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Abstract

This dissertation studies and develops theory and techniques for the application of two popular

classes of temporally dependent Gaussian processes. While many of our findings have application

to physics, hydrology, logistics, biology and economics (to name a few), we focus on modeling,

parameter estimation, risk management, pricing and optimal decision making for financial in-

struments.

The first part of this thesis focuses on the widely used fractional Brownian motion (fBm)

process. We explore the advantages and disadvantages of modeling with the process and present

new consistent estimation techniques for a fBm process that is influenced by drift and volatility.

These techniques are grounded in ergodic theory for stationary processes. An empirical study

is performed comparing the new estimators to leading methods. This study indicates that our

estimators are highly competitive in terms of Root Mean Square Error (RMSE) and computa-

tional speed, making them ideal for fast paced financial markets. Additionally, we demonstrate

how the long-range dependence structure of fBm can result in an underestimation of risk and

volatility when the standard Brownian motion model is assumed. Similarly, we propose and

demonstrate that the dependence structure (or memory) may explain some anomalies that are

seen in derivative prices, such as a term structure to volatility. We conclude our study of fBm

by implementing our new estimation method on three broad indexes to show how the memory

parameter (known as the Hurst index/exponent) has behaved over time. Our study shows that

factors like capitalization and liquidity may be influencing the Hurst index and therefore the

propensity of serial runs up and down in market prices.

The second part of this thesis develops techniques to further understand and accurately model

continuous sample path Gaussian Markov (GM) processes. Gaussian Markov processes are widely

used to model dynamic systems. The majority of stochastic models in finance, particularly

diffusion processes, are Markovian, and many are Gaussian. GM processes are commonly used
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in the valuation of derivatives on equities, commodities, foreign exchange, and interest rate

products. The GM process allows for a wide range of properties that can adapt to common

properties observed in real market data, including long-memory, “fat tails,” non-stationarity and

the term structure of volatility observed in derivative prices.

We explore the properties of Gaussian Markov processes and derive new methods for mod-

eling, pricing, risk management and parameter estimation. All of our results use Hida’s [19]

representation which establishes that GM processes can be decomposed into a time dependent

scaling function and a Gaussian martingale.

To understand the range behavior of the GM process, we explicitly derive a closed form

representation of quadratic variation. Our derivation reveals that the quadratic variation can

be represented as a Riemann Stieltjes integral. Our result leads to a consistent estimation

method for the diffusion parameter using the quadratic variation. We establish consistency of

the estimator and use the Borel-Cantelli lemma to obtain almost sure convergence and we derive

the confidence interval bounds on a fixed interval. We apply the new method to estimate the

volatility in the Ornstein-Uhlenbeck (O-U) process and show that the estimator is significantly

more accurate than the MLE on small to moderate size samples on a fixed interval. Additionally,

we derive closed form Maximum Likelihood Estimators of all model parameters in the O-U

process, eliminating the standard method that uses three dimensional numerical optimization

methods.

The quadratic variation result is also important for understanding the pricing, hedging strate-

gies and risk management with GM processes. We demonstrate how the quadratic variation can

be adapted to Itô calculus for modeling with Gaussian Markov processes. This allows us to

extend the Black-Scholes model to include many observed properties like long-range dependence,

non-stationarity and heteroscedasticity. With the GM process we adapt modern pricing theory,

to determine arbitrage free criteria, replicating portfolios, and Kolmogorov equations. This leads

to a general closed form formula for pricing call options as well as hedging strategies for risk

management with GM processes.

Motivated by the fact that closed form solutions do not exist for many American style deriva-

tive contracts, we introduce both an exact simulation technique and a recombining n-period

binomial tree model for Gaussian Markov processes. The central limit theorem for stochastic

processes established by Andersen and Dobrić [2] is used to prove that the tree process converges

weakly to the continuous sample path GM process. This result is important in making decisions
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and finding optimal timing for stochastically dynamic systems. The tree representation provides

insight into the behavior of the stochastic process, particularly the tree allows for understand-

ing the effect of temporal dependence separately from the time transformation effects of the

underlying martingale.

Given a recombining tree, dynamic programming (DP) techniques are applied to obtain op-

timal policies and prices for maximizing an objective function. Many DP methods, such as

backward inductions, are well understood, fast, and exact. (See Luenberger [30]) The accuracy

of the solutions is determined by the number of periods, n, in the tree. We found that as n→∞,

the tree process converges to the continuous stochastic process at a rate of 1/
√
n. We demon-

strate how this tree is constructed for the Vasicek interest rate model and price an American

style put option.

3



Chapter 1

Introduction

“Dam design was an important task in the nineteenth century, but one in which -

like finance today - the mathematically easy path was preferred. Engineers assumed

flood variations from one year to the next were statistically independent, as with

Bachelier’s coin-tossing [which is the basis of modern option pricing theory]...With

coins you can get a run of heads or tails...and there is a simple formula for it: The

range [of the height over] time varies by the square root of the number of tosses.

[Harold Hurst] found the range from the highest Nile flood to the lowest widened

faster than the coin-tossing rule predicted. The highs were higher and the lows,

lower. But the problem was not the individual floods; looked at singly, the bell curve

fit the data on each year’s flooding reasonably well. Apparently, it was the runs of

weather - the back-to-back floods or droughts - that were changing the game. It

seems obvious, now: Not just the size of the floods, but also their precise sequence,

matters.”

(Mandelbrot “The (Mis)Behavior of Markets” [32] , p.177)

The excerpt above is not an isolated case, but an example of how modeling techniques tend

to be oversimplified for the sake of tractability and convenience; however the result of such

assumptions can be catastrophic. Statistical techniques on independent random variables are

well understood and therefore have a tendency to be commonly used in financial modeling. The

assumption of independence, even in the Gaussian case, can result in exposures to unrealized

risks, failures, and misvaluations. The Nobel prize winning Black-Scholes-Merton option pricing
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model assumes that equity log returns evolve independently. Modeling with the assumption of

independence has played critical roles in the formation of portfolio insurance (which resulted in

the crash of 1987), the loss of $4.6 billion in less than four months by the hedge fund Long-Term

Capital Management (which threatened a global collapse after the 1998 Russian debt default),

and the mortgage misvaluations that contributed to the 2008 financial crisis. Many argue that the

modeling assumption of the Gaussian distribution is the problem (an argument of “heavy tails”),

however, as with the flood variations of the Nile river, temporal dependence can incorporate the

Gaussian assumption and still result in extreme fluctuations beyond the model’s prediction of

risk.

Recently, electronic trading technology and algorithms have given investors the ability to

execute trades within 128 microseconds. Speed and accuracy of models and their estimates are

crucial to risk management, quantitative valuation and security trading. Therefore, techniques

which are both fast and accurate on small data sets are needed in today’s marketplace. The main

goal of this thesis is to develop and explore the tools for the financial application of two classes of

continuous temporally dependent Gaussian processes; fractional Brownian motion and Gaussian

Markov (GM) process. The tools presented in this thesis allow for quick and accurate estimation

of model parameters, generation of efficient discrete representations and the understanding of

the influence of dependency on pricing, optimal strategies and risk management.

In regards to risk management, the standard models engineers used for determining dam

height worked around the world, but even with large safety factors, the Nile overcame the dam

walls. In 1951, British hydrologist Harold Hurst documented the long-range dependence of water

levels in reservoirs along the Nile river. He modeled the reservoir storage capacity using a

fractional Brownian motion process. Fractional Brownian motion (fBm) was first introduced by

Russian probabilist Andrey Kolmogorov in 1940. The auto-correlation function, and strength of

temporal dependence, for fBm is defined by a single parameter, H ∈ (0, 1), known as the Hurst

index or exponent.

Applications of fBm are diverse, for example, it is commonly used to predict the vortex be-

havior in the turbulent flow of non-Newtonian (high Reynolds number) fluids. The process has

also shown to be a reasonable model for solar activity, log returns of stock prices, geographical

temperature, commodity prices in liberated markets, heart rate variability, and network traffick-

ing. Mandelbrot popularized the use of fBm as a more suitable process for stock price modeling

than the classical Brownian motion process, which has independent increments.
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In 1997, Robert Merton and Myron Scholes received the Nobel prize in Economics for a model

of stock pricing based on geometric Brownian motion. Under the Brownian motion model, relative

log returns are independent identically distributed as Gaussian. Practitioners typically find the

empirical distribution of relative log returns in the stock market assuming returns are independent

or stationary. A comparison between the empirical and Gaussian distributions demonstrate that

Brownian motion does not exhibit the “fat tails” seen in the empirical distribution (Cont [12]).

Cont [12] also demonstrates that the relative log returns in the equity market exhibit signs of

temporal dependence and volatility clustering, which are the predominant advantages of a fBm

process over a Brownian motion process. These properties were also observed by Mandelbrot

[32, 33] and are fundamental in his arguments for the use of of fBm in finance.

Given the financial crisis of 2008, there has been large debates over the use of Gaussian pro-

cesses in finance. However, studies like those from Cont [12] on “heavy tails,” and distributions

draw conclusions from which they assume log returns are stationary and/or independent and

identically distributed (i.i.d.) over a long time frame. Analysis of the markets in the presence

of temporal dependence is difficult because of a need for knowledge about the auto-correlation

structure. Without the assumption of stationarity, analysis becomes even more difficult because

of constant distribution changes over time. Market behavior is effected by factors like news,

events or policy which impact the market and cause a shift in valuation (Cont [12]). Jumps,

non-stationarity and temporal dependence impact the perceived distribution. Given these ob-

servations, many models have both a continuous process coupled with a jump process. In this

thesis we focus on developing tools for modeling the continuous path process that model “typical”

movements.

This dissertation is structured in the following way. Chapter 2 summarizes the definitions

and properties of Gaussian processes that are used throughout the dissertation. In Part I we

review the application of fBm in finance and develop estimation techniques for the memory

parameter (known as the Hurst index) and discuss the effect of dependence on pricing methods

and properties. Currently there are many techniques to estimate the Hurst index. (See §3.1)

However, the most accurate technique, Whittle’s approximate MLE, takes considerable time to

compute, while faster algorithms lack comparable precision. (Taqqu et al. [51]) The new methods

in this thesis address the need for fast and accurate methods on the small sample sizes of an

ever changing market. In Chapter 3, we summarize leading estimation techniques and introduce

new estimators of the Hurst index based on ergodic theory for stationary processes. A numerical
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comparison of our new estimators to Whittle’s approximate MLE concludes that our techniques

are highly competitive (in terms of RMSE) and explicitly faster because of reduced complexity

(see Appendices I, II, and III for analysis results). We also develop techniques to estimate all

parameters in a fractional Wiener process (fractional Brownian motion with drift and volatility).

Results indicate that our techniques allow for faster and more accurate computation of the Hurst

index on smaller data sets. In §4.3, we apply our new estimation techniques to three financial

indexes to provide further empirical evidence that the Hurst index has varied significantly over

time.

Chapter 4 begins with a literature review of the fBm call option pricing equations, arbitrage

issues and binomial tree representations. To further the understanding of the influence of de-

pendence, §4.2 investigates the consequences of using the standard Brownian motion model in

the presence of a fBm model. Through analysis, we argue that processes with long-range depen-

dence, particularly fBm, can appear to have larger tails when analyzed as if the process is a series

of independent random variables, even though the model’s distribution is still Gaussian. This

result indicates that the assumption of independence in standard methods can underestimate the

riskiness of a financial instrument when long-range temporal dependence is present. If the Hurst

index is known, we show that it is trivial to formulate the exact affect the dependence has on the

misvaluations of risk. This, in turn, influences the valuation of financial instruments. An analysis

of the affect of dependence on option pricing is also presented in this section. To demonstrate

how the dependence structure changes the Black-Scholes-Merton call option prices, we use the

Hu and Oksendal [21] pricing equations for fBm. Other anomalies, like the term structure of

implied volatility in the derivatives market, may also be explained by long-range dependence.

We conclude Part I with an application of our methods to real index data to show how the

Hurst index has behaved over time. (§4.3) Bayraktar et Poor [3] estimated the Hurst index for

S&P 500 from 1989 to 2000 and discovered that the Hurst index appears to take values as high as

H ≈ 0.7 and as low as H ≈ 0.48. Willinger et Taqqu [57] perform a similar analysis in which they

conclude that the stock market (on average) displayed significant signs of long range dependence

(H > 1/2). By comparing three differently weighted portfolios (CRSP indexes), we find that the

Hurst index may be influenced by the trade volume, capitalization or liquidity (measured by the

bid-ask spread).

Despite the many applications of fBm, the popularity of fBm has been limited by a few

barriers in theory and implementation of the model in finance. These barriers include, but are
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not limited to:

• fBm admits arbitrage and therefore prevent proper risk management and hedging strategies

that are necessary for implementation. (Rogers [44])

• Binomial trees are difficult to construct and do not recombine, making pricing of many

American style and exotic options computationally expensive and inaccurate. (Konstan-

topoulos and Skhanenko [26])

• Pricing theory is derived using Riemann-Stieltjes integrals (or Wick Calculus) from which

replicating portfolios and self-financing strategies have no economic meaning. (Sottinen

[47])

• Market prices show times of non-stationarity. (Cont [12])

In an attempt to expand beyond the limitations of fBm, Part II of this thesis focuses on continuous

Gaussian processes of the Markov type. General diffusion models in physics, thermodynamics,

fluid mechanics, biology and finance are all Markovian and many are Gaussian. These processes

are used in modeling and decision making under uncertainty. In finance, almost all interest rate

models are Markovian. Gaussian Markov (GM) processes allow for a wide range of properties from

stationary to non-stationary, and long-range dependence, short-range dependence or memoryless.

In Chapter 5 we review critical properties and theorems needed to understand Gaussian

Markov properties. All the results in Part II use Hida’s [19] representation of GM processes

(Theorem 5.3). Hida’s theorems establish that continuous Gaussian Markov processes can be

constructed by the product of a scaling function and a Gaussian martingale. The scaling function

can be shown to completely control the dependence structure of the process (Proposition 5.17),

while the martingale controls the speed in which a Brownian motion process evolves over time

(Theorem 5.7).

Chapter 6 develops a consistent estimator of the diffusion parameter using the quadratic vari-

ation of a GM process. The first section gives a review of the subject with well known examples of

the quadratic variation for fBm and Brownian motion. In §6.2, we explicitly derive a closed form

representation of quadratic variation for GM processes and prove that the quadratic variation

can be represented as a Riemann-Stieltjes integral. We establish consistency of estimators and

use Borel-Cantelli lemma to obtain almost sure convergence and confidence interval bounds on a

fixed interval. This result allows for the use of quadratic variation to estimate model parameters.
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To conclude the chapter we apply the quadratic variation estimator to the Ornstein-Uhlenbeck

process, where we derive a closed form representation of the MLE for all model parameters and

demonstrate that the quadratic variation estimator is more accurate on small to moderate size

sample sizes.

Chapter 7 focuses on pricing and risk management with GM processes. A review of the

influence of quadratic variation in stochastic calculus is given. The quadratic variation represen-

tation derived in Chapter 6 is used to modify option pricing theory and stochastic calculus to

general representations of a geometric GM stock model. Hedging strategies, call option prices,

and Kolmogorov backwards equations are derived for risk management and valuation practices.

Optimal policy and valuation of American style derivatives (contracts that can be exercised

before expiration) typically cannot be explicitly derived. In fact, if a derivative payoff structure

is non-convex or zero when the price of the underlying security is zero, then there is no guarantee

that a closed form solution exists. (Shreve [46]) Additionally, it is possible (and in most cases

likely) that the optimal strategy is to execute the contract early based on the path the security

takes over time. Chapter 8 introduces techniques to aid in valuation of such dynamic systems

through discrete representations. In cases of path dependent options, it is common practice to

use simulation methods to evaluate optimal policy and pricing. In this motivation, we introduce

an exact and fast method of generating simulations of GM processes. This work is presented in

§8.2.

In §8.3 we use the central limit theorem for stochastic processes established by Andersen and

Dobrić [2] to derive a binomial tree representation for general Gaussian Markov processes and

prove that the tree process weakly converges to a continuous Gaussian Markov processes. Unlike

the fBm tree, the tree is recombining at each node; the size of the tree increases linearly with

the number of periods. Additionally, the algorithm to generate the GM process tree is simple

and fast. An example of a binomial tree for the Vasicek interest rate model is provided. The

Vasicek interest rate model utilizes the Ornstein-Uhlenbeck process which is mean reverting,

path dependent, and non-stationary. The influence of the dependence, drift, and diffusion of the

processes can be analyzed seen explicitly in our construction, allowing for further insights into

a GM process. Most importantly, the tree structure allows for analysis with standard Dynamic

Programming (DP) methods. DP methods, like backwards induction, are well understood, fast

and exact. We apply the backwards induction method to the Vasicek tree to price an interest

rate put option and find the optimal execution times and hedging strategies.

9



Chapter 2

Background

This chapter provides a review of various concepts, theory, terminology and notation that will

be used throughout this thesis. The chapter is divided into five sections. Section 2.1 presents

definitions and properties of Gaussian processes, §2.2 provides formal definitions and properties

of fractional Brownian motion, §2.3 reviews simulation techniques for Gaussian processes and

provides sample paths of fBm to aid in understanding the influence of fBm’s Hurst index. A

brief review of Martingale Theory is provided in §2.4. If the reader is familiar with these topics,

they may skip this chapter and return to it as needed for reference.

2.1 Introduction to Gaussian Self-Similar Processes

Definition 2.1. (Gaussian Process)

A real valued stochastic process (Xt)t∈T is called Gaussian, if for any t1, t2, . . . , tn in T the

random variables Xt1 , Xt2 , . . . , Xtn are jointly normal.

Remark 2.2. A Gaussian process (Xt)t∈T is called centered if E [Xt] = 0 for all t ∈ T .

Remark 2.3. AGaussian process (Xt)t∈T is completely characterized by it covariance E [XtXs] ,∀t, s ∈

T .

Definition 2.4. (Self-Similar Process)

Let X = (X (t))t∈T be a stochastic process on probability space (Ω,F ,P). X is said to be a

self-similar process if for any a > 0, there exists a b > 0 such that for any t1 < t2 < · · · < tn in

T , the following holds

10



(X (at1) , X (at2) , . . . , X (atn))
d
= (bX (t1) , bX (t2) , . . . , bX (tn)) ,

where d
= means equality of the distributions of the left hand side and the right hand side

vectors.

Corollary 2.5. (H Self-Similar)

If (Xt)t∈T is a non-trivial, stochastically continuous at t = 0, and is a self-similar process, it

can be shown that there exists a unique H ≥ 0 such that b = aH . Such a process is called H

self-similar. It can be shown that if H ≥ 0 and (Xt)t∈T is a H self-similar process, then X0 = 0

almost surely.

Definition 2.6. (Brownian Motion)

Brownian motion (Bm) is a process (B (t))t≥0 with the following properties:

1. B (0) = 0, almost surely

2. B (t) has independent increments: 0 ≤ t1 < t2 < · · · < tn then

(B (tn)−B (tn−1)) , . . . , (B (t2)−B (t1)) are independent

3. B (t)−B (s) distributed as N (0, |t− s|)

4. t→ B (t) is continuous, almost surely.

Remark 2.7. From the properties of Brownian motion, it follows that B (at)
d
= a

1
2B (t) , ∀a > 0.

Therefore, Brownian motion is a centered Gaussian 1/2 self-similar process. Moreover, since

E [B (t)]
2

= t then E [B (t)B (s)] = min {t, s}.

Remark 2.8. If we let ∆t ≡ tj − tj−1 for all j = 1, 2, . . . , N , then the increments of Brownian

motion

(Z (ti))
N
i=1 ≡ (B (tj)−B (tj−1))

N
j=1

i.i.d.
= N (0,∆t)

are known as white noise (Wn), where i.i.d. means independent identically distributed.

Definition 2.9. (Long/Short-Range Dependence)

Let (Xt)t∈T be a centered Gaussian process and let the auto-covariance between the nth incre-

ment and the first increment of the process X be denoted as γn = E [(X1 −X0) , (X1+n −Xn)],

n ≥ 1. Then,
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1. If γn > 0 for all n ≥ 1, the process has positively correlated increments. If
∑∞
n=1 |γn| =∞,

we say that X has long-range dependence.

2. If γn < 0 for all n ≥ 1, the process has positively correlated increments. If
∑∞
n=1 |γn| =

c <∞, c 6= 0, we say that X has short-range dependence.

3. If γn = 0 for all n ≥ 1,
∑∞
n=1 |γn| = 0 and we say that X is an independent process.

2.2 Definition and Properties of Fractional Brownian Mo-

tion

Definition 2.10. (Fractional Brownian Motion)

Fractional Brownian motion (fBm) is a centered Gaussian process
(
BH (t)

)
t∈R where H ∈

(0, 1) with the following properties:

1. BH (0) = 0, almost surely

2. BH (t)−BH (s) is distributed as N
(

0, |t− s|2H
)

3. t→ BH (t) is continuous, almost surely

Corollary 2.11. Since E
[
BH (0)

]
= 0 and E

[
BH (t)

]2
= t2H ,

E
[
BH (t)BH (s)

]
=

E
[
BH (1)

]2
2

{
E
[
BH (t)

]2
+ E

[
BH (s)

]2 − E
[
BH (|t− s|)

]2}
=

E
[
BH (1)

]2
2

{
t2H + s2H − |t− s|2H

}

Remark 2.12. Throughout this thesis without loss of generality we assume a standard fractional

Brownian motion, that is E
[
BH (1)

]2
= 1.

Remark 2.13. If we let ∆t ≡ tj − tj−1 for all j = 1, 2, . . . , N , then the increments of fractional

Brownian motion

(
ZH (ti)

)N
i=1
≡
(
BH (ti)−BH (ti−1)

)N
i=1

d
=
{
Ni
(
0,∆t2H

)}N
i=1

,

where
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E
[
ZHti Z

H
tj

]
= E

[
BHti B

H
tj

]
− E

[
BHti B

H
tj−1

]
− E

[
BHti−1

BHtj

]
+ E

[
BHti−1

BHtj−1

]
=

∆t2H

2

{
|i− j + 1|2H + |i− j − 1|2H − 2 |i− j|2H

}
(
ZHti
)N
i=1

are known as fractional Gaussian noise (fGn).

Corollary 2.14. Fractional Brownian motion is a Gaussian H self-similar process, that is

E
[
BH (at)BH (as)

] d
= a2HE

[
BH (t)BH (s)

]
,∀t, s ∈ R

Remark 2.15. Another property of fractional Brownian motion is that when H = 1/2,

E
[
B

1
2 (t)

(
B

1
2 (t)−B 1

2 (s)
)]

= 0, ∀t > s.

Fractional Brownian motion with H = 1/2 satisfies the definition of Brownian motion (definition

2.6). Additionally, when H = 1 the process is degenerate since,

E
[(
BH (t)− tBH (1)

)]
= t2 − 2t2 + t2 = 0 =⇒ BH (t)

d
= tBH (1) , almost surely.

Definition 2.16. (First Order Stationary Process)

A stochastic process is defined as a first-order stationary process if its probability density

function remains the same regardless of any shift in time, that is, given a time shift τ , the

process {Xt}t∈T is a first-order stationary process if it satisfies the equation

P (Xt ≤ x) = P (Xt+τ ≤ x) , ∀t ∈ T.

Corollary 2.17. Fractional Brownian motion has stationary increments.

Proof. Since fBm is a centered Gaussian processes, ∀t > s, τ > 0 we only need to consider the

covariance function to prove the stationarity of increments,

E
[(
BHt+τ −BHτ

) (
BHs+τ −BHτ

)]
= E

[
BHt+τB

H
s+τ

]
− E

[
BHt+τB

H
τ

]
− E

[
BHτ B

H
s+τ

]
+ E

[
BHτ
]2

=
1

2

{
t2H + s2H − (t− s)2H

}
= E

[
BHt B

H
s

]
.
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This proves that
(
BHt+τ −BHτ , t ∈ T

) d
=
(
BHt , t ∈ T

)
. (Embrechts[14], pp.7)

Remark 2.18. Using stationarity it can be shown that the auto-covariance function for fBm is

given by

γn =
1

2

[
(n+ 1)

2H − 2n2H + (n− 1)
2H
]

therefore

γn ≈ H (2H − 1)n2H−2, as n→∞, H 6= 1

2
.

Notice that when

1. H = 1
2 , γn = 0,∀n therefore fractional Brownian motion has independent increments.

2. H > 1
2 , γn > 0,∀n and γn ≈ H (2H − 1)n2H−2, as n → ∞ therefore the increments of

the fBm process are positively correlated and by p-series
∑∞
n=1 |γn| = ∞, therefore has

long-range dependence.

3. H < 1
2 , γn < 0,∀n and γn ≈ H (1− 2H)n2H−2, as n→∞ therefore the increments of the

fBm process are negatively correlated and by p-series
∑∞
n=1 |γn| = c < ∞, therefore has

short-range dependence.

Remark 2.19. For 1
2 < H < 1, H measures the intensity of long-range dependence. The closer

H is to 1 the stronger long-memory the process exhibits.

2.2.1 Fractional ARIMA Processes and fBm

Definition 2.20. (ARMA)

A discrete time series X = {Xt : t = 1, 2, . . . , N} is an Autoregressive Moving Average process,

ARMA (p, q), if it is stationary and satisfies

Xt − φ1Xt−1 − · · · − φpXt−p = Zt + θ1Zt−1 + · · ·+ θqZt−q,

where Zt, t = 1, 2, . . . , N are i.i.d. N
(
0, σ2

)
random variables and where φ and θ are polynomials

of degrees p and q, respectively, satisfying φ + θ 6= 0 and the coefficients of φi and θi must lie

inside the unit circle.
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An alternative representation of an ARMA process is given by

φ (B)Xt = θ (B)Zt,

where B is known as the backward shift operator and is defined as,

BjXt ≡ Xt−j ,

and φ (B) and θ (B) are the pth and qth degree polynomials of the backward shift operator

φ (B) = 1− φ1B − · · · − φpBp

θ (B) = 1 + θ1B + · · ·+ θqB
q.

(Brockwell [6], pp.55)

Definition 2.21. (ARIMA)

An Autoregressive Integrated Moving Average process, ARIMA (p, d, q), is defined as a process

which has the form

φ (B) (1−B)
d
Xt = θ (B)Zt, d ∈ N.

ARIMA processes can be used to represent non-stationary series and are used to incorporate

trends. (Brockwell [6], pp.180)

The ARIMA process can be generalized to non-integer d values, as in the next definition.

Definition 2.22. (FARIMA)

A Fractional Integrated ARIMA (0, d, 0), FARIMA (0, d, 0), process is defined by

Xt = (1−B)
−d
Zt =

∞∑
j=0

bjZt−j .

According to Doukhan [13] if z is a complex number in the region |z| < 1 and d ∈ R then

(1− z)−d =

∞∑
j=0

bjz
j ,

where b0 = 1 and
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bj =

j∏
k=1

k − 1 + d

k
=

Γ (j + d)

Γ (j + 1) Γ (d)
, j ∈ N.

The Gamma function is defined as Γ (p) ≡
´∞

0
tp−1e−tdt, p > 0. Using the property Γ (p) =

pΓ (p) and Stirling’s formula

Γ (p) ≈
√

2πe−p+1 (p+ 1)
p− 1

2 , as p→∞,

it can be shown

bj ≈ (Γ (d))
−1
jd−1, as j →∞.

Remark 2.23. Doukhan [13] shows that there is a decomposition of d for every FARIMA process

has − 1
2 < d−

⌊
d+ 1

2

⌋
< 1

2 , where b�c denotes the smallest integer. This means that d is defined on

the basic range d ∈
(
− 1

2 ,
1
2

)
and therefore it can be shown that when 0 < d < 1

2 , the process has

long-range dependence and when − 1
2 < d < 0 the process has short-range dependence. (Doukhan

[13], pp.19)

Corollary 2.24. The Gaussian FARIMA (0, d, 0) process {Xt : t = 1, 2, . . . , N} with d = H− 1
2

converges in distribution to fractional Brownian motion
{
BHt
}
t∈R. As n→∞,

 1

nH

[ns]∑
t=1

Xt


s∈[0,T ]

w→
(
BHs
)
s∈[0,T ]

,

where w→ means the discrete process weakly converges to the continuous time process. (Doukhan

[13], pp.21)

In the next section an algorithm to recursively simulate fractional Brownian motion using the

FARIMA representation to compute a partial auto-correlation function.

2.3 Simulation of Gaussian Processes

Simulation and prediction algorithms play a crucial role in modeling complex systems. Appendix

IV reviews the three main algorithms that can be used to simulate Gaussian processes. Here we

outline the main idea behind the algorithms for simulation of Gaussian processes.
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The first algorithm is Choleski decomposition. Choleski decomposition can be used to exactly

simulate (or predict) any Gaussian process. The major drawback of Choleski’s procedure is its

requirement to store and invert the entire auto-covariance matrix. The Lower Upper decompo-

sition takes N3/3 floating point operations, thus limiting the size of the simulations that can be

performed. (Doukhan [13], pp.581)

The next two algorithms for simulating Gaussian processes are known as Linear Prediction

algorithms. They include the Durbin-Levinson algorithm and the Innovations algorithm. The

power of these algorithms is in their ability to recursively compute a one-step predictor and

corresponding error function (errors are normally distributed). Each algorithm uses the auto-

covariance function to create a partial auto-correlation function (a linear orthogonal decomposi-

tion of the auto-covariance function) and all the past observations in the time series to predict the

next step. These algorithms are much more computationally efficient and faster than Choleski

decomposition, allowing for large scale simulations.

The Durbin-Levinson algorithm is formulated for stationary time series and uses the Toeplitz

structure of all stationary processes to form discrete convolution operations as matrix multiplica-

tion. This also means that only the first row (or column) of the auto-covariance matrix needs to

be stored. The speed of the Durbin-Levinson algorithm is O
(
N2
)
,much faster and computation-

ally efficient than Choleski decomposition methods which have complexity
(
O
(
N3
))
. (Doukhan

[13], pp.581)

The Innovations algorithm is formulated for any Gaussian time series. This algorithm is a gen-

eralization of the Durbin-Levinson algorithm, however has one main difference; linear predictors

are formed on the forecast errors instead of the time series itself. These predictors are known

as “innovations.” Innovations are necessary because without stationarity, the auto-covariance

matrix is no longer Toeplitz. The innovations allow for discrete convolution operations as ma-

trix multiplication on the entire auto-covariance. Recursion of the algorithm is still maintained.

The algorithm is slightly slower than the Durbin-Levinson algorithm, but still has the same

complexity. (See Appendix IV for further details)

2.3.0.1 Simulations of Fractional Brownian Motion with the Durbin-Levinson Al-

gorithm

By definition 2.10, the increments of fBm
(
ZHti
)N−1

i=1
(known as fractional Gaussian noise) is a

centered stationary Gaussian process. Therefore, the Durbin-Levinson algorithm can be used to
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generate simulations of fractional Gaussian noise. The cumulative sum of the fGn up to time ti

gives a simulation of the fractional Brownian motion process at time ti:

BHtn+1
=

n∑
i=1

ZHti , n = 0, . . . , N − 1, tn+1 = n∆t.

Below we use the Durbin-Levinson algorithm to generate a fractional Brownian motion time

series of length N = 1000, where ∆t = 1/1000 for nine different values of the Hurst index. The

left graphic in Figure 2.1 depicts the simulation results for the short-range dependent process

and Brownian motion, H = 0.1, 0.2, . . . , 0.5, while the right graphic shows the results for the

long-range dependent process and Brownian motion, H = 0.5, 0.6, . . . , 0.9. The nine paths were

generated in Matlab® using the method of common random numbers (where each path utilizes

an identical set of standard normal r.v.s). Note that the Figures are on different scales.

Figure 2.1: Simulations of fBm via Durbin Levinson

Figure 2.2 exhibits the fractional Gaussian noise processes and the resulting paths of the

fractional Brownian motion (on different scales) for detail and comparison.
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Figure 2.2: Simulations of fractional Gaussian noise via Durbin Levinson

Comparing these paths we notice that low values of the Hurst index result in a process whose

sample paths oscillate wildly, while higher values of the Hurst index result in a smoother process.

Additionally, the long-range dependence causes clusters of trends (or momentum effects) where

the paths have a tendency to continue in a particular direction. Finally, notice that the terminal

values and extreme values of the paths are significantly influenced by the Hurst index.

2.4 A Brief Review of Martingale Theory

Definition 2.25. (Martingale)

A collection of σ-algebras F = {Ft}t∈R such that if s < t, then Fs j Ft is known as a

filtration. The process Xt = {X}t∈R is adapted to the filtration F if Xs is Ft-measurable for

every s ≤ t. The stochastic process X is a martingale with respect to the σ-algebra F if

1. E [|Xt|] <∞,∀t <∞.

2. E [Xt |Fs ] = Xs,∀t ≥ s.

Lemma 2.26. Brownian motion is a martingale. (This falls directly from definition 2.6.)

Remark 2.27. Fractional Brownian motion is not a martingale unless H = 1
2 . When H < 1

2 ,

Embrechts [14] shows that the fBm process,
(
BHt
)
t∈R has infinite p variation on all compact

intervals. Additionally, when H > 1
2 the quadratic variation of BH is a zero process (we provide

our own proof in §6.1.2). Embrechts furthermore shows that fBm with H > 1
2 does not have a

Doob-Meyer decomposition BHt = Mt + Vt, where (Mt)t∈R is a local martingale and (Vt)t∈R is
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a finite variation process. Therefore, fBm for H > 1
2 cannot be a semi-martingale. Embrechts

also demonstrates that when H < 1
2 the quadratic variation is infinite (see §6.1.2 for our proof).

