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ABSTRACT 

 

Spare parts inventory management plays an important role in many industries. They exist to 

serve the maintenance planning and a good planning can significantly reduce maintenance 

cost. This thesis developed a series of non-linear programming models to obtain optimal 

spare parts replenishment policies for failure-based maintenance in a single period. Both 

single Part Number case and multiple Part Numbers case with a budget constraint are 

addressed. Compared with traditional forecasting methods which only consider historical 

data, our proposed inventory policies take into account reliability issues and predict 

impending demands based on part failure distributions from two perspectives: failure time 

and failure numbers. Therefore, optimal order quantity and best order time can be found to 

realize total cost minimization, as well as a systematic inventory optimization. 
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CHAPTER 1: INTRODUCTION 

 

1.1  General Overview 

 

Spare parts inventory management plays an important role in many industries, such as 

airline, trucking, and manufacturing industries. Spare parts are interchangeable parts that 

are kept in an inventory and used for the repair or replacement of failed parts. The problem 

of offering an adequate yet efficient supply of spare parts, in support of maintenance and 

repair of aircraft, trucks, plant and equipment, is an especially vexing inventory 

management scenario. Most spare parts are very expensive and costly to keep in stock. 

However, they must be on hand once needed due to high cost of flight cancellation, logistics 

interruption or plant shutdown. 

 

In recent years, the investments in market of spare parts management are growing. 

According to Bacchetti and Saccani (2011), the estimation from Aberdeen Research pointed 

that the total market size for spare parts management software is over 100 millions dollars 

in 2005. In addition, compared with traditional inventory management, techniques for 

managing spare parts inventories should be different from the ones used for finished 

products or components used in production due to the following unique features of spare 

parts inventories. First of all, work-in-process (WIP) inventories exist to smooth out 

irregularities in production flows, and finished product inventories are held to deal with 

fluctuations in customer demand. Whereas the key concern of spare parts inventories is to 

http://en.wikipedia.org/wiki/Interchangeable_part
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help keep aircraft, trucks, equipment and plant in an operating condition. Furthermore, WIP 

and final product inventories can be adjusted by changing production rates, and expediting 

delivery. However, spare parts inventory levels are mainly determined by how equipment or 

vehicles are used and how they are maintained. In addition, the spare parts shortage costs 

are usually very high and sometimes not easy to gauge. Because maintenance parts 

stockouts may not only lead to significant production losses, but also intangible cost such as 

increased risk to operating personnel. Finally, obsolescence may also be a problem for spare 

parts due to their specialized uses.  

 

Extensive research has been conducted in this field. Thomas and Osaki (1978) provided an 

optimal ordering policy for a spare unit with lead time. Kennedy et al. (2002) analyzed the 

differences of spare parts inventories and work in process inventories, and discussed the 

unique aspects of spare parts inventories. Vaughan (2003) proposed a failure replacement 

and preventive maintenance spare parts ordering policy. Wang (2012) described a 

stochastic model for joint spare parts inventory and planned maintenance optimization. 

However, it is still an especially challenging problem because spare parts demands are 

usually generated by the need of maintenance which is difficult to predict based on 

historical data of past spare parts usages.  
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1.2  Proposed Research 

1.2.1 Research Topic 

 

Our research was motivated by creating an efficient spare parts inventory model to provide 

better service for maintenance needs. The objective of this research is to develop an 

effective approach to determine optimal spare part inventory policies with taking into 

account reliability issues. In details, this research involves: 

1) Analyze the features of spare part inventory management problem with considering 

the failure and maintenance process. In our research, we take airline industry as an 

example but the approaches and results proposed are not limited to the industry.    

2) Establish the mathematical models to help decision-makers to determine the best 

order time and the optimal order quantities so that the total cost, including 

purchasing, holding, and shortage costs, is minimal. The uncertainty on both the 

number of failures and the lifetime for each part is considered in the problem. 

3) Consider both single spare part and multiple spare parts with a budget constraint. It 

is very common that there are lots of spare parts in an inventory system and the 

company usually faces budget constraint when making ordering decision for those 

multiple spare parts. Thus it is more practical to investigate inventory policies for 

multiple spare parts with a budget constraint. 

4) Develop effective solution methods for the proposed model. Since the uncertainty 

on both the number of failures and the lifetime is considered, the proposed models 
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are nonlinear programming problems or stochastic programming problems, and they 

are difficult to solve, especially for multiple Part Number case. 

5) Make sensitivity analysis to compare different spare part ordering policies.  

 

1.2.2 Organization of Thesis  

 

This thesis is organized as follows. Chapter 2 describes two single part number (PN) models, 

a basic mathematical model and an improved mathematical model. The basic model 

assumes that the shortage period starts from mean time to failure (MTTF). Numerical and 

iterative methods as well as GAMS are employed to solve this model. The improved model 

takes into account accurate shortage time. Due to its complexity, only GAMS is applied in 

solution methodology. Both models are proved effective in cost reduction as reflected by 

numerical examples and their results. Comparisons of the two models are also discussed.  

 

Chapter 3 explores multiple PNs models with a budget constraint. As the results of GAMS 

and its solvers for large-scale instances are not reliable, we use a Lagrangian relaxation 

heuristic to relax the budget constraint and decompose the large sized problem. The 

advantage of the Lagrangian relaxation heuristic is that it can provide a measure for the gap 

between the bound of the optimal solution and the approximate solution. To overcome the 

instability of solvers in GAMS, we further combine an iterative method with the Lagrangian 

relaxation heuristic, and develop a numerical algorithm to find the optimal objective 

function value and decision variables. Both small sized and large sized examples show that 
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the gap between the bound and optimal solution is 0. Finally, Chapter 4 provides the 

conclusions and suggestions for future research. 
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CHAPTER 2: EFFICIENT SPARE PARTS INVENTORY 

MANAGEMENT FOR AIRCRAFT MAINTENANCE – SINGLE 

PART NUMBER (PN) CASE  

 

2.1 Introduction 

 

In airline industries, an operator has to deal with two types of issues: the aircraft operating 

cost and customer satisfaction. Aircraft maintenance planning plays a major role in both of 

them. On the one hand, based on an analysis conducted by the International Air Transport 

Association (IATA)’s Maintenance Cost Task Force, the maintenance cost takes up about 13% 

of the total operating cost, and it can be reduced by a good planning. On the other hand, an 

excellent maintenance program can effectively avoid flight delays and cancellations, thus 

improve customer satisfaction and competitiveness in the industry. Spare parts inventories 

exist to serve the maintenance planning. An excess of spare parts inventory leads to a high 

holding cost and impedes cash flows, whereas inadequate spare parts can result in costly 

flight cancellations or delays with a negative impact on airline performance. Since the airline 

industry involves with a large number of parts and some of them are quite expensive, it is 

important to find an appropriate inventory model to achieve a right balance.  

 

Compared with other industries, the airline industry is unique due to a combination of four 

market characteristics: global need for parts, demand unpredictability, traceability of parts 

for safety reasons, and high cost of not having a part. Traditionally, spare parts are generally 
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classified into four groups: Rotables, Repairables, Expendables and Consumables. For 

different categories, different replenishment policies are used. Rotables and Repairables are 

mainly based on predicted failures estimated by manufacturers, and the planning 

parameters are finished as management decision. As to Expendables and Consumbles, the 

reorder point system (ROP) is used and input comes from historical demand with estimated 

changes. However, this kind of inventory management is typically subjective and imprecise, 

thus is not an ideal policy. From a survey conducted by Ghobbar and Friend (2004), 152 out 

of 175 respondents were using the ROP system and about half were dissatisfied and 

considering implementing new systems. 

 

Our research was motivated by creating an efficient spare parts inventory model in order to 

provide better service for maintenance needs. When aircraft parts fail, they generate 

demand for spare parts, and are supplied from spare parts inventory. Under ideal situation, 

those parts should be in stock and in turn replenished by further activities such as 

purchasing or repairing. Demands will be satisfied immediately, and aircraft maintenance 

work can take place on schedule. However, if required spare parts are not available at that 

time, even purchase orders can be accepted by suppliers at once, delivery time is still a big 

issue that cannot be ignored. Postponed troubleshooting due to spare parts shortage will 

probably lead to flight delay or cancellation which will incur huge extra cost. Unfortunately, 

the second situation is hard to avoid because of uncertain parts failures, large number of 

parts, limit budget and warehouse space, etc. We try to establish an efficient spare parts 

inventory model that use minimum expense to achieve maximum productivity. Unlike the 
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previous inventory models that just address the problem of determining the amount of 

parts to be purchased, our efficient inventory model satisfies spare parts demands from two 

perspectives: quantity and time. Therefore, it can better improve service level and control 

the total costs which generally include purchasing cost, holding cost, and shortage cost. 

 

Rotables 

Complex components     

Normally unlimited number of repairs 

Normally no scrap is expected  

Controlled by individual serial number   

Exchange during maintenance 

Repairables 

components which can be technically and economically repaired:  

Under normal conditions, a follow up of each individual serial number is not necessary. 

Have limited number of repairs and also have a possibility of scrap 

Expendables 

cannot be repaired and will be scrapped after removal and inspection result is unserviceable 

100% replacement items 

Items which cannot be repaired (not economical to be repaired) 

Standard parts 

Consumables 

any materials used only once 

Raw material 

Chemical material 

Items which merge on production with new product and cannot be removed 

Table 1．Definitions of Rotables, Repairables, Expendables and Consumables 

 

In the context of our model, the installed parts failure distribution is introduced. We assume 

failures can be predicted based on maintenance data or manufacturer’s manual, and 

maintenance activities are the key drivers of spare parts demand. Advance orders are 
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triggered to reduce downtime caused by parts delivery time. In our analysis, we examine the 

parts failure distribution to find optimal order time and order quantity by considering that 

the lifetime and quantity of installed parts failure distribution may influence the duration 

and numbers of spare parts shortage or overstock, thus result to total cost fluctuation. A 

non-linear programming (NLP) model is presented with the objective of minimizing air 

carriers’ expected cost in spare parts. Numerical and iteration methods and GAMS are 

employed to solve the model. 

