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ABSTRACT 

Stimuli-responsive liposome systems that utilize endogenous triggers of tumor 

microenvironment have generated great attention in recent drug delivery research.  Among such 

formulations, redox-responsive liposomes seem highly promising for cancer treatment due to 

their potential to release high drug concentrations upon reduction (by reductase enzymes).  

The research described in this thesis involved the evaluation of kinetics of trimethyl-lock 

quinone propionic acid reduction and lactonization,	  which accounts for payload release from 

trimethyl-lock quinone propionic acid-decorated liposomes.  To achieve the ultimate goal of this 

research, several trimethyl-lock quinone propionic acid-based amide compounds were 

synthesized and characterized.  Kinetic studies were carried out with 1H NMR spectroscopy 

under different experimental conditions, and time-resolved 1H NMR spectra were used to 

evaluate the kinetic rate constant (k) and half-life time (t½) values for the lactonization 

(cyclization) reaction. 

Upon reduction, five different quinone ring-substituted quinone propionic acid-

ethanolamine derivatives have shown distinct cyclization rates, representing the influence of ring 

substituent on lactonization.  Tertiary amides, and organic solution conditions, slow down the 

cyclization process, whereas buffer conditions and higher temperature enhanced the trimethyl-

lock lactonization.  The outcome of this research can be utilized to optimize redox-responsive 

trimethyl-lock quinone propionic acid based liposomes, as well as other effective target delivery 

systems, in order to achieve efficient payload release. 
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CHAPTER 1 
INTRODUCTION 

1.1 Research Goals and Aims 

The goal of this research is an investigation of the kinetics associated with the reduction and 

lactonization of trimethyl-lock quinone propionic acid derivatives for potential application in 

liposome drug delivery systems.  In particular, kinetics of quinone reduction followed by its 

lactone formation with different amide structures, as well as substituents on the quinone ring, 

under various experimental conditions (temperature, pH, buffer, and solvent) will be 

investigated.  

After the discovery of spontaneous formation of closed bilayered structures of phospholipids 

in aqueous medium by Alec Bangham, liposomes have developed enormously due to their 

versatile supramolecular architecture.1-3  They have piqued an extensive interest during the last 

decades as a pharmaceutical carrier because of their attractive biological properties, such as 

biocompatibility, low toxicity, biodegradability, and amphiphilicity.3  In addition, their 

amphiphilic architecture provides the opportunity to enclose both hydrophobic and hydrophilic 

active pharmaceutical ingredients (API).1  In 1995, the U.S. Food and Drug Administration 

(FDA) approved the first liposomal drug formulation, Doxil, doxorubicin encapsulated in 

poly(ethyleneglycol), PEG, liposomes, for the treatment of Kaposi sarcoma and eventually it was 

accepted for ovarian, and metastatic breast cancers.1,4  Since then, several liposomal drug 

formulations were developed and introduced to the market.  To date, 11 liposomal drug 

formulations have been clinically accepted and 6 more are under clinical evaluation.4  Moreover, 

liposomal applications are well established in several other areas, including gene delivery, 

sensors, immunoassays, microfluidics, and separations etc.2,5-7 
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At present, conventional liposomes are used in some therapeutic applications, but their utility 

is problematic due to their instability, inefficient drug accumulation, and harmful toxic side 

effects to normal healthy tissues.8  Furthermore, they encounter fast elimination from the blood 

stream and are captured by the mononuclear phagocyte system (MPS) before entering the target 

site.1,9  In order to thwart these issues, research has been moved a long way to develop novel 

liposomal frameworks which can be optimized to have an efficient targeting and payload release. 

To date, several new liposomes have been developed, but they still carry limitations, such as 

stability and toxicity. Nevertherless, efforts continue to be made to optimize these systems.1,3,10 

 One possible method that can be used to achieve selective targeting and efficient drug 

accumulation involves the development of stimuli-responsive liposomal system by using 

environmental triggers that are prominent at the targeted site of delivery.  In response to the 

internal stimulus, they are expected to release their cargo in a selective and controllable manner, 

thereby improving drug efficacy and minimizing side effects.1,3,8,11,12  To date, the McCarley 

research group has developed a redox-triggerable liposome system based on a trimethyl-lock 

quinone propionc acid attached to a lipid.  This liposome system dissembles upon reduction of 

the trigger moiety (quinone) that provokes the subsequent lipid detachment to release of 

liposome payload to the external environment.8,11,12 However, the kinetics of trigger 

disintegration from the lipid remains unexplored under different buffer, pH, solvent, and 

temperature conditions. 

The first aim of this research is the synthesis of model trimethyl-lock quinone propionic acid-

amide derivatives for kinetic studies.  The potential of quinone reduction, as well as the rate of 

amide cleavage from the model compounds, are assumed to be similar to corresponding quinone-

lipids in liposomes since the distance to any functional moiety at the end of the propionic acid 



3 
	  

side chain is far off from the quinone head group to have any electronic impacts.11  However, 

investigating how the different substituents on the quinone ring affect the kinetics of trigger 

cleavage is essential.  Therefore, different types of quinone propionic acid-amide derivatives 

were synthesized and characterized.  

The second aim of this research is to investigate the lactonization kinetics of trimethyl-lock 

quinone propionic acid-amide derivatives under different environmental conditions.  In response 

to that, influence of temperature, solvent, and buffer conditions were studied. The reduction and 

lactonization of the compounds were followed by 1H NMR spectroscopy upon addition of a 

chemical reducing agent, sodium dithionite (Na2S2O4), under anaerobic conditions.  

The encapsulated cargo of the liposome will be delivered with the activation of the quinone 

via either chemical or enzymatic reduction, making possible to use liposomes made up of lipids 

processing a specific quinone trimethyl-lock head group as reagent carriers.  The findings here 

contribute to the development of a redox-responsive liposomal formulation having a favorable 

kinetic payload release profile under appropriate environmental conditions. 

1.2  Nanoparticle Drug Delivery Systems 

1.2.1 Motivation  

An exciting new direction in drug delivery is the development of biocompatible and 

biodegradable pharmaceutical carriers capable of precise drug release to a specified target at a 

given time.9,13  One possible approach is the miniaturization of the delivery systems through 

advances in nano-biotechnology.14  So far, various nanoscaled pharmaceutical drug delivery 

devices have been developed and are in diverse stages of investigation to meet up the challenges 

in drug delivery. 9,14-16 
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Nanoscaled drug carriers are “integrated functionalized nanostructures” having 

fascinating properties due to their “spatial and temporal organization, coordination and 

regulation of action of individual components.”9  They can be optimized so as to alter their 

pharmacokinetics, such as favorable absorption, distribution, metabolism, and excretion 

(ADME) compared to free drug.  Due to their diminutive size and high surface-to-volume ratios, 

their rates of dissolution are enhanced and are able to penetrate across the capillaries into cells to 

permit the efficient accumulation.9,14,15  Moreover, opzonization of these with opsonins such as 

fibrinogen, IgG ant, and protein C3b prevents the rapid clearance by the reticuloendothelial 

system (RES).  Thus thereby promoted active or passive targeting.9  These properties increase 

the therapeutic agent’s stability and pharmacokinetics, while reducing the harmful side effects to 

healthy cells.  

Most of the recent research focus toward the nanoparticulate pharmaceutical carriers in 

order to apply for challenging, long-lasting diseases such as HIV, cancer, and diabetes.14  Among 

these, cancer gains greater attention because of its complex nature of treatment.  Current 

therapies for cancer are not universally effective due to lower therapeutic index and poor 

selection between healthy and cancer cells.  One of the most promising tactics to overcome this 

challenge is the use of nanocarriers where chemotherapeutic agent is encapsulated and is then 

dissembled at the tumor site, which thereby improves site-specific toxicity.14  In addition, Cui 

and co-workers have reported a nanoparticulate vaccine delivery system wherein peptide antigen 

is encapsulated for immunization.  Even though this methodology provides attractive platform 

for other biologicals such as peptides, proteins, and DNA, its in vivo potential  still needs to be 

evaluated.17 14 
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1.2.2 Types of Engineered Nanopartcles in Drug Delivery 

 The immense interest has surrounded the area of new delivery systems based on the state-of-

the-art nanotechnology owing to the emerging development of nanotechnology in the past few 

decades.14  They are considered as smart candidates for transporting therapeutic agents to the 

targeted sites.14  To date, a variety of nanoengineered drug delivery systems are available, and 

only a few selected systems are discussed here.  

Polymeric nanoparticles are either nanospheres or nanocapsules depending on their structure 

and offer distinct advantages over other nano-systems in terms of efficiency and effectiveness.9,15	  	  

They are highly stable and able to deliver therapeutic agents at a higher concentration due to 

their variable surface charge.15  “Drug encapsulation and absorption, biodistribution pattern, 

elimination, and drug release are affected by various factors, including polymer composition, 

hydrophobicity, surface charge, biodegradation profile of the nanoparicles”.15  In order to 

achieve the desired biodistribution, most of them are modified with different targeting moieties 

such as PEG molecules, folic acids, avidin, and biotin, etc.  Some known polymers used to 

prepare these types of nanoparticles are: poly(D, L-lactide), poly(lactide-co-glicolide), 

poly(cyanoacrylates), poly(anhydride) etc.9  These are potential drug carriers for cancer, 

diabetes, transplant rejection and schizophrenia therapies. 9,14,15 

Polymer drug conjugates and polymeric micelles are other forms of nanoscale polymeric 

structures that are stable under biological environments.  Polymer drug conjugates are hybrid 

architectures that merge a bioactive agent with a water-soluble polymer (natural or synthetic) in a 

covalent manner to ensure proper transport to the desired site.  Once it goes to the targeted site, 

the polymer-drug link dissembles, and the active form of the drug is released into the medium.9 

Polymeric micelles are typically formed by amphiphilic block copolymers (20–50 nm), which 
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are comprised of a hydrophobic core and a hydrophilic corona.  They are highly stable, 

biodegradable, biocompatible, and possess a small consistent size distribution, extending their 

circulation time in the blood stream.9  Furthermore, polymeric micelles possess very low critical 

micelle concentration (CMC) and are susceptible for active targeting via modifications.9,18,19   

