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Abstract

A linear conic optimization problem consists of the minimization of a linear objective

function over the intersection of an affine space and a closed convex cone. In recent

years, linear conic optimization has received significant attention, partly due to the

fact that we can take advantage of linear conic optimization to reformulate and

approximate intractable optimization problems. Steady advances in computational

optimization have enabled us to approximately solve a wide variety of linear conic

optimization problems in polynomial time. Nevertheless, preprocessing methods,

rounding procedures and sensitivity analysis tools are still the missing parts of conic

optimization solvers. Given the output of a conic optimization solver, we need

methodologies to generate approximate complementary solutions or to speed up the

convergence to an exact optimal solution. A preprocessing method reduces the size

of a problem by finding the minimal face of the cone which contains the set of feasible

solutions. However, such a preprocessing method assumes the knowledge of an exact

solution. More importantly, we need robust sensitivity and post-optimal analysis

tools for an optimal solution of a linear conic optimization problem. Motivated by

the vital importance of linear conic optimization, we take active steps to fill this

gap.

This thesis is concerned with several aspects of a linear conic optimization problem,

from algorithm through solution identification, to parametric analysis, which have

1



not been fully addressed in the literature. We specifically focus on three special

classes of linear conic optimization problems, namely semidefinite and second-order

conic optimization, and their common generalization, symmetric conic optimiza-

tion. We propose a polynomial time algorithm for symmetric conic optimization

problems. We show how to approximate/identify the optimal partition of semidefi-

nite optimization and second-order conic optimization, a concept which has its origin

in linear optimization. Further, we use the optimal partition information to either

generate an approximate optimal solution or to speed up the convergence of a solu-

tion identification process to the unique optimal solution of the problem. Finally, we

study the parametric analysis of semidefinite and second-order conic optimization

problems. We investigate the behavior of the optimal partition and the optimal set

mapping under perturbation of the objective function vector.
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Chapter 1

Introduction

In this chapter, we lay the groundwork for our contributions. We provide the prelim-

inary concepts for linear conic optimization (LCO), duality, optimality, nondegen-

eracy and second-order sufficient conditions. We then narrow down our attention to

three special cases of LCO, i.e., symmetric conic optimization (SCO), semidefinite

optimization (SDO), and second-order conic optimization (SOCO). We introduce

the concept of the optimal partition for LCO, SDO and SOCO, and highlight its

application in rounding procedures. Finally, we review some classical results for the

sensitivity and the stability of nonlinear optimization (NLO) problems.

1.1 Definitions and notation

For LCO and facial description of a closed convex cone, we use the terminology

from [25] and [131]. Throughout this thesis, int(.) and ri(.) stand for the interior and

relative interior of a set, respectively, span(.) denotes the linear span of a set, i.e.,

the minimal subspace of V which contains the set, cl(.) is the closure of a set, bd(.)

denotes the boundary of a set, and Ker(.) and R(.) serve as the kernel and the

3



range of a linear transformation.

General notations: Let V be a finite dimensional real vector space endowed with

an inner product 〈., .〉. We define a cone as a set D so that if x ∈ D, then λx ∈ D

for all λ ≥ 0. Let K ⊆ V be a closed convex cone. Then, the dual cone of K is

defined as

K∗ := {s : 〈x, s〉 ≥ 0, for all x ∈ K}.

The cone K is called self-dual if K = K∗. The cone K is called proper if it is pointed,

i.e., x,−x ∈ K implies x = 0, and if int(K) 6= ∅. The convex cone K is referred to as

a homogeneous cone if for every x, s ∈ int(K), there exists an invertible linear map

A so that A(x) = s and A(K) = K. The cone K is symmetric if it is both self-dual

and homogeneous.

• Let V = Sn be the vector space of symmetric matrices endowed with the inner

product

〈X,S〉 := Trace(XS), ∀X,S ∈ Sn,

in which

X :=


X11 X12 . . . X1n

X12 X22 . . . X2n

...
...

. . .
...

Xn1 Xn2 . . . Xnn


is a symmetric matrix with real entries, and S is defined analogously. The

positive semidefinite cone is defined as

Sn+ :=
{
X ∈ Sn | λmin(X) ≥ 0

}
,

where λmin(X) denotes the minimum eigenvalue of X.
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• Let V = Rn endowed with the inner product

〈x, s〉 := xT s, ∀x, s ∈ Rn,

and the Euclidean norm ‖.‖2 :=
√
〈., .〉. The second-order cone, or Lorentz

cone, is defined as

Ln+ :=
{
x := (x1, . . . , xn)T ∈ Rn | x1 ≥ ‖x2:n‖2

}
.

Both the positive semidefinite cone and second-order cone are symmetric.

Within the realm of Euclidean Jordan algebra, see Section A.1, the Frobenius norm

of x ∈ V, induced by the inner product, is denoted by ‖x‖F :

‖x‖F :=
√
〈x, x〉.

In case that V = Rn, then ‖.‖F reduces to the l2 norm. If V = Rm×n, then ‖.‖F
indicates the Frobenius norm of a matrix. For a matrix A ∈ Rm×n, ‖.‖2 stand for

the induced 2-norm (spectral norm):

‖A‖2 := max
x∈Rn
‖x‖2=1

‖Ax‖2.

Additionally, σmin(A) denotes the smallest singular value of A:

σmin(A) :=


√
λmin(AAT ), m ≤ n,√
λmin(ATA), m > n.

For a set D ⊆ V, D⊥ denotes the orthogonal complement of the linear span of D.

Let D be a nonempty convex set. A face F of D, denoted by F E D, is defined as

a nonempty convex subset of D such that if x1, x2 ∈ D and αx1 + (1 − α)x2 ∈ F

for some 0 < α < 1, then we have x1, x2 ∈ F , see e.g., Section 18 in [147]. Let F

5



be a face of a closed convex cone K. Then the conjugate face of F is defined as

F4 := F⊥ ∩ K∗ = {x̂}⊥ ∩ K∗ for some x̂ ∈ ri(F), i.e.,

F4 :=
{
s ∈ K∗ | 〈x̂, s〉 = 0

}
, (1.1)

where F4 E K∗. A face F of K is called exposed if F = K∩ {s}⊥ for some s ∈ K∗.

If every face of K is exposed, then K is referred to as a facially exposed cone, see

Section 2.2 in [25]. For a convex set D ⊆ K, the minimal face of K containing D is

denoted by FD, and it is defined as

FD :=
⋂
{F | F E K, D ⊆ F}.

For a convex set D, the set of feasible directions at a given point x ∈ D is defined

as

dir(x,D) := {d ∈ V | x+ td ∈ D, for some t > 0}.

Using the set of feasible directions we can define the tangent space as

tan(x,D) := cl(dir(x,D)) ∩ − cl(dir(x,D)). (1.2)

Notations for SDO: For a symmetric matrix X ∈ Sn, λ[i](X) denotes the ith

largest eigenvalue of X so that

λ[1](X) ≥ λ[2](X) ≥ . . . ≥ λ[n](X).

Thus, λmax(X) := λ[1](X), λmin(X) := λ[n](X), and Λ(X) denotes the diagonal ma-

trix of the eigenvalues of X. For X, svec : Sn → Rn(n+1)/2 is a linear transformation

which multiplies the off-diagonal entries of a symmetric matrix by
√

2 and stacks

the upper triangular part into a vector, i.e.,

svec(X) :=
(
X11,

√
2X12, . . . ,

√
2X1n, X22,

√
2X23, . . . ,

√
2X2n, . . . , Xnn

)T
.
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We also define vec : Rm×n → Rmn as the concatenation of the columns of a matrix.

The symmetric Kronecker product of any two square matrices K1 and K2 is defined

as a mapping

(K1 ⊗s K2) svec(X) :=
1

2
svec

(
K2XK

T
1 +K1XK

T
2

)
.

See e.g., [32] for more details. By dist(S1,S2) we mean the distance between two

subspaces S1 and S2 of Rn having the same dimension, which is defined as

dist(S1,S2) :=
∥∥ProjS1

−ProjS2

∥∥
2
,

where ProjS1
and ProjS2

are the orthogonal projections onto the subspaces S1 and

S2, respectively, see Section 2.5.3 in [62].

Notations for SOCO: We adopt the notation (.; .; . . . ; .) and (., ., . . . , .) to indicate

the concatenation and side by side arrangement of column vectors, respectively. For

any solution x ∈ Rn we define the minimum eigenvalue as

λmin(x) := x1 − ‖x2:n‖2.

Let Ai ∈ Rm×ni for i = 1, . . . , p and I ⊆ {1, . . . , p} be an index set. Then |I| denotes

the cardinality of I, and both (Ai)i∈I and AI represent the matrix composed by

matrices Ai for i ∈ I.

1.2 Linear conic optimization (LCO)

Following the generalization of interior point methods (IPMs) to convex optimiza-

tion, LCO, as a special case, has received special attention. An LCO problem opti-

mizes a linear objective function over a closed convex cone K ⊆ V intersected with

affine constraints. Mathematically speaking, a pair of primal-dual LCO problems is

7



written as

(PLCO) z∗PLCO
:= min

x
{〈c, x〉 | Ax = b, x ∈ K},

(DLCO) z∗DLCO
:= max

y,s

{
bTy | A∗y + s = c, s ∈ K∗

}
,

where c ∈ V, b ∈ Rm, A : V → Rm is a linear transformation and A∗ denotes its

adjoint. A primal-dual optimal solution of LCO, if there exists any, is denoted by

(x̃, ỹ, s̃).

Assumption 1.2.1. The linear transformation A is surjective.

The duality gap is defined as the difference between z∗PLCO
and z∗DLCO

. It directly

follows from the primal and dual formulations of LCO that, for any primal-dual

feasible pair (x, y, s) the objective value of (PLCO) is greater than or equal to the

objective value of (DLCO), since

〈c, x〉 − bTy = 〈A∗y + s, x〉 − bTy = 〈x, s〉 ≥ 0.

This is so called the weak duality property.

Theorem 1.2.1 (Weak Duality Theorem). For any primal-dual feasible solution

(x, y, s) we have 〈c, x〉 ≥ bTy. In particular, z∗PLCO
≥ z∗DLCO

. If 〈c, x〉 = bTy, then

(x, y, s) is a primal-dual optimal solution.

In contrast to linear optimization (LO), there might be a positive duality gap at

optimality for LCO, and/or the primal/dual optimal value may not be attained.

Strong duality holds for (PLCO) and (DLCO) if z∗PLCO
= z∗DLCO

, and the optimal value

of (PLCO) and (DLCO) are attained. The following lemma is in order.

Lemma 1.2.1. For the LCO problems (PLCO) and (DLCO), (x, y, s) satisfies

Ax = b, x ∈ K,

A∗y + s = c, s ∈ K∗,

〈x, s〉 = 0.

(1.3)
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if and only if x is an optimal solution for (PLCO) and (y, s) is an optimal solution

for (DLCO), and z∗PLCO
= z∗DLCO

.

Proof. The proof is immediate from the Weak Duality Theorem and (1.3).

Let PLCO and DLCO be the primal and dual feasible sets of LCO as defined below

PLCO :=
{
x | Ax = b, x ∈ K},

DLCO :=
{

(y, s)
∣∣ A∗y + s = c, s ∈ K∗

}
.

Furthermore, let P∗LCO and D∗LCO denote the primal and dual optimal sets, respec-

tively. The next theorem provides sufficient conditions under which strong duality

holds and P∗LCO,D∗LCO 6= ∅.

Definition 1.2.1. Interior point condition is said to hold if there exists a primal-

dual feasible solution (x◦, y◦, s◦) so that x ∈ int(K) and s ∈ int(K∗).

The interior point condition is standard in the literature of IPMs for linear and conic

optimization [151].

Theorem 1.2.2 (Theorem 2.4.1 in [14], Theorem 5.81 in [23]). Suppose that the

interior point condition holds. Then strong duality holds, i.e, the duality gap is

zero, and both primal and dual optimal solutions are attained. Furthermore, both

P∗LCO and D∗LCO are compact sets.

If K is a proper cone, then the interior point condition for both primal and dual

problems can be checked using a theorem of the alternative, as stated in the following

theorem, see also Corollary 2 in [105].

Theorem 1.2.3 (Theorems 3.3.10 and 3.3.11 in [25]). Suppose that K is a proper

cone and (DLCO) is feasible. Then (DLCO) fails the interior point condition if and
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only if the system

Ax = 0,

〈c, x〉 = 0,

x ∈ K,

has a nonzero solution. In a similar fashion, assume that (PLCO) is feasible. Then

(PLCO) fails the interior point condition if and only if the system

A∗y ∈ K∗,

A∗y 6= 0,

bTy = 0,

has a solution.

In order to guarantee zero duality gap and attainment of the optimal values, we

make the following assumption throughout this paper:

Assumption 1.2.2. The interior point condition holds for both (PLCO) and (DLCO).

As a result of Assumption 1.2.2, all (x, y, s) ∈ P∗LCO × D∗LCO satisfy (1.3). The

condition 〈x, s〉 = 0 in (1.3) is the optimality condition.

Definition 1.2.2. A primal-dual optimal solution (x∗, y∗, s∗) ∈ P∗LCO × D∗LCO is

called maximally complementary if

x∗ ∈ ri(P∗LCO), and (y∗, s∗) ∈ ri(D∗LCO).

A maximally complementary optimal solution (x∗, y∗, s∗) is called strictly comple-

mentary if

x∗ ∈ ri
(
{s∗}⊥ ∩ K

)
, or s∗ ∈ ri

(
{x∗}⊥ ∩ K∗

)
.
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This is equivalent to

F4s∗ = Fx∗ , or F4x∗ = Fs∗ .

In this thesis, any maximally complementary optimal solution is indicated by su-

perscript ∗.

1.2.1 Symmetric conic optimization (SCO)

When K is a symmetric cone, then LCO problem reduces to a SCO problem. Note

that K = K∗ by the definition of a symmetric cone. In fact, SCO includes LO,

SOCO, and SDO along with their complex variants, see Theorem A.1.2.

We define a bilinear map x ◦ s as

x ◦ s := L(x)s. (1.4)

which is called Jordan product, and it is characterized by a symmetric matrix L(x),

see Definition A.1.1. Then, by Theorem 1.2.2 and [44], (x, y, s) is an optimal solution

to the primal and dual SCO problems if and only if (x, y, s) satisfies

Ax = b, x ∈ K,

A∗y + s = c, s ∈ K,

x ◦ s = 0,

(1.5)

where x ◦ s = 0 denotes the complementarity condition. The primal and dual SCO

problems are referred to as (PSCO) and (DSCO), respectively.

1.2.2 Semidefinite optimization (SDO)

SDO is known as a generalization of LO, where the nonnegative orthant is sub-

stituted by the cone of symmetric positive semidefinite matrices. In SDO, one
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minimizes/maximizes the linear objective function

〈C,X〉 := Trace(CX),

where C and X are n× n symmetric matrices, over the intersection of the positive

semidefinite cone and a set of affine constraints. Mathematically, an SDO problem

is written as

(PSDO) min
{
〈C,X〉 | 〈Ai, X〉 = bi, i = 1, . . . ,m, X � 0

}
,

where Ai for i = 1, . . . ,m are n × n symmetric matrices, b ∈ Rm, and X ∈ Sn+.

Alternatively, X � 0 indicates that X is positive semidefinite. The dual SDO

problem is given by

(DSDO) max

{
bTy |

m∑
i=1

yiA
i + S = C, S � 0, y ∈ Rm

}
.

Let PSDO and DSDO denote the primal and dual feasible sets, respectively. In light

of this notation, the primal and dual optimal sets are denoted by P∗SDO and D∗SDO,

respectively. Note that (PSDO) and (DSDO) can be represented in an LCO format if

we define

As :=
(

svec(A1), . . . , svec(Am)
)T
.

Then the primal and dual problems can be rephrased as

min
{

svec(C)T svec(X) | As svec(X) = b, X � 0
}
,

max
{
bTy | (As)Ty + svec(S) = svec(C), S � 0, y ∈ Rm

}
.

An optimal solution of SDO is denoted by (X̃, ỹ, S̃). The surjective assumption

for the linear map A reduces to the linear independence of the matrices Ai for

i = 1, . . . ,m. Analogous to LCO case, it is assumed that the interior point con-

dition holds, i.e., there exists (X◦, y◦, S◦) ∈ PSDO × DSDO with X◦, S◦ � 0, where
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� 0 means positive definite. The linear independence of Ai guarantees that y is

uniquely determined for a given dual solution S, and the interior point condition

ensures that the strong duality holds and that both the primal and dual optimal

sets are compact. The interior point condition may be assumed w.l.o.g., since any

SDO problem can be cast into a self-dual embedding format, for which the interior

point condition always holds, see [34] for details.

SDO problems are frequently used in many applications, e.g., control theory, struc-

tural optimization, statistics, robust optimization, eigenvalue optimization, pattern

recognition, and combinatorial optimization, see [4, 77, 172, 177] for a detailed de-

scription of the problems which can be represented as an SDO problem.

Since the interior point condition holds, the system of optimality conditions for PSDO

and DSDO is a special case of (1.5) which is given by

〈Ai, X〉 = bi, i = 1, . . . ,m,

m∑
i=1

Aiyi + S = C,

XS = 0, X, S � 0,

(1.6)

where XS = 0 is referred to as the complementarity condition. A solution (X, y, S)

which satisfies XS = 0 is called complementary. In a similar fashion, the definitions

of strict and maximal complementarity can be specialized for PSDO and DSDO from

Definition 1.2.2.

Definition 1.2.3 (Definition 2.7 in [32]). A primal-dual optimal solution (X∗, y∗, S∗) ∈

P∗SDO × D∗SDO is called maximally complementary if X∗ ∈ ri(P∗SDO) and (y∗, S∗) ∈

ri(D∗SDO). A maximally complementary optimal solution (X∗, y∗, S∗) is called strictly

complementary if X∗ + S∗ � 0.

The strict complementarity condition holds for PSDO and DSDO if there exists a

strictly complementary optimal solution. Note that strict complementarity may
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fail in SDO, i.e., an SDO problem might have no strictly complementary optimal

solution.

Example 1.2.1. Consider the following SDO problem from [6]:

A1 =


1 0 0

0 0 0

0 0 0

 , A2 =


0 0 1

0 1 0

1 0 0

 , A3 =


0 1 0

1 0 0

0 0 1

 ,

C =


0 0 0

0 0 0

0 0 1

 , b = (1, 0, 0)T .

The problem has the unique optimal solution

X∗ =


1 0 0

0 0 0

0 0 0

 , y∗ = (0, 0, 0)T , S∗ =


0 0 0

0 0 0

0 0 1

 .

which is not strictly complementary.

In light of Lemma 4 in [11], a maximally complementary optimal solution can be

equivalently defined as a primal-dual solution for which rank(X∗ + S∗) is maximal

over the optimal set. As a result, all X∗ ∈ ri(P∗SDO) have the same range space.

Analogously, all S∗ have identical range spaces, where (y∗, S∗) ∈ ri(D∗SDO), see e.g.,

Lemma 2.3 in [32] or Lemma 3.1 in [58].

1.2.3 Second-order conic optimization (SOCO)

SOCO problems minimize a linear objective function over the intersection of an

affine space and Cartesian product of p second-order cones of dimension ni, i.e.,

Ln̄+ := Ln1
+ × . . .× Lnp+ , n̄ :=

p∑
i=1

ni,
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where

Lni+ =
{
xi := (xi1, . . . , x

i
ni

)T ∈ Rni | xi1 ≥ ‖xi2:ni
‖2

}
, i = 1, . . . , p. (1.7)

The primal and dual SOCO problems in standard form are represented as

(PSOCO) min
{
cTx | Ax = b, x ∈ Ln̄+

}
,

(DSOCO) max
{
bTy | ATy + s = c, s ∈ Ln̄+

}
,

where b ∈ Rm, A := (A1, . . . , Ap)
1, x := (x1; . . . ;xp), s := (s1; . . . ; sp), and c :=

(c1; . . . ; cp), in which Ai ∈ Rm×ni , si ∈ Rni , and ci ∈ Rni for i = 1, . . . , p. Notice

that x, s, and c are concatenation of the column vectors xi, si, and ci, respectively.

An optimal solution of SOCO, if there exists any, is denoted by (x̃; ỹ; s̃).

A wide range of applications in engineering, control, robust optimization, and com-

binatorial optimization can be modeled as SOCO problems, see e.g., [5, 100] for the

applications of SOCO.

From an algebraic point of view, SOCO can be embedded in an SDO problem using

the following equivalence between a second-order cone and a positive semidefinite

cone:

L(xi) :=

 xi1 (xi2:ni
)T

xi2:ni
xi1Ini−1

 � 0 ⇔ xi ∈ Lni+ ⇔ (xi)TRix
i ≥ 0, xi1 ≥ 0, (1.8)

where Ri is an ni × ni diagonal matrix given by

Ri := diag
(
1, −1, . . . ,−1

)
. (1.9)

The surjective assumption for the linear map A for LCO is equivalent to a full

row rank A matrix. Further, by the interior point condition, there exists a feasible

1The reader should differentiate the rectangular matrix A in (PSOCO) from the linear transfor-

mation A for LCO and the symmetric matrix Ai defined for SDO.
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solution (x◦; y◦; s◦) such that for all i = 1, . . . , p we have (x◦)i, (s◦)i ∈ int(Lni+ ),

where

int(Lni+ ) :=
{
xi ∈ Rni | xi1 > ‖xi2:ni

‖2

}
, i = 1, . . . , p.

As a result, at optimality the duality gap is zero, and the optimal value of (PSOCO)

as well as that of (DSOCO) is attained. Since strong duality holds, the optimal set

for (PSOCO) and (DSOCO) can be represented as

Ax = b, x ∈ Ln̄+,

ATy + s = c, s ∈ Ln̄+,

x ◦ s = 0,

(1.10)

in which x ◦ s = 0 denotes the complementarity condition, where

x ◦ s := (x1 ◦ s1; . . . ;xp ◦ sp),

and the Jordan product is defined as

xi ◦ si = L(xi)si = L(si)xi =

 (xi)T si

xi1s
i
2:ni

+ si1x
i
2:ni

 , i = 1, . . . , p, (1.11)

as demonstrated in Example A.1.1. Any solution (x; y; s) satisfying x◦s = 0 is called

complementary. Let P∗SOCO and D∗SOCO denote the primal and dual optimal sets,

respectively. By the interior point condition, both P∗SOCO and D∗SOCO are nonempty

and compact.

In light of Lemma 7 in [21] and Definition 1.2.2, the concepts of strict and maximal

complementarity can be specialized for SOCO.

Definition 1.2.4 (Definition 23 in [5], Definition 5 in [21]). Let (x∗; y∗; s∗) ∈

P∗SOCO ×D∗SOCO. Then (x∗; y∗; s∗) is called strictly complementary if

x∗ + s∗ ∈ int(Ln̄+).
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An optimal solution (x∗; y∗; s∗) is called maximally complementary if x∗ ∈ ri(P∗SOCO)

and (y∗; s∗) ∈ ri(D∗SOCO).

Equivalently, a primal-dual optimal solution (x∗; y∗; s∗) is maximally complemen-

tary if x∗+ s∗ has maximal number of second-order cones i for which (x∗)i + (s∗)i ∈

int(Lni+ ). Under the interior point condition, a primal-dual maximally complemen-

tary optimal solution always exists for (PSOCO) and (DSOCO), but a strictly comple-

mentary optimal solution may not exist.

1.3 Nondegeneracy conditions for LCO

In this section, we briefly review the nondegeneracy conditions for LCO from [131].

The nondegeneracy conditions for SDO, SOCO, and SCO have been studied in [6, 8,

45]. The nondegeneracy conditions for nonlinear SDO have been worked out in [23].

Using the facial description of the feasible set, we can define the primal and dual

nondegeneracy conditions for LCO. Recall that Fx denotes the minimal face of the

corresponding cone which contains {x}. The same is analogously defined for s.

Definition 1.3.1. Let (x, y, s) be a primal-dual feasible solution for (PLCO) and

(DLCO). Then x satisfies primal nondegeneracy condition if span(F4x ) ∩ R(A∗) =

{0}. Furthermore, (y, s) satisfies the dual nondegeneracy condition if span(F4s ) ∩

Ker(A) = {0}.

It is easy to verify that the primal nondegeneracy condition is equivalent to

(F4x )⊥ + Ker(A) = V. (1.12)

The concept of primal nondegeneracy simply means that the tangent spaces at a

solution x to the primal feasible set and the cone K span V. In a similar manner,
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we can show that the dual nondegeneracy condition can be equivalently written as

(F4s )⊥ +R(A∗) = V. (1.13)

Assume that the interior point condition holds for (PLCO) and (DLCO). The next the-

orem states the relationship between nondegeneracy conditions and the uniqueness

of the optimal solution.

Theorem 1.3.1. Let (x̄, ȳ, s̄) be a primal-dual optimal solution. If x̄ is primal

nondegenerate, then (ȳ, s̄) is a unique dual optimal solution. Similarly, if (ȳ, s̄) is

a nondegenerate dual optimal solution, then x̄ is a unique primal optimal solution.

If (x̄, ȳ, s̄) is a strictly complementary optimal solution, then the converse of both

statements are true.

The primal or dual nondegeneracy condition is not necessary for the existence of a

unique dual or primal optimal solution, respectively, see Example 5.92 in [23].

1.3.1 Nondegeneracy conditions for SDO

The expression (1.12) can be specialized for (PSDO) by noting that
(

span(F4X )
)⊥

=

(F4X )⊥, and that Sn+ is a nice cone, see (1.2) and Lemma 3.2.1 in [131]. Then we get

(F4X )⊥ = tan(X, Sn+).

Therefore, X ∈ PSDO is primal nondegenerate if

tan(X, Sn+) + Ker(A) = Sn.

Similarly, (y, S) ∈ DSDO is dual nondegenerate if

tan(S,Sn+) +R(A∗) = Sn,
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where A is a linear transformation analogously defined for SDO.

The tangent spaces of X and S can be characterized using their spectral decompo-

sition. Let (X, y, S) ∈ PSDO ×DSDO be a primal-dual feasible solution as

X := MΛ(X)MT , S := NΛ(S)NT ,

where nX := rank(X) and nS := rank(S), and M ∈ Rn×n and N ∈ Rn×n are

orthogonal matrices. Note that M and N might be non-unique up to the sign of

their columns. Let M := (M1, M2) and N := (N1, N2) where M1 corresponds to the

nX positive eigenvalues of X and N2 is associated with the nS positive eigenvalues

of S. Then the tangent space to the cone of positive semidefinite matrices at X is

represented by

tan(X, Sn+) :=

{
M

 U V

V T 0

MT : U ∈ SnX , V ∈ RnX×(n−nX)

}
.

Analogously, the tangent space to the cone of positive semidefinite matrices at (y, S)

is given by

tan(S,Sn+) :=

{
N

 0 V

V T W

NT : W ∈ SnS , V ∈ R(n−nS)×nS

}
.

Then the algebraic definition of a tangent space to the cone of Sn can be employed

to characterize more convenient conditions for primal and dual nondegeneracy of a

feasible solution.

Lemma 1.3.1 (Theorems 6 and 9 in [6]). Let (X, y, S) ∈ PSDO×DSDO be a primal-

dual feasible solution. Then X is primal nondegenerate if and only if the matricesMT
1 A

iM1 MT
1 A

iM2

MT
2 A

iM1 0

 , i = 1, . . . ,m,
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are linearly independent in Sn. A dual feasible solution (y, S) is dual nondegenerate if

and only if the matrices

NT
1 A

iN1, i = 1, . . . ,m

span Sn−rank(S).

In case that M or N is non-unique, then any orthogonal matrix of X or S can be

used to check the nondegeneracy of the feasible solution.

1.3.2 Nondegeneracy conditions for SOCO

Using the definition (1.12) and the niceness property of the second-order cone,

the primal and dual nondegeneracy conditions can be specialized for (PSOCO) and

(DSOCO), as presented in [5, 8]. A primal feasible solution x is nondegenerate if

tan(x1,Ln1
+ )× . . .× tan(xp,Lnp+ ) + Ker(A) = Rn̄. (1.14)

Analogously, a dual feasible solution (y, s) is nondegenerate if

tan(s1,Ln1
+ )× . . .× tan(sp,Lnp+ ) +R(AT ) = Rn̄. (1.15)

Depending on xi, the tangent space tan(xi,Lni+ ) has different characterization. If

xi = 0, then tan(xi,Lni+ ) = {0}, and for xi ∈ int(Lni+ ), we have tan(xi,Lni+ ) = Rni .

Finally, for xi ∈ bd(Lni+ ) \ {0} the tangent space is the orthogonal complement of

the minimal face of Lni+ which contains Rix
i, where Ri is defined in (1.9). From the

spectral decomposition (A.1), we can realize that xi := λi2p
i
2, where pi2 corresponds

to λi2 the positive eigenvalue of xi and {pi1, pi2} denotes a Jordan frame. Hence, for

any xi ∈ bd(Lni+ ) \ {0} we have

tan(xi,Lni+ ) =
{
d | (pi1)Td = 0

}
.
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The tangent space for si is defined analogously.

The existence of a primal (dual) nondegenerate optimal solution implies the unique-

ness of the dual (primal) optimal solution. If the strict complementarity condition

holds, then the converse is true as well, see Theorem 22 in [5]. This is a special case

of Theorem 1.3.1.

1.4 IPMs and central path for SCO

In recent years, IPMs have been effectively tailored to solve SCO problems. The

first idea of IPMs goes back to the work of Frisch [51] who suggested using log-

arithmic barrier functions in LO. Then, IPMs were extensively studied for NLO

problems in the 1960’s by Fiacco and McCormick [47]. Karmarkar revived the in-

terest in IPMs by his polynomial-time algorithm for LO [92]. The extension of

IPMs from LO to SDO was done independently by Alizadeh [4] and Nesterov and

Nemirovskii [123]. Nesterov and Nemirovskii [123] proved that the theoretical effi-

ciency of IPMs is maintained when a so-called self-scaled cone (which is identical

to a symmetric cone [69]) replaces the nonnegative orthant, see also [140]. Many

variants of IPMs have been introduced for SDO based on how the search direc-

tion and the neighborhood of the central path is defined. To name a few, we can

mention the AHO [7], HRVW/KSH/M [78, 95, 120] and the Nesterov-Todd (NT)

search directions [124, 125]. A search direction using a least squares solution of

an overdetermined system was proposed by Kruk et al. [98]. de Klerk et al. [33]

showed that a scaling scheme can be used to prove the polynomial time convergence

of Gauss-Newton method.

The study of primal-dual IPMs for SCO problems was introduced by Nesterov and
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Todd [124, 125] for LO problems over self-scaled cones. Faybusovich [44, 46] in-

voked Euclidean Jordan algebras to analyze a variety of search directions for SCO.

Sturm [168, 169] established the underlying theory of his SeDuMi software in the con-

text of Euclidean Jordan algebras. Schmieta [153] and Schmieta and Alizadeh [154–

156] used the Euclidean Jordan algebraic framework to extend the analysis of the

Monteiro-Zhang family [186] to all symmetric cones. Rangarajan [139] and Gu et

al. [67] applied the Euclidean Jordan algebras in their analysis of infeasible IPMs.

Tsuchiya [173, 174] studied various search directions of IPMs for SOCO using a Jor-

dan algebra, see also [1, 8, 119]. For an excellent survey of IPMs for LO, SDO and

SOCO, see [118, 121, 134, 136]. Further details on the application of Newton-type

methods in IPMs can be found in Gonzaga [63] and Hertog [37].

Primal-dual path-following IPMs deal with a relaxation of (1.5) by replacing the

complementarity condition by x ◦ s = µe with µ > 0 as given below

Ax = b, x ∈ int(K),

A∗y + s = c, s ∈ int(K),

x ◦ s = µe,

(1.16)

where x ◦ s = µe is called the centrality condition, and e denotes the identity

element, see the beginning part of Appendix A.1. Assuming that the interior point

condition holds and A is surjective, for all µ > 0 this system of equations has a

unique solution (xµ, yµ, sµ), which is called a central solution. The trajectory of the

central solutions is known as the central path of an LCO problem [44]. Notice that

at a central solution we have

〈xµ, sµ〉 := Trace(xµ ◦ sµ) = Trace(µe) = rµ,

where r denotes the order of the symmetric cone K, see Theorem A.1.1. For SDO

and SOCO, r is equal to n and 2p, respectively. Applying the Newton method to
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the system (1.16) gives

A∆x = 0,

A∗∆y + ∆s = 0,

x ◦∆s+ s ◦∆x = µe− x ◦ s.

(1.17)

Note that even if x ∈ int(K) and s ∈ int(K), the system (1.17) is not necessarily well-

defined. For instance, the coefficient matrix in SOCO case might be singular [134].

An effective way to get around this problem is to scale (PSCO) and (DSCO) to project

x and s on the same point. This is known as the NT scaling scheme [124, 125] which

is as follows. For strictly feasible solutions x and s, there exists a unique w ∈ int(K)

so that [46]

v := P
− 1

2
w x = P

1
2
w s, (1.18)

where Pw := 2L(w2) − L(w)2 is called the quadratic representation of w, see the

beginning part of the Appendix A.1, and w itself is defined as

w :=

[
P
s−

1
2
(P

s
1
2
x)

1
2

]− 1
2

=

[
P
x

1
2
(P

x
1
2
s)−

1
2

]− 1
2

. (1.19)

It follows from (1.19) and Lemma A.1.5 that x, s ∈ int(K) implies w ∈ int(K), and

the latter implies non-singularity of Pw. Thus, Lemma A.1.5 implies that v ∈ int(K).

Now, by Part 2 of Lemma A.1.1 and using simple algebraic manipulations, we can

verify that the scaled Newton system is given by

Ādx = 0,

Ā∗∆y + ds = 0,

dx + ds = µv−1 − v,

(1.20)

where

dx := P
− 1

2
w ∆x,

ds := P
1
2
w∆s,

Ā := AP
1
2
w .

(1.21)
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Note that dx and ds belong to the null space and row space of Ā, respectively. All

this implies that the Newton system (1.20) uniquely determines dx and ds as the

orthogonal components of µv−1−v. The duality gap for the scaled problem is given

by

〈x, s〉 = Trace(x ◦ s) = Trace(P
1
2
w v ◦ P

− 1
2

w v) = Trace(v2) = ‖v‖2
F .

1.4.1 The central path for SDO

Analogous to LO, SDO problems can be solved in polynomial time using IPMs,

though they require significantly more computational effort per iteration. From (1.16),

the central path for SDO is simplified to the set of solutions of

〈Ai, X〉 = bi, i = 1, . . . ,m,

m∑
i=1

Aiyi + S = C,

XS = µIn,

X, S � 0,

(1.22)

where XS = µIn is called the centrality condition, and In denotes the identity

matrix of size n. For any given µ > 0, the central solution (Xµ, yµ, Sµ) to this

system exists, and it is uniquely defined under the interior point condition and

the linear independence of Ai for i = 1, . . . ,m, see Theorem 3.1 in [32]. It readily

follows from the centrality condition that Xµ and Sµ commute, and thus they have a

common eigenvector basis. For 0 ≤ µ ≤ µ̄, where µ̄ > 0, the set of solutions of (1.22)

is bounded, see Lemma 3.2 in [32], and the trajectory of the central solutions has

accumulation points in the relative interior of the optimal set, see e.g., Theorem 3.4

in [32]. A proof was given by [76] for the fact that the central path converges to a

maximally complementary optimal solution.
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The analyticity and limiting behavior of the central path for SDO have been exten-

sively studied in the literature, see [2, 68, 74, 162, 163] for the analyticity results

of LO and LCP. Luo et al. [106] established the superlinear convergence of an IPM

for SDO under the strict complementarity condition and a condition for the size of

the neighborhood of the central path. The convergence of the central path to the

so called analytic center of the optimal set was established by Luo et al. [106] and

de Klerk et al. [34] (see also Theorem 3.5 and Example 3.1 in [32]) under the strict

complementarity condition. Halická et al. [76] showed that the convergence of the

central path to the analytic center of the optimal set is not guaranteed when the

strict complementarity condition fails. Here is the counterexample.

Example 1.4.1 (Section 2 in [76]). Consider the following SDO problem:

A1 =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 , A2 =


0 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 , A3 =


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 ,

A4 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

 , C =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

 , b = (1, 0, 0, 0)T ,

for which the primal optimal set can be represented as

X∗ =


1− x22 x12 0 0

x12 x22 0 0

0 0 0 0

0 0 0 1

 � 0.
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As µ→ 0 the central path converges to

X∗∗ =


2/5 0 0 0

0 3/5 0 0

0 0 0 0

0 0 0 1

 ,

while the analytic center of the primal optimal set is given by

Xa =


1/2 0 0 0

0 1/2 0 0

0 0 0 0

0 0 0 1

 .

Goldfarb and Scheinberg [58] showed, under the strict complementarity and primal-

dual nondegeneracy conditions, that the first order derivatives of the central path

converge as µ→ 0. However, the first order derivatives may be unbounded if strict

complementarity fails to hold. Using the strict complementarity condition only,

Halická [75] showed the extension of the analyticity of the central path to µ = 0.

1.4.2 The central path for SOCO

By (1.8), SOCO problems are polynomially solvable using an IPM for SDO. How-

ever, a direct implementation of IPMs for SOCO is proven to be more efficient

in terms of computational complexity than IPMs applied to the equivalent SDO

formulation [123].

Let ei := (1; 0) denote the identity vector for the ith second-order cone, and e :=
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(e1; . . . ; ep). Then for µ > 0 the central path can be phrased as

Ax = b, x ∈ int(Ln̄+),

ATy + s = c, s ∈ int(Ln̄+),

x ◦ s = µe.

(1.23)

Under the rank and the interior point conditions, for all µ > 0 system (1.23) has

a unique solution (xµ; yµ; sµ), where xµ, sµ ∈ int(Ln̄+). For µ > 0 the set of central

solutions forms a smooth analytical curve which converges to a maximally com-

plementary optimal solution, see [123] or Corollary 3.5 in [171]. Unless the strict

complementarity condition holds, the central path may not converge to the analytic

center of the optimal set. A SOCO counterexample has been provided in [76].

1.5 The optimal partition for LCO

The concept of the optimal partition was originally introduced for LO and linear

complementarity problems (LCPs), where V = Rn and K = Rn
+. For LO, the

Goldman-Tucker theorem [60] proves the existence of strictly complementary so-

lutions, and hence the partition of the index set of the variables to two disjoint

complementary sets. From the complementarity condition for LO, which reduces to

xjsj = 0 for j = 1, . . . , n, it can be seen that for every optimal solution (x̃; ỹ; s̃), ei-

ther of x̃j or s̃j should be zero. Further, there always exists a strictly complementary

optimal solution, i.e., an optimal solution with x̃j + s̃j > 0 for every j = 1, . . . , n.

Then the optimal partition is defined as the two disjoint sets B and N :

B :=
{
j ∈ {1, . . . , n} | x̃j > 0, for some primal optimal solution x̃

}
,

N :=
{
j ∈ {1, . . . , n} | s̃j > 0, for some dual optimal solution (ỹ; s̃)

}
,
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where B ∪ N = {1, . . . , n}. We can use the optimal partition to characterize the

primal and dual optimal sets as

P∗LO :=
{
x | Ax = b, xj ≥ 0, ∀j ∈ B, xj = 0, ∀j ∈ N

}
,

D∗LO :=
{

(y; s) | ATy + s = c, sj ≥ 0, ∀j ∈ N, sj = 0, ∀j ∈ B
}
.

For LCPs [85], only maximally complementary solutions exist. In fact, there might

exist a third set T defined as

T := {1, . . . , n} \B ∪N.

We have both x̃j = 0 and s̃j = 0 for j ∈ T for every optimal solution of the LCP.

Goldfarb and Scheinberg [58] extended the concept of the optimal partition to SDO,

and Yildirim [184] made a generalization for LCO with self-dual cones. Bonnans

and Ramı́rez [21] established another algebraic definition of the optimal partition

for SOCO. Peña and Roshchina [133] extended the idea of the complementarity

partition for a linear system to a homogeneous convex conic system comprising of

regular closed convex cones.

The concept of the optimal partition is well-defined only when strong duality2 holds.

Yildirim [184] derived a facial description of the optimal partition for (PLCO) and

(DLCO). In this extended definition, the optimal partition is defined using a face of

the convex cone K and its conjugate.

Lemma 1.5.1 (Proposition 3.2.4 in [25]). Let (x∗, y∗, s∗) ∈ ri(P∗LCO×D∗LCO). Then

we have

Fx∗ ⊆ F4s∗ , Fs∗ ⊆ F4x∗ .
2Recall that strong duality here means that both the primal and dual problems admit optimal

solutions with equal objective values.

28



Lemma 1.5.1 also implies that

FP∗LCO
⊆ F4D∗LCO

, FD∗LCO
⊆ F4P∗LCO

.

Since F4x∗ and Fs∗ are both faces of K∗, then Fx∗ is a (proper) face of F4s∗ , see Propo-

sition 2.2.2 in [25]. The following lemma plays a central role in the characterization

of the optimal partition for LCO, which depends on the self-duality of the cone K.

See also [175] for the complementary partition of K and K∗.

Lemma 1.5.2 (Lemma 2.4 in [184]). For any face F of the self-dual convex cone

K we have K = F ∨ F4, where F ∨ F4 denotes the minimal face of K containing

F and F4.

From Lemma 1.5.2 the following definition is in order.

Definition 1.5.1. For a maximally complementary solution (x∗, y∗, s∗) we define

the optimal partition as (Fx∗ ,Fs∗ ,G), where

G := (Fx∗ ∨ Fs∗)4.

In other words, the self-dual cone K can be represented as

K = Fx∗ ∨ Fs∗ ∨ G, (1.24)

which implies G = {0} if and only if (x∗, y∗, s∗) is a strictly complementary optimal

solution for LCO.

In the rest of this section, we show how the optimal partition (Fx∗ ,Fs∗ ,G) can be

specialized for SDO and SOCO.

1.5.1 The optimal partition for SDO

Let (X∗, y∗, S∗) ∈ ri
(
P∗SDO × D∗SDO

)
be a maximally complementary optimal solu-

tion. Since X∗ and S∗ commute by the complementarity condition, see (1.6), they
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are simultaneously diagonalizable, i.e., there exists an orthogonal matrix Q∗ so that

X∗ = Q∗Λ(X∗)(Q∗)T and S∗ = Q∗Λ(S∗)(Q∗)T , where Λ(X∗) and Λ(S∗) are diagonal

matrices of the eigenvalues. Then R(X∗) = R(Q∗Λ(X∗)) and R(S∗) = R(Q∗Λ(S∗))

indicate that the subspaces R(X∗) and R(S∗) are orthogonal, and they are spanned

by the eigenvectors associated with the positive eigenvalues of X∗ and S∗, respec-

tively. Let us define B := R(X∗), N := R(S∗), and T :=
(
R(X∗) +R(S∗)

)⊥
.

Definition 1.5.2. The partition (B, N ,T ) of Rn is called the optimal partition of

an SDO problem.

It follows from Definition 1.2.3 that R(X̃) ⊆ B and R(S̃) ⊆ N for all (X̃, ỹ, S̃) ∈

P∗SDO × D∗SDO. Since the subspaces B and N are orthogonal, it is immediate that

T = {0} if and only if a strictly complementary solution exists.

We consider Q := (QB, QT , QN ) as an orthonormal basis partitioned according to

the subspaces B, T , and N . For instance, the columns of Q∗ corresponding to

the positive eigenvalues of X∗ can be chosen as an orthonormal basis for B. In

fact, any matrix with orthonormal columns which span B would be an orthonormal

basis for B. Analogously, we can choose the columns of Q∗ corresponding to the

positive eigenvalues of S∗ as an orthonormal basis for N . Since (X∗, y∗, S∗) ∈

ri(P∗SDO × D∗SDO), the optimal partition is invariant with respect to the choice of

(X∗, y∗, S∗).

Remark 1.5.1. If the interior point condition fails for either (PSDO) or (DSDO),

but a primal-dual optimal solution exists, and the duality gap is 0, then the optimal

partition of (PSDO) and (DSDO) can be recovered from the optimal partition of the

problem in self-dual embedding format, see [35].

Theorem 1.5.1 characterizes P∗SDO and D∗SDO. For brevity, we define nB := dim(B),

nT := dim(T ), and nN := dim(N ).
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Theorem 1.5.1 (Theorem 2.7 in [32]). For every primal-dual optimal solution

(X̃, ỹ, S̃) ∈ P∗SDO ×D∗SDO we can represent X̃ and S̃ as

X̃ = QBUX̃Q
T
B , S̃ = QNUS̃Q

T
N ,

where UX̃ ∈ SnB+ and US̃ ∈ SnN+ . If nB > 0 and X̃ ∈ ri(P∗SDO), then there exists

UX̃ � 0. Similarly, if nN > 0 and (ỹ, S̃) ∈ ri(D∗SDO), then there exists US̃ � 0.

Notice the necessity of the condition nB > 0 or nN > 0 in Theorem 1.5.1. For

instance, if nB = 0, then we have P∗SDO = ri(P∗SDO) = {0}, which implies UX̃ = 0.

Remark 1.5.2. Note that QBSnB+ QT
B is a face of Sn+, see Proposition 2.2.14 in [25],

such that P∗SDO ⊆ QBSnB+ QT
B by Theorem 1.5.1. We can show that QBSnB+ QT

B is

indeed the minimal face. To that end, observe that (P∗SDO)⊥ ∩ Sn+ = {X∗}⊥ ∩ Sn+
is a face of Sn+ containing P∗SDO for every X∗ ∈ ri(P∗SDO), which is equivalent to

QT ∪NSnT +nN
+ QT

T ∪N . Since the positive semidefinite cone is facially exposed, then it

follows from Corollary 2.2.10 in [25] that

FX∗ = ({X∗}⊥ ∩ Sn+)4 = QBSnB+ QT
B .

In a similar manner, we can show that QNSnN+ QT
N is the minimal face of Sn+ which

contains D∗SDO.

Remark 1.5.3. By the interior point condition, at least one of nB or nN has to be

positive. In fact, if X∗ = 0 is the unique primal optimal solution of (PSDO), then any

dual feasible solution is also dual optimal. Therefore, by the interior point condition,

there exists a dual optimal solution (y∗, S∗) where S∗ is positive definite. Similarly,

for a unique dual optimal solution (y∗, S∗) with S∗ = 0 there exists a primal optimal

solution X∗ which is positive definite. Consequently, when either nB = 0 or nN = 0

holds, then there exists an optimal solution which is strictly complementary.
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An orthogonal transformation of (X∗, y∗, S∗) ∈ ri(P∗SDO ×D∗SDO) with respect to Q

reveals the optimal partition as

QTX∗Q =


UX∗ 0 0

0 0 0

0 0 0

 , QTS∗Q =


0 0 0

0 0 0

0 0 US∗

 ,

where UX∗ � 0 and US∗ � 0 if nB, nN > 0. As a result of Theorem 1.5.1 we have

QT
T ∪N X̃QT ∪N = 0, ∀ X̃ ∈ P∗SDO,

QT
B∪T S̃QB∪T = 0, ∀ (ỹ, S̃) ∈ D∗SDO,

where QT ∪N := (QT QN ), and QB∪T := (QB QT ).

Let ΓB and ΓN denote the set of all orthonormal bases for B and N , respectively.

The following lemma is in order.

Lemma 1.5.3. The sets ΓB and ΓN are compact.

Proof. If B = {0}, then the lemma holds trivially. Hence, we can assume that

B 6= {0}. Then it is known that for a given subspace B, any two orthonormal bases

QB and Q̄B are related by QBU = Q̄B for some orthogonal matrix U ∈ RnB×nB ,

see e.g., Lemma 2.4 in [32]. The result follows by noting that the set of orthogonal

matrices is compact. The compactness of ΓN follows analogously.

1.5.2 The optimal partition for SOCO

The notion of the optimal partition of LO can be extended to SOCO. Even though

a SOCO problem can be embedded in SDO, the optimal partition in SOCO may

be more nuanced when it is defined and analyzed directly in the SOCO setting. In

SOCO, the index set {1, . . . , p} of the second-order cones is partitioned into four
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subsets B,N ,R, and T := (T1, T2, T3) as defined in [21]:

B :=
{
i | x̃i1 > ‖x̃i2:ni

‖2, for some x̃ ∈ P∗SOCO

}
,

N :=
{
i | s̃i1 > ‖s̃i2:ni

‖2, for some s̃ ∈ D∗SOCO

}
,

R :=
{
i | x̃i1 = ‖x̃i2:ni

‖2 > 0, s̃i1 = ‖s̃i2:ni
‖2 > 0, for some (x̃; ỹ; s̃) ∈ P∗SOCO ×D∗SOCO

}
,

T1 :=
{
i | x̃i = s̃i = 0, for all (x̃; ỹ; s̃) ∈ P∗SOCO ×D∗SOCO

}
,

T2 :=
{
i | s̃i = 0, for all (ỹ; s̃) ∈ D∗SOCO, x̃

i
1 = ‖x̃i2:ni

‖2 > 0, for some x̃ ∈ P∗SOCO

}
,

T3 :=
{
i | x̃i = 0, for all x̃ ∈ P∗SOCO, s̃

i
1 = ‖s̃i2:ni

‖2 > 0, for some (ỹ; s̃) ∈ D∗SOCO

}
.

The convexity of the optimal set implies that B,N ,R, and T are mutually disjoint

and their union is the index set {1, . . . , p}. Therefore, it follows from the comple-

mentarity condition that for all (x̃; ỹ; s̃) ∈ P∗SOCO×D∗SOCO, x̃i = 0 for all i ∈ N , and

s̃i = 0 for all i ∈ B, see e.g., Lemma 3.1 in [171]. Additionally, it follows from (1.11)

and the complementarity condition that for all i ∈ R

x̃i = α̃i

 1
x̃i2:ni

‖x̃i2:ni
‖2

 , s̃i = β̃i

 1
s̃i2:ni

‖s̃i2:ni
‖2

 ,
x̃i2:ni

‖x̃i2:ni
‖2

= −
s̃i2:ni

‖s̃i2:ni
‖2

, (1.25)

where α̃i = x̃i1 ≥ 0, β̃i = s̃i1 ≥ 0, and for at least one (x̃; ỹ; s̃) we have both

α̃i, β̃i > 0. Let (x̆; y̆; s̆) ∈ P∗SOCO ×D∗SOCO be a primal-dual optimal solution. From

the complementarity condition it can be interpreted that if x̆i ∈ int(Lni+ ) holds, then

s̃i = 0 for all s̃ ∈ D∗SOCO. Analogously, if s̆i ∈ int(Lni+ ), then x̃i = 0 for all x̃ ∈ P∗SOCO.

Using the concept of the optimal partition, we can conclude that there exists a

strictly complementary optimal solution (x∗; y∗; s∗) if and only if T = ∅. Otherwise,

one has only a maximally complementary optimal solution. Furthermore, an optimal

solution (x∗; y∗; s∗) ∈ P∗SOCO ×D∗SOCO is maximally complementary if

(x∗)i ∈ int(Lni+ ), ∀i ∈ B,

(s∗)i ∈ int(Lni+ ), ∀i ∈ N ,

(x∗)i1, (s
∗)i1 6= 0, ∀i ∈ R.

(1.26)
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1.6 Second-order sufficient condition

In [21], Bonnans and Ramı́rez studied a second-order sufficient condition for non-

linear SOCO problems. A general nonlinear SOCO problem can be phrased as

(PNSOCO) min
y∈Rm

f(y)

s.t. gi(y) = si ∈ Lni+ , i = 1, . . . , p,

where f : Rn → R and gi : Rm → Rni are twice continuously differentiable functions.

For (PNSOCO) the first-order optimality conditions are written as

∇L((y;x)) = ∇f(y)−
p∑
i=1

∇gTi (y)xi = 0,

gi(y) = si ∈ Lni+ , i = 1, . . . , p,

xi ∈ Lni+ , i = 1, . . . , p,

si ◦ xi = 0, i = 1, . . . , p,

(1.27)

where xi ∈ Rni is the Lagrange multiplier associated with gi(y),

L((y;x)) := f(y)−
p∑
i=1

gTi (y)xi

denotes the Lagrangian function of (PNSOCO), and the bilinear form ◦ : Rni×Rni →

Rni is defined as in (1.11). Any (ȳ; x̄) satisfying (1.27) is called a stationary solution

of (PNSOCO).

A second-order sufficient condition of (PNSOCO) has been investigated by Bonnans

and Ramı́rez [21] which relies on the concepts of the tangent cone and the cone of

critical directions. The tangent cone to Lni+ at xi is defined as

TLni+
(si) =


Rni si ∈ int(Lni+ ),

Lni+ , si = 0,

d ∈ Rni : dT2:ni
si2:ni
− d1s

i
1 ≤ 0, si ∈ bd(Lni+ ) \ {0}.
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Let y be a stationary solution of (PNSOCO) and Υ(y) be the set of Lagrange multi-

pliers corresponding to y, and assume that Υ(y) 6= ∅. Then a second-order sufficient

condition is satisfied at y if

supx∈Υ(y) h
T∇2L((y;x))h+ hTH(y, x)h > 0, ∀h ∈ C(y) \ {0}, (1.28)

where

H(y, x) =

p∑
i=1

H i(y, x),

H i(y, x) =

−
xi1
si1
∇gTi (y)Ri∇gi(y), si ∈ bd(Lni+ ) \ {0},

0m×m, otherwise,

and C(y) denotes the cone of critical directions:

C(y) =



h ∈ Rm,

∇gi(y)h ∈ TLni+
(si), xi = 0,

∇gi(y)h = 0, xi ∈ int(Lni+ ),

(xi)T∇gi(y)h = 0, xi, si ∈ bd(Lni+ ) \ {0},

∇gi(y)h ∈ R+(xi1;−xi2:ni
) xi ∈ bd(Lni+ ) \ {0}, si = 0,

where R+(xi1;−xi2:ni
) denotes the set of all nonnegative multiplies of Rix

i. A special

form of (1.28) is discussed in Section 4.2.2.1.

1.7 Sensitivity and stability analysis

Sensitivity and stability analysis investigates the behavior of optimal solutions and

optimal objective value under perturbation in objective function or constraints.

Classical results about semicontinuity of the optimal set and the optimal value
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function date back to 1960’s using the set-valued mapping theory [15, 82], see Sec-

tions 1.7.3 and 1.7.4. Dantzig et al. [31] as well as Robinson and Day [146] pro-

vided sufficient conditions for the continuity of the optimal set mapping. Evans

and Gould [41] studied the stability of the feasible set and continuity of the optimal

value function. Zlobec et al. [13, 187] identified the region of stability for perturbed

convex optimization problems. Continuity and Lipschitz continuity of the optimal

value function were established by Hogan [83] and Stern and Topkis [159] under

convexity conditions. See also [52, 53, 56] for more continuity results of the optimal

value function.

There has been a comprehensive study on the differential stability of the optimal

value function and optimal solutions for NLO problems. Danskin [30] provided suf-

ficient conditions for the existence of directional derivatives for the optimal value

function of an abstract NLO problem, see Section 1.7.2. Using convexity assump-

tions and explicit forms for inequality constraints, Hogan [81] derived more special-

ized results for the existence of directional derivatives of the optimal value func-

tion, see also [61]. Gauvin and Tolle [56] derived strong bounds on Dini3 upper

and lower derivatives of the optimal value function. Gauvin and Janin [55] proved

Hölder and Lipschitz continuity results for the solution of an NLO problem with

perturbation along fixed directions. The sensitivity of KKT points was studied by

Fiacco [49] and Fiacco and McCormick [47] using the implicit function theorem,

see Section 1.7.1. Their analysis was based on linear independence constraint qual-

ification, second-order sufficient condition, and strict complementarity condition.