 

This chapter is organized as follows. In the next section, we give a brief literature review. 

Section 2.3 presents a basic mathematical model considering shortage period starts from 

mean time to failure (MTTF). Numerical and iteration methods as well as GAMS can be used 

to solve this model. We also develop an improved mathematical model, which takes into 

account exact shortage time, and its solution methodology in Section 2.4. Section 2.5 

illustrates the value of our models in cost reduction by numerical examples and their results. 

Sensitivity analysis and models comparison is conducted in the following section. Finally, 

section 2.7 provides the conclusions and suggestions for future research. 

 

2.2  Literature Review 

 

Over the past few decades, great efforts have been made to improve inventory 

management. Among those work, Ghobbar and Friend (2003) discussed the forecasting of 

intermittent demand in relation to these primary maintenance processes, and compared 
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the experimental results of thirteen forecasting methods. Regattieri et al. (2005) analyzed 

the behavior of forecasting techniques when dealing with lumpy demand, and made a 

comparison for twenty forecasting techniques. Both papers found that the best approaches 

for intermittent demand are weighted moving average, Holt and Croston methods. 

Furthermore, Campbell (1963) examined demand data from the United State Air Force’s 

maintenance records, and explored relationships between demand and operational 

variables. He concluded that demand seemed to be related to flying hours and sorties flown, 

with flying hours having a stronger relationship. Ghobbar and Friend (2002) investigated the 

source of demand lumpiness, and proposed an assumption that demand is strictly linearly to 

flying hours/landings. Today, more companies are considering flying hours as the major 

factor in their forecasting of demand calculation and using the mean time between 

removal/ overhaul (MTBR/O) to forecast a failure rate. Thus, preventive maintenance (PM) 

is widely used especially for some critical components that directly affect flight safety. Many 

papers are presented to address spare parts and failure-based maintenance actions or spare 

parts with either an age or block-based replacement policy. The earliest papers can be 

traced to Natarajan (1968) who proposed a reliability problem with spares and Allen and 

D’esopo (1968) who studied an ordering policy for repairable stock items. Armstrong and 

Atkins (1996) and de Smidt-Destombes (2007) described the joint optimization of spare 

parts inventory and age or block-based replacement policies. Kim et al. (1996) addressed a 

failure-based repair policy and its connection with spare parts provision, focusing on how 

equipment failures affect the spare parts inventory policy without considering the influence 

of PM. Vaughan (2003) proposed a failure replacement and PM spare parts ordering policy. 
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The most recent paper in this subject area is Wang (2012), who presents a model to 

optimize the order quantity, order intervals, and PM intervals jointly under a two-stage 

failure process. The aforesaid papers mainly address the problem either from an inventory 

point of view based on the past spare parts usages to forecast the future demand, or from a 

PM point of view to find an optimal order quantity and PM interval. In practice, spare parts 

demands are highly related with flying hours/landings. Due to the correlation between part 

aging and failures, impending high demands for a part might be forecasted even the current 

demand is low, which is counter to the traditional replenishment system that high demand 

triggers replenishment and low demand scales back replenishment. This partially explains 

why the forecasting methods based on historical data cannot be directly used for 

forecasting future demand in our case. Besides, PM inventory management is different from 

failure-based inventory management. To the author’s best knowledge, limited research 

handles failure-based procurement inventory management which is very common in 

practice. As the spare parts demand is uncertain, and sometimes the part delivery time may 

be very long, it could lead significant loss if a critical part fails but there is no spare to 

replace it.  

 

Deshpande et al. (2006) explored this issue. To improve the performance of aircraft service 

parts supply chain in the United States Coast Guard (USCG), they used mathematical 

programming tools to link the demand transactions to a corresponding maintenance 

activity. Subsequently, they developed an approach to use part-age data to make inventory 

decisions. It sets an age threshold and observes the number of installed parts whose age is 
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greater than the threshold, thereby deciding the advance order quantity. This approach tries 

to synchronize the inventory of good parts with demand distributions, and replenish the 

inventory just as anticipated demands arrive. It has great advantages compared with 

traditional inventory policies. However, one important operational problem is not 

mentioned- when is the best time to issue orders? Ordering at the beginning of period will 

result in high holding cost, whereas replenishing at the end of period may lead to extensive 

shortage cost, both tend to drive up the total cost. Our efficient inventory model considers 

both order time and order quantity. Furthermore, in Deshpande et al. (2006), based on the 

assumption that lead-time demand D and the signal level S follow a joint bivariate-normal 

distribution, they derived a result that the total cost per unit time is minimized by setting 

the part-age threshold T to a value that maximizes the correlation ρ(T) between D and S. In 

contrast, we introduce the parts failure distribution from two aspects, life time and total 

number of failures, and assume they are uncorrelated, that is, ρ equals to 0. Because all 

demands come from installed parts failures, we can predict impending demands and 

develop an efficient proactive inventory model to replenish spare parts inventory before 

most failures occur. Accordingly, the best order time and the optimal order quantities can 

be worked out by minimizing the total cost which consists of purchasing, holding, and 

shortage costs. 
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2.3  Basic Mathematical Model and Solution Methodology 

2.3.1 Basic Mathematical Model 

  

In this chapter, we consider a generalized ordering policy for only one kind of part with a 

given part number (PN) in a single period. A part number is a fundamental identifier of a 

particular part design used in the airline industry. It unambiguously identifies a part design 

within a single corporation, or sometimes across several corporations. For example, when 

specifying a bolt, it is easier to refer to "PN BACB30LH3K24" than describing the key 

information of the bolt, such as dimensions, material, installed position and manufacturer, 

which may be lengthy and incomplete. Moreover, multiple parts with the same PN are often 

found in one or more aircrafts. For instance, if one Boeing 737-300 has installed 200 PN 

BACB30LH3K24 bolts, and the fleet size of Boeing 737-300 is 20, thus the total number of PN 

BACB30LH3K24 operated by the carrier will be 4000.  

 

The length of the planning horizon is denoted by T (     ) and the order quantity in 

this period is denoted by Q. The spare parts for replacement can be delivered after a 

constant lead time L. The demand is uncertain, and depends on the parts failure 

distribution. We assume that the number of failures in period T follows a probability density 

function (PDF) g (·) and a cumulative distribution function (CDF) G (·). The lifetimes of the 

operating parts are assumed independent with an identical probability density function f (·) 

and a cumulative distribution function F (·). We also assume g (·) and f (·) are uncorrelated.  
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Input parameters and function: 

         the unit holding cost per unit time  

         the unit shortage cost per unit time  

         planning horizon, can be infinite 

         order lead time 

         demand quantity, a random variable 

         unit cost 

         the PDF of failure distribution considering lifetime for each part 

          the PDF of failure distribution considering number of failures for each PN 

         the CDF of failure distribution considering lifetime for each part 

         the CDF of failure distribution considering number of failures for each PN 

 

Define the following decision variables 

          point in time to place an order  

          the parts arrival time  

         order quantity 

 

The objective of minimizing the expected total cost is formulated as: 

Min R =        ∫            
 

 
  [  ∫        

 

 
] ∫            

 

 
  

                [ ∫               
 

  
∫             

  

 
]              

(1) 

In the whole planning horizon, we just order this given PN once. If the order quantity is 
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above the total actual demand level, that is, the total number of failures in the whole 

planning horizon is less than the order quantity Q, the holding cost of those extra stock will 

start from    and last till the end of the period. The expected holding cost of this part is 

represented by the first term. Conversely, if the order quantity Q is below the total number 

of failures, the parts shortage situation will last till the end of the planning horizon. The 

second term describes this expected shortage cost. Notice that the duration of parts 

shortage is decided by when the     failure occurs and when the planning horizon finishes. 

This basic model simplifies the problem by using the mean time to failure (MTTF), which is 

defined by MTTF=∫        
 

 
, to replace the     failure time. The third term depicts the 

expected value of the remaining holding cost and shortage cost during the planning horizon 

when the order quantity “Q” just matches the total number of failures. Figure 2 illustrates 

how this part of holding cost and shortage cost are generated. For example, if five failures 

occurred during the whole planning horizon T, and purchased parts arrived between the 

third failure and the fourth failure, shortage cost would be incurred due to the first three 

failures. On the other hand, the remaining ordered parts would be kept in stock and 

continuously generate holding cost until they are used up. The last term accounts for the 

purchasing cost. Once we find the optimal parts arrival time, the optimal timing to place an 

order can be calculated easily by        .  
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Figure 1. Time sequence 

 

2.3.2 Solution Methodology  

2.3.2.1 Numerical and iteration methods 

 

From objective function (1), we are obviously interested in determining the value of    and 

Q, which minimize the expected cost R. Without considering any constraint, Q and    can 

be found by the following procedure: 

  

  
               [  ∫        

 

 

] [      ]

 [ ∫               
 

  

∫             
  

 

]    

(2) 

It follows that  

   

    {         [  ∫        
 

 
]}         for all Q    

Because the second-order derivative is nonnegative, the function R (Q) is said to be convex. 

