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ABSTRACT 

 

A three-dimensional knapsack problem packs a subset of rectangular boxes 

inside a bin with fixed size such that the total value of packed boxes is 

maximized. Each box has its own value and size and can be freely rotated into 

any of the six positions while its edges are parallel to the bin’s edges. A Mixed 

Integer Linear Programming is developed for the 3D knapsack problem, while 

some practical constraints such as vertical stability are considered. However, 

the given model can be applied to two dimensional problems as well. The 

proposed solution methodology is based on the sequence triple. Simulated 

annealing technique is used to model the heuristic approach. Moreover, the 

situation where some boxes are pre-placed in the bin is investigated. These pre-

placed boxes represent potential obstacles. Numerical experiments are 

conducted for bins with and without obstacles.  The results show that the 

heuristic approach is successful and can handle different kinds of instances. 
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CHAPTER 1 

Introduction 

 

1.1.Background 

 

Cutting and packing problems have been intensely studied as they have many 

applications in industrial and finance management. The three dimensional packing 

problem is essential for practical purposes such as container loading or scheduling 

which can be defined as a geometric assignment problem. The various packing 

problems can have different constraints and objectives. For instance, in the case of 

shipping, objects with different sizes have to be packed into a larger container. A 

topology of packing problems in general was defined by Dyckhoff et al. (1990) and a 

recent survey was defined by Wascher et al. (2007). Cutting and packing problems 

appear under several different names such as bin packing, multi-container loading 

problem, strip packing and knapsack problems, based on the objective function and 

the side constraints. All types of cutting and packing problems have some similar 

structures. They consist of two sets of elements, a set of large objects (called bins) and 

a set of small items (called boxes). The problem is to select some or all small items 

and assign them to one of the large objects while all selected small items are placed 

entirely in the large object and do not overlap and a given objective function is 

optimized. Thus, only some of the large objects and small items may be used in a 

solution of the problem. The packing problem considers optimal utilization of bin 

volume for goods distribution and is an important industrial problem. Filling a bin 

optimally decreases the shipping cost and increases the stability of the load. The large 

objects, which are called bins, can be homogeneous or heterogeneous. If the boxes 

placed in the given bin are identical it is called homogeneous; however, if various 

types of boxes are placed in it, it is considered as strongly heterogeneous.  

 

Different kinds of cutting and packing problems can be divided to two categories. 

In the first category, sufficient bins are available to pack all the boxes; however, only 

a limited number of bins is available to pack a subset of boxes in the second category. 

The first type of problems are called an input minimization problem, and the second 

type are called an output maximization type. In the case of output maximization, a set 

of boxes has to be packed in a set of bins where the number of bins is not enough. 
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However, in the case of input minimization, all the boxes can be packed. In strip 

packing problem, a set of rectangular boxes are packed in a strip with certain width 

and height and variable length. The problem is how to place all the boxes inside the 

strip such that its length is minimized. In bin-packing problem, a set of items have to 

be packed in a set of bins of the same fixed sizes and costs, such that the number of 

used bins is minimized. Unlike bin-packing problem, in multi-container loading 

problem, the containers (or bins) do not essentially have equal sizes and costs. In 

knapsack problem each item has a profit and the problem is to choose the best subset 

of items that fits into the single bin or container such that the sum of the items profit is 

maximized. In this kind of problem, the availability of bins is limited so all items 

cannot be packed. (Leung, 2012; Fekete & Schepers 1997; Wei et al. 2009; Egeblad et 

al. 2010; Pisinger 2002). 

 

1.2. Knapsack Problem 

 

The knapsack problem is a problem in combinatorial optimization. The 

multidimensional knapsack Problem (MKP) is a strongly NP-hard optimization 

problem which can be show by reduction from the one-dimensional packing problem; 

it means that it is very unlikely to develop polynomial algorithms for these problems. 

Knapsack problems consist of three different types. The first one is Single Knapsack 

Problem (SKP), the problem of packing a subset of strongly heterogeneous boxes in a 

single container. Multiple Identical Knapsack Problem is the second type which 

considers packing a subset of strongly heterogeneous boxes in a set of identical bins. 

The last type is Multiple Heterogeneous Knapsack Problem (MHKP) which is the 

problem of packing a subset of strongly heterogeneous boxes in a set of weakly and 

strongly heterogeneous bins. Figure 1.1 shows the different types of knapsack 

problems in summary. 
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Figure 1.1 Knapsack Problem Types, Wascher et al. (2007) 

 

Various practical constraints can be considered in the multidimensional knapsack 

problems. Some of these constraints are related to the bin, while some of them may 

refer to the boxes. Moreover, some constraints might be related to the relationship 

between the bin and boxes. One such constraint is the orientation constraint. 

Principally, each box dimension can be considered as height, thus three other 

orientations can easily be defined. Each box can have six orientations in order to 

orthogonally be placed in a bin. Moreover, one other practical constraint is the 

positioning constraint which limits the location of the boxes in the bin.  

 

Load stability constraint is one of the most important issues in knapsack problems. 

In spite of its importance, load stability is often not studied explicitly in the literature. 

The stability is a direct consequence of load trimness when high bin utilization can be 

assured. This is typically true for knapsack problems in which only a subset of boxes 

can be packed as the bin availability is limited. Load stability can be divided into 

vertical and horizontal stability. Vertical stability prevents boxes from falling down 

onto bin floor or on top of other boxes. It deals with gravity force. In order to satisfy 

this kind of stability, the bottom of a box should be supported by the bin floor or other 

box tops. Horizontal stability or dynamic stability guarantees that boxes cannot shift 

notably when the bin is moving. Horizontal stability is satisfied when each packed 

box is adjacent to other boxes or to the bin wall.  

 

In addition, another constraint which can be considered in knapsack problems is 

the guillotine cutting constraint. A packing is guillotineable if it is able to be reached 
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by a series of cuts which are in parallel to the bin walls. Guillotineable patterns are 

not always suitable for packing as the boxes tend to be more unstable while being 

transported. A robot packable packing is one which can be done by placing boxes 

starting from left-bottom-behind corner of a bin, while each box is placed in front, on 

the right or above the already packed boxes. Robot packable packing tackles a 

situation in which a robot with artificial hands packs the boxes into the bin. 

 

Although technological knowledge has enhanced, solving real knapsack problems 

is still a challenge. The solution quality and computational efficiency are very 

sensitive to the box-positioning rule. Due to NP-hardness of the packing problem, 

only few exact algorithms and many heuristic methods have been presented which are 

based on the different strategies (Leung, 2012; Fekete & Schepers, 1997; Wei et al., 

2009; Egeblad et al., 2010; Pisinger, 2002; Bortfeldt & Wascher, 2012).  

 

The problem addressed here, in the topology suggested by Dyckhoff (1990), 

belongs to 3/B/O/F (3: three-dimensional, B/O: one object/bin and items selection, F: 

few items of different types) while Wascher et al. (2007) classify it as the three-

dimensional single orthogonal knapsack problem. As well as non-overlapping 

constraints, some other constraints should be considered in practice, such as bin 

stability and pre-placed boxes. The given problem considers the packing of 

rectangular items in a rectangular bin in order to maximize the total value of the 

packed items (minimize the amount of space loss).The value of boxes is assumed to 

be equal to their volume. The rotation of the boxes is taken into account as well. Since 

the three-dimensional knapsack problem is NP-hard, it is difficult to solve. In 

addition, the difficulty of finding optimal solution is enhanced as the box rotations 

increase the search space significantly. Some exact algorithms as well as heuristic 

methods are proposed in the published literature. Since exact algorithms need more 

time to find a solution, heuristic approaches are more popular and can be used as an 

alternative to find near optimal solutions. A mixed integer linear model is developed 

for the given knapsack problem. The model considers vertical stability and pre-placed 

constraints which were not studied in Egeblad and Pisinger (2009). These practical 

constraints as well as the box rotations are added to the model in order to study a 

realistic knapsack problem. The proposed three-dimensional solution methodology is 

based on the sequence triple representation proposed by Egeblad and Pisinger (2009). 
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The developed algorithm also considers box rotation, pre-placed boxes and vertical 

stability. Simulated annealing is used as a heuristic method. 

 

1.3. Simulated Annealing 

 

Simulated annealing (SA) is a general optimization method to solve combinatorial 

optimization problems. It belongs to the class of local search algorithms. Simulated 

annealing algorithm has been used to handle many NP-hard problems. It was 

developed in 1983 to solve nonlinear problems. The inspiration comes from annealing 

in metallurgy, a technique of heating and controlled cooling of material in order to 

enhance the size of its crystal and decrease their defects, so that its structure is finally 

frozen which occurs at a minimum energy configuration. Simulated annealing 

algorithm is based on the very important fact that even in low temperature it is 

probable to have a particle with high internal energy. This fact shows the possibility 

of jumping out of the local minimum. While the temperature is reduced, the 

possibility of jumping out decreases. The basic elements of simulated annealing are as 

follows: 

 

1. A finite set S. 

2. A cost function which is defined on S.  

3. A set SiiSiS ∈∀−⊂ }{)(  which is the set of the neighbours of i. 

4. Cooling schedule T which is a non-increasing function. T(t) is the temperature 

at time t. 

5. An initial state. 

 

The slow cooling is applied to the simulated annealing method as a slow reduction 

in the probability of accepting worse solutions. At each step, the algorithm considers 

some neighbouring states of the current state, and decides whether to stay at the 

current state or move to a neighbouring state. The probability of moving from a 

current state to a new neighbouring state is called acceptance probability which 

depends on the energies of the two states and a control parameter known as 

temperature. If the energy of the new state is better than the current one, the 

acceptance probability is equal to one. However, when the energy of the new state is 
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worse, the move to the new state is accepted if Re etemperatur >
∆− )(

, where

energystatecurrent

energystatenewenergystatecurrent

__

)____( −=∆ , and R=Uniform(0,1). At first, T 

has a relatively high value, so the chance to accept the new state is higher. T is slowly 

decreased to values such that most new states will not be accepted. The algorithm is 

repeated until it achieves a state that is good enough for the given application or until 

a given computation time is exhausted. It has been proved that by controlling cooling 

rate of temperature this algorithm can find the global optimum, although it needs 

infinite time. Like all other algorithms, simulated annealing has some strengths and 

weaknesses. It can deal with chaotic data, highly nonlinear problems and many 

constraints. It is able to reach global optimality. Simulated annealing algorithm is 

relatively flexible as it does not depend on any restrictive model’s properties. 

However, as SA is a metaheuristic algorithm, so many choices are required to 

consider in the actual algorithm. Obviously, there is a trade-off between the quality of 

the solutions and computation time. Figure 1.1 shows the block diagram of simulated 

annealing (Bertsimas & Tsitsiklis, 1993; Dowhan et al., 2009). 
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Figure 1.2. Simulated Annealing Block Diagram (Dowhan et al., 2009) 



 

8 

 

 

CHAPTER 2 

Literature Review 

 

2.1. Two Dimensional Knapsack Problem 

 

Some papers in this area focus on two-dimensional packing problem. Leung et al. 

(2001) present a genetic algorithm and a simulated annealing approach to solve the 

two-dimensional non-guillotine cutting stock problem. They aim to find a cutting 

pattern which minimizes trim loss. The authors apply the genetic algorithm and 

simulated annealing to determine the permutations of small trim loss; then they use 

different packing approaches to pack the items corresponding to a special 

permutation. The proposed heuristic cannot produce all the feasible packings.  

 

Capara and Monaci (2004) consider upper bounds and exact algorithm for the two-

dimensional orthogonal knapsack problem. The authors present an approximation 

algorithm and four exact algorithms based on the enumeration scheme, and mainly 

focus on upper bounds. They claim their algorithm has similar performance to Fekete 

and Schepers’ (1997) algorithms in most instances. 

 

Clautiaux et al. (2007) consider the two-dimensional orthogonal knapsack problem 

and propose two exact methods to solve the problem. In the first algorithm, they 

improve the classic branch and bound method; however, the second one is on the 

basis of a new relaxation of the problem. They, moreover, define the reduction 

procedures and lower bounds used within both enumerative methods. The first 

algorithm is called LMAO (Leftmost Active Only) which counts the packing of items 

only in the left-most-downward position and tests the possibility of not packing any 

item in that position. By using this algorithm the same packing is not counted twice. 

The second algorithm called Two Step Branching Procedure (TSBP) is based on 

cutting each item with wi and height hi into hi strips with width wi. All strips relating 

to the given item must be packed at the same coordinate even if they are not similar. 

The proposed lower bounds increase the computing time in some instances. 
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Goncalves (2007) proposes combination of the placement procedure and a genetic 

algorithm based on random keys to solve a two-dimensional orthogonal knapsack 

problem. The objective function is minimizing the amount of trim loss. The proposed 

algorithm is relatively complex and time consuming. 

 

Bortfeldt and Winter (2009) propose a genetic algorithm for the two dimensional 

orthogonal knapsack problems. The proposed algorithm considers both guillotine and 

non-guillotine variant of the problem and an orientation constraint also may be 

considered. The items which have to be placed in the container can be constrained as 

well as unconstrained. The authors claim that for large instances of the non-guillotine 

constrained 2D knapsack, GA solution is significant. 

 

Joncour et al. (2010) suggest a method for finding a feasible solution for a two 

dimensional orthogonal knapsack problem which is based on the characterization of 

the interval graph. The problem is packing the rectangular items in a big rectangular 

container without overlapping. It is assumed that the rotation of the items is not 

allowed. In order to find infeasible solutions earlier, they used a method similar to 

Clautiaux et al. (2007). The approach suggested in this paper is superior to the Fekete 

and Schepers’ (1997) method since by creating MPQ-trees, the search space stays 

within the set of interval graphs. 