Furthermore, Fiacco [49] showed how to compute/approximate the partial deriva-

tives of a locally optimal solution, see also [18, 48, 88, 89]. Robinson [145] released

the strict complementarity condition but imposed a stronger second-order sufficient

3See Page 29 in [50] for the definition of Dini upper and lower derivatives.
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condition. Kojima [94] removed the dependence on the strict complementarity con-

dition by invoking the degree theory of a continuous map, see e.g., [129]. For convex

optimization problems, Dempe [36] established the directional differentiability of

optimal solutions under the Slater condition and a strong second-order sufficient

condition. The stability of solutions for linear and nonlinear systems of inequalities

were studied by Robinson [141, 142]. Robinson [143] derived an implicit function

theorem for a generalized equation. Further, Robinson [144] introduced the concept

of strong regularity to establish the existence and Lipschitz continuity of solutions

for generalized equations. He then applied the results to NLO problems. Interest-

ingly, KKT systems and variational inequalities can be represented as generalized

equations, see e.g. [42, 149]. We refer the reader to [10, 22, 50] for surveys of classical

results.

In the following sections, we concisely review the application of implicit function the-

orem in the stability analysis of locally optimal solutions. Furthermore, we present

classical results for the directional stability of the optimal value function and semi-

continuity of feasible and optimal solutions.

1.7.1 Sensitivity of locally optimal solutions

An NLO problem can be formulated as

(PNLO) min f(x)

s.t. gi(x) ≤ 0, i = 1, . . . ,m1,

hi(x) = 0, i = 1, . . . ,m2,

x ∈ X ,

where X ⊆ Rn is a nonempty open set, and f : Rn → R, gi : Rn → R for i =

1, . . . ,m1, and hi : Rn → R for i = 1, . . . ,m2 are differentiable functions. For a
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given solution x, we define I(x) as the index set of active constraints at x, i.e.,

I(x) := {i ∈ {1, . . . ,m1} | gi(x) = 0}.

The Jacobian of active constraints at a given solution x is defined as

J(x) :=
(

[∇gi(x)]i∈I(x) [∇hi(x)]i∈{1,...,m2}

)T
.

Definition 1.7.1. Linear independence constraint qualification (LICQ) holds at x

if J(x) is of full row rank.

For (PNLO) the Lagrangian function is defined as

L((x;u; v)) := f(x) +

m1∑
i=1

uigi(x) +

m2∑
i=1

vihi(x),

where u ∈ Rm1 and v ∈ Rm2 denote the Lagrange multipliers. The following theorem

states the first-order optimality conditions for (PNLO).

Theorem 1.7.1 (Theorem 4.3.7 in [12]). Let x̄ be a feasible solution for (PNLO),

and assume that hi for i = 1, . . . ,m2 are continuously differentiable at x̄ and LICQ

holds at x̄. If x̄ is a locally optimal solution for (PNLO), then there exist unique

Lagrange multipliers ūi ≥ 0 for i ∈ I(x̄) and v̄i for i = 1, . . . ,m2 such that

∇L((x̄; ū; v̄)) = ∇f(x̄) +
∑
i∈I(x̄)

ūi∇gi(x̄) +

m2∑
i=1

v̄i∇hi(x̄) = 0.

From Theorem 1.7.1, the first-order optimality conditions can be equivalently writ-

ten as

∇f(x̄) +

m1∑
i=1

ūi∇gi(x̄) +

m2∑
i=1

v̄i∇hi(x̄) = 0,

ūigi(x̄) = 0, i = 1, . . . ,m1

ūi ≥ 0, i = 1, . . . ,m1,

gi(x̄) ≤ 0, i = 1, . . . ,m1,

hi(x̄) = 0, i = 1, . . . ,m2,

(1.29)
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which we call KKT conditions. If LICQ holds at x̄, then the KKT conditions

will be necessary. A solution (x̄; ū; v̄) satisfying (1.29) is called a KKT solution.

Furthermore, (x̄; ū; v̄) satisfies the strict complementarity condition if

gi(x̄) + ūi > 0, ∀i = 1, . . . ,m. (1.30)

For a given KKT solution (x̄; ū; v̄), let I+(x̄) denote the set of active constraints

with ūi > 0, i.e.,

I+(x̄) := {i ∈ {1, . . . ,m1} | gi(x̄) = 0, and ūi > 0}.

A second-order sufficient condition holds at x̄ if there exists Lagrange multipliers ū

and v̄ so that (1.29) holds, and

zT∇2L((x̄; ū; v̄))z > 0, ∀z ∈ C((x̄; ū; v̄)), (1.31)

where ∇2L((x̄; ū; v̄)) is called the Hessian of the Lagrangian function and

C((x̄; ū; v̄)) =
{
z |∇gi(x̄)z ≥ 0, ∀ i ∈ I(x̄) \ I+(x̄), ∇gi(x̄)z = 0, ∀i ∈ I+(x̄),

∇hi(x̄)z = 0, i = 1, . . . ,m2

}
is called the cone of critical directions. The second-order sufficient condition (1.31)

plays a central role in the local convergence of NLO algorithms [127]. The following

theorem provides sufficient conditions for the existence of a locally optimal solution.

Theorem 1.7.2 (Lemma 3.2.1 in [50]). Assume that the functions f , gi and hi are

twice differentiable in a neighborhood of x̄, and there exist Lagrange multipliers ū

and v̄ so that (1.29)and (1.31) hold. Then x̄ is a strict locally optimal solution.

A classical result for the sensitivity of locally optimal solutions can be obtained using

the application of the implicit function theorem, see Theorem A.4.3. Indeed, under
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LICQ, the second-order sufficient condition (1.31), and the strict complementarity

condition (1.30), the implicit function theorem can be applied to the KKT system

to characterize the behavior of locally optimal solutions with respect to the simul-

taneous perturbations in the objective function and the constraints. See Chapter 3

in [50].

Consider the perturbed NLO problem

(Pω
NLO) min f(x, ω),

s.t. g(x, ω) ≤ 0,

h(x, ω) = 0,

(1.32)

where ω ∈ Rk, f : Rn×Rk → R, g : Rn×Rk → Rm1 , and h : Rn×Rk → Rm2 . By the

application of the implicit function theorem to the first-order optimality conditions

of (1.32), the existence of a continuously differentiable mapping (x̄(.); ū(.); v̄(.)) on

a sufficiently small neighborhood of 0 can be proven. For the sake of completeness

we provide a proof here.

Theorem 1.7.3 (Theorem 3.2.2 in [50]). Let x̄ be a locally optimal solution of

(P0
NLO), and assume that f , g, and h are twice continuously differentiable in (x, ω)

in a neighborhood of (x̄, 0). Furthermore, assume that LICQ holds at x̄, the second-

order sufficient condition (1.31) holds at (x̄; ū; v̄), and the strict complementarity

condition holds. Then,

• x̄ is an isolated locally optimal solution of (P0
NLO).

• For small values of ω there exists a unique solution
(
x̄(ω); ū(ω); v̄(ω)

)
which

satisfies the second-order sufficient condition. Further, (x̄(.); ū(.); v̄(.)) is a

continuously differentiable mapping on a sufficiently small neighborhood of 0.

• For small values of ω, (x̄(ω); ū(ω); v̄(ω)) is an isolated locally optimal solution

of (Pω
NLO).
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• For small values of ω, LICQ holds at x̄(ω), and the strict complementarity

condition holds.

Proof. From the second-order sufficient condition and LICQ it follows that x̄ is a

strict locally optimal solution which satisfies the first-order optimality conditions

of (1.32), and the Lagrange multipliers (ū; v̄) are unique. For the remaining parts

we apply the implicit function theorem to the mapping

FNLO : Rn × Rm1 × Rm2 × Rk → Rn × Rm1 × Rm2

which is defined as

FNLO((x;u; v), ω) :=


∇xf(x, ω) +

∑m1

i=1 ui∇xgi(x, ω) +
∑m2

i=1 vi∇xhi(x, ω)

ug(x, ω)

h(x, ω)

 ,

where ug(x, ω) denotes the coordinatewise product of u and g(x). By the as-

sumptions, FNLO is a continuously differentiable mapping. Furthermore, it fol-

lows from LICQ and the second-order sufficient condition that ∇FNLO is nonsin-

gular at (x̄; ū; v̄), see Theorem 14 in [47]. Then by the implicit function theorem,

there exists ς > 0 and a unique continuously differentiable mapping (x̄(.); ū(.); v̄(.))

on Bς(0) which satisfies FNLO((x̄(ω); ū(ω); v̄(ω)), ω) = 0 for all ω ∈ Bς(0) and

(x̄; ū; v̄) = (x̄(0); ū(0); v̄(0)). By the strict complementarity condition and the con-

tinuity of the mapping ū(.) we have

ūi(ω) + gi(x̄(ω), ω) > 0, i = 1, . . . ,m1,

for all ω sufficiently close to 0. Then together with the complementarity condition

uigi(x, ω) = 0 all this means that (x̄(ω); ū(ω); v̄(ω)) is a KKT solution at every ω

in a small neighborhood of 0.
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Notice that for sufficiently small ‖ω‖2 the active set remains unchanged. In fact,

from the complementarity condition and the continuity of both gi(x, ω) and ū(.) we

can conclude that

gi(x̄, 0) = 0 =⇒ ūi > 0 =⇒ ūi(ω) > 0 =⇒ gi(x̄(ω), ω) = 0,

ūi = 0 =⇒ gi(x̄, 0) > 0 =⇒ gi(x̄(ω), ω) > 0 =⇒ ūi(ω) = 0

hold for all i = 1, . . . ,m1, implying the stability of active set for ω near 0. On the

other hand, Since J(x̄) has full row rank, the rank of J(x̄(.)) stays constant for small

ω. Consequently, both the strict complementarity condition and LICQ are valid in

a neighborhood of ω = 0.

Finally, we show that the second-order sufficient condition (1.31) is stable in a

neighborhood of ω = 0, i.e.,

z(ε)T∇2L
(
(x̄(ω); ū(ω); v̄(ω))

)
z(ω) > 0, ∀z(ω) ∈ C

(
(x̄(ω); ū(ω); v̄(ω))

)
,

where

C
(
(x̄(ω); ū(ω); v̄(ω))

)
=
{
z |∇gi(x̄(ω), ω)z ≥ 0, ∀i ∈ I(x̄(ω)) \ I+(x̄(ω)),

∇gi(x̄(ω), ω)z = 0, ∀i ∈ I+(x̄(ω)),

∇hi(x̄(ω), ω)z = 0, i = 1, . . . ,m2

}
.

Suppose that there exist ωk → 0 and zk ∈ C
(
(x̄(ωk); ū(ωk); v̄(ωk))

)
so that

zTk∇2L
(
(x̄(ωk); ū(ωk); v̄(ωk))

)
zk ≤ 0. (1.33)

We can assume w.l.o.g. that ‖zk‖2 = 1, i.e., zk has an accumulation point ẑ. Then

taking a subsequence which converges to ẑ and letting k →∞ we get

ẑT∇2L((x̄; ū; v̄))ẑ ≤ 0,

where ẑ ∈ C((x̄; ū; v̄)). However, this contradicts the assumption of second-order

sufficient condition. This completes the proof.
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The result of Theorem 1.7.3 can be specialized for an unconstrained NLO prob-

lem. More precisely, if f(x, ω) is a twice continuously differentiable function in x,

∇xf(x, ω) is continuously differentiable in ω and in a neighborhood of x̄, and if the

Hessian of f(x, ω) is positive definite at (x̄, 0), then x̄(ω) is a locally optimal solution

of f(x, ω) with ∇2f(x̄(ω), ω) � 0 for all ω sufficiently close to 0.

1.7.2 Differential stability of the optimal value function

This section delves into the behavior of the optimal value of (Pω
NLO) as a function

of ω, and its differential properties. Consider an abstract NLO problem where only

the objective function is affected by the perturbation, i.e., we have

(Pω
NLO) min f(x, ω)

s.t. x ∈ Φ,

where Φ ⊆ Rn. Then the optimal value function is defined as

ϕ(ω) = min{f(x, ε) | x ∈ Φ},

and

Ψ(ω) := {x ∈ Φ | f(x, ω) = ϕ(ω)} (1.34)

is called the optimal set mapping. A basic stability result was proven by Danskin [30]

providing the conditions for the existence of the directional derivatives of ϕ(.). A

more general result can be found in Theorem 4.13 in [23]. The continuity of f and

its partial derivatives are presumed in the following theorem.

Theorem 1.7.4 (Theorem 1 in [30], Theorem 1.29 in [70]). Consider (Pω
NLO), and

assume that Φ is a nonempty and compact set. Further, assume that f and ∂f
∂ωi

are
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continuous. Then, at a given ω, the directional derivative of ϕ(.) exists along any

direction d, and the directional derivative is given by

Ddϕ(ω) := min
x∈Ψ(ω)

∇ωf(x, ω)Td.

Theorem 1.7.4 stays valid even if Φ belongs to an abstract space. The result of

Danskin’s theorem can be applied to the dual of a convex program with right hand

side perturbation. A more general result with right hand side perturbation was

studied by Hogan [81], where the objective function and constraints are convex and

continuously differentiable.

1.7.3 Set-valued analysis

In this section, we briefly review the notions of set convergence, set-valued mapping,

and semicontinuity of set-valued mappings from Chapters 4 and 5 in [150] and

Chapter 3 in [149]. See also Sections 2.3 and 4.1 in [23], Section 1.5 in [93], Chapter

VI in [15], and [82] for further reading.

Let N be the set of natural numbers, J be the collection of subsets J ⊂ N so that

N\J is finite, and J∞ denote the collection of all infinite subsets of N. Furthermore,

let {Dk}∞k=1 be a sequence of subsets of Rn. Then the outer limit of {Dk}∞k=1 is defined

as

lim sup
k→∞

Dk := {x | ∃ J ∈ J∞ and xk ∈ Dk for k ∈ J such that lim
k∈J

xk = x},

where limk∈J xk indicates the limit of xk as k → ∞ and k ∈ J . The inner limit of

{Dk}∞k=1 is defined as

lim inf
k→∞

Dk := {x | ∃ J ∈ J and xk ∈ Dk for k ∈ J such that lim
k∈J

xk = x}.
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If the inner and outer limits coincide, the limit of {Dk}∞k=1 exists and converges to

D in the sense of Painlevé-Kuratowski, i.e.,

lim
k→∞
Dk := lim sup

k→∞
Dk = lim inf

k→∞
Dk = D.

In simple words, when Dk 6= ∅, lim sup
k→∞

Dk denotes the collection of all accumulation

points of {xk}∞k=1 such that xk ∈ Dk, while lim inf
k→∞

Dk represents the collection of all

limit points of {xk}∞k=1. Alternatively, lim sup and lim inf of {Dk}∞k=1 can be defined

in terms of the Euclidean distance:

lim sup
k→∞

Dk = {x | lim inf
k→∞

dist(x,Dk) = 0},

lim inf
k→∞

Dk = {x | lim sup
k→∞

dist(x,Dk) = 0}.

It directly follows from the definition that lim infkDk ⊆ lim supkDk. Furthermore,

it turns out that lim sup and lim inf of {Dk}∞k=1 are closed sets, see Section 3.1

in [149].

In what follows, we formally define a set-valued mapping and its semicontinuity

properties. Note that a set-valued mapping is referred to as a point-to-set mapping

in [50] and a multifunction in [23].

Definition 1.7.2. A set-valued mapping Φ : Rm ⇒ Rn assigns a subset of Rn to

each element of ω ∈ Rm.

The domain of the set-valued mapping Φ is defined as

dom(Φ) := {ω ∈ Rm | Φ(ω) 6= ∅},

and its range space is given by

R(Φ) := {x ∈ Rn | x ∈ Φ(ω), for some ω ∈ Rm}.
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There are various forms of continuity for a set-valued mapping. Here, we adopt the

definition from [149, 150] which is in accordance with [82]. For the other definitions

of regularity and continuity, see Section 2.2 in [50] and Section 2.2 in [10].

In this thesis, Painlevé-Kuratowski set convergence forms the basis of the semicon-

tinuity/continuity for a set-valued mapping. Let us define

lim sup
ω→ω̄

Φ(ω) :=
⋃
ω→ω̄

lim sup
k→∞

Φ(ωk) = {x | ∃ ωk → ω̄ s.t. lim inf
k→∞

dist(x,Φ(ωk)) = 0},

lim inf
ω→ω̄

Φ(ω) :=
⋂
ω→ω̄

lim inf
k→∞

Φ(ωk) = {x | ∀ ωk → ω̄ s.t. lim sup
k→∞

dist(x,Φ(ωk)) = 0},

or equivalently,

lim sup
ω→ω̄

Φ(ω) :=
⋃
ω→ω̄

lim sup
k→∞

Φ(ωk) =
{
x | ∃ ωk → ω̄,∃ xk → x,with xk ∈ Φ(ωk)

}
,

lim inf
ω→ω̄

Φ(ω) :=
⋂
ω→ω̄

lim inf
k→∞

Φ(ωk)

=
{
x | ∀ ωk → ω̄, ∃ J ∈ J , s.t. xk → x with xk ∈ Φ(ωk)

}
.

Then Φ(.) is called outer semicontinuous at ω̄ if

lim sup
ω→ω̄

Φ(ω) ⊆ Φ(ω̄),

and inner semicontinuous at ω̄ if

lim inf
ω→ω̄

Φ(ω) ⊇ Φ(ω̄)

holds. The set-valued mapping Φ(.) is Painlevé-Kuratowski continuous at ω̄ if it is

both outer and inner semicontinuous at ω̄. We refer the reader to [149, 150] for the

proofs.

1.7.4 Continuity of the objective and solution set mapping

In this section, we discuss the stability of the feasible set, optimal set, and the

optimal value function for an abstract NLO problem. It is worth investigating the
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conditions under which the solution set and the optimal objective value of an NLO

problem do not change drastically after a slight perturbation. The following instance

from [41] exemplifies an unstable behavior of a solution set mapping:

Φ(ω) = {x ∈ Rn | g(x) ≤ ω},

where

g(x) =


x3, x ≤ 0,

0, 0 < x ≤ 1,

(x− 1)3, x > 1,

and ω ∈ R. One can observe that Φ(0) = (−∞, 1]. However, for every ω < 0 the

solution set changes to Φ(ε) = (−∞, 3
√
ω], which does not include the interval [0, 1]

anymore.

Consider the following abstract NLO problem

(Pω
NLO) min f(x, ω)

s.t. x ∈ Φ(ω),

where f : Rn × Rm → R ∪ {−∞,+∞}, and Φ : Rm ⇒ Rn is called the feasible set

mapping. The optimal set mapping Ψ(.) is defined analogously as in (1.34). The

continuity of the optimal set mapping and the optimal value function is dependent

on the inner semicontinuity of the feasible set mapping Φ(.) and the continuity of

f(x, .).

Definition 1.7.3. Let ϕ : Rm → R ∪ {−∞,+∞}. Then, ϕ is called

• lower semicontinuous at ω̄ if lim infω→ω̄ ϕ(ω) ≥ ϕ(ω̄),

• upper semicontinuous at ω̄ if lim supω→ω̄ ϕ(ω) ≤ ϕ(ω̄),
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• continuous at ω̄ if it is both lower and upper semicontinuous at ω̄.

A classical result for the semicontinuity of the optimal value function is given by

the following theorem.

Theorem 1.7.5 (Theorem 6 in [82]). Suppose that Φ(.) is inner semicontinuous at

ω̄ and f is lower semicontinuous on Φ(ω̄)× ω̄. Then the optimal value function ϕ(.)

is lower semicontinuous at ω̄.

The set-valued mapping Φ(.) is called uniformly bounded near ω̄ if there exists ς > 0

and a compact set D ⊂ Rn such that

⋃
ω∈Bς(ω̄)

Φ(ω) ⊆ D. (1.35)

The following result is in order.

Theorem 1.7.6 (Theorem 5 in [82]). Assume that Φ(.) is outer semicontinuous at

ω̄ and uniformly bounded near ω̄, and that f is upper semicontinuous on Φ(ω̄)× ω̄.

Then ϕ(.) is outer semicontinuous at ω̄.

The uniform boundedness is needed to ensure the outer semicontinuity of the optimal

value function. For instance, consider the following example from [54], where the

feasible set mapping is not uniformly bounded near ω̄ = 0:

max x

s.t. g(x)− ω ≤ 0,

where

g(x) =

−(x+ 1
2
)2 + 5

4
, x < 0,

e−x, x ≥ 0.
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Then the optimal value function is given by

ϕ(ω) =

g
−1(y), y ≤ 0,

+∞, y > 0,

which is not upper semicontinuous at ω̄ = 0.

Now, we can resort to the results of Theorems 1.7.5 and 1.7.6 to conclude the

continuity of the optimal value function and the outer semicontinuity of the optimal

set mapping.

Theorem 1.7.7 (Theorems 7 and 8 in [82]). Suppose that Φ(.) is continuous at

ω̄ and f is continuous on Φ(ω̄) × ω̄. Then Ψ(.) is outer semicontinuous at ω̄.

Furthermore, if Φ(.) is uniformly bounded near ω̄, then ϕ(.) is continuous at ω̄.

A sufficient condition can be provided to ensure the continuity of the optimal set

mapping.

Theorem 1.7.8 (Corollary 8.1 in [82]). Assume that Φ(.) is continuous at ω̄, f is

continuous on Φ(ω̄)× ω̄, Φ(.) is uniformly bounded near ω̄, and Ψ(.) is single-valued

at ω̄. Then Ψ(.) is continuous at ω̄.

Lipschitz continuity of the optimal set mapping, see Chapter 9 in [150], can be

established by imposing stronger regularity conditions, see Section 4 in [23] for a

detailed discussion. We investigate the semicontinuity of the optimal set mapping

for parametric SDO and SOCO problems in Chapter 5.

1.8 Outline of the thesis

Thus far, we have reviewed the preliminary concepts in LCO, nondegeneracy, op-

timal partition, and sensitivity analysis. In the rest of this thesis, we present our

main contributions, in order, as follows:
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In Chapter 2, we generalize the primal-dual Dikin-type affine scaling method from

LO to SCO using Euclidean Jordan algebraic tools. A Euclidean Jordan algebra

is a commutative algebra over the field of real numbers which is not necessarily

associative. A Euclidean Jordan algebra indeed provides the machinery for defining

characteristic polynomial and eigenvalues for a symmetric cone. These tools enabled

us to generalize Dikin-type search directions and the Dikin ellipsoid to SCO. This

generalization has anO(ξrL) iteration complexity, where ξ and r denote the measure

of proximity and the order of symmetric cone, respectively, and L is the input

length. Furthermore, the method’s iteration complexity bound is analogous to the

SDO case. The Dikin-type algorithm was tested against the SeDuMi, MOSEK and

SDPT3 solvers on benchmark SOCO problems.

In the first part of Chapter 3, we investigate the identification of the optimal par-

tition of SDO, for which we provide an approximation from a bounded sequence

of solutions on, or in a neighborhood of the central path. We show how the com-

plexity of approximating the optimal partition depends on condition numbers of the

problem. Using bounds on the magnitude of the eigenvalues we identify the subsets

of eigenvectors of the interior solutions whose accumulation points are orthonormal

bases for the subspaces of the optimal partition. The magnitude of the eigenvalues

of an interior solution is quantified using a condition number and an upper bound

on the distance of an interior solution to the optimal set. We provide a measure

of proximity of the approximation obtained from the central solutions to the true

optimal partition of the problem.

In the second part of Chapter 3, we revisit the identification of the optimal partition

for SOCO from [171]. We reproduce the bounds for the identification of the optimal

partition using an error bound result for linear conic systems.

In the first part of Chapter 4, we investigate solution identification for SDO. We
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use an approximation of the optimal partition in a rounding procedure to gener-

ate an approximate maximally complementary solution. The procedure generates

a rounded primal-dual solution from an interior solution, sufficiently close to the

optimal set, which has approximate primal-dual feasibility and zero duality gap.

In the second part of Chapter 4, we investigate solution identification for SOCO.

We establish quadratic convergence of Newton’s method to the unique optimal so-

lution of SOCO under both the primal and dual nondegeneracy conditions. Our

local convergence result depends on the optimal partition of the problem, which can

be identified from a bounded sequence of interior solutions. We provide a theoreti-

cal complexity bound for identifying the quadratic convergence region of Newton’s

method from the trajectory of central solutions. By way of experimentation, we il-

lustrate quadratic convergence of Newton’s method on some SOCO problems which

fail the strict complementarity condition. At the end, we propose a rounding pro-

cedure for an approximate maximally complementary solution of SOCO.

In Chapter 5, we study parametric analysis of SDO and SOCO problems, where the

objective function is perturbed along a fixed direction. We introduce the notions of

nonlinearity interval and transition point for the optimal partition of the problem.

Further, we investigate the continuity of optimal solutions and the behavior of the

optimal partition in a nonlinearity interval. For SDO we investigate the sensitivity

of the approximation of the optimal partition with respect to the perturbation of

the objective vector, and we derive an upper bound on the distance between the

invariant subspaces spanned by the approximation of the optimal partition. For

SOCO we show how to compute a subinterval of a nonlinearity interval under strict

complementarity condition. Additionally, we show how to identify a transition point

from the higher-order derivatives of the unique optimal solution, when strict com-

plementarity fails. At the end, we partially extend our derivations and continuity
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results for LCO.

1.8.1 Technical reports and publications

The generalization of the Dikin-type primal-dual affine scaling algorithm for SCO

has been published in the journal Computational Optimization and Applications [113]:

• Chapter 2: A polynomial primal-dual affine scaling algorithm for symmet-

ric conic optimization. Computational Optimization and Applications (2017)

66:577-600.

The results for the identification of the optimal partition for SDO and SOCO have

been submitted for publication to three peer reviewed journals [112, 114, 115]:

• Chapter 3: On the identification of the optimal partition for semidefinite op-

timization: Under second round review in INFOR: Information Systems and

Operational Research.

• Chapter 4: A rounding procedure for semidefinite optimization: To appear in

Operations Research Letters.

• Chapter 4: Quadratic convergence to the optimal solution of second-order

conic optimization without strict complementarity. Optimization Methods and

Software (2018), DOI: 10.1080/10556788.2018.1528249.

The outcome of the work on the parametric analysis of SDO and SOCO problems

are submitted [116], and to be submitted under the following titles:

• Chapter 5: Parametric analysis of semidefinite optimization: Submitted to

Optimization.

• Chapter 5: On the nonlinearity interval of second-order conic optimization:

To be submitted to SIAM Journal on Optimization.
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Chapter 2

Numerical algorithms for SCO

Dikin’s affine scaling method is originally a primal (or dual) method, where each step

aims for minimizing the objective function over an ellipsoid inscribed in the primal

feasible region. The notion of affine scaling methods were extended to the primal-

dual space by Monteiro et al. [117] with worst-case iteration complexity O(nL2).

In 1996, Jansen et al. [86] derived a primal-dual Dikin-type affine scaling method

which at each iteration minimizes the duality gap over the so-called Dikin ellipsoid

in the primal-dual space. This method not only has an improved O(nL) polynomial

complexity but it also features both centering and reduction of the duality gap in

contrast to the method of Monteiro et al. [117]. de Klerk et al. [35] generalized

the methods of Monteiro et al. [117] and Jansen et al. [86] to SDO. Nevertheless,

the extension of affine scaling methods from LO to SCO, which includes SOCO, is

not as straightforward as from LO to SDO, because SCO relies on a rather different

algebra. As indicated in the book [134], the extension of IPMs with self-regular

barrier functions from LO to SOCO does not follow in the same direction as in the

extension from LO to SDO.

In this chapter, we review the derivation of the Dikin-type affine scaling method for
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SDO from Chapter 6 in [35]. We then generalize the primal-dual Dikin-type affine

scaling method of Jansen et al. [86] and de Klerk et al. [35] to SCO. We present

the extension from [113].

2.1 Dikin-type affine scaling algorithm for SDO

We only present the derivation of the Dikin ellipsoid and Dikin-type search direc-

tions for SDO. The feasibility of a Dikin-step and iteration complexity for SDO are

analogous to the case of SCO.

Recall the central path equations from Section 1.4.1. Applying the Newton method

to the system (1.22) leads to

〈Ai,∆X〉 = 0,

m∑
i=1

Ai∆yi + ∆S = 0,

X∆S + S∆X = µe−XS.

(2.1)

The symmetry of ∆S follows from the symmetry of Ai for i = 1, . . . ,m. However,

∆X may not be symmetric; hence the system (2.1) is not necessarily well-defined.

To resolve the symmetry issue, we can employ the NT scaling scheme which projects

X and S onto the same point V . Let D be a scaling matrix defined as

D := S−
1
2 (S

1
2XS

1
2 )

1
2S−

1
2 , (2.2)

from which one can easily see that D−1X = SD. Then V is defined as

V := D−
1
2XD−

1
2 = D

1
2SD

1
2 . (2.3)

Note that V 2 = D−
1
2XS

1
2 , which implies that V 2 is symmetric and is similar to XS,

i.e., the eigenvalues of V 2 and XS are identical. Therefore, for a given primal-dual
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solution (X, y, S) the complementarity gap is given by

Trace(XS) = Trace(V 2).

In a similar fashion, the search directions can be scaled as

DX := D−
1
2 ∆XD−

1
2 ,

DS := D
1
2 ∆SD

1
2 .

From the orthogonality of ∆X and ∆S, the orthogonality of DX and DS follows.

Hence, the Newton step in the scaled space is given by

DV = DX +DS.

The complementarity gap of the new iterate is then equal to

Trace
(
(X + ∆X)(S + ∆S)

)
= Trace

(
(V +DX)(V +DS)

)
= Trace(V 2 + V DV ). (2.4)

The proximity of (X, y, S) to the central path can be measured by

prox(XS) :=
λmax(XS)

λmin(XS)
, (X, y, S) ∈ ri(PSDO ×DSDO). (2.5)

Notice that XS has the same eigenvalues as X
1
2SX

1
2 , i.e., XS has real positive

eigenvalues even though it is not necessarily symmetric. Further, it follows from (2.5)

that prox(XS) ≥ 1, and the equality holds only when (X, y, S) is on the central

path. Therefore, a neighborhood of the central path can be defined as

Nprox(ξ) :=
{

(X, y, S) ∈ ri(PSDO ×DSDO) | prox(XS) ≤ ξ
}
, (2.6)

where ξ > 1.

55



2.1.1 The Dikin-type search directions

The extension of the Dikin ellipsoid from LO is given by

E ll(V ) :=
{
DV | ‖V −

1
2DV V

− 1
2‖F ≤ 1

}
, (2.7)

where V is positive definite. In the Dikin-type affine scaling method, the goal is

to minimize the complementarity gap (2.4) over the Dikin ellipsoid (2.7). Note

that Trace(V 2) is a constant term in (2.4). Hence, Dikin-type search directions are

derived by solving

D∗V := argmin
{

Trace(V DV ) | ‖V −
1
2DV V

− 1
2‖F ≤ 1

}
. (2.8)

The optimal solution of (2.8) can be obtained analytically, which is given by

D∗V = D∗X +D∗S = − V 3

‖V 2‖F
.

By scaling the search directions back into the original space we get

∆X +D∆SD = − XSX

(Trace
(
(XS)2

)
)

1
2

.

Consequently, Dikin-type search directions in the original space are obtained by

solving the following system of equations

〈Ai,∆X〉 = 0,

m∑
i=1

Ai∆yi + ∆S = 0,

∆X +D∆SD = − XSX

(Trace
(
(XS)2

)
)

1
2

,

(2.9)

which is analogous to (2.1), except that it gives symmetric ∆X and ∆S.

The Dikin-type affine scaling method iteratively solves (2.9) to generate a new iterate

and employs the neighborhood (2.6) to stay in close proximity to the central path.
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2.2 Dikin-type affine scaling algorithm for SCO

Recall from (1.20) and (1.21) that dx and ds are orthogonal. Then a feasible primal-

dual step along the search directions arrives at the duality gap

Trace((v + dx) ◦ (v + ds)) = Trace(v2 + v ◦ dv), (2.10)

where dv = dx + ds stands for the Newton step in the scaled primal-dual space,

referred to as the v-space. The Dikin-type algorithm aims for minimizing the duality

gap (2.10) over a suitable ellipsoid in the v-space which is given by

‖v−1 ◦ dv‖F ≤ 1. (2.11)

Instead of following the central path, the Dikin-type algorithm chooses the scaled

primal-dual solutions from the ellipsoid (2.11). Ellipsoid (2.11) in the original space

can be given as

‖P
1
2
w x
−1 ◦ P−

1
2

w ∆x+ P
− 1

2
w s−1 ◦ P

1
2
w∆s‖F ≤ 1.

It can be easily verified that this ellipsoid is indeed a generalization of the suitable

ellipsoid introduced for LO in [86]. It is worth mentioning that a word-for-word

generalization of the Dikin ellipsoid is written as

E ll(x, s) := {(∆x,∆s) | ‖x−1 ◦∆x+ s−1 ◦∆s‖F ≤ 1}.

Notice that E ll(x, s) intersected with

A∆x = 0, A∗∆y + ∆s = 0

is not necessarily bounded because the ellipsoid E ll(x, s) contains the affine space

x−1 ◦∆x+ s−1 ◦∆s = 0. Thus, the system

A∆x = 0,

A∗∆y + ∆s = 0,

x−1 ◦∆x+ s−1∆s = 0,
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does not necessarily have a unique solution as L−1(x−1) and L(s−1) do not commute

in general.

2.2.1 Minimizing the duality gap over the ellipsoid

The Dikin-type search directions are derived by minimizing the duality gap (2.10)

over the ellipsoid (2.11)

min Trace(v2 + v ◦ dv)

s.t. ‖v−1 ◦ dv‖F ≤ 1.
(2.12)

Recall that x, s �K 0 implies v �K 0, where �K 0 simply denotes the cone inclusion.

Then, we can realize that Trace(v ◦ dv) = Trace(v2 ◦ (v−1 ◦ dv)), where v2 := v ◦ v.

Now, letting v̂ := v−1 ◦ dv, optimization problem (2.12) can be written as

min Trace(v2 + v2 ◦ v̂)

s.t. ‖v̂‖F ≤ 1.
(2.13)

It is easy to show that the optimal solution of (2.13) is given by v̂∗ = − v2

‖v2‖F
, and

the optimal objective value is ‖v‖2
F − ‖v2‖F . Therefore, we have

d∗v = L(v−1)−1v̂∗ = − v3

‖v2‖F
, (2.14)

where we have used the fact that v and v−1 have the same Jordan frame, and L(v−1)

is invertible, see Theorem A.1.1 and Lemma A.1.5. Consequently, the Dikin-type

search directions are obtained by solving

Ādx = 0,

Ā∗∆y + ds = 0,

dx + ds = − v3

‖v2‖F
.

(2.15)
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Akin to the Newton system (1.20), this system of equations has a unique solution.

Taking a Dikin step along the search directions dx and ds, the new iterate in the

v-space is obtained as

vαx := v + αdx,

vαs := v + αds,
(2.16)

and in the original space as

xα := x+ α∆x = x+ αP
1
2
w dx,

sα := s+ α∆s = x+ αP
− 1

2
w ds.

2.2.2 Proximity to the central path and feasibility

While reducing the duality gap, the Dikin-type algorithm keeps the iterates in a

predefined neighborhood of the central path. The proximity measure given in [86]

is generalized to

prox(v2) :=
λmax(v2)

λmin(v2)
, (2.17)

where λmin(v2) and λmax(v2) denote the smallest and largest eigenvalues of v2, re-

spectively. Note that prox(v2) ≥ 1, and equality holds only when x ◦ s = µe, see

Lemma 28 in [156]. Further

x ◦ s = µe ⇐⇒ v2 = µe.

2.2.3 The Dikin-type algorithm

The outline of the Dikin-type algorithm is described in Algorithm 1. The Dikin-

type algorithm starts with a strictly feasible primal-dual solution (x0, y0, s0) which

is close enough to the central path in terms of the proximity measure prox(.). The

algorithm uses the default steplength 1
ξ
√
r

which, after each Dikin step, maintains
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feasibility and proximity to the central path. Dikin steps are taken until the duality

gap decreases below the accuracy parameter ε.

Algorithm 1 Dikin-type algorithm

Input

A strictly feasible solution (x0, y0, s0)

Parameters

Proximity measure ξ > 1 so that prox(x0 ◦ s0) ≤ ξ

Steplength α with default value 1
ξ
√
r

Accuracy parameter ε

x := x0, s := s0

repeat

Obtain (∆x,∆s) by solving (2.15) and then using (1.21)

Set x := x+ α∆x

Set s := s+ α∆s

until Trace(x ◦ s) ≤ ε

2.2.4 Complexity analysis of the Dikin-type algorithm

In this section, we provide technical results to show that the default steplength

α = 1
ξ
√
r

leads to a strictly feasible primal-dual solution which also stays in a close

proximity to the central path. We also prove that the Dikin-type algorithm arrives

at a strictly feasible ε-optimal solution in O
(
ξr log

( Trace(x0 ◦ s0)

ε

))
iterations.

The next lemma provides a sufficient condition for the steplength α, by which the

Dikin step gives a strictly feasible primal-dual solution.

Lemma 2.2.1. Let α ≥ 0, and assume that v �K 0. Then, the steplength ᾱ is
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feasible if

vαx ◦ vαs �K 0, ∀ 0 ≤ α ≤ ᾱ,

where v0
x := v, v0

s := v, and vαx and vαs are defined by (2.16).

Proof. By Lemma A.1.3, vαx ◦ vαs �K 0 implies that det(vαx ) 6= 0 and det(vαs ) 6= 0 for

0 ≤ α ≤ ᾱ. Since the eigenvalues of vαx and vαs are continuous functions of α and

v �K 0 holds, then the eigenvalues of vαx and vαs do not vanish and remain positive

on [0, ᾱ].

Lemma 2.2.2. Let vα := P
− 1

2
wα x

α = P
1
2
wαs

α, where wα denotes the scaling point of

xα and sα, where

xα = x+ α∆x,

sα = s+ α∆s.

Then, we have

prox((vα)2) ≤ prox(vαx ◦ vαs ),

prox((vα)2) ≤ prox(xα ◦ sα).

Proof. Since w �K 0 and s �K 0, it follows from part 1 of Lemma A.1.1 and part 2

of Lemma A.1.6 that

vα = P
1
2
wαs

α ∼ P
(sα)

1
2
wα = P

(sα)
1
2
P

(sα)−
1
2

[
P

(sα)
1
2
xα
] 1

2

= (P
(sα)

1
2
xα)

1
2 ∼ (P

(xα)
1
2
sα)

1
2 ,

where∼ denotes the similarity of the eigenvalues. Thus, according to Theorem A.1.1,

we get

(vα)2 ∼ P
(xα)

1
2
sα,
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where

P
(xα)

1
2
sα = P

1
2

P
1
2
wα (v+αdx)

(P
− 1

2
wα (v + αds))

∼ P
1
2
v+αdx

(v + αds).

Now, considering Lemma A.1.7, we can conclude that

prox((vα)2) = prox(P
1
2
v+αdx

(v + αds)) ≤ prox(vαx ◦ vαs ),

prox((vα)2) = prox(P
(xα)

1
2
sα) ≤ prox(xα ◦ sα),

which completes the proof.

Assume that a strictly feasible solution (x, y, s) is given satisfying prox(v2) ≤ ξ,

where ξ ≥ 1. Then, it follows from (3.29) that there exists ξ1, ξ2 > 0 with ξ2 = ξξ1

so that

ξ2e �K v2 �K ξ1e. (2.18)

Now, Lemma 2.2.3 establishes a bound on the steplength α which guarantees feasi-

bility and proximity to the central path after a Dikin step.

Lemma 2.2.3. The steps xα and sα are strictly feasible and prox((vα)2) ≤ ξ if

α ≤ min

{
‖v2‖F

2ξ2

,
4ξ1

‖v2‖F

}
.

Proof. Recall from (1.18) that P
1
2
w and P

− 1
2

w are invertible maps from int(K) to

int(K). Therefore, xα, sα �K 0 if and only if vαx , v
α
s �K 0. Hence, by considering

Lemma 2.2.1, we only need to show that vαx ◦ vαs �K 0, where

vαx ◦ vαs = (v + αdx) ◦ (v + αds) = v2 − α v4

‖v2‖F
+ α2dx ◦ ds.
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Note that v2 and v4 share the same Jordan frame by Theorem A.1.1. Hence, λk(v
2)−

αλk(v2)2

‖v2‖F
serves as the eigenvalue of ϕ(v2), where

ϕ(t) := t− α t2

‖v2‖F
,

and λk(v
2) denotes the eigenvalue of v2 for k = 1, . . . , r. For α ≤ ‖v2‖F

2ξ2
, function

ϕ(t) is monotonically increasing on [0, ξ2]. All this means that

ϕ(ξ2)e �K v2 − α v4

‖v2‖F
�K ϕ(ξ1)e,

and thus

ϕ(ξ2)e+ α2dx ◦ ds �K vαx ◦ vαs �K ϕ(ξ1)e+ α2dx ◦ ds.

As long as the Dikin step is feasible, i.e., ϕ(ξ1)e + α2dx ◦ ds �K 0, we will have

prox(vαx ◦ vαs ) ≤ ξ if

ξ(ϕ(ξ1)e+ α2dx ◦ ds) �K ϕ(ξ2)e+ α2dx ◦ ds,

which can be further simplified to

ξ1ξ2

‖v2‖F
e+ αdx ◦ ds �K 0. (2.19)

By Lemma A.1.2, 1
4
‖dx + ds‖2

F gives an upper bound on the eigenvalues of dx ◦ ds.

Thus, by Lemma A.1.4 and (2.18), we get

1

4
ξ2e �K

1

4
λmax(v2)e �K

1

4

Trace(v6)

‖v2‖2
F

e =
1

4
‖ v3

‖v2‖F
‖2
F e =

1

4
‖dx + ds‖2

F e �K dx ◦ ds.

Consequently, condition (2.19) is satisfied if(
ξ1ξ2

‖v2‖F
− 1

4
αξ2

)
e �K 0,

which in turn implies that α < 4ξ1
‖v2‖F

. Thus, considering Lemma 3.30, the result

follows.
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The next lemma shows that after a feasible Dikin step, the duality gap is reduced

by at least a factor of

(
1− α√

r

)
.

Lemma 2.2.4. Let (x, y, s) be a feasible primal-dual solution. Then, after a feasible

Dikin step, we get

Trace(xα ◦ sα) ≤
(

1− α√
r

)
Trace(x ◦ s).

Proof. Since Trace(dx ◦ ds) = 0, it follows that

Trace((v + αdx) ◦ (v + αds)) = Trace

(
v2 − α v4

‖v2‖F

)
= ‖v‖2

F − α‖v2‖F .

Using the Cauchy-Schwarz inequality, a lower bound of ‖v‖2
F is given by

‖v‖2
F = Trace(v2) = Trace(v2 ◦ e) ≤ ‖v2‖F‖e‖F =

√
r‖v2‖F .

Thus, we can conclude that

Trace(xα ◦ sα) = Trace((v + αdx) ◦ (v + αds)) ≤
(

1− α√
r

)
Trace(v2),

which completes the proof.

Theorem 2.2.1. Let ε > 0, α = 1
ξ
√
r

and ξ > 1 so that prox(x0 ◦ s0) ≤ ξ. Then, the

Dikin-type algorithm terminates after at most dξr log Trace(x0◦s0)
ε

e iterations yielding

a feasible solution (x, y, s) such that prox(v2) ≤ ξ and Trace(x ◦ s) ≤ ε.

Proof. By the left hand side inequality in (2.18), we have ‖v2‖F ≥ ‖ξ1e‖F and thus

α =
1

ξ
√
r

=
ξ1

ξ2

√
r
≤ ξ1

√
r

2ξ2

=
‖ξ1e‖F

2ξ2

≤ ‖v
2‖F

2ξ2

.

By the right hand side inequality in (2.18) we have ‖v2‖F ≤ ξ2

√
r, and thus

4ξ1

‖v2‖F
≥ 4ξ1

ξ2

√
r

=
4

ξ
√
r
> α.
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Therefore, the default value of α satisfies the conditions in Lemma 2.2.3.

As Lemma 2.2.4 proves, each Dikin step with the default value of α reduces the

duality gap by a factor of

(
1− 1

ξr

)
. Consequently, the duality gap reduces below ε

after k iterations if (
1− 1

ξr

)k
Trace(x0 ◦ s0) ≤ ε.

Taking the logarithm of both sides gives

k log

(
1− 1

ξr

)
+ log(Trace(x0 ◦ s0)) ≤ log(ε).

This inequality is satisfied if

k

ξr
≥ log(Trace(x0 ◦ s0))− log(ε) = log

(
Trace(x0 ◦ s0)

ε

)
,

where we have used the fact that − log

(
1− 1

ξr

)
≥ 1

ξr
. This completes the proof.

2.2.5 Numerical results

As stated in Theorem A.1.2, SCO only includes LO, SOCO, and SDO along with

their complex variants or a combination of them. The extensions of the Dikin-

type algorithm for LO and SDO problems have been already investigated in [86]

and [35], respectively. Thus, in this section, we investigate the performance of the

Dikin-type algorithm only for SOCO problems. Toward this end, a set of 13 SOCO

test problems are chosen from the DIMACS library as listed in Table 2.1. The

test problems are of minimization type, and their optimal solutions are provided by

Mittelmann in [110].

We adopt SeDuMi 1.3 [166], SDPT3-4.0 [172, 176], and MOSEK 7.11 as competing

methods for comparison purposes. SeDuMi, and MOSEK apply feasible IPMs on a

1https://www.mosek.com/
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Table 2.1: The specifications of the SOCO problems.

Name #Rows #Lorentz Cones #Linear Variables Optimal Value

nql30new 3680 [900; 900x3] 3602 -0.946028

nql30old 3601 [900; 900x3] 5560 0.946028

nql60new 14560 [3600;3600x3] 14402 -0.935423

nql60old 14401 [3600; 3600x3] 21920 0.935423

nql180new 130080 [32400;32400x3] 129602 -0.927717

nb 123 [793; 793x 3] 4 -0.050703

nb-L1 915 [793; 793x 3] 797 -13.01227

nb-L2 123 [839; 1x1677,838x3] 4 -1.628972

nb-L2-Bessel 123 [839; 1x 123, 838x 3] 4 -0.102571

qssp30new 3691 [1891; 1891x 4] 2 -6.496675

qssp30old 5674 [1891; 1891x 4] 3600 6.496675

qssp60new 14581 [7381; 7381x 4] 2 -6.562696

qssp60old 22144 [7381; 7381x 4] 14400 6.562696

self-dual embedding format (see [134] for details) while SDPT3 employs an infeasible

IPM. The Dikin-type method is implemented in SeDuMi’s framework, where it uses

its own search direction, neighborhood and rule of steplength. All the methods are

run in MATLAB 8.1 on a Core i7 @3.4GHz CPU with 8 GB RAM. We leave the

default parameters unchanged and let the competing methods terminate according

to their own stopping criterion. However, the threshold for the primal and dual

feasibility and duality gap, and the maximum number of iterations have been set to

10−8 and 150, respectively, for all the competing methods. The Dikin-type algorithm

complies with SeDuMi’s default settings so that it terminates if the primal and dual

infeasibility along with the duality gap drops below the SeDuMi’s default threshold

(10−8). Further, the Dikin-type algorithm terminates if it gains less than 0.1%

improvement in duality gap.

A safeguard procedure is considered in the Dikin-type algorithm for the case when

the Dikin step provides no significant improvement in the duality gap (i.e., the

66



relative improvement is less than 5%). In this situation, we skip the Dikin step and

take a centering step which is obtained by solving

Ādx = 0,

Ā∗∆y + ds = 0,

dx + ds = µv−1 − v,

where µ := Trace(v2)
r

. Doing so, we indeed improve the centrality but keep the duality

gap constant.

In practice, the theoretical steplength α = 1
ξ
√
r

is nearly zero for large values of

r, which prevents taking a long Dikin step. To remove this drawback, we apply a

decreasing sequence of steplengths in (0, αmax) and take the largest value of α which

satisfies

prox(vαx ◦ vαs ) ≤ ξ.

In our experiments, ξ is fixed at 4.2, and αmax is set to the threshold value for the

boundary of the cone. In fact ξ = 4.2 obtained the best results in our initial ex-

periments. Smaller values of ξ lead to relatively fewer centering steps but with no

significant improvement in the duality gap. For large values of ξ, we have significant

improvement in the duality gap during the initial iterations, but the method gets

very close to the boundary of the cone, resulting in almost no significant improve-

ment afterwards.

Tables 2.2 to 2.5 illustrate the results of the Dikin-type algorithm and the competing

methods, in which the best primal objective (Primal), relative duality gap (rgap),

relative primal infeasibility (rpinf), relative dual infeasibility (rdinf), computational

time (CPU), the number of iterations (#Iter), relative minimum eigenvalue of x

(releig), and the number of centering steps (#cent.) are provided. The relative

primal and dual infeasibility, relative duality gap, and relative minimum eigenvalue
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are defined, respectively, as

rpinf :=
‖Ax− b‖2

1 + ‖b‖2

,

rdinf :=
λmax(A∗y − c)

1 + ‖c‖2

,

rgap :=
cTx− bTy

1 + |cTx|+ |bTy|
,

releig :=
λmin(x)

1 + ‖b‖2

.

As illustrated by Table 2.2, both the Dikin-type algorithm and SeDuMi perform

equally well on the test instances in terms of the objective value even though SeDuMi

performs quite faster. In 10 out of 13 instances, the Dikin-type algorithm arrives

at as good solutions as SeDuMi with 10−5 precision, and in 3 cases, the Dikin-type

algorithm performs better. On ”nql60old”, ”qssp30old”, and ”qssp60old”, SeDuMi

stops at non-optimal solutions. Further, the initial experiments showed that SeDuMi

is not consistently stable on different platforms. For instance, when run on a machine

under Windows operating system, SeDuMi fails in ”qssp60old” after 3 iterations.

The Dikin-type algorithm obtains the average relative duality gap 1.24E-03 within

the average of 67 iterations while SeDuMi ends up with 6.18E-03 in 18 iterations.

The Dikin-type algorithm also outperforms SeDuMi in terms of primal and dual

infeasibility. As demonstrated by the entries, the average of rpinf and rdinf over the

test instances are 4.78E-04 and 8.46E-08, respectively for the Dikin-type algorithm

and 2.07E-03 and 5.07E-07, respectively for SeDuMi.

It is worth mentioning that the Dikin-type algorithm takes only a few centering steps

to get the iterates back to the vicinity of the central path. To be more precise, in

9 out of 13 instances, the Dikin-type algorithm uses less than 10% of the iterations

for centering and more than 90% of iterations for reducing the duality gap. Further,

no centering was used for 4 test problems. The worst case belongs to the test
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instances“qssp60new” and “qssp60old“, on which 19.3% and 19.7% of the iterations

are spent on the centering.

The Dikin-type algorithm has been compared with MOSEK and SDPT3 in Ta-

bles 2.3 and 2.4, respectively. In 9 out of 13 instances, the Dikin-type algorithm ob-

tains as good solutions as MOSEK and SDPT3. Nevertheless, MOSEK and SDPT3

outperform the Dikin-type algorithm in terms of solution quality. For all the test

instances, MOSEK and SDPT3 have arrived at the best solutions. Here, SDPT3

performs better than MOSEK. On ”qssp60old”, MOSEK has gained a solution with

relative primal infeasibility 0.0013 while this value is 8.83E-09 for SDPT3. In terms

of accuracy and speed, MOSEK and SDPT3 are the winner. The average of relative

primal and dual infeasibility are 1.01E-04 and 4.16E-09 for MOSEK and 2.99E-09

and 6.33E-13 for SDPT3, respectively, while these values are 4.78E-03 and 8.46E-08

for the Dikin-type algorithm.

The numerical experiments show that in many instances, the Dikin type algorithm

provides solutions which are of higher accuracy than SeDuMi or almost as accurate

as MOSEK and SDPT3 in terms of relative duality gap, and relative primal and

dual infeasibility. Nevertheless, the numerical experiments also confirm that the

Dikin-type search directions are less effective in decreasing the duality gap than the

predictor-corrector search directions.
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Table 2.2: Comparison of the Dikin-type algorithm and SeDuMi in terms of quality.

Instance Dikin-type affine scaling SeDuMi

Primal rgap rpinf rdinf Primal rgap rpinf rdinf

nql30new -0.94602800 7.33E-10 1.90E-09 7.96E-10 -0.94602788 1.11E-07 8.72E-10 1.02E-09

nql30old 0.94603380 1.62E-06 4.65E-08 5.92E-11 0.94604805 4.37E-09 8.21E-10 8.48E-10

nql60new -0.93505133 1.01E-07 2.32E-09 9.70E-10 -0.93505119 9.35E-07 5.85E-10 1.57E-09

nql60old 0.93508946 1.07E-05 6.04E-07 4.89E-11 0.93516151 5.64E-09 2.92E-10 5.85E-10

nql180new -0.92772591 1.70E-05 2.91E-09 1.08E-09 -0.92772365 3.42E-06 1.03E-09 1.30E-09

nb -0.05070309 2.95E-11 1.26E-08 6.73E-12 -0.05070309 1.16E-12 3.74E-12 1.71E-12

nb L1 -13.01226986 1.22E-08 2.52E-10 9.59E-11 -13.01227003 1.10E-10 1.56E-10 1.07E-10

nb L2 -1.62896764 1.81E-06 1.50E-05 1.93E-10 -1.62897196 1.55E-10 3.74E-11 5.76E-10

nb L2 Bessel -0.10256951 2.03E-09 5.27E-12 1.85E-12 -0.10256950 1.10E-08 2.81E-11 2.44E-12

qssp30new -6.49667496 2.85E-09 7.03E-10 3.22E-10 -6.49666910 7.66E-10 7.18E-10 2.96E-09

qssp30old 6.52338286 6.20E-03 0.0022 1.66E-12 6.70807589 3.28E-02 0.0149 5.75E-06

qssp60new -6.56269019 1.98E-07 1.28E-07 1.10E-06 -6.56269721 8.23E-10 2.93E-10 1.05E-09

qssp60old 6.60855184 9.90E-03 0.004 5.40E-12 6.80741982 4.76E-02 0.012 8.24E-07

Average 1.24E-03 4.78E-04 8.46E-08 6.18E-03 2.07E-03 5.07E-07

Table 2.3: Comparison of the Dikin-type algorithm and MOSEK in terms of quality.