Dendrimers are compact artificial macromolecules, composed of a central core, internal 

branches, and end groups in a symmetric three dimensional architecture.  This unique 

organization allows creating a controlled, mono-dispersed, nano-sized sphere that possesses a 

hydrophobic interior with multiple attachment sites.15,20  This feature facilitates bioactive agents 

to be chemically attached or encapsulated or physically adsorbed on to the dendrimer surface 

according to its application.9  So far they have been used to carry a number of low molecular 

weight drugs (5-fluorouracyl and nifedipine), DNA, and imaging agents (gadolinium) for the 

diagnosis and treatment of cancer.9 

Liposomes are extremely versatile, self-closed structures formed by one or more concentric 

lipid bilayers with a hydrophilic interior and a hydrophobic exterior.1,2  The hydrophobic lipid 

bilayers provide room for the hydrophobic active pharmaceutical ingredients (APIs), while the 

aqueous interior can host hydrophilic APIs.  They offer several advantages over other nano-

carriers due to their size, amphiphilic nature, and molecular framework, and are also the first 

nanocarrier which came into the market.1,11,21  Liposomes can entrap a wide variety of API as 

well as larger doses of them due to their micro to nanometer size.  The encapsulation protects 

APIs from destructive entities inside the body and facilitates delayed release which is 

advantageous for minimizing the toxic effects and maximizing the therapeutic index.5   

Liposome research has been progressed extensively from first-generation to third-generation 

materials in the last few decades.9  The conventional or first-generation liposomes protect their 
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payload from degradation, while allowing for passive targeting to tissues or organs (spleen, bone 

marrow, liver).  However, their higher uptake by the reticuloendothelial system (RES) that leads 

to their removal from the blood circulation system led research towards the second generation of 

liposomes, which are primarily obtained by inclusion of a protective polymer, poly(ethylene 

glycol), to the liposomal composition. 9  Consequently, stable, long-circulating “stealth” 

liposomes have been developed and have an increased accumulation at the pathological sites via 

the enhanced permeability and retention effect (EPR).3,9,22  This effect is beneficial for 

chemotherapy23 because liposomes need to reach and stay for an extended time period at the 

tumor sites in order to achieve proper drug release.  As a result, liposome research had as its 

preliminary focus on cancer treatment, and the U.S. FDA approved the first chemotherapeutic 

liposomal drug formulation, Doxil, in1995 for the treatment of Kaposi sarcoma, ovarian, and 

metastatic breast cancers.1,4 DaunoXome and Myocet are other commercially-available 

chemotherapeutic liposomal formulations, while some are still at different stages of clinical 

evaluations.4,9,24  

Subsequently, liposomal research has been pioneered to include targeting moieties which are 

responsible for cell targeting, as well as higher drug accumulation at the desired site.3  Targeting 

agents, such as monoclonal antibodies, growth factors, glycoproteins, and ligands, can be 

attached either to the bilayer surface or distal ends of the PEG-lipid chains.  However, studies 

have shown that the targeting ligands at the end of PEG chains are more preferred.3,9  Recently, 

liposome technology was upgraded to stimuli-responsive systems which involve programmed 

delivery of liposomal contents via specific stimulus at the targeted site.3  The stimulus can be 

either exogenous (radiation, temperature) or endogenous (pH and enzyme).25  Construction of 

these formulations, typically achieved by designing a lipid bilayer with a triggerable 
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functionality or subunit that is responsible for destabilizing the bilayer, upon induction of the 

appropriate stimulus.11,12,25  So far, several numbers of stimuli-responsive liposomes have been 

engineered using radiation,26,27 enzymes,28,29 pH,30 metal ions31 and heat32,33 as stimuli.  

However, the use of endogenous stimuli are highly favorable because it offers “local control over 

payload delivery”.12  On that note, the use of certain over-expressed enzymes at pathological 

sites provides an opportunity for their use as an internal stimulus, thereby resulting in 

programmed site-specific drug delivery.11  Consequently, several liposomal formulations based 

on tumor selective enzymes, such as secretory phospholipase A2 (sPAL2)34 and matrix 

metalloproteinases (MMP–2 and MMP–9)35-37 have been studied.  

1.3 Rate Enhancement in Trimethyl-lock induced lactonization  

In 1959, Cohen and Schmir observed that the ortho-hydroxyhydrocinnamic acid 

compounds undergo facile imtramolecular cyclization in order to form their corresponding 

lactone derivatives.38  After this initial observation, researchers investigated the reaction 

extensively.  Cohen and Milstien conducted their preliminary study with a series of ortho-

hydroxyhydrocinnamic acids (1) containing both electron donating and electron withdrawing 

groups at the 5′ position (Scheme 1).39,40   

 

 

 

 

                                  X = OH, OCH3, C2H6, H, F, Cl, NO2, N(CH3)3
+ 

Scheme 1.1: Mechanism of ortho-hydroxyhydrocinnamic acid lactonization.  

1 2 
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In weakly acidic conditions, the reaction proceeded at medium rates, while it was 

catalyzed by both acidic and basic buffer components.  Catalysis was concurrent and 

independent, but not concerted.  From the kinetic results (from the linear free energy relationship 

data), researchers concluded that the reaction proceeds through a tetrahedral intermediate, 

wherein breakage of the tetrahedral intermediate is key to the rate limiting step.39,40 

Subsequent studies that involved a variety of structurally distinct ortho-

hydroxyhydrocinnamic acid compounds also confirmed the breakage of the tetrahedral 

intermediate as the rate determining step, and it was found to follow pseudo-first-order 

kinetics.40-43  Moreover, it was observed that introduction of methyl substitution on 3, 3′, 4′, and 

6′ positions had a significant effect on rate of lactonization, and were 1010-1011 times as fast as 

unsubstituted hydroxyhydrocinnamic acid under buffer catalysis.  For example, the reaction was 

found to have a half life of 6 s at pH 7 and temperature 30 °C.40,41,43,44  Additionally, rate data 

revealed that the tetrahedral intermediate is more sensitive to acid catalysis compared to base 

catalysis in the rate-determining step.41  This finding reveals the significance of the surrounding 

methyl groups, and in an attempt to explain the outcome, the concept of the “trimethyl-lock” or 

“stereopopulation control” has been developed.41,44  The trimethyl-lock effect arises from the 

unique interlocking arrangement of the gem-dimethyls and single methyl at 3 and 6′ 

positions(Scheme 1), and the explanation of the outcomes states that “the effect is attributed to a 

unique interlocking of methyl groups, which produces a severe conformational restriction of the 

side chain and ground-sate geometry highly favorable to formation of the transition state”.41  The 

results, as well as Cohen’s explanation, attained much interest, and many experimental 

(crystallographic and spectroscopic) and theoretical works were conducted to verify the rate 

enhancement.40,45-47  As a result, different explanations emerged, and from empirical force-field 
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model calculations, it was argued that conventional steric strain relief is the dominant factor 

compared to stereopopulation control.11,47  

In addition, later work by Caswell and Schmir determined that the lactonization rates for 

these compounds were overestimated, 42 and thus, Cohen later on revised the value 1010-1011  as 

105.48  These values were compatible with rate values obtained from other trimethyl-locked 

related systems.48  Furthermore, kinetic studies on ortho-hydroxyhydrocinnamic acids possessing 

different substituents at the 6′ position have shown different rates of lactonization, indicating the 

importance of the size of the substituent for accelerated lactonization;49 thus it was concluded 

that steric strain relief is the major factor for trimethyl-lock induced lactonization. 

1.3.1 Applications of the Trimethyl-lock System  

After those pioneering observations (above), research has progressed toward the 

utilization of trimethyl-lock induced lactonization to other relevant applications.  Because the 

parent trimethyl-lock ortho-hydroxyhydrocinnamic acid is highly reactive, scientists modified 

the parent structure for further applications.  As a result, a variety of trimethyl-lock quinone 

propionic acids and their amide or ester derivatives have been developed.50-53  Upon reduction, 

the quinone is converted to the hydroquinone which then undergoes intramolecular lactonization 

to release alcohols or amines to the medium (Scheme 2).  So far, several trimethyl-lock quinone 

propionic acid-based systems have been introduced, but only a few selected systems are 

discussed here.  

 

 

X = OR, NR1R2 

Scheme1.2: Schematic representation of lactonization for quinone propionic acid derivatives. 
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The development of new prodrug systems that can utilize the tumor microenvironment as 

a stimulus for release of an active form of a given drug is a topic of current interest.54  One 

possible methodology to accomplish this target is the derivatization of the drug with a trimethyl-

lock quinone proionic acid to form their ester or amide derivatives.  For example with cancer, 

this arrangement is highly beneficial because it increases the drug’s (cytotoxic agent’s) stability 

thereby decreasing its toxic side effects before reaching the tumor site.54  When it enters the site, 

the tumor hypoxic environment facilitates prodrug bioreductive activation through the presence 

of overexpressed reductase enzymes, and as a result intramolecular lactonization of thrimethyl-

lock quinone propionic amide occurs to release the cytotoxic agent to the surroundings.54  

Chikhale et al. followed this approach to selectively deliver the methyl ester of melphalan and 

acivicin to tumor site.  In addition, they investigated the stability and efficiency of drug release 

via structural modification of the parent quinone ring.50-52  So far, several prodrug systems have 

been reported for chemotherapy based on this methodology.54-56  

  In 1999, Wang and coworkers developed a redox-sensitive resin linker, based on a 

trimethyl-lock quinone propionic acid, for solid phase synthesis of C-terminally modified 

peptides where, the linker was disintegrated  through mild reduction conditions.57  Described in 

another paper published by Lin’s group, is a trimethyl-lock quinone latent flurophore system 

based on rhodamine 110 for possible cancer cell imaging.  The system was targeted for DT 

Diaphorase, an oxidoreductase that is overexpressed in certain cancer cells and is able to 

generate or release fluorescently active rhodamine 110 dye.58  Silvers and McCarley went on to 

greatly improve latent fluorophores for cancer diagnosticis by developing a single-trigger probe 

based on a trimethyl-lock quinone propionic acid-rhodamine.59   
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Mrksich and Hodneland created a novel dynamic electroactive monolayer system on gold 

surfaces capable of selectively liberating immobilized ligands under electro-chemical control.  

The ligand, biotin, is attached to the alkanethiolate through a quinone propionic ester.  