 

Dolatabadi et al. (2012) propose a recursive exact algorithm to solve the two-

dimensional guillotine knapsack problem. The problem is packing small rectangular 

items in a bigger rectangular sheet. The packing is orthogonal and the rotation of the 

items is not allowed. At first, the sets of associated guillotine packing are built; then, 

the algorithm is divided into two exact algorithms in order to solve the two-

dimensional knapsack problem. The first algorithm is on the basis of iterative 

implementation of recursive method with different input parameters, and the second 

one is based on an ILP model. The branch-and-cut method is used to confirm the 

optimality of the solution. 

 

Leung et al. (2012) propose a hybrid simulated annealing metaheuristic for the two-

dimensional knapsack problem. The authors first define a fitness strategy to identify 

which item has to be packed first in a given position. A heuristic algorithm generates 
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the solution based on this fitness strategy. Finally, the simulated annealing approach is 

used to jump out of the greedy strategy’s local optimal trap. The items are packed into 

stock sheet one at a time for a given sequence of items. For any available position, the 

fitness value of each item, which has to be packed, is calculated and then the item 

with maximum fitness value is selected. If more than one item has the same maximum 

fitness value, the algorithm selects the one by the input order of the items. The 

proposed hybrid algorithm combines the greedy strategy approach and simulated 

annealing to gain a better solution. The greedy algorithm is used to search a good 

sequence of items; then a simulated annealing heuristic is applied to do a broader 

search to gain a better solution.  

 

2.2. Three Dimensional Knapsack Problem 

 

Some papers consider the three dimensional cutting and packing problem (or 

container loading) and attempt to model it or propose solution methodology for such 

problems. The focus of most of these papers is on the rectangular bins. As multi 

dimensional C&P problems are strongly NP-hard, only very few exact algorithms 

have been proposed for such problems. 

 

Fekete and Schepers (1997) propose a method for modeling more-dimensional 

packing problem based on the graph characterization of feasible packing. They define 

a graph based on the relative positions of boxes. The graph is proven to be an interval 

graph. The authors consider a set of boxes to be packed into a container and focus on 

an orthogonal packing problem. The method cannot handle further constraints like 

fixing the position of some items, and the results are limited to two dimensional 

problems. Fekete and Schepers (1997) present a method in order to gain lower bounds 

for more-dimensional knapsack problem. They, moreover, illustrate that all known 

lower bounds for such problems can be improved by this method. The authors 

describe heuristics for dismissing infeasible packings. Fekete and Schepers (1997) 

show how this method can be applied to more dimensional knapsack problem.  

 

Fekete and Schepers (2004) propose a new method for obtaining classes of lower 

bound for higher-dimensional packing problem. The authors apply a number of 

volume tests after modifying the size of boxes. The relative bulkiness of the items and 
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the way that they can be combined is reflected by transformation. They present a 

combinatorial characterization of feasible packing as a basis for branch and bound 

approach. The major objective of this paper is to define good criteria for removing a 

candidate set of boxes. Dual feasible function is a way to build conservative scales. 

All known classes of lower bound for higher-dimensional packing problem can be 

improved by using the proposed approach. The authors suggest a strong method for 

solving higher dimensional problems by combining these classes of bounds and 

characterization of feasible packing as described in Fekete and Schepers (1997). The 

computational results are mainly limited to the two-dimensional packing problem. 

 

Hifi (2004) proposes a dynamic algorithm and an exact depth-first search in order to 

solve the three dimensional cutting problem. Orientation and guillotine constraint are 

considered. Sixty four problem instances were tested which include up to 50 boxes. 

Optimal solutions are obtained for most of the instances but not all of them. 

 

Although considerable advancement has been made in the development of exact 

algorithms, heuristic algorithms still play an important role in solving three-

dimensional knapsack problems. Only heuristic methods can provide reasonable 

solutions within acceptable running times for problem instances of real-world size. 

 

Martello et al. (2007) consider the orthogonal three-dimensional bin packing problem 

where box rotation is not allowed. Both general and robot packable variants of bin-

packing problem are presented. The algorithm is on the basis of two-level 

decomposition approach and consists of two parts. In the first part the boxes are 

assigned to the bins. In the second part, a single bin is filled while the objective 

function is maximizing the filled volume. The proposed methodology can be used as a 

whole for solving the three-dimensional bin packing problem or just for filling a 

single bin.  

 

Egeblad and Pisinger (2009) propose a simulated annealing based methodology for 

the two and three dimensional knapsack problems. A three-dimensional knapsack 

model is presented. New constraints can be added to this model such as fixing the 

position of items or rotation. The authors present an iterative heuristic for the two-

dimensional knapsack problem which is based on the sequence pair. In each iteration, 



 

12 

 

the sequence pair is transformed to the packing. In order to control the heuristic 

method simulated annealing is used. For three-dimensional knapsack problem, 

sequence triple technique is used. The authors prove that a fully robot packable 

packing can be obtained through sequence triple representation. Robot packing is a 

packing obtained by locating items starting from left-bottom-behind (LBB) corner. It 

is represented in three sequences; for any sequence the relationship of each two items 

is defined. To find a placement for any given sequence, three constraint graphs are 

constructed. Like 2DKP, the meta-heuristic annealing is used to solve the three-

dimensional knapsack problem. Rotation of boxes is not considered in the three-

dimensional model and experiments. 

 

Wu et al. (2010) consider the three-dimensional bin packing problem with variable 

bin height. The bins and boxes are rectangular and the object rotation is allowed. 

Guillotine constraint is not imposed. Moreover, bin heights can change in order to fit 

bin contents. A mixed integer programming model is proposed, and a bin packing 

algorithm which is based on packing index is used to develop the problem feature and 

as a building block for genetic algorithm. The authors also present the situation when 

more than one type of bin is used. A genetic algorithm-based heuristic is proposed for 

packing a batch of objects. The algorithm is on the basis of extreme point method. 

The authors consider both single bin packing and batch bin packing problems. 

 

Amossen and Pisinger (2010) consider the multi-dimensional orthogonal bin-packing 

problem with guillotine constraints where rotation is not allowed. The authors 

experimentally evaluate three packing methods –unrestricted, robot packable, 

guillotine cuttable- based on the solution time and quality. 

 

Models provide information on optimal objective function value and bounds. They are 

helpful to assess the solution quality of heuristic algorithms. Modeling three 

dimensional knapsack problems, while considering practical constraints, is still at its 

beginning. 

 

Junqueira et al. (2012) present mixed integer linear programming models for the 

container loading problem. Vertical and horizontal stability of the cargo as well as 

cargo load bearing strength are taken into account in the proposed model. The models 
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can be extended in order to apply to other variants of container loading problem as 

well. However, the models are only able to handle moderate size problems. 

 

In addition, container loading problems have been studied from a more general and 

practical view. Murty et al. (2005) propose a decision support system in order to 

develop optimal decisions. These decisions are used to route container trucks, find the 

storage place for containers, number of assigned container and truck scheduling. The 

proposed decision system is applied to the Hong Kong International Terminals. Murty 

et al. (2005) define a selection of inter-related decisions which is made at the 

container terminal during a day. The main goal of these decisions is minimizing the 

resource and the trucks waiting time, and maximizing the container volume 

utilization. The author use decision support systems to make these decisions since 

these kinds of decisions are complex and large scale. Petering and Murty (2009) 

develop a simulation study about terminal’s average quay crane rate, and how the 

long-run performance of seaport container terminal is related to storage block length 

and yard crane deployment. Several scenarios are evaluated. These experiments are 

direct connection between length of the block and long-run performance in the 

container terminal. 

 

As mentioned, both exact algorithms and heuristic methods are proposed in the 

published literature. Leung et al. (2001), Goncalves (2007), Bortfeldt & Winter 

(2009), Leung et al. (2012), Egeblad & Pisinger (2009) and Wu et al. (2010) propose 

heuristic algorithms for different types of packing problems. While, Fekete & 

Schepers (1997), and Hifi (2004) propose exact methods. The following table 

compares some relevant papers and models, and shows their similarities, differences 

and superiority. 
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Table 2.1. Summary of Some relevant Papers 

Papers Problem type Assumption What they do? 
Solution 

Methodology 

Superiority to other 

papers 
Limitation 

Egeblad & 

Pisinger (2009) 

2D and 3D 
knapsack 
problem 

Items are strongly 
heterogeneous, no 
rotation 

Mathematical Model 
sequence based 
representation (SA 
based approach) 

Sequence pair and triple 
is one of the successful 
representations 

Fixed orientation for 
3D 

Bortfeldt &  

Winter (2009) 

2D Orthogonal 
knapsack 
problem 

Guillotine & non-
guillotine, orientation 
constraint may be 
considered 

Heuristic algorithm GA 
GA is suitable for large 
instances of the non-
guillotine constrained 

compare to other 
methods GA is in 
the mid-table 

Junqueira et al. 

(2012)  
container loading 
problem 

vertical and 
horizontal stability, 
load bearing strength 

MILP GAMS 
extend in other variants 
of container loading 
problem 

Only able to handle 
moderate size 
problems 

Wu et al. (2010) 

3D bin packing 
problem with 
variable bin 
height 

Rectangular boxes, , 
Guillotine constraint 
is not imposed 

Mathematical Model GA & extreme point 

both single bin packing 
and batch bin packing 
problem is considered, 
object rotation is allowed 

 

Amossen & 

Pisinger (2010)  

multi-
dimensional 
orthogonal bin-
packing problem 

Guillotine, no 
rotation  

evaluate three packing 
methods 

unrestricted, robot 
packable, guillotine 
cuttable 

 Fixed orientation 

Martello et al. 

(2007)  

3D orthogonal 
bin packing 
problem 

rotation is not 
allowed, general and 
robot packable 

Decomposition 
algorithm 

two-level 
decomposition 
approach 

can be used as a whole 
for solving three-
dimensional bin packing 
problem or just for 
filling a single bin 

Fixed orientation 

Goncalves 

(2007) 
2D knapsack 
problem 

Orthogonal, fixed 
orientation 

Solving 2D packing 
problem 

Hybrid genetic 
algorithm 

 

Relatively complex, 
long computational 
time compared to 
Leung et al. (2012) 

Leung et al. 

(2001) 
2D non-guillotine 
cutting stock 

Fixed orientation, 
orthogonal, 

Heuristic algorithm 
Genetic algorithm and 
simulated annealing 

 
cannot produce all 
feasible packing 
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Fekete & 

Schepers (1997) 

More-
dimensional 
packing problem 

Fixed orientation, 
orthogonal 

Modeling packing 
based on the graph 
characterization of 
feasible packing 

Interval Graph  
method cannot 
handle further 
constraints 

Given Problem 3D knapsack 
problem 

Rectangular boxes 
Finding more practical 
packing, Mathematical 
formulation 

SA and sequence 
triple 

Rotation allowed, 
vertical stability, pre-
placed boxes 
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2.3. Research Gaps 

 

According to the literature, not all papers consider box rotation since it increases the 

search space significantly. Moreover, bin stability is just taken into account in some 

of the container loading problems and it has not been considered in three-dimensional 

knapsack problem. Vertical stability is one of the realistic constraints which should be 

taken into account in 3D knapsack problems, so all the packed boxes are supported by 

the bin floor or other boxes top and do not fall down. In addition, to the best of our 

knowledge, pre-placed boxes (obstacles) has not been studied in three-dimensional 

knapsack problems, which is so essential for such problems since it is often required 

to place certain boxes in certain positions. Such a constraint can be also considered 

when the bin does not have rectangular shape. Therefore, it is important to study more 

practical constraints in the knapsack problem. In the given problem, box rotation is 

taken into account in order to find more practical packings. Also, preplaced boxes 

(bin with some obstacles) and vertical stability which are real-world constraints are 

studied. 
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CHAPTER 3 

Problem Formulation 

 

3.1. Problem Definition 

 

In this study, the three-dimensional knapsack problem is considered where there is 

one bin with fixed size and a set of boxes; each box has an associated size. The aim is 

to find an efficient solution methodology in order to pack rectangular boxes in a 

single bin so that the total value of the packed boxes is maximized, or equivalently the 

empty spaces left are minimized. The boxes are assumed to be strongly heterogeneous 

which means there is a relatively high number of different types of boxes and a small 

number of boxes for each box type (Wascher et al., 2007). Moreover, the packing is 

considered feasible if each box lies entirely in the bin, and the packed boxes do not 

overlap. The edges of all boxes must be parallel to the edges of the bin (orthogonal 

packing). The bin and boxes are assumed to be of rectangular shape. 

 

Some practical considerations which play an important role in modeling more realistic 

knapsack problems are presented such as box rotation and bin stability. Boxes are able 

to freely rotate in six different orientations, need not to be packed in layers, and the 

bottom of each box must be supported by the top of other boxes or the bin floor. In 

addition, some boxes are considered as pre-placed boxes or obstacles, whose left-

bottom-behind (LBB) corner should be placed in a specific position. The value of 

each box is equal to its volume. It is assumed that the dimensions of all boxes and the 

bin are integers, thus the placement are to be done in integer steps. Let C be a 

rectangular container with width W, height H and depth D. The origin of the Cartesian 

coordinate system is located at the LBB corner of the container, and l i, hi, and wi are 

respectively, the length, height and depth of box type i. For each packed box, (xi, yi, 

zi) represents the coordinates of the LBB corner of the box. 