Instance Dikin-type affine scaling MOSEK

Primal rgap rpinf rdinf Primal rgap rpinf rdinf

nql30new -0.94602800 7.33E-10 1.90E-09 7.96E-10 -0.94602406 3.98E-09 5.03E-11 9.98E-09

nql30old 0.94603380 1.62E-06 4.65E-08 5.92E-11 0.94602932 3.39E-07 6.50E-06 5.12E-12

nql60new -0.93505133 1.01E-07 2.32E-09 9.70E-10 -0.93504191 8.31E-10 1.13E-11 9.62E-09

nql60old 0.93508946 1.07E-05 6.04E-07 4.89E-11 0.93505940 2.47E-06 1.47E-07 1.62E-12

nql180new -0.92772591 1.70E-05 2.91E-09 1.08E-09 -0.92764299 3.07E-09 2.75E-10 1.14E-08

nb -0.05070309 2.95E-11 1.26E-08 6.73E-12 -0.05070309 1.41E-11 9.52E-09 1.24E-11

nb L1 -13.01226986 1.22E-08 2.52E-10 9.59E-11 -13.01226111 1.65E-07 1.05E-09 2.45E-09

nb L2 -1.62896764 1.81E-06 1.50E-05 1.93E-10 -1.62897188 2.41E-08 2.84E-07 1.48E-10

nb L2 Bessel -0.10256951 2.03E-09 5.27E-12 1.85E-12 -0.10256946 4.28E-08 1.92E-10 9.96E-11

qssp30new -6.49667496 2.85E-09 7.03E-10 3.22E-10 -6.49665883 9.06E-12 8.93E-16 1.65E-08

qssp30old 6.52338286 6.20E-03 0.0022 1.66E-12 6.49667620 5.40E-08 1.20E-07 1.68E-12

qssp60new -6.56269019 1.98E-07 1.28E-07 1.10E-06 -6.56269012 5.60E-13 2.12E-15 3.90E-09

qssp60old 6.60855184 9.90E-03 0.004 5.40E-12 6.56271306 1.04E-06 0.0013 8.66E-13

Average 1.24E-03 4.78E-04 8.46E-08 3.19E-07 1.01E-04 4.16E-09
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Table 2.4: Comparison of the Dikin-type algorithm and SDPT3 in terms of quality.

Instance Dikin-type affine scaling SDPT3

Primal rgap rpinf rdinf Primal rgap rpinf rdinf

nql30new -0.94602800 7.33E-10 1.90E-09 7.96E-10 -0.94602850 8.49E-09 8.23E-14 2.48E-12

nql30old 0.94603380 1.62E-06 4.65E-08 5.92E-11 0.94602848 5.86E-09 1.62E-08 1.81E-15

nql60new -0.93505133 1.01E-07 2.32E-09 9.70E-10 -0.93505295 7.37E-09 3.40E-13 5.62E-13

nql60old 0.93508946 1.07E-05 6.04E-07 4.89E-11 0.93505306 4.12E-08 9.13E-09 8.50E-15

nql180new -0.92772591 1.70E-05 2.91E-09 1.08E-09 -0.92772862 6.85E-09 4.18E-12 5.21E-14

nb -0.05070309 2.95E-11 1.26E-08 6.73E-12 -0.05070309 8.49E-09 2.26E-12 9.20E-17

nb L1 -13.01226986 1.22E-08 2.52E-10 9.59E-11 -13.01227060 6.15E-09 2.92E-11 2.66E-12

nb L2 -1.62896764 1.81E-06 1.50E-05 1.93E-10 -1.62897195 8.41E-09 1.91E-10 1.04E-13

nb L2 Bessel -0.10256951 2.03E-09 5.27E-12 1.85E-12 -0.10256950 6.16E-09 1.42E-12 5.25E-17

qssp30new -6.49667496 2.85E-09 7.03E-10 3.22E-10 -6.49667573 1.80E-09 1.83E-11 8.08E-13

qssp30old 6.52338286 6.20E-03 0.0022 1.66E-12 6.49667571 6.26E-10 4.36E-09 9.47E-13

qssp60new -6.56269019 1.98E-07 1.28E-07 1.10E-06 -6.56270646 3.93E-09 9.39E-11 6.03E-13

qssp60old 6.60855184 9.90E-03 0.004 5.40E-12 6.56270644 1.38E-09 8.83E-09 2.50E-16

Average 1.24E-03 4.78E-04 8.46E-08 8.21E-09 2.99E-09 6.33E-13

Table 2.5: Comparison in terms of solution time and the number of iterations.

Instance Dikin-type affine scaling SeDuMi MOSEK SDPT3

CPU #Iter #cent. releig CPU #Iter releig CPU #Iter releig CPU #Iter releig

nql30new 1.3 33 0 1.96E-09 0.3 15 2.41E-09 0.2 13 0 0.9 26 0

nql30old 3.8 41 1 3.89E-10 1.6 18 1.79E-09 0.6 20 0 1.6 30 0

nql60new 5.2 34 0 2.45E-09 1.0 14 2.48E-09 0.7 14 0 3.9 27 0

nql60old 20.4 66 4 8.32E-10 7.1 22 2.48E-09 1.8 20 0 7.3 29 0

nql180new 113.8 74 2 9.14E-10 13.2 16 1.51E-09 7.5 15 0 32.4 33 0

nb 2.1 46 2 6.61E-13 0.6 20 5.05E-15 0.3 20 0 0.4 22 0

nb L1 1.9 31 0 3.03E-11 0.9 18 2.38E-11 0.3 16 0 3.2 30 0

nb L2 3.4 53 2 2.34E-10 0.8 16 2.84E-12 0.3 13 0 0.5 15 0

nb L2 Bessel 1.8 34 0 2.54E-12 0.5 16 5.53E-12 0.2 10 0 0.4 20 0

qssp30new 5.9 93 12 5.02E-12 0.5 20 4.78E-11 0.3 17 0 0.6 20 0

qssp30old 21.8 85 12 8.44E-11 2.5 12 2.94E-05 1.0 22 0 3.7 18 0

qssp60new 45.7 150 29 1.25E-10 2.8 27 9.60E-12 0.8 19 0 2.8 23 0

qssp60old 171.0 127 25 5.96E-11 19.6 18 6.87E-06 6.7 26 0 33.1 19 0

Average 30.6 67 7 5.45E-10 4.0 18 2.79E-06 1.6 17 0 7.0 24 0

71



Chapter 3

Identification of the optimal

partition

In this chapter, we investigate the identification of the optimal partition for SDO

and SOCO using the sequence of interior solutions on or in the vicinity of the central

path. Section 3.1 investigates the identification of the optimal partition for SDO and

Section 3.2 reviews the identification of the optimal partition for SOCO from [171].

Note that we use the same terminology for the optimal partitions of SDO and SOCO.

3.1 Identification of the optimal partition for SDO

In case of degeneracy, even for LO, the condition number of the Newton system

of search directions goes to infinity, leading to ill-posed systems, during the final

iterations of IPMs [71]. It would be helpful, like in LO and LCP [85, 151], if we

could avoid this ill-conditioning, by switching over to a rounding procedure, when

µ is sufficiently small. This motivates us to study the identification of the optimal

partition for SDO. The optimal partition provides unique information about the
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optimal set of an SDO problem, regardless of nondegeneracy and strict complemen-

tarity conditions. As indicated in Section 1.5.1, the optimal partition is uniquely

defined for SDO problems with strong duality.

We consider the identification of the optimal partition for SDO. The rationale be-

hind the identification of the optimal partition is closely interconnected with the

limiting behavior of the central path and the existence of a maximally complemen-

tary solution. Our goal is to approximate the optimal partition of an SDO problem

using the limiting behavior of the central path and a bounded sequence of interior

solutions in a neighborhood of the central path. We show how the complexity of

approximating the optimal partition depends on condition numbers of the problem.

Using bounds on the magnitude of the eigenvalues we identify the subsets of the

eigenvectors of the interior solutions whose accumulation points form orthonormal

bases for the subspaces of the optimal partition. The magnitude of the eigenvalues

of an interior solution is quantified by using a condition number and an upper bound

on the distance of an interior solution to the optimal set. In contrast to LO, there

are certain instances of SDO for which the condition number is doubly exponentially

small. We show that even approximation of the optimal partition is notably more

expensive than the identification of the optimal partition for LO.

3.1.1 Identification along the central path

We provide a characterization of the optimal partition using the eigenvectors of a

central solution, when µ is sufficiently close to 0. In Section 3.1.1.1, we define a

condition number and employ an error bound result for linear matrix inequalities

(LMIs), see Section A.2.1, to derive an upper bound on the distance of a central

solution to the optimal set. In Section 3.1.1.2, we proceed with the approximation

of the optimal partition using the condition number and the error bound result
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specified in Section 3.1.1.1. In Section 3.1.1.3, we measure the accuracy of the

approximation of the optimal partition.

Remark 3.1.1. The concept of the optimal partition is well-defined only when strong

duality holds, and without the interior point condition the central path does not exist.

It is known that the interior point condition can be made w.l.o.g., by using the self-

dual embedding model, see e.g., [34]. Note that in this case, the embedding model

is always well-posed (in terms of the interior point condition) even if the original

problem is not.

3.1.1.1 Condition number and error bound

Recall that the central path for (PSDO) and (DSDO) is defined by (1.22), and assume

that QB and QN are known. To derive bounds on the magnitudes of the eigenvalues

of Xµ and Sµ on the central path as µ→ 0, we define a condition number σ as

σ := min{σB, σN}, (3.1)

where

σB :=



max
X̃∈P∗SDO

λmin(QT
BX̃QB)

= max
Q̄B∈ΓB

max
X̃∈P∗SDO

λmin(Q̄T
BX̃Q̄B), if nB > 0,

∞, if nB = 0,

(3.2)

σN :=



max
(ỹ,S̃)∈D∗SDO

λmin(QT
N S̃QN )

= max
Q̄N∈ΓN

max
(ỹ,S̃)∈D∗SDO

λmin(Q̄T
N S̃Q̄N ), if nN > 0,

∞, if nN = 0.

(3.3)

The condition number σ is indeed a generalization of the analogous condition number

from LO, as introduced by Ye [181].
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Lemma 3.1.1. The condition number σ is positive.

Proof. By the interior point condition, P∗SDO × D∗SDO is nonempty and compact.

Thus, σ is well-defined by Remark 1.5.3. Assume that nB > 0. Then there exists X̆ ∈

P∗SDO so that λmin(QT
BX̆QB) > 0. By the compactness of P∗SDO and the continuity

of the eigenvalues, there exists X̄ ∈ P∗SDO so that

max
X̃∈P∗SDO

λmin(QT
BX̃QB) = λmin(QT

BX̄QB) ≥ λmin(QT
BX̆QB) > 0,

which implies that σB > 0. A similar argument can be made to show that σN > 0

if nN > 0. Consequently, it holds that σ > 0.

Remark 3.1.2. In Appendix A.3, we provide a positive lower bound on the condition

number σ as

σ ≥ min

{
1

rP∗SDO

∑m
i=1 ‖Ai‖F

,
1

rD∗SDO

}
, (3.4)

where

log2(rP∗SDO
) = (L+ 2)

(
max{n, 3}(6n2 + 2n+m)

)5n2+2m

,

log2(rD∗SDO
) = (L+ 2)

(
max{n, 3}(7n2 + 2n+ 2m)

)6n2+m

,

in which L is the binary length of the largest absolute value of the input data, when

the problem is given by integers. See Lemma A.3.2 for the proof.

For LO, the condition number σ may be in the order of 2−L. However, there are

instances of SDO for which σ is doubly exponentially small, as the following example

illustrates.
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Example 3.1.1. Consider Khachiyan’s example which is adopted from [138]:

max y1

s.t. Gi(y) :=

 y1 2yi

2yi yi+1

 � 0, i = 1, . . . , m̄,

ym̄+1 ≤ 1.

This problem can be represented in dual form (DSDO) if we define

A1 =

−1 −2

−2 0

⊕
−1 0

0 0

⊕ . . .⊕
−1 0

0 0

⊕ 0,

Ai+1 = 02(i−1)×2(i−1) ⊕

0 0

0 −1

⊕
 0 −2

−2 0

⊕ 0(2(m̄−i)−1)×(2(m̄−i)−1),

Am̄+1 = 02(m̄−1)×2(m̄−1) ⊕

0 0

0 −1

⊕ 1,

C = 02m̄×2m̄ ⊕ 1,

b = (1,0)T ,

where i = 1, . . . , m̄−1, m = m̄+ 1, n = 2m̄+ 1, and the direct sum ⊕ forms a block

diagonal matrix, i.e.,

X ⊕ S :=

X 0

0 S

 .

From the LMIs we can observe that the volume of the feasible set is doubly exponen-

tially small, since we have 42i−1y1 ≤ yi+1 and yi+1 ≤ 1 for all i = 1, . . . , m̄. The

optimal solution is unique, and it is given by y∗i+1 = 42i−2m̄ for i = 0, . . . , m̄.

Since y∗1y
∗
i+1 = 4(y∗i )

2 and Gi(.) is a 2× 2 matrix, we get

λmax(Gi(y
∗)) = Trace(Gi(y

∗)) = y∗1 + y∗i+1 = 41−2m̄ + 42i−2m̄ , i = 1, . . . , m̄.
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Therefore, an upper bound on the condition number σ is given by

σ ≤ σN = λmin

(
QT
N

(
G1(y∗)⊕ . . .⊕Gm̄(y∗)⊕ (1− y∗m̄+1)

)
QN

)
= min

i∈{1,...,m̄}
{λmax(Gi(y

∗))}

= 41−2m̄ + 42−2m̄ = 20× 4−2m̄ .

Even though the lower bound (3.4) is doubly exponentially small, it is not too far

from the actual value of σ for some instances of SDO. In fact, all this only indicates

that an SDO problem is, in general, harder to solve exactly than an LO problem.

Example 3.1.2. From (3.4) we get a doubly exponentially small lower bound on σ.

Consider the SDO problem in Example 3.1.1 for which we have σ ≤ 20×4−2m̄. Given

nB ≤ 2m̄ + 1, nN ≤ 2m̄ + 1, ‖A1‖F =
√
m̄+ 8, ‖Ai+1‖F = 3 for i = 1, . . . , m̄ − 1,

‖Am̄+1‖F =
√

2, and L = `(2) = 1 + dlog2(3)e = 3, see (A.10), we can compute the

lower bound (3.4). To do so, we have

t̄p ≤ 6(2m̄+ 1)2 + 2(2m̄+ 1) + m̄+ 1, t̄d ≤ 7(2m̄+ 1)2 + 2(2m̄+ 1) + 2m̄+ 2,

s̄p ≤ 5(2m̄+ 1)2 + 2m̄+ 2, s̄d ≤ 6(2m̄+ 1)2 + m̄+ 1,

d̄p = d̄d ≤ 2m̄+ 1,

m∑
i=1

‖Ai‖F =
√
m̄+ 8 + 3(m̄− 1) +

√
2.

Therefore, we get

log(rP∗SDO
) = 5× (48m̄3 + 82m̄2 + 47m̄+ 9)20m̄2+22m̄+7,

log(rD∗SDO
) = 5× (56m̄3 + 96m̄2 + 56m̄+ 11)24m̄2+25m̄+7.

Consequently,

σ ≥ min
{(√

m̄+ 8 + 3(m̄− 1) +
√

2
)
2−5×(48m̄3+82m̄2+47m̄+9)20m̄2+22m̄+7

,

2−5×(56m̄3+96m̄2+56m̄+11)24m̄2+25m̄+7
}
.
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Remark 3.1.3. One should be cautioned that computing an exact solution of an LO

problem might be difficult too. More precisely, the condition number σ might be so

small for an LO problem that very high accuracy is needed for the computation of an

exact solution, far beyond the double precision arithmetic commonly used today. For

instance, it might be extremely hard to exactly solve an LO problem with a Hilbert

matrix of size larger than 20, regardless of the algorithm used.

In what follows, we resort to a Hölderian error bound result for an LMI system from

Theorem A.2.4. The Hölderian bound depends on the degree of singularity of the

LMI system, see Section A.2.1. In Lemma 3.1.2, we employ the error bound result

to specify an upper bound on the distance of a central solution to the optimal set.

In Section 3.1.1.2, we use this upper bound along with the condition number σ to

derive bounds on the magnitude of the eigenvalues of the central solutions.

Let (X̃, ỹ, S̃) ∈ P∗SDO × D∗SDO be a primal-dual optimal solution. Then the primal

and dual optimal sets can be equivalently written as
As svec(X) = b,

svec(S̃)T svec(X) = 0,

X � 0,


(As)Ty + svec(S) = svec(C),

svec(X̃)T svec(S) = 0,

S � 0,

(3.5)

see also Section 4 in [167]. Then the minimal subspaces containing the primal and

dual optimal sets are given by

S̄P∗SDO
:= (Ker(As) ∩ (R svec(S̃))⊥) + R svec(X̃),

S̄D∗SDO
:= (R((As)T ) ∩ (R svec(X̃))⊥) + R svec(S̃),

where R svec(X̃) and R svec(S̃) denote the set of all multiples of svec(X̃) and

svec(S̃), respectively. From the primal-dual feasibility constraints we have

〈Xµ − X̃, Sµ − S̃〉 = 0,
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which by (1.22) and the optimality of X̃ and S̃ gives

〈Xµ, S̃〉+ 〈X̃, Sµ〉 = nµ.

All this implies that 0 ≤ svec(S̃)T svec
(
Xµ
)
≤ nµ and 0 ≤ svec(X̃)T svec

(
Sµ
)
≤

nµ. Therefore, by the orthogonal projection of svec
(
Xµ
)

and svec
(
Sµ
)

onto the

affine subspaces{
x ∈ Rn(n+1)/2 | x ∈ svec(X̃) + Ker(As), svec(S̃)Tx = 0

}
,{

s ∈ Rn(n+1)/2 | s ∈ svec(S̃) +R
(
(As)T

)
, svec(X̃)T s = 0

}
,

we get

dist
(

svec
(
Xµ
)
, {x | x ∈ svec(X̃) + Ker(As), svec(S̃)Tx = 0}

)
≤ $pnµ,

dist
(

svec
(
Sµ
)
, {s | s ∈ svec(S̃) +R

(
(As)T

)
, svec(X̃)T s = 0}

)
≤ $dnµ,

in which $p and $d depend on As and S̃, and As and X̃, respectively. Interestingly,

$p and $d can be interpreted as Hoffman condition numbers, see Theorem A.2.1.

To see this, note that the application of the Hoffman error bound gives

dist
(

svec
(
Xµ
)
, {x | x ∈ svec(X̃) + Ker(As), svec(S̃)Tx = 0}

)
= dist

(
svec

(
Xµ
)
,
{
x | Asx = b, svec(S̃)Tx = 0

})
≤ $p

(
‖As svec

(
Xµ
)
− b‖2 + svec(S̃)T svec

(
Xµ
))

= $p svec(S̃)T svec
(
Xµ
)
≤ $pnµ.

(3.6)

Analogously, we can derive

dist
(

svec
(
Sµ
)
, {s | s ∈ svec(S̃) +R

(
(As)T

)
, svec(X̃)T s = 0}

)
= dist

(
svec

(
Sµ
)
,
{
s | ∃ y ∈ Rm, (As)Ty + s = svec(C), svec(X̃)T s = 0

})
≤ $d

(
‖(As)Tyµ + svec

(
Sµ
)
− svec(C)‖2 + svec(X̃)T svec

(
Sµ
))

= $d svec(X̃)T svec
(
Sµ
)
≤ $dnµ.

(3.7)
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As a consequence, if

µ ≤ µ̂ :=
1

n
min

{
$−1
p , $−1

d

}
, (3.8)

then it holds that

dist
(

svec
(
Xµ
)
, L̄P

)
≤ 1, dist

(
svec(Sµ

)
, L̄D

)
≤ 1.

Now, we present the following lemma, as planned.

Lemma 3.1.2. Let
(
Xµ, yµ, Sµ

)
be a central solution with µ ≤ µ̂. Then there exist

(Xµ, yµ, Sµ) ∈ P∗SDO × D∗SDO, a positive condition number κ independent of µ, and

an exponent γ > 0 so that∥∥Xµ −Xµ

∥∥
F
≤ κ(nµ)γ,

∥∥Sµ − Sµ∥∥F ≤ κ(nµ)γ, (3.9)

where γ depends on the degree of singularity of S̄P∗SDO
and S̄D∗SDO

.

Proof. The bounds in (3.9) can be established easily by applying the error bound

result, as stated in Theorem A.2.4, to the LMIs in (3.5). As defined by (1.22), the

set of central solutions (Xµ, yµ, Sµ) for 0 < µ ≤ µ̂ is bounded, see e.g., Lemma 3.2

in [32]. Therefore, from Theorem A.2.4 and the compactness of the optimal set it

follows the existence of (Xµ, yµ, Sµ) ∈ P∗SDO ×D∗SDO, positive condition numbers κ1

and κ2 both independent of µ, and positive exponents γ1 and γ2 so that∥∥Xµ −Xµ

∥∥
F
≤ κ1(nµ)γ1 ,

∥∥Sµ − Sµ∥∥F ≤ κ2(nµ)γ2 ,

where

γ1 = 2
−d(S̄P∗

SDO
,Sn+)

, γ2 = 2
−d(S̄D∗

SDO
,Sn+)

,

in which d(S̄P∗SDO
,Sn+) and d(S̄D∗SDO

,Sn+) denote the degree of singularity of the

subspaces S̄P∗SDO
and S̄D∗SDO

, respectively. Setting γ := min{γ1, γ2} and κ :=

max{κ1, κ2} we get the result as desired.
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Remark 3.1.4. From Theorem A.2.5 we can get a nontrivial upper bound n− 1 on

the degree of singularity. Therefore, we have γ ≥ 21−n for n ≥ 2. However, we are

not aware of any method to compute an upper bound on the condition number κ.

Remark 3.1.5. For the special case T = {0}, the degree of singularity is at most

1 [167]. For instance, this special case happens when we embed an LO problem in

SDO. Then Lemma 3.1.2 gives an upper bound O(
√
nµ) on the distance of a central

solution to the optimal set. However, a direct application of the Hoffman error bound

to the linear system of the optimality conditions results in the upper bound O(nµ).

3.1.1.2 Approximation of the optimal partition

Consider the orthogonal transformation of Xµ with respect to Q denoted by

X̂µ :=


X̂µ
B X̂µ

BT X̂µ
BN

X̂µ
T B X̂µ

T X̂µ
T N

X̂µ
NB X̂µ

NT X̂µ
N

 , (3.10)

where X̂µ := QTXµQ. The orthogonal transformation of Sµ is defined analogously.

Since the central path converges to a maximally complementary optimal solution,

from the orthogonal transformation in (3.10) we have

lim
µ→0

X̂µ
B = UX∗∗ , and lim

µ→0
ŜµN = US∗∗ ,

and

limµ→0Q
T
T ∪NX

µQT ∪N = 0, limµ→0Q
T
B∪T S

µQB∪T = 0,

where X̂µ
B = QT

BX
µQB and ŜµN = QT

NS
µQN , and (X∗∗, y∗∗, S∗∗) denotes the limit

point of the central path. The following lemma establishes upper bounds on the

vanishing blocks of X̂µ and Ŝµ.

81



Lemma 3.1.3. Let
(
Xµ, yµ, Sµ

)
be a central solution with µ ≤ µ̂. Then we have

Trace(X̂µ
N ) ≤ nµ

σ
, Trace(ŜµB) ≤ nµ

σ
,∥∥QT

T ∪NX
µQT ∪N

∥∥
F
≤ κ(nµ)γ,

∥∥QT
B∪T S

µQB∪T
∥∥
F
≤ κ(nµ)γ.

Proof. By the compactness of P∗SDO, and the continuity of the eigenvalues, there

exists X̄ ∈ P∗SDO so that σB = λmin(QT
BX̄QB) as defined in (3.2). Analogously,

it follows from (3.3) that σN = λmin(QT
N S̄QN ) for some (ȳ, S̄) ∈ D∗SDO. Since

σ = min{σB, σN}, then there exists (X̄, ȳ, S̄) ∈ P∗SDO ×D∗SDO so that

λmin(UX̄) ≥ σ, λmin(US̄) ≥ σ, (3.11)

where UX̄ = QT
BX̄QB and US̄ = QT

N S̄QN . Recall from the feasibility constraints

that

〈Xµ − X̄, Sµ − S̄〉 = 0,

which by (1.22) and optimality of X̄ and S̄ gives

〈Xµ, S̄〉+ 〈X̄, Sµ〉 = nµ.

Since the inner product is invariant with respect to an orthogonal transformation,

we get

〈Xµ, S̄〉+ 〈X̄, Sµ〉 = 〈X̂µ
N , US̄〉+ 〈UX̄ , ŜµB〉 = nµ,

where ŜµB = QT
BS

µQB and X̂µ
N = QT

NX
µQN . Therefore, the positive definiteness of

X̂µ
N gives rise to 〈X̂µ

N , US̄〉 ≤ nµ. Furthermore, from the inequality λmin(US̄) Trace(X̂µ
N ) ≤

〈X̂µ
N , US̄〉, it immediately follows that

λmin(US̄) Trace(X̂µ
N ) ≤ nµ,

82



which by the lower bounds (3.11) gives

Trace(X̂µ
N ) ≤ nµ

σ
.

In a similar manner, it follows from ŜµB � 0 that

Trace(ŜµB) ≤ nµ

σ
.

From Lemma 3.1.2 there exists (Xµ, yµ, Sµ) ∈ P∗SDO × D∗SDO so that (3.9) holds.

Recall from Theorem 1.5.1 that Xµ can be represented as QBUXµQ
T
B where UXµ � 0.

Thus, we have

∥∥QT
T ∪NX

µQT ∪N
∥∥
F

=

∥∥∥∥
 X̂µ

T X̂µ
T N

X̂µ
NT X̂µ

N

∥∥∥∥
F

≤
∥∥Xµ −Xµ

∥∥
F
≤ κ(nµ)γ,

and

∥∥QT
B∪T S

µQB∪T
∥∥
F

=

∥∥∥∥
 ŜµB ŜµBT

ŜµT B ŜµT

∥∥∥∥
F

≤
∥∥Sµ − Sµ∥∥F ≤ κ(nµ)γ,

which completes the proof.

Let Xµ = QµΛ(Xµ)(Qµ)T and Sµ = QµΛ(Sµ)(Qµ)T be the eigenvalue decomposi-

tions of Xµ and Sµ, where Qµ denotes a common eigenvector basis. We show in

Theorems 3.1.1 and 3.1.2 that it is possible to identify the subsets of columns of Qµ

whose accumulation points are orthonormal bases for the subspaces B, N , and T ,

when µ is sufficiently small.

Lemma 3.1.4 (Theorem 4.5 in [161]). Let X ∈ Sn and Y ∈ Rn×k. Then we have

λ[n−k+1](X) + . . .+ λ[n](X) = min
Y

Trace(Y TXY ),

s.t. Y TY = Ik.
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Theorem 3.1.1. For a central solution (Xµ, yµ, Sµ) with µ ≤ µ̂, where µ̂ is given

by (3.8), it holds that:

λ[n−i+1]

(
Sµ
)
≤ nµ

σ
, λ[i]

(
Xµ
)
≥ σ

n
, i = 1, . . . , nB, (3.12)

λ[n−i+1]

(
Xµ
)
≤ nµ

σ
, λ[i]

(
Sµ
)
≥ σ

n
, i = 1, . . . , nN , (3.13)

µ

c
√
n(nµ)γ

≤ λ[i]

(
Xµ
)
, λ[n−i+1]

(
Sµ
)
≤ c
√
n(nµ)γ, i = nB + 1, . . . , nB + nT .

(3.14)

If nT > 0, then we have

κ ≥
(

min{$−1
p , $−1

d }
) 1

2
−γ

n
,

1

2n−1
≤ γ ≤ 1

2
.

Proof. Recall that ŜµB = QT
BS

µQB and X̂µ
N = QT

NX
µQN as defined in (3.10). Then

it follows from Lemma 3.1.4 that

λ[n−nB+1](S
µ) + . . .+ λ[n](S

µ) ≤ Trace(ŜµB) ≤
nµ

σ
,

λ[n−nN+1](X
µ) + . . .+ λ[n](X

µ) ≤ Trace(X̂µ
N ) ≤

nµ

σ
.

Therefore, noting that λmin(Xµ), λmin(Sµ) > 0, we get

λ[n−i+1](S
µ) ≤

nµ

σ
, i = 1, . . . , nB,

λ[n−i+1](X
µ) ≤

nµ

σ
, i = 1, . . . , nN .

Further, from the centrality condition Λ(Xµ)Λ(Sµ) = µIn, we can observe that the

ith largest eigenvalue of Xµ and the ith smallest eigenvalue of Sµ have the same

eigenvector, which implies λ[i](X
µ)λ[n−i+1](S

µ) = µ. Hence, we can derive

λ[i](X
µ) ≥

σ

n
, i = 1, . . . , nB,

λ[i](S
µ) ≥

σ

n
, i = 1, . . . , nN .
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It follows from Lemmas 3.1.3 and 3.1.4 and Trace(X) ≤
√
n‖X‖F that

1√
n

(
λ[n−nN−nT +1](X

µ) + . . .+ λ[n](X
µ)

)
≤
∥∥QT
T ∪NX

µQT ∪N
∥∥
F
≤ κ(nµ)γ,

1√
n

(
λ[n−nB−nT +1](S

µ) + . . .+ λ[n](S
µ)

)
≤
∥∥QT
B∪T S

µQB∪T
∥∥
F
≤ κ(nµ)γ,

which by the centrality condition gives (3.14).

By Theorem 3.1.1, if nT > 0, there exist nT eigenvalues of Xµ and nT eigenvalues of

Sµ which stay within the interval

[ µ

κ
√
n(nµ)γ

, κ
√
n(nµ)γ

]
, and thus both converge

to 0 as µ→ 0. Then it holds that

κ
√
n(nµ)γ ≥ µ

κ
√
n(nµ)γ

⇒ κ2n2 ≥ (nµ)1−2γ, ∀ 0 < µ ≤ µ̂,

which by the definition of µ̂ implies

κ ≥
(

min{$−1
p , $−1

d }
) 1

2
−γ

n
, γ ≤ 1

2
.

The lower bound γ ≥ 1
2n−1 follows from Lemma A.2.5. This completes the proof.

Since the central path is an analytic curve, the eigenvalues of Xµ and Sµ are con-

tinuous functions of µ, and the eigenvalues of central solutions converge to the

eigenvalues of the limit point of the central path. Hence, one can observe from The-

orem 3.1.1 that the eigenvalues of a central solution (Xµ, yµ, Sµ) can be categorized

into three subsets of eigenvalues as follows

1. λi(X
µ) converges to a positive value and λi(S

µ) converges to 0;

2. λi(S
µ) converges to a positive value and λi(X

µ) converges to 0;

3. both λi(X
µ) and λi(S

µ) converge to 0,
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where λi(X
µ) and λi(S

µ) correspond to the ith column of Qµ. Let Qµ
B, Qµ

T , and Qµ
N

denote the subsets of columns of Qµ corresponding to the above subsets of eigenval-

ues, respectively. Since the central path converges to a maximally complementary

optimal solution, the accumulation points of Qµ
B, Qµ

T , and Qµ
N , when µ → 0, form

orthonormal bases for the subspaces B, T , and N , respectively. Section 3.3 in [32]

elucidates the details. The following theorem specifies an upper bound on µ which

allows for the identification of Qµ
B, Qµ

T , and Qµ
N .

Theorem 3.1.2. If µ satisfies

µ < µ̃ := min

{
1

n

(
σ

κn
3
2

) 1
γ

,
σ2

n2
, µ̂

}
, (3.15)

then we can identify Qµ
B, Qµ

T , and Qµ
N from Qµ.

Proof. From inequalities (3.12) and (3.13), we can deduce that the nB largest eigen-

values of Xµ stay positive while the nB smallest eigenvalues of Sµ will converge to

0. Similarly, the nN largest eigenvalues of Sµ will remain positive while the last

nN eigenvalues of Xµ converge to 0 as µ → 0. Inequalities (3.14) also hint that, if

nT > 0, then there should exist a set of nT eigenvalues of Xµ and Sµ which stay

within the interval [µ/κ
√
n(nµ)γ, κ

√
n(nµ)γ]. Recall that the ith largest eigenvalue

of Xµ and the ith smallest eigenvalue of Sµ have the same eigenvector. Thus, we can

identify Qµ
B, Qµ

T , and Qµ
N when µ ≤ µ̂ and the intervals [µ/κ

√
n(nµ)γ, κ

√
n(nµ)γ],

(0, nµ/σ], and [σ/n,∞) are disjoint, i.e., when

nµ

σ
<

µ

κ
√
n(nµ)γ

, κ
√
n(nµ)γ <

σ

n
,

nµ

σ
<
σ

n
, (3.16)

which, by
µ

κ
√
n(nµ)γ

≤ κ
√
n(nµ)γ, is equivalent to

µ <
1

n

(
σ

κn
3
2

) 1
γ

. (3.17)
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Furthermore, in case that T = {0}, µ needs to satisfy

µ ≤ σ2

n2
.

Finally, µ ≤ µ̂ must hold as well in order to retain the validity of the bounds in (3.9).

This completes the proof.

Remark 3.1.6. In general, we do not know in advance if the strict complementarity

condition holds for a given instance of SDO. Note that (3.16) and (3.17) imply that

if nT > 0, then we have

1

n

(
σ

κn
3
2

) 1
γ

≤ σ2

n2
.

If nT = 0, then we can make improvement on the bound (3.15). In fact, the

bounds (3.14) may provide no further information compared to (3.12) and (3.13)

for small values of µ. Hence, in order to identify Qµ
B and Qµ

N it is enough to have

nµ

σ
<
σ

n
,

which reduces the bound (3.15) to µ < σ2

n2 . This bound matches the one for LO, see

Section 3.3.3 in [151].

Remark 3.1.7. Theorem 3.1.1 is used in Section 4.1.1 to derive bounds for the

feasibility of a rounded primal-dual optimal solution. In Section 4.1.1, R
(
Qµ
B
)
,

R
(
Qµ
T
)
, and R

(
Qµ
N
)

with µ < µ̃ are referred to as approximations of the subspaces

B, T , and N , respectively. Furthermore, we use Theorem 3.1.1 in Section 5.1.3 to

investigate the sensitivity of the approximation of the optimal partition with respect

to the perturbation of the objective vector.
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3.1.1.3 Proximity to the optimal partition

We can provide more information about the optimal partition of the problem by

measuring the proximity of R(Qµ
B) and R(Qµ

N ) to the subspaces B and N , re-

spectively, for µ < µ̃. To that end, we use the approach in [26] which mea-

sures the distance between a primal optimal solution X̃ ∈ P∗SDO and its projec-

tion onto Qµ
B∪T S

nB+nT
+ (Qµ

B∪T )T , which is a face of the positive semidefinite cone,

see Proposition 2.2.14 in [25] for its proof. In fact, P∗SDO is contained in the min-

imal face QBSnB+ QT
B which itself is a face of QB∪T SnB+nT

+ QT
B∪T . Analogously, we

measure the distance between S̃, where (ỹ, S̃) ∈ D∗SDO, and its projection onto

Qµ
T ∪NS

nT +nN
+ (Qµ

T ∪N )T .

The following technical lemma is in order.

Lemma 3.1.5. Let (Xµ, yµ, Sµ) be given so that µ ≤ µ̂. Then we have

sup
X̃∈P∗SDO\{0}

〈Sµ, X̃〉
‖X̃‖F

≤ κ(nµ)γ,

sup
(ỹ,S̃)∈D∗SDO, S̃ 6=0

〈Xµ, S̃〉
‖S̃‖F

≤ κ(nµ)γ.

Proof. Assume that 0 6= X̃ ∈ P∗SDO is given. Then for all (ỹ, S̃) ∈ D∗SDO we have

〈Sµ, X̃〉
‖X̃‖F

=
〈Sµ − S̃ + S̃, X̃〉

‖X̃‖F
=
〈Sµ − S̃, X̃〉
‖X̃‖F

≤ ‖Sµ − S̃‖F .

Therefore, we get

sup
X̃∈P∗SDO\{0}

〈Sµ, X̃〉
‖X̃‖F

≤ min
(ỹ,S̃)∈D∗SDO

‖Sµ − S̃‖F ≤ κ(nµ)γ,

where the last inequality follows from Lemma 3.1.2. The proof for the second part

follows analogously.
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Theorem 3.1.3. Let (Xµ, yµ, Sµ) be given so that µ < µ̃. Then for all (X̃, ỹ, S̃) ∈

P∗SDO ×D∗SDO we have

‖X̃ − X̃FBT ‖F ≤
√

2‖X̃‖F

√
κn(nµ)γ

σ
, (3.18)

‖S̃ − S̃FT N ‖F ≤
√

2‖S̃‖F

√
κn(nµ)γ

σ
, (3.19)

where X̃FBT and S̃FT N denote the projection of X̃ and S̃ onto the faces FBT and

FT N , respectively, in which

FBT := Qµ
B∪T S

nB+nT
+ (Qµ

B∪T )T ,

FT N := Qµ
T ∪NS

nT +nN
+ (Qµ

T ∪N )T .

Proof. If X̃ = 0 or S̃ = 0, then X̃FBT = 0 or S̃FT N = 0, and thus the inequali-

ties (3.18) and (3.19) trivially hold. Note that the projection of X̃ onto the face

FBT is the optimal solution to

X̃FBT : = argmin
U�0

∥∥∥X̃ −Qµ
B∪T U(Qµ

B∪T )T
∥∥∥
F

= argmin
U�0

∥∥∥∥∥
(Qµ

B∪T )T X̃Qµ
B∪T − U (Qµ

B∪T )T X̃Qµ
N

(Qµ
N )T X̃Qµ

B∪T (Qµ
N )T X̃Qµ

N

∥∥∥∥∥
F

,

which is given by U∗ = (Qµ
B∪T )T X̃Qµ

B∪T . Then we get

‖X̃ − X̃FBT ‖F =
∥∥X̃ −Qµ

B∪T U
∗(Qµ

B∪T )T
∥∥
F

=
∥∥X̃ −Qµ

B∪T (Qµ
B∪T )T X̃Qµ

B∪T (Qµ
B∪T )T

∥∥
F

=

√
‖X̃‖2

F −
∥∥(Qµ

B∪T )T X̃Qµ
B∪T
∥∥2

F

≤ ‖X̃‖F

√√√√1−
∥∥(Qµ

B∪T )T X̃Qµ
B∪T
∥∥2

F

‖X̃‖2
F

.

Thus, it only remains to derive a lower bound on∥∥(Qµ
B∪T )T X̃Qµ

B∪T
∥∥
F

‖X̃‖F
. (3.20)
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Let us define

Λ(Sµ) =:

ΛB∪T (Sµ) 0

0 ΛN (Sµ)

 .

Then from Lemma 3.1.5 we get

〈Qµ
NΛN (Sµ)(Qµ

N )T , X̃〉 ≤ 〈Qµ
B∪T ΛB∪T (Sµ)(Qµ

B∪T )T , X̃〉

+ 〈Qµ
NΛN (Sµ)(Qµ

N )T , X̃〉

= 〈Sµ, X̃〉

≤ κ(nµ)γ‖X̃‖F .

All this implies that

min
∥∥(Qµ

B∪T )TXQµ
B∪T
∥∥
F

s.t. 〈Qµ
NΛN (Sµ)(Qµ

N )T , X〉 ≤ κ(nµ)γ,

‖X‖F = 1,

X � 0,

(3.21)

gives a lower bound on (3.20). Let X̌ := (Qµ)TXQµ, where

X̌ :=

 X̌B∪T X̌(B∪T )N

X̌N (B∪T ) X̌N

 .

Then auxiliary problem (3.21) is equivalent to

min
∥∥X̌B∪T ∥∥F

s.t. 〈ΛN (Sµ), X̌N 〉 ≤ κ(nµ)γ,

‖X̌B∪T ‖2
F + ‖X̌N‖2

F + 2‖X̌(B∪T )N‖2
F = 1,

X̌ � 0.

(3.22)
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Since X̌ � 0, we can use the inequality1
∥∥X̌(B∪T )N

∥∥2

F
≤
∥∥X̌B∪T ∥∥F∥∥X̌N∥∥F to derive

a relaxation of (3.22) as

min
∥∥X̌B∪T ∥∥F

s.t. 〈ΛN (Sµ), X̌N 〉 ≤ κ(nµ)γ,∥∥X̌B∪T ∥∥F +
∥∥X̌N∥∥F ≥ 1,

X̌B∪T � 0,

X̌N � 0.

(3.23)

Finally, from the constraints in (3.23) we get

‖X̌B∪T ‖F ≥ 1− ‖X̌N‖F ≥ 1− κ(nµ)γ

λ[nN ](Sµ)
≥ 1− κn(nµ)γ

σ
(3.24)

> 1− 1√
n
> 0, (3.25)

in which (3.24) follows from (3.13) as well as

λmin

(
ΛN (Sµ)

)
‖X̌N‖F ≤ 〈ΛN (Sµ), X̌N 〉 ≤ κ(nµ)γ,

and (3.25) results from µ < µ̃. In a similar way as in [26], it can be shown that

1 − κ(nµ)γ

λ[nN ](S
µ)

is indeed the optimal value of (3.21). Consequently, we can conclude

that ∥∥X̃ − X̃FBT ∥∥F ≤ ‖X̃‖F
√

1− ‖(Q
µ
B∪T )T X̃Qµ

B∪T ‖2
F

‖X̃‖2
F

≤ ‖X̃‖F

√
2
(κn(nµ)γ

σ

)
−
(κn(nµ)γ

σ

)2

≤
√

2‖X̃‖F

√
κn(nµ)γ

σ
.

1The validity of this inequality can be verified by squaring both sides of

∥∥∥∥
 A X

XT B

∥∥∥∥
F

≤

‖A‖F +‖B‖F , which is valid for all positive semidefinite

 A X

XT B

. See Theorem 2.1 and Remark

2.3 in [99] for more general results.

91



Analogously, we can prove that

∥∥S̃ − S̃FT N∥∥F ≤ ‖S̃‖F
√

1− ‖(Q
µ
T ∪N )T S̃Qµ

T ∪N‖2
F

‖S̃‖2
F

≤
√

2‖S̃‖F

√
κn(nµ)γ

σ
.

Under the assumption of primal-dual uniqueness, we can provide an upper bound on

the distance between the subspaces B and R(Qµ
B), which are of the same dimension

if µ < µ̃.

Theorem 3.1.4. Assume that a central solution (Xµ, yµ, Sµ) is given with µ < µ̃.

Further, let Q be an orthonormal basis partitioned according to B, T , and N , as

defined in Section 1.5.1. Then there exist ρ > 0 and υ > 0 such that

dist(B,R(Qµ
B)) ≤ min{2ρ(

√
nµ)υ, 1},

dist(T ,R(Qµ
T )) ≤ min{2ρ(

√
nµ)υ, 1},

dist(N ,R(Qµ
N )) ≤ min{2ρ(

√
nµ)υ, 1}.

Proof. An orthogonal projection matrix of the subspace B is given by

QB(QT
BQB)−1QT

B = QBQ
T
B .

Note that this projection matrix is invariant with respect to any choice of an or-

thonormal basis for B, see e.g., Section 2.5.1 in [62]. Then we get

dist
(
B,R(Qµ

B)
)

=
∥∥Qµ
B(Qµ

B)T −QBQT
B
∥∥

2

=
∥∥Qµ
B(Qµ

B)T −QBQT
B −Q

µ
BQ

T
B +Qµ

BQ
T
B
∥∥

2

=
∥∥Qµ
B
(
(Qµ
B)T −QT

B
)

+
(
Qµ
B −QB

)
QT
B
∥∥

2

≤
∥∥Qµ
B
∥∥

2

∥∥Qµ
B −QB

∥∥
2

+
∥∥Qµ
B −QB

∥∥
2

∥∥QB∥∥2

≤ 2
∥∥Qµ
B −QB

∥∥
2
,
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which implies

dist
(
B,R(Qµ

B)
)
≤ 2 min

Q̄B∈ΓB

∥∥Qµ
B − Q̄B

∥∥
2
. (3.26)

The set of primal-dual optimal solutions can be represented as a system of polyno-

mial equations and inequalities [7]. Let C be the set of all solutions

(vec(Q̃); diag(Λ(X̃)); ỹ; diag(Λ(S̃)))

of this system so that Q̃Λ(X̃)Q̃T ∈ P∗SDO and (ỹ, Q̃Λ(S̃)Q̃T ) ∈ D∗SDO, where diag(.)

denotes the vector of diagonal entries of a square matrix. By the centrality condition,

a central solution (Xµ, yµ, Sµ) violates the constraints Λii(X̃)Λii(S̃) = 0 by µ for

i = 1, . . . , n. Since the set of central solutions (Xµ, yµ, Sµ) with µ < µ̃ is contained

in a compact set, it follows from (3.26) and Theorem A.2.8 that there exist υ > 0

and ρ > 0 such that

dist
(
B,R(Qµ

B)
)
≤ 2 inf

(Q∗Λ(X∗)(Q∗)T ,y∗,Q∗Λ(S∗)(Q∗)T )∈ri(P∗SDO×D
∗
SDO)

∥∥∥(vec
(
Qµ −Q∗

)
;

diag
(
Λ(Xµ)− Λ(X∗)

)
; yµ − y∗; diag

(
Λ(Sµ)− Λ(S∗)

))∥∥∥
2

= 2 dist
((

vec
(
Qµ
)
; diag

(
Λ(Xµ)

)
; yµ; diag

(
Λ(Sµ)

))
, C
)

(3.27)

≤ 2ρ(
√
nµ)υ,

where the equality (3.27) follows from the uniqueness of the optimal solution. The

proofs for the subspaces T and N are analogous.

Remark 3.1.8. Since C is a compact set, there exists a solution

(vec(Q̃µ); diag(Λ(X̃µ)); ỹµ; diag(Λ(S̃µ)))

of C whose distance from
(
vec(Qµ); diag(Λ(Xµ)); yµ; diag(Λ(Sµ))

)
is minimal. The

assumption of uniqueness in Theorem 3.1.4 can be released if there exists a se-

quence of common eigenvector bases of maximally complementary solutions con-

verging to Q̃µ. More precisely, assume that Qk → Q̃µ for a convergent sequence
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(Xk, yk, Sk) → (X̃µ, ỹµ, S̃µ) such that (Xk, yk, Sk) ∈ ri(P∗SDO × D∗SDO) for all k, and

Xk = QkΛ(Xk)Q
T
k and Sk = QkΛ(Sk)Q

T
k are eigenvalue decompositions. Then

equality (3.27) holds, and thus the upper bounds in Theorem 3.1.4 are valid regard-

less of the uniqueness assumption. In particular, this condition holds if (X̃µ, ỹµ, S̃µ)

is a maximally complementary optimal solution, or if there exists a unique common

eigenvector basis for (X̃µ, ỹµ, S̃µ). For instance, consider the following SDO problem

from [59]:

A1 =


1 0 0

0 0 0

0 0 0

 , A2 =


0 0 1

0 1 0

1 0 0

 , A3 =


0 1 0

1 0 0

0 0 1

 , C =


1 1 1

1 2 −1

1 −1 2

 ,

b = (1, 0, 0)T .

The primal optimal set can be described as

X∗(δ) =


1 2(δ − 1) 2(δ − 1)

2(δ − 1) 4(1− δ) 4(1− δ)

2(δ − 1) 4(1− δ) 4(1− δ)

 , 0 ≤ δ ≤ 1,

and the unique dual optimal solution is

S∗ =


0 0 0

0 1 −1

0 −1 1

 , y∗ = (1, 1, 1)T .

One can verify that the eigenvalues of X∗(δ) for 0 ≤ δ ≤ 1 are given by

λ[1](X
∗(δ)) =

1

2

√
96δ2 − 176δ + 81− 4δ +

9

2
,

λ[2](X
∗(δ)) = −1

2

√
96δ2 − 176δ + 81− 4δ +

9

2
,

λ[3](X
∗(δ)) = 0.
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Observe that for all 0 < δ < 1, (X∗(δ), y∗, S∗) is strictly complementary, and that

the multiplicity of the positive eigenvalues of X∗(δ) and S∗ are 1. Hence, for all

0 < δ < 1, the eigenvalue decompositions of X∗(δ) and S∗ are unique up to the sign

of columns of the orthogonal matrices.

Suppose that (X̃µ, ỹµ, S̃µ) = (X∗1 , y
∗, S∗), which is not a strictly complementary op-

timal solution. Nevertheless, X̃µ and S̃µ have the unique common eigenvector basis

Q̃µ =


1 0 0

0
√

2
2

√
2

2

0
√

2
2
−
√

2
2

 .

Therefore, there exists a sequence of unique common eigenvector bases Qk, corre-

sponding to (X∗(δ), y∗, S∗) for 0 < δ < 1, which converges to Q̃µ.

3.1.2 Identification in a neighborhood of the central path

Thus far, we assumed that the solution given by IPMs is exactly on the central

path. In general, however, path-following IPMs operate in a specified vicinity of

the central path by computing approximate solutions of (1.22). In this section, we

consider a sequence of solutions in the relative interior of the primal-dual feasible

set, which has accumulation points in the relative interior of the optimal set.

Consider a solution (X◦, y◦, S◦) ∈ ri(PSDO × DSDO) given by a primal-dual path-

following IPM, where X◦ = MΛ(X◦)MT and S◦ = NΛ(S◦)NT are eigenvalue de-

compositions of X◦ and S◦, respectively, and M and N are orthogonal matrices. In

contrast to the result of Theorem 3.1.2, the accumulation points of the subsets of

eigenvectors are not identical for X◦ and S◦. The reason lies in the fact that X◦ and

S◦ do not necessarily commute. For instance, consider the Nesterov-Todd scaling
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method, where X◦ and S◦ are projected onto the same point V defined as

V := D−
1
2X◦D−

1
2 = D

1
2S◦D

1
2 ,

which implies X◦ = DS◦D, where D � 0 denotes the scaling matrix, see [124] for

the definition of D. Then the eigenvalue decomposition of S◦ yields

X◦ = DPΛ(S◦)P TD. (3.28)

Since Λ(X◦) and Λ(S◦) have nonzero diagonal entries, we may assume that Λ(S◦) =:

Σ
1
2 Λ(X◦)Σ

1
2 where Σ

1
2 is a positive definite diagonal matrix. Hence, from (3.28) we

get

Σ−
1
2P TD−1X◦D−1PΣ−

1
2 = Λ(X◦).

Note that D−1PΣ−
1
2 is an n × n invertible matrix but not necessarily equal to the

orthogonal matrix M . Therefore, there exists an invertible matrix N ′ ∈ Rn×n so

that

M = D−1NΣ−
1
2N ′,

implying that X◦ and S◦ do not necessarily share an eigenvector basis.

The proximity of (X◦, y◦, S◦) to the central path, as defined in (2.6), can be measured

by

prox(X◦S◦) :=
λmax(X◦S◦)

λmin(X◦S◦)
, (X◦, y◦, S◦) ∈ ri(PSDO ×DSDO). (3.29)

Notice that X◦S◦ has the same eigenvalues as (X◦)
1
2S◦(X◦)

1
2 , i.e., X◦S◦ has real

positive eigenvalues even though it is not necessarily symmetric. Further, it follows

from (3.29) that prox(X◦S◦) ≥ 1, and the equality holds only when (X◦, y◦, S◦) is

on the central path. A neighborhood of the central path is defined by

Nprox(ξ) :=
{

(X◦, y◦, S◦) ∈ ri(PSDO ×DSDO) | prox(X◦S◦) ≤ ξ
}
, (3.30)
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where ξ > 1. Then for (X◦, y◦, S◦) ∈ Nprox(ξ) we have

λmin(X◦S◦) ≤ λ[i](X
◦S◦) ≤ ξλmin(X◦S◦), i = 1, . . . , n. (3.31)

Here, we use the application of Weyl theorem2 in [101] to provide an upper bound

on λmin(X◦S◦).

Lemma 3.1.6 (Corollary 2.3 in [101]). Let X and S be two n×n symmetric positive

semidefinite matrices. Then for j ≤ min{rank(X), rank(S)} we have

min
1≤i≤j

{λ[i](X)λ[j−i+1](S)} ≥ λ[j](XS) ≥ max
j≤i≤n

{λ[i](X)λ[n+j−i](S)}. (3.32)

Lemma 3.1.7. Let (X◦, y◦, S◦) ∈ Nprox(ξ). Then we have

λ[i](X
◦)λ[n−i+1](S

◦) ≥ λmin(X◦S◦), i = 1, . . . , n. (3.33)

Proof. The proof is straightforward from the first inequality in (3.32) and the pos-

itive definiteness of X◦ and S◦. In fact, for the special case k = n there holds

that

min
{
λ[1](X

◦)λ[n](S
◦), λ[2](X

◦)λ[n−1](S
◦), . . . , λ[n](X

◦)λ[1](S
◦)
}
≥ λmin(X◦S◦),

which completes the proof.

The following theorem generalizes the bounds derived in Theorem 3.1.1 to an approx-

imate solution (X◦, y◦, S◦) ∈ Nprox(ξ). Analogous to the case of central solutions, we

let M = (MB,MT ,MN ) and N = (NB, NT , NN ) be the subsets of columns of M and

N , respectively, associated with the eigenvalues of X◦ and S◦ whose accumulation

points are positive and zero.

2See Theorem 4.3.7 in [84].
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Theorem 3.1.5. Let (X◦, y◦, S◦) ∈ Nprox(ξ) and µ := 〈X◦,S◦〉
n

. Then there exist a

positive condition number κ′ independent of µ and a positive exponent γ so that

λ[n−i+1](S
◦) ≤ nµ

σ
, λ[i](X

◦) ≥ σ

nξ
, i = 1, . . . , nB,

λ[n−i+1](X
◦) ≤ nµ

σ
, λ[i](S

◦) ≥ σ

nξ
, i = 1, . . . , nN ,

µ

κ′
√
nξ(nµ)γ

≤ λ[i](X
◦), λ[n−i+1](S

◦) ≤ κ′
√
n(nµ)γ, i = nB + 1, . . . , nB + nT .

If nT > 0, then we have

1

2n−1
≤ γ ≤ 1

2
.

If µ satisfies

µ < min

{ 1

n

(
σ

κ′n
3
2 ξ

) 1
γ

,
σ2

n2ξ
, µ̂

}
, (3.34)

then we can identify MB, MT , and MN from X◦, and NB, NT , and NN from S◦.

Proof. The proof technique can be traced back to Theorem 3.1.1 fairly easily. Let

(X̄, ȳ, S̄) ∈ P∗SDO ×D∗SDO which satisfies (3.11) and (X̂◦, Ŝ◦) denote the orthogonal

transformation of (X◦, S◦) with respect to Q. Then it follows from the orthogonality

between (X◦ − X̄) and (S◦ − S̄) that

〈X◦, S̄〉+ 〈X̄, S◦〉 = 〈X̂◦N , US̄〉+ 〈UX̄ , Ŝ◦B〉 = 〈X◦, S◦〉,

where Ŝ◦B = QT
BS
◦QB and X̂◦N = QT

NX
◦QN . Using the inequality λmin(US̄) Trace(X̂◦N ) ≤

〈X̂◦N , US̄〉 and the positive definiteness of X◦ and S◦ we have

λmin(UX̄) Trace(Ŝ◦B) ≤ 〈X◦, S◦〉 ⇒ Trace(Ŝ◦B) ≤
nµ

σ
,

λmin(US̄) Trace(X̂◦N ) ≤ 〈X◦, S◦〉 ⇒ Trace(X̂◦N ) ≤
nµ

σ
,
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where the latter inequalities follow from (3.11). Now, Lemma 3.1.4 can be applied

to get

λ[n−nB+1](S
◦) + . . .+ λ[n](S

◦) ≤ Trace(Ŝ◦B) ≤
nµ

σ
,

λ[n−nN+1](X
◦) + . . .+ λ[n](X

◦) ≤ Trace(X̂◦N ) ≤
nµ

σ
,

which by X◦, S◦ � 0 implies

λ[n−i+1](S
◦) ≤

nµ

σ
, i = 1, . . . , nB,

λ[n−i+1](X
◦) ≤

nµ

σ
, i = 1, . . . , nN .