Without finite quadratic variation, processes cannot be a semi-martingale. The semi-martingale

property is important to the development of the option pricing theory. Since fractional Brownian

motion is not a semi-martingale, Itô calculus does not hold for fBm.
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Part I

Fractional Brownian Motion
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Chapter 3

New Estimators of the Hurst Index

in Fractional Brownian Motion

3.1 Literature Review: Estimators of the Hurst Index in

fBm

Estimation of the Hurst index (typically denoted as H) is a well studied problem. A plethora of

estimation techniques have been developed. In today’s marketplace, electronic trading has dra-

matically increased the volume and speed of trades. The ability to execute trades in as little as

126 microseconds has created a highly competitive market. To gain a competitive edge, estima-

tion techniques need to be both fast and accurate. Currently, there is a disproportionate trade-off

between the accuracy of an estimate of the Hurst index and the time it takes to compute. Many

techniques to estimate the Hurst index are computationally fast and simple, but typically have

slow convergence rates and wide confidence intervals. (Taqqu et al. [51]) Additionally, some of

these techniques are unable to detect short range dependence (H < 1/2) effectively. Whittle’s ap-

proximate MLE, though quite accurate, is a computationally demanding optimization algorithm

and therefore requires significant time to compute. We give an introduction to these techniques

to illustrate the different methods for estimating H. For a description of these techniques refer

to Taqqu et al. [51] in which he simulated 50 sample paths with N = 10, 000 realizations of fBm

for H = 0.5, 0.6, . . . , 0.9. In this paper, Taqqu estimates the Hurst index using various estimation

techniques and compares the accuracy of the estimates. There are three main types of estimators
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of the Hurst index for fractional Brownian motion.

1. Aggregated Processes Analysis; Variance and Absolute convergence methods

2. Time Domain based Analysis; Rescaled range (R/S) method

3. Frequency based Analysis; Periodogram/Spectral methods, Wavelet methods and Whittle’s

MLE

Each of the methods for estimating the Hurst index is derived using the properties of the fractional

Gaussian noise time series. The aggregated methods typically transform the time series through

the aggregate sum of a function of the time series. The size of the summations, m, is increased

such that a linear regression of the log of the aggregation and m yield the Hurst index as the

slope. In §3.1.2 we show the Variance of Residuals method as an example of an aggregate statistic

for estimating the Hurst index.

Many of the time domain methods take advantage of stationarity and the fact that the auto-

covariance function of fractional Brownian motion satisfies

γn ≈ H (2H − 1)n2H−1, as n→∞.

Frequency domain methods often take advantage of the fact the Periodogram is an unbiased

estimator of the spectral density function. The Periodogram of a time series {Yt}Nt=1is defined

by

I (λk) =
1

N

N∑
t=1

∣∣Yte−itλk ∣∣2 ,
where λ is defined as the Fourier frequencies such that λk = 2πk

N . The spectral density f , derived

as a Fourier transform of γ, is defined as

f (λ) =
1

2π

∞∑
n=−∞

γne
−iλk, λ ∈ [−π, π] .

The estimators in the frequency domain typically take advantage of the property

f (λ) ≈ cHλ1−2H , as λ→ 0,

where cH is a constant dependent on H.
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The empirical study in Taqqu et al. [51] compares the Root Mean Square Error (RMSE)

of various estimators of the Hurst index (except for Wavelet methods). In their study they

identify Whittle’s approximate MLE as the most accurate and the Peng’s Variance of Residuals

method as the second most accurate. Bayrakatar et al. [3] evince a Wavelet based estimator

that is equivalent to or better than Whittle’s approximate MLE. Below we introduce these three

estimators of the Hurst index.

3.1.1 Whittle’s Approximate MLE

The Whittle estimator of the Hurst index is an approximation of the Maximum Likelihood Es-

timator (MLE), L (H). In 1961, Whittle [56] derived the MLE using an orthonormal basis for

a stationary Gaussian time series. Whittle’s MLE is a function of the Periodogram I (λ) with

respect to the time series and the spectral density function f (λ,H), where λ are Fourier frequen-

cies in [−π, π]. Whittle shows that the Likelihood equation for stationary Gaussian processes is

defined by

L (H) =

ˆ π

−π

I (λ)

f (λ,H)
dλ+

ˆ π

−π
log f (λ,H) dλ, λ ∈ [−π, π] .

(Brockwell [6], pp.471-474)

In order to find the best estimator of the Hurst index, L (H) must be minimized with respect

toH numerically using an optimization algorithm. Ledesma and Liu [27] showed that the spectral

density of the fGn process can be written as,

f (λ,H) = 2∆t2H sin (πH) Γ (2H + 1) (1− cos (λ))
{
|λ|−2H−1

+B (λ,H)
}
,

where

B (λ,H) =

∞∑
j=1

{
(2πj + λ)

−2H−1
+ (2πj − λ)

−2H−1
}
.

Ledesma and Liu split B (λ,H) into two pieces

B (λ,H) =

2∑
j=1

{
(2πj + λ)

−2H−1
+ (2πj − λ)

−2H−1
}

+B3:∞,

where
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B3:∞ =

∞∑
j=3

{
(2πj + λ)

−2H−1
+ (2πj − λ)

−2H−1
}
.

Consistent with Paxson’s [37] approximation method, Ledesma and Liu noticed that B3:∞

can be approximated by a linear function D (λ, H) where,

D (λ, H) = pλ+ q,

where p and q are constants that depend on H only.

Minimizing the Mean Square Error (MSE)

MSE =

ˆ ∞
0

[B3:∞ (λ,H)−D (λ,H)]
2
dλ,

p and q are found as a linear combination of equations for F (H) and G (H). The minimization

of the MSE yields:

F (H) =
π2

2
p+ πq,

where

F (H) =

∞∑
k=3

(2πk − π)
−2H − (2πk + π)

−2H

2H

and

G (H) =
π3

3
p+

π2

2
q.

In these equations, when H 6= 1
2 then

G (H) =

∞∑
k=3

[
(2πk) (2πk + π)

−2H
+ (2πk) (2πk − π)

−2H − 2 (2πk)
−2H+1

2H

]
,

and when H = 1
2 , then

G (H) =

∞∑
k=3

[
2πk

2πk + π
+

2

2πk − π
+ ln (2πk + π) + ln (2πk − π)− 2 ln (2πk)− 2

]
.
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Therefore,

p = − 6

π2
F (H) +

12

π3
G (H)

q =
4

π
F (H)− 6

π2
G (H) .

Ledesma and Liu plot p and q as a function of n. They illustrated that p converges very fast,

a value of n = 20 is sufficient for estimating p. However, q converges slowly. Ledesma and Liu

deduce that a value of n = 200 is needed for sufficient estimation of q when H > 1
2 . Ledesma

and Liu statistically tested the changes in the estimates for q and concluded that there is no

significant improvement in the q value when n is increased from n = 200 to n = 400, for H > 1
2 .

Ledesma and Liu recommended using a minimum of n = 200 for the spectral density calculation.

For quick calculations of the spectral density, Paxson [37] showed that this infinite sum can

be approximated by

B (λ,H) ≈ (1.0002− 0.000134λ)
{
B3 (λ,H)− 2−7.65H−7.4

}
,

where

B3 (λ,H) =

3∑
j=1

[
(2πj + λ)

−2H−1
+ (2πj − λ)

−2H−1
]

+

+
(2π3 + λ)

−2H
+ (2π3− λ)

−2H
+ (2π4 + λ)

−2H
+ (2π3− λ)

−2H

8πH
.

Using Ledesma and Liu’s approximation with n = 400 we can see how the spectral den-

sity function varies with frequency and the Hurst parameter. The spectral density function is

symmetric about the y-axis and therefore only λ > 0 is shown in Figure 3.1.
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Figure 3.1: fGn Spectral Density Function

The next step in computing Whittle’s approximate MLE is understanding how to compute

the Periodogram for fractional Gaussian noise. Let {Yj}Nj=1 be a fractional Gaussian noise time

series, and the Fourier frequencies be defined by,

λk =
2πk

N
, k = 1, 2, . . . ,

N − 1

2
.

Recall, the Periodogram {I}λ∈(0,π) is defined by

I (λk) =
1

N

N∑
j=1

∣∣Yje−ijλk ∣∣2 .
Since the Periodogram is a Fourier transform of the data set, it can be calculated by using the

fast Fourier transform algorithm. The Periodogram is a L2 decomposition of the process X, that

is

‖X‖2 =

N−1
2∑

k=1

I (λk) .

Also, note that the Periodogram is an unbiased estimate of the spectral density function where,

2πf (λk) = I (λk) .

(Brockwell [6], pp.120,322)
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Given the preceding methods of calculating the spectral density function and Periodogram, the

MLE for H can now be calculated. Recall,

L (H) =

ˆ π

−π

I (λ)

f (λ,H)
dλ+

ˆ π

−π
log f (λ,H) dλ, λ ∈ [−π, π] .

This function is symmetric about λ = 0. Additionally, since there is no closed form for the spectral

density function, integration of L (H) must be approximated numerically using Riemann sums.

Therefore, the Likelihood approximation is given by

L (H) =
1

π

2π

N

N−1
2∑
j=1

I (λj)

f (λj , H)
+

2π

N

N−1
2∑
j=1

log f (λ,H)

 .
The term

´ π
−π log f (λ,H) dλ is a normalization of f (λ,H). According to Taqqu et al. [52], if we

normalize f (λ,H) and call the normalized function f∗ (λ,H), then
´ π
−π log f (λ,H) dλ = 0. This

is the equivalent to f∗ (λ,H) = βf (λ,H) where β is a constant which does not depend on the

other parameters. If f (λ,H) is normalized then,

L∗ (H) =

ˆ π

−π

I (λ)

f (λ,H)
dλ ≈ 2

N

N−1
2∑
j=1

I (λi)

f∗ (λ,H)
.

Minimization of L (H) with respect to H yields the MLE estimate for the Hurst index:

min
H

L∗ (H) = Ĥ.

Additionally, Whittle showed that the first term in the objective function is an estimator for the

variance of the stationary Gaussian process. Specifically he shows that the MLE of the fractional

Gaussian noise process is

1

2π

ˆ π

−π

I (λ)

f (λ,H)
dλ = σ̂∆t2H .

(Brockwell [6], pp.472-473)

It can be shown that L∗ (H) is a convex function. Therefore, to find the global minimum

numerical, gradient methods like the golden section method can be efficiently applied to optimize

over H. Additionally, since this is an approximation of the MLE, it can be shown that this

estimate is unbiased (Brockwell [6], pp.472-473). In essence, Whittle’s MLE finds the minimum
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orthogonal distance between the decomposition of the estimated variance (using the Periodogram)

and the decomposition of the known variance of fGn (using the spectral density representation

of fGn) at each Fourier frequency. Whittle’s method is an approximation of the MLE because

both the spectral density function for fGn and the integrals of the Likelihood equation are

approximated using Riemann sums. The computation of L (H) is O
(
N−1

2 logN
)
where N is the

length of the times series, however the minimization complexity is unknown and depends on the

optimization tolerance. (Brockwell [6], pp.249, 471-474)

Taqqu et al. [52]stress that a major advantage of the Whittle’s estimator is the ability to

derive its convergence in distribution to the true Hurst parameter. It can be shown that

√
N
(
Ĥ −H

)
→ Z

√√√√2

[
1

2π

ˆ π

−π

(
d

dH
log f∗ (λ,H)

)2

dλ

]−1

, as N →∞.

Taqqu et al. [51] empirically show that the Whittle Approximate MLE is far superior (in

terms of mean square error and average deviation) to the existing techniques for estimating the

Hurst index. Additionally, the variance or scale of the process can be computed at the same

time. Whittle’s estimator is asymptotically unbiased and normally distributed, however it comes

at a price. The algorithm can take considerable time because the spectral density function must

be recomputed at each iteration of the optimization algorithm. In §3.2.5 and Appendices I,II,

and III we compare the computational time and accuracy of Whittle’s estimates to techniques

developed in this chapter using ergodic theory for stationary processes.

3.1.2 Peng’s Variance of Residuals

Peng et al. [39] derive a Hurst index estimator based on aggregate blocks of size m, where within

each block a partial sum of fGn {Xi}Ni=1 is defined as Y (t) =
∑t
i=1Xi. Peng proves that if a

least-squares line, α+ βt is fit to the partial sums within each block then the sample variance of

the residuals,

1

m

m∑
t=1

(Y (t)− α− βt)2 d∼ m2H , as m→∞.

Therefore the sample variance of residuals is computed for each block, and its mean (or

median) is obtained over the N/m blocks. A linear least-squares line is then fit to the log-log

plot versus m, where the slope theoretically converges to 2H. The median is typically used with
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cutoffs on m such that m ∈
[
100.7, 102.5

]
. (Taqqu [52], pp.190)

3.2 New Estimators of the Hurst Index Using Ergodic The-

ory

In this section we introduce three new consistent estimators of the Hurst index for fractional

Brownian motion (fBm) using ergodic theory for stochastic processes. We derive closed form

solutions for the estimators that are computationally fast and accurate. These new estimators

allow for the estimation of the parameters of a fractional Wiener process with unknown and con-

stant drift, scale and Hurst index. Robustness of these estimators is also explored. Using Monte

Carlo simulation, we perform an empirical study of the ergodic estimators, Peng’s Variance of

Residuals Method [39] and Whittle’s approximate MLE [56, 4]. Our study demonstrates that the

ergodic estimators outperform Peng’s method and are very competitive to Whittle’s estimates

in terms of RMSE. We demonstrate the versatility of the ergodic estimation techniques to ac-

commodate different data structures; i.e. standard fractional Brownian motion or a fractional

Wiener process with unknown drift and scale.

3.2.1 Introduction

Modeling with fractional Brownian motion (fBm) requires reliable estimation of the Hurst in-

dex. Applications in finance, biology or network flows often require both speed and accuracy

in parameter estimation for small samples in order to facilitate dynamic decision making and

risk management. Fractional Brownian motion’s weak derivative (or increments) with respect to

time is known as fractional Gaussian noise (fGn). The self-similar and stationary properties of

fractional Gaussian noise make the process a perfect candidate for the use of ergodic theory to

estimate parameters influencing the behavior of these models.

Taqqu et al. [51] gives a summary of several previously proposed estimators of the Hurst index

and estimates their relative accuracy for large sample sizes via Monte-Carlo simulations. These

estimators typically are derived using the properties of the behavior of the spectral density of

fBm, estimated through a Periodogram. Other simpler methods take advantage of the asymptotic

behavior of the process in the time domain. The ergodic estimators of the Hurst index for fBm

introduced in this paper are shown to be competitive to the top performers in Taqqu’s paper in
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terms of both RMSE and computational time.

3.2.2 Ergodic Estimators for the Hurst Index

We start by estimating the Hurst index for fractional Brownian motion using an L2 norm cal-

culation. We expand on this method by considering a more realistic model where the fractional

Brownian motion process (fBm) is subject to unknown scale and drift. Throughout this section

we will use the notation
(
WH
i

)N
i=0

to represent a discrete realization of N + 1 observations of a

fractional Brownian motion process with Hurst index H.

The new estimators introduced in this chapter are all a result of the ergodic theory for

stationary processes. According to ergodic theory, a stationary process is a collection (ξn)n∈Z

of random variables with values in some measure space (X,B) such that the joint distribution

of (ξn1 , ξn2 , . . . , ξnk) is the same as (ξn1+n, ξn2+n, . . . , ξnk+n) for every choice of k ≥ 1 and

n, n1, n2, . . . , nk ∈ Z. Assuming that the space (X,B) is reasonable and Kolmogorov’s consistency

theorem applies, there exists a measure P on the countable product space Ω of sequences {xn}n∈Z
with values in X, defined for sets in the product σv-field F . On the space Ω there is the natural

shift defined by (Bω) (n) = xn+1 for ω with ω (n) = xn. If we consider the space Ω, a σv-field, a

one-to-one invertible measurable map B : Ω→ Ω with measurable inverse B−1 and a probability

measure P on (Ω,F) that is B-invariant where P
(
B−1A

)
= P (A) for every A ∈ F , then P is

an invariant measure for B and B is a measure-preserving transformation for P . It there exists

a measurable map from ξ : (Ω,F)→ (X,B), then it is easily seen that ξn (ω) = ξ (Bnω) defines

the stationary stochastic process.

Ergodic theorem states that for any Borel function f ∈ Lp (P ) , 1 < p <∞ the limit

lim
n→∞

f (ω) + f (Bω) + . . .+ f
(
Bn−1

ω
)

n
= g(ω)

exists almost surely (B is a linear transformation commonly known as the backward shift oper-

ator); additionally, the function g ∈ Lp. Moreover g (ω) is given by the conditional expectation

g (ω) = EP [f |E ](ω), a.s.

where the invariant σv-fieldE is defined as

E≡{A : BA = A}.
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(Varadhan [55], pp.131-132)

By definition 2.10,
(
WH
i+1 −WH

i

) d
= Ni

(
0,∆t2H

)
, where ∆t is a constant unit of time between

WH
i+1 and WH

i . Let X =< WH
1 −WH

o ,W
H
2 −WH

1 ,WH
3 −WH

2 , . . . ,WH
N −WH

N−1, · · · > and f be

any Borel function with E
[
f
(
WH

1

)]
<∞, then since X is stationary and ergodic sequence

1

N

N∑
i=0

f
(
WH
i+1 −WH

i

)
→E

[
f
(
WH

1 −WH
o

)]
almost surely (a.s.), since the fGn process.

3.2.2.1 Ergodic Theory and Hurst Index Estimation

Let us set f(x) = |x|k, k ∈ R+. By ergodic theory and properties of fGn, we have

1

N

N−1∑
i=0

∣∣WH
i+1 −WH

i

∣∣k → E[WH
1 ]k, a.s. (3.1)

and since the increments of fGn are Gaussian

E[WH
1 ]k = ∆t2H

[
2k/2Γ

(
k+1

2

)
Γ
(

1
2

) ]
.

Note that the use of the kth moment for estimating the Hurst index is not the result of the

maximum likelihood estimation (MLE) formulations. Ergodic theory gives us no information

about the bias of the estimate. If we are given any realization of a fractional Brownian motion

time series (Wi)
N
i=0, we can apply ergodic theory to estimate the Hurst index by using the second

moment of a normal distribution. Solving for H, we obtain:

Ĥ =
log
{

1
N

∑N−1
i=0

(
WH
i+1 −WH

i

)2}
2 log(∆t)

. (3.2)

Peltier [?] shows (through the use of box dimension analysis) that absolute moment estimators

of the Hurst index all perform well. However the second moment yields the most accurate

estimators in terms of RMSE. In §3.2.5.1, we give numerical results in which we compare the

“Second Moment” method to Whittle’s approximate MLE and Peng’s Variance of Residuals

method. We empirically demonstrate that the ergodic estimator using the second moment is

superior to Whittle’s method in terms of RMSE and far better in terms of computational time,

however this method can only be used when the scale and location of the fBm process are known.
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3.2.3 Parameter Estimation in a Fractional Wiener Process

Real world data does not follow a standard fBm model. In this section we derive methods to

estimate the Hurst index when the fBm is not standard, but is influenced by unknown scale and

drift. Let {Xi}Ni=1 be a fractional Wiener process that is Xi ≡ µ∆t + σ
(
WH
i+1 −WH

i

)
. Since

Xi
d
= Ni

(
µ∆t,σv2(∆t)2H

)
, an estimate of the drift μ can be found using ergodic theory as

µ̂ =
1

N∆t

N∑
i=1

Xi →
E
[
N
(
µ∆t, σ2 (∆t)

2H
)]

∆t
(3.3)

We can use the location estimate to obtain a scaled fractional Gaussian noise process, Xi−µ̂Δt =

σv
(
WH
i+1 −WH

i

)
. In the next sub-sections, we introduce new ergodic estimators of the the Hurst

index when fGn is influenced by an unknown scale σv.

3.2.3.1 Ratio of Second Moments Method

If fBm is only affected by a scale factor, the second moment converges by ergodic theory to

σv
2(Δt)2H :

SS1≡
1

N

N−1∑
i=0

σ2
(
WH
i+1 −WH

i

)2 → σ2(Δt)2H . (3.4)

If we form stationary processes on disjoint sets of length 2Δt, then we can once again use the

ergodic second moment to define two estimates; one formed from the even increments and the

other from the odd increments:

SSeven≡
1

bN/2c

bN/2c−1∑
i=0

σ2
(
WH

2i+2 −WH
2i

)2 → σ2(2∆t)2H ,

SSodd≡
1

bN/2c

bN/2c−1∑
i=0

σ2
(
WH

2i+3 −WH
2i+1

)2 → σ2(2∆t)2H .

To reduce the error of the σv2(2Δt)2H estimate, and utilize all information available in the

time series, the even and odd estimates are averaged. Both the even and the odd estimators use

the data set and thus these two estimators have the same variance. Therefore, the average of

theses two estimators reduces the variance and bias:

SS2≡
SSeven + SSodd

2
→ σ2(2Δt)2H . (3.5)
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Notice that for a fractional Wiener process, the second moment estimator converges to

E
[
X2
i

]
= µ2(∆t)2 + 2µ∆tσE

[
WH
i+1 −WH

i

]
+σ2E

[(
WH
i+1 −WH

i

)2]
= µ2 (∆t)

2
+ σ2 (∆t)

2H
.

Additionally, when ∆t is small μ2(Δt)2 � σv2(Δt)2H , if µ is comparable to σ in magnitude.

Therefore, when estimating E
[
X2
i

]
with small Δt, an estimate of μ may not be needed. In this

situation the term μ2(Δt)2 would contribute to the error ε of the estimate and we can proceed

using equation 3.5 directly, where

E
[
X2
i

]
= σv2(Δt)2H + ε.

Note that even if Δt � 1, as H increases the magnitude of σv2(Δt)2H relative to the error ε

becomes closer. Taking a ratio of the two moments SS1 (equation 3.4) and SS2 (equation 3.5)

the scaling and time factors cancel and we obtain:

SS2

SS1
= 22H =⇒ Ĥ =

log
(
SS2

SS1

)
2 log(2)

.

This estimator of H is based on the ratio of two second moments, therefore we refer to this

method as the “Ratio method”. The Ratio method’s estimate of H can be applied in equation

3.4 to estimate the scale influence the fractional Wiener process, σ̂v:

σ̂ =

√
SS1

(∆t)
2Ĥ

In §3.2.5.2 we show the results of Monte Carlo simulations of a fractional Wiener Process to

evaluate the performance of the Ratio method estimator. It should be noted that application of

this method on real data requires filtering of any identifiable outliers or jumps, since a large jump

will skew SS1 and SS2 and therefore bias the estimation of the Hurst index. The Ratio method

is sensitive to these types of anomalies in data, as discussed in §3.2.4. The error in the Ratio

method’s estimates of H and σv are highly correlated, which is evident from the method used.

The same kind of estimators can be derived using different combinations of the higher moments

in equation 3.1 to estimate the Hurst index for a fractional Wiener process. These estimators
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can be shown to be equivalent to or worse than the Ratio method.

3.2.3.2 Quadrant Method

In this section we introduce an estimator which is more robust to outliers and jumps and which

(unlike the Ratio method) does not depend on σv. Let us consider a fractional Wiener process

with no drift (μ=0),

Xi = σ
(
WH
i+1 −WH

i

)
.

Note that the process {Xi}Ni=1 is mean zero. If the data set being analyzed has drift, an

estimate of drift will need to be made using equation 3.3.
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Figure 3.2: PDF Xi+1 vs. Xi

Two consecutive observations of fGn are normally distributed with Pearson’s correlation co-

efficient ρ = 22H−1 − 1. A 2-D plot of consecutive random observations of fGn is shaped like

an ellipse (or a circle when H = 1/2 ) at a constant probability level. The Hurst index of the

process (and the probability level) directly dictates the length of the axes of the bi-variate normal

distribution (see Figure 3.2). The shape of the ellipse (or in this case the relative density in any

particular quadrant of the 2-D plot) can be used to estimate the Hurst index. The major axis

of the ellipse is always at ±π4 with respect to the positive or negative auto-correlation of the

process, respectively.

Let us define a new process (Zi)
N
i=1 by

Zi ≡ sgn (Xi) sgn (Xi+1) ,
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where sgn (x) = 1 if x > 0, and sgn (x) = −1 if x < 0, and sgn (x) = 0 if x = 0.

The signum function only sees sign and not magnitude of Xi, therefore σv does not affect the

estimation of H. To estimate the Hurst index we need to compute the expected value of the

process Zi. This can be accomplished using ergodic theory. Notice,

E [Zi] = E

 Xi√
X2
i

Xi+1√
X2
i+1

 .
Since {Xi} is a scaled fractional Gaussian noise, it is normally distributed with mean zero and

variance σv2Δt2H , with correlation between Xi and Xi+1 given by ρ = 22H−1 − 1, therefore, the

1
N

∑N
i=1Xi converges to

E [Zi] =
1

2πD1/2

ˆ ∞
−∞

ˆ ∞
−∞

xy

|x||y|
e−

1
2D (x2−2xyr+y2)dx dy, (3.6)

where D = (1−ρ2). Analytically, the expected value (equation 3.6) is the same as the probability

that two consecutive observations of fractional Gaussian noise (Xi and Xi+1) are in the same

quadrants of a two dimensional graph of Xi verses Xi+1. Each Z results in four outcomes. We

refer to this technique as the “Quadrant method.” Equation 3.6 becomes,

E[Zi] = P (X ≥ 0, Y ≥ 0) + P (X < 0, Y < 0)

−P (X ≥ 0, Y < 0)− P (X < 0, Y ≥ 0) .

Utilizing the symmetry of the two dimensional Gaussian distribution,

E [Zi] = 2 ∗ P (X ≥ 0, Y ≥ 0)− 2 ∗ P (X ≥ 0, Y < 0) . (3.7)

Let u = x√
D

andv = y√
D

then,

E [Zi] =

√
D

2π

ˆ ∞
−∞

ˆ ∞
−∞

uv

|u||v|
e−

1
2 (u2−2uvr+v2)du dv,

and equation 3.7 becomes,

E [Zi] = 2
√
D [P (U ≥ 0, V ≥ 0)− P (U ≥ 0, V < 0)] .

The first term in equation 3.7 yields
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P (U ≥ 0, V ≥ 0) =
1

2π

ˆ ∞
0

ˆ ∞
0

e−
1
2 (u2−2uvr+v2)du dv

=
1√
2π

ˆ ∞
0

1√
2π

ˆ ∞
0

e−
1
2 (u−vr)2

du e−
1
2 (v2−ρ2v2)dv.

Let x = u− vρ, then

P (U ≥ 0, V ≥ 0) =
1√
2π

ˆ ∞
0

1√
2π

ˆ ∞
0−vρ

e−
x2

2 dx e−
1
2 (v2−ρ2v2)dv,

=
1√
2π

ˆ ∞
0

Φ (vρ) e−
1
2 (v2−ρ2v2)dv.

where Φ (vρ) = P (N (0, 1) < vρ). Substituting y = vρ,

P (U ≥ 0, V ≥ 0) =
1√
2πρ

ˆ ∞
0

Φ (y) e
− y

2

2

(
1−ρ2

ρ2

)
dy. (3.8)

If

I(α) ≡
ˆ ∞

0

Φ (αy) e
− 1

2y
2
(

1−ρ2

ρ2

)
dy, (3.9)

then,

∂I(α)

∂α
=

1√
2π

ˆ ∞
0

ye−
1
2α

2y2

e
− 1

2y
2
(

1−ρ2

ρ2

)
dy.

Substituting x = y2

2 ,

I
′
(α) =

1√
2π

ˆ ∞
0

e
−x
(
α2+

(
1−ρ2

ρ2

))
dx

=
1

√
2π
(
α2 +

(
1−ρ2

ρ2

)) .
Therefore,

I(α) =
ρ√

2π (1− ρ2)
arctan

(
αρ√
1− ρ2

)
+ C. (3.10)

To solve for C we utilize equation 3.9 with α = 0,

I(0) =

ˆ ∞
0

1

2
e
− 1

2y
2
(

1−ρ2

ρ2

)
dy.
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Substituting x = y

√(
1−ρ2

ρ2

)
,

I(0) =
1

2
√

1−ρ2

ρ2

ˆ ∞
0

e−
1
2x

2

dx ⇒ I(0) =

√
2π

4
√

1−ρ2

ρ2

.

Equating equation 3.9 and equation 3.10 with α = 0,

C =

√
2π

4
√

1−ρ2

ρ2

.

The function I(α) becomes,

I(α) =
ρ√

2π (1− ρ2)
arctan

(
αρ√

(1− ρ2)

)
+

√
2πρ

4
√

(1− ρ2)
. (3.11)

Substituting equation 3.11 with α = 1into equation 3.8 yields

P (X ≥ 0, Y ≥ 0) =
1

2π
arctan

(
ρ√

1− ρ2

)
+

1

4
. (3.12)

A similar procedure can be used with minor changes to find the second term in equation 3.7

which can be shown to be,

P (X ≥ 0, Y < 0) = − 1

2π
arctan

(
ρ√

1− ρ2

)
+

1

4
. (3.13)

Substituting equation 3.12 and equation 3.13 and D into equation 3.7, the expected value of Zi

is obtained,

E [Zi] =
2

π
arctan

(
ρ√

(1− ρ2)

)
(3.14)

=
2

π
arcsin (ρ) .

This expected value can be used to estimate both the correlation and the Hurst index. Solving

equation 3.14 for ρ we obtain estimates,

ρ̂ = sin
(π

2
E [Zi]

)
.

Since ρ = 22H−1 − 1 then we obtain the ergodic “Quadrant method” estimator for H,
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Ĥ =

log(ρ̂+1)
log(2) + 1

2
.

Computationally, this algorithm is very fast and fairly accurate (see §3.2.5 for numerical

results). The major advantage of this method is that estimates are not largely affected by

outliers, since the magnitude of the observed values does not disproportionately influence the

estimator. This means the Quadrant method is robust to data that may not perfectly follow

a fractional Wiener process, see §3.2.4.3. An ergodic estimator of H can also be derived using

constant volume ellipsoids for the function E [XiXi+1]. The derivation of this statistic is very

similar to the Quadrant method derivation, however it requires the use of a non-linear mixed

integer optimization method.

Remark 3.1. The Quadrant and Ratio methods were designed such that an estimate of the

scale is not required. Recall, that the Ratio method actually takes the ratio of two estimates

of the variance and then divides to eliminate the scale affecting the process. However, taking

the ratio of two estimates results in an increase in the error, since both estimates are correlated.

This is why the ergodic Second moment method (which is related to the Ratio method) gives

much better estimates when the scale is known. Both the Quadrant and the Ratio methods

allow for the estimation of the scale of the process by computing the ergodic Second moment,

which converges to σv2Δt2H . The Ratio method requires no extra computations to perform this

step, since the ergodic Second moment is already incorporated in the calculation. However, the

Quadrant method requires a separate calculation to find the estimates of the scale parameter.

This is not particularly a disadvantage for the Quadrant method since it utilizes two very different

estimates to find Ĥ and σ̂. Empirical studies indicated that the errors of Ĥ and σ̂ are much

less correlated than if the Hurst index is estimated using the Ratio method. This is because the

Ratio method’s estimation of σv uses information that it already incorporated in the estimation

of H. Whittle’s MLE allows for the simultaneous estimation of σv and H. The estimation of H is

unaffected by any drift in the process since the optimization is unaffected by any scalar addition.

Just like in the ergodic Ratio method, Whittle uses the estimate of H to find the scale of the

process, and therefore is also affected if Δt is not small.
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3.2.4 Robustness of Hurst Index Estimators

Robust statistics is the stability theory of statistical procedures. Statistical inferences are in

part, even in the simplest cases, based on observations. Estimation of a statistic (or statistical

tests for properties) lend themselves to explicit or implicit assumptions about the distribution of

data, the relationships between observations (i.e. independence), and or the behavior of the real

world. Assumptions are necessary to gain insight into the behavior or properties of observations.

However, these assumptions are never supposed to be exactly true, but a small deviation from a

mathematical model should only result in a small error in the final conclusions of any statistics.

The purpose of “Robust Statistics” is to investigate the sensitivity of an inference to deviations

from model assumptions. An inference that is insensitive to small deviations from the assumptions

is called “Robust”. I this section we investigate the robustness of the new ergodic estimators and

compare them to the robustness of Whittle’s approximate MLE and Peng’s variance of residuals

estimators.

The “Influence Curve” is a way to evaluate the sensitivity of an estimator to one contami-

nating point and therefore understand the “local robustness” of the estimators when the rest of

the observations are assumed to come from the true distribution (Huber [22], pp.14); fGn is a

Gaussian process with mean zero, variance (∆t)
2H and covariance

E [XiXj ] =
(∆t)

2H

2

(
|i− j + 1|2H + |i− j − 1|2H − 2 |i− j|2H

)

where ∆t is a known constant and Xi = WH
i+1 −WH

i . In this section we create and compare

influence curves for various estimators of the Hurst index. The influence curves IC (x,H) are

generated with contaminating values of x = k (∆t)
H
, k ∈ [−3, 3] for H = 0.1, . . . , 0.9. Since

the true distribution of the data is assumed to be normally distributed, this is equivalent to

the contaminating observation falling within an interval of three sigma. The graphs are all

generated with ∆t = 1/252 and a sample size n = 156, therefore we see the influence of the

157th observation. A summary of the sensitivity of the Hurst estimators to a single contaminator

x = ±3 (∆t)
H appears in Figure 3.3.
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Figure 3.3: Robustness Summary

3.2.4.1 Influence Curve for the Second Moment Method

In the Second Moment method estimator, the addition of one extra term, x, in the series causes

a change to the estimation of the Hurst index of:

Hn+1 =
log
[
n(∆t)2Hn+x2

n+1

]
2 log(∆t)

This gives the empirical influence function

IC(x,H) = Hn+1 −Hn =
log
[(

1
n+1

){
n+ x2

(∆t)2Hn

}]
2 log(∆t)

.
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Figure 3.4: Influence Curve: 2nd Moment Method

In Figure 3.4 we see that a contaminating point that is within three sigma of the true distri-

bution has a maximum influence of ±4x10−3 for all Hurst values. Given the scale, the influence

curve for the Second Moment method is relatively flat over a ±3σ range of values of x. Addi-

tionally, the maximum of the influence curve occurs at a height of log
(

n
n+1

)
/2 log (∆t) ≥ 0,

∆t < 1.