The optimal solution, Q*, occurs where 
  

  
 equals zero. That is,  

      
 [  ∫        

 

 
]  [ ∫               

 

  
∫             

  
 

]   

         [  ∫        
 

 
]

 



 
17 

 

(3) 

Also, 

  

   
   ∫            

 

 

   [       ]          

(4) 

It follows that  

   

   
                  for all Q    

As the second-order derivative is nonnegative, R (  ) is convex, and the optimal solution, 

  *, is attained when 
  

   
 equals zero. That is,  

    
   

 ∫            
 

 
   

      
 

(5) 

One of the widely-used probability distributions in reliability to model fatigue and wear-out 

phenomena is the normal distribution, as illustrated by the works of Deshpande et al. (2006), 

Muchiri and Smit (2011), Tuomas et al. (2001), Batchoun et al. (2002), Byington et al. (2002), 

and Kiyak (2012). If we assume that f(x) is normally distributed, with a mean    and 

standard deviation   , the formula for the PDF is 

     
 

√    

   [ 
 

 

      
 

  
 

]             

Meanwhile, assume g(z) follows a normal distribution with a mean    and standard 

deviation   . The formula for the PDF is 

     
 

√    

   [ 
 

 

      
 

  
 

]             
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As the random variable ranges from    to   , the normal distribution is not a true 

reliability distribution. However, if for most observed values of mean and standard deviation 

in the context of this study, the probability that the random variable takes on negative 

values is negligible, then the normal distribution can be regarded as a reasonable 

approximation to a failure process. We assume            , also f(x) and g(z) are 

uncorrelated. 

From equation (3), we have 

      {
                      [         (

     
  

)     (
     

  
)]  

               
}  

(6) 

Here       is the standard normal density function, and       is the standard normal 

cumulative distribution function for the normal density function               is the inverse 

of the cumulative density function for the normal density function     . 

From equation (5), we have 

  
     {

         [
      

  
]      [

      

  
]   

      
}  

(7) 

Here       is the standard normal density function, and       is the standard normal 

cumulative distribution function for the normal density function      .         is the 

inverse of the cumulative density function for the normal density function     . 

 

Because Q* and   
  cannot be determined in closed forms from (6) and (7), a numerical 
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algorithm is employed to find solutions. The algorithm converges in a finite number of 

iterations, provided that a feasible solution exists. The algorithm is described as follows: 

Step 0. Use the initial solution 

         {
                      [         (

     
  

)     (
     

  
)]  

               
}  and let   

   
    Set i=1, 

and go to step i. 

Step i. Use    to determine   
   

from equation (7). If   
   

   
     

, stop; the optimal solution 

is       , and   
    

   
. Otherwise, use   

   
 in equation (6) to compute   . Set i=i+1, 

and repeat step i.  

 

When the iteration terminates, we can find the optimal timing to place an order as 

     
   . 

From equation (1), the objective function can be reformulated as: 

             {        [
      

  
]      [

      

  
]} 

                         {      [     
    

  
 ]      [

      

  
]} 

                                 {         [
       

  
]      [

       

  
]}     

(8) 

2.3.2.2 Solve the basic model by GAMS 

 

Another method is to use the function errorf( ) in GAMS to implement the non-linear 

integral component of the objective function and find an optimal solution. Both MINOS and 



 
20 

 

CONOPT can yield good results. MINOS is suitable for large constrained problems with a 

linear or nonlinear objective function and a mixture of linear and nonlinear constraints. For 

nonlinear constraints, MINOS implements a sequential linearly constrained algorithm 

derived from the Robinson's method. CONOPT is a feasible path solver based on the 

generalized reduced gradient method and is often preferable for nonlinear models where 

feasibility is difficult to achieve.   

 

2.4  An Improved Mathematical Model and Solution Methodology 

 

In the basic model presented in the previous section, the value of T minus MTTF instead of 

the     failure time is adopted to define the parts shortage period till the end of the 

planning horizon. The improved mathematical model herein aims to find when the     

failure occurs and plugs it into the model. Therefore, this improved model is designed to 

find more accurate order quantity Q and order time   . 

 

In reliability engineering, it is well known that given that             where           are 

n ordered failure times comprised in a random sample, the number of units surviving at 

time    is n-i. A possible estimate for the reliability function can be expressed as 

 ̂     
   

 
   

 

 
  

The estimate for the cumulative failure distribution is  

 ̂        ̂     
 

 
. 

If we assume the total number of parts with a given PN in the observed fleet is n, which is 
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technical information provided by the original equipment manufacturer (OEM), and    is 

the     failure time. We also assume that f(x) is normally distributed, and the failure times 

follow           
  , then 

         
     

  
 . 

Because  ̂(  )  
 

 
, and  (  )    

     

  
 , 

we have 

 
 

 
    

     

  
 . That is,      (

     

  
). 

Accordingly, the     failure time can be expressed as  

         
  (

 

 
)    , 

(9) 

and equation (1) can be improved as  

Min R =        ∫            
 

 
  [       

  (
 

 
)    ] ∫            

 

 
  

                [ ∫               
 

  
∫             

  

 
]       

(10) 

Compared with Equation (1), Equation (10) is much more complex due to the inverse 

function   
  (

 

 
). Therefore the determination of Q* and   

  by numerical and iteration 

methods is not easy. We use GAMS and its solver CONOPT to solve the new objective 

function (10). Numerical examples and comparative results of the two models are furnished 

in Section 2.5. 
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2.5  Numerical Examples and Results 

 

A numerical example, which is introduced in Deshpande et al. (2006), is modified by 

introducing the distribution of the number of failures for a specified PN. The data are 

originally drawn from the aircraft maintenance and inventory databases of the United States 

Coast Guard (USCG) ( Deshpande et al., 2006). Here we list the same parameter values used 

in Deshpande et al. (2006) in Table 2, which is about the main gearbox of aircraft type 

HH65A.  

 

Note that if we assume a daily flying time of 10 hours, the gearbox mean age at failure 

should be 2436/10=243.6 days, similarly the standard deviation should be 659/10=65.9 

days. Additional parameter values in Table 3 are introduced for our new models.  

 

Unit price Unit holding cost per day Unit shortage cost per day Mean time to failure Standard deviation 

c h= 0.25*c/365 s=5*c/365       

$449,586.00 $307.94 $6,158.71 2436 hours 659 hours 

Table 2. Parameter values of main gearbox in Deshpande et al. (2006) 

 

Planning horizon Mean number of failures Standard deviation Total number of parts observed in fleet 

T       n 

5 years=1,825days 25 10 200 

Table 3. New designed parameter values for main gearbox 

 

Table 4 summarizes the calculation results of both the Iterative method and GAMS for the 

basic model, and of GAMS for the improved model. We can see that, for the basic model, 
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the decision variables for both the Iterative approach and the GAMS approach produce very 

similar results. The objective function values for both approaches are slightly different with 

a percentage error margin of 0.45%. This error is likely due to the assumption that 

∫        
 

   
 ∫        

 

    
    [

     

 
]     [

     

 
]  in the iterative approach, which 

neglects the part of the negative values in the normal distribution. On the other hand, both 

approaches yield almost identical decision variable values. Next we compare the differences 

of GAMS results between the basic and improved models. The values of    are essentially 

the same for the models. However, the values of Q and R change to a certain degree. 

Compared with the basic model, the value of Q for the improved model increases by 0.55%, 

and the value of R increases by 0.54%. A closer examination of the two objective functions 

reveals that the only difference exists in the second term: the shortage period described in 

the basic model is (    ), while in the improved model it is (    )  [     

  
  (

 

 
)    ]. Because the change is only related to Q and R, it barely affects the optimal 

value of   . In this example,    is less than    implying that the shortage situation starts a 

little earlier in the improved model than that in the basic model, therefore more shortage 

cost would be incurred and more spare parts should be ordered during the planning 

horizon. 

 

In order to gain better insights into the proposed models and understand their values for 

cost reduction in reality, we input different values of Q and    in equation (8) and then 

compare their objective function values. The basic model is chosen because its format is 

easier than the improved model whereas the calculation results of both models are 
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comparable as illustrated in Table 4. Figure 2 illustrates the relationship between the 

expected cost and parts arrival time for the main gear box when Q=37.90. The optimal value 

of parts arrival time, which minimizes the expected cost, should be set at 143.52. Based on 

the trend, as the parts arrival time increases, the expected cost first decreases slightly, 

followed by a dramatic increase. The reason is that, compared with the shortage cost, the 

holding cost only takes a small fraction of the unit cost. Moreover, the mean age at failure 

happens at the early period of the planning horizon. 

 

Solution approach 
 

Iterative GAMS 

 

basic model basic model improved model 

Objective function value R $30,110,394.24 $29,974,161.85 $30,135,359.75 

Decision variable 
Q 37.90 37.92 38.13 

   
 

143.52 143.41 143.48 

 
   * * 185.91 

Iteration number 
 

3 14 14 

Feasible solution 

 

yes yes yes 

Table 4．Results from iterative and GAMS solution approaches  

 

 

Figure 2．Cost vs. parts arrival time for main gearbox when Q=37.90 
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Figure 3 depicts the relationship between the expected cost and order quantity curve for 

the main gear box when   =143.52. From the figure, we can find that as the order quantity 

increases, the expected cost drops sharply till Q= 37.90, then followed by a much slower 

gradual increase. The different slopes of the curve can be intuitively explained as follows: if 

the actual order quantity is below the optimal order quantity, compared with overstocking, 

the shortage cost is much higher than the holding cost. 

 

 

Figure 3．Cost vs. order quantity for gearbox when   =143.52 

 

Decision variable Objective function value % Cost reduction 

   Q Total cost R (R-Optimal value)/R 

143.515 37.90 $30,110,394.24 Optimal value 

0 0 $243,691,145.51 87.64% 

143.515 0 $243,690,259.81 87.64% 

143.515 150 $138,579,282.00 78.27% 

0 37.90 $31,923,057.35 5.68% 

1825 37.90 $390,709,822.09 92.29% 

1825 150 $1,528,346,051.51 98.03% 

Table 5. Representative points in Figure 1 and Figure 2 

 

0

50

100

150

200

250

300

0 50 100 150

M
ill

io
n

s 

     Cost 

 
Q 
   



 
26 

 

We also select some representative points in Figures 2 and 3, and list them in Table 5. By 

comparing the total cost of each point with the optimal value, we can see that the optimal 

policy leads to a significant reduction in the total inventory cost, ranging from 5.68% to 

98.03%. It is further noted that if the order quantity and arrival time deviate from the 

optimal solution, early arrival is preferred to late arrival due to low holding cost, high 

shortage cost, and early failures.  