(3.35)

Recall from (3.31) that

nµ = 〈X◦, S◦〉 ≤ nξλmin(X◦S◦),

which yields

λmin(X◦S◦)

µ
≥ 1

ξ
. (3.36)

Then (3.33) and (3.36) can be applied to (3.35) to derive lower bounds on the

eigenvalues of X◦ and S◦:

λ[i](X
◦) ≥

λmin(X◦S◦)

λ[n−i+1](S◦)
≥
σλmin(X◦S◦)

nµ
≥

σ

nξ
, i = 1, . . . , nB,

λ[i](S
◦) ≥

λmin(X◦S◦)

λ[n−i+1](X◦)
≥
σλmin(X◦S◦)

nµ
≥

σ

nξ
, i = 1, . . . , nN .

For the subspace T we should note that

{
(X◦, y◦, S◦) ∈ Nprox(ξ) | 〈X◦, S◦〉 ≤ min

{
$−1
p , $−1

d

}}
,

where $p and $d are defined as in (3.6) and (3.7), is a bounded set by the interior

point condition and the linear independence of Ai for i = 1, . . . ,m, see e.g., Lemma
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3.1 in [32]. Furthermore, the amount of constraint violation with respect to the LMI

system (3.5) for (X◦, y◦, S◦) is equal to nµ. Hence, the result of Theorem A.2.4 is

still valid, i.e., for 0 < µ ≤ µ̂ there exist (Xµ◦ , yµ◦ , Sµ◦) ∈ P∗SDO × D∗SDO, a positive

condition number κ′ independent of µ, and a positive exponent γ so that

∥∥X◦ −Xµ◦
∥∥
F
≤ κ′(nµ)γ,

∥∥S◦ − Sµ◦∥∥F ≤ κ′(nµ)γ, (3.37)

where κ′ and γ are defined as in Lemma 3.1.2. Analogous to the proof of Theo-

rem 3.1.1, we can observe, using the orthogonal transformation Q, that

∥∥QT
T ∪NX

◦QT ∪N
∥∥
F

=

∥∥∥∥
 X̂◦T X̂◦T N

X̂◦NT X̂◦N

∥∥∥∥
F

≤
∥∥X◦ −Xµ◦

∥∥
F
≤ κ′(nµ)γ,

∥∥∥QT
B∪T S

◦QB∪T

∥∥∥
F

=

∥∥∥∥
 Ŝ◦B Ŝ◦BT

Ŝ◦T B Ŝ◦T

∥∥∥∥
F

≤
∥∥S◦ − Sµ◦∥∥F ≤ κ′(nµ)γ.

(3.38)

Then it follows from Lemma 3.1.4 and (3.38) that

λ[n−nN−nT +1](X
◦) + . . .+ λ[n](X

◦) ≤ κ′
√
n(nµ)γ,

λ[n−nB−nT +1](S
◦) + . . .+ λ[n](S

◦) ≤ κ′
√
n(nµ)γ,

and consequently,

λ[n−i+1](X
◦) ≤ κ′

√
n(nµ)γ, i = 1, . . . , nN + nT ,

λ[n−i+1](S
◦) ≤ κ′

√
n(nµ)γ, i = 1, . . . , nB + nT .

Using the bounds in (3.33) and (3.36) we can derive

λ[i](X
◦) ≥

λmin(X◦S◦)

λ[n−i+1](S◦)
≥
λmin(X◦S◦)

κ′
√
n(nµ)γ

≥
µ

κ′
√
nξ(nµ)γ

, i = 1, . . . , nB + nT ,

λ[i](S
◦) ≥

λmin(X◦S◦)

λ[n−i+1](X◦)
≥
λmin(X◦S◦)

κ′
√
n(nµ)γ

≥
µ

κ′
√
nξ(nµ)γ

, i = 1, . . . , nN + nT .
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In the sequel, using the same argument as in Theorem 3.1.2, we can identify the

subsets of columns of M and N whose accumulation points form orthonormal bases

for B, T and N if

nµ

σ
<

µ

κ′
√
nξ(nµ)γ

, κ′
√
n(nµ)γ <

σ

nξ
. (3.39)

Considering the case T = {0}, we can represent (3.39) as

µ < min

{ 1

n

( σ

κ′n
3
2 ξ

) 1
γ

,
σ2

n2ξ

}
.

Including the condition µ ≤ µ̂ gives the result as desired. Further, if nT > 0, from

µ

κ′
√
nξ(nµ)γ

≤ κ′
√
n(nµ)γ we get

(κ′)2n2ξ ≥ (nµ)1−2γ, ∀ 0 < µ ≤ µ̂,

which implies

1

2n−1
≤ γ ≤ 1

2
.

This completes the proof.

Corollary 3.1.1. Let (X(0), y(0), S(0)) ∈ Nprox(ξ) be an initial solution, µ(0) :=

〈X(0),S(0)〉
n

, and log(.) denote the natural logarithm. Then the Dikin-type primal-dual

affine scaling method with steplength α = 1
ξ
√
n

and the neighborhood (3.30), see

Section 2.1, needs at most

⌈
ξn log

(
µ(0)

(
min

{
1

n

( σ

κ′n
3
2 ξ

) 1
γ

,
σ2

n2ξ
, µ̂

})−1)⌉
iterations to get an (X◦, y◦, S◦) ∈ Nprox(ξ) which allows to identify (MB,MT ,MN )

and (NB, NT , NN ).
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Proof. The proof easily follows from the iteration complexity result for the Dikin-

type primal-dual affine scaling method with steplength α = 1
ξ
√
n
, see [32]. Then the

complementarity gap drops below a threshold ε after⌈
ξn log

(
nµ(0)

ε

)⌉
iterations. The result follows if we replace ε by the right hand side of (3.34) multi-

plied by n.

Remark 3.1.9. In (3.37), we employed the same exponent γ as in (3.9) but a

different condition number κ′. In fact, the primal and dual systems in (3.5) are used

for both Theorems 3.1.1 and 3.1.5. However, it is not known whether κ and κ′ are

identical or of the same order.

3.2 Identification of the optimal partition for SOCO

To identify the optimal partition from a central solution, Terlaky and Wang [171]

defined two condition numbers σ1 and σ2 as

σB := min
i∈B

max
x̃∈P∗SOCO

{
x̃i1 − ‖x̃i2:ni

‖2

}
, σN := min

i∈N
max

(ỹ;s̃)∈D∗SOCO

{
s̃i1 − ‖s̃i2:ni

‖2

}
,

σ1 := min{σB, σN},

σ2 := min
i∈R

max
(x̃;ỹ;s̃)∈P∗SOCO×D

∗
SOCO

{
x̃i1 + s̃i1 − ‖x̃i2:ni

+ s̃i2:ni
‖2

}
. (3.40)

We also define

σ3 := max
(x̃;ỹ;s̃)∈P∗SOCO×D

∗
SOCO

{
‖(x̃; ỹ; s̃)‖2

}
(3.41)

as the radius of the outer ball which circumscribes the optimal set. Note that the

condition numbers σ1, σ2, and σ3 are finite positive values by the interior point con-

dition, see Lemma 3.1.1 and Lemma 3.3 in [171]. The condition numbers σ1 and σ2

could be doubly exponentially small for some instances of SOCO, see Example 3.1.1.
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Remark 3.2.1. A positive lower bound can be computed for the condition numbers

σ1 and σ2 using the method given in Section A.3. Under the uniqueness condition,

an upper bound can be computed for the condition number σ3, by representing the set

of primal-dual optimal solutions of SOCO as a semi-algebraic set, see Lemma A.3.1.

3.2.1 Identification along the central path

Theorem 3.2.1 presents the magnitude of xµ and sµ, as given in Theorem 3.4 in [171].

In [171], the authors employed the error bound in Theorem A.2.3 to derive bounds

on the magnitude of (xµ)i and (sµ)i for i ∈ T . Here, we rely on an error bound

result for a linear conic system as stated in Theorem A.2.6. We use Theorem A.2.6

to specify an upper bound on the distance of a central solution from the optimal

set.

Let (x̃; ỹ; s̃) be a primal-dual optimal solution of (PSOCO) and (DSOCO). In a similar

manner as in Section 3.1.1.1, the primal and dual optimal sets can be equivalently

written as the following linear conic systems
x ∈ x̃+ Ker(A),

s̃Tx = 0,

x ∈ Ln̄+,


s ∈ s̃+R(AT ),

x̃T s = 0,

s ∈ Ln̄+.

(3.42)

In this case, the linear subspace S̄P∗SOCO
, which contains P∗SOCO, is defined as

S̄P∗SOCO
:=
(

Ker(A) ∩ (Rs̃)⊥
)

+ Rx̃,

Analogously, the linear subspace S̄D∗SOCO
, which is the orthogonal complement of

S̄P∗SOCO
, is defined as

S̄D∗SOCO
:=
(
R(AT ) ∩ (Rx̃)⊥

)
+ Rs̃.
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From the orthogonality of (xµ − x̃) and (sµ − s̃) we have

x̃T sµ + s̃Txµ = pµ,

which implies 0 ≤ s̃Txµ ≤ pµ and 0 ≤ x̃T sµ ≤ pµ. Then the application of the

Hoffman error bound gives

dist
(
xµ, S̄P∗SOCO

)
≤ dist

(
xµ,

{
x ∈ x̃+ Ker(A) | s̃Tx = 0

})
= dist

(
xµ,

{
x | Ax = b, s̃Tx = 0

})
≤ $p

(
‖Axµ − b‖2 + s̃Txµ

)
= $ps̃

Txµ ≤ $ppµ,

where $p > 0 denotes the Hoffman condition number. Analogously, we derive

dist
(
sµ, S̄D∗SOCO

)
≤ dist

(
sµ,

{
s ∈ s̃+R(AT ) | x̃T s = 0

})
≤ $dpµ,

where $d > 0 is the Hoffman condition number. Note that the condition numbers

$p and $d depend on A and s̃, and A and x̃, respectively.

Lemma 3.2.1. Let (xµ; yµ; sµ) be a central solution with

µ ≤ µ̂ :=
1

p
min

{
$−1
p , $−1

d

}
. (3.43)

Then there exist (xµ; yµ; sµ) ∈ P∗SOCO ×D∗SOCO, a positive condition number κ inde-

pendent of µ, and γ > 0 so that

‖xµ − xµ‖2 ≤ κ(pµ)γ,

‖yµ − yµ‖2 ≤ κ(pµ)γ,

‖sµ − sµ‖2 ≤ κ(pµ)γ.

(3.44)

Proof. Conditions (A.8) hold if µ ≤ µ̂. Moreover, the rank and the interior point

conditions imply that the set

{
(xµ; yµ; sµ) | 0 < µ ≤ µ̂

}
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is contained in a compact set. Therefore, the result of Theorem A.2.6 is applicable

to the linear conic systems in (3.42). Furthermore, the compactness of P∗SOCO and

D∗SOCO implies the existence of (xµ; yµ; sµ) ∈ P∗SOCO ×D∗SOCO so that

‖xµ − xµ‖2 ≤ κ1(pµ)γ1 , ‖sµ − sµ‖2 ≤ κ2(pµ)γ2 ,

where γ1 := 2
−d(S̄P∗

SOCO
,Ln̄+)

and γ2 := 2
−d(S̄D∗

SOCO
,Ln̄+)

. Since the rows of A are assumed

to be linearly independent, system AT (yµ − yµ) = sµ − sµ has a unique solution.

Therefore, using Theorem A.2.6 again, we get

‖yµ − yµ‖2 ≤
∥∥(AT )†

∥∥
2
‖sµ − sµ‖2 ≤ κ3(pµ)γ2 ,

where (AT )† := (AAT )−1A stands for the pseudo-inverse of AT [161]. Then, taking

κ := max{κ1, κ2, κ3} and γ := min{γ1, γ2}, we get the results as desired.

Remark 3.2.2. We can obtain a nontrivial lower bound γ ≥ 2−p from (A.9). How-

ever, we are not aware of any upper bound on the condition number κ.

Now, the bounds on the magnitude of the central solutions are summarized in The-

orem 3.2.1.

Theorem 3.2.1. Let (xµ; yµ; sµ) be a central solution such that µ ≤ µ̂, where µ̂ is
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defined in (3.43). Then we have

(xµ)i1 ≥ (xµ)i1 − ‖(xµ)i2:ni
‖2 >

σ1

2p
, and (sµ)i1 ≤

pµ

σ1

, i ∈ B,

(sµ)i1 ≥ (sµ)i1 − ‖(sµ)i2:ni
‖2 >

σ1

2p
, and (xµ)i1 ≤

pµ

σ1

, i ∈ N ,

(xµ)i1 >
σ2

4p
, and (sµ)i1 >

σ2

4p
, i ∈ R,(

(xµ)i1 − ‖(xµ)i2:ni
‖2

)
+
(
(sµ)i1 − ‖(sµ)i2:ni

‖2

)
≤ 2pµ

σ2

, i ∈ R,

(xµ)i1 + (sµ)i1 − ‖(xµ)i2:ni
+ (sµ)i2:ni

‖2 >
σ1

2p
, i ∈ B ∪ N ,

(xµ)i1 + (sµ)i1 − ‖(xµ)i2:ni
+ (sµ)i2:ni

‖2 >
σ2

2p
, i ∈ R,

µ

2κ(pµ)γ
≤ (xµ)i1 − ‖(xµ)i2:ni

‖2 ≤ (xµ)i1 ≤ κ(pµ)γ, i ∈ T1,

µ

2κ(pµ)γ
≤ (sµ)i1 − ‖(sµ)i2:ni

‖2 ≤ (sµ)i1 ≤ κ(pµ)γ, i ∈ T1,

µ

2κ(pµ)γ
≤ (xµ)i1 − ‖(xµ)i2:ni

‖2 ≤
√

2κ(pµ)γ, i ∈ T2,

µ

2
√

2κ(pµ)γ
≤ (sµ)i1 ≤ κ(pµ)γ, i ∈ T2,

µ

2κ(pµ)γ
≤ (sµ)i1 − ‖(sµ)i2:ni

‖2 ≤
√

2κ(pµ)γ, i ∈ T3,

µ

2
√

2κ(pµ)γ
≤ (xµ)i1 ≤ κ(pµ)γ, i ∈ T3,

µ

2κ(pµ)γ
≤ (xµ)i1 + (sµ)i1 − ‖(xµ)i2:ni

+ (sµ)i2:ni
‖2 ≤ 4κ(pµ)γ, i ∈ T ,

where κ and γ are defined in Lemma 3.2.1.

Proof. The sketch of the proof for the subsets B, N , and R is similar to Theorem

3.4 in [171]. Let i ∈ T denote a block ((xµ)i; (yµ)i; (sµ)i) of the central solution with

µ ≤ µ̂. From (1.11) and the central path equation (xµ)i ◦ (sµ)i = µei we get

(sµ)i =
µ((xµ)i1;−(xµ)i2:ni

)

((xµ)i1)2 − ‖(xµ)i2:ni
‖2

2

.
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Therefore, from (xµ)i1 > ‖(xµ)i2:ni
‖2 we have

(sµ)i1 =
µ(xµ)i1

((xµ)i1)2 − ‖(xµ)i2:ni
‖2

2

=
µ

(xµ)i1 − ‖(xµ)i2:ni
‖2

(xµ)i1
(xµ)i1 + ‖(xµ)i2:ni

‖2

≥ µ

2((xµ)i1 − ‖(xµ)i2:ni
‖2)

.

(3.45)

Analogously, we can derive

(xµ)i1 ≥
µ

2((sµ)i1 − ‖(sµ)i2:ni
‖2)

. (3.46)

• i ∈ T1: In this case, we have x̃i = s̃i = 0 for all (x̃; ỹ; s̃) ∈ P∗SOCO × D∗SOCO,

and thus the bounds in (3.44) reduce to

‖(xµ)i‖2 ≤ κ(pµ)γ, ‖(sµ)i‖2 ≤ κ(pµ)γ. (3.47)

Consequently, it can be deducted from (3.45) and (3.47) that

(xµ)i1 − ‖(xµ)i2:ni
‖2 ≥

µ

2(sµ)i1
≥ µ

2‖(sµ)i‖2

≥ µ

2κ(pµ)γ
,

(xµ)i1 − ‖(xµ)i2:ni
‖2 ≤ (xµ)i1 ≤ ‖(xµ)i‖2 ≤ κ(pµ)γ.

In a similar manner, using (3.46) we can show that

µ

2κ(pµ)γ
≤ (sµ)i1 − ‖(sµ)i2:ni

‖2 ≤ (sµ)i1 ≤ κ(pµ)γ,

which completes the first part of the proof.

• i ∈ T2: In this case, the bound in (3.44) reduces to ‖(sµ)i‖2 ≤ κ(pµ)γ. Thus,

we can conclude from (3.45) that

(xµ)i1 − ‖(xµ)i2:ni
‖2 ≥

µ

2(sµ)i1
≥ µ

2‖(sµ)i‖2

≥ µ

2κ(pµ)γ
.

Furthermore, it follows from (xµ)i1 = ‖(xµ)i2:ni
‖2 that

(xµ)i1 − ‖(xµ)i2:ni
‖2 = ((xµ)i1 − (xµ)i1) +

(
‖(xµ)i2:ni

‖2 − ‖(xµ)i2:ni
‖2

)
≤ |(xµ)i1 − (xµ)i1|+ ‖(xµ)i2:ni

− (xµ)i2:ni
‖2

≤
√

2‖(xµ)i − xiµ‖2 ≤
√

2κ(pµ)γ.

(3.48)
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Therefore, using (3.45) and (3.48) we get

κ(pµ)γ ≥ (sµ)i1 ≥
µ

2
(
(xµ)i1 − ‖(xµ)i2:ni

‖2

) ≥ µ

2
√

2κ(pµ)γ
,

which completes the proof for the second part.

• i ∈ T3: It immediately follows after reversing the roles of (xµ)i and (sµ)i.

The rest of the theorem follows by applying the results from the previous parts as

in Theorem 3.8 in [171].

From the bounds of Theorem 3.2.1 one can observe that a complete separation of

the variables to the partition B, N , R and T can be made if

pµ

σ1

< min
{σ1

2p
,
σ2

4p

}
, max

{pµ
σ1

,
2pµ

σ2

}
<
σ1

2p
, 4κ(pµ)γ < min

{σ1

2p
,
σ2

2p

}
,

which can be simplified to

µ < µ̃ := min

{
σ2

1

2p2
,
σ1σ2

4p2
,

1

p

(
1

4κ
min

{σ1

2p
,
σ2

2p

}) 1
γ

, µ̂

}
. (3.49)

However, we do not have enough information for a further separation of T into

T1, T2, and T3. To that end, we need positive lower bounds on (xµ)i1 and (sµ)i1

in T2 and T3, respectively, which cannot be directly obtained from Theorem 3.2.1.

Nevertheless, we assume in the convergence analysis of Section 4.2.3 that µ < µ̃ is

small enough for a complete identification of (T1, T2, T3).

Remark 3.2.3. Theorem 3.2.1 specifies the bounds on the magnitude of the central

solutions. The results can be extended to the case where IPMs generate an approxi-

mate solution (x◦; y◦; s◦) in a neighborhood of the central path, see Section 3.1.2 and

Section 4 in [171] for a detailed discussion.
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Chapter 4

Identification of optimal solutions

The optimal partition information can be used in a so called rounding procedure to

generate either a maximally or strictly complementary optimal solution. For LO

and sufficient LCPs, the optimal partition and a maximally complementary optimal

solution can be identified in strongly polynomial time. Ye [180] proposed a finite

termination strategy for IPMs which generates a strictly complementary optimal

solution from a primal-dual solution sufficiently close to the optimal set. Under the

interior point condition as well as the integrality of the data, Roos et al. [151] pre-

sented a rounding procedure which uses the optimal partition information to iden-

tify a strictly complementary optimal solution. Under the same conditions, Illés et

al. [85] considered the identification of the optimal partition for sufficient LCPs and

proposed a strongly polynomial rounding procedure to a maximally complementary

optimal solution.

In chapter 3, we investigated the identification of the optimal partition for SDO and

SOCO. The identification of the optimal partition was obtained from a bounded

sequence of solutions on, or in a neighborhood of the central path. In this chapter,
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we use the (approximation of the) optimal partition to either generate an approxi-

mate maximally complementary solution or speed up the convergence to the unique

optimal solution.

In Section 4.1, we use the approximation of the optimal partition in a rounding

procedure to generate an approximate maximally complementary solution for SDO.

In Section 4.2, we employ the optimal partition of SOCO to identify the quadratic

convergence region of Newton’s method. Furthermore, we use the optimal partition

to generate an approximate maximally complementary optimal solution for SOCO.

4.1 Identification of optimal solutions for SDO

In this section, we use the approximation of the optimal partition from Section 3.1 to

generate a primal-dual solution which approximately satisfies primal-dual feasibility

constraints and has zero duality gap, so called an approximate maximally comple-

mentary solution. This is in contrast to a rounding procedure for LO, e.g., [151],

which gives an exact strictly complementary solution. Hence, our procedure can be

considered as an extension of the rounding procedure in [151] except that we use the

approximation of the optimal partition. To the best of our knowledge, there is no

theoretical/computational procedure for the identification of the optimal partition

and optimal solutions for SDO.

4.1.1 A rounding procedure for central solutions

Even though only approximations of B, T , and N are available, from a central

solution with sufficiently small µ we can make a projection onto the boundary of

the positive semidefinite cone to generate a complementary solution with approxi-

mate primal-dual feasibility. We choose a central solution (Xµ, yµ, Sµ) with µ < µ̃,
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see (3.15), and compute the eigenvectors Qµ
B, Qµ

T , and Qµ
N . We then generate a

primal-dual solution with approximate primal-dual feasibility and zero duality gap.

We prove that if µ is sufficiently small, then the rounded primal-dual solution sat-

isfies the cone constraints.

Suppose that a central solution (Xµ, yµ, Sµ) is given, where µ satisfies (3.15). The

columns of a common eigenvectors basis Qµ can be rearranged so that

Qµ :=
(
Qµ
B, Q

µ
T , Q

µ
N
)
,

e.g., Qµ
B denotes the columns of Qµ whose accumulation point is an orthonormal

basis for B.

Remark 4.1.1. In order to correctly identify Qµ
B, Qµ

T , and Qµ
N , the knowledge of

the condition number σ is needed in our rounding procedure. See Lemma A.3.2 for

a positive lower bound on σ.

Let (X∗, y∗, S∗) be a maximally complementary optimal solution and define X̂∗ :=

(Qµ)TX∗Qµ, and Ŝ∗ := (Qµ)TS∗Qµ, i.e.,

X̂∗ :=


X̂∗B X̂∗BT X̂∗BN

X̂∗T B X̂∗T X̂∗T N

X̂∗NB X̂∗NT X̂∗N

 , Ŝ∗ :=


Ŝ∗B Ŝ∗BT Ŝ∗BN

Ŝ∗T B Ŝ∗T Ŝ∗T N

Ŝ∗NB Ŝ∗NT Ŝ∗N

 .

Further, let Âi := (Qµ)TAiQµ, and Λ(Xµ) := (Qµ)TXµQµ be a diagonal matrix, in

which

Âi :=


ÂiB ÂiBT ÂiBN

ÂiT B ÂiT ĀiT N

ÂiNB ÂiNT ÂiN

 , Λ(Xµ) :=


ΛB(Xµ) 0 0

0 ΛT (Xµ) 0

0 0 ΛN (Xµ)

 .

Then from the primal feasibility constraints we have

〈Âi, X̂∗〉 = bi, i = 1, . . . ,m, (4.1)

〈Âi,Λ(Xµ)〉 = bi, i = 1, . . . ,m. (4.2)
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By subtracting (4.2) from (4.1) for each i, for ∆Xµ
B = X̂∗B − ΛB(Xµ) we get

〈ÂiB,∆X
µ
B〉 = 〈ÂiT ,ΛT (Xµ)〉+ 〈ÂiN ,ΛN (Xµ)〉+ (ξp)i, (4.3)

where the residual term (ξp)i is

(ξp)i = −〈ÂiN , X̂∗N 〉 − 〈ÂiT , X̂∗T 〉 − 2
(
〈ÂiBT , X̂∗BT 〉+ 〈ÂiBN , X̂∗BN 〉+ 〈ÂiT N , X̂∗T N 〉

)
.

Analogously, let Ĉ := (Qµ)TCQµ, and

Λ(Sµ) :=


ΛB(Sµ) 0 0

0 ΛT (Sµ) 0

0 0 ΛN (Sµ)

 .

Then for the dual constraints we get
m∑
i=1

y∗i Â
i + Ŝ∗ = Ĉ, (4.4)

m∑
i=1

yµi Â
i + Λ(Sµ) = Ĉ. (4.5)

By subtracting (4.5) from (4.4) for ∆yµi = y∗i − y
µ
i and ∆SµN = Ŝ∗N −ΛN (Sµ) we get

m∑
i=1

∆yµi Â
i +


0 0 0

0 0 0

0 0 ∆SµN

 =


ΛB(Sµ) 0 0

0 ΛT (Sµ) 0

0 0 0

−

Ŝ∗B Ŝ∗BT Ŝ

∗
BN

Ŝ∗T B Ŝ∗T Ŝ∗T N

Ŝ∗NB Ŝ
∗
NT 0

 . (4.6)

Both the right hand sides in (4.3) and (4.6) depend on the chosen maximally com-

plementary optimal solution. Therefore, the system of equations in (4.3) and (4.6)

may not be solvable if we drop the unknown terms. Instead, we can solve two least

square problems to obtain search directions towards primal and dual solutions.

Remark 4.1.2. For an LO problem embedded in SDO, Xµ and Sµ are diagonal

matrices. When the optimal partition is known, the coordinates of variables can

be rearranged to get Qµ = In. All this implies that the unknown terms in (4.3)

and (4.6) are just zero for the special case of LO.
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4.1.1.1 Primal least square problem

For the primal problem we solve

min ‖∆X‖2
F + ‖εp‖2

2

s.t. 〈ÂiB,∆X〉 − (εp)i = 〈ÂiT ,ΛT (Xµ)〉+ 〈ÂiN ,ΛN (Xµ)〉, i = 1, . . . ,m.
(4.7)

We may assume that ÂiB 6= 0 for some i. Otherwise, the optimal solution of (4.7)

would give ∆X∗ = 0, and thus the effect of the vanishing terms is absorbed in primal

infeasibility. For LO we have ÂiB 6= 0 for some i, since otherwise the primal optimal

solution would be trivial.

The optimal solution (∆X∗, ε∗p) to the auxiliary problem (4.7) yields

˜̃XB := ΛB(Xµ) + ∆X∗

so that

〈ÂiB,
˜̃XB〉 = bi + (ε∗p)i, i = 1, . . . ,m.

Thus, ˜̃XB has ‖ε∗p‖2 infeasibility for the primal constraints.

Let r(n) := n(n+ 1)/2 and define

ÂsB :=
(

svec(Â1
B), . . . , svec(ÂmB )

)T
.

Note that ÂsB might be rank deficient. Then auxiliary problem (4.7) reduces to

min ‖∆x‖2
2 + ‖ÂsB∆x− η‖2

2, (4.8)

where ∆x = svec(∆X), and ηi = 〈ÂiT ,ΛT (Xµ)〉 + 〈ÂiN ,ΛN (Xµ)〉 denotes the

vanishing term for i = 1, . . . ,m, which should be zero for all optimal solutions.

Lemma 4.1.1 establishes upper bounds on ‖∆X∗‖F and ‖ε∗p‖2. The bounds depend

on the constant

πp :=

r(nB)∏
k=1

∥∥∥((ÂsB)T ÂsB + Ir(nB)

)
.k

∥∥∥
2
,
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where
(
(ÂsB)T ÂsB + Ir(nB)

)
.k

denotes the kth column of (ÂsB)T ÂsB + Ir(nB). Using

the upper bounds in Lemma 4.1.1 , we show in Theorem 4.1.1 that ˜̃XB � 0 for

sufficiently small µ.

Lemma 4.1.1. Let (∆X∗, ε∗p) be the unique optimal solution of (4.7). Then we

have

‖∆X∗‖F ≤ 2πp
√
r(nB)‖As‖2

F max

{
n
√
nNµ

σ
, κ
√
nnT (nµ)γ

}
,

‖ε∗p‖2 ≤ 2‖As‖F
(
πp
√
r(nB)‖As‖2

F + 1

)
max

{
n
√
nNµ

σ
, κ
√
nnT (nµ)γ

}
.

Proof. The optimality conditions for (4.8) are given by

(
(ÂsB)T ÂsB + Ir(nB)

)
∆x = (ÂsB)Tη, (4.9)

where (ÂsB)T ÂsB + Ir(nB) � 0. The unique solution ∆x∗ can be computed using

Cramer’s rule [84]:

∆x∗j =
det
((

(ÂsB)T ÂsB + Ir(nB)

)(j)
)

det
(

(ÂsB)T ÂsB + Ir(nB)

) , j = 1, . . . , r(nB),

in which the matrix ((ÂsB)T ÂsB + Ir(nB)

)(j)
in the numerator is obtained by substi-

tuting the jth column of (ÂsB)T ÂsB+ Ir(nB) by (ÂsB)Tη. Noting that1 det((ÂsB)T ÂsB+

Ir(nB)) ≥ 1, we can deduce from Hadamard’s inequality [84] that for j = 1, . . . , r(nB)

|∆x∗j | ≤
∣∣∣ det

((
(ÂsB)T ÂsB + Ir(nB)

)(j)
)∣∣∣ ≤ ∥∥(ÂsB)Tη

∥∥
2

r(nB)∏
k=1
k 6=j

∥∥((ÂsB)T ÂsB + Ir(nB)).k
∥∥

2

hold. Since the diagonal entries of (ÂsB)T ÂsB+Ir(nB) are greater than or equal to 1, the

norm of each column is at least 1, and thus a uniform bound for all j = 1, . . . , r(nB)

1This is true regardless of data type, since the eigenvalues of (Âs
B)T Âs

B + Ir(nB) are at least 1.

114



can be derived as

|∆x∗j | ≤
∥∥(ÂsB)Tη

∥∥
2

r(nB)∏
k=1
k 6=j

∥∥((ÂsB)T ÂsB + Ir(nB)).k
∥∥

2
≤ πp‖(ÂsB)Tη‖2. (4.10)

Noting that ‖ÂiN‖F ≤ ‖Âi‖F = ‖Ai‖F and ‖ÂiT ‖F ≤ ‖Âi‖F = ‖Ai‖F , we can

conclude from (3.13) and (3.14) that

|〈ÂiN ,ΛN (Xµ)〉| ≤
n
√
nNµ

σ
‖Ai‖F , i = 1, . . . ,m,

|〈ÂiT ,ΛT (Xµ)〉| ≤ κ
√
nnT (nµ)γ‖Ai‖F , i = 1, . . . ,m,

which yields the upper bound

|ηi| ≤ 2‖Ai‖F max

{n√nNµ
σ

, κ
√
nnT (nµ)γ

}
, i = 1, . . . ,m. (4.11)

Consequently, from (4.10) and (4.11) it follows that

|∆x∗j | ≤ πp‖(ÂsB)Tη‖2 ≤ 2πp‖As‖2
F max

{
n
√
nNµ

σ
, κ
√
nnT (nµ)γ

}
, j = 1, . . . , r(nB),

where we have used ‖As‖2
F =

∑m
i=1 ‖Ai‖2

F , and the inequality ‖ÂsB‖F ≤ ‖As‖F . As

a result, we get

‖ε∗p‖2 = ‖ÂsB∆x∗ − η‖2 ≤ ‖ÂsB‖F‖∆x∗‖2 + ‖η‖2

≤ 2‖As‖F
(
πp
√
r(nB)‖As‖2

F + 1

)
max

{
n
√
nNµ

σ
, κ
√
nnT (nµ)γ

}
.

This completes the proof.

4.1.1.2 Dual least square problem

Let E denote a slack matrix as

E :=


EB EBT EBN

ET B ET ET N

ENB ENT 0

 , (4.12)
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which is defined in accordance with the unknown right hand side matrix in (4.6).

Then the auxiliary problem for an approximate dual solution is formulated as

min ‖∆y‖2
2 + ‖∆S‖2

F + ‖E‖2
F

s.t.
m∑
i=1

∆yiÂ
i +


0 0 0

0 0 0

0 0 ∆S

− E =


ΛB(Sµ) 0 0

0 ΛT (Sµ) 0

0 0 0

 .
(4.13)

The optimal solution (∆y∗,∆S∗, E∗) gives ˜̃yi := yµi + ∆y∗i for i = 1, . . . ,m and

˜̃SN := ΛN (Sµ) + ∆S∗ with ε∗d infeasibility for the dual constraints, where

ε∗d := ‖E∗‖F . (4.14)

For the sake of clarity, in what follows, auxiliary problem (4.13) is represented in

vector form. To do so, analogous to the definition of ÂsB, we apply the mapping

svec(.) to each diagonal block of Âi to form ÂsN and ÂsT . Further we apply the

mapping vec(.) to form ÂvBT , ÂvBN , and ÂvT N . Thus, auxiliary problem (4.13) reduces

to the least square problem

min ‖∆y‖2
2 + ‖(ÂsB)T∆y − ζB‖2

2 + ‖(ÂsT )T∆y − ζT ‖2
2 + ‖(ÂsN )T∆y‖2

2

+ 2‖(ÂvBT )T∆y‖2
2 + 2‖(ÂvBN )T∆y‖2

2 + 2‖(ÂvT N )T∆y‖2
2,

(4.15)

where ζB = svec(ΛB(Sµ)) and ζT = svec(ΛT (Sµ)). Lemma 4.1.2 establishes upper

bounds on ε∗d and ‖∆S∗‖F . For the upper bounds we define the positive definite

matrix

H := ÂsB(ÂsB)T + ÂsT (ÂsT )T + ÂsN (ÂsN )T + 2ÂvBT (ÂvBT )T + 2ÂvBN (ÂvBN )T

+ 2ÂvT N (ÂvT N )T + Im

and constant

πd :=
m∏
k=1

‖H.k‖2,
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where H.k denotes the kth column of H. Theorem 4.1.1 proves that for sufficiently

small µ we have ˜̃SN � 0.

Lemma 4.1.2. Problem (4.13) has a unique optimal solution (∆y∗,∆S∗, E∗), which

satisfies

‖∆S∗‖F ≤ 2πd
√
m‖As‖2

F max

{
n
√
nBµ

σ
, κ
√
nnT (nµ)γ

}
,

ε∗d = ‖E∗‖F ≤
√

2(4πd
√
m‖As‖2

F + 1) max

{
n
√
nBµ

σ
, κ
√
nnT (nµ)γ

}
.

Proof. The optimality conditions for (4.15) can be written as

H∆y = ÂsBζB + ÂsT ζT ,

whereH � 0. The unique solution of this system can be computed by using Cramer’s

rule as follows

∆y∗i =
det(H(i))

det(H)
, i = 1, . . . ,m,

where matrix H(i) in the numerator is obtained by substituting the ith column of H

by ÂsBζB + ÂsT ζT . Note that λmin(H) ≥ 1, which implies det(H) ≥ 1. Therefore, for

i = 1, . . . ,m we get

|∆y∗i | ≤ | det(H(i))| ≤ ‖ÂsBζB + ÂsT ζT ‖2

m∏
k=1
k 6=i

‖H.k‖2 ≤ πd‖ÂsBζB + ÂsT ζT ‖2,

where the second inequality follows from Hadamard’s inequality. Note that

m∏
k=1,k 6=i

‖H.k‖2 ≤ πd,

since the diagonal entries of H are at least 1. Furthermore, from Theorem 3.1.1 we

get

‖ÂsBζB + ÂsT ζT ‖2 ≤ ‖ÂsBζB‖2 + ‖ÂsT ζT ‖2 ≤ 2‖As‖F max

{
n
√
nBµ

σ
, κ
√
nnT (nµ)γ

}
,
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which leads to

|∆y∗i | ≤ 2πd‖As‖F max

{
n
√
nBµ

σ
, κ
√
nnT (nµ)γ

}
, i = 1, . . . ,m. (4.16)

Consequently, from (4.16) we have

‖∆S∗‖F = ‖(ÂsN )T∆y∗‖2 ≤ 2πd
√
m‖As‖2

F max

{
n
√
nBµ

σ
, κ
√
nnT (nµ)γ

}
.

Note that ‖QEQT‖F = ‖E‖F . Then we derive bounds on the components of E∗ as

follows

‖E∗B‖F = ‖(ÂsB)T∆y∗ − ζB‖2 ≤ 2πd
√
m‖As‖2

F max

{
n
√
nBµ

σ
, κ
√
nnT (nµ)γ

}
+
n
√
nBµ

σ
≤ (2πd

√
m‖As‖2

F + 1) max

{
n
√
nBµ

σ
, κ
√
nnT (nµ)γ

}
,

‖E∗T ‖F = ‖(ÂsT )T∆y∗ − ζT ‖2 ≤ 2πd
√
m‖As‖2

F max

{
n
√
nBµ

σ
, κ
√
nnT (nµ)γ

}
+ κ
√
nnT (nµ)γ ≤ (2πd

√
m‖As‖2

F + 1) max

{
n
√
nBµ

σ
, κ
√
nnT (nµ)γ

}
,

‖E∗BT ‖F , ‖E∗BN‖F , ‖E∗T N‖F ≤ 2πd
√
m‖As‖2

F max

{
n
√
nBµ

σ
, κ
√
nnT (nµ)γ

}
.

Then we get

‖E∗‖2
F ≤

(
2
(

2πd
√
m‖As‖2

F + 1
)2

+ 6
(

2πd
√
m‖As‖2

F

)2
)

×

(
max

{
n
√
nBµ

σ
, κ
√
nnT (nµ)γ

})2

≤ 2
(

4πd
√
m‖As‖2

F + 1
)2
(

max

{
n
√
nBµ

σ
, κ
√
nnT (nµ)γ

})2

,

which gives the upper bound on ε∗d.

4.1.1.3 Cone feasibility

As specified by Lemmas 4.1.1 and 4.1.2,
(
Qµ
B

˜̃XB(Qµ
B)T , ˜̃y,Qµ

N
˜̃SN (Qµ

N )T
)

yields a

complementary solution for (PSDO) and (DSDO). This primal-dual pair has ε∗ :=
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max{ε∗p, ε∗d} infeasibility with respect to the linear constraints. Theorem 4.1.1 shows

that for a sufficiently small µ, the rounding procedure yields a primal-dual solution

with ˜̃XB,
˜̃SN � 0.

Theorem 4.1.1. Let ϑ1 := 2n2‖As‖2
F , ϑ2 := 2κn

3
2
√
nT ‖As‖2

F , and

µr := min

{
σ2

ϑ1 max{πp
√
r(nB)nN , πd

√
mnB}

,
1

n

(
σ

ϑ2 max{πp
√
r(nB), πd

√
m}

) 1
γ

, µ̃

}
.

If µ < µr, then we have ˜̃XB,
˜̃SN � 0.

Proof. We only need to show that for µ < µr the rounding procedure results in

˜̃XB,
˜̃SN � 0. Noting that

|λmin(∆X∗)| ≤ ‖∆X∗‖F , |λmin(∆S∗)| ≤ ‖∆S∗‖F ,

we can conclude from (3.12) and (3.13), and Lemmas 4.1.1 and 4.1.2 that

λmin( ˜̃XB) ≥ λmin(ΛB(Xµ)) + λmin(∆X∗)

≥ σ

n
− 2πp

√
r(nB)‖As‖2

F max

{
n
√
nNµ

σ
, κ
√
nnT (nµ)γ

}
,

λmin( ˜̃SN ) ≥ λmin(ΛN (Sµ)) + λmin(∆S∗)

≥ σ

n
− 2πd

√
m‖As‖2

F max

{
n
√
nBµ

σ
, κ
√
nnT (nµ)γ

}
.

Consequently, ˜̃XB,
˜̃SN � 0 holds if

2πp
√
r(nB)‖As‖2

F max

{
n
√
nNµ

σ
, κ
√
nnT (nµ)γ

}
<
σ

n
,

2πd
√
m‖As‖2

F max

{
n
√
nBµ

σ
, κ
√
nnT (nµ)γ

}
<
σ

n
.

These inequalities hold if µ < µr. The proof is complete.
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4.1.1.4 Outline of the procedure

Now, we can outline a simple procedure which yields an approximate maximally

complementary solution.

Algorithm 2 Rounding procedure for SDO

Input (Xµ, yµ, Sµ), where µ < µr is fixed.

(Qµ
B, Q

µ
T , Q

µ
N ).

Do Solve least square problem (4.7) to get ˜̃XB.

Solve least square problem (4.13) to get (˜̃y, ˜̃SN ).

Return (Qµ
B

˜̃XB(Qµ
B)T , ˜̃y,Qµ

N
˜̃SN (Qµ

N ))T .

Even though Algorithm 2 produces an approximate maximally complementary solu-

tion and needs the eigenvalue decomposition of a central solution, it relies on solving

two linear systems of equations with better conditioned coefficient matrices than the

Jacobian of the Newton system.

Remark 4.1.3. For a fixed µ the orthogonal matrix Qµ, due to multiplicity of the

eigenvalues, may not be unique. Then the solution given by Algorithm 2 varies with

the choice of Qµ. Obviously, this cannot happen for LO.

Remark 4.1.4. As indicated at the beginning of Section 4.1, Algorithm 2 can be

inferred as an extension of the method in [151]. Computing an ε∗-feasible maxi-

mally complementary solution requires O(max{n6
B,m

3}) arithmetic operations. In

fact, this is equivalent to solving two linear systems of equations, using the Gauss

elimination method, with r(nB) and m variables, respectively.

4.1.2 A rounding procedure for approximate solutions

We recall from Section 3.1.2 that the identification results can be extended for

approximate solutions, which is best suited for primal-dual IPMs, since they generate
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a sequence of interior solutions in a neighborhood of the central path. This motivates

the extension of the rounding procedure for solutions in a neighborhood of the central

path.

Let (X◦, y◦, S◦) ∈ Nprox(ξ), and consider the eigenvalue decompositions

X◦ = MΛ(X◦)MT , S◦ = NΛ(S◦)NT ,

where M and N are orthogonal matrices. Further, let M := (MB,MT ,MN ) and

N := (NB, NT , NN ), where the subsets of columns of M and N correspond to the

optimal partition. When 〈X◦, S◦〉 is sufficiently small, we can identify MB, MT , and

MN from X◦, and NB, NT , and NN from S◦. To extend the rounding procedure to

solutions in the neighborhood of the central path, we need to choose the eigenvectors

either from M or N , because X◦ and S◦ do not commute, see Section 3.1.2. To

do so, we can solve the primal least square problem (4.7), where Xµ and Qµ are

replaced by X◦ and M , respectively, in the definition of Âi, Ĉ, and the right hand

side in (4.7). We then solve the following least square problem to compute a dual

solution:

min ‖∆y‖2
2 + ‖∆S‖2

F + ‖E‖2
F

s.t.
m∑
i=1

∆yiÂ
i +


0 0 0

0 0 0

0 0 ∆S

− E =


MT
B S
◦MB MT

B S
◦MT MT

B S
◦MN

MT
T S
◦MB MT

T S
◦MT MT

T S
◦MN

MT
NS
◦MB MT

NS
◦MT 0

 ,

(4.17)

where E is defined as in (4.12). Let
(
MB

˜̃XBM
T
B , ˜̃y,MN

˜̃SNM
T
N
)

be the updated

primal-dual solution after applying the search directions from (4.7) and (4.17), where

˜̃XB = ΛB(X◦) + ∆X∗,

˜̃SN = MT
NS
◦MN + ∆S∗,

˜̃yi = y◦i + ∆y∗i , i = 1, . . . ,m.
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We can show, in a similar manner as in Section 4.1.1, that
(
MB

˜̃XBM
T
B , ˜̃y,MN

˜̃SNM
T
N
)

becomes an approximate complementary solution if the complementarity gap 〈X◦, S◦〉

is sufficiently small.

Alternatively, we may fix the basis at N and solve (4.13) to compute a dual solution,

where (yµ, Sµ) and Qµ are replaced by (y◦, S◦) and N , respectively, in the definition

of Âi and the right hand side in (4.13). Afterwards, we solve

min ‖∆X‖2
F + ‖εp‖2

2

s.t. 〈ÂiB,∆X〉 − (εp)i = b̄i, i = 1, . . . ,m,
(4.18)

where

b̄i = 〈ÂiT , NT
T X

◦NT 〉+ 〈ÂiN , NT
NX

◦NN 〉+ 2〈ÂiBT , NT
BX

◦NT 〉+ 2〈ÂiBN , NT
BX

◦NN 〉

+ 2〈ÂiT N , NT
T X

◦NN 〉.

Let
(
NB

˜̃XBN
T
B , ˜̃y,NN

˜̃SNN
T
N
)

be the new primal-dual solution after applying the

search directions from (4.13) and (4.18), where

˜̃XB = NT
BX

◦NB + ∆X∗,

˜̃SN = ΛN (S◦) + ∆S∗,

˜̃yi = y◦i + ∆y∗i , i = 1, . . . ,m.

Then for sufficiently small complementarity gap 〈X◦, S◦〉, we can show that

(
NB

˜̃XBN
T
B , ˜̃y,NN

˜̃SNN
T
N
)

is an approximate maximally complementary solution. The approach to derive the

feasibility bounds is analogous to Section 4.1.1.
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4.2 Identification of optimal solutions for SOCO

Quadratic convergence of a primal-dual IPM for SOCO follows from Theorem 28

in [5] under nondegeneracy and strict complementarity conditions. Under the same

conditions, the application of Newton’s method to the optimality conditions of SDO

enjoys a quadratic convergence, when the initial point is sufficiently close to the

optimal set, see Corollary 3.2 in [7]. If strict complementarity condition fails, then

this local convergence result is no longer maintained. See [106, 111, 135, 164, 165,

182, 183] for superlinear and quadratic convergence of IPMs for LO, LCP, and SDO.

To the best of our knowledge, only very few remedies are available to resolve the

issue of strict complementarity for SDO and SOCO. Those mostly are based on

nonsmooth analysis of the optimality conditions, see e.g., [24, 90, 91, 96, 97]. In

such cases, the complementarity condition is replaced by xi − ΠLni+
(xi − si) = 0 for

i = 1, . . . , p, where ΠLni+
(.) denotes the Euclidean projection on Lni+ . Due to non-

differentiability of ΠLni+
(.) at some points, smoothing functions have been proposed

to reformulate the complementarity condition. Under primal and dual nondegen-

eracy conditions, Chan and Sun [24] and Kong [96] established the quadratic con-

vergence of a smoothing Newton’s method to the unique optimal solution of SDO

and symmetric conic optimization, respectively. Extending a smoothing function

from nonlinear complementarity problems, Chi and Liu [28] proposed a non-interior

continuation method for SOCO with superlinear convergence rate in the absence of

strict complementarity. See also [29] for another derivation of smoothing function

and smoothing Newton’s method for SOCO with quadratic convergence rate.

In this section, our goal is to establish quadratic convergence to the unique optimal

solution of SOCO using the optimal partition of the problem. Analogous to e.g., [24,

96], we only assume primal and dual nondegeneracy conditions. However, in contrast

to [24, 96], we do not consider the metric projection operator to reformulate the
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complementarity condition. In our case, quadratic convergence is established only

when the solution is sufficiently centered and sufficiently close to the optimal set,

which allows for the identification of the optimal partition. The optimal partition

can be identified using a sequence of interior solutions which has accumulation points

in the relative interior of the optimal set, as presented in Section 3.2. Given the

optimal partition identified from a sequence of central solutions, we reformulate the

SOCO problem as a reduced NLO problem and then apply Newton’s method to the

first-order optimality conditions of the reduced problem. We show that if the primal

and dual nondegeneracy conditions hold, then the Jacobian of the equations in KKT

system of the reduced NLO problem is nonsingular at the unique globally optimal

solution of the NLO problem. As a result, starting from a solution sufficiently close

to the optimal set, Newton’s method converges quadratically to the unique optimal

solution. We support the theory by some numerical results.

4.2.1 Nondegeneracy conditions for SOCO

Since we assume both the primal and dual nondegeneracy almost everywhere in

this paper, using the optimal partition we characterize the primal and dual non-

degeneracy conditions for the unique optimal solutions of (PSOCO) and (DSOCO).

In Section 1.3.2, primal-dual nondegeneracy is defined for any primal-dual feasible

solution.

To that end, the matrix of the eigenvectors of L(xi) is denoted by Pi := (
√

2pi1,
√

2pi2, P̂i),

where

pi1 :=
1

2

(
1;
−xi2:ni

‖xi2:ni
‖2

)
, pi2 :=

1

2

(
1;

xi2:ni

‖xi2:ni
‖2

)
,

and P̂i ∈ R(ni×ni−2) is a matrix with orthogonal columns. The eigenvectors of

L((x∗)i) are indicated by superscript ∗.
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Theorem 4.2.1 (Theorems 20 and 21 in [5], Proposition 19 in [21]). Let (x∗; y∗; s∗)

be the unique optimal solution of (PSOCO) and (DSOCO). Then x∗ is primal nonde-

generate if and only if the matrix

(
(AiP̄

∗
i )i∈R∪T2 , AB

)
(4.19)

has full row rank, where P̄ ∗i := (
√

2(p∗)i2, P̂
∗
i ). Furthermore, (y∗; s∗) is dual nonde-

generate if and only if the matrix

(
(AiRi(s

∗)i)i∈R∪T3 , AB∪T1∪T2
)

(4.20)

has full column rank, where Ri is defined in (1.9). If (x∗; y∗; s∗) is both primal and

dual nondegenerate, then we have∑
i∈B∪T1∪T2

ni + |R ∪ T3| ≤ m ≤
∑

i∈B∪R∪T2

ni − |R ∪ T2|. (4.21)

For the sake of convenience, given the unique optimal solution (x∗; y∗; s∗), the primal

nondegeneracy of x∗ and the dual nondegeneracy of (y∗; s∗) are simply called the

primal and dual nondegeneracy conditions, respectively.

4.2.2 Second-order sufficient condition for SOCO

We highlight the connection between the second-order sufficient condition of Bon-

nans and Ramı́rez [21] and the primal nondegeneracy condition. In Section 4.2.3, we

use the second-order sufficient condition to show the nonsingularity of the Jacobian

of the equations in the KKT conditions for a reduced NLO problem.

4.2.2.1 Second-order sufficient condition for the dual problem

Let h ∈ Rm, and assume that R is nonempty so that there exists (y̌; š) ∈ D∗SOCO

with ši ∈ bd(Lni+ ) \ {0} for some i ∈ R. Then the specialization of the second-order
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sufficient condition for (DSOCO), where the objective is to minimize −bTy, is given

by

sup
x̃∈P∗SOCO

hTHD(y̌, x̃)h > 0, ∀h ∈ CD(y̌) \ {0}, (4.22)

where

HD(y̌, x̃) :=

p∑
i=1

H i
D(y̌, x̃),

H i
D(y̌, x̃) :=

−
x̃i1
ši1
AiRiA

T
i , ši ∈ bd(Lni+ ) \ {0},

0m×m, otherwise,

i = 1, . . . , p,

and CD(y̌) is the cone of critical directions for (DSOCO) which is defined as follows

h ∈ Rm,

−ATi h ∈ Lni+ , x̃i, ši = 0,

−ATi h ∈
{
d | dT2:ni

ši2:ni
− d1š

i
1 ≤ 0

}
, x̃i = 0, ši ∈ bd(Lni+ ) \ {0},

ATi h = 0, x̃i ∈ int(Lni+ ),

(x̃i)TATi h = 0, x̃i, ši ∈ bd(Lni+ ) \ {0},

−ATi h ∈ R+(x̃i1;−x̃i2:ni
), x̃i ∈ bd(Lni+ ) \ {0}, ši = 0.

(4.23)

Then, by x̃i = 0 for i ∈ T3, we have

hTHD(y̌, x̃)h =
∑
i∈R

− x̃
i
1

ši1
hTAiRiA

T
i h.

It follows from the definition, see e.g., (3.109) in [23], that hTHD(ỹ, x̃)h ≥ 0 for all

(x̃; ỹ; s̃) ∈ P∗SOCO ×D∗SOCO and h ∈ CD(ỹ). To see this, let

ATi h =:
(
(ATi h)1; (ATi h)2:ni

)
, ∀i.
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Then for all h ∈ CD(ỹ) \ {0} we have

0 = (x̃i)TATi h = x̃i1(ATi h)1 + (x̃i2:ni
)T (ATi h)2:ni

≥ x̃i1(ATi h)1 −
∥∥x̃i2:ni

∥∥
2

∥∥(ATi h)2:ni

∥∥
2

= x̃i1

(
(ATi h)1 −

∥∥(ATi h)2:ni

∥∥
2

)
, ∀i ∈ R,

where the last equality follows from x̃i1 = ‖x̃i2:ni
‖2. Since x̃i1 > 0, we can conclude

that

(ATi h)1 −
∥∥(ATi h)2:ni

∥∥
2
≤ 0, ∀i ∈ R.

Analogously, we can derive

0 = (x̃i)TATi h = x̃i1(ATi h)1 + (x̃i2:ni
)T (ATi h)2:ni ≤ x̃i1

(
(ATi h)1 +

∥∥(ATi h)2:ni

∥∥
2

)
,

which implies

(ATi h)1 +
∥∥(ATi h)2:ni

∥∥
2
≥ 0, ∀i ∈ R.

Consequently,

hTAiRiA
T
i h =

(
(ATi h)1 −

∥∥(ATi h)2:ni

∥∥
2

)(
(ATi h)1 +

∥∥(ATi h)2:ni

∥∥
2

)
≤ 0, (4.24)

which implies hTHD(ỹ, x̃)h ≥ 0.

The connection between the primal nondegeneracy condition and the second-order

sufficient condition (4.22) is stated in the following lemma.

Lemma 4.2.1 (Proposition 3.2 in [97]). Let R 6= ∅ and (x∗; y∗; s∗) be the unique

optimal solution of (PSOCO) and (DSOCO). Then, under the primal nondegeneracy

condition, the second-order sufficient condition (4.22) holds at (y∗; s∗).

We can observe from the proof of Lemma 4.2.1 that under the primal nondegen-

eracy condition we have hTAiRiA
T
i h < 0 for some i ∈ R. More precisely, no-

tice from ((x∗)i)TATi h = 0 that ATi h 6∈ int(Lni+ ) and −ATi h 6∈ int(Lni+ ) for every
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h ∈ CD(y∗) \ {0}. Then from the characterization of the primal nondegeneracy

condition in Theorem 4.2.1 we have that

ATi η = 0, i ∈ B,

((x∗)i)TATi η = 0, i ∈ R ∪ T2,

(P̂ ∗i )TATi η = 0, i ∈ R ∪ T2

(4.25)

has only a trivial solution η = 0, where P̂ ∗i is defined in (4.19), and η ∈ Rm.