3.2.4.2 Influence Curve for the Ergodic Ratio of Second Moments Method

The influence curve for the Ratio method estimator is similar to the Second Moment method in

that it is a function of two Second Moments:

Hn =
log
[
SS2,n

SS1,n

]
2 log(2)

,

where

SS2,n =

∑n−1
i=1 (Xi+1 +Xi)

2

n− 1

SS1,n =

∑n
i=1 (Xi)

2

n
.

Since the influence curve is derived assuming that none of the {Xi}ni=1 deviate from the true
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distribution, we know that SS1,n = σ2 (∆t)
2Hn and SS2,n = σ2 (2∆t)

2Hn . Notice that SS1,n is

the same as the ergodic Second Moment method, and therefore if we add one more term in the

sequence, x, then we have

SS1,n+1 =
nSS1,n + x2

n+ 1
.

The term SS2,n+1 is the same as the ergodic Second Moment method with half the sample

rate, however to compute the influence of the contaminator, x, we need to consider the location

of this extra observation. If the observation is at the beginning or the end of the sequence, it only

affects the estimate in one term (notice in the formula for S2,n that the terms X1 and Xn are only

counted once, while all other Xi, 2 ≤ i ≤ n− 1 appear in two terms of (Xi+1 +Xi)
2. Therefore,

to see the maximum influence of an additional observation, we need to place the contaminating

observation somewhere in between the first and last. Without loss of generality, we can place it

right before the last observation, giving the sequence {X1, X2,..., Xn−1, x,Xn}. Therefore,

SS2,n+1 =
(n− 2)SS2,n + (x+Xn−1)2 + (Xn + x)2

n
.

Since Xi and Xi+1 come from the true distribution,

E
[
(x+Xn−1)2 + (Xn + x)2

]
= 2σ2 (∆t)

2Hn + 2x2.

In this framework x is treated as a constant. Therefore, since the estimator

E [SS2,n] = σ2(2∆t)2Hn ,

the expected influence of x has the form:

IC(x,H) = log

[(
n+ 1

n

)(
(n− 2)σ2(2∆t)2Hn + 2σ2(∆t)2Hn + 2x2

nσ2(∆t)2Hn + x2

)]
/2 log(2)−Hn.

When σ2 = 1, then we obtain the influence curves in Figure 3.5.
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Figure 3.5: Influence Curve: Ratio Method

Figure 3.5 shows that the Ratio method’s influence curve changes concavity when the process

changes from long to short range dependence. The Ratio method has more sensitivity than

the ergodic Second Moment for all Hurst values. The contaminating point’s influence on the

estimator increases as the Hurst index get further away from H = 0.5; more sensitivity occurs

when the process has negative auto-correlation.

3.2.4.3 Influence Curve for the Ergodic Quadrant Method

Given the fractional Wiener process, {Xi}ni=1, the Hurst index estimator using the Quadrant

method is a function of the statistic

Tn =

∑n−1
i=1 sgn(Xi)sgn(Xi+1)

n− 1
.

The correlation of normals is then estimated by

ρn = sin(
π

2
Tn).

Lastly, the Hurst index is computed

Hn =

(
log(2ρn+2)

log(2)

)
2

.
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In order to compute the influence curve, we need to understand the estimator T . Once again

to get the maximum contribution of an additional observation, we need to place the observation

between the first and last Xi. If we place the contaminating data point, x, in the sequence as

before {X1, X2,..., Xn−1, x,Xn}:

Tn+1 =
(n− 1)Tn + sgn(Xn−1)sgn(x) + sgn(x)sgn(Xn)

n

The property of the signum function yields only three results, none of which are dependent

on the magnitude of the contaminant, but only on the sign of the new observation and the sign of

the immediately adjacent observations. This is because the Quadrant method attempts to find

momentum in the time series. The function, T , looks for long term tendencies of the time series

in a particular direction. The different outcomes are given in the following matrix.

sgn(Xn−1)sgn(x) + sgn(x)sgn(Xn) x ≥ 0 x < 0

Xi ≥ 0, Xi+1 ≥ 0 1 + 1 = 2 −1− 1 = −2

Xi ≥ 0, Xi+1 < 0 1− 1 = 0 −1 + 1 = 0

Xi < 0, Xi+1 ≥ 0 −1 + 1 = 0 1− 1 = 0

Xi < 0, Xi+1 < 0 −1− 1 = −2 1 + 1 = 2

Therefore,

Tn+1 =



(n−1)Tn−2
n with probability 1

4

(n−1)Tn
n with probability 1

2

(n−1)Tn+2
n with probability 1

4

.

If all observations came from the true distribution, then

E [T ] =
2

π
Arctan

 22H−1 − 1√
1− (22H−1 − 1)

2

 .

Therefore we can substitute the true statistic E [T ] for Tn to show the expected influence of

the contaminating term, x, on Hn+1. Performing this substitution, the influence curve can either

be constant (when the contaminating point adds zero to the estimate of Tn+1) or the curve is ± a

constant, with jumps left and right of the center (when the contaminating point adds ±2/ (n+ 1)

to the estimate of Tn+1).
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Figure 3.6: Influence Curve Decomposition: Quadrant Method

Note that the right graph in Figure 3.6 will always have an influence curve that jumps in the

same pattern, (down on one side and up on the other or vise-versa). The jump pattern depends

on the sign of the observations immediately adjacent to the contaminating point x. The analysis

above shows that the short range dependent process
(
H < 1

2

)
has much more sensitivity to the

contaminating observation than the long-memory process
(
H > 1

2

)
.
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Figure 3.7: Influence Curve: Quadrant Method

In figure 3.7 we can see the expected influence curve for the Quadrant method’s Hurst index

estimator shows the extreme robustness to the size of the contaminating point. The Quadrant

method is the most robust method discussed in this chapter.
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3.2.4.4 Influence Curve for the Whittle’s Approximate MLE and Peng’s Variance

of Residuals

Whittle’s approximate MLE is calculated by minimizing the log ratio of the Periodogram

(calculated from data) and the theoretical Spectral density function for fGn. The computation of

the Spectral density function for fGn requires a truncated infinite sum (or linear approximation).

Additionally, to calculate the estimates of the Hurst index, we need to numerically optimize

a convex objective function. Whittle’s objective function gives an estimator of the variance

affecting the process, σ2(∆t)2H , at the optimal solution. This is accomplished using the Golden

Section method.

To compute the influence curve we need to understand the influence curve of the Periodogram,

which coupled with the optimization over the spectral density, complicates this calculation to an

intractable degree since it is necessary to compute the contribution of the contaminant, x, for all

n/2 Fourier frequencies. We have to resort to another way to evaluate the influence of x. One

way to generate the influence curve is to use Monte-Carlo simulation.
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Figure 3.8: Influence Curve: Whittle’s Approx. MLE

In Figure 3.8 we can see the average influence curve for Whittle’s method. These curves

were generated by simulating 500 replications of fractional Gaussian generated noise using the

Durbin-Levinson algorithm with N = 156 observations. The Hurst index was then estimated via

Whittle’s algorithm, then the observation x was placed at position n/4. This created another
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sample with n = 157 observations, which was used to estimate the Hurst index for the same

x values used in the ergodic estimator influence curves. The estimated value of Hn for each

replication was then subtracted from the estimate Hn+1, giving the influence curve. These

500 replications for each H = 0.1, . . . , 0.9 were then averaged for each value of x to produce

the average influence curves above. Whittle’s method does not appear to be locally robust for

H < 1
2 , while it is more robust when H ≥ 1

2 . While there does not seem to be any literature on

the influence curve of Whittle’s method, Taqqu [53] on page 724 recognizes that

“it is a parametric model in that it assumes the spectral density of the series is know

with the exception of a few parameters, which are to be estimated. This assumption

allows for very precise estimation when the series being examined fits the assumed

model exactly. If, on the other hand, the actual series is not of the exact form specified

in the model, the parametric estimators may give incorrect results.”

In his paper, Taqqu discusses different techniques that have been developed to robustify Whittle’s

Approximate MLE. One such technique smooths out the higher frequencies in the data. The noise

typically present in real data occurs at higher frequencies. This noise can skew the values of the

spectral density function, resulting in a biased Hurst index estimate. The fact that there are at

least four different methods that have been developed to robustify Whittle’s MLE, indicates that

this estimator may not be robust enough for certain real data sets. Taqqu [53] shows how each one

of these robustified Whittle estimators changes for a given set of Ethernet data. Our simulations

indicated that on average, a given contaminating point results in slightly worse deviations in

Whittle’s Approximate MLE than the ergodic Ratio method for all Hurst index values except

H = 0.3, 0.4 and 0.5.

Peng’s Variance of Residuals method estimates the Hurst index from the errors of a linear

regression on a log of aggregated variance calculations. We perform a Monte-Carlo simulation in

the same fashion as in the influence curve for Whittle’s estimator.
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Figure 3.9: Influence Curve: Variance of Residuals

In Figure 3.9 we can see the average influence curve for Peng’s Variance of Residuals method.

Notice that this method is more robust (on average) to a single contaminating value when H ≥ 1
2 .

Its influence curve for these Hurst values is comparable to the Ratio method’s influence curve.

When H < 1
2 , this method is the least robust (on average) out of the new estimators presented

in this chapter.

3.2.5 Simulation Study of the Performance of Estimators

In this section, we compare via Monte Carlo simulation, the performance of the newly introduced

ergodic estimators of the Hurst index to Whittle’s approximate MLE and Peng’s Variance of

Residuals estimators. Taqqu et al. [51] presents an empirical study of many estimators of

the Hurst index in the same fashion. They show empirically that Whittle’s approximate MLE

estimator is the best estimator (of those tested) in terms of RMSE for a fBm time series. Their

study indicates that Peng’s Variance of Residuals method is the second best of the methods

tested.

Taqqu generated 50 sample paths of fGn each with a sample size of N = 10, 000 for H =

0.5, 0.6, 0.7, 0.8, 0.9 using Monte Carlo simulation (Durbin-Levinson algorithm). He computed the

sample mean, sample variance and RMSE of the Hurst index estimators for each technique. Using

the Durbin Levinson algorithm, we simulate 500 sample paths of fGn with length N = 10, 000

and Δt = 1/252. We extend the analysis for processes with both short range (H < 1/2) and

long range dependence (H > 1/2) by simulating H = 0.1, 0.2, . . . , 0.9 using Matlab®. For each
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H = 0.1, 0.2, . . . , 0.9 we used the method of common random numbers with the same seed to

generate 500 x 10,000 i.i.d. standard normal random variates for each set of paths. We increased

the number of sample paths (compared to Taqqu et al. [51]) in order to increase the accuracy of

our estimates of Root Mean Square Error (RMSE) and allow for the identification of significant

differences in the estimators (see §3.2.5.2).

We implemented Whittle’s algorithm using the spectral density approximation described by

Ledesma and Liu [27], and use n = 500 terms in the linear approximation of the spectral density at

each Fourier frequency. We found that even though Ledesma and Liu recommend n = 200 terms,

at least n = 500 terms are needed in the linear approximation due to the slow convergence rate of

the spectral density when H ∈ (0, 0.3). Ledesma’s recommendation was for H ≥ 1/2. A Golden

Section search algorithm is used to find the global maximum of Whittle’s approximate MLE

with a termination tolerance of 10−6 for the accuracy of the Hurst index estimate. The Golden

Section method is initialized to search for the optimum on H ∈ [0, 1]. The ergodic algorithms

do not require optimization and therefore are not constrained numerically on H ∈ [0, 1]. Peng’s

Variance of Residuals method is implemented for a minimum of 50 block sizes. Regression is

performed on block sizes between
[
100.5, 100.7

]
. The median of residuals at each block size is

used in the Hurst index estimator.

All computations were done using a Dell Optiplex 755 running Windows 7 with a 2.66 GHz

Intel Core 2 Duo and 3326MB of RAM . The total time to compute all 4500 (500 paths by 9

Hurst index values) estimates of the Hurst index for different sample sizes are shown in Figure

3.10.

Figure 3.10: Computational Time of Hurst Estimators

The power of closed-form representation of the ergodic estimators of the Hurst index can
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be seen by the magnitude of difference in computational time for all nine simulations; ergodic

estimators take seconds or less, while for large data sets Whittle’s approximate MLE can take

tens of hours. Whittle’s lengthy computational time is primarily due to the re-computation of the

spectral density function for each iteration of H in the optimization algorithm. Simple algorithms

like the Variance of Residuals method can also be seen to take significantly more computational

time than the ergodic methods.

3.2.5.1 Empirical Performance of Estimators

In this section we analyze the behavior of the estimators as the length of the fBm time-series

is reduced, giving insight into the convergence rate. Difference analysis is used to demonstrate

which estimators are more accurate. We provide a comparison of the various estimators for the

500 sample paths of fractional Brownian motion. Appendix I shows comparisons of the Hurst

index estimators from the 500 x 9 simulated fBm paths via box-plots. The boxes represent

the inter-quartile range (75 percent of the estimates fall in this range). The lines inside the

boxes indicate the mean of the non-outlier points. The plus signs show outlier points, which are

defined by values greater than the ‘whiskers’ length which is 1.5 times the distance outside the

inter-quartile range.
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Figure 3.11: RMSE Summary

Figure 3.11 shows a comparison of each method forN = 10, 000 data points in each time-series.

In Appendix III, we provide a breakdown of the sample bias
(
Bias(H, Ĥ) = mean

(
Ĥ −H

))
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and sample variance of the estimators since

RMSE(Ĥ) =

√
V ar(Ĥ) + (Bias(H, Ĥ))2.

The ergodic estimators have similar performance to each other in that they have little bias

for H ∈ [0.1, 0.8] and increased bias for H values closer to 0.9. The ergodic estimates have the

least standard deviation for H ∈ [0.5, 0.7] and higher deviation as H → 1. On the other hand,

the Whittle estimates seem to underestimate the Hurst index on average, with more error as

H → 0. This is due to the slow convergence rate of the spectral density function. If the linear

approximation of the spectral density is changed to include more terms, the accuracy of the

estimators at H = 0.1 will improve slightly because of the slow convergence rate of the spectral

density function, however this comes at the cost of computational time. We found that as H → 0,

the number of terms needed in the approximation of the spectral density explodes. However,

setting n = 500 or more seems to have little affect on the convergence of the Hurst estimators

when H ≥ 0.2. Whittle’s standard deviation increases as H becomes larger.

The simulation results show that the ergodic estimates are less biased for all values of H when

compared to Whittle’s estimates. It should be noted that while the Second moment method shows

superior performance to all other methods, it assumes that the drift and scale affecting the fBm

process are known. The other methods do not require this information to estimate the Hurst

index. In the other methods the drift μ = 0 and a scale σv = 1. These parameters are assumed

to be unknown in the estimation of the Hurst index. The Quadrant method gives accurate

estimates, however they are not as accurate as the Ratio method.

In the next sub-section we will see that the Quadrant method outperforms the Variance of

Residuals method for almost all sample sizes and almost all Hurst index values, however it is

not as accurate as Whittle’s approximate MLE. We also demonstrate that the Ratio method is

better than Whittle’s approximate MLE on smaller sample sizes for central values of the Hurst

index.

3.2.5.2 Difference Analysis and Numerical Convergence of Hurst Index Estimators

We use the various estimators discussed in this chapter to estimate the Hurst index on the

simulated paths of fGn and then compare the estimator’s absolute deviation using the paired

t-test. If we let,
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D = average
[∣∣∣Ĥ1 −HActual

∣∣∣− ∣∣∣Ĥ2 −HActual

∣∣∣]

σ2
D = V ar

[∣∣∣Ĥ1 −HActual

∣∣∣− ∣∣∣Ĥ2 −HActual

∣∣∣]
The confidence interval on the statistic D can be shown to be approximately,

D ± σDtα2 ,N−1. (3.15)

We use equation 3.15 to construct 99% confidence interval for testing the null hypothesis

H0 :
∣∣∣Ĥ1 −H

∣∣∣ =
∣∣∣Ĥ2 −H

∣∣∣
H1 :

∣∣∣Ĥ1 −H
∣∣∣ 6= ∣∣∣Ĥ2 −H

∣∣∣
The results of the analysis can be seen below in Figure 3.12. The inclusion of zero in the

confidence interval indicates that there is no significant difference in the estimators.
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Figure 3.12: Difference Analysis: Large Sample Size

The analysis in Figure 3.12 (left) indicates for N = 10, 000 that the Ratio method’s estimates

of H are significantly better than Whittle’s estimates on average when H = 0.1, and that there is

no significant difference between the estimators for H = 0.6, 0.7. Whittle’s approximate MLE’s

estimates are slightly better than the Ratio’s estimates for the H values between 0.2 and 0.6 and

significantly better for 0.8 and 0.9. Furthermore in Figure 3.12 (right), the Quadrant method is

shown to be statistically significantly more accurate than the Variance of Residuals method for

all Hurst index values except for H = 0.9, where there is no statistical difference. The superiority
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of the Quadrant method when compared to the Variance of Residuals method is fairly consistent

as sample size is decreased (see Appendix II). In Figure 3.13, the difference analysis is expanded

to estimates when the sample size (N) is reduced for the Ratio and Whittle estimators.
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Figure 3.13: Difference Analysis: Small Sample Size

Figure 3.13 shows the difference analysis for Whittle and Ratio method sample paths with

N = 156 (left) and 39 (right). The analysis indicates that the Ratio method produces more

accurate estimates on average for H (in terms of RMSE) than Whittle’s method for H > 0.6

and equivalent for H = 0.5 when N = 39 and 156. When N is increased to N = 625, the

Ratio method still yields estimates that are not significantly different than Whittle’s estimates

for values of H = 0.6, 0.7 and 0.8. It is not until N = 1, 250 that Ratio performs similarly to

Figure 3.12 and falls behind Whittle’s approximate MLE. Full details of the difference analysis

can be found in Appendix II. The results in Appendix II have also be confirmed via the Wilcoxon

signed-rank test.

The superior performance of the ergodic estimators for small sample size is a result of the

convergence rate of the estimators. Whittle’s approximate MLE converges at a rate of
√
N (Taqqu

et al. [53]) . Figure 3.14 provides a simulation based comparison of the numerical convergence

rates of the RMSE.
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Figure 3.14: Convergence of Hurst Estimators

Figure 3.14 (above) compares the convergence rates for selected H values. Notice that the

Ratio method performs similar to Whittle, while the Quadrant method requires N > 78 when

H ≥ 0.8. Full details can be found in Appendix III. Notice that the convergence rate for highly

auto-correlated processes (H = 0.2 andH = 0.8) are significantly slower for the ergodic methods.

The Ratio method performs similarly to Whittle’s method for H = 0.6 and 0.7.

3.3 Discussion of Results

In this chapter we have introduced three new methods of estimating the Hurst index using ergodic

theory. These methods have been shown to be comparable in performance to leading estimators

in terms of RMSE. Our empirical analysis shows the robustness and computational speed of

the ergodic estimators. The Second Moment method can be used for estimating the Hurst

index when there is known location and scale. This method has been shown to be equivalent
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to or more accurate than Whittle’s approximate MLE with a computational speed 104 faster

due to its simplicity. We have shown that the Ratio and Quadrant methods are consistent and

competitive estimators of the Hurst index for fractional Wiener processes. The Ratio method

becomes comparable to Whittle’s estimator for H ≥ 1/2 index for small sample sets (N ≤ 156

data points), while the Quadrant method is robust and still outperforms most methods available.

All methods introduced are statistically equivalent to or better than Peng’s Variance of Residuals

method (for most values of the Hurst index), the second best method reported in Taqqu et al.

[51].

The primary advantage of the ergodic estimators introduced in this chapter is the availability

of a closed-form solution for estimating the Hurst index. Methods like Whittle’s approximate

MLE require optimization algorithms which can take significant time to calculate. Simpler meth-

ods sacrifice accuracy for speed. The ergodic Ratio and Second Moment estimators have speed

and simplicity with little sacrifice of accuracy. Additionally, the ergodic estimators show supe-

rior relative performance on small sample sizes. These properties are important in such fields as

finance (Willinger et al. [57]) and network flow, where fractional Brownian motion models are

being used, and reliable and fast estimates of the Hurst index are needed for decision making

using small sample sizes.
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Chapter 4

Option Pricing and Fractional

Brownian Motion

4.1 Literature Review: Fractional Brownian Motion in Fi-

nance

Mandelbrot and Van Ness [33] observed that economics is “overwhelmingly devoted to sequences

of independent random variables, to Markov processes, and to other random functions having

the property that sufficiently distant samples of these functions are independent, or nearly so.

[However] empirical studies of random chance phenomena often suggest, on the contrary, a strong

interdependence to the total sample size.” Mandelbrot and Van Ness proposed the incorporation

of a Gaussian model with a “span of interdependence” between increments that is infinite. Man-

delbrot claimed that the fractional Brownian motion process (first introduced by Kolmogorov)

incorporates attributes that real world time series seem to portray. Consequently, fractional

Brownian motion has been used to model financial securities.

4.1.1 Pricing Models with Fractional Brownian Motion

The most popular topic in finance regarding fractional Brownian motion is its applicability to

stock returns and option pricing. Option pricing is motivated by the popular Black-Scholes-

Merton option pricing model, which assumes that stocks (St)t∈R+ follow the stochastic differential

equation
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dSt = St (µdt+ σdBt) , (4.1)

where Bt is a standard Brownian motion and drift µ and volatility σ are constants. Using Itô

calculus, the solution for the stochastic differential equation in 4.1 gives a geometric Brownian

motion which is of the form

St = S0e
µt− 1

2σ
2t+σBt , (4.2)

where S0 is the initial price of the security at time zero.

According to the Black-Scholes Option Pricing Theory, a European call option contract with

T time units until expiration and a strike price K has the price

C = S0Φ (d1)−Ke−rTΦ (d2) , (4.3)

where Φ represents the standard cumulative normal distribution function

Φ (x) =
1√
2π

ˆ ∞
−∞

e−
x2

2 dx,

d1 =
ln (S0/K) + rT + 1

2σ
2T

σ
√
T

,

and

d2 = d1 − σ
√
T =

ln (S0/K) + rT − 1
2σ

2T

σ
√
T

.

Sottinen [48] and Hu and Oksendal [21] replace the standard Brownian motion Bt with

fractional Brownian motion BHt in Equation 4.1

dSt = St
(
µdt+ σdBHt

)
. (4.4)

The stochastic differential equation given by Equation 4.4 cannot be solved using Itô calculus

since fractional Brownian motion is not a martingale (see 2.27). Instead, Hu and Oksendal [21]

use of Wick calculus yields the solution
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St = S0e
µt− 1

2σ
2t2H+σBHt , (4.5)

The call option pricing formula using fBm is computed to be

C = S0Φ (d1)−Ke−rTΦ (d2) , (4.6)

where

d1 =
ln (S0/K) + rT + 1

2σ
2T 2H

σTH
,

and

d2 = d1 − σTH =
ln (S0/K) + rT − 1

2σ
2T 2H

σTH
.

Replicating portfolios and self-financing representations have been derived for fractional Brow-

nian motion, however, unlike in the Brownian motion model, there is no economical or analytical

interpretation the self-financing strategy in Wick calculus. Without these representations, mod-

ern pricing theory yields no direct method to hedge risks (or properly capture arbitrage oppor-

tunities), and create replicating portfolios of financial derivatives over time. (Hu and Oksendal

[21])

Fractional Brownian motion has also been suggested to model interest rate fluctuations in

short rate bond models. One commonly used bond pricing model is based on the Ornstein-

Uhlenbeck (O-U) process, which takes the form

drt = θ (µ− rt) dt+ σdBt, (4.7)

where σ, θ ∈ R+ and µ ∈ R.

The interest rate, rt, follows a mean reversion to µ at speed θ. The instantaneous volatility

of the process is dictated by σ. Unlike geometric Brownian motion, the process has a bounded

variance and achieves a steady state with variance σ2

2θ . The process in discrete time can be

modeled as AR(1) process. The solution to the O-U stochastic differential equation 4.7 can be

derived using Itô calculus:
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rr = r0e
−θt + µ

(
1− e−θt

)
+

ˆ t

0

σeθ(s−t)dBs.

Cheridito [11] uses Riemann-Stieltjes integrals to derive tractable solutions to a fractional

Ornstein-Uhlenbeck process (with a fractional Brownian motion). We are unaware of any em-

pirical studies of the bond market that test the efficacy of a fractional O-U process for short

rates.

Other applications of fractional Brownian motion in finance include the commodities and cur-

rency markets (where momentum effects are strong and common). Fractional Brownian motion

has shown promise for risk management and the hedging of price fluctuations in real assets.

4.1.2 Arbitrage and Fractional Brownian Motion

Definition 4.1. Arbitrage

1. Type A arbitrage is defined as any strategy that results in an immediate positive reward

without entailing any future payoff or cost. It is also called self-financing arbitrage.

2. Type B arbitrage is defined as any strategy which requires a non-positive cost but has

positive probability of yielding a positive payoff and has zero probability of yielding a

negative payoff.

Mathematically arbitrage is defined in the following way:

Let θ (t) be a self financing trading strategy. Then there exists an arbitrage strategy (Type

A and Type B respectively) if the following conditions hold for some fixed time t:

1. θ (0)
T
S (0) < 0 and P

(
θ (t)

T
S (t) ≥ 0

)
= 1

2. θ (0)
T
S (0) = 0 and P

(
θ (t)

T
S (t) ≥ 0

)
= 1 and P

(
θ (t)

T
S (t) > 0

)
> 0

(Glasserman [25], pp.26)

Definition 4.2. Statistical arbitrage is defined as a modification of Type B arbitrage, in which

a strategy requires a non-positive cost but has positive probability of yielding a negative payoff.

Mathematically, θ (0)
T
S (0) < 0 and P

(
θ (t)

T
S (t) ≥ 0

)
> 0.

Cheridito [10] , Rogers [44], Sottinen and Valkeila [49], and Shiryaev [45] all develop arbitrage

strategies for a fractional Brownian motion model. Rogers [44] shows that since fractional Brow-

nian motion is not a semi-martingale (except when H = 1/2), “generally this means that there
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must be arbitrage.” Rogers [44] shows that there exists a trading strategy which can be defined as

a continuous adapted process in which the expected value is positive. He then shows that there

will be infinitely many promising periods, in any positive time interval, in which this property

holds. He demonstrates that a unit amount invested in each promising time period then when

the investor’s gains has risen by one, the investor would sell and reap the benefit without risk.

However, if the investment falls to a positive threshold α, investing one-half of the prior period’s

investment in each promising period will always result in a net gain of one. In the meantime

(while playing the strategy), the investor’s wealth can only fall to 4α. Rogers also shows that this

strategy (while it may take a long time) will never take an infinite time to realize. Furthermore,

he proves that the source of the arbitrage comes from the behavior of the fGn kernel function

near zero (namely on small time scales tH−1/2 is the reason for the arbitrage opportunities). He

suggests a modification of the kernel function which created a new process that still has long

range dependence. He concludes that since a model with fractional Brownian motion admits

arbitrage, “fractional Brownian motion is an absurd candidate for a log-price process.” (Rogers

[44])

Cheridito [10] criticizes Rogers’ [44] buy and hold strategy and points out that his arbitrage

strategy only works for a zero drift process with positive volatility in which one knows the entire

history of the stock process from the beginning of time to the present time. Currently, all arbitrage

strategies utilize all information about the process back to the beginning of time. Cheridito [10]

suggests that arbitrage should only be defined on information available, and therefore current

arbitrage strategies are unrealizable. Additionally, Cheridito [10] proves that if Bt is defined as

standard Brownian motion and BHt is defined as fractional Brownian motion with H ∈
(
0, 1

2

)
∪(

1
2 , 1
)
then the model in which

St = S0e
µt+σ((1−ξ)Bt+ξBHt ),

where

P (ξ = 0) = P (ξ = 1) =
1

2

admits only statistical arbitrage.

Other arbitrage strategies have been developed based on Rogers [44], all of which derive

self-financing arbitrage strategies that are based on stochastic integration and continuous re-
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balancing. In the stock market, continuous re-balancing is impeded by the limit on the speed

a trade can be executed. Cheridito [10] proves that (even with perfect information) all current

arbitrage strategies can only be realized if it is possible to buy and sell within arbitrarily small

time intervals. He shows that the introduction of an infinitesimal amount of time ε > 0 between

any two consecutive transactions eliminates all realizable arbitrage opportunities.

Even with trades taking place in microseconds the stock market is (and always will be) a

discrete time process. There will always be a small amount of time between trades and there-

fore Cheridito’s results prove that there is no realizable arbitrage in equity markets. However,

this fact does not reconcile the hedging strategies and portfolio replication problems with fBm.

While Cheridito proved there is only statistical arbitrage for a process which randomly changes

from Brownian motion to fBm, no studies have investigated arbitrage strategies in a fractional

Brownian process with changing Hurst index.

A major drawback of arbitrage strategies relates the replication and hedging of risk using

derivatives. A model that admits arbitrage opportunities (like fBm) has an infinite number

solutions for hedging and replications of a derivative security with a portfolio of stocks and bonds.

In short, a model that admits arbitrage cannot allow for perfect hedging and risk management

(or calculation of the “Greeks”).

4.1.3 Fractional Random Walks

Binomial trees and their relationship to Brownian motion are well studied. Tree representations of

processes are important to pricing instruments which can have which have paths that maximize

their value (and require execution) before expiration. It can be mathematically proven that

derivatives like the American call option maximize their value by executing at expiration, and

therefore their is no need for a tree representation. However, the formulation of a binomial tree

representation of processes play an important role in pricing complex financial instruments; such

as pricing American put options. Construction of a binomial tree that converges to fractional

Brownian motion is not as straight forward as the common tree that converges to Brownian

motion. For the benefit of the reader, we provide some background on the standard binomial

tree setup. Let (ξi)
N
i=1 be i.i.d. random variables with

P (ξi = 1) = P (ξi = −1) =
1

2
.

62



Let us assume ∆t is the step size between two consecutive times and let us define (Xt)t∈R+

as the position at time t with

Xt ≡
√

∆t

[ t
∆t ]∑
i=1

ξi

Suppose time evolves incrementally by size ∆t. Then,

E [Xt] = 0 and Var [Xt] =
(√

∆t
)2
[
t

∆t

]
= t.

The process (Xt)t∈[0,∞) is called a random walk. By the Functional Central Limit Theorem the

process Xt converges to Brownian motion.

Below in Figure 4.1 we have implemented the binomial tree for Brownian motion.

Figure 4.1: Brownian Motion Binomial Tree

Constructing a random walk for Brownian motion is simple since the (ξi)
N
i=1 of the random

walk are independent. However, to construct a random walk for fractional Brownian motion,

(ξi)
N
i=1 must be correlated. All increments, going back to negative infinity, influence the next in-

crement in the sequence. The auto-correlation of increments decay according to a power function.

Sottinen and Valkeila [49] present a binomial tree model that converges to fractional Brownian

motion using the kernel representation of fBm, while Lindstrom [28] and Konstantopoulos and

Skhanenko [26] both utilize the more tractable kernel function of fGn.

Konstantopoulos and Skhanenko [26] derives a moving average model for the fractional ran-

dom walk. Given that the fractional noise correlation function decays as a power series when

H > 1
2 . The fractional noise process (Yi)

N
i=1 with H ∈

(
1
2 , 1
)
is formed using weights aj and the
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i.i.d. random variables (ξi)
N
i=1

Yj =

∞∑
k=−∞

aj−kξk,

where

an =


(n+ 1)

H− 1
2 − nH− 1

2 for n ≥ 0

0 otherwise.

Take note that a convolution of the i.i.d. random variables ξi are needed from negative infinity to

time j for the correct approximation of fGn. The fractional Brownian motion process
(
X

(n)
t

)
t∈R+

is then given by the scaled sums of (Yi)
N
i=1 such that

X
(n)
t =

1

nH

[nt]∑
j=1

Yj .

We implemented the Konstantopoulos and Skhanenkos [26] weighted sum discrete approxi-

mation of fractional Brownian motion with a truncation for negative infinity of k = −1000 and

the fractal scaling term 1
nH

is set to 1. Figure 4.2 illustrates our results for different H values.

Figure 4.2: fBm Binomial Trees

The values of the binomial tree for Brownian motion have independent increments and there-

fore changes from one time step to the next are not influenced by past values in the tree and there-

fore, the tree recombines. However, in the case of long-range dependence the tree is not recom-

bining. To generate a tree with N periods, the recombining tree requires (N +1)2/2+(N + 1) /2

values (notice that each period n adds n+1 values) and therefore grows linearly. However, for the

non-combining tree N periods requires 2N+1 − 1 values (each period n ≤ N adds 2n values) and
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therefore grows exponentially. Therefore the ability to accurately price put options is limited to

smaller time frames in which the values can be stored and backward recursion can be performed.