 

A mixed integer programming formulation is presented for the given problem. Some 

real-world knapsack problem constraints are considered in the model which, to the 

best of our knowledge, have not been studied yet. These constraints are vertical 

stability and pre-placed boxes. Since the three-dimensional knapsack problem is NP-

hard, it is difficult to solve. In addition, the flexibility of the orientation of boxes 
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significantly increases the search space, so the difficulty of finding the optimal 

solution is enhanced as well. Some exact algorithms as well as heuristic methods are 

proposed in the published literature. As exact algorithms require more time to find a 

solution, heuristic approaches are more popular and can be good alternatives to find 

optimal or near optimal solution. The proposed three-dimensional solution 

methodology is based on Egeblad and Pisinger’s (2009) sequence triple 

representation. Simulated annealing is used as heuristic method. 

 

3.2. Mathematical Formulation 

 

A mixed-integer programming model of the 3D-knapsack problem is introduced in 

this section. The mathematical model is based on Egeblad and Pisinger (2009) and 

Wu et al. (2010). Some modifications are made in their model which include 

considering vertical stability and pre-placed boxes constraints. Egeblad and Pisinger 

(2009) and Wu et al. (2010) do not consider these important and practical constraints. 

Constraints (1) – (4) are based on Egeblad and Pisinger (2009); they did not consider 

the box orientation in their model. The binary position variables which show the 

orientation of the boxes are based on Wu et al. (2010). However, constraints (5) – (17) 

are new constraints added to the model which are described in the following sections. 

 

 3.2.1. Notations 

 

The variables and parameters used in the mathematical formulation are introduced as 

follows: 

• Variables: 

(xi,yi,zi): LBB coordinates of box i 

Xw i, Zwi: 1 whether width of box i is parallel to the container’s X and Z 

0 otherwise 

Yhi: 1 if height of box i is parallel to the container’s Y 

0 otherwise 
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Zdi: 1 if depth of box i is parallel to the container’s Z 

0 otherwise 

rij, lij: 1 if box i is to the right of or to left of box j 

0 otherwise 

oij, uij:  1 if box i is over or under box j 

 0 otherwise 

bij, fij:  1 if box i is behind or in-front-of box j 

  0 otherwise 

si: 1 if box i is packed 

0 otherwise 

ya
ij:  1 if xj ≥ xi  

0 otherwise 

 xa
ij:  1 if xj < x’

i 

0 otherwise 

yb
ij:  1 if zj ≥ zi  

0 otherwise 

 xb
ij:  1 if zj < z’

i 

0 otherwise 

yc
ij:  1 if x’ j > xi 

0 otherwise 

 xc
ij:  1 if x’ j ≤ x’ i 

0 otherwise 
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yd
ij:  1 if z’j > zi 

0 otherwise 

 xd
ij:  1 if z’j ≤ z’i 

0 otherwise 

za
ij:  1 if xi ≤ xj < x’i  

0 otherwise 

zb
ij:  1 if zi ≤ zj < z’i  

0 otherwise 

zc
ij:  1 if xi < x’j ≤ x’ i  

 0 otherwise 

zd
ij:  1 if zi < z’j ≤ z’i 

0 otherwise 

Cs1: 1 if xi ≤ xj < x’i and zi ≤ zj < z’i  

0 otherwise 

 Cs2:  1 if xi ≤ xj < x’i and zi < z’j ≤ z’i 

0 otherwise 

 Cs3:  1 if xi < x’j ≤ x’ i and zi ≤ zj < z’i  

0 otherwise 

 Cs4:  1 if xi < x’j ≤ x’ i and zi ≤ zj < z’i  

0 otherwise 

x’ i = xi + wiXw i + hi(Zwi – Yhi + Zdi) + di(1 - Xwi – Zwi + Yhi – Zdi) 

z’ i = zi + diZdi + hi (1 – Zwi – Zdi) + wiZwi 
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• Parameters: 

(wi,hi,di): width, height and depth of box i 

(W,H,D): width, height and depth of the container 

(r,s,k): LBB coordinates of the pre-placed boxes 

(a, b, c, d): Binary orientation parameters of the pre-placed boxes 

Pi: value of box i 

 

 3.2.2. Assumptions 

 

The following assumptions are considered for the mix integer linear model: 

1. The boxes are strongly heterogeneous. 

2. The boxes must be located orthogonally 

3. The boxes are able to freely rotate 

4. The box and bin dimensions are assumed to be non-negative integer 

5. The value of a boxes is equal to its volume 

6. The X, Y, and  Z axes of the bin are shown in the following figure. 

 

Figure 3.1. The X, Y, and Z axes of the bin  

 

3.2.3. MILP 

 

The objective Function is maximizing the value of packed boxes: 

 

∑
=

n

i
ii sPMax

1
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Subject to: 

 

rij + lij + bij + fij + uij = si + sj -1  ∀ i,j i≠j    (1) 

xi + wiXw i + hi(Zwi – Yhi + Zdi) + di(1 - Xwi – Zwi + Yhi – Zdi) ≤ xj + M(1-lij)   

  ∀ i,j i≠j        (2a) 

xj + wjXw j + hj(Zwj – Yhj + Zdj) + dj(1 – Xwj – Zwj + Yhj – Zdj) ≤ xi + M(1-rij)   

        ∀ i,j      i≠j                   (2b) 

zi + diZdi + hi (1 – Zwi – Zdi) + wiZwi ≤ zj + M(1-bij) ∀ i,j i≠j            (2c) 

zj + djZdj + hj (1 – Zwj – Zdj) + wjZwj ≤ zi + M(1-fij)  ∀ i,j i≠j            (2d) 

yi + hiYhi + wi(1 – Xwi – Zwi) + di(Xw i + Zwi – Yhi) ≤ yj + M(1-uij) 

     ∀ i,j i≠j                       (2e) 

yj + hjYhj + wj(1 – Xwj – Zwj) + dj(Xw j + Zwj – Yhj) ≤ yi + M(1-oij) 

     ∀ i,j i≠j                       (2f) 

xi + wiXw i + hi(Zwi – Yhi + Zdi) + di(1 - Xwi – Zwi + Yhi – Zdi) ≤ W           (3a) 

yi + hiYhi + wi(1 – Xwi – Zwi) + di(Xw i + Zwi – Yhi) ≤ H             (3b) 

zi + diZdi + hi (1 – Zwi – Zdi) + wiZwi ≤ D               (3c) 

Xw i + Zwi ≤ 1                   (4a) 

Zwi + Zdi ≤ 1                   (4b) 

0 ≤ Zwi - Yhi + Zdi ≤ 1                 (4c) 

0 ≤ 1- Xwi - Zwi + Yhi - Zdi ≤ 1                (4d) 

0 ≤ Xwi + Zwi - Yhi ≤ 1                  (4e) 

(xi, yi, zi) = (r, s, k) ∀ i ∈Pb                  (5) 

(Xw i, Zwi, Zdi, Yhi) = (a,b,c,d) ∀ i ∈Pb                (6) 
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xj – xi ≤ M. ya
ij  xj – xi ≥ M (ya

ij – 1)     (7a)  

x’ i – xj ≤ M. xa
ij  x’ i – xj ≥ M (xa

ij – 1) + 0.5   (7b)  

(ya
ij + xa

ij – 1) ⁄ 2 ≤ za
ij ≤ (ya

ij + xa
ij) ⁄ 2    ∀ i,j      i≠j   (7c) 

zj – zi ≤ M. yb
ij  zj – zi ≥ M (yb

ij – 1)     (8a)  

z’ i – zj ≤ M. xb
ij  z’i – zj ≥ M (xb

ij – 1) + 0.5   (8b)  

(yb
ij + xb

ij – 1) ⁄ 2 ≤ z
b
ij ≤ (yb

ij + xb
ij) ⁄ 2    ∀ i,j      i≠j   (8c) 

x’ j – xi ≤ M. yc
ij  x’ j – xi ≥ M (yc

ij – 1) + 0.5   (9a)  

x’ i – x’j ≤ M. xc
ij  x’ i – x’j ≥ M (xc

ij – 1)    (9b)  

(yc
ij + xc

ij – 1) ⁄ 2 ≤ z
c
ij ≤ (yc

ij + xc
ij) ⁄ 2    ∀ i,j      i≠j    (9c) 

z’ j – zi ≤ M. yd
ij  z’j – zi ≥ M (yd

ij – 1) + 0.5   (10a)  

z’ i – z’j ≤ M. xd
ij  z’i – z’j ≥ M (xd

ij – 1)    (10b)  

(yd
ij + xd

ij – 1) ⁄ 2 ≤ z
d
ij ≤ (yd

ij + xd
ij) ⁄ 2    ∀ i,j      i≠j    (10c) 

(za
ij + zb

ij – 1) ⁄ 2 ≤ Cs1 ≤ (za
ij + zb

ij) ⁄ 2    ∀ i,j      i≠j      (11) 

(za
ij + zd

ij – 1) ⁄ 2 ≤ Cs2 ≤ (za
ij + zd

ij) ⁄ 2    ∀ i,j      i≠j      (12) 

(zc
ij + zb

ij – 1) ⁄ 2 ≤ Cs3 ≤ (zc
ij + zb

ij) ⁄ 2    ∀ i,j      i≠j      (13) 

(zc
ij + zd

ij – 1) ⁄ 2 ≤ Cs4 ≤ (zc
ij + zd

ij) ⁄ 2    ∀ i,j      i≠j      (14) 

Cs1 + Cs2 + Cs3 + Cs4 = uij + oij  ∀ i,j      i≠j      (15) 

x’ i = xi + wiXw i + hi(Zwi – Yhi + Zdi) + di(1 - Xwi – Zwi + Yhi – Zdi)    (16) 

z’ i = zi + diZdi + hi (1 – Zwi – Zdi) + wiZwi        (17) 

rij, lij, bij, fij, uij ∈ {0,1}          (18) 

Xw i, Zwi, Zdi, Yhi ∈ {0,1}          (19) 
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xa
ij, x

b
ij, x

c
ij, x

d
ij,y

a
ij, y

b
ij, y

c
ij, y

d
ij, z

a
ij, z

b
ij, z

c
ij, z

d
ij ∈ {0,1}   (20) 

si, Cs1, Cs2, Cs3, Cs4 ∈ {0,1}       (21) 

(xi ,yi, zi) ≥ 0         (22) 

Constraint (1) ensures that if box i and box j are packed then they must be placed left, 

right, under, over, behind or in-front-of each other. Constraints (2) guarantee that any 

two boxes i and j do not overlap, while considering the box rotation. It includes six 

parts; constraint (2a) and (2b) find the x coordinate of the box to be packed; constraint 

(2c) and (2d) are used to find its z coordinate, and constraint (2e) and (2f) calculate its 

y coordinate. The binary position variables (Xwi, Zwi, Yhi, Zdi) are used to allow box 

rotations. Constraint set (3) ensures that all boxes are placed within the bin’s 

dimensions. Constraint (3a) makes sure that the box dimensions do not exceed the 

bin’s width; while constraints (3b) and (3c) are related to the bin’s height and depth. 

Constraint set (4) is used to make sure that the binary variables which show the 

position of the boxes are controlled to represent practical positions. Constraint (4a) 

guarantees the width of the packed box is not parallel to both X and Z axis. Constraint 

(4b) ensures that the width and depth of each packed box are not parallel to Z axes 

simultaneously. Constraint (4c) shows that the height of box i cannot be parallel to 

both Z and Y axes. Constraints (4d) and (4e) also control the orientation of the packed 

boxes, and ensure that the width, height, and depth of each packed box are not parallel 

to two axes simultaneously. Constraint (5) and (6) are used to fix the coordinates and 

orientation of the pre-placed boxes, where Pb is a set of preplaced boxes. Constraints 

(7)–(10) ensure vertical stability. These constraints compare the four corners of each 

newly packed box with the points that cover the top of other packed boxes. If one of 

the corners has the same x and z coordinates as one of the mapped points, it means 

that the new box is located under or above that box. Constraint set (7) is used to 

define the binary variable za
ij and includes three parts. Constraint (7a) ensures that if 

xj ≥ xi, then yaij is equal to one; otherwise it is equal to zero. Constraint (7b) makes 

sure that if xj < xi, then xaij is one; otherwise it is equal to zero. Constraint (7c) 

guarantees when ya
ij and xaij are both equal to one, then za

ij is equal to one. Similarly, 

constraint sets (8), (9), and (10) are used to define the binary variables zb
ij, z

c
ij, and 

zd
ij. Constraints (11)-(14) show whether the x and z coordinates of the new box’s 

corner are equal to x and z coordinates of the mapped points on the top of the packed 
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boxes. Constraint (15) ensures that if these coordinates are the same, the new box 

should be located on top of or under the packed box. Constraints (16) and (17) define 

x’ i and z’i. Constraints (18) - (21) represent the binary variables, and constraint (22) 

represents the integer variables. 

The given mathematical model has 21n2+9n binary variables and 3n integer 

variables. It was coded in GAMS/Cplex, and the computational tests run on an Intel® 

Core™ i5 CPU @ 2.67GHz processor with 4.0 GB RAM. The model at first was run 

for an instance with 5 boxes; it reached the optimal solution in 53 seconds. Then the 

instance with 6 boxes has been considered, the solution time is equal to 6 minutes and 

14 seconds. However, the solution time for the instance with 7 boxes increased 

significantly to 4 hours and 4 minutes; the number of variables in such instance is 

1113. The optimal results for instance with 8 boxes- 1440 variables- was obtained 

after 21 hours and 39 minutes. GAMS was not able to reach optimal solution for 

instance with 9 boxes – 1809 variables-  even after 3 days, thus the algorithm was 

terminated before reaching the solution. According to the results, optimal solutions 

only for small size instances (up to 8 boxes) were possible in a reasonable time. Thus, 

heuristic algorithm is required to get faster solutions for larger instances. 