 

To further explore how the order time affects the inventory replenishment policy, we solve 

another example by modifying h, s, and   . The updated parameter values are listed in 

Table 6, remaining parameters assume the same values as those in the first example. We 

summarize the calculation results in Table 7.  

 

Unit holding cost per day Unit shortage cost per day Mean time to failure 

h= 0.5*c/365 s=2*c/365    

$615.87 $2,463.48 12180 hours 

Table 6. Modified parameter values 

 

Solution approach 
  Iterative GAMS 

  basic model basic model improved model 

Objective function value R $20,234,054.82  $20,161,979.65  $20,787,748.91  

Decision variable 
Q 25.52 25.55 26.74 

   
 

1,170.03 1,169.75 1170.48 

 
   * * 1144.92 

Iteration number 
 

4 15 28 

Feasible solution   yes yes yes 

Table 7. Calculation results for modified parameter values 
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Figure 4. Cost vs. parts arrival time for main gearbox when Q=25.52 

 

 
Figure 5. Cost vs. order quantity for gearbox when   =1170.03 

 

Decision variable Objective function value % Cost reduction 

   Q Total cost R (R-Optimal value)/R 

1170.03 25.52 $20,234,054.82 Optimal value 

0 0 $37,435,878.21 45.95% 

1170.03 0 $37,421,436.61 45.93% 

1170.03 150 $126,438,628.76 84.00% 

0 25.52 $40,981,710.29 50.63% 

1825 25.52 $55,216,737.88 63.36% 

1825 150 $291,738,203.01 93.06% 

Table 8. Representative points in Figure 4 and Figure 5 
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Figure 4 demonstrates the relationship between expected cost and parts arrival time when 

Q=25.52. Figure 5 shows the expected cost and the order quantity curve when   =1170.03. 

Table 8 provides the comparison results of representative points in Figure 4 and Figure 5. 

Based on these results, we can find that the optimal policy can contribute to a cost 

reduction ranging from 45.93% to 93.06%. When the unit holding cost per day (h) doubles, 

the unit shortage cost per day (s) decreases from 5*c/365 to 2*c/365, and the MTTF (  ) 

lasts 5 times longer than before, even the order quantity is optimal, placing order at the 

optimal time would save 50.63% cost compared with ordering at the beginning, and 63.36% 

compared with ordering at the end of the planning horizon. Next, we shall further conduct 

sensitivity analyses of the basic and improved models by changing certain parameter values. 

 

2.6 Sensitivity and Comparative Analyses 

 

To examine how critical parameters in the model affect the optimal solution, we conduct 

sensitivity analyses for five different cases and compare their final results between the basic 

model and improved model. The parameter values are based on the second example in 

Section 2.5. In each case, only one parameter is changed while the others are kept constant. 

We investigate how the optimal solutions (total cost R, order quantity Q, parts arrival time 

  ) are affected by the failure distributions (  ,      ,   ), and how R, Q, and    in the 

improved model change with the total number of observed parts (n). 
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First, we calculate the optimal objective values by varying    , the MTTF of given parts. 

Figure 6 shows that the expected total cost R of both the basic and improved models 

decreases as    increases from 200 to 1200. Also, the values of R in the improved model 

are always higher than those in the basic model, at a small margin from 1.04% to 2.90%. 

Figure 7 illustrates that the optimal order quantity Q in both models decreases when    

increases. Compared with the basic model, the values of Q in the improved model are 

higher, at a margin from 1.05% to 4.24%. Figure 8 shows that the parts arrival time    in 

both models increases when    increases. The values of both    are almost identical, 

verifying that the assertion in Section 2.5 that the two models mainly differ in their handling 

of Q and R, and, hence the optimal value of    is barely affected. 

 

  Basic model Improved model Percentage Error 

   R Q     R Q     R Q     

200 30080101 30.13 154.83 30395999 30.45 155.03 1.04% 1.05% 0.13% 

400 28282093 29.72 354.36 28620638 30.09 354.60 1.18% 1.24% 0.07% 

600 26433376 29.18 554.01 26802664 29.63 554.30 1.38% 1.52% 0.05% 

800 24530299 28.45 753.55 24944128 29.02 753.91 1.66% 1.96% 0.05% 

1000 22536336 27.40 952.89 23020242 28.17 953.37 2.10% 2.71% 0.05% 

1200 20370771 25.75 1151.87 20980234 26.89 1152.57 2.90% 4.24% 0.06% 

Table 9．Objective values comparison of two models when    changes 
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Figure 6. Total cost as    increases 

 

 
Figure 7. Optimal order quantity as    increases 

 

 

Figure 8. Optimal inventory replenishment time as    increases 
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Basic model Improved model Percentage Error 

   R Q    R Q    R Q    

20 19042951 26.23 1203.48 19225695 26.60  1203.55 0.95% 1.40% 0.01% 

40 19534770 25.93 1188.85 19906533 26.67  1189.13 1.87% 2.76% 0.02% 

60 20020055 25.64 1174.12 20587051 26.73  1174.72 2.75% 4.08% 0.05% 

80 20498901 25.35 1159.28 21267288 26.78  1160.34 3.61% 5.36% 0.09% 

100 20971401 25.06 1144.34 21947276 26.83  1145.97 4.45% 6.62% 0.14% 

120 21437640 24.77 1129.3 22627043 26.88  1131.62 5.26% 7.84% 0.21% 

140 21897695 24.49 1114.16 23306612 26.92  1117.28 6.05% 9.04% 0.28% 

160 22351642 24.21 1098.93 23986003 26.97  1102.95 6.81% 10.23% 0.36% 

180 22799548 23.93 1083.61 24665234 27.00  1088.64 7.56% 11.38% 0.46% 

200 23241476 23.65 1068.2 25344320 27.04  1074.33 8.30% 12.54% 0.57% 

Table 10. Objective values comparison of two models when    changes 

Next, we consider the impact on the optimal objective value by changing the value of 

standard deviation (    of the parts lifetime. Figure 9 illustrates that the expected total cost 

R of both the basic and improved models increases as    increases from 20 to 200. This 

result is natural as a heightened uncertainty level tends to result in more holding and 

shortage costs. Figure 10 describes an interesting situation that the optimal order quantity 

Q in the basic model decreases whereas that in the improved model increases when    

grows. The order quantity Q in the basic model is always higher than in the improved model. 

The reason might be that failures between    and    are ignored in the basic model, 

leading to a lower order quantity than that in the improved model. Furthermore, when    

increases, the failures distribution becomes flatter, accordingly more parts will be ordered 

earlier to guarantee the same service level. However, the optimal value of Q in the basic 

model decreases due to a growing number of neglected failures between    and   . 

Finally, Figure 11 confirms that    still has little change. 
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Figure 9. Total cost as  𝒙 increases 

 

 
Figure 10. Optimal order quantity as  𝒙 increases 

 

 

Figure 11. Optimal inventory replenishment time as  𝒙 increases 
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When we increase    from 20 to 120, the percentage errors of R, Q , and    between the 

two models decrease. 

 

 
Basic model Improved model Percentage Error 

   R Q    R Q    R Q    

20 17476989 20.64  1170.70  18157301 21.95 1171.58 3.75% 5.94% 0.07% 

40 27833081 40.51  1167.33  28304380 41.42 1167.75 1.67% 2.19% 0.04% 

60 37963663 60.50  1165.78  38263091 61.11 1165.98 0.78% 0.99% 0.02% 

80 48092679 80.50  1164.98  48238099 80.84 1165.07 0.30% 0.42% 0.01% 

100 58221282 100.50  1164.50  58217152 100.59 1164.52 -0.01% 0.09% 0.00% 

120 68349675 120.50  1164.18  68190701 120.34 1164.15 -0.23% -0.14% 0.00% 

Table 11.  Objective values comparison of two models when    changes 

 

 

Figure 12. Total cost as 𝝁  increases 

 

15
20
25
30
35
40
45
50
55
60
65
70

0 20 40 60 80 100 120

M
ill

io
n

s 

Basic R

Improved R

𝝁  

R 



 
34 

 

 

Figure 13. Optimal order quantity as 𝝁  increases 

 
Figure 14. Optimal inventory replenishment time as 𝝁  increases 

 

 
Basic model Improved model Percentage Error 

   R Q    R Q    R Q    

2 14176351 25.10  1164.11  14305746 25.32  1164.32  0.90% 0.87% 0.02% 

4 15691930 25.20  1165.65  15948873 25.65  1166.03  1.61% 1.77% 0.03% 

6 17206557 25.31  1167.15  17589213 26.00  1167.67  2.18% 2.66% 0.04% 

8 18710829 25.41  1168.57  19217067 26.35  1169.20  2.63% 3.57% 0.05% 

10 20161980 25.55  1169.75  20787749 26.74  1170.48  3.01% 4.46% 0.06% 

12 21521340 25.74  1170.56  22259759 27.19  1171.35  3.32% 5.32% 0.07% 

14 22789370 26.01  1171.01  23632083 27.70  1171.86  3.57% 6.12% 0.07% 

16 23987166 26.34  1171.20  24925900 28.28  1172.09  3.77% 6.86% 0.08% 

18 25137181 26.73  1171.22  26164504 28.91  1172.13  3.93% 7.55% 0.08% 

20 26256711 27.17  1171.13  27366204 29.59  1172.07  4.05% 8.18% 0.08% 

Table 12. Objective values comparison of two models when    changes 
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Figure 15. Total cost as    increases 

 

 

Figure 16. Optimal order quantity as    increases 

 

 

Figure 17. Optimal inventory replenishment time as    increases 
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In the improved model, we consider when the exact     failure happens, which is related 

to n, the total number of parts for a give PN in the observed fleet. When n increases, R, Q, 

and    increase sharply at the beginning, followed by a flatter slope. The errors of R 

between the basic and improved models are in the range of 1.79% to 7.83% and the errors 

of Q between the two models are within 10%. As before, the errors of    for the two 

models remain negligible, lower than 0.15%. 

