
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

8-2013

Three-Dimensional Knapsack Problem with Pre-Placed Boxes and Three-Dimensional Knapsack Problem with Pre-Placed Boxes and

Vertical Stability Vertical Stability

Hanan Mostaghimi Ghomi
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Mostaghimi Ghomi, Hanan, "Three-Dimensional Knapsack Problem with Pre-Placed Boxes and Vertical
Stability" (2013). Electronic Theses and Dissertations. 4987.
https://scholar.uwindsor.ca/etd/4987

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4987&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=scholar.uwindsor.ca%2Fetd%2F4987&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/4987?utm_source=scholar.uwindsor.ca%2Fetd%2F4987&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Three-Dimensional Knapsack Problem with Pre-
Placed Boxes and Vertical Stability

By

Hanan Mostaghimi Ghomi

A Thesis
 Submitted to the Faculty of Graduate Studies

through Industrial and Manufacturing Systems Engineering
in Partial Fulfillment of the Requirements for

the Degree of Master of Science
at the University of Windsor

Windsor, Ontario, Canada

2013

© 2013 Hanan Mostaghimi Ghomi

Three-Dimensional Knapsack Problem with Pre-Placed Boxes and Vertical
Stability

by

Hanan Mostaghimi Ghomi

APPROVED BY:

__
Dr. I. Ahmad

Computer Science School

__
Dr. R. Lashkari

Industrial & Manufacturing Systems Engineering

__
Dr. W. Abdul-Kader, Advisor

Industrial & Manufacturing Systems Engineering

10 June 2013

iii

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this
thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon
anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,
quotations, or any other material from the work of other people included in my thesis,
published or otherwise, are fully acknowledged in accordance with the standard
referencing practices. Furthermore, to the extent that I have included copyrighted
material that surpasses the bounds of fair dealing within the meaning of the Canada
Copyright Act, I certify that I have obtained a written permission from the copyright
owner(s) to include such material(s) in my thesis and have included copies of such
copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as
approved by my thesis committee and the Graduate Studies office, and that this thesis
has not been submitted for a higher degree to any other University or Institution.

iv

ABSTRACT

A three-dimensional knapsack problem packs a subset of rectangular boxes

inside a bin with fixed size such that the total value of packed boxes is

maximized. Each box has its own value and size and can be freely rotated into

any of the six positions while its edges are parallel to the bin’s edges. A Mixed

Integer Linear Programming is developed for the 3D knapsack problem, while

some practical constraints such as vertical stability are considered. However,

the given model can be applied to two dimensional problems as well. The

proposed solution methodology is based on the sequence triple. Simulated

annealing technique is used to model the heuristic approach. Moreover, the

situation where some boxes are pre-placed in the bin is investigated. These pre-

placed boxes represent potential obstacles. Numerical experiments are

conducted for bins with and without obstacles. The results show that the

heuristic approach is successful and can handle different kinds of instances.

v

DEDICATION

I dedicated this thesis

 To my beloved parents,

 the best people I know.

vi

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to all those who provided me

the possibility to complete this thesis. I am thankful to my supervisor, Dr. W.

Abdul-Kader, whose advice and knowledge added to my graduate experience.

His insight has inspired me, and I would appreciate his support.

I would like to appreciate the outside reader, Dr. Imran Ahmad, for his great

advice. I am grateful to Dr. R. Lashkari for his helpful suggestions which

improved the quality of my thesis. I would also like to appreciate Dr. J. Urbanic

for chairing the thesis defence.

Furthermore, a special thanks goes to my dear friend, Omid Beiraghi, who

kindly corrected my writing. I am especially grateful to my beloved parents

who encouraged me to come for the Master’s program.

vii

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY .. iii

ABSTRACT ... iv

DEDICATION ...v

ACKNOWLEDGEMENTS ... vi

LIST OF TABLES ...x

LIST OF FIGURES .. xii

LIST OF APPENDICES ... xii

LIST OF ABBREVIATIONS/SYMBOLS .. xiii

CHAPTER 1 INTRODUCTION ...1

1.1 Background .. 1

1.2 Knapsack problem ... 2

1.3 Simulated Annealing .. 5

CHAPTER 2 LITERATURE REVIEW ..8

2.1 Two-Dimensional Knapsack Problems .. 8

2.2 Three-Dimensional Knapsack Problems ... 10

2.3Research Gaps .. 16

CHAPTER 3 PROBLEM FORMULATION ..17

3.1 Problem Definition... 17

3.2 Mathematical Formulation .. 18

3.2.1 Notations ... 18

viii

3.2.2 Assumptions .. 21

3.2.3 MILP ... 21

3.3 Two-Dimensional Model .. 25

CHAPTER 4 SOLUTION METHODOLOGY ...27

4.1 Three-Dimensional Algorithm ... 27

4.1.1 Sequence Triple ... 27

4.1.2 Placement Algorithm .. 28

4.1.3 Simulated Anealing ... 30

4.1.4 Orthogonal Rotation ... 32

4.1.5 Obstacles ... 32

4.1.6 Four Corners Packing .. 33

4.1.7 Order of Box Insertion .. 33

4.2. Two-Dimensional Algorithm ... 33

CHAPTER 5 NUMERICAL ANALYSIS ...35

5.1 Intoduction ... 35

5.2 Numerical Experiments .. 35

5.3 Parameter Setting .. 38

5.4 Results and Sensitivity Analysis ... 38

5.5 Algorithm Verification ... 47

5.6 Conclusion ... 48

CHAPTER 6 CONCLUSIONS AND FUTURE WORKS ..49

6.1 Conclusions .. 49

6.2 Future Works ... 50

REFERENCES/BIBLIOGRAPHY..51

APPENDICES ...54

Appendix A .. 54

Appendix B .. 56

ix

Appendix C .. 67

VITA AUCTORIS ...75

x

LIST OF TABLES

Table 2.1: Summary of Some Relevant Papers ..14

Table 3.1: 2D Rectangles Dimensions and Maximum allowed Number..................26

Table 5.1: Information on the First Set of Boxes ..36

Table 5.2: Information on the Second Set of Boxes ...36

Table 5.3: Obstacles Dimensions and Coordinates for Instances with 36

and 70 Boxes ..37

Table 5.4: Ceiling and Middle Obstacles Information ..37

Table 5.5: Worst, Best, and Average Utilization ..38

Table 5.6: Summary of Results ...42

xi

LIST OF FIGURES

Figure 1.1: Knapsack Problem Types ..3

Figure 1.2: Simulated Annealing Block Didgram ...7

Figure 3.1: The X, Y, and Z axes of the bin ...21

Figure 3.2: 2D Instance Result..26

Figure 5.1: Best Result for Mst-36-v-wo-560 ...42

Figure 5.2: Best Result for Mst-36-R-wo-560...43

Figure 5.3: Best Result for Mst-36-R-obs-649 ..43

Figure 5.4: Best Result for Mst-36-v-obs-649 ..43

Figure 5.5: Best Result for Mst-70-v-wo-1386 ...44

Figure 5.6: Best Result for Mst-70-R-wo-1386...44

Figure 5.7: Best Result for Mst-70-R-obs-1386 ..44

Figure 5.8: Best Result for Mst-70-v-obs-1386 ..45

Figure 5.9: Best Result for Mst-70-v-obs(ceiling)-1386 ...45

Figure 5.10: Best Result for Mst-70-R-obs(ceiling)-1386 ...45

Figure 5.11: Best Result for Mst-70-v-obs(middle)-1386 ..46

Figure 5.12: Best Result for Mst-70-R-obs(middle)-1386 ...46

Figure 5.13: Best Result for Mst-50-v-wo-210 ..46

Figure 5.14: Best Result for Mst-50-R-wo-210..47

Figure 5.15: Result without Vertical Stability ...47

xii

LIST OF APPENDICES

Appendix A: Number of packed boxes of each type in some of the best

obtained results ..54

Appendix B: Packed boxes coordinates for some of the best results56

Appendix C: Proof of the knapsack problem NP-hardness67

xiii

LIST OF ABBREVIATIONS/SYMBOLS

C&P Cutting and Packing

MILP Mixed Integer Linear Programming

3D Three-Dimensional

2D Two-Dimensional

ILP Integer Linear Programming

1

CHAPTER 1

Introduction

1.1.Background

Cutting and packing problems have been intensely studied as they have many

applications in industrial and finance management. The three dimensional packing

problem is essential for practical purposes such as container loading or scheduling

which can be defined as a geometric assignment problem. The various packing

problems can have different constraints and objectives. For instance, in the case of

shipping, objects with different sizes have to be packed into a larger container. A

topology of packing problems in general was defined by Dyckhoff et al. (1990) and a

recent survey was defined by Wascher et al. (2007). Cutting and packing problems

appear under several different names such as bin packing, multi-container loading

problem, strip packing and knapsack problems, based on the objective function and

the side constraints. All types of cutting and packing problems have some similar

structures. They consist of two sets of elements, a set of large objects (called bins) and

a set of small items (called boxes). The problem is to select some or all small items

and assign them to one of the large objects while all selected small items are placed

entirely in the large object and do not overlap and a given objective function is

optimized. Thus, only some of the large objects and small items may be used in a

solution of the problem. The packing problem considers optimal utilization of bin

volume for goods distribution and is an important industrial problem. Filling a bin

optimally decreases the shipping cost and increases the stability of the load. The large

objects, which are called bins, can be homogeneous or heterogeneous. If the boxes

placed in the given bin are identical it is called homogeneous; however, if various

types of boxes are placed in it, it is considered as strongly heterogeneous.

Different kinds of cutting and packing problems can be divided to two categories.

In the first category, sufficient bins are available to pack all the boxes; however, only

a limited number of bins is available to pack a subset of boxes in the second category.

The first type of problems are called an input minimization problem, and the second

type are called an output maximization type. In the case of output maximization, a set

of boxes has to be packed in a set of bins where the number of bins is not enough.

2

However, in the case of input minimization, all the boxes can be packed. In strip

packing problem, a set of rectangular boxes are packed in a strip with certain width

and height and variable length. The problem is how to place all the boxes inside the

strip such that its length is minimized. In bin-packing problem, a set of items have to

be packed in a set of bins of the same fixed sizes and costs, such that the number of

used bins is minimized. Unlike bin-packing problem, in multi-container loading

problem, the containers (or bins) do not essentially have equal sizes and costs. In

knapsack problem each item has a profit and the problem is to choose the best subset

of items that fits into the single bin or container such that the sum of the items profit is

maximized. In this kind of problem, the availability of bins is limited so all items

cannot be packed. (Leung, 2012; Fekete & Schepers 1997; Wei et al. 2009; Egeblad et

al. 2010; Pisinger 2002).

1.2. Knapsack Problem

The knapsack problem is a problem in combinatorial optimization. The

multidimensional knapsack Problem (MKP) is a strongly NP-hard optimization

problem which can be show by reduction from the one-dimensional packing problem;

it means that it is very unlikely to develop polynomial algorithms for these problems.

Knapsack problems consist of three different types. The first one is Single Knapsack

Problem (SKP), the problem of packing a subset of strongly heterogeneous boxes in a

single container. Multiple Identical Knapsack Problem is the second type which

considers packing a subset of strongly heterogeneous boxes in a set of identical bins.

The last type is Multiple Heterogeneous Knapsack Problem (MHKP) which is the

problem of packing a subset of strongly heterogeneous boxes in a set of weakly and

strongly heterogeneous bins. Figure 1.1 shows the different types of knapsack

problems in summary.

3

Figure 1.1 Knapsack Problem Types, Wascher et al. (2007)

Various practical constraints can be considered in the multidimensional knapsack

problems. Some of these constraints are related to the bin, while some of them may

refer to the boxes. Moreover, some constraints might be related to the relationship

between the bin and boxes. One such constraint is the orientation constraint.

Principally, each box dimension can be considered as height, thus three other

orientations can easily be defined. Each box can have six orientations in order to

orthogonally be placed in a bin. Moreover, one other practical constraint is the

positioning constraint which limits the location of the boxes in the bin.

Load stability constraint is one of the most important issues in knapsack problems.

In spite of its importance, load stability is often not studied explicitly in the literature.

The stability is a direct consequence of load trimness when high bin utilization can be

assured. This is typically true for knapsack problems in which only a subset of boxes

can be packed as the bin availability is limited. Load stability can be divided into

vertical and horizontal stability. Vertical stability prevents boxes from falling down

onto bin floor or on top of other boxes. It deals with gravity force. In order to satisfy

this kind of stability, the bottom of a box should be supported by the bin floor or other

box tops. Horizontal stability or dynamic stability guarantees that boxes cannot shift

notably when the bin is moving. Horizontal stability is satisfied when each packed

box is adjacent to other boxes or to the bin wall.

In addition, another constraint which can be considered in knapsack problems is

the guillotine cutting constraint. A packing is guillotineable if it is able to be reached

4

by a series of cuts which are in parallel to the bin walls. Guillotineable patterns are

not always suitable for packing as the boxes tend to be more unstable while being

transported. A robot packable packing is one which can be done by placing boxes

starting from left-bottom-behind corner of a bin, while each box is placed in front, on

the right or above the already packed boxes. Robot packable packing tackles a

situation in which a robot with artificial hands packs the boxes into the bin.

Although technological knowledge has enhanced, solving real knapsack problems

is still a challenge. The solution quality and computational efficiency are very

sensitive to the box-positioning rule. Due to NP-hardness of the packing problem,

only few exact algorithms and many heuristic methods have been presented which are

based on the different strategies (Leung, 2012; Fekete & Schepers, 1997; Wei et al.,

2009; Egeblad et al., 2010; Pisinger, 2002; Bortfeldt & Wascher, 2012).

The problem addressed here, in the topology suggested by Dyckhoff (1990),

belongs to 3/B/O/F (3: three-dimensional, B/O: one object/bin and items selection, F:

few items of different types) while Wascher et al. (2007) classify it as the three-

dimensional single orthogonal knapsack problem. As well as non-overlapping

constraints, some other constraints should be considered in practice, such as bin

stability and pre-placed boxes. The given problem considers the packing of

rectangular items in a rectangular bin in order to maximize the total value of the

packed items (minimize the amount of space loss).The value of boxes is assumed to

be equal to their volume. The rotation of the boxes is taken into account as well. Since

the three-dimensional knapsack problem is NP-hard, it is difficult to solve. In

addition, the difficulty of finding optimal solution is enhanced as the box rotations

increase the search space significantly. Some exact algorithms as well as heuristic

methods are proposed in the published literature. Since exact algorithms need more

time to find a solution, heuristic approaches are more popular and can be used as an

alternative to find near optimal solutions. A mixed integer linear model is developed

for the given knapsack problem. The model considers vertical stability and pre-placed

constraints which were not studied in Egeblad and Pisinger (2009). These practical

constraints as well as the box rotations are added to the model in order to study a

realistic knapsack problem. The proposed three-dimensional solution methodology is

based on the sequence triple representation proposed by Egeblad and Pisinger (2009).