 

3.3. Two-dimensional Model 

 

Although the proposed model is considered a three-dimensional knapsack problem it 

can be modified in order to solve two-dimensional problems as well. The z axis 

should be omitted in order to adjust the model. Since two dimensional problems are 

simpler than three-dimensional ones they can be solved in a shorter time.  As an 

example, the instance of 4 different types of rectangles (totally 10 rectangles) is 

studied. The dimensions and maximum allowed number of these rectangles are shown 

in table 3.1. The dimensions of the bin, which is two dimensional as well, are equal to 

900×900 (mm2).  
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Table 3.1. 2D Rectangles Dimensions and Maximum Allowed Number 

Rectangle type Width(mm) Height(mm) Max. allowed no. 

1 229 483 4 

2 165 330 3 

3 165 165 1 

4 229 406 1 

 

The optimal solution is obtained after 3 hours and 37 minutes. Figure 3.1 shows the 

obtained result. Compared to the three dimensional instances, the optimal solution can 

be obtained sooner. However, the solution time is not reasonable for the 2D instances 

as well, thus it is better to use a heuristic algorithm to reach the results in a shorter 

time.  

 

Figure 3.2. 2D Instance Result 
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CHAPTER 4 

Solution Methodology 

 

4.1. Three Dimensional Algorithm 

 

Based on Egeblad and Pisinger’s work (2009), the three sequences considered for the 

boxes must be packed. These sequences show the relative box locations. They are 

known as sequence triple. Sequence triple is one of the most successful 

representations in the literature and defines the packing order. As mentioned in 

Egeblad and Pisinger (2009), the sequence triple does not create all three-dimensional 

packing; however, it is proved that a fully robot packable packing is obtainable with 

this representation. A robot packing is a packing that can be obtained by placing 

boxes from the LBB corner of the bin while each box is in-front-of, on the right side, 

or above other boxes. If all six rotations of the packing are robot packable, the 

packing is known as a fully robot packable packing. Although Egeblad and Pisinger 

(2009) claim that their algorithm creates normalized packings, their results are not 

normalized. Normalized packing is a packing when all boxes are placed as far left, 

down, and back as possible without overlapping, and every new box touches an 

already placed box on its left, lower, and back side. However, according to their 

results some of the packed boxes are placed in the air.  

 

The solution methodology section is organized as follows: first, sequence triple is 

described in section 4.1.1 which is used in section 4.1.2 in order to place the boxes. 

Simulated annealing is defined in section 4.1.3 to control the local neighbourhood 

search. Orthogonal rotation, pre-placed boxes (obstacles), four-corner packing, and 

box insertion order are explained in sections 4.1.4, 4.1.5, 4.1.6, and 4.1.7, 

respectively. 

 

4.1.1. Sequence Triple 

 

Three sequences A, B, and C represent the fully robot packable packing, where A, B, 

and C are permutations of the numbers 1 ... n, and n is the total number of boxes to be 

placed in the bin. These sequences denote the relative placement of each of the two i 

and j boxes with respect to each other. Each sequence is defined as follows: 
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• A-chain: If box i appears before box j in the A-chain, then box i is located to 

the left of, on top of, or in front of box j. 

• B-chain: if box i appears before box j in the B-chain, then box i is located 

behind, to the left of, or below, box j. 

• C-chain: If box i appears before box j in the C-chain, then box i is located to 

the right, under, or in front of box j. 

 

4.1.2. Placement algorithm 

 

Based on the given three sequences, box i is located on the left side of box j if it 

appears before box j in A-chain and B-chain and after box j in C-chain. Box i is 

located below box j if it appears before box j in B-chain and C-chain and after box j in 

A-chain. Moreover, box i is placed behind box j if it appears after box j in B-chain 

and before it in A-chain and C-chain, or if box i is placed after box j in all sequences. 

It is observed that box i always appears before box j in B-chain for all three given 

placements. Thus, the order of placement of the boxes in the bin can be based on the 

order of B-chain. The first box is placed at the origin, and the succeeding boxes are 

placed according to their relative position to already packed boxes. The coordinates of 

each new box are calculated based on the following formula: 

))(,0max( max wxx jjji Px

+=
∈

 

))(,0max( max hyy jjji Py

+=
∈  

))(,0max( max dzz jjji Pz

+= ∈  

where Px, Py, and Pz are the subsets of packed boxes located on the left, below, and 

behind the new box. In order to consider vertical stability and reduce the gap between 

the boxes, some modifications have been applied to Eglebad and Pisinger’s (2009) 

procedure. These modifications are explained in the following section. 

 

• Vertical Stability 

 

As it is assumed that (x,y,z) coordinates of boxes and their dimensions are integer, it 

is possible to map a set of points that a certain box covers.. Let (xi, yi, zi) be the LBB 
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coordinates of each to be packed box. The algorithm considers four corners of the 

given box. If x and z coordinates of one of these corners are equal to the coordinates 

of one of the points at the top of any packed box, it returns the height of that box. 

Then, the y coordinate of the new box would be equal to maximum of those values. 

The proposed approach is illustrated in the following: 

 

1. Consider (xi, yi, zi) 

Py
j ∈∀ : compute x’ j and z’ j 

 Where xj ≤ x’ j ≤ xj+wj-1 and zj ≤ z’j ≤ zj+dj-1  

 If (x i = x’j and zi= z’j) then  

Return yj+ hj 

Else Go to 2 

2. Consider (xi + wi, yi, zi) 

Py
j ∈∀ : compute x’ j and z’ j 

 Where xj+1 ≤ x’ j ≤ xj+wj and zj ≤ z’j ≤ zj+dj-1 

 If (x i+ wi = x’j and zi= z’j) then  

Return yj+ hj 

Else Go to 3 

3. Consider (xi, yi, zi + di) 

Py
j ∈∀ : compute x’ j and z’ j 

 Where xj ≤ x’ j ≤ xj+wj-1 and zj+1 ≤ z’j ≤ zj+dj  

 If (x i = x’j and zi+ di = z’j) 

 Return yj+ hj 

Else Go to 4 

4. Consider (xi + wi, yi, zi + di) 

Py
j ∈∀ : compute x’ j and z’ j 

 Where xj+1 ≤ x’ j ≤ xj+wj and zj+1 ≤ z’j ≤ zj+dj 

 If (x i+ wi= x’ j and zi+dj = z’j) then  

Return yj+ hj 

Else Return 0 

Return ))(,0max( max hyy jjji
+=  
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The algorithm pushes each packed box downward where possible such that its bottom 

can be supported by the bin floor or by the top of other packed boxes. 

 

4.1.3. Simulated annealing 

 

Although it is relatively simple to develop a simulated annealing heuristic, choosing a 

good neighborhood and cooling procedure, which itself depends on several different 

parameters, is usually necessary for the algorithm to work efficiently. The cooling 

procedure is different for various types of problem and even between instances of the 

same problem. Therefore, it is difficult to find out a good cooling procedure. In the 

proposed simulated annealing algorithm, the temperature is reduced when a new 

solution is accepted, according to the following function: 

t→t/(1+ βt) 

where β is the cooling parameter. Besides the cooling down procedure, the process is 

allowed to heat up again whenever it is appeared be getting trapped. The heating up 

function is: 

t→t/(1- αt) 

where α is the heating parameter. The temperature is reduced when the solution is 

accepted and increased when the solution is rejected. α must be smaller than β as the 

number of acceptances is small relative to number of rejections (Dowsland, 1993). 

 

The neighbourhood of each solution is defined as one of these five permutations: 

either exchange two boxes from one of the sequences; exchange two boxes in 

sequences A and B; exchange two boxes in sequences A and C; exchange two boxes 

in sequences C and B; or exchange two boxes in all sequences. An overview of the 

simulated annealing algorithm is as follows: 

 

// Prepare the initial state and volume 

temperature := initial_temperature 

initial_state := randomly generated state 

best_state := initial_state 

best_volume := volume_utilized(best_state) 
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while (time is not up) do  

    neighbours := generate_neighbourhood(best_state) 

    neighbour := randomly select an element from neighbours 

neighbour_volume := volume_utilized(neighbour) 

found_better := false 

    if (neighbour_volume>best_volume) then 

found_better := true 

    else 

        // We accept a worse solution at random, but the chance of 

        // doing so decreases with the temperature. 

        temperature := temperature / (1+β*temperature) 

        delta := (best_volume – neighbour_volume) / best_volume 

i := random number between 0 and 1 

        if (i< e^( -delta / temperature ) ) then 

found_better := true 

        else 

       //increase temperature 

        temperature := temperature / (1-α*temperature) 

        end if 

    end if 

if (found_better) then 

        selected := selected + 1 

best_state := neighbour 

best_volume := neighbour_volume 

    end if 

end while 

return best_state 

 

The solutions are compared based on the bin utilization. The formula used for 

calculating the utilization percentage is as follows: 

100
__

____
_ ×=

binofvolume

boxespackedofvolumetotal
percentagenutilizatio  
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4.1.4. Orthogonal Rotation 

 

The boxes are allowed to be rotated orthogonally with respect to the bin. Suppose the 

width, height, and depth of all boxes are respectively parallel to x, y, and z axis, and 

wi, hi, and di represents the width, height, and depth of box i, respectively. It is 

possible to obtain better packings if the boxes were rotated in different directions. 

Egeblad and Pisinger (2009) considered box rotation only for the two dimensional 

instances but neglected to include it in the three dimensional experiments. Boxes are 

allowed to be rotated in one of the following orientation: 

 

WHD: Standard orientation. 

WDH: Swap the height and the depth. 

HWD: Swap the width and the height. 

HDW: Swap the width and the height, and then swap the height with the depth. 

DHW: Swap the depth with the width. 

DWH: Swap the depth with the width, and then swap the depth with the height. 

 

The given rotation is applied to the simulated annealing by adding an additional 

transformation to the neighbourhood generating routine. The orientation of the boxes 

is generated randomly at first. Thus, an additional vector R which shows the 

orientation of the boxes is stored as well as the sequence triple. 

 

4.1.5. Obstacles 

 

Suppose O is a set of rectangular obstacles with known coordinates (x, y, z) and 

known dimensions (w, h, d). At the beginning of the algorithm, the obstacles are fixed 

into the bin. The packing is created from the sequence triple and those boxes that 

overlap with any obstacles in the set are removed. The container free volume is 

calculated as follows: 

 

Bin free volume = volume of bin – total volume of obstacles 
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4.1.6. Four-corner packing 

 

Four packing schemes, one for each corner are created. First, the coordinates of the 

boxes are calculated relative to the current origin. Then, their real (x, y, z) coordinates 

are calculated relative to the real origin of the container which is its LBB corner. The 

processing technique is as follows: 

W := bin width 

H := bin height 

D := bin depth 

w := box width 

h := box height    

d := box depth 

if (loading from front) then 

  // No change needed: this is the default loading method. 

return <x,y,z> 

else if (loading from rear) then 

return<W – x – w, y, D – z – d> 

else if (loading from left side) then 

return<W – z – w, y, x> 

else if (loading from right side) then 

return<z, y, D – x – w> 

end if 

 

4.1.7. Order of box insertion 

 

As mentioned earlier, the order of inserting boxes into the container is based on B-

chain. The order of the boxes in B-chain can be created randomly or can be based on 

the volume of the boxes which means ones with larger volume are packed first. 

 

4.2. Two Dimensional Algorithm 

 

Although the algorithm is proposed for the three dimensional knapsack problem, it 

can also be used to solve two dimensional instances as solving a two-dimensional 

knapsack problem is simpler than three-dimensional one. The algorithm must be 
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modified in order to apply to the two-dimensional instances. These modifications are 

as follows: 

Instead of defining three sequences, a pair of sequences commonly known as 

sequence pair is defined. The definitions are as follows: 

• A-chain: If rectangle i appears before rectangle j in A-chain, then rectangle i is 

located left of or on top of rectangle j. 

• B-chain: If rectangle i appears before rectangle j in B-chain, then rectangle i is 

located left of or under rectangle j. 

Based on these two sequences, rectangle i is located on the left of rectangle j if it 

appears before box j in both A-chain and B-chain. However, rectangle i is located 

under rectangle j if it appears before box j in A-chain and after box j in B-chain. 

These implications are used for the placement algorithm. The first rectangle is placed 

in the origin, and the succeeding rectangles are placed according to their relative 

position to the already placed rectangles. The coordinates of each new rectangle are 

calculated based on the following formula: 

))(,0max( max wxx jjji Px

+=
∈

  ))(,0max( max hyy jjji Py

+=
∈

 

where Px and Py are the subsets of the placed rectangles located on the left and below 

the new rectangle, respectively. Same simulated annealing scheme is used here but 

with two-dimensional sequences. The neighborhood of each state is defined as one of 

these three permutations: either exchange two rectangles in A-chain; exchange two 

rectangles in B-chain; or exchange two rectangles in both sequences. The rectangles 

are allowed to be rotated in the following two orientations: WH which is the standard 

orientation, and HW which is obtained by swapping the width and height. Pre-placed 

rectangles with known coordinates (x,y) and known dimensions (w, h) are fixed into 

the bin. Two packing schemes, one for each corner, are created. First, the coordinates 

of the rectangle are calculated relative to the current origin. Then, their real (x,y) 

coordinates are calculated relative to the real origin of the bin. Similar to the three-

dimensional problems, the order of inserting the rectangles into the bin is based on the 

order of rectangles in B-chain which can be created randomly or can be based on the 

area of the rectangles.  
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CHAPTER 5 

Numerical Analysis 

 

5.1. Introduction 

 

This chapter presents some numerical experiments for the proposed solution 

methodology in order to assess its practicability. The numerical examples are 

illustrated in section 5.2. Section 5.3 presents the parameter setting for the heuristic 

algorithm. The results are discussed in section 5.4, and the algorithm verification is 

illustrated in section 5.5. 

