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ABSTRACT 

Isoporphyrins are tautomers of porphyrins with an interrupted macrocyclic 

conjugation owing to the presence of a sp3 hybridized meso-carbon. Due to their 

absorption at long wavelengths (~800nm), isoporphyrins are potential candidates as 

photosensitizers in photodynamic therapy (PDT), a ternary modality of cancer treatment. 

They are also of biological interest due to their unique redox properties among porphyrin 

derivatives and could be a new class of near-IR dyes. 

Isoporphyrins are known to be unstable with respect to transformation back to the 

fully conjugated porphyrin chromophore except when the meso-carbon is geminally 

substituted and for this reason a detailed study of this macrocycle has previously been 

prevented. However, a better synthetic route (the main objective of this research project) 

by way of open-chain tetrapyrrole precursors has been developed to afford the target 

compound, zinc(II) isoporphyrin in better yields (28%) than previously reported (6%). 

No other metal isoporphyrin is known and a novel copper(II) isoporphyrin was 

synthesized and characterized. This was achieved by utilizing cuprous chloride as the 

metal ion donor. Stability studies have also been done to obtain stable metal-free 

isoporphyrins which have not previously been isolated and characterized. A detailed 1H 

and 13C NMR study allows their complete structural elucidation. Substitution of one of 

the meso-dimethyl groups for an ester using α,β-ketoesters as carbon-linking units in the 

cyclization reaction of b-bilenes, affords novel zinc isoporphyrins, whose preliminary 

chemical properties show that they can be used as intermediates to meso-monosubstituted 

porphyrins. However, during the synthesis, various intermediates were observed and 

studied. An interesting transformation – b-bilene, to a,b-biladine, to a,c-biladiene – was 



 x

observed; this is the first example of such a transformation that we are aware of so far.  

This route has also been applied to synthesize meso-monosubstituted porphyrins in higher 

yields than previously reported. 

These compounds have also been studied for their biological properties applicable 

to photodynamic therapy, including dark- and phototoxicity, intracellular localization, 

and cell uptake. The preliminary results indicate that the compounds exhibit low dark 

toxicity and are phototoxic, they localize both in the mitochondria (major) and the 

lysosomes, and thus are very good candidates for tumor destruction in PDT. 
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CHAPTER 1 

GENERAL INTRODUCTION 

 The porphyrin macrocycle (1), as illustrated in Figure 1.1, consists of four 

pyrrole units joined by four methine bridges. This macrocycle is highly conjugated and 

highly colored. It posses 22 π-electrons, but only 18 of these are included in any 

delocalization pathway, thus it is aromatic on the basis of Huckel’s rule (4n + 2). The 

main absorption band, an intense Soret band with very high extinction coefficient (about 

105), is found around 400 nm and is characteristic of this macrocyclic conjugation. An 

interruption to this conjugation results in the disappearance of this band.1 The four 

pyrrole nitrogens in the porphyrin core form a cavity into which metal ions can bind by 

coordinate or covalent bonds, between the nitrogens and the metal, thus giving 

metalloporphyrins. 

 The tetrapyrrole macrocycle forms the core of many important biological 

molecules that occur in nature. For example heme (2), the prosthetic group in 

hemoglobins (blood) and myoglobins, (and many other hemoproteins), is responsible for 

oxygen transport and storage in living tissue, respectively. Other hemoproteins like 

peroxidases, cytochrome c oxidase, are enzymes involved in chemical catalysis, and 

cytochrome, cytochrome c, are responsible for active membrane transport and electron 

transport. Chlorophylls (3), found in green plants, plays important roles in the process of 

photosynthesis. Other examples include bacteriochlorophylls (found in photosynthetic 

bacteria), and vitamin B12. 
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Figure 1.1: Examples of naturally occurring porphyrins 

 

 

Porphyrins can be obtained using several synthetic approaches, the most common 

ones being tetramerization of pyrroles and an aldehyde;2 condensation of dipyrrolic 

intermediates, for example dipyrromethanes (4) (utilizing the MacDonald3 [2 + 2] 

synthesis), and dipyrromethenes (5) (a synthetic approach developed by Fischer4); and 
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cyclization of open chain tetrapyrroles like bilanes (6), b-bilenes (11), a,c-biladienes (12), 

just to name a few.5 
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Figure 1.2: Porphyrin syntheses precursors  

 

 

The carbon skeletons of these macrocycles contain only sp2 - hybridized meso 

bridging carbons. Introduction of an sp3 – hybridized meso carbon to this macrocycle 

alters every chemical and physical property associated with it. A new class of compounds 

emerges with different features and characteristics. Herein, we shall discuss closely 

related tetrapyrrolic compounds featuring a mixture of sp2 - and sp3 – hybridized meso 

bridging carbons. These include isoporphyrins (7) (which are the main objective of this 

dissertation), phlorins (8), porphodimethenes (9), porphomethenes (10) and open-chain 

tetrapyrroles (bilenes (11) and a,c-biladienes (12)). 
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Figure 1.3: Structures of tetrapyrroles with mixed sp2- and sp3- bridging carbons 
 
 
 
 
1.1 Isoporphyrins 

Isoporphyrins (7) contain three sp2 – and one sp3 – hybridized meso carbons and 

one NH hydrogen atom. The existence of this type of compound was first suggested by 

Woodward6 in 1961 after the discovery of a similar class of compounds called phlorins 

(8) and the recognition of their stability. His prediction was confirmed about a decade 

later when Dolphin et al.7 reported the first synthesis of metalloisoporphyrin (13) by way 

of electrochemical oxidation of zinc(II) meso-tetraphenylporphyrin (ZnTPP) (14). 



 5

 

N

N N

N

Ph

Ph

Ph

Ph Zn

N

N N

N

Ph

Ph

Ph

Ph Zn

H3CO

ClO4

1314
 

 

Figure 1.4: Zinc TPP (14) and Zinc Isoporphyrin (13) 

 

 

Isoporphyrins are tautomers of porphyrins in which hydrogen is transferred to a 

meso-carbon from its normal position on a nitrogen atom. The presence of a saturated 

bridging meso-carbon interrupts the macrocyclic conjugation pathway, thus making 

isoporphyrins non-aromatic in the normal tetrapyrrole sense. The interruption of 

conjugation is confirmed in their absorption spectrum due to the disappearance of the 

Soret band (around 400 nm) that is characteristic of porphyrin macrocycle conjugation. 

The absorption spectra of the metalloisoporphyrins show striking differences (Figure 

1.5) from those of porphyrins with the Q-band being much more intense (extinction co-

efficient =104) and red shifted (800nm) compared to 500-600nm in porphyrins.  A 

bathochromic shift of the Soret band to 420-430nm is also observed. This shift to longer 

wavelengths is characteristic of partial conjugation as seen in chlorins and chlorophylls.8  
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Figure 1.5: Illustration of the Q-band absorption spectra of zinc porphyrin and zinc 
isoporphyrin 
 

 

Normally, the cutting down of the chromophore of an organic molecule, for 

example by one conjugated double bond, leads to a hypsochromic (blue) shift of the 

absorption band. Yet when a porphyrin is reduced, in cases like chlorins and 

bacteriochlorins, the lowest energy transition undergoes a bathochromic (red) shift and 

intensifies. This phenomenon can be explained using the four-orbital model originally 

proposed by Martin Gouterman in 1961.9 The four π molecular orbitals that are 

principally involved are the two highest occupied molecular orbitals, which are similar 

but of distinct energies [a1u(HOMO) and a2u(HOMO-1)], and the two lowest, nearly 

degenerate, unoccupied molecular orbitals [egy(LUMO) and egx (LUMO+1)], which are 

considered to have equal energies. The two lowest energy transitions (HOMO to LUMO, 

HOMO to LUMO + 1) are called the Q-bands, while the two higher energy ones (HOMO 
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- 1 to LUMO, HOMO – 1 to LUMO + 1) are called the B-bands or Soret bands. These 

transitions correspond to Qy, Qx, Bx, and By, in increasing order of energy. 

The diagram in Figure 1.6, illustrates an oversimplification of what is a complex 

relationship between electronic states and orbital energies.10 It indicates the relative 

changes in orbital energies and transition energies as one goes from the more symmetric 

porphyrin to the more asymmetric bacteriochlorin. Perturbations of the electronic 

structure of porphyrin chromophores that can arise from altering the symmetries and/ or 

energies of the porphyrin frontier orbitals, are very sensitive to the Q-bands. Reduction of 

the meso- (as in isoporphyrins) and β-positions (as in chlorins and bacteriochlorins) 

provides such asymmetry. The HOMO energy of the Q-band transition is raised, thus 

reduced energy gap between HOMO and LUMO, which results in a red shift of the Q-

band and an increase of its intensity. 

 Their intense absorption at long wavelengths is crucial for application in 

photodynamic therapy (PDT) of cancer treatment. Several porphyrin analogs (refer to 

section 1.5) have been applied in this modality of cancer treatment due to their 

absorption of red light. However, most of these candidates absorb in the range of 600-

700nm, and at this wavelength, light can not penetrate deeply through tissue. This is a 

major drawback in PDT. Researchers are investigating photosensitizers that can treat 

deep tumors, and while isoporphyrins absorb at wavelengths greater than 800nm, this 

surely makes them potential candidates for deep-seated tumors. 

 Since the initial prediction regarding isoporphyrins6 and their transient synthesis,7 

other methods of generating isoporphyrins particularly from tetraphenylporphyrins 

include chemical oxidation,11,12 photo-oxidation,13,14 and electrochemical oxidation.15,16 
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Figure 1.6:10 Molecular orbital energy level diagram of porphyrin, chlorin and 
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These isoporphyrins however, were unstable in the sense that they were easily converted 

into the corresponding porphyrins. For this reason, the field of isoporphyrins has been 

handicapped. This problem was overcome by Xie and Smith17 when they reported the 

first stable metalloisoporphyrin. The availability of these stable species paved way to 

crystallography,18 photophysical studies19 and electrochemical studies.20 

 The structural consequences18 of porphyrin tautomerization that disrupts the π 

system of isoporphyrin have been determined by crystallography for zinc (II) 

isoporphyrin perchlorate. The presence of a perchlorate counterion and the two methyl 

groups at the meso C5 confirm the cationic nature and the tetrahedral meso carbon 

features characteristic of a metalloisoporphyrin. The isoporphyrin also displays 

distinctive bond distance values and bond angles when compared to zinc 

octaethylporphyrin (ZnOEP), with the overall pattern of bond distances being consistent 

with the resonance forms of the interrupted π system as illustrated in Figure 1.7. The zinc 

atom is displaced from the plane of the four nitrogens and from the average plane of the 

macrocycle. In general, the macrocyclic structure is slightly ruffled, with the meso 

carbons moved above and below the macrocycle plane, and the pyrrole rings slightly 

twisted above and below the plane.  

The ground-state optical absorption19 of the perchlorate salt of zinc isoporphyrin 

in acetonitrile has major bands at ~320, 420 and 790nm, with the corresponding 

fluorescence emission of the low energy transition occurring at 830nm. In comparison to 

(ZnOEP) whose Stoke’s shift is 50 cm-1, the zinc isoporphyrin exhibits a large Stoke’s 

shift of ~600 cm-1 and an unusually short singlet excited state lifetime of 130 ± 15 ps at 

room temperature. 



 10

N

N N

N

Zn

Me Me Me

Me

MeMe

Me

Me

CO2Me CO2Me

N

N N

N

Zn

Me Me Me

Me

MeMe

Me

Me

CO2Me CO2Me

ClO4ClO4

 

 

Figure 1.7: Resonance structures of zinc (II) isoporphyrin perchlorate based on its crystal 
structure 
 

 

Its fluorescence quantum yield, ΦF, is 0.004 ± 0.002 at 295 K compared to ΦF 0.2 of 

bactereochlorophyll a. The persistence of the fluorescence at lower temperatures 

confirms that the emission is primarily from the lowest excited state rather than the triplet 

excited state.   

The effect of the interruption of the conjugation in the isoporphyrin ring on the 

kinetics of electron transfer has also been determined.20 The study shows that the redox 

properties of ZnOEP and zinc isoporphyrin differ markedly, particularly the reduction 

potentials, and the stability of the species formed on electron transfer is solvent 

dependant; stabilized in polar solvent than less polar solvent. Also, the electron transfer 

for the zinc isoporphyrin system involves the surrounding ring and not the central metal 

ion. With the oxidation and reduction potential of 0.63 and -1.61 V for ZnOEP, compared 

to 1.09 and -0.29 V for zinc isoporphyrin, respectively, it is clear that zinc isoporphyrin is 
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substantially easier to reduce and harder to oxidize than ZnOEP, and the potential 

difference, ΔE, for the oxidation and reduction potentials of zinc isoporphyrin is only 

1.38 V compared with 2.25 V for ZnOEP. These redox potentials of porphyrin 

derivatives correspond approximately to the energy difference between HOMO and 

LUMO, and have been shown to track their relative energies. As a HOMO is stabilized, 

its energy level is lowered and the molecule becomes harder to oxidize, while on the 

other hand, if the LUMO is lowered, the molecule becomes easier to reduce. 

Extrapolation of these trends to zinc isoporphyrin and ZnOEP clearly suggests that the 

LUMO of the isoporphyrin has shifted down significantly more than the HOMO relative 

to ZnOEP and it is this resulting smaller gap between the HOMO and LUMO that causes 

the observed red shift in the optical spectrum. 

 Due to the low yields reported, a better synthetic pathway needed to be 

developed. Chapter 2 of this dissertation discusses in detail the historical background of 

these macrocycles, and the main objective of this research; to develop a better synthetic 

pathway to isoporphyrins. 

1.2 Phlorins 

Phlorins (8) are dihydroporphyrins. They contain three sp2- and one sp3- 

hybridized meso carbon atoms and three-NH. They are similar to isoporphyrins (7) with 

the exception that phlorins contain three-NH while isoporphyrins have one-NH. Phlorins 

are therefore dihydroporphyrins in which one of the hydrogen is added to nitrogen and 

the second to a meso-carbon. They are tautomeric structures of chlorins (refer to figure 

1.4). This class of compounds was discovered and characterized by Woodward6 during 

his total synthesis of chlorophyll a. The chromophore was also detected by Mauzerall21 as 
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the first intermediate in the photo- or chemical reduction of uroporphyrins with 

absorption maxima at 440 and 735 nm. However, this reduced product was unstable in 

light and air, and was oxidized back to the corresponding porphyrins.22 Phlorins bearing a 

hydrogen atom at the sp3 hybridized meso carbon atom are easily oxidized, and for those 

which the sp3 meso position is incorporated two substituents, are subject to oxidation to 

ring opened biladienone species.23 Borohydride reduction of N-alkyl/arylporphyrins (15), 

yielded stable phlorins (16)24 (Scheme 1.1). The stability of this compound was related to 

the bulky substituent on the core nitrogen. In comparison to isoporphyrins (7), phlorins 

are formed during nucleophillic attack on a meso position of porphyrin (through π-

dianions by electrochemical- or photo-reduction) while isoporphyrins have been directly 

synthesized by electrophillic addition to the porphyrin ring through π-dication 

intermediates.7 However, direct nucleophillic attack on the porphyrins had not been 

achieved and was ascribed to the poor electrophillicity of the conventional 

metalloporphyrins used, but with the use of Au (III) porphyrins, which are strong 

electrophiles, direct nucleophilic attack was achieved to obtain novel hydroxyphlorin 

products.25 Senge26 has suggested phlorin intermediates during nucleophilic reaction of 

porphyrins and metaloporphyrins with organolithium reagents. Addition of n-

butyllithium to free base meso-tetraphenylporphyrin gave 5-butyl-meso-

tetraphenylphlorin24 whose stability was moderate in solution in the presence of oxygen 

but was stable enough for characterization as crystals in room temperature. Phlorin 

stability has further been enhanced by incorporation of mesityl substituents23 at the two 

meso postions adjacent to the sp3 –hybridized carbon or at all the three meso positions of 

the phlorin. 
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Scheme 1.1: Synthesis of stable phlorin 

 

 

Due to the presence of a saturated bridging carbon atom (as with isoporphyrins), 

phlorins absorb at longer wavelengths than porphyrins. Protonated phlorins absorb at 440 

and 737 nm, while the metal-free neutral phlorins absorb at 387 and 620 nm. Their metal 

complexes absorb at 440 nm with a red shifted Q-band at 800 nm. Although the Q-band 

absorption of both metallo-phlorins and metallo-isoporphyrins are in the same near-IR 

region, the two can be differentiated by the fact that phlorins have only one broad peak, 

while isoporphyrins have two strong absorption peaks. 

1.3 Porphomethenes and Porphodimethenes 

Porphomethenes (10) contain one sp2- and three sp3- hybridized meso carbons, 

while porphodimethenes (9) contain two sp2- and two sp3- hybridized meso carbons 

arranged in either ‘cis’ or ‘trans’ manner. These saturated compounds are suggested as 

intermediates (Figure 1.8) in the porphyrin synthesis via condensation of pyrrole and 



 14

aldehyde, followed by oxidation of the resulting porphyrinogen by six electrons and six 

protons, to porphyrin.27,28 However, these intermediates were not isolated since they were 

easily dehydrogenated to porphyrins by oxygen. The first air-stable porphomethenes were 

reported by Buchler and Puppe in 1970.29 They were prepared by reductive methylation 

of octaethylporphyrinato zinc(II) bearing ethyl protected β-positions, sterically 

discouraging the alkylation of these carbons. The scope of this approach was later 

expanded to produce other metalloporphodimethenes bearing various metals and other 

alkyl substituents on the meso positions.30 This was the most general procedure for the 

synthesis of porphodimethenes; reductive alkylation of porphyrins at the meso position. 

Unfortunately, this approach proved limited to the synthesis of symmetric metalated 

porphodimethenes.29 Further, this reductive alkylation strategy did not prove effective on 

all types of metalated porphyrins or compatible with all types of pyrrolic susbtituents.  

 New synthetic routes have been reported, including, 2 + 2 MacDonald-like 

condensation approach,31 and use of sterically hindered aldehydes in mixed pyrrole 

condensation resulting in an oxidation resistant conformation.32 

 Porphodimethenes bearing alkyl groups at the sp3-hybridized meso centres are 

stable since, in contrast to most porphyrinogens, they are able to resist oxidative 

dehydrogenation leading to porphyrins.33 Typical hydroporphyrins exhibit a very broad 

absorption band between 400-500 nm, while porphyrins mostly have sharp Soret 

absorption bands at 400 nm. Neutral porphomethenes (7), which are yellow in color, 

absorb at 425 nm, while their protonated form at 500 nm, and the orange-red 

porphodimethene absorb at 471 and 686 nm.22,32 
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Figure 1.8: Illustration of the intermediates in the oxidation pathway of porphyrinogen to 
porphyrin  
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1.4 b-Bilenes and a,c-Biladienes 

b-Bilenes (11) and a,c-biladienes (12) are open chain tetrapyrrole salts that 

contain one sp2- and two sp3- or two sp2- and one sp3-hybridized bridging carbon atoms, 

respectively. Both of these open chain tetrapyrroles have been employed widely in the 

synthesis of porphyrins.5 Oxidative cyclization of b-bilenes has provided the most 

successful avenue to porphyrins substituted with electron withdrawing groups, since the 

procedure works best when the terminal rings of the b-bilene are substituted with electron 

withdrawing groups.34,35 The b-bilene oxidative cyclization has also been investigated as 

an approach to meso-monosubstituted porphyrins. Although in most cases the required 

porphyrin was formed, the yield was generally low and the sequence complicated by the 

presence of by-products, therefore limiting this approach.36 Other porphyrin derivatives 

like biliverdins have been afforded by oxidation of b-bilenes (Figure 1.9).  

 a,c-Biladienes, on the other hand, are the most commoly used open chain 

tetrapyrroles for preparation of porphyrins and its derivatives. Oxidative cyclization of 

these biladienes to give porphyrins using the copper(II) salt method, or using 

chromium(III) or electrochemical oxidation,5 have been extensively investigated, 

occasionally in parallel with the corresponding b-bilenes. 1,19-Dimethyl-a,c-biladiene 

salts have been mostly employed and are undoubtedly highly effective intermediates for 

porphyrin synthesis. High yields of porphyrins are often obtained after the removal of the 

chelating copper atom, but it has been found that the use of chromium(III) for the 

oxidative cylization results in the isolation of the metal-free porphyrin product; and there 

is no obvious symmetry or substituent difficulties associated with these intermediates.5 

Other a,c-biladienes with 1,19-substituents have also been used. The use of 1,19-
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diunsubstituted-a,c-biladiene salts have been employed to afford sapphyrins (expanded 

porphyrin),37 and in alcoholic solutions for preparation of  corroles in one pot38 (Figure 

1.9). 
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Figure 1.9: Some of the products obtained from b-bilene and a,c-biladiene 

 

 

 a,c-Biladiene dihydrobromide salts show two peaks of similar intensity in their 

optical spectra, one at 450 and the other at 530 nm. On the other hand, b-bilene chloride 

salts show a strong absorption at around 500 nm (Figure 1.10). 