Contrary to the simulations given in Figure 4.2, the tree will not always be symmetrical

since it is dependent on the path prior to time period zero (in fact the tree pivots around time

zero). The auto-correlation also results in another interesting property. Notice that the upper

path of the binomial tree for H = 0.9 at period four branches into two nodes; one where the

change from period four is higher and the other where the change from period four is almost

zero (and vice versa for the lower path). If these values represented the return on a stock,

situations could arise where the return is non-negative with probability one; meaning there

would be no risk but the opportunity for return above the risk free rate (or type B arbitrage)

for a short time period. Sottinen and Valkeila [49] mathematically identifies two situations

where arbitrage is possible in the tree representations; one where {ξi}Ni=1 = (1, . . . , 1) and the

other where {ξi}Ni=1 = (−1, . . . ,−1). He proves that these arbitrage opportunities do not occur

on measure zero for long range dependent processes as N → ∞. He also shows that given a

constant nH , the probability of these two arbitrage opportunities occurring is:

lim
N→∞

#arbitrage paths
2N

≥ 2

2nH−1
> 0,

where if H = 0.6 then nH ≈ 350 and 2
2nH−1 = 1.74x10−105. Note that as H → 1

2 , nH →∞.

The probability of observing Sottinen and Valkeila [49] arbitrage opportunities in the market-

place with H = 0.6 is immensely small and requires all information about the history of the pro-

cess. To capitalize on Sottinen’s arbitrage strategy one would need to observe (ξi)
N
i=1 = (1, . . . , 1)

for an infinitely large N and buy by the next tick. Additionally, by passing on a limit, Sottinen

and Valkeila [49] have transformed the process into an analog of the continuous time fractional

Brownian motion process, which is already known to exhibit arbitrage opportunities. As men-

tioned in this section, Cheridito [10] proves that there is no obtainable arbitrage in a binomial

tree setting.

4.1.4 Estimation of the Hurst Index in Financial Data

The use of fractional Brownian motion in pricing has generated lengthy debates among economists

and practitioners about market efficiency, and whether historical prices can yield information

about future results. Some economists claim that a security modeled by fractional Brownian
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motion with H > 1/2 violates the “Efficient Market Hypothesis” being that information from the

past can give insights about the future behavior of the stock process. There has been a plethora

of papers which explore the estimation of the Hurst index and more importantly, if the Hurst

index indicates significant long-range dependence in real market data. Below we summarize the

results of a select few.

Lo [29] utilized a modified R/S statistic to estimate the Hurst index for the Center for Research

in Security Prices (CRSP) daily equal-weighted index from July 3rd, 1962 to December 31st,

1987. The sample size of this data was 6,409 observations. Lo’s [29] empirical analysis gave an

estimate of H ≈ 0.55 for the 25 year time period. He concluded that there is little historical

evidence of long-term memory in the U.S. stock market. He further suggests that the Hurst

estimate is within the null hypothesis of H ≤ 0.5. He established his confidence intervals using

the asymptotic distribution of the statistic as N→∞. He justifies his claim by the hypothesizing

that persistent informational asymmetries over long times must not exists given the frequency

the financial markets clear.

Willinger et al. [57] revisited the same data as Lo [29] and performed an analysis using the R/S

statistic, the modified R/S statistic and Whittle’s MLE to estimate the Hurst index. Willinger

et al. [57] demonstrated that the modified R/S statistic (while more robust) has a tendency to

have high Type II error (wrongly accepting the null hypothesis of no long-range dependence).

They attributed this to the finiteness of the data. He also performed Monte Carlo simulations

to determine confidence intervals on the estimates. They calculated a value of H = 0.58 (95%

confidence (0.51, 0.65)) with the R/S statistic with blocks of size 20 data points and H = 0.63

(95% confidence (0.58, 0.68)) with the R/S statistic with blocks of size 10 data points. Willinger

et al. showed that the null hypothesis of no long range dependence was rejected for both of these

statistics at a 5% significance level. Additionally, Willinger et al. performed an analysis using

Whittle’s approximate MLE and obtained an estimate of H = 0.63. They believe that there

is high probability that there is long range dependence with a historical Hurst parameter for

the market is around H = 0.6. They cautiously pointed out that the evidence is not absolutely

conclusive since the Hurst estimates are so close to one-half. He also analyzed the CRSP daily

value-weighted index and concluded that statistically there was no long range dependence for the

same time period.

Bayraktar et al. [3] performed an analysis on one-minute intervals of the S&P 500 Index data

from January 1989 to May 2000 (1,128,360 observations). Unlike Lo and Willinger they perform
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the analysis over disjoint segments, showing how the Hurst index has behaved over time. They

used a wavelet based method (log scale spectral analysis) and split the data into 275 segments of

length 212 (two weeks) and concluded that the Hurst estimates changed from segment to segment

with a mean of H = 0.6156 and a standard deviation of 0.0531. When the data was divided

into larger segment sizes they obtained similar Hurst estimates, however when they estimated for

time intervals of 215 data points (two months) or greater the Hurst estimators became exhibited

extreme variance which were not consistent with other estimates. They believe the breakdown

at 215 data points is due to dominant non-stationarity (and significant changes in the underlying

parameters). They concluded that on average H ≈ 0.6 and historically stayed constant for

approximately two months at a time. They show that “the Hurst parameter of this data set is

significantly above the efficient markets value of H = 1
2 , it began to approach that level in 1997.

Bayraktar et al. conjectured that the increased use of the Internet in disseminating stock quotes

and in trading may explain why the Hurst parameter was found to be lower after 1997. In §4.3,

we estimate the Hurst index for three stock market indexes using the ergodic Ratio method.

Similar to Bayraktar, we give empirical support that the Hurst index changes over time.

4.2 The Tail Behavior of fBm from a Bm Lens

The use of a Brownian motion as a model for log stock returns has revealed many inadequacies

of the model. Two of the most common problems relate to the volatility of the process. After the

crash of 1987 a pricing phenomenon in the derivatives world started to emerge. Investors, realizing

that the stock market had larger tails than standard Bm models, started valuing derivatives that

were out of the money at higher values than theoretical prices. Therefore, when the Black-Scholes

equation is used to price call options, the resulting prices deviate in greater magnitude as the

strike price gets further away from the spot price (the stock’s current price). This was the birth

of the “volatility smile” and the “term structure” to volatility.

Many traders calculate the “implied volatility” or volatility that would be needed (in the

Black-Scholes model) to match the market price for an option. The implied volatility is typically

higher than the estimated volatility from the stock data and increases as the strike prices gets

further from the spot price, a phenomenon known as a “volatility smile.” Additionally, traders

have noticed a volatility term structure when pricing options, where the implied volatility depends

on the maturity of the option. Implied volatility tends to be an increasing function of maturity
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when short dated volatilities are low and vice versa when short date volatilities are high. The

current logic for this phenomenon is that Brownian motion and the Gaussian distribution do

not have large enough tails to encompass long range events and/or extreme events. (Hull [23],

pp.276, 377) We challenge this statement by proposing that temporal dependence could explain

such a phenomenon.

Let us assume that a security follows the geometric fractional Brownian motion model equa-

tion 4.5

St = S0e
µt− 1

2σ
2t2H+σBHt .

Notice that the security prices are log-normally distributed, where

ln
St
S0

d
= N

(
µt− 1

2
σ2t2H , σ2t2H

)
.

Let us examine the geometric Brownian motion model that is used in the derivation of the Black-

Scholes-Merton option pricing theory. Recall that the underlying stock price model is given by

equation 4.2

St = S0e
µt− 1

2σ
2t+σBt .

In this model security prices are log-normally distributed such that

ln

(
St
S0

)
∼ N

(
µt− 1

2
σ2t, σ2t

)
.

Let us look into the volatility estimates if we assume the security follows this Brownian motion

when it is actually (by assumption) fractional Brownian motion. Under this assumption, given

a time series {St}Nt=0 , N ∈ N, the estimate of the variance of the process, ln
(

St
St−1

)
, is found by

the Gaussian MLE estimate for the second moment:

σ̂2∆t =
1

N − 1

N∑
t=1

[
ln

(
St
St−1

)
− ν̂
]2

,

where

ν̂ =
1

N

N∑
t=1

ln

(
St
St−1

)
.
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If we model the security prices using geometric Brownian motion we would estimate the

variance as σ̂2∆t when in actuality the variance of the fGn process is σ2∆t2H (as demonstrated

using ergodic theory in the last section). To find the call option prices we need the volatility

explicitly. Therefore the estimated volatility (assuming a white noise model when the actual

model is fGn) would be

σ̂ = σ∆tH−1/2.

Notice that the Brownian motion estimate depends on the sampling resolution ∆t, where ∆t

is assumed to be constant. Therefore the Brownian motion volatility estimate underestimates

the actual volatility when the fBm process has long range dependence and overestimates the

volatility when the fBm process has short range dependence

σ̂ < σ for H ∈
(

1

2
, 1

)

σ̂ > σ for H ∈
(

0,
1

2

)
.

Figure 4.3 depicts the difference between the actual volatility and the estimated volatility

when Brownian motion is used to model log returns and the log returns time series follows a

fractional Brownian motion with a specified H. This illustration assumes that data is sampled

once a day, hence ∆t = 1/252. This holds the convention that σ is scaled as an annual number

(which is typically needed for the option pricing formula). The security in this example has an

actual volatility of σ = 20%.
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Figure 4.3: Estimated vs. Actual Volatility

Notice that the short range dependence of fractional Brownian motion has a much larger effect

on the volatility estimate if Brownian motion is assumed. The bias in the volatility estimates

are a result of the i.i.d. assumption made by the Brownian motion model (which results in a

linear time scaling of volatility), when the actual model has dependence (which is formed by

the non-linear structure of the variance of fBm). Given the Brownian motion assumption in

the presence of dependence, an empiricist would forecast prices with less (when there is positive

auto-correlation) risk than is actually present. Figure 4.4 shows the empirical (Bm) distribution

when the “true” distribution is a fBm with H = 0.6, σ = 1 and ∆t = 1/252. Even though both

distributions are Gaussian, this underestimation of volatility can give the illusion of “large tails.”
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Figure 4.4: Illusion of “Heavy Tails”

The empirical studies in §4.1.4 suggests that the stock market on a whole exhibits long

range dependence with an average Hurst index of approximately H = 0.6. In this situation,

a Brownian motion model would price options lower than their actual value (high volatility

translates to higher expected payoff and therefore a higher option price). In the Black-Scholes-

Merton call option pricing formula (Equ. 4.3), the time to expiration T scales the volatility,

while the volatility in the fBm option pricing formula (Equ. 4.6) is scaled by T 2H . The scalar

T in the Brownian motion based model pushes the skewed volatility estimate toward the actual

value since
√
T > TH when H ∈

(
1
2 , 1
)
and T < 1. However since it is typical that ∆t < T , the

scaling term σ̂
√
T would still underestimate the actual term σTH . Under the assumption that

∆t < T < 1,

σ̂
√
T < σTH for H ∈

(
1

2
, 1

)

σ̂
√
T > σTH for H ∈

(
0,

1

2

)
.

In figure 4.5, we assume r = 5%, σ = 20%, K = 100, ∆t = 1/252, H = 0.6 (for the upper

figure) and T = 1/12 (for the lower figure).
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Figure 4.5: Bm vs. fBm Call Option Prices

If the market followed a fractional geometric Brownian motion process with H 6= 0.5, and the

time series was analyzed using geometric Brownian motion, the call prices would not exhibit a
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volatility smile (assuming the market accurately reflected the call option fractional Black-Scholes

prices). However, Black-Scholes-Merton option pricing formula would underestimate the true call

price for all strike prices, with the biggest difference being near the spot price. Therefore, the

implied volatility would be higher when H > 1/2, but would be consistently skewed across all

strike prices K. This is because the two models only differ by time scaling factors (TH and
√
T ),

while all other inputs are constant. Notice that the implied volatility (assuming Black-Scholes-

Merton) for all strike prices satisfies the equation,

σImplied = σTH−1/2∀K. (4.8)

In this situation, the implied volatility would be greater than the estimated volatility

σImplied = σTH−1/2 > σ̂∆tH−
1
2 ,

when H ∈
(

1
2 , 1
)
,∆t < 1 and T > ∆t. In the figure below, we see that the implied volatility

scaling factor that affects the volatility estimates over time to demonstrate the term structure of

volatility when the Black-Scholes-Merton model is used in a fractional Brownian motion market.

Figure 4.6: Implied Volatility Term Structure

This analysis shows that the time scaling effects of fBm cause when H > 1/2 could explain

the term structure to implied volatility that is observed in the marketplace (when the fractional

Wiener process is analyzed with the Black-Scholes-Merton assumptions). The fBm model does

not scale time linearly as the Brownian motion model does, and this means that risk does not

scale linearly with time. Equation 4.8 shows that as we approach expiration of the option, T → 0,
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the scaling factor TH−1/2 has less of an effect on the true volatility when H > 1/2. This means

that the implied volatility would be smaller as we approach expiration. Conversely, if H < 1/2

it has the opposite effect. Both situations have been observed in the marketplace. (Hull [23],

pp.377)

4.3 An Empirical Study of the Hurst Index in Financial In-

dexes

In §4.1.4, we outline Lo [29] and Willinger’s [57] analysis of the CRSP equal and value weighted

index daily returns from July 3rd, 1962 to December 31st, 1987. They assumed that returns are

log-normally distributed and found a Hurst estimate of H = 0.63 with a 95% confidence interval

of (0.58, 0.68) for the equal weighted index. This is one estimate of H using the entire 25.5 year

time period. Using their estimates of H, they concluded that there was no (significant) long

range dependence for the value weighted index. For the same data, we estimate the Hurst index

using the ergodic Ratio of Second Moments method described in §3.2. We obtain

H =


0.76 (0.72, 0.76) for the Equal Weighted Index

0.65 (0.61, 0.68) for the Value Weighted Index

0.61 (0.57, 0.69) for the S&P 500 Index

Utilizing the ergodic Ratio of Second moments method with a moving window of N = 630

data points (2.5 years), we extend the CRSP data set by 22 years and obtain daily returns

from July 3rd, 1962 to December 31st, 2009 for three types of indexes from the Center for

Research in Security Prices (CRSP). Figure 4.7 shows the time based estimation of the Hurst

parameter on a daily rebalanced equal weighted return index of all US based stocks, a value

(market capitalization) weighted index of all US based stocks, and the Standard and Poor’s 500

index (500 largest-capital US stocks).
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Figure 4.7: CRSP Data Analysis of the Hurst Index

The moving windows of N = 630 data points in Figure 4.7 have an approximate 95% confi-

dence interval of ±0.031 (approximated numerically using simulations). Our analysis shows that

the Hurst index has been generally decreasing since the 1970’s. This agrees with Bayraktar [3]

who performed a similar analysis on one minute intervals of S&P 500 data from January 1989 to

May 2000 using wavelets on segments of 215 data points. He concludes the Hurst parameter is

changing over time and seems to be tending toward H = 0.5. Figure 4.7 indicates that the Hurst

index is changing significantly over time. When we change the number of data points in the

moving window, we obtained similar trends and results. The moving average of 630 data points

was chosen because it allows for some structure of the variations in H to be seen. As expected,

an increase the number of data points results in a smoother path for the Hurst index, but the

same trend remains.

A closer look at the analysis shows that there may be a form of dominance between the

Hurst index values and the index being analyzed; Particularly, the basket of stocks exhibit

different temporal dependence depending on how the portfolio is weighted. We notice that the

equally weighted index (which puts more emphasis on small cap and penny stocks than the other

two indexes) has consistently much higher Hurst index values than the value weighted and S&P
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indexes. The S&P 500 and the value weighted index are very similar in how they are constructed,

however the value weighted index has a subset of stocks with less liquidity and capitalization than

the S&P 500. The value weighted index is consistently exhibiting higher Hurst index values over

the S&P. These observations suggest that the capitalization or liquidity of an asset may have a

direct relationship to the Hurst index, particularly the lower the liquidity, the higher the Hurst

index.

We hypothesize that low liquidity causes greater price friction in the marketplace and therefore

prices tend to exhibit higher auto-correlation and consequently a higher Hurst index; just as

higher friction (or high Reynolds numbers) in fluids causes movements in turbulent flow to

exhibit higher auto-correlation and Hurst index. Additionally, as liquidity and the availability

of information has increased, the Hurst index has historically trended toward H = 0.5. Lastly,

as information has become easier to access and trading quicker to execute, the Hurst index has

decreased.

In summary, the analysis of the Hurst index leads to three primary observations:

1. The Hurst index is not constant over time.

2. The Hurst index is greater than H = 0.5 (on a 95% confidence interval) for most of time

period analyzed.

3. Capitalization/Volume/Liquidity may influence the Hurst index.

One could also hypothesize that since the equity and bond markets are connected then long range

dependence in the stock market could also mean long range dependence in the bond market.

Given this assumption and Cheridito’s [11] work on a fractional Ornstein-Uhlenbeck process, a

short rate model could be developed to estimate the Hurst index for the bond market and analyze

its significance in bond prices.
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Part II

Gaussian Markov Processes
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Chapter 5

Introduction and a Brief Literature

Survey

In Part I we introduced new techniques and insights in modeling with fractional Brownian motion.

We showed that our new techniques are fast and competitive to top methods. We also find that

many of the properties of fractional Brownian motion make it a better candidate for modeling

in finance than Brownian motion. However, in the preceding section we also discussed that the

popularity of fBm in finance has been limited by a few barriers in theory and implementation. The

largest restriction of the model is that Option Pricing Theory cannot be derived using stochastic

calculus. FBm is not a semi-martingale, and therefore computations are limited to the use of

Wick Calculus. Moreover, Rogers [44] shows that the fBm model exhibits arbitrage strategies.

The ability to make riskless profit violates the “First Fundamental Theorem of Asset Pricing”.

(Shreve [46], Theorem 5.4.7) Additionally, Sottinen [47] shows that replication of the option price

through a portfolio of stocks and bonds and self-financing strategies have no economic meaning

in the Wick calculus case. This combined with the arbitrage violation limits the formation of

proper risk management and hedging techniques.

Another restriction in the application of fBm is in regards to pricing of American style and

barrier options. Tree representations of fBm are difficult to construct and they do not recombine.

(Konstantopoulos and Skhanenko [26]) Without a recombining tree, construction and computa-

tions of the tree grows exponentially as the number of time periods increases (The tree has

2n+1 − 1 nodes for periods n = 0, 1, . . . ). This makes pricing many types of options computa-
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tionally infeasible and inaccurate since the tree structure limits tree generation to a small number

of periods. Lastly, while the market has shown signs of long-memory, there may be other depen-

dence structures that can better model the process. In fBm, once a Hurst index is determined,

the structure of fBm is fixed. The fBm model definition restricts incorporating heteroscedasticity,

non-stationarity, or different dependence structures which have been observed in the markets.

(Cont [12])

In an attempt to expand beyond the limitations of fBm, Part II of this thesis focuses on

continuous sample path Gaussian processes of the Markov type. General diffusion models in

physics, thermodynamics, fluid mechanics, biology and finance are all Markovian and many are

Gaussian. Gaussian Markov (GM) processes are widely used to model many stochastic dynamic

systems. In these fields, parameter estimation, discrete representations and stochastic calculus

methodologies are used for decision making under uncertainty.

One of the most prevalent applications of GM processes is in financial mathematics, where

pricing strategies for derivatives on equities, commodities, foreign exchange rates, and interest

rate products are largely based on GM models of the underlying asset. With the ever increasing

speed of trading algorithms and movement of prices, the need for fast and accurate methodologies

for proper pricing and risk management are needed. The goal of this part of the thesis is to develop

methods for quick and accurate modeling and decision making. In finance, commodity prices,

foreign exchange rates and stock prices are commonly evaluated by models such as

• Bachelier: dXt = µdt+ σdBt (Note that this was the first model in mathematical finance)

• Black-Scholes: dXt = µXtdt+ σXtdBt,

while the term structure of interest rates (known as short-rate models) and some foreign exchange

rates are commonly evaluated with models by

• Ornstein-Uhlenbeck: dYt = βXtdt+ σdBt

• Vasicek: dXt = θ (µ−Xt) dt + σdBt (Note that Vasicek is a type of Ornstein-Uhlenbeck

model)

• Dothan: dXt = (α+ βXt) dt+ σXtdBt

• Black-Derman-Toy: dXt = β (t)Xtdt+ σ (t)XtdBt

• Black-Karasinski: d (logXt) = (α (t) + β (t) logXt) dt+ σ (t) dBt
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• Ho-Lee: dXt = α (t) dt+ σdBt

• Hull-White (Extended Vasicek): dXt = (α (t) + β (t)Xt) dt+ σ (t) dBt.

In these models (Bt)t∈[0,T ] is a standard Brownian motion process. Each of the mentioned models

can be represented either as a GM process or a simple transformation of a GM process. These

models incorporate a wide range of properties including stationary or non-stationary transition

probabilities, homoscedasticity or heteroscedasticity, and long-range dependence, short-range

dependence or memoryless. Furthermore, GM process models, like these, can be shown to be

arbitrage free under some weak restrictions. (Shreve [46])

In this section we present definitions and key theorems for Gaussian Markov processes that

will be needed in the construction of binomial trees, quadratic variation and stochastic calculus.

Some of the results are taken from Gaussian Processes by Hida and Hitsuda [20] , Ojeda [34]

and Hida [19].

Definition 5.1. (Gaussian Process)

A process (Xt)t∈T where T is any index set (for example a sphere or real line) is a Gaus-

sian process if for any finite set {t1, t2, . . . , tn}, the random variable (Xt1 , Xt2 , . . . , Xtn) is an n

dimensional normal.

A sub-class of Gaussian process indexed by R is described below.

Given a function {F (t, s) , s ≤ t} such that
´ ´
|F (t, s)| dt ds < ∞, a Gaussian processes

(Xt)t∈R can be defined by

Xt =

ˆ t

0

F (t, s) dBs, (Wiener integral)

where (Bt)t∈R is a standard Brownian motion process. If Xt can be written in the above

form, it is said to be represented canonically, and F (t, s) is called a canonical kernel. (Hida [19])

If
´ ´

F 2 (t, s) dt ds <∞ then (Xt)t∈Rcan be decomposed as

Xt =

ˆ s

0

F (t, u) dBu +

ˆ t

s

F (t, s) dBs

and therefore

E [Xt | Fs] =

ˆ s

0

F (t, u) dBu,

where Ft = σ (Xr | r ≤ t).
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Definition 5.2. (Markov Process)

The process (Xt)t∈T , where T j R, is a Markov process if

E [f (Xt) | Fs] = E [f (Xt) | Xs] , ∀t > s, t, s ∈ T

where Ft = σ (Xt,r∈T | s ≤ t), f is a bounded Borel function.

Markov processes provide a framework to describe the relationship between past observations

and future values of a stochastic process.

In 1960 Hida [19] established the following theorem.

Theorem 5.3. (Gaussian Markov Process)

Let (Xt)t∈I be a non-degenerate centered Gaussian process on the interval I = [0,∞) or [0, T ]

with continuous non-zero covariance matrix on I2. Then the process (Xt)t∈I is a Markov process

if and only if there exists a continuous function Ψ, Ψ (t) 6= 0,∀t ∈ I, so that the process (Mt)t∈I

defined by

Mt = Ψ−1 (t)Xt

is a Gaussian martingale.

Remark 5.4. If we set ν (t) ≡ E
[
M2
t

]
, then by Jensen’s inequality, ν is a monotone increasing

function on I.

The following corollary is a straightforward consequence of Theorem 5.3 which is proved in Hida

and Hitsuda [20] on page 30.

Corollary 5.5. (GM Covariance Structure)

A non-degenerate Gaussian process is Markov if and only if the covariance is expressed in the

form

Cov (Xt, Xs) = Ψ (t) Ψ (s) ν (s) , t ≥ s.

Moreover, the underlying Gaussian martingale (Mt)t∈R has covariance

Cov (Mt,Ms) = ν (t ∧ s) ,

where x ∧ y denotes the minimum of x and y.
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Remark 5.6. The theorem and corollary above will be extensively used throughout this disserta-

tion.

Theorem 5.7. (The Itô Itegral is a Martingale Process)

Let {f (s) : s ∈ [0, T ]} be an adapted process such that
´ T

0
E
[
f2 (s)

]
ds < ∞. Then every Itô

integral

It =

ˆ t

0

f (s) dBs, t ∈ [0, T ]

is a martingale with respect to {Ft}t∈[0,T ], that is

E [It | Fs] =

ˆ s

0

f (u) dBu = Is.

A proof is provided in Theorem 4.2.1 in Shreve [46] using elementary processes.

Moreover if f is a deterministic function then (It)t∈[0,T ] is a Gaussian martingale.

Remark 5.8. Many Gaussian martingales are “time changes of Brownian motion”, notice that the

theorem above can be used to establish this statement.

The following two results will be extensively used in the dissertation and are provided here for

the reader’s convenience.

Theorem 5.9. (Doob’s Martingale Maximal Inequality)

Let (Xt)t∈R be a continuous or discrete non-negative real valued sub-martingale. Then Doob

establishes that, for any constant C > 0 and p ≥ 1,

P

(
sup

0≤t≤T
Xt ≥ C

)
≤

E [Xp
T ]

Cp
.

Lemma 5.10. (Levy’s Lemma)

Let ξi be symmetric, that is P (ξ ≤ x) = P (−ξ ≤ x), then

P

(
max

1≤k≤K

∣∣∣∣∣
K∑
i=1

ξi

∣∣∣∣∣ > x

)
≤ 4P

(∣∣∣∣∣
K∑
i=1

ξi

∣∣∣∣∣ > x

)
.

Proof in Appendix V.

The following definition comes from Steele [50] on page 126.

Definition 5.11. (Itô and Diffusion Processes)
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Let (Bt)t∈[0,T ]be a standard Brownian motion process and Ft = σ (Br | r ≤ t). An Itô process

(Xt)t∈[0,T ] is a stochastic process of the form

Xt = X0 +

ˆ t

0

µ (s, ω) ds+

ˆ t

0

σ (s, ω) dBs,

where X0 is non-random and (µ (t, ω) | ω ∈ [0, 1] , t ∈ [0, T ]) and (σ (t, ω) | ω ∈ [0, 1] , t ∈ [0, T ])

are adapted stochastic processes such that

P

(ˆ T

0

|µ (s, ω)| ds <∞

)
= 1 and P

(ˆ T

0

|σ (s, ω)|2 ds <∞

)
= 1.

Furthermore, the Itô process (Xt)t∈[0,T ] is called a diffusion process if

dXt = µ (t,Xt) dt+ σ (t,Xt) dBt

that is

Xt = X0 +

ˆ t

0

µ (s,Xs) ds+

ˆ t

0

σ (s,Xs) dBs,

where functions µ and σ are called the drift and diffusion, respectively.

Remark 5.12. Diffusion processes are widely used as models in physics and financial engineering.

In this thesis, we focus on understanding the scaling function and underlying martingales and

their affect on modeling with dependence for Gaussian processes.

Remark 5.13. In this dissertation, we are interested in diffusion processes because they are

Markovian. The next corollary shows when diffusion processes are Gaussian.

Corollary 5.14. (Gaussian Itô Processes)

Let Ψ be a continuously differentiable function on [0, T ]. Then, a centered continuous sample

path Gaussian Markov process satisfying Hida’s representation (Theorem 5.3), is represented as

Xt = Ψ (t)Mt,

is a centered diffusion process of the form

dXt = µ (t,Xt) dt+ σ (t,Xt) dBt,
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when

µ (t,Xt) =
Xt

Ψ (t)
Ψ′ (t) and σ (t,Xt) = Ψ (t)

√
ν′ (t).

Recall, that in Remark 5.4,we assume that ν (t) ≡ E
[
M2
t

]
.

Furthermore, non-centered diffusion processes take the form

Xt =

ˆ t

0

µ (t, s)Xsds+ Ψ (t)

ˆ t

0

√
ν′ (s)dWs, (5.1)

where µ is a continuous integrable function.

Proof. Since Xt = Ψ (t)Mt, then the stochastic differential equation takes form

dXt = MtdΨ (t) + Ψ (t) dMt.

Using Theorem 5.7,

dMt =
√
ν′ (t)dBt,

then the stochastic differential equation for a Gaussian Markov process takes the form

dXt = MtΨ
′ (t) dt+ Ψ (t)

√
ν′ (t)dBt.

Remark 5.15. Note that the list of Gaussian Markov models in finance at the beginning of this

section are all diffusion processes that can be written as equation 5.1 or a simple transformation.

However, not all Gaussian Markov processes can be written as a diffusion process. There are

martingales that cannot be represented as an Itô integral.

Remark 5.16. This part of the dissertation will exclusively deal with Gaussian Markov (GM)

processes and the development of new techniques based on Hida’s [19] underlying martingale

representation (Theorem 5.3).

Proposition 5.17. (Long/Short-Range Dependence of GM Processes)

The function Ψ controls the dependence structure of a Gaussian Markov processes.

Proof. Let
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γn = E [(X1 −X0) (Xn+1 −Xn)] , n ≥ 1.

Substituting the definition of the Gaussian Markov we obtain

γn = E [(Ψ1M1 −Ψ0M0) (Ψn+1Mn+1 −ΨnMn)]

= (Ψn+1 −Ψn) (Ψ1ν1 −Ψ0ν0) .

The sum of the equation above is telescoping and therefore,

N∑
n=1

γn = (ΨN+1 −Ψ1) (Ψ1ν1 −Ψ0ν0) .

Therefore if:

1. ΨN+1 = Ψ1,∀N then the process X has independent increments.

2. limN→∞ΨN =∞, then the process X has long-range dependence.

3. limN→∞ΨN = c <∞,then the process X has short-range dependence.

Example 5.18. Determination of Ψ and ν in the Vasicek/Ornstein-Uhlenbeck Model

The Ornstein-Uhlenbeck process (Xt)t∈[0,T ] is a common model for modeling mean-reversion

in interest rate derivative pricing and the length dynamics of over-damped springs under thermal

fluctuations. The Ornstein-Uhlenbeck process

dXt = θ (µ−Xt) dt+ σdBt,

where (Bt)t∈[0,T ] is a standard Brownian motion process and where constants µ > 0 is the long

term mean reversion, θ > 0 is the dampening constant (or strength of reversion), and σ > 0 is

the volatility or diffusion parameter.

The solution to the stochastic differential equation can be found using stochastic calculus and is

given by

Xt = X0e
−θt + µ

(
1− e−θt

)
+ σe−θt

ˆ t

0

eθsdBs.

Using the Itô isometry on the stochastic term, yields
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V ar

(
σe−θt

ˆ t

0

eθsdBs

)
= σ2e−2θt

ˆ t

0

e2θsds

=
1− e−2θt

2θ
.

If s ≤ t,

Cov

(
σe−θs

ˆ s

0

eθudBu, σe
−θt
ˆ t

0

eθudBu

)
= e−θ(t−s)

ˆ s

0

e2θudu

=
e−θ(t−s)

2θ

(
e2θs − 1

)
.

In Corollary 5.5 we established that the covariance of a GM process is given by Ψ (t) Ψ (s) ν (s) ,

therefore equating terms we obtain

Ψ (t) =
σe−θt√

2θ
and ν (t) = e2θt − 1.

Note that the functions Ψ and ν are unique up to a multiplicative constant and we could have

placed 2θ into the denominator of ν-s formula instead.

Consequentially, the Ornstein-Uhlenbeck process takes the form

Xt = X0e
−θt + µ

(
1− e−θt

)
+ Ψ (t)Mt.
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Chapter 6

Parameter Estimation with the

Quadratic Variation of a GM

Processes on [0, T ]

In this chapter, we study the quadratic variation of a Gaussian Markov process. We prove

that the quadratic variation can be used as a consistent estimator of the diffusion parameter

in a GM model. While the Markov property makes the process’s structure seem simple, even

in the Gaussian case, it allows for an infinite variety of temporal dependence structures and

heteroscedasticity which can complicate computations and estimation of parameters. The results

of this chapter also show how quadratic variation gives important insights into the behavior of a

process.

The simplest Gaussian Markov process is Brownian motion, for which the quadratic variation

evolves linearly with time. (Shreve [46], Theorem 3.4.3) We begin this chapter with a brief

literature review of quadratic variation and established results for Brownian motion and fractional

Brownian motion. In section 6.2 we use Theorem 5.3 (Hida’s [19] representation for the Gaussian

Markov process) to explicitly derive the quadratic variation for a Gaussian Markov process. This

result is more general than Øksendal’s [35] quadratic variation representation for Itô processes

of the Gaussian type since it allows for GM processes that cannot be represented as diffusion

processes. Additionally, since Hida’s representation of GM processes decomposes the memory

(controlled by Ψ) and the instantaneous variance (controlled by the martingale’s variance ν), our
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quadratic variation representation allows for a better understanding of the influence of these two

properties on the behavior of the process.

In subsection 6.2.3, we address the need for fast and accurate parameter estimation techniques

which are consistent on a fixed interval. Current methods like the MLE, are not consistent on

fixed intervals, but require an infinite time horizon. We show how to use the quadratic variation

as an estimator of the diffusion parameter in a GM model. The diffusion of a process is the

most important factor in determining strategy, price and risk in option pricing theory, and

therefore a need for estimation of the diffusion parameter is essential to model implementation.

Additionally, since modeling in finance is accomplished under the risk-neutral measure, Cameron-

Martin-Girsanov theorem establishes that any drift parameters do not influence the optimal price

and hedging strategies of a derivative.

Quadratic variation has been widely used as an estimator of the volatility in the Black-

Scholes option pricing model (see Shreve [46] and §6.1.1), however convergence of this estimator

is easily proved due to independence of Brownian increments. In the case of the Gaussian Markov

process, the function Ψ results in a variety of memory structures from long-range to short-range

dependence, while the variance of the martingale process, ν, destroys the identical distribution

of increments (unless the martingale is Brownian motion).