Application of a reducing electrochemical potential to the gold surface causes quinone reduction, 

and after lactonization, biotin is released. This new class of self-assembled monolayer system is 

important for development of tailored structures for both mechanistic and experimental studies in 

cell biology.60   

In 2005, the McCarley research group initiated use of trimethyl-lock quinone propionic 

acids for stimuli-sensitive systems.  As a first step, they established the new redox-sensitive 

symmetric poly(propylene imine), PPI, dendrimer system, containing trimethyl-lock quinone 

propionic acids as peripheral groups.61,62  Secondly, in 2007, they developed redox-responsive 

aggregates by using trimethyl-lock quinone propionic acid-modified amphiphilic molecules.63  

Both systems were dissembled upon redox activation and were able to release their entrapped 

cargo in an efficient manner.  Currently, the McCarley research group is extending this concept 

to develop new liposomal formulations. 

1.4 Redox-Responsive Quinone Trimethyl-lock Liposome Delivery System  

In 2008, the McCarley research group extended the use of trimethyl-lock quinone propionic 

acids to develop a novel stimuli-responsive liposome system.12  This system, which is currently 

under its optimizing stages, utilizes dioleoylphosphatidylethanolamine (DOPE) lipids with 

trimethyl-lock quinone propionic acid attached as head groups (Q-DOPE).  Liposomes are 

targeted for human NAD(P)H:quinone oxidoreductase (hNQO1) enzyme, that is overexpressed 

in certain cancerous cells (A549, HT29).  The development of such a stimuli-sensitive liposome 
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system is highly beneficial, because it offers potential “local control over payload release” upon 

redox stimulus.8,11,12  

The overall structure of the liposome to function as a smart pharmaceutical carrier is 

permitted by the specific role played by each component of the Q-DOPE system.  The process of 

liposome destabilization is attributable to the lipid’s lamellar-to-inverted hexagonal (Lα-HII) 

phase transition,8,11,12 that occurs as a result of a three-step mechanism (Figure 1.1). 

 

 

 

 

 

 

 

 

 

                                                R1 = CH3, nPrNH, Br, H 

                                                R2, R3, Y = CH3                                           

Figure 1.1: Mechanism of Q-DOPE liposome destabilization (representation by Dr. N. H.  
       Carrier). 

 
Initial reduction of the quinone ring initiates head group removal from the lipid via 

lactonization.  Then, the exposed lipids in the bilayers of the liposomes experience inter 

liposomal electrostatic interactions, leading to apposed bilayer fusion.  This fusion induces 

destabilization in the bilayer, resulting in the Lα-HII phase transition that causes removal of 

contents to the external environment.  Owing the Lα-HII transition, the lipids rearrange to a stable 
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cone-shaped inverted miceller structure to minimize their electrostatic attraction between 

positively charged amine and the negatively charged phosphate groups (Figure 1).11  

  Recently, Nicole Carrier from the McCarley research group synthesized a family of redox-

responsive quinone-dioleoylphosphatidylethanolamine liposomes, by varying the functionality at 

the 3′ position of the quinone head group (QMe-DOPE, QBr-DOPE, QnPrNH-DOPE, QH-DOPE).  

The payload release kinetics were studied using fluorescence spectroscopy under anaerobic 

conditions.11  Following injection of chemical reducing agent (Na2S2O4), liposomes were 

destabilized, and the entrapped calcein was released at different rates (Figure 2).  Quantitatively, 

QBr-DOPE showed faster release profile while QH-DOPE revealed slower release.  The QnPrNH-

DOPE and QMe-DOPE revealed almost similar medium rate release profile.11  This observation 

points to the fact that quinone head group lactonization plays a major role in liposomal payload 

release kinetics.  Therefore, investigation of lactonization kinetics of trimethyl-lock quinones is 

paramount importance in order to achieve efficient liposomal payload release.  

 

 

.  

 

 

 

 

 

Figure 1.2: Calcein release profiles (normalized) of various Q-DOPE liposomes as determined  
                   by fluorescence emission spectroscopy (λex=490 nm, λem = 515 nm).  Each trace  
                   represents the typical release behavior observed for each Q-DOPE liposome  
                   composition11	   
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CHAPTER 2 
SYNTHESIS AND CHARACTERIZATION OF QUINONE COMPOUNDS 

 
2.1 Syntheses 

2.1.1 Chemicals and General Methods 

All the chemicals were purchased from Sigma-Aldrich, Acros Organic, or TCI America 

and used as received.  Flash chromatography was conducted using a Biotage FlashMaster 

Personal Chromatography system with SPE ISOLUTE FLASH Silica II columns (pore size 60 

Å, diameter 40-63µm, disposable).  Reactions were followed by TLC on precoated silica plates 

(60 Å, F254, EMD Chemicals Inc) and were visualized by UV lamp (UVGL-25, 254/365 nm).  1H 

NMR spectra were recorded with either Bruker AV-Liquid-400 MHz or Bruker DPX 400MHz 

spectrometers.  ESI-mass spectra were collected using an Agilent Technologies 6210 ESI-TOF 

LC/MS instrument with 90% acetonitrile as solvent. 

2.2 Synthetic Routes  

 

 

 

 

 

 

 

   

  Scheme 2.1: Synthesis of succinimidyl ester of N-(methyl)amino quinone propionic acid. 
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      Scheme 2.2: Synthesis of quinone propionic acid ethanolamine derivatives. 

 

 

 

 

Scheme 2.3: Synthesis of quinone propionic acid 4-(N-methylamino)phenol derivative. 

2.3 Experimental Details  

The compounds 1a, b, d, e, 3 and 6 were previously synthesized by members of our 

group, and purity of these were checked by 1H NMR before used.1  The References for the 

synthetic procedures are cited at the end of each procedure. 

2.3.1. Synthetic Procedures for compounds 2a-f, 4, 5 and 7 

(4). Lactone 3 was dissolved (0.690 g, 3.14 mmol) with stirring in 26 mL of glacial acetic acid.  

To this solution, Br2 (0.35 mL, 6.81mmol) in 4.2 mL of HOAc was added slowly at room 

temperature.  After 15 hours, the resulting mixture was diluted with 150 mL of water and 

1 

7 6 

2 



 

22 
 

extracted with DCM (3 × 30 mL).  The combined organic extracts were washed with water (2 × 

20 mL) and next with saturated NaHCO3 (5 × 20 mL).  Then the bicarbonate extracts were made  

acidic by adding 30% HCl (15 mL) and the resulting solution was extracted with DCM (3 × 30 

mL).  These organic extracts were washed with water (50 mL), dried with MgSO4, and 

concentrated to give a yellow oil (0.88 g, 89%).  The crude oil was directly used for amination 

reaction without further purification.  1H NMR (CDCl3) δ 1.46 (s, 6H, geminal CH3), 2.18 and 

2.20 (s, 3H, CH3), 3.04 (s, 2H, CH2).1,2 

(5). Bromo acid 4 (0.580 g, 1.85 mmol) was dissolved in 16 mL of MeOH and 40% aqueous 

methylamine (225µL, 6.42 mmol) was added with stirring at room temperature.  The system was 

tightly stoppered, and the reaction was continued for 48 hours.  Next the mixture was diluted to 

250 mL with water.  After dilution, 20 mL of 5% HCl solution was added.  The resulting 

solution was extracted with EtOAc (3 × 70 mL), and the combined organic extracts were washed 

with 140 mL of saturated NaCl solution.  The solution was dried over MgSO4, and solvent was 

removed with the use of a rotary evaporator to give a red-purple oil.  The crude oil was purified 

by silica column using hexanes/ethylacetate/acetic acid (14:6:1) as eluent.  Concentration of the 

major red fraction afforded a red-purple oil, which was taken up in 50 mL of DCM and washed 

with water (2 × 40 mL) to remove the acetic acid.  Next the DCM layer was dried over MgSO4 

and solvent was removed with a rotary evaporator to give a red-purple oil (0.26 g, 53%).  1H 

NMR (CDCl3) δ 1.45 (s, 6H, gem CH3), 2.07 (s, 3H, quinone CH3), 2.20 (s, 3H, quinone CH3), 

2.99 (s, 2H, CH2), 3.11 (s, 3H, N-methyl CH3), 5.15 (broad peak, N-methyl H).  HRMS (ESI) 

m/z [M+H]+, calculated = 266.1392, observed = 266.1387; 1.88 ppm error.1,2 

(1c). Dicyclohexylcarbodiimide (0.095g, 0.436 mmol) was added to a solution of quinone 

propionic acid 5 (0.103g, 0.389 mmol) and N-hydroxysuccinimide (0.054 g, 0.426 mmol) in 25 
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mL of dry THF at 0 °C.  The mixture was continuously stirred for 24 hours under argon.  The 

remained solution was filtered to remove the dicyclohexylurea, evaporated using a rotary 

evaporator, and then treated with 10 mL of EtOAc.  The corresponded solution was filtered 

again.  This sequence was repeated for four times to remove the unreacted dicyclohexylurea.  