 These open chain tetrapyrroles are best employed for porphyrins with a complex 

array of substituents possessing no symmetry characteristics. Simple porphyrins like TPP 

or OEP are best prepared by polymerization of monopyrrole.1 

 

 



 18

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

350 450 550
Wavelength (nm)

A
bs

or
ba

nc
e

a,c-biladiene
b-bilene

 

 

 Figure 1.10: Electronic absorption of b-bilene salt verses a,c-biladiene salt 

 

   

1.5 Photodynamic Therapy (PDT) 

Photodynamic therapy is a ternary modality for cancer treatment and is one of the 

most promising anticancer therapies still under investigation.39 Matured as a feasible 

medical technology in the 1980’s at several institutions throughout the world, PDT 

combines three key components: light source, a photosensitizer (a drug that is activated 

by light), and tissue oxygen, to destroy cancer cells.40,41 The most coherent light sources 

are lasers and since the maximum of skin permeability occurs in the range of 

approximately 620-850 nm, light of this spectral range, called the “phototherapeutic 

window” is predominantly used in phototherapy.39 Hence, photosensitizers with a strong 

absorption band in this region can be activated to penetrate deeper into the tissues.42 

Porphyrins and other porphyrin-based compounds are the most explored photosensitizers 
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and consequently their syntheses, chemistry and biological properties continue to be the 

subject of intense investigation.43 

 The photophysical processes of PDT are illustrated on a simplified Jablonski 

diagram shown in Figure 1.11. Upon light absorption, the photosensitizer, in this case 

porphyrin (0P in its ground state) is excited to a short-lived first excited singlet state (1P*) 

which can undergo radiative decay back to the ground state with release of energy in the 

form of fluorescence – enabling identification of tumor tissue. A good photosensitizer 

will at this stage undergo a spin forbidden inter system crossing (ISC), converting the 

photosensitizer into the triplet excited state (3P*). The triplet state relaxes back to ground 

state via phosphorescence or by internal conversion (transfer of energy to another triplet 

state). One of the very few molecules with a triplet ground state is dioxygen, which is 

found in most living cells. Energy transfer therefore takes place between excited triplet 

state of photosensitizer (3P*) and stable triplet oxygen (3O2) producing short lived and 

highly reactive excited singlet oxygen (1O2), a cytotoxic species that causes irreversible 

destruction of tumor cells.42,44 

 A typical PDT session (Figure 1.12) would involve the following steps:  

1. The photosensitizer is administered into the body, either by injection into the 

vein for cancers inside the body or topical application onto the skin for cancers of the 

skin.  

2. Permit time for the chemical to be cleared from normal tissues and be 

preferentially retained by the tumor  

 3. Application of light onto the tumor to provide the catalyst for chemical 

reactions.  
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0P + hν   1P* 

ISC 
1P*        3P* 

3P* + 3O2     0P + 1O2 

 

 

 

Figure 1.11: Simplified Jablonski diagram44 illustrating the photophysical and 
photochemical processes of PDT.  
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Figure 1.12: A typical PDT session. Taken from reference 45 
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4. Generation of toxic oxygen species thus tumor destruction.   

Administration of the photosensitizer depends on its hydrophillicity or hydrophobicity 

properties. Water-soluble compounds require no formulation whilst all others require 

formulation in lyposomes or other solubilizing agents. 

 Porphyrins have been known to have the ability to selectively localize in tumors46 

and possess low-dark toxicities thus leading to their initial choice as the most promising 

PDT photosensitizers compared with other aromatic macrocycles. Porphyrin-based 

compounds possess a number of key photochemical, photophysical and biological 

properties that make them highly desirable for medical applications: they absorb strongly 

in the visible region of the optical spectrum, are fluorescent, are non-toxic in the dark, 

have high chemical stability, have high affinity for serum proteins, have favorable 

pharmacokinetic properties, and form very stable complexes with a variety of metal ions 

while retaining their in vivo tumor-localization properties. For these reasons, several 

porphyrin-type compounds are currently in various stages of preclinical or clinical 

development as phototherapeutic agents.43 

 For the last two decades, an FDA approved Photofrin® (a purified 

hematoporphyrin derivative, HPD, Figure 1.13) has been used for treating various forms 

of cancer in many countries for example melanoma, early and advanced stage cancer of 

the lung, digestive tract, bladder cancer, and early stage cervical cancer.42,43 This first 

generation porphyrin-based drug; even though proven efficacious in the treatment of a 

wide variety of cancers, fulfilling certain criterion for ideal photosensitizers, it suffers 

from several drawbacks. It consists of a complex mixture of porphyrins with various 

monomeric and oligomeric forms which has not been characterized to even the most 
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minimal levels expected by organic chemists. Its long wavelength is a weak absorption 

band, which falls at 630 nm, well below the wavelength suggested for maximum tissue 

penetration and treatment of deep-seated tumors, and its prolonged skin photosensitivity 

as a result of long retention times, adds to the disadvantages.42-44 Nevertheless, new and 

improved second generation photosensitizers which are chemically pure, have high 

fluorescence detection and quantum yields, absorb at longer wavelengths, and induce 

significantly less skin photosensitivity, are being developed. Examples of these 

porphyrin-type photosensitizing drugs include mono-L-aspartyl chlorines e6 (MACE, 17), 

benzoporphyrin derivative mono-carboxylic acid (BPD-MA, VisudyneTM , 18 ), zinc(II) 

phthalocyanine (19) and texaphyrins (20) (tripyrrole expanded macrocycles), (Figure 

1.14) all absorbing strongly in the 650-750 nm spectral region.43 
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Figure 1.13: Hematoporphyrin 
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 Due to the limitations encountered by first-generation photosensitizers, extensive 

research is underway to develop modern photosensitizers that meet the following criteria 

for an ideal photosensitizer:42 

i) It should be chemically pure and of known specific composition with a 

reproducible synthesis. 

ii) It should have high quantum yield for singlet oxygen production for 

effective destruction of tumor cells. 

iii) It should have strong absorption with high extinction coefficient (ε) at 

longer wavelength (between 700-800 nm) where scattering of light is 

minimal and tissue penetration is at its maximum. 

iv) It should have excellent photochemical reactivity, with high triplet state 

yields and long triplet state life times and be able to effectively produce 

singlet oxygen (1O2) and other reactive species.  

v) It should possess minimal dark toxicity and only be cytotoxic in presence 

of light. 

vi) It should have preferential retention by target tissue (tumor cells) 

vii) It should be rapidly excreted from the body, thus inducing a low systemic 

toxicity. 

viii) Finally it should be synthesizable from easily available precursors and 

should be stable and easy to dissolve in the body’s tissue fluids and be 

capable of formulation (dissolution of photsensitizer in injectable 

solvents).  
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Figure 1.14: Examples of second-generation PDT photosensitizers 
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PDT has obvious advantages over other conventional cancer treatments such as 

surgery, chemotherapy and radiotherapy, in that it can provide local control of the disease 

(selectively removing or destroying diseased tissue and sparing normal healthy cells) 

with minimal side effects. Unlike the other modalities, it can be applied repeatedly many 

times at the same site without risking the integrity of surrounding tissues. Furthermore, 

PDT is a cold photochemical process, which can be applied before, or after 

chemotherapy, ionizing radiation or surgery, without compromising these treatments or 

being compromised itself.42,43  
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CHAPTER 2 
 

SYNTHESIS OF METALLO-ISOPORPHYRINS 
 
2.1 Introduction 
 

Isoporphyrins (1) are tautomers of porphyrins (2) in which hydrogen is transferred 

to a meso-carbon from its normal position on a nitrogen atom. Isoporphyrins exhibit an 

interrupted macrocyclic conjugation due to the presence of a saturated bridging carbon 

atom. This lack of a continuous ring of overlapping p orbitals makes the system non-

aromatic. The existence of this type of compound was first suggested by Woodward6 in 

1961 after the discovery of a related class of compounds called phlorins (3) and the 

recognition of their stability. Phlorins are dihydroisoporphyrins in which two hydrogen 

atoms are added to the nitrogens. 
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Woodward’s prediction was confirmed about a decade later when Dolphin et al. 

reported the first synthesis of metalloisoporphyrin (4) by way of electrochemical 

oxidation of zinc(II) meso-tetraphenylporphyrin (ZnTPP) (5), followed by nucleophilic 

attack of methanol on the oxidized dication of ZnTPP (Scheme 2.1).7 

Metalloisoporphyrin was a dark green solid which was stable in glacial acetic acid.  
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Scheme 2.1: Electrochemical oxidation of ZnTPP (5) to afford zinc isoporphyrin (4) 
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Addition of potassium iodide to such a solution brought about a rapid and 

quantitative reduction and demetalation to give tetraphenylporphyrin dication (6). 

Metalloisoporphyrins such as (4) can also be generated by peroxide oxidation of 

metalloporphyrins. For example, reaction of iron(III) porphyrin (7) and t-butyl 

hydroperoxide gave the isoporphyrin cation (8) (Scheme 2.2),11 and zinc(II) 

tetraphenylporphyrin (5) upon reaction with benzoyl peroxide afforded the 

zinctetraphenylbenzoyloxyisoporphyrin benzoate (9), which could easily be converted 

back to porphyrin either by photolysis or treatment with amines (Scheme 2.3).12 

Metalloisoporphyrins can also be generated by photooxidation of the corresponding 

metalloporphyrins13,47-49 in the presence of nucleophiles. 

The interruption in the macrocyclic conjugation of metalloisoporphyrins is 

evident in their 1H NMR spectra. The signals for the pyrrolic protons of 

metalloisoporphyrin (4) undergo a 2.5 ppm upfield shift with respect to 

tetraphenylporphyrin (5), appearing at about 6.5 ppm. This upfield shift is caused by the 

loss of the aromatic ring current leading to a decrease in anisotropic effect. Porphyrins 

exhibit strong absorptions around 400 nm (Soret band) and at 500-600 nm (Q bands); 

however, partial saturation of the conjugated ring system as seen in chlorins and 

chlorophylls extends the absorption to longer wavelengths.8 With respect to their 

electronic spectrum, metalloisoporphyrins show strong absorptions at about 400 and 800 

nm. Their characteristic absorptions at long wavelengths make metalloisoporphyrins 

potential candidates as photosensitizers for photodynamic therapy. Also, they could not 

only be a new class of infra-red dyes of moderate photosensitivity, but also of biological 

interest due to their unique redox behavior among porphyrin derivatives.12,50-54  
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Scheme 2.2: Peroxide oxidation of metalloporphyrin (7) 
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Unlike porphyrins, isoporphyrins are not very sensitive to near-infrared and long 

wavelength visible light and therefore can be handled under room light. 

Previously reported isoporphyrins were all derived from tetraphenylporphyrins 

and they are usually not stable in the sense that they are easily converted into the 

corresponding porphyrins.7,12 Except in unusual circumstances, [such as when a meso-

carbon is geminally substituted]6,7 isoporphyrins are usually unstable with respect to 

transformation back to the fully conjugated porphyrin chromophore. This problem was 

overcome when Xie and Smith17 successfully reported the total synthesis of the first 

thermodynamically stable zinc isoporphyrin (10). The 5,5-dimethyl group on zinc 

isoporphyrin (10) prevents the compound from going through the thermodynamically 

favored isomerization into the corresponding porphyrin. The synthesis of zinc 

isoporphyrin was achieved by a variation of the MacDonald3 ‘2+2’method of porphyrin 

synthesis involving the condensation of dipyrromethane dicarboxylic acid (11) and 

diformydipyrromethane (12) in the presence of zinc(II) acetate (Scheme 2.4). The 

insertion of zinc during the reaction helps stabilize the isoporphyrin. Zinc isoporphyrin 

(10) was isolated as dark green solid in very low yields. The availability of this stable 

zinc isoporphyrin immediately initiated a series of studies on this compound including 

the electrochemistry,20 crystollography,18 and the photophysical properties19 of the 

isoporphyrin. 

 Unlike previously reported isoporphyrins, zinc isoporphyrin (10) was found to be 

stable with respect to transformation to porphyrins.17,55 Zinc isoporphyrin (10) can be 

stored in solid form at room temperature in daylight for months without decomposition. It  
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is stable in water and methanol, even at temperatures as high as 250 0C without either 

melting or decomposing. It is also stable in glacial acetic acid and 10% hydrochloric acid, 

however when treated with trifluoroacetic acid (TFA) at room temperature, it 

decomposes within 30 minutes with concomitant demetalation. 

2.2 Research Objective 

 Due to their instability, the investigation of isoporphyrins has been hampered. The 

product yields reported were low between 2-23%. Methods for synthesis of 5,5-dimethyl 

dipyrromethanes55 (such as 11) utilized in the MacDonald 2+2 synthesis also gave 

moderate yields (40-50%). This led us to our project of finding a better synthetic pathway 

of isoporphyrins and that is by way of open-chain tetrapyrrole precursors with ring 

closure as the final step. It was reported56 that the a,c-biladiene synthetic approach failed 

to yield isoporphyrin and we opted to explore the b-bilene approach. The b-bilene route 

was chosen because it is simple, direct, and utilizes crystalline intermediates at all stages. 

However, its disadvantages can concern symmetry, substituent limitations associated 

with the bilene intermediates, and difficulty in purification of the b-bilenes if they do not 

happen to crystallize readily.5 This method for regular porphyrin synthesis works best 

when electron-withdrawing substituents are present on the b-bilene.34 

2.3 Synthesis 

Retrosynthetically, our target molecule, zinc(II) -2,3,5,5,7,8,12,13,17,18-

decamethylisoporphyrin chloride (13), was synthesized by cyclisation of 1,19-di-tert-

butoxycarbonyl-2,3,7,8,12,13,17,18-octamethyl-b-bilene (14) which utilizes the 

condensation of 1-(t-butyloxycarbonyl)dipyrromethane-9-carboxylic acid (15) with t-

butyl 9-formyldipyrromethane-1-carboxylate (16) (Scheme 2.5). 
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The synthesis of the first dipyrromethane precursors, pyrrole 20, was achieved as outlined 

in Scheme 2.6. Treatment of t-butyl acetoacetate with sodium nitrite, acetic acid and 

water yielded tert-butyl oximinoacetate57 (17) which was condensed with 3-methyl-2,4-

pentanedione (18) in acetic acid under standard Johnson conditions57,58 in the presence of 

zinc dust and sodium acetate at 100-115 0 C to afford t-butyl-3,4,5-trimethylpyrrole-2-

carboxylate (19) in 40% yield. This pyrrole was then treated with lead tetra-acetate59 

(LTA) at room temperature to undergo a radical reaction, which afforded 5-

acetoxymethylpyrrole (20) in 61% yield. This yield was achieved after using excess of 

LTA. Low amounts or same equivalent of LTA gave reduced yields of the pyrrole. 

 The other precursor pyrrole, the 5-unsubstituted pyrrole (24) was prepared via the 

Barton-Zard method,60 Scheme 2.7. These kind of pyrroles with substituents on the 3,4-

positions, a benzyl ester on 2-position, and unsubstituted in the 5-position, are important 

and widely used precursors to the dipyrromethanes utilized in the stepwise synthesis of 

porphyrins, because the benzyl esters can be easily (and quantitatively) removed or 

reduced to carbinols under neutral conditions.1 2-Acetoxy-3-nitrobutane (21), which was 

obtained by base catalyzed addition of nitroethane to acetaldehyde (the Henry Reaction) 

followed by acetylation,61 was condensed with commercially available ethyl 

isocyanoacetate (22) to give ethyl ester pyrrole (23) in 80% yield. Due to the difficulty in 

handling and storing small, very base sensitive nitroolefins, β-acetoxy nitroalkanes are 

employed. Under basic conditions, β-elimination of the acetate group generates the 

requisite nitroolefin in situ.60 

 



 35

NH HN

Me

Me

CO2HtBuO2C

Me

Me

NH HN
MeMe

CHO

N

N

N

N

Zn

Me

Me

Me

Me

Me

Me Me
Me Me

Cl-

13

15 16

Me

NH

N

HN

HN

Me

Me

Me

Me

Me

Me Me

Me

R R

R = CO2
tBu

Me Me

CO2
tBu

+

14

 

 

 

Scheme 2.5: Retrosynthesis of (13) 

  

 

 

 



 36

 

 

tBuO C

O

CH2

C

O

Me

NaNO2 / HOAc
tBuO C

O

C

C

O

Me

+

Me

Me

Me

O
O

N
OH

17 18

N
H Me

MeMe

tBuO2C

19

LTA

N
H CH2OAc

MeMe

tBuO2C

20  

 

   

Scheme 2.6: Synthesis of pyrrole (20) 

 

 

 Transesterification of the ethyl ester pyrrole (23) with PhCH2ONa in refluxing 

benzyl alcohol62 gave a very high yield of the pyrrole (24) bearing the benzyl ester 

moiety. When equal amounts of ethyl ester pyrrole (23) and sodium were used, the yields 

were reduced. Attempts to synthesize benzyl ester pyrrole (24) in one step using benzyl 

isocyanoacetate63 (thus avoiding the transesterification step) failed, after synthesis of 
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benzyl isocyanoacetate seemed unproductive. Figure 2.1 shows the crystal structure of 

pyrrole (24). The crystal was obtained by dissolving the pyrrole in dichloromethane and 

letting it stand at room temperature, allowing the solvent to evaporate off. 
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Scheme 2.7: Synthesis of pyrrole (24) via Barton-Zard’s method 
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Figure 2.1: Crystal structure of benzylester pyrrole (24) 

 

Two synthetic pathways were attempted for the construction of dipyrromethane 

unit by condensation of pyrroles (20) and (24).  First, the 5-unsubstituted pyrrole (24) 

was coupled with 5-acetoxymethylpyrrole (20) under acidic conditions64 to afford the 

symmetrical dipyrromethane (25) in low yields (Scheme 2.8). This was not the expected 

product and it is postulated that acidic conditions initiated the formation of benzylic 

carbocation (27) (very stable), which further reacted with the 5-unsubstituted pyrrole (24) 

to yield the symmetrical dipyrromethane (25) (Scheme 2.9). The second pathway utilized 

a catalyst, Montmorillonite clay K-1065 in methylene chloride at room temperature, and 

the expected dipyrromethane, t-butyl 9-((benzyloxy) carbonyl)-3, 4, 7, 8-tetramethyl-
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dipyrromethane-1-carboxylate (26) was produced in 96% yield after column 

chromatography (Scheme 2.8). The crystal structure of (26) is as shown in figure 2.2 and 

was obtained by slow evaporation (at room temperature) of solvent from a solution of 

dipyrromethane (26) and dichloromethane. 
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Scheme 2.8: Synthesis of dipyrromethane 
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Figure 2.2: Crystal structure of dipyrromethane (26) 
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Scheme 2.9: Postulated mechanism for generation of symmetrical dipyrromethane (25) 

 

 

Construction of b-bilene (14) was more difficult.  The mixed ester 

dipyrromethane (26) was de-benzylated by hydrogenolysis over 10% Pd/C to afford the 

corresponding dipyrromethane monocarboxyllic acid (15) in 100% yield. 