 

5.2. Numerical Experiments 

 

The proposed methodology is implemented in C++. The code is tested using two 

different sets of boxes. The first set is based on SAE J1100 – Section 9 – Standard 

which includes 7 types of boxes. The dimensions of these boxes are illustrated in table 

5.1. Twelve instances are created by using the first set of boxes. These instances 

contain 36 and 70 boxes. The maximum allowed number of the boxes for both types 

of instances is also shown in table 5.1. The second set of the boxes is generated 

randomly based on Uniform distribution and includes 10 types of boxes. The width, 

height, and depth of these boxes are selected from the intervals [50, 300], [100, 50], 

[100, 300] respectively. Two instances are created by using this set of boxes, which 

includes 50 boxes. The dimensions of the boxes and their maximum allowed number 

are shown in table 5.2. Thus, fourteen instances are tested in total. In case of not 

considering pre-placed boxes, the dimensions of the bin for instances containing 36 is 

equal to 800×700×1000 (mm3); however, for instances with 70 boxes, it is equal to 

1100×900×1400 (mm3), and in the case of having instances with 50 boxes is equal to 

600×500×700 (mm3). In the case of having obstacles, the bin dimension is equal to 

1350×540×890 (mm3) in instances with 36 boxes, and it is equivalent to 

1100×900×1400 (mm3) in other instances. The profits of the boxes are set to be equal 

to their volume. 
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Table 5.1. Information on the First Set of Boxes 

Box Type 
Width 

(mm) 

Height 

(mm) 

Depth 

(mm) 

Max. no.-instances 

with 36 boxes 

Max. no.-instances 

with 70 boxes 

1 229 483 610 4 7 

2 165 330 457 4 7 

3 229 406 660 2 5 

4 216 457 533 2 5 

5 203 229 381 2 5 

6 178 356 533 2 6 

7 152 114 325 20 35 

 

Table 5.2. Information on the Second Set of Boxes 

Box Type 
Width 

(mm) 

Height 

(mm) 

Depth 

(mm) 
Max. no. 

1 138 182 285 6 

2 126 240 135 5 

3 108 222 165 4 

4 140 80 246 5 

5 105 234 272 3 

6 153 237 159 6 

7 216 229 272 6 

8 188 124 236 5 

9 137 100 167 4 

10 103 104 222 6 

 

The instance names are Mst-n-o-c-v, where n ∈{36, 70, 50} is the number of boxes to 

be packed, o is the order of boxes in B-chain which can be based on the boxes volume 

(v) or randomly created (R), c shows whether or not the obstacles are considered and 

can be set as (obs) or (wo) respectively, and v represents the volume of the bin. 
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The number and dimensions of the obstacles (pre-placed boxes) differ in various 

instances. Eight obstacles are defined for cases with 36 and 70 boxes. The dimensions 

of the obstacles and their coordinates are described in table 5.3. For the instances 

where there are 70 boxes, four obstacles are defined in case of ceiling obstacles, and 

two obstacles are defined for middle ones. The dimensions and coordinates of these 

obstacles are illustrated in table 5.4. 

 

Table 5.3. Obstacles Dimensions and Coordinates for Instances with 36 and 70 

Boxes 

Obstacle dimensions 

(mm) 

Obstacle coordinates 

Instance of 36 boxes 

Obstacle coordinates 

Instance of 70 boxes 

{180;220;250} <1170;0;160> <920;0;160> 

{320;220;160} <0;0;0> <0;0;0> 

{320;220;160} <1030;0;0> <780;0;0> 

{125;220;160} <0;0;160> <0;0;160> 

{200;320;320} <0;220;0> <0;580;0> 

{200;320;320} <1150;220;0> <900;580;0> 

{160;208;240} <0;332;320> <0;692;320> 

{160;208;240} <1190;332;320> <940;692;320> 

 

Table 5.4. Information on Ceiling and Middle Obstacles  

Ceiling Obstacles Middle Obstacles 

Dimensions (mm) Coordinate Dimensions (mm) Coordinate 

{200;320;320} <0;580;0> {500;220;160} <300;300;0> 

{200;320;320} <900;580;0> {500;220;160} <300;300;1240> 

{160;208;240} <0;692;320>   

{160;208;240} <940;692;320>   
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5.3. Parameter Setting 

 

As previously mentioned, choosing a suitable cooling procedure and parameters is 

essential for the algorithm to work efficiently. After testing different cooling 

procedures (Egeblad and Pisinger, 2009; Pisinger, 2007; Dowsland, 1993) the one 

proposed by Dowsland (1993) works best. The given cooling process has been 

explained in section 4.1.3. β is selected to be 0.2, and α is equal to 0.002. Values for 

initial temperature are selected from {0.5, 0.4, 0.3, 0.2}, and based on the results, 

t0=0.2 is the most suitable. 

 

5.4. Results and Sensitivity Analysis 

 

Ten runs were conducted for each case. The worst, best, and average solutions are 

shown in table 5.5. The values in the table illustrate the bin percentage of the 

utilization- see section 4.1.3 for formula. In addition, time represents the running time 

for each case in minutes. 

 

Table 5.5. Worst, Best, and Average Utilization  

Case 
Time 

(min) 

Best 

(%) 

Average 

(%) 

Worst 

(%) 

Mst-36-v-wo-560 

10 88.49 86.19 83.92 

20 87.72 85.29 80.45 

30 88.08 86.23 83.43 

120 88.07 85.83 84.81 

Mst-36-R-wo-560 

10 83.51 80.83 77.31 

20 88.43 85.00 78.26 

30 86.51 83.65 80.19 

120 87.93 87.05 84.81 

Mst-36-v-obs-649 

10 76.42 74.54 70.76 

20 80.60 78.5 75.63 

30 81.06 79.55 77.64 

120 79.10 77.33 75.13 
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Table 5.5. (Continued) Worst, Best, and Average Utilization 

Case 
Time 

(min) 

Best 

(%) 

Average 

(%) 

Worst 

(%) 

Mst-36-R-obs-649 

10 82.23 79.15 77.14 

20 82.80 80.03 77.50 

30 80.77 79.22 77.58 

60 80.35 79.24 78.48 

120 80.79 78.88 77.21 

Mst-70-v-wo-1386 

20 86.34 84.33 82.02 

30 85.99 84.24 82.17 

60 86.29 84.56 82.68 

120 86.44 84.96 82.71 

Mst-70-R-wo-1386 

20 84.13 80.92 77.27 

30 84.80 83.39 82.49 

60 84.61 81.89 81.64 

120 85.59 83.59 79.57 

Mst-70-v-obs-1386 

30 79.74 77.24 75.73 

60 82.09 79.14 75.53 

120 80.12 78.93 76.84 

Mst-70-R-obs-1386 

30 78.12 75.59 75.06 

60 80.24 78.01 76.50 

120 83.66 79.67 78.34 

Mst-70-v-obs1-1386 

30 85.97 84.37 82.88 

60 85.05 83.30 82.06 

120 82.70 81.74 80.18 

Mst-70-R-obs1-1386 

30 82.31 80.68 78.39 

60 82.66 79.75 77.26 

120 83.09 80.09 78.65 

 

                                                           
1Ceiling obstacles 
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Table 5.5. (Continued) Worst, Best, and Average Utilization  

Case 
Time 

(min) 

Best 

(%) 

Average 

(%) 

Worst 

(%) 

Mst-70-v-obs2-1386 

30 79.29 77.66 76.66 

60 78.97 78.46 77.74 

120 79.86 77.80 76.15 

Mst-70-R-obs2-1386 

30 79.74 77.89 76.00 

60 78.96 77.35 76.45 

120 82.50 78.75 76.15 

Mst-502-v-wo-210 

20 85.49 84.02 82.95 

30 88.58 86.45 84.39 

60 86.56 85.36 83.97 

120 89.68 87.58 85.91 

180 88.31 87.02 85.93 

Mst-503-R-wo-210 

20 86.79 84.70 82.87 

30 86.41 84.89 83.56 

60 88.07 85.53 84.20 

120 89.72 87.42 85.83 

180 88.06 86.55 85.56 

 

Based on Egeblad & Pisinger (2009), the minimum running time for instances with 36 

boxes (Mst-36-o-c-v) was set to 10 minutes. Although the heuristic often reached the 

best solution in less than 10 minutes, the running time was increased to see whether 

the algorithm is able to jump out of the local optimal and find a better solution. Thus, 

the instances were run for 20, 30, and 120 minutes as well. Based on the results, 

increasing time does not significantly affect the solutions.  It can be concluded that 10 

minutes is sufficient for the heuristic to find the final solution. 

 

For scenarios that contain 70 boxes and where pre-placed boxes are neglected the 

algorithm was run for at least 20 minutes. The running time was increased to 30, 60, 

and 120 minutes. The results indicate that 20 minutes is sufficient to reach a good 

                                                           
2Boxes with different dimensions 
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solution in these scenarios. However, when considering obstacles, the algorithm was 

tested for at least 30 minutes. This is because dealing with the obstacles increases the 

solution time. The running time was increased to 60 and 120 minutes. The results 

show that increasing the running time to 60 minutes allows the algorithm to reach 

better solutions; however, increasing the running time to 120 minutes does not 

improve the utilization significantly. Therefore, 60 minutes can be a sufficient 

running time to reach the final solution. In these cases, according to the results, when 

including ceiling obstacles the reasonable running time is equal to 30 minutes since 

handling the ceiling obstacles is easier than floor obstacles. In the case of having 

middle obstacles, the bin utilization is less than other instances. These kinds of 

instances are run for 30, 60, and 120 minutes. Based on the obtained utilizations 

shown in table 5.5, 30 minutes can be considered as a reasonable running time. In 

case of Mst-70-R-obs(middle)-1386, the algorithm jumps out of the local minimum 

after 120 minutes and is able to obtain better solution (higher bin utilization). 

Nevertheless, only the best utilization enhances, and the average and worst results do 

not change significantly. Moreover, the instances in which 50 boxes should be packed 

were run for 20, 30, 60, 120, and 180 minutes; 30 minutes is observed to be enough if 

it is required to obtain a satisfying solution in a short time. However, it seems that the 

algorithm is able to jump out of the local optimal and find a better solution after 120 

minutes.  

 

The five best solutions for each instance and the number of packed boxes of each type 

are shown in appendix A. Table 5.6 presents the summary of the results. As it is 

illustrated in the table, in the most instances the best utilization is obtained when the 

order of the boxes in B-chain is based on their volume. Appendix B shows the 

coordinates of the packed boxes at best results. 
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Table 5.6. Summary of Results (based on the utilization) 

Instance 
Best 

(%) 

Average 

(%) 

Worst 

(%) 

Mst-36-v-wo-560 88.49 86.19 83.92 

Mst-36-R-wo-560 83.51 80.83 77.31 

Mst-36-v-obs-649 76.42 74.54 70.76 

Mst-36-R-obs-649 82.23 79.15 77.14 

Mst-70-v-wo-1386 86.34 84.33 82.02 

Mst-70-R-wo-1386 84.13 80.92 77.27 

Mst-70-v-obs-1386 82.09 79.14 75.53 

Mst-70-R-obs-1386 80.24 78.01 76.50 

Mst-70-v-obs-1386 

(ceiling) 
85.97 84.37 82.88 

Mst-70-R-obs-1386 

(ceiling) 
82.31 80.68 78.39 

Mst-70-v-obs-1386 

(middle) 
79.29 77.66 76.66 

Mst-70-R-obs-1386 

(middle) 
79.74 77.89 76.00 

Mst-50-v-wo-210 85.49 84.02 82.95 

Mst-50-R-wo-210 86.79 84.70 82.87 

 

The best results for some of the instances are shown in the following figures. 

Figure 5.1. Best Result for Mst-36-v-wo-560 
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Figure 5.2. Best Result for Mst-36-R-wo-560 

 
 

 

 Figure 5.3. Best Result for Mst-36-R-obs-649 

  

 

Figure 5.4. Best Result for Mst-36-v-obs-649 
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Figure 5.5. Best Result for Mst-70-v-wo-1386 

  

 

Figure 5.6. Best Result for Mst-70-R-wo-1386 

  

 

Figure 5.7. Best Result for Mst-70-R-obs-1386 
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Figure 5.8. Best Result for Mst-70-v-obs-1386 

 
 

 

Figure 5.9. Best Result for Mst-70-v-obs(ceiling)-1386 

  

 

Figure 5.10. Best Result for Mst-70-R-obs(ceiling)-1386 
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Figure 5.11. Best Result for Mst-70-v-obs(middle)-1386 

  

 

Figure 5.12. Best Result for Mst-70-R-obs(middle)-1386 

 
 

 

Figure 5.13. Best Result for Mst-50-v-wo-210 
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Figure 5.14. Best Result for Mst-50-R-wo-210 

  

 

For the instances with obstacles, pre-placed boxes are shown in black. As shown in 

figures 5.1-5.14, the vertical stability is satisfied for all instances, and there is no box 

placed in the air anymore. The bottom of all packed boxes is placed on the bin floor or 

top of other packed boxes. 

 

5.5. Algorithm Verification 

 

In order to verify the proposed methodology, the Mst-36-R-obs-649 instance is run 

without considering vertical stability constraint; the best, worst and average results 

obtained in this case are equal to 77.38%, 75.19% and 76.2% which are less than the 

utilizations obtained by considering the vertical stability constraint (82.23%, 77.14% 

and 79.15%). The result for this case is illustrated in figure 5.15. As shown in the 

figure some of the boxes are placed in the air.  