Using the Borel-Cantelli lemma we find that almost sure convergence of the sample quadratic

variation can be established when Ψ is a Lipschitz or monotone function. Furthermore, we

explicitly find the sub-sequences that converge almost surely. This results in Theorem 6.4, that

establishes a quadratic variation estimator of the diffusion which is consistent on a fixed interval

[0, T ], fast and accurate.

We conclude this chapter with a discussion and comparison of our estimator to the MLE

(§6.3) for the Ornstein-Uhlenbeck (O-U) process. Using the likelihood definition from Prakasa

Rao [42], we derive closed form estimators for the O-U process, which is only consistent for sam-

ples in [0,∞]. We compare the quadratic variation estimator to the MLE estimator of the diffusion

parameter σ through a simulation study. Our results indicate that the quadratic variation diffu-

sion estimator is simpler and faster to calculate since the MLE method requires estimation of the

spring coefficient and long term mean parameters before estimation of the diffusion parameter.

Furthermore, the simulation study shows that the quadratic variation diffusion estimator is more

accurate than the MLE in terms of absolute deviation on small to moderate size sample sizes

and equivalent on very large samples on a fixed interval.

88



The results of this chapter are then used in Chapter 7 to develop a more general model for

Option Pricing Theory. We discuss the Itô-Doeblin formula 7.1 and stochastic calculus which

establishes that the quadratic variation is the most important term in determining price and

optimal policies in dynamic systems.

6.1 Quadratic Variation of a Function: A Brief Review

Definition 6.1. Let f(t) be a function defined on the interval [0, T ]. The quadratic variation of

a function f up to time T , [f, f ]T , is defined as:

[f, f ]T ≡ lim
‖Πn‖→0

n−1∑
j=0

(f(tj+1)− f(tj))
2

where Πn = {t0, t1, . . . , tn}, 0 = t0 < t1 < · · · < tn = T and ‖Πn‖ = maxj=0,...,n−1(tj+1 − tj).

The quadratic variation of a function is a measure of its oscillations.

According to Steele [50], if a process Xt can be written as a stochastic integral of the form:

Xt (ω) =

ˆ t

0

a(ω, t) dt+

ˆ t

0

b(ω, t) dBt,

then the quadratic variation of Xt exists and is given by:

[X,X]T =

ˆ T

0

b2(ω, s) ds.

“The quadratic variation of a standard process can be given explicitly as an integral of the

instantaneous variance of the process.” (Steele [50], pp.129)

Additionally, if a(ω, s) is a mensurable adapted process with

ˆ t

0

|a(ω, s)| ds <∞

then the quadratic variation of the process At =
´ t

0
a(ω, s) ds exists and is equal to zero. (Steele

[50])
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6.1.1 Quadratic Variation of Brownian Motion

In section 3.4.3, Shreve [46], shows that the quadratic variation of a standard Brownian

motion (Bt)t∈[0,T ] evolves linearly with time:

[B,B]T = T.

Additionally, the quadratic variation of Brownian motion can be generalized on any other

partition [T1, T2] as:

[B,B]T2
− [B,B]T1

= T2 − T1.

This result indicates that Brownian motion accumulates quadratic variation at a rate of one unit

time, hence

d [B,B]t = dt.

The derivation of the quadratic variation for Brownian motion is simple since the Brownian

increments are independent identically distributed (i.i.d.) Gaussian random variables.

Furthermore, Shreve [46] demonstrates that the quadratic variation can be used as a uniformly

consistent estimator of volatility in the Black-Scholes model, dSt = St (µt+ σdBt). If we ma-

nipulate the stock process (St)t∈[0,T ] so that Xt = ln (St/S0), then Xt = µt − 1
2σ

2t + σdBt and

discrete observations of the process (Xti)
n
i=0 are sampled on [0, T ], then since

[X,X]T = σ2T,

an estimator of volatility take the form

σ̂2 =
1

T

n∑
i=1

(
Xti −Xti−1

)2
, almost surely.

6.1.2 Quadratic Variation of Fractional Brownian Motion

In Part I, we quoted literature that the quadratic variation of fractional Brownian motion process,(
BHt
)
t∈[0,T ]

, is given by
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[
BH , BH

]
=


∞ if H < 1

2

0 if H > 1
2 .

Since the quadratic variation of fBm is either zero or infinite, parameter estimation cannot be

accomplished using this property.

Discrete observations of fractional Brownian motion,
(
BHtj

)n−1

j=0
, are mean zero Gaussian

self-similar process with stationary increments. All of these properties are needed to derive its

quadratic variation. Here is a sketch of the proof required to find the quadratic variation of fBm.

Proof. Assume we are on the partition Πn = {t0, t1, . . . , tn−1, tn} and set

Q ≡
n−1∑
j=0

E
(
BHtj+1

−BHtj
)2

=

n−1∑
j=0

E
[(
BHtj+1

)2

− 2BHtj+1
BHtj +

(
BHtj

)2
]
.

Without loss of generality, assuming the standard fBm process, that is E
[(
BHt0
)2]

= 1, then

E
[(
BHtj

)2
]

= t2Hj and E
[
BHtj+1

BHtj

]
= 1

2

[
t2Hj+1 + t2Hj − (tj+1 − tj)2H

]
and so

Q =

n−1∑
j=0

(tj+1 − tj)2H

=

n−1∑
j=0

(tj+1 − tj) (tj+1 − tj)2H−1.

Replace the terms (tj+1 − tj)2H−1 with maxj

{
(tj+1 − tj)2H−1

}
and notice that depending on

0 ≤ H ≤ 1, there are three different situations; H < 1
2 H = 1

2and H > 1
2 . When H = 1

2 the

process is Brownian motion for which we know the quadratic variation, otherwise

Q ≥ T
[
max
j
{tj+1 − tj}

]2H−1

, H < 1/2,

Q ≤ T
[
max
j
{tj+1 − tj}

]2H−1

, H > 1/2.

Notice that when maxj {tj+1 − tj} → 0, we obtain the expected value of the quadratic variation

of fractional Brownian motion:
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E
[
BH , BH

]
T

=


∞ for H < 1/2

0 for H > 1/2.

To show that the sample quadratic variation of fBm converges in L2 to its mean whenH > 1/2

we need to compute the variance of the quadratic variation. (We are not concerned with proving

convergence when H < 1/2 since the expected value of the quadratic variation is infinite.) Set,

V ≡ E

n−1∑
j=0

(
BHtj+1

−BHtj
)2

−
n−1∑
j=0

E
(
BHtj+1

−BHtj
)2

2

.

= E

n−1∑
j=0

{(
BHtj+1

−BHtj
)2

− (tj+1 − tj)2H

}2

.

Let Xj ≡
(
BHtj+1

−BHtj
)2

− (tj+1 − tj)2H , and split the expected value into two parts, one for

the sum of variances and one for the sum of covariances

V = E

n−1∑
j=0

Xj

2

= E

n−1∑
j=0

X2
j

+ E

∑
j 6=i

XiXj

 .
Using the definition of Xj , coupled with the fact that

(
BHtj+1

−BHtj
)
d
= Nj(0, (tj+1 − tj)2H), the

fourth and second moments of the normal distribution yields:

E

n−1∑
j=0

X2
j

 =

n−1∑
j=0

2(tj+1 − tj)4H .

The second term is more difficult to find, since it involves finding

E
[(
BHtj+1

−BHtj
)2 (

BHti+1
−BHti

)2
]
.

If X and Y are two normals, then E
[
X2Y 2

]
= σ2

Xσ
2
Y + 2 (σX,Y )

2. Using the fact that,

E
[(

= B
H
tj+1

− BHtj
)(

B
H
ti+1

− BHti
)]

=
(tj+1 − tj)H(ti+1 − ti)H

2

{
|i− j + 1|2H + |i− j − 1|2H − 2 |i− j|2H

}
,
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E
[
X2Y 2

]
= 2

(
E
[(
BHtj+1

−BHtj
)(

BHti+1
−BHti

)])2

.

.

Since H > 1
2 , if we let ∆ti ≡ ti+1 − ti and ∆ti = ∆tj = T

n then

lim
n→∞

2


n−1∑
j=0

(
T

n

)4H

+
∑
j 6=i

(
T

n

)4H {
|i− j + 1|2H + |i− j − 1|2H − 2 |i− j|2H

}2

 = 0.

This proves that the sample quadratic variation converges to zero in L2.

6.2 Quadratic Variation of Gaussian Markov Processes

In the following subsections we explicitly derive a closed form representation of the quadratic

variation of a Gaussian Markov process. We establish Theorem 6.2 , which shows that the

expected value of the quadratic variation is represented by a Riemann-Stieltjes integral, while

Theorem 6.3 imposes weak conditions on Ψ for the quadratic variation to convergence in L2 to

zero. The goal of this section is to establish that the quadratic variation can be used as an

estimator for the diffusion coefficient in GM processes. In Theorem 6.4 we establish this result

and provide weak restrictions for convergence almost surely. Confidence interval bounds along

with the convergence rate of the quadratic variation estimator is also provided. Examples are

provided for the Ornstein-Uhlenbeck process along with a comparison of the quadratic variation

estimator to the MLE method.

6.2.1 Expected Value of the Quadratic Variation

In this subsection we explicitly derive the expected value of the quadratic variation and establish

its representation as the Riemann–Stieltjes integral in Theorem 6.2.

Theorem 6.2. Let (Xt)t∈[0,T ] be a centered Gaussian Markov process such that

Xt = ΨtMt,

where (Mt)t∈[0,T ] is a centered Gaussian martingale with E
[
M2
t

]
= ν (t), Ψ is a continuous

function with bounded variation and Ψ 6= 0 for all t ∈ [0, T ].
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Then the quadratic variation is of (Xt)t∈[0,T ] is given by

E [X,X]T =

ˆ T

0

Ψ2 (t) dν (t) .

Proof. Let,

Q ≡
n−1∑
j=0

E
[
(X(tj+1)−X(tj))

2
]

=

n−1∑
j=0

E
[
(Ψ(tj+1)M(tj+1)−Ψ(tj)M(tj))

2
]
.

=

n−1∑
j=0

E
[
(Ψ(tj+1) (M(tj+1)−M(tj))− (Ψ(tj+1)−Ψ(tj))M(tj))

2
]
. (6.1)

Utilizing the martingale property E [MtMs] = ν(t ∧ s), equation 6.1 takes the following form:

Q =

n−1∑
j=0

[Ψ(tj+1) (Ψ(tj+1)ν(tj+1)−Ψ(tj)ν(tj))−Ψ(tj)ν(tj) (Ψ(tj+1)−Ψ(tj))] . (6.2)

Using summation by parts, the second term in equation 6.2 can be written as

n−1∑
j=0

Ψ(tj)ν(tj) (Ψ(tj+1)−Ψ(tj)) = Ψ(tn)Ψ(tn−1)ν(tn−1)−
n−2∑
j=0

Ψ(tj+1) (Ψ(tj+1)ν(tj+1)−Ψ(tj)ν(tj)) .

(6.3)

The second term in equation 6.3 is the same as the first term in equation 6.2. Substituting

equation 6.3 into equation 6.2 and readjusting the summations by adding the term

Ψ(tn) (Ψ(tn)ν(tn)−Ψ(tn−1)ν(tn−1)) ,

we obtain

Q = Ψ(tn) (Ψ(tn)ν(tn)−Ψ(tn−1)ν(tn−1))−Ψ(tn)Ψ(tn−1)ν(tn−1)

+2

n−1∑
j=0

Ψ(tj+1) (Ψ(tj+1)ν(tj+1)−Ψ(tj)ν(tj)) .

Notice that
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lim
n→∞

n−1∑
j=0

Ψ(tj+1) (Ψ(tj+1)ν(tj+1)−Ψ(tj)ν(tj)) =

ˆ T

0

Ψ(t) d (Ψ(t)ν(t)) .

The expected value of the quadratic variation of a Gaussian Markov process is then given by

[X,X]T = 2

ˆ T

0

Ψ(t) d (Ψ(t)ν(t))−Ψ2(T )ν(T ).

Applying integration by parts, we obtain

[X,X]T =

ˆ T

0

Ψ2 (t) dν (t) . (6.4)

6.2.2 L2 Convergence of the Quadratic Variation

In this subsection we prove that the expected value of the quadratic variation of the GM process

is constant.

Theorem 6.3. Let (Xt)t∈[0,T ] be a centered Gaussian Markov process such that

Xt = ΨtMt,

where (Mt)t∈[0,T ] is a centered Gaussian martingale with E
[
M2
t

]
= ν (t), Ψ is continuous with

bounded variation and Ψ 6= 0 for all t ∈ [0, T ].

Then the quadratic variation is of (Xt)t∈[0,T ] is given by

[X,X]T =

ˆ T

0

Ψ2 (t) dν (t) , almost surely.

To prove Theorem 6.3 we analyze the variance of the quadratic variation and show that

converges to zero in L2.

Proof. Set,

Nj ≡ Ψ(tj+1)M(tj+1)−Ψ(tj)M(tj).

In equation 6.2 we determined that

95



σ2
j ≡ E

[
N2
j

]
= Ψ(tj+1) (Ψ(tj+1)ν(tj+1)−Ψ(tj)ν(tj))−Ψ(tj)ν(tj) (Ψ(tj+1)−Ψ(tj)) .

Therefore the variance of the quadratic variation is given by

Vn ≡ E

n−1∑
j=0

N2
j −

n−1∑
j=0

E
[
N2
j

]2

= E

n−1∑
j=0

Nj

2

−

n−1∑
j=0

σ2
j

2

=
n−1∑
i=0

n−1∑
j=0

E
[
N2
i N

2
j

]
−

n−1∑
j=0

σ2
j

2

=
∑∑
i 6=j

E
[
N2
i N

2
j

]
+

n−1∑
j=0

E
[
N4
j

]
−

n−1∑
j=0

σ2
j

2

Since Nj
d
= N(0, σ2

j ), then

E
[
N2
i N

2
j

]
= σ2

i σ
2
j + 2E2 [NiNj ]

E
[
N4
j

]
= 3σ4

j .

Therefore,

Vn =
∑∑
i 6=j

σ2
i σ

2
j + 2

∑∑
i 6=j

E2 [NiNj ] + 3
n−1∑
j=0

σ4
j −

n−1∑
j=0

σ2
j

2

.

Since,

∑∑
i 6=j

σ2
i σ

2
j +

n−1∑
j=0

σ4
j =

n−1∑
i=0

n−1∑
j=0

σ2
i σ

2
j =

n−1∑
j=0

σ2
j

2

,

then,

Vn = 2
∑∑
i 6=j

E2 [NiNj ] + 2

n−1∑
j=0

σ4
j

= 4
∑∑
i<j

E2 [NiNj ] + 2

n−1∑
j=0

σ4
j .
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Notice,

E [NiNj ] = Ψ(ti+1)Ψ(tj+1)ν(ti+1 ∧ tj+1)−Ψ(ti+1)Ψ(tj)ν(ti+1 ∧ tj)

−Ψ(ti)Ψ(tj+1)ν(ti ∧ tj+1) + Ψ(ti)Ψ(tj)ν(ti ∧ tj).

Consequentially for i < j,

Vn = 2

n−1∑
j=0

{Ψ(tj+1) (Ψ(tj+1)ν(tj+1)−Ψ(tj)ν(tj))−Ψ(tj)ν(tj) (Ψ(tj+1)−Ψ(tj))}2

+4

n−1∑
i=0

n−1∑
j=i+1

(Ψ(tj+1)−Ψ(tj))
2

(Ψ(ti+1)ν(ti+1)−Ψ(ti)ν(ti))
2

≡ V1,n + V2,n.

To prove that the variance of the quadratic variation converges the Gaussian Markov process

must have finite expected quadratic variation; that is, using the result from equation 6.4, since

Ψ is continuous and ν has bounded variation,

ˆ T

0

Ψ2 (t) dν (t) <∞,

which is equivalent to

n−1∑
j=0

Ψ2 (tj+1) (ν (tj+1)− ν (tj)) <∞⇔ 2

n−1∑
j=0

Ψ (tj+1) (Ψ (tj+1) ν (tj+1)−Ψ (tj) ν (tj))−Ψ (tn) ν (tn) <∞.

Additionally, let us restrict Ψ to the family of continuous functions with bounded variation; that

is, there exists an M <∞, such that

n−1∑
j=0

|Ψ (tj+1)−Ψ (tj)| ≤M, for any partition of [0, T ] .

Notice that

M ≥
n−1∑
j=0

|Ψ (tj+1)−Ψ (tj)|

Mδ ≥
n−1∑
j=0

(Ψ (tj+1)−Ψ (tj))
2
,
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where δ ≡ max0≤j≤n−1 |Ψ (tj+1)−Ψ (tj)| ,which proves that if a continuous function of Ψ has

bounded variation, it also has bounded quadratic variation. The term V1,n can be rewritten as

V1,n = 2

n−1∑
j=0

{
Ψ2(tj+1) (ν(tj+1)− ν(tj)) + (Ψ(tj+1)−Ψ(tj))

2
ν(tj)

}2

= 2

n−1∑
j=0

{
Ψ4(tj+1) (ν(tj+1)− ν(tj))

2

+2Ψ2(tj+1) (ν(tj+1)− ν(tj)) (Ψ(tj+1)−Ψ(tj))
2
ν(tj) + (Ψ(tj+1)−Ψ(tj))

4
ν2(tj)

}
≤ 2

{
sup

x∈[0,T ]

Ψ4 (x) max
0≤j≤n−1

(ν (tj+1)− ν (tj)) ν (T )

+2ν2 (T ) sup
x∈[0,T ]

Ψ2 (x) max
0≤j≤n−1

(Ψ(tj+1)−Ψ(tj))
2

+ max
0≤j≤n−1

(Ψ(tj+1)−Ψ(tj))
2
Mδν2 (T )

}
. (6.5)

Since ν and Ψ are continuous then

lim
n→∞

V1,n ≤ 0.

Analyzing the second term in the variance

V2,n = 4

n−1∑
i=0

n−1∑
j=i+1

(Ψ(tj+1)−Ψ(tj))
2

(Ψ(ti+1)ν(ti+1)−Ψ(ti)ν(ti))
2

≤ 4Mδ

n−1∑
i=0

(Ψ (ti+1) (ν(ti+1)− ν(ti)) + (Ψ(ti+1)−Ψ(ti)) ν(ti))
2

≤ 4Mδ

{
max
x∈[0,T ]

|Ψ (x)|2 max
0≤i≤n−1

(ν(ti+1)− ν(ti)) ν (T )

+2 max
x∈[0,T ]

|Ψ (x)|2 max
0≤i≤n−1

(ν(ti+1)− ν(ti)) max
0≤i≤n−1

|Ψ(ti+1)−Ψ(ti)| ν2(T )

+ max
0≤i≤n−1

|Ψ(ti+1)−Ψ(ti)|Mν (T )

}
. (6.6)

Since Ψ and ν are a continuous functions, then

lim
n→∞

V2,n ≤ 0.

Since both V1,n and V2,n converge to zero, this establishes that the quadratic variation is a

constant, almost surely.
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6.2.3 Almost Sure Convergence and Estimation with Quadratic Vari-

ation

In the previous subsection, we proved that the quadratic variation of a Gaussian Markov process

converges in L2, so there is a sub-sequence that converges almost surely. In this subsection we

establish almost sure convergence of the quadratic variation for GM processes by identifying

those sub-sequences explicitly. This result establishes that the quadratic variation can be used

as a consistent estimator.

Theorem 6.4. Let (Xt)t∈[0,T ] be a centered Gaussian Markov process such that

Xt = ΨtMt,

where (Mt)t∈[0,T ] is a centered Gaussian martingale with E
[
M2
t

]
= ν (t), Ψ and ν are Lipschitz,

and Ψ 6= 0 for all t ∈ [0, T ]. If Πn = {t0, t1, . . . , tn−1, tn} is a partition on [0, T ] so that

‖Πn‖ ≤ k Tn , for some k ≥ 1, and {nk}∞k=1 is any sub-sequence {n}∞n=1 so that
∑∞
k=1 1/nk < ∞

then,

[X,X]T,n ≡
n−1∑
j=0

[
(X(tj+1)−X(tj))

2
]
n→∞→

ˆ T

0

Ψ2 (t) dν (t) , almost surely.

Proof. Since Ψ and ν are Lipschitz,

max
0≤j≤n−1

|Ψ (tj+1)−Ψ (tj)| ≤ C1 ‖Πn‖ ≤ C1k
T

n
(6.7)

and

max
0≤j≤n−1

|ν (tj+1)− ν (tj)| ≤ C2 ‖Πn‖ ≤ C2k
T

n
, (6.8)

where C1, and C2 are Lipschitz constants for Ψ and ν, respectively, and Π = {t0, t1, . . . , tn} is

any partition of [0, T ] so that ‖Πn‖ = maxj=0,...,n−1(tj+1 − tj) ≤ k Tn .

Set,

Λε̃,n ≡


n−1∑
j=0

N2
j −

n−1∑
j=0

E
[
N2
j

]
> ε̃

 .

Then by Chebyshev’s inequality,
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P (Λε̃,n) ≤ Vn
ε̃2
.

By 6.5 and 6.6 , inequalities 6.7 and 6.8 imply

Vn ≤ C
1

n
.

If {nk}∞k=1 is a sub-sequence of {n}∞n=1 so that
∑∞
k=1 1/nk <∞, then

∞∑
k=1

Vnk <∞

and by Borel-Cantelli lemma,

P (Λε̃,nk i.o.) = 0,

where “Λε̃,nk i.o.” denotes the event Λε̃,nk occurring k infinitely often, which means

P

(
lim sup
k→∞

Λε̃,nk

)
= 0,

which is equivalent to

Λε̃,nk → 0, a.s.

Therefore, the expected quadratic variation converges to the true quadratic variation almost

surely (i.e. with probability 1). For example, sampling with the speed nk = (1 + k)
1+ε will

suffice.

Example 6.5. Vasicek and the Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process (Xt)t∈[0,T ] is a common model for modeling mean-reversion

in interest rate derivative pricing and the length dynamics of over-damped springs under thermal

fluctuations. The Ornstein-Uhlenbeck process is a Gaussian Markov process defined by

Xt = X0e
−θt + µ

(
1− e−θt

)
+ σe−θt

ˆ t

0

eθsdBs,

where (Bt)t∈[0,T ] is a standard Brownian motion process and µ > 0 , θ > 0, and σ > 0 are

constants. In example 5.18 we used the Itô isometry, to show that σe−θt
´ t

0
eθsdBs, has functions
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Ψ (t) =
σe−θt√

2θ
and ν (t) = e2θt − 1.

This yields a centered GM process plus a deterministic term in the O-U process representation,

Xt = X0e
−θt + µ

(
1− e−θt

)
+ Ψ (t)Mt.

The deterministic term X0e
−θt + µ

(
1− e−θt

)
in the above equation is continuous and dif-

ferentiable and therefore has zero quadratic variation. Additionally, the cross variation with the

deterministic term is also zero. (Steele [50]). Therefore, applying Theorem 6.3, the quadratic

variation of the Ornstein-Uhlenbeck process is

[X,X]T =

ˆ T

0

Ψ2 (t) dν (t)

= σ2T.

The functions Ψ and ν are continuously differentiable, and therefore satisfy all properties

needed for almost sure convergence of the quadratic variation.

Since Ψ and ν are continuously differentiable on [0, T ], they are Lipschitz. Let us find the

Lipschitz constants. Now,

max
i
|Ψ (ti+1)−Ψ (ti)| = max

i

∣∣∣∣σe−θti+1

√
2θ

− σe−θti√
2θ

∣∣∣∣
= max

i

(∣∣∣e−θ(ti+1−ti) − 1
∣∣∣ ∣∣∣∣σe−θti√

2θ

∣∣∣∣)
≤ σ√

2θ
max
i

∣∣∣e−θ(ti+1−ti) − 1
∣∣∣ .

Using Mean Value Theorem with x0 = 0 and x = ti+1 − ti,

e−θx0 = 1− θ (ti+1 − ti) e−θc, where c ∈ [0, (ti+1 − ti)] .

Therefore

max
i
|Ψ (ti+1)−Ψ (ti)| ≤

σ√
2θ

max
i

∣∣θ (ti+1 − ti) e−θc
∣∣

≤ σ

√
θ

2
max
i

(ti+1 − ti) ≤ C1 max
i

(ti+1 − ti) ≤ C1k
T

n
.
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Finding the Lipschitz constant for ν yields,

max
i
|ν (ti+1)− ν (ti)| = max

i

∣∣e2θti+1 − e2θti
∣∣

= max
i

(∣∣∣1− e−2θ(ti+1−ti)
∣∣∣ ∣∣e2θti+1

∣∣)
≤ e2θT max

i

∣∣∣1− e−2θ(ti+1−ti)
∣∣∣

Using Mean Value Theorem with x0 = 0 and x = ti+1 − ti,

e−θx0 = 1− 2θ (ti+1 − ti) e−2θc, where c ∈ [0, (ti+1 − ti)] .

Therefore,

max
i
|ν (ti+1)− ν (ti)| = e2θT max

i

∣∣2θ (ti+1 − ti) e−2θc
∣∣

≤ 2θe2θT max
i

(ti+1 − ti) ≤ C2 max
i

(ti+1 − ti) ≤ C2k
T

n
.

Consequentially, the Ornstein-Uhlenbeck process has the property

lim
k→∞

nk−1∑
j=0

(X(tj+1)−X(tj))
2

 = [X,X]T , almost surely,

for any sequence {nk}∞k=1 so that
∑∞
k=1 1/nk <∞.

6.2.4 Confidence Interval Bounds of the Sample Quadratic Variation

for a Gaussian Markov Process

In this section, we use the prior results to find the confidence interval bounds for the sample

quadratic variation [X,X]T,n.

To find the confidence interval (and convergence rate) we need to show that

Aε,nk ≡ P
(∣∣∣[X,X]T,n − [X,X]T

∣∣∣ > ε
)
< α.

By Chebyshev’s inequality,
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Aε,n ≤
E
[
[X,X]T,n − [X,X]T

]2
ε2

≤ 2

E
(

[X,X]T,n − E
[
[X,X]T,n

])2

ε2
+

(
E
[
[X,X]T,n

]
− [X,X]T

)2

ε2


= 2

Vn
ε2

+

(
E
[
[X,X]T,n

]
− [X,X]T

)2

ε2

 ,

where Vn was derived in §6.2.2. Using the results that appear in computing Vn in §6.2.2, we have

E [X,X]T,n − [X,X]T =

n−1∑
j=0

σ2
j −

n−1∑
j=0

ˆ j+1

j

Ψ2 (t) dν (t) .

Let, BT,n ≡
∣∣∣E [X,X]T,n − [X,X]T

∣∣∣ , then by Mean Value Theorem, there are t∗j ∈ [tj , tj+1] such

that

BT,n =

∣∣∣∣∣∣
n−1∑
j=0

σ2
j −

n−1∑
j=0

Ψ
(
t∗j
)

(ν (tj+1)− ν (tj))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n−1∑
j=0

{Ψ(tj+1) (Ψ(tj+1)ν(tj+1)−Ψ(tj)ν(tj))−Ψ(tj)ν(tj) (Ψ(tj+1)−Ψ(tj))

−Ψ2
(
t∗j
)

(ν (tj+1)− ν (tj))
}∣∣

=

∣∣∣∣∣∣
n−1∑
j=0

{
(Ψ(tj+1)−Ψ(tj))

2
ν(tj)−

(
Ψ2(tj+1)−Ψ2(t∗j )

)
(ν(tj+1)− ν(tj))

}∣∣∣∣∣∣
≤ Mν (T ) max

0≤j≤nk−1
|Ψ(tj+1)−Ψ(tj)|+ 2ν (T ) max

x∈[0,T ]
|Ψ (x)| max

0≤j≤nk−1

∣∣Ψ(tj+1)−Ψ(t∗j )
∣∣ .

If Ψ is Lipschitz or a monotone function then,

∣∣∣E [X,X]T,n − [X,X]T

∣∣∣2 ≤ C4

n2
.

This yields a bound on the confidence interval such that

P
(∣∣∣[X,X]T,n − [X,X]T

∣∣∣ > ε
)
≤ 2

ε2

(
C3

n
+
C4

n2

)
.

This establishes that the sample quadratic variation converges to the true quadratic variation

at a rate of 1/
√
n in probability. Notice that the computation above indicates that the primary

driver of errors in the estimator is the standard deviation, while there is relatively small bias.
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Furthermore, if

2

ε2

(
C3

n
+
C4

n2

)
≤ α,

then

ε ≤

√
2

α

(
C3

n
+
C4

n2

)
.

In general, Chebyshev’s inequality is a very crude bound, and therefore the error bounds on

the quadratic variation estimator is much more conservative than the actual error bound. This

will be demonstrated in the example below.

Example 6.6. Estimation of Volatility in an Ornstein-Uhlenbeck Process

In this example we demonstrate the efficacy of the quadratic variation as an estimator of the

volatility in Gaussian Markov processes. We show how to use this result to estimate the diffusion

parameter of an Ornstein-Uhlenbeck process.

We begin by computing the confidence interval on the sample quadratic variation estimator.

Recall,

Ψ (t) =
σe−θt√

2θ
and ν (t) = e2θt − 1.

Let the partition Πn be defined as ti = iTn , i = 0, 1, . . . , n. Since Ψ is monotone decreasing,

the following summation is telescoping:

M ≥
n−1∑
j=0

|Ψ (tj+1)−Ψ (tj)| = Ψ (0)−Ψ (T ) =
σ√
2θ

(
1− e−θT

)
.

Since we assume n is large, the Taylor series expansion yields

max
0≤j≤n−1

|Ψ (tj+1)−Ψ (tj)|p =

∣∣∣∣Ψ (0)−Ψ

(
1

n

)∣∣∣∣p =
σp

(2θ)
p/2

(
1− e−θ/n

)p
≤

(
σp

(2θ)
p/2

)(
θ

n

)p
,∀p = 1, 2, . . .

and

δ = max
0≤j≤n−1

|Ψ (tj+1)−Ψ (tj)| ≤
(

σ√
2θ

)(
θ

n

)
.
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The function Ψ has its maximum occurring at x = 0. Therefore,

sup
x∈[0,T ]

Ψp (x) =
σp

(2θ)
p/2

,∀p = 1, 2, . . .

It is easy to verify that

max
0≤j≤n−1

(ν (tj+1)− ν (tj)) =

(
ν (T )− ν

(
T − 1

n

))
= e2θT

(
1− e−2θ/n

)
.

By Taylor series expansion,

e2θT
(

1− e−2θ/n
)
≤ 2

(
θ

n

)
e2θT .

Let us use the above to find the variance of the diffusion estimator. Since,

V1,n ≤ 2

{
sup

x∈[0,T ]

Ψ4 (x) max
0≤j≤n−1

(ν (tj+1)− ν (tj)) ν (T )

+2ν2 (T ) sup
x∈[0,T ]

Ψ2 (x) max
0≤j≤n−1

(Ψ(tj+1)−Ψ(tj))
2

+ max
0≤j≤n−1

(Ψ(tj+1)−Ψ(tj))
2
Mδν2 (T )

}
,

which yields

V1,n ≤ 2
σ4

(2θ)
2

{
2

(
θ

n

)(
e2θT

) (
e2θT − 1

)
+ 2

(
θ

n

)2 (
e2θT − 1

)2
+

(
θ

n

)3 (
1− e−θT

) (
e2θT − 1

)2}
,

and since,

V2,n ≤ 4Mδ

{
max
x∈[0,T ]

|Ψ (x)|2 max
0≤i≤n−1

(ν(ti+1)− ν(ti)) ν (T )

+2 max
x∈[0,T ]

|Ψ (x)|2 max
0≤i≤n−1

(ν(ti+1)− ν(ti)) max
0≤i≤n−1

|Ψ(ti+1)−Ψ(ti)| ν2(T )

+ max
0≤i≤n−1

|Ψ(ti+1)−Ψ(ti)|Mν (T )

}
,

assuring that

V2,n ≤ σ4
(
1− e−θT

) (
e2θT − 1

)( 1

n2

){
2e2θT + 4

(
θ

n

)
σ√
2θ
e2θT

(
e2θT − 1

)
+
(
1− e−θT

)}
.
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Recall that the variance is given by Vn = V1,n + V2,n.

The absolute bias term takes the form,

∣∣∣E [X,X]T,n − [X,X]T

∣∣∣ ≤ Mν (T ) max
0≤j≤n−1

|Ψ(tj+1)−Ψ(tj)|

+2ν (T ) max
x∈[0,T ]

|Ψ (x)| max
0≤j≤n−1

∣∣Ψ(tj+1)−Ψ(t∗j )
∣∣

∣∣∣E [X,X]T,n − [X,X]T

∣∣∣ ≤ (
1

n

)
σ2

2

(
e2θT − 1

) (
3− e−θT

)
.

Therefore, the quadratic variation estimator has

ε ≤

√
2

α

(
C3

n
+
C4

n2

)
, (6.9)

where,

C3 =
σ4

θ2

(
e2θT

) (
e2θT − 1

)
C4 =

σ4

4

(
e2θT − 1

)2 (
3− e−θT

)2
.

To demonstrate the efficacy of this method, we use Monte Carlo simulation to generate 1000

independent sample paths of the Ornstein-Uhlenbeck process with ∆t = 1/n and t ∈ [0, 1]. In

the simulations we set the initial value X0 = 0.08, the long term mean µ = 0.05, the spring

constant θ = 1, and the instantaneous volatility σ = 0.02. The Ornstein-Uhlenbeck process has

quadratic variation

[X,X]T = σ2T.