Decarboxylation with 2 equivalents of p-toluenesulfonic acid followed by formylation 

using the modified Vilsmeier-Haack66 procedure (PhCOCl/ DMF) gave the required 

formyldipyrromethane in a relatively good yield (16) (Scheme 2.10). Precipitation of the 

imine salt after addition of PhCOCl/DMF complex, as expected for diformylation (bis-

imine salt), did not occur for our case because it is a mono-imine salt. Vilsmeier  



 42

 

NH HN

Me

Me

CO2HtBuO2C

Me

Me

15

NH HN

Me

Me

CO2BntBuO2C

Me

Me

26

H2 / Pd-C

THF

NH HN

Me

Me

HtBuO2C

Me

Me

28

NH HN

Me

Me

CHOtBuO2C

Me

Me

16

p-TsOH
CH2Cl2

PhCOCl/ DMF

 

 

 

Scheme 2.10: Synthesis of formyl dipyrromethane (16) 

 

 

conditions were chosen over the standard triethyl orthoformate/TFA conditions to prevent 

decomposition of the t-butyl ester groups on the starting material. Some difficulty, 

however, was encountered in the formylation reaction with the original Vilsmeier-Haack 

reagent (POCl3/DMF), which gave non-crystalline product. The yield of the product was 

extremely low in cases when crystallization occurred. PhCOCl/DMF forms the reactive 
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intermediate chloromethyleneiminium salt 29 (Scheme 2.11), which is similar to the 

species suggested as being involved in POCl3/DMF formylations. It occurs that the use of 

benzoyl chloride in place of phosphorous oxychloride might have some advantages in 

formylation procedures, particularly in systems such as the dipyrromethanes, which are 

often sensitive to acidic reagents.66 It is predicted that, the modified Vilsmeier conditions 

are mild compared with the harsh conditions of POCl3/DMF which generates 

hydrochloric acid. Phosphorous, being an ‘oxygen lover’, would easily release chloride 

ions in exchange of oxygen, which inturn generate hydrochloric acid in the presence of 

hydrate conditions. 
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  Scheme 2.11: Generation of chloroethyliminium salt intermediate 

  



 44

Condensation of formyldipyrromethane (16) with dipyrromethane 

monocarboxylic acid (15) using 2 equivalents of p-toluenesulfonic acid in 

dichloromethane afforded the corresponding b-bilene (14) which showed a strong 

absorption at around 500 nm.64 This was converted into the hydrochloride salt by brief 

treatment with HCl gas and there was a noticeable color change from yellow-orange to 

dark red. Recrystalization of the species yielded orange-red prisms of 14 as the crystalline 

hydrochloride in 70-80% yield (Scheme 2.12). The UV/Visible spectrum of (14) in 

dichloromethane is as shown in figure 2.3 at 502 nm with an extinction coefficient of 

1.11 x 105 M-1cm-1. Figure 2.4 shows the x-ray structure of (14) whose crystals were 

obtained by slow diffusion of petroleum ether into a concentrated solution of (14) in 

dichloromethane, and figure 2.5 shows its proton NMR spectrum in CDCl3.  

Cyclization of b-bilene (Scheme 2.13) was attempted by first cleaving the t-butyl 

ester units with TFA to give the α-unsubstituted open chain tetrapyrrole which was then 

treated with excess cyclohexanone as the isoporphyrin carbon-linking unit under the 

templating effect of zinc (II) acetate in methanol in the presence of p-TsOH in air. 

Cyclohexanone was used since earlier attempts56 to cyclize a,c-biladiene with acetone 

failed to yield isoporphyrin. The reaction was monitored using UV/Visible 

spectrophotometer for 6 days, which showed no absorption peak around 800nm, but at 

around 400 nm and Q-like-bands around 500-600 nm, implying that no zinc isoporphyrin 

(13) was produced. Attempts to facilitate oxidation by addition of p-chloranil failed to 

yield the product. The UV/Visible spectra suggested that a very stable compound was 

being formed because there were no changes in the absorption even after addition of p-

chloranil or bubbling of oxygen to the reaction solution. 
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  Scheme 2.12: Synthesis of b-bilene salt (14) 
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 Figure 2.3: UV-Visible spectrum of b-bilene hydrochloride (14) in CH2Cl2 
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Figure 2.4: Crystal structure of b-bilene hydrochloride (14) 
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Scheme 2.13: Attempted cyclization of b-bilene with cyclohexanone 
 
 
 
 
The absorption bands suggested the formation of a metal-porphyrin, zinc 

octamethylporphyrin as was evident from the mass spectrum. The product implies that 

cyclohexanone did not react as a carbon-linking unit in the cyclization step. Instead, in 

the presence of acid and lack of a carbon-linking unit, the open-chain precursor 

underwent cleavage and recombination of the dipyromethane links to yield the 

porphyrin.5 Studies by Ghosh and Lightner67 in their synthesis of 10,10-gem substituted 

bilirubin analogs (scheme 2.14) indicate that ketones are very unreactive in these kinds of 

reactions. These workers attempted activation of the ketone to its reactive ketal by 

treatment with trimethyl orthoformate and condensation of the ketals in acidic conditions 

with suitable substrates, α-unsubstituted dipyrrinones, to give excellent yields of the 



 49

product within 5minutes of reaction time (Scheme 2.14). We attempted to adapt the 

above method for the cyclization step. Commercially available cyclohexanone dimethyl 

ketal was reacted with b-bilene applying the same synthetic procedure as before and with 

TFA as acid catalyst but did not yield the product. Different reaction conditions were 

employed, only to yield ZnOMP or OMP as the major products as shown by mass 

spectrometry, (Scheme 2.15). 
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 Scheme 2.14: Condensation reactions utilizing dimethyl ketals 
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Scheme 2.15: Cyclization of b-bilene with cyclohexanone under various reaction conditions 
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This initiated a study of steric factors verses electronic factors for the carbon-linking unit. 

• Electronic Factors 

As a starter, aldehyde, which is more reactive than a ketone, was used in the 

cyclization step and within 1 h, reaction was complete to yield meso-monosubstituted 

porphyrin in good yield. Various benzaldehydes with different substituents were 

employed as carbon linking units to generate the corresponding porphyrins. (See 

Chapter 4b) 

• Steric Factors 

2,2-Dimethoxypropane, the smallest of the ketals, was used as the reference. 

Using the same procedure as above, after 28 hours, UV/Visible spectroscopy suggested 

formation of the metal-free isoporphyrin (green) with a characteristic absorption at 

around 440 and 690 nm. Due to previous reports on unstability of metal-free 

isoporphyrins in the presence of bases,56 work-up was done by washing the reaction 

mixture several times with water to remove the last traces of TFA. The 1H NMR 

spectrum of the crude product showed singlets for the meso protons at 8.20 and 7.33 ppm. 

To confirm that the 1H NMR and electronic absorption properties described above were 

actually for metal-free isoporphyrin, insertion of zinc ions by treating the crude product 

with zinc(II) acetate caused a red shift in the absorption spectrum to 810 nm, the 

characteristic absorption of zinc isoporphyrin (Scheme 2.16). Purification on a silica gel 

column and recrystallization gave zinc isoporphyrin cation (greenish) in 28% yield 

compared to 6% yield previously reported.56 

The unsuccessful cyclization of b-bilene with cyclohexanone dimethyl ketal as the 

carbon linking unit is most likely associated with steric hindrance. Molecular modeling  
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  Scheme 2.16: Synthesis of zinc isoporphyrin (30) 
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   Total E: 101.07Kcal/mol  

         

  

 

Figure 2.6: Molecular modeling structure of 5,5-spirocyclohexylisoporphyrin 
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      Total E: 99.88Kcal/mol 

 

 

 
 
 
 
 
Figure 2.7: Molecular modeling structure of 5,5-dimethylisoporphyrin 
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 Figure 2.8: UV-Visible spectrum of zinc isoporphyrin (30) in CH2Cl2 
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Figure 2.9: Emission spectrum of zinc isoporphyrin in CH2Cl2, Excitation λ = 410nm 
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technique using energy models by calculating the minimal energy of the molecular 

structure of 5,5-dimethylisoporphyrin and 5,5-spirocyclohexylisoporphyrin (Figure 2.6 

& 2.7)  were employed using Sybyl® software to study the concept of sterics on the 

macrocycle. It was expected that 5,5-spirocyclohexylisoporphyrin would give a higher 

energy than 5,5-dimethylisoporphyrin, but that was not the case.  The low-energy models 

indicate similar energy for both compounds and we believe that the transition state for the 

cyclization process with cyclohexanone dimethyl ketal may have a higher energy, thus 

unstable and unfavorable to yield 5,5-spirocyclohexylisoporphyrin.  

Figure 2.8 shows the optical spectrum of zinc (II) isoporphyrin chloride (30) in 

dichloromethane, with characteristic absorptions at 416nm and 804nm. Its fluorescence 

spetrum in dichloromethane at 295k is shown in Figure 2.9. The fluorescence maximum 

occurs at 820nm with the excitation wavelength of 410nm, exhibiting a Stoke’s shift of 

243 cm-1 which is larger than 50 cm-1 observed for zinc octaethylporphyrin, but smaller 

than 600 cm-1 reported for zinc isoporphyrins in a different solvent, acetonitrile. Figure 

2.10 shows the proton NMR spectrum of (30) in deuterated chloroform. 

2.4 Synthesis of a Novel Copper Isoporphyrin 

The same synthetic procedure of zinc isoporphyrin discussed above was followed. 

Metalation of the metal free isoporphyrin with cuprous chloride yielded a novel copper 

isoporphyrin (Scheme 2.17) with an observed bathochromic shift of both the Soret and 

the Q band in its optical spectrum (Figure 2.11) to 428 and 842 nm (compare with zinc 

isoporphyrin – 416 and 804 nm). Since the copper(I) salt was used, we speculated 

formation of a neutral copper(I) isoporphyrin complex. However, qualitative EPR studies 

(Figure 2.12) performed to detect the presence or absence of paramagnetism in the 
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copper isoporphyrin macrocycle, confirmed the presence of the paramagnetic copper(II) 

species. This yielded a paramagnetic copper cationic isoporphyrin complex with a 

chloride counterion. 1H-NMR spectroscopy of this compound in CDCl3 showed no 

signals for the macrocycle. Characterization was therefore done using UV/Visible, low 

resolution and high resolution mass spectrophotometry (Figure 2.13).  

Since the analysis proved that the metal complex was copper(II), we attempted to 

synthesize the copper isoporphyrin using copper(II) salts but this was unsuccessful. 

Probably, copper (I) is small enough to fit well into the cavity of isoporphyrin, but due to 

its unstable nature, it is easily oxidized to the more stable copper (II) species.  
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Scheme 2.17: Synthesis of copper isoporphyrin (31) 
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Figure 2.11: UV-Visible spectrum of copper isoporphyrin (31) in CH2Cl2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.12: WinEPR spectrum of copper(II) isoporphyrin in dichloromethane. 
Frequency: 9.634 GHz, Mod. Frequency: 100.00 kHz, Power: 20.170 mW, Mod. 
Amplitude: 4.00G, Temprature: 295K 
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Figure 2.13: High Resolution Mass Spectrum of copper isoporphyrin (31), showing an overlay of theoretical 
(dashed line) vs. actual (solid line) spectra 
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While porphyrin complexes with diamagnetic metals exhibit fluorescence, those 

with paramagnetic metals are non-fluorescent due to quenching of the fluorescence. 

Apparently, this was not the case with the copper(II) isoporphyrin (31). Figure 2.14 

shows the emission spectrum of (31) in chloroform/methanol (4:1) upon excitation at 

wavelength 420 nm. The emission properties of the copper complex were confirmed in 

the fluorescence microscopy studies for PDT application (see chapter 5). The copper 

isoporphyrin therefore is not as paramagnetic as copper porphyrin, probably because the 

coordination geometry of copper in copper isoporphyrin is not square planar as in 

porphyrin. Probably, it is more pyramidal, thus changing the energy of the orbitals. Due 

to the observed abnormalities, further physicochemical properties, geometries.., etc, on 

this complex need to be investigated.  

This complex is stable in solid form and in various solvents. 
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Figure 2.14: Emission spectrum of copper (II) isoporphyrin; Ex λ = 420nm 
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2.5 Conclusion 

b-Bilene route proved to be a successful pathway for the synthesis of metallo-

isoporphyrin in higher yields (28% vs. 6%) and in a much shorter reaction time (24 h vs. 

6 days) than previously reported. Through this route, a novel copper isoporphyrin was 

obtained. Sterically hindered ketones or their ketals are unfavorable carbon-linking units 

for this kind of cyclization reaction to obtain isoporphyrins. 

Since there is not much known about isoporphyrins, more studies is at stake for 

these compounds; synthesis of other metal complexes and studying their physicochemical 

properties, geometries, stabilities, ligand properties of isoporphyrins, etc. 

2.6 Experimental 

• Characterization of Compounds 

UV/Visible: Electronic absorption spectra were measured on PerkinElmer Lambda 35 

UV/VIS Spectrometer 

Mass Spectrometry: Low and high resolution mass spectra were obtained at the Mass 

Spectrometry Facility at Louisiana State University, Baton Rouge, LA, on a Bruker 

ProFlex III MALDI-TOF and Hitachi M8000 ESI mass spectrometer. The compounds 

were dissolved in dichloromethane or chloroform using dithranol as the matrix and in 

acetonitrile for HR-ESI. 

EPR: The EPR data were acquired on Bruker WinEPR.  

NMR: Proton NMR spectra were obtained on a Bruker DPX-250, Bruker ARX-300, 

Bruker DPX-400 and a Varian INOVA-500 MHz spectrometers. 
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Deuterated solvents: CDCl3 – 7.26 ppm, (CD3)2SO – 2.54 ppm, (CD3)2CO – 2.05 ppm, 

Chemical shifts (δ) are given in parts per million, multiplicities are indicated as s 

(singlet), d (doublet), dd (doublet of doublets), t (triplet), q (quartet) and m (multiplet). 

Fluorescence: The emission spectra were measured on Fluorolog-3 spectrofluorometer. 

• Chromatographic Methods 

Analytical thin-layer chromatography: Sorbent Technologies 200 μm silica gel or 

alumina neutral plates with UV 254 were used to monitor all reactions. 

Column chromatography: Two types of packing material were used: (i) E. Merck 

neutral alumina (70-230 mesh) either deactivated with 6% water (grade III) or non-

deactivated (grade 0); (ii) Merck silica gel 60 (70-230 mesh).   

• Purification of Solvents and Reagents 

Unless otherwise indicated, all commercially available starting materials were used 

directly without further purification. 

Dimethylformamide (DMF): stored over 4A molecular sieves 

Methanol: distilled over CaCl2 

Dry dichloromethane (DCM), toluene, tetrahydrofuran (THF), and hexane were obtained 

from a specially designed solvent purification system from Innnovative Technology, Inc.  

t-Butyl 3,4,5-Trimethylpyrrole-2-carboxylate (19) 

t-Butyl oximinoacetate (17), which was prepared by addition of t-butyl 

acetoacetate (13.0 g, 0.08 mol), acetic acid (27 ml), sodium nitrite (5.75 g, 0.08 mol) and 

water, was added dropwise to a solution of 3-methyl-2,4-pentanedione (18, 12.5 g, 

0.11mol) in acetic acid during portion wise addition of an intimate mixture of zinc dust 

(12.5 g) and sodium acetate (12.5 g). The rate of addition was controlled so that the 
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mixture was maintained at 65 ºC. After addition was complete the mixture was heat under 

reflux for 1 h after which TLC showed product. The solution was poured into ice water, 

filtered, washed with water, dissolved in dichloromethane, dried over anhydrous Na2SO4, 

filtered and then evaporated to dryness. The solid was recrystallized in 

dichloromethane/ethanol and put in the freezer to further crystallization, to yield yellow 

crystals (6.32 g, 38%). 1H NMR (CDCl3, 250 MHz) δ 8.45 (s, br, 1H), 2.23 (s, 3H), 2.18 

(s, 3H), 1.91 (s, 3H), 1.56 (s, 9H). 

 t-Butyl 5-Acetoxymethyl-3,4-dimethylpyrrole-2-carboxylate (20) 

In a round-bottomed flask, trimethylpyrrole, (19, 1.74 g, 8.3 mmol) was stirred in 

acetic acid (39.0 ml) and acetic anhydride (1.0 ml) for 1.5 h with portion wise addition of 

lead tetra-acetate (4.05 g, 9.1 mmol) under argon. The stirring was continued overnight, 

after which TLC showed completion of reaction. The reddish-brown solution was treated 

drop wise with 40 ml ice water and a flaky precipitate formed. The crude pyrrole was 

filtered, washed with water, dissolved in dichloromethane, dried over anhydrous MgSO4 

and evaporated to dryness. The solid was then recrystallized from DCM/ hexane and put 

in the freezer to further crystallization, to give a fluffy off-white solid (1.357 g, 61%). 1H 

NMR (CDCl3, 250 MHz) δ 8.85 (s, br, 1H), 5.02 (s, 2H, -CH2-O), 2.23 (s, 3H, COCH3), 

2.07 (s, 3H), 2.01 (s, 3H), 1.56 (s, 9H). 

 2-Acetoxy-3-nitrobutane (21) 

In a three-necked round-bottomed flask equipped with a magnetic stirrer and 

chilled in ice-salt bath, acetaldehyde (13.0 ml, 0.465 mol), 2-propanol (8.5 ml) and 

potassium fluoride (0.67 g, 0.023 mol, 0.05 mol equiv.) were added. To the mixture, 

nitroethane (16.5 ml, 0.46 mol) was added drop wise at 0 ºC over a period of 1hr. The 
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mixture was slowly warmed up to room temperature and kept for 10 h under argon with 

continuous stirring before removing all solvent under vacuum. The resulting oily crude 

product was filtered to remove solid inorganic waste and washed with dichloromethane. 

After removing all solvent under vacuum, colorless oily product, 2-nitro-butanol-3, was 

obtained (33.78 g, 62%) which was immediately used for the next step synthesis. 

2-Nitro-butanol-3 (7.5 g, 63 mmol) was added drop wise over 10 minutes period 

to a solution of dichloromethane (5 ml), acetic anhydride (9.60 g, 94 mmol, 1.5 equiv.), 

and 4-dimethylaminopyridine (DMAP, 0.1 g). The reaction is exothermic. The mixture 

was allowed to stir for 4 h at room temperature under argon. Methanol (30 ml) was added 

to destroy excess acetic anhydride and allowed to stir for further 30 minutes. The mixture 

was then poured into dilute sodium bicarbonate (9 g in 50 ml water) and extracted with 

dichlomethane (3 x 20 ml). The organic layer was dried over Na2SO4 and filtered through 

a short column of silica. Evaporation of the solvent gave the desired product 21 as a 

yellowish liquid (11.86 g, 58%).  

2-Nitro-butanol-3 1H NMR (CDCl3, 250 MHz) δ 4.43-4.46 (m, 1H), 4.39-4.40 (m, 

0.5H), 4.04-4.09 (m, 0.5H), 3.27 (s, br, OH), 1.44-1.51 (m, 3H), 1.16-1.21 (m, 3H) (it is a 

mixture of two isomers) 

21 1H NMR (CDCl3, 250 MHz) δ 5.19-5.34 (m, 1H), 4.55-4.65 (m, 1H), 2.05 (d, 3H, 

COCH3), 1.52-1.56 (m, 3H), 1.27-1.31 (m, 3H) (it is a mixture of isomers) 

 Ethyl 3, 4-Dimethylpyrrole-2-carboxylate (23) 

In a multi-neck round-bottomed flask, equipped with a magnetic stirrer, ethyl 

isocyanoacetate (22, 2.51 g, 19 mmol, 1.05 equiv.), tetramethylguanidine (4.41 g, 38 

mmol, 2. 05 equiv.) and a 1/4 mixture of dry THF (3 ml) and isopropanol (3 ml) were 
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added and the flask cooled in ice water bath. To the mixture, at 0 ºC, a solution of 2-

acetoxy-3-nitrobutane (21, 3.0 g, 18.6 mmol) in the rest of 3/4 mixture of dry THF and 

isopropanol was added drop wise over a period of 30 minutes.  The mixture was allowed 

to stir at room temperature for another 20 h under argon after the addition was complete. 

The resulting mixture was concentrated under vacuum to dryness. The oily residue was 

taken up by dichloromethane (22 ml) and washed successively with water (3 x 6 ml), 5% 

aqueous HCL (93 x 6 ml), water (3 x 6 ml), aqueous saturated sodium bicarbonate (6 ml) 

and brine (6 ml). After drying over anhydrous Na2SO4, solvent was removed under 

vacuum to yield the product 23 (2.5 g, 83%). 1H NMR (CDCl3, 250 MHz) δ 8.79 (s, br, 

1H), 6.59 (d, 1H), 4.32 (q, 2H, O-CH2-CH3), 2.27 (s, 3H), 2.02 (s, 3H), 1.36 (t, 3H, CH2-

CH3) 

Benzyl 3, 4-Dimethylpyrrole-2-carboxylate (24) 

Sodium (0.168 g, 7.3 mmol) was added to benzyl alcohol (60 ml) in a round-

bottomed flask. Once all the sodium had reacted, ethyl ester pyrrole (23, 2.32 g, 14 

mmol) was added and the resultant mixture heated in an oil bath for 6 h. The mixture was 

allowed to stand at room temperature overnight and acetic acid (0.438 g, 7.3 mmol) was 

added to neutralize the sodium benzyloxide. Benzyl alcohol was evaporated under 

reduced pressure to dryness and the residue which solidified on standing was dissolved in 

dichloromethane, washed with water and treated with decolorizing carbon. After filtration 

through a celite cake, the solution was dried over MgSO4 and evaporated the solvent 

under vacuum to yield a liquid, which was further distilled off under vacuum to give a 

thick liquid. The residue was dried under vacuum to give brown solid (1.5 g, 90%). 1H 
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NMR (CDCl3, 250 MHz) δ 8.70 (s, br, 1H), 7.35-7.41 (m, 5H), 6.62 (d, 1H), 5.31 (s, 2H), 

2.29 (s, 3H), 2.02 (s, 3H) 

 t-Butyl 9-(Benzyloxy carbonyl)-3,4,7,8-tetramethyldipyrromethane-1-

carboxylate. 