 

Figure 5.15. Result without Vertical Stability 
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5.6. Conclusion 

 

Various experiments with different kinds of boxes and obstacles have been executed. 

Moreover, two different kinds of box insertions have been considered. According to 

the results, it is evident that the proposed heuristic approach has been successful. 

Usually the algorithm can achieve the final solution in a very short time. The 

approach is capable to handle different kinds of instances, and it is not limited to some 

special instances. 

 

The algorithm is able to deal with different kinds of obstacles such as floor, ceiling 

and middle obstacles. The position of each packed box should be defined relative to 

the floor and middle obstacles as well as other packed boxes. Therefore, dealing with 

such obstacles is more difficult compared to ceiling obstacle. In such instances, the 

algorithm requires more time to reach the solution. In addition, the results illustrate 

that the obtained percentage of utilization is decreased in the case of having obstacles 

in the middle of the bin. Furthermore, the solution time increases for instances created 

from the second set of boxes as it contains more box types. 

 

The results and the figures in section 5.5 conclude that the vertical stability constraint 

is satisfied, and there is no box placed in the air. The bottom of all the packed boxes 

are supported by the bin floor or by the top of other packed boxes. The boxes have 

been placed into the bin either in a random order or based on their volume. According 

to the results, in most instances volume-based order leads to better final solutions and 

higher utilizations. However, by using random order, the results are still satisfying. 

 

At the end, the algorithm has been implemented on one of the instances without 

considering the vertical stability constraint to verify its success. The results show the 

proposed approach has been successful. 
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CHAPTER 6 

Conclusions and Future Works 

 

6.1. Conclusions 

 

Packing problems have been extensively studied as they are so essential for operating 

supply chains and reducing unnecessary cost, such as cost of additional shipment. 

Packing problems appear under several names and each one has different constraints 

and objective functions. One of the cutting and packing problems with maximization 

output is knapsack problem. Multi-dimensional knapsack problem is strongly NP-

hard. Some exact algorithms, as well as heuristic approaches, have been considered in 

the published literature for these problems. As exact algorithms need more time to 

find a solution, heuristic algorithms are more popular and can be used as an 

alternative to find optimal or near optimal solution. 

A three-dimensional knapsack problem with pre-placed boxes and vertical stability 

has been presented and discussed. The packing must be orthogonal; boxes are 

rectangular and can be freely rotated. The mixed integer linear programming model 

has been proposed for the problem, which considers some practical and real-world 

constraints such as box rotations, vertical stability, and pre-placed boxes. According 

to the results obtained from GAMS, optimal solution can only be possible for small 

instances. Thus, in order to solve the large instances in a reasonable time, a heuristic 

algorithm has been proposed based on the simulated annealing technique. The 

methodology is based on the sequence triple representation; moreover, box rotations, 

vertical stability, and pre-placed boxes are considered in the heuristic approach as 

well. 

 

Various experiments have been conducted with different sets of boxes. In addition, 

different cases and multiple kinds of pre-placed boxes have been considered in order 

to ensure that the solution methodology is able to tackle any kinds of problems, and it 

is not limited to a special case. The order of box insertion in the bin can be random or 

based on the box volumes. The found solutions were compared based on the bin 

utilization. Sensitivity analysis has been done based on the running time in order to 

find out whether the algorithm can jump out of the local optimal by increasing time 

and reach a better solution. Although the algorithm was just applied to the three 
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dimensional knapsack problem it can easily be used for the two dimensional instances 

since the complexity of these types of instances is less. The algorithm was verified by 

applying the algorithm not considering the vertical stability to one of the instances. 

 

The results illustrate that the proposed algorithm is successful. Good quality results 

can be obtained for large instances in a reasonable time. The algorithm is able to 

handle various instances and get satisfactory utilizations. According to the final 

results, better solutions can be obtained if the order of inserting boxes in the bin is 

based on the volume of the boxes. Moreover, the results show that the proposed 

approach is compatible with pre-placed boxes, and vertical stability is satisfied as 

well. No box is placed in the air. In addition, the methodology can be used in order to 

deal with irregular bins- where the bin is not rectangular- by considering the irregular 

parts as pre-placed boxes. 

 

6.2. Future Works 

 

The proposed mixed integer linear programming model is limited to some practical 

constraints. The model can be a motivation for future research in a way to extend it to 

consider more practical and real-world constraints beyond vertical stability, pre-

placed boxes, and box rotations. Horizontal stability or loading priorities can be some 

examples of such constraints. Horizontal stability guarantees that the boxes do not 

move notably in the middle of transportation. As the number of available bins in 

knapsack problems is limited, and it should be decided which boxes have to be 

packed, the loading priorities constraint can play an important role in such problems. 

The loading of some boxes might be more advantageous than others. These priorities 

can be consequences of delivery deadlines or freshness desires. 

 

Moreover, the dimensions of the boxes can be considered as non-integer for further 

research, since in most of real problems boxes do not necessarily have integer 

dimensions. In addition, non-rectangular and irregular shape boxes can be taken into 

account in the future. Other heuristic approaches might be studied in the future which 

are able to tackle more realistic constraints such as weight limits and weight 

distribution constraints. 
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APPENDICES 

Appendix A 
 

The five best solutions for each instance and the number of packed boxes of each type 
are shown in the following: 

Case 
Utilization 

% 
Box Type 

1 2 3 4 5 6 7 

Mst-36-v-wo-560 

88.49 3 2 2 1 0 2 0 
87.88 4 4 2 0 0 0 0 
87.49 4 2 1 1 0 1 4 
86.66 4 1 0 2 1 1 6 
85.50 4 1 0 2 1 0 8 

Mst-36-R-wo-560 

83.51 2 3 0 2 1 1 18 
83.15 3 3 1 1 0 2 8 
82.05 2 2 2 0 0 2 15 
80.98 3 0 1 2 0 0 15 
81.42 1 3 1 2 1 1 17 

Mst-36-v-obs-649 

70.86 3 1 0 1 1 2 5 
75.13 3 1 0 2 0 1 9 
75.57 2 2 0 2 0 2 11 
76.42 3 0 1 1 1 1 10 
74.70 2 2 0 1 1 1 13 

Mst-36-R-obs-649 

82.23 2 3 0 2 1 2 10 
80.35 3 1 0 2 1 1 11 
78.82 4 1 0 1 0 1 10 
80.20 1 2 0 3 1 2 8 
76.88 2 2 0 0 2 2 18 

Mst-70-v-wo-1386 

86.34 6 1 5 5 0 4 11 
85.38 7 2 4 5 1 3 6 
85.92 7 1 5 5 0 3 4 
82.02 7 0 5 4 1 2 11 
82.63 7 0 4 4 1 4 7 

Mst-70-R-wo-1386 

84.80 7 3 5 2 3 3 10 
83.44 7 3 5 2 5 2 4 
82.49 7 4 5 2 2 3 10 
84.07 7 3 5 3 2 2 9 
83.04 7 3 4 2 0 6 15 

Mst-70-v-obs-1386 

82.09 3 5 5 5 1 3 8 
81.73 7 2 4 2 4 2 8 
79.74 7 1 4 2 3 2 11 
76.67 5 1 5 2 3 2 17 
80.32 7 4 5 0 2 2 10 
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case Utilization 
% 

Box Type 
1 2 3 4 5 6 7 

Mst-70-R-obs-
1386 

80.24 5 1 5 3 2 3 13 
78.77 6 3 2 2 1 6 16 
78.55 7 4 1 4 3 3 3 
77.60 7 2 3 2 1 2 15 
78.39 7 3 3 1 5 2 13 

Mst-70-v/R-obs-
1386 

(ceiling) 

83.52 6 0 4 4 2 5 8 
85.97 6 3 4 3 1 6 7 
84.04 7 2 2 5 1 4 10 
82.06 6 5 4 2 3 3 10 
78.39 6 0 4 3 3 3 13 

Mst-70-v/R-obs-
1386 

(middle) 

79.29 6 1 5 2 5 2 13 
77.83 7 3 4 2 2 2 9 
77.64 6 0 4 3 5 2 15 
79.74 6 0 5 1 4 2 19 
77.54 6 3 1 2 1 6 23 

 

case 
Utilization 

% 
Box Type 

1 2 3 4 5 6 7 8 9 10 

Mst-50-v-wo-210 

85.49 4 4 0 0 3 3 6 3 0 0 
83.95 4 3 1 0 3 3 6 2 0 1 
84.14 4 5 1 1 1 2 6 4 0 0 
84.46 3 0 3 2 1 6 6 3 0 0 
84.50 6 0 2 1 3 1 6 1 1 4 

Mst-50-R-wo-210 

85.21 0 1 3 4 3 3 6 4 0 5 
86.79 1 5 1 5 3 3 6 3 0 1 
84.86 5 2 1 2 0 3 6 4 0 2 
85.16 1 1 1 5 3 4 6 3 0 4 
83.32 4 2 1 3 3 3 6 1 0 1 
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Appendix B 
 

-Mst-36-v-wo-560:  

Utilization=88.49% 

Box type Box coordinate Box dimensions 
1 <190;0;771> {610;483;229} 
1 <190;0;542> {610;483;229} 
1 <190;0;59> {610;229;483} 
1 <190;229;59> {610;229;483} 
3 <140;458;136> {660;229;406} 
4 <267;483;543> {533;216;457} 
6 <12;0;467> {178;356;533} 
2 <25;356;543> {165;330;457} 
2 <25;0;10> {165;330;457} 
7 <475;458;22> {325;152;114} 
7 <26;356;391> {114;325;152} 
7 <26;356;239> {114;325;152} 
7 <26;356;87> {114;325;152} 
7 <145;458;22> {325;152;114} 

 

Utilization= 88.40% 

Box type Box coordinate Box dimensions 
1 <0;0;517> {610;229;483} 
1 <0;229;517> {610;229;483} 
1 <0;458;517> {610;229;483} 
3 <0;0;288> {406;660;229} 
3 <0;0;59> {406;660;229} 
4 <406;0;60> {216;533;457} 
6 <622;0;467> {178;356;533} 
6 <622;0;111> {178;533;356} 
2 <610;356;543> {165;330;457} 
2 <406;533;60> {330;165;457} 

 

  



 

57 

 

- Mst-36-R-obs-649: 

Utilization= 80.35% 

 

 

 

 

 

 

 

 

 

 

 

 

 

Utilization= 82.23% 

 

 

 

 

 

 

 

 

 

 

 

 

 

Box type Box coordinate Box dimensions 
1 <0;0;661> {610;483;229} 
7 <0;0;509> {114;325;152} 
1 <610;0;661> {610;483;229} 
7 <0;0;357> {114;325;152} 
7 <114;0;509> {114;325;152} 
7 <114;0;357> {114;325;152} 
4 <228;0;204> {216;533;457} 
1 <444;0;432> {610;483;229} 
2 <330;0;39> {330;457;165} 
6 <660;0;26> {356;533;178} 
7 <1054;0;547> {152;325;114} 
7 <1220;0;565> {114;152;325} 
4 <444;0;216> {457;533;216} 
7 <1054;0;433> {152;325;114} 
7 <1220;152;565> {114;152;325} 
7 <1206;0;413> {114;325;152} 
7 <1220;304;565> {114;152;325} 
5 <901;0;210> {229;381;203} 
7 <1016;381;88> {114;152;325} 

Box type Box coordinate Box dimensions 
5 <1121;0;687> {229;381;203} 
4 <664;0;674> {457;533;216} 
2 <334;0;725> {330;457;165} 
1 <511;0;445> {610;483;229} 
7 <1198;0;573> {152;325;114} 
1 <511;0;216> {610;483;229} 
6 <333;0;369> {178;533;356} 
7 <181;0;776> {152;325;114} 
4 <550;0;0> {457;533;216} 
2 <168;0;446> {165;457;330} 
2 <3;0;560> {165;457;330} 
7 <1236;0;421> {114;325;152} 
7 <16;0;446> {152;325;114} 
7 <181;0;332> {152;325;114} 
6 <333;0;13> {178;533;356} 
7 <1236;381;565> {114;152;325} 
7 <1122;0;421> {114;325;152} 
7 <1122;381;565> {114;152;325} 
7 <29;0;332> {152;325;114} 
7 <219;0;180> {114;325;152} 
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- Mst-70-v-wo-1386: 

Utilization= 86.34% 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Box type Box coordinate Box dimensions 
1 <490;0;1171> {610;483;229} 
1 <490;0;942> {610;483;229} 
1 <490;483;917> {610;229;483} 
1 <490;0;688> {610;483;229} 
1 <490;483;434> {610;229;483} 
1 <490;0;459> {610;483;229} 
3 <261;0;994> {229;660;406} 
3 <32;0;994> {229;660;406} 
3 <84;0;765> {406;660;229} 
3 <84;0;536> {406;660;229} 
3 <84;0;307> {406;660;229} 
4 <33;660;867> {457;216;533} 
4 <643;0;218> {457;533;216} 
4 <643;0;2> {457;533;216} 
4 <33;660;334> {457;216;533} 
4 <33;0;91> {457;533;216} 
6 <567;712;1044> {533;178;356} 
6 <567;712;688> {533;178;356} 
6 <567;712;332> {533;178;356} 
6 <567;533;154> {533;356;178} 
2 <33;533;142> {457;330;165} 
7 <775;533;2> {325;114;152} 
7 <661;533;2> {114;325;152} 
7 <165;533;28> {325;152;114} 
7 <775;647;40> {325;152;114} 
7 <165;685;28> {325;152;114} 
7 <491;0;345> {152;325;114} 
7 <491;0;231> {152;325;114} 
7 <491;0;117> {152;325;114} 
7 <529;325;134> {114;152;325} 
7 <491;0;3> {152;325;114} 
7 <491;325;20> {152;325;114} 
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- Mst-70-R-wo-1386: 