Therefore, the quadratic variation estimator of volatility is given by

σ̂ =

√√√√ 1

T

n−1∑
j=0

[
(X(tj+1)−X(tj))

2
]
.

Implementing the estimator on the 1000 sample paths with n = 128 observations, we obtain

the histogram of the volatility estimates in Figure 6.1 below.
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Figure 6.1: Quadratic Variation Estimates of Volatility for an O-U Process

If we use the error function results derived in inequality 6.9 and set α = 0.05, Figure 6.2

shows that the derived ε is a very conservative bound for the true error.
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ε
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Simulated

Derived

Figure 6.2: Error Bound for Quadratic Variation Estimates of Volatility of an O-U Process

To further understand the estimator’s errors, the Root Mean Square Error (RMSE), bias and

standard deviation are shown for different n in Figure 6.3 nk = 2k.
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Figure 6.3: Statistics on the Quadratic Variation Estimator of Volatility of an O-U Process

Figure 6.3 above confirms that the estimator’s error is primarily driven by the variance and

that the bias has very little effect, especially after n = 32 data points.

6.3 Discussion and Comparison to the MLE

As mentioned in the introduction, derivative pricing with stochastic models is done under a change

of probability measure, the new measure is known as the risk neutral measure. The change of

measure eliminates the drift parameters. Therefore, typical financial applications do not need

estimation of drift parameters. The primary exception is short rate bond models which are all

Markovian and developed under the risk neutral probability measure. Estimation of the drift

parameters is impeded since the model’s parameters and the observed prices are under different

probability measures. Therefore optimization techniques are typically used to “calibrate” all the

model parameters. (Shreve [46])

In financial mathematics, the change of measure is accomplished by the Radon-Nikodym

derivative, which preserves the quadratic variation (and diffusion) properties of the process. This

means that our estimator of the quadratic variation and the diffusion parameter are obtained

on historical price data. While calibration methods are still needed to find the drift parameters,

our proposed estimator could be used to reduce the number of variables in the optimization.

Additionally, since calibration of interest rate models is typically done on a snapshot of the
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forward rate curve, and the quadratic variation estimator uses a series of historical data, our

estimator of diffusion may provide better estimates of the diffusion parameter in practice.

Modeling outside of finance typically requires estimation of all model parameters. Estimation

of parameters in stochastic differential equations is a well studied subject. Girsanov’s theorem

(which uses the Radon-Nikodym derivative) establishes that the change of measure provides

weights (or likelihood) on different outcomes of the stochastic process. Given an Itô process,

dXt = b (Xt,Θ) dt+ σ (Xt,Θ) dBt,

where Θ ⊂ Rp is a multidimensional parameter, Prakasa Rao [42] shows that using the likelihood

function LT (Θ) is equivalent to the Radon-Nikodym derivative:

LT (Θ) = exp

(ˆ T

0

b (Xs,Θ)

σ2 (Xs,Θ)
dXs −

1

2

ˆ T

0

b2 (Xs,Θ)

σ2 (Xs,Θ)
ds

)
.

The discrete counterpart of the likelihood function is given by

Ln (Θ) =

n∏
i=1

pΘ

(
∆i, Xti | Xti−1

)
pΘ (X0) ,

where pΘ

(
∆i, Xti | Xti−1

)
is the transition density from value Xti−1

at time ti−1to value Xti

at time ti, where ti = i∆i, i = 0, 1, . . . , n and T = n∆n. In some cases, the sampling rate ∆i

can be constant, while in others it takes the form ∆n varies and it is assumed that n∆k
n → 0

for some power k ≥ 2. (Iacus [24], pp. 111) The choice of ∆i is dependent on the behavior

of the process. For each model, a specific sampling rate ∆i is needed to guarantee almost sure

convergence of the Maximum Likelihood Estimation (MLE). Additionally, it should be noted

that closed form representations of the transition density is not always available and numerical

methods are sometimes needed.

For consistency of the MLE estimators the asymptotics require n → ∞, which is equivalent

to T → ∞. While estimation with the MLE on discrete data can be accurate on finite time

intervals, optimization of the likelihood function can often fail because of the requirement for a

time series of infinite length. (Iacus [24], pp. 116)

Example 6.7. One popular example of parameter estimation using the MLE is on the Ornstein-

Uhlenbeck process. Iacus [24] simulates an Ornstein-Uhlenbeck process and uses numerical op-

timization to maximize the likelihood function and find the three parameters of the model. To
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the best of our knowledge, the only closed form MLE representation of estimators of the O-U

process parameters is given by Florens-Zmirou [16], where he assumes that the long term mean

reversion parameter µ = 0. Under this assumption, the O-U process takes the form

dXt = −θXtdt+ σdBt.

Florens-Zmirou [16] finds that if ∆i = 1/n = ∆t, then the MLE estimators are

θ̂ = − 1

∆t
ln

(∑n
i=1Xi−1Xi∑n
i=1X

2
i−1

)
and

σ̂2 =
2θ̂

n
(

1− e−2∆tθ̂
) n∑
i=1

(
Xi −Xi−1e

−∆tθ̂
)2

.

Notice that a major difference in Florens-Zmirou’s [16] estimators and our quadratic variation

estimator is the dependence on θ̂.

Motivated by Florens-Zmirou [16], we decided to attempt to derive the MLE for the full O-U

model assuming that we already have an estimate of σ from the quadratic variation. Given the

model

dXt = θ (µ−Xt) dt+ σdBt

its solution is

Xti = X0e
−θti + µ

(
1− e−θti

)
+ σe−θti

ˆ ti

0

eθudBu

or

Xti = µ
(
1− e−θ∆t

)
+ e−θ∆tXti−1 + σ

ˆ ti

ti−1

e−θ(ti−u)dBu,

therefore,

pΘ

(
∆t,Xti | Xti−1

) d
= N

(
µ
(
1− e−θ∆t

)
+ e−θ∆tXti−1

,
σ2
(
1− e−2θ∆t

)
2θ

)
.

Notice that the O-U process has transition probabilities that are invariant for fixed ∆t. This
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is used to form the likelihood function

Ln (Θ) =

n∏
i=1

(
θ

πσ2 (1 − e−2θ∆t)

) 1
2

exp

{
−
(

θ

σ2 (1 − e−2θ∆t)

)(
Xti − e−θ∆tXti−1 − µ

(
1 − e−θ∆t

))2
}

=

(
θ

πσ2 (1 − e−2θ∆t)

)n
2

exp

{
−
(

θ

σ2 (1 − e−2θ∆t)

) n∑
i=1

(
Xti − e−θ∆tXti−1 − µ

(
1 − e−θ∆t

))2
}
.

The log-likelihood can be written as

ln (Θ) =
n

2
log

(
θ

πσ2 (1− e−2θ∆t)

)
−
(

θ

σ2 (1− e−2θ∆t)

) n∑
i=1

(
Xti − e−θ∆tXti−1 − µ

(
1− e−θ∆t

))2
.

The maximum likelihood can be found by taking partials with respect to µ and θ:

∂ln (Θ)

∂µ
=

(
2θ
(
1− e−θ∆t

)
σ2 (1− e−2θ∆t)

)
n∑
i=1

(
Xti − e−θ∆tXti−1

− µ
(
1− e−θ∆t

))
= 0. (6.10)

Therefore,

µ̂ =
1
n

∑n
i=1

(
Xti − e−θ∆tXti−1

)
(1− e−θ∆t)

. (6.11)

Even though we assume that we have an estimate of σ2, let us see if we can get more infor-

mation out of the optimal σ2:

∂ln (Θ)

∂σ2
= −n

2

1

σ2
+

θ

σ4 (1− e−2θ∆t)

n∑
i=1

(
Xti − e−θ∆tXti−1

− µ
(
1− e−θ∆t

))2
= 0

σ̂2 =
2θ

n (1− e−2θ∆t)

n∑
i=1

(
Xti − e−θ∆tXti−1 − µ

(
1− e−θ∆t

))2
.

This gives an equation for the conditional variance of the Ornstein-Uhlenbeck process,

σ̂2
(
1− e−2θ∆t

)
2θ

=
1

n

n∑
i=1

(
Xti − e−θ∆tXti−1

− µ
(
1− e−θ∆t

))2
. (6.12)

The partial with respect to θ gives,
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∂ln (Θ)

∂θ
=

n

2

((
1 − e−2θ∆t

)
− 2θ∆te−2θ∆t

)
θ (1 − e−2θ∆t)

−
(
1 − e−2θ∆t

)
− 2θ∆te−2θ∆t

σ2 (1 − e−2θ∆t)2

n∑
i=1

(
Xti − e−θ∆tXti−1 − µ

(
1 − e−θ∆t

))2

−2

(
θ

σ2 (1 − e−2θ∆t)

) n∑
i=1

(
Xti − e−θ∆tXti−1 − µ

(
1 − e−θ∆t

))(
∆te−θ∆tXti−1 − µ∆te−θ∆t

)

Substituting equation 6.12 into the above results in a cancellation of the first and second terms

of δln(Θ)
δθ :

∂ln (Θ)

∂θ
= −2

(
θ

σ2 (1 − e−2θ∆t)

) n∑
i=1

(
Xti − e−θ∆tXti−1 − µ

(
1 − e−θ∆t

))(
∆te−θ∆tXti−1 − µ∆te−θ∆t

)
.

In equation 6.10, the partial with respect to µ established that

n∑
i=1

(
Xti − e−θ∆tXti−1

− µ
(
1− e−θ∆t

))
= 0,

and therefore

∂ln (Θ)

∂θ
= −2

(
θ

σ2 (1 − e−2θ∆t)

) n∑
i=1

(
Xti − e−θ∆tXti−1 − µ

(
1 − e−θ∆t

))(
∆te−θ∆tXti−1

)
= 0.

Substituting the estimator of µ
(
1− e−θ∆t

)
which was established in equation 6.11, yields

0 =

 n∑
i=1

XtiXti−1
− e−θ∆t

n∑
i=1

X2
ti−1
− 1

n

n∑
i=1

Xti−1

n∑
j=1

Xtj +
1

n
e−θ∆t

n∑
i=1

Xti−1

n∑
j=1

Xtj−1

 .

Therefore the maximum likelihood estimator for θ takes the form

θ̂ =
−1

∆t
ln

{
1
n

∑n
i=1Xti−1

∑n
j=1Xtj −

∑n
i=1XtiXti−1

1
n

(∑n
i=1Xti−1

)2 −∑n
i=1X

2
ti−1

}
.

The above results establish a MLE estimator for all three parameters of the O-U process. We

notice that when µ is unknown, the estimator for σ2 and θ are similar to the Florens-Zmirou’s

[16], however extra terms are needed to account for the influence of µ. These extra terms cause

an interesting effect on the estimator for θ. The numerator and denominator in the log function

are both very close to each other, in fact, both approach zero as n tends to infinity. This is one
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reason MLE consistency proofs require ∆ fixed and T →∞ . The delicate balance between the

ratio makes this method very sensitive to perturbations in the process and can cause θ̂ estimates

less than zero. Additionally, when θ̂ approaches zero, the denominator in equation 6.11 tends to

zero and µ̂ explodes. In this situation the estimator σ̂2 is relatively unaffected for small ∆t.

This result gives further insights into cases that cause a failure in the numerical maximization

of Iacus [24]. If the optimal θ̂ is some value less than or equal to zero, the model requirements

that θ > 0 are violated and since the objective function can be very flat, the optimization fails.

Interestingly, while the MLE estimators for µ and σ2 are functions of θ, as long as θ̂ is positive,

µ̂ and σ̂2 are relatively insensitive to explosions of θ̂. The bias of these estimators is only slightly

affected in the same direction as the bias in θ̂.

The major advantage of the quadratic variation estimator of volatility is the ability to prove

consistency on a fixed and finite interval [0, T ], while the MLE estimator is not consistent unless

T →∞. This difference brings into question which estimator is more accurate. In the remainder

of this example we investigate the performance of the two estimators.

In applications, parameter estimates are found on a finite time interval and therefore we

analyze the estimators performance for various N -s on the fixed interval [0, 1]. Simulating 10000

paths of the O-U process with the same parameters as in Example 6.6 and using the MLE and

quadratic variation estimators, we obtain the following statistics.
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Figure 6.4: Comparison of Volatility Estimators of an O-U Process: Fixed Interval

The statistics above suggest that the quadratic variation estimator of σ performs better on

smaller sample sizes than the MLE. To determine if there is a significant difference in the accuracy

of the estimators, let us compare the estimator’s absolute deviation using the paired t-test. Let,

D = average [|σ̂1 − σActual| − |σ̂2 − σActual|]

σ2
D = V ar [|σ̂1 − σActual| − |σ̂2 − σActual|]

The confidence interval on the statistic D can be shown to be approximately,

D ± σDtα2 ,N−1. (6.13)

We use equation 6.13 to construct 99% confidence interval for testing the hypothesis

H0 : |σ̂1 − σ| = |σ̂2 − σ|

H1 : |σ̂1 − σ| 6= |σ̂2 − σ|
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The results of the analysis can be seen below in Figure 6.5. Inclusion of zero in the confidence

interval indicates that there is no significant difference in the estimators. The 99% upper and

lower confidence interval bounds on D are denoted by DU and DL, respectively.
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Figure 6.5: Difference Analysis on Estimators of Volatility of an O-U Process: Fixed Interval

Given the definition of D, if D is significantly great than zero, then the quadratic variation

estimator of σ has less absolute deviation and vice-versa. The bold numbers in the table of

Figure 6.5 highlight the values for N for which the analysis indicated that the quadratic variation

estimator is more accurate. Further refinement indicates that the quadratic variation estimator

is significantly more accurate for samples up to approximately 4000 data points. After this point,

the analysis indicates that there is no significant difference in the accuracy of the estimators.

The prior analysis tested the performance of the estimators on a fixed interval as ∆t → 0.

The quadratic variation estimator’s consistency proof is derived under this assumption. However,

the MLE requires ∆t to remain fixed, while T → ∞. Therefore, let us test the performance of

the estimators under the MLE’s consistency requirements to see which performs better.

Fixing ∆t = 50/213 and simulating 10000 paths of the O-U process each with t ∈ [0, 50] and

the same parameters as in Example 6.6, the paths were sampled from t0 = 0 to T = 50/213−i, for

i = 0, . . . , 6. The MLE and quadratic variation estimators were then applied to each sample and
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analyzed using the difference analysis described above. The analysis gave the following results.
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D=mean(|σMLE-σactual|-|σQV-σactual|)
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Figure 6.6: Difference Analysis on Estimators of Volatility of an O-U Process: Fixed Delta t

The results of the analysis show that the quadratic variation estimator is significantly more

accurate for samples up to approximately 2000 data points and the MLE estimator is signifi-

cantly more accurate once approximately 8000 data points are exceeded. In between, there is no

significant difference in the accuracy of the estimators. It should be noted that further analysis

shows that choosing different fixed ∆t-s change the cross point for the switch in out-performance.

However, each analysis indicated that the quadratic variation estimator is significantly more ac-

curate on smaller to moderate samples and the MLE is significantly more accurate on very large

samples.

In the markets, conditions can change quickly. If the simulations of the O-U process with

fixed ∆t was a financial instrument and if σ was an annualized volatility (which is typical of

financial applications), this implies that the MLE method would not significantly out-perform

the quadratic variation method until you obtained 50 years of data that was sampled every 1.5

days. Accurate and fast analysis of smaller data sets on small fixed intervals is critical to decision

making in finance. For these reasons, the quadratic variation estimator may be better suited for

application in real world scenarios.
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6.4 Summary of Results

Through the use of Hida’s [19] underlying martingale representation we were able to show that

the quadratic variation for any continuous GM process can be represented as a Riemann–Stieltjes

integral for which we integrate the square of the scaling function with respect to the martingale’s

variance. This result gives insight into the influence of the dependence structure Ψ and variance

ν on the range properties of a GM process. Using the discrete representation of the quadratic

variation and its convergence properties, we were able to establish that the quadratic variation

can be used as a statistical estimator of diffusion parameter which is consistent on a fixed interval

[0, T ] and has a convergence rate of 1/
√
n. A numerical study of the quadratic variation estimator

of diffusion for an Ornstein-Uhlenbeck process provides support that the method is fast and

accurate. Additionally, error (measured in terms of RMSE) of these estimators is primarily

driven by the variance while the bias is relatively small.

A simulation analysis of the MLE and quadratic variation diffusion estimators of an Ornstein-

Uhlenbeck process indicate that the quadratic variation estimator is significantly more accurate

on small to moderate size samples. Analysis also indicated that out-performance may be due to

the consistency requirements; the MLE estimator requires an infinite time horizon of data points,

while the quadratic variation estimator requires an infinite number of data points on a fixed time

interval. The results also show that the MLE estimator of diffusion σ requires estimation of both

the spring dampening constant θ and the long term mean µ first, while the quadratic variation

estimator of diffusion is independent of the other parameters. This makes the quadratic variation

estimator both faster and more accurate or equivalent for samples on fixed finite time intervals.
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Chapter 7

Derivative Pricing Theory and Itô

Calculus with GM Processes

In this chapter we review the role of quadratic variation in stochastic calculus and demonstrate

the importance of accurate estimation of the diffusion parameter in application. In sections 7.2

and 7.3 we explicitly derive the call option pricing formula and the Kolmogorov (diffusion) back-

ward equation under the assumption that an asset’s price process follows a geometric Gaussian

Markov process. Our results go beyond the typical i.i.d. modeling assumptions to extend the

Black-Scholes-Merton option pricing formula and Black-Scholes pde to accommodate for vari-

ous structures of long/short dependence and scedasticity. The Raydon-Nikodym derivative is

explicitly derived to find the proper change of measure and arbitrage free conditions. Results in

this chapter demonstrate how quadratic variation plays a key role in pricing, hedging and risk

management.

7.1 Quadratic Variation in Stochastic Calculus: A Brief Re-

view

Let (x, t) 7→ f(t, x) be a function for which the partial derivatives ft, fx, and fxx are continuous.

If X = (Xt)t∈R is a continuous semi-martingale process, then the Itô-Doeblin formula (also

known as Itô’s lemma) states that
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f(T,X(T ))−f(0, X(0)) =

ˆ T

0

ft(t,X(t)) dt+

ˆ T

0

fx(t,X(t)) dX(t)+
1

2

ˆ T

0

fxx(t,X(t)) d [X,X]t ,

(7.1)

where the quadratic variation of the process X, [X,X]t, is of bounded variation. Alternatively,

the Itô-Doeblin formula can be written as

df(t,X(t)) = ft(t,X(t)) dt+ fx(t,X(t)) dX(t) +
1

2
fxx(t,X(t)) d [X,X]t . (7.2)

Remark 7.1. In Chapter 6 we derived the quadratic variation of the Gaussian Markov process

(Xt)t∈[0,T ] and established that d [X,X]t = Ψ2
tdνt. As long as Ψ is continuous and has bounded

variation, we can use the Itô-Doeblin formula with the Gaussian Markov process since we can

write

dXt = ΨtdMt +MtdΨt.

For a proof of the Itô-Doeblin formula see Chapter 8 in Steele [50].

7.2 Derivation of the Call Option Pricing Model

In this section we explicitly derive the call option pricing formula under the assumption of a stock

process following a geometric Gaussian Markov process. This derivation adapts the standard

techniques used to derive the Black-Scholes-Merton call option pricing formula to accommodate

for a Gaussian Markov process.

Let (St)t∈[0,T ] be a stock process model so that

St = S0e
µt− 1

2σ
2
´ t
0

Ψ2
sdνs+σXt . (7.3)

where (Xt)t∈[0,T ] is the Gaussian Markov process such that Xt = ΨtMt, and σ and µ are diffusion

and drift constants, respectively.

In Chapter 6 we derived the quadratic variation of the Gaussian Markov process and established

that d [X,X]t = Ψ2
tdνt. Applying the Itô-Doeblin formula 7.2 to St, it can be seen that this

model is a generalization of the Black-Scholes model so that
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dSt = σStdXt + µStdt.

Note that if the scaling function Ψt = 1 and the underlying martingale’s variance νt = t, this

model is exactly the Black-Scholes model. However if Ψ 6= C, this model can incorporate long

or short range dependence, while if ν can be chosen to make the log returns of the process be

highly non-stationary.

Additionally, assume a risk free bond defined by

Bt = B0e
rt,

where r is a constant for the risk free rate.

Let Ft = σ (Xr | r ≤ t) and define

Zt ≡ B−1
t St = S0e

(µ−r)t− 1
2σ

2
´ T
0

Ψ2
tdνt+σΨtMt . (7.4)

By the Itô-Doeblin formula 7.1

dZt = Zt (σd (ΨtMt) + (µ− r) dt)

= σZt

(
d (ΨtMt) +

µ− r
σ

dt

)
= σΨtZt

(
dMt +

Mt

Ψt
dΨt +

µ− r
σΨt

dt

)
. (7.5)

Recall that (Mt)t∈[0,T ] is a P martingale process and let

dγt =
Mt

Ψt
dΨt +

µ− r
σΨt

dt,

then (γt)t∈[0,T ] is an adapted (or previsible) process to {Ft}t∈[0,T ]. Define

M̃t = Mt +

ˆ t

0

γsdνs.

Set Yt ≡ −
´ t

0
γsdMs − 1

2

´ t
0
γ2
sdνs, Λt = eYt and assume E

[
e

1
2

´ T
0
γ2
sdνs

]
<∞. Since,
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dΛt = eYtdYt +
1

2
eYtd [Y, Y ]t

= eYt
(
−
ˆ t

0

γsdMs −
1

2

ˆ t

0

γ2
sdνs

)
+

1

2
eYtγ2

t dνt

= −γtΛtdMt,

(Λt)t∈[0,T ] is a stochastic integral and therefore it is also a martingale process. Let the measure

Q be defined by the Raydon-Nikodym derivative ΛT = dQ/dP. Then (Λt)t∈[0,T ] is the Raydon-

Nikodym process of ΛT . Note that

d
(
M̃tΛt

)
= M̃tdΛt + ΛtdM̃t + dΛtdM̃t

=
(

1− γtM̃t

)
ΛtdMt,

which assures that the process
(
M̃tΛt

)
t∈[0,T ]

is a P martingale since, for t > s,

EQ

[
M̃t | Fs

]
=

1

Λs
EP

[
M̃tΛt | Fs

]
= M̃s.

This establishes that
(
M̃t

)
t∈[0,T ]

is a Q Gaussian martingale process with EQ

[
M̃2
t

]
= νt. There-

fore, the risk neutral measure Q of the discounted stock process is given by

dZt = σZtΨtdM̃t,

consequentially the solution to this spde is given by

Zt = Z0e
σ
´ t
0

ΨsdM̃s− 1
2σ

2
´ t
0

Ψ2
sdνs ,

which is a Q martingale.

Remark 7.2. In Shreve [46], Theorem 5.4.7: The First Fundamental Theorem of Asset Pricing

states that if a market model has a risk-neutral probability measure, then it does not admit

arbitrage. Therefore, as long as E
[
e

1
2

´ T
0
γ2
sdνs

]
< ∞, the geometric GM stock model will be

arbitrage free.

Let FT be the payoff of an option on the stock at time T . Define
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Et = EQ
[
B−1
T FT | Ft

]
. (7.6)

Therefore, the discounted option (Et)t∈[0,T ] is a Q martingale. If we proceed with standard

Option Pricing Theory, according to the Martingale Representation Theorem, since (Et)t∈[0,T ]

and (Zt)t∈[0,T ] are two Q martingales, then there exists a previsible (Ft- measurable) process

(φt)t∈[0,T ] so that

dEt = φtdZt. (7.7)

Let (Πt)t∈[0,T ] be a portfolio consisting of (φt)t∈[0,T ] shares of the underlying stock and

(ψt)t∈[0,T ] shares of a risk free bond, where

ψt = Et − φtZt. (7.8)

Then, the value of the portfolio is at time t is given by

Vt = φtSt + ψtBt = EtBt. (7.9)

Using the standard approach in Option Pricing Theory, it can be shown that the portfo-

lio (Vt)t∈[0,T ] replicates the option payoff at time T . (Shreve [46]) Additionally, the portfolio

(Πt)t∈[0,T ] is self financing. (Shreve [46]) Since we construct the model so it does not admit ar-

bitrage, the value of the option Ft at time t ∈ [0, T ], equals the value the portfolio Vt. Therefore,

Ft = BtEQ
[
B−1
T FT | Ft

]
, (7.10)

which is the fundamental formula in Option Pricing Theory. Let us use fundamental formula to

derive the price of a call option for the geometric Gaussian Markov stock model.

Definition 7.3. A call option is a financial contract between two parties that gives its buyer

the right, but not the obligation to buy a financial instrument (the underlying security S) from

the seller of the option at a predefined time T , known as the expiration date, for an agreed upon

price K, known as the strike price.

The payoff of the call option at the expiration time, T , is given by the formula
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XT = (ST −K)
+
.

The derivation of the call option’s value at time t ∈ [0, T ] is accomplished under the risk-neutral

Q-measure. Since the discounted stock price under the Q-measure was given by

Zt = Z0e
σ
´ t
0

ΨsdM̃s− 1
2σ

2
´ t
0

Ψ2
sdνs

then the stock process under measure Q is given by

St = S0e
rt− 1

2σ
2
´ t
0

Ψ2
sdνs+σ

´ t
0

ΨsdM̃s .

Recall, the value of a derivative is given by equation 7.10. Let τ ≡ T − t and B0 ≡ 1, then the

call option value is given by

Ft = BtEQ

[
e−rT

(
S0e

rT+σ
´ T
0

ΨsdM̃s− 1
2σ

2
´ T
0

Ψ2
sdνs −K

)+

| Ft
]

= e−rτEQ

[(
S0e

rT+σ
´ T
0

ΨsdM̃s− 1
2σ

2
´ T
0

Ψ2
sdνs −K

)+

| Ft
]

= e−rτEQ

[(
S0e

rt− 1
2σ

2
´ t
0

Ψ2
sdνs+σ

´ t
0

ΨsdM̃serτ−
1
2σ

2
´ T
t

Ψ2
sdνs+σ

´ T
t

ΨsdM̃s −K
)+

| Ft
]

= e−rτEQ

[(
Ste

rτ− 1
2σ

2
´ T
t

Ψ2
sdνs+σ

´ T
t

ΨsdM̃s −K
)+

| Ft
]

= e−rτEQ

[(
Ste

rτ− 1
2σ

2
´ T
t

Ψ2
sdνs+σ

´ T
t

ΨsdM̃s −K
)+
]

(7.11)

= e−rτEQ

[(
Ŝte

σ
´ T
t

ΨsdM̃s −K
)+
]

= e−rτE
[(
Ŝte

σZ
√´ T

t
Ψ2
sdνs −K

)+
]

(7.12)

where

Ŝt = Ste
rτ− 1

2σ
2
´ T
t

Ψ2
sdνs

and Z is a standard normal random variable. Note that equation 7.11 deduces from the fact that

Ste
rτ− 1

2σ
2
´ T
t

Ψ2
sdνs is deterministic and σ

´ T
t

ΨsdM̃s is a Gaussian process that is independent of

the filtration Ft. Since the Gaussian martingale dM̃ has quadratic variation dνt, equation 7.12
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is a consequence of the Itô isometry

E

[ˆ T

t

fsdM̃s

]2

= E

[ˆ T

t

f2
s d [X,X]s

]

= E

[ˆ T

t

f2
s dνt

]
.

Let Σ ≡ σ2
´ T
t

Ψ2
sdνs. Then

Ft = e−rτE
[(
Ŝte

Z
√

Σ −K
)+
]

consequently this form allows us to use the Black-Scholes-Merton call option formula by substi-

tuting σ with Σ. Therefore, the value of the call option is given by

Ft = e−r(T−t)
[
Ŝte

1
2σ

2
´ T
t

Ψ2
sdνsΦ (d1)−KΦ (d2)

]
= StΦ (d1)− e−r(T−t)KΦ (d2) . (7.13)

where Φ (x) = 1√
2π

´ x
0
e−

1
2x

2

dx is the standard cumulative normal distribution and

d1 =
ln
(
St
K

)
+ r (T − t) + 1

2σ
2
´ T
t

Ψ2
sdνs

σ
√´ T

t
Ψ2
sdνs

d2 = d1 − σ

√ˆ T

t

Ψ2
sdνs.

We notice that if Ψ = 1 and ν (t) = t, this yields the quadratic variation of Brownian motion,
´ T
t

Ψ2
sdνs = T −t, and we obtain the Black-Scholes-Merton option pricing formula 4.3. Addition-

ally, equation 7.13 demonstrates that choosing a GM process with the proper quadratic variation

and having accurate estimation techniques for σ is essential since the quadratic variation and σ

significantly contribute to the theoretical option price. Furthermore, since Ψ and ν can be chosen

so that Σ can be non-linear over time, this model could accommodate for the term structure to

volatility that is observed in the market. (Hull [23], pp.377)
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7.3 The Kolmogorov Backward Equation for Pricing Deriva-

tives

In this section we use fundamental principles of modern financial theory and the previous results

to adapt the Black-Scholes partial differential equation (otherwise known as the Kolmogorov

backward equations) to the Gaussian Markov process. The derivation of such a pde is essential

for pricing derivatives and finding hedging strategies for risk management. These results are used

in the next section to find the Greeks for a call option, which give the hedging strategies and

dynamics of the replicating portfolio.

Let (Xt)t∈R be a Gaussian Markov process and assume that the stock process (St)t∈R is given

by

dSt = σ (t, St) dXt + µ (t, St) dt, (7.14)

where functions σ and µ satisfy standard assumptions in definition 5.11. Additionally, let a risk

free bond follow the model

dBt = rBtdt.

Since the option price Ft satisfies,

Vt = φtSt + ψtBt = Ft, (7.15)

then Ft = f (t, St).

Furthermore, since the portfolio is self-financing it satisfies

df (t, St) = φtdSt + ψtdBt.

= σ (t, St)φtdXt + (µ (t, St)φt + rψtBt) dt. (7.16)

On the other hand, applying the Itô-Doeblin formula 7.1 to the stock process 7.14 yields

df (t, St) = ft(t, St) dt+fx(t, St)µ (t, St) dt+fx(t, St)σ (t, St) dXt+
1

2
fxx(t, St)σ

2 (t, St) d [X,X]t .

(7.17)
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Equating 7.17 to 7.16 yields

(σ (t, St)φt − fx(t, St)σ (t, St)) dXt = (ft(t, St) + fx(t, St)µ (t, St)− µ (t, St)φt − rψtBt) dt

+
1

2
fxx(t, St)σ

2 (t, St) d [X,X]t . (7.18)

Since

dXt = ΨtdMt +MtdΨt,

then

(σ (t, St)φt − fx(t, St)σ (t, St)) ΨtdMt = (ft(t, St) + fx(t, St)µ (t, St)− µ (t, St)φt − rψtBt) dt

−MtdΨt (σ (t, St)φt − fx(t, St)σ (t, St))

+
1

2
fxx(t, St)σ

2 (t, St) Ψ2
tdνt.

If

at = Ψt (σ (t, St)φt − fx(t, St)σ (t, St)) 6= 0,

then we can divide the rhs by at, and the lhs dMt is independent of Ft while the rhs is Ft-

measurable. This can only happen if Mt is zero, which violates the definition of νt 6= 0 for all

t > 0. Therefore since Ψt 6= 0,

σ (t, St)φt − fx(t, St)σ (t, St) = 0.

Thus the shares of stock in the replicating portfolio

φt = fx(t, St). (7.19)

Substituting this result into equation 7.18, then

(ft(t, St)− rψtBt) dt+
1

2
fxx(t, St)σ

2 (t, St) Ψ2
tdνt = 0. (7.20)

Rearranging equation 7.15
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ψtBt = f (t, St)− φtSt.

= f (t, St)− fx(t, St)St, (7.21)

and substituting into equation 7.20, we obtain the Kolmogorov derivative pricing partial differ-

ential equation

rf (t, St) dt = (ft(t, St) + rStfx(t, St)) dt+
1

2
σ2S2

t fxx(t, St) Ψ2
tdνt. (7.22)

7.4 The Greeks and Sensitivity of the Call Option Pricing

Equation

The previous derivations form a replicating portfolio of a derivative in continuous time. We have

seen how the assumption of continuous time processes is essential for simplifying the large sums

that would occur if we assumed we were in discrete time. Basically, the power of the Itô inte-

gral (among properties of Gaussian martingales) enables the ease of derivation of the call option

pricing model. However, even with the microsecond scaled speeds in which electronic trading

currently takes place, these security prices evolve as a discrete process. Perfect replication of a

derivative would require continuous re-balancing, something that is not realizable (not to mention

infeasible when transaction costs are present). The use of a continuous time model to approx-

imate a discrete time system means an introduction of modeling errors. Additionally, implicit

assumptions pertaining to constant volatility, σ, drift, µ and dependence structure (modeled in

Ψand ν) may change as information is reflected in prices.

In the remainder of this section we focus on deriving the sensitivity of the derived model to

changes. In finance, the sensitivity analysis of a pricing model to model factors is known as the

Greeks. Furthermore, hedging strategies are needed to reduce exposures to risks in the market.

The Greeks allow for the hedging strategies that are needed to mitigate these risks.

Using the Kolmogorov pde 7.22 we can find the shares in the (φt, ψt)t∈[0,T ] replicating portfolio

for the call option and the Greeks. In the following, we find the terms needed in the Kolmogorov

pde to gain insights into hedging strategies and sensitivities. Recall the call option pricing formula

7.13:
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f (t, S) = SΦ (d1)− e−r(T−t)KΦ (d2) ,

where

d1 =
ln
(
S
K

)
+ r (T − t) + 1

2σ
2
´ T
t

Ψ2
sdνs

σ
√´ T

t
Ψ2
sdνs

d2 = d1 − σ

√ˆ T

t

Ψ2
sdνs.