 

 
Basic model Improved model Percentage Error 

n R Q    R Q    R Q    

100 20161980 25.55 1169.75 20530166 26.38 1170.25 1.79% 3.14% 0.04% 

200 20161980 25.55 1169.75 20787749 26.74 1170.48 3.01% 4.46% 0.06% 

500 20161980 25.55 1169.75 21041153 27.12 1170.71 4.18% 5.78% 0.08% 

1000 20161980 25.55 1169.75 21195563 27.35 1170.86 4.88% 6.58% 0.09% 

5000 20161980 25.55 1169.75 21482789 27.79 1171.13 6.15% 8.05% 0.12% 

10000 20161980 25.55 1169.75 21585992 27.95 1171.23 6.60% 8.57% 0.13% 

100000 20161980 25.55 1169.75 21873606 28.39 1171.51 7.83% 9.99% 0.15% 

Table 13.  Objective values comparison of two models when n changes 

 

 

Figure 18. Total cost as   increases 
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Figure 19. Optimal order quantity as   increases 

 

 

Figure 20. Optimal inventory replenishment time as   increases 

 

2.7 Concluding Remarks 

 

In this chapter, by using the airline industry as the background, we have developed two 

mathematical models to solve a single PN spare parts inventory management problem, 

where demands come from installed part failures. We aim to establish an efficient inventory 

policy that aims to minimize the total cost of stock outs and holding spare parts inventory. 
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Our models aim to reduce downtime due to spare parts shortage and excessive inventory 

holding cost by introducing parts failures distribution and triggering advanced orders at a 

proper time with a proper quantity. Compared with traditional forecast methods based on 

historical data, our models are more reasonable because they consider parts aging and 

focus on impending demands. Computational results indicate that our proposed basic 

inventory model can lead to a significant reduction in inventory cost, ranging from 5.68% to 

98.03% in the first example, and 45.93% to 93.06% in the second example. We also 

observed that the values of    in the two models always remain at the same level no 

matter how we change   ,   , or   ,   . Furthermore, compared with    and   , 

increased    and    will widen the gap between the two models, in terms of both the 

minimum total cost (R) and the optimal order quantity (Q). The most dramatic gap in Q 

appears when we change the value of   , with a percentage error of 12.54%, while this also 

happens to R with a percentage error of 8.3% (See Table 10). In addition, as the improved 

model is concerned with the exact     failure time, it introduces a new parameter n. 

When n is large enough, for example, 100 000, it may result in relatively large percentage 

errors of R and Q respectively between the two models. In our numerical analysis, both are 

controlled within 10% (See Table 13). The values of    remain stable. An insight drawn 

from the numerical analyses is that the basic model can be used as a reasonable substitute 

for inventory planning due to its easier operation. Moreover, the calculation result of    

from the basic model can be used to approximate the result of the improved model which 

can effectively simplify the calculation process. 
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The models presented in this chapter are single period models with only one given part 

number and our numerical results are based on the normal distribution. It will be interesting 

to extend the model to a wider scope of applications, such as multiple periods, multiple 

given part numbers, budget limit, other parts failure distributions, to name a few.  
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CHAPTER 3: PROACTIVE SPARE PARTS PROCUREMENT 

INVENTORY MANAGEMENT FOR FAILURE-BASED 

MAINTENANCE POLICY -MULTIPLE PART NUMBER (PN) CASE 

 

3.1 Introduction 

 

In this chapter, we study multiple spare parts inventory policies. It is very common that 

there are multiple spare parts numbers in an inventory system and they face a budget 

constraint. We aim to establish an efficient spare parts inventory model for multiple PNs to 

achieve system optimization by considering budget issues and parts delivery time.  

 

In practice, it is a common dilemma to maintain a balanced spare parts inventory level. It is 

understandable that plenty of spare parts in stock increases the service level but the 

inventory holding cost is usually very high; while a low stock level will reduce inventory 

holding cost, but may result in a low service level and lead to extremely high shortage cost. 

The more the types of spare parts are, the harder the problem can be solved. In our 

research, we assume that all demands are triggered by installed parts failures. Under an 

ideal situation, those parts should be in stock and in turn replenished by further 

procurement activities. However, an optimal inventory policy is often difficult to obtain due 

to demand uncertainty. Moreover, parts delivery time, budget limit, and a wide variety of 

PNs are all issues that may prevent decision-makers to derive reasonable inventory policies. 

Our models intend to incorporate all the aforesaid issues. We first introduce parts failure 
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distributions in reliability engineering to predict impending demands. Then we use a 

multi-product newsvendor model to describe the total expected cost consisting of 

purchasing, holding, and shortage costs. Unlike the existing newsvendor models that focus 

on the determination of lot sizes, our proposed models consider the order timing as well. It 

is apparent that the total cost fluctuates with the lifetime and quantity of installed parts as 

the uncertainty in their failure influences the duration and numbers of spare parts shortage 

or overstock. Our proposed nonlinear programming (NLP) models can help spare parts 

managers to find optimal failure-based procurement inventory policies to minimize cost, 

with a limited budget constraint.  

 

This chapter is organized as follows. In Section 3.2, we give a brief literature review in 

several related research streams. Then two mathematical models are put forward in Section 

3.3: a basic mathematical model considering shortage period starts from mean time to 

failure (MTTF) and an improved mathematical model which takes into account the exact 

shortage time. Both models deal with multiple PNs with budget constraint.  Solution 

methodologies are shown in Section 3.4. Three approaches are proposed with explanations 

of their advantages and disadvantages. Some numerical examples and calculation results 

are illustrated in Section 3.5. Experimental results demonstrate that the combination of a 

Lagrangian relaxation hheuristic and an iteration method is a reliable and stable approach to 

solving our NLP models. Section 3.6 furnishes a sensitivity analysis for three typical cases to 

examine the impact of important parameters on the optimal solution. Section 3.6 concludes 

the chapter and points out future research opportunities. 
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3.2  Literature Review 

 

In some industries, such as the airline industry, the reorder point system (ROP) is widely 

used due to its easy operation. Future demand is often projected based on historical data. 

However, from a survey conducted by Ghobbar and Friend (2004), 152 out of 175 

respondents were using the ROP system and about half were dissatisfied and considering 

implementing different systems. Therefore, finding more accurate and efficient forecasting 

methods seems to be a viable solution. Ghobbar and Friend (2003) discussed the forecasting 

of intermittent demand in relation to primary maintenance processes, and compared the 

experimental results of thirteen forecasting methods. Regattieri et al. (2005) analyzed the 

behavior of forecasting techniques when dealing with lumpy demand, and extended to 

compare twenty forecasting techniques. Both of the two papers found that the best 

approaches for intermittent demand are weighted moving average, Holt and Croston 

method. Though these approaches can improve forecast accuracy compared with ROP 

system, they ignore that in practice most spare parts demands are triggered by failures, 

which are highly related with operating hours, not past demands. This difference may lead 

great forecasting error. Our research realizes the correlation between part aging and 

failures, thus impending high demands might be forecasted even the past part demand is 

low, which is counter to the traditional forecasting system that past high demand triggers 

replenishment and past low demand scales back replenishment.  
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Parts failure distributions are widely used in joint optimization of spare parts inventory and 

maintenance. Some papers addressed the problems of spare parts provision based on 

failure-based repair policies. Simpson (1978) proposed an optimum solution structure for an 

n-period repairable inventory problem using a backward dynamic programming technique. 

Albright and Gupta (1993) modeled a two-echelon multi-indentured repairable-item 

inventory system where all failed modules would go to a single `depot' repair facility. Dhakar 

et al. (1994) presented a methodology to determine the optimal stocking levels for high-cost, 

low-demand, critical repairable spares based on an (S - 1, S) ordering policy. This stream of 

research focused solely on order quantity for repairable items. On the other hand, 

significant research is devoted to the joint optimization of spare parts inventory and age or 

block-based replacement policies. According to Vaughan (2005), age replacement refers to a 

scheme that a randomly failing item is replaced upon reaching some specified age T, or 

upon failure, whichever comes first. If we extend this policy to a group of items, it becomes 

block replacement. In certain circumstances, it is more economical to replace a group of 

items simultaneously rather than sequentially. This line of research started from one spare 

unit. Kaio and Osaki (1978) described an ordering policy with lead time for an operating unit 

in preventive maintenance (PM). This policy tries to find optimal regular ordering time to 

maximize the cost effectiveness. Thomas and Osaki (1978) extended the one unit model to 

find a proper unit operation and replacement time to minimize the total cost. Similar age 

replacement policy for one unit can also be found in Armstrong and Atkins (1996). The 

inventory policies of several identical spare units were developed based on previous 

research on one spare unit (see Kabir and Al-Olayan, 1994, 1996; Brezavscek and Hudoklin, 
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2003; Vaughan, 2005).  These papers combined age or block replacement with periodic 

review spare-provisioning policies. Most recently, Wang (2012) presented a joint 

optimization approach for both the inventory control of the spare parts and the PM 

inspection interval. Enumeration and stochastic dynamic programming algorithms were 

used to optimize the order quantity, order intervals and PM intervals. The ordering policy 

therein is a typical (S, Q) policy in that ordering Q according to inventory level S at the time 

of ordering under a fixed order interval. To our knowledge, limited research deals with 

failure-based procurement inventory policies. Also, they typically handle single PN 

problems. In practice, however, multiple PNs in inventory must be managed from a 

systematic point of view. In addition decision-makers often have to consider some realistic 

constraints such as a limited budget.  