Utilization= 84.13% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Box type Box coordinate Box dimensions 
3 <694;0;740> {406;229;660} 
1 <490;229;1171> {610;483;229} 
2 <694;0;80> {406;229;660} 
5 <491;0;1019> {203;229;381} 
2 <325;0;943> {165;330;457} 
5 <491;0;638> {203;229;381} 
5 <465;0;257> {229;203;381} 
2 <249;330;943> {216;533;457} 
1 <236;0;333> {229;483;610} 
7 <775;712;1248> {325;114;152} 
3 <236;483;283> {229;406;660} 
3 <7;0;740> {229;406;660} 
7 <84;0;415> {152;114;325} 
7 <775;229;1057> {325;152;114} 
6 <567;229;701> {533;178;356} 
3 <7;406;740> {229;406;660} 
2 <643;229;371> {457;165;330} 
1 <7;114;257> {229;610;483} 
7 <122;724;415> {114;152;325} 
6 <567;229;15> {533;178;356} 
1 <490;407;942> {610;483;229} 
7 <313;0;219> {152;325;114} 
4 <8;0;3> {457;533;216} 
4 <567;407;726> {533;457;216} 
1 <490;407;497> {610;483;229} 
1 <490;407;268> {610;483;229} 
7 <313;533;169> {152;325;114} 
2 <8;533;4> {457;330;165} 
1 <490;407;39> {610;483;229} 
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- Mst-70-v-obs-1386: 

Utilization= 82.09% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Box type Box coordinate Box dimensions 
1 <490;0;1171> {610;483;229} 
1 <490;0;942> {610;483;229} 
1 <490;0;713> {610;483;229} 
3 <440;483;994> {660;229;406} 
3 <34;0;1171> {406;660;229} 
3 <34;660;740> {406;229;660} 
3 <440;483;765> {660;406;229} 
3 <694;0;484> {406;660;229} 
4 <478;0;180> {216;457;533} 
4 <224;0;180> {216;457;533} 
4 <237;457;180> {457;216;533} 
4 <237;673;180> {457;216;533} 
4 <224;0;714> {216;533;457} 
6 <338;0;2> {356;533;178} 
6 <46;0;357> {178;533;356} 
6 <567;712;1044> {533;178;356} 
2 <59;0;714> {165;330;457} 
2 <770;220;27> {330;165;457} 
2 <237;533;15> {457;330;165} 
2 <770;385;27> {330;165;457} 
2 <59;330;714> {165;330;457} 
5 <719;660;562> {381;229;203} 
7 <123;533;388> {114;152;325} 
7 <9;533;388> {114;152;325} 
7 <775;550;332> {325;114;152} 
7 <288;533;750> {152;114;325} 
7 <453;712;1075> {114;152;325} 
7 <72;220;160> {152;325;114} 
7 <123;220;8> {114;325;152} 
7 <9;220;8> {114;325;152} 
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- Mst-70-v-obs-1386 (ceiling): 

Utilization= 85.97% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Box type Box coordinate Box dimensions 
1 <871;0;790> {229;483;610} 
1 <871;0;180> {229;483;610} 
1 <642;0;790> {229;483;610} 
1 <413;0;917> {229;610;483} 
1 <642;0;180> {229;483;610} 
1 <184;0;917> {229;610;483} 
3 <236;610;740> {406;229;660} 
3 <871;483;740> {229;406;660} 
3 <642;483;740> {229;406;660} 
3 <7;0;511> {229;660;406} 
4 <426;0;460> {216;533;457} 
4 <185;0;244> {457;533;216} 
4 <185;0;28> {457;533;216} 
6 <6;0;1044> {178;533;356} 
6 <286;533;207> {356;178;533} 
6 <286;711;207> {356;178;533} 
6 <6;0;155> {178;533;356} 
6 <744;0;2> {356;533;178} 
6 <693;483;207> {178;356;533} 
2 <414;533;15> {457;330;165} 
2 <261;0;587> {165;457;330} 
2 <19;533;943> {165;330;457} 
5 <871;483;359> {229;203;381} 
7 <172;533;359> {114;325;152} 
7 <300;533;28> {114;325;152} 
7 <58;0;3> {114;325;152} 
7 <84;660;592> {152;114;325} 
7 <84;774;592> {152;114;325} 
7 <32;0;930> {152;325;114} 
7 <274;0;473> {152;325;114} 
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- Mst-70-R-obs-1386 (ceiling): 

Utilization= 82.31% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Box type Box coordinate Box dimensions 
1 <871;0;917> {229;610;483} 
1 <642;0;917> {229;610;483} 
6 <109;0;1222> {533;356;178} 
1 <159;0;993> {483;610;229} 
7 <7;0;1108> {152;325;114} 
1 <617;0;688> {483;610;229} 
7 <7;325;1108> {152;325;114} 
1 <871;0;78> {229;483;610} 
7 <986;483;363> {114;152;325} 
7 <7;0;994> {152;325;114} 
7 <7;325;994> {152;325;114} 
3 <211;0;764> {406;660;229} 
5 <8;0;764> {203;381;229} 
3 <642;0;282> {229;660;406} 
3 <211;0;535> {406;660;229} 
3 <211;0;306> {406;660;229} 
7 <503;356;1248> {114;325;152} 
5 <642;0;79> {229;381;203} 
6 <147;356;1222> {356;533;178} 
1 <7;660;739> {610;229;483} 
5 <414;0;77> {203;381;229} 
5 <211;0;77> {203;381;229} 
1 <261;381;53> {610;483;229} 
3 <211;660;282> {660;229;406} 
6 <33;0;383> {178;533;356} 
7 <872;483;363> {114;152;325} 
7 <97;533;363> {114;152;325} 
7 <775;610;1248> {325;114;152} 
4 <643;610;715> {457;216;533} 
7 <775;724;1248> {325;114;152} 
6 <33;0;7> {178;533;356} 
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- Mst-70-v-obs-1386 (middle): 

Utilization= 79.29% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Box type Box coordinate Box dimensions 
1 <617;0;942> {483;610;229} 
1 <617;0;713> {483;610;229} 
1 <617;0;484> {483;610;229} 
1 <617;0;255> {483;610;229} 
1 <7;0;917> {610;229;483} 
1 <617;610;790> {483;229;610} 
3 <694;610;130> {406;229;660} 
3 <211;0;688> {406;660;229} 
3 <211;0;459> {406;660;229} 
3 <211;0;230> {406;660;229} 
3 <211;229;942> {406;660;229} 
4 <84;660;485> {533;216;457} 
4 <84;660;2> {533;216;457} 
6 <33;0;332> {178;533;356} 
6 <33;229;1044> {178;533;356} 
2 <46;0;2> {165;457;330} 
5 <719;0;1> {381;203;229} 
5 <236;0;1> {381;203;229} 
5 <719;0;1171> {381;203;229} 
5 <897;203;1171> {203;381;229} 
5 <8;0;688> {203;381;229} 
7 <465;520;1286> {152;325;114} 
7 <351;520;1248> {114;325;152} 
7 <948;203;116> {152;325;114} 
7 <834;203;78> {114;325;152} 
7 <948;203;2> {152;325;114} 
7 <623;528;2> {325;152;114} 
7 <948;528;2> {152;325;114} 
7 <623;680;2> {325;152;114} 
7 <59;762;1075> {152;114;325} 
7 <59;533;160> {152;114;325} 
7 <292;520;8> {325;114;152} 
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- Mst-70-R-obs-1386 (middle): 

Utilization= 82.50% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Box type Box coordinate Box dimensions 
6 <922;0;1044> {178;533;356} 
3 <262;0;994> {660;229;406} 
5 <897;533;1019> {203;229;381} 
7 <148;0;1075> {114;152;325} 
6 <364;520;1222> {533;356;178} 
7 <250;520;1248> {114;325;152} 
7 <136;152;1248> {114;325;152} 
7 <136;477;1248> {114;325;152} 
7 <22;0;1075> {114;152;325} 
7 <22;152;1248> {114;325;152} 
7 <22;477;1248> {114;325;152} 
3 <491;229;993> {406;660;229} 
4 <884;0;536> {216;533;457} 
3 <655;0;587> {229;660;406} 
1 <8;229;993> {483;610;229} 
1 <871;0;53> {229;610;483} 
1 <172;0;764> {483;610;229} 
7 <330;0;650> {325;152;114} 
7 <330;0;536> {325;152;114} 
2 <325;152;599> {330;457;165} 
4 <414;0;3> {457;216;533} 
2 <414;216;371> {457;330;165} 
2 <414;216;206> {457;330;165} 
2 <7;0;663> {165;457;330} 
7 <948;533;668> {152;114;325} 
7 <948;762;1075> {152;114;325} 
7 <211;0;612> {114;325;152} 
7 <173;325;650> {152;325;114} 
6 <236;0;180> {178;533;356} 
7 <58;457;668> {114;152;325} 
1 <490;660;510> {610;229;483} 
1 <7;0;2> {229;483;610} 
1 <490;610;27> {610;229;483} 
2 <33;546;41> {457;165;330} 
7 <165;546;384> {325;114;152} 
1 <7;660;383> {483;229;610} 
2 <33;711;53> {457;165;330} 



 

65 

 

- Mst-50-v-wo-210: 

Utilization= 85.49% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Box type Box coordinate Box dimensions 
7 <371;0;428> {229;216;272} 
7 <142;0;428> {229;216;272} 
7 <142;216;484> {229;272;216} 
7 <384;216;471> {216;272;229} 
7 <384;0;156> {216;229;272} 
7 <155;0;156> {229;216;272} 
1 <4;0;415> {138;182;285} 
1 <4;182;518> {138;285;182} 
1 <418;229;186> {182;138;285} 
1 <189;0;18> {182;285;138} 
5 <150;216;379> {234;272;105} 
5 <150;216;274> {234;272;105} 
5 <150;216;169> {234;272;105} 
6 <147;285;10> {237;153;159} 
6 <441;0;3> {159;237;153} 
6 <441;237;33> {159;237;153} 
8 <412;367;235> {188;124;236} 
8 <18;0;227> {124;236;188} 
8 <18;0;39> {124;236;188} 
2 <16;236;383> {126;240;135} 
2 <7;236;257> {135;240;126} 
2 <7;236;131> {135;240;126} 
2 <7;236;5> {135;240;126} 
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Mst-50-v-wo-210: 

Utilization= 85.49% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Box type Box coordinate Box dimensions 
8 <364;0;576> {236;188;124} 
4 <354;188;560> {246;80;140} 
2 <228;0;565> {126;240;135} 
6 <363;0;423> {237;159;153} 
8 <40;0;576> {188;236;124} 
7 <384;268;428> {216;229;272} 
10 <378;159;456> {222;103;104} 
7 <82;240;484> {272;229;216} 
5 <82;0;460> {272;234;105} 
7 <138;0;231> {216;272;229} 
7 <138;0;2> {216;272;229} 
8 <14;0;272> {124;236;188} 
2 <12;0;137> {126;240;135} 
2 <360;0;288> {240;126;135} 
1 <462;0;3> {138;182;285} 
2 <12;0;2> {126;240;135} 
3 <354;0;66> {108;165;222} 
2 <360;126;297> {240;135;126} 
4 <354;182;157> {246;80;140} 
7 <82;272;255> {272;216;229} 
5 <82;272;21> {272;105;234} 
5 <82;377;21> {272;105;234} 
4 <2;240;454> {80;140;246} 
7 <371;262;156> {229;216;272} 
6 <363;182;3> {237;159;153} 
4 <2;240;208> {80;140;246} 
6 <363;341;3> {237;159;153} 
4 <2;240;68> {80;246;140} 
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Appendix C 

 

(http://www.cse.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese4.html#Q1-60004-

22) 

In order to prove the NP-hardness of the knapsack problem, it is required to explain 

some useful definitions: 

“ 

• Turing Machine: A Turing machine is a theoretical machine that is used in 

thought experiments to study the computers borders and capabilities. 

•  Boolean expression: A Boolean expression is an expression which is defined 

inductively in the following way:  

� The constants 0 (false) and 1 (true) are Boolean expressions.  

� Each variable x is a Boolean expression.  

� If E1 and E2 are Boolean expressions, then so are the negation ¬E1, the 

conjunction E1 ˄ E2, the disjunction E1 ˅ E2, and the parenthesizing 

(E1). 

Each assignment of 0's and 1's to the variables of a Boolean expression provides a 

value to the expression. If E is a Boolean expression, then (E) has the same value as 

E. ¬E has the value 0 if E has the value 1, and ¬E has the value 1 if E has the value 0. 

If E1 and E2 are Boolean expressions, then E1 ˅ E2 has the value 1 whenever E1 or E2 

has the value 1. E1 ˅ E2 has the value 0 whenever both E1 and E2 have the value 0. 

The value of E1 ˄ E2 is 1 if both E1 and E2 have the value 1, otherwise E1 ˄ E2 has the 

value 0. It is assumed that among the Boolean operations of ¬, ˄ , and ˅ , the operation 

¬ has the highest precedence, followed by ˄, and then ˅.  

A Boolean expression is said to be satisfiable if its variables can be assigned 0's and 

1's so as to provide the value 1 to the expression. The satisfiability problem asks for 

any given Boolean expression whether it is satisfiable, that is, whether the instance is 

in the set Lsat = {E | E is a satisfiable Boolean expression}.  