As mentioned in the derivation of equation 7.13, if we let Σ ≡ σ2
´ T
t

Ψ2
sdνs, then equation 7.13

is the Black-Scholes-Merton call option pricing model with σ substituted by Σ. Therefore, we

can use the traditional Greeks (see Hull [23] Chapter 15) with the substitution of Σ to find the

following:

∆ ≡ ∂f
∂S = φt = Φ (d1)

Γ ≡ ∂2f
∂S2 =

Φ′ (d1)

σS
√´ T

t
Ψ2
sdνs

ρ ≡ ∂f
∂r = τe−rτKΦ (d2) .

The Greeks Theta and Vega are not the same as in the Black-Scholes-Merton call option Greeks

since the quadratic variation of a Gaussian Markov process may not evolve linearly with time

(as it does in the Brownian motion case). In the derivation that follows we find Theta. Let,

Θ ≡ ∂f

∂t
= SΦ′ (d1)

∂d1

∂t
− rKe−(T−t)Φ (d2)−Ke−r(T−t)Φ′ (d2)

∂d2

∂t
,

notice that

∂d2

∂t
=
∂d1

∂t
− σ

δ
√´ T

t
Ψ2
sdνs

δt
=
∂d1

∂t
+

σ

2
√´ T

t
Ψ2
sdνs

Ψ2
tdνt
dt

,

and therefore

Θ =
∂d1

∂t

(
SΦ′ (d1)−Ke−r(T−t)Φ′ (d2)

)
− rKe−(T−t)Φ (d2)

−Ke−r(T−t)Φ′ (d2)

 σ

2
√´ T

t
Ψ2
sdνs

Ψ2
tdνt
dt

 .
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Notice that

Ke−r(T−t)Φ′ (d2) =
K√
2π
e
−r(T−t)− 1

2

(
d1−σ
√´ T

t
Ψ2
sdνs

)2

=
K√
2π
e
−r(T−t)− 1

2

(
d1−σ
√´ T

t
Ψ2
sdνs

)2

=
K√
2π
eln( SK )− 1

2d
2
1

= SΦ′ (d1) .

In the derivation of ∆it is easy to show that the term SΦ′ (d1) − Ke−r(T−t)Φ′ (d2) = 0, and

therefore we obtain,

Θ = −rKe−rτΦ (d2)− σS

2
√´ T

t
Ψ2
sdνs

Ψ2
tdνtΦ

′ (d1) , (7.23)

where τ = T − t.

The derivation of Vega is similar to that of the Black-Scholes-Merton model’s calculation with

minor modifications for the quadratic variation of the GM process. It is easy to show that:

V ≡ ∂f

∂σ
= SΦ′ (d1)

√ˆ T

t

Ψ2
sdνs.

Note that each Greek is highly dependent on the quadratic variation of the GM process. This

means that proper risk management and hedging strategies require choosing a GM process with

the proper quadratic variation and accurate estimation of σ.

7.5 Discussion of Results

In this chapter, we demonstrated how the pricing equations and hedging strategies are modi-

fied for general forms of a continuous path Gaussian Markov processes. Particularly we observe

that proper risk management and pricing is extremely sensitive to the quadratic variation and

estimates of σ. These results confirm the importance of accurate estimators of the diffusion

parameter for pricing and hedging strategies, like the one introduced in Chapter 6. Most im-

portantly, the pricing formulas indicate that the theoretical price can be significantly misvalued

if modeling is done with a process that does not have the market’s true quadratic variation.

Additionally, this will result in an inability to completely hedge exposures to different risks. In
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this regard, we reviewed how stochastic calculus and Itô-Doeblin formula are highly influenced

by the quadratic variation. The results show that the GM process has an advantage over the

fractional Brownian motion model, which admits arbitrage, lacks exact hedging strategies, and

does not have economical interpretations of replication and self-financing portfolios. We saw how

the Radon-Nikodym derivative is constructed for the geometric GM stock model along with the

condition required for the change of measure, which, if satisfied, guarantees an arbitrage free

model.

Most importantly, the results of this chapter demonstrate how memory and heteroscedasticity

independently influence Option Pricing Theory and the management of risk. We showed that we

can expand the assumptions of the Black-Scholes model by replacing Brownian motion with a

Gaussian Markov process. This modification allows for the flexibility to model many observed

phenomenon, like long-range dependence and non-stationarity. The change does not significantly

complicate derivations since solutions only replace the linear quadratic variation of Brownian

motion with the quadratic variation of the Gaussian Markov process.

All of the results in this chapter show that the quadratic variation is important term in

determining price, optimal policy and hedging strategies. The dependence structure and or

non-linear scaling of time can result in a non-linear representation of quadratic variation. In this

scenario, the results of this chapter show that the process (and it’s increments) may have marginal

Gaussian distribution that constantly change over time. Just as in the case of fractional Brownian

motion, this would result in a term-structure to volatility and misvaluations of risk if the standard

Brownian motion model was used on such a GM process. However, more properties than fBm

could be incorporated that could complicate statistical analysis and give a false impression of

process characteristics. Since many GM processes are non-stationary, in general, if these processes

were analyzed under the assumption of i.d.d. increments or stationarity (like in the Brownian

motion model), the processes would not appear Gaussian (and would fail tests for normality).

This is because the convolution of the Gaussian random variables with different variances is not

Gaussian. While there are many observed market properties that GM processes could explain,

Option Pricing Theory suggests that Gaussian Markov process cannot explain the volatility

smile that has been observed in the market since the 1987 market crash. On the other hand,

the theory makes one point clear; choosing a model with an improper quadratic variation will

result in improper risk management and exposures to unforeseen risks that could have significant

consequences.
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Chapter 8

Replication and Simulation of a GM

Process

In this chapter we address the need for discrete representations of stochastic processes. In §8.2, we

present a general method to generate sample paths of continuous sample path GM processes using

Monte-Carlo simulation, while in §8.3 we present a general method for generating recombining

binomial trees of any continuous path GM process and prove that the trees converge, as stochastic

processes, to their corresponding GM processes.

8.1 Introduction

Derivative contracts come with a variety of clauses stipulating when the contract can be exercised

by the buyer. In the case of the European style derivatives, execution of the contract can only

occur at the expiration date, while American style derivatives give the buyer the right to exercise

the contract anytime before expiration. The vast majority of options are European and American

style and are referred to as vanilla options. Non-vanilla option styles like Bermudan, Canary,

compound, shout and swing options have a discrete number of exercise dates with varying terms.

For many European and non-vanilla payoff functions, f , the price and hedging strategies can

be found by analysis at each of the discrete exercise times. The discrete set of execution times

often allows for closed form solutions to be found using stochastic calculus.

In the case of American style derivatives, the maximization of the expected payoff can require

exercising the option before the expiration date. According to Theorem 8.5.2 in Shreve [46], if
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f (x), x ≥ 0, is a non-negative and convex payoff function of a derivative such that f (0) = 0,

then the American style derivative expiring at time T is optimal to be exercised at T . This means

that the American style and European style derivative have the same price and we can evaluate

the American derivative as if it is of European style. Furthermore, using Jensen’s inequality, it

can be shown that the optimal policy for maximizing expected payoff is to hold the derivative to

expiration. For example, given an expiration date and a strike price, the buyer of an American

call option should hold the contract until expiration and pay the same price as a European call

option on the same security. However, in the case of an American style put option with strike

price K, the payoff function, f (x) = (K − x)
+, is not zero when the underlying is zero. Since

Theorem 8.5.2 in Shreve [46] is not satisfied, it may be optimal to exercise the put option before

the expiration date.

For derivative payoffs where Theorem 8.5.2 in Shreve [46] are not satisfied, the optimal execu-

tion time of the contract is a stopping time random variable with range [0, T ]. Stochastic calculus

gives the formula in form of maximum over all stopping times, for these types of American style

derivatives closed form solutions are not known. The most popular example of a contract that

does not satisfy the theorem’s requirements is the American put option. This creates a need to

have a discrete representation of the stochastic process to find the optimal price, policies and

hedging strategies that maximize expected payoff. One such approach is Monte-Carlo simula-

tion which typically requires the generation and analysis of millions of sample paths to have the

accuracy required by the market place. Another popular method is to numerically solve the Kol-

mogorov backwards equations by performing finite difference analysis. In this type of analysis,

errors can occur when there are non-smooth terminal boundary conditions, which are typical

of almost all financial derivative products with the exception of futures contracts (forward con-

tracts can be solved explicitly and therefore do not need discretization methods). (Shreve [46],

Exercises 6.8 & 6.9) Another approach is the application of dynamic programming on binomial

trees. Given a recombining tree, the procedure to obtain optimal policies is well understood, fast,

and without approximations. (See Luenberger [30]) The accuracy of the solution is determined

by the number of periods n in the tree. In the Cox-Ross-Rubinstein (CRR) model, as n → ∞,

the tree converges to the Brownian motion process at a rate of 1/
√
n. The CRR model is often

used in the valuation of American style derivatives because of the speed and accuracy of dynamic

programming methodologies.
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8.2 Simulation of GM Processes

Even though Monte-Carlo simulation can be an inefficient brute force method of determining

policy and price, it is often needed to price exotic derivatives for which other methods are

intractable. One such example would be the pricing of an American style Asian option. Asian

options determine payoff by averaging prices over the contract time period. In this case, a

recombining binomial tree would have a payoff tree which is non-recombining at each node,

making the payoff binomial tree grow exponentially as the number of periods are increased (the

tree has 2n+1 − 1 nodes for periods n = 0, 1, . . . ). In order to determine price and policy we

derive a general approach to simulate the paths of a Gaussian Markov process.

Let (Xt)t∈[0,T ] be a continuous path GM process. Then by Theorem 5.3, Xt = ΨtMt so that

E
[
M2
t

]
= ν (t). Note that when t > s then

P (Xt ≤ x | Xs = y) = P (ΨtMt ≤ x | ΨsMs = y)

= P

(
Mt ≤

x

Ψt
|Ms =

y

Ψs

)
(8.1)

= P

(
Mt −Ms ≤

x

Ψt
−Ms |Ms =

y

Ψs

)
= P

(
Mt −Ms√
ν (t)− ν (s)

≤
x

Ψt
−Ms√

ν (t)− ν (s)

)
(8.2)

= P

(
Z ≤

x
Ψt
−Ms√

ν (t)− ν (s)

)
,

where equation 8.2 is a result of the Gaussian martingale property that (Mt −Ms) is independent

ofMs, for all t > s. Additionally, if t > s then (Mt −Ms)
d∼ N (0, ν (t)− ν (s)), since E [MtMs] =

min {ν (t) , ν (s)} = ν (s).

The derivation above can be used to find the one-step predictor (forecast) and its error

function as well as recursively generate an exact simulation the Gaussian Markov process. To

simulate the Gaussian Markov process at time t given time s < t we need only generate a standard

normal Z and perform the transformation

Xt = Ψt

(
Xs

Ψs
+ Z

√
ν (t)− ν (s)

)
.

Example 8.1. To generate a sample paths of the Ornstein-Uhlenbeck (O-U) process (Xti)
n
i=0,

such that ti = i/n, the algorithm above implies that we first generate (Zi)
n
i=1 i.i.d. standard
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normal random variables. Using the functions

Ψ (t) =
σe−θt√

2θ
and ν (t) = e2θt − 1,

the algorithm builds on itself inductively for i = 1, . . . , n, so that

Xti = e−θ/nXti−1 + Zi
σe−θ

i
n

√
2θ

√
e2θ in − e2θ i−1

n .

Generating 500 replications of each sample path with the following parameters

X0 = 0.025

µ = 0.05

θ = 1.3

σ = 0.01,

we obtain the following result.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

time (t)

X t

Ornstein-Uhlenbeck Process

Figure 8.1: Simulations of an O-U Process
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8.3 A Binomial Tree Representation of a Gaussian Markov

Process

Binomial tree models have been individually and specifically developed for different stochastic

processes. These trees are commonly used for determining optimal policies and valuations. To

prove that a tree convergences to a continuous stochastic process is a demanding task. Like the

derivations in Pollard [41], most convergence proofs require working on the metric spaceD ([0, T ]),

the Skorohod topology. Furthermore, it is not uncommon for models to be proposed or used in

practice without a proof of convergence to a specific stochastic process or when convergence

proofs are provided, many derivations incorrectly use theorems like the Central Limit Theorem.

In this section, we create a binomial tree representation that weakly converges to a continuous

path Gaussian Markov process. To prove weak convergence, and to avoid working in a Skorohod

topology, we adapt the Stochastic Central Limit Theorem by Anderson and Dobrić [2] to Hida’s

[19] definition of Gaussian Markov processes (Theorem 5.3).

The use of dynamic programming on trees to find optimal policies for options is well studied

and applied. Given a tree, the value of an American type option is typically found by using

the backward induction algorithm. As the name implies, this algorithm starts at the terminal

node values of the tree and inductively works its way back to the first node while it evaluates

the times for which the expected payoff is maximized. Dynamic programming on stochastic

tree representations are also wildly used by economists and engineers in areas such as resource,

inventory, operational management and capital budgeting. (Luenberger [30])

The most common tree representation is the random walk, which weakly converges to Brow-

nian motion. Brownian motion is the most basic of all GM processes and the proof of weak

convergence takes advantage of the independent and identically distributed (i.i.d.) Gaussian

increments. (Pollard [41], Theorem 19) Pollard [41] shows that if a process has independent

increments with weak regularity, then the tree can be shown to weakly convergence to a specified

process.

8.3.1 Gaussian Markov Binomial Trees

In this section, we propose a binomial tree representation for GM processes. In Theorem 8.2

we state the results of the Anderson and Dobrić [2] Stochastic Central Limit Theorem, which

establishes the three requirements which are needed to prove that the tree weakly converges to
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a continuous path stochastic process. Proofs of these requirements are derived in three lemmas.

Lemma 8.3 establishes that in each finite interval the random variables on a tree are eventually

bounded in the limit. Lemma 8.4 provides a proof of weak convergence of the process. Lemma

8.5 is needed to assure that the tree process converges to a continuous path stochastic process.

Lastly, Lemma 8.6 proves that the random processes of the tree converge to a specified continuous

path Gaussian Markov process.

To begin, let (Xt)t∈I be a continuous path stochastic process, where I is an index set. For our

purposes, I = [0,∞) or [0, T ] . We say that the sequence (Xn,t)t∈I converges weakly to (Xt)t∈I

and we write

(Xn,t)t∈I
w

=⇒ (Xt)t∈I

if

ˆ
f
(
(Xn,t)t∈I

)
dP →

ˆ
f
(
(Xt)t∈I

)
dP

for all f bounded continuous on C (I), where C (I) is equipped with the usual ‖ ‖∞ norm.

Next, if ti = ν−1
(
i
n

)
, this implies that ν (ti+1) − ν (ti) = i

n . We can define a binomial tree

such that,

Xn ≡ (Xn,t)t∈[0,T ] =

Ψn (t)√
n

[nν(t)]∑
i=1

ξi


t∈[0,T ]

, (8.3)

whereXn,0 = 0, {ξi}∞i=1 are i.i.d. with P (ξ1 = 1) = P (ξ1 = −1) = 1
2 , Ψn (t) = Ψ

(
ν−1

(
[nν(t)]
n

))
.

We could have also chosen Ψn (t) = Ψ
(

[nt]
n

)
, however then time changes would not evolve at the

same times as nν (t), but the theorem below would still hold. Note that,

‖Xn‖T = sup
t∈[0,T ]

∣∣∣∣∣∣Ψn (t)√
n

[nν(t)]∑
i=1

ξi

∣∣∣∣∣∣ ≤ M [nν (T )]√
n

≤Mν (T )
√
n <∞,

therefore (Xn,t)t∈[0,T ] ∈ B ([0, T ] , ‖ ‖I), where B ([0, T ] , ‖ ‖I) is the set of all bounded func-

tions on [0, T ] with respect to ‖ ‖I . In what follows we assume that Ψ, ν are continuous on

[0, T ].

The following theorem is an application of Theorem 5.5 and Theorem 4.2 from Anderson and

Dobrić [2].
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Theorem 8.2. (Gaussian Markov Functional Central Limit Theorem (CLT))

A process (Xn,t)t∈[0,T ] (given in equation 8.3), converges weakly to (Xt)t∈[0,T ], where (Xt)t∈[0,T ]

is a continuous path Gaussian Markov process with Xt = Ψ (t)Mt, and (Mt)t∈[0,T ] is a Gaussian

martingale with E
[
M2
t

]
= ν (t).

By Theorem 5.5 in Anderson and Dobrić [2], to prove that

(Xn,t)t∈[0,T ]

w
=⇒ (Xt)t∈[0,T ] ,

we must show:

a) Eventual boundedness, that is, (Xn) is eventually bounded if

lim
a→∞

lim sup
n→∞

P (‖Xn‖T > a) = 0, (8.4)

where ‖ ‖T = ess sups∈S |g (s)|.

b) Eventual Totally Boundedness, that is if Γ (T ) is the set of all finite partitions of the set

T , then (Xn) is eventually totally bounded if

∀ε > 0, ∃a ∈ Γ (T ) : lim sup
n→∞

P

(
max
A∈a

ω (Xn, A) > ε

)
< ε, (8.5)

where ω (φ,A) = sup {|∆φ (u, v)| |u, v ∈ A} , A j T , φ ∈ RT and ∆φ is the difference function

defined by ∆φ (u, v) = φ (u)− φ (v), ∀u, v ∈ T .

To prove that (Xt)t∈[0,T ] has continuous sample paths by Theorem 4.2 in Anderson and

Dobrić [2], we have to show Eventually Uniformly ‖ ‖∞-equicontinuity of the process (Xt). We

say that (Xn) is eventually uniformly ρ-equicontinuous, where ρ is a pseudometric on I, if

lim
a→0

lim sup
n→∞

P (ωρ (Xn, a) > ε) = 0, ∀ε > 0, (8.6)

where ωρ (φ, a) = sup {|∆φ (u, v)| |u, v ∈ T : ρ (u, v) < a} , a > 0. In our case,

ρ (f, g) ≡ sup
x∈[0,T ]

|f (x)− g (x)| = ‖f − g‖∞ .

Throughout the proofs we will use
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sup
t∈[0,T ]

∣∣∣∣Ψ(ν−1

(
[nν (t)]

n

))∣∣∣∣ ≤ sup
t∈[0,T ]

|Ψ (t)| ≡M,

which by continuity of Ψ implies M <∞.

For easier reading the proof of Theorem 8.2 is broken into three Lemmas.

Lemma 8.3. The process (Xn,t)t∈[0,T ] is eventually bounded.

Proof. According to equation 8.4 we need to show that

lim
a→0

lim sup
n→∞

P (‖Xn‖T > a) = 0.

Since M <∞,

P (‖Xn‖T > a) ≤ P

 sup
t∈[0,T ]

∣∣∣∣∣∣ 1√
n

[nν(t)]∑
i=1

ξi

∣∣∣∣∣∣ > a

M


≤

ME
∣∣∣∑[nν(T )]

i=1 ξi

∣∣∣
a
√
n

(8.7)

≤
M

√
E
(∑[nν(T )]

i=1 ξi

)2

a
√
n

≤
M
√
ν (T )

a
,

where inequality 8.7 follows from Doob’s (Martingale) Maximal Inequality (see Theorem 5.9),

and so

lim
a→∞

lim sup
n→∞

{
M
√
ν (T )

a

}
= 0.

Lemma 8.4. The process (Xn,t)t∈[0,T ] is eventually totally bounded.

Proof. Let us start by dividing the interval [0, T ] into N equal sub-intervals

Ij =

[
ν−1

(
(j − 1)

ν (T )

N

)
, ν−1

(
j
ν (T )

N

))
, j = 1, . . . , N,
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where N will be determined later, and assume t, s ∈ [0, T ] so that s ≤ t. According to inequality

8.5 we need to show that for all ε > 0,

lim sup
n→∞

P

(
max
j

sup
t,s∈Ij

|Xn,t −Xn,s| > ε

)
< ε.

If

Bε,n ≡

(
max

1≤j≤N
sup
t,s∈Ij

|Xn,t −Xn,s| > ε

)
,

then

P (Bε,n) = P

 max
1≤j≤N

max
t,s∈Ij

∣∣∣∣∣∣(Ψn (t)−Ψn (s))

[nν(s)]∑
i=1

ξi + Ψn (t)

[nν(t)]∑
i=[nν(s)]+1

ξi

∣∣∣∣∣∣ > ε
√
n


≤ P

 max
1≤j≤N

max
t,s∈Ij

∣∣∣∣∣∣(Ψn (t)−Ψn (s))

[nν(s)]∑
i=1

ξi

∣∣∣∣∣∣ > ε
√
n

2


+P

 max
1≤j≤N

max
t,s∈Ij

∣∣∣∣∣∣Ψn (t)

[nν(t)]∑
i=[nν(s)]+1

ξi

∣∣∣∣∣∣ > ε
√
n

2

 (8.8)

≡ In + IIn,

where to obtain inequality 8.8 we used P (|X|+ |Y | > ε) ≤ P
(
|X| > ε

2

)
+ P

(
|Y | > ε

2

)
. Set

Dn ≡ max
1≤j≤N

max
t,s∈Ij

|Ψn (t)−Ψn (s)| ,

and observe

In = P

 max
0≤j≤N

max
t,s∈Ij

∣∣∣∣∣∣(Ψn (t)−Ψn (s))

[nν(s)]∑
i=1

ξi

∣∣∣∣∣∣ > ε
√
n

2


≤ P

 sup
s∈[0,T ]

∣∣∣∣∣∣
[nν(s)]∑
i=1

ξi

∣∣∣∣∣∣ > ε
√
n

2Dn


≤

2Dn

√
ν (T )

ε
, (8.9)

where inequality 8.9 is a result of Doob’s (Martingale) Maximal Inequality (see Theorem 5.9).

Our goal is to show that Dn is small enough to yield a small In. Since Ψ is uniformly continuous

on [0, T ], for all ε′ > 0 there exists δ > 0 such that if |x− y| < δ then |Ψ (x)−Ψ (y)| < ε′.

By uniformly continuity and monotonicity of ν−1 on [0, ν (T )] for δ/2, there is an n0 so that if
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n ≥ n0 then

ν−1 (ν (s))− ν−1

(
ν (s)− 1

n

)
<
δ

2
,

which by monotonicity of ν is equivalent to s− δ
2 < ν−1

(
ν (s)− 1

n

)
and therefore,

ν−1

(
[nν (t)]

n

)
− ν−1

(
[nν (s)]

n

)
≤ t− ν−1

(
ν (s)− 1

n

)
< t− s+

δ

2
.

Consequently, if we set ε′ = ε2/4
√
ν (T ) and choose N so that ν(T )

N < δ/2, then if |x− y| <
ν(T )
N < δ/2 and n ≥ n0 we have, for s < t,

ν−1

(
[nν (t)]

n

)
− ν−1

(
[nν (s)]

n

)
< t− s+

δ

2
< δ, (8.10)

and therefore

Dn = max
j

max
t,s∈Ij

∣∣∣∣Ψ(ν−1

(
[nν (t)]

n

))
−Ψ

(
ν−1

(
[nν (s)]

n

))∣∣∣∣ < ε′ =
ε2

4
√
ν (T )

,

yielding

lim sup
n→∞

In ≤ lim supn→∞
2Dn

√
ν (T )

ε
≤ ε

2
. (8.11)

Consider IIn in inequality 8.8. Since

max
0≤j≤N

max
t∈Ij
|Ψn (t)| = max

t∈[0,T ]
|Ψn (t)| ≤M,

then

140



IIn = P

 max
0≤j≤N

max
t,s∈Ij

∣∣∣∣∣∣Ψn (t)

[nν(t)]∑
i=[nν(s)]+1

ξi

∣∣∣∣∣∣ > ε
√
n

2


≤ P

 max
0≤j≤N

max
t,s∈Ij

∣∣∣∣∣∣
[nν(t)]∑

i=[nν(s)]+1

ξi

∣∣∣∣∣∣ > ε
√
n

2M

 ≡ IIIn.
Set Yj ≡ maxt,s∈Ij

∣∣∣∑[nν(t)]
i=[nν(s)]+1 ξi

∣∣∣ and observe that Yj−s are i.i.d. Our goal is to transform

IIIn into a form which is suitable for the application of the Central Limit Theorem (CLT).

IIIn = 1− PN
max
t,s∈Ij

∣∣∣∣∣∣
[nν(t)]∑

i=[nν(s)]+1

ξi

∣∣∣∣∣∣ ≤ ε
√
n

2M


= 1− PN

max
t,s∈Ij

∣∣∣∣∣∣∣
[nν(t)]∑

i=[j nν(T )
N ]+1

ξi −
[nν(s)]∑

i=[j nν(T )
N ]+1

ξi

∣∣∣∣∣∣∣ ≤
ε
√
n

2M



= 1−

1− P

max
t,s∈Ij

∣∣∣∣∣∣∣
[nν(t)]∑

i=[j nν(T )
N ]+1

ξi −
[nν(s)]∑

i=[j nν(T )
N ]+1

ξi

∣∣∣∣∣∣∣ >
ε
√
n

2M



N

≤ 1−

1− P

max
t∈Ij

∣∣∣∣∣∣∣
[nν(t)]∑

i=[j nν(T )
N ]+1

ξi

∣∣∣∣∣∣∣ >
ε
√
n

4M



N

≤ 1−

1− 2P


∣∣∣∣∣∣∣
[nν(T )

N ]∑
i=1

ξi

∣∣∣∣∣∣∣ >
ε
√
n

4M



N

(8.12)

≤ 1−

1− 4P

[nν(T )
N ]∑
i=1

ξi >
ε
√
n

4M



N

(8.13)

= 1−

1− 4P

 1√[
nν(T )
N

] [nν(T )
N ]∑
i=1

ξi >
ε
√
n

4M

√[
nν(T )
N

]


N

≤ 1−

1− 4P

 1√[
nν(T )
N

] [nν(T )
N ]∑
i=1

ξi >
ε

4M

√
N

ν (T )



N

,

where inequality 8.12 is a result of Levy’s Lemma (see Theorem 5.10) and inequality 8.13 is by

the symmetry of {ξi}∞i=1. By the Central Limit Theorem, we have
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lim sup
n→∞

IIn ≤ 1−

(
1− 4P

(
N (0, 1) >

ε

4M

√
N

ν (T )

))N
.

Since

P (N (0, 1) > x) <
1

x
√

2π
e−

x2

2 , x > 0 (8.14)

and using the Taylor series expansion, 1− x
2 ≥ e

−x if 0 ≤ x ≤ 1, for N large enough, we obtain

lim sup
n→∞

IIn < 1−

(
1− 16M

ε
√

2π

√
ν (T )

N
exp

{
− Nε2

32M2ν (T )

})N
< 1− exp

(
−32M

ε
√

2π

√
Nν (T ) exp

{
− Nε2

32M2ν (T )

})
.

Penultimately, since
√
N exp (−Nc) → 0, when c > 0 as N → ∞, therefore there exists an N

such that 1− exp
(√

N exp {−Nc}
)
≤ ε/2,

lim sup
n→∞

IIn <
ε

2
. (8.15)

Finally, combining inequalities 8.11 and 8.15 we see that

lim sup
n→∞

P (Bε,n) < ε.

So we have proved that

(Xn,t)t∈[0,T ]

w
=⇒ (Xt)t∈[0,T ] .

Lemma 8.5. The process (Xn,t)t∈[0,T ] is eventually uniformly ‖ ‖∞-equicontinuous.

Proof. According to equation 8.6 we need to prove that for any ε > 0,

lim
a→0

lim sup
n→∞

P

(
sup
|t−s|<a

|Xn,t −Xn,s| > ε

)
= 0.
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Without loss of generality, let s < t ≤ T and set

ω (a) ≡ sup
|t−s|<a

|ν (t)− ν (s)| .

Our goal is to rewrite the supremum in a form which allows for analysis similar to the proof

of eventually totally bounded (Lemma 8.4). To achieve our goal, we need to partition [0, T ] into

appropriate sub-intervals.

Let j0 be chosen so that [nj0ω (a)] = [nν (T )]. Since

[
nω (a)

[
ν (T )

ω (a)

]]
≤ [nν (T )] = [nj0ω (a)]

we have j0 ≥
[
ν(T )
ω(a)

]
and since

[
nω (a)

([
ν (T )

ω (a)

]
+ 1

)]
≥ [nν (T )] = [nω (a) j0]

we have j0 ≤
[
ν(T )
ω(a)

]
+ 1. Now we can define our sub-intervals by

Ij ≡ {t ∈ [0, T ] | [njω (a)] < [nν (t)] ≤ [n (j + 1)ω (a)]} ,

and, for a fixed ε > 0, we have

Ba,n ≡

(
sup
|t−s|<a

|Xn,t −Xn,s| > ε

)
=
(
maxj maxs∈Ij ,|t−s|<a |Xn,t −Xn,s| > ε

)
. (8.16)

Similarly to Lemma 8.4,

P (Ba,n) = P

max
j

max
s∈Ij ,|t−s|<a

∣∣∣∣∣∣(Ψn (t)−Ψn (s))

[nν(s)]∑
i=1

ξi + Ψn (t)

[nν(t)]∑
i=[nν(s)]+1

ξi

∣∣∣∣∣∣ > ε
√
n


≤ P

max
j

max
s∈Ij ,|t−s|<a

∣∣∣∣∣∣(Ψn (t)−Ψn (s))

[nν(s)]∑
i=1

ξi

∣∣∣∣∣∣ > ε
√
n

2


+P

max
j

max
s∈Ij ,|t−s|<a

∣∣∣∣∣∣Ψn (t)

[nν(t)]∑
i=[nν(s)]+1

ξi

∣∣∣∣∣∣ > ε
√
n

2


= P (Ξn) + P (Θn) .

We will first compute P (Ξn). Recall
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max
j

max
s∈Ij ,|t−s|<a

Ψn (t) = sup
t∈[0,T ]

Ψn (t) ≤M,

and set

Dn ≡ sup
|t−s|<a

|Ψn (t)−Ψn (s)| .

Let ε′′ > 0 and set ε′ = ε

2
√
ν(T )

ε′′. Since Ψ is uniformly continuous on [0, T ], there exists

δ > 0 so that if |x− y| < δ, then |Ψ (x)−Ψ (y)| < ε′. If a < δ/2, then by inequality 8.10,

ν−1

(
[nν (t)]

n

)
− ν−1

(
[nν (s)]

n

)
< t− s+

δ

2
< a+

δ

2
< δ,

and consequently Dn < ε′, implying

P (Ξn) = P

 sup
|t−s|<a

∣∣∣∣∣∣(Ψn (t)−Ψn (s))

[nν(s)]∑
i=1

ξi

∣∣∣∣∣∣ > ε
√
n

2


≤ P

 sup
s∈[0,T ]

∣∣∣∣∣∣
[nν(s)]∑
i=1

ξi

∣∣∣∣∣∣ > ε
√
n

2Dn


≤

2Dn

√
ν (T )

ε
(8.17)

<
2ε′
√
ν (T )

ε

= ε′′,

where inequality 8.17 is a result of Doob’s (Martingale) Maximal Inequality (see Theorem 5.9),

yielding

lim
a→0

lim sup
n→∞

P (Ξn) = 0. (8.18)

Set

ηj ≡ [njω (a)] , j = 0, 1, . . . , j0

and

Θn,j ≡

 max
s∈Ij ,|t−s|<a

∣∣∣∣∣∣Ψn (t)

[nν(t)]∑
i=[nν(s)]+1

ξi

∣∣∣∣∣∣ > ε
√
n

2

 .
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Observe that

Θn =

j0⋃
j=1

Θn,j .