The solvent was removed with rotary evaporator, and the red crude material was purified on 

silica column using dichloromethane/ethylacetate (14:1) as eluent to give 55 mg (39%) of red 

solid.  *The purified product was contaminated but used for the synthesis of 2c.  1H NMR 

(CDCl3) δ 1.57 (s, 6H, geminal CH3), 2.07 (s, 3H, CH3), 2.22 (s, 3H, CH3), 2.72 (s, 4H, CH2), 

2.80 (s, 2H, CH2), 3.25 (s, 3H, CH3), 5.30 (broad peak, N-methyl H).  HRMS (ESI) m/z [M+H]+, 

calculated = 363. 1556, observed = 363.1592; 9.91 ppm error.1,2  

 (2a). In a typical procedure, ethanolamine (0.044 g, 0.72 mmol) was added dropwise to a 

solution of 1a (0.111 g, 0.320 mmol) in dichloromethane (12 mL).  The mixture was stirred for 

15 hours at room temperature under inert environment.  The reaction mixture was diluted with 

DCM and filtered to remove the white solid that appeared in the middle of the reaction.  Solvent 

was evaporated using a rotary evaporator and the crude mixture was purified on silica column 

using ethylacetate/dichloromethane (1:1) as eluent.  Finally solvent was evaporated to give a 68 

mg of yellow solid (72%).  1H NMR ( CDCl3) δ 1.45 (s, 6H, gem CH3), 1.96 (s, 3H, quinone 

CH3), 1.98 (s, 3H, quinone CH3), 2.14 (s, 3H, quinone CH3), 2.86 (s, 2H, CH2), 3.35(t, 2H, 

ethanolamine-CH2), 3.65 (t, 2H, ethanolamine-CH2), 5.81 (broad peak, ethanolamine H).  HRMS 

(ESI) m/z [M+H]+, calculated = 294.1705, observed = 294.1568; 46.57 ppm error.3  

(2b) Starting material 1b was used to synthesize 2b and it was synthesized and purified 

following the same steps utilized in procedure 2a.  Yield 70%.  1H NMR ( CDCl3) δ 1.47 (s, 6H, 

gem CH3), 2.17 (s, 6H, 2 × quinone CH3), 2.88 (s, 2H, CH2) 3.34 (t, 2H, ethanolamine-CH2), 
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3.67 (t, 2H, ethanolamine-CH2), 5.84 (broad peak, ethanolamine H).  HRMS (ESI) m/z [M+H]+, 

calculated = 358.0654, observed = 358.0650; 1.12 ppm error. 3 

(2c). Starting material 1c was used to synthesize 2c and it was synthesized and purified following 

the same steps utilized in procedure 2a.  Yield 55%.  1H NMR ( CDCl3) δ 1.44 (s, 6H, gem 

CH3), 2.05 (s, 3H, quinone CH3), 2.18 (s, 3H, quinone CH3), 2.80 (s, 2H, CH2), 3.11 (s, 3H, N-

methyl CH3), 3.36 (t, 2H, ethanolamine-CH2), 3.69 (t, 2H, ethanolamine-CH2).  HRMS (ESI) m/z 

[M+Na]+, calculated = 331.1634, observed = 331.1640; 1.81 ppm error.3  

(2d). Starting material 1d was used to synthesize 2d and it was synthesized and purified 

following the same steps utilized in procedure 2a.  Yield 64%.  1H NMR (CDCl3) δ 0.97 (t, 3H, 

propyl CH3), 1.44 (s, 6H, gem CH3), 1.58 (m, 2H, CH2CH2CH3), 2.01 (s, 3H, quinone CH3), 2.17 

(s, 3H, quinone CH3), 2.79 (s, 2H, CH2), 3.33–3.39 (m, 2H, NCH2CH2CH3+2H, NCH2CH2OH), 

3.64 (t, 2H, ethanolamine-CH2 ), 5.79 (broad peak, ethanolamine H), 5.81 (broad peak, N-propyl 

H).  HRMS (ESI) m/z [M+H]+, calculated = 337.2127, observed = 337.2219; 27.28 ppm error. 3 

(2e). Starting material 1e was used to synthesize 2e and it was synthesized and purified following 

the same steps utilized in procedure 2a.  Yield 43%.  1H NMR (CDCl3) δ 1.46 (s, 6H, gem CH3), 

2.00 (s, 3H, quinone CH3), 2.18 (s, 3H, quinone CH3), 2.88 (s, 2H, CH2), 3.34 (t, 2H, 

ethanolamine-CH2), 3.66 (t, 2H, ethanolamine-CH2), 6.51 (s, H, quinone H) 5.81 (broad peak, 

ethanolamine H).  HRMS (ESI) m/z [M+H]+, calculated = 280.1549, observed = 280.1551; 0.71 

ppm error. 3 

(2f). Methylethanolamine (0.049 g, 0.66 mmol) was added dropwise to a solution of 1f (101.70 

mg, 0.293 mmol) in dichloromethane (12 mL).  The mixture was stirred for 15 hours at room 

temperature under inert conditions.  The reaction mixture was diluted with DCM and filtered.  

Solvent was evaporated using a rotary evaporator and the crude mixture was purified on silica 
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column using ethylacetate/dichloromethane (2:1) as eluent.  Finally solvent was evaporated to 

give a 53 mg of yellow solid (59%).  1H NMR (CDCl3) δ 1.45 (s, 6H, gem CH3), 1.92 (s, 3H, 

quinone CH3), 1.94 (s, 3H, quinone CH3), 2.14 (s, 3H, quinone CH3), 2.86 (s, 2H, CH2), 3.02 and 

3.06 (2×s, 3H, N-methylethanolamine CH3), 2.70, 3.46, 3.70, 3.81 (N-methylethanolamine CH2).  

HRMS (ESI) m/z [M+H]+, calculated = 308.1862, observed = 308.1871; 2.92 ppm error.3  

(7). 4-(methylamino)phenol (0.109 g, 0.885 mmol) was dissolved with stirring in 10 mL of 

DMF.  To this solution, quinone acid 6 (0.207 mg, 0.827 mmol) in 5 mL of DMF was added at  

0°C.  HATU (0.308 mg, 0.812 mmol) and DIEA (161µL, 0.975 mmol) were added to the 

reaction mixture sequentially, and the mixture was gradually warmed to room temperature 

overnight.  Next, the solution was extracted with EtOAc (3 × 20 mL) and combined organic 

extracts were washed with saturated NaCl (2 × 20 mL) solution.  The solution was dried over 

MgSO4 and solvent was removed with the use of rotary evaporator to give a yellow solid.  The 

crude solid was purified by silica gel column using hexanes/ethylacetate (2:5) as eluent.  Solvent 

was evaporated to yield 238 mg (81%) of yellow solid.  

1H NMR (CDCl3) δ 1.31 (s, 6H, gem CH3), 1.96 (s, 3H, quinone CH3), 2.00 (s, 3H, quinone 

CH3), 2.17 (s, 3H, quinone CH3), 2.75 (s, 2H, CH2), 3.12 (s, 3H, N-methyl CH3), 6.87–7.08 (d, 

4H, benzene H,).  HRMS (ESI) m/z [M+H]+, calculated = 356.1862, observed = 356.1858; 1.12 

ppm error.  

2.4 Summary 

A series of seven different simple quinone propionic acid amide derivatives (2a–f and 7) 

were synthesized by varying the amide structure or substituents on the parent quinone ring.  All 

quinone propionic acid amide derivatives were obtained in good yield and were characterized by 
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1H NMR and ESI-MS techniques for subsequent reduction and lactonization kinetic studies (see 

chapter 3).  

2.5 Spectral Data 

1H NMR data for compound 4 
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1H NMR data for compound 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

HR-ESI-ToF-MS data compound 5 
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1H NMR data for compound 1c (contaminated product) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HR-ESI-ToF-MS data compound 1c 
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1H NMR data for compound 2a 

 

 

 

 

 

 

 

 

 

 

 

 

 

HR-ESI-ToF-MS data compound 2a 

 

 

 

 

 

 

1H NMR data for compound 1b 
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1H NMR data for compound 2b 

 

 

 

 

 

 

 

 

 

 

 

 

	  

HR-ESI-ToF-MS data compound 2b 

 

 

 

 

 

 

 

 

O

O

N
H

O

Br

OH

M+H+ 



 

31 
 

1H NMR data for compound 2c 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HR-ESI-ToF-MS data compound 2c 
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1H NMR data for compound 2d 

 

 

 

 

 

 

 

 

 

 

 

 

	  

HR-ESI-ToF-MS data compound 2d 
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1H NMR data for compound 2e 

 

  

 

 

 

 

 

 

 

 

 

 

 

	  

HR-ESI-ToF-MS data compound 2e 

 

 

 

 

 

13C NMR data for compound 1e 
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1H NMR data for compound 2f 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HR-ESI-ToF-MS data compound 2f 
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1H NMR data for compound 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

HR-ESI-ToF-MS data compound 7 
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1H NMR data for Internal Standard 

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

HR-ESI-ToF-MS data of Internal Standard 
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CHAPTER 3 
KINETIC STUDIES ON LACTONIZATION OF QUINONE PROPIONIC ACID AMIDE 
DERIVATIVES BY 1H NMR FOR DEVELOPMENT OF REDOX-ACTIVE LIPOSOMES 

 
3.1 Introduction 

Liposomes are extremely versatile and malleable nanocarriers that attract great interest in 

drug delivery.1  At present, the development of stimuli-responsive liposomal formulations that 

utilize endogenous triggers for cancer therapy is vast of interest.2-5  Such systems have the ability 

to improve tumor selectivity and the activity of the anticancer agent compared to free drug, and 

hence other reduced harmful side effects.2,6  However, the effectiveness of liposomal drugs not 

only depends on the properties of the encapsulated drug, but also on the pharmacokinetics, rate 

of drug release, and bio-distribution of the liposome carrier.  Therefore, optimization of these 

carrier properties, especially the rate of drug release, is vital for chemotherapy.1,7,8 

Liposomes that exhibit longer circulation life time, as well as therapeutically optimized drug 

release rates, are highly beneficial for in vivo therapeutic applications.1  The relationship between 

circulation life time and antitumor activity was found to be directly proportional for various 

tumor models.  In other words, extended circulation life times have revealed higher antitumor 

activity.9,10  The same trend was observed with respect to rate of drug release from liposomes as 

anticancer agents which have shown greater stability and activity with prolonged exposure to 

cancerous cells.1  Johnston and coworkers have demonstrated that vincristine, the cell cycle 

specific agent, has caused extensive antitumor activity with slower release rates for L1210, P388 

(murine leukemia) and A431 (human squamous cell carcinoma) tumor models.6  In addition, 

Drummond et al. have revealed a similar relationship against HT-29 (human colon carcinoma) 

and BT-474 (human breast carcinoma) cells with liposomal formulations of vinorelbine and 
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irinotecan, respectively. 1,11  Thus, it is important to optimize the drug releasing rate of liposomes 

in order to maximize the drug bioavailability, and hence, higher antitumor activity.  