Theorem 1.    The satisfiability problem is NP-complete.  
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Proof     The satisfiability of any Boolean expression can be checked in polynomial 

time by nondeterministically assigning some values to the variables of the given 

expression and then evaluating the expression for such an assignment. Consequently, 

the problem is in NP.  

To show that the satisfiability problem is NP-hard, it is sufficient to demonstrate that 

each problem K in NP has a polynomially time-bounded, deterministic Turing 

transducer TK, such that TK reduces K to the satisfiability problem. For the purpose of 

the proof consider any problem K in NP. Assume that M = <Q, , , δ, q0, B, F> is a 

nondeterministic Turing machine with Q  (  {¢, $}) = Ø that decides K in T(n) 

= O(nk) time. Let m denote the number of auxiliary work tapes of M; then TK can be a 

Turing transducer that on input x outputs a Boolean expression Ex of the following 

form. 

 The Structure of Ex: The Boolean expression Ex describes how an accepting 

computation of M on input x should look. Ex is satisfiable by a given assignment if 

and only if the assignment corresponds to an accepting computation C0 C1 CT(|x|) 

of M on input x. The expression has the following structure, where t = T(|x|).  

Econf0 ˄...˄  Econft ˄  Einit ˄ Erule1 ˄...˄  Erulet ˄  Eaccept ˄  Efollow1˄...˄  Efollowt 

Econf0 ˄...˄  Econft states that an accepting computation consists of a sequence C0, ..., Ct 

of t + 1 configurations. Einit states that C0 is an initial configuration.  

Erule1 ˄...˄  Erulet states that an accepting computation uses a sequence Ψ of t transition 

rules. Eaccept states that the last transition rule in Ψ enters an accepting state. With no 

loss of generality it is assumed that a transition rule can also be "null", that is, a 

transition rule on which M can have a move without a change in its configuration. 

Such an assumption allows us to restrict the consideration only to computations that 

consist of exactly T(|x|) moves.  

Efollowi states that M by using the ith transition rule in Ψ reaches configuration Ci from 

configuration Ci-1, 1 ≤ i ≤ t.  

 The Variables of Ex: The Boolean expression Ex uses variables of the form wi,r,j,X and 

variables of the form wi,τ . Each variable provides a statement about a possible 
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property of an accepting computation. An assignment that satisfies Ex provides the 

value 1 to those variables whose statements hold for the computation in question, and 

provides the value 0 to those variables whose statements do not hold for that 

computation.  

wi,r,j,X states that X is the jth character of the rth tape in the ith configuration 0 ≤ r ≤ 

m. r = 0 refers to the input tape, and 1 ≤ r ≤ m refers to the rth auxiliary work tape. 

wi,τ states that τ is the transition rule in the ith move of the computation.  

 The Structure of Econfi : The expression Econfi is the conjunction of the following 

Boolean expressions.  

a.  ˅{ w i,0,j,X | X is in {¢, $} Q for 1 ≤ j ≤ |x| + 3.  

This expression states that a configuration has an input segment with |x| + 3 

entries, with each entry having at least one symbol from {¢, $} Q.  

b.  ˄{ ¬(w i,0,j,X ˄ wi,0,j,Y ) | X and Y are in {¢, $} Q and X ≠ Y } for 1 ≤ j ≤ |x| 

+ 3.  

This expression states that each entry in the input segment has at most one 

symbol.  

c.  ˅{ w i,r,j,X | X is in Q } for 1 ≤ r ≤ m and 1 ≤ j ≤ t + 1. 

This expression states that a configuration has m auxiliary work-tape 

segments, each segment having t + 1 entries, and each entry having at least 

one symbol from Q.  

d.  ˄{ ¬(w i,r,j,X ˄ wi,r,j,Y ) | X and Y are in Q and X ≠ Y } for 1 ≤ r ≤ m and 1 ≤ 

j ≤ t + 1. 

This expression states that each entry in an auxiliary work-tape segment has at 

most one symbol. 

Each assignment that satisfies the expressions in parts (a) and (b) above implies a 

string of length |x| + 3. The string corresponds to the input tape of M, and consists of 
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input symbols, end-marker symbols ¢ and $, and state symbols. In particular, the 

symbol X is at location j in the string if and only if w i,0,j,X is assigned the value 1.  

Similarly, each assignment that satisfies the expressions in parts (c) and (d) above for 

a specific value r, provides a string of length t + 1 that corresponds to the rth auxiliary 

work tape of M. The string consists of auxiliary work tape symbols and state symbols. 

In particular, the string consists of the symbol X at location j if and only if wi,r,j,X is 

assigned the value 1.  

 The Structure of Einit: The expression Einit is the conjunction of the following three 

Boolean expressions.  

a.  w0,0,1,q0 ˄ w0,0,2,q0 ˄{ w 0,0,j+2,aj | 1 ≤ j ≤ |x| }˄w0,0,|x|+3,$.  

This expression states that in the initial configuration the input segment 

consists of the string ¢q0a1 an$, where aj denotes the jth input symbol in x.  

b.  ˅{ w 0,r,j,q0 | 1 ≤j ≤t + 1 } for 1 ≤ r ≤ m.  

This expression states that in the initial configuration each auxiliary work-tape 

segment contains the initial state q0.  

c.  w0,r,j,B ˅  w0,r,j,q0 ˄{ w 0,r,s,B | 1 ≤ s ≤ t+1 and s  j } for 1 ≤ j ≤ t+1 and 1 ≤ r ≤ m.  

This expression states that in the initial configuration each auxiliary work-tape 

segment consists of blank symbols B and at most one appearance of q0. 

Each assignment that satisfies Einit corresponds to an initial configuration of M on 

input x. Moreover, each also satisfies Econf0.  

The Structure of Erulei and Eaccept : The expression Erulei is the conjunction of the 

following two Boolean expressions.  

a.   { w i,τ | τ is in δ}  

b.   { ¬(wi,τ 1 ˄ wi,τ 2) | τ1, τ2 are in δ and τ1≠τ2 }. 

The expression in part (a) implies, that for each assignment that satisfies Erulei, at least 

one of the variables wi,τ has the value 1. The expression in part (b) implies, that for 
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each assignment that satisfies Erulei, at most one of the variables wi,τ has a value 1. 

Hence, each assignment that satisfies Erulei assigns the value 1 to exactly one of the 

variables wi,τ , namely, to the variable that corresponds to the transition rule used in 

the ith move of the computation in question.  

The expression Eaccept is of the form ˅ { w t,τ | τ takes M into an accepting state }.  

The Structure of Efollowi: The expression Efollowi is the conjunction of the following 

Boolean expressions.  

a.  ˅ { (w i,0,j,X ˄ wi-1,0,j-1,Y ˄  wi-1,0,j,Z ˄ wi-1,0,j+1,W  ˄ wi,  ) | X, Y, Z, W, and τ such 

that X = f0(Y, Z, W, τ) } for 1 ≤ j ≤ |x| + 3.  

b.  ˅{ (w i,r,j,X ˄ wi-1,r,j-1,Y ˄  wi-1,r,j,Z ˄ wi-1,r,j+1,W ˄  wi,τ ) | X, Y, Z, W, and such that 

X = fr(Y, Z, W, τ) } for 1 ≤ r ≤ m and 1 ≤ j ≤ t + 1. 

Where, fr(Y, Z, W, τ) is a function that determines the replacement X for a symbol Z 

in a configuration, resulting from the application of the transition rule τ. 

Z is assumed to be enclosed between Y on its left and W on its right.  

wi-1,0,0,Y , ... , wi-1,m,0,Y , wi-1,0,|x|+4,W , wi-1,1,t+2,W , ... , wi-1,m,t+2,W are new variables. They 

are introduced to handle the boundary cases in which the symbol Z in fr(Y, Z, W, τ) 

corresponds to an extreme (i.e., leftmost or rightmost) symbol for a tape. 

If = (q, a, b1, ... , bm, p, d0, c1, d1, ... , cm, dm), then the value X of the function fr(Y, 

Z, W, τ) satisfies X = p whenever one of the following cases holds.  

a.  Z = q and dr = 0.  

b.  Y = q and dr = +1.  

c.  W = q and dr = -1. 

Similarly, X = cr whenever one of the following cases holds, 1 ≤ r ≤ m.  

a.  Z = q, W = br, and dr = +1.  

b.  Y = q, Z = br, and dr = 0.  

c.  Y = q, Z = br, and dr = -1. 

On the other hand,  
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a.  X = W whenever Z = q, r = 0, and d0 = +1.  

b.  X = Y whenever Z = q and dr = -1. 

In all the other cases X = Z because the head of the rth tape is "too far" from Z.  

The result now follows because TK on input x can compute t = T(|x|) in polynomial 

time and then output (the string that represents) Ex. 

• The 3-Satisfiability Problem:  A slight modification to the previous proof 

implies the NP-completeness of the following restricted version of the 

satisfiability problem.  

Definitions     A Boolean expression is said to be a literal if it is a variable or a 

negation of a variable. A Boolean expression is said to be a clause if it is a disjunction 

of literals. A Boolean expression is said to be in conjunctive normal form if it is a 

conjunction of clauses. A Boolean expression is said to be in k-conjunctive normal 

form if it is in conjunctive normal form and each of its clauses consists of exactly k 

literals. The k-satisfiability problem asks for any given Boolean expression in k-

conjunctive normal form whether the expression is satisfiable.  

With no loss of generality, in what follows it is assumed that no variable can appear 

more than once in any given clause.  

Theorem 2.    The 3-satisfiability problem is NP-complete.  

Proof     The expression Ex in the proof of Theorem 1 needs only slight modifications 

to have a 3-conjunctive normal form.  

a.  Except for the expressions Efollowi and part (c) of Einit, all the other expressions 

can be modified to be in conjunctive normal form by using the equivalence 

¬(w1 ˄ w2) (¬w1) ˅ (¬w2).  

b.  Each expression in Efollowi and part (c) of Einit can be modified to be in 

conjunctive normal form by using the equivalence w1 ˅ (w2 ˄ w3) (w1 ˅ w2) 

˄ (w1 ˅ w3).  

c.  Each disjunction w1 ˅ ... ˅  ws with s > 3 clauses can be modified to be in 3-

conjunctive normal form by repeatedly replacing sub-expressions of the form 
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w1 ˅ ... ˅  ws with sub-expressions of the form (w1 ˅ w2 ˅ w) ˄ (¬w ˅ w3 ˅ ... 

˅ ws), where the w's are new variables. 

� The proof of the Knapsack problem NP-hardness is as follows: 

Consider a Turing machine M that on any instance (a1, . . . , aN , b) of the problem 

assigns value from {0,1} to v1, . . . , vN non-deterministically. Accept the input if and 

only if a1v1+…+anvn=b. Therefore the 0-1 knapsack problem is in NP. 

In order to show that 0-1 knapsack problem is NP-hard, consider any given instance E 

of the 3-satisfiability problem. Let x1, …, xn indicate the variables in Boolean 

expression E. is a conjunction c1 ˄ ... ˄ck of some clauses c1, . . . , ck. Each Ci is a 

disjunction ci 1 ˅ ci 2 ˅ ci 3 of some literals ci 1, ci 2, ci 3. Each ci j is a variable xt, or a 

negation ¬xt of a variable xt, for some 1 ≤ t ≤ m. 

The following system S of linear equations is developed from Boolean expression E: 

x1 + 1 = 1   

     
xm + m = 1   

c1 1 + c1 2 + c1 3 + y1 1 + y1 2 = 3   

 
 

   

ck 1 + ck 2 + ck 3 +yk 1 +yk 2 = 3   

The variable xt in system S corresponds to the literal xt in E. The variable t in S 

corresponds to the literal t in E. ci j stands for the variable xt in S, if xt is the jth literal 

in Ci. ci j stands for the variable  t  in S, if  ¬xt is the jth literal in Ci. 

Each equation of the form xi + i = 1 has a solution over {0, 1} ⟺ either xi = 1 and i 

= 0, OR xi = 0 and i = 1. 

Each equation of the form ci 1 + ci 2 + ci 3 + yi 1 + yi 2 = 3 has a solution over {0, 1} ⟺ 

at least one of ci 1 = 1, ci 2 = 1, and ci 3 = 1 is satisfied. 

Therefore, system S has a solution over {0, 1} ⟺  the Boolean expression E is 

satisfiable. 

The vector form of system S is shown in the following: 
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The variables z1, …,z2m+2k stand for the variables x1, …,xm, 1 ,…, m and y11, …, yk2 

respectively. Aij is the coefficient zj in the ith equation of S. bi is the constant in the 

right-hand side of the ith equation in S.  

System S can be shown by the equation H: 

 (H) 

Each aj for the integer whose decimal representation is a1 j, ..., am+k j. In addition, b 

stands for the integer whose decimal representation is b1, ..., bm+k. The representation 

is possible because the sum ai 1 + ...+ ai 2m+2k is either equal to 2 or to 5 for each 1 ≤ i ≤ 

m+k. Which means that the ith digit in the sum c = a1 + ...+ a2m+2k depends only on 

the ith digits of a1, ... , a2m+2k. Thus, S is satisfiable over {0, 1} if and only if H is 

satisfiable over {0, 1}.  

Therefore, instance E of the 3-satisfiability problem is satisfiable ⟺ instance (a1, … , 

a2m+2k, b) of the 0 - 1 knapsack problem has a positive solution. 

Furthermore, a polynomially time-bounded, deterministic Turing transducer can 

similarly construct corresponding instance of the 0 - 1 knapsack problem, from each 

instance E of the 3-satisfiability problem. As a result, the NP-hardness of the 0 - 1 

knapsack problem follows from the NP-hardness of the 3-satisfiability problem.” 

(http://www.cse.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese4.html#Q1-60004-

22) 
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