• Method A: Using  acid  (25) 

A suspension of 5-acetoxymethyl pyrrole (20, 268 mg, 1.0 mmol) and 5-

unsubstituted pyrrole (24, 230 mg, 1.0 mmol) in acetic acid or methanol (5 ml) was 

treated with p-toluenesulphonic and then heated at 40-42 ºC with stirring under argon. 

After 4 h, TLC analysis showed completion of reaction. Dichloromethane was added and 

the solution washed with aqueous sodium acetate, aqueous sodium hydrogen carbonate 

and finally water. The organic phase was dried over MgSO4 and evaporated to dryness. 

The residue was recrystallized from dichloromethane/hexane and put in freezer to further 

crystallization. After filtration, product 25 was obtained as pink fluffy solid in a very low 

yield (80 mg). 1H NMR (CDCl3, 500 MHz with a relaxation delay of 60 seconds) δ 8.75 

(s, br, 2H), 7.28-7.36 (m, 10H), 5.26 (s, 4H, CH2-Ph), 3.80 (s, 2H), 2.26(s, 6H), 1.94 (s, 

6H) 

• Method B: Using catalyst K-10 (26) 

5-Acetoxymethylpyrrole (20, 1.36 g, 5.1 mmol) and 5-unsubstituted pyrrole (24, 

2.29 g, 10 mmol), under argon in a round-bottomed flask, were stirred with distilled 

dichloromethane (100 ml) and Montmorillonite clay K-10 (1.92 g) for 24 h at room 

temperature. The clay was filtered off and rinsed copiously with dichloromethane (600 

ml). Evaporation of solvent gave brownish oil, which was then flashed-chromatographed 

on silica gel, eluting with 3% methanol/dichloromethane, to give an oily residue, which 
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under high vacuum yielded a yellowish-brownish solid (2.136 g, 96%). Some 5-

unsubstituted pyrrole (24) was recovered. 1H NMR (CDCl3, 250 MHz) δ 8.65, 8.50 (s, br, 

1H each), 7.36-7.39 (m, 5H), 5.28 (s, 2H, CH2-Ph), 3.82 (s, 2H), 2.27 (s, 3H), 2.22 (s, 

3H), 1.95 (s, 3H), 1.93 (s, 3H), 1.54 (s, 9H) 

 1-(t-Butyloxycarbonyl)-2,3,7,8-tetramethyldipyrromethane-9-carboxylic acid 

(15) 

Mixed ester dipyrromethane (26, 2.0 g, 46 mmol) was dissolved in approximately 

80 ml of freshly distilled THF and degassed with argon for approximately 15 minutes. 

10% Pd/C (0.13 g) was added to the solution and the flask evacuated of air, sealed and 

filled with hydrogen gas. (Hydrogen gas was filled in a balloon and connected to the 

reaction flask.) The reaction mixture was left to stir for 16 h after which TLC showed 

reaction was complete. The reaction mixture was then filtered through a bed of celite 

cake to remove the catalyst, which was washed with THF. The collected filtrate was 

evaporated at which point yellowish foamy solid formed. Drying under vacuum gave the 

product in 100% yield. (1.57 g) 1H NMR (CDCl3, 250 MHz) δ 11.45, 10.80 (s, br, 1H 

each), 3.85 (s, 2H), 2.29, 2.19, 2.08, 2.01 (s, 3H each), 1.55 (s, 9H) 

 t-Butyl 9-Formyl-2,3,7,8-tetramethyldipyrromethane-1-carboxylate (16) 

Dipyrromethane monocarboxylic acid (15) (300 mg, 0.86 mmol) was dissolved in 

40 ml of distilled dichloromethane under argon. p-Toluenesulphonic acid (328 mg, 1.7 

mmol) was added in three portions at 2 minute interval. Stirring was continued for 1.5 h 

afterwhich TLC showed completion of reaction. Saturated sodium bicarbonate was added 

to neutralize the solution, then brine, and dried over MgSO4. Evaporation of the solvent 

yielded a brown-reddish oil which was dried under high vacuum to remove any solvents. 
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Dry DMF (1.0 ml) was added to the crude material and the solution cooled to 0 ºC. 

Meanwhile, Vilsmeier complex was prepared by adding benzoyl chloride (0.6 ml, 5.1 

mmol) dropwise to dry DMF (0.8 ml, 10.3 mmol) at 0 ºC, with stirring for 30 minutes. 

The Vilsmeier complex was added dropwise to the decarboxylated mixture with stirring 

and after 15 minutes, stirring was continued at room temperature for further 50 minutes. 

TLC showed formation of the iminium salt. Toluene (10 ml) was added and little grains 

of precipitate were formed. Toluene was evaporated and ethanol plus 1.5 g of sodium 

bicarbonate in 25 ml was added.  Stirring was continued overnight at room temperature, 

followed by extraction of the aldehyde with dichloromethane. Drying of the solution over 

MgSO4 and evaporation of the solvent yielded a brown semi-solid, which was 

chromatographed on silica gel column eluting with 3% methanol/dichloromethane to 

afford 148 mg (52%) of the title product. 1H NMR (CDCl3, 250 MHz) δ 10.05(s, br,1H), 

9.50 (s, 1H), 9.22 (s, br, 1H), 3.88 (s, 2H), 2.26, 2.24, 1.99, 1.96 (s, CH3 each), 1.52 (s, 

9H) 

 Di-t-butyl 2,3,7,8,12,13,17,18-Octamethyl-b-bilene-1,19-dicarboxylate 

hydrochloride (14) 

50.0 mg (0.14 mmol) of dipyrromethane monocarboxylic acid (15) and 

formyldipyrromethane (16) (40 mg, 0.12 mmol) were dissolved in 10 ml of dry 

dichloromethane and stirred under argon. p-Toluenesulfonic acid (53.0 mg, 2 equiv.) was 

added in two portions to the solution and stirring was continued for 2 h afterwhich TLC 

showed no starting material and the UV/Visible spectrum showed a strong absorption at 

502 nm. The dark red solution was washed with 5% sodium carbonate solution and water 

and dried over magnesium sulphate. Evaporation of solvent under reduced pressure 
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afforded the tetrapyrrolic intermediate 30 (b-bilene). The dark residue was then dissolved 

in 5 ml dichloromethane and hydrogen chloride gas was bubbled through the yellowish-

orange solution for 30 seconds and the color changed to dark red, forming the 

hydrochloride salt. Immediately, the solvent was evaporated and the residue taken up 

twice in dry toluene and evaporated in order to remove any traces of water and HCl. The 

residue was recrystallized in DCM/hexane and left in the freezer overnight. Filtration of 

solvent yielded orange-red prisms of the title compound (54 mg, 70%). UV/Vis (CH2Cl2): 

λmax,nm (ε x 105, M-1.cm-1): 502 (1.11); 1H NMR (CDCl3, 250 MHz) δ 13.8 (br, NH+, 

2H), 10.4 (br, NH, 2H), 7.08 (1H), 4.2 (CH2, 4H), 2.23, 2.18, 2.04, 2.02, (each CH3, 6H), 

1.55 (t-butyl, 18H). 

 Zinc(II) 5-Spirocyclohexyl-2,3,7,8,12,13,17,18-octamethylisoporphyrin 

chloride (13) 

b-Bilene (14) (22 mg, 0.03 mmol) was dissolved in 3 ml cold TFA and stirred for 

10 minutes under argon. TFA was evaporated off and 8 ml of DCM added. Cylohexanone 

(35 µl, 0.3 mmol, 10 equiv.), p-TsOH (38 mg, 0.2 mmol, 6 equiv.), and Zn(OAc)2 (20 

mg, 0.09 mmol, 3 equiv.) in 1 ml methanol were added to the stirring solution in air. The 

reaction was monitored by UV/Visible spectroscopy, which showed no absorption peak 

around 800 nm but at 400 and 500-600 nm. The reaction mixture was left to stir in air for 

6days and there was no change in absorption peaks. Several attempts to facilitate fast 

oxidation by addition of p-chloranil and bubbling of oxygen seemed unsuccessful. The 

compound formed seemed very stable, because there was no change in the absorption 

peaks. It was assumed that cyclohexanone was not reactive enough and to activate it, 

more amounts of p-TsOH were added, but still cyclization was not complete. The 
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absorption spectra at 400 nm (Soret band) and Q-like bands between 500-600 nm suggest 

the formation porphyrin but in very small amounts as shown also by TLC.  

Zinc(II) 2,3,5,5,7,8,12,13,17,18-Decamethylisoporphyrin chloride (30)  

Bilene (14) (50 mg, 0.08 mmol) was dissolved in 0.2 ml of cold TFA in a round 

bottomed flask and stirred for 10 min under argon. The mixture was diluted with dry 

dichloromethane followed by addition of zinc(II) acetate (50 mg) dissolved in dry 

methanol (2 ml), which acted as a template, and excess 2,2-dimethoxy propane. The 

mixture was left to stir in air for 28 h. TLC and UV/Visible showed formation of product. 

The electronic absorption spectrum showed peaks at around 440 and 690 nm 

characteristic of metal-free isoporphyrin. Work-up was done by washing with water 

twice, drying over Na2SO4 and evaporating off the solvent. The residue was immediately 

dissolved in dichloromethane and zinc(II) acetate in methanol were added. After 15 

minutes, the absorption spectrum showed successful insertion of zinc ions with 

absorption red shifting to 810nm, characteristic of zinc isoporphyrins. 

The product was chromatographed on a silica gel column, eluting with 1-3% 

methanol/dichloromethane. The appropriate fractions were collected and the solvent was 

removed. The product was dissolved in dichloromethane, washed with saturated sodium 

chloride solution and dried over Na2SO4. Recrystalization using 

dichloromethane/petroleum ether afforded the product as green solid (12 mg, 28%). 

UV/Vis (CH2Cl2): λmax,nm (ε x 103, M-1.cm-1): 420.5 (48.9), 807.1 (47.5); 1H NMR 

(CDCl3, 300 MHz) δ, ppm 7.70 (s, meso-H, 1H), 7.60 (s, meso-H, 2H), 2.47, 2.43 (s, β-

CH3, 24H), 1.96 (s, 5-CH3, 6H); HRMS MALDI-TOF calcd. for C30H33N4Zn 513.1996, 
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found m/z 513.1990 (M+); MS MALDI-TOF calc. 514.999, found m/z 514.868 (M+) 

(dithranol). 

Copper (II) 2,3,5,5,7,8,12,13,17,18-Decamethylisoporphyrin chloride (31) 

In a round bottomed flask equipped with a stirrer under argon, was added 50 mg 

(0.08 mmol) of b-bilene and 0.2 ml of cold TFA. The mixture was left to stir for 10 

minutes, afterwhich dry dichloromethane (20 ml) was added followed by zinc (II) acetate 

dissolved in dry methanol, then excess 2,2-dimethoxypropane. The reaction mixture was 

left to stir in air for 24 h. UV-Visible (abs at 700 nm) and TLC on alumina showed 

completion of reaction. Excess TFA and dichloromethane were evaporated off and the 

reaction mixture was purified on neutral alumina using acidic solution of chloroform as 

eluant (2 drops of TFA were added to 200 ml of chloroform) to collect a fraction of 

mixed isoporphyrin and porphyrin. A second column using silica gel and 

chloroform/ethylacetate 4:1 and a few drops of TFA was done to purify the isoporphyrin 

from the porphyrin. The pure isoporphyrin was metalated using cuprous chloride in 

chloroform at room temperature for 2 h. The mixture was filtered through a celite cake, 

and recrystallized   from chloroform/petroleum ether to yield the product in 23% (10 mg). 

UV/Vis (CH2Cl2): λmax,nm (ε x 103, M-1.cm-1): 428.02 (10.98), 842.05 (9.75); HRMS 

MALDI-TOF calcd. for C30H33N4Cu 512.1995, found m/z 512.2006 (M+); MS MALDI-

TOF calc. 513.155, found m/z 513.339 (M+) (dithranol). 
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CHAPTER 3 
 

SYNTHESIS AND CHARACTERIZATION OF METAL-FREE 
ISOPORPHYRINS 

 
3.1 Introduction 

Metal-free isoporphyrins have not been previously isolated and characterized. 

Since Xie and her group were already aware that the metal-free derivative could not be 

obtained directly by ring synthesis, studies to synthesize metal-free isoporphyrins by 

demetalation of the stable zinc isoporphyrin were initiated. The studies revealed that 

treatment of zinc(II) isoporphyrin with TFA usually resulted in decomposition of the 

product after work-up. Although demetalation was successful, following several trials, 

the product was unstable and decomposed readily. As a result it was not possible to fully 

purify or fully characterize the metal-free isoporphyrin.56 The other approach that can be 

taken to obtain a metal-free isoporphyrin is to synthesize it directly without inserting a 

metal. This approach was explored by Leung using a variation of the MacDonald 

procedure by condensing a dipyrromethane dicarboxylic acid (1) and 

diformyldipyromethane (2) in the presence of p-toluenesulfonic acid but without any 

metal salts, followed by treatment of DDQ. However the expected metal-free 

isoporphyrin (3) did not form68 (Scheme 3.1). With the successful development of the b-

bilene route as a pathway to the synthesis of metal isoporphyrins, we decided to explore 

the synthesis of metal-free isoporphyrins using the direct synthesis approach thus 

eliminating the difficulties of work-up encountered by Xie, or so we thought.  
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Scheme 3.1: Direct synthesis of metal-free isoporphyrin via a MacDonald 2 + 2 approach 
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  Scheme 3.2: Synthesis of metal-free isoporphyrin via a b-bilene approach 
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3.2 Results and Discussion 

The synthetic procedure is as shown in Scheme 3.2 where b-bilene (4) is cyclized 

in the presence of zinc as a template with a ketal 2,2-dimethoxypropane as the the 

carbon-linking unit at room temperature in the presence of air. Attempts to isolate and 

characterize the metal-free isoporphyrin (5) was challenging due to instability of the 

product. Due to previous reports56 of product decomposition during work-up with sodium 

bicarbonate solution, we avoided that problem by evaporating off excess TFA and 

solvent before purification by column chromatography. The reaction mixture (which was 

exposed to light and air) showed the formation of the metal-free product by UV-visible 

absorption spectroscopy, with the characteristic absorption at 700 nm, but the compound 

decomposed during separation/purification by column chromatography. This was also 

witnessed on TLC as the green spot eventually changed color to purple. Even after a 

successful separation on a short column, the compound decomposed on exposure to air 

and light by once again turning purple. Storage of the product in the freezer saved it from 

decomposing immediately. Insertion of zinc stabilizes it and there are no signs of 

decomposition even when left in excess acetate ions or exposed to air. So a study on 

stability of metal-free isoporphyrins was initiated. 

• Stability studies 

It was predicted that since the reaction mixture was stable upon exposure to air and 

light but unstable or decomposed after alumina column chromatography, then the 

presence of acid in the reaction mixture may have been playing a major role on the 

stability of the compound. So after the alumina column, the green fraction was trapped in 

an acidic solvent (dichloromethane with a few drops of TFA) and successfully, the UV 
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showed the expected spectrum. However, after a few minutes of exposure to light and air, 

the compound (dissolved in acidic dichloromethane) changed color from green to purple. 

All factors supposedly thought to cause decomposition were eliminated; running of the 

column under argon, storage of the compound under argon and in the dark or at 0 oC, but 

still there was decomposition after several hours under these conditions. Finally, it was 

discovered that the activated alumina (alumina grade III) that was used to purify the 

metal-free complex played a major role on the stability of this compound. It was 

speculated that the basic alumina was deprotonating the product while on the column, and 

although it was trapped in acidic conditions to restore the protonation, it was not 

sufficient enough to stabilize the product. Enough damage to the product was done while 

on the column. Therefore, neutral alumina was used and prepared using the acidic eluant 

to prepare a short column of approximately 2 inches in length. It was also observed that 

porphyrin formation was a competing reaction, in high yields too, which could have led 

to reduced yields of isoporphyrin. Isolation and purification of the product (green) was 

successful under the acidic conditions, to give protonated metal-free isoporphyrin in 23% 

yield; this showed absorptions at around 430 and 695 nm (Figure 3.1). Addition of base 

or basic solvents (e.g. pyridine, DMF, THF) to this sample destroyed the absorption 

pattern characteristic of metal-free isoporphyrins and finally led to decomposition (color 

changed to blue and finally to purple). The same behavior was observed when the 

product was purified under non acidic conditions. Also, when base was added to the 

reaction mixture (that contained some acid), the same results were observed as shown in 

Figure 3.2. This may explain why the compound obtained after demetalation of zinc 

isoporphyrin (by Xie and Leung) decomposed during work-up with saturated sodium 
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bicarbonate solution; metal-free isoporphyrin is unstable under basic conditions. We 

investigated the stability of this compound in different solvents bearing lone pairs of 

electrons. The electronic absorption spectra, Figure 3.2, illustrates a trend where the 

more basic solvents deprotonate the metal-free isoporphyrin, changing their electronic 

absorption whereas the less basic tend to have less effect on the compound; that is 

acetone, methanol, dichloromethane and chloroform. 

 

 

 

   

 

Figure 3.1: UV/Visible spectrum of protonated metal-free isoporphyrin in 
dichloromethane at room temperature 
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Figure 3.2: UV-Visible spectra of metal-free isoporphyrin dissolved in different 
solvents/ reagents at room temperature 
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These results proved that the absorption spectrum (Figure 3.1) was characteristic 

of protonated metal-free isoporphyrins, which were stable enough to allow full 

characterization. Mass spectroscopy proved the formation of the product but NMR 

spectroscopy showed all the signals except for the 5,5-dimethyl protons (expected to 

show between 1-2 ppm) plus a strong signal at 1.26 ppm which did not integrate to the 

expected 6-methyl protons (Figure 3.3). This same problem was encountered by Xie and 

Leung who assumed that the signal was obscured beneath the impurity peak at 1.26ppm. 

They also associated the missing signal with some unusual dynamic processes which they 

ruled out after performing a variable-temperature 1H-NMR at 10 oC and 0 oC with no 

successful identification. To investigate the phenomenon of the missing NMR signal, we 

undertook a deuterium labeling strategy of the 5,5-dimethyl substituents by chemical 

synthesis. This was achieved by cyclizing a b-bilene with a deuterated reagent molecule, 

in this case acetone-d6 as the carbon-linking unit to introduce deuterium in the 

macrocycle (Scheme 3.3). It was necessary to establish that the reaction conditions did 

not allow the reverse D/H isotopic exchange by carrying out the synthesis using TFA-d 

and acetone-d6. The reaction was followed by UV-Visible spectroscopy and after 24 h, 

the absorption peak at 700 nm was at its maximum. Purification on neutral alumina and 

silica gel isolated the target deuterium labeled compound, green in color. Figure 3.4 

shows the electronic spectrum in dichloromethane. Low resolution and high resolution 

mass spectrum were used to further characterize the macrocycle. 1H-NMR spectroscopy 

of this sample in chloroform-d further confirmed successful deuterium labeling due to the 

missing signal between 1.5-2.0 ppm corresponding to 5,5-dimethyl substituent. 
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Scheme 3.3: Synthesis of deuterium labeled metal-free isoporphyrin 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.4: UV-Visible spectrum of deuterium labeled metal-free isoporphyrin (6) in 
dichloromethane at room temperature 
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Since we had speculated that the missing signal was obscured beneath the strong singlet 

of impurities at 1.26 ppm, we expected this signal to be less intense in the deuterium 

labeled sample. However, the signal showed the same intensity as the spectrum of non-

deuterated sample leading to inconclusive results on the missing signal.  

Following the solvent studies performed on this macrocycle and the stability 

demonstrated in acetone and methanol, we attempted to carry out the NMR studies in a 

different solvent hoping to obtain better solubility and resolution. Our solvent choice was 

acetone-d6 and a drop of TFA-d to stabilize the metal-free isoporhyrin (5). To our 

amazement, we observed a signal at ~1.7 ppm which integrated to 6-H, corresponding to 

the 5,5-dimethyl protons  (Figure 3.6). To confirm the identity of this signal, the 

deuterium labeled metal-free isoporphyrin (6) was analyzed under the same conditions by 

1H-NMR in acetone-d6 and the signal was absent (Figure 3.7). Another observation made 

was the reduced intensity of the signal at 1.26ppm in acetone-d6 compared with 

chloroform-d, which has no clear explanation, but is probably due to better 

solubility/reduced aggregation in acetone/TFA mixture and stability of the metal-free 

macrocycle in this solvent mixture leading to reduced rate of decomposition. 