From (4.23) we can observe that a critical direction h ∈ CD(y∗) \ {0} satisfies

ATi h = 0, i ∈ B,

((x∗)i)TATi h = 0, i ∈ R ∪ T2,

(P̂ ∗i )TATi h = 0, i ∈ T2,

where the last two equalities hold, because −ATi h = ρRi(x
∗)i for some ρ ≥ 0, and

the columns of P̂ ∗i are orthogonal to both (x∗)i and Ri(x
∗)i for i ∈ T2. Therefore,

we have (P̂ ∗i )TATi h 6= 0 for some i ∈ R, since otherwise we would get a nontrivial

solution η for (4.25). Consequently, from (P̂ ∗i )TATi h 6= 0 and ((x∗)i)TATi h = 0 it can

be deducted that ATi h 6∈ Lni+ and −ATi h 6∈ Lni+ for all h ∈ CD(y∗) \ {0}.

Scheinberg in Section 4.2 in [152], and Bonnans and Shapiro in Theorem 5.91 in

[23] assume the strict complementarity condition to establish a mutual relation-

ship between the second-order sufficient condition, see Section 1.6), and the primal

nondegeneracy condition for SDO. Here, we only need the primal nondegeneracy

condition in Lemma 4.2.1 to ensure that the strong second-order sufficiency condi-

tion holds.
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Example 4.2.1. Consider the following SOCO problem from [5]:

min −x1
2

s.t. x1
1 = 1,

2x1
2 + x1

3 − x2
2 = 0,

2x1
3 − x2

3 = 0,

x2
1 = 2,

x1
1 ≥

√
(x1

2)2 + (x1
3)2,

x2
1 ≥

√
(x2

2)2 + (x2
3)2.

(4.26)

The SOCO problem (4.26) satisfies the interior point condition, and it has the unique

primal-dual optimal solution

x∗ = (1, 1, 0, 2, 2, 0)T , y∗ = (−1, 0, 0, 0)T , s∗ = (1,−1, 0, 0, 0, 0)T ,

which fails strict complementarity. The optimal partition is given by

R = {1}, T2 = {2}, B = N = T1 = T3 = ∅.

We can check that both the primal and dual nondegeneracy conditions hold. Note

that

A1 =


1 0 0

0 2 1

0 0 2

0 0 0

 , A2 =


0 0 0

0 −1 0

0 0 −1

1 0 0

 , P̄ ∗1 = P̄ ∗2 =


1/
√

2 0

1/
√

2 0

0 1

 ,

which gives

(A1P̄
∗
1 , A2P̄

∗
2 ) =


1/
√

2 0 0 0
√

2 1 −1/
√

2 0

0 2 0 −1

0 0 1/
√

2 0

 , (A1R1(s∗)1, A2) =


1 0 0 0

2 0 −1 0

0 0 0 −1

0 1 0 0

 .
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Since both of these matrices are nonsingular, the unique optimal solution is primal

and dual nondegenerate. For the dual problem the cone of critical directions is given

by

CD(y∗) =



h ∈ R4,

((x∗)1)TAT1 h = 0,

−AT2 h ∈ R+


2

−2

0

 ,

which is equivalent to CD(y∗) =
{
h ∈ R4 | h1 ≥ 0, h3 = 0, h2 = h4 = −1

2
h1 ≤ 0

}
.

Therefore, we get

−(x∗)1
1

(s∗)1
1

A1R1A
T
1 =


−1 0 0 0

0 5 2 0

0 2 4 0

0 0 0 0


which implies that

hTHD(y∗, x∗)h = h2
2 > 0, ∀h ∈ CD(y∗) \ {0}.

Thus, the second-order sufficient condition holds at (y∗; s∗).

4.2.2.2 Second-order sufficient condition for the primal problem

It is straightforward to derive the cone of critical directions and the second-order

sufficient condition for (PSOCO). To that end, note that (PSOCO) can be equivalently
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written as

min cTx

s.t. Ax− b ∈ {0},

xi ∈ Lni+ , i = 1, . . . , p.

In a similar manner, we can show that under the dual nondegeneracy condition, the

second-order sufficient condition holds at the unique optimal solution of (PSOCO).

Let x̌ ∈ P∗SOCO and assume that R 6= ∅ with x̌i ∈ bd(Lni+ ) \ {0} for some i ∈ R.

We redefine h := (h1; . . . ;hp), where hi ∈ Rni for i = 1, . . . , p, to refer to a critical

directions2 belonging to CP(x̌) as defined as



Ah = 0,

hi = 0, s̃i ∈ int(Lni+ ),

hi ∈ Lni+ , x̌i, s̃i = 0,

hi ∈
{
d | dT2:ni

x̌i2:ni
− d1x̌

i
1 ≤ 0

}
, x̌i ∈ bd(Lni+ ) \ {0}, s̃i = 0,

hi ∈ Rni , x̌i ∈ int(Lni+ ),

(s̃i)Thi = 0, x̌i, s̃i ∈ bd(Lni+ ) \ {0},

hi ∈ R+(s̃i1;−s̃i2:ni
), x̌i = 0, s̃i ∈ bd(Lni+ ) \ {0}.

(4.27)

Then the second-order sufficient condition for (PSOCO) is given by

sup(ỹ;s̃)∈D∗SOCO
hTHP(x̌, s̃)h > 0, ∀h ∈ CP(x̌) \ {0}, (4.28)

2The proof is straightforward, and it easily follows from the complementarity of x̌ and s̃ and

Proposition 3.10 in [23].
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where

HP(x̌, s̃) :=

p∑
i=1

H i
P(x̌, s̃),

H i
P(x̌, s̃) :=

−
s̃i1
x̌i1

diag(0, Ri,0), x̌i ∈ bd(Lni+ ) \ {0},

0n̄×n̄, otherwise,

i = 1, . . . , p,

in which diag(0, Ri,0) is a block diagonal matrix whose ith block is Ri and 0 else-

where. Then by s̃i = 0 for i ∈ T2, we have

hTHP(x̌, s̃)h =
∑
i∈R

− s̃
i
1

x̌i1
((hi1)2 − ‖hi2:ni

‖2
2).

Analogously, we can show that hTHP(x̃, s̃)h ≥ 0 for all (x̃; ỹ; s̃) ∈ P∗SOCO × D∗SOCO

and h ∈ CP(x̃). To that end, we have

s̃i1

(
hi1 − ‖hi2:ni

‖2

)
≤ 0 = (s̃i)Thi ≤ s̃i1

(
hi1 + ‖hi2:ni

‖2

)
, ∀i ∈ R,

which follows from s̃i1 = ‖s̃i2:ni
‖2. Since s̃i1 > 0, we have

(hi1)2 −
∥∥hi2:ni

∥∥2

2
≤ 0, ∀i ∈ R. (4.29)

The next lemma shows that under the dual nondegeneracy condition (4.29) holds

with strict inequality for some i ∈ R. For the sake of completeness, we provide an

illustrative proof.

Lemma 4.2.2. Let (x∗; y∗; s∗) be the unique optimal solution of (PSOCO) and (DSOCO)

so that R 6= ∅. Then, under the dual nondegeneracy condition the second-order suf-

ficient condition (4.28) holds at x∗.

Proof. Let h ∈ CP(x∗) \ {0}, and assume that (hi1)2 − ‖hi2:ni
‖2

2 = 0 for every i ∈ R,

which implies either hi ∈ bd(Lni+ ) or −hi ∈ bd(Lni+ ). Then, from ((s∗)i)Thi = 0, it

follows that

hi ∈ R
(
(s∗)i1;−(s∗)i2:ni

)
, i ∈ R.
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Noting that hi = 0 for i ∈ N and Ah = 0, we get

∑
i∈B∪T1∪T2

Aih
i +

∑
i∈R∪T3

Aih
i =

∑
i∈B∪T1∪T2

Aih
i +

∑
i∈R∪T3

αiAiRi(s
∗)i = 0,

where αi ≥ 0 for i ∈ T3. All this implies that(
(AiRi(s

∗)i)i∈R∪T3 , AB∪T1∪T2

)
has linearly dependent columns, which contradicts the dual nondegeneracy condi-

tion. This completes the proof.

4.2.3 Quadratic convergence under failure of strict comple-

mentarity

In this section, under the primal and dual nondegeneracy conditions, we establish

quadratic convergence of Newton’s method to the unique optimal solution of (PSOCO)

and (DSOCO). To that end, we need the optimal partition (B,N ,R, T ) to be known

and (T1, T2, T3) to be correctly identified. Hence, it is assumed that µ < µ̃ allows

for a complete identification of (T1, T2, T3).

Lemma 4.2.3. Assume that the primal and dual nondegeneracy conditions hold.

Then R = ∅ implies T = ∅.

Proof. Suppose that R = ∅ and T 6= ∅, and (x∗; y∗; s∗) is the unique3 optimal

solution of (PSOCO) and (DSOCO). Then, for every possible case in which T1, T2, or

T3 is nonempty, the number of columns in (4.20) is strictly greater than the number

of columns in (4.19), i.e., (4.19) and (4.20) have
∑

i∈B∪T2 ni−|T2| and
∑

i∈B∪T1∪T2 ni+

|T3| columns, respectively. Thus, (4.19) and (4.20) cannot be simultaneously of full

row rank and full column rank.

3Otherwise, the nondegeneracy conditions fail.
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As a result of Lemma 4.2.3, if R = ∅, then AB is a nonsingular matrix by the

primal and dual nondegeneracy conditions. Therefore, the unique optimal solutions

of (PSOCO) and (DSOCO) can be obtained by solving two linear systems of equations.

Hence, in the sequel we assume that R 6= ∅.

Let (x∗; y∗; s∗) be the unique optimal solution of (PSOCO) and (DSOCO) which satisfies

the primal and dual nondegeneracy conditions. Further, let us assume that T1, T3 6=

∅. If we drop the dual constraints ci − ATi y ∈ Lni+ for i ∈ T1 ∪ T3, then we obtain a

relaxation of (DSOCO) as

(D′SOCO) max
{
bTy | ATi y + si = ci, si ∈ Lni+ , i ∈ {1, . . . , p} \ {T1 ∪ T3}

}
,

and its dual is written as

(P′SOCO) min
{ ∑
i∈{1,...,p}\{T1∪T3}

(ci)Txi |

∑
i∈{1,...,p}\{T1∪T3}

Aix
i = b, xi ∈ Lni+ , i ∈ {1, . . . , p} \ {T1 ∪ T3}

}
.

Since (x∗)i = 0 for i ∈ T1 ∪ T3, it follows from the optimality conditions, (4.19),

and (4.20) that ((x∗)i; y∗; (s∗)i) for i ∈ {1, . . . , p}\{T1∪T3} is a primal-dual optimal

solution for (P′SOCO) and (D′SOCO), and it satisfies the primal and dual nondegeneracy

conditions. To see this, the primal nondegeneracy condition is the same as the one

for x∗, and the dual nondegeneracy condition needs(
(AiRi(s

∗)i)i∈R, AB∪T2
)

to have linearly independent columns, which is true by the dual nondegeneracy of

(y∗; s∗). As a result, if we remove the columns of T1 and T3 from A and c, we can

recover the unique optimal solutions of (PSOCO) and (DSOCO) by solving (P′SOCO)

and (D′SOCO). At the risk of causing confusion, we refer to (x̄; ȳ; s̄) as the unique

optimal solution of (P′SOCO) and (D′SOCO).
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The algebraic definition (1.7) can be used to reformulate (D′SOCO) as a nonconvex

NLO problem. Then inspired by the optimal partition information and the charac-

teristics of a maximally complementary optimal solution, one can realize that the

unique dual optimal solution (ȳ; s̄) can be obtained by solving the NLO reformula-

tion of (D′SOCO) as

(DNLO) min −bTw

s.t. ATi w = ci, i ∈ B ∪ T2,

ATi w + zi = ci, i ∈ R ∪N ,

(zi)TRiz
i = 0, i ∈ R,

z ∈ W ,

where w ∈ Rm, zi ∈ Rni for i ∈ R ∪ N , and W is a nonempty open convex cone

defined as

W :=
{
z | zi1 > 0, i ∈ R, zi ∈ int(Lni+ ), i ∈ N

}
.

Let z denote the concatenation of the column vectors zi for i ∈ R∪N . It then follows

that (DNLO) has the unique globally optimal solution (w̄; z̄), since otherwise the

optimality or the uniqueness of (ȳ; s̄) is contradicted. The unique globally optimal

solution is given by

w̄ := ȳ, z̄i := s̄i, i ∈ R ∪N . (4.30)

In a similar manner, the unique optimal solution x̄ can be computed by solving

(PNLO) min
∑

i∈B∪R∪T2

(ci)Tνi

s.t.
∑

i∈B∪R∪T2

Aiν
i = b,

(νi)TRiν
i = 0, i ∈ R ∪ T2,

ν ∈ V ,
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where νi ∈ Rni for i ∈ B ∪R ∪ T2, and V is an open convex cone defined as

V :=
{
ν | νi1 > 0, i ∈ R ∪ T2, νi ∈ int(Lni+ ), i ∈ B

}
.

For the sake of convenience, we only consider (DNLO). Analogous results can be

derived for problem (PNLO).

Let ui ∈ Rni for i ∈ B ∪ T2 ∪ R ∪ N and v ∈ R|R| be the Lagrange multipliers

associated with the constraints in (DNLO). The first-order optimality conditions,

see (1.29), are given by

−
∑

i∈B∪T2∪R∪N

Aiu
i = b,

−ui − 2viRiz
i = 0, i ∈ R,

−ui = 0, i ∈ N ,

ATi w = ci, i ∈ B ∪ T2,

ATi w + zi = ci, i ∈ R ∪N ,

(zi)TRiz
i = 0, i ∈ R,

z ∈ W ,

(4.31)

which bears a striking resemblance to the optimality conditions (1.10). Let u be

the concatenation of the column vectors ui for i ∈ B ∪ T2 ∪ R ∪ N . Then we can

observe that for z̄ ∈ W there exist Lagrange multipliers ū and v̄ so that (w̄; z̄; ū; v̄)

satisfies the first-order optimality conditions (4.31). Such a solution can be obtained

by setting

ūi := −x̄i, i ∈ B ∪ T2 ∪R,

ūi := 0, i ∈ N ,

v̄i :=
1

2

x̄i1
s̄i1
, i ∈ R.

(4.32)
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We show in Lemma 4.2.4 that, under the dual nondegeneracy condition, the La-

grange multipliers (ū; v̄) are unique. Let J((w; z)) denote the Jacobian of the equal-

ity constraints in (DNLO) as follows

J((w; z)) :=



ATB 0 0

ATT2 0 0

ATR I 0

ATN 0 I

0 ZR 0


, (4.33)

where ZR is given by

ZR :=



2(z1
1 ;−z1

2:n1
)T 0 0 0

2(z2
1 ;−z2

2:n2
)T

0 0
. . . 0

2(zi1;−zi2:ni
)T

0 0 0
. . .


,

in which i ∈ R. Note that ZR has full row rank since (zi)TRi 6= 0 for every i ∈ R.

Lemma 4.2.4. Let (w̄; z̄) be the unique globally optimal solution of (DNLO). Then,

under the dual nondegeneracy condition, J((w̄; z̄)) has full row rank.

Proof. We show that J((w̄; z̄))Tη = 0 has only the trivial solution η = 0, where

η := (η1; . . . ; η5) is a vector of appropriate size. Then from J((w̄; z̄))Tη = 0 we have

ABη
1 + AT2η

2 + ARη
3 + ANη

4 = 0,

η3 + Z̄T
Rη

5 = 0,

η4 = 0,

which implies

ABη
1 + AT2η

2 − ARZ̄T
Rη

5 = 0,
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where ARZ̄
T
R = (2A1R1z̄

1, . . . , 2AiRiz̄
i, . . .) for i ∈ R. Since (ȳ; s̄) is the unique dual

nondegenerate optimal solution of (D′SOCO), it follows from (4.20) that (ARZ̄
T
R, AB∪T2)

has full column rank, and thus η = 0 is the unique solution of J((w̄; z̄))Tη = 0.

Under the full rank result of Lemma 4.2.4, LICQ holds at (w̄; z̄). This regularity

condition guarantees that the set of Lagrange multipliers associated with (w̄; z̄) is a

singleton.

For the sake of simplicity let ϑ := (w; z;u; v). The Lagrangian function of (DNLO)

is defined as

L(ϑ) :=

− bTw −
∑

i∈B∪T2

(ui)T (ATi w − ci)−
∑

i∈R∪N

(ui)T (ATi w + zi − ci)−
∑
i∈R

vi(z
i)TRiz

i,

and the Hessian of L(ϑ) is given by

∇2L(ϑ) :=


0 0 0

0 VR 0

0 0 0

 ,

where

VR := −2diag(v1R1, v2R2, . . . , viRi, . . .)

is a block diagonal matrix, in which i ∈ R. Let h = (h1;h2;h3) ∈ Ker(J((w̄; z̄))),

where h1 ∈ Rm and h2 as well as h3 is the concatenation of the vectors (h2)i ∈ Rni

for i ∈ R and (h3)i ∈ Rni for i ∈ N , respectively. In Lemma 4.2.5, we show that

under the primal nondegeneracy condition, the second-order sufficient condition for

(DNLO) holds at (w̄; z̄), i.e.,

hT∇2L(ϑ̄)h > 0, ∀h ∈ Ker(J((w̄; z̄))) \ {0}, (4.34)

in which ϑ̄ := (w̄; z̄; ū; v̄).

138



Lemma 4.2.5. Let (w̄; z̄) be the unique globally optimal solution of (DNLO). Then,

under the primal nondegeneracy condition, the second-order sufficient condition (4.34)

holds at (w̄; z̄).

Proof. Note that Ker(J((w̄; z̄))) can be equivalently written as the solution set of

ATi h
1 = 0, i ∈ B ∪ T2,

ATi h
1 + (h2)i = 0, i ∈ R,

ATi h
1 + (h3)i = 0, i ∈ N ,

(z̄i)TRi(h
2)i = 0, i ∈ R.

(4.35)

Then we get

hT∇2L(ϑ̄)h = −2
∑
i∈R

v̄i((h
2)i)TRi(h

2)i = −2
∑
i∈R

v̄i(h
1)TAiRiA

T
i h

1.

By the primal nondegeneracy condition and the argument after Lemma 4.2.1, for

the unique primal optimal solution x̄ system (4.25) has only a trivial solution. Thus,

we have (Q̂∗i )
TATi h

1 6= 0 for some i ∈ R, where P̂ ∗i is defined as in (4.19). Hence, it

follows from (4.32) and (4.35) that v̄i(h
1)TAiRiA

T
i h

1 < 0 for Lagrange multipliers

(ū; v̄) for all h1 6= 0 satisfying (4.35).

Remark 4.2.1. Since LICQ holds at (w̄; z̄), and the second-order sufficient condi-

tion (4.34) holds at ϑ̄, it follows from Lemma 3.2.2 in [50], that (w̄; z̄) is an isolated

locally optimal solution, i.e., (w̄; z̄) is the only locally optimal solution in some of

its neighborhoods.

Example 4.2.2. Problem (4.26) in the nonlinear format (PNLO) has four isolated
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locally optimal solutions

ν(1) = (1, −0.2425, 0.9701, 2, 0.4851, 1.9403)T ,

ν(2) = (1, −1, 0, 2, −2, 0)T ,

ν(3) = (1, 0.2425, −0.9701, 2, −0.4851, −1.9403)T ,

ν(4) = (1, 1, 0, 2, 2, 0)T ,

where the objective values are 0.2425, 1, -0.2425, and -1, respectively. The second-

order constraint x2
1 ≥

√
(x2

2)2 + (x2
3)2 is weakly inactive at ν(4), i.e., its removal does

not affect the optimality of ν(4). Removing the weakly inactive constraint reduces the

set of locally optimal solutions to {ν(2), ν(4)} but leaves the set of globally optimal

solutions {ν(4)} unchanged. Note that the Jacobian matrix (4.33) is nonsingular at

the unique globally optimal solution (w̄; z̄). Therefore, the second-order sufficient

condition (4.34) trivially holds at (w̄; z̄).

4.2.3.1 Quadratic convergence of Newton’s method

We apply Newton’s method to the first-order optimality conditions of (DNLO). The

idea is to start from a central solution, for which µ satisfies (3.49), and take Newton

steps to converge to ϑ̄. The first-order optimality conditions (4.31) can be written

as G(ϑ) = 0 and z ∈ W , where the mapping G : Rn̄c → Rn̄c is defined as

G(ϑ) :=



−
∑

i∈B∪T2∪R∪N Aiu
i − b

−ui − 2viRiz
i i ∈ R

−ui i ∈ N

ATi w − ci i ∈ B ∪ T2

ATi w + zi − ci i ∈ R ∪N

(zi)TRiz
i i ∈ R


, (4.36)
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in which

n̄c :=
∑

i∈B∪T2∪R∪N

ni +
∑

i∈R∪N

ni + |R|+m.

For ease of exposition, the equations of (4.31) are indexed in mapping G. The

Jacobian of G is given by

∇G(ϑ) :=

 ∇2L(ϑ) −J((w; z))T

J((w; z)) 0

 .

Letting ϑ(k) be the kth iterate, a Newton step is taken by computing

ϑ(k+1) := ϑ(k) + dϑ(k), dϑ(k) :=
(
dw(k); dz(k); du(k); dv(k)

)
, (4.37)

where the search direction dϑ(k) is obtained by solving

∇G(ϑ(k))dϑ(k) = −G(ϑ(k)). (4.38)

Remark 4.2.2. The underlying idea of the iterative procedure differs from a primal-

dual IPM in that the iterative procedure applies the Newton’s method to G(.), while

IPMs apply the Newton’s method to the central path equations (1.23). When µ =

0, the primal-dual system (1.23) is equivalent to the optimal set of (PSOCO) and

(DSOCO) while (4.31) includes locally optimal solutions. More importantly, the Ja-

cobian of (1.23) at µ = 0 is nonsingular under the strict complementarity and

nondegeneracy conditions while only the latter is needed in our case.

Lemma 4.2.4 shows that J((w̄; z̄)) is of full row rank, and by Lemma 4.2.5 it holds

that L(ϑ̄) has a positive curvature in the null space of J((w̄; z̄)). Now, we show that

∇G(ϑ̄) is nonsingular.

Lemma 4.2.6. Assume that the primal and dual nondegeneracy conditions hold.

Then ∇G(ϑ̄) is nonsingular.
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Proof. Let η := (η1; η2) be a vector of appropriate size and consider the linear system

∇G(ϑ̄)η = 0. Then we have

∇2L(ϑ̄)η1 − J((w̄; z̄))Tη2 = 0,

J((w̄; z̄))η1 = 0.

From the first equation we have (η1)T∇2L(ϑ̄)η1 = 0, which implies η1 = 0 by

Lemma 4.2.5. Setting η1 = 0, the first equation gives J((w̄; z̄))Tη2, which implies

η2 = 0 by Lemma 4.2.4.

The next lemma shows that ∇G is Lipschitz continuous, regardless of any regularity

condition.

Lemma 4.2.7. The Jacobian ∇G is Lipschitz continuous with global Lipschitz con-

stant τ1 := 2
√

2.

Proof. Let ξ := (ξ1; . . . ; ξ8) be a vector of appropriate size. Then we have

‖∇G(ϑ)−∇G(ϑ′)‖2 ≤ max
‖ξ‖2=1

‖(VR − V ′R)ξ2‖2

+ max
‖ξ‖2=1

‖((Z ′R)T − ZT
R)ξ8‖2 + max

‖ξ‖2=1
‖(ZR − Z ′R)ξ2‖2

≤ max
‖ξ2‖2=1

‖(VR − V ′R)ξ2‖2 + 2 max
‖ξ2‖2=1

‖(ZR − Z ′R)ξ2‖2

= ‖VR − V ′R‖2 + 2‖ZR − Z ′R‖2.

Then from the properties of the spectral norm we get

‖VR − V ′R‖2 ≤ 2 max
i∈R
|vi − v′i| ≤ 2‖v − v′‖2,

‖ZR − Z ′R‖2 ≤
√

max
i∈R
‖zi − (z′)i‖2

2 ≤ ‖z − z′‖2.

All this gives

‖∇G(ϑ)−∇G(ϑ′)‖2 ≤ 2(‖v − v′‖2 + ‖z − z′‖2) ≤ 2
√

2‖ϑ− ϑ′‖2,

for all ϑ and ϑ′.
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The following lemma will be useful for establishing the quadratic convergence of

Newton’s method.

Lemma 4.2.8. Let (xµ; yµ; sµ) be a central solution with µ ≤ µ̂, where µ̂ is defined

by (3.43), (x̄; ȳ; s̄) be the unique optimal solution of (P′SOCO) and (D′SOCO), and

(x∗; y∗; s∗) be the unique optimal solution of (PSOCO) and (DSOCO). Then, under the

primal and dual nondegeneracy conditions, we have√√√√∑
i∈R

(
(xµ)i1
(sµ)i1

− x̄i1
s̄i1

)2

≤
4p
√
|R|κ(pµ)γ

σ2

(
1 +

2σ3

σ2

)
. (4.39)

Proof. Note that for every i ∈ R we have

x̄i2:ni

‖x̄i2:ni
‖2

= −
s̄i2:ni

‖s̄i2:ni
‖2

. (4.40)

Since x̄i = (x∗)i and s̄i = (s∗)i for i ∈ R, it follows from (3.40) and (4.40) that for

every i ∈ R

σ2 ≤ x̄i1 + s̄i1 − ‖x̄i2:ni
+ s̄i2:ni

‖2 = x̄i1 + s̄i1 − |x̄i1 − s̄i1|

= 2 min{x̄i1, s̄i1}. (4.41)

Furthermore, it holds that∣∣∣∣(xµ)i1
(sµ)i1

− x̄i1
s̄i1

∣∣∣∣ =

∣∣∣∣((xµ)i1
(sµ)i1

− x̄i1
(sµ)i1

)
+

(
x̄i1

(sµ)i1
− x̄i1
s̄i1

)∣∣∣∣
≤ 1

(sµ)i1
|(xµ)i1 − x̄i1|+ x̄i1

∣∣∣∣ s̄i1 − (sµ)i1
(sµ)i1s̄

i
1

∣∣∣∣
≤ 1

(sµ)i1
‖(xµ)i − x̄i‖2 +

x̄i1
(sµ)i1s̄

i
1

‖(sµ)i − s̄i‖2 ≤
κ(pµ)γ

(sµ)i1

(
1 +

x̄i1
s̄i1

)
,

where the last inequality follows from (3.44). Now using (3.41), (4.41), and Theo-

rem 3.2.1 we get ∣∣∣∣(xµ)i1
(sµ)i1

− x̄i1
s̄i1

∣∣∣∣ ≤ 4pκ(pµ)γ

σ2

(
1 +

2σ3

σ2

)
,

which completes the proof.
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Let Newton’s method be initiated with a given interior solution

w(0) := yµ,

(zi)(0) := (sµ)i, i ∈ R ∪N ,

(ui)(0) := −(xµ)i, i ∈ B ∪ T2 ∪R ∪N ,

v
(0)
i :=

1

2

(xµ)i1
(sµ)i1

, i ∈ R.

(4.42)

Then a search direction is computed by using (4.38), and the new iterate is obtained

by (4.37). Theorem 4.2.2 shows that if µ is sufficiently small, then Newton’s method

converges quadratically to the unique optimal solution (x̄; ȳ; s̄). To that end, we

adopt the quadratic convergence result of Newton’s method from Theorem A.4.1.

Theorem 4.2.2. Assume that the primal and dual nondegeneracy conditions hold.

Let

µ < min

{
p−1

(
4
√

2θ1κ
(√

3 +
2p
√
|R|

σ2

(
1 +

2σ3

σ2

)))− 1
γ

, µ̃

}
, (4.43)

in which θ1 denotes an upper bound on ‖∇G(ϑ̄)−1‖2, and µ̃ is defined in (3.49).

Then, initiated as given in (4.42), Newton’s method converges to ϑ̄ with quadratic

rate. In particular, the convergence to the unique optimal solution (x̄; ȳ; s̄) is quadratic.

Proof. By Lemmas 4.2.6 and 4.2.7, the conditions of Theorem A.4.1 hold, and we

get

rn :=
1

4
√

2θ1

.

Therefore, the Newton steps are well-defined in the neighborhood Brn(ϑ̄), and the

convergence of Newton’s method to ϑ̄ is quadratic if ϑ(0) ∈ Brn(ϑ̄). The quadratic

convergence to (x̄; ȳ; s̄) follows from (4.30) and (4.32). Using the bounds in Theo-

rem 3.2.1 and (4.39) we get

‖v(0) − v̄‖2 =

√√√√1

4

∑
i∈R

(
(xµ)i1
(sµ)i1

− x̄i1
s̄i1

)2

≤
2p
√
|R|κ(pµ)γ

σ2

(
1 +

2σ3

σ2

)
.
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Then, considering the error bounds given in (3.44), we obtain

‖ϑ(0) − ϑ̄‖2 ≤ ‖(w(0) − w̄; z(0) − z̄;u(0) − ū)‖2 + ‖v(0) − v̄‖2

≤ ‖(xµ − x∗; yµ − y∗; sµ − s∗)‖2 + ‖v(0) − v̄‖2

≤
√

3κ(pµ)γ +
2p
√
|R|κ(pµ)γ

σ2

(
1 +

2σ3

σ2

)
,

where (x∗; y∗; s∗) is the unique optimal solution of (PSOCO) and (DSOCO). The result

of the theorem follows if we satisfy

√
3κ(pµ)γ +

2p
√
|R|κ(pµ)γ

σ2

(
1 +

2σ3

σ2

)
< rn,

or equivalently,

(pµ)γ <
rn

κ
(√

3 +
2p
√
|R|

σ2

(
1 + 2σ3

σ2

)) .
This completes the proof.

Recall that (x̄; ȳ; s̄) is the unique optimal solution for (P′SOCO) and (D′SOCO). If

T1, T3 6= ∅, then we can recover the unique optimal solutions of the original problems

(PSOCO) and (DSOCO) by appending T1 and T3 so that

(s∗)i := ci − ATi ȳ, i ∈ T3,

(s∗)i := 0, i ∈ T1,

(x∗)i := 0, i ∈ T1 ∪ T3.

Remark 4.2.3. Recall that Theorem 3.2.1 can be extended to the case when IPMs

generate approximate solutions in a neighborhood of the central path. Hence, an

upper bound analogous to (4.43) can be derived for approximate solutions in a neigh-

borhood of the central path.
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4.2.4 Quadratic convergence under strict complementarity

When the strict complementarity condition holds in addition to the primal and dual

nondegeneracy conditions, the quadratic convergence of Newton’s method follows

from Theorem 28 in [5]. In this case, a stronger complexity bound can be obtained

in order to identify the quadratic convergence region. Note that the optimality

conditions (1.10) can be written as FSO((x; y; s)) = 0 and x, s ∈ Ln̄+, where the

mapping

FSO : Rn̄ × Rm × Rn̄ → Rm × Rn̄ × Rn̄

is given by

FSO((x; y; s)) :=


Ax− b

ATy + s− c

x ◦ s

 . (4.44)

The Jacobian of FSO is given by

∇FSO((x; y; s)) :=


A 0 0

0 AT I

L(s) 0 L(x)

 , (4.45)

where

L(x) := diag(L(x1), . . . , L(xp)),

L(s) := diag(L(s1), . . . , L(sp)).

The following technical lemma is in order.

Lemma 4.2.9 (Theorem 3.1 in [5] and [73]). The Jacobian ∇FSO((x∗; y∗; s∗)) is

nonsingular if and only if the optimal solution (x∗; y∗; s∗) satisfies strict comple-

mentarity, primal nondegeneracy, and dual nondegeneracy conditions.
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By Lemma 4.2.9, ∇FSO((x∗; y∗; s∗)) is nonsingular, where (x∗; y∗; s∗) is the unique

optimal solution. Furthermore, analogous to Lemma 4.2.7, we can show that ∇FSO

is Lipschitz continuous with global Lipschitz constant τ2 := 2.

Lemma 4.2.10. The Jacobian ∇FSO is Lipschitz continuous with global Lipschitz

constant τ2 := 2.

Proof. Let ξ := (ξ1; ξ2; ξ3) ∈ Rn̄ × Rm × Rn̄. Then from (1.8) and (4.45) we have

‖∇FSO((x; y; s))−∇FSO((x′; y′; s′))‖2

= max
‖ξ‖2=1

‖
(
∇FSO((x; y; s))−∇FSO((x′; y′; s′))

)
ξ‖2

= max
‖ξ‖2=1

‖L(s− s′)ξ1 + L(x− x′)ξ3‖2

≤ max
‖ξ‖2=1

‖L(s− s′)ξ1‖2 + max
‖ξ‖2=1

‖L(x− x′)ξ3‖2

≤ max
‖ξ1‖2=1

‖L(s− s′)ξ1‖2 + max
‖ξ3‖2=1

‖L(x− x′)ξ3‖2

≤ ‖L(s− s′)‖2 + ‖L(x− x′)‖2,

where L(s − s′) and L(x − x′) are block diagonal symmetric matrices. Then from

Theorem 3 in [5] and the definition of the spectral norm we get

‖L(s− s′)‖2 = max
i=1,...,p

max
j=1,...,n

|λj(L(si − (s′)i))|

≤ max
i=1,...,p

∣∣si1 − (s′)i1
∣∣+ ‖si2:ni

− (s′)i2:ni
‖2

≤ max
i=1,...,p

√
2‖si − (s′)i‖2 ≤

√
2‖s− s′‖2.

The case for ‖L(x− x′)‖2 is similar. Consequently, we get

‖∇FSO((x; y; s))−∇FSO((x′; y′; s′))‖2 ≤
√

2‖s− s′‖2 +
√

2‖x− x′‖2

≤ 2‖(x− x′; y − y′; s− s′)‖2,

which completes the proof.
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Then the following result is immediate from Theorem A.4.1.

Theorem 4.2.3. Assume that there exists θ2 > 0 so that

‖∇FSO((x∗; y∗; s∗))−1‖2 ≤ θ2.

Let µ̂ be defined by (3.43) and a central solution (xµ; yµ; sµ) with

µ < min
{
p−1
(
4
√

3θ2κ
)− 1

γ , µ̂
}

(4.46)

be given, where κ and γ are defined as in (3.44). Then starting from a central

solution (xµ; yµ; sµ), Newton’s method is quadratically convergent to (x∗; y∗; s∗).

Proof. Since F is continuously differentiable, the result of Theorem A.4.1 is valid.

Hence, Newton steps are well-defined in a neighborhood of (x∗; y∗; s∗). Additionally,

from Lemma 3.2.1 there exist positive κ and γ so that

‖(xµ − x∗; yµ − y∗; sµ − s∗)‖2 ≤
√

3κ(pµ)γ.

Then it is immediate from (A.25) that (xµ; yµ; sµ) is in the quadratic convergence

region of Newton’s method if

√
3κ(pµ)γ <

1

4θ2

,

which yields the result.

Remark 4.2.4. Bound (4.43), relying on the condition numbers σ1, σ2, σ3, and κ,

is significantly more complicated than (4.46). In fact, the intricacy of bound (4.43)

indicates that quadratic convergence is harder to achieve in the absence of strict

complementarity. To that end, µ has to be small enough so that the optimal partition

can be identified.
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4.2.5 Numerical results

We demonstrate quadratic convergence of Newton’s method, applied to the first-

order optimality conditions of (DNLO), on some instances of SOCO problems. For

the first part of numerical experiments we solve (4.26) and the following SOCO

problem

min −1

2
x1

2 −
1

2
x1

3

s.t. x1
1 = 1,

x2
1 − x1

4 = 1,

x2
2 − x1

2 = 0,

x2
3 − x1

3 = 0,

x1
3 − x1

4 − x3
1 = −1,

x1
1 ≥

√
(x1

2)2 + (x1
3)2 + (x1

4)2,

x2
1 ≥

√
(x2

2)2 + (x2
3)2,

x3
1 ≥ 0.

(4.47)

The SOCO problem (4.47) has the unique primal-dual optimal solution

x∗ = (1, 1/
√

2, 1/
√

2, 0, 1, 1/
√

2, 1/
√

2, 1 + 1/
√

2)T ,

y∗ = (−1/
√

2, 0, 0, 0, 0)T ,

s∗ = (1/
√

2, −1/2, −1/2, 0, 0, 0, 0, 0)T ,

and its optimal partition is given by

B = {3}, R = {1}, T2 = {2}, N = T1 = T3 = ∅.

For the second part of this section we generate a set of 10 random SOCO problems

which fail the strict complementarity condition, but satisfy both the primal and dual

nondegeneracy conditions, see [179] for degenerate random SDO problems. Specif-

ically, we generate random problems with a unique primal-dual optimal solution.

We choose m and the optimal partition (B,N ,R, T ), see Table 4.1, in such a way

that the necessary conditions (4.21) are satisfied. Then the interior point condition
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Table 4.1: The optimal partition and dimension of random problems.

Prob. m p (n1, . . . , np) B N R T1 T2 T3

1 7 4 (3, 6, 2, 2) {1} ∅ {2} {3} ∅ {4}
2 6 2 (3, 5) ∅ ∅ {2} ∅ {1} ∅
3 6 3 (3, 6, 2) {1} ∅ {2} ∅ {3} ∅
4 4 2 (5, 3) ∅ ∅ {1} {2} ∅ ∅
5 9 5 (5, 6, 4, 2, 3) {3} {2} {1, 5} ∅ {4} ∅
6 11 6 (5, 6, 5, 2, 3, 2) {1} {3} {2, 6} {5} ∅ {4}
7 7 5 (3, 9, 3, 3, 4) ∅ {1} {2, 5} ∅ {4} {3}
8 18 6 (10, 5, 7, 8, 2, 8) {6} ∅ {1, 3, 4} ∅ {2, 5} ∅
9 22 7 (10, 5, 7, 8, 2, 8, 5) ∅ ∅ {1, 3, 4} {6} {2, 5} {7}
10 35 7 (8, 8, 8, 8, 8, 8, 8) {1, 4} ∅ {2, 5} {7} {6} {3}

automatically holds by the uniqueness of the optimal solution, see Theorem 5.81

in [23].

For the random problems we generate the unique optimal solution (x∗; y∗; s∗) as

follows

(x∗)i1 ∼ U
(
‖(x∗)i2:ni

‖2 + 0.1, ‖(x∗)i2:ni
‖2 + 100.1

)
, i ∈ B,

(s∗)i1 ∼ U
(
‖(s∗)i2:ni

‖2 + 0.1, ‖(s∗)i2:ni
‖2 + 100.1

)
, i ∈ N ,

(x∗)i ∼ U
(
0.1, 100.1

)
×
(
1; (%∗)i/‖(%∗)i‖2

)
, i ∈ R ∪ T2,

(s∗)i ∼ U
(
0.1, 100.1

)
×
(
1;−(%∗)i/‖(%∗)i‖2

)
, i ∈ R ∪ T3,

y∗i ∼ U(−100, 100) i = 1, . . . ,m,

where

(x∗)ij ∼ U(−100, 100), j = 2, . . . , ni, i ∈ B,

(s∗)ij ∼ U(−100, 100), j = 2, . . . , ni, i ∈ N ,

(%∗)ij ∼ U(−100, 100), j = 1, . . . , ni − 1, i ∈ R ∪ T2 ∪ T3,

in which U(., .) denotes the uniform distribution. For the rest of the variables we

have (x∗)i = 0 for i ∈ N ∪ T1 ∪ T3 and (s∗)i = 0 for i ∈ B ∪ T1 ∪ T2 by definition.
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We then normalize the vectors by

x∗ :=
x∗

‖x∗‖2

, y∗ :=
y∗

‖y∗‖2

, s∗ :=
s∗

‖s∗‖2

.

Analogous to the optimal solution, the entries of A are uniformly distributed in

(−100, 100). However, we keep generating random A until the rank condition and

the nondegeneracy conditions in Theorem 4.2.1 hold4. We then compute A :=

A/‖A‖2 and generate the right hand side and objective vectors by b := Ax∗ and

c := ATy∗ + s∗.

We solve all the SOCO problems by using SeDuMi 1.3 included in the CVX op-

timization package [64, 65] and applying Newton’s method to (4.36) and (4.44)

throughout this section. The codes are run in MATLAB 9.2 environment on a Mac-

Book Pro with Intel Core i5 CPU @ 2.3 GHz and 8GB of RAM. The Newton based

approaches are referred to as NLO-Newton and SOCO-Newton, respectively. To

solve (4.26) and (4.47) by Newton based approaches, we choose a central solution

with µ = 10−2 as the initial point. However, we choose smaller values of µ for

the random problems, as specified in Table 4.8. For the Newton based approaches

‖FSO((x(k); y(k); s(k)))‖2 ≤ 10−14 is set as the terminating condition, and the opti-

mality tolerance for SeDuMi is fixed at 10−15. For NLO-Newton we remove the

rows and columns associated with T1 and T3 from both the primal and dual prob-

lems. Additionally, we assign (xµ; yµ; sµ) to ϑ(0) according to (4.42), and we form

the solution (x(k); y(k); s(k)) by setting

(xi)(k) = −(ui)(k), i ∈ B ∪ T2 ∪R ∪N ,
y(k) = w(k),

(si)(k) = (zi)(k), i ∈ R ∪N ,
(si)(k) = 0, i ∈ B ∪ T2,

4Since the full row rank condition and the nondegeneracy conditions hold generically, see e.g., [6],

the expected number of iterations to get the desired coefficient matrix is one.
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Table 4.2: The numerical results of NLO-Newton on SOCO problem (4.26).

k
∥∥Ax(k) − b

∥∥
2

cTx(k)
∥∥x(k) ◦ s(k)

∥∥
2

‖G(.)‖2 ‖F (.)‖2
0 5.551115E-17 -9.922138E-01 1.000000E-02 9.420176E-02 9.432417E-02

1 5.551115E-17 -1.004244E+00 1.132375E-02 2.952235E-02 1.132375E-02

2 0.000000E+00 -1.000041E+00 5.817148E-05 4.551179E-05 5.817148E-05

3 0.000000E+00 -1.000000E+00 2.149505E-10 1.600968E-10 2.149505E-10

4 0.000000E+00 -1.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

Table 4.3: The numerical results of SOCO-Newton on SOCO problem (4.26).

k
∥∥Ax(k) − b

∥∥
2

cTx(k)
∥∥x(k) ◦ s(k)

∥∥
2

σmin(∇F (.)) ‖F (.)‖2
15 0.000000E+00 -1.000000E+00 1.540356E-11 1.270995E-06 1.540356E-11

16 0.000000E+00 -1.000000E+00 3.850891E-12 6.354972E-07 3.850891E-12

17 2.220446E-16 -1.000000E+00 9.627227E-13 3.177485E-07 9.627227E-13

18 2.220446E-16 -1.000000E+00 2.406807E-13 1.588743E-07 2.406808E-13

19 0.000000E+00 -1.000000E+00 6.017017E-14 7.943713E-08 6.017017E-14

20 0.000000E+00 -1.000000E+00 1.504254E-14 3.971856E-08 1.504254E-14

21 2.220446E-16 -1.000000E+00 3.760636E-15 1.985928E-08 3.768821E-15

since there is no si corresponding to B and T2 in (4.36).

Tables 4.2 to 4.4 illustrate the numerical results of the Newton based approaches

on SOCO problem (4.26). For NLO-Newton we report both the Newton residuals

‖G(ϑ(k))‖2 and ‖FSO((x(k); y(k); s(k)))‖2. NLO-Newton meets the stopping condition

in only 4 iterations while this number is 21 for SOCO-Newton. As can be observed

from Tables 4.2 and 4.3, the convergence of NLO-Newton to the unique optimal

solution of (4.26) is quadratic while the convergence for SOCO-Newton is no better

than linear. Additionally, SeDuMi arrives at the Newton residual 1.445657× 10−12,

and in that sense it is less accurate than NLO-Newton and SOCO-Newton.

The numerical results of Newton based approaches on SOCO problem (4.47) are

summarized in Tables 4.5 to 4.7. From Tables 4.5 and 4.6 we can observe the

152



Table 4.4: The kth iterate of NLO-Newton and SOCO-Newton on SOCO problem (4.26).

NLO-Newton SOCO-Newton

k (x1
3)(k) (x2

3)(k) k (x1
3)(k) (x2

3)(k)

0 -6.410764E-02 -1.282153E-01 17 -5.387688E-07 -1.077538E-06

1 8.783536E-03 1.756707E-02 18 -2.693844E-07 -5.387688E-07

2 0.000000E+00 0.000000E+00 19 -1.346922E-07 -2.693844E-07

3 0.000000E+00 0.000000E+00 20 -6.734610E-08 -1.346922E-07

4 0.000000E+00 0.000000E+00 21 -3.367305E-08 -6.734610E-08

Table 4.5: The numerical results of NLO-Newton on SOCO problem (4.47).

k
∥∥Ax(k) − b

∥∥
2

cTx(k)
∥∥x(k) ◦ s(k)

∥∥
2

‖G(.)‖2 ‖F (.)‖2
0 1.110223E-16 -6.995520E-01 1.000000E-02 7.979631E-02 8.014507E-02

1 2.220446E-16 -7.102731E-01 6.634877E-03 8.185201E-03 6.634877E-03

2 3.330669E-16 -7.071020E-01 9.464771E-06 6.556691E-06 9.464771E-06

3 0.000000E+00 -7.071068E-01 6.959588E-11 4.962837E-11 6.959588E-11

4 0.000000E+00 -7.071068E-01 1.110223E-16 1.110223E-16 1.110223E-16

quadratic convergence of NLO-Newton, versus linear convergence of SOCO-Newton.

Furthermore, Table 4.7 confirms that NLO-Newton evolves faster toward the unique

optimal solution of (4.47) than SOCO-Newton. NLO-Newton arrives at the Newton

residual 1.110223×10−16 in only 4 iterations, while SeDuMi ends up with the Newton

residual 1.777953× 10−9.

We draw a sample of 100 instances for each random SOCO problem and report

the average results in Tables 4.8 to 4.10. To ensure convergence of NLO-Newton

to the unique optimal solution, we choose initial solutions with sufficiently small µ

when solving the random problems. Table 4.8 reports the values of µ as well as the

distance of the initial solution ω(0) := (x(0); y(0); s(0)) and the SeDuMi’s solution from

the unique optimal solution ω∗ := (x∗; y∗; s∗), where ω∗se, ω
∗
nn, and ω∗sn stand for the

solution output by SeDuMi, NLO-Newton, and SOCO-Newton. For NLO-Newton
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Table 4.6: The numerical results of SOCO-Newton on SOCO problem (4.47).

k
∥∥Ax(k) − b

∥∥
2

cTx(k)
∥∥x(k) ◦ s(k)

∥∥
2

σmin(∇F (.)) ‖F (.)‖2
15 1.110223E-16 -7.071068E-01 9.289517E-12 1.937402E-06 9.289517E-12

16 1.110223E-16 -7.071068E-01 2.322376E-12 9.687002E-07 2.322376E-12

17 1.110223E-16 -7.071068E-01 5.805962E-13 4.843499E-07 5.805962E-13

18 0.000000E+00 -7.071068E-01 1.452016E-13 2.421749E-07 1.452016E-13

19 2.482534E-16 -7.071068E-01 3.629592E-14 1.210874E-07 3.629677E-14

20 0.000000E+00 -7.071068E-01 9.118149E-15 6.054371E-08 9.118149E-15

Table 4.7: The kth iterate of NLO-Newton and SOCO-Newton on SOCO problem (4.47).

NLO-Newton SOCO-Newton

k (x1
4)(k) (x3

1)(k) k (x1
4)(k) (x3

1)(k)

0 7.86081643E-02 1.62522185E+00 16 1.28146875E-06 1.70710550E+00

1 -4.67865604E-03 1.71469713E+00 17 6.40734373E-07 1.70710614E+00

2 0.00000000E+00 1.70710195E+00 18 3.20367187E-07 1.70710646E+00

3 0.00000000E+00 1.70710678E+00 19 1.60183593E-07 1.70710662E+00

4 0.00000000E+00 1.70710678E+00 20 8.00917970E-08 1.70710670E+00

the solution ω∗nn is formed by (x∗nn; y∗nn; s∗nn), where

(x∗nn)i = −(ui)(k̄), i ∈ B ∪ T2 ∪R ∪N ,
(x∗nn)i = 0, i ∈ T1 ∪ T3,

y∗nn = w(k̄),

(s∗nn)i = (zi)(k̄), i ∈ R ∪N ,
(s∗nn)i = ci − ATi w(k̄), i ∈ T3,

(s∗nn)i = 0, i ∈ B ∪ T1 ∪ T2,

where k̄ denotes the index of final iterate.

Tables 4.9 and 4.10 demonstrate the numerical results of Newton based approaches

on the random SOCO problems. The values of ‖ω∗nn − ω∗‖2, ‖ω∗sn − ω∗‖2, and

”Iter” indicate the accuracy and fast convergence of NLO-Newton in comparison to
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Table 4.8: The initial and optimal solutions for random SOCO problems.

Prob. µ ‖ω(0) − ω∗‖2 ‖ω∗se − ω∗‖2
1 1.00E-05 1.912776E-02 1.592721E-06
2 1.00E-05 9.125473E-02 6.738418E-06
3 1.00E-05 1.643906E-02 2.662254E-06
4 1.00E-05 1.795054E-02 1.607865E-06
5 1.00E-05 2.629707E-02 2.755846E-07
6 1.00E-05 4.050471E-02 3.003945E-05
7 1.00E-05 8.766428E-03 4.772793E-07
8 1.00E-06 1.555120E-02 3.128175E-06
9 1.00E-06 1.049691E-02 6.437721E-07
10 1.00E-06 2.267326E-02 1.741151E-06

Table 4.9: The numerical results of NLO-Newton on random SOCO problems.

Prob. Iter ‖FSO

(
ω(0)

)
‖2 ‖FSO

(
ω∗nn)‖2 ‖ω∗nn − ω∗se‖2 ‖ω∗nn − ω∗‖2 ‖ω∗nn − ω∗sn‖2

1 3 1.958945E-03 2.059106E-16 1.592721E-06 2.021790E-13 7.452722E-07
2 3 1.888355E-02 2.589828E-16 6.738418E-06 1.390557E-14 1.056285E-06
3 3 8.310096E-04 1.908819E-16 2.662245E-06 8.634383E-12 5.002596E-07
4 3 7.542060E-04 2.555563E-16 6.078650E-07 1.555339E-13 4.794085E-07
5 4 2.494958E-03 5.557528E-16 2.755846E-07 1.975277E-14 6.050262E-07
6 4 1.962349E-03 6.526095E-16 3.003945E-05 2.171982E-12 2.831458E-04
7 4 1.149507E-03 6.627321E-16 4.772793E-07 1.107431E-14 4.519775E-07
8 3 1.088135E-04 6.271617E-16 3.128175E-06 7.187394E-13 9.655715E-07
9 4 1.720883E-03 3.192262E-16 6.437721E-07 7.164252E-14 4.071836E-07
10 4 1.960026E-03 5.365570E-16 1.741151E-06 8.266871E-13 8.583896E-07

SOCO-Newton.

4.2.6 Special case: a strongly polynomial rounding proce-

dure

In a special case when the setsR and T are empty, a strictly complementary optimal

solution can be obtained as easily as in LO [109, 180], regardless of the nondegen-

eracy conditions. More precisely, an interior solution (xµ, yµ, sµ), with sufficiently

small µ, can be rounded to an exact strictly complementary optimal solution in
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Table 4.10: The numerical results of SOCO-Newton on random SOCO problems.

Prob. Iter ‖FSO

(
ω(0)

)
‖2 ‖FSO(ω∗sn)‖2 ‖∇FSO(ω∗sn)‖2 ‖ω∗sn − ωse‖2 ‖ω∗sn − ω∗‖2

1 15 1.996282E-06 6.229178E-15 9.947566E-09 1.226415E-06 7.452723E-07
2 16 1.414214E-05 5.999936E-15 1.413926E-08 5.774589E-06 1.056285E-06
3 14 1.732051E-06 4.582760E-15 1.458812E-08 2.463535E-06 5.002683E-07
4 14 1.414214E-06 6.101894E-15 1.575818E-08 1.226030E-06 4.794086E-07
5 15 2.236068E-05 6.644257E-15 1.941088E-08 3.546504E-07 6.050262E-07
6 14 2.449490E-06 6.379693E-15 8.065773E-09 3.108220E-04 2.831458E-04
7 14 2.236068E-06 6.201575E-15 1.642138E-08 5.217249E-07 4.519775E-07
8 13 2.449491E-07 5.319422E-15 4.816730E-09 2.633089E-06 9.655719E-07
9 15 2.645751E-06 4.950853E-15 9.779408E-09 3.668787E-07 4.071836E-07
10 15 2.645751E-06 5.222010E-15 4.778974E-09 1.179792E-06 8.583897E-07

strongly polynomial time through solving two least squares problems.

Let (x∗; y∗; s∗) ∈ ri(P∗SOCO × D∗SOCO) be a strictly complementary optimal solution

of (PSOCO) and (DSOCO). Then the primal-dual feasibility constraints imply

∑
i∈B

Ai(x
i)∗ = b,

∑
i∈B∪N

Ai(x
µ)i = b,

and

ATi y
∗ = ci, ATi y

µ + (sµ)i = ci, i ∈ B,
ATi y

∗ + (si)∗ = ci, ATi y
µ + (sµ)i = ci, i ∈ N .

Subtracting the right hand side equations from the left hand side ones we get

∑
i∈B

Ai(∆x
µ)i =

∑
i∈N

Ai(x
µ)i,

ATi ∆yµ = (sµ)i, i ∈ B,
ATi ∆yµ + (∆sµ)i = 0, i ∈ N ,

where ∆yµ := y∗ − yµ, (∆xµ)i := (xi)∗ − (xµ)i for i ∈ B, and (∆sµ)i := (si)∗ − (sµ)i

for i ∈ N . Thus, we get a primal-dual solution with zero complementarity gap by
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solving the least squares problem

min
1

2

∑
i∈B

‖∆xi‖2
2

s.t.
∑
i∈B

Ai∆x
i =

∑
i∈N

Ai(x
µ)i,

(4.48)

for the primal solution, and the following least square problem

min
1

2
‖∆y‖2

2 +
1

2

∑
i∈N

‖∆si‖2
2

s.t. ATi ∆y = (sµ)i, i ∈ B,
ATi ∆y + ∆si = 0, i ∈ N ,

for the dual solution, which is equivalent to

min
1

2
‖∆y‖2

2 +
1

2

∑
i∈N

‖ATi ∆y‖2
2

s.t. ATi ∆y = (sµ)i, i ∈ B.
(4.49)

The least squares problems (4.48) and (4.49) yield the complementary primal-dual

pair (˜̃x; ˜̃y; ˜̃s), where

˜̃xi := (xµ)i + (∆x∗)i, i ∈ B,
˜̃y := yµ + ∆y∗,

˜̃si := (sµ)i + (∆s∗)i, i ∈ N .

It can be easily shown that (˜̃x; ˜̃y; ˜̃s) is feasible with respect to the primal and dual

affine constraints. Further, the feasibility of (˜̃x; ˜̃y; ˜̃s) with respect to the second-order

cones can be established when µ is sufficiently small, see e.g., [109].

4.2.7 Approximate maximally complementary solutions

An idea similar to the one in Section 4.1.1 can be used to generate an approxi-

mate maximally complementary solution. Generally speaking, if R 6= ∅, an exact

157



solution of (PSOCO) and (DSOCO) cannot be obtained even with rational data. How-

ever, given a central solution (xµ, yµ, sµ) with sufficiently small µ, we can make

a projection onto the boundary of the second-order cone to generate a solution

with zero complementary gap. Toward this end, we can fix the Jordan frame

{(pµ)i1, (p
µ)i2} for i ∈ R ∪ T2 ∪ T3, and solve for their corresponding eigenvalues.