 

The newsvendor problem has a rich history in operations management to determine 

optimal inventory levels (see Hadley and Within, 1963; Lau and Lau, 1995, 1996; 

Abdel-Malek et al., 2004, 2005, 2008; Zhang, 2010). These papers have analyzed 

multi-product newsvendor problems with constraints, thus have natural advantages in 

managing inventory with constraints from a system perspective. To the best of the author’s 

knowledge, there is little research taking into account the application of multi-product 

newsvendor model with a budget constraint in spare parts procurement. Our research aims 

to bridge the gap by combining multi-product newsvendor model with installed parts failure 

distributions and a purchasing budget. Moreover, we help decision maker find when is the 

best time to order spare parts to realize cost minimization in each planning horizon.  

http://en.wikipedia.org/wiki/Operations_management
http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Inventory
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In summary, this chapter combine maintenance data and inventory management to deal 

with a failure-based proactive procurement problem. We use installed parts failure 

distributions instead of historical demands to predict impending demands. Our inventory 

model is based on the multi-product newsvendor model which realizes system optimization 

with a budget constraint. In a single planning period, multiple types of spare parts are 

considered, and each type of spare parts is identified by a unique PN. Our inventory policy 

helps a planner to decide how many units to order and when to order to achieve total cost 

minimization, with a budget constraint. In our research, we assume only one purchase order 

is placed for each PN in the whole planning horizon. Different PNs can have different order 

quantities and order times.  

 

3.3  Mathematical Model  

3.3.1 Basic Mathematical Model  

 

This research considers a generalized ordering policy for multiple PNs in a single period. For 

each type of parts i with a given PN, the length of the planning horizon is denoted by    

(      ) and the order quantity in this period is denoted by   . The spare parts for 

replacement are delivered after a constant lead time   . The demand is uncertain and 

depends on the parts failure distribution. We assume that the number of failures for parts i 

in period    follow a probability density function   (·) and cumulative distribution function 

  (·). The lifetimes of the operating parts are assumed independent with a probability 
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density function   (·) and cumulative distribution function   (·). We also assume   (·) and 

  (·) are uncorrelated.  

 

The following notations are used in the model formulation: 

Indices 

 = 1, …, m index of parts categories, where m is the total number of parts categories 

 

Parameters 

        the unit holding cost per unit time of product i 

        the unit shortage cost per unit time of product i  

        planning horizon of product i, can be infinite 

        order lead time of product i 

        lifetime for each part, a random variable 

        demand quantity for each PN, a random variable 

        unit price 

       the budget limitation 

         the PDF of failure distribution considering lifetime for each part 

           the PDF of failure distribution considering number of failures for each PN 

         the CDF of failure distribution considering lifetime for each part 

         the CDF of failure distribution considering number of failures for each PN 

 

Define the following decision variables 
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      time point to issue order  

      the parts arrival time  

     order quantity 

 

The objective is to minimize the expected cost: 

Min R = ∑ {          ∫                 
  

 
   [   ∫            

 

 
] ∫     

 

  

 
   

             [  ∫                     
 

   
∫                  

   
 

]          }        

(11)     

Budget constraint: 

∑     

 

   

   

(12) 

 

3.3.2 Improved Mathematical Model 

 

The basic model presented above simplifies the function by assuming MTTF to be the  th 

failure time to determine when the parts shortage period starts. In the improved 

mathematical model, we consider the exact  th failure time to help us determine more 

accurate order quantity and order time. If we assume     is the   th failure time for a 

given PN i. We also assume that the failure time of PN i is normally distributed, and follows 

            
  .    is the total number of parts in the observed fleet. Then equation (1) 

can be revised as: 
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      ∑ {          ∫                 
  

 
   (      ) ∫                 

 

  
  

   

[  ∫                     
 

   
∫                  

   
 

]          }   

(13) 

where the     failure time is calculated by 

          
  (

  

  
)      ， 

(14) 

with the same budget constraint: 

∑     

 

   

   

(15) 

 

3.4  Solution Methodology  

3.4.1 GAMS and Its Solvers 

 

GAMS and its solvers are firstly employed to solve our NLP models. Numerical experiments 

demonstrate that only CONOPT, MINOS, and MINOS 5 can generate solution results. 

Furthermore, MINOS 5 appears to be the most effective solver among the three in solving 

multiple PNs models. However, when the number of PNs is large, even MINOS 5 cannot 

always yield reliable results. Therefore, we have to find new ways to solve these multiple 

PNs models, especially for large-scale instances.  
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3.4.2 A Lagrangian Relaxation Heuristic 

 

Zhang (2010) presented a Lagrangian relaxation heuristic to solve a mixed integer non-linear 

programming model for the multi-product newsvendor problem with both supplier quantity 

discounts and a budget constraint. The advantage of this approach is that it can relax the 

budget constraint and decompose the original problem into a series of sub-problems. It can 

also provide an error bound between the optimal solution and the approximate solution. 

Thus, for the improved model, we relax the budget constraint (15) and decompose function 

(13), then use GAMS and its solvers to solve these decomposed single PN problems.  

 

By introducing a Lagrange multiplier    we relax the budget constraint by constructing the 

following Lagrangian dual problem. 

                                 ∑    

 

   

  

(16) 

The solution of the above Lagrangian dual problem,         , gives the highest lower 

bound of the solution to the original problem. With a given value of Lagrangian multiplier  , 

the lower bound             can be rewritten as follows: 

 (        )  ∑  

 

   

(      )     

(17) 

If we decompose the improved mathematical model into sub-problems, each for product i, 

we have: 
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                 ∫                 

  

 

   (      )∫                 

 

  

 [  ∫                     

 

   

∫                  

   

 

]               

(18) 

where the     failure time is calculated by 

          
  (

  

  
)       

(19) 

In order to obtain the highest lower bound of the Lagrangian dual problem, a sequence of 

Lagrangian multipliers are generated to repeatedly calculate the Lagrangian dual. At each 

iteration, the Lagrangian multiplier is updated by using a bisection method. The complete 

algorithm is described as follows: 

 

Step 1. Set   = 0,   =10000 (to be adjusted). 

Step 2. Let   = (  +   )/2. 

      Solve the sub problems with MINOS5. 

      LR = 0; /* Lagrange relaxation value*/ 

      Loop (i, 

         Solve sub-problem using NLP minimizing R; 

         LR = LR + R). 

Step 3: Update Lagrange relaxation value. 

  LR = LR –  *K. 

  If new LR is larger than before, then it is improved. 
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  (need to use a scalar to record previous LR) 

Step 4: Update  . 

      Let ca_gap = ∑     
 
     , 

      If |ca_gap| < 10E-04 or |   -    |< 10E-05,  

      Stop. 

      If ca_gap < 0,  then   =  ; 

      Else     =  . 

Step 5: Go to step 2. 

 

3.4.3 The Combination of the Lagrangian Relaxation Heuristic and Iteration 

Method 

 

The aforesaid two approaches use GAMS and its solvers to solve our NLP models. When the 

number of PNs is small, such as m=1 or m=2, both approaches can give reasonable results. 

However, when m is large, m≥10 for instance, solvers such as CONOPT, MINOS, MINOS 5 

become unreliable. Excessive long time is usually needed to run the programme, and often, 

the final results are either unbounded or unreasonable. For example, the order quantity for 

some parts may be close to 0, or no feasible result. The part delivery time may approach 

infinity or no feasible result is obtained. Accordingly, it is essential to explore a new method 

that does not use GAMS solvers.  
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In Chapter 2, we noticed that the optimal parts arrival time    for the basic and improved 

models are very close. Thus the iteration method is considered as an effective approach to 

solve our single PN NLP models. In this section, we continue assuming that all the observed 

parts failures are normally distributed, that is, for a given PN i, its part lifetime        

follows a normal distribution with a mean of     and a standard deviation of     . 

Furthermore, the number of failures for the specified PN (         is normally distributed 

with a mean of    and a standard deviation of   . If we assume     ∫            
 

 
 

   , the improved model will be simplified as the basic model. Lagrangian relaxation 

Function (8) can be rewritten as  

                 ∫                 

  

 

   (    
  
)∫                 

 

  

 [  ∫                     

 

   

∫                  

   

 

]               

(20) 

There are only two decision variables in function (20),    and    . The optimal solution can 

be found by the following procedure:  

   

   
                    (      )[        ]  [  ∫                   

 

   

  ∫                  
   
 

]           

(21) 

It follows that  

    

   
  [             (      )]           for all       

Because the second derivative is nonnegative, the function        is said to be convex. The 
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optimal solution, denoted by   *, occurs where 
   

   
 equals zero. That is,  

     
   

  (      ) [  ∫                     
 
   

∫                  
   
 

]        

             (      )
  

(22) 

Also, 

   

    
    ∫                 

  

 
     [         ]               

(23) 

It follows that  

    

    
                       for all       

Because the second derivative is nonnegative, the function    (   ) is said to be convex. 

The optimal solution, say    *, occurs where 
   

    
 equals zero. That is,  

      
   

  ∫                 
  

 
     

         
 

(24) 

From equation (12), we have 

  
    

  {
  (      )                    [           (

       
   

)      (
       

   
)]          

             (      )
}  

(25) 

Here       is the standard normal density function, and       is the standardized 

cumulative distribution function for normal density function            
      is the inverse of 

the cumulative density function for normal density function       . 

From equation (14), we have 

   
    

  {
            [

(      )

   
]        [

(      )

   
]     

         
}  
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 (26) 

Here       is the standard normal density function, and        is the standardized 

cumulative distribution function for normal density function     .    
      is the inverse of 

the cumulative density function for normal density function       . 

 

Because the closed forms of   
  and    

  are hard to be determined from function (25) 

and (26), we develop a numerical algorithm to find solutions. This procedure converges in a 

finite number of iterations. The steps of the algorithm are 

Step 1. Set    = 0,   = 10000 (to be adjusted). 

Step 2. Let   = (  +   )/2. 

Step 3. Set    
    ,    

  . 

Step 4. Use the function (25) to find   . 

Step 5. Use    to update    
 by function (26). 

Step 6. Update    
 by function (19). 