In addition, we adopted a more sensitive NMR technique, 13C DEPT (Distortionless 

Enhancement by Polarization Transfer), an example of a carbon-editing pulse sequence 

via polarization transfer, for further structure verification of the metal-free isoporphyrin 

and to confirm the identity of the 5,5-dimethyl signal. Systematic changes in the internal 

delays in the complex pulse program make different carbons respond in different 

fashions, based upon the number of protons attached.  

DEPT 45: This experiment yields a positive peak for every carbon with attached protons. 
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DEPT 90: In this variant of the DEPT experiment, only CH yields peaks; CH0, CH2, and 

CH3 are invisible.  

DEPT 135: In this variant of the DEPT experiment, CH2 yields negative peaks, whereas 

CH and CH3 are positive. 

We opted to use DEPT 90 and DEPT 135 since the metal-free isoporphyrin macrocycle 

contained CH and CH3 carbons. Note in this experiment that carbon in the deuterated 

solvents (in our case CDCl3 solvent) used to dissolve the samples for NMR, does not give 

a signal, since it has no attached protons. 

Theoretically, since the metal-free macrocycle has symmetry through the 5,15-meso 

positions, we expect to observe positive signals corresponding to 2-CH carbons in DEPT 

90, while positive 2-CH carbons and 5-CH3 carbons in DEPT 135, for non-deuterated 

metal-free isoporphyrin. On the other hand, deuterium labeled metal-free isoporphyrin is 

expected to show positive signals for 2-CH carbons in DEPT 90, and positive 2-CH 

carbons and 4-CH3 carbons in DEPT 135, due to deuterium labeling of 5,5-dimethyl 

substituent. Both samples were dissolved in CDCl3 and four different experiments were 

run overnight to obtain results as indicated in Figures 3.10 - 3.13 which comply with the 

theoretical speculations/predictions. These results confirmed both structures and the 

identity of the 5,5-dimethyl signal. 

We also utilized 2H-NMR spectroscopy for characterization of the two deuterium 

labeled methyl groups of metal-free isoporphyrin. The typical solvent used in deuterium-

NMR experiment is non-deuterated solvent, in this case, chloroform. For a given 

chemical species and its deuterium isotopomer, their chemical shifts in H-NMR and D-

NMR are very similar, with a minor isotope effect, allowing easy spectral interpretation 
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extrapolated from the knowledge of 1H NMR. The deuterium resonance was observed as 

a broad signal at 1.8 ppm (Figure 3.13) which is 0.2 ppm downfield shifted compared to 

that of the corresponding proton resonance (δ 1.6 ppm). This was in agreement with 2H 

NMR studies of porphyrins reported in the literature; broadening due to quadrupolar 

relaxation since 2H is a quadrupolar nucleus, fairly sharp linewidths and essentially 

similar chemical shifts in 2H spectra as those seen in 1H.5 The triplet observed in the 

spectrum (Figure 3.13) can be associated with impurities or noise, taking into 

consideration the limitations of deuterium-NMR; (1) due to low magnetogyric ratio of 

deuteron, D-NMR is better when applied to compounds that are highly deuterated, (2) it 

takes a longer time to achieve the desired signal/noise (S/N) ratio, and (3) with 100% 

natural abundance solvent, D-NMR has to be run in the unlocked mode, and shimming 

has to be done manually.69  

3.3 Decomposition Studies 

Metal-free isoporphyrins are very unstable and decompose readily in presence of 

air and light (while dissolved in solvents or dry), under basic conditions or solvents, and 

under alumina chromatography. The green product gradually changes color to purple, 

which is not identifiable by its UV/Visible spectrum. TLC of the purple fraction indicates 

several spots. A sample of protonated metal-free isoporphyrin, which is relatively stable 

compared with free-base metal-free isoporphyrin, was left to stand in air and light. 

Progressively, the color turned from green to purple and separation on a neutral alumina 

column to isolate the purple fraction was attempted. A first green fraction was collected 

which corresponded to metal-free isoporphyrin, while the major fraction (purple) was  
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Figure 3.5: 1H-NMR spectrum of deuterium labeled metal-free isoporphyrin (6) in CDCl3 at room 
temperature 
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Figure 3.6: 1H-NMR spectrum of metal-free isoporphyrin (5) in (CD3)2CO at room temperature 
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Figure 3.7: 1H-NMR spectrum of deuterium labeled metal-free isoporphyrin (6) in (CD3)2CO at room 
temperature 
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Figure 3.8: Comparison of 1H-NMR spectra of metal-free isoporphyrin in CDCl3 and (CD3)2CO 



 89

 

50100150

Figure 3.9: DEPT 90 spectrum of metal-free isoporphyrin (5) in CDCl3, overnight at room temperature 
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Figure 3.10: DEPT 135 spectrum of metal-free isoporphyrin (5) in CDCl3, overnight at room temperature 
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Figure 3.11: DEPT 90 spectrum of deuterium labeled metal-free isoporphyrin (6), overnight at room temperature 
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Figure 3.12: DEPT 135 spectrum of deuterium labeled metal-free isoporphyrin (6), overnight at room temperature 
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Figure 3.13: 2H-NMR spectrum of compound (6) in CHCl3 
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retained on the column and was eluted with methanol. The UV/Visible spectrum of this 

fraction did not identify the compound. TLC showed three different spots which were 

separated by silica gel column and could not be identified.  

3.4 Experimental 
 

• Characterization of Compounds, Chromatographic methods and 
Purification of Solvents 

 
As for Chapter 2, section 2.6 

• Experimental Procedures 

b-Bilene (4): This compound was synthesized following the synthetic procedure 

described in Chapter 2 for compound (14). 

2,3,5,5,7,8,12,13,17,18-Decamethylisoporphyrin (5)  

Bilene (4) (50 mg, 0.08 mmols) was dissolved in 0.2ml of cold TFA in a round 

bottomed flask and stirred for 10 min under argon. The mixture was diluted with dry 

DCM followed by addition of zinc(II) acetate (20 mg) dissolved in dry methanol (0.3 ml) 

and 0.1 ml of 2,2-dimethoxy propane (excess). The mixture was left to stir in air for 24h. 

TLC and UV Visible spectrophotometer showed formation of the product. The electronic 

absorption showed peaks at around 440 and 690 nm characteristic of metal-free 

isoporphyrin. Excess TFA and solvent were evaporated to dryness. The product was 

chromatographed on a neutral (grade 0) alumina column (approximately 2 inches long), 

prepared and eluted with slightly acidified chloroform (CHCl3/TFA: pH= 4-5) to collect 

the major green fraction. The solvent was evaporated to dryness and dried under vacuum 

to yield 28% (10 mg) of the target compound. UV/Vis (CH2Cl2): λmax,nm: 432, 700; 1H 

NMR ((CD3)2CO, 300MHz) δ, ppm 8.43 (s, meso-H, 2H), 7.50 (s, meso-H, 1H), 2.86, 

2.77, 2.61, 2.49 (s, β-CH3, 24H), 1.64 (s, 5-CH3, 6H); HRMS MALDI-TOF calcd. for 
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C30H36N4 452.2929, found m/z 452.2875 (M+) (dithranol); MS MALDI-TOF calc. 

452.61, found m/z 452.59 (M+) (dithranol).  

13C DEPT 90 (CDCl3, 300MHz) δ, ppm 106.383, 84.204 

13C DEPT 135 (CDCl3, 300MHz) δ, ppm 106.383, 84.204, 28.295, 13.059, 11.255, 

11.143, 10.786. 

5,5-Dideuteromethyl-2,3,7,8,12,13,17,18-octamethylisoporphyrin (6)  

Bilene (4) (50 mg, 0.08mmols) was dissolved in 0.2 ml of cold TFA-d in a round 

bottomed flask and stirred for 10 min under argon. The mixture was diluted with dry 

DCM (20 ml) followed by addition of zinc (II) acetate (20 mg) dissolved in dry methanol 

(0.3 ml) and 0.07 ml of acetone-d6 (excess). The rest of the procedure is similar to that 

described for compound (5).The solvent was evaporated to dryness and dried under 

vacuum to yield 22% (8 mg) of the target compound. UV/Vis (CH2Cl2): λmax,nm: 429, 

692 ; 1H NMR (CDCl3, 300MHz) δ, ppm 8.19 (s, meso-H, 2H), 7.33 (s, meso-H, 1H), 

2.80, 2.72, 2.59, 2.47 (s, β-CH3, 24H); HRMS MALDI-TOF calcd. for C30H30D6N4 

458.3299, found m/z 458.3262 (M+) (dithranol); MS MALDI-TOF calc. 458.6, found m/z 

456.9 (M-D+) (dithranol). 

2H NMR (CHCl3, 300MHz) δ, ppm 1.85 

13C DEPT 90 (CDCl3, 300MHz) δ, ppm 106.383, 84.204 

13C DEPT 135 (CDCl3, 300MHz) δ, ppm 106.383, 84.204, 13.059, 11.255, 11.143, 

10.786. 
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CHAPTER 4 

SYNTHESIS OF MESO-MONOSUBSTITUTED PORPHYRINS 
 

A: SYNTHESIS OF MESO-MONOSUBSTITUTED ALKYL PORPHYRINS VIA 
ISOPORPHYRINS: CHEMICAL PROPERTIES OF NOVEL ISOPORPHYRIN 

MACROCYCLES 
 
 

4.1 Introduction 

Isoporphyrins have been reported to be possible intermediates in the biosynthesis 

of chlorophylls,18 and in peroxidase heme meso-alkylations.51 Smith70 also proposed that 

isoporphyrins are intermediates in electrophilic substitution reactions of porphyrins that 

involve attack at the meso positions. Treatment of zinc octamethylporphyrin (1) with 

thallium(III) trifluoroacetate (TTFA) yielded zinc meso-

trifluoroacetoxyoctaethylporphyrin. The proposed mechanism for this transformation 

involves formation of π-cation radicals of metallo-porphyrin (2) which readily lose an 

electron to give the π-dication (3), a very strong electrophile, which is then attacked by 

trifluoroacetate anion to yield metallo-isoporphyrin (4) intermediate and finally proton 

loss to afford metallo-meso-trifluoroacetoxyporphyrin (5) Scheme 4.1.  

Isoporphyrins are known to be unstable in that they are easily converted by 

tautomerization into the corresponding porphyrins. Substitution at the 5-meso position 

with a gem-5,5-dialkyl substituent yields a stable isoporphyrin that cannot undergo 

tautomerization (Chapter 1).55 Herein, we explore the chemical properties of stable 

metallo-isoporphyrins, investigating their potential for use as intermediates for synthesis 

of meso-substituted porphyrins. The idea was to be accomplished by synthesis of 5-

methyl-5-methyl ester 2,3,7,8,12,13,17,18-octamethyl zinc isoporphyrin (7a), followed 

by cleavage of the ester group to afford meso-monosubstituted porphyrin. 
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Scheme 4.1: Trifluoroacetoxylation reaction of metalloporphyrins (1) to afford metallo-
meso-trifluoroacetoxyporphyrins 
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4.2 Results and Discussion 

During the synthesis of isoporphyrin derivatives using α-ketoesters and α-

diketones as the carbon-linking units for cyclization of b-bilene (6), using the same 

synthetic methodology as described with simple ketone/acetone (refer to Chapter 2), no 

isoporphyrin (7) was produced (Scheme 4.2). Instead, various interesting intermediates 

were observed which were worth identifying. After cleavage of the BOC-protecting 

groups on the b-bilene using TFA, the reaction mixture was diluted with dry 

dichloromethane followed by addition of methyl pyruvate to cyclize the b-bilene into the 

expected isoporphyrin. However, after 10 min-1 h reaction time under argon (or when 

left to stir in air for 24 h, in the presence or absence of zinc ions), the electronic 

absorption spectrum of the red colored product did not indicate either the starting 

material or an isoporphyrin, but a structure with absorptions at 450 and 520 nm 

characteristic of an open chain or non-conjugated tetrapyrrole (spectrum (I), Figure 4.1). 

1H NMR spectrum of this compound confirmed the UV/Visible results with the chemical 

shift of NH protons in the δ 12 – 13 ppm ranges, instead of the usual upfield region of the 

shielded NH protons in porphyrins (Figure 4.2). We also observed a set of three signals 

integrating to one proton each in the same chemical environment (δ 7.0-7.5 ppm), 

probably –CH- protons and another singlet at 4.4 ppm integrating to two-protons, 

suggesting -CH2- protons. 

 When the red fraction was washed with water or aqueous sodium carbonate to 

remove excess TFA, or a few drops of base were added, or diluted in any basic solvent 

for example THF, pyridine, or purified on alumina column, the color changed from red to  
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Scheme 4.2: Attempted synthesis of zinc (II) isoporphyrin (7) using α-ketoester as the 
carbon-linking unit following the same reaction conditions as with simple ketone. 
 

 

green. The absorption spectrum taken in dichloromethane also changed to 430 and 790 

nm corresponding to spectrum (II) which is quite close to the characteristic optical 

absorption of metal-free isoporphyrins (430 and 700 nm, Chapter 3). The 1H NMR 

spectrum in CDCl3 indicated a slight upfield shift of the 4NHs to δ 11 ppm (still 

appearing in the downfield region, suggesting an open-chain or non-conjugated 

tetrapyrrole) and the set of 3-Hs. This may be due to the neutral nature of the compound 
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compared to compound (I) which was in acidic conditions. We also observed a new 

signal at 5.2 ppm integrating to 1-H, and the disappearance of the signal at 4.4 ppm 

which had integrated to 2-Hs in the first fraction. This was interpreted to be 

dehydrogenation at the meso sp3 center. Such kinds of species with hydrogens on the 

bridging atoms are unable to resist oxidative dehydrogenation.71 In basic conditions, 

deprotonation at the –CH2- bridging carbon occurs, leading to the formation of a 

conjugated tetrapyrrole – an a,b,c-bilatriene the driving force for this reaction. The rest of 

the signals appeared at their original chemical shift as the reaction mixture (I) above. 

However, another important observation was made when the UV/Visible spectrum was 

taken in various different solvents. It was noted that spectrum (II) was obtained when the 

green species was dissolved in chloroform, dichloromethane and ethyl acetate. When 

dissolved in THF, acetone, acetonitrile, pyridine, DMSO, the color changed further to 

green-blue, to give broad absorption bands at 400 and around 700 nm of their optical 

spectrum, suggesting formation of another species. A series of trials on different solvents 

and bases led to one conclusion that the green compound was unstable or rather reacted 

further in donor solvents/bases. 

When acid was added to the green fraction (II), the color changed back to red and 

so did the optical spectrum, with absorptions similar to those of the reaction mixture (I) at 

450 and 520 nm. 

Addition of zinc acetate to fraction (II) had a similar effect as with addition of 

acid. The color changed from green to red with the optical spectrum showing absorption 

bands at 470 and 540 nm, spectrum (III), slightly red shifted to that of (I). 
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Figure 4.1: Optical spectrum (in CH2Cl2) of various intermediates during the synthesis of zinc (II) isoporphyrin 
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5.010.0  

Figure 4.2: 1H-NMR spectrum of the reaction mixture (fraction I), in CDCl3 
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 5.010.0  

 

Figure 4.3: 1H-NMR spectrum of fraction II after alumina column, in CDCl3. 
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A similar intermediate trend in both the optical spectra and 1H NMR was 

observed when an α-diketone (2,3-butanedione) was used as a carbon linking unit in the 

cyclization. 

To help understand the mechanistics of the intermediate formation, the same 

reaction procedure with methyl pyruvate was carried out using 2-equivalents of α-free 

pyrrole (8) as a model simulating b-bilene,. After stirring for 24 h at room temperature, 

1H NMR spectroscopy indicated that a condensation reaction occurred at the carbonyl 

carbon, not methoxy-carbonyl, to yield dipyrromethane (9) (Scheme 4.3). These results 

were also confirmed by mass spectroscopy. This reaction eliminated our earlier 

speculations that both carbonyls reacted to yield the macrocycle. With these results in 

mind, we were confident that the b-bilene should react or was reacting in the same way. 

After several trials, it was concluded that the reactivity of the b-bilene with α-ketoester or 

α-diketone (10 min) was different from that of pyrrole (24 h). 
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Scheme 4.3: Reaction of methyl pyruvate with α-free pyrrole (8) to yield 
dipyrromethane (9) 



 105

In a desperate attempt to isolate and identify the mystery product, fraction (III) 

was left to stir overnight under argon, in dry conditions, and was purified on an alumina 

column to isolate an orange colored major fraction that absorbed at 470 and 511 nm 

(spectrum (V), Figure 4.2). The x-ray structure (Figure 4.3) of this fraction identified the 

product as a zinc dimer of open chain tetrapyrrole (a,c-biladiene), indicating that reaction 

with methyl pyruvate had occurred on one of the α-free positions of the b-bilene. The 

crystals were grown by slow diffusion of petroleum ether into a concentrated solution of 

(V) in dichloromethane. When TFA was added to the zinc dimer complex, demetalation 

occurred producing an optical spectrum identical with (I).  

However, in another attempt, fraction (III) was left to stir in DDQ and cyclization 

occurred to give the expected product, zinc isoporphyrin (spectrum IV). When DDQ was 

added to the zinc dimer complex (V), no cylization was observed, only decomposition of 

the compound. We also investigated cyclization of fraction (II) in the presence of DDQ 

with no success, bringing to conclusion that zinc ions are necessary to effect ring closure. 

Based on the supporting data from NMR spectroscopy, low resolution MS, 

UV/Visible spectroscopy, and the crystal structure, we postulate a reaction scheme for the 

intermediate products as outlined in Scheme 4.4.  Treatment of (6) with TFA to cleave 

the t-butyl esters followed by addition of methyl pyruvate rapidly gave intermediate (I), 

through a b-bilene, a-b-biladiene to a,c-biladiene transformation; the first example of 

such a transformation that we are aware of so far. The initially formed b-bilene (a) and 

a,b-biladiene dication (b) must have undergone acid-base equilibria to give the a,c-

biladiene (I)  in which the two cationic charges are separated. Indeed, measurement of 
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Figure 4.2: Optical spectrum in CH2Cl2 of the zinc dimer complex (V) and its 
transformation to fraction (I) 
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Figure 4.3: Crystal structure of intermediate (V) showing two acyclic tetrapyrrole units 
forming a dimer with zinc (zinc a,c-biladiene dimer) 
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proton NMR spectra in CDCl3 and D2O show that the b- (δ 4.2ppm) and c- (δ 7.3ppm) 

protons in (I) readily undergo exchange with deuterium during this process. Washing 

with aqueous sodium bicarbonate gave intermediate (II), a more conjugated chromophore 

– a,b,c-bilatriene, which was converted to (III) after addition of zinc(II) acetate. 

Treatment of this zinc(II) complex (III) with DDQ gave a high yield of the corresponding 

isoporphyrin chloride (IV) after anion exchange, possibly via the tautomer (c). Refer to 

Figure 4.1 for the optical spectra of fractions (I – IV). 1H-NMR chemical shifts of the 

protons evaluated for structure elucidation of the intermediates are as listed in Table 4.1. 

 With this achievement at hand, we were able to cyclize the b-bilene with various 

α-ketoesters (entries a-g) and α-diketone (entry h) as shown in Table 4.2 to yield the 

corresponding zinc isoporphyrin cation complexes as novel compounds (Figure 4.4) in 

very good yields, and higher than previously reported (Scheme 4.5). The reactions were 

carried out at room temperature and were complete in about 1 h depending on the 

carbonyl substrate. The high electrophilicity of the carbonyl on these substrates (α-

ketoesters and α-diketone) compared to that of simple ketones (e.g., acetone, refer to 

Chapter 2), facilitated the enhanced rate of the reaction. A general reactivity profile 

summarized from the table relates to sterics where the more bulky the substrate, the lower 

the yields and vice versa. 