5

The developed algorithm also considers box rotation, pre-placed boxes and vertical

stability. Simulated annealing is used as a heuristic method.

1.3. Simulated Annealing

Simulated annealing (SA) is a general optimization method to solve combinatorial

optimization problems. It belongs to the class of local search algorithms. Simulated

annealing algorithm has been used to handle many NP-hard problems. It was

developed in 1983 to solve nonlinear problems. The inspiration comes from annealing

in metallurgy, a technique of heating and controlled cooling of material in order to

enhance the size of its crystal and decrease their defects, so that its structure is finally

frozen which occurs at a minimum energy configuration. Simulated annealing

algorithm is based on the very important fact that even in low temperature it is

probable to have a particle with high internal energy. This fact shows the possibility

of jumping out of the local minimum. While the temperature is reduced, the

possibility of jumping out decreases. The basic elements of simulated annealing are as

follows:

1. A finite set S.

2. A cost function which is defined on S.

3. A set SiiSiS ∈∀−⊂ }{)(which is the set of the neighbours of i.

4. Cooling schedule T which is a non-increasing function. T(t) is the temperature

at time t.

5. An initial state.

The slow cooling is applied to the simulated annealing method as a slow reduction

in the probability of accepting worse solutions. At each step, the algorithm considers

some neighbouring states of the current state, and decides whether to stay at the

current state or move to a neighbouring state. The probability of moving from a

current state to a new neighbouring state is called acceptance probability which

depends on the energies of the two states and a control parameter known as

temperature. If the energy of the new state is better than the current one, the

acceptance probability is equal to one. However, when the energy of the new state is

6

worse, the move to the new state is accepted if Re etemperatur >
∆−)(

, where

energystatecurrent

energystatenewenergystatecurrent

__

)____(−=∆ , and R=Uniform(0,1). At first, T

has a relatively high value, so the chance to accept the new state is higher. T is slowly

decreased to values such that most new states will not be accepted. The algorithm is

repeated until it achieves a state that is good enough for the given application or until

a given computation time is exhausted. It has been proved that by controlling cooling

rate of temperature this algorithm can find the global optimum, although it needs

infinite time. Like all other algorithms, simulated annealing has some strengths and

weaknesses. It can deal with chaotic data, highly nonlinear problems and many

constraints. It is able to reach global optimality. Simulated annealing algorithm is

relatively flexible as it does not depend on any restrictive model’s properties.

However, as SA is a metaheuristic algorithm, so many choices are required to

consider in the actual algorithm. Obviously, there is a trade-off between the quality of

the solutions and computation time. Figure 1.1 shows the block diagram of simulated

annealing (Bertsimas & Tsitsiklis, 1993; Dowhan et al., 2009).

7

Figure 1.2. Simulated Annealing Block Diagram (Dowhan et al., 2009)

8

CHAPTER 2

Literature Review

2.1. Two Dimensional Knapsack Problem

Some papers in this area focus on two-dimensional packing problem. Leung et al.

(2001) present a genetic algorithm and a simulated annealing approach to solve the

two-dimensional non-guillotine cutting stock problem. They aim to find a cutting

pattern which minimizes trim loss. The authors apply the genetic algorithm and

simulated annealing to determine the permutations of small trim loss; then they use

different packing approaches to pack the items corresponding to a special

permutation. The proposed heuristic cannot produce all the feasible packings.

Capara and Monaci (2004) consider upper bounds and exact algorithm for the two-

dimensional orthogonal knapsack problem. The authors present an approximation

algorithm and four exact algorithms based on the enumeration scheme, and mainly

focus on upper bounds. They claim their algorithm has similar performance to Fekete

and Schepers’ (1997) algorithms in most instances.

Clautiaux et al. (2007) consider the two-dimensional orthogonal knapsack problem

and propose two exact methods to solve the problem. In the first algorithm, they

improve the classic branch and bound method; however, the second one is on the

basis of a new relaxation of the problem. They, moreover, define the reduction

procedures and lower bounds used within both enumerative methods. The first

algorithm is called LMAO (Leftmost Active Only) which counts the packing of items

only in the left-most-downward position and tests the possibility of not packing any

item in that position. By using this algorithm the same packing is not counted twice.

The second algorithm called Two Step Branching Procedure (TSBP) is based on

cutting each item with wi and height hi into hi strips with width wi. All strips relating

to the given item must be packed at the same coordinate even if they are not similar.

The proposed lower bounds increase the computing time in some instances.

9

Goncalves (2007) proposes combination of the placement procedure and a genetic

algorithm based on random keys to solve a two-dimensional orthogonal knapsack

problem. The objective function is minimizing the amount of trim loss. The proposed

algorithm is relatively complex and time consuming.

Bortfeldt and Winter (2009) propose a genetic algorithm for the two dimensional

orthogonal knapsack problems. The proposed algorithm considers both guillotine and

non-guillotine variant of the problem and an orientation constraint also may be

considered. The items which have to be placed in the container can be constrained as

well as unconstrained. The authors claim that for large instances of the non-guillotine

constrained 2D knapsack, GA solution is significant.

Joncour et al. (2010) suggest a method for finding a feasible solution for a two

dimensional orthogonal knapsack problem which is based on the characterization of

the interval graph. The problem is packing the rectangular items in a big rectangular

container without overlapping. It is assumed that the rotation of the items is not

allowed. In order to find infeasible solutions earlier, they used a method similar to

Clautiaux et al. (2007). The approach suggested in this paper is superior to the Fekete

and Schepers’ (1997) method since by creating MPQ-trees, the search space stays

within the set of interval graphs.

Dolatabadi et al. (2012) propose a recursive exact algorithm to solve the two-

dimensional guillotine knapsack problem. The problem is packing small rectangular

items in a bigger rectangular sheet. The packing is orthogonal and the rotation of the

items is not allowed. At first, the sets of associated guillotine packing are built; then,

the algorithm is divided into two exact algorithms in order to solve the two-

dimensional knapsack problem. The first algorithm is on the basis of iterative

implementation of recursive method with different input parameters, and the second

one is based on an ILP model. The branch-and-cut method is used to confirm the

optimality of the solution.

Leung et al. (2012) propose a hybrid simulated annealing metaheuristic for the two-

dimensional knapsack problem. The authors first define a fitness strategy to identify

which item has to be packed first in a given position. A heuristic algorithm generates

10

the solution based on this fitness strategy. Finally, the simulated annealing approach is

used to jump out of the greedy strategy’s local optimal trap. The items are packed into

stock sheet one at a time for a given sequence of items. For any available position, the

fitness value of each item, which has to be packed, is calculated and then the item

with maximum fitness value is selected. If more than one item has the same maximum

fitness value, the algorithm selects the one by the input order of the items. The

proposed hybrid algorithm combines the greedy strategy approach and simulated

annealing to gain a better solution. The greedy algorithm is used to search a good

sequence of items; then a simulated annealing heuristic is applied to do a broader

search to gain a better solution.

2.2. Three Dimensional Knapsack Problem

Some papers consider the three dimensional cutting and packing problem (or

container loading) and attempt to model it or propose solution methodology for such

problems. The focus of most of these papers is on the rectangular bins. As multi

dimensional C&P problems are strongly NP-hard, only very few exact algorithms

have been proposed for such problems.

Fekete and Schepers (1997) propose a method for modeling more-dimensional

packing problem based on the graph characterization of feasible packing. They define

a graph based on the relative positions of boxes. The graph is proven to be an interval

graph. The authors consider a set of boxes to be packed into a container and focus on

an orthogonal packing problem. The method cannot handle further constraints like

fixing the position of some items, and the results are limited to two dimensional

problems. Fekete and Schepers (1997) present a method in order to gain lower bounds

for more-dimensional knapsack problem. They, moreover, illustrate that all known

lower bounds for such problems can be improved by this method. The authors

describe heuristics for dismissing infeasible packings. Fekete and Schepers (1997)

show how this method can be applied to more dimensional knapsack problem.

Fekete and Schepers (2004) propose a new method for obtaining classes of lower

bound for higher-dimensional packing problem. The authors apply a number of

volume tests after modifying the size of boxes. The relative bulkiness of the items and

11

the way that they can be combined is reflected by transformation. They present a

combinatorial characterization of feasible packing as a basis for branch and bound

approach. The major objective of this paper is to define good criteria for removing a

candidate set of boxes. Dual feasible function is a way to build conservative scales.

All known classes of lower bound for higher-dimensional packing problem can be

improved by using the proposed approach. The authors suggest a strong method for

solving higher dimensional problems by combining these classes of bounds and

characterization of feasible packing as described in Fekete and Schepers (1997). The

computational results are mainly limited to the two-dimensional packing problem.

Hifi (2004) proposes a dynamic algorithm and an exact depth-first search in order to

solve the three dimensional cutting problem. Orientation and guillotine constraint are

considered. Sixty four problem instances were tested which include up to 50 boxes.

Optimal solutions are obtained for most of the instances but not all of them.

Although considerable advancement has been made in the development of exact

algorithms, heuristic algorithms still play an important role in solving three-

dimensional knapsack problems. Only heuristic methods can provide reasonable

solutions within acceptable running times for problem instances of real-world size.

Martello et al. (2007) consider the orthogonal three-dimensional bin packing problem

where box rotation is not allowed. Both general and robot packable variants of bin-

packing problem are presented. The algorithm is on the basis of two-level

decomposition approach and consists of two parts. In the first part the boxes are

assigned to the bins. In the second part, a single bin is filled while the objective

function is maximizing the filled volume. The proposed methodology can be used as a

whole for solving the three-dimensional bin packing problem or just for filling a

single bin.

Egeblad and Pisinger (2009) propose a simulated annealing based methodology for

the two and three dimensional knapsack problems. A three-dimensional knapsack

model is presented. New constraints can be added to this model such as fixing the

position of items or rotation. The authors present an iterative heuristic for the two-

dimensional knapsack problem which is based on the sequence pair. In each iteration,

12

the sequence pair is transformed to the packing. In order to control the heuristic

method simulated annealing is used. For three-dimensional knapsack problem,

sequence triple technique is used. The authors prove that a fully robot packable

packing can be obtained through sequence triple representation. Robot packing is a

packing obtained by locating items starting from left-bottom-behind (LBB) corner. It

is represented in three sequences; for any sequence the relationship of each two items

is defined. To find a placement for any given sequence, three constraint graphs are

constructed. Like 2DKP, the meta-heuristic annealing is used to solve the three-

dimensional knapsack problem. Rotation of boxes is not considered in the three-

dimensional model and experiments.

Wu et al. (2010) consider the three-dimensional bin packing problem with variable

bin height. The bins and boxes are rectangular and the object rotation is allowed.

Guillotine constraint is not imposed. Moreover, bin heights can change in order to fit

bin contents. A mixed integer programming model is proposed, and a bin packing

algorithm which is based on packing index is used to develop the problem feature and

as a building block for genetic algorithm. The authors also present the situation when

more than one type of bin is used. A genetic algorithm-based heuristic is proposed for

packing a batch of objects. The algorithm is on the basis of extreme point method.

The authors consider both single bin packing and batch bin packing problems.

Amossen and Pisinger (2010) consider the multi-dimensional orthogonal bin-packing

problem with guillotine constraints where rotation is not allowed. The authors

experimentally evaluate three packing methods –unrestricted, robot packable,

guillotine cuttable- based on the solution time and quality.

Models provide information on optimal objective function value and bounds. They are

helpful to assess the solution quality of heuristic algorithms. Modeling three

dimensional knapsack problems, while considering practical constraints, is still at its

beginning.

Junqueira et al. (2012) present mixed integer linear programming models for the

container loading problem. Vertical and horizontal stability of the cargo as well as

cargo load bearing strength are taken into account in the proposed model. The models

13

can be extended in order to apply to other variants of container loading problem as

well. However, the models are only able to handle moderate size problems.

In addition, container loading problems have been studied from a more general and

practical view. Murty et al. (2005) propose a decision support system in order to

develop optimal decisions. These decisions are used to route container trucks, find the

storage place for containers, number of assigned container and truck scheduling. The

proposed decision system is applied to the Hong Kong International Terminals. Murty

et al. (2005) define a selection of inter-related decisions which is made at the

container terminal during a day. The main goal of these decisions is minimizing the

resource and the trucks waiting time, and maximizing the container volume

utilization. The author use decision support systems to make these decisions since

these kinds of decisions are complex and large scale. Petering and Murty (2009)

develop a simulation study about terminal’s average quay crane rate, and how the

long-run performance of seaport container terminal is related to storage block length

and yard crane deployment. Several scenarios are evaluated. These experiments are

direct connection between length of the block and long-run performance in the

container terminal.

As mentioned, both exact algorithms and heuristic methods are proposed in the

published literature. Leung et al. (2001), Goncalves (2007), Bortfeldt & Winter

(2009), Leung et al. (2012), Egeblad & Pisinger (2009) and Wu et al. (2010) propose

heuristic algorithms for different types of packing problems. While, Fekete &

Schepers (1997), and Hifi (2004) propose exact methods. The following table

compares some relevant papers and models, and shows their similarities, differences

and superiority.

14

Table 2.1. Summary of Some relevant Papers

Papers Problem type Assumption What they do?
Solution

Methodology

Superiority to other

papers
Limitation

Egeblad &

Pisinger (2009)

2D and 3D
knapsack
problem

Items are strongly
heterogeneous, no
rotation

Mathematical Model
sequence based
representation (SA
based approach)

Sequence pair and triple
is one of the successful
representations

Fixed orientation for
3D

Bortfeldt &

Winter (2009)

2D Orthogonal
knapsack
problem

Guillotine & non-
guillotine, orientation
constraint may be
considered

Heuristic algorithm GA
GA is suitable for large
instances of the non-
guillotine constrained

compare to other
methods GA is in
the mid-table

Junqueira et al.

(2012)
container loading
problem

vertical and
horizontal stability,
load bearing strength

MILP GAMS
extend in other variants
of container loading
problem

Only able to handle
moderate size
problems

Wu et al. (2010)

3D bin packing
problem with
variable bin
height

Rectangular boxes, ,
Guillotine constraint
is not imposed

Mathematical Model GA & extreme point

both single bin packing
and batch bin packing
problem is considered,
object rotation is allowed

Amossen &

Pisinger (2010)

multi-
dimensional
orthogonal bin-
packing problem

Guillotine, no
rotation

evaluate three packing
methods

unrestricted, robot
packable, guillotine
cuttable

 Fixed orientation

Martello et al.