Inspired by the findings of redox-induced facile lactonization of trimethyl-lock quinones by 

Carpino and others,12-14 the McCarley research group developed a new liposome system, where 

lipid (DOPE) head groups are capped with trimethyl-lock quinone propionic acid group.15  Initial 

studies confirmed high stability, as well as stimulated payload release behavior, leading to the 

current work of optimization.  Upon induction of a redox-stimulus, the quinone head group 

undergoes lactonization that leads to its cleavage from the DOPE lipid.  Once the head group is 

released, naked lipid goes through a lamellar to inverted micelle hexagonal (Lα to HII) phase 

transition, leading to release of the encapsulated contents.15  Thus far, the McCarley research 

group has formulated four different liposome systems by varying the substituent at the 3′ position 

of the trimethyl-lock quinone propionic acid system (QH-DOPE, QMe-DOPE, QBr -DOPE, and 

QnPr-DOPE).  Payload release studies of calcein entrapped in liposomes, using fluorescence 

spectroscopy, demonstrated the different liposomes to have unique release profiles.8  The results 

indicate that the quinone head group plays an important role during the destabilization process, 

especially in the process of lactonization.  Therefore, it is essential to identify the mechanism and 

kinetics of lactonization, such that liposome rupture can be modified to match the drug efficacy 

profiles and thereby improve therapeutic impact.  

After the discovery of the trimethyl-lock ortho-hydroxyhydrocinnamic acid undergoes facile 

lactonization, research has progressed to identify its mechanism and rates of reaction.16  Cohen 

and several other research groups extensively studied the lactonization process of ortho-

hydroxyhydrocinnamic acids experimentally and figured out the mechanism as follows.  The 

phenolic moiety of the ortho-hydroxyhydrocinnamic acid undergoes nucleophilic attack at the 
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propionic acid carbonyl to yield a tetrahedral intermediate in an equilibrium process.  Then the 

intermediate proceeds via collapse to form the lactone via the slower rate determining step.16-20  

This process has been adapted for the quinone propionic acids here in12-14 Scheme 3.1. 

 

 

 

 

Scheme 3.1: General mechanism of trimethyl-lock quinone lactonization. 

 Currently, we are developing two major types of liposome formulations using the following 

parent lipid structures (Figure 3.2).  Because lactonization plays a major role in the process of 

liposome destabilization, it is critical to find out the rate of cyclization of these structures upon 

reduction, so as to fully understand liposome contents release.  In order to achieve this target, 

model compounds of different trimethyl-lock quinone propionic acid amide derivatives were 

synthesized by varying the amide structure (R1, R2) and the functional group at the 3′ position 

(R3, Figure3.1: quinone-ethanolamine (R3 = CH3, Br, NPr, H, NMe, R2 =H, R1 = CH2CH2OH; Q-

ETA), quinone-methylethanolamine (R3 = CH3, R2 = CH3, R1= CH2CH2OH; Q-MeETA), 

quinone-methylaminophenol (R3 = CH3, R2 =CH3 =R1 =C6H5OH; Q-NMeBnOH)).  Synthesized 

derivatives mimic the parent lipid structure to a greater extent and follow the same mechanism 

with respect to reductive activation where they form lactone by releasing free amine to the 

reaction medium. 
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Figure 3.1: Amide derivative of trimethyl-lock quinone propionic acid. 

Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool to investigate 

compound behavior with respect to different perturbations.12,21  Therefore, 1H NMR experiments 

were carried out to investigate the lactonization behavior of the synthesized derivatives.  The 

results described herein explain the effect of varying the 3′ quinone functionality, amide structure 

(R1, R2) as well as reaction conditions including temperature, solvent, and buffer toward the rate 

of lactonization.  

 

 

 

 

 

 

 

 

 

Figure 3.2: Parent lipid structures a) Q-DOPE b) Q-AQM-DOPE used for liposome formation. 

 

 

	   a	  a)	  

b)	  
	   a	  

R3	  =	  CH3,	  Br,	  NMeH,	  H	  
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3.2 Experimental Section 

 3.2.1 Materials 

Deuterated solvents (D2O, d6-DMSO 98%), potassium dideuterium phosphate (KD2PO4), 

dipotassium deuterium phosphate (K2DPO4), potassium chloride (KCl), deuterated sodium 

hydroxide (NaOD), sodium hydroxide pellets (NaOH), methanol (MeOH), and sodium dithionite 

(Na2S2O4) were purchased from Sigma Aldrich.  Except sodium dithionite, all the other 

chemicals were used as received.  Sodium dithionite was purified before use (Section 3.2.2).  

Previously synthesized ferrocene salt (C18H20F6FeNP, Figure 3.3) was used as an internal 

standard for some 1H NMR experiments.  

 

 

 

 

 

Figure 3.3: Ferrocene salt, internal standard used for 1H NMR experiments. 

3.2.2 Sodium Dithionite (Na2S2O4) Purification 

Commercially available sodium dithionite (6 g) was dissolved in 40 mL of degassed 0.1N 

NaOH solution under inert conditions.  To this solution, 45 mL of degassed MeOH/ 0.1N NaOH 

(4:1) solution was slowly added through a syringe until crystals form from the solution.  Once 

crystals appeared, the solution was drained and this sequence was repeated for a total of three 

times to gain purified dithionite crystals.  Purified wet dithionite crystals were then vacuum dried 

for 24 hours and were stored under inert dry conditions.22  
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3.2.3 Deuterated Buffer Preparation  

Potassium dideuterium phosphate (23.74 mg, 0.0333M), dipotassium deuterium 

phosphate (59.12 mg, 0.0666M), and potassium chloride (38.24 mg, 0.1 M) were dissolved in 5 

mL of D2O solution while adjusting to required pD (7.21 or 7.41) using deuterated sodium 

hydroxide to gain a 0.1 M phosphate buffer solution. 

3.2.4 Instrumentation 

3.2.4.1 Nuclear Magnetic Resonance Spectroscopy (NMR) 

Kinetic experiments were conducted using either a Bruker AV Liquid 400 MHz or 

Bruker DPX 400MHz spectrometer. After addition of chemical reducing agent (Na2S2O4), 

successive spectra were collected at 1 min 33 second or 2 min 29 second intervals, and each 

spectrum was set to acquire 16 or 32 scans with pre-scan delay.  The spectra were normalized 

with respect to the three methyls (δ 2.85 ppm) of the ferrocene internal standard.  The change in 

integrals of gemdimethyls was used as index to evaluate the kinetics.23 

3.2.5 General Procedure for Sample Preparation  

3.2.5.1 D2O as Solvent 

An internal standard solution was prepared by dissolving ferrocene salt in Figure 3.3 

(0.02–0.03 g) in D2O (3 mL).  The quinone-amide compound (0–3 mg) was dissolved in this 

same internal standard solution (700 µL), and the initial 1H NMR spectrum was recorded.  A 

similar amount of the quinone-amide (0–3 mg) was dissolved in 500 µL of the internal standard 

solution.  To this solution, an excess of sodium dithionite (5:1, S2O4
2–:quinone-amide) in 200 µL 

of internal standard was added, and successive 1H NMR spectra were recorded.  All the NMR 

solutions were degassed before spectral acquisition.  
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3.2.5.2 DMSO-D2O as Solvent 

Ferrocene salt in Figure 3.3 (2–3 mg) and the quinone-amide compound (0–4 mg) were 

dissolved in a 5:2 (v/v) mixture of DMSO and D2O (700µL) and the initial 1H NMR spectrum 

was recorded.  A similar amount of ferrocene salt in Figure 3.3 (2–3 mg) and quinone-amide 

compound (0–4 mg) were dissolved in 500 µL of DMSO, and to this solution, an excess of 

sodium dithionite (5:1, S2O4
2-:quinone-amide) in 200 µL of D2O was added.  1H NMR spectra 

were recorded successively.  All the NMR solutions were degassed before spectral acquisition.  

3.3 Results and Discussion 

3.3.1 Lactonization Behavior of Q-ETA Derivatives 

3.3.1.1 Effect of Functional Group 

To investigate the effect of quinone functionality at the 3′ position on the quinone on 

lactonization, five different quinone-ethanolamine (Q-ETA) derivatives were synthesized (QMe-

ETA, QBr-ETA, QNMe-ETA, QH-ETA, QNPr-ETA) and were subjected to 1H NMR experiments 

according to the procedure described in Section 3.2.5.1 in D2O medium.  Compounds showed 

different lactonization profiles after reduction, and the behavior of each derivative will be 

discussed in the following paragraphs.  

In Figure 3.4 is shown the reduction and lactonization behavior of QMe-ETA upon 

addition of sodium dithionite (reducing agent).  1H resonances of all the peaks were shifted 

downfield with respect to the initial spectrum (Figure 3.4 A) by 0.25 ppm and that spectrum was 

attributable to the corresponding tetrahedral intermediate (Figure 3.4 B).  This outcome was 

expected, due to previous UV spectroscopic studies confirming the quinone is essentially 

instantly (100 ms) reduced to hydroquinone, and its rapid transformation to the tetrahedral 

intermediate24.  In the successive spectra, the intensity of peaks indicated as a′, b′, c′, d′, e′ and 



45 
	  

g′ decreased, while that of the peak indicated as h′ was increased with time.  The intensity of the 

peak denoted as f′ remained constant.  The changed signals, a′, b′, c′, d′, and e′ are associated 

with the time-dependent lactone formation, whereas remaining signals, f′ and h′ are associated 

with release of ethanolamine to the medium.  The lactone precipitated from solution, resulting in 

a decrease of the corresponding signals in the spectrum.  The process was completed 

approximately after 170 minutes (Figure 3.4 F) and was verified by the respective control 

experiment.  The Figure 3.5 is shown the spectra for an authentic sample of QMe-lactone with 

ferrocene (top) and the lactonized product after completion of the reaction (bottom).  Because 

lactone peaks did not show up in both spectra, insolubility of the lactone in D2O medium can be 

confirmed.  

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Time-dependent QMe-ETA (3.8 × 10–3 M) lactonization in pure D2O by 1H NMR.   
                   The signals at δ 2.85 ppm and 4.20–4.50 ppm are associated with the internal  
                   standard. 
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Figure 3.5: Confirmation of QMe-lactone (4.8 × 10–3 M) precipitation in pure D2O by 1H NMR.  
                  The signals at δ 2.85 ppm and 4.20–4.50 ppm are associated with the internal  
                  standard. 