 To our surprise, as seen in entry (c) of the table, no cyclization occurred with 

methyl 3,3,3-trifluoromethylpyruvate to give zinc isoporphyrin, despite the high 

electrophilic character of the carbonyl due to the presence of very electronegative 

fluorine atoms. In fact, we observed that the reaction was very slow (24 h) and required 

an excess of trifluoromethylpyruvate to yield the intermediate that corresponds to  
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Table 4.1: 1H Chemical shifts (in CDCl3) for intermediate fractions (I) and (II) 

 

 Compound/Intermediate NH H-1, 5, 10 H-15 H-20 Me-21  

Reaction mixture (I) 12.74 (s,1H)  

12.64 (s, 1H)  

12.39 (s, 1H)  

12.04 (s, 1H) 

7.61 (d, 1H)  

7.33 (s, 1H)  

7.27 (s, 1H) 

4.36 (s, 2H) 4.26 (q, 1H) 1.62 (d, 3H) 

Washed with water 11.5 (s, 1H) 6.88 (s, 1H)  

6.42 (s, 1H)  

6.40 (s, 1H)  

5.41 (s, 1H) 3.94 (q, 1H) 1.47 (d, 3H) 

After alumina column (II) 11.95 (s, 2H)  

11.34 (s, 1H)  

11.15 (s, 1H) 

7.00 (s, 1H)  

6.43 (s, 1H)  

6.41 (s, 1H) 

5.44 (s, 1H) 4.33 (q, 1H) 1.62 (d, 3H) 

Reacted with 

methyl 

pyruvate / 1,2-

diketone 

Added Zinc or D2O  Absent     

Reacted with 

phenyl pyruv. 

Reaction mixture (I)    5.8 (s, 1H) Absent 
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Scheme 4.5: Synthesis of zinc(II) isoporphyrin cation (7) employing various 1,2-
dicarbonyl substrates 
 
 
 
 
spectrum (I). We speculated that the reagent was very reactive and required no acid for 

the addition step. To optimize the reaction conditions, after cleavage of the BOC 

protecting groups, TFA was neutralized with base by washing with bicarbonate and the 

reaction was carried out in the absence of acid. No change on reactivity was noted; a 

similar trend as with the presence of acid was observed. We concluded that the 

intermediate formed in this case was unstable and thus favored no product formation. For 

entry (f), steric factors may have played a role in the lack of cyclization. 
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Table 4.2: Cyclization of b-bilene (6) with various 1,2-diketones to yield (7) and 
conversion to (18) 
 
 

Entry R1 R2 Reaction 

time*(min) 

  % yield  

    (7) 

  % yield 

    (18) 

a Me OMe     10     55      30 

b Me OEt     10     54      31 

c CF3 OMe       -      0      0 

d  

 

 

OEt      30     35      32 

e 

 

 

 

 

OEt      60     33      26 

f 

 

 

 

 

OEt      -      0      0 

ga Me OEt     10     54 

 

     63  

 

h Me Me     10     56       - 

aDifferent substituents (propionate side chains) on macrocycle . Refer to Scheme 4.6   

*Reaction of b-bilene with substrate, before addition of zinc and DDQ 



 113

N

N N

N

Me

O
OMe

Me

Me

Me

MeMe

Me

Me

Me

Zn

Cl

7a

N

N N

N

Me

O

O Me

Me

Me

MeMe

Me

Me

Me

Zn

Cl

7b

N

N N

N

O
O Me

Me

Me

MeMe

Me

Me

Me

Zn

Cl

7d

N

N N

N

O
O Me

Me

MeMe

Me

Me

Zn

Cl

7e

N

N N

N

Me

O
Me

Me

Me

Me

MeMe

Me

Me

Me

Zn

Cl

7h  

 

Figure 4.4: Structures of zinc isoporphyrin complexes (7) 
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The optical spectra of some of the zinc (II) isoporphyrin complexes (7) are shown 

in Figure 4.5, and a summary of the absorption peaks and molar extinction coefficients 

for 7a-h in Table 4.3. The absorption is characteristic of metal isoporphyrins with 

absorption maxima at 420 and 800 nm56 (Chapter 1). However, substitution of an ester 

group for one of the methyl groups at the sp3-hybridized meso-carbon affects the 

spectrum. There is an observed red shift on the Soret and Q-bands of the metal complex. 

Substitution of the other methyl group for a phenyl group further red shifts the absorption 

to 842 nm. Similar changes were observed with peripheral substitution (7g). 

The emission spectra of 7a, b, d and g are as shown in Figure 4.6, taken in 

dichloromethane, with a summary of the experimental conditions and fluorescence 

emission maxima in Table 4.4. These compounds exhibit large Stoke’s shift (144 – 411 

cm-1) as reported (600 cm-1)19 compared to zinc octaethylporphyrin (50 cm-1). 

So far, we had been utilizing a methyl substituted b-bilene that yielded an 

octamethyl-substituted zinc isoporphyrin. In order to study in depth the properties of this 

library of zinc isoporphyrins, we attempted to vary the peripheral substituents on the 

macrocycle. This was achieved by synthesizing a 2,8-methylpropionate substituted zinc 

isoporphyrin (entry (g)) by cyclization of b-bilene (12), obtained in 82% yield by 

condensation of formyldipyrromethane (10) and acid dipyrromethane (11) (Scheme 

4.6a). The precursor dipyrromethane (13) was derived in 51% yield from condensing 2-

acetoxymethyl pyrrole bearing 3-pMe substituent (14) with 2-unsubstitituted pyrrole (15) 

using montorillonite K-10 clay as the acid catalyst (procedure described in Chapter 2) 

Scheme 4.6b. 
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Figure 4.5: Optical spectrum of zinc (II) isoporphyrin complexes (7)  

 

 

 

Table 4.3: Summary of the absorption peaks for compounds (7a-h) in dichloromethane 

 

 

 

 

 

 

 Soret band λmax, (nm) 

(ε x 104, M-1.cm-1) 

Q-band  λmax, (nm) 

(ε x 104, M-1.cm-1) 

7a 430     (3.37) 830    (2.63) 

7b 429     (3.58) 826    (2.89) 

7d 439     (4.84) 842     (4.27) 

7e 431     (2.75) 822     (2.28) 

7g 435     (4.78) 841     (3.65) 

7h 430    (4.23) 812     (3.87) 
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Figure 4.6: Fluorescence spectra bands in the Q’y region of (7) derivatives at room 
temperature in dichloromethane  
 

 

 

Table 4.4: Fluorescence emission data of (7) in dichloromethane 

Entry Concentration 

[moles/L]  

Excitation λ, nm Emission λmax, 

nm  

Stoke’s shift 

(nm) 

7a 3.36 x 10-6 420 840 10     (144 cm-1) 

7b 3.29 x 10-6 420 840 14 

7d 3.0 x 10-6 430 860 18 

7e 2.94 x 10-6 425 850 26 

7g 2.84 x 10-6 430 860 19 

7h 3.46 x 10-6 420 840 28    (411 cm-1) 
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Although the cyclization reactivity was similar to the rest of the library (similar 

yields), it was observed that complex (7g) had better solubility due to the presence of the 

ester groups and it absorbed and emitted at longer wavelengths compared to the model 

(7a). The 1H NMR spectra of b-bilene 12 and isoporphyrin 7g are as shown in Figures 

4.7 and 4.8, respectively. 

For comparison purposes, we also examined the MacDonald 2+2 synthesis of 

isoporphyrin 7a*, utilizing the available 5,5-disubstituted dipyrromethane obtained in 

Scheme 4.3 which was debenzylated to give dipyrromethane-1,9-dicarboxylic acid (16) 

followed by condensation with 1,9-diformyldipyrromethane (17) (Scheme 4.7). 

However, the yields were extremely low (14%) and the reaction time was much longer 

(24 h) compared with the b-bilene route which achieves approximately four-fold this 

yield, and can be carried through from start to finish in less than 1 h. 

Having successfully synthesized a library of our target compound zinc(II) 

isoporphyrin (2), the next hurdle to jump was to examine their potential as intermediates 

in the synthesis of meso-substituted porphyrins. Saponification of the 5-alkyl ester 

substituent to give carboxylic acid followed by base-catalyzed decarboxylation on the 

sp3-hybridized meso carbon led to a rapid rearrangement and reduction of the cationic 

complex into the corresponding neutral meso-monosubstituted porphyrin, (18), (Scheme 

4.8). 10% KOH dissolved in dry methanol was used. It was discovered that when KOH 

was dissolved in water, the reaction did not proceed as expected. The reaction occurred at 

room temperature and formation of the product was monitored by UV/Visible 

spectroscopy for the Soret band around 400 nm to reach its maximum intensity.  
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Scheme 4.6a: Synthesis of 2,8-bis(methylpropionate) substituted zinc isoporphyrin (7g) 

 



 119

NH HN

Me

Me

Me

tBuO2C

MeO2C

CO2Bz

NH HN

Me

Me

Me

tBuO2C

MeO2C

CO2Bz

OAc

+
K-10

14 15 13  

 

 

Scheme 4.6b: Synthesis of precursor dipyrromethane (13) 

 

 

 

NH HN

MeMe

CHOOHC

17

NH HN
Me

Me

Me

Me
OMe

O

HO2C CO2H

Me

16

+

p-TsOH, Zn(OAc)2

N

N N

N

MeMe

Me

Me
Me

Me

Me
OMe

O

Zn

Cl

7a
 

 

 

Scheme 4.7: Synthesis of 2a through MacDonald 2 + 2 cyclization 

(*Notice the ethyl substituents at position 13 & 17) 
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5.010.0

Figure 4.7: 1H NMR of b-bilene (12) in CDCl3 at room temperature 

CHCl3 
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2.03.04.05.06.07.08.0

Figure 4.8: 1H NMR spectrum of zinc isoporphyrin 7g in CDCl3 at room temperature 

CHCl3 
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Purification was done on alumina (grade III) column with the yields indicated in Table 

4.2. Note that for entry 7g, the methyl-ester peripheral substituents were hydrolyzed but 

not decarboxylated under similar conditions indicating regioselective decarboxylation 

(Scheme 4.9). The driving force for the decarboxylation reaction is the considerable 

thermodynamic stabilization gained upon the formation of a fully conjugated isomer 

(porphyrin 18) in comparison to zinc isoporphyrin (7) that exhibits an interrupted 

macrocyclic conjugation owing to the presence of a sp3-hybridized meso carbon. Figure 

4.9 shows the electronic absorption spectra of the transformation from zinc isoporphyrin 

(7) to zinc porphyrin (18). 

 

 

 

N

N N

N

R1 Me

Me

Me

MeMe

Me

Me

Me

Zn

18

N

N N

N

R1

O
OR2

Me

Me

Me

MeMe

Me

Me

Me

Zn

Cl

7

KOH / MeOH

 

 

Scheme 4.8: Transformation of zinc (II) isoporphyrin (7) into meso-monosubstituted 
porphyrin (18) 
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Scheme 4.9: Transformation of (7g) to (18g) showing partial decarboxylation 
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Figure 4.9: Electronic absorption spectra of zinc isoporphyrin (7) before (------) and after 
(—) transformation to zinc meso-monosubstituted porphyrin (18), and after demetalation 
(…….) in CH2Cl2.  
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Owing to the success of this methodology whereby zinc metal was incorporated 

into the intermediate before cyclization and oxidation to zinc isoporphyrin, it was 

speculated that incorporation of other transition metals may allow for the isolation of 

metalloisoporphyrins that may otherwise be inaccessible by direct metallation of metal-

free macrocycles. Several transition metal salts including CuCl, Cu (Cl)2, Ni (acac)2, Fe, 

Co, Ag, Cd, were incorporated into the intermediate followed by addition of DDQ at 

room temperature with no successful cyclization to the corresponding metal-

isoporphyrin. Mostly, decomposed products were obtained (by UV/Vis spectroscopy). 

B: SYNTHESIS OF MESO-MONOSUBSTITUTED PORPHYRINS THROUGH B-
BILENES 

 
4.3 Introduction 

During the synthesis of metallo-isoporphyrins by cyclization of b-bilenes, the 

scope of the reaction was expanded by investigating the kinetic factors verses the steric 

factors of the carbon-linking units (Chapter 2) and discovered that when the carbon-

linking unit was an aldehyde (kinetic factors), cyclization occurred to yield a meso-

monosubstituted porphyrin. 

Previously, meso-monosubstituted porphyrins have been reported to be 

synthesized by condensation of a,c-biladiene with an aldehyde by refluxing in acidified 

solvents for several hours to several days,5 monofuctionalization of porphyrins,72,73 or 

they are described as byproducts,74 but in very low yields. The b-bilene oxidative 

cyclization has also been investigated as an approach to meso-monosubstituted 

porphyrins. Although in most cases the required porphyrin was formed, the yield was 

generally low and the sequence complicated by the presence of by-products, therefore 

limiting this approach.36 Recently, Senge et.al.75 reported a practical synthesis of these 
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porphyrins prepared by condensation of dipyrromethane, pyrrole-2-carbaldehyde and the 

desired aromatic or aliphatic aldehyde with yields between 2 and 12% and in most cases, 

the 5,15-disubstituted porphyrin was obtained as a second product. 

4.4 Results and Discussion 

 Treatment of b-bilene (6) with TFA to cleave the tert-butyl esters, followed by 

cyclization with benzaldehyde as the carbon-linking unit in the presence of metal ions, 

then oxidation with DDQ, yielded meso-monosubstituted porphyrin (19) as shown in 

Scheme 4.9. TFA was used for deprotection as well the acid catalyst for the condensation 

reaction. The metal salt, in this case Ni (acac)2 was used as a templating metal, whereby 

in the absence of it, no cyclization or ring closure occurred. Rather, nucleophillic addition  
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Scheme 4.9: Cyclization of b-bilene (6) to meso-monosubstituted porphyrin (19) 
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of the aldehyde occurred at both 1 and 19 positions of the b-bilene. The reaction takes 

place at room temperature in about an hour and purification is very easy on an alumina 

(grade III) column. No other meso-monosubstituted porphyrin side products are isolated; 

exclusively the target compound is obtained as the major product.  

 Various benzaldehydes with different functional groups were used (Table 4.5) 

and it was demonstrated from the product percentage yields (range between 10 and 30%) 

that the reaction efficiency varied considerably depending on the steric and electronic 

properties of the aldehyde.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Optical spectrum of meso-monosubstituted porphyrin (19c) 
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Table 4.5: Various benzaldehydes condensed with b-bilene (6) to yield (19) 

 

                    Benzaldehyde Metal ions Product (19) % 

yield  

     a 

                      

CHO

 

    Zn (II)            11.5 

     b 

                       

CHO

 

    Ni (II)             28 

     c 

               

CHO

Me Me  

    Ni(II)             25 

      d 

            

CHO

MeO OMe  

   Ni (II)            10 

       e 

                     

CHO

CO2Me  

   Ni (II)            30 
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Figure 4.11: 1H NMR spectrum of meso-monosubstituted porphyrin (19c) 
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 Figure 4.12: Crystal structure of zinc meso-monosubstituted porphyrin (19c)  
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The yields increased with substitution of electron-withdrawing groups on the 

benzaldehyde while electron-donating groups induced deactivation and thus reduced 

product yield. When zinc was used as a templating metal, both metal-free porphyrin and 

zinc porphyrin (in small amounts) were obtained, accounting for the low yields of entry 

19a. The yields obtained through this method are much higher than previously reported. 

Figures 4.10 and 4.11 show the electronic absorption spectrum and 1H NMR of meso-

monosubstituted porphyrin (19c), respectively. The x-ray structure of its zinc-complex is 

as shown in Figure 4.12. The crystals were grown by slow diffusion of petroleum ether 

into a concentrated solution of the porphyrin in DCM. 

4.5 Experimental 
 
General procedure for cyclization of b-bilene with dicarbonyl compounds 
 

Cold TFA (0.2 ml) was added to 50 mg (0.08 mmol) of b-bilene hydrochloride in 

a 50 ml RBF and left to stir under argon for 10 min. The mixture was diluted with dry 

dichloromethane (20 ml) followed by addition of α-ketoester (1 equiv. of methyl, ethyl 

pyruvate and 1,2-diketone, and excess of phenyl and i-butyl pyruvates). The reaction was 

left to stir under argon for 1 h after which the UV/Visible spectrum showed no starting 

material but a new product absorbing at 450 and 520 nm. Excess TFA was removed by 

washing with aqueous Na2CO3, changing the product color from reddish to green. The 

UV/Visible absorption for the green product was 430 and 790 nm. Zn(OAc)2 (20 mg) 

dissolved in 1 ml of dry methanol was added to the green product in dry dichloromethane 

and stirred under argon. The reaction mixture immediately changed color to reddish, and 

after stirring for 5 min the UV/Visible spectrum indicated a new absorption at around 470 

and 540 nm.  
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50 mg (0.22 mmol) of DDQ dissolved in dry dichloromethane (0.3 ml) was added 

to oxidize the product. After 15 min, the UV-Visible spectrum of the mixture absorbed at 

430 and 840 nm suggesting formation of a zinc isoporphyrin. The mixture was washed 

with water, then brine, and then dried over Na2SO4. 

Purification on an alumina column (III) eluting with DCM separated the main 

fraction which absorbed at 430 and 830 nm, similar to a zinc isoporphyrin. Further 

purification was done on silica using DCM/ethyl acetate 7:3 to yield a pure product 

which was further recrystallized using DCM/petroleum ether. 

Zinc(II) 2,3,5,7,8,12,13,17,18-Nonamethyl-5-methoxycarbonylisoporphyrin chloride 

(7a): 

25 mg, 55% yield. UV/Vis (CH2Cl2): λmax,nm (ε x 104, M-1.cm-1): 430 (3.37), 830 (2.63) ; 

1H NMR (CDCl3, 300MHz) δ, ppm 7.69 (s, meso-H, 1H), 7.62 (s, meso-H, 2H), 3.73 (s, 

5-OCH3, 3H), 2.58, 2.47, 2.45, 2.42 (s, β-CH3, 24H), 2.01 (s, 5-CH3, 3H); HR ESI calcd. 

for C31H33N4O2Zn 557.1889, found m/z 557.1895 (M+); MS MALDI-TOF calc. 559.01, 

found m/z 559.80 (M+) (dithranol). 

Zinc(II) 5-Methyl, 5-ethylester, 2,3,7,8,12,13,17,18-octamethyl zinc isoporphyrin 

(7b): 

25 mg, 54% yield. UV/Vis (CH2Cl2): λmax,nm (ε x 104, M-1.cm-1): 429 (3.58), 826 (2.89) ; 

1H NMR (CDCl3, 400MHz) δ, ppm 7.68 (s, meso-H, 1H), 7.61 (s, meso-H, 2H), 4.10-

4.15 (q, OCH2CH3, 2H), 2.45, 2.43, 2.40, 2.31 (s, β-CH3, 24H), 1.96 (s, 5-CH3, 3H), 1.07-

1.04 (t, OCH2CH3, 3H); HR ESI calcd. for C32H35N4O2Zn 571.2051, found m/z 571.2041 

(M+); MS MALDI-TOF calc. 573.04, found m/z 573.70 (M+) (dithranol). 
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Zinc(II) 5-Ethoxycarbonyl-2,3,7,8,12,13,17,18-octamethyl-5-phenylisoporphyrin 

chloride (7d): 

18 mg, 35% yield. UV/Vis (CH2Cl2): λmax,nm (ε x 104, M-1.cm-1): 439 (4.84), 842 (4.27) ; 

1H NMR (CDCl3, 300MHz) δ, ppm 8.35, 7.70 (m, 5H, Ph), 7.77 (s, meso-H, 1H), 7.66 (s, 

meso-H, 2H), 4.27-4.24 (q, OCH2CH3, 2H,), 2.50, 2.44, 2.34, 1.94 (s, β-CH3, 24H), 1.14 

(t, OCH2CH3, 3H); HR ESI calcd. for C37H37N4O2Zn 633.2207, found m/z 633.2202 (M+); 

MS MALDI-TOF calc. 635.10, found m/z 635.61 (M+) (dithranol). 

Zinc(II) 13,17-Diethyl-5-ethoxycarbonyl-5-isobutyl-2,3,7,8,12,18-

hexamethylisoporphyrin chloride (7e): 

16 mg, 33% yield. UV/Vis (CH2Cl2): λmax,nm (ε x 104, M-1.cm-1): 431 (2.75), 822 (2.28) ; 

1H NMR (CDCl3, 400MHz) δ, ppm 7.89 (s, meso-H, 1H), 7.80 (s, meso-H, 2H), 4.01-

3.89 (q, OCH2CH3, 2H), 3.04-2.96 (q, -CH2CH3, 4H), 2.55, 2.51, 2.43 (s, β-CH3, 18H), 

1.96 (s, 5-CH3, 3H), 1.32-1.20 (m, -CH2-CH-, 3H), 1.01-0.96 (t, OCH2CH3, 3H), 0.94-

0.86 (t, -CH2CH3, 6H), 0.44 (d, -CH (CH3)2, 6H); HR ESI calcd. for C37H45N4O2Zn 

641.2833, found m/z 641.2832 (M+); MS MALDI-TOF calc. 643.17, found m/z 643.56 

(M+) (dithranol). 