(2007)

3D orthogonal
bin packing
problem

rotation is not
allowed, general and
robot packable

Decomposition
algorithm

two-level
decomposition
approach

can be used as a whole
for solving three-
dimensional bin packing
problem or just for
filling a single bin

Fixed orientation

Goncalves

(2007)
2D knapsack
problem

Orthogonal, fixed
orientation

Solving 2D packing
problem

Hybrid genetic
algorithm

Relatively complex,
long computational
time compared to
Leung et al. (2012)

Leung et al.

(2001)
2D non-guillotine
cutting stock

Fixed orientation,
orthogonal,

Heuristic algorithm
Genetic algorithm and
simulated annealing

cannot produce all
feasible packing

15

Fekete &

Schepers (1997)

More-
dimensional
packing problem

Fixed orientation,
orthogonal

Modeling packing
based on the graph
characterization of
feasible packing

Interval Graph
method cannot
handle further
constraints

Given Problem 3D knapsack
problem

Rectangular boxes
Finding more practical
packing, Mathematical
formulation

SA and sequence
triple

Rotation allowed,
vertical stability, pre-
placed boxes

16

2.3. Research Gaps

According to the literature, not all papers consider box rotation since it increases the

search space significantly. Moreover, bin stability is just taken into account in some

of the container loading problems and it has not been considered in three-dimensional

knapsack problem. Vertical stability is one of the realistic constraints which should be

taken into account in 3D knapsack problems, so all the packed boxes are supported by

the bin floor or other boxes top and do not fall down. In addition, to the best of our

knowledge, pre-placed boxes (obstacles) has not been studied in three-dimensional

knapsack problems, which is so essential for such problems since it is often required

to place certain boxes in certain positions. Such a constraint can be also considered

when the bin does not have rectangular shape. Therefore, it is important to study more

practical constraints in the knapsack problem. In the given problem, box rotation is

taken into account in order to find more practical packings. Also, preplaced boxes

(bin with some obstacles) and vertical stability which are real-world constraints are

studied.

17

CHAPTER 3

Problem Formulation

3.1. Problem Definition

In this study, the three-dimensional knapsack problem is considered where there is

one bin with fixed size and a set of boxes; each box has an associated size. The aim is

to find an efficient solution methodology in order to pack rectangular boxes in a

single bin so that the total value of the packed boxes is maximized, or equivalently the

empty spaces left are minimized. The boxes are assumed to be strongly heterogeneous

which means there is a relatively high number of different types of boxes and a small

number of boxes for each box type (Wascher et al., 2007). Moreover, the packing is

considered feasible if each box lies entirely in the bin, and the packed boxes do not

overlap. The edges of all boxes must be parallel to the edges of the bin (orthogonal

packing). The bin and boxes are assumed to be of rectangular shape.

Some practical considerations which play an important role in modeling more realistic

knapsack problems are presented such as box rotation and bin stability. Boxes are able

to freely rotate in six different orientations, need not to be packed in layers, and the

bottom of each box must be supported by the top of other boxes or the bin floor. In

addition, some boxes are considered as pre-placed boxes or obstacles, whose left-

bottom-behind (LBB) corner should be placed in a specific position. The value of

each box is equal to its volume. It is assumed that the dimensions of all boxes and the

bin are integers, thus the placement are to be done in integer steps. Let C be a

rectangular container with width W, height H and depth D. The origin of the Cartesian

coordinate system is located at the LBB corner of the container, and l i, hi, and wi are

respectively, the length, height and depth of box type i. For each packed box, (xi, yi,

zi) represents the coordinates of the LBB corner of the box.

A mixed integer programming formulation is presented for the given problem. Some

real-world knapsack problem constraints are considered in the model which, to the

best of our knowledge, have not been studied yet. These constraints are vertical

stability and pre-placed boxes. Since the three-dimensional knapsack problem is NP-

hard, it is difficult to solve. In addition, the flexibility of the orientation of boxes

18

significantly increases the search space, so the difficulty of finding the optimal

solution is enhanced as well. Some exact algorithms as well as heuristic methods are

proposed in the published literature. As exact algorithms require more time to find a

solution, heuristic approaches are more popular and can be good alternatives to find

optimal or near optimal solution. The proposed three-dimensional solution

methodology is based on Egeblad and Pisinger’s (2009) sequence triple

representation. Simulated annealing is used as heuristic method.

3.2. Mathematical Formulation

A mixed-integer programming model of the 3D-knapsack problem is introduced in

this section. The mathematical model is based on Egeblad and Pisinger (2009) and

Wu et al. (2010). Some modifications are made in their model which include

considering vertical stability and pre-placed boxes constraints. Egeblad and Pisinger

(2009) and Wu et al. (2010) do not consider these important and practical constraints.

Constraints (1) – (4) are based on Egeblad and Pisinger (2009); they did not consider

the box orientation in their model. The binary position variables which show the

orientation of the boxes are based on Wu et al. (2010). However, constraints (5) – (17)

are new constraints added to the model which are described in the following sections.

 3.2.1. Notations

The variables and parameters used in the mathematical formulation are introduced as

follows:

• Variables:

(xi,yi,zi): LBB coordinates of box i

Xw i, Zwi: 1 whether width of box i is parallel to the container’s X and Z

0 otherwise

Yhi: 1 if height of box i is parallel to the container’s Y

0 otherwise

19

Zdi: 1 if depth of box i is parallel to the container’s Z

0 otherwise

rij, lij: 1 if box i is to the right of or to left of box j

0 otherwise

oij, uij: 1 if box i is over or under box j

 0 otherwise

bij, fij: 1 if box i is behind or in-front-of box j

 0 otherwise

si: 1 if box i is packed

0 otherwise

ya
ij: 1 if xj ≥ xi

0 otherwise

 xa
ij: 1 if xj < x’

i

0 otherwise

yb
ij: 1 if zj ≥ zi

0 otherwise

 xb
ij: 1 if zj < z’

i

0 otherwise

yc
ij: 1 if x’ j > xi

0 otherwise

 xc
ij: 1 if x’ j ≤ x’ i

0 otherwise

20

yd
ij: 1 if z’j > zi

0 otherwise

 xd
ij: 1 if z’j ≤ z’i

0 otherwise

za
ij: 1 if xi ≤ xj < x’i

0 otherwise

zb
ij: 1 if zi ≤ zj < z’i

0 otherwise

zc
ij: 1 if xi < x’j ≤ x’ i

 0 otherwise

zd
ij: 1 if zi < z’j ≤ z’i

0 otherwise

Cs1: 1 if xi ≤ xj < x’i and zi ≤ zj < z’i

0 otherwise

 Cs2: 1 if xi ≤ xj < x’i and zi < z’j ≤ z’i

0 otherwise

 Cs3: 1 if xi < x’j ≤ x’ i and zi ≤ zj < z’i

0 otherwise

 Cs4: 1 if xi < x’j ≤ x’ i and zi ≤ zj < z’i

0 otherwise

x’ i = xi + wiXw i + hi(Zwi – Yhi + Zdi) + di(1 - Xwi – Zwi + Yhi – Zdi)

z’ i = zi + diZdi + hi (1 – Zwi – Zdi) + wiZwi

21

• Parameters:

(wi,hi,di): width, height and depth of box i

(W,H,D): width, height and depth of the container

(r,s,k): LBB coordinates of the pre-placed boxes

(a, b, c, d): Binary orientation parameters of the pre-placed boxes

Pi: value of box i

 3.2.2. Assumptions

The following assumptions are considered for the mix integer linear model:

1. The boxes are strongly heterogeneous.

2. The boxes must be located orthogonally

3. The boxes are able to freely rotate

4. The box and bin dimensions are assumed to be non-negative integer

5. The value of a boxes is equal to its volume

6. The X, Y, and Z axes of the bin are shown in the following figure.

Figure 3.1. The X, Y, and Z axes of the bin

3.2.3. MILP

The objective Function is maximizing the value of packed boxes:

∑
=

n

i
ii sPMax

1

22

Subject to:

rij + lij + bij + fij + uij = si + sj -1 ∀ i,j i≠j (1)

xi + wiXw i + hi(Zwi – Yhi + Zdi) + di(1 - Xwi – Zwi + Yhi – Zdi) ≤ xj + M(1-lij)

 ∀ i,j i≠j (2a)

xj + wjXw j + hj(Zwj – Yhj + Zdj) + dj(1 – Xwj – Zwj + Yhj – Zdj) ≤ xi + M(1-rij)

 ∀ i,j i≠j (2b)

zi + diZdi + hi (1 – Zwi – Zdi) + wiZwi ≤ zj + M(1-bij) ∀ i,j i≠j (2c)

zj + djZdj + hj (1 – Zwj – Zdj) + wjZwj ≤ zi + M(1-fij) ∀ i,j i≠j (2d)

yi + hiYhi + wi(1 – Xwi – Zwi) + di(Xw i + Zwi – Yhi) ≤ yj + M(1-uij)

 ∀ i,j i≠j (2e)

yj + hjYhj + wj(1 – Xwj – Zwj) + dj(Xw j + Zwj – Yhj) ≤ yi + M(1-oij)

 ∀ i,j i≠j (2f)

xi + wiXw i + hi(Zwi – Yhi + Zdi) + di(1 - Xwi – Zwi + Yhi – Zdi) ≤ W (3a)

yi + hiYhi + wi(1 – Xwi – Zwi) + di(Xw i + Zwi – Yhi) ≤ H (3b)

zi + diZdi + hi (1 – Zwi – Zdi) + wiZwi ≤ D (3c)

Xw i + Zwi ≤ 1 (4a)

Zwi + Zdi ≤ 1 (4b)

0 ≤ Zwi - Yhi + Zdi ≤ 1 (4c)

0 ≤ 1- Xwi - Zwi + Yhi - Zdi ≤ 1 (4d)

0 ≤ Xwi + Zwi - Yhi ≤ 1 (4e)

(xi, yi, zi) = (r, s, k) ∀ i ∈Pb (5)

(Xw i, Zwi, Zdi, Yhi) = (a,b,c,d) ∀ i ∈Pb (6)

23

xj – xi ≤ M. ya
ij xj – xi ≥ M (ya

ij – 1) (7a)

x’ i – xj ≤ M. xa
ij x’ i – xj ≥ M (xa

ij – 1) + 0.5 (7b)

(ya
ij + xa

ij – 1) ⁄ 2 ≤ za
ij ≤ (ya

ij + xa
ij) ⁄ 2 ∀ i,j i≠j (7c)

zj – zi ≤ M. yb
ij zj – zi ≥ M (yb

ij – 1) (8a)

z’ i – zj ≤ M. xb
ij z’i – zj ≥ M (xb

ij – 1) + 0.5 (8b)

(yb
ij + xb

ij – 1) ⁄ 2 ≤ z
b
ij ≤ (yb

ij + xb
ij) ⁄ 2 ∀ i,j i≠j (8c)

x’ j – xi ≤ M. yc
ij x’ j – xi ≥ M (yc

ij – 1) + 0.5 (9a)

x’ i – x’j ≤ M. xc
ij x’ i – x’j ≥ M (xc

ij – 1) (9b)

(yc
ij + xc

ij – 1) ⁄ 2 ≤ z
c
ij ≤ (yc

ij + xc
ij) ⁄ 2 ∀ i,j i≠j (9c)

z’ j – zi ≤ M. yd
ij z’j – zi ≥ M (yd

ij – 1) + 0.5 (10a)

z’ i – z’j ≤ M. xd
ij z’i – z’j ≥ M (xd

ij – 1) (10b)

(yd
ij + xd

ij – 1) ⁄ 2 ≤ z
d
ij ≤ (yd

ij + xd
ij) ⁄ 2 ∀ i,j i≠j (10c)

(za
ij + zb

ij – 1) ⁄ 2 ≤ Cs1 ≤ (za
ij + zb

ij) ⁄ 2 ∀ i,j i≠j (11)

(za
ij + zd

ij – 1) ⁄ 2 ≤ Cs2 ≤ (za
ij + zd

ij) ⁄ 2 ∀ i,j i≠j (12)

(zc
ij + zb

ij – 1) ⁄ 2 ≤ Cs3 ≤ (zc
ij + zb

ij) ⁄ 2 ∀ i,j i≠j (13)

(zc
ij + zd

ij – 1) ⁄ 2 ≤ Cs4 ≤ (zc
ij + zd

ij) ⁄ 2 ∀ i,j i≠j (14)

Cs1 + Cs2 + Cs3 + Cs4 = uij + oij ∀ i,j i≠j (15)

x’ i = xi + wiXw i + hi(Zwi – Yhi + Zdi) + di(1 - Xwi – Zwi + Yhi – Zdi) (16)

z’ i = zi + diZdi + hi (1 – Zwi – Zdi) + wiZwi (17)

rij, lij, bij, fij, uij ∈ {0,1} (18)

Xw i, Zwi, Zdi, Yhi ∈ {0,1} (19)

24

xa
ij, x

b
ij, x

c
ij, x

d
ij,y

a
ij, y

b
ij, y

c
ij, y

d
ij, z

a
ij, z

b
ij, z

c
ij, z

d
ij ∈ {0,1} (20)

si, Cs1, Cs2, Cs3, Cs4 ∈ {0,1} (21)

(xi ,yi, zi) ≥ 0 (22)

Constraint (1) ensures that if box i and box j are packed then they must be placed left,

right, under, over, behind or in-front-of each other. Constraints (2) guarantee that any

two boxes i and j do not overlap, while considering the box rotation. It includes six

parts; constraint (2a) and (2b) find the x coordinate of the box to be packed; constraint

(2c) and (2d) are used to find its z coordinate, and constraint (2e) and (2f) calculate its

y coordinate. The binary position variables (Xwi, Zwi, Yhi, Zdi) are used to allow box

rotations. Constraint set (3) ensures that all boxes are placed within the bin’s

dimensions. Constraint (3a) makes sure that the box dimensions do not exceed the

bin’s width; while constraints (3b) and (3c) are related to the bin’s height and depth.