If t ∈ Ij , then

Θn,j j

 max
s∈Ij ,|t−s|<a

∣∣∣∣∣∣
[nν(t)]∑
i=ηj+1

ξi −
[nν(s)]∑
i=ηj+1

ξi

∣∣∣∣∣∣ > ε
√
n

2M


j

 max
s∈Ij ,|t−s|<a


∣∣∣∣∣∣

[nν(t)]∑
i=ηj+1

ξi

∣∣∣∣∣∣+

∣∣∣∣∣∣
[nν(s)]∑
i=ηj+1

ξi

∣∣∣∣∣∣
 >

ε
√
n

2M


j

 max
ηj<k≤ηj+1

∣∣∣∣∣∣
k∑

i=ηj+1

ξi

∣∣∣∣∣∣ > ε
√
n

4M

 , (8.19)

and if t ∈ Ij+1 (and if j + 2 ≤ j0), then

Θn,j j

 max
s∈Ij ,|t−s|<a

∣∣∣∣∣∣
ηj+1∑

i=[ns]+1

ξi +

[nν(t)]∑
i=ηj+1+1

ξi

∣∣∣∣∣∣ > ε
√
n

2M


j

 max
s∈Ij ,|t−s|<a


∣∣∣∣∣∣

ηj+1∑
i=[nν(s)]+1

ξi

∣∣∣∣∣∣+

∣∣∣∣∣∣
[nν(t)]∑

i=ηj+1+1

ξi

∣∣∣∣∣∣
 >

ε
√
n

2M


j

 max
ηj<k≤ηj+1

∣∣∣∣∣
ηj+1∑
i=k

ξi

∣∣∣∣∣+ max
ηj+1<k≤ηj+2

∣∣∣∣∣∣
k∑

i=ηj+1+1

ξi

∣∣∣∣∣∣ > ε
√
n

2M


=

 max
ηj<k≤ηj+1

∣∣∣∣∣∣
ηj+1∑
i=ηj+1

ξi −
k∑

i=ηj+1

ξi

∣∣∣∣∣∣
∨ max
ηj+1<k≤ηj+2

∣∣∣∣∣∣
k∑

i=ηj+1+1

ξi

∣∣∣∣∣∣
 >

ε
√
n

4M


j

 max
ηj<k≤ηj+1

∣∣∣∣∣∣
ηj+1∑
i=ηj+1

ξi

∣∣∣∣∣∣+

∣∣∣∣∣∣
k∑

i=ηj+1

ξi

∣∣∣∣∣∣


∨ max
ηj+1<k≤ηj+2

∣∣∣∣∣∣
k∑

i=ηj+1+1

ξi

∣∣∣∣∣∣
 >

ε
√
n

4M


j

2 max
ηj<k≤ηj+1

∣∣∣∣∣∣
k∑

i=ηj+1

ξi

∣∣∣∣∣∣ ∨ max
ηj+1<k≤ηj+2

∣∣∣∣∣∣
k∑

i=ηj+1+1

ξi

∣∣∣∣∣∣
 >

ε
√
n

4M

 . (8.20)

As before our goal is to bound P (Θn) by an expression for which we can apply CLT. Combining

[8.19] and [8.20], it follows that
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P (Θn) ≤ P

max
j

2

 max
ηj<k≤ηj+1

∣∣∣∣∣∣
k∑

i=ηj+1

ξi

∣∣∣∣∣∣ ∨ max
ηj+1<k≤ηj+2∧j0

∣∣∣∣∣∣
k∑

i=ηj+1

ξi

∣∣∣∣∣∣


∨ max
ηj+1<k≤ηj+2∧j0

∣∣∣∣∣∣
k∑

i=ηj+1+1

ξi

∣∣∣∣∣∣
 >

ε
√
n

4M


≤ P

max
j

 max
ηj<k≤ηj+1

∣∣∣∣∣∣
k∑

i=ηj+1

ξi

∣∣∣∣∣∣ ∨ max
ηj+1<k≤ηj+2∧j0

∣∣∣∣∣∣
k∑

i=ηj+1+1

ξi

∣∣∣∣∣∣
 >

ε
√
n

8M


≤ P

max
j

 max
ηj<k≤ηj+1

∣∣∣∣∣∣
k∑

i=ηj+1

ξi

∣∣∣∣∣∣ ∨max
j

max
ηj+1<k≤ηj+2∧j0

∣∣∣∣∣∣
k∑

i=ηj+1+1

ξi

∣∣∣∣∣∣
 >

ε
√
n

8M


= P

max
j

max
ηj<k≤ηj+1

∣∣∣∣∣∣
k∑

i=ηj+1

ξi

∣∣∣∣∣∣ > ε
√
n

8M


= 1− P

max
j

max
ηj<k≤ηj+1

∣∣∣∣∣∣
k∑

i=ηj+1

ξi

∣∣∣∣∣∣ ≤ ε
√
n

8M

 .

For fixed n, Zj ≡ maxηj<k≤ηj+1

∣∣∣∑k
i=ηj+1 ξi

∣∣∣ , j = 0, . . . , j0 are i.i.d., and so we have

P (Θn) ≤ 1− P j0
(

max
0<k≤η1,|t−s|<a

∣∣∣∣∣
k∑
i=1

ξi

∣∣∣∣∣ ≤ ε
√
n

8M

)

= 1−

(
1− P

(
max

0<k≤η1,|t−s|<a

∣∣∣∣∣
k∑
i=1

ξi

∣∣∣∣∣ > ε
√
n

8M

))j0

≤ 1−

(
1− 4P

(
η1∑
i=1

ξi >
ε
√
n

4M

))j0
, (8.21)

where inequality 8.21 is a result of Levy’s lemma and symmetry (see Theorem 5.10). Since

η1 = [nν (a)] and j0 ≤
[
ν(T )
ω(a)

]
+ 1,

P (Θn) ≤ 1−

1− 4P

 1√
[nν (a)]

[nν(a)]∑
i=1

ξi >
ε
√
n

8M
√

[nν (a)]

[ ν(T )
ν(a) ]+1

≤ 1−

1− 4P

 1√
[nν (a)]

[nν(a)]∑
i=1

ξi >
ε

8M
√
ν (a)

[ ν(T )
ν(a) ]+1

.

By CLT and inequality 8.14
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lim
n→∞

P (Θn) ≤ 1−

(
1− 4P (N (0, 1)) >

ε

8M
√
ν (a)

)[ ν(T )
ν(a) ]+1

≤ 1−

(
1−

32M
√
ν (a)

ε
√

2π
exp

(
− ε2

128M2ν (a)

))[ ν(T )
ν(a) ]+1

< 1− exp

{
−

(
64M

√
ν (a)

ε
√

2π

)([
ν (T )

ν (a)

]
+ 1

)
exp

(
− ε2

128M2ν (a)

)}
.

Finally since lima→0 ν (a) = 0,

lim
a→0

lim
n→∞

P (Θn) = 1− e0 = 0. (8.22)

From equations 8.18 and 8.22

lim
a→0

lim sup
n→∞

P

 sup
|t−s|<a

∣∣∣∣∣∣ 1√
n

[nν(t)]∑
i=[nν(s)]+1

ξi

∣∣∣∣∣∣ > ε

 ≤ 0,

establishing that (Xt)t∈[0,T ] has continuous sample paths and thereby concluding the proof of

Theorem 8.2.

Lemma 8.6. The process (Xn,t)t∈[0,T ] convergences to the GM process (Ψ (t)Mt)t∈[0,T ].

Proof. Now that we have shown that the sequence converges to a Gaussian stochastic process, we

need to show that both the mean and covariance of the discrete process (Xn,t)t∈[0,T ] converges

to that of the continuous time Gaussian Markov process. Since P (ξ1 = 1) = P (ξ1 = −1) = 1
2 it

is trivial to see that the mean of the process (Xn,t)t∈[0,T ] is zero and therefore

lim
n→∞

E [Xn,t] = 0.

Therefore we only need to prove that

lim
n→∞

E [Xn,tXn,s] = Ψ (t) Ψ (s) ν (t ∧ s) .

Without loss of generality let s < t. Then
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E [Xn,tXn,s] = E

Ψn (t) Ψn (s)

n

[nν(t)]∑
i=1

ξi

[nν(s)]∑
i=1

ξi


=

Ψn (t) Ψn (s)

n

[nν(t)]∑
i=1

[nν(s)]∑
j=1

E [ξiξj ]

=
Ψn (t) Ψn (s)

n

[nν(s)]∑
i=1

E
[
ξ2
i

]
(8.23)

= (Ψn (t) Ψn (s))
[nν (s)]

n
.

Recall that Ψn (t) = Ψ
(
ν−1

(
[nν(t)]
n

))
and therefore

lim
n→∞

Ψ

(
ν−1

(
[nν (t)]

n

))
= lim

n→∞
Ψ

(
ν−1

(
[nν (t)]

n

))
= Ψ (t) .

Additionally,

lim
n→∞

[nν (s)]

n
= ν (s) .

Combining these results, we obtain the covariance of the Gaussian Markov process

lim
n→∞

(Ψn (t) Ψn (s))
[nν (s)]

n
= Ψ (t) Ψ (s) ν (s) .

8.3.2 Example:A Binomial Tree of an Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck (O-U) process (Xt)t∈[0,T ] is a common model in many applications for

modeling mean-reversion. For example, in finance it is widely used to for interest rate derivative

pricing (where it is called the Vasicek model) and in physics it governs the length dynamics

of over-damped springs under thermal fluctuations. The O-U process satisfies the stochastic

differential equation (sde)

dXt = θ (µ−Xt) dt+ σdBt,

where (Bt)t∈[0,T ] is a standard Brownian motion process and µ > 0 , θ > 0, and σ > 0 are
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constants.

The solution to the sde is the process

Xt = X0e
−θt + µ

(
1− e−θt

)
+ σe−θt

ˆ t

0

eθsdBs.

Using the Itô isometry, example 5.18 established that the stochastic term, σe−θt
´ t

0
eθsdBs, is

a GM process with

Ψ (t) =
σe−θt√

2θ
and ν (t) = e2θt − 1.

Let us assume that interest rates evolve according to the Vasicek model with the following

parameters

X0 = 0.025

µ = 0.05

θ = 1.3

σ = 0.01.

We can implement equation 8.3, in stages to show how each component of the Gaussian

Markov process is influencing the properties of the tree. In the following example, we inductively

generate a recombining tree with n = 25 stages.

By the definition of Brownian motion

Ψn (t) = 1,∀t and ν (t) = t.

Plugging into equation 8.3, this yields the familiar random walk which converges to Brownian

motion:

Xn,t =
1√
n

[nt]∑
i=1

ξi.
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Figure 8.2: Random Walk

In Chapter 5 we saw that all Gaussian martingales are time changes of Brownian motion

(Lemma 5.8) . Equation 8.3 establishes that time evolves such that ti = ν−1
(
i
n

)
. In the Ornstein-

Uhlenbeck process, the underlying martingale has variance ν (t) = e2θt − 1 and therefore time

evolves as

ti =
ln
(
i
n + 1

)
2θ

, i = 0, 1, . . . , n.

This gives the underlying martingale the representation:

Xn,t =
1√
n

[nν(t)]∑
i=1

ξi.

Notice that it is the non-linear scaling of time that results in the recombination of nodes in

the tree. Without scaling time as an inverse of the martingale’s variance, the process would not

have an equal probability to go up or down for each n. This would destroy the recombining

structure which is critical to computation and application of the tree.

150



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

time (t)

X n,
t

O-U Underlying Martingale

Figure 8.3: Binomial Tree for the Underlying Martingale of an O-U Process

The addition of the dependence structure, controlled by Ψ, gives the tree of a centered Gaus-

sian Markov process:

Xn,t =
Ψn (t)√

n

[nν(t)]∑
i=1

ξi,

such that

Ψn (t) =
σe−θt√

2θ
.
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Figure 8.4: Binomial Tree for the Centered Gaussian Markov of the O-U Process

Lastly, the deterministic drift, which skews the tree toward its long term mean is needed to

obtain the final representation of the binomial tree for the Ornstein-Uhlenbeck process:

Xn,t = X0e
−θt + µ

(
1− e−θt

)
+

Ψn (t)√
n

[nν(t)]∑
i=1

ξi.
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Figure 8.5: Binomial Tree Representation of an O-U Process

The O-U random walk above can be seen to have similar shape and characteristics to figure
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8.1, which was generated with the same parameters.

Mining and harvesting are areas where the stochastic fluctuations of prices can have a sig-

nificant effect on a company’s bottom line. The determination of the optimal times to extract

a resource or harvest a crop is an example of a real option. While many commodities like corn,

oil or gold are typically modeled by a geometric Brownian motion (or the Bachelier model),

commodities tend to have long-range dependence which make Brownian motion a poor candi-

date. (Mandelbrot [31]) Since Gaussian Markov processes can adjust their dependence structure

through different Ψ functions and allow for heteroscedasticity by choosing ν, the GM binomial

tree may be able to be used to improve company profits.

One such example is given in Luenberger [30] in example 12.8, where a company wants to

extract gold from a mine. In this example, extraction costs depend on the amount of gold mined

and remaining. Since mining in one period affects future mining costs, to maximize profits, the

stochastic fluctuations of the gold prices must be taken into account. While Luenberger [30]

does not reveal the model for his gold price tree model, the evaluation of the optimal extraction

amounts and times is explicitly found using backward induction. This example shows how a GM

processes tree could be used to evaluate real options and find optimal risk management strategies.

8.3.3 Example:Derivative Pricing and Risk Management with the Gaus-

sian Markov Tree

Let us assume that an institution wants to issue a $100 par valued 1 year variable rate bond that

is currently paying r0 = 4.0%. This institution believes that rates are going to tend to µ = 5%

in the long term, however rates have been volatile with σ = 1%.

If the institution is afraid that rates will fall or remain below 4% and wants to protect the

bond from low yields, the institution could protect itself by purchasing an American style interest

rate put option with a strike price K = 4%. If the institution believes that short rates, r, are

evolving according to the Vasicek model (which is Ornstein-Uhlenbeck process) with say θ = 1.3,

the optimal execution times and price of the put option can be determined by finding

max
0≤τ≤1

$100Ee−
´ τ
0
rsds (K − rτ )

+
,

where τ is the exercise time.

In this application, the determination of policy through Dynamic Programming on the payoff
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tree has a restriction which is typically only present in interest rate products. Indeed, most equity

models assume that interest rate, r, is fixed; this assumption makes the term e−
´ τ
0
rsds deter-

ministic and therefore, it can be removed from the expected value. In this situation, the payoff

at each node in the O-U tree, and therefore the derivative payoff tree will remain recombining.

However since interest rates are stochastic in this example, the discount factor, e−
´ τ
0
rsds, is a

random variable which is path dependent. The path dependency causes the derivative payoff tree

to be non-recombining. To address this issue, we can use the Itô isometry to find the distribution

of the discount factor using the continuous model. Over the time period [0, T ], the discount

factor has distribution

r̄ ≡
ˆ τ

0

rsds

d
= N

(
1

T

[
r0

θ

(
1 − e−θT

)
+ µT +

µ

θ

(
e−θT − 1

)
,
σ2

θ2T 2

[
T − 2

θ

(
1 − e−θT

)
+

1

2θ

(
1 − e−2θT

)]])
.

Substituting in the parameters and assuming a contract length of T = 1,

r̄
d
= N (4.44%, 0.0014%) .

The above indicates that the discounting factor plays has a small effect on the price. Therefore,

we can keep our recombining tree by implementing the approximation

max
0≤τ≤1

$100e−r̄τE (K − rτ )
+
.

Application of the backward induction algorithm requires a comparison of the payoff at each

node, f (rti) = (K − rti)
+ to the value of the option in the future, Vti+1 . To start the backwards

induction algorithm we need to compute, Vtn = f (rtn) for each of the n + 1 nodes. Since the

Vasicek model is constructed under the risk-neutral measure, the risk neutral probabilities, q,

of moving up or down are fixed, by construction, as q = 1/2 for each branch in the tree. This

means the expected value of the option if held from time ti to the next time ti+1 is V ∗ti+1
=

1
2V

up
ti+1

+ 1
2V

down
ti+1

for each node. The value of the option at any node is determined by comparing

the discounted expected value of the two successive nodes to the value of the option at the

current node. If f (rti) is greater than (1 + r̄∆ti)
−1
V ∗ti+1

, then we exercise the option at time

ti, otherwise we hold onto the option. This means the optimal policy and value of the option is

given by Vti = max
(
f (rti) , (1 + r̄∆ti)

−1
V ∗ti+1

)
. The algorithm is repeated inductively for all
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i = n− 1, n− 2, . . . , 1, 0 to determine value of the option at time zero, Vt0 (see Luenberger [30],

Chapter 12 for details on the backwards induction algorithm and option pricing).

Implementation of the backwards induction algorithm with n = 500 gives an expected price

of $0.08 and a 99% confidence interval of (0.0848, 0.0849). In figure 8.6, we show the tree for

n = 100 periods. In this figure, the analysis shows the optimal interest rates (in green) that the

institution should exercise the put option. The analysis provides the institution with both the

price to pay for the insurance policy as well as the optimal exercise barrier of rates and times to

execute the put option.
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Figure 8.6: Binomial Tree Interest Rate Put Option Policy

The figure below shows the corresponding payoff for the “Exercise Times” along with the

shares of stocks and bonds that replicate the payoff of the put option. Option Pricing Theory

establishes that the replicating portfolio for the option value takes the form,

Vti = φtiSti + ψtiBti ,

where

φti =
V upti+1

− V downti+1

rupti+1
− rdownti+1

and

ψti = (1 + r̄∆ti)
−1
(
V
(
rupti+1

)
− φtirti

)
.
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Computation of the shares for the replicating portfolio is important for hedging risk and capturing

any market inefficiencies.
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8.4 Summary of Results

In this chapter we introduced methodologies to discretize GM processes. These methods allow

for the evaluation of complex contracts through simulation or binomial tree construction. The

most significant contribution of this chapter is the derivation of a recombining binomial tree

that converges weakly to a continuous path stochastic Gaussian Markov process. The use of

the Anderson and Dobrić [2] Stochastic Central Limit Theorem, coupled with Levy’s lemma

and Gaussian martingale properties enabled simpler convergence proofs than working in the

Skorohod topology. We saw that the total boundedness and the ρ-equicontinuity requirements

of the Stochastic Central Limit Theorem have a delicate balance which makes the choice of the

intervals to be analyzed critical to the derivation of the convergence proofs.
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Unlike the trees of fractional Brownian motion, we have shown that the GM tree has a general

form for all continuous path GM processes that always recombines, making it fast and easy to

generate since the number of points at each time step increases linearly with n. The recombining

tree is a result of the proper time scaling, due to the variance of the underlying martingale. The

recombining tree is critical to real world applications, since trees that do not recombine grow

exponentially. Additionally, the application of dynamic programming to recombining binomial

trees is well understood, exact and fast.

In fiance, Gaussian Markov processes are popular tools in modeling, however, without tree

representations that converge weakly, many applications require approximate and/or slow meth-

ods to determine price and risk management policies. Our result accommodates these models

and allows for accurate and fast analysis of many complex contracts or systems where no closed

form solutions can be explicitly derived. For example, the binomial tree models of GM processes

are crucial for dynamic optimal policies in pumping and valuing mines and wells, resource man-

agement and pricing American put options on financial products. With these results, decisions

(and policies) for optimal pricing, risk management and hedging can be obtained by analyzing

the proposed discrete binomial tree model, while being confident that the tree converges to a

particular continuous path Gaussian Markov process.
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Chapter 9

Conclusions

In this dissertation we focused on developing modeling techniques to handle the complex and fast

paced world of finance. In 2009, trading algorithms had enabled execution of trades in under 128

microseconds. Applications in finance to modeling and decision making requires quick, efficient

methods that are accurate on small sample sizes. In this motivation we developed two new

estimators for the parameters of a fractional Wiener process. We showed that our Ratio method

estimator of the Hurst index is significantly more accurate than Whittle’s approximate MLE

on small sample sizes (n = 128 data points or less) for 0.4 < H < 0.8. Additionally, analysis

showed that the Ratio method estimator shows no significant difference in accuracy for large

sample sizes. To address the need for robust estimation of parameters, our second estimator

of the Hurst index, which we call the Quadrant method, ignores the magnitude of movements,

but measures the correlation structure of series of two dimensional Gaussian random variables.

This method, while not as accurate as Whittle’s MLE or the Ratio method, outperforms the

second best estimator (according to Taqqu [51]), known as the Variance of Residuals method.

Both of our methods are of the order of 104 times faster than Whittle’s approximate MLE, and

are approximately 500 times faster than the Variance of Residuals method. Our new methods

address the disproportionate trade-off in accuracy and computation time that is present in current

methods.

Keeping in mind that models in finance are typically Markovian, and many are Gaussian,

the second part of this thesis focused on expanding modeling techniques for continuous path

Gaussian Markov processes. We showed that the quadratic variation is a Riemann-Stieltjes

integral which can be used as a new estimator of the diffusion parameter. We proved that the
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quadratic variation estimator of diffusion is consistent on a fixed time interval, while the MLE

method requires an infinite time horizon. The convergence rate and confidence interval bounds

for the estimator are also presented. We proposed a model for extending the Black-Scholes

equations to Gaussian Markov processes. This extension goes beyond the typical Black-Scholes

model assumptions by allowing for the inclusion of observed market properties like long-range

dependence, non-stationarity and heteroscedasticity. Unlike fractional Brownian motion, these

models allow for the use of Itô calculus and are typically arbitrage free. In our derivations we

explicitly show the arbitrage free condition (and change of measure) for a geometric Gaussian

Markov stock model. Using our representation for the quadratic variation we demonstrated the

importance of accurate estimators of quadratic variation and diffusion parameters in Option

Pricing Theory and risk management techniques.

We also showed that for the Ornstein-Uhlenbeck process, three parameter numerical optimiza-

tion of the likelihood function is not needed to find the Maximum Likelihood Estimators (MLE).

We were able to derive closed form estimators of all model parameters and apply these estimators

to simulated data to test the accuracy of the MLE. Analysis showed that our new quadratic vari-

ation method is computationally faster, since it does not require estimation of other parameters

to find the diffusion parameter. More importantly, the quadratic variation estimator of diffusion

is significantly more accurate on small to moderate size sample sizes. While consistency of the

MLE requires an infinite time horizon for the data sample, consistency of the quadratic variation

method is given on a fixed time interval, which explains the results. These properties establish

that the quadratic variation method has a clear advantage in financial applications since speed

and accuracy on small data sets is becoming ever more important with the increased speed of

trading algorithms.

Lastly, we addressed the need for methods to price many American style derivatives by deriv-

ing a consistent discrete representation of general continuous path Gaussian Markov processes.

We used the Stochastic Central Limit Theorem to prove that the binomial tree converges weakly

to the continuous path Gaussian Markov process on a fixed interval. Given the need for accurate

and fast methods in finance to determine optimal execution times, we show that the method

always gives a recombining tree for the GM process. We apply the tree to price an American

put option. Our example shows the optimal strategies for managing risk and maximizing the

expected payoff of the option.

Using our results, we established that the time scaling and dependence characteristics of Gaus-
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sian Markov processes and fractional Brownian motion may be able to explain many phenomenon

observed in markets, such as the term structure to volatility and underestimation of risk. The

infinite dependence and heteroscedasticity structures that Gaussian Markov processes can allow,

along with the quick and accurate methods presented in this dissertation, enable practitioners to

formulate models that could improve risk management, pricing and hedging in the marketplace.
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Appendix I: Box Plot Comparisons of Hurst Estimators
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Appendix II: Difference Analysis of Hurst Estimators
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Appendix III: Bias, Standard Deviation and RMSE of Hurst

Estimators
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Appendix IV: Review of Simulation and Linear Prediction

Algorithms

Choleski (Lower-Upper Triangular) Decomposition

The simulation of any zero mean finite variance Gaussian process, stationary or non-stationary,

can always be accomplished using Choleski decomposition. This is because the auto-covariance

matrix is always symmetric and non-negative definite. Choleski requires a Hermitian and positive

definite matrix in order to decompose the matrix into a product of a lower triangular matrix.

Now let us derive the value of a call option and it conjugate transpose. The decomposition the

non-negative definite Hermitian matrix ΣNxN is found by solving the system linear equations

ΣNxN = LL∗,

where L is a lower triangular matrix and L∗is its conjugate transpose. L is called the square

root of the matrix. In the case of a covariance matrix, ΣNxN = LLT . In order to generate

simulations of the the Gaussian process, X = (Xi)
N
i=1, the matrix L is applied to a vector of

independent standard normal random variables, zi:

X = LZ,

where Z =


z1

...

zN

. Unfortunately, in order to compute simulations, the algorithm requires

a good deal of virtual memory in order to calculation and storage of all elements in the matrix,

ΣNxN , and calculate and store L which have a NxN/2 +N/2 elements. Furthermore, the algo-

rithm can is quite time consuming, having complexity O
(
N3
)
(in actuality the LU decomposition

algorithm takes N3/3 Floating point Operations). (Doukhan [13], pp.581)

Example 9.1. Simulation of Brownian Motion

Choleski Decomposition is trial for simulating the stationary increments of Brownian motion.

Recall that by the definition of Brownian motion 2.6, the increments (white noise) are independent

identically distributed as N (0,∆t). Therefore the auto-covariance matrix for white noise is
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ΣNxN = ∆t INxN ,

where INxN is an NxN dimensional identity matrix. The decomposition of this matrix is

trivially

L =
√

∆t INxN .

Therefore, to simulate a discrete realization of a Brownian motion (Bti)
N
i=1, all that is required

is the generation of N − 1 independent normal random variable realizations Z = {zi}N−1
i=1 with

mean zero and variance ∆t. The sum of the random variables Z generates a realization of the

Brownian motion process, where

Btn+1
=

n∑
i=1

zi, n = 0, . . . , N − 1, tn+1 = n∆t.

As ∆t → 0, (Bti)
N
i=1 converges by the Functional Central Limit Theorem to the Brownian

motion process (Bt)t∈R.

Linear Prediction Algorithms

In this section, we do a literature review in which we sketch the proof of the formulation of the

linear prediction algorithms. This section relies on the formulations presented in [7] “Introduction

to Time Series and Forecasting” and [17] “Time Series Analysis” . The main advantage of

Prediction algorithms (like the Durbin-Levinson algorithm and Innovations algorithm) over the

Choleski decomposition algorithm is the ability to recursively compute the next observation in a

time series. This is accomplished by recursively computing one-step linear predictors (a prediction

of the next observation conditioned on all previous observations) and the corresponding one-step

Mean Square Error of the predictors. The theory for these algorithms is formed by minimizing

the Mean Square Error of the one-step predictor.

Let the time series {Xi}Ni=1 have an auto-covariance E [XiXj ] = k(i, j) with finite variance.

Let us find the “best” predictor as a function f in terms of the minimal Mean Square Error. If

we choose X̂n+1 = E [Xn+1|X1, X2, . . . , Xn] it can be shown that

E (Xn+1 − f(X1, X2, . . . , Xn))
2

=
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E {Xn+1 − E (Xn+1|X1, X2, . . . , Xn)}2 + E
{

(E (Xn+1|X1, X2, . . . , Xn)− f(X1, X2, . . . , Xn))
2
}

By the law of total expectation:

E (Xn+1 − E (Xn+1|X1, X2, . . . , Xn))E (Xn+1 − f(X1, X2, . . . , Xn)) = 0.

Therefore, the best estimator in terms of MSE has to be

f(X1, X2, . . . , Xn) = E [Xn+1|X1, X2, . . . , Xn] .

If the process X is jointly Gaussian, then the linear combination of these random variables

are also Gaussian. Additionally, the conditional expectation E [Xn+1|Xn] is Gaussian. This is

the motivation behind choosing a linear prediction operator, Pn, such that

X̂n+1 = PnXn+1 = α1Xn + · · ·+ αnX1 = XTα.

Notice that this is a linear projection of Xn+1 on all history of Xn, just like the conditional

expectation. When choosing α we want the forecast error
(
Xn+1 −XTα

)
to be uncorrelated to

X; E
[(
Xn+1 −XTα

)
X
]

= 0. Therefore,

E
[
XXT

]
α = E [Xn+1X] .

If vn is the one-step MSE of the forecasts Xn then vn = E [Xn+1 − PnXn+1]
2. This how

the Durbin Levinson algorithm is formed and establishes the best linear predictor of the nth

observation of the process.

Durbin Levinson Algorithm

The Durbin Levinson Algorithm uses the previous n observations of a mean zero stationary

time series to generate the n + 1 one-step predictor. The algorithm is recursive in this way.

Since we have a stationary process we only need the one row (or column) of the auto-covariance

function k(i, j). Let γn = [k(1, 1), k(1, 2), . . . , k(1, n)], then
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φn,n =

γ(n)−
n−1∑
j=1

φn−1,jγ(n− j)

 ν−1
n−1,

φn,i = φn−1,i − φn,nφn−1,n−i, for i < n,

νn = νn−1

[
1− φ2

n,n

]
,

where φ11 = γ(1)/γ(0) and ν0 = γ(0). To generate the time series (Xi : i = 1, . . . , N), we

need to generate a sequence of i.i.d. standard normal random variables, {zi : i = 1, . . . , N}. Then

we use the lower triangular matrix φ to obtain

Xn+1 = φn,1Xn + · · ·+ φn,nX1 + ν
1/2
n−1zn+1.

Note that ν1/2 is the one-step RMSE on the one-step predictor.

Definition 9.2. Toeplitz matrix is defined as a diagonal-constant matrix, with each descending

diagonal from left to right is constant. For example,

T =



a b c d e

f a b c d

g f a b c

h g f a b

i h g f a


.

Remark 9.3. Stationary Gaussian process have auto-covariance matrices which meet the defini-

tion of a Toeplitz matrix, plus an additional property of symmetry and non-negative definiteness.

All information in the auto-covariance function is represented in the first row (or column) of the

auto-covariance matrix. All other rows can be represented by a circular shift in the first row.

The Toeplitz matrix can be used to construct discrete convolution operations as matrix multipli-

cation. The Durbin-Levinson algorithm takes advantage of this property, it uses the convolution
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property of any zero mean stationary process to compute one-step predictors for simulation

purposes. These properties are important for the complexity, efficiency and speed of the Durbin-

Levinson algorithm since it does not require the computation and storage of an NxN one-step

predictor matrix to simulate N observations; it only requires the computation and storage of a

Nx1 vector. The speed of the Durbin-Levinson algorithm is O
(
N2
)
,much faster

(
O
(
N3
))

and

computationally efficient than Choleski decomposition methods. (Doukhan [13], pp.581)

Innovations Algorithm

The Innovation algorithm approaches prediction slightly differently; through linear combina-

tion of the forecast errors, Un = Xn − X̂n. Here instead of forming predictions from the time

series values itself, prediction is done on the one-step prediction errors, U . The difference func-

tion Ui = Xi − X̂i is called an innovation. Notice that there exists a nonsigular matrix A such

that

U = AX, (9.1)

where A is a lower triangular matrix

A =



1 0 0 . . . 0

a11 1 0
. . . 0

a22 a21 1
. . . 0

...
...

... 1
...

an−1,n−1 an−1,n−2 an−1,n−3 . . . 1


If X is a stationary process then ai,j = −αj , where α =

(
E
[
XXT

])−1 E [Xn+1X]. This

allows for the computation of the vector of one-step predictors, X̂n = (X1, P1X2, . . . , Pn−1Xn)T :

X̂ = X − U = A−1U − U = Θ(X − X̂),

where
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Θ =



0 0 0 . . . 0

θ11 0 0
. . . 0

θ22 θ21 0
. . . 0

...
...

... 0
...

θn−1,n−1 θn−1,n−2 θn−1,n−3 . . . 0


.

Therefore,

X̂n+1 =


0 if n = 0∑n

i=1 θn,j(Xn+1−j − X̂n+1−j) if n = 1, 2, . . .

The Innovations algorithm can be written recursively as:

v0 = k(1, 1),

θn,n−k = v−1
k

k(n+ 1, k + 1)−
k−1∑
j=0

θk,k−jθn,n−jvj

 , 0 ≤ k < n,

and

vn = k(n+ 1, n+ 1)−
n−1∑
j=0

θ2
n,n−jvj .

(Brockwell [6], pp.73)

The Innovations algorithm makes no assumption on the stationarity of the Gaussian process,

unlike the Durbin Levinson algorithm. This algorithm is based on conditional expectations and

utilizes the lower triangle of the auto-covariance (not just the first row) matrix to compute the

one-step predictors of forecast errors. In order to simulate a Gaussian process, we generate N

standard normal random variables, {zn}Nn=0, and recursively compute for all n ∈ N

Xn =

n∑
i=1

θn,j(Xn+1−j − X̂n+1−j) + v1/2
n zn.

Innovations requires the storage of only the most recent element of the auto-covariance func-
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tion. Additionally, the algorithm is extremely efficient in terms of memory since it at any given

integration only needs to store 2n− 3 values of Θ and n− 1 values of vn and the previous Xn−1

values to generate the predictor X̂n. This algorithm is must faster than Choleski decomposi-

tion, with a complexity of O(N2).(Doukhan et al.[13],pp. 581) Note that the main difference

in the speed of this algorithm verses the speed of the Durbin Levinson algorithm comes from

the computation of the one-step MSE, vn. In Innovations algorithm there is a sum adding an

additional N(N + 1)/2 operations, while there is not sum in the Durbin Levinson algorithm for

this computation.
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Appendix V: Levy’s Lemma

Let ξi be symmetric, that is P (ξ ≤ x) = P (−ξ ≤ x), then

P

(
max

1≤k≤K

∣∣∣∣∣
K∑
i=1

ξi

∣∣∣∣∣ > x

)
≤ 4P

(∣∣∣∣∣
K∑
i=1

ξi

∣∣∣∣∣ > x

)
.

Proof. Let j be the first k so that
∑j
i=1 ξi > x. Define T as a random variable with values j. If

there exists no such j, set T = k + 1. Then,

P

(
max

1≤k≤K

k∑
i=1

ξi > x,

K∑
i=1

ξi < x

)
=

K∑
j=1

P

(
max

1≤k≤K

k∑
i=1

ξi > x, T = j,

K∑
i=1

ξi < x

)

=

K−1∑
j=1

P

 j∑
i=1

ξi > x, T = j,

j∑
i=1

ξi +

K∑
i=j+1

ξi < x


=

K−1∑
j=1

P

 j∑
i=1

ξi > x, T = j,

K∑
i=j+1

ξi < 0

 .

Since the random sums are disjoint, independent, and symmetric,

P

(
max

1≤k≤K

k∑
i=1

ξi > x,

K∑
i=1

ξi < x

)
=

K−1∑
j=1

P

(
j∑
i=1

ξi > x, T = j

)
P

 K∑
i=j+1

ξi > 0


≤

K∑
j=1

P

(
K∑
i=1

ξi > x, T = j

)

= P

(
K∑
i=1

ξi > x

)
.

Therefore,

P

(
max

1≤k≤K

k∑
i=1

ξi > x

)
= P

(
max

1≤k≤K

k∑
i=1

ξi > x,

K∑
i=1

ξi > x

)
+ P

(
max

1≤k≤K

k∑
i=1

ξi > x,

K∑
i=1

ξi < x

)

≤ 2P

(
K∑
i=1

ξi > x

)
− P

(
K∑
i=1

ξi = x

)

≤ 2P

(
K∑
i=1

ξi > x

)
.

By symmetry,

P

(
max

1≤k≤K

∣∣∣∣∣
k∑
i=1

ξi

∣∣∣∣∣ > x

)
≤ 4P

(
K∑
i=1

ξi > x

)
.
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