Zinc(II) 5-Methoxycarbonyl-2,8-bis(2-methoxycarbonylethyl)-3,5,7,12,13,17,18-

heptamethylisoporphyrin chloride (7g): 

27 mg, 56% yield. UV/Vis (CH2Cl2): λmax,nm (ε x 104, M-1.cm-1): 435 (4.78), 841 (3.65) ; 

1H NMR (CDCl3, 400MHz) δ, ppm 7.68 (s, meso-H, 1H), 7.65 (s, meso-H, 2H), 3.67, 

3.65 (s, OCH3, 9H), 3.20-3.16, 2.66-2.62 (t, -CH2CH2-, 8H), 2.43, 2.41, 2.22 (s, β-CH3, 

18H), 1.96 (s, 5-CH3, 3H); HR ESI calcd. for C37H41N4O6Zn 701.2312, found m/z 

701.2310 (M+); MS MALDI-TOF calc. 703.13, found m/z 702.48 (M+) (dithranol). 
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Zinc(II) 5-Acetyl-2,3,5,7,8,12,13,17,18-nonamethylisoporphyrin chloride (7h): 

24 mg, 54% yield. UV/Vis (CH2Cl2): λmax,nm (ε x 104, M-1.cm-1): 430 (4.23), 812 (3.87) ; 

1H NMR (CDCl3, 400MHz) δ, ppm 8.10 (s, meso-H, 1H), 8.07 (s, meso-H, 2H), 2.60, 

2.57(s, β-CH3, 24H), 2.30 (s, COMe, 3H), 1.91 (s, 5-CH3, 3H); HR ESI calcd. for 

C31H33N4OZn 541.1940, found m/z 541.1943 (M+); MS MALDI-TOF calc. 543.01, found 

m/z 542.80 (M+) (dithranol). 

Fraction (I) Intermediate– Reaction Mixture (Orange-red) 

Excess TFA and DCM from the reaction mixture were evaporated off and dried under 

vacuum before obtaining the 1H NMR of the intermediates. 

A. Reaction of b-bilene with methyl pyruvate  UV/Vis (CH2Cl2): λmax,nm: 454, 524 ; 1H 

NMR (CDCl3, 300MHz) δ, ppm 12.74, 12.64, 12.39, 12.04 (s, NH, 4H) 7.61 (d, 1-H, 

1H), 7.33 (s, 5-H, 1H), 7.27 (s, 15-H, 1H), 4.36 (s, 10-H, 2H), 4.27-4.24 (q, CH3-CH-

CO2CH3, 1H), 3.70(s, OCH3, 3H), 2.31-.2.28, 2.08-1.97 (s, CH3, 24H), 1.64 (d, -CH3-

CH-, 3H); MS MALDI-TOF calc. 500.67, found m/z 500.47 (M+). 

B. Reaction of b-bilene with 1,2-diketone  UV/Vis (CH2Cl2): λmax,nm: 454, 524 ; 1H 

NMR (CDCl3, 300MHz) δ, ppm 12.81, 12.71, 12.43, 12.16 (s, NH, 4H) 7.60 (s, 1-H, 1H), 

7.32 (s, 5-H, 1H), 7.27 (s, 15-H, 1H), 4.42 (10-H, 2H), 4.23 (q, CH3-CH-CO2CH3, 1H), 

2.31-.2.28, 2.17, 2.08, 2.03, 1.97, 1.96 (s, CH3, 27H), 1.54 (d, -CH3-CH-, 3H); MS 

MALDI-TOF calc. 484.67, found m/z 484.34 (M+). 

Fraction (II) Intermediate – After washing fraction (I) with base, or separation on 

an alumina (grade III) column (Green) 

UV/Vis (CH2Cl2): λmax,nm: 431, 789 ; 1H NMR (CDCl3, 300MHz) δ, ppm 11.95 (s, NH, 

2H), 11.34, 11.15 (s, NH, 2H) 7.00 (s, 1-H, 1H), 6.43 (s, 5-H, 1H), 6.41 (s, 15-H, 1H), 
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5.44 (s, 10-H, 1H), 4.33 (q, CH3-CH-CO2CH3, 1H), 3.69 (s, OCH3, 3H), 2.18-2.15, 2.08-

1.95 (s, CH3, 24H), 1.62 (d, -CH3-CH-, 3H) 

Fraction (III) Intermediate – After addition of zinc acetate to the green fraction II 

(Reddish) 

MS MALDI-TOF calc. 560.04, found m/z 560.07 (M+). 

Synthesis of (7) using MacDonald 2 + 2 route 

Dibenzyl 5-(methoxycarbonyl)-2,3,5,7,8-pentamethyldipyrromethane-1,9-

dicarboxylate (9) 

600 mg (0.0025 mol) of α-free pyrrole (8) were dissolved in 30 ml dry DCM, followed 

by excess TFA (100 equiv.), and 0.125 g (0.0012 mol) of methyl pyruvate. The reaction 

was left to stir under argon at room temperature for 12 h afterwhich TLC confirmed 

completion of reaction. The mixture was washed with water, then aqueous Na2CO3, then 

water again, before being purified on silica gel column using DCM as eluant. A yellow 

fraction was collected first, followed by a slow moving fraction (product). Evaporation of 

the solvent yielded a yellowish liquid product, which was dried under vacuum to give 

70% (1.0 g) of (9). 1H NMR (CDCl3, 300MHz) δ, ppm 9.3 (s, NH, 2H), 7.48-7.34 (m, 

Ph-H, 10H), 5.36 (s, -CH2-Ph, 4H), 3.77(s, OMe, 3H), 2.30, 1.65 (s, β-Me, 12H), 1.98 (s, 

5-Me, 3H) 

5-Methoxycarbonyl-2,3,5,7,8-pentamethyldipyrromethane-1,9-dicarboxylic acid (16) 

The procedure for debenzylation is as described in chapter 1 (500 mg, 0.88 mmol) to 

yield a off-white solid after recrystalization from THF/petroleum ether in 84% (254 mg) 

yield. 
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1H NMR (DMSO-d6, 250MHz) δ, ppm 10.33 (s, NH, 2H), 3.64(s, OMe, 3H), 2.11, 1.39 

(s, β-Me, 12H), 1.89 (s, 5-Me, 3H) 

Zinc(II) 13,17-Diethyl-2,3,5,7,8,12,18-heptamethyl-5-methoxycarbonylisoporphyrin 

chloride (7) 

193 mg (0.53 mmol) of diacid dipyrromethane (16) was suspended in 30 ml of dry 

dichloromethane, then added p-TsOH (406 mg) dissolved in 4 ml dry methanol. The 

suspension cleared and 153 mg (0.53 mmol) of diformyl dipyrromethane (17) was added 

to the mixture, followed by zinc acetate (40 mg) in dry methanol (2 ml). The reaction 

mixture was left to stirr under argon overnight, then opened to air for 3 more days. It was 

then washed with water, aqueous NaHCO3 , then brine and dried over Na2SO3. 

Purification was done on a silica column using DCM as eluant to separate a fast moving 

porphyrin fraction (purple), then gradually increasing the solvent polarity (1% 

MeOH/DCM) to separate a second fraction (yellowish), then a third fraction which 

appeared red on the column (major product - isoporphyrin) to give 7 in 14% yield (46 

mg). UV/Vis (CH2Cl2): λmax,nm (ε x 104, M-1.cm-1): 433 (3.22), 839 (2.45); 1H NMR 

(CDCl3, 300MHz) δ, ppm 7.68 (s, meso-H, 1H), 7.63 (s, meso-H, 2H), 3.67 (s, 5-OCH3, 

3H), 2.92-2.90 (q, -CH2-CH3, 4H ), 2.49, 2.45, 2.27, 2.23 (s, β-CH3, 18H), 1.90 (s, 5-CH3, 

3H), 0.92-0.87 (t, -CH2-CH3, 6H); MS MALDI-TOF calc. for C33H37N4O2Zn 587.06, 

found m/z 587.68 (M+) (dithranol).  

General procedure for synthesis of meso-monosubstituted porphyrins (18) from (7) 

Zinc(II) isoporphyrin (7) was dissolved in dry dichloromethane followed by 

addition of 5% KOH dissolved in dry methanol. The reaction was left to stir under argon 

for 1 h after which the color of the reaction mixture turned purple. The UV/Visible 
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spectrum indicated no starting material. Excess KOH was neutralized by washing with 

acetic acid (pH=5), then with water several times, it was dried over Na2SO3, and purified 

on alumina grade III using DCM as eluant, to isolate the target compound. 

 
General procedure for synthesis of meso-monosusbtituted porphyrins (19) from b-

bilene (6) 

 0.2ml of TFA was added to b-bilene (35 mg, 0.054 mmol) in a RBF and stirred 

for 10 min under argon. Dry dichloromethane (15 ml) was added to the mixture followed 

by Ni(Acac)2 (18 mg, 0.07 mmol) in 0.5 ml of methanol, then 1.0 equivalents of 

benzaldehyde. The mixture was left to stir at room temperature under argon, in the dark, 

for 1 h. Spectrophotometry showed absorption peaks at 453 and 490 nm. TEA (0.1 ml) 

was added to neutralize excess TFA, and immediately DDQ was added and stirring was 

continued for 30 min after which the reaction was stopped (UV/Visible spectrometry 

showed a strong absorption at 416 nm). After washing several times with water, the 

product was isolated by alumina column grade III, using dichloromethane as eluant. A 

second column on silica gel column using 2% MeOH/DCM was done to separate excess 

benzaldehyde from the product (8 mg).  

19b 

8 mg, 28% yield. 1H NMR (CDCl3, 300MHz) δ, ppm 10.17 (s, meso-H, 2H), 9.96(s, 

meso-H, 1H), 8.10, 7.79 (m, Ph, 5H), 3.65, 3.62, 3.56 (s, β-CH3, 24H), -3.15 (br, NH, 

2H); MS MALDI-TOF calc. for C34H34N4 498.66, found m/z 498.68 (M+). 

19c 

7 mg, 25% yield. 1H NMR (CDCl3, 300MHz) δ, ppm 10.16 (s, meso-H, 2H), 9.93(s, 

meso-H, 1H), 7.71 (s, Ph, 2H), 7.47 (s, Ph, 1H), 3.63, 3.60, 3.57, 3.50 (s, β-CH3, 24H), 
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2.62, 2.55 (s, Ph-CH3, 6H), -3.17 (br, NH, 2H); MS MALDI-TOF calc. for C36H38N4 

526.71, found m/z 526.94 (M+). 

19d 

3 mg, 10% yield. 1H NMR (CDCl3, 300MHz) δ, ppm 10.18 (s, meso-H, 2H), 9.95(s, 

meso-H, 1H), 7.50 (s, Ph, 2H), 7.05 (s, Ph, 1H), 3.98 (s, Ph-OMe, 6H), 3.64, 3.61, 3.58, 

3.56 (s, β-CH3, 24H), -3.22 (br, NH, 2H); MS MALDI-TOF calc. for C36H38N4 558.71, 

found m/z 559.20 (M+). 

19e 

9 mg, 30% yield. 1H NMR (CDCl3, 300MHz) δ, ppm 10.18 (s, meso-H, 2H), 9.97(s, 

meso-H, 1H), 8.48 (d, Ph, 2H), 8.21 (d, Ph, 2H), 4.04 (s, Ph-CO2Me, 3H), 3.65, 3.62, 

3.56 (s, β-CH3, 24H), -3.16 (br, NH, 2H)  
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CHAPTER 5 

BIOLOGICAL EVALUATIONS OF METALLO-ISOPORPHYRINS FOR 
APPLICATION IN PHOTODYNAMIC THERAPY 

 
5.1 Introduction 

 One of the limitations of first-generation photodynamic therapy (PDT) 

photosensitizers is that light needed to activate them cannot pass through more than about 

one-third of an inch of tissue (1 centimeter). For this reason, PDT is usually used to treat 

tumors on or just under the skin or on the lining of internal organs or cavities.76 PDT is 

also less effective in treating large tumors, because the light cannot pass far into these 

tumors.76-78 Optimal human tissue penetration by light apparently occurs between 650-

800 nm and hence photosensitizers with a strong absorption band in this region (the 

phototherapeutic window is approximately 620-850 nm) can be activated to penetrate 

deeper into the tissues.39,42,44 Focus on the development of long-wavelength absorbing 

photosensitisers is crucial. 

 Due to their absorptions at long wavelengths, around 800 nm, metallo-

isoporphyrins are potential candidates for PDT. They are also chemically pure, of known 

specific composition, and they are fluorescent. This last property enables the detection of 

tumors by fluorescence imaging. The use of a fluorescent sensitizer in PDT allows the 

combination of diagnosis and therapy, as well as effective treatment planning.43 

 Other factors for an ideal photosensitizer are minimal toxicity in the dark but they 

must be phototoxic and it should be selectively accumulated into malignant tissues. These 

biological properties are evaluated by conducting experiments that will reflect dark- and 

phototoxicity, intracellular localization and cell-uptake of the photosensitizer. The 

photosensitizers in question are: zinc isoporphyrin (1), copper isoporphyrin (2), ‘Me- 
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Figure 5.1: Metallo-isoporphyrin compounds evaluated for their biological properties 
applicable in PDT. 
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pyruvate’ derived zinc isoporphyrin (3), ‘Et-pyruvate’ derived zinc isoporphyrin (4), ‘Ph-

pyruvate’ derived zinc isoporphyrin (5), ‘i-Bu-pyruvate’ derived zinc isoporphyrin (6) 

and ‘PMe’ zinc isoporphyrin (7) as shown in Figure 5.1. These compounds were 

synthesized by varying the central metal ion, and the substituents on the 5-meso position 

and the periphery of the isoporphyrin (see Chapter 4). 

5.2 Results and Discussion 

5.2.1 Dark- and Photo-toxicity 

It is necessary for an ideal photosensitizer to have low dark-toxicity and only be 

cytotoxic in the presence of light. Dark-toxicity assays for both zinc (1) and copper (2) 

isoporphyrins were performed in vitro using human HEp2 cells. The cells were incubated 

for a period of 20-24 h with various concentrations of metallo-isoporphyrin of up to 100 

μM in medium and viable/survival cells were measured fluorescently. Both compounds 

showed low dark-toxicity as shown in Figures 5.2 and 5.3, black curve, especially 

copper isoporphyrin. Concentrations of up to 60 μM for zinc isoporphyrin reflected low 

dark-toxicity while a significant decrease in cell survival is observed at higher 

concentrations. The IC50, value which defines 50% cell viability, for the dark-toxicity is 

~95 μM for copper isoporphyrin and 85 μM for zinc isoporphyrin. 

When activated by light (low dose, 1 J/cm2), both isoporphyrins were found to be 

phototoxic especially zinc isoporphyrin with IC50 of ~35 μM; copper isoporphyrin was 

moderately phototoxic with IC50 of ~85 μM. At concentrations of 100 μM, we observe 

almost 100% cell kill for zinc isoporphyrins.   

Copper isoporphyrin reflects very low dark-toxicity with increased concentration 

compared to zinc isoporphyrin, while a significant phototoxic activity is observed with 
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Figure 5.2: Dark-(black) and photo- (red) toxicity of zinc isoporphyrin towards human 
HEp2 cells at concentrations of up to 100 μM 
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Figure 5.3: Dark- (black) and photo- (red) toxicity of copper isoporphyrin towards 
human HEp2 cells at concentrations of up to 100 μM. 
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zinc isoporphyrin compared to copper isoporphyrin. These results reflect the profound 

effect due to difference in metal ions on the macrocycle, and indicate that very low 

concentrations of both compounds are sufficient to induce photo-activity. 

 Figure 5.4 shows the dark toxicity of 3, 4, 5, 6, and 7 at concentrations of up to 

20 μM. At concentrations higher than 20 μM, no results were obtained due to poisoning 

of the cells, predominantly for compounds 6 and 7, while compound 5 precipitated out of 

the solution. The compounds show low dark toxicity (above 80% cell survival) except for 

compounds 6 and 7 which allow only ~20% cell survival at the same concentration. This 

demonstrates the effects of substitution pattern/functional groups on the macrocycle. 

Compared to zinc isoporphyrin (1), varying the substituents at the 5-meso position (for 3, 

4, and 5) has little effect on dark toxicity at the same concentration, 20 μM (~ between 

70-90% cell survivals vs. 87% cell survival for compound 1). However, compound 6 

which exhibit a similar substitution pattern, shows a high dark toxicity (at 20 μM, there is 

~20% cell survival). Compound 7, which has the same substitution pattern (as the rest of 

the library) at the meso position but different peripheral substitution (methyl groups 

compared with propionic ester substituents), behave similarly to compound 6. The only 

similarity between these two compounds, 6 and 7, is that they posses a 3-carbon alkyl 

substituent, which is flexible and can orient to different angles/positions within the 

macrocycle. This may interpret the similar behavior observed for both the compounds. 

The other compounds (3, 4, and 5) posses rigid functional groups (methyl, phenyl), thus 

classifying their reactivity together.  

   

 



 144

 

 

 

 

 

  

Figure 5.4: Dark toxicity of ‘pyruvate’ zinc isoporphyrin library (3, 4, 5, 6, and 7) 
towards human HEp2 cells at concentrations of up to 20 μM. 
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Figure 5.5: Photo toxicity of ‘pyruvate’ zinc isoporphyrin library (3, 4, 5, 6, and 7) 
towards human HEp2 cells at concentrations of up to 20 μM. 
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As demonstrated by zinc isoporphyrin (1), metallo-isoporphyrins 3, 4, 5, 6 and 7 

are also phototoxic. However, change in functional groups at the 5-meso position of the 

zinc isoporphyrin reflects increased phototoxic activity for 3, 4, 6 and 7.  The IC50 of 

these compounds is ~17, 19, 11, and 15 μM, respectively compared to ~35 μM for 

compound 1. Infact, for compound 6 and 7, we observe 100% cell death at 20 μM. This 

may be in part due to the partial contribution from dark toxicity effect. These 

concentrations are relatively low compared to compounds 1 and 2 above, and even much 

lower compared to porphyrin derivatives synthesized in our group. Compound 5 shows 

low or almost no phototoxicity at this concentration. There is no clear explanation to the 

results, but this compound has been identified to precipitate out of the medium, probably 

due to aggregation, and this may have quenched the fluorescence. Also, since the 

concentrations used for this experiment were low (20 µM), increased concentration on 

this compound may reflect phototoxic activity. 

5.2.2 Cellular Uptake 

The time dependent cellular uptake of compounds 1, 3, 4, 5, 6 and 7 was 

investigated in HEp2 cells at a concentration of 20 μM over a time period of 24 h. The 

compound concentration was read using FLUOstar plate reader with fluorescence filter 

range of 410 nm (excitation filter) and 840 ± 40 nm (emission filter). Figure 5.6 shows 

the uptake results. All the compounds exhibit a rapid uptake within the first few hours. 

Compound 1 reaches a plateau after 4 h of accumulation, whereas compounds 3, 4, and 7 

continue to accumulate slowly until the accumulation levels out. These compounds show 

the same amount of accumulation within 24 h. Compounds 5 and 6 showed continued 

increase in accumulation with respect to time, especially compound 7 which 
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demonstrated higher levels of uptake among all the compounds. The significantly higher 

extent of uptake by compound 7 may be correlated to its high phototoxicity. Compound 5 

precipitated, so we might be measuring settling rates with it. 

5.2.3 Fluorescence Microscopy 

 The intracellular localization of porphyrins is an important factor in determining 

the efficiency of tumor-cell destruction. Porphyrin compounds preferentially accumulate 

in certain organelles, such as the lysosomes, the mitochondria, the endoplasmic 

reticulum, the Golgi apparatus, and to a certain extent, in the nuclei of tumor cells. 

