means of Function Call 

(FC) readily available in the IEC 61311-3 (similar to calling subroutines in high 

level coding languages). The FBs sequentially call to execute given tasks; 

 Demonstration of Ladder logic’s ability to using FBs in creating control programs 

for a Reconfigurable Manufacturing System, and 

 Reduction in control software design, significantly, by using available/book-

shelved FBs, leading to substantial savings in budgeting assembly lines. 

6.2  Research Significance  

The methodology introduced controls program development supporting the re-

configurability paradigm. An engine assembly production line is selected as a case study. 

The proposal is simple, systematic, and easy to implement. Systems engineering 

methodology, namely the “Vee model”, was adopted to the process. The approach 

consists of two main phases: 1- Decomposition of mechatronic systems to best 
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Granularity, and 2- Axiomatic Design as a conceptual design for FB creations. The case 

study demonstrated the use of Ladder logic to develop control programs for 

reconfigurable machines. 

Modularity accompanies granularity. A DSM matrix is created for the mechatronic 

system with information exchange as a link; then a Cladogram is generated to decompose 

the system in visually distinguishable modules with modularity indexes calculated for 

best result validation. It is a very important phase dictating the number of modules to be 

used for each machine. Still, the methodology could be fully automated. 

Conceptual design of FBs is simplified with the use of Axiomatic Design where each 

module is decomposed to basic components. A flow diagram is then generated using 

Acclaro software. The flow chart is used as a blueprint in subsequent coding as it saves 

time in designing and debugging controls software. The software uses CRs, FRs, and DPs 

a designer identifies. The software then generates a design tree and flow diagrams. 

The challenge remains in choosing a programming language to develop FBs. Ladder 

logic and IEC 61311-3 Standard govern PLC programing languages, even if they lack 

academia’s consensus for use within reconfigurable manufacturing. Ladder logic is well-

developed with a proven performance record in industry. This thesis demonstrates that 

Ladder logic can still be used to build modular programs that are easily debugged and 

reused. Ladder logic suits the latest PLCs, becoming very powerful in programming 

interfaces, with abilities to handle any task. 

6.3  Industrial Significance 

The research presented in this thesis is geared towards industry, and the case study is an 

actual manual work station. Many benefits could be cited. The control cost for a 

manufacturing system such as an automotive engine assembly is 30 to 40 %, where about 

15 to 20 % is in software development. Creating a library of Function Blocks by itself, to 

use in an entire project, can easily save about 10% in development costs. Validated 

control modules for reuse should result in robust and fault-free programs. The use of 

Ladder logic saves on training costs for maintenance personal. Axiomatic design help 
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programmers produce codes along a systematic foundation contrarily to the current 

method of copy, paste, and modify until reaching a working (not an optimal) outcome.  

6.4  Limitations 

The methodology presented in this thesis still seems to have, as of now, a few limitations: 

 Complex functions that require math and calculations will be challenging to code 

in Ladder logic. In these special cases, the methodology stands but the coding has 

to be completed using STL or appropriate language for the application. An 

example would be RFID function block that requires the manipulation of data as 

well as commands that is easily handled by STL language.  

 The methodology is only applicable for distributed controls architecture as it 

assumes modularity of hardware, which is a prerequisite for a reconfigurable 

manufacturing system; the control software is built to suit the machine hardware.  

  The machine programs require manual changes when modules are added or 

removed, the new program has to be edited, but only following copies and drops 

of FBs from libraries. 

6.5  Future Work 

Automating function block generation with Ladder logic should but increase the value of 

the methodology presented in this thesis from a reconfigurability perspective. A machine 

can potentially generate its program each time a module is added. IEC64199 is another 

standard well perceived in research, and investigating its usability and easiness of 

implementation in the developed methodology appears promising. 
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APPENDICES  

Appendix A: Motor Control Flow Chart Figures  

 

Figure A1: Motor Control Flow Chart 
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Figure A1: Motor Control Flow Chart (continued) 
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Appendix B: PLC Program for Manual Station in Figure 4.1  

 

 

 

Figure B1: PLC Program for Manual Station in Figure 4.1 
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Figure B1: PLC Program for Manual Station in Figure 4.1 (continued) 
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Figure B1: PLC Program for Manual Station in Figure 4.1 (continued) 
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Figure B1: PLC Program for Manual Station in Figure 4.1 (continued) 
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Appendix C: PLC Program for Manual Station in Figure 5.8  

 

 

Figure C1: PLC Program for Manual Station in Figure 5.8 
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Figure C1: PLC Program for Manual Station in Figure 5.8 (Continued) 
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Figure C1: PLC Program for Manual Station in Figure 5.8 (Continued) 
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Figure C1: PLC Program for Manual Station in Figure 5.8 (Continued) 
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Figure C1: PLC Program for Manual Station in Figure 5.8 (Continued) 
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Figure C1: PLC Program for Manual Station in Figure 5.8 (Continued) 
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