Let (x∗; y∗; s∗) ∈ ri(P∗SOCO × D∗SOCO) be a primal-dual maximally complementary

optimal solution. Then by using primal-dual feasibility constraints we have∑
i∈B

Ai(x
∗)i +

∑
i∈R∪T2

(λ∗)i2Ai(p
∗)i2 = b,∑

i∈B∪N∪T1∪T3

Ai(x
µ)i +

∑
i∈R∪T2

((λµ)i1Ai(p
µ)i1 + (λµ)i2Ai(p

µ)i2) = b,

where {(pµ)i1, (p
µ)i2} denotes the Jordan frame and (λµ)i1 and (λµ)i2 are their corre-

sponding eigenvalues, see (A.1). Subtracting the second equation from the first one,

we get

∑
i∈B

Ai(∆x
µ)i +

∑
i∈R∪T2

(∆λµ)iAi(p
µ)i2 =∑

i∈N∪T1∪T3

Ai(x
µ)i +

∑
i∈R∪T2

(λµ)i1Ai(p
µ)i1 + ξp,

where

(∆xµ)i = (x∗)i − (xµ)i, i ∈ B,

(∆λµ)i = (λ∗)i2 − (λµ)i2, i ∈ R ∪ T2,

ξp = −
∑

i∈R∪T2

(λ∗)i2Ai((p
∗)i2 − (pµ)i2).

The right hand side vector depends on the solutions belonging to N , T1, and T3 and

the eigenvalues of solutions in R, T3, which converge to 0. Hence, the right hand

side vector can be made arbitrary small as µ→ 0. However, the residual term ξp is

not known since it depends on the optimal solution x∗. We can drop the residual
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term ξp and solve the least square problem

min
∆x,∆λ,ep

∑
i∈B

‖∆xi‖2
2 +

∑
i∈R∪T2

‖∆λi‖2
2 + ‖εp‖2

2

s.t.
∑
i∈B

Ai∆x
i +

∑
i∈R∪T2

∆λiAi(p
µ)i2 =∑

i∈N∪T1∪T3

Ai(x
µ)i +

∑
i∈R∪T2

(λµ)i1Ai(p
µ)i1 − εp,

(4.50)

which, due to disregarding ξp, gives the direction (∆x∗,∆λ∗) towards a nearly primal

feasible solution, i.e.,

˜̃xi := (xµ)i + (∆x∗)i, i ∈ B,
˜̃λi2 := (λµ)i2 + (∆λ∗)i, i ∈ R.

Given the dual optimal solution (y∗; s∗), the dual feasibility constraints imply

ATi ∆yµ = (sµ)i, i ∈ B ∪ T1 ∪ T2,

ATi ∆yµ + (∆δµ)i(pµ)i1 = (δµ)i2(pµ)i2 + ξd, i ∈ R ∪ T3,

ATi ∆yµ + (∆sµ)i = 0, i ∈ N,

where

∆yµ = y∗ − yµ,

(∆sµ)i = (s∗)i − (sµ)i, i ∈ N ,

(∆δµ)i = (δ∗)i1 − (δµ)i1, i ∈ R ∪ T3,

ξd = −(δ∗)i1
(
(p∗)i1 − (pµ)i1

)
.

Analogous to the primal case, ξd depends on the optimal solution (y∗; s∗). Hence
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we can drop ξd and solve the following least square problem

min
∆y,∆s,∆δ,εd

∑
i∈N

‖∆si‖2
2 +

∑
i∈R∪T3

‖∆δi‖2
2 + ‖∆y‖2

2 + ‖εd‖2
2

s.t. ATi ∆y = (sµ)i, i ∈ B ∪ T1 ∪ T2,

ATi ∆y + ∆δi(pµ)i1 = (δµ)i2(pµ)i2 − εd, i ∈ R ∪ T3,

ATi ∆y + ∆si = 0, i ∈ N ,

(4.51)

which gives the direction (∆y∗; ∆s∗; ∆δ∗) toward a nearly dual feasible solution, i.e.,

˜̃y := yµ + ∆y∗,

˜̃si := (sµ)i + (∆s∗)i, i ∈ N ,
˜̃δi1 := (δµ)i1 + (∆δ∗)i, i ∈ R ∪ T3.

It can be easily shown that the primal-dual pair (˜̃x; ˜̃y; ˜̃s) has zero complementary

gap, and it is ε∗-feasible with respect to the primal-dual affine constraints, where

ε∗ = max{ε∗p, ε∗d}. (4.52)

Analogous to Section 4.2.6, feasibility with respect to the second-order cones can be

achieved if µ is sufficiently small, i.e., there exists a positive µ̃ such that for µ < µ̃

we have

˜̃xi ∈ int(Lni+ ), i ∈ B,
˜̃λi2 > 0, i ∈ R ∪ T2,

˜̃si ∈ int(Lni+ ), i ∈ N ,
˜̃δi1 > 0, i ∈ R ∪ T3,

see [112] for details. Doing so, we get an approximate maximally complementary

solution (˜̃x; ˜̃y; ˜̃s).
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Chapter 5

Sensitivity and stability analysis

Steady advances in computational optimization have enabled us to solve a wide vari-

ety of LCO problems in polynomial time. Nevertheless, sensitivity analysis tools are

still the missing parts of LCO solvers, e.g., IPMs in SeDuMi, SDPT3, and MOSEK.

The sensitivity and stability analysis of convex optimization problems have been

worked out in [147, 148]. Shapiro [158] established the differentiability of the op-

timal solution for a nonlinear SDO problem using the standard implicit function

theorem. Bonnans et al. [20] proposed a second-order regularity condition for finite

dimensional optimization problems and established Hölder and Lipschitz continuity

results for approximate optimal solutions. They also applied the theory to SDO and

semi-infinite optimization problems. Under linear perturbations in objective vector,

coefficient matrix, and right hand side, Nayakkankuppam and Overton [122] de-

rived the region of stability around an optimal solution of SDO which satisfies strict

complementarity and nondegeneracy conditions. The sensitivity of central solutions

for SDO was treated in [128, 170]. Yildirim [185] proposed a sensitivity analysis

approach based on IPM for LO and SDO. Bonnans and Ramı́rez [21] character-

ized strongly regular KKT solutions for nonlinear SOCO problems, see also [40].
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Recently, Cheung and Wolkowicz [27] and Sekiguchi and Waki [157] studied the

continuity of optimal value function for SDO problems which fail interior point

condition. A comprehensive study of directional and differential stability of NLO

problems in abstract spaces was given by Bonnans and Shapiro [23]. The results

are mostly exploring a small neighborhood of a locally optimal solution, and they

depend on strict complementarity and strong second-order sufficiency conditions.

We also refer the reader to [93] for extensive results for the regularity of optimal

solutions for parametric optimization problems.

Adler and Monteiro [3] studied the parametric analysis of LO problems using the

concept of the optimal partition. Another treatment of sensitivity analysis for LO

based on the optimal partition approach was given by Jansen et al. [87] and Green-

berg [66]. Berkelaar et al. [16] extended the optimal partition approach to linearly

constrained quadratic optimization (LCQO) with perturbation in the right hand side

vector and showed that the optimal value function is convex and piecewise quadratic.

There have been some studies on optimal partition and parametric analysis of conic

optimization problems. Goldfarb and Scheinberg [59] considered a parametric SDO

problem, where the objective is perturbed along a fixed direction. They derived

auxiliary problems to compute the directional derivatives of the optimal value func-

tion and the so called linearity interval of the optimal partition, see also [152]. The

optimal value function for SDO has been shown to be piecewise algebraic [126], i.e.,

for each piece there exists a polynomial function ψ(., .) so that ψ(ϕ(ε), ε) = 0, see

also Section 5.3 in [19]. Yildirim [184] extended the concept of the optimal partition

and the auxiliary problems in [59] for LCO problems.

In this chapter, we study the parametric analysis of SDO and SOCO problems and

then extend the results for a parametric LCO problem. We introduce the concepts

of nonlinearity interval and transition point for the optimal partition and provide
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sufficient conditions to get a subinterval of a nonlinearity interval. We study the

relationship between the continuity of the optimal set mapping and a nonlinearity

interval. Furthermore, we investigate the sensitivity of the approximation of the

optimal partition for SDO. For SOCO we define auxiliary problems to compute

a subinterval of a nonlinearity interval. Further, we show how to use derivative

information to identify a transition point.

5.1 Parametric analysis of SDO

We consider a parametric SDO problem, which can be phrased as

(Pε
SDO) min

{
〈C + εC̄,X〉 | 〈Ai, X〉 = bi, i = 1, . . . ,m, X � 0

}
,

(Dε
SDO) max

{
bTy |

m∑
i=1

yiA
i + S = C + εC̄, S � 0, y ∈ Rm

}
.

where C̄ ∈ Sn is a fixed direction. The primal and dual feasible set mappings are

defined as

PSDO(ε) :=
{
X | 〈Ai, X〉 = bi, i = 1, . . . ,m, X � 0

}
,

DSDO(ε) :=
{

(y, S) |
m∑
i=1

yiA
i + S = C + εC̄

}
.

Since PSDO(.) is independent of ε, primal feasibility either holds or fails for all ε.

Thus, we assume that (Pε
SDO) is solvable for all ε.

The optimal value of (Pε
SDO) yields the optimal value function ϕ : R → R ∪

{−∞,+∞}. Let E ⊆ R be the set of all ε for which ϕ(ε) > −∞, and assume

that E 6= ∅. Then it is proven that ϕ(.) is a proper concave function [148], and that

it is continuous on int(E). The continuity of the optimal value function at ε follows

from the concavity of ϕ(.), as a special case of the following lemma.
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Lemma 5.1.1 (Corollary 2.109 in [23]). The concave function ϕ(.) is continuous at

ε̄ if ε̄ ∈ int(E).

Furthermore, E is a closed, possibly unbounded, interval, see e.g., Lemma 2.2 in [16].

In order to guarantee strong duality and the existence of the optimal partition, the

following assumption is made throughout this section:

Assumption 5.1.1. The interior point condition holds for both (Pε′
SDO) and (Dε′

SDO)

for all ε′ ∈ int(E), i.e., there exists a feasible solution
(
X◦(ε′), y◦(ε′), S◦(ε′)

)
such

that X◦(ε′), S◦(ε′) � 0.

Assumption 5.1.1 is actually needed for the existence of the central path and uni-

formly boundedness of the primal and dual optimal set mappings which are given

by

P∗SDO(ε) :=
{
X | 〈C + εC̄,X〉 = ϕ(ε), X ∈ P(ε)

}
,

D∗SDO(ε) :=
{

(y, S) | bTy = ϕ(ε), (y, S) ∈ D(ε)
}
.

Consequently, both P∗SDO(ε′) and D∗SDO(ε′) are nonempty and compact for all ε′ ∈

int(E). Furthermore, for every ε′ ∈ int(E) there exists a maximally complementary

optimal solution
(
X∗(ε′), y∗(ε′), S∗(ε′)

)
.

5.1.1 Continuity of optimal solutions for SDO

In this section, we investigate the continuity of the primal and dual feasible set

mappings and the outer semicontinuity of the primal and dual optimal set mappings

for SDO. For the sake of completeness, we include short proofs for the main results.

The proofs can be found in [10] and [82], see also Section 1.7.4.

Since the primal feasible set is invariant with respect to the perturbation, PSDO(.) is

continuous at any ε. For the dual problem (Dε
SDO) we define the set-valued mapping
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DySDO : R→ Rm as

DySDO(ε) :=

{
y ∈ Rm | C + εC̄ −

m∑
i=1

yiA
i � 0

}
,

Since Sn+ is a closed convex cone, it can be shown that DySDO(.) is outer semicontin-

uous at every ε̄ ∈ int(E).

Lemma 5.1.2. The set-valued mapping DySDO(.) is outer semicontinuous at ε̄.

Proof. Let {εk} ⊂ R, εk → ε̄, {yk} ⊂ Rm, yk ∈ DySDO(εk), and yk → y. Since

yk ∈ DySDO(εk) we have

C + εkC̄ −
m∑
i=1

(yk)iA
i � 0.

From the continuity of the affine constraint and the closedness of Sn+ we have

C + εkC̄ −
m∑
i=1

(yk)iA
i → C + ε̄C̄ −

m∑
i=1

yiA
i � 0,

which proves the outer semicontinuity of DySDO(.) at ε̄.

Furthermore, we can show that DySDO(.) and thus DSDO(.) is inner semicontinuous

at every ε̄ ∈ int(E).

Lemma 5.1.3. Let ȳ ∈ DySDO(ε̄) such that C + ε̄C̄ −
∑m

i=1 ȳiA
i � 0. Then the

set-valued mapping DySDO(.) is inner semicontinuous at every ε ∈ int(E).

Proof. Let εk → ε̄, ŷ ∈ DySDO(ε̄), and assume that Ŝ := C + ε̄C̄ −
∑m

i=1 ŷiA
i has at

least one zero eigenvalue. We can construct a convergent sequence {yk} with yk → ŷ

such that C + εkC̄ −
∑m

i=1(yk)iA
i � 0 for large values of k.

Consider the sequence yk = (1− αk)ŷ + αkȳ. Note that

C + εkC̄ −
m∑
i=1

(yk)iA
i = (1− αk)

(
C + εkC̄ −

m∑
i=1

ŷiA
i
)

+ αk

(
C + εkC̄ −

m∑
i=1

ȳiA
i
)
.
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Then C + εkC̄ −
∑m

i=1(yk)iA
i � 0 holds if

(1− αk)
(
C + εkC̄ −

m∑
i=1

ŷiA
i
)

+ αk

(
C + εkC̄ −

m∑
i=1

ȳiA
i
)
� 0. (5.1)

If 0 ≤ αk ≤ 1, then (5.1) holds if

(1− αk)λmin

(
C + εkC̄ −

m∑
i=1

ŷiA
i
)

+ αkλmin

(
C + εkC̄ −

m∑
i=1

ȳiA
i
)
≥ 0,

which is equivalent to

αk ≥
−λmin

(
C + εkC̄ −

∑m
i=1 ŷiA

i
)

λmin

(
C + εkC̄ −

∑m
i=1 ȳiA

i
)
− λmin

(
C + εkC̄ −

∑m
i=1 ŷiA

i
)

for large k, since the denominator has to be positive. Letting αk := max{ρk, 0},

where

ρk :=
−λmin

(
C + εkC̄ −

∑m
i=1 ŷiA

i
)

λmin

(
C + εkC̄ −

∑m
i=1 ȳiA

i
)
− λmin

(
C + εkC̄ −

∑m
i=1 ŷiA

i
) ,

we can realize that ρk → 0 and yk ∈ DySDO(εk) for large k, since 0 ≤ αk ≤ 1 and

αk → 0. This completes the proof.

By the interior point condition, we can prove the outer semicontinuity of the optimal

set-valued mapping at any ε̄ ∈ int(E).

Lemma 5.1.4. The set-valued mapping P∗SDO(.)×D∗SDO(.) is outer semicontinuous

at every ε̄ ∈ int(E).

Proof. The outer semicontinuity follows from the closedness of the positive semidef-

inite cone and continuity of the functions in (1.6), i.e., given the sequences εk → ε̄

and (X(εk), y(εk), S(εk)) ∈ P∗SDO(εk) × D∗SDO(εk) such that (X(εk), y(εk), S(εk)) →

(X̄, ȳ, S̄), the limit point (X̄, ȳ, S̄) satisfies (1.6) at ε̄.

Note that the optimal set mapping is not necessarily inner semicontinuous. We can

provide a sufficient condition for the continuity of P∗SDO(.) and D∗SDO(.) even when
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both strict complementarity and nondegeneracy conditions fail. It can be shown

that the optimal set is uniformly bounded near any ε̄ ∈ int(E), see (1.35). The

proof is adopted from [157].

Lemma 5.1.5. The optimal set P∗SDO(.) × D∗SDO(.) is uniformly bounded near ε̄ ∈

int(E).

Proof. By the continuity of the set mappings PSDO(.) and DSDO(.) at ε̄ there exists a

sequence of interior solutions (X◦(εk), y
◦(εk), S

◦(εk)) converging to (X◦(ε̄), y◦(ε̄), S◦(ε̄)).

Let (X(εk), y(εk), S(εk)) be a primal-dual optimal solution of (Pεk
SDO) and (Dεk

SDO).

Then from the primal and dual constraints we have

〈X(εk)−X◦(εk), S(εk)− S◦(εk)〉 = 0,

which gives

〈X(εk), S
◦(εk)〉+ 〈S(εk), X

◦(εk)〉 = 〈X◦(εk), S◦(εk)〉.

Then from X(εk) � 0 and S◦(εk) � 0 we can derive

‖X(εk)‖F ≤
〈X◦(εk), S◦(εk)〉
λmin(S◦(εk))

.

Since (X◦(εk), y
◦(εk), S

◦(εk))→ (X◦(ε̄), y◦(ε̄), S◦(ε̄)), there exists ς > 0 such that

‖X(εk)‖F ≤
〈X◦(εk), S◦(εk)〉
λmin(S◦(εk))

≤ 〈X
◦(ε̄), S◦(ε̄)〉+ ς

λmin(S◦(ε̄))− ς
.

In a similar manner, we can show that

‖S(εk)‖F ≤
〈X◦(εk), S◦(εk)〉
λmin(X◦(εk))

≤ 〈X
◦(ε̄), S◦(ε̄)〉+ ς

λmin(X◦(ε̄))− ς
,

which completes the proof.

Lemma 5.1.6. Assume that P∗SDO(.)×D∗SDO(.) is single-valued at ε̄, then P∗SDO(.)×

D∗SDO(.) is continuous at ε̄.

167



Proof. Let P∗SDO(ε̄)×D∗SDO(ε̄) =
{(
X∗(ε̄), y∗(ε̄), S∗(ε̄)

)}
. By the outer semicontinu-

ity of the set-valued mapping we have

lim inf
ε→ε̄

P∗SDO(ε)×D∗SDO(ε) ⊆ lim sup
ε→ε̄

P∗SDO(ε)×D∗SDO(ε) =
{(
X∗(ε̄), y∗(ε̄), S∗(ε̄)

)}
.

(5.2)

We know from Lemma 5.1.5 that P∗SDO(.) × D∗SDO(.) is uniformly bounded near ε̄.

Then from the error bound result for an LMI system, see Theorem A.2.4, we get

dist
((
X∗(ε̄), y∗(ε̄), S∗(ε̄)

)
, P∗SDO(ε)×D∗SDO(ε)

)
≤
(
|ε− ε̄|‖C̄‖F

)γ
,

when |ε − ε̄|‖C̄‖F ≤ 1. Then for any sequence εk → ε̄, there exists a sequence(
X(εk), y(εk), S(εk)

)
converging to

(
X∗(ε̄), y∗(ε̄), S∗(ε̄)

)
, which by (5.2) proves the

continuity of P∗SDO(.)×D∗SDO(.) at ε̄.

Remark 5.1.1. Another proof can be given for the continuity of both P∗SDO(.) and

D∗SDO(.). By the interior point condition, the set-valued mapping DySDO(.) is contin-

uous at ε̄, and D∗SDO(.) is uniformly bounded near ε̄. Then the continuity of D∗SDO(.)

at ε̄ is immediate from Theorem 1.7.8.

If the strict complementarity and primal-dual nondegeneracy conditions hold at ε̄,

then the optimal solution is unique and strictly complementary. Hence, the conti-

nuity of D∗SDO(.) at ε̄ follows from Lemma 5.1.6. However, we can provide stronger

results by applying the implicit function theorem. Note that the optimality condi-

tions for (Pε
SDO) and (Dε

SDO) can be written as

FSD

(
X, y, S, ε

)
:=


As svec(X)− b

(As)Ty + svec(S)− svec(C)− ε svec(C̄)

1
2

svec(XS + SX)

 = 0, (5.3)

X,S � 0.
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Then the Jacobian of the linear equations in (5.3) is given by

∇FSD(X, y, S) :=


As 0 0

0 (As)T In(n+1)/2

S ⊗s In 0 X ⊗s In

 ,

where ⊗s denotes the symmetric Kronecker product. The following technical lemma

is in order.

Lemma 5.1.7 (Theorem 3.1 in [7] and [73]). The Jacobian ∇FSD(X∗(ε̄), y∗(ε̄), S∗(ε̄)
)

is nonsingular if and only if the optimal solution
(
X∗(ε̄), y∗(ε̄), S∗(ε̄)

)
satisfies strict

complementarity, and both the primal and dual nondegeneracy conditions.

Now, we have the following result.

Theorem 5.1.1. Let (X∗(ε̄), y∗(ε̄), S∗(ε̄)) be a strictly complementary solution. Then

there exists ς > 0 and a unique continuously differentiable mapping (X∗(.), y∗(.), S∗(.))

on (ε̄−ς, ε̄+ς) such that (X∗(ε′′), y∗(ε′′), S∗(ε′′)) is the unique strictly complementary

optimal solution for (Pε′′
SDO) and (Dε′′

SDO) for all ε′′ ∈ (ε̄− ς, ε̄+ ς).

Proof. We can observe from Lemma 5.1.7 that the conditions of the implicit func-

tion theorem hold, see Theorem A.4.3. Then there exists ς ′ > 0 and a unique

continuously differentiable mapping (X ′(.), y′(.), S ′(.)) on (ε̄ − ς ′, ε̄ + ς ′) such that

(X ′(ε′), y′(ε′), S ′(ε′)) satisfies the equations in (5.3) for all ε′ ∈ (ε̄ − ς ′, ε̄ + ς ′) and

(X ′(ε̄), y′(ε̄), S ′(ε̄)) = (X∗(ε̄), y∗(ε̄), S∗(ε̄)). Since (X∗(ε̄), y∗(ε̄), S∗(ε̄)) is strictly com-

plementary and (X ′(.), y′(.), S ′(.)) is continuously differentiable on (ε̄− ς ′, ε̄+ ς ′), we

have

X ′(ε) + S ′(ε) � 0,

for all ε sufficiently close to ε̄. Hence, from the complementarity condition XS +

SX = 0 and X ′(ε) + S ′(ε) � 0 we can conclude that X ′(ε) � 0 and S ′(ε) � 0
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and X ′(ε)S ′(ε) = 0, i.e., (X ′(ε), y′(ε), S ′(ε)) is a strictly complementary optimal

solution for (Pε
SDO) and (Dε

SDO). Furthermore, by the continuity arguments and

the nonsingularity of the Jacobian at (X∗(ε̄), y∗(ε̄), S∗(ε̄)), ∇FSD(X ′(.), y′(.), S ′(.)
)

is nonsingular in a sufficiently small neighborhood of ε̄. Consequently, by using

Lemma 5.1.7 again, we can find a neighborhood of ε̄ such that the optimal solutions

are strictly complementary and primal-dual nondegenerate.

5.1.2 Sensitivity of the optimal partition for SDO

In this section, we investigate the behavior of the optimal partition and the optimal

set mapping under perturbation of the objective vector. From now on,

πSDO(ε) :=
(
B(ε), T (ε),N (ε)

)

denotes the optimal partition of (Pε
SDO) and (Dε

SDO) for a given ε. We introduce

and characterize the subintervals of int(E) on which the optimal partition or the

dimension of both B(ε) and N (ε) is stable. The discussion is motived by minimizing

a parametric objective function on the 3-elliptope [19], see Figure 5.1:

{
(x, y, z) ∈ R3 |


1 x y

x 1 z

y z 1

 � 0

}
.
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Figure 5.1: The illustration of a 3-elliptope.

Example 5.1.1. Consider the following SDO problem:

A1 =


1 0 0

0 0 0

0 0 0

 , A2 =


0 0 0

0 1 0

0 0 0

 , A3 =


0 0 0

0 0 0

0 0 1

 ,

C =


0 −1 1

−1 0 −1

1 −1 0

 , C̄ =


0 2 −2

2 0 0

−2 0 0

 , b = (1, 1, 1)T .

For all ε ∈ [0, 1] a maximally complementary solution is given by

X∗(ε) =


1 1

2
− ε ε− 1

2

1
2
− ε 1 1− 2(ε− 1

2
)2

ε− 1
2

1− 2(ε− 1
2
)2 1

 ,

y∗(ε) = (−(2ε− 1)2, −1, −1)T ,

S∗(ε) =


(2ε− 1)2 2ε− 1 1− 2ε

2ε− 1 1 −1

1− 2ε −1 1

 ,
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where the eigenvalues of X∗(ε) and S∗(ε) are given by

λ[1]

(
X∗(ε)

)
= −2ε2 + 2ε+

3

2
, λ[2]

(
X∗(ε)

)
= 2ε2 − 2ε+

3

2
, λ[3]

(
X∗(ε)

)
= 0,

λ[1]

(
S∗(ε)

)
= 4ε2 − 4ε+ 3, λ[2]

(
S∗(ε)

)
= 0, λ[3]

(
S∗(ε)

)
= 0.

The optimal partition at ε = 1
2

is given by

B(ε) = R

(
0 1

1/
√

2 0

1/
√

2 0


)
, T (ε) = {0}, N (ε) = R

(
0

−1/
√

2

1/
√

2


)
,

while for all ε ∈ [0, 1] \ {1
2
} we have

B(ε) = R

(
0 2sgn(2ε− 1)/

√
2(2ε− 1)2 + 4

1/
√

2 −|2ε− 1|/
√

2(2ε− 1)2 + 4

1/
√

2 |2ε− 1|/
√

2(2ε− 1)2 + 4


)
,

T (ε) = {0},

N (ε) = R

(
(1− 2ε)/

√
(2ε− 1)2 + 2

−1/
√

(2ε− 1)2 + 2

1/
√

(2ε− 1)2 + 2


)
,

where sgn(.) denotes the signum function. We can observe that
(
X∗(ε), y∗(ε), S∗(ε)

)
is strictly complementary for all ε ∈ [0, 1], and both rank

(
X∗(ε)

)
and rank

(
S∗(ε)

)
are constant on [0, 1]. It can be further investigated that the primal and dual nonde-

generacy conditions hold at all ε ∈ [0, 1] \ {1
2
}, and at ε = 1

2
the dual nondegeneracy

condition fails. For instance, for all ε ∈ [0, 1] \ {1
2
} a common orthonormal eigen-

vector basis of X∗(ε) and S∗(ε) is given by

Q∗(ε) =


0 2sgn(2ε− 1)/

√
2(2ε− 1)2 + 4 (1− 2ε)/

√
(2ε− 1)2 + 2

1/
√

2 −|2ε− 1|/
√

2(2ε− 1)2 + 4 −1/
√

(2ε− 1)2 + 2

1/
√

2 |2ε− 1|/
√

2(2ε− 1)2 + 4 1/
√

(2ε− 1)2 + 2

 .

172



Then, using the conditions in Lemma 1.3.1, one can check that the matrices
0 0 0

0 (2sgn(2ε− 1)/ν1)2 2sgn(2ε− 1)(1− 2ε)/(ν1ν2)

0 2sgn(2ε− 1)(1− 2ε)/(ν1ν2) 0

 ,


1/2 −|2ε− 1|/(

√
2ν1) −1/(

√
2ν2)

−|2ε− 1|/(
√

2ν1) ((2ε− 1)/ν1)2 |2ε− 1|/(ν1ν2)

−1/(
√

2ν2) |2ε− 1|/(ν1ν2) 0

 ,


1/2 |2ε− 1|/(

√
2ν1) 1/(

√
2ν2)

|2ε− 1|/(
√

2ν1) ((2ε− 1)/ν1)2 |2ε− 1|/(ν1ν2)

1/(
√

2ν2) |2ε− 1|/(ν1ν2) 0

 ,

where

ν1 :=
√

2(2ε− 1)2 + 4,

ν2 :=
√

(2ε− 1)2 + 2,

are linearly independent. Furthermore, we can observe that the following matrices

span S2:0 0

0 (2sgn(2ε− 1)/ν1)2

 ,

 1/2 −|2ε− 1|/(
√

2ν1)

−|2ε− 1|/(
√

2ν1) ((2ε− 1)/ν1)2

 ,

 1/2 |2ε− 1|/(
√

2ν1)

|2ε− 1|/(
√

2ν1) ((2ε− 1)/ν1)2

 ,

which implies dual nondegeneracy of the optimal solution.

As indicated in [59] and also demonstrated by Example 5.1.1, the optimal partition

might vary with ε in a subinterval of int(E). However, the dimension of B(.) and

N (.), or equivalently rank
(
X∗(.)

)
and rank

(
S∗(.)

)
, might be stable in certain subin-

tervals. This is in contrast to LO, where the interval E is divided into subintervals

each with a unique optimal partition, see e.g., Jansen et al. [87].
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Motivated by this observation, we make the following definitions:

Definition 5.1.1. The two optimal partitions πSDO(ε′) and πSDO(ε′′) are called iden-

tical if πSDO(ε′) = πSDO(ε′′), i.e.,

B(ε′) = B(ε′′), and N (ε′) = N (ε′′).

Otherwise, if

dim
(
B(ε′)

)
= dim

(
B(ε′′)

)
, and dim

(
N (ε′)

)
= dim

(
N (ε′′)

)
,

then the two optimal partitions πSDO(ε′) and πSDO(ε′′) are called weakly identical,

and it is denoted by πSDO(ε′)
w
= πSDO(ε′′).

It is immediate from the definition that if the partitions are not weakly identical,

then they are not identical either.

Using the continuity arguments, we can estimate the behavior of the optimal parti-

tion πSDO(ε) in a neighborhood of ε.

Lemma 5.1.8. If P∗SDO(.) is continuous at ε̄, then nB(ε̄) ≤ nB(ε′) for all ε′ sufficiently

close to ε̄. If D∗SDO(.) is continuous at ε̄, then nN (ε̄) ≤ nN (ε′) for all ε′ in a small

neighborhood of ε̄.

Proof. Let
(
X∗(ε̄), y∗(ε̄), S∗(ε̄)

)
be a maximally complementary optimal solution.

By the inner semicontinuity of the primal and dual optimal set mappings at ε̄, for

ε′ sufficiently close to ε̄ there exist primal optimal solution X(ε′) and dual optimal

solution (y(ε′), S(ε′)) close to
(
X∗(ε̄), y∗(ε̄), S∗(ε̄)

)
so that

λ[i](X(ε′)) > 0, i = 1, . . . , nB(ε̄),

λ[i](S(ε′)) > 0, i = 1, . . . , nN (ε̄)

holds. All this implies that nB(ε̄) ≤ nB(ε′) and nN (ε̄) ≤ nN (ε′). This completes the

proof.
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Remark 5.1.2. More generally, the inclusion properties in Lemma 5.1.8 hold if

there exists εk → ε̄ such that

lim inf
k→∞

P∗SDO(εk) ∩ ri
(
P∗SDO(ε̄)

)
6= ∅, lim inf

k→∞
D∗SDO(εk) ∩ ri

(
D∗SDO(ε̄)

)
6= ∅.

In the following sections, we review linearity intervals from [59] and then introduce

nonlinearity intervals and transition points of the optimal partition for (Pε
SDO) and

(Dε
SDO).

5.1.2.1 Linearity intervals

For a parametric LO and LCQO, the interval E can be partitioned into subintervals,

so called linearity intervals, where each subinterval is associated with a unique op-

timal partition and a unique primal optimal set, e.g., for LO the index sets in B(ε′)

and N (ε′) are invariant with respect to ε′ in a linearity interval.

Let Ilin be a subset of int(E). Then Ilin is called a linearity interval if πSDO(ε′) =

πSDO(ε′′) for all ε′, ε′′ ∈ Ilin. The following result is an extension from LCQO [16, 17].

Lemma 5.1.9. Let ε′, ε′′ ∈ int(E). If πSDO(ε′) = πSDO(ε′′) and ερ := ρε′ + (1− ρ)ε′′

for every 0 ≤ ρ ≤ 1, then πSDO(ε′) = πSDO(ε′′) = π(ερ). Moreover,

X∗(ερ) := ρX∗(ε′) + (1− ρ)X∗(ε′′),

y∗(ερ) := ρy∗(ε′) + (1− ρ)y∗(ε′′),

S∗(ερ) := ρS∗(ε′) + (1− ρ)S∗(ε′′)

(5.4)

is a maximally complementary solution of (P
ερ
SDO) and (D

ερ
SDO).

Proof. Since B(ε′) = B(ε′′) and N (ε′) = N (ε′′), it is easy to see from Theorem 1.5.1

that
(
X∗(ερ), y

∗(ερ), S
∗(ερ)

)
is a primal-dual optimal solution of (P

ερ
SDO) and (D

ερ
SDO).
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Furthermore, from (5.4) we get

X∗(ερ) = QB(ε′)

(
ρUX∗(ε′) + (1− ρ)UX∗(ε′′)

)
QT
B(ε′), ρUX∗(ε′) + (1− ρ)UX∗(ε′′) � 0,

S∗(ερ) = QN (ε′)

(
ρUS∗(ε′) + (1− ρ)US∗(ε′′)

)
QT
N (ε′), ρUS∗(ε′) + (1− ρ)US∗(ε′′) � 0,

which implies

B(ε′) = R(X∗(ερ)) ⊆ B(ερ), N (ε′) = R(S∗(ερ)) ⊆ N (ερ),

where the inclusions follow from the definition of a maximally complementary solu-

tion. Using the same argument, we can choose a sufficiently small κ to generate

X
(
(1 + κ)ε′′ − κε′

)
= QB(ε′)

(
(1 + κ)UX∗(ε′′) − κUX∗(ε′)

)
QT
B(ε′),

S
(
(1 + κ)ε′′ − κε′

)
= QN (ε′)

(
(1 + κ)US∗(ε′′) − κUS∗(ε′)

)
QT
N (ε′),

which is an optimal solution for (P
(1+κ)ε′′−κε′
SDO ) and (D

(1+κ)ε′′−κε′
SDO ). Note that κ can

be made so small that (1 + κ)ε′′ − κε′ ∈ int(E). Now, if T (ε′) ) T (ερ), then there

would exist 0 6= q ∈ R
(
QT (ε′)

)
so that

qT
(
X∗(ερ) + S∗(ερ)

)
q > 0. (5.5)

However, this would contradict the optimal partition at ε′ and ε′′. To see this, we

can check that

ε′′ =
κ

κ+ ρ
ερ +

ρ

κ+ ρ
ε′′′

where ε′′′ := (1 + κ)ε′′ − κε′. Then

X(ε′′) =
κ

κ+ ρ
X∗(ερ) +

ρ

κ+ ρ
X∗(ε′′′),

y(ε′′) =
κ

κ+ ρ
y∗(ερ) +

ρ

κ+ ρ
y∗(ε′′′),

S(ε′′) =
κ

κ+ ρ
S∗(ερ) +

ρ

κ+ ρ
S∗(ε′′′)
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gives an optimal solution for (Pε′′
SDO) and (Dε′′

SDO), since both
(
X∗(ερ), y

∗(ερ), S
∗(ερ)

)
and

(
X∗(ε′′′), y∗(ε′′′), S∗(ε′′′)

)
can be represented using QB(ε′) and QN (ε′). However,

we have from (5.5) that

qT
(
X(ε′′) + S(ε′′)

)
q > 0,

which is a contradiction, since q is a common eigenvector of X(ε′′) and S(ε′′). There-

fore we should have T (ε′) = T (ερ), which induces B(ε′) = B(ερ) and N (ε′) = N (ερ).

The second part of the proof is immediate.

Example 5.1.2. Consider the following SDO problem from [59]:

A1 =


1 0 0

0 0 0

0 0 0

 , A2 =


0 0 1

0 1 0

1 0 0

 , A3 =


0 1 0

1 0 0

0 0 1

 ,

C =


−1 −1 −1

−1 0 1

−1 1 0

 , C̄ =


1 1 1

1 1 −1

1 −1 1

 , b = (1, 0, 0)T ,

where for all ε ∈ (−1, 2), both the primal and the dual problems satisfy the inte-

rior point condition. On the interval (0, 2) the unique optimal solution is strictly

complementary, and the optimal partition remains constant:

B(ε) = R


1

0

0

 , T (ε) = {0}, N (ε) = R

(
0 0

1/
√

2 1/
√

2

1/
√

2 −1/
√

2


)
, ∀ε ∈ (0, 2).

Strict complementarity fails at ε = 0, and the optimal partition changes to

B(0) = R


1

0

0

 , T (0) = R


1

1/
√

2

−1/
√

2

 , N (0) = R


1

1/
√

2

1/
√

2

 .
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We can observe that the optimal partition at ε = 0 is different from the partitions in

(−1, 0) and (0, 2). Furthermore, the optimal partition in (−1, 0) continuously varies

with ε.

Let ε̄ ∈ Ilin. By the definition of a linearity interval, Ilin is the set of all ε′ ∈ int(E)

for which the system

〈Ai, QB(ε̄)UXQ
T
B(ε̄)〉 = bi, i = 1, . . . ,m, UX � 0,

m∑
i=1

Aiyi +QN (ε̄)USQ
T
N (ε̄) = C + εC̄, US � 0

remain feasible. Therefore, from Lemma 5.1.9 it is immediate that Ilin is either a

singleton or an open, possibly unbounded, interval.

Remark 5.1.3. It follows from Lemma 5.1.9 that

〈C + ερC̄,X
∗(ερ)〉 = ρ〈C + ε′C̄,X∗(ε′)〉+ (1− ρ)〈C + ε′′C̄,X∗(ε′′)〉,

i.e., the optimal value function is indeed linear on a linearity interval. Furthermore,

either there exists a unique primal optimal solution, or a unique primal optimal set

associated with a linearity interval. This is an extension of Corollary 2 in [87].

A linearity interval can be computed by solving a pair of auxiliary SDO problems.

Lemma 5.1.10 (Lemma 4.1 in [59]). Assume that ε̄ belongs to a bounded linearity

interval Ilin. Then the extreme points of Ilin can be obtained by solving

αlin(βlin) := inf(sup) ε

s.t.
m∑
i=1

yiA
i +QN (ε̄)USQ

T
N (ε̄) = C + εC̄,

US � 0.

(5.6)

If Ilin is unbounded, then we have either αlin = −∞, βlin =∞, or both.
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Remark 5.1.4. The stability of strict complementarity in a linearity interval follows

from the definition, i.e., it either holds or fails at every ε′ ∈ Ilin. Stability holds as

well for both the primal and dual nondegeneracy conditions. The case for primal

nondegeneracy is obvious, since the primal optimal set mapping is constant in a

linearity interval. Let ε̄ ∈ Ilin and assume that
(
y∗(ε̄), S∗(ε̄)

)
is dual nondegenerate.

Then the matrices

QT
B(ε̄)∪T (ε̄)AiQB(ε̄)∪T (ε̄), i = 1, . . . ,m

span Sn−nN (ε̄) by the condition given in Section 1.3. Since the orthonormal basis

QB(.)∪T (.) is constant on Ilin, the dual nondegeneracy condition follows for all ε′ in

Ilin.

5.1.2.2 Transition point and nonlinearity interval

As a result of Lemma 5.1.10, if αlin < βlin, then αlin < ε̄ < βlin belongs to the

linearity interval (αlin, βlin). Otherwise, αlin = ε̄ = βlin indicates that the optimal

partition changes in every neighborhood of ε̄. In other words, the optimal partitions

around ε̄ are either nonidentical or weakly identical with πSDO(ε̄). In the latter case,

ε̄ belongs to a subinterval of int(E), where rank
(
X∗(.)

)
and rank

(
S∗(.)

)
remain

constant. In Example 5.1.1, [0, 1] is such a subinterval.

Definition 5.1.2. The point ε̄ ∈ int(E) is called a transition point if for every

ς > 0 there exists ε′ ∈ (ε̄ − ς, ε̄ + ς) ⊆ int(E) such that πSDO(ε̄) 6= πSDO(ε′). A

nonlinearity interval is defined as a (possibly unbounded) subinterval of maximal

length Inon ⊆ int(E) such that πSDO(ε′)
w
= πSDO(ε′′) for all ε′, ε′′ ∈ Inon.

In parametric LO and LCQO, two consecutive subintervals are adjoined at transi-

tion point which has a different optimal partition with respect to its neighboring

subintervals, see e.g., Jansen et al. [87].
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In contrast to the definition of a linearity interval, it does not follow from Defini-

tion 5.1.2 whether a nonlinearity interval is open. However, a sufficient condition

can be given for the openness of a nonlinearity interval.

Lemma 5.1.11. Let Inon be a nonlinearity interval. If for each ε′ ∈ Inon and

for every {εk} → ε′ there exists a sequence of maximally complementary solu-

tions
(
X∗(εk), y

∗(εk), S
∗(εk)

)
converging to a maximally complementary solution(

X∗(ε′), y∗(ε′), S∗(ε′)
)
, then Inon is an open interval.

Proof. The proof follows from the constancy of rank in a nonlinearity interval, and

the fact that for every ε′ ∈ Inon the eigenvalues of X∗(.) and S∗(.) vary continuously

in a small neighborhood of ε′.

Corollary 5.1.1. Assume that both P∗SDO(.) and D∗SDO(.) are continuous at every

ε′ ∈ Inon. Then Inon is an open interval. In particular, Inon is open if both P∗SDO(.)

and D∗SDO(.) are single-valued on Inon.

Proof. The proof follows from a more general result for inner semicontinuous set-

valued mappings. See Corollary 1.3 in [82].

Using continuity arguments and the strict complementarity condition, we can pro-

vide sufficient conditions which guarantee that ε̄ ∈ int(E) belongs to the interior of

a nonlinearity interval.

Lemma 5.1.12. Assume that strict complementarity holds at ε̄ ∈ int(E). If for

every {εk} → ε̄ there exists a sequence of optimal solutions
(
X(εk), y(εk), S(εk)

)
converging to a strictly complementary solution

(
X∗(ε̄), y∗(ε̄), S∗(ε̄)

)
, then ε̄ belongs

to the interior of a nonlinearity interval.

Proof. Since
(
X∗(ε̄), y∗(ε̄), S∗(ε̄)

)
is strictly complementary, we have

rank
(
X∗(ε̄)

)
+ rank

(
S∗(ε̄)

)
= n. (5.7)
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Then by the assumption and the lower semicontinuity of the rank function, see [79],

there exists an optimal solution
(
X(εk), y(εk), S(εk)

)
such that

rank
(
X(εk)

)
≥ rank

(
X∗(ε̄)

)
,

rank
(
S(εk)

)
≥ rank

(
S∗(ε̄)

)
for sufficiently large k, i.e.,

(
X(εk), y(εk), S(εk)

)
is a strictly complementary solution

for sufficiently large k. Therefore, it follows from (5.7) that the ranks of X(.) and

S(.) stay constant in a small neighborhood of ε̄.

A special case of Lemma 5.1.12 happens when
(
X∗(ε̄), y∗(ε̄), S∗(ε̄)

)
is unique and

strictly complementary. Then ∇FSD(X∗(ε̄), y∗(ε̄), S∗(ε̄)
)

is nonsingular by Lemma

5.1.7. Furthermore, by the implicit function theorem, see Theorem 5.1.1, there

exists ς > 0 so that
(
X∗(.), y∗(.), S∗(.)

)
is unique and continuously differentiable on

(ε̄− ς, ε̄+ ς). All this means that ε̄ belongs to the interior of a nonlinearity interval,

as a result of Lemma 5.1.12.

Lemma 5.1.13. Let
(
X∗(ε̄), y∗(ε̄), S∗(ε̄)

)
be unique and strictly complementary.

Furthermore, let Iinv be the open interval of maximal length containing ε̄ on which

∇FSD(X∗(.), y∗(.), S∗(.)
)

is nonsingular. Then Iinv is a subinterval of the nonlinear-

ity interval which contains ε̄. Further, if ε̂ is an extreme point1 of Iinv and the strict

complementarity condition fails at ε̂, then ε̂ is an extreme point of the nonlinearity

interval which contains ε̄.

Proof. The first part of proof follows from Lemmas 5.1.12 and 5.1.7, and the implicit

function theorem. For the second part, note that(
S∗(.)⊗s In 0 X∗(.)⊗s In

)
is rank deficient at ε̂, due to failure of the strict complementarity condition. Hence,

at least one of rank(X∗(.)) or rank(S∗(.)) must change at ε̂.

1Recall that a nonlinearity interval may have no extreme point.
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Lemma 5.1.12 indicates that at a transition point ε̄ which satisfies strict comple-

mentarity condition, at least one of X∗(.) or S∗(.) has to be discontinuous, i.e., there

exists a sequence εk → ε̄ so that
(
X(εk), y(εk), S(εk)

)
has no accumulation point2 in

ri
(
P∗SDO(ε̄)×D∗SDO(ε̄)

)
. Then the following result is immediate.

Corollary 5.1.2. At a transition point ε̄, at least one of the strict complementarity,

primal nondegeneracy, or dual nondegeneracy conditions has to fail.

Proof. If neither of the conditions fail, then there exists a neighborhood of ε̄ on

which (X∗(.), y∗(.), S∗(.)) is uniquely defined and continuously differentiable. Then

the result follows from Lemma 5.1.12.

As indicated in Lemma 5.1.13, we can prove the continuity of the primal and dual

optimal set mappings in a nonlinearity interval under uniqueness condition. In

general, however, this statement is not necessarily true. The reason lies in the fact

that lim inf of a sequence of faces is not necessarily a face of the feasible set, i.e., it

might be a subset of the relative interior of a face.

Lemma 5.1.14. The primal or dual optimal set mappings might be discontinuous

(in a sense of Painlevé-Kuratowski) in a nonlinearity interval.

Proof. The 3-elliptope is the counterexample. As worked out in Example 5.1.1, both

the primal and dual nondegeneracy conditions hold at all ε ∈ [0, 1] \ {1
2
}, and at

ε = 1
2

the dual nondegeneracy condition fails. Hence, P∗SDO(.) is not continuous at

ε = 1
2

even though [0, 1] is a subinterval of a nonlinearity interval.

Remark 5.1.5. Lemma 5.1.14 implies that Iinv does not necessarily coincide with

Inon for a parametric SDO.

2An accumulation point exists, since P∗SDO(.) and D∗SDO(.) are uniformly bounded near any

ε′ ∈ int(E). This directly follows from the interior point condition, see Lemma 5.1.5.
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5.1.3 Sensitivity of the approximation of the optimal parti-

tion

In this section, we resort to the perturbation theory of eigenspaces in [160] to

measure the sensitivity of the approximation of the optimal partition at a given

ε̄ ∈ int(E). Without loss of generality, we may assume that ε̄ = 0. Even though

multiplicity of the eigenvalues causes discontinuous behavior of the eigenvectors, the

range space of these eigenvectors are, in general, less sensitive to the perturbation

of matrix entries, see e.g., [160]. Throughout this section, unless stated otherwise,

we always assume that µ is positive. For the sake of simplicity, we drop ε from the

optimal partition and optimal solutions at ε̄ = 0.

Consider an equivalent form of the perturbed central path equations as follows

FSD

(
X, y, S, µ, ε

)
:=


As svec(X)− b

(As)Ty + svec(S)− svec(C)− ε svec(C̄)

1
2

svec(XS + SX − µIn)

 = 0, (5.8)

X,S � 0.

It can be shown that ∇FSD

(
Xµ, yµ, Sµ

)
is nonsingular, see e.g., Theorem 3.3 in [32].

As a result, system (5.8) is solvable for all ε in a neighborhood of 0. This directly

follows from the implicit function theorem and continuity arguments. For every

ε the unique solution of (5.8) is denoted by
(
Xµ(ε), yµ(ε), Sµ(ε)

)
and a common

eigenvector basis is represented by Qµ(ε).

Suppose that for ε̄ = 0 a central solution
(
Xµ, yµ, Sµ

)
is given, where µ < µ̃ as

defined in (3.15). The eigenvectors of Xµ and Sµ can be rearranged so that

Qµ :=
(
Qµ
B, Q

µ
T , Q

µ
N
)
.

It is known that R
(
Qµ
B
)
, R
(
Qµ
T
)
, and R

(
Qµ
N
)

are invariant subspaces of both Xµ
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and Sµ, since, e.g., XµR
(
Qµ
B
)
⊆ R

(
Qµ
B
)

and SµR
(
Qµ
N
)
⊆ R

(
Qµ
N
)
. We are inter-

ested in the variation of R
(
Qµ
B
)

and R
(
Qµ
N
)
, when ε belongs to a sufficiently small

neighborhood of 0.

The idea in [160] is to span an invariant subspace of Xµ(ε), with ε ∈ int(E), using

the first nB columns of QµW µ
B , where

W µ
B :=

InB −(V µ
B )T

V µ
B InT +nN

(InB + (V µ
B )TV µ

B
)− 1

2 0

0
(
InT +nN + V µ

B (V µ
B )T

)− 1
2

 (5.9)

is an n × n orthogonal matrix and V µ
B ∈ R(nT +nN )×nB . Hence, the problem is

equivalent to choosing V µ
B such that the column space of

Y µ
B :=

(
Qµ
B +Qµ

T ∪NV
µ
B
)(
InB + (V µ

B )TV µ
B
)− 1

2 (5.10)

becomes an invariant subspace of Xµ(ε). Analogously, an invariant subspace of

Sµ(ε) can be formulated as the column space of

Y µ
N :=

(
Qµ
N +Qµ

B∪T V
µ
N
)(
InN + (V µ

N )TV µ
N
)− 1

2 ,

where V µ
N ∈ R(nB+nT )×nN . Notice that R

(
Y µ
B
)

and R
(
Y µ
N
)

are not necessarily ap-

proximations, in terms of the discussion in Section 3.1.1, for B(ε) and N (ε), respec-

tively, see the discussion after Theorem 5.1.3.

A sufficient condition for the existence of V µ
B and an upper bound on ‖V µ

B ‖2 are

specified in the following theorem adopted from [62], see Theorem 4.11 in [160] for

more general results. For the ease of exposition, we have tailored the theorem for

central solutions by introducing

Ξµ
X := Xµ(ε)−Xµ, Ξµ

S := Sµ(ε)− Sµ.

Theorem 5.1.2 (Theorem 8.1.10 in [62]). Let a central solution
(
Xµ, yµ, Sµ

)
with

µ < µ̃ be given. If ∥∥Ξµ
X

∥∥
F
≤
λ[nB](X

µ)− λ[nB+1](X
µ)

5
, (5.11)
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then there exists V µ
B so that

‖V µ
B ‖F ≤

4
∥∥(Qµ

B)TΞµ
XQ

µ
T ∪N

∥∥
F

λ[nB](Xµ)− λ[nB+1](Xµ)
. (5.12)

Remark 5.1.6. Using the bounds in Lemma 3.1.1, it is easy to verify that

λ[nB](X
µ)− λ[nB+1](X

µ) ≥ φµ :=
σ

n
− c
√
n(nµ)γ, (5.13)

where the right hand side in (5.13) is positive when µ < µ̃.

The following technical lemma bounds the distance between R
(
Qµ
B
)

and R
(
Y µ
B
)
.

For brevity, we only state the result for Y µ
B . The proof can be found in Corollary

8.1.11 in [62].

Lemma 5.1.15. Let Y µ
B be defined as in (5.10). Then we have

dist
(
R
(
Qµ
B
)
,R
(
Y µ
B
))
≤ ‖V µ

B ‖2.

5.1.3.1 Upper bound on ‖Ξµ
X‖F and ‖Ξµ

S‖F

The application of Theorem 5.1.2 requires an estimate of the effect of the perturba-

tion on the central solutions. Due to the nonsingularity of the Jacobian, an upper

bound on ‖Ξµ
X‖F and ‖Ξµ

S‖F can be obtained by applying Kantorovich theorem3,

see Theorem A.4.2, to FSD, as defined in (5.8). To that end, we define

δµ := min
{
λ[nB](X

µ), λ[nN ](S
µ), λ[nB+nT ](X

µ)
}
,

θµ :=
∥∥∇F−1

SD

(
Xµ, yµ, Sµ

)∥∥
2
,

ηµ :=
∥∥∇F−1

SD

(
Xµ, yµ, Sµ

)
FSD

(
Xµ, yµ, Sµ, µ, ε

)∥∥
2
.

3The Kantorovich theorem was applied in [122] to (5.8) at µ = 0 under strict complementarity

and primal-dual nondegeneracy conditions.
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Lemma 5.1.16. Let
(
Xµ, yµ, Sµ

)
be a central solution, where µ < µ̃. If ε is chosen

in such a way that

|ε| < min

{
δµ

2θµ
∥∥C̄∥∥

F

,
1

2(θµ)2
∥∥C̄∥∥

F

}
, (5.14)

then ε ∈ int(E), and there exists a central solution
(
Xµ(ε), yµ(ε), Sµ(ε)

)
so that

∥∥Ξµ
X

∥∥
F
≤

1−
√

1− 2|ε|(θµ)2
∥∥C̄∥∥

F

θµ
, (5.15)

∥∥Ξµ
S

∥∥
F
≤

1−
√

1− 2|ε|(θµ)2
∥∥C̄∥∥

F

θµ
. (5.16)

Proof. Note that FSD is continuously differentiable, and ∇FSD is Lipschitz continu-

ous with global Lipschitz constant 1, see Lemma 2 in [122]. Furthermore, we have

ηµ ≤
∥∥∇F−1

SD

(
Xµ, yµ, Sµ

)∥∥
2

∥∥FSD

(
Xµ, yµ, Sµ, µ, ε

)∥∥
2

= |ε|θµ
∥∥C̄∥∥

F
,

where the last equality follows from

FSD

(
Xµ, yµ, Sµ, µ, ε

)
=


0

−ε svec(C̄)

0

 .

Thus, by the condition of Kantorovich theorem, if

ηµθµ ≤ |ε|(θµ)2
∥∥C̄∥∥

F
≤ 1

2
,

then there exists a solution
(
Xµ(ε), yµ(ε), Sµ(ε)

)
satisfying the equations in (5.8),

such that

∥∥( svec(Xµ(ε)−Xµ); yµ(ε)− yµ; svec(Sµ(ε)− Sµ)
)∥∥

2
≤

1−
√

1− 2|ε|(θµ)2
∥∥C̄∥∥

F

θµ
.

In particular, this implies that for i = 1, . . . , nB + nT

∣∣λ[i]

(
Xµ(ε)

)
− λ[i]

(
Xµ
)∣∣ ≤ ∥∥Ξµ

X

∥∥
F
≤

1−
√

1− 2|ε|(θµ)2
∥∥C̄∥∥

F

θµ
, (5.17)
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and that for j = 1, . . . , nN

∣∣λ[j]

(
Sµ(ε)

)
− λ[j]

(
Sµ
)∣∣ ≤ ∥∥Ξµ

S

∥∥
F
≤

1−
√

1− 2|ε|(θµ)2
∥∥C̄∥∥

F

θµ
. (5.18)

On the other hand, Xµ(ε) and Sµ(ε) stay positive definite if

∣∣λ[i]

(
Xµ(ε)

)
− λ[i]

(
Xµ
)∣∣ < δµ, i = 1, . . . , nB + nT ,∣∣λ[j]

(
Sµ(ε)

)
− λ[j]

(
Sµ
)∣∣ < δµ, j = 1, . . . , nN ,

which together with (5.17) and (5.18) induces the following bound:

δµ >
1−

(
1− 2|ε|(θµ)2

∥∥C̄∥∥
F

)
θµ

≥
1−

√
1− 2|ε|(θµ)2

∥∥C̄∥∥
F

θµ
, (5.19)

where the second inequality in (5.19) follows from 2|ε|(θµ)2
∥∥C̄∥∥

F
≤ 1. Note that

if (5.19) holds, then λ[i]

(
Xµ(ε)

)
> 0 for i = n − nN + 1, . . . , n and λ[j]

(
Sµ(ε)

)
> 0

for j = nN + 1, . . . , n are immediate from the centrality condition. Consequently,

if (5.14) holds, then solution
(
Xµ(ε), yµ(ε), Sµ(ε)

)
satisfies (5.8), and it is indeed a

central solution for the perturbed SDO problem. The proof is complete.