 Human HEp2 cells were allowed to grow for 48 h and incubated overnight with 

metallo-isoporphyrin at 10 μM. Organelle tracers (mito-tracker green, lyso-sensor green, 

ER-tracker green, and BODIPY ceramide) were added concurrently with compound and 

distribution of compound determined using Zeiss AxioVert 200M fluorescence 

microscope fitted with standard filter sets (Texas Red, FITC, DAPI and Cy5LP). Figures 

5.7 – 5.13 show the experimental results of sites of localization of zinc and copper 

isoporphyrin complexes, 1-7. Slide (a) shows the phase contrast, (b) shows the overlay of 

phase contrast with fluorescence of zinc isoporhyrin, (c) shows the fluorescence of 

BODIPY ceramide, (d) shows the overlay of the fluorescences of zinc isoporphyrin and 

BODIPY ceramide, (e) shows the fluorescence of mitotracker green, (f) shows the 

overlay of the fluorescences of zinc isoporphyrin and mitotracker green, (g) shows the 

fluorescence of lysotracker green, (h) shows the overlay of the fluorescences of zinc 

isoporphyrin and lysotracker green, (i) shows the fluorescence of ER-tracker green, and 

(j) shows the overlay of the fluorescences of zinc isoporphyrin and ER-tracker green. The  
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Figure 5.6: Time-dependant cell uptake for compounds 1, 3, 4, 5, 6 and 7, in HEp2 cells 
at 20 μM, for 24 h. 
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BODIPY ceramide, mitotracker green, lysotracker green and ER-tracker green are 

fluorescence probes that specifically label the golgi, mitochondria, lysosomes and 

endoplasmic reticulum, respectively. The overlay (h) (Figure 5.7) of the fluorescence 

signals from mitotracker green and zinc isoporphyrin, indicated preferential localization 

of zinc isoporphyrin in the mitochondria. We also observed a signal from the lysosomes 

(f) and the ER (j), showing that some compound accumulated in the lysosomes and 

endoplasmic reticulum (ER). Zinc(II) isoporphyrin is hydrophobic and cationic. Cationic 

compounds are reported to accumulate preferentially in the mitochondria79 in part due to 

the highly negative electrochemical potential of the inner mitochondrial potential. 

Mitochondria localization is vital because porphyrin-induced apoptosis in tumors is 

primarily correlated with mitochondrial photodamage, and usually occurs rapidly, 

probably as a result of cascade-like cell killing process, leading to a rapid loss of treated 

tissue.43 In addition to localizing in this critically important organelle, zinc isoporphyrin 

also localizes in lysosomes, displaying multilple localization sites within the cell, a 

general trend for porphyrin type compounds, which might account for their effectiveness 

in tumor cell-destruction.43 Copper isoporphyrin (2) predominantly localizes in the 

lysosomes (f) with some signal being observed from the mitochondria (h) and ER (j) 

(Figure 5.8). A different stain (blue) was used to label ER (i) in this experiment with 

copper isoporphyrin instead of green that was used for all the other compounds. A 

whitish staining on the overlay (j), indicates localization. This similar localization pattern 

to the mitochondria, lysosomes and ER is also observed for compounds 3 and 4, Figure 

5.9 and 5.10 respectively. Compound 5 predominantly accumulates in the lysosomes and 

ER (Figure 5.11). This compound had a tendency to precipitate out of the medium. 
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Figure 5.7: Intracellular localization of zinc isoporphyrin (1) at 10 μM in HEp2 cells 
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Figure 5.8: Intracellular localization of copper isoporphyrin (2) at 10μM, overnight, in 
HEp2 human cells 
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Figure 5.9: Fluorescence microscopy of 3 (Me) at 10 μM, overnight, in HEp2 
cells 
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Figure 5.10: Fluorescence microscopy of 4 (Et) at 10 μM, overnight, in HEp2 cells 
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Figure 5.8: Fluorescence microscopy of 5 (Ph) at 10 μM, overnight, in HEp2 cells 
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Figure 5.9: Fluorescence microscopy of 6 (iBu) at 2.5 μM , overnight, in HEp2 cells 
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Figure 5.10: Fluorescence microscopy of 7 (pMe) at 2.5 μM , overnight, in HEp2 cells 
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Due to the observed high toxicity of compounds 6 and 7, the fluorescence microscopy 

studies were performed at lower concentrations of 2.5 μM. For compound 6, the effect of 

high toxicity is observed on the cell morphology - the cells are ‘not happy’, but all the 

same, localization of this compound is in the lysosomes and mitochondria (Figure 5.12). 

Compound 7 predominantly localizes in the endoplasmic reticulum (ER), and some 

compound accumulates into the lysosomes, Golgi and mitochondria (Figure 5.13).  

5.3 Conclusion 

All the compounds were found to show low dark toxicity with an exception of 6 

and 7 which exhibited a relatively high dark toxicity. They are also phototoxic and their 

accumulation in cells is time dependant. A unique observation about compounds 3-7 is 

that small concentrations are required for efficacy. Also, these cationic compounds 

preferentially localize in the mitochondria (the most crucial organelle) and the lysosomes, 

and even the ER and Golgi, displaying multiple localization sites within a cell.  

Further work needs to be done on introducing water soluble functional groups to 

the macrocyle to generate both amphiphilic and water soluble compounds for easy 

administration into the human body.  
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CHAPTER 6 
 

SYNTHESIS OF PROTOPORPHYRIN IX DERIVATIVES FOR MECHANISTIC 
STUDIES OF PHOTODYNAMIC THERAPY; COMPLETION OF THE FINAL 

SYNTHETIC STEPS 
 
6.1 Introduction 
 

X-Ray and NMR studies have shown that the hydrophobic vinyl-bearing rings of 

protoheme IX (1) are usually the most deeply embedded in the protein pockets of, for 

example, myoglobins and hamoglobins, and that the carboxylate groups are consequently 

pointing to the outside of the protein cleft, interacting with the polar outside of the 

protein.5,80 It seems likely that the length of the carboxylate side chains might affect 

physiological action by displacing the heme within the protein pocket, thereby inducing 

tension at the iron-histidine bond; the apoprotein is, of course, exquisitely designed to 

accommodate the protoheme IX prosthetic group. NMR studies have shown that if the 

carboxylates are best situated at the polar edge of the heme pocket then modifying and 

positioning of the propionates around the heme periphery will affect the depth and 

protein contacts of the heme within the cleft.5,81-83 In connection with studies of the 

mechanistics of photodynamic therapy (PDT) in membranes,84,85 it has correspondingly 

been shown that the depth of a sensitizing porphyrin within a membrane can be 

controlled by the length of the carboxylate-containing side chain; it has also been shown 

that the depth of the membrane penetration by a porphyrin affects strongly the 

effectiveness of PDT sensitization.  

 To probe this phenomenon of PDT sensitization at greater depths, protoporphyrin 

IX (PPIX) derivatives, each with a different carboxylic acid chain length were prepared 

for study. Total and partial syntheses of PPIX with 13,17-di-acetic (2) and 13,17-di-
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butyric (3) side chains have been previously reported; compound (2) was prepared by 

total synthesis using a,c-biladiene intermediate,86 whereas compound (3) was prepared by 

total synthesis using the a,c-biladiene87 and MacDonald87 routes, as well as by bis-(one-

carbon) homologation of intact protoporphyrin IX dimethyl ester (4).86 In comparison to 

the PDT sensitization allowed by bis-propionic protoporphyrin IX (5) within a 

membrane,85 two additional PPIX derivatives, bis-pentanoic (6) and bis-heptanoic (7) 

were targeted as illustrated in Figure 6.1. 
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Figure 6.1: PPIX analogues 
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6.2 Results and Discussion 

This project involves the completion of Dr. Jianmin Lu’s project in Smith group, 

who synthesized porphyrins 11a, b, and c, through a,c-biladiene cyclization (Scheme 

6.1). 

Retrosynthetically, the PPIX (6) and (7) can be envisioned as being prepared via 

the a,c-biladiene route.5 Since the top half of the molecule remains constant, only one 

dipyrromethane (8) need be prepared, and methods for its synthesis were available in the 

literature.88 The future vinyl groups are best masked against side-reactions by use of 2-

chloroethyl substituents.88 To provide the lower half of the PPIX analogues, new 

formylpyrroles (9) were required. These were prepared by Dr. Lu, followed by 

condensation with dipyrromethane to afford the corresponding a,c-biladienes (10), then 

copper induced cylization to yield all three desired porphyrins (11a,b,c).89 My own part 

in this project involved the conversion of porphyrins (11) to (14). Dehydrohalogenation 

of the porphyrins (11) in the presence of base led to the required divinyl products 12 

(Scheme 6.1). During this step, hydrolysis of the esters also occurred. Although this 

certainly was the desired product, purification was difficult without first re-esterifying the 

porphyrin in the presence of acid and MeOH, and then purifying the crude material on an 

alumina (grade III) column. Once isolated, the pure esters were hydrolyzed at room 

temperature in the presence of KOH and THF to yield the diacid PPIX derivatives (13), 

which were isolated and purified by recrystalization. These were converted into 

hematoporphyrin IX derivatives (14) by hydrohalogenation of the vinyl groups followed 

by SN1 hydrolysis reaction of the HBr-adduct (Scheme 6.2). PPIX acid derivative (PP3, 

4), which is commercially available, was used as a model for this reaction. Its 1H NMR 
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a R = CH2CO2H
b R = (CH2)4CO2H
c R = (CH2)6CO2H
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Scheme 6.2: Synthesis of hematoporphyrin IX derivatives (14) 
 
 
 
 
Table 6.1: Yields of PPIX and hematoporphyrin IX derivatives 
 
 

Protoporphyrin% yield   

Diester  (12) Diacid  (13) 

Hematoporphyrin 
     % yield 
        (14) 

PP2  (a)         49         45          57 

PP5  (b)        47         50          51 

PP7   (c)        56         54          58 
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spectrum in DMSO-d6 is as shown in Figure 6.2; surprisingly all the signals (including 

the carboxylic acid protons) were evident in the spectrum. Addition of D2O to this sample 

helped to identify the exchangeable protons – COOH, OH, and NH- Figure 6.3. The 

yields of the protoporphyrin IX and hematoporphyrin IX derivatives are as indicated in 

table 6.1, with bis-heptanoic PPIX derivative (c) obtaining the highest yields. 

6.3 Conclusion 

These compounds were sent out to Professor B. Ehrenberg, Bar-Ilan, Israel, for 

membrane incorporation studies. The results from this will be published in due course. 

6.4 Experimental 

13, 17-Bis (methoxycarbonylmethyl)-2,7,12,18-tetramethyl-3,8-divinylporphyrin 

(12a) 

 To100 mg (0.157 mmol)of bischloroethylporphyrin (11) in a 100ml RBF was 

added 10 ml of pyridine and 5 ml aqueous 3% KOH and the mixture was refluxed in the 

dark for 2.5 h.  TLC indicated that the ester groups were hydrolyzed to acids. Excess 

pyridine was reduced under high vacuum then washed with acetic acid (pH=4), extracting 

with DCM/THF mixture. The organic layers were combined, dried over Na2SO4 and 

evaporated. This crude product was re-esterified using 5% H2SO4/MeOH solution at 

room temperature, overnight. Work-up was done by washing the mixture with aqueous 

sodium bicarbonate, then water, extracting with dichloromethane. Purification of the 

product on an alumina (grade III) column using dichloromethane as eluant, then 

recrystalization from dichloromethane/petroleum ether, yielded the product 12. 

(12a) 
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 43mg, 49% yield. 1H NMR (CDCl3, 300MHz) δ, ppm 10.02 (ss, meso-H, 1H), 9.95 (ss, 

meso-H, 2H), 9.89 (ss, meso-H, 1H), 8.4 (m, -CH=CH2, 2H), 6.54, 6.32 (dd, -CH=CH2, 

4H), 5.02 (s, -CH2CO2Me, 4H), 3.78 (s, -OCH3, 6H), 3.62, 3.60, 3.57, 3.53 (s, β-CH3, 

12H), -3.97 (s, NH, 2H) 

13, 17-Bis (4-methoxycarbonylbutyl)-2,7,12,18-tetramethyl-3,8-divinylporphyrin 

(12b) 

42 mg, 47% yield.  1H NMR (CDCl3, 300MHz) δ, ppm 10.25 (s, meso-H, 1H), 10.20 (s, 

meso-H, 1H), 10.11 (s, meso-H, 1H), 9.98 (s, meso-H, 1H), 8.34 (m, -CH=CH2, 2H), 6.45, 

6.39 (dd, -CH=CH2, 4H), 4.13 (t, -CH2(CH2)3CO2Me, 4H), 3.75 (s, -OCH3, 6H), 3.68, 

3.67, 3.64, 3.63 (s, β-CH3, 12H), 2.55 (t, -(CH2)3CH2CO2Me, 4H), 2.38, (m, -

CH2CH2CH2CH2CO2Me, 4H), 2.13 (m, -CH2CH2CH2CH2CO2Me, 4H),  -3.75 (s, NH, 

2H); MS-MALDI cald. 646.82, found 646.50 

13, 17-Bis (6-methoxycarbonylhexyl)-2,7,12,18-tetramethyl-3,8-divinylporphyrin 

(12c) 

51 mg, 56% yield.  1H NMR (CDCl3, 300MHz) δ, ppm 10.08 (s, meso-H, 2H), 9.95 (s, 

meso-H, 1H), 9.88 (s, meso-H, 1H), 8.38 (m, -CH=CH2, 2H), 6.39, 6.19 (dd, -CH=CH2, 

4H), 4.01 (t, -CH2(CH2)5CO2Me, 4H), 3.64 (s, -OCH3, 6H), 3.63, 3.55 (s, β-CH3, 12H), 

2.35 (t, -(CH2)5CH2CO2Me, 4H), 2.29, 1.71, 1.56 (m, -CH2CH2CH2CH2CH2CH2CO2Me, 

16H),   -3.73 (s, NH, 2H); MS-MALDI cald. 702.92, found 702.93  

2,7,12,18-Tetramethyl-3,8-divinylporphyrin-13,17-bis-acetic Acid (13a) 

 The pure diester porphyrin (12), (36mg, 0.064 mmol), was dissolved in 5ml THF 

followed by addition of 3% KOH (3ml) and stirred at room temperature in the dark. After 

3h, the reaction was complete. It was then worked up with dilute acetic acid, and then 
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evaporated off THF. The product crashed out of the aqueous layer and was washed with 

water (X3) extracting with ethyl acetate. The organic layer was dried over sodium 

sulphate, evaporated and recrystalized (put in the freezer to further crystallization) using 

THF/petroleum ether, to afford 13. 

(13a) 

 16 mg, 45% yield. 1H NMR (DMSO-d6, 300MHz) δ, ppm 10.29 (s, meso-H, 1H), 10.24 

(s, meso-H, 1H), 10.20 (s, meso-H, 1H), 10.15 (s, meso-H, 1H), 8.53 (m, -CH=CH2, 2H), 

6.48,6.25 (dd, -CH=CH2, 4H), 5.15 (s, -CH2CO2H, 4H), 3.70, 3.65, 3.60, 3.56 (s, β-CH3, 

12H), -4.12 (s, NH, 2H) 

2,7,12,18-Tetramethyl-3,8-divinylporphyrin-13,17-bis-butyric Acid (13b) 

17 mg, 50% yield.  1H NMR (DMSO-d6, 300MHz) δ, ppm 10.27 (s, meso-H, 1H), 10.23 

(s, meso-H, 1H), 10.17 (s, meso-H, 1H), 10.10 (s, meso-H, 1H), 8.50 (m, -CH=CH2, 2H), 

6.44,6.23 (dd, -CH=CH2, 4H), 4.13 (t, -CH2(CH2)3CO2H, 4H), 3.67, 3.65, 3.63, 3.62 (s, β-

CH3, 12H), 2.50 (t, -CH2COOH, 4H), 2.37-2.09(m, -CH2(CH2)3CO2H, 20H), -3.60 (s, 

NH, 2H) 

2,7,12,18-Tetramethyl-3,8-divinylporphyrin-13,17-bis-hexanoic Acid (13c) 

19 mg, 54% yield.  1H NMR (DMSO-d6, 300MHz) δ, ppm 10.25 (s, meso-H, 1H), 10.21 

(s, meso-H, 1H), 10.13 (s, meso-H, 1H), 10.04 (s, meso-H, 1H), 8.42 (m, -CH=CH2, 2H), 

6.45,6.20 (dd, -CH=CH2, 4H), 4.11 (t, -CH2(CH2)5CO2H, 4H), 3.67, 3.63 (s, β-CH3, 12H), 

2.4-2.28, 1.74-1.62, 0.94 (m, -CH2(CH2)5CO2H, 20H), -3.58 (s, NH, 2H); MS-MALDI 

calc. 674.87, found 674.72 

2,7,12,18-Tetramethyl-3,8-bis(1-hydroxyethyl)porphyrin-13,17-bis-acetic Acid (14a) 
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 PPIX derivative (13) (30 mg, 0.056 mmol), was reacted with 5 ml of HBr-acetic 

acid for 1.5 h. The mixture was poured into excess water, and further allowing a few 

minutes for hydrolysis of the HBr-adduct. It was then neutralized with NaOH pellets, 

portion wise and carefully, until neutral or slightly basic. At this pH, the product crushed 

out of the aqueous mixture, but increased basicity dissolved the product. It was then 

extracted with THF/Chloroform mixture and the organic layers were combined, dried 

over sodium sulphate, evaporated and recrystalized from THF/petroleum ether to yield 

57% (18 mg) of the title compound 14. 

PP3 Model (4): 

2,7,12,18-Tetramethyl-3,8-bis(1-hydroxyethyl)porphyrin-13,17-bis-propanoic Acid 

1H NMR (DMSO-d6, 250MHz) δ, ppm 12.35 (br, -COOH, 2H), 10.73 (s, meso-H, 1H), 

10.69 (s, meso-H, 1H), 10.29 (s, meso-H, 1H), 10.22 (s, meso-H, 1H), 6.52(q, -CH-

(OH)CH3, 2H), 6.18 (s, CH-(OH)CH3, 2H), 4.35 (t, -CH2-CH2-COOH, 4H), 3.70, 3.68, 

3.61, 3.58 (s, β-CH3, 12H), 3.19 (t, -CH2-CH2-COOH, 4H), 2.15, 2.12 (d, -CH(OH)-CH3, 

6H), -3.98 (s, NH, 2H) 

1H NMR (DMSO-d6 + D2O, 250MHz) δ, ppm 10.71 (s, meso-H, 1H), 10.68 (s, meso-H, 

1H), 10.27 (s, meso-H, 1H), 10.21 (s, meso-H, 1H), 6.49(q, -CH-(OH)CH3, 2H), 4.34 (t, -

CH2-CH2-COOH, 4H), 3.68, 3.67, 3.61, 3.58 (s, β-CH3, 12H), 3.19 (t, -CH2-CH2-COOH, 

4H), 2.14, 2.11 (d, -CH(OH)-CH3, 6H) 

(14a) 

1H NMR (DMSO-d6, 250MHz) δ, ppm 11.96 (br, -COOH, 2H), 10.26 (s, meso-H, 1H), 

10.24 (s, meso-H, 2H), 10.12 (s, meso-H, 1H), 6.51(q, -CH-(OH)CH3, 2H), 6.17 (s, CH-

(OH)CH3, 2H), 4.50 (s, -CH2-COOH, 4H), 3.68, 3.63(s, β-CH3, 12H), -3.97 (s, NH, 2H) 
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2,7,12,18-Tetramethyl-3,8-bis(1-hydroxyethyl)porphyrin-13,17-bis-butyric Acid 

(14b) 

16 mg, 51% yield.  1H NMR (DMSO-d6, 250MHz) δ, ppm 11.99 (br, -COOH, 2H), 10.71 

(s, meso-H, 1H), 10.68 (s, meso-H, 1H), 10.30 (s, meso-H, 1H), 10.13 (s, meso-H, 1H), 

6.50(q, -CH-(OH)CH3, 2H), 6.16 (s, CH-(OH)CH3, 2H), 4.10 (t, -CH2-(CH2)3COOH, 

4H), 3.70, 3.67, 3.62, 3.59 (s, β-CH3, 12H), 2.24 (t, -CH2COOH, 4H), 2.14, 1.92 (m, 

CH2-(CH2)2-CH2COOH, 8H), -3.99 (s, NH, 2H) 

2,7,12,18-Tetramethyl-3,8-bis(1-hydroxyethyl)porphyrin-13,17-bis-hexanoic Acid 

(14c) 

18 mg, 58% yield.  1H NMR (DMSO-d6, 250MHz) δ, ppm 11.94 (br, -COOH, 2H), 10.34 

(s, meso-H, 1H), 10.31 (s, meso-H, 1H), 10.22 (s, meso-H, 1H), 10.14 (s, meso-H, 1H), 

6.52(q, -CH-(OH)CH3, 2H), 6.21 (s, CH-(OH)CH3, 2H), 4.06 (t, -CH2-(CH2)5COOH, 

4H), 3.72, 3.67, 3.60, 3.58 (s, β-CH3, 12H), 2.19-1.51 (m, CH2-(CH2)5-COOH, 20H), -

3.99 (s, NH, 2H) 
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