Step 7. If |   
        

|< 1.0E-8 the optimal solution is   
     ,    

     
, and  

         

     
. Otherwise, go to step 4.  

Step 8. Calculate    by the RHS of function (18). 

Step 9. Calculate the Lagrangian relaxation value LR =∑   
 
   . 

Step 10: Update the Lagrangian relaxation value. 

  LR = LR –  *K. 

  If new LR is larger, then it is improved. 

  (need to use a scalar to record previous LR) 
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Figure 21. The flowchart of the combination of Lagrangian heuristic and iteration method 

 

Initialization: Set    
    ,    

   

  
     ,    

     
    

     
 

Continue iteration 

𝜆 = (𝜆𝐿+ 𝜆𝑈)/2 

START 

Initialization: set 𝜆𝐿 = 0, 𝜆𝑈= 10000 

Compute 𝑄𝑖 as (15)  

Update 𝑡 𝑖  by (16) 

Update 𝑡𝑄𝑖
 by (9) 

|𝑡𝑄𝑖
 𝑡𝑄𝑖𝑙𝑎𝑠𝑡|< 1.0E-8 

Calculate 𝑅𝑖 as (8) and LR =∑ 𝑅𝑖
𝑛
𝑖   

Update LR = LR – 𝜆*K 

 Update 𝜆: 𝜆𝑈 = 𝜆 when 

∑ 𝑐𝑖𝑄𝑖
n
     , or 𝜆𝐿= 𝜆 

END 

|∑     
n
      | < 10E-04 

or|   -    |< 10E-05 
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Step 11: Update  . 

      Let ca_gap = ∑     
 
     , 

      If |ca_gap| < 1.0E-04 or |   -  |< 1.0E-05,  

      Stop. 

      If ca_gap < 0,  then    =  ; 

      Else     =  . 

Step 12: Go to step 2. 

The flowchart of the algorithm is illustrated in Figure 21. 

 

Once we know   
 and    

  , the optimal time to issue order for a given PN index i can be 

found by        
    .  

 

3.5 Numerical Examples and Results 

 

In this section, we give some numerical examples and compare their results for the three 

methods. As mentioned before, we still assume parts demands follow normal distributions.  

 

We first consider an example with m=2 PNs to test our Lagrangian relaxation approach and 

the Iteration method. Parameter values are listed in Table 14 that are adapted from single 

PN examples in Chapter 2.  
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  c(i) h (i) s(i) µx(i) days σx(i) days T(i) days µz(i) σz(i) n(i) K 

part i=1 449586 307.94 6158.71 243.6 65.9 1825 25 10 200 2.32E+07 

part i=2 449586 615.87 2463.48 1218 65.9 1825 25 10 200 2.32E+07  

Table 14. Parameter values for two PNs example 

 

The calculation results are summarized in Table 15 for three different methods: GAMS and 

its solver MINOS 5, the combination of the Lagrangian relaxation heuristic and GAMS 

/MINOS 5, as well as the combination of Lagrangian relaxation heuristic and iteration 

method. Compared with single PN examples in Chapter 2, we can see that GAMS/MINOS 5 

produces good and accurate results in this small size problem, but it does not work well 

once it is combined with the Lagrangian relaxation method. However, if the iteration 

method instead of the GAMS solver is applied to these relaxed and decomposed 

sub-problems, the optimal solutions are almost the same as GAMS/MINOS 5 results. The 

tiny difference may be caused by numerical errors. Accordingly, two conclusions can be 

drawn based on this example: the GAMS/MINOS 5 solver is not reliable once we combine it 

with the Lagrangian relaxation heuristic due to the complexity of our NLP models. 

Furthermore, the combination of Lagrangian relaxation heuristic and iteration method is 

feasible and effective in solving these proposed NLP models. 

 

    Q       R 

GAMS/MINOS5 
part i=1 34.53 142.12 181.41 

5.64E+07 
part i=2 17.00 1,165.46 1,127.56 

Lagrangian relaxation &GAMS solver 
part i=1 0 5121955 1.00E+12 

-2.75E+16 
part i=2 0 5121955 2.00E+12 

Lagrangian relaxation & Iteration 
part i=1 34.64 140.58 181.55 

5.64E+07 
part i=2 16.89 1,158.52 1,127.33 

Table 15. Calculation results and comparison for two PNs example 
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  GAMS/MINOS5 Lagrangian relaxation & Iteration 

  Q       R Q       R 

part i=1 0.02 / 21.60 

1.47E+10 

139.52 84.27 121.81 

8.08E+09 

part i=2 155.37 219.96 336.83 169.06 191.14 347.22 

part i=3 162.56 109.71 152.65 174.03 101.64 156.08 

part i=4 89.54 282.08 556.17 96.41 300.97 573.52 

part i=5 29.71 / 231.77 32.41 130.01 238.07 

part i=6 66.93 129.79 / 32.41 123.57 220.49 

part i=7 339.23 410.73 4.04E+11 182.96 389.90 614.96 

part i=8 152.25 427.50 692.77 163.74 425.97 707.14 

part i=9 20.27 502.41 673.26 22.46 478.61 689.63 

part i=10 183.00 224.27 372.25 198.42 223.82 382.03 

Table 16. Calculation results and comparison for the problem with m=10 

 

Next, an example with m=10 PNs is investigated. After coding with GAMS, all the related 

parameters are generated randomly and automatically. The demands/ failures of each PN 

follow a normal distribution with       from 3 to 50, and       from 3 to 6 times of      . 

The part lifetime for each PN is set to be a normal distribution with       from 8 to 200, 

and       from 3 to 6 times of      . The unit price for each PN is generated randomly 

from 100 to 60000, with unit holding cost from 10% to 30% of the unit price, and unit 

shortage cost from 3 to 5 times of the unit value. The budget is calculated by a random 

number between 1.1 and 1.3 multiplying the expected total purchase cost. The 

computational results are reported in Table 16. From the incomplete solutions for PN 1, 5, 

and 6 on the left side of the table, we can see that GAMS/MINOS5 is not appropriate to 

process large numbers of PNs in our NLP models. On the other hand, the combination of the 

Lagrangian relaxation and iteration methods can give reasonable solutions for every PN. 

Moreover, the gap between the Lagrangian relaxation value and objective value is 0, and 
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the minimum total cost on the right hand side is obviously lower than that on the left. 

Therefore, the combination of Lagrangian relaxation and iteration has its superiority in 

solving our proposed multiple PNs NLP models compared with GAMS/MINOS5. 

 

To test the performance and stability of the integrating Lagrangian relaxation and iteration 

approach in solving large size problems, six instances are randomly generated with the 

number of PNs (m) ranging from 5 to 2000 with the other parameters such as c(i), h(i), s(i), 

     ,       remaining the same in GAMS codes as mentioned in the previous paragraph. 

The computation results in Table 17 indicate that the integrative Lagrangian relaxation and 

iteration approach reports extremely good solutions in terms of both solution quality and 

computing time: the gap between the Lagrangian relaxation value and objective solution 

value for all the instances are 0. For cases involving up to 200 PNs, the optimal solutions can 

be found in less than 1 second. Even for large scale cases with thousands of PNs, this 

approach can obtain results in less than half a minute.    

 

m Bound  Solution  GAP(%) CPU Times (second) 

5 2.90E+09 2.90E+09 0 0.031 

10 8.08E+09 8.08E+09 0 0.031 

20 1.20E+10 1.20E+10 0 0.062 

200 1.24E+11 1.24E+11 0 0.719 

1000 7.38E+11 7.38E+11 0 7.063 

2000 1.37E+12 1.37E+12 0 21.391 

Table 17. Test Problem sizes, solutions, relative gap, and running time 
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3.6 Sensitivity Analysis  

 

In order to understand how important parameters affect decision variables, we conduct a 

sensitivity analysis with the improved multiple PNs model for three different cases, which 

are typical representations based on our earlier analysis on single PN models in Chapter 2. 

The basic input parameter values are generated randomly in GAMS and are listed in Table 

18. We choose a small size example, m=3, because it is easy to operate and clear to 

investigate. In each case, we only change one parameter value at a time while the others 

are kept the same.  

 

  c(i) h (i) s(i) µx(i) days σx(i) days T(i) days µz(i) σz(i) n(i) K 

part i=1 10387.65 1664.39 38430.80 621.48 104.04 1825 165.56 33.07 367.55 

7197117.52 part i=2 50611.68 8019.04 238509.58 1055.44 199.64 1825 45.20 10.50 109.33 

part i=3 33067.48 4788.52 103641.02 404.05 119.12 1825 60.18 14.75 150.31 

Table 18. Basic values of parameters 

 

K   5997598 6597358 7197118 7796877 8396637 8996397 

Q 

part i=1 167.715 181.792 195.932 209.967 220.938 220.938 

part i=2 44.055 48.959 53.834 58.786 62.989 62.989 

part i=3 61.261 67.47 73.704 79.854 84.588 84.588 

   

part i=1 441.573 444.137 447.081 449.874 451.785 451.785 

part i=2 686.873 692.081 698.376 704.546 709.016 709.016 

part i=3 201.928 205.395 209.23 212.755 215.095 215.095 

   

part i=1 610.056 620.068 630.11 640.158 648.132 648.132 

part i=2 1006.393 1029.256 1051.645 1074.337 1093.782 1093.782 

part i=3 376.203 388.747 401.172 413.399 422.871 422.871 

R SUM 2.72E+09 1.75E+09 1.23E+09 1.02E+09 1.01E+09 1.01E+09 

Table 19. Decision variables and objective value change when K increases 
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First, we observe how the budget limit (K) influences our decision variables and objective 

function value. The test data are summarized in Table 19. K is changed from 5 997 598 to 8 

996 397, which is actually from the value of ∑      
 
    to 1.5∑      

 
   . We can see that Q, 

  , and    increase as budget limit K is increased. While the total expected cost R 

decreases when a higher budget is allowed due to the reduction of shortage cost. The 

lowest optimal value is obtained at about K=8 396 637 (which is 1.4∑      
 
   ), and after 

that point the decision variables and objective value do not change any more even if the 

budget limit is further increased. It is due to the reason that the budget limit is likely a 

binding constraint when K < 8 396 637 and becomes redundant once K ≥ 8 396 637. 