Constraint set (4) is used to make sure that the binary variables which show the

position of the boxes are controlled to represent practical positions. Constraint (4a)

guarantees the width of the packed box is not parallel to both X and Z axis. Constraint

(4b) ensures that the width and depth of each packed box are not parallel to Z axes

simultaneously. Constraint (4c) shows that the height of box i cannot be parallel to

both Z and Y axes. Constraints (4d) and (4e) also control the orientation of the packed

boxes, and ensure that the width, height, and depth of each packed box are not parallel

to two axes simultaneously. Constraint (5) and (6) are used to fix the coordinates and

orientation of the pre-placed boxes, where Pb is a set of preplaced boxes. Constraints

(7)–(10) ensure vertical stability. These constraints compare the four corners of each

newly packed box with the points that cover the top of other packed boxes. If one of

the corners has the same x and z coordinates as one of the mapped points, it means

that the new box is located under or above that box. Constraint set (7) is used to

define the binary variable za
ij and includes three parts. Constraint (7a) ensures that if

xj ≥ xi, then yaij is equal to one; otherwise it is equal to zero. Constraint (7b) makes

sure that if xj < xi, then xaij is one; otherwise it is equal to zero. Constraint (7c)

guarantees when ya
ij and xaij are both equal to one, then za

ij is equal to one. Similarly,

constraint sets (8), (9), and (10) are used to define the binary variables zb
ij, z

c
ij, and

zd
ij. Constraints (11)-(14) show whether the x and z coordinates of the new box’s

corner are equal to x and z coordinates of the mapped points on the top of the packed

25

boxes. Constraint (15) ensures that if these coordinates are the same, the new box

should be located on top of or under the packed box. Constraints (16) and (17) define

x’ i and z’i. Constraints (18) - (21) represent the binary variables, and constraint (22)

represents the integer variables.

The given mathematical model has 21n2+9n binary variables and 3n integer

variables. It was coded in GAMS/Cplex, and the computational tests run on an Intel®

Core™ i5 CPU @ 2.67GHz processor with 4.0 GB RAM. The model at first was run

for an instance with 5 boxes; it reached the optimal solution in 53 seconds. Then the

instance with 6 boxes has been considered, the solution time is equal to 6 minutes and

14 seconds. However, the solution time for the instance with 7 boxes increased

significantly to 4 hours and 4 minutes; the number of variables in such instance is

1113. The optimal results for instance with 8 boxes- 1440 variables- was obtained

after 21 hours and 39 minutes. GAMS was not able to reach optimal solution for

instance with 9 boxes – 1809 variables- even after 3 days, thus the algorithm was

terminated before reaching the solution. According to the results, optimal solutions

only for small size instances (up to 8 boxes) were possible in a reasonable time. Thus,

heuristic algorithm is required to get faster solutions for larger instances.

3.3. Two-dimensional Model

Although the proposed model is considered a three-dimensional knapsack problem it

can be modified in order to solve two-dimensional problems as well. The z axis

should be omitted in order to adjust the model. Since two dimensional problems are

simpler than three-dimensional ones they can be solved in a shorter time. As an

example, the instance of 4 different types of rectangles (totally 10 rectangles) is

studied. The dimensions and maximum allowed number of these rectangles are shown

in table 3.1. The dimensions of the bin, which is two dimensional as well, are equal to

900×900 (mm2).

26

Table 3.1. 2D Rectangles Dimensions and Maximum Allowed Number

Rectangle type Width(mm) Height(mm) Max. allowed no.

1 229 483 4

2 165 330 3

3 165 165 1

4 229 406 1

The optimal solution is obtained after 3 hours and 37 minutes. Figure 3.1 shows the

obtained result. Compared to the three dimensional instances, the optimal solution can

be obtained sooner. However, the solution time is not reasonable for the 2D instances

as well, thus it is better to use a heuristic algorithm to reach the results in a shorter

time.

Figure 3.2. 2D Instance Result

27

CHAPTER 4

Solution Methodology

4.1. Three Dimensional Algorithm

Based on Egeblad and Pisinger’s work (2009), the three sequences considered for the

boxes must be packed. These sequences show the relative box locations. They are

known as sequence triple. Sequence triple is one of the most successful

representations in the literature and defines the packing order. As mentioned in

Egeblad and Pisinger (2009), the sequence triple does not create all three-dimensional

packing; however, it is proved that a fully robot packable packing is obtainable with

this representation. A robot packing is a packing that can be obtained by placing

boxes from the LBB corner of the bin while each box is in-front-of, on the right side,

or above other boxes. If all six rotations of the packing are robot packable, the

packing is known as a fully robot packable packing. Although Egeblad and Pisinger

(2009) claim that their algorithm creates normalized packings, their results are not

normalized. Normalized packing is a packing when all boxes are placed as far left,

down, and back as possible without overlapping, and every new box touches an

already placed box on its left, lower, and back side. However, according to their

results some of the packed boxes are placed in the air.

The solution methodology section is organized as follows: first, sequence triple is

described in section 4.1.1 which is used in section 4.1.2 in order to place the boxes.

Simulated annealing is defined in section 4.1.3 to control the local neighbourhood

search. Orthogonal rotation, pre-placed boxes (obstacles), four-corner packing, and

box insertion order are explained in sections 4.1.4, 4.1.5, 4.1.6, and 4.1.7,

respectively.

4.1.1. Sequence Triple

Three sequences A, B, and C represent the fully robot packable packing, where A, B,

and C are permutations of the numbers 1 ... n, and n is the total number of boxes to be

placed in the bin. These sequences denote the relative placement of each of the two i

and j boxes with respect to each other. Each sequence is defined as follows:

28

• A-chain: If box i appears before box j in the A-chain, then box i is located to

the left of, on top of, or in front of box j.

• B-chain: if box i appears before box j in the B-chain, then box i is located

behind, to the left of, or below, box j.

• C-chain: If box i appears before box j in the C-chain, then box i is located to

the right, under, or in front of box j.

4.1.2. Placement algorithm

Based on the given three sequences, box i is located on the left side of box j if it

appears before box j in A-chain and B-chain and after box j in C-chain. Box i is

located below box j if it appears before box j in B-chain and C-chain and after box j in

A-chain. Moreover, box i is placed behind box j if it appears after box j in B-chain

and before it in A-chain and C-chain, or if box i is placed after box j in all sequences.

It is observed that box i always appears before box j in B-chain for all three given

placements. Thus, the order of placement of the boxes in the bin can be based on the

order of B-chain. The first box is placed at the origin, and the succeeding boxes are

placed according to their relative position to already packed boxes. The coordinates of

each new box are calculated based on the following formula:

))(,0max(max wxx jjji Px

+=
∈

))(,0max(max hyy jjji Py

+=
∈

))(,0max(max dzz jjji Pz

+= ∈

where Px, Py, and Pz are the subsets of packed boxes located on the left, below, and

behind the new box. In order to consider vertical stability and reduce the gap between

the boxes, some modifications have been applied to Eglebad and Pisinger’s (2009)

procedure. These modifications are explained in the following section.

• Vertical Stability

As it is assumed that (x,y,z) coordinates of boxes and their dimensions are integer, it

is possible to map a set of points that a certain box covers.. Let (xi, yi, zi) be the LBB

29

coordinates of each to be packed box. The algorithm considers four corners of the

given box. If x and z coordinates of one of these corners are equal to the coordinates

of one of the points at the top of any packed box, it returns the height of that box.

Then, the y coordinate of the new box would be equal to maximum of those values.

The proposed approach is illustrated in the following:

1. Consider (xi, yi, zi)

Py
j ∈∀ : compute x’ j and z’ j

 Where xj ≤ x’ j ≤ xj+wj-1 and zj ≤ z’j ≤ zj+dj-1

 If (x i = x’j and zi= z’j) then

Return yj+ hj

Else Go to 2

2. Consider (xi + wi, yi, zi)

Py
j ∈∀ : compute x’ j and z’ j

 Where xj+1 ≤ x’ j ≤ xj+wj and zj ≤ z’j ≤ zj+dj-1

 If (x i+ wi = x’j and zi= z’j) then

Return yj+ hj

Else Go to 3

3. Consider (xi, yi, zi + di)

Py
j ∈∀ : compute x’ j and z’ j

 Where xj ≤ x’ j ≤ xj+wj-1 and zj+1 ≤ z’j ≤ zj+dj

 If (x i = x’j and zi+ di = z’j)

 Return yj+ hj

Else Go to 4

4. Consider (xi + wi, yi, zi + di)

Py
j ∈∀ : compute x’ j and z’ j

 Where xj+1 ≤ x’ j ≤ xj+wj and zj+1 ≤ z’j ≤ zj+dj

 If (x i+ wi= x’ j and zi+dj = z’j) then

Return yj+ hj

Else Return 0

Return))(,0max(max hyy jjji
+=

30

The algorithm pushes each packed box downward where possible such that its bottom

can be supported by the bin floor or by the top of other packed boxes.

4.1.3. Simulated annealing

Although it is relatively simple to develop a simulated annealing heuristic, choosing a

good neighborhood and cooling procedure, which itself depends on several different

parameters, is usually necessary for the algorithm to work efficiently. The cooling

procedure is different for various types of problem and even between instances of the

same problem. Therefore, it is difficult to find out a good cooling procedure. In the

proposed simulated annealing algorithm, the temperature is reduced when a new

solution is accepted, according to the following function:

t→t/(1+ βt)

where β is the cooling parameter. Besides the cooling down procedure, the process is

allowed to heat up again whenever it is appeared be getting trapped. The heating up

function is:

t→t/(1- αt)

where α is the heating parameter. The temperature is reduced when the solution is

accepted and increased when the solution is rejected. α must be smaller than β as the

number of acceptances is small relative to number of rejections (Dowsland, 1993).

The neighbourhood of each solution is defined as one of these five permutations:

either exchange two boxes from one of the sequences; exchange two boxes in

sequences A and B; exchange two boxes in sequences A and C; exchange two boxes

in sequences C and B; or exchange two boxes in all sequences. An overview of the

simulated annealing algorithm is as follows:

// Prepare the initial state and volume

temperature := initial_temperature

initial_state := randomly generated state

best_state := initial_state

best_volume := volume_utilized(best_state)

31

while (time is not up) do

 neighbours := generate_neighbourhood(best_state)

 neighbour := randomly select an element from neighbours

neighbour_volume := volume_utilized(neighbour)

found_better := false

 if (neighbour_volume>best_volume) then

found_better := true

 else

 // We accept a worse solution at random, but the chance of

 // doing so decreases with the temperature.

 temperature := temperature / (1+β*temperature)

 delta := (best_volume – neighbour_volume) / best_volume

i := random number between 0 and 1

 if (i< e^(-delta / temperature)) then

found_better := true

 else

 //increase temperature

 temperature := temperature / (1-α*temperature)

 end if

 end if

if (found_better) then

 selected := selected + 1

best_state := neighbour

best_volume := neighbour_volume

 end if

end while

return best_state

The solutions are compared based on the bin utilization. The formula used for

calculating the utilization percentage is as follows:

100
__

_ ×=

binofvolume

boxespackedofvolumetotal
percentagenutilizatio

32

4.1.4. Orthogonal Rotation

The boxes are allowed to be rotated orthogonally with respect to the bin. Suppose the

width, height, and depth of all boxes are respectively parallel to x, y, and z axis, and

wi, hi, and di represents the width, height, and depth of box i, respectively. It is

possible to obtain better packings if the boxes were rotated in different directions.

Egeblad and Pisinger (2009) considered box rotation only for the two dimensional

instances but neglected to include it in the three dimensional experiments. Boxes are

allowed to be rotated in one of the following orientation:

WHD: Standard orientation.

WDH: Swap the height and the depth.

HWD: Swap the width and the height.

HDW: Swap the width and the height, and then swap the height with the depth.

DHW: Swap the depth with the width.

DWH: Swap the depth with the width, and then swap the depth with the height.

The given rotation is applied to the simulated annealing by adding an additional

transformation to the neighbourhood generating routine. The orientation of the boxes

is generated randomly at first. Thus, an additional vector R which shows the

orientation of the boxes is stored as well as the sequence triple.

4.1.5. Obstacles

Suppose O is a set of rectangular obstacles with known coordinates (x, y, z) and

known dimensions (w, h, d). At the beginning of the algorithm, the obstacles are fixed

into the bin. The packing is created from the sequence triple and those boxes that

overlap with any obstacles in the set are removed. The container free volume is

calculated as follows:

Bin free volume = volume of bin – total volume of obstacles

33

4.1.6. Four-corner packing

Four packing schemes, one for each corner are created. First, the coordinates of the

boxes are calculated relative to the current origin. Then, their real (x, y, z) coordinates

are calculated relative to the real origin of the container which is its LBB corner. The

processing technique is as follows:

W := bin width

H := bin height

D := bin depth

w := box width

h := box height

d := box depth

if (loading from front) then

 // No change needed: this is the default loading method.

return <x,y,z>

else if (loading from rear) then

return<W – x – w, y, D – z – d>

else if (loading from left side) then

return<W – z – w, y, x>

else if (loading from right side) then

return<z, y, D – x – w>

end if

4.1.7. Order of box insertion

As mentioned earlier, the order of inserting boxes into the container is based on B-

chain. The order of the boxes in B-chain can be created randomly or can be based on

the volume of the boxes which means ones with larger volume are packed first.

4.2. Two Dimensional Algorithm

Although the algorithm is proposed for the three dimensional knapsack problem, it

can also be used to solve two dimensional instances as solving a two-dimensional

knapsack problem is simpler than three-dimensional one. The algorithm must be

34

modified in order to apply to the two-dimensional instances. These modifications are

as follows:

Instead of defining three sequences, a pair of sequences commonly known as

sequence pair is defined. The definitions are as follows:

• A-chain: If rectangle i appears before rectangle j in A-chain, then rectangle i is

located left of or on top of rectangle j.

• B-chain: If rectangle i appears before rectangle j in B-chain, then rectangle i is

located left of or under rectangle j.

Based on these two sequences, rectangle i is located on the left of rectangle j if it

appears before box j in both A-chain and B-chain. However, rectangle i is located

under rectangle j if it appears before box j in A-chain and after box j in B-chain.

These implications are used for the placement algorithm. The first rectangle is placed

in the origin, and the succeeding rectangles are placed according to their relative

position to the already placed rectangles. The coordinates of each new rectangle are

calculated based on the following formula:

))(,0max(max wxx jjji Px

+=
∈

))(,0max(max hyy jjji Py

+=
∈

where Px and Py are the subsets of the placed rectangles located on the left and below

the new rectangle, respectively. Same simulated annealing scheme is used here but

with two-dimensional sequences. The neighborhood of each state is defined as one of

these three permutations: either exchange two rectangles in A-chain; exchange two

rectangles in B-chain; or exchange two rectangles in both sequences. The rectangles

are allowed to be rotated in the following two orientations: WH which is the standard

orientation, and HW which is obtained by swapping the width and height. Pre-placed

rectangles with known coordinates (x,y) and known dimensions (w, h) are fixed into

the bin. Two packing schemes, one for each corner, are created. First, the coordinates

of the rectangle are calculated relative to the current origin. Then, their real (x,y)

coordinates are calculated relative to the real origin of the bin. Similar to the three-

dimensional problems, the order of inserting the rectangles into the bin is based on the

order of rectangles in B-chain which can be created randomly or can be based on the

area of the rectangles.