Condition (5.14) guarantees that ∇FSD

(
Xµ(ε), yµ(ε), Sµ(ε)

)
is nonsingular for every

0 < µ < µ̃. More specifically, from (5.14) and the Lipschitz continuity of ∇FSD we

have

∥∥∇FSD

(
Xµ(ε), yµ(ε), Sµ(ε)

)
−∇FSD

(
Xµ, yµ, Sµ

)∥∥
2

≤
∥∥( svec(Xµ(ε)−Xµ); yµ(ε)− yµ; svec(Sµ(ε)− Sµ)

)∥∥
2

≤
1−

√
1− 2|ε|(θµ)2

∥∥C̄∥∥
F

θµ

<
1

θµ
,
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which gives∥∥∥∇F−1
SD

(
Xµ, yµ, Sµ

)(
∇FSD

(
Xµ(ε), yµ(ε), Sµ(ε)

)
−∇FSD

(
Xµ, yµ, Sµ

))∥∥∥
2∥∥∇F−1

SD

(
Xµ, yµ, Sµ

)∥∥
2

∥∥∇FSD

(
Xµ(ε), yµ(ε), Sµ(ε)

)
−∇FSD

(
Xµ, yµ, Sµ

)∥∥
2
< 1.

Consequently, it follows from Banach Lemma [39] that∥∥∇F−1
SD

(
Xµ(ε), yµ(ε), Sµ(ε)

)∥∥
2

≤
∥∥∇F−1

SD

(
Xµ, yµ, Sµ

)∥∥
2

1−
∥∥∥∇F−1

SD

(
Xµ, yµ, Sµ

)(
∇FSD

(
Xµ(ε), yµ(ε), Sµ(ε)

)
−∇FSD

(
Xµ, yµ, Sµ

))∥∥∥
2

,

which implies the nonsingularity of ∇FSD

(
Xµ(ε), yµ(ε), Sµ(ε)

)
. See also Corollary 1

in [122].

Remark 5.1.7. Assume that the Jacobian is nonsingular at (X∗, y∗, S∗), i.e., strict

complementarity, and both the primal and dual nondegeneracy conditions hold at

(X∗, y∗, S∗). Then ∇FSD

(
Xµ(ε), yµ(ε), Sµ(ε)

)
is nonsingular for every 0 < µ < µ̃,

see the discussion after Lemma 5.1.16. Furthermore, by the Lipschitz continuity of

the Jacobian, Lemma 5.1.7, and the fact that the partition T does not exist, the right

hand side in (5.14) converges to a finite positive value as µ→ 0. Since (X∗, y∗, S∗) is

the unique optimal solution, then (5.14) gives a subinterval of a nonlinearity interval

at the limit, which contains ε̄ = 0. Consequently, the nonlinearity interval can be

estimated using (5.14) and the trajectory of central solutions when µ < µ̃. In case

that θµ →∞, the right hand side of (5.14) converges to 0, providing no information

about neither a linearity nor a nonlinearity interval.

Regardless of the strict complementarity condition, Lemma 5.1.16 gives an estima-

tion of the length of E . The following result is immediate.

Corollary 5.1.3. The length of E is bounded below by

sup
0<µ̄<µ̃

min

{
δµ̄

2θµ̄
∥∥C̄∥∥

F

,
1

2(θµ̄)2
∥∥C̄∥∥

F

}
.
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5.1.3.2 Change in R
(
Qµ
B
)

and R
(
Qµ
N
)

Using the results in Lemma 5.1.16, we can now derive upper bounds for the sensi-

tivity of R
(
Qµ
B
)

and R
(
Qµ
N
)
.

Theorem 5.1.3. Let a central solution
(
Xµ, yµ, Sµ

)
with µ < µ̃ be given. If ε is

chosen so that

|ε| < min

{
δµ

2θµ
∥∥C̄∥∥

F

,
1

2(θµ)2
∥∥C̄∥∥

F

,
φµ

10θµ
∥∥C̄∥∥

F

}
(5.20)

holds, then ε ∈ int(E), and there exist V µ
B and V µ

N with

‖V µ
B ‖F ≤

4
(

1−
√

1− 2|ε|(θµ)2
∥∥C̄∥∥

F

)
θµφµ

,

‖V µ
N‖F ≤

4
(

1−
√

1− 2|ε|(θµ)2
∥∥C̄∥∥

F

)
θµφµ

,

so that R
(
Y µ
B
)

and R
(
Y µ
N
)

are invariant subspaces of Xµ(ε) and Sµ(ε), respectively.

Furthermore, we have

dist
(
R
(
Qµ
B
)
,R
(
Y µ
B
))
≤

4
(

1−
√

1− 2|ε|(θµ)2
∥∥C̄∥∥

F

)
θµφµ

,

dist
(
R
(
Qµ
N
)
,R
(
Y µ
N
))
≤

4
(

1−
√

1− 2|ε|(θµ)2
∥∥C̄∥∥

F

)
θµφµ

. (5.21)

Proof. Condition (5.11), after including (5.13) and (5.15), holds if

1−
√

1− 2|ε|(θµ)2
∥∥C̄∥∥

F

θµ
≤

1− (1− 2|ε|(θµ)2
∥∥C̄∥∥

F
)

θµ
≤ φµ

5
,

which gives the upper bound

|ε| ≤ φµ

10θµ
∥∥C̄∥∥

F

.

The upper bounds on ‖V µ
B ‖F , and on the distance between the subspaces are then

immediate from (5.12) and Lemma 5.1.15. The proof for ‖V µ
N‖F and (5.21) is anal-

ogous.
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Notice that µ̃ is actually dependent on ε, and it should be denoted by µ̃(ε), because

the optimal set and thus the condition number σ vary with ε. All this hints that

R(Y µ
B ) and R(Y µ

N ) cannot be necessarily considered as approximations of B(ε) and

N (ε), respectively. The reason lies in the fact that the perturbation of the objective

vector might give µ > µ̃(ε), which disallows the identification of eigenvectors whose

accumulation points form orthonormal bases for the optimal partition, or even ε

might be a transition point. However, in case that (X∗, y∗, S∗) is unique and strictly

complementary, we can provide conditions to ensure that R(Y µ
B ) and R(Y µ

N ) are

valid approximations of B(ε) and N (ε).

Lemma 5.1.17. Assume that the Jacobian is nonsingular at (X∗, y∗, S∗). If ε sat-

isfies

|ε| < inf
0≤µ̄<µ̃

min

{
δµ̄

2θµ̄
∥∥C̄∥∥

F

,
1

2(θµ̄)2
∥∥C̄∥∥

F

,
φµ̄

10θµ̄
∥∥C̄∥∥

F

}
, (5.22)

then R(Y µ
B ) and R(Y µ

N ), with µ < µ̃(ε), are approximations of B(ε) and N (ε).

Proof. Recall from Lemma 5.1.13 and Remark 5.1.7 that the right hand side in (5.22)

is positive, and that rank
(
X∗(ε)

)
= rank(X∗) and rank

(
S∗(ε)

)
= rank(S∗) for all

ε satisfying (5.22). Furthermore, condition (5.22) guarantees that the central path

exists for (Pε
SDO) and (Dε

SDO), and for a sequence {µk} → 0 there exists an orthogonal

matrix W µk
B , defined in (5.9), so that

(W µk
B )T (Qµk)TXµk(ε)QµkW µk

B = Dµk :=

Dµk
B 0

0 Dµk
N


for sufficiently large k, where Dµk

B and Dµk
N are positive definite matrices, see Lemma

5.1.16 and Theorem 5.1.3. Since the eigenvalues of Xµk(ε) and Dµk are equal and

bounded, then Dµk
B has an accumulation point D̃B � 0, and any accumulation point

of Dµk
N is the zero matrix. Additionally, W µk

B , Y µk
B , and Qµk have accumulation
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points W̃B, ỸB, and Q̃, since they exist and belong to compact sets. Therefore, we

have

R(X∗) = R
(
Q̃W̃B

D̃B 0

0 0

 W̃ T
B Q̃

T

)
= R

(
Q̃W̃B

D̃B 0

0 0

) = R(ỸBD̃B) = R(ỸB),

which implies that ỸB forms an orthonormal basis for B(ε). Analogous results hold

for Sµk(ε) and Y µk
N . Hence, R(Y µ

B ) and R(Y µ
N ) are valid approximations of B(ε) and

N (ε) when µ < µ̃(ε), see Remark 3.1.7. This completes the proof.

5.2 Parametric analysis of SOCO

We consider the parametric analysis of a SOCO problem with respect to the per-

turbation of the objective vector. The primal parametric SOCO problem is phrased

as

(Pε
SOCO) min{(c+ εc̄)Tx | Ax = b, x ∈ Ln̄+},

in which c̄ := (c̄1; . . . ; c̄p) ∈ Rn̄ is a fixed direction. The dual parametric SOCO

problem is given by

(Dε
SOCO) max{bTy | ATy + s = c+ εc̄, s ∈ Ln̄+}.

Associated with (Pε
SOCO) and (Dε

SOCO) we define the primal and dual feasible set

mappings as

PSOCO(ε) := {x | Ax = b, x ∈ Ln̄+},

DSOCO(ε) := {(y; s) | ATy + s = c+ εc̄, s ∈ Ln̄+}.

Recall that E denotes the domain of the optimal value function. Analogous to the

parametric SDO problem, we rely on the following assumptions. The coefficient ma-

trix A has full row rank, and the interior point condition holds for both (Pε′
SOCO) and
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(Dε′
SOCO) at all ε′ ∈ int(E), i.e., there exists a feasible solution (x◦(ε′); y◦(ε′); s◦(ε′))

such that x◦i(ε′), s◦i(ε′) ∈ int(Lni+ ) for all i = 1, . . . , p. Then the primal and dual

optimal set mappings are given by

P∗SOCO(ε) := {x | (c+ εc̄)Tx = ϕ(ε), Ax = b, x ∈ Ln̄+},

D∗SOCO(ε) := {(y, s) | bTy = ϕ(ε), ATy + s = c+ εc̄, s ∈ Ln̄+}.

5.2.1 Continuity of optimal solutions for SOCO

The continuity results are analogous to the ones of parametric SDO. For the sake

of brevity, we only recall the statements of the lemma and refer the reader to Sec-

tion 5.1.1. The primal feasible set is invariant with respect to the perturbation, and

thus PSOCO(.) is continuous at any ε. For the dual problem (Dε
SOCO) we define the

set-valued mapping DySOCO : R→ Rm as

DySOCO(ε) := {y ∈ Rm | c+ εc̄− ATy ∈ Ln̄+},

Since Ln+ is a closed convex cone, it can be shown that DySOCO(.) is outer semicon-

tinuous at every ε ∈ int(E). Furthermore, we can show that DySOCO(.) and thus

DSOCO(.) is inner semicontinuous at every ε ∈ int(E).

Lemma 5.2.1. Let ȳ ∈ DySOCO(ε) such that c + εc̄ − AT ȳ ∈ int(Ln̄+). Then the

set-valued mapping DySOCO(.) is inner semicontinuous at ε.

Using the interior point condition, we can prove the outer semicontinuity of P∗SOCO(.)

and D∗SOCO(.) at any ε ∈ int(E). The proof is immediate from the optimality condi-

tions. An alternative proof is given in Theorem 8 in [82].

Lemma 5.2.2. The set-valued mapping P∗SOCO(.)×D∗SOCO(.) is outer semicontinu-

ous at every ε ∈ int(E).
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The optimal set mapping is not necessarily inner semicontinuous, e.g., when either

primal or dual nondegeneracy condition fails at ε. Nevertheless, a sufficient con-

dition can be given for the continuity of P∗SOCO(.) and D∗SOCO(.), no matter if the

nondegeneracy conditions hold or not.

Lemma 5.2.3. Assume that the set-valued mapping P∗SOCO(.) is single-valued at

ε ∈ int(E). Then P∗SOCO(.) is continuous at ε. Analogously, if D∗SOCO(.) is single-

valued at ε, then D∗SOCO(.) is continuous at ε.

5.2.2 Sensitivity of the optimal partition for SOCO

In this section, we investigate the sensitivity and the stability of the optimal partition

for SOCO while ε runs through int(E). More specifically, we are interested in the

characterization of a nonlinearity interval and a transition point.

Let πSOCO(ε) := (B(ε),N (ε),R(ε), T (ε)) denote the optimal partition of (Pε
SOCO)

and (Dε
SOCO) at a given ε. Analogous to SDO, the case for a parametric SOCO

may not be as easy as LO, mostly due to the existence of R(ε). In fact, the in-

terval E might contain a subinterval where both the optimal set and the optimal

partition change with ε while the index sets stay unchanged. This can be actually

demonstrated in the following example.

Example 5.2.1. Consider the following parametric SOCO problem:

min −εx1
2 − (1− ε)x1

3

s.t. x1
1 = 1,

x1
3 − x2

1 = 0,

x1
2 − x2

2 = 1,

x1
1 ≥

√
(x1

2)2 + (x1
3)2,

x2
1 ≥ |x2

2|,

193



-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 5.2: Illustration of the optimal partition for a parametric SOCO problem.

where E = R. One can check that the interior point condition holds for every

ε′ ∈ int(E). On the interval (−1, 2) the optimal partition is given by

(B(ε),N (ε),R(ε), T (ε)) = (∅, ∅, {1, 2}, (∅, ∅, ∅)), ε ∈ (−1, 0),

(B(ε),N (ε),R(ε), T (ε)) = (∅, ∅, {1}, (∅, {2}, ∅)), ε = 0,

(B(ε),N (ε),R(ε), T (ε)) = ({2}, ∅, {1}, (∅, ∅, ∅)), ε ∈ (0, 1),

(B(ε),N (ε),R(ε), T (ε)) = (∅, ∅, {1}, ({2}, ∅, ∅)), ε = 1,

(B(ε),N (ε),R(ε), T (ε)) = (∅, ∅, {1, 2}, (∅, ∅, ∅)), ε ∈ (1, 2).

As demonstrated in Figure 5.2, on the interval (0, 1) both the primal and the dual

optimal set mappings are single-valued, they change continuously, and the strict

complementarity holds. Furthermore, the optimal partitions on (−1, 0) and (1, 2) are

constant. Note that the linearity and nonlinearity intervals are separated at ε = 0, 1

which are transition points. At ε = 0, both primal and dual nondegeneracy conditions

hold, but strict complementarity fails. At ε = 1, the strict complementarity fails and

D∗SOCO(.) is multiple-valued.
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We should note that even the continuity of primal and dual optimal set mappings

does not give a complete characterization of a nonlinearity interval. For instance,

in Figure 5.2 both the primal and the dual optimal set mappings are continuous at

ε1. However, ε1 is a transition point.

In a linearity interval of SOCO, the index sets of πSOCO(.) remain unchanged. Fur-

ther, there exists a unique Jordan frame associated with each i ∈ R(.)∪T2(.)∪T3(.).

Let ε̄ belong to a linearity interval (αlin, βlin). Then the extreme points αlin and βlin,

analogous to the auxiliary problems in Lemma 5.1.10, can be computed by solving

a pair of auxiliary SOCO problems:

αlin(βlin) := min
ε

(max
ε

) ε

s.t.
∑

i∈B(ε̄)∪T (ε̄)

Aix
i +

∑
i∈R(ε̄)

θiAix
∗i(ε̄) = b,

ATi y = ci + εc̄i, i ∈ B(ε̄),

ATi y + τis
∗i(ε̄) = ci + εc̄i, i ∈ R(ε̄),

ATi y + si = ci + εc̄i, i ∈ T (ε̄),

xi ∈ Lni+ , i ∈ B(ε̄) ∪ T (ε̄),

si ∈ Lni+ , i ∈ N (ε̄) ∪ T (ε̄),

θi, τi ≥ 0, i ∈ R(ε̄).

A transition point and a nonlinearity interval for SOCO is formally defined as fol-

lows.

Definition 5.2.1. The point ε̄ ∈ int(E) is called a transition point if for every ς > 0

there exists ε′ ∈ (ε̄ − ς, ε̄ + ς) ⊆ int(E) such that πSOCO(ε̄) 6= πSOCO(ε′), i.e., the

index sets in πSOCO(ε̄) and πSOCO(ε′) are not identical. Furthermore, Inon is called

a nonlinearity interval if both the optimal set and the optimal partition change with

ε while the index sets of π(ε′) and π(ε′′) are identical for any two ε′, ε′′ ∈ Inon.
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Equivalently, in a nonlinearity interval the rank of L(x∗i(ε)) and L(s∗i(ε)) is stable

for all i = 1, . . . , p.

Analogous to parametric SDO, the openness of a nonlinearity interval does not

directly follow from the definition. In fact, a nonlinearity interval is a connected

component of ε which contains ε̄ and for which the solution set of∑
i∈B(ε̄)∪R(ε̄)∪T2(ε̄)

Aix
i = b,

ATi y = ci + εc̄i, i ∈ B(ε̄) ∪ T1(ε̄) ∪ T2(ε̄),

ATi y + si = ci + εc̄i, i ∈ R(ε̄) ∪ T3(ε̄),

xi ◦ si = 0, i ∈ R,

xi ∈ int(Lni+ ), i ∈ B(ε̄),

si ∈ int(Lni+ ), i ∈ N (ε̄),

xi1 > 0, i ∈ R(ε̄) ∪ T2(ε̄),

si1 > 0, i ∈ N (ε̄) ∪ T3(ε̄)

is nonempty. If both P∗SOCO(.) and D∗SOCO(.) are continuous at every ε′ ∈ Inon, then

Inon is an open interval. The proof is analogous to Corollary 5.1.1.

The continuity arguments can be applied to prove some inclusion properties for the

optimal partition. More generally, we can use the conditions in Remark 5.1.2. The

following technical lemma is in order.

Lemma 5.2.4. If P∗SOCO(.) is continuous at ε̄, then B(ε) ⊆ B(ε′) for all ε′ in a

neighborhood of ε̄. If D∗SOCO(.) is continuous at ε̄, then N (ε) ⊆ N (ε′) for all ε′ in a

neighborhood of ε̄. Finally, if both P∗SOCO(.) and D∗SOCO(.) are continuous at ε̄, then

R(ε) ⊆ R(ε′) holds as well.

Proof. Let (x∗(ε̄); y∗(ε̄); s∗(ε̄)) be a maximally complementary solution. By the in-

ner semicontinuity of the primal and dual optimal set mappings at ε̄, for ε′ suffi-

ciently close to ε̄ there exist primal optimal solution x(ε′) and dual optimal solution
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(y(ε′); s(ε′)) close to (x∗(ε̄); y∗(ε̄); s∗(ε̄)) so that

xi1(ε′)− ‖xi2:ni
(ε′)‖2 > 0, i ∈ B(ε̄),

si1(ε′)− ‖si2:ni
(ε′)‖2 > 0, i ∈ N (ε̄),

which implies that B(ε̄) ⊆ B(ε′) and N (ε̄) ⊆ N (ε′). If (x∗(ε̄); y∗(ε̄); s∗(ε̄)) is con-

tinuous at ε̄, then we have xi1(ε′) > 0 and si1(ε′) > 0 for i ∈ R(ε̄), which by

xi(ε′) ◦ si(ε′) = 0, implies that i ∈ R(ε′). This completes the proof.

The necessity of continuity of both primal and dual optimal set mappings in Lemma

5.2.4 can be illustrated by the following parametric SOCO problem:

min (1− 2ε)x1
2 − x1

3

s.t. x1
1 = 1,

x2
1 = 2,

x2
2 − x1

2 = 0,

x2
3 − 2x1

3 = 0,

x1
1 ≥

√
(x1

2)2 + (x1
3)2,

x2
1 ≥

√
(x2

2)2 + (x2
3)2.

(5.23)

At ε = 0 the primal optimal set mapping is single-valued, while the dual optimal

set mapping is multiple-valued. However, we can observe that R(ε) = {1} for

all ε 6= 0 while R(0) = {1, 2}. Interestingly, for any sequence εk → 0 we have

lim infk→∞D∗SOCO(εk) ∩ ri(D∗SOCO(0)) = ∅, see Figure 5.3. This example also shows

that the index sets of πSOCO(.) could be the same around a transition point.

5.2.3 Stability of regularity conditions

By the definition of a nonlinearity interval, the strict complementarity is stable in

a nonlinearity interval. However, this may not hold at a transition point.

Lemma 5.2.5. The strict complementarity condition is not necessarily stable around

a transition point.
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Figure 5.3: Discontinuity of the dual optimal set mapping at a transition point.

Proof. The following counterexample can be given:

min −εx1
2 + (1− ε)x1

3

s.t. x1
1 = 1,

x1
4 − x2

1 = −1,

x1
2 − x2

2 = 0,

x1
3 − x2

3 = 0,

x1
3 − x1

4 − x3
1 = 0,

x1
1 ≥

√
(x1

2)2 + (x1
3)2 + (x1

4)2,

x2
1 ≥

√
(x2

2)2 + (x2
3)2,

x3
1 ≥ 0.

For any ε 6= 0 the optimal partition is given by (∅, ∅, {1}, (∅, {2}, ∅)). However, at

ε̄ = 0 we have a transition point and there exists a strictly complementary solution.

If strict complementarity fails at a given ε̄ ∈ int(E), then the nondegeneracy con-

ditions do not necessarily hold in a neighborhood of ε̄, since the optimal partition

might change. Nevertheless, the stability is valid when both primal and dual non-

degeneracy conditions simultaneously hold at ε̄.
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Figure 5.4: Instability of the strict complementarity condition.

Lemma 5.2.6. Assume that both the primal and the dual nondegeneracy condi-

tions hold for (Pε̄
SOCO) and (Dε̄

SOCO). Then the nondegeneracy conditions hold in a

sufficiently small neighborhood of ε̄.

Proof. By the primal and the dual nondegeneracy conditions at ε̄, there exists a

unique optimal solution (x∗(ε̄); y∗(ε̄); s∗(ε̄)). Since both P∗SOCO(.) and D∗SOCO(.) are

continuous at ε̄, for every εk → ε̄ and with sufficiently large k there exists a sequence

of optimal solutions (x(εk); y(εk); s(εk)) converging to (x∗(ε̄); y∗(ε̄); s∗(ε̄)). Further-

more, P̄i(εk) can be made arbitrary close to P̄ ∗i (ε̄) for sufficiently large k. Note that

the eigenvalues of L(x∗i(ε̄)) are given by x∗i1 (ε̄) + ‖x∗i2:ni
(ε̄)‖2, x∗i1 (ε̄) − ‖x∗i2:ni

(ε̄)‖2,

and x∗i1 (ε̄) with multiplicity ni − 2. Since i ∈ R(ε̄), we have one zero eigen-

value and x∗i2:ni
(ε̄) 6= 0. The eigenvectors associated with x∗i1 (ε̄) + ‖x∗i2:ni

(ε̄)‖2 and

x∗i1 (ε̄)− ‖x∗i2:ni
(ε̄)‖2 are given by

√
2

2

(
1;

x∗i2:ni
(ε̄)

‖x∗i2:ni
(ε̄)‖2

)
,

√
2

2

(
1;
−x∗i2:ni

(ε̄)

‖x∗i2:ni
(ε̄)‖2

)
,

respectively. Further, the eigenvectors corresponding to x∗i1 (ε̄) can be computed by
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solving the equation system 0
(
x∗i2:ni

(ε̄)
)T

x∗i2:ni
(ε̄) 0

 η = 0,

‖η‖2 = 1,

which can be simplified to
ηT2:ni

x∗i2:ni
(ε̄) = 0

η1x
∗i
j (ε̄) = 0, j = 2, . . . , ni,

‖η‖2 = 1.

As x∗i2:ni
(ε̄) 6= 0, we have η1 = 0. Thus, the eigenvectors belong to the boundary of

an ni − 2 dimensional ball, which is the intersection of an ni − 1 dimensional ball

and the ni−2 dimensional subspace. Therefore, a slight change in x∗i(ε̄) also results

in a slight change in P̄ ∗i (ε̄).

Recall from the primal nondegeneracy condition at ε̄ that((
AiP̄

∗
i (ε̄)

)
i∈R(ε̄)∪T2(ε̄)

, AB(ε̄)

)
(5.24)

has full row rank. By Lemma 5.2.4 we have B(ε̄) ⊆ B(εk) and R(ε̄) ⊆ R(εk) for

sufficiently large k. Furthermore, the continuity of the primal optimal set implies

that if i ∈ T2(ε̄), then we would have xi1(εk) > 0 for sufficiently large k. As a

consequence, for sufficiently large k, the matrix(
(AiP̄i(εk))i∈R(ε̄)∪T2(ε̄)\{Jk∪J ′k}, (AiP̄i(εk))i∈J ′k , (AiP̄i(εk))i∈Jk , AB(ε̄)

)
, (5.25)

where

Jk :=
{
i ∈ T2(ε̄) | xi1(εk) > ‖xi2:ni

(εk)‖2

}
,

J ′k :=
{
i ∈ T2(ε̄) | xi1(εk) = ‖xi2:ni

(εk)‖2, x
i
1(εk) > 0

}
,
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has full row rank, since (5.25) is obtained from a slight perturbation of (5.24). On

the other hand, x(εk) is primal nondegenerate if and only if(
(AiP̄i(εk))i∈R(ε̄)∪T2(ε̄)\{Jk∪J ′k}, (AiP̄i(εk))i∈J ′k , AB(ε̄)∪Jk

)
, (5.26)

has full row rank. Since (5.25) has full row rank, matrix (5.26) has to be of full row

rank too.

The proof for the dual nondegeneracy condition is analogous. The dual nondegen-

eracy condition at ε̄ holds if(
(AiRi(s

∗i(ε̄))i∈R(ε̄)∪T3(ε̄), AB(ε̄)∪T1(ε̄)∪T2(ε̄)

)
(5.27)

has linearly independent columns. By Lemma 5.2.4, if i ∈ T1(ε̄), then i could belong

to any partition for ε sufficiently close to ε̄. However, if i ∈ T3(ε̄), then we would

get si1(εk) 6= 0 for sufficiently large k. Then for sufficiently large k the matrix(
(AiRis

i(εk))i∈R(ε̄)∪T3(ε̄)\{Kk∪K′k}, (AiRis
i(εk))i∈Kk∪K′k , AB(ε̄)∪T1(ε̄)∪T2(ε̄)

)
(5.28)

has linearly independent columns, where

Ik :=
{
i ∈ T1(ε̄) | si(εk) = 0

}
,

I ′k :=
{
i ∈ T1(ε̄) | si1(εk) = ‖si2:ni

(εk)‖2, s
i
1(εk) > 0

}
,

I ′′k :=
{
i ∈ T1(ε̄) | si1(εk) > ‖si2:ni

(εk)‖2

}
,

J ′′k :=
{
i ∈ T2(ε̄) | si1(εk) = ‖si2:ni

(εk)‖2, s
i
1(εk) > 0

}
,

J ′′′k :=
{
i ∈ T2(ε̄) | si(εk) = 0

}
,

Kk :=
{
i ∈ T3(ε̄) | si1(εk) > ‖si2:ni

(εk)‖2

}
,

K ′k :=
{
i ∈ T3(ε̄) | si1(εk) = ‖si2:ni

(εk)‖2

}
.

This obviously holds, because (5.28) and (5.27) are almost identical, and s(εk) is

sufficiently close to s∗(ε̄). Now, (y(εk); s(εk)) is dual nondegenerate if and only if(
(AiRis

i(εk))i∈R(ε̄)∪T3(ε̄)\{Kk∪K′k}, (AiRis
i(εk))i∈I′k∪J ′′k∪K′k , AB(ε̄)∪T1(ε̄)∪T2(ε̄)\{I′k∪I

′′
k∪J

′′
k }
)

(5.29)
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has linearly independent columns. Note that (5.29) is obtained from (5.28) by

removing the columns AI′′k and (AiRis
i(εk))i∈Kk and by replacing the columns AI′k∪J ′′k

by (AiRis
i(εk))i∈I′k∪J ′′k . Then it is immediate that (5.29) should be full column rank,

since otherwise a subset of the columns in (5.28) would be linearly dependent.

Consequently, we have shown that there exists a sequence of optimal solutions

(x(εk); y(εk); s(εk))→ (x∗(ε̄); y∗(ε̄); s∗(ε̄))

which are primal-dual nondegenerate for sufficiently large k. This completes the

proof.

As a result of Lemma 5.2.6, if both the primal and dual nondegeneracy conditions

hold at ε̄, then both the primal and dual optimal set mappings are single-valued

and the second-order sufficient condition holds at (x∗(ε′); y∗(ε′); s∗(ε′)) for all ε′ in a

sufficiently small neighborhood of ε̄.

Remark 5.2.1. Even if both the primal and dual nondegeneracy conditions hold

at a given transition point, strict complementarity might still fail at a neighboring

interval. For example, it can be verified from the parametric SOCO problem

min −εx1
2 + (1− ε)x1

3

s.t. x1
1 = 1,

x2
1 − x1

4 = 1,

x1
2 − x2

2 = 0,

x1
3 − x2

3 = 0,

x1
2 − x3

1 = 0,

x1
1 ≥

√
(x1

2)2 + (x1
3)2 + (x1

4)2,

x2
1 ≥

√
(x2

2)2 + (x2
3)2,

x3
1 ≥ 0,

that ε̄ = 0 is a transition point, and both the primal and dual nondegeneracy con-

ditions hold at ε̄ = 0. However, strict complementarity is absent at every ε 6= 0.
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Note that the optimal partition is R(ε) = {1}, T2(ε) = {2}, and T1(ε) = {3}. In a

nonlinearity interval next to the transition point ε = 0, the partition T2(ε) = {2} is

stable.

Besides the stability of strict complementarity and primal-dual nondegeneracy con-

ditions, the stability of the elements of T (ε) can be questionable. We already ob-

served from Lemma 5.2.5 that the subsets T2(ε) and T3(ε), due to the symmetry

between the primal and dual problems, might be nonempty in a nonlinearity inter-

val. However, we conjecture that this is not the case for T1(ε).

Conjecture 5.2.1. For every nonlinearity interval Inon ⊆ int(E) we have T1(.) = ∅.

In other words, if the conjecture is true and if T1(ε) 6= ∅, then ε must either belong

to a linearity interval or it must be a transition point.

5.2.4 Continuity of solutions in a nonlinearity interval

The behavior of the optimal partition in a nonlinearity interval can be described

using continuity arguments under strict complementarity condition. This can be

considered as a special case of Lemma 5.1.12.

Lemma 5.2.7. Assume that (x∗(ε̄); y∗(ε̄); s∗(ε̄)) is a strictly complementary solu-

tion, and both P∗SOCO(.) and D∗SOCO(.) are continuous at ε̄. Then ε̄ belongs to the

interior of a nonlinearity interval.

Proof. By the continuity of P∗SOCO(.) and D∗SOCO(.) and the strict complementarity

condition, it holds that x∗(ε′) + s∗(ε′) ∈ int(Ln+) for all ε′ in a sufficiently small

neighborhood of ε̄. Then by Lemma 5.2.4, the index sets remain unchanged.
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Remark 5.2.2. Assume that Inon is an open nonlinearity interval. Since πSOCO(ε′)

is determined by a maximally complementary optimal solution (x∗(ε′); y∗(ε′); s∗(ε′)),

for every ε′ ∈ Inon we have

x∗i1 (ε′)− ‖x∗i2:ni
(ε′)‖2 > 0, i ∈ B(ε′),

s∗i1 (ε′)− ‖s∗i2:ni
(ε′)‖2 > 0, i ∈ N (ε′),

x∗i1 (ε′) > 0, i ∈ R(ε′) ∪ T2(ε′),

s∗i1 (ε′) > 0, i ∈ R(ε′) ∪ T3(ε′),

x∗i(ε′) = 0, i ∈ T1(ε′) ∪ T3(ε′),

s∗i(ε′) = 0, i ∈ T1(ε′) ∪ T2(ε′).

Hence, in the nonlinearity interval Inon there is no change in s∗i(ε) for i ∈ T1(ε) ∪

T2(ε) or x∗i(ε) for i ∈ T1(ε) ∪ T3(ε), since otherwise ε would be a transition point.

Let ε̂ be an extreme point of Inon. Recall that near ε̂ both the primal and dual

optimal set mappings are uniformly bounded. Then for any ε̂ 6= εk → ε̂ the sequence

(x(εk); y(εk); s(εk)) has an accumulation point (x̂; ŷ; ŝ) ∈ P∗SOCO(ε̄)×D∗SOCO(ε̄) such

that at least one of the following holds:

x̂i1 − ‖x̂i2:ni
‖2 = 0, for some i ∈ B(ε̂),

ŝi1 − ‖ŝi2:ni
‖2 = 0, for some i ∈ N (ε̂),

x̂i = 0, for some i ∈ R(ε̂) ∪ T2(ε̂),

ŝi = 0, for some i ∈ R(ε̂) ∪ T3(ε̂).

Now, assume that both the primal and the dual optimal set mappings are continuous

at ε̂. If λmin(x∗i(εk)) has no positive accumulation point for a given i ∈ B(ε̂), then

either i ∈ T1(ε̂) or i ∈ T2(ε̂) holds. Analogously, if every accumulation point of

λmin(s∗i(εk)) is zero for an i ∈ N (ε̂), then we have i ∈ T1(ε̂) or i ∈ T3(ε̂).

Using the same arguments for SDO, a nonlinearity interval can be more specifically

characterized by relying on the nonsingularity of the Jacobian ∇FSO which is given
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in (4.45). If at a given (x∗(ε̄); y∗(ε̄); s∗(ε̄)) the Jacobian is nonsingular, then by

Lemma 4.2.9 and the implicit function theorem, see Theorem A.4.3, there exists ς >

0 and a unique continuously differentiable mapping (x∗(.); y∗(.); s∗(.)) on (ε̄−ς, ε̄+ς)

such that ∇FSO((x∗(.); y∗(.); s∗(.))) is nonsingular on (ε̄ − ς, ε̄ + ς). In fact, ς can

be made small enough such that the strict complementarity and the nondegeneracy

conditions hold. Therefore, by Lemma 5.2.7, (ε̄ − ς, ε̄ + ς) is a subinterval of a

nonlinearity interval Inon.

Now, let Iinv denote the open interval of maximal length containing ε̄ such that

∇FSO((x∗(ε′); y∗(ε′); s∗(ε′))) is singular for all ε′ ∈ Iinv. If the strict complemen-

tarity condition fails at every extreme point of Iinv, then Iinv coincides with the

nonlinearity interval Inon, since at least one of rank(L(x∗(.)) or rank(s∗(.)) changes

at every extreme point. The proof is analogous to Lemma 5.1.13. On the other

hand, if the strict complementarity condition holds at an extreme point ε̂, then at

least one of the primal or dual nondegeneracy conditions must fail at ε̂. In this

case, either P∗SOCO(.) or D∗SOCO(.) is no longer continuous at ε̂. In Lemma 5.1.14,

we showed the possibility of this case for a parametric SDO problem. However, we

conjecture that πSOCO(.) changes at every extreme point of Iinv.

Conjecture 5.2.2. Assume that the strict complementarity and the nondegeneracy

conditions hold at ε̄. Then the open interval Iinv coincides with the nonlinearity

interval Inon containing ε̄.

If Conjecture 5.2.2 is true, then both the primal and dual optimal set mappings are

continuous in a nonlinearity interval, under the conditions of Lemma 4.2.9.

As a result of Lemma 5.2.7, at a transition point ε̄ at least one of P∗SOCO(.) or

D∗SOCO(.) has to be discontinuous. Failure of a nondegeneracy condition in the

presence of strict complementarity condition signals the discontinuity of primal or

dual optimal sets. In general, we have the following result.
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Corollary 5.2.1. At a transition point ε̄, at least one of the strict complementarity,

the primal nondegeneracy, or the dual nondegeneracy conditions fails.

Proof. If all the three conditions hold, then ∇FSO is nonsingular at the unique

optimal solution. As a consequence, the implicit function theorem is applicable:

(x∗(.); y∗(.); s∗(.)) is continuously differentiable in a sufficiently small neighborhood

of ε̄, and thus the result follows from Lemma 5.2.7.

The converse of the statement in Corollaries 5.1.2 and 5.2.1 is not necessarily true.

The following parametric SOCO problem is a counterexample:

min −εx1
2 − (1− ε)x1

3

s.t. x1
1 = 5,

x2
1 − x1

4 = 5,

x2
2 − x1

2 = 0,

x2
3 − x1

3 = 0,

x1
1 ≥

√
(x1

2)2 + (x1
3)2 + (x1

4)2,

x2
1 ≥

√
(x2

2)2 + (x2
3)2,

(5.30)

where E = R. For this problem strict complementarity fails at any given ε′, but

both the primal and dual nondegeneracy conditions hold. It can be verified that on

E both the primal and the dual optimal solutions are unique, continuous, and their

ranks are stable, i.e., there is no transition point, see Figure 5.5. While this is a

SOCO problem, it can be obviously represented as a parametric SDO problem.

Remark 5.2.3. In contrast to LO and LCQO, where the transition points and non-

differentiable points of the optimal value function coincide, see [16], for SDO and

SOCO the optimal value function might be infinitely many times differentiable at a

transition point. For instance, SOCO problem (5.23) has a strictly complementary

solution at ε = 1
2
, and the primal optimal solution is unique. On the intervals (0, 1

2
)

and (1
2
, 1) both x∗(.) and s∗(.) are unique and continuous, and they have identical
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There is no transition point 

Figure 5.5: Strict complementarity always fails while there is no transition point.

ranks. The optimal value function is given by ϕ(ε) = −
√

(ε+ 1)2 + ε2. At ε = 1
2

there is a transition point, and all the higher order derivatives of the optimal value

function exist.

5.2.5 Computation of a nonlinearity interval

In what follows, we propose an auxiliary problem to compute a subinterval of

a nonlinearity interval under strict complementarity condition. To that end, let

(x∗(ε̄); y∗(ε̄); s∗(ε̄)) be a strictly complementary optimal solution. Let us define

δB(ε̄) :=

√
2

2
min
i∈B(ε̄)

{(x∗i1 (ε̄)− ‖x∗i2:ni
(ε̄)‖2},

δN (ε̄) :=

√
2

2
min
i∈N (ε̄)

{s∗i1 (ε̄)− ‖s∗i2:ni
(ε̄)‖2},

δR(ε̄) := min
{

min
i∈R(ε̄)

{x∗i1 (ε̄)}, min
i∈R(ε̄)

{s∗i1 (ε̄)}
}
,

δ(ε̄) := min{δB(ε̄), δN (ε̄), δR(ε̄)}.

(5.31)

Then the following lemma is in order.
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Lemma 5.2.8. Let ε̄ belong to a nonlinearity interval. Assume that (x∗(ε̄); y∗(ε̄); s∗(ε̄))

is a strictly complementary optimal solution, and let αnon and βnon be defined by

αnon(βnon) := min(max) ε

s.t.
∑

i∈B(ε̄)∪R(ε̄)

Aix
i = b,

ATi y = ci + εc̄i, i ∈ B(ε̄),

ATi y + si = ci + εc̄i, i ∈ N (ε̄) ∪R(ε̄),

xi ◦ si = 0, i ∈ R(ε̄),

‖x− x∗(ε̄)‖2
2 ≤

1

4
δ2(ε̄),

‖s− s∗(ε̄)‖2
2 ≤

1

4
δ2(ε̄).

(5.32)

If αnon < βnon, then [αnon, βnon] is a subinterval of the nonlinearity interval which

contains ε̄.

Proof. The last two constraints ensure that every feasible solution of (5.32) is strictly

complementary. In fact, we have

‖xi(ε)− x∗i(ε̄)‖2 < δ(ε̄), i ∈ B(ε̄),

‖si(ε)− s∗i(ε̄)‖2 < δ(ε̄), i ∈ N (ε̄).

Then, using the equality((
xi1(ε)−x∗i1 (ε̄)−‖xi2:ni

(ε)−x∗i2:ni
(ε̄)‖2

)2
+
(
xi1(ε)−x∗i1 (ε̄)+‖xi2:ni

(ε)−x∗i2:ni
(ε̄)‖2

)2
) 1

2

=
√

2
∥∥xi(ε)− x∗i(ε̄)∥∥

2
,

we can conclude that∣∣∣xi1(ε)− x∗i1 (ε̄)−
∥∥xi2:ni

(ε)− x∗i2:ni
(ε̄)
∥∥

2

∣∣∣ ≤ √2‖xi(ε)− x∗i(ε̄)‖2 <
√

2δ(ε̄).

All this gives

‖xi2:ni
(ε)‖2 − ‖x∗i2:ni

(ε̄)‖2 − xi1(ε) + x∗i1 (ε̄) ≤ ‖xi2:ni
(ε)− x∗i2:ni

(ε̄)‖2 − xi1(ε) + x∗i1 (ε̄)

<
√

2δ(ε̄),
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which implies that

0 < x∗i1 (ε̄)− ‖x∗i2:ni
(ε̄)‖2 −

√
2δ < xi1(ε)− ‖xi2:ni

(ε)‖2, i ∈ B(ε). (5.33)

In a similar manner, we can show that

si1(ε)− ‖si2:ni
(ε)‖2 > 0, i ∈ N (ε). (5.34)

Furthermore, for every i ∈ R(ε) it follows from the complementarity condition

xi(ε) ◦ si(ε) = 0 that

0 = x(ε)T s(ε) = x1(ε)s1(ε) + (xi2:ni
(ε))T si2:ni

(ε) = xi1(ε)si1(ε)−
si1(ε)xi2:ni

(ε)

xi1(ε)

=
si1(ε)

(
(xi1(ε))2 − ‖xi2:ni

(ε)‖2
2

)
xi1(ε)

,

which gives xi1(ε)−‖xi2:ni
(ε)‖2 = 0 and analogously, si1(ε)−‖si2:ni

(ε)‖2 = 0 for every

i ∈ R(ε). Hence, it remains to show that xi1(ε) > 0 and si1(ε) > 0 for every i ∈ R(ε).

To that end, we have

|xi1(ε)− x∗i1 (ε̄)| ≤ ‖xi(ε)− x∗i(ε̄)‖2 < δ(ε̄) =⇒ xi1(ε) > x∗i1 (ε̄)− δ(ε̄) > 0, (5.35)

|si1(ε)− s∗i1 (ε̄)| ≤ ‖si(ε)− s∗i(ε̄)‖2 < δ(ε̄) =⇒ si1(ε) > s∗i1 (ε̄)− δ(ε̄) > 0. (5.36)

Thus, we have shown that πSOCO(ε̄) is weakly identical with πSOCO(ε′) for every ε′

which yields a nonempty solution set and also belong to [αnon, βnon]. We claim that

[αnon, βnon] does not contain any transition point. When the index sets of πSOCO(ε′)

are distinct for all ε′ ∈ int(E), then the proof is immediate. However, in contrast

to the case of LO and LCQO, we may have identical index sets around a transition

point. Hence, it remains to show that the latter case does not happen either. Note

that the intersection of ‖xi(ε) − x∗i(ε̄)‖2 < δ(ε̄) and bd(Lni+ ) is a connected set for

every i ∈ R(ε̄), since the ball ‖xi(ε) − x∗i(ε̄)‖2 < δ(ε̄) does contain the origin of

a second-order cone. Analogously, the intersection of ‖si(ε) − s∗i(ε̄)‖2 < δ(ε̄) and
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bd(Lni+ ) is a connected set for every i ∈ R(ε̄). Consequently, the intersection of the

balls ‖x− x∗(ε̄)‖2
2 ≤ 1

4
δ2(ε̄) and ‖s− s∗(ε̄)‖2

2 ≤ 1
4
δ2(ε̄) with the boundary of primal

and dual feasible sets are connected as well. As a result, if ε̄ belongs to a nonlinearity

interval, then by (5.33) to (5.36), there is no transition point in [αnon, βnon]. This

completes the proof.

Corollary 5.2.2. Assume that ε̄ is a transition point, and let (x∗(ε̄); y∗(ε̄); s∗(ε̄)) be

a strictly complementary optimal solution.Then αnon = βnon.

Proof. If ε̄ is a transition point, then there is no other transition point in [αnon, βnon],

since the feasible set of (5.32) is connected.

Remark 5.2.4. If the nondegeneracy and the strict complementarity conditions

hold, then the result of Nayakkankuppam and Overton [122] for SDO can be spe-

cialized to estimate a subinterval of the nonlinearity interval. This is in fact the

application of Kantorovich theorem to the system of optimality conditions, which

gives

|ε− ε̄| < min

{
δ(ε̄)

2θµ
∥∥C̄∥∥

F

,
1

2(θµ)2
∥∥C̄∥∥

F

}
.

5.2.6 Failure of strict complementarity

Even if strict complementarity fails, there might exist a nonlinearity interval. How-

ever, the Jacobian ∇FSO has to be singular in this case, and thus the implicit

function theorem is not applicable. Additionally, formulating a problem analogous

to (5.32) may not produce the correct bounds when the strict complementarity
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condition fails. As an example, the following SOCO problem can be given:

min εc+ (1− ε)c′

s.t. x1
1 = 1,

x1
3 − x2

1 = a,

x1
2 − x2

2 = a+ 1,

x1
1 ≥

√
(x1

2)2 + (x1
3)2,

x2
1 ≥ |x2

2|,

where

c :=
(
0, −2a− 1 +

√
1− 4a− 4a2, −2a− 1−

√
1− 4a− 4a2, 0, 0

)T
,

c′ :=
(
0, −2a− 1−

√
1− 4a− 4a2, −2a− 1 +

√
1− 4a− 4a2, 0, 0

)T
.

For all 0 < a < (
√

2 − 1)/2 and 0 < ε < 1, the optimal solution is primal-dual

nondegenerate, and it satisfies the strict complementarity condition. At ε̄ = 0 the

primal and dual optimal solutions are given by

xa(0) =
(
1, (2a+ 1−

√
1− 4a− 4a2)/2, (2a+ 1 +

√
1− 4a− 4a2)/2,

(1 +
√

1− 4a− 4a2)/2, (−1−
√

1− 4a− 4a2)/2
)T
,

ya(0) = (−2, 0, 0)T ,

sa(0) =
(
2, −2a− 1−

√
1− 4a− 4a2, −2a− 1 +

√
1− 4a− 4a2

)T
.

For all 0 < a < (
√

2− 1)/2 the optimal partition is given by

πa(0) = (∅, ∅, {1}, {2}),

πa(ε) = ({2}, ∅, {1}, ∅), 0 < ε < 1,

πa(1) = (∅, ∅, {1}, {2}),

i.e., πa(0)
w
= πa(1) for all 0 < a < (

√
2− 1)/2. However,

dist
((
xa(0); ya(0); sa(0)

)
,
(
xa(1); ya(1); sa(1)

))
→ 0
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as a→ (
√

2− 1)/2, while δ(.) stays positive.

Consider (Pε
SOCO) and (Dε

SOCO), and assume that the primal and dual nondegeneracy

conditions hold at ε ∈ int(E). Recall from Section 4.2.3 that the unique primal

optimal solution x∗(ε) can be obtained by solving

(Pε
NLO) min

∑
i∈B(ε)∪R(ε)∪T2(ε)

(ci + εc̄i)Tνi

s.t.
∑

i∈B(ε)∪R(ε)∪T2(ε)

Aiν
i = b,

(νi)TRiν
i = 0, i ∈ R(ε) ∪ T2(ε),

ν ∈ V ,

where νi ∈ Rni for i ∈ B(ε) ∪R(ε) ∪ T2(ε), and V is given by

V =
{
ν | νi1 > 0, i ∈ R(ε) ∪ T2(ε), νi ∈ int(Lni+ ), i ∈ B(ε)

}
.

In a similar manner, the unique optimal solution (y∗(ε); s∗(ε)) is the globally optimal

solution of

(Dε
NLO) min −bTw

s.t. ATi w = ci + εc̄i, i ∈ B(ε) ∪ T1(ε) ∪ T2(ε),

ATi w + zi = ci + εc̄i, i ∈ R(ε) ∪N (ε) ∪ T3(ε),

(zi)TRiz
i = 0, i ∈ R(ε) ∪ T3(ε),

z ∈ W ,

where w ∈ Rm, zi ∈ Rni for i ∈ R(ε) ∪N (ε), and W is given by

W =
{
z | zi1 > 0, i ∈ R(ε) ∪ T3(ε), zi ∈ int(Lni+ ), i ∈ N (ε)

}
.

Since (y∗(ε); s∗(ε)) is unique, then (Dε
NLO) has a unique globally optimal solution

(w∗(ε); z∗(ε)). Analogous to Section 4.2.3, let ui ∈ Rni for i ∈ B(ε) ∪ T (ε) ∪R(ε) ∪
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N (ε) and v ∈ R|R(ε)|+|T3(ε)| be the Lagrange multipliers associated with the con-

straints in (Dε
NLO). The first-order optimality conditions for (Dε

NLO) are given by

−
∑

i∈B(ε)∪N (ε)∪R(ε)∪T2(ε)

Aiu
i = b,

−ui − 2viRiz
i = 0, i ∈ R(ε) ∪ T3(ε),

−ui = 0, i ∈ N (ε),

ATi w = ci + εc̄i, i ∈ B(ε) ∪ T1(ε) ∪ T2(ε),

ATi w + zi = ci + εc̄i, i ∈ R(ε) ∪N (ε) ∪ T3(ε),

(zi)TRiz
i = 0, i ∈ R(ε) ∪ T3(ε),

z ∈ W ,

(5.37)

Note that u is the concatenation of the column vectors ui for i ∈ B(ε) ∪ T2(ε) ∪

R(ε) ∪ N (ε). Then for z∗(ε) ∈ W there exist Lagrange multipliers u∗(ε) and v∗(ε)

so that ϑ∗(ε) := (w∗(ε); z∗(ε);u∗(ε); v∗(ε)) satisfies the first-order optimality condi-

tions (5.37). Such a solution at ε is given by

w∗(ε) := y∗(ε),

z∗i(ε) := s∗i(ε), i ∈ R(ε) ∪N (ε) ∪ T3(ε),

u∗i(ε) := −x∗i(ε), i ∈ B(ε) ∪ T2(ε) ∪R(ε) ∪N (ε),

v∗i (ε) :=
1

2

x∗i1 (ε)

s∗i1 (ε)
, i ∈ R(ε) ∪ T3(ε).

(5.38)

We redefine the mapping G : Rn̄c × R→ Rn̄c as follows

G(ϑ, ε) :=



−
∑

i∈B(ε)∪T2(ε)∪R(ε)∪N (ε) Aiu
i − b

−ui − 2viRiz
i i ∈ R(ε) ∪ T3(ε)

−ui i ∈ N (ε)

ATi w − ci − εc̄i i ∈ B(ε) ∪ T1(ε) ∪ T2(ε)

ATi w + zi − ci − εc̄i i ∈ R(ε) ∪N (ε) ∪ T3(ε)

(zi)TRiz
i i ∈ R(ε) ∪ T3(ε)


,
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in which

n̄c =
∑

i∈B∪T2∪R∪N

ni +
∑

i∈R∪N

ni + |R|+m.

Then Lemmas 4.2.4, 4.2.5, and 4.2.6 can be applied to prove the following theorem.

Theorem 5.2.1. Assume that the primal and dual nondegeneracy conditions hold

at ε̄. Then the Jacobian of the equality constraints in (Dε̄
NLO) has full row rank,

and the second-order sufficient condition holds at (w∗(ε̄); z∗(ε̄)). Furthermore, ∇G

is nonsingular at ϑ∗(ε̄).

By Lemma 5.2.4 there exists ς > 0 so that for all ε′ ∈ (ε̄− ς, ε̄+ ς) we have

B(ε̄) ⊆ B(ε′), N (ε̄) ⊆ N (ε′), R(ε̄) ⊆ R(ε′).

Hence, we only need to investigate the behavior of the second-order cones belonging

to T (ε′) to find the optimal partition in the vicinity of the given ε̄. The continuity

arguments imply that for ε′ sufficiently close to ε̄ we have

i ∈ T1(ε̄) ⇒ i ∈ T (ε′),

i ∈ T2(ε̄) ⇒ i ∈ B(ε′) ∪R(ε′) ∪ T2(ε′),

i ∈ T3(ε̄) ⇒ i ∈ N (ε′) ∪R(ε′) ∪ T3(ε′).

Now, we can apply the analytic version of the implicit function theorem to the

mapping G(., ε).

Theorem 5.2.2. Suppose that both the primal and dual nondegeneracy conditions

hold at ε̄, and T1(ε̄) = ∅. If ε̄ belongs to a nonlinearity interval, then all the higher

order derivatives of v∗i (ε̄) for all i ∈ T3(ε̄) are equal to 0.

Proof. By Lemma 5.2.6, there exists ς > o so that (x∗(ε′); y∗(ε′); s∗(ε′)) is a unique

primal-dual optimal solution for every ε′ ∈ (ε̄ − ς, ε̄ + ς). Furthermore, the map-

ping (5.38) gives the globally optimal solution of (Dε′
NLO) for every ε′ ∈ (ε̄− ς, ε̄+ ς).
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If dkv∗i (.)/dε
k ≥ 0 for all i ∈ T3(ε̄) with strict inequality for some i, then from (5.37)

we can find an optimal solution (x(ε′); y(ε′); s(ε′)) for (Pε′
SOCO) and (Dε′

SOCO), in which

xi1(ε′), si1(ε′) 6= 0 for some i ∈ T3(ε̄). All this implies that πSOCO(ε′) 6= πSOCO(ε̄).

If dkv∗i (.)/dε
k < 0 for some k and some i ∈ T3(ε̄), then we claim that πSOCO(ε′) 6=

πSOCO(ε̄). On the contrary, suppose that πSOCO(ε′) = πSOCO(ε̄). Since ∇G is nonsin-

gular at ϑ∗(ε̄), by the implicit function theorem there exists ς ′ > 0 and a unique ana-

lytic mapping χ(.) so that χ(ε′) is a KKT solution of (Dε′
NLO) for all (ε′ ∈ ε̄−ς ′, ε̄+ς ′)

and ϑ∗(ε̄) = χ(ε̄). Since P∗SOCO(.) × D∗SOCO(.) is a continuous set-valued mapping

at ε̄, the mapping ϑ∗(.) given by (5.38) is continuous at ε̄. Therefore, there ex-

ists ς ′′ > 0 so that the analytic mapping χ(.) and the continuous mapping ϑ∗(.)

coincide on (ε̄ − ς ′′, ε̄ + ς ′′). However, by x∗i1 (ε′) = 0 for all i ∈ T3(ε′) and every

ε′ ∈ (ε̄ − ς ′′, ε̄ + ς ′′), we have that all the higher order derivatives of vi(ε̄) are 0 for

i ∈ T3(ε̄), which is a contradiction.