 
In order to evaluate the kinetics of the process, integration of the gemdimethyl signal at 1.46 

ppm of successive spectra were collected, as its intensity is directly proportional to the remaining 

tetrahedral intermediate concentration [QMe-ETATet] at any given time.  The [QMe-ETATet] with 

respect to time was calculated using respective integrals and initial QMe-ETA concentration.  The 

plot of ln ([QMe-ETATet]t=t / [QMe-ETATet]t=0]) versus time showed linear decay (Figure 3.6) 

where reaction followed the integrated rate law of first-order kinetics and can be explained by 

following mathematical Equations 3.1 and 3.2.25,26  

                                                [QMe-ETATet]t=t  = [QMe-ETATet]t=0 e-kt
 .                  Equation 3.1 

           
                                           ln ([QMe-ETATet]t=t / [QMe-ETATet]t=0]) = – kt               Equation 3.2 

 
 The rate constant (k) of the lactonization process was obtained as k = 0.023 min-1 and 

half life of the reaction was calculated from Equation 3.325,26 as t ½ = 30 minutes. 

                                                            t ½   =  ln 2 / k                                             Equation 3.3 
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Reduction and lactonization of QBr-ETA (Figure 3.7) was rapid, and the reaction was 

complete within 5 minutes.  Bromo-lactone was precipitated from the solution, while 

ethanolamine was released to the medium.  This behavior was mainly due to the inductive 

electron withdrawing nature of the bromine functionality which facilitates faster reduction 

followed by more rapid lactonization.  Using 1% remaining reactant and t99% = 5 min, k is 

estimated to be ≥ 0.9 min–1.  Further studies on QNMe-ETA and QNPr-ETA derivatives (Figure 3.8 

and 3.9) have exhibited almost same reduction and lactonizaton profile as QBr-ETA.  The 

processes were completed within 3 minutes possibly due to the internal base catalysis behavior 

of nitrogen atom of NMe and NPr groups.  Using 1% remaining reactant and t99% = 3 min, k is 

estimated to be ≥ 1.5 min–1.  However, the resulting lactones were soluble in the D2O medium 

due to the effect of hydrogen bonding and were able to be detected in consecutive spectra.  

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Kinetic evaluations of QMe-ETA lactonization in pure D2O medium. 
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Figure 3.7: Time-dependent QBr-ETA (3.16 × 10–3 M) lactonization in pure D2O by 1H NMR.   
                   The signals at δ 2.85 ppm and 4.20–4.50 ppm associated with the internal standard. 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Time-dependent QNMe-ETA (3.80 × 10–3 M) lactonization in pure D2O by 1H NMR.   
                   The signals at δ 3.00 ppm and 4.30–4.60 ppm associated with the internal standard. 
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 Figure 3.9: Time-dependent QNPr-ETA (3.02 × 10–3 M) lactonization in pure D2O by 1H NMR.   
                    The signals at δ 3.00 ppm and 4.30–4.60 ppm associated with the internal standard.   
                    The signals denoted as asterisks indicate the residual solvents that remain from the  
                    purification. 

On the contrary, QH-ETA compound has shown a complicated spectrum in D2O medium, 

where the peaks corresponding to methyls were split even before adding the reducing agent 

(Figure 3.10 A).  This observation might be due to the formation of one or more degradation 

products, such as spirolactams in aqueous condition (Scheme 3.2).27  Formation of spirolactam 

has been an extensively studied concept, and is more prominent in base-catalyzed soft reaction 

conditions.27-29  Base mediated (D2O) deprotonation of the amide nitrogen facilitates the negative 

charge formation on nitrogen, resulting a highly reactive nucleophilic species that can attack the 

quinone ring to form several products.29  However, the formation of product 5 (Scheme 3.2) is 

thermodynamically less favorable, but it might be kinetically possible owing to the release of 

steric strain involved in the trimethyl lock system.27  Therefore, more research is required to 

further ascertain the identity of the spirolactam products.  
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Scheme 3.2: Possible degradation routes of QH-ETA in aqueous condition in the absence of a 
                     reducing agent. 
 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.10: Time-dependent QH-ETA (4.7 × 10–3 M) lactonization in pure D2O by 1H NMR.     
                     The signals at δ 2.85 ppm and 4.20–4.50 ppm associated with the internal standard.   
                     Asterisk (*) and (x) represent the increasing and decreasing signals respectively. 
 

Upon introduction of the reducing agent, peaks were shifted downfield, and the spectrum 

was more complicated, indicating the formation of tetrahedral intermediate along with 
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spirolactam product (Figure 3.10 B).  Peaks denoted by an asterisk (*) increased, while peaks 

symbolized as (x) were decreased with time.  The others remained constant throughout the 

experimental period.  However, no detectable precipitation of lactone occurred for 6 hours 

(Figure 3.10 C-E), revealing the much slower lactonization process in D2O medium.  

Furthermore, the spectrum of pure QH-ETA in CDCl3 was recorded to assess the possibility of 

spirolactam formation under organic conditions.  The spectrum did not show any splitting as in 

the previous, thus confirming that degradation does not take place in an organic medium (Figure 

3.11).  The same trend was observed with the QH-COOH system, pointing out that the H 

functionality at the 3′ position is associated with spirolactam formation in D2O medium (Figure 

3.12). 

a) 

 

 

 

 

 

 

          b) 

 

 

 

 

Figure 3.11: Spectral comparison of QH-ETA in (a) CDCl3 and (b) D2O medium.  Asterisk (*)  
                    at 4.65ppm in spectrum (b) represents the noise peak. 
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           a) 
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Figure 3.12: Spectral comparison of QH-COOH in (a) CDCl3 and (b) D2O medium. 

3.3.1.2 Effect of Organic Solvents 

 As a majority of bulky quinone propionic amide derivatives do not dissolve in aqueous 

medium, it is important to understand how the presence of organic solvents affect their rate of 

reduction and lactonization.  Thus, as an initial attempt, lactonization studies were conducted 

with QMe-ETA in a mixture of DMSO:D2O (5:2) in order to compare the nature of the 

lactonization process with respect to aqueous conditions.   

The rate of reduction was as fast as previous studies (compare Figure 3.13 A and B to 

Figure 3.4 A and B), but the cyclization was slower compared to the study in pure D2O medium 

indicating that the tetrahedral intermediate is somewhat stable in organic medium (compare 

Figure 3.13 C through D to Figure 3.4 C through F).  However, dramatic concentration reduction 

was observed after addition of the chemical reducing agent.  This observation might be due to  
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Figure 3.13: Time-dependent QMe-ETA lactonization in a 5:2 mixture of DMSO:D2O by 1H  
                     NMR in the absence of internal standard.  (*) denotes the impurities from medium.  
 
 
 
 

 
 

 

 

 

 

 

 

 

Figure 3.14: Time-dependent QMe-ETA (1.7 × 10–2 M) lactonization in a 5:2 mixture of DMSO: 
                     D2O by 1H NMR in the presence of internal standard.  Both (*) & (x) denote the  
                     impurities from medium.  
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the salt precipitation from the medium leading to lower quinone to hydroquinone conversion. 

Both lactone and ethanolamine were soluble in the reaction medium, and the process was 

complete after approximately 17 hours (Figure 3.14 A-E).  The rate constant (k) and half life 

(t1/2) were found as 0.0026 min-1 and 2.7 × 102 minutes respectively (Figure 3.15).  Lactonization 

was 9 times slower compared to the study in D2O medium, and these findings are comparable 

with previous rate data that were obtained via cyclic voltammetry (CV)30 and UV-visible 

spectroscopy by colleagues in the McCarley research group.  

 

 

 

 

 

 

 

 

 

 

Figure 3.15: Kinetic evaluations of QMe-ETA lactonization in a 5:2 mixture of DMSO:D2O.  

3.3.1.3 Effect of Temperature 

Because our main goal is to use our liposome system under biological conditions, it is 

important to investigate how the temperature affects the rate of lactonization.  Therefore, 

temperature studies of QMe-ETA were performed at 10 °C, 25 °C and 35 °C in D2O medium 

(Table 3.1).  At 25 °C, the lactonization process was complete within 170 minutes.  In theory, for 
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a given activated process, the rate of the reaction will increase with increasing temperature.26  As 

anticipated at 35 °C, the reaction reached completion within 90 minutes, due to the increased rate 

of lactonization.  Lowering the temperature of the system to 10 °C caused reaction to be 

incomplete even after 500 minutes.  Raising the temperature from 25 °C to 35 °C accelerated the 

reaction rate by two fold, whereas lowering the temperature from 25 °C to 10 °C retarded the 

process roughly by four times.  The rate constant (k) and half life (t1/2) values are summarized in 

(Table 3.1), and the associated kinetic plots are presented in Figure 3.16.  Furthermore, the 

activation energy for QMe-ETA lactonization in D2O was calculated using the rate values, and it 

was found as 59.1 kJmol-1.   

Table 3.1: Kinetic results for QMe-ETA lactonization in D2O medium at different temperatures.   
                Only one replicate obtained in each case. 
                    

 

3.3.1.4 Effect of Buffer Conditions 

In regards to liposome opening under physiological conditions, another avenue of study 

that of lactonization kinetics under buffered conditions.  In a preliminary study by Cohen and 

Milstein, a faster intramolecular cyclization of trimethyl-lock system was observed under both 

acidic and basic buffered conditions.  The catalysis was concurrent, but not concerted.16,17  

Amsberry et al. also observed the same trend under phosphate buffered conditions for model 

trimethyl-lock hydroxy amides.31  Therefore, to probe this effect further, lactonization studies of 

QMe-ETA were conducted in 0.1 M deuterated phosphate buffer medium at 25 °C.  Buffer 

solutions were prepared according the procedure described in Section 3.2.3 at a 7.20–7.45 pD 

      Temperature (°C )      Rate constant  k (min-1)       Half life  t1/2 (minutes) 

10 °C 0.0061 1.1× 102 

25 °C 0.023 30 

35 °C 0.046 15 
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Figure 3.16: Kinetic evaluations of QMe-ETA lactonization in D2O medium at a) 10 °C (3.6  

         × 10–3 M), b) 25°C (3.8 × 10–2 M), and c) 35 °C (4.3 × 10–2 M). 
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range, as it mimics the physiological nature to a good extent.  Both studies at pD 7.41 and 7.21 

reached completion after 35 to 45 minutes, with rate constants of 0.095 min-1, and 0.075 min-1 

respectively.  Because the rate constants were not much different, statistical analysis (t-test) was 

conducted to find out if they differ significantly.  The resulting t value confirmed the similarity 

of the rate constants at the 95 confidence level, and all results are summarized in Table 3.2 and 

related plots are presented in Figure 3.17 and 3.18.  In addition, the presence of phosphate buffer 

results in more rapid cyclization kinetics, confirms the rate of cyclization is roughly four times 

that without buffer present (Table 3.1 and 3.2). 