35

CHAPTER 5

Numerical Analysis

5.1. Introduction

This chapter presents some numerical experiments for the proposed solution

methodology in order to assess its practicability. The numerical examples are

illustrated in section 5.2. Section 5.3 presents the parameter setting for the heuristic

algorithm. The results are discussed in section 5.4, and the algorithm verification is

illustrated in section 5.5.

5.2. Numerical Experiments

The proposed methodology is implemented in C++. The code is tested using two

different sets of boxes. The first set is based on SAE J1100 – Section 9 – Standard

which includes 7 types of boxes. The dimensions of these boxes are illustrated in table

5.1. Twelve instances are created by using the first set of boxes. These instances

contain 36 and 70 boxes. The maximum allowed number of the boxes for both types

of instances is also shown in table 5.1. The second set of the boxes is generated

randomly based on Uniform distribution and includes 10 types of boxes. The width,

height, and depth of these boxes are selected from the intervals [50, 300], [100, 50],

[100, 300] respectively. Two instances are created by using this set of boxes, which

includes 50 boxes. The dimensions of the boxes and their maximum allowed number

are shown in table 5.2. Thus, fourteen instances are tested in total. In case of not

considering pre-placed boxes, the dimensions of the bin for instances containing 36 is

equal to 800×700×1000 (mm3); however, for instances with 70 boxes, it is equal to

1100×900×1400 (mm3), and in the case of having instances with 50 boxes is equal to

600×500×700 (mm3). In the case of having obstacles, the bin dimension is equal to

1350×540×890 (mm3) in instances with 36 boxes, and it is equivalent to

1100×900×1400 (mm3) in other instances. The profits of the boxes are set to be equal

to their volume.

36

Table 5.1. Information on the First Set of Boxes

Box Type
Width

(mm)

Height

(mm)

Depth

(mm)

Max. no.-instances

with 36 boxes

Max. no.-instances

with 70 boxes

1 229 483 610 4 7

2 165 330 457 4 7

3 229 406 660 2 5

4 216 457 533 2 5

5 203 229 381 2 5

6 178 356 533 2 6

7 152 114 325 20 35

Table 5.2. Information on the Second Set of Boxes

Box Type
Width

(mm)

Height

(mm)

Depth

(mm)
Max. no.

1 138 182 285 6

2 126 240 135 5

3 108 222 165 4

4 140 80 246 5

5 105 234 272 3

6 153 237 159 6

7 216 229 272 6

8 188 124 236 5

9 137 100 167 4

10 103 104 222 6

The instance names are Mst-n-o-c-v, where n ∈{36, 70, 50} is the number of boxes to

be packed, o is the order of boxes in B-chain which can be based on the boxes volume

(v) or randomly created (R), c shows whether or not the obstacles are considered and

can be set as (obs) or (wo) respectively, and v represents the volume of the bin.

37

The number and dimensions of the obstacles (pre-placed boxes) differ in various

instances. Eight obstacles are defined for cases with 36 and 70 boxes. The dimensions

of the obstacles and their coordinates are described in table 5.3. For the instances

where there are 70 boxes, four obstacles are defined in case of ceiling obstacles, and

two obstacles are defined for middle ones. The dimensions and coordinates of these

obstacles are illustrated in table 5.4.

Table 5.3. Obstacles Dimensions and Coordinates for Instances with 36 and 70

Boxes

Obstacle dimensions

(mm)

Obstacle coordinates

Instance of 36 boxes

Obstacle coordinates

Instance of 70 boxes

{180;220;250} <1170;0;160> <920;0;160>

{320;220;160} <0;0;0> <0;0;0>

{320;220;160} <1030;0;0> <780;0;0>

{125;220;160} <0;0;160> <0;0;160>

{200;320;320} <0;220;0> <0;580;0>

{200;320;320} <1150;220;0> <900;580;0>

{160;208;240} <0;332;320> <0;692;320>

{160;208;240} <1190;332;320> <940;692;320>

Table 5.4. Information on Ceiling and Middle Obstacles

Ceiling Obstacles Middle Obstacles

Dimensions (mm) Coordinate Dimensions (mm) Coordinate

{200;320;320} <0;580;0> {500;220;160} <300;300;0>

{200;320;320} <900;580;0> {500;220;160} <300;300;1240>

{160;208;240} <0;692;320>

{160;208;240} <940;692;320>

38

5.3. Parameter Setting

As previously mentioned, choosing a suitable cooling procedure and parameters is

essential for the algorithm to work efficiently. After testing different cooling

procedures (Egeblad and Pisinger, 2009; Pisinger, 2007; Dowsland, 1993) the one

proposed by Dowsland (1993) works best. The given cooling process has been

explained in section 4.1.3. β is selected to be 0.2, and α is equal to 0.002. Values for

initial temperature are selected from {0.5, 0.4, 0.3, 0.2}, and based on the results,

t0=0.2 is the most suitable.

5.4. Results and Sensitivity Analysis

Ten runs were conducted for each case. The worst, best, and average solutions are

shown in table 5.5. The values in the table illustrate the bin percentage of the

utilization- see section 4.1.3 for formula. In addition, time represents the running time

for each case in minutes.

Table 5.5. Worst, Best, and Average Utilization

Case
Time

(min)

Best

(%)

Average

(%)

Worst

(%)

Mst-36-v-wo-560

10 88.49 86.19 83.92

20 87.72 85.29 80.45

30 88.08 86.23 83.43

120 88.07 85.83 84.81

Mst-36-R-wo-560

10 83.51 80.83 77.31

20 88.43 85.00 78.26

30 86.51 83.65 80.19

120 87.93 87.05 84.81

Mst-36-v-obs-649

10 76.42 74.54 70.76

20 80.60 78.5 75.63

30 81.06 79.55 77.64

120 79.10 77.33 75.13

39

Table 5.5. (Continued) Worst, Best, and Average Utilization

Case
Time

(min)

Best

(%)

Average

(%)

Worst

(%)

Mst-36-R-obs-649

10 82.23 79.15 77.14

20 82.80 80.03 77.50

30 80.77 79.22 77.58

60 80.35 79.24 78.48

120 80.79 78.88 77.21

Mst-70-v-wo-1386

20 86.34 84.33 82.02

30 85.99 84.24 82.17

60 86.29 84.56 82.68

120 86.44 84.96 82.71

Mst-70-R-wo-1386

20 84.13 80.92 77.27

30 84.80 83.39 82.49

60 84.61 81.89 81.64

120 85.59 83.59 79.57

Mst-70-v-obs-1386

30 79.74 77.24 75.73

60 82.09 79.14 75.53

120 80.12 78.93 76.84

Mst-70-R-obs-1386

30 78.12 75.59 75.06

60 80.24 78.01 76.50

120 83.66 79.67 78.34

Mst-70-v-obs1-1386

30 85.97 84.37 82.88

60 85.05 83.30 82.06

120 82.70 81.74 80.18

Mst-70-R-obs1-1386

30 82.31 80.68 78.39

60 82.66 79.75 77.26

120 83.09 80.09 78.65

1Ceiling obstacles

40

Table 5.5. (Continued) Worst, Best, and Average Utilization

Case
Time

(min)

Best

(%)

Average

(%)

Worst

(%)

Mst-70-v-obs2-1386

30 79.29 77.66 76.66

60 78.97 78.46 77.74

120 79.86 77.80 76.15

Mst-70-R-obs2-1386

30 79.74 77.89 76.00

60 78.96 77.35 76.45

120 82.50 78.75 76.15

Mst-502-v-wo-210

20 85.49 84.02 82.95

30 88.58 86.45 84.39

60 86.56 85.36 83.97

120 89.68 87.58 85.91

180 88.31 87.02 85.93

Mst-503-R-wo-210

20 86.79 84.70 82.87

30 86.41 84.89 83.56

60 88.07 85.53 84.20

120 89.72 87.42 85.83

180 88.06 86.55 85.56

Based on Egeblad & Pisinger (2009), the minimum running time for instances with 36

boxes (Mst-36-o-c-v) was set to 10 minutes. Although the heuristic often reached the

best solution in less than 10 minutes, the running time was increased to see whether

the algorithm is able to jump out of the local optimal and find a better solution. Thus,

the instances were run for 20, 30, and 120 minutes as well. Based on the results,

increasing time does not significantly affect the solutions. It can be concluded that 10

minutes is sufficient for the heuristic to find the final solution.

For scenarios that contain 70 boxes and where pre-placed boxes are neglected the

algorithm was run for at least 20 minutes. The running time was increased to 30, 60,

and 120 minutes. The results indicate that 20 minutes is sufficient to reach a good

2Boxes with different dimensions

41

solution in these scenarios. However, when considering obstacles, the algorithm was

tested for at least 30 minutes. This is because dealing with the obstacles increases the

solution time. The running time was increased to 60 and 120 minutes. The results

show that increasing the running time to 60 minutes allows the algorithm to reach

better solutions; however, increasing the running time to 120 minutes does not

improve the utilization significantly. Therefore, 60 minutes can be a sufficient

running time to reach the final solution. In these cases, according to the results, when

including ceiling obstacles the reasonable running time is equal to 30 minutes since

handling the ceiling obstacles is easier than floor obstacles. In the case of having

middle obstacles, the bin utilization is less than other instances. These kinds of

instances are run for 30, 60, and 120 minutes. Based on the obtained utilizations

shown in table 5.5, 30 minutes can be considered as a reasonable running time. In

case of Mst-70-R-obs(middle)-1386, the algorithm jumps out of the local minimum

after 120 minutes and is able to obtain better solution (higher bin utilization).

Nevertheless, only the best utilization enhances, and the average and worst results do

not change significantly. Moreover, the instances in which 50 boxes should be packed

were run for 20, 30, 60, 120, and 180 minutes; 30 minutes is observed to be enough if

it is required to obtain a satisfying solution in a short time. However, it seems that the

algorithm is able to jump out of the local optimal and find a better solution after 120

minutes.

The five best solutions for each instance and the number of packed boxes of each type

are shown in appendix A. Table 5.6 presents the summary of the results. As it is

illustrated in the table, in the most instances the best utilization is obtained when the

order of the boxes in B-chain is based on their volume. Appendix B shows the

coordinates of the packed boxes at best results.

42

Table 5.6. Summary of Results (based on the utilization)

Instance
Best

(%)

Average

(%)

Worst

(%)

Mst-36-v-wo-560 88.49 86.19 83.92

Mst-36-R-wo-560 83.51 80.83 77.31

Mst-36-v-obs-649 76.42 74.54 70.76

Mst-36-R-obs-649 82.23 79.15 77.14

Mst-70-v-wo-1386 86.34 84.33 82.02

Mst-70-R-wo-1386 84.13 80.92 77.27

Mst-70-v-obs-1386 82.09 79.14 75.53

Mst-70-R-obs-1386 80.24 78.01 76.50

Mst-70-v-obs-1386

(ceiling)
85.97 84.37 82.88

Mst-70-R-obs-1386

(ceiling)
82.31 80.68 78.39

Mst-70-v-obs-1386

(middle)
79.29 77.66 76.66

Mst-70-R-obs-1386

(middle)
79.74 77.89 76.00

Mst-50-v-wo-210 85.49 84.02 82.95

Mst-50-R-wo-210 86.79 84.70 82.87

The best results for some of the instances are shown in the following figures.

Figure 5.1. Best Result for Mst-36-v-wo-560

43

Figure 5.2. Best Result for Mst-36-R-wo-560

 Figure 5.3. Best Result for Mst-36-R-obs-649

Figure 5.4. Best Result for Mst-36-v-obs-649

44

Figure 5.5. Best Result for Mst-70-v-wo-1386

Figure 5.6. Best Result for Mst-70-R-wo-1386

Figure 5.7. Best Result for Mst-70-R-obs-1386

45

Figure 5.8. Best Result for Mst-70-v-obs-1386

Figure 5.9. Best Result for Mst-70-v-obs(ceiling)-1386

Figure 5.10. Best Result for Mst-70-R-obs(ceiling)-1386

46

Figure 5.11. Best Result for Mst-70-v-obs(middle)-1386

Figure 5.12. Best Result for Mst-70-R-obs(middle)-1386

Figure 5.13. Best Result for Mst-50-v-wo-210

47

Figure 5.14. Best Result for Mst-50-R-wo-210

For the instances with obstacles, pre-placed boxes are shown in black. As shown in

figures 5.1-5.14, the vertical stability is satisfied for all instances, and there is no box

placed in the air anymore. The bottom of all packed boxes is placed on the bin floor or

top of other packed boxes.

5.5. Algorithm Verification

In order to verify the proposed methodology, the Mst-36-R-obs-649 instance is run

without considering vertical stability constraint; the best, worst and average results

obtained in this case are equal to 77.38%, 75.19% and 76.2% which are less than the

utilizations obtained by considering the vertical stability constraint (82.23%, 77.14%

and 79.15%). The result for this case is illustrated in figure 5.15. As shown in the

figure some of the boxes are placed in the air.

Figure 5.15. Result without Vertical Stability

48

5.6. Conclusion

Various experiments with different kinds of boxes and obstacles have been executed.

Moreover, two different kinds of box insertions have been considered. According to

the results, it is evident that the proposed heuristic approach has been successful.

Usually the algorithm can achieve the final solution in a very short time. The

approach is capable to handle different kinds of instances, and it is not limited to some

special instances.

The algorithm is able to deal with different kinds of obstacles such as floor, ceiling

and middle obstacles. The position of each packed box should be defined relative to

the floor and middle obstacles as well as other packed boxes. Therefore, dealing with

such obstacles is more difficult compared to ceiling obstacle. In such instances, the

algorithm requires more time to reach the solution. In addition, the results illustrate

that the obtained percentage of utilization is decreased in the case of having obstacles

in the middle of the bin. Furthermore, the solution time increases for instances created

from the second set of boxes as it contains more box types.

The results and the figures in section 5.5 conclude that the vertical stability constraint

is satisfied, and there is no box placed in the air. The bottom of all the packed boxes

are supported by the bin floor or by the top of other packed boxes. The boxes have

been placed into the bin either in a random order or based on their volume. According

to the results, in most instances volume-based order leads to better final solutions and

higher utilizations. However, by using random order, the results are still satisfying.

At the end, the algorithm has been implemented on one of the instances without

considering the vertical stability constraint to verify its success. The results show the

proposed approach has been successful.

49

CHAPTER 6

Conclusions and Future Works

6.1. Conclusions

Packing problems have been extensively studied as they are so essential for operating

supply chains and reducing unnecessary cost, such as cost of additional shipment.