Theorem 5.2.2 only provides a partial characterization for a transition point of the

optimal under primal and dual nondegeneracy conditions. We can get a complete

characterization by incorporating the derivative information from the KKT condi-

tions of (Pε̄
NLO). Recall from Lemma 4.2.2 that the second-order sufficient condition

holds at the unique solution x∗(ε̄) when the dual nondegeneracy condition holds. On

the other hand, we can apply the same technique as in Lemma 4.2.4 to show that

under the primal nondegeneracy condition, the Jacobian of the equality constraints

of (Pε̄
NLO) has full row rank at the unique globally optimal solution. All this implies

that the Jacobian of the KKT conditions is nonsingular, and the derivatives of the

Lagrange multipliers can be computed. Consequently, we can determine whether

i ∈ T2(ε), i ∈ R(ε), or i ∈ B(ε) for every i ∈ T2(ε̄) and every ε sufficiently close to ε̄.
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5.3 Extension to LCO

Our derivations and continuity results for the parametric SDO and SOCO can be

naturally extended to LCO using the facial description of the optimal partition

presented in Section 1.5. This generalization enables us to study the continuity of

optimal set mapping in a nonlinearity interval from the lens of convex geometry.

Let a parametric LCO problem be given by

(Pε
LCO) min

x

{
〈c+ εc̄, x〉 | Ax = b, x ∈ K

}
,

(Dε
LCO) max

(y,s)

{
bTy | A∗y + s = c+ εc̄, s ∈ K

}
,

where c̄ ∈ V is a fixed direction, and the rest of parameters are defined in Section 1.2.

Recall that K has to be self-dual, since otherwise the notion of the optimal partition

is not well-defined. The primal and dual feasible set mappings are defined as

PLCO(ε) := {x | Ax = b, x ∈ K},

DLCO(ε) :=
{

(y, s) | A∗y + s = c+ εc̄, s ∈ K
}
.

We have the same assumptions as in the SDO and SOCO cases. More specifically,

we assume that Assumption 1.2.1 and the interior point condition hold for all ε′ ∈

int(E), i.e., there exists a feasible solution
(
x◦(ε′), y◦(ε′), s◦(ε′)

)
such that x◦(ε′) ∈

int(K) and s◦(ε′) ∈ int(K). Then the primal and dual optimal set mappings are

defined as

P∗LCO(ε) := {x | 〈c+ εc̄, x〉 = ϕ(ε), x ∈ PLCO(ε)},

D∗LCO(ε) :=
{

(y, s) | bTy = ϕ(ε), (y, s) ∈ DLCO(ε)
}
.

Therefore, for every ε ∈ E there exists a maximally complementary solution, and
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every
(
x(ε), y(ε), s(ε)

)
∈ P∗LCO(ε)×D∗LCO(ε) satisfies

Ax = b, x ∈ K,

A∗y + s = c+ εc̄, s ∈ K∗,

〈x, s〉 = 0.

Let us define πLCO(ε) :=
(
Fx∗(ε),Fs∗(ε),G(ε)

)
as the optimal partition of (Pε

LCO) and

(Dε
LCO) at a given ε. The notions of a transition point and a linearity interval in

SDO and SOCO can be extended to LCO in a word-for-word fashion. The two

optimal partitions πLCO(ε′) and πLCO(ε′′) are called identical if πLCO(ε′) = πLCO(ε′′),

i.e.,

Fx∗(ε′) = Fx∗(ε′′), Fs∗(ε′) = Fs∗(ε′′).

For a nonlinearity interval, however, we substitute the rank by the dimensions of

minimal faces ofK which contain the primal and dual optimal sets. More specifically,

πLCO(ε′) and πLCO(ε′′) are called weakly identical if

dim
(
Fx∗(ε′)

)
= dim

(
Fx∗(ε′′)

)
, dim

(
Fs∗(ε)

)
= dim

(
Fs∗(ε′)

)
,

and it is denoted by πLCO(ε′)
w
= πLCO(ε′′). Then the definition of a transition point,

linearity, and a nonlinearity interval follows from Definitions 5.1.2 and 5.2.1. The

stability of strict complementarity in a linearity interval follows from the definition.

Example 5.3.1. For SDO the minimal faces containing P∗(ε) and D∗(ε) are given

by

FX∗(ε) =
{
QB(ε)UXQ

T
B(ε) | UX � 0

}
, FS∗(ε) =

{
QN (ε)USQ

T
N (ε) | US � 0

}
,

where

dim
(
FX∗(ε)

)
= nB(ε)(nB(ε) + 1)/2, dim

(
FS∗(ε)

)
= nN (ε)(nN (ε) + 1)/2.

Thus, nB(ε′) and nN (ε′) are constant for all ε′ belonging to a nonlinearity interval.
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As demonstrated in Examples 5.1.2 and 5.2.1, linearity intervals exist for LCO, and

they can be computed as efficiently as in SDO and SOCO. The LCO counterpart

can be found in Section 4 in [184].

Lemma 5.3.1. Let ε̄ belong to a linearity interval Ilin and (x∗(ε̄), y∗(ε̄), s∗(ε̄)) be a

maximally complementary optimal solution. Then the extreme points of Ilin, if exist,

can be computed by solving

αlin(βlin) := inf(sup) ε

s.t. Ax = b,

A∗y + s = c+ εc̄,

x ∈ ri
(
Fx∗(ε̄)

)
,

s ∈ ri
(
Fs∗(ε̄)

)
.

Remark 5.3.1. One can extend Lemma 5.1.9 from SDO to LCO. Furthermore, it

is easy to show that there exists either a unique primal optimal solution or a primal

optimal set associated with a linearity interval. As a consequence, the optimal value

function ϕ(.) behaves linearly in a linearity interval for a parametric LCO problem.

Now, we present the extension of Lemmas 5.1.8 and 5.2.4 to estimate the behavior

of the optimal partition πLCO(ε) in a neighborhood of ε. The following technical

lemma is in order.

Lemma 5.3.2. Let {Ck} ⊂ V be a sequence of closed convex sets. Then for

lim infk→∞ Ck, if exists, there exists an integer N so that for all k′ ≥ N we have

dim
(
Ck′
)
≥ dim

(
lim inf
k→∞

Ck
)
.

Proof. Since {Ck} is a closed convex set for all k, then lim infk→∞ Ck is a closed

convex set by Proposition 4.15 in [150]. Let d := dim
(

lim infk→∞ Ck
)
. Then there
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exist x1, . . . , xd+1 ∈ lim infk→∞ Ck so that

x2 − x1, x3 − x1, . . . , xd+1 − x1

are linearly independent. Hence, for i = 1, . . . , d+ 1 there exists a sequence {xik} →

xi so that {x2
k − x1

k, x
3
k − x1

k, . . . , x
d+1
k − x1

k} remain linearly independent for

sufficiently large k. Hence, Ck contains at least d + 1 affinely independent points,

which completes the proof.

Lemma 5.3.3. Let
(
x∗(ε̄), y∗(ε̄), s∗(ε̄)

)
be a maximally complementary optimal so-

lution. If P∗LCO(.) is continuous at ε̄, then dim
(
Fx∗(ε)

)
≤ dim

(
Fx(ε′)

)
for all ε′

sufficiently close to ε̄. If D∗LCO(.) is continuous at ε̄, then dim
(
Fs∗(ε)

)
≤ dim

(
Fs(ε′)

)
for all ε′ in a small neighborhood of ε̄.

Proof. If P∗LCO(.) is continuous at ε̄, then lim infk→∞P∗LCO(εk) exists for any sequence

εk → ε̄. Hence, the result is immediate from Lemma 5.3.2. The proof for D∗LCO(.) is

analogous.

We have already showed in Lemma 5.1.14 that the primal or dual optimal set map-

ping might be discontinuous in a nonlinearity interval for LCO. In other words, we

may not arrive at a transition point by simply looking at the discontinuity of the

optimal set mapping. However, if there exists a convergent sequence to a strictly

complementary optimal solution at ε̄, then ε̄ has to belong to the interior of a non-

linearity interval.

Lemma 5.3.4. Let (x∗(ε̄), y∗(ε̄), s∗(ε̄)
)

be a strictly complementary optimal solution,

and assume that both P∗LCO(.) and D∗LCO(.) are continuous at ε̄. Then ε̄ belongs to

the interior of a linearity or nonlinearity interval.

Proof. The proof is very similar to Lemma 5.1.12. By the inner semicontinuity

of P∗LCO(.) and D∗LCO(.) at ε̄, for ε sufficiently close to ε̄ there exists a maximally
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complementary solution
(
x∗(ε), y∗(ε), s∗(ε)

)
so that x∗(ε) + s∗(ε) ∈ int(K). Further,

we have from Lemma 5.3.3 that

dim(Fx∗(ε)) ≥ dim(Fx∗(ε̄)),

dim(Fs∗(ε)) ≥ dim(Fs∗(ε̄)),

and from the strict complementarity condition that

dim(Fx∗(ε̄)) + dim(Fs∗(ε̄)) = dim(V),

which in turn implies

dim
(
Fx∗(ε)

)
= dim(Fx∗(ε̄)),

dim
(
Fx∗(ε)

)
= dim(Fs∗(ε̄)).

The following corollary is immediate from Lemma 5.3.4.

Lemma 5.3.5. At a transition point ε̄, at least one of the strict complementarity,

the primal, or dual nondegeneracy conditions fails.

5.4 Discussion and open questions

In this chapter, we introduced the notion of a nonlinearity interval for parametric

SDO and SOCO, and in general parametric LCO. We studied the continuity of

optimal set mappings and optimal partition in a nonlinearity interval and provided

sufficient conditions to either identify a transition point or compute a subinterval

of a nonlinearity interval. We pointed out the 3-elliptope example to show that

either primal or dual optimal set mapping might be discontinuous in a nonlinearity

interval. Nevertheless, a complete characterization of nonlinearity intervals and
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transition points of the optimal partition seems to be nontrivial, under general

conditions.

The main difficulty arises from the unknown type of discontinuity in a nonlinearity

interval. In the 3-elliptope example, the inner semicontinuity fails at ε̄, because

lim inf
k→∞

P∗SDO(εk) ⊂ ri(P∗SDO(ε̄)) (5.39)

for any sequence {εk} → ε̄. However, it is not known in general whether

lim inf
k→∞

P∗SDO(εk) ⊂ rbd(P∗SDO(ε̄)) or lim inf
k→∞

D∗SDO(εk) ⊂ rbd(D∗SDO(ε̄)) (5.40)

can happen in a nonlinearity interval for a parametric SDO problem. In (5.39), we

can obtain partial information about the rank of primal optimal solution near ε̄ from

the lower semicontinuity of the rank function. However, in general, the discontinuity

in (5.40) does not imply information about the rank of a maximally complementary

optimal solution at ε̄. The same question can be formulated for a parametric SOCO

problem and for a parametric LCO problem, in general.

In the light of the above discussion, we should also point out that either (5.39)

or (5.40) might result in a transition point. For instance, we would get a transition

point at ε̄ = 1
2

in Example 5.1.1, if we add the weakly inactive constraint

X23 ≤ 1

to the primal problem. However, we can provide a sufficient condition for the dis-

continuity (5.40).

Lemma 5.4.1. Assume that P∗LCO(.) is discontinuous of type (5.40) at ε̄, and for

a sequence {εk} → ε̄, lim inf
k→∞

P∗LCO(εk), if exists, is attained when k is sufficiently

large. Then ε̄ is a transition point. The same statement holds for D∗LCO(.).
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Proof. Since lim inf
k→∞

P∗LCO(εk) ⊂ rbd(P∗LCO(ε̄)) and lim inf
k→∞

P∗LCO(εk) is attained when

k is large enough, then in every neighborhood of ε̄ there exists a maximally com-

plementary solution whose dimension of the minimal face is strictly smaller than

dim
(
Fx∗(ε̄)

)
, which implies that ε̄ is a transition point. The proof for D∗LCO(.) is

analogous.

The condition in Lemma 5.4.1 is only sufficient for the existence of a transition point,

since lim inf
k→∞

P∗LCO(εk) or lim inf
k→∞

D∗LCO(εk) may not be attained. For instance, ε̄ = 1
2

is a transition point in the parametric SOCO problem (5.23), while lim inf
k→∞

D∗LCO(εk)

is not attained.

We close this chapter by stating an open question on the continuity of the solutions

in a nonlinearity interval:

Open question: Is there a continuous selection through the relative interior of

both primal and dual optimal sets in a nonlinearity interval? In other words, can

we prove that the discontinuity (5.40) never happens at any ε in a nonlinearity

interval?
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Chapter 6

Conclusions and future research

In this thesis, we studied optimal partition, solution identification, and parametric

analysis for three classes of LCO problems, namely SCO, SDO, and SOCO problems.

We presented a polynomial time Dikin-type algorithm for SCO. We showed how to

approximate the optimal partition of SDO and how to use the approximation in a

rounding procedure. Further, we used the optimal partition information to establish

the quadratic convergence of Newton’s method to the unique optimal solution of

SOCO. Finally, we studied the parametric analysis of SDO and SOCO problems

and investigated the continuity of the optimal solutions in a nonlinearity interval.

Here is a summary of the materials presented in this thesis:

• We generalized the Dikin-type affine scaling method of Jansen et al. [86] to

SCO using the notion of Euclidean Jordan algebras. The method starts with

an interior feasible solution which is not necessarily centered. In contrast to

the primal-dual affine scaling method of Monteiro et al. [117], the method

features simultaneously centering and reducing the duality gap. This gen-

eralization has an O(ξrL) iteration complexity, where ξ and r denotes the

measure of proximity and the order of the symmetric cone, respectively. The
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method was tested against SeDuMi, MOSEK and SDPT3 solvers on a set of

13 SOCO test problems. The numerical experiments showed that the method

is viable, robust, and capable of providing accurate solutions even though it is

outperformed by the competing methods in terms of the computational time.

• We considered the identification of the optimal partition for SDO where strict

complementarity may fail. Using the condition number σ defined in (3.1)

and the upper bounds in (3.9), we derived bounds on the magnitude of the

eigenvalues of a primal-dual solution on, or in a neighborhood of the central

path. We then used the bounds to identify the subsets of the eigenvectors

of the interior solutions whose accumulation points form orthonormal bases

for the subspaces B, T , and N . Moreover, we measured the proximity of the

approximation of the optimal partition obtained from the bounded sequence

of central solutions. For the interior solutions in a neighborhood of the central

path, an iteration complexity bound was provided which states that the Dikin-

type primal-dual affine scaling algorithm needs at most

⌈
ξn log

(
µ(0)

(
min

{ 1

n

( σ

κ′n
3
2 ξ

) 1
γ

,
σ2

n2ξ
, µ̂

})−1)⌉
iterations to identify the subsets of eigenvectors whose accumulation points

are orthonormal bases for B, T , and N . It can be inferred from this com-

plexity bound that even approximation of the optimal partition for SDO is

significantly harder than the identification of the optimal partition for LO and

LCP.

• We used the approximation of the optimal partition to generate an ε-feasible

primal-dual solution with zero duality gap for the SDO problem. It is proven

that if the duality gap drops below a certain bound, then both the primal and
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dual solutions satisfy the cone constraints, yielding an approximate maximally

complementary solution.

• We revisited the identification of the optimal partition for SOCO and re-

produced the bounds for the identification of the partition T using the error

bounds for a linear conic system. Using the optimal partition of a SOCO prob-

lem, we established quadratic convergence of Newton’s method to the unique

optimal solution of (PSOCO) and (DSOCO) without strict complementarity con-

dition. We showed that if the primal and dual nondegeneracy conditions hold,

then ∇G(ϑ̄) is nonsingular. Furthermore, we derived a complexity bound for

identifying the quadratic convergence region of Newton’s method from a se-

quence of central solutions. The numerical results confirmed the quadratic

convergence of Newton’s method to the unique optimal solution of SOCO in

the absence of strict complementarity.

• We presented a rounding procedure, analogous to SDO, for an approximate

maximally complementary solution. In a special case where R, T = ∅, the

rounding procedure gives an exact strictly complementary optimal solution in

a strongly polynomial time.

• We studied the parametric analysis and the identification of the optimal parti-

tion for SDO problems, when the objective function is perturbed along a fixed

direction. We characterized the nonlinearity interval of the optimal partition,

where the ranks of primal and dual optimal solutions, belonging to the relative

interior of the optimal set, remain constant. Further, we studied the sensitiv-

ity of R
(
Qµ
B
)

and R
(
Qµ
N
)

with respect to ε and derived an upper bound on

the distance between the invariant subspaces spanned by the approximation

of the optimal partition. We showed that if the Jacobian is nonsingular at
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(
X∗(ε̄), y∗(ε̄), S∗(ε̄)

)
, then ε̄ belongs to the interior of a nonlinearity interval.

• We studied the parametric analysis of a SOCO problem, where the objective

function is perturbed along a fixed direction. We investigated the continuity

of optimal solutions and the behavior of the optimal partition of the problem

in a nonlinearity interval. We showed how to compute a subinterval of a

nonlinearity interval under strict complementarity condition. Furthermore,

under primal and dual nondegeneracy conditions, we showed that a transition

point can be identified from the higher-order derivatives of the KKT conditions

from the NLO reformulation of the SOCO problem.

• We extended our derivations and continuity results to LCO using the facial

description of the optimal partition. We showed that the problem on the

continuity of optimal solutions in a nonlinearity interval can be viewed from

the lens of convex geometry.

6.1 Future research

The work on sensitivity and stability analysis is in progress. We are applying meth-

ods from numerical algebraic geometry in order to exactly compute a nonlinearity

interval. Furthermore, we are investigating the continuity and differentiability of

both primal and dual optimal set mappings in a nonlinearity interval. Neverthe-

less, we believe that there is still room for further extension/improvement of the

results presented in this thesis by invoking techniques from differential geometry

real algebraic geometry:

• Our approach in Section 3.1 only allows for an approximation of the optimal

partition from a bounded sequence of interior solutions. It might be possible
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to derive additional characterization of the optimal partition if we look at the

central path as a semi-algebraic set parameterized by µ.

• It is worth investigating the dependence of the condition numbers κ and κ′ on

the problem data in Section 3.1. The derivation of upper bounds on θ1, θ2, κ,

and κ′ can be another subject of future studies.

• It is worth considering the application of numerical algebraic geometry to es-

tablish quadratic convergence to an isolated solution of SOCO without primal

or dual nondegeneracy condition.

• To establish quadratic convergence of Newton’s method in Section 3.2, we

assumed that the optimal partition is known, and that T1, T2, and T3 can

be identified from T . The derivation of upper bounds on θ1, θ2, κ, and β1

deserves further research.

• The extension of our sensitivity and stability results to copositive and non-

negative polynomial cones are highly desired. It is still possible to generalize

the definition of a nonlinearity interval to these cases, even though the notion

of the optimal partition is no longer well-defined.
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Appendix A

Appendix

A.1 Jordan algebra

This section gives a brief review of the basic properties of Euclidean Jordan alge-

bras. For the sake of simplicity, we only provide the necessary concepts which will

be required in this dissertation. For detailed studies of Euclidean Jordan algebras

the reader can consult [43] and [156].

Definition A.1.1. Let V be an n-dimensional vector space over the field of real

numbers with a bilinear map (x, s) → x ◦ s. Then, (V, ◦) is referred to as the

Euclidean Jordan algebra if for all x, s ∈ V

1. x ◦ s = s ◦ x,

2. x ◦ (x2 ◦ s) = x2 ◦ (x ◦ s),

3. 〈x, x〉 > 0 for all x 6= 0,

where x2 = x ◦ x, and 〈., .〉 denotes an inner product defined on V. An identity

element is defined for a Euclidean Jordan algebra V, if there exists a unique element

e, such that x ◦ e = e ◦ x = x for all x ∈ V.
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Roughly speaking, a Euclidean Jordan algebra is a commutative algebra over the

field of real numbers which is not necessarily associative. Nevertheless, Euclidean

Jordan algebras are power associative, i.e., xp+q := xp ◦ xq.

For all x, s ∈ V, the bilinear map (x, s)→ x ◦ s is characterized by

L(x)s = x ◦ s,

where L(x) denotes a symmetric matrix. In particular, L(x)e = x and L(x)x = x2.

The quadratic representation of x is defined as

Px := 2L2(x)− L(x2).

Definition A.1.2. The cone of squares of a Euclidean Jordan algebra V is defined

as

K(V) := {x2 : x ∈ V},

where x2 = x ◦x, and K(V) is a closed pointed convex cone with nonempty interior.

Example A.1.1. Let V be an n-dimensional vector space over the field of real

numbers, where the identity element e and L(x) are defined as

e := (1,0n−1)T , L(x) :=

 x1 xT2:n

x2:n x1In−1

 .

The vector space V endowed with the bilinear map characterized by L(x) is a Eu-

clidean Jordan algebra. Further, K(V) ≡ Ln+, where

Ln+ =
{
x ∈ Rn : x1 ≥ ‖x2:n‖2

}
.

In this algebra, the quadratic representation of x ∈ K(V) is given by

Px :=

 ‖x‖2
2 2x1x

T
2:n

2x1x2:n (x2
1 − ‖x2:n‖2

2)In−1 + 2x2:nx
T
2:n

 .
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The following lemma specifies some important properties of the quadratic represen-

tation. We call x invertible if all the eigenvalues of x are nonzero. We refer the

reader to [43] for more details.

Lemma A.1.1 (Proposition II.3.1 in [43], Lemma 8 in [156]). For an invertible

x ∈ V and integer value k, we have

1. Px−1 = P−1
x and in general Pxk = P k

x ,

2. Pxx
−1 = x,

3. Pxe = x2.

We now introduce the concept of eigenvalue and spectral decomposition in Euclidean

Jordan algebras. Let r be the smallest integer such that the set {e, x, x2, . . . , xr} is

linearly dependent for x ∈ V. Then, r is denoted as the degree of x, deg(x). The

rank of V is defined as the largest value of deg(x) over x ∈ V.

A nonzero element p ∈ V is called idempotent if p2 = p. Furthermore, an idempotent

is primitive if it is not the sum of two other idempotents. In light of these definition,

a Jordan frame is defined as a set of primitive idempotents {p1, . . . , pr}, where

pi ◦ pj = 0 for all i 6= j and p1 + . . .+ pr = e.

Theorem A.1.1 (Theorem III.1.2 in [43]). Let V be a Euclidean Jordan algebra

with rank r. Then each x ∈ V can be represented as

x = λ1p1 + . . .+ λrpr,

where {p1, . . . , pr} denotes a Jordan frame, and λi stands for the eigenvalues of x.

Example A.1.2. Let x ∈ Ln+. It can be easily shown that

x2 − 2x1x+ (x2
1 − ‖x2:n‖2

2)e = 0.
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This implies that r = 2 for this Euclidean Jordan algebra. Hence, the spectral

decomposition for an element x ∈ Ln+ is given by

x = λ1p1 + λ2p2, (A.1)

where

λ1 = x1 − ‖x2:n‖2, λ2 = x1 + ‖x2:n‖2,

p1 =
1

2

 1

− x2:n

‖x2:n‖2

 , p2 =
1

2

 1

x2:n

‖x2:n‖2

 .

We can now extend the definition of any real valued function f(.) to elements of

Euclidean Jordan algebras by

f(x) := f(λ1)p1 + . . .+ f(λr)pr.

In particular, we have

x
1
2 := λ

1
2
1 p1 + . . .+ λ

1
2
r pr,

x−1 := λ−1
1 p1 + . . .+ λ−1

r pr.

Note that x−1 ◦x = e. In light of the definitions given so far, the trace, determinant,

and norms of x are formally defined as follows.

Definition A.1.3. Let x ∈ V and λ1, . . . , λr be the eigenvalues of x. Then,

1. Trace(x) := λ1 + λ2 + . . .+ λr,

2. det(x) := λ1λ2 . . . λr,

3. 〈x, y〉 := Trace(x ◦ y),

4. ‖x‖F :=
√
λ2

1 + . . .+ λ2
r,
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5. ‖x‖2 := maxi |λi|.

We now state an important theorem from [9] which is adopted from [43].

Theorem A.1.2 (Theorem 8.3.6 in [9], [43]). Let V be a Euclidean Jordan algebra.

Then V falls into one of the following categories:

1. An n-dimensional vector space over the field of real numbers, where

x ◦ s :=

 xT s

x0s1:n−1 + s0x1:n−1

 .

2. The space of n× n real symmetric matrices, where

X ◦ S :=
XS + SX

2
(A.2)

for symmetric matrices X and S.

3. The space of n× n complex Hermitian matrices, where the Jordan product is

defined as in (A.2) for Hermitian matrices X and S.

4. The space of n × n Hermitian matrices with quaternion entries, where the

Jordan product is defined as in (A.2) for quaternion Hermitian matrices X

and S.

5. The space of 3× 3 Hermitian matrices with octonion entries, known as Albert

algebra, where the Jordan product is defined as in (A.2).

In the rest of this section, we review some technical lemmas (without their proofs)

which are necessary for the complexity analysis of the Dikin-type algorithm. From

now on, it is assumed that K is a symmetric cone with a nonempty interior.
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Lemma A.1.2 (Lemma 2.13 in [67]). Assume that x, s ∈ V and Trace(x ◦ s) = 0.

Then, we have

1

4
‖x+ s‖2

F e �K x ◦ s �K −
1

4
‖x+ s‖2

F e.

Lemma A.1.3 (Lemma 2.15 in [67]). Assume that x ◦ s �K 0, where x, s ∈ V.

Then, det(x) 6= 0.

Lemma A.1.4 (Lemma 2.17 in [67]). Let x ∈ V and s �K 0. Then, we have

λmin(x) Trace(s) ≤ Trace(x ◦ s) ≤ λmax(x) Trace(s).

The following lemma points out a nice property of the quadratic representation.

Lemma A.1.5 (Theorem III.2.1 and Proposition III.2.2 in [43]). Let x ∈ V. Then,

L(x) is positive definite (semidefinite) if and only if x �K 0 (x �K). Further,

Px int(K) = int(K) if x is invertible.

In fact, Lemma A.1.5 states that for each interior solution x �K 0 and s �K 0, Pxs

is an invertible linear map from int(K) to int(K). All this indicates that the NT

search directions obtained from (2.15) are well-defined.

Lemma A.1.6 (Proposition 21 in [156]). Let x �K 0 and s �K 0, and w be the

scaling point of x and s as defined in (1.19). Then,

1. Trace(P
− 1

2
w x ◦ P

1
2
w s) = Trace(x ◦ s),

2. P
x

1
2
s ∼ P

s
1
2
x,

3. P
x̃

1
2
s̃ ∼ P

x
1
2
s,

where x̃ := P
− 1

2
w x and s̃ := P

1
2
w s.

Lemma A.1.7 (Lemma 30 in [156]). Let x �K 0 and s �K 0. Then, we have

1. λmin(P
1
2
x s) ≥ λmin(x ◦ s),

2. λmax(P
1
2
x s) ≤ λmax(x ◦ s).
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A.2 Error bounds for mathematical optimization

An error bound has its roots in numerical optimization, where a stopping criterion

is needed for termination of iterative methods. However, the application of error

bound in the other areas of mathematical optimization has received a great deal

of attention. For a set D1 ⊆ V, error bound quantifies lower/upper bound on the

distance of a given vector to D1 in terms of a so called residual function. For a

system of linear inequalities, the residual function can be simply defined as the

amount of violation of the inequalities at a given solution.

Mathematically speaking, for given sets D1 and D2 in the inner product space V

the residual function is defined as a real valued function res : D1 ∪ D2 → R+ where

res(x) = 0 if and only if x ∈ D1. In light of this mathematical definition, the error

bound of the set D2 with respect to D1 takes the following form

κ1 res(x)γ1 ≤ dist(x,D1) ≤ κ2 res(x)γ2 , (A.3)

where γ1, γ2 > 0, κ1 and κ2 are positive condition numbers, and dist(x,D1) denotes

the distance of a given solution x from D1 with respect to the Frobenius norm, i.e.,

dist(x,D1) = inf{‖x− s‖F | s ∈ D1}.

From the mathematical optimization point of view, D1 could be a system of linear

inequalities over a closed convex cone, or a system of nonlinear inequalities. From

now on, we only consider the right hand side inequality in (A.3).

The error bound in (A.3) is called Lipschitzian if there exists a condition number

κ > 0 with γ = 1. If γ 6= 1, the error bound is called Hölderian. For a given value γ

it is not always easy to evaluate the condition number κ. Indeed, this is equivalent

to the following optimization problem:

κ = sup
x∈D2\D1

dist(x,D1)

res(x)γ
,
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which needs to have a finite value. The reader is referred to [130] for more applica-

tions of an error bound.

In case that D1 is defined by a system of linear equalities and inequalities, a Lips-

chitzian error bound exists due to Hoffman [80], see also [72, 107].

Theorem A.2.1 (Section 2 in [80]). Consider a nonempty convex set D1 defined by

D1 = {x ∈ Rn | A1x = b1, A2x ≤ b2},

where A1 ∈ Rm1×n, A2 ∈ Rm2×n, b1 ∈ Rm1, and b2 ∈ Rm2. Then there exists a

condition number κ > 0 so that

dist(x,D1) ≤ κ
(
‖A1x− b1‖2 + ‖[A2x− b2]+‖2

)
, ∀x ∈ Rn, (A.4)

where [η]+ = (max{η1, 0}, . . . ,max{ηm2 , 0})T for any η ∈ Rm2.

The Lipschitzian error bound (A.4) can be extended for a convex system by imposing

the Slater condition [102], and either a constraint qualification [108] or conditions on

the boundedness of the solution set [142]. See Section 4 in [130] and the references

cited therein for a detailed discussion.

If the Slater condition fails, however, a Lipschitzian error bound may not exist. For

instance, consider the convex inequality system {x ∈ R | x2 ≤ 0}, whose solution set

is a singleton. We can observe that |x| ≤ κx2 always fails for any condition number

κ. Nevertheless, a Hölderian error bound with γ = 1
2

exists. This is formally stated

in the following theorem.

Theorem A.2.2 (Theorem 3.1 in [178]). Consider a nonempty convex quadratic

system

D1 = {x ∈ Rn | g(x) ≤ 0},
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where g(x) =
(
g1(x), . . . , gm(x)

)T
. There exists a positive exponent γ 6= 1 and a

positive condition number κ so that

dist(x,D1) ≤ κmax
{
‖[g(x)]+‖2, ‖[g(x)]+‖γ2

}
, ∀x ∈ Rn,

where γ = 2−d(D1), d(D1) is called the degree of singularity of the system, and

[g(x)]+ :=
(

max{g1(x), 0}, . . . ,max{gm(x), 0}
)T
.

An upper bound on d(D1) is given in Corollary 3.1 in [178]. The extension of The-

orem A.2.2 to nonconvex quadratic functions yields a local Hölderian error bound.

Theorem A.2.3 (Theorem 2.4 in [104]). Let D1 be the set of solutions of a (not

necessarily convex) quadratic system as

D1 = {x ∈ Rn | g(x) ≤ 0}.

If D1 is nonempty, then for a given scalar % > 0 there exist γ and a positive condition

number κ such that

dist(x,D1) ≤ κ
(
‖[g(x)]+‖2

)γ
, ∀x ∈ Rn, ‖x‖2 ≤ %.

In the rest of this section, we present some error bound results for conic and poly-

nomial systems. We employ the error bounds in Chapters 3 and 4 to estimate the

distance of a central solution from the optimal set. We refer the reader to [38, 106]

for further reading.

A.2.1 Error bound for a linear matrix inequality (LMI) sys-

tem

An LMI system in conic form is defined asX ∈ X0 + S,

X � 0,

(A.5)
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where X0 is a symmetric matrix and S ⊂ Sn denotes a linear subspace of symmetric

matrices. For system (A.5) we consider a sequence of solutions denoted by Xζ for

ζ > 0 which satisfies

dist(Xζ , X0 + S) ≤ ζ, λmin(Xζ) ≥ −ζ, (A.6)

for all ζ > 0. Further, S̄ is defined as the smallest subspace containing X0 + S, i.e.,

S̄ := {X ∈ Sn | X + tX0 ∈ S, for some t}.

The following theorem is in order.

Theorem A.2.4 (Theorem 3.3 in [167]). Let {Xζ | 0 < ζ ≤ 1} be a set of solutions

so that ‖Xζ‖F is bounded and (A.6) holds for all 0 < ζ ≤ 1. Then there exist a

positive condition number κ independent of ζ and a positive exponent γ such that

dist
(
Xζ , (X0 + S) ∩ Sn+

)
≤ κζγ,

where γ = 2−d(S̄,Sn+) in which d(S̄,Sn+) denotes the degree of singularity of the linear

subspace S̄.

In simple words, the degree of singularity [167] is defined as the minimum number of

facial reduction steps to get the minimal face of the positive semidefinite cone which

contains the optimal set. See [132] for a simple derivation of the facial reduction

algorithm.

Theorem A.2.5 (Theorem 3.6 in [167]). For a linear subspace S̄ ⊂ Sn, we have

d(S̄, Sn+) ≤ min
{
n− 1, dim(S̄), dim(S̄⊥)

}
.

Example A.2.1. We can show that the upper bound given in Theorem A.2.5 is
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indeed tight. To do so, consider the following LMI system
X11 = 0,

Xkk = x1(k+1), k = 2, . . . , n− 1,

X � 0,

where the set of feasible solutions is given by

X =

0(n−1)×(n−1) 0

0 Xnn

 , Xnn ≥ 0.

Using the facial reduction procedure in [167], we can see that the number of facial

reduction steps is n − 1 for all n ≥ 2. Due to the lengthy discussion, we omit

the details here and refer the interested reader to Section 3 in [167] for a simple

demonstration of the facial reduction algorithm. Additional examples of the facial

reduction for SDO problems can be found in [25].

A.2.2 Error bound for a linear conic system

The Hölderian error bound given in Section A.2.1 can be extended for a linear conic

system. Let S be a linear subspace of Rn̄, x0 ∈ Rn̄, and K ⊂ Rn̄ be a Cartesian

product of p second-order and q positive semidefinite cones as

K := Ln1
+ × . . .× Lnp+ × Snp+1

+ × . . .× Snp+q+ ,

where n̄ =
∑p

i=1 ni +
∑p+q

i=p+1
ni(ni+1)

2
. Then a linear conic system is defined asx ∈ x0 + S,

x ∈ K.
(A.7)

At a given solution x the amount of constraint violation is given by

dist
(
x, x0 + S

)
+ [−λmin(x)]+.

238



If xi ∈ Lni+ , then λmin(xi) = xi1 − ‖xi2:ni
‖2, see Section 1.1 for the definition of an

eigenvalue in case of SOCO. The following Hölderian error bound is well-known from

Theorem 7.4.2 in [103].

Theorem A.2.6 (Theorem 7.4.2 in [103]). Let xζ with 0 < ζ ≤ 1 be a bounded set

of solutions so that for all 0 < ζ ≤ 1 we have

dist
(
xζ , S̄

)
≤ ζ, λmin

(
xζ
)
≥ −ζ, (A.8)

where S̄ is the minimal linear subspace which contains x0 + S, i.e.,

S̄ := {x | x+ tx0 ∈ S, for some t ∈ R}.

and

dist
(
xζ , S̄

)
= min

{
‖ψ − xζ‖2 | ψ ∈ S̄

}
.

Then there exist a positive condition number κ independent of ζ and a positive

exponent γ so that

dist
(
xζ , (x0 + S) ∩ K

)
≤ κζγ,

where γ = 2−d(S̄,K) and d(S̄,K) denotes the degree of singularity of the subspace S̄.

The definition of the degree of singularity is analogous to Section A.2.1. The degree

of singularity of a linear conic system is zero if it satisfies the interior point condition.

An upper bound on the degree of singularity is given in Theorem A.2.7.

Theorem A.2.7. For the linear conic system (A.7) we have

d(S̄,K) ≤ min
{
p+

p+q∑
i=p+1

(ni − 1), dim(S̄), dim(S̄⊥)
}
. (A.9)
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A.2.3 Error bound for a polynomial system

The Hölderian error bound in Theorem A.2.2 can be extended for a solution set

defined by a system of polynomial mappings as follows

D1 :=
{
x ∈ Rn | g1(x) ≤ 0, . . . , gm1(x) ≤ 0, h1(x) = 0, . . . , hm2(x) = 0

}
,

in which gj for j = 1, . . . ,m1 and hk for k = 1, . . . ,m2 are polynomials with real

coefficients.

Theorem A.2.8 (Theorem 2.2 in [102]). Assume that D1 6= ∅. There exist expo-

nents γ > 0 and γ′ ≥ 0, and a condition number κ > 0 such that

dist(x,D1) ≤ κ
(
1 + ‖x‖2

)γ′(‖[g(x)]+‖2 + ‖h(x)‖2

)γ
, ∀x ∈ Rn,

where

[g(x)]+ :=
(

max{g1(x), 0}, . . . ,max{gm1(x), 0}
)T
,

h(x) := (h1(x), . . . , hm2(x))T .

A.3 A lower bound on σ

In this section, we derive a lower bound on the condition number σ defined in (3.1).

To do so, we resort to a technical lemma in [137].

An integral polynomial map f : Rs → Rt is defined as a map consisting of polynomial

functions f i of degree di with integer coefficients. We consider a solution set V (f)

defined as

V (f) := {x | f i(x) ∆i 0, ∀ i},
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where ∆i stands for one of the relations {>,=,≥}. Depending on the polynomial

map f , the solution set V (f) could be connected or disconnected. For this polyno-

mial map Lf denotes the binary length of the largest absolute value of the coefficients

of the polynomials, where the binary length of an integer n is defined as

`(n) := 1 +
⌈

log2(|n|+ 1)
⌉
, (A.10)

in which log2(.) stands for the logarithm to the base 2.

The next lemma shows that there exists a sphere B(0, r) which circumscribes some

solutions from every connected component of V (f).

Lemma A.3.1 (Lemma 3.1 in [137]). Suppose that the polynomials in the poly-

nomial map f have maximum degree d, i.e., d := maxi{di} with d ≥ 2. Then

every connected component of V (f) intersects the sphere {x | ‖x‖2 ≤ r}, where

log2(r) = Lf (td)s.

Lemma A.3.2. Let the SDO problems (PSDO) and (DSDO) be given by integer data,

L denote the binary length of the largest absolute value of the entries in b, C, and

Ai for i = 1, . . . ,m. Then, for the condition number σ we have

σ ≥ min

{
1

rP∗SDO

∑m
i=1 ‖Ai‖F

,
1

rD∗SDO

}
, (A.11)

where

log2(rP∗SDO
) = (L+ 2)

(
max{n, 3}(6n2 + 2n+m)

)5n2+2m

,

log2(rD∗SDO
) = (L+ 2)

(
max{n, 3}(7n2 + 2n+ 2m)

)6n2+m

.

Proof. Recall from (3.2) and (3.3) that

σB ≥ λmin(QT
BX̃QB), σN ≥ λmin(QT

N X̃QN ), ∀(X̃, ỹ, S̃) ∈ P∗SDO ×D∗SDO,
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which motivates us to find a solution in the relative interior of the optimal set. We

apply the definition of the analytic center of the optimal set to find a solution in

the relative interior of the optimal set, and we then derive a lower bound on its

minimum eigenvalue. It should be noted that Ramana [137] used this definition to

compute a lower bound on the volume of a sphere inscribed in the feasible set of a

so called strict semidefinite feasibility problem.

Throughout the proof, we can assume that nB, nN > 0. By Theorem 1.5.1, any

primal-dual optimal pair is a solution to the following LMI system

Ai •QBUXQT
B = bi, i = 1, . . . ,m,

C −
m∑
i=1

yiA
i = QNUSQ

T
N ,

UX , US � 0,

(A.12)

where UX ∈ SnB+ and US ∈ SnN+ as defined in Theorem 1.5.1, and QB and QN are

assumed to be known. Therefore, since nB, nN > 0, we obtain the set of maximally

complementary optimal solutions if we add the constraints UX , US � 0 to (A.12),

i.e., 

Ai •QBUXQT
B = bi, i = 1, . . . ,m,

C −
m∑
i=1

yiA
i = QNUSQ

T
N ,

UX , US � 0.

(A.13)

Then for a given orthonormal basis QB, the analytic center of the primal optimal

set can be computed by solving

max log(det(UXa))

s.t. Ai •QBUXaQT
B = bi, i = 1, . . . ,m,

UXa � 0.

(A.14)
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Problem (A.14) is convex with a strictly concave objective function over the cone

of positive definite matrices, which by nB > 0 induces the existence of a unique

optimal solution for (A.14). Further, there exists a vector of Lagrange multipliers

u ∈ Rm so that the following system of optimality conditions has a solution:
U−1
Xa −

∑m
i=1 uiQ

T
BA

iQB = 0,

Ai •QBUXaQT
B = bi, i = 1, . . . ,m,

UXa � 0.

(A.15)

For any solution (UXa , u) of (A.15), which is unique in terms of UXa but not nec-

essarily in terms of u, Xa := QBUXaQT
B is the analytic center of the primal optimal

set. To derive a lower bound on the minimum eigenvalue of Xa, we have from (A.15)

that

λmin(UXa) =
1

λmax

(∑m
i=1 uiQ

T
BA

iQB

) ≥ 1∥∥∑m
i=1 uiQ

T
BA

iQB
∥∥
F

≥ 1∑m
i=1 |ui|‖QT

BA
iQB‖F

≥ 1∑m
i=1 |ui|‖Ai‖F

, (A.16)

where we have used the triangle inequality and the fact that ‖QT
BA

iQB‖F ≤ ‖Ai‖F .

Note that the bound (A.16) depends on an upper bound on |ui| which itself relies

on QB. In reality, however, QB is not known a priori, since it is determined by

solutions in the relative interior of the optimal set. Hence, the idea is to characterize

all possible orthonormal bases for B, i.e., to characterize the properties of ΓB, in the

optimality conditions (A.15) to describe the analytic center of the optimal set. Then

a direct application of Lemma A.3.1 to the embedded set yields an upper bound on

|ui|.

Assume that QB is an unknown orthonormal basis in (A.14), i.e., QB is still an or-

thonormal basis for B but acts as an unknown in (A.14), which leads to a nonconvex
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optimization problem in QB and UXa . Then, problem (A.14) can equivalently be

written, see e.g., Theorem 2.1 in [57], as

max
QB∈ΓB

max
UXa�0

{
log(det(UXa)) | Ai •QBUXaQT

B = bi, i = 1, . . . ,m
}
. (A.17)

Any optimal solution (QB, UXa) of (A.14) is also optimal for (A.17) and vice versa.

This is due to the fact that the optimal solution of the inner maximization problem

in (A.17) is attained. By Lemma 1.5.3, Theorem 1.5.1 and (A.13), the set ΓB

is compact, and it is equivalent to the set of all QB with orthonormal columns by

which (A.13) is feasible. Since the unique optimal solution of the inner maximization

problem in (A.17) is attained, and its set of Lagrange multipliers is nonempty,

then (A.15) with ΓB describes the analytic center of the primal optimal set, see

Section 4.2 in [57] for a similar argument in the context of the generalized Benders

decomposition.

Now, we apply Lemma A.3.1 to the above embedded set. Let

ϑp := (UXa , u, ZX , US, y, QB, QN ),

where ZX ∈ RnB×nB . We then define the integral polynomial map

fp : RnB×nB × Rm × RnB×nB × RnN×nN × Rm × Rn×nB × Rn×nN → Rtp
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as defined below

fp(ϑp) :=



vec
(
ZX −

m∑
i=1

uiQ
T
BA

iQB

)
vec
(
UXaZX − InB

)
A1 •QBUXaQT

B − b1

...

Am •QBUXaQT
B − bm

vec
(
C −

m∑
i=1

yiA
i −QNUSQT

N

)
vec
(
QT
BQB − InB

)
vec
(
QT
NQN − InN

)
vec
(
QT
BQN

)



, (A.18)

where tp = 3n2
B + n2

N + nBnN + n2 + m. Note that the symmetry of ZX and US

follows from the symmetry of Ai and C, and the symmetry of UXa follows from the

symmetry of ZX . Moreover, we define the solution set Ωp to enforce the positive

definiteness of UXa and US as follows

Ωp :=
{
ϑp | det(UXa [i]) > 0, det(US[j]) > 0, i = 1, . . . , nB, j = 1, . . . , nN

}
,

(A.19)

in which UXa [i] denotes the ith leading principal submatrix of UXa . Indeed, the

strict inequalities in (A.19) are necessary and sufficient for the positive definiteness

of UXa and US. By the interior point condition, the solution set V (fp) ∩ Ωp, where

V (fp) =
{
ϑp | fp(ϑp) = 0

}
, is nonempty but not necessarily a singleton. Then, from

every solution ϑp ∈ V (fp) ∩ Ωp, we can extract a solution (UXa , u,QB) which is the

analytic center of the primal optimal set, since it satisfies the constraints in (A.15).

The solution set Ωp is characterized by nB+nN integer polynomials of the maximum

degree max{nB, nN}. Since the symmetry of the matrices UXa , ZX , and US is not
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presumed for fp and Ωp, the coefficients of the polynomial functions are bounded

above by twice the largest absolute value of the entries in b, C, and Ai for i =

1, . . . ,m. For instance, the coefficients of det(UXa [i]) are just 1, but uiQ
T
BA

iQB has

some polynomial terms with coefficients twice the off-diagonal entries of Ai. Hence,

the binary length of the largest absolute value of the coefficients in (A.18) and (A.19)

is bounded above by L+ `(2)− 1 = L+ 2, see Section 3.1 in [137].

Consequently, by applying Lemma A.3.1 to the set V (fp)∩Ωp, we can conclude that

there exists a solution ϑp ∈ V (fp) ∩ Ωp so that ‖ϑp‖2 ≤ rP∗SDO
, where

log2(rP∗SDO
) = (L+ 2)(t̄pd̄p)

s̄p ,

d̄p := max{nB, nN , 3} ≤ max{n, 3},

t̄p := tp + nB + nN = 3n2
B + n2

N + nBnN + nB + nN + n2 +m ≤ 6n2 + 2n+m,

s̄p := 2n2
B + n2

N + n(nB + nN ) + 2m ≤ 5n2 + 2m,

in which s̄p denotes the total number of variables in the polynomial map fp, and d̄p is

the maximum degree of the polynomials in fp and the polynomials defining Ωp. As a

result, there exists u so that |ui| ≤ ‖u‖2 ≤ rP∗SDO
. Then, using the inequality (A.16),

we get

σB ≥ λmin(UXa) ≥ 1∑m
i=1 |ui|‖Ai‖F

≥ 1

rP∗SDO

∑m
i=1 ‖Ai‖F

.

This completes the first part of the proof. In a similar fashion, we can use the same

reasoning as in the primal side to derive a lower bound on σN . Notice that for

a given orthonormal basis QN , the analytic center of the dual optimal set can be

obtained by solving

max log(det(USa))

s.t.
m∑
i=1

yaiA
i +QNUSaQ

T
N = C,

USa � 0,

(A.20)
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which is a convex optimization problem with strictly concave objective function.

The optimality conditions for (A.20) are given by



U−1
Sa −QT

NWQN = 0,

Ai •W = 0, i = 1, . . . ,m,∑m
i=1 y

a
iA

i +QNUSaQ
T
N = C,

USa � 0,

(A.21)

where W is an n × n symmetric matrix. Note that the symmetry of Ai induces

the symmetry of USa but not necessarily the symmetry1 of W . Then the optimality

conditions (A.21) imply

λmin(USa) =
1

λmax(QT
NWQN )

≥ 1

‖QT
NWQN‖F

≥ 1

‖W‖F
. (A.22)

Let ϑd :=
(
USa , y

a, UX , ZS,W,QB, QN
)
, where ZS ∈ RnN×nN , and consider the

solution set

V (fd) :=
{
ϑd | fd(ϑd) = 0

}
,

where the integral polynomial map

fd : RnN×nN × Rm × RnB×nB × RnN×nN × Rn×n × Rn×nB × Rn×nN → Rtd

1Note that there is no need to add a symmetrization constraint. One can easily check that

W+WT

2 is a symmetric feasible solution for (A.21).
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is defined as

fd(ϑd) :=



vec
(
ZS −QT

NWQN
)

vec
(
USaZS − InN

)
A1 •W

...

Am •W

A1 •QBUXQT
B − b1

...

Am •QBUXQT
B − bm

vec
(
C −

m∑
i=1

yaiA
i −QNUSaQT

N

)
vec
(
W −W T

)
vec
(
QT
BQB − InB

)
vec
(
QT
NQN − InN

)
vec
(
QT
BQN

)



, (A.23)

in which td = n2
B + 3n2

N + nBnN + 2n2 + 2m. By the interior point condition, the

set of solutions of V (fd) ∩ Ωd is nonempty, where Ωd is defined as

Ωd :=
{
ϑd | det(UX [i]) > 0, det(USa [j]) > 0, i = 1, . . . , nB, j = 1, . . . , nN

}
.

Then, analogous to the primal case, from a solution ϑd ∈ V (fd) ∩ Ωd we can get

a solution (USa , y
a,W,QN ) with symmetric W , which is the analytic center of the

dual optimal set. Therefore, Lemma A.3.1 implies the existence of ϑd ∈ V (fd) ∩Ωd
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so that ‖ϑd‖2 ≤ rD∗SDO
, where

log2(rD∗SDO
) = (L+ 2)(t̄dd̄d)

s̄d ,

d̄d := max{nB, nN , 3} ≤ max{n, 3},

t̄d := td + nB + nN = n2
B + 3n2

N + nBnN + nB + nN + 2n2 + 2m

≤ 7n2 + 2n+ 2m,

s̄d := n2
B + 2n2

N + n2 + n(nB + nN ) +m ≤ 6n2 +m,

in which s̄d and d̄d are defined analogously as in the primal side. As a result, a

lower bound on σN is given by using ‖W‖F ≤ rD∗SDO
and (A.22). This completes

the proof.

Remark A.3.1. For the special case nB = 0 we get σ = σN by (3.1), and thus

the lower bound (A.11) is still valid. Indeed, any dual feasible solution is also dual

optimal for this special case. Thus, to derive a lower bound on σN we only need to

compute the analytic center of the dual feasible set DSDO, i.e.,

max log
(

det(Sa)
)

s.t.
m∑
i=1

yaiA
i + Sa = C,

Sa � 0.

(A.24)

It it easy to verify that the application of Lemma A.3.1 to the system of optimality

conditions of (A.24) gives an integral polynomial map with strictly fewer number of

polynomials and variables than (A.23), which yields a smaller rD∗SDO
.

A.4 Theorems of the Newton method

Quadratic convergence of Newton’s method:
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Theorem A.4.1 (Theorem 5.2.1 in [39]). Consider a continuously differentiable

mapping G : Rn → Rn on an open convex set D ⊆ Rn. Let x∗ ∈ Rn be a root

of G(x) = 0 so that Br(x
∗) ⊆ D for some r > 0. If ∇G is Lipschitz continuous

with constant τ on Br(x
∗) and ‖∇G(x∗)−1‖2 ≤ θ for some θ > 0, then for a given

x(0) ∈ Brn(x∗), where

rn := min

{
r,

1

2θτ

}
, (A.25)

the Newton iterates x(k) are well-defined and converge to x∗ so that

‖x(k+1) − x∗‖2 ≤ θτ‖x(k) − x∗‖2
2, k ≥ 0.

Kantorovich theorem:

Theorem A.4.2 (Theorem 5.3.1 in [39]). Given a solution x0 ∈ Rn, let G :

Rn → Rn be a mapping which is continuously differentiable on Br(x0). Assume

that ∇G(x0) is nonsingular and Lipschitz continuous with Lipschitz constant τ on

Br(x0). Furthermore, let∥∥∇G−1(x0)
∥∥

2
≤ θ,

∥∥∇G−1(x0)G(x0)
∥∥

2
≤ η.

for some θ, η > 0. If τθη ≤ 1
2

and (1 −
√

1− 2τθη)/(θτ) ≤ r, then there exists a

solution x∗ to G(x) = 0 such that

‖x∗ − x0‖2 ≤
1−
√

1− 2τθη

θτ
.

Implicit function theorem:

Theorem A.4.3 (Theorem 2.4.1 in [50]). Assume that F : Rn × Rm → Rn is

a k-times continuously differentiable mapping. Furthermore, assume that (x̄, ω̄) ∈

Rn × Rm, F (x̄, ω̄) = 0, and the Jacobian of F with respect to x is nonsingular

at (x̄, ω̄). Then there exist ς > 0 and a unique k-times continuously differentiable

mapping Φ : Bς(ω̄)→ Rn so that Φ(ω̄) = x̄ and F (Φ(ω), ω) = 0 for every ω ∈ Bς(ω̄).
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Painlevé-Kuratowski, 45

set of feasible directions, 6

set-valued mapping, 45

singular value, 5

spectral norm, 5

strong regularity, 37

surjective, 8

symmetric cone

degree, 230

symmetric Kronecker product, 7

tangent cone, 34

tangent space, 6

theorem of the alternative, 9

transition point

identification, 210

second-order conic optimization,

195

semidefinite optimization, 179

uniformly bounded, 48, 167

277


	Lehigh University
	Lehigh Preserve
	2019

	Conic Optimization: Optimal Partition, Parametric, and Stability Analysis
	Ali Mohammad-Nezhad
	Recommended Citation


	List of Tables
	List of Figures
	Notation and Symbols
	Abstract
	Introduction
	Definitions and notation
	Linear conic optimization (LCO)
	Symmetric conic optimization (SCO)
	Semidefinite optimization (SDO)
	Second-order conic optimization (SOCO)

	Nondegeneracy conditions for LCO
	Nondegeneracy conditions for SDO
	Nondegeneracy conditions for SOCO

	IPMs and central path for SCO
	The central path for SDO
	The central path for SOCO

	The optimal partition for LCO
	The optimal partition for SDO
	The optimal partition for SOCO

	Second-order sufficient condition
	Sensitivity and stability analysis
	Sensitivity of locally optimal solutions
	Differential stability of the optimal value function
	Set-valued analysis
	Continuity of the objective and solution set mapping

	Outline of the thesis
	Technical reports and publications


	Numerical algorithms for SCO
	Dikin-type affine scaling algorithm for SDO
	The Dikin-type search directions

	Dikin-type affine scaling algorithm for SCO
	Minimizing the duality gap over the ellipsoid
	Proximity to the central path and feasibility
	The Dikin-type algorithm
	Complexity analysis of the Dikin-type algorithm
	Numerical results


	Identification of the optimal partition
	Identification of the optimal partition for SDO
	Identification along the central path
	Identification in a neighborhood of the central path

	Identification of the optimal partition for SOCO
	Identification along the central path


	Identification of optimal solutions
	Identification of optimal solutions for SDO
	A rounding procedure for central solutions
	A rounding procedure for approximate solutions

	Identification of optimal solutions for SOCO
	Nondegeneracy conditions for SOCO
	Second-order sufficient condition for SOCO
	Quadratic convergence under failure of strict complementarity
	Quadratic convergence under strict complementarity
	Numerical results
	Special case: a strongly polynomial rounding procedure
	Approximate maximally complementary solutions


	Sensitivity and stability analysis
	Parametric analysis of SDO
	Continuity of optimal solutions for SDO
	Sensitivity of the optimal partition for SDO
	Sensitivity of the approximation of the optimal partition

	Parametric analysis of SOCO
	Continuity of optimal solutions for SOCO
	Sensitivity of the optimal partition for SOCO
	Stability of regularity conditions
	Continuity of solutions in a nonlinearity interval
	Computation of a nonlinearity interval
	Failure of strict complementarity

	Extension to LCO
	Discussion and open questions

	Conclusions and future research
	Future research

	Appendix
	Jordan algebra
	Error bounds for mathematical optimization
	Error bound for a linear matrix inequality (LMI) system
	Error bound for a linear conic system
	Error bound for a polynomial system

	A lower bound on 
	Theorems of the Newton method

	Bibliography
	Vita
	Index