Table 3.2: Kinetic data for QMe-ETA lactonization in 0.1 M phosphate buffer conditions 

pD Average Rate constant (k) 
(min–1) 

Average Half life (t1/2) 
( min) 

  t-test  Values 

7.41 0.081 8.6 calculated: 0.999 
7.21 0.070 9.9 tabulated: 2.776 

 

3.3.2 Lactonization Behavior of QMe-COOH   

The lactonization behavior of QMe-COOH was studied in order to investigate the impact of amide 

presence versus free acid on the rate of lactonization.  The kinetic experiment was initially 

performed at 25 °C in D2O medium.  The free acid (QMe-COOH) cyclized rapidly compared to 

its ethanolamine analog (QMe-ETA), indicating that the amide structure has a significant impact 

on the process.  The process for QMe-COOH reached completion within 5 minutes, proving the 

acid autocatalysis ability of QMe-COOH.  Lactone precipitated from the solution, and signals for 

the lactone were not present in the 1H NMR spectrum (Figure 3.19).  A lower end estimation of k 

is roughly; 0.9 min–1, using 1% remaining reactant and t99% = 5 min.  This observation was 

supported by the preliminary research done by Cohen and coworkers that came to the same 

conclusion with respect to their orthohydroxyhydrocinnamic acid compounds.16,17   
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Figure 3.17: Kinetic evaluation of QMe-ETA lactonization in 0.1 M, pD 7.41 phosphate buffer  
                    medium; three replicates are shown. 
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Figure 3.18: Kinetic evaluation of QMe-ETA lactonization in 0.1 M, pD 7.21 phosphate buffer  
                    medium; three replicates are shown. 
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Moreover, lactonization of QMe-COOH was studied in 0.1 M phosphate buffer at pD 7.41, and 

the reaction was completed in 3 minutes as anticipated (Figure 3 20); a lower end estimation of k 

is 1.5 min–1 using 1% remaining reactant and t99% = 3 minutes. 

 3.3.3 Lactonization Behavior of Other QMe-Amide Derivatives 

To further examine how the amide structure affects the rate of lactonization, studies were 

undertaken wherein the quinone structure was held constant, while the type of amide structure 

was varied.  QMe was selected as the parent quinone structure, as it would be capable of providing 

measurable rate values.  

As an initial attempt, a kinetic study of QMe-N-methylaminophenol (QMe-NMeBnOH, 

Figure 3.21 A) was conducted to determine the impact of aromatic amide on the rate of 

lactonization.  The use of QMe-aminophenol was avoided because of its capability of forming 

spirolactam structures that have previously been observed by several research groups.27-29   

 

 

 

 

 

 

 

 

 
 
Figure 3.19: Time-dependent QMe-COOH (4.3 × 10–3 M) lactonization in D2O medium by 1H  
                     NMR.  The signals at δ 3.00 ppm and 4.30–4.60 ppm associated with the internal  
                     standard. 
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Figure 3.20: Time dependent QMe-COOH (4.7 × 10–3 M) lactonization in 0.1 M phosphate buffer  
                     at pD 7.41 by 1H NMR.  The signals at δ 3.00 ppm and 4.30–4.60 ppm associated  
                     with the internal standard. 
 

The experiment was conducted in DMSO:D2O (5:2) medium due to the poor solubility of QMe-

NMeBnOH in pure D2O; the procedure described in Section 3.2.3.2 was used.  Successive 

spectra were collected for 60 minutes.  Formation of the tetrahedral intermediate was confirmed 

after addition of the reducing agent, and it was stable for more than one hour, as noted by the 

lack of spectral changes (Figures 3.21 B, C).  This confirmed the stability of the tetrahedral 

intermediate in the organic/aqueous medium.  After 12 hours, additional peaks were detected but 

the cyclization process was not complete (Figure 3.21 D).  However, observation after 69 hours 

verified completion of the process (Figure 3.21 E) where (N-methylamino)phenol and lactone 

were released to the medium, as was confirmed by the related control experiment (Figures 3.21 

E, F).  These specific observations confirmed the much slower rate of lactonization for QMe-

NMeBnOH, revealing the tunability of the process through the variation of the amide structure.  
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Figure 3.21: Time-dependent, QMe-NMeBnOH (4.1 × 10–3 M) lactonization in a 5:2 mixture of        

         DMSO:D2O  medium by 1H NMR in the absence of internal standard.  
 
To further assess the lactonization behavior of Q-amides through fluorescence detection, 

a kinetic study of QMe-NN (Scheme 3.3) was performed in DMSO:D2O (5:2) medium.  After 

introducing sodium dithionite, some of the initial peaks shifted downfield, while most of the 

peaks remained as in the previous spectrum (Figure 3.22 A and B).  Successive spectra were 

collected for only 1 hour, and no significant changes were detected (Figure3.22 C).  After nearly 

12 hours, a decrease in intensity of the gem-dimethyl peak was observed, while some additional 

peaks appeared in the spectrum, but changes were minor (Figure 3.22 D).  However, after 24 

hours, the changes were significant, but the process was incomplete (Figure3.20 E).  The 
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lactonization was much slower, and formation of relevant NN identified by fluorescence 

detection (Scheme 3.3).  

 

 

 

 

 

 

 

Scheme 3.3: Mechanism of QMe-NN disconnection after reduction. 

From these results, it is clear that the tertiary amide structures do affect their rate of 

lactonization compared to simple analogues.  Since both QMe-NN and QMe-NMeBnOH possesses 

N-methyl group at the amide part (Figures 3.21 and 3.22), our next concern was to study the 

impact from N-methyl functionality on this process.  The QMe-methylethanolamine (QMe-

MeETA) was used to study the lactonization kinetics where it showed spectral changes in 

different solvent conditions (Figure 3.23).  The changes were significant and might be 

attributable for corresponding stereoisomers.  However, kinetics evaluation was performed in 

D2O medium due to the slower process in organic conditions which was evident from previous 

studies.  Lactone precipitated from the solution, while methylethanolamine was released to the 

medium (Figure 3.24 A-E).  Successive spectra were collected for 2 hours, and initial 

concentration changes were used for the kinetic evaluations (Figure 3.25).  The rate constant (k) 

and t1/2 were 0.013 min–1 and 53 nearly minutes, respectively, and the reaction rate constant was 

two times less compared to that of the QMe-ETA lactonization. 
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Figure 3.22: Time-dependent QMe-NN (2.4 × 10–3 M) lactonization in a 5:2 mixture of DMSO:  
                     D2O medium by a) 1H NMR region of 0.00– 5.50 ppm  b) region of 7.50–9.75 ppm. 
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Figure 3.23: Spectral variations of QMe-MeETA in different solvents A) DMSO, B) CDCl3, and  

                               C) D2O. 
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Figure 3.24: Time-dependent QMe-NMeETA (1.3 × 10–3 M) lactonization in pure D2O medium     

         by 1H  NMR. The signals at δ 2.90 ppm and 4.20–4.45 ppm associated with the   
         internal standard. 

  

  
 

 

 

 

 

 

 

 

Figure 3.25: Kinetic evaluation of QMe-MeETA (1.3 × 10–3 M)  lactonization in pure D2O  
         medium. 
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3.4 Conclusion 

The reduction and lactonization behavior of eight different trimethyl-lock quinone 

propionic acid derivatives were investigated by 1H NMR spectroscopy; the outcomes are 

summarized in Table 3.3.  In all amides except Br, NPr, and NMe on quinone ring, upon addition 

of reducing agent, tetrahedral intermediate was formed, as noted by peaks shifted down field 

with respect to their original spectra.  Lactonization profiles of Q-ETA compounds revealed 

different lifetimes, indicating that 3ʹ quinone substitution can be utilized to tune the rate of 

lactonization.  In D2O, upon addition of the reducing agent (Na2S2O4), QBr-ETA, QNMe-ETA, and 

QNPr-ETA lactonized rapidly, while QH-ETA showed a much slower intramolecular cyclization.  

The rapid lactonization behavior for QBr-ETA can be attributed to the electron withdrawing 

nature of bromine, while for the others, the internal base catalysis behavior of N-propylamino 

and N-methylamino nitrogen atom accelerated the cyclization.8  The rate for QMe-ETA was 

moderate and the rate constant (k) and half life (t1/2) were calculated successfully.  

The rate of lactonization of QMe-ETA was found to vary with temperature, buffer, and 

solvent conditions.  The existence of buffer conditions and increasing temperature accelerated 

cyclization, whereas the presence of organic solvent made the lactonization slower, caused by 

enhanced stability of the tetrahedral intermediate.  The QMe-COOH cyclization was much faster 

compared to the QMe-ETA derivative, due to its autocatalysis behavior.  Inclusion of secondary 

amide structures with the NMe functionality shows that the cyclization process was retarded 

compared to simple amide structures.  

These findings are supported by previous electrochemical and liposome payload release 

studies.8,30  Careful selection of quinone-amide structures and experimental conditions can be 

utilized to optimize the liposome system for future applications. 
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Table 3.3: Summary of kinetic Evaluation.  

 

*Note: All reactions were conducted in 25 ° C except as noted. 

3.5 References 

(1) Drummond, D. C.; Noble, C. O.; Hayes, M. E.; Park, J. W.; Kirpotin, D. B. 
Pharmacokinetics and in vivo drug release rates in liposomal nanocarrier development. Journal 
of Pharmaceutical Sciences 2008, 97, 4696-4740. 