 

Figure 22 describes that the order quantities Q for all the three PNs gradually increase with 

similar growth trends as the value of K increases. Figure 23 shows that the part arrival times 

   for all the three PNs slightly increase in K. The expected total cost curve in Figure 24 

reveals that initial budget limit increase will significantly reduce the expected total cost due 

to shortage cost savings. However, the expected total cost will not decrease any more once 

the budget constraint becomes nonbinding. 
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Figure 22. Order quantities change when K increases 

 

 

Figure 23. Parts arrival times change when K increases 

 

 

Figure 24. Expected total cost changes when K increases 
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Next, we investigate how the decision variables and objective function value change as the 

MTTF (   ) for PN 1 increases. When K=7 197 118 (which is 1.2∑      
 
   ), the optimal 

replenishment plans for all the three PNs are summarized in Table 20, and are illustrated in 

Figure 25, 26, and 27. When     increases, we can see that the part arrival times for PN 1 

are postponed due to their longer expected lifetimes. The part shortage period for PN 1 also 

starts later due to the same reason, however, the values of    and    for the other two 

parts almost remain at the same levels. Order quantities for the three parts are also kept 

more or less the same as a result of budget constraint which restricts decision-makers’ 

purchase of parts. Figure 27 shows that the expected total cost consistently decreases as 

    increases, which is likely due to the shortage cost savings for PN 1. 

 

       312.12 364.14 416.16 468.18 520.2 572.22 621.475 

Q 

part i=1 198.83 198.398 197.946 197.472 196.975 196.453 195.932 

part i=2 53.509 53.558 53.608 53.661 53.717 53.776 53.834 

part i=3 73.291 73.353 73.417 73.485 73.555 73.63 73.704 

   

part i=1 138.327 190.258 242.185 294.107 346.024 397.936 447.081 

part i=2 697.951 698.015 698.081 698.15 698.223 698.3 698.376 

part i=3 208.979 209.016 209.055 209.097 209.14 209.185 209.23 

   

part i=1 322.82 374.532 426.23 477.912 529.578 581.226 630.11 

part i=2 1050.157 1050.378 1050.61 1050.853 1051.108 1051.376 1051.645 

part i=3 400.351 400.474 400.602 400.736 400.877 401.025 401.172 

R SUM 1.28E+09 1.27E+09 1.26E+09 1.25E+09 1.24E+09 1.24E+09 1.23E+09 

Table 20. Decision variables and objective value change when     increases 
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Figure 25. Order quantities change when     increases 

 

 
Figure 26. Parts arrival times change when     increases 

 

 

Figure 27. Expected total cost changes when     increases 
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risk of shortage. However, as Figure 28 shows, the order quantity roughly remains at the 

same level, likely due to budget limit. The only thing that the decision-maker can adjust is 

replenishing PN 2 earlier to handle the challenges of part shortage, as reflected in Figure 29. 

Although this adjustment helps to alleviate shortage risk, it will nevertheless drive up 

inventory cost as depicted in Figure 30, where the expected total cost gradually grows as 

    increases. This increased cost is probably incurred by the higher inventory holding cost 

as well as higher risk of part shortage due to increased uncertainty of first PN lifetime.  

 

 

      104.04 130 160 190 215 

Q 

part i=1 195.932 196.327 196.183 196.04 195.921 

part i=2 53.834 53.79 53.806 53.822 53.835 

part i=3 73.704 73.648 73.668 73.689 73.706 

   

part i=1 447.081 354.416 304.107 253.781 211.83 

part i=2 698.376 698.318 698.339 698.36 698.378 

part i=3 209.23 209.196 209.208 209.221 209.231 

   

part i=1 630.11 583.361 585.774 588.13 590.048 

part i=2 1051.645 1051.441 1051.515 1051.588 1051.649 

part i=3 401.172 401.061 401.101 401.142 401.176 

R SUM 1.23E+09 1.26E+09 1.28E+09 1.30E+09 1.31E+09 

Table 21. Decision variables and objective value change when     increases 

 

 

 
Figure 28. Order quantities change when     increases 

0

50

100

150

200

250

100 120 140 160 180 200 220

Q(1)

Q(2)

Q(3)

σx(1) 

Q(i) 



 
66 

 

 

 

Figure 29. Parts arrival times change when     increases 

 

 

Figure 30. Expected total cost changes when     increases 
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hand and they have to make procurement plans. Generally speaking, they have to face the 

following two problems: What is the order quantity for each PN? When to place a purchase 

order for each given PN? These two questions need to be addressed with the objective of 

minimizing the total cost of purchasing, holding and shortage within the available resources. 

Our research attempts to answer these questions by establishing an efficient inventory 

policy. The aim is to achieve a balance between the inventory holding and shortage cost. We 

also consider part delivery time in our models which help decision-makers place orders in 

advance, therefore reduce downtime and unnecessary cost. Compared with traditional 

forecasting methods based on historical data, our models address demand for spare parts 

by considering parts aging and wear-out. Part failures distributions are introduced to predict 

impending demands. The proposed multiple PN NLP models cannot be properly handled by 

GAMS and its solvers due to the complexity of the model, especially for large size cases. 

Therefore, we explore a Lagrangian relaxation heuristic method to relax the budget 

constraint and decompose the large size problem into multiple single PN sub-problems. To 

overcome the instability of GAMS solvers, we further combine an iteration method with the 

Lagrangian relaxation heuristic, and develop an integrative algorithm to find the optimal 

solution. Both small size and large size numerical examples show that the gap between the 

Lagrangian relaxation value and objective function value is 0. Our proposed NLP models and 

solution methodologies can greatly help decision-makers to find optimal order quantities 

and order time from a total cost minimization perspective under a limited budget constraint. 

In addition, our inventory models can also be applied to extremely large-scale problems. For 

example, even we have 2000 PNs in the inventory system, the solution still can be found 
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expeditiously within 21.4 seconds in our numerical experiment. 

 

The models presented in this chapter are single period models with multiple PNs under a 

budget constraint. Our numerical examples are based on normal distributions and the 

integrative approach of the Lagrangian relaxation and iteration method proves to be 

effective in solving the NLP models for both large and small numbers of PNs. It will be 

interesting to extend the problem to a wider scope of applications, such as multiple periods, 

other parts failure distributions, spare parts procurement based on both failures and PM, 

purchase plan considering repairable items, to name a few.  
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CHAPTER 4: CONCLUSIONS AND FUTURE RESEARCH 

     

This thesis developed a series of non-linear programming models to obtain optimal spare 

parts replenishment policies for maintenance use due to failures replacements. In 

consideration of parts lead time, purchase orders must be issued in advance to reduce 

downtime, especially for those parts with long delivery time and cumbersome customs 

clearance processes. We take into account reliability issues and introduce part failure 

distributions from two perspectives: failure time and failure numbers. Therefore, part 

demands or part failures can be predicted based on two factors: time and quantity. 

Compared with traditional inventory policies, our proactive and efficient spare parts 

inventory policies not only consider the optimal order quantity, but also take into account 

the optimal order timing in a single period. Thus, advance orders can be triggered at 

appropriate time and the total cost, consisting of purchase, holding and shortage cost, can 

be minimized. 

 

We first introduce two single PN models, the basic and improved models, in a single period. 

Our numerical results are based on normal distributions. Compared with traditional forecast 

methods based on historical data, our models seem more reasonable because they consider 

part aging and its impact on demands. Computational results indicate that our proposed 

basic inventory model can lead to a significant reduction in inventory cost, ranging from 

5.68% to 98.03% in the first example, and 45.93% to 93.06% in the second example. We also 

found that the basic model can be used as a reasonable substitute to carry out inventory 
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planning due to its ease for use. Moreover, the computation results of part arrival time from 

the basic model can be employed to approximate the result of the improved model. 

Although the spare parts replenishment policies in this research are mainly focused on 

aircraft maintenance, the models are put in a generic framework and can be used in other 

industries with similar concerns.  

 

In Chapter 3, we extend these models to the multiple PNs case with a budget constraint. 

Due to the complexity of the two NLP models, we have explored several approaches to find 

a reliable and reasonable solution. Because GAMS and its solvers are not applicable to 

solving large-scale instances, especially out complex NLP models, we introduce a Lagrangian 

relaxation heuristic method to relax the budget constraint and decompose the large size 

problem into multiple single PN sub-problems. The advantage of the Lagrangian relaxation 

heuristic is that it can provide a measure for the gap between the optimal solution and the 

approximate solution. To overcome the instability of solvers in GAMS, we further integrate 

an iteration method into the Lagrangian relaxation heuristic, and develop an iterative 

algorithm to find the optimal solution. Numerical experiments demonstrate that the gap 

between the Lagrangian relaxation and the objective function value is 0 for both small size 

and large size examples. In summary, our proposed NLP models and solution methodologies 

are able to help decision makers find optimal order quantities and order time to minimize 

the total cost for multiple PNs under a limited budget constraint. As illustrated by our 

numerical examples, the proposed inventory models and the integrative solution procedure 

can be applied to large-scale problems. For the example with 2000 PNs, the solution still can 
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be expeditiously obtained within 21.4 seconds. 

 

The models presented in this thesis have addressed single PN and multiple PNs spare parts 

inventory management problems. Current models are limited to a single period and 

numerical examples are carried out based on normal distributions to characterize part 

failure time and the number of failures. It will be interesting to extend the models along a 

number of directions, such as multiple periods, other parts failure distributions, spare parts 

procurement based on both failures and PM, and purchase plan considering repairable 

items.  
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