Packing problems appear under several names and each one has different constraints

and objective functions. One of the cutting and packing problems with maximization

output is knapsack problem. Multi-dimensional knapsack problem is strongly NP-

hard. Some exact algorithms, as well as heuristic approaches, have been considered in

the published literature for these problems. As exact algorithms need more time to

find a solution, heuristic algorithms are more popular and can be used as an

alternative to find optimal or near optimal solution.

A three-dimensional knapsack problem with pre-placed boxes and vertical stability

has been presented and discussed. The packing must be orthogonal; boxes are

rectangular and can be freely rotated. The mixed integer linear programming model

has been proposed for the problem, which considers some practical and real-world

constraints such as box rotations, vertical stability, and pre-placed boxes. According

to the results obtained from GAMS, optimal solution can only be possible for small

instances. Thus, in order to solve the large instances in a reasonable time, a heuristic

algorithm has been proposed based on the simulated annealing technique. The

methodology is based on the sequence triple representation; moreover, box rotations,

vertical stability, and pre-placed boxes are considered in the heuristic approach as

well.

Various experiments have been conducted with different sets of boxes. In addition,

different cases and multiple kinds of pre-placed boxes have been considered in order

to ensure that the solution methodology is able to tackle any kinds of problems, and it

is not limited to a special case. The order of box insertion in the bin can be random or

based on the box volumes. The found solutions were compared based on the bin

utilization. Sensitivity analysis has been done based on the running time in order to

find out whether the algorithm can jump out of the local optimal by increasing time

and reach a better solution. Although the algorithm was just applied to the three

50

dimensional knapsack problem it can easily be used for the two dimensional instances

since the complexity of these types of instances is less. The algorithm was verified by

applying the algorithm not considering the vertical stability to one of the instances.

The results illustrate that the proposed algorithm is successful. Good quality results

can be obtained for large instances in a reasonable time. The algorithm is able to

handle various instances and get satisfactory utilizations. According to the final

results, better solutions can be obtained if the order of inserting boxes in the bin is

based on the volume of the boxes. Moreover, the results show that the proposed

approach is compatible with pre-placed boxes, and vertical stability is satisfied as

well. No box is placed in the air. In addition, the methodology can be used in order to

deal with irregular bins- where the bin is not rectangular- by considering the irregular

parts as pre-placed boxes.

6.2. Future Works

The proposed mixed integer linear programming model is limited to some practical

constraints. The model can be a motivation for future research in a way to extend it to

consider more practical and real-world constraints beyond vertical stability, pre-

placed boxes, and box rotations. Horizontal stability or loading priorities can be some

examples of such constraints. Horizontal stability guarantees that the boxes do not

move notably in the middle of transportation. As the number of available bins in

knapsack problems is limited, and it should be decided which boxes have to be

packed, the loading priorities constraint can play an important role in such problems.

The loading of some boxes might be more advantageous than others. These priorities

can be consequences of delivery deadlines or freshness desires.

Moreover, the dimensions of the boxes can be considered as non-integer for further

research, since in most of real problems boxes do not necessarily have integer

dimensions. In addition, non-rectangular and irregular shape boxes can be taken into

account in the future. Other heuristic approaches might be studied in the future which

are able to tackle more realistic constraints such as weight limits and weight

distribution constraints.

51

REFERENCES/BIBLIOGRAPHY

Amossen, R.R. & Pisinger D., 2010, ‘Multi-dimensional Bin Packing Problems with
Guillotine Constraints’, Computers & Operations Research, vol. 37, no. 11, pp. 1999-
2006.

Bertsimas, D. & Tsitsiklis, J., 1993, ‘Simulated Annealing’, Statistical Science, vol. 8,
no. 1, pp. 10-15.

Bortfeldt, A. & Wascher, G., 2012, ‘Container Loading Problems – A State-of-the-Art
Review’, FEMM Working Papers from Otto-von-Guericke University Magdeburg,
Faculty of Economics and Management, no. 120007.

Bortfeldt, A. & Winter T., 2009, ‘A genetic algorithm for the two-dimensional
knapsack problem with rectangular pieces’, International Transactions in Operational
Research, vol. 16, pp. 685-713.

Capara, A. & Monaci, M., 2004, ‘On the two-dimensional knapsack problem’,
Operation Research Letters, vol. 32, pp. 5-14.

Clautiaux F., J. Carlier & A. Moukrim, 2007, ‘A new exact method for the two
dimensional orthogonal packing problem’, European Journal of Operational
Research, vol. 183, pp. 1196-1211.

Dowhan, L., Wymyslowski, A. & Urbanski, K., 2009, ‘Simulated annealing as a
global optimization algorithm used in numerical prototyping of electrical packaging’,
10th International Conference on Thermal, Mechanical and Multi-Physics simulation
and Experiments in Microelectronics and Microsystems, pp. 1-5.

Dolatabadi, M., Lodi, A. & Monaci, M., 2012, ‘Exact algorithm for the two-
dimensional guillotine knapsack’, 2012, Computer & Operations Research, vol. 39,
pp. 48-53.

Dowsland, K.A., 1993, ‘Some experiments with simulated annealing techniques for
packing problems’, European Journal of Operational Research, vol. 68, no. 3, pp.
389-399.

Dyckhoff, H., 1990, ‘A typology of cutting and packing problems’, European Journal
of Operational Research, vol. 44, pp. 145-159.

Egeblad, J., Garavelli, C., Lisi, S. & Pisinger, D., 2010, ‘Heuristic for container
loading of furniture’, European Journal of Operational Research, vol. 12, pp. 881-
892.

Egeblad, J. & Pisinger, D., 2009, ‘Heuristic approaches for two- and three-
dimensional knapsack packing problem’, Computer & Operations Research, vol. 36,
pp. 1026-1049.

52

Fekete, S.P. & Schepers, J., 1997, ‘On more dimensional Packing i: Modeling’,
Technical Report, University of Koln, Germany.

Fekete, S.P. & Schepers, J., 1997, ‘On more dimensional Packing ii: bounds’,
Technical Report, University of Koln, Germany.

Fekete, S.P. & Schepers, J., 1997, ‘On more dimensional Packing iii: exact
algorithm’, Technical Report, University of Koln, Germany.

Fekete, S.P. & Schepers J., 2004, ‘A General Framework for Bounds for Higher-
dimensional Orthogonal Packing Problems’, Mathematical Methods of Operation
Research, vol. 60, no. 2, pp. 311-329.

Goncalves, J.F., 2007, ‘A hybrid genetic algorithm-heuristic for a two-dimensional
orthogonal packing problem’, European Journal of Operation Research, vol. 183, pp.
1212-1229.

Hifi, M., 2004, ‘Exact algorithms for unconstrained three-dimensional cutting
problems’, Computers & Operations Research, vol. 31, no. 5, pp. 657-674.

Joncour, C., Pecher, A. & Valicov, P., 2010, ‘MPQ-trees for orthogonal packing
problem’, Electronic Notes in Discrete Mathematics, vol. 36, pp. 423-429.

Junqueira, L., Morabito, R. & Yamashita D.S., 2012, ‘Three-dimensional container
loading models with cargo stability and load bearing constraints’, Computers &
Operations Research, vol. 39, pp. 74-85.

Leung, T.W., Yung, C.H. & Troutt, M.D., 2001, ‘Application of genetic research and
simulated annealing to the two-dimensional non-guillotine cutting stock problem’,
Computers & Industrial Engineering, vol. 40, pp. 201-214.

Leung, S.C.H, Zhang, D., Zhou, Ch. & Wu, T., 2012, ‘A hybrid simulated annealing
metaheuristic algorithm for the two-dimensional knapsack packing problem’,
Computer & Operations Research, vol. 39, pp. 64-73.

Martello, S., Pisinger, D., Vigo, D., Den Boef, E. & Korst, J., 2007, ‘Algorithm 864:
General and robot-packable variants of the three-dimensional bin packing problem’,
ACM Transactions on Mathematical Software (TOMS), vol. 33, no. 1, pp. 1-7.

Murty, K.G., Liu, J. Wan, Y. & Linn, R., 2005, ‘A decision support system for
operations in container terminal’, Decision support Systems, vol. 39, no. 3, pp. 309-
332.

Murty, K.G., Wan Y., Liu, J., Tseng, M.M., Leung, E., Lai, K. & Chiu, H.W.C., 2005
‘Hongkong International Terminals Gains Elastic Capacity Using a Data-Intensive
Decision-Support System’, informs, vol. 35, no. 1, pp. 61-75.

53

Petering, M.E.H. & Murty, K.G., 2009, ‘Effect of block length and yard crane
deployment systems on overall performance at a seaport container transshipment
terminal’, Computers & Operations Research, vol. 36, no. 5, pp. 1711-1725.

Pisinger, D., 2007, ‘Denser Packings Obtained in O(n log logn)’, INFORMS Journal
on Computing, vol. 19, no. 3, pp. 395-406.

Pisinger, D., 2002, ‘Heuristics for the container loading problem’, European Journal
of Operational Research, vol. 141, no. 2, pp. 382-392.

Wascher, G., Hauβner, H. & Schumann, H., 2007, ‘An improved typology of cutting
and packing problems’, European Journal of Operational Research, vol. 183, pp.
1109-1130.

Wei, L., Zhang, D. & Chen, Q., 2009, ‘A least wasted first heuristic algorithm for the
rectangular packing problem’, Computers & Operations Research, vol. 36, pp. 1608-
1614.

Wu, Y., Li, W., Goh, M. & de Souza, R., 2010, ‘Three Dimensional Bin Packing
Problem with Variable Bin Height’, European Journal of Operational Research, vol.
202, no. 2, pp. 347-355.

54

APPENDICES

Appendix A

The five best solutions for each instance and the number of packed boxes of each type
are shown in the following:

Case
Utilization

%
Box Type

1 2 3 4 5 6 7

Mst-36-v-wo-560

88.49 3 2 2 1 0 2 0
87.88 4 4 2 0 0 0 0
87.49 4 2 1 1 0 1 4
86.66 4 1 0 2 1 1 6
85.50 4 1 0 2 1 0 8

Mst-36-R-wo-560

83.51 2 3 0 2 1 1 18
83.15 3 3 1 1 0 2 8
82.05 2 2 2 0 0 2 15
80.98 3 0 1 2 0 0 15
81.42 1 3 1 2 1 1 17

Mst-36-v-obs-649

70.86 3 1 0 1 1 2 5
75.13 3 1 0 2 0 1 9
75.57 2 2 0 2 0 2 11
76.42 3 0 1 1 1 1 10
74.70 2 2 0 1 1 1 13

Mst-36-R-obs-649

82.23 2 3 0 2 1 2 10
80.35 3 1 0 2 1 1 11
78.82 4 1 0 1 0 1 10
80.20 1 2 0 3 1 2 8
76.88 2 2 0 0 2 2 18

Mst-70-v-wo-1386

86.34 6 1 5 5 0 4 11
85.38 7 2 4 5 1 3 6
85.92 7 1 5 5 0 3 4
82.02 7 0 5 4 1 2 11
82.63 7 0 4 4 1 4 7

Mst-70-R-wo-1386

84.80 7 3 5 2 3 3 10
83.44 7 3 5 2 5 2 4
82.49 7 4 5 2 2 3 10
84.07 7 3 5 3 2 2 9
83.04 7 3 4 2 0 6 15

Mst-70-v-obs-1386

82.09 3 5 5 5 1 3 8
81.73 7 2 4 2 4 2 8
79.74 7 1 4 2 3 2 11
76.67 5 1 5 2 3 2 17
80.32 7 4 5 0 2 2 10

55

case Utilization
%

Box Type
1 2 3 4 5 6 7

Mst-70-R-obs-
1386

80.24 5 1 5 3 2 3 13
78.77 6 3 2 2 1 6 16
78.55 7 4 1 4 3 3 3
77.60 7 2 3 2 1 2 15
78.39 7 3 3 1 5 2 13

Mst-70-v/R-obs-
1386

(ceiling)

83.52 6 0 4 4 2 5 8
85.97 6 3 4 3 1 6 7
84.04 7 2 2 5 1 4 10
82.06 6 5 4 2 3 3 10
78.39 6 0 4 3 3 3 13

Mst-70-v/R-obs-
1386

(middle)

79.29 6 1 5 2 5 2 13
77.83 7 3 4 2 2 2 9
77.64 6 0 4 3 5 2 15
79.74 6 0 5 1 4 2 19
77.54 6 3 1 2 1 6 23

case
Utilization

%
Box Type

1 2 3 4 5 6 7 8 9 10

Mst-50-v-wo-210

85.49 4 4 0 0 3 3 6 3 0 0
83.95 4 3 1 0 3 3 6 2 0 1
84.14 4 5 1 1 1 2 6 4 0 0
84.46 3 0 3 2 1 6 6 3 0 0
84.50 6 0 2 1 3 1 6 1 1 4

Mst-50-R-wo-210

85.21 0 1 3 4 3 3 6 4 0 5
86.79 1 5 1 5 3 3 6 3 0 1
84.86 5 2 1 2 0 3 6 4 0 2
85.16 1 1 1 5 3 4 6 3 0 4
83.32 4 2 1 3 3 3 6 1 0 1

56

Appendix B

-Mst-36-v-wo-560:

Utilization=88.49%

Box type Box coordinate Box dimensions
1 <190;0;771> {610;483;229}
1 <190;0;542> {610;483;229}
1 <190;0;59> {610;229;483}
1 <190;229;59> {610;229;483}
3 <140;458;136> {660;229;406}
4 <267;483;543> {533;216;457}
6 <12;0;467> {178;356;533}
2 <25;356;543> {165;330;457}
2 <25;0;10> {165;330;457}
7 <475;458;22> {325;152;114}
7 <26;356;391> {114;325;152}
7 <26;356;239> {114;325;152}
7 <26;356;87> {114;325;152}
7 <145;458;22> {325;152;114}

Utilization= 88.40%

Box type Box coordinate Box dimensions
1 <0;0;517> {610;229;483}
1 <0;229;517> {610;229;483}
1 <0;458;517> {610;229;483}
3 <0;0;288> {406;660;229}
3 <0;0;59> {406;660;229}
4 <406;0;60> {216;533;457}
6 <622;0;467> {178;356;533}
6 <622;0;111> {178;533;356}
2 <610;356;543> {165;330;457}
2 <406;533;60> {330;165;457}

57

- Mst-36-R-obs-649:

Utilization= 80.35%

Utilization= 82.23%

Box type Box coordinate Box dimensions
1 <0;0;661> {610;483;229}
7 <0;0;509> {114;325;152}
1 <610;0;661> {610;483;229}
7 <0;0;357> {114;325;152}
7 <114;0;509> {114;325;152}
7 <114;0;357> {114;325;152}
4 <228;0;204> {216;533;457}
1 <444;0;432> {610;483;229}
2 <330;0;39> {330;457;165}
6 <660;0;26> {356;533;178}
7 <1054;0;547> {152;325;114}
7 <1220;0;565> {114;152;325}
4 <444;0;216> {457;533;216}
7 <1054;0;433> {152;325;114}
7 <1220;152;565> {114;152;325}
7 <1206;0;413> {114;325;152}
7 <1220;304;565> {114;152;325}
5 <901;0;210> {229;381;203}
7 <1016;381;88> {114;152;325}

Box type Box coordinate Box dimensions
5 <1121;0;687> {229;381;203}
4 <664;0;674> {457;533;216}
2 <334;0;725> {330;457;165}
1 <511;0;445> {610;483;229}
7 <1198;0;573> {152;325;114}
1 <511;0;216> {610;483;229}
6 <333;0;369> {178;533;356}
7 <181;0;776> {152;325;114}
4 <550;0;0> {457;533;216}
2 <168;0;446> {165;457;330}
2 <3;0;560> {165;457;330}
7 <1236;0;421> {114;325;152}
7 <16;0;446> {152;325;114}
7 <181;0;332> {152;325;114}
6 <333;0;13> {178;533;356}
7 <1236;381;565> {114;152;325}
7 <1122;0;421> {114;325;152}
7 <1122;381;565> {114;152;325}
7 <29;0;332> {152;325;114}
7 <219;0;180> {114;325;152}

58

- Mst-70-v-wo-1386:

Utilization= 86.34%

Box type Box coordinate Box dimensions
1 <490;0;1171> {610;483;229}
1 <490;0;942> {610;483;229}
1 <490;483;917> {610;229;483}
1 <490;0;688> {610;483;229}
1 <490;483;434> {610;229;483}
1 <490;0;459> {610;483;229}
3 <261;0;994> {229;660;406}
3 <32;0;994> {229;660;406}
3 <84;0;765> {406;660;229}
3 <84;0;536> {406;660;229}
3 <84;0;307> {406;660;229}
4 <33;660;867> {457;216;533}
4 <643;0;218> {457;533;216}
4 <643;0;2> {457;533;216}
4 <33;660;334> {457;216;533}
4 <33;0;91> {457;533;216}
6 <567;712;1044> {533;178;356}
6 <567;712;688> {533;178;356}
6 <567;712;332> {533;178;356}
6 <567;533;154> {533;356;178}
2 <33;533;142> {457;330;165}
7 <775;533;2> {325;114;152}
7 <661;533;2> {114;325;152}
7 <165;533;28> {325;152;114}
7 <775;647;40> {325;152;114}
7 <165;685;28> {325;152;114}
7 <491;0;345> {152;325;114}
7 <491;0;231> {152;325;114}
7 <491;0;117> {152;325;114}
7 <529;325;134> {114;152;325}
7 <491;0;3> {152;325;114}
7 <491;325;20> {152;325;114}

59

- Mst-70-R-wo-1386:

Utilization= 84.13%

Box type Box coordinate Box dimensions
3 <694;0;740> {406;229;660}
1 <490;229;1171> {610;483;229}
2 <694;0;80> {406;229;660}
5 <491;0;1019> {203;229;381}
2 <325;0;943> {165;330;457}
5 <491;0;638> {203;229;381}
5 <465;0;257> {229;203;381}
2 <249;330;943> {216;533;457}
1 <236;0;333> {229;483;610}
7 <775;712;1248> {325;114;152}
3 <236;483;283> {229;406;660}
3 <7;0;740> {229;406;660}
7 <84;0;415> {152;114;325}
7 <775;229;1057> {325;152;114}
6 <567;229;701> {533;178;356}
3 <7;406;740> {229;406;660}
2 <643;229;371> {457;165;330}
1 <7;114;257> {229;610;483}
7 <122;724;415> {114;152;325}
6 <567;229;15> {533;178;356}
1 <490;407;942> {610;483;229}
7 <313;0;219> {152;325;114}
4 <8;0;3> {457;533;216}
4 <567;407;726> {533;457;216}
1 <490;407;497> {610;483;229}
1 <490;407;268> {610;483;229}
7 <313;533;169> {152;325;114}
2 <8;533;4> {457;330;165}
1 <490;407;39> {610;483;229}

60

- Mst-70-v-obs-1386:

Utilization= 82.09%

Box type Box coordinate Box dimensions
1 <490;0;1171> {610;483;229}
1 <490;0;942> {610;483;229}
1 <490;0;713> {610;483;229}
3 <440;483;994> {660;229;406}
3 <34;0;1171> {406;660;229}
3 <34;660;740> {406;229;660}
3 <440;483;765> {660;406;229}
3 <694;0;484> {406;660;229}
4 <478;0;180> {216;457;533}
4 <224;0;180> {216;457;533}
4 <237;457;180> {457;216;533}
4 <237;673;180> {457;216;533}
4 <224;0;714> {216;533;457}
6 <338;0;2> {356;533;178}
6 <46;0;357> {178;533;356}
6 <567;712;1044> {533;178;356}
2 <59;0;714> {165;330;457}
2 <770;220;27> {330;165;457}
2 <237;533;15> {457;330;165}
2 <770;385;27> {330;165;457}
2 <59;330;714> {165;330;457}
5 <719;660;562> {381;229;203}
7 <123;533;388> {114;152;325}
7 <9;533;388> {114;152;325}
7 <775;550;332> {325;114;152}
7 <288;533;750> {152;114;325}
7 <453;712;1075> {114;152;325}
7 <72;220;160> {152;325;114}
7 <123;220;8> {114;325;152}
7 <9;220;8> {114;325;152}

61

- Mst-70-v-obs-1386 (ceiling):

Utilization= 85.97%

Box type Box coordinate Box dimensions
1 <871;0;790> {229;483;610}
1 <871;0;180> {229;483;610}
1 <642;0;790> {229;483;610}
1 <413;0;917> {229;610;483}
1 <642;0;180> {229;483;610}
1 <184;0;917> {229;610;483}
3 <236;610;740> {406;229;660}
3 <871;483;740> {229;406;660}
3 <642;483;740> {229;406;660}
3 <7;0;511> {229;660;406}
4 <426;0;460> {216;533;457}
4 <185;0;244> {457;533;216}
4 <185;0;28> {457;533;216}
6 <6;0;1044> {178;533;356}
6 <286;533;207> {356;178;533}
6 <286;711;207> {356;178;533}
6 <6;0;155> {178;533;356}
6 <744;0;2> {356;533;178}
6 <693;483;207> {178;356;533}
2 <414;533;15> {457;330;165}
2 <261;0;587> {165;457;330}
2 <19;533;943> {165;330;457}
5 <871;483;359> {229;203;381}
7 <172;533;359> {114;325;152}
7 <300;533;28> {114;325;152}
7 <58;0;3> {114;325;152}
7 <84;660;592> {152;114;325}
7 <84;774;592> {152;114;325}
7 <32;0;930> {152;325;114}
7 <274;0;473> {152;325;114}

62

- Mst-70-R-obs-1386 (ceiling):

Utilization= 82.31%

Box type Box coordinate Box dimensions
1 <871;0;917> {229;610;483}
1 <642;0;917> {229;610;483}
6 <109;0;1222> {533;356;178}
1 <159;0;993> {483;610;229}
7 <7;0;1108> {152;325;114}
1 <617;0;688> {483;610;229}
7 <7;325;1108> {152;325;114}
1 <871;0;78> {229;483;610}
7 <986;483;363> {114;152;325}
7 <7;0;994> {152;325;114}
7 <7;325;994> {152;325;114}
3 <211;0;764> {406;660;229}
5 <8;0;764> {203;381;229}
3 <642;0;282> {229;660;406}
3 <211;0;535> {406;660;229}
3 <211;0;306> {406;660;229}
7 <503;356;1248> {114;325;152}
5 <642;0;79> {229;381;203}
6 <147;356;1222> {356;533;178}
1 <7;660;739> {610;229;483}
5 <414;0;77> {203;381;229}
5 <211;0;77> {203;381;229}
1 <261;381;53> {610;483;229}
3 <211;660;282> {660;229;406}
6 <33;0;383> {178;533;356}
7 <872;483;363> {114;152;325}
7 <97;533;363> {114;152;325}
7 <775;610;1248> {325;114;152}
4 <643;610;715> {457;216;533}
7 <775;724;1248> {325;114;152}
6 <33;0;7> {178;533;356}

63

- Mst-70-v-obs-1386 (middle):

Utilization= 79.29%

Box type Box coordinate Box dimensions
1 <617;0;942> {483;610;229}
1 <617;0;713> {483;610;229}
1 <617;0;484> {483;610;229}
1 <617;0;255> {483;610;229}
1 <7;0;917> {610;229;483}
1 <617;610;790> {483;229;610}
3 <694;610;130> {406;229;660}
3 <211;0;688> {406;660;229}
3 <211;0;459> {406;660;229}
3 <211;0;230> {406;660;229}
3 <211;229;942> {406;660;229}
4 <84;660;485> {533;216;457}
4 <84;660;2> {533;216;457}
6 <33;0;332> {178;533;356}
6 <33;229;1044> {178;533;356}
2 <46;0;2> {165;457;330}
5 <719;0;1> {381;203;229}
5 <236;0;1> {381;203;229}
5 <719;0;1171> {381;203;229}
5 <897;203;1171> {203;381;229}
5 <8;0;688> {203;381;229}
7 <465;520;1286> {152;325;114}
7 <351;520;1248> {114;325;152}
7 <948;203;116> {152;325;114}
7 <834;203;78> {114;325;152}
7 <948;203;2> {152;325;114}
7 <623;528;2> {325;152;114}
7 <948;528;2> {152;325;114}
7 <623;680;2> {325;152;114}
7 <59;762;1075> {152;114;325}
7 <59;533;160> {152;114;325}
7 <292;520;8> {325;114;152}

64

- Mst-70-R-obs-1386 (middle):

Utilization= 82.50%

Box type Box coordinate Box dimensions
6 <922;0;1044> {178;533;356}
3 <262;0;994> {660;229;406}
5 <897;533;1019> {203;229;381}
7 <148;0;1075> {114;152;325}
6 <364;520;1222> {533;356;178}
7 <250;520;1248> {114;325;152}
7 <136;152;1248> {114;325;152}
7 <136;477;1248> {114;325;152}
7 <22;0;1075> {114;152;325}
7 <22;152;1248> {114;325;152}
7 <22;477;1248> {114;325;152}
3 <491;229;993> {406;660;229}
4 <884;0;536> {216;533;457}
3 <655;0;587> {229;660;406}
1 <8;229;993> {483;610;229}
1 <871;0;53> {229;610;483}
1 <172;0;764> {483;610;229}
7 <330;0;650> {325;152;114}
7 <330;0;536> {325;152;114}
2 <325;152;599> {330;457;165}
4 <414;0;3> {457;216;533}
2 <414;216;371> {457;330;165}
2 <414;216;206> {457;330;165}
2 <7;0;663> {165;457;330}
7 <948;533;668> {152;114;325}
7 <948;762;1075> {152;114;325}
7 <211;0;612> {114;325;152}
7 <173;325;650> {152;325;114}
6 <236;0;180> {178;533;356}
7 <58;457;668> {114;152;325}
1 <490;660;510> {610;229;483}
1 <7;0;2> {229;483;610}
1 <490;610;27> {610;229;483}
2 <33;546;41> {457;165;330}
7 <165;546;384> {325;114;152}
1 <7;660;383> {483;229;610}
2 <33;711;53> {457;165;330}

65

- Mst-50-v-wo-210:

Utilization= 85.49%

Box type Box coordinate Box dimensions
7 <371;0;428> {229;216;272}
7 <142;0;428> {229;216;272}
7 <142;216;484> {229;272;216}
7 <384;216;471> {216;272;229}
7 <384;0;156> {216;229;272}
7 <155;0;156> {229;216;272}
1 <4;0;415> {138;182;285}
1 <4;182;518> {138;285;182}
1 <418;229;186> {182;138;285}
1 <189;0;18> {182;285;138}
5 <150;216;379> {234;272;105}
5 <150;216;274> {234;272;105}
5 <150;216;169> {234;272;105}
6 <147;285;10> {237;153;159}
6 <441;0;3> {159;237;153}
6 <441;237;33> {159;237;153}
8 <412;367;235> {188;124;236}
8 <18;0;227> {124;236;188}
8 <18;0;39> {124;236;188}
2 <16;236;383> {126;240;135}
2 <7;236;257> {135;240;126}
2 <7;236;131> {135;240;126}
2 <7;236;5> {135;240;126}

66

Mst-50-v-wo-210:

Utilization= 85.49%

Box type Box coordinate Box dimensions
8 <364;0;576> {236;188;124}
4 <354;188;560> {246;80;140}
2 <228;0;565> {126;240;135}
6 <363;0;423> {237;159;153}
8 <40;0;576> {188;236;124}
7 <384;268;428> {216;229;272}
10 <378;159;456> {222;103;104}
7 <82;240;484> {272;229;216}
5 <82;0;460> {272;234;105}
7 <138;0;231> {216;272;229}
7 <138;0;2> {216;272;229}
8 <14;0;272> {124;236;188}
2 <12;0;137> {126;240;135}
2 <360;0;288> {240;126;135}
1 <462;0;3> {138;182;285}
2 <12;0;2> {126;240;135}
3 <354;0;66> {108;165;222}
2 <360;126;297> {240;135;126}
4 <354;182;157> {246;80;140}
7 <82;272;255> {272;216;229}
5 <82;272;21> {272;105;234}
5 <82;377;21> {272;105;234}
4 <2;240;454> {80;140;246}
7 <371;262;156> {229;216;272}
6 <363;182;3> {237;159;153}
4 <2;240;208> {80;140;246}
6 <363;341;3> {237;159;153}
4 <2;240;68> {80;246;140}

67

Appendix C

(http://www.cse.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese4.html#Q1-60004-

22)

In order to prove the NP-hardness of the knapsack problem, it is required to explain

some useful definitions:

“

• Turing Machine: A Turing machine is a theoretical machine that is used in

thought experiments to study the computers borders and capabilities.

• Boolean expression: A Boolean expression is an expression which is defined

inductively in the following way:

� The constants 0 (false) and 1 (true) are Boolean expressions.

� Each variable x is a Boolean expression.

� If E1 and E2 are Boolean expressions, then so are the negation ¬E1, the

conjunction E1 ˄ E2, the disjunction E1 ˅ E2, and the parenthesizing

(E1).