 
Quinone-Amide 

 
Solvent 

 
k (min–1) 

 

 
t ½(min) 

QMe-ETA 
 D2O 0.023 30 

QBr-ETA 
 D2O ≥ 0.9 - 

QNMe-ETA 
 D2O ≥ 1.5 - 

QNPr-ETA 
 D2O ≥ 1.5 - 

QH-ETA 
 D2O Infeasible calculation - 

QMe-ETA 
 DMSO:D2O (5:2) 0.0026 2.7 × 102 

QMe-ETA (10 °C ) 
 D2O 0.0061 1.1× 102 

QMe-ETA (35 °C ) 
 D2O 0.046 15 

QMe-ETA 
 

(0.1 M Phosphate 
buffer, pD 7.85) 0.081 8.6 

QMe-ETA 
 

(0.1 M Phosphate 
buffer, pH 7.64) 0.070 9.9 

QMe-COOH 
 D2O ≥ 0.9 - 

QMe-COOH 
 

(0.1 M Phosphate 
buffer pH 7.85) ≥ 1.3 - 

QMe-NMeBnOH 
 DMSO:D2O (5:2) Much slower process - 

QMe-NN 
 DMSO:D2O (5:2) Much slower process - 

QMe-NMeETA 
 D2O 0.013 53 
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CHAPTER 4 
CONCLUSIONS AND OUTLOOK 

4.1 Summary 

The overall goal of this research was to investigate the kinetics of reduction and 

lactonization of trimethyl-lock quinone propionic acids and their amide derivatives, in order to 

optimize our recently developed redox-active liposome drug delivery system.1-3  Upon 

interaction with a redox stimulus, trimethyl-lock quinone head groups undergo intramolecular 

lactonization to initiate liposomal disintegration.  Thus, evaluation of lactonization kinetics with 

respect to diverse quinone-amide structures and experimental conditions is important, because 

the outcomes can be used to tailor the liposomal payload release.  

Seven different trimethyl-lock quinone propionic acid derivatives were synthesized by 

varying either the amide structure or the 3′ functionality of the quinone head group: QMe-ETA, 

QBr-ETA, QNMe-ETA, QNPr-ETA, QH-ETA, QMe-MeETA, and QMe-NMeBnOH.  The synthesis of 

quinone-amide followed a similar procedure where they were prepared from corresponding N-

hydroxysuccinimide derivative and were obtained in good yield.  These quinone-amides were 

then subjected to chemical reduction, and their lactonization behavior was followed by 1H NMR 

spectroscopy.  The gem-dimethyl integrals were used to evaluate the kinetics, and it was found 

that lactonization was much slower compared to the reduction.  Lactonization occurred through 

tetrahedral intermediate collapse and followed first order kinetics.  Initially, lactonization 

behavior of different Q-ETA compounds were studied in D2O; from fastest to slowest, the 

average lifetime values for complete lactonization are as follows: QNMe-ETA (3 min), QNPr-ETA 

(3 min), QBr-ETA (5 min), QMe-ETA (170 min) and QH-ETA (> 6 hours).  From these results, it 

is evident that the 3′ functionality of the quinone ring does affect the lactonization and these can 

be selectively incorporated to liposome systems to control their payload release. 



73 
	  

Because QMe-ETA has shown measurable lactonization profile, its rate constant k: 0.023 

min-1 and t1/2 of 30 were calculated and employed for further studies.  In organic/aqueous 

medium (DMSO:D2O), it was found that the tetrahedral intermediate was somewhat stable after 

its formation from reduction, resulting in a 9 times slower lactonization when compared to 100% 

aqueous conditions.  Increasing the experimental temperature enhanced the rate of lactonization 

(at 35 °C, k = 0.046 min-1 and t1/2 = 15) whereas lowering the temperature created hostile 

conditions for the process and the reaction continued for an extended period of time (at 10 °C, k 

= 0.0061 min-1 and t1/2 = 1.1× 102).  Experiments in buffer environment also exhibited 

accelerated lactonization.  However, alteration of buffer pD from 7.21 to 7.41 did not 

significantly influence the lactonization rate constant.   

After identifying the behavior of Q-ETA derivatives, research was focused toward the 

investigation of the cyclization nature of other quinone propionic amide derivatives: QMe-

MeETA, QMe-NMeBnOH and QMe-NN.  Interestingly, in organic medium (DMSO:D2O = 5:2), 

the tetrahedral intermediate of both QMe-NMeBnOH and QMe-NN were stable for more than 1 

hour, resulting in an extremely slower lactonization where the process took more than 24 hours 

to complete.  Finally, to assess the effect of the secondary amide functionality in the amide 

structure, kinetic study on QMe-MeETA was performed in D2O medium, and it was observed that 

the rate constant for lactonization was 2 times slower when compared to the QMe-ETA 

derivative. 

4.2 Conclusion 

The results presented in this thesis demonstrate the capability of tuning the lactonization 

process of trimethyl-lock quinone propionic acid derivatives upon interaction with a redox 

stimulus.  Synthesis of quinone-amide derivatives followed a common methodology and 

products were obtained in good yield.  With the addition of different substituents onto the 3′ 
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position of the quinone head group, lactonization rates were significantly varied, which was in 

agreement with previously studied liposome payload release profiles.2  The rate of lactonization 

was influenced by changes in temperature, buffer, and solvent conditions.  Tertiary quinone-

amide structures exhibited slower rates of lactonization while the opposite was observed with 

secondary structures.  Inclusion of the NMe functionality to the amide structure, slows down the 

lactonization process significantly.  Modification of trimethyl-lock quinone based liposomes 

through of tertiary amide structures enables to have slower payload release profiles which is 

highly important in chemotherapy.  

4.3 Outlook 

A growing number of stimuli-responsive liposomal formulations that can selectively 

deliver chemotherapeutics to the tumor site by taking advantage of over-expressed tumor 

reductive enzymes are becoming of great interest in modern drug delivery.4-6  To that end, redox-

responsive, quinone trimethyl-lock liposome (Q-DOPE) system has been developed where the 

liposomal destruction is initiated upon reduction and lactonization of the quinone head group.1-3 

According to the literature, most of the chemotherapeutic agents exhibit their maximum 

antitumor activity, when they are distributed slower to intermediate rates within the tumor site.7,8 

Thus, details provided in this thesis could be useful to design new Q-DOPE liposomes and 

quinone based prodrugs by incorporating proper trimethyl-lock quinone head group as well as 

modified amide structures in order to attain slower to medium rate of drug release.  In 1982, 

Cohen and Michael have shown that replacement of the methyl group at the 6′ position of the 

benzene ring with varying functionalities resulted in significant changes of lactonization rates for 

their 4,4–dimethyl–6–hydroxyhydrocoumarrins compounds.9  Moreover, Jung and Piizzi pointed 

out the feasibility of lactonization of Potassium ω-Bromoalkanoate with bulky gem-dialkyl 
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groups.10  Thus, it is important to investigate the feasibility of lactonization of quinone-amides 

having different gemdialkyls as well as different functional groups at 6′ position in order to 

develop new liposome formulations having enhanced pharmacokinetics.  Furthermore, the results 

of this study can be used to develop other stimuli-sensitive trimethyl-lock systems (sensors, 

microfludic channels etc) to obtain an efficient cargo delivery. 

4.4 References 

(1) Ong, W.; Yang, Y.; Cruciano, A. C.; McCarley, R. L. Redox-Triggered Contents Release 
from Liposomes. Journal of the American Chemical Society 2008, 130, 14739-14744. 
 
(2) Carrier, N. H. Redox-Active Liposome Delivery Agents with Highly Controllable 
Stimuli-Responsive Behavior. Ph.D Dissertation, Louisiana State University, Baton Rouge, LA. 
2011. 

(3) Forsythe, J. Kinetics and Mechanisms of Release by Redox-Active Liposomes in Drug 
Delivery. Ph.D Dissertation, Louisiana State University, Baton Rouge, LA. 2011. 

(4) Blanche, E. A.; Maskell, L.; Colucci, M. A.; Whatmore, J. L.; Moody, C. J. Synthesis of 
potential prodrug systems for reductive activation. Prodrugs for anti-angiogenic isoflavones and 
VEGF receptor tyrosine kinase inhibitory oxindoles. Tetrahedron 2009, 65, 4894-4903. 
 
(5) Andresen, T. L.; Jensen, S. S.; Kaasgaard, T.; Jorgensen, K. Triggered activation and 
release of liposomal prodrugs and drugs in cancer tissue by secretory phospholipase A2. Current 
Drug Delivery 2005, 2, 353-362. 
 
(6) Terada, T.; Iwai, M.; Kawakami, S.; Yamashita, F.; Hashida, M. Novel PEG-matrix 
metalloproteinase-2 cleavable peptide-lipid containing galactosylated liposomes for 
hepatocellular carcinoma-selective targeting. Journal of Controlled Release 2006, 111, 333-342. 
 
(7) Johnston, M. J. W.; Semple, S. C.; Klimuk, S. K.; Edwards, K.; Eisenhardt, M. L.; Leng, 
E. C.; Karlsson, G.; Yanko, D.; Cullis, P. R. Therapeutically optimized rates of drug release can 
be achieved by varying the drug-to-lipid ratio in liposomal vincristine formulations. Biochimica 
et Biophysica Acta (BBA) - Biomembranes 2006, 1758, 55-64. 
 
(8) Georgiadis, M. S.; Russel, E. K.; F, G. A. Paclitaxel cCytotoxicity against human lung 
cancer cell lines increase with prolonged exposure durations. Clinical Cancer Research 1997, 3, 
449-454. 
 
(9) King, M. M.; Cohen, L. A. Stereopopulation control. VII. Rate enhancement in the 
lactonization of 3-(o-hydroxyphenyl)propionic acids: dependence on the size of aromatic ring 
substituents. Journal of the American Chemical Society 1983, 105, 2752-2760. 



76 
	  

(10) Jung, M. E.; Piizzi, G. gem-Disubstituent Effect:   Theoretical Basis and Synthetic 
Applications. Chemical Reviews 2005, 105, 1735-1766. 

 

 



	  

77 
	  

VITA 

Karannagoda Liyanage Iresha Sampathi Perera was born in Colombo, Sri Lanka.  She had her 

primary and secondary education at Anula Vidyalaya, Colombo.  She entered the University of 

Colombo in year 2004 and was selected for a special degree in chemistry in 2006.  She received 

her Bachelor of Science degree in chemistry in 2008 with Honors.  After working for one year as 

a teaching assistant at the Department of Chemistry of University of Colombo, she enrolled in 

the master’s programme in the Department of Chemistry at Louisiana State University in fall 

2009.  In summer 2010 she joined the laboratory of Prof. Robin L. McCarley.  The Master of 

Science degree will be conferred at the summer 2012 commencement. 

	  