Each assignment of 0's and 1's to the variables of a Boolean expression provides a

value to the expression. If E is a Boolean expression, then (E) has the same value as

E. ¬E has the value 0 if E has the value 1, and ¬E has the value 1 if E has the value 0.

If E1 and E2 are Boolean expressions, then E1 ˅ E2 has the value 1 whenever E1 or E2

has the value 1. E1 ˅ E2 has the value 0 whenever both E1 and E2 have the value 0.

The value of E1 ˄ E2 is 1 if both E1 and E2 have the value 1, otherwise E1 ˄ E2 has the

value 0. It is assumed that among the Boolean operations of ¬, ˄ , and ˅ , the operation

¬ has the highest precedence, followed by ˄, and then ˅.

A Boolean expression is said to be satisfiable if its variables can be assigned 0's and

1's so as to provide the value 1 to the expression. The satisfiability problem asks for

any given Boolean expression whether it is satisfiable, that is, whether the instance is

in the set Lsat = {E | E is a satisfiable Boolean expression}.

Theorem 1. The satisfiability problem is NP-complete.

68

Proof The satisfiability of any Boolean expression can be checked in polynomial

time by nondeterministically assigning some values to the variables of the given

expression and then evaluating the expression for such an assignment. Consequently,

the problem is in NP.

To show that the satisfiability problem is NP-hard, it is sufficient to demonstrate that

each problem K in NP has a polynomially time-bounded, deterministic Turing

transducer TK, such that TK reduces K to the satisfiability problem. For the purpose of

the proof consider any problem K in NP. Assume that M = <Q, , , δ, q0, B, F> is a

nondeterministic Turing machine with Q ({¢, $}) = Ø that decides K in T(n)

= O(nk) time. Let m denote the number of auxiliary work tapes of M; then TK can be a

Turing transducer that on input x outputs a Boolean expression Ex of the following

form.

 The Structure of Ex: The Boolean expression Ex describes how an accepting

computation of M on input x should look. Ex is satisfiable by a given assignment if

and only if the assignment corresponds to an accepting computation C0 C1 CT(|x|)

of M on input x. The expression has the following structure, where t = T(|x|).

Econf0 ˄...˄ Econft ˄ Einit ˄ Erule1 ˄...˄ Erulet ˄ Eaccept ˄ Efollow1˄...˄ Efollowt

Econf0 ˄...˄ Econft states that an accepting computation consists of a sequence C0, ..., Ct

of t + 1 configurations. Einit states that C0 is an initial configuration.

Erule1 ˄...˄ Erulet states that an accepting computation uses a sequence Ψ of t transition

rules. Eaccept states that the last transition rule in Ψ enters an accepting state. With no

loss of generality it is assumed that a transition rule can also be "null", that is, a

transition rule on which M can have a move without a change in its configuration.

Such an assumption allows us to restrict the consideration only to computations that

consist of exactly T(|x|) moves.

Efollowi states that M by using the ith transition rule in Ψ reaches configuration Ci from

configuration Ci-1, 1 ≤ i ≤ t.

 The Variables of Ex: The Boolean expression Ex uses variables of the form wi,r,j,X and

variables of the form wi,τ . Each variable provides a statement about a possible

69

property of an accepting computation. An assignment that satisfies Ex provides the

value 1 to those variables whose statements hold for the computation in question, and

provides the value 0 to those variables whose statements do not hold for that

computation.

wi,r,j,X states that X is the jth character of the rth tape in the ith configuration 0 ≤ r ≤

m. r = 0 refers to the input tape, and 1 ≤ r ≤ m refers to the rth auxiliary work tape.

wi,τ states that τ is the transition rule in the ith move of the computation.

 The Structure of Econfi : The expression Econfi is the conjunction of the following

Boolean expressions.

a. ˅{ w i,0,j,X | X is in {¢, $} Q for 1 ≤ j ≤ |x| + 3.

This expression states that a configuration has an input segment with |x| + 3

entries, with each entry having at least one symbol from {¢, $} Q.

b. ˄{ ¬(w i,0,j,X ˄ wi,0,j,Y) | X and Y are in {¢, $} Q and X ≠ Y } for 1 ≤ j ≤ |x|

+ 3.

This expression states that each entry in the input segment has at most one

symbol.

c. ˅{ w i,r,j,X | X is in Q } for 1 ≤ r ≤ m and 1 ≤ j ≤ t + 1.

This expression states that a configuration has m auxiliary work-tape

segments, each segment having t + 1 entries, and each entry having at least

one symbol from Q.

d. ˄{ ¬(w i,r,j,X ˄ wi,r,j,Y) | X and Y are in Q and X ≠ Y } for 1 ≤ r ≤ m and 1 ≤

j ≤ t + 1.

This expression states that each entry in an auxiliary work-tape segment has at

most one symbol.

Each assignment that satisfies the expressions in parts (a) and (b) above implies a

string of length |x| + 3. The string corresponds to the input tape of M, and consists of

70

input symbols, end-marker symbols ¢ and $, and state symbols. In particular, the

symbol X is at location j in the string if and only if w i,0,j,X is assigned the value 1.

Similarly, each assignment that satisfies the expressions in parts (c) and (d) above for

a specific value r, provides a string of length t + 1 that corresponds to the rth auxiliary

work tape of M. The string consists of auxiliary work tape symbols and state symbols.

In particular, the string consists of the symbol X at location j if and only if wi,r,j,X is

assigned the value 1.

 The Structure of Einit: The expression Einit is the conjunction of the following three

Boolean expressions.

a. w0,0,1,q0 ˄ w0,0,2,q0 ˄{ w 0,0,j+2,aj | 1 ≤ j ≤ |x| }˄w0,0,|x|+3,$.

This expression states that in the initial configuration the input segment

consists of the string ¢q0a1 an$, where aj denotes the jth input symbol in x.

b. ˅{ w 0,r,j,q0 | 1 ≤j ≤t + 1 } for 1 ≤ r ≤ m.

This expression states that in the initial configuration each auxiliary work-tape

segment contains the initial state q0.

c. w0,r,j,B ˅ w0,r,j,q0 ˄{ w 0,r,s,B | 1 ≤ s ≤ t+1 and s j } for 1 ≤ j ≤ t+1 and 1 ≤ r ≤ m.

This expression states that in the initial configuration each auxiliary work-tape

segment consists of blank symbols B and at most one appearance of q0.

Each assignment that satisfies Einit corresponds to an initial configuration of M on

input x. Moreover, each also satisfies Econf0.

The Structure of Erulei and Eaccept : The expression Erulei is the conjunction of the

following two Boolean expressions.

a. { w i,τ | τ is in δ}

b. { ¬(wi,τ 1 ˄ wi,τ 2) | τ1, τ2 are in δ and τ1≠τ2 }.

The expression in part (a) implies, that for each assignment that satisfies Erulei, at least

one of the variables wi,τ has the value 1. The expression in part (b) implies, that for

71

each assignment that satisfies Erulei, at most one of the variables wi,τ has a value 1.

Hence, each assignment that satisfies Erulei assigns the value 1 to exactly one of the

variables wi,τ , namely, to the variable that corresponds to the transition rule used in

the ith move of the computation in question.

The expression Eaccept is of the form ˅ { w t,τ | τ takes M into an accepting state }.

The Structure of Efollowi: The expression Efollowi is the conjunction of the following

Boolean expressions.

a. ˅ { (w i,0,j,X ˄ wi-1,0,j-1,Y ˄ wi-1,0,j,Z ˄ wi-1,0,j+1,W ˄ wi,) | X, Y, Z, W, and τ such

that X = f0(Y, Z, W, τ) } for 1 ≤ j ≤ |x| + 3.

b. ˅{ (w i,r,j,X ˄ wi-1,r,j-1,Y ˄ wi-1,r,j,Z ˄ wi-1,r,j+1,W ˄ wi,τ) | X, Y, Z, W, and such that

X = fr(Y, Z, W, τ) } for 1 ≤ r ≤ m and 1 ≤ j ≤ t + 1.

Where, fr(Y, Z, W, τ) is a function that determines the replacement X for a symbol Z

in a configuration, resulting from the application of the transition rule τ.

Z is assumed to be enclosed between Y on its left and W on its right.

wi-1,0,0,Y , ... , wi-1,m,0,Y , wi-1,0,|x|+4,W , wi-1,1,t+2,W , ... , wi-1,m,t+2,W are new variables. They

are introduced to handle the boundary cases in which the symbol Z in fr(Y, Z, W, τ)

corresponds to an extreme (i.e., leftmost or rightmost) symbol for a tape.

If = (q, a, b1, ... , bm, p, d0, c1, d1, ... , cm, dm), then the value X of the function fr(Y,

Z, W, τ) satisfies X = p whenever one of the following cases holds.

a. Z = q and dr = 0.

b. Y = q and dr = +1.

c. W = q and dr = -1.

Similarly, X = cr whenever one of the following cases holds, 1 ≤ r ≤ m.

a. Z = q, W = br, and dr = +1.

b. Y = q, Z = br, and dr = 0.

c. Y = q, Z = br, and dr = -1.

On the other hand,

72

a. X = W whenever Z = q, r = 0, and d0 = +1.

b. X = Y whenever Z = q and dr = -1.

In all the other cases X = Z because the head of the rth tape is "too far" from Z.

The result now follows because TK on input x can compute t = T(|x|) in polynomial

time and then output (the string that represents) Ex.

• The 3-Satisfiability Problem: A slight modification to the previous proof

implies the NP-completeness of the following restricted version of the

satisfiability problem.

Definitions A Boolean expression is said to be a literal if it is a variable or a

negation of a variable. A Boolean expression is said to be a clause if it is a disjunction

of literals. A Boolean expression is said to be in conjunctive normal form if it is a

conjunction of clauses. A Boolean expression is said to be in k-conjunctive normal

form if it is in conjunctive normal form and each of its clauses consists of exactly k

literals. The k-satisfiability problem asks for any given Boolean expression in k-

conjunctive normal form whether the expression is satisfiable.

With no loss of generality, in what follows it is assumed that no variable can appear

more than once in any given clause.

Theorem 2. The 3-satisfiability problem is NP-complete.

Proof The expression Ex in the proof of Theorem 1 needs only slight modifications

to have a 3-conjunctive normal form.

a. Except for the expressions Efollowi and part (c) of Einit, all the other expressions

can be modified to be in conjunctive normal form by using the equivalence

¬(w1 ˄ w2) (¬w1) ˅ (¬w2).

b. Each expression in Efollowi and part (c) of Einit can be modified to be in

conjunctive normal form by using the equivalence w1 ˅ (w2 ˄ w3) (w1 ˅ w2)

˄ (w1 ˅ w3).

c. Each disjunction w1 ˅ ... ˅ ws with s > 3 clauses can be modified to be in 3-

conjunctive normal form by repeatedly replacing sub-expressions of the form

73

w1 ˅ ... ˅ ws with sub-expressions of the form (w1 ˅ w2 ˅ w) ˄ (¬w ˅ w3 ˅ ...

˅ ws), where the w's are new variables.

� The proof of the Knapsack problem NP-hardness is as follows:

Consider a Turing machine M that on any instance (a1, . . . , aN , b) of the problem

assigns value from {0,1} to v1, . . . , vN non-deterministically. Accept the input if and

only if a1v1+…+anvn=b. Therefore the 0-1 knapsack problem is in NP.

In order to show that 0-1 knapsack problem is NP-hard, consider any given instance E

of the 3-satisfiability problem. Let x1, …, xn indicate the variables in Boolean

expression E. is a conjunction c1 ˄ ... ˄ck of some clauses c1, . . . , ck. Each Ci is a

disjunction ci 1 ˅ ci 2 ˅ ci 3 of some literals ci 1, ci 2, ci 3. Each ci j is a variable xt, or a

negation ¬xt of a variable xt, for some 1 ≤ t ≤ m.

The following system S of linear equations is developed from Boolean expression E:

x1 + 1 = 1

xm + m = 1

c1 1 + c1 2 + c1 3 + y1 1 + y1 2 = 3

ck 1 + ck 2 + ck 3 +yk 1 +yk 2 = 3

The variable xt in system S corresponds to the literal xt in E. The variable t in S

corresponds to the literal t in E. ci j stands for the variable xt in S, if xt is the jth literal

in Ci. ci j stands for the variable t in S, if ¬xt is the jth literal in Ci.

Each equation of the form xi + i = 1 has a solution over {0, 1} ⟺ either xi = 1 and i

= 0, OR xi = 0 and i = 1.

Each equation of the form ci 1 + ci 2 + ci 3 + yi 1 + yi 2 = 3 has a solution over {0, 1} ⟺

at least one of ci 1 = 1, ci 2 = 1, and ci 3 = 1 is satisfied.

Therefore, system S has a solution over {0, 1} ⟺ the Boolean expression E is

satisfiable.

The vector form of system S is shown in the following:

74

The variables z1, …,z2m+2k stand for the variables x1, …,xm, 1 ,…, m and y11, …, yk2

respectively. Aij is the coefficient zj in the ith equation of S. bi is the constant in the

right-hand side of the ith equation in S.

System S can be shown by the equation H:

 (H)

Each aj for the integer whose decimal representation is a1 j, ..., am+k j. In addition, b

stands for the integer whose decimal representation is b1, ..., bm+k. The representation

is possible because the sum ai 1 + ...+ ai 2m+2k is either equal to 2 or to 5 for each 1 ≤ i ≤

m+k. Which means that the ith digit in the sum c = a1 + ...+ a2m+2k depends only on

the ith digits of a1, ... , a2m+2k. Thus, S is satisfiable over {0, 1} if and only if H is

satisfiable over {0, 1}.

Therefore, instance E of the 3-satisfiability problem is satisfiable ⟺ instance (a1, … ,

a2m+2k, b) of the 0 - 1 knapsack problem has a positive solution.

Furthermore, a polynomially time-bounded, deterministic Turing transducer can

similarly construct corresponding instance of the 0 - 1 knapsack problem, from each

instance E of the 3-satisfiability problem. As a result, the NP-hardness of the 0 - 1

knapsack problem follows from the NP-hardness of the 3-satisfiability problem.”

(http://www.cse.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese4.html#Q1-60004-

22)

75

VITA AUCTORIS

NAME: Hanan Mostaghimi Ghomi

PLACE OF BIRTH:

Tehran, Iran

YEAR OF BIRTH:

1988

EDUCATION:

Zahra High School, Tehran, Iran, 2006

University of Tehran, B.Sc., Tehran, Iran, 2010

University of Windsor, M.Sc. Candidate, Windsor,
ON, 2013

	Three-Dimensional Knapsack Problem with Pre-Placed Boxes and Vertical Stability
	Recommended Citation

	/var/tmp/StampPDF/for9xLNLZz/tmp.1390331034.pdf.H1QNi

