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ABSTRACT 

Chapter 1 of this Dissertation presents a brief overview of the history of tetrapyrrole 

derivatives and of their fundamental properties. Overviews of porphyrins, benzoporphyrins, 

chlorins and porphycenes are presented. 

Work presented in Chapter 2 through Chapter 4 mainly focuses on the syntheses and 

functionalization of chromophore-extended porphyrin derivatives. Several new synthetic routes 

for the syntheses and functionalizations of extended porphyrins either at the β-position or at the 

meso-position of porphyrin are developed. From these improved synthetic routes, the regio-

selective syntheses of porphyrin derivatives are described. Chapter 2 mainly focuses on the 

syntheses of β,β’-fused methylenepropanoporphyrins and related porphyrin dimers. Chapter 3 

mainly describes a new synthetic route for selective synthesis of benzoporphyrin regioisomers 

and Chapter 4 mainly discusses new work on the efficient synthesis of the so-called ―Hangman 

Porphyrin‖ analogs.  

Chapter 5 consists two parts. The first part is devoted results of work on the total 

synthesis of an important porphycene derivative, 9-capronyl-oxytetrakis(methyoxyethyl)-

porphycene, which has already been shown to have attractive potential applications in 

photodynamic therapy of tumors. The second part of Chapter 5 concerns the improved syntheses 

of 2,2’-bipyrrole, which is an important part of our effort to improve the synthesis of porphycene 

and related tetrapyrrole derivatives. The potential utility of these 2,2’-bipyrroles as bio-probes 

and ion-binding reagents are also tested. 

Chapter 6 reports mechanistic studies on the unique regio-selective formation of mono- 

(L)-aspartylchlorin-e6. This important photodynamic therapy (PDT) photosensitizer has recently 

undergone a structural revision, and the work reported in this Chapter provides a rationale for the 
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formation of the unexpected regioisomeric structure now known to belong to mono-(L)-

aspartylchlorin-e6. 
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CHAPTER 1. INTRODUCTION 

 
1.1 History of Tetrapyrroles 

―Tetrapyrrole‖ is a term widely used to refer to a class of compounds which have four 

pyrrole type rings linked together, usually through single-atom bridges at the α-positions of the 

pyrrole rings (see Figure 1-1 for general examples).  

N

N
H N

N

N

NH N

HN N

NH N

HN

Porphyrin Chlorin

Bilin

NH N

HNNN

NH N

HN

Corrole
Porphycene

 

Figure 1-1. Typical tetrapyrrole structures: top and middle, macrocylic structure; bottom, open-

chain structure of tetrapyrroles.  

 

Among those, the macrocyclic structure is the most common arrangements for the four pyrrole 

rings. Porphyrins, chlorins, corroles and porphycenes are representative examples of macrocyclic 

tetrapyrroles, while bilins represent examples for linear or open-chain tetrapyrroles. Research 

interests were turned to tetrapyrroles at around 1900. It was found that if the tetrapyrrole 

derivatives, such as chlorophylls and bilanes, were absent, life would not be able to exist on this 
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planet
1
. Bile pigments (see Figure 1-1) have the bilin carbon skeleton and represent the most 

common linear tetrapyrroles, play an important role in heme breakdown and the proper functions 

of algae and plants; examples are bilirubin and phycobilins (see 9 in Figure 1-2) in cyanobacteria.  

Figure 1-2. Chemical structures of heme (1), cytochrome c (2), chlorophyll a (3) and chlorophyll 

b (4), coenzyme F430 (5), protoporphyrin IX (6), vitamin B12 (7 and 8) and phycobolin (9).  

    

As a typical bile pigment, phycocyanin was found to abundantly exist in algae and serve 

as light-harvesters for the algae. On the other hand, macrocyclic tetrapyrroles play a central and 

important role as pigments of life; examples are heme and chlorophyll a (see 1 and 3 in Figure 1-

2) in oxygen storage and transportion and photosynthesis, respectively; cytochrome c (see 2 in 

Figure 1-2) is important in electron transport. Porphyrins, chlorins and corrins possess the basic 

structure for these biologically important macrocylic tetrapyrrole molecules (see Figure 1-2). In 

biology, these macrocylic tetrapyrrole structures are usually found associated with different types 
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of metals in order to have proper functionality. The most commonly found metals are iron, 

magnesium, cobalt and nickel. With the appropriate one of these four metal ions inserted, these 

different macrocycles are able to properly functionalize in living systems and carry out widely 

differing biological functions. For example, the well-known heme (see 1 in Figure 1-2) and 

siroheme are the representative examples for iron tetrapyrrole complexes; chlorophylls a and b 

(see 3 and 4 in Figure 1-2) are the representative examples for magnesium tetrapyrrole; vitamin 

B12 (see 7 and 8 in Figure 1-2) and coenzyme B12 are the typical examples for cobalt tetrapyrrole; 

coenzyme F430 (see 5 in Figure 1-2) is the representative example for a nickel tetrapyrrole. The 

fine tuning of the metal reactivity is important to ensure their proper function in biology. For 

example, chlorophylls possess the appropriate light absorption regions in the biosystem
1
. 

Meanwhile, phytochrome (see 2 in Figure 1-2)
2
, which has been found in small amounts in 

plants, plays vitally important functions by controlling growth and development in plants.  

The identification of the macrocylic tetrapyrrole structures had attracted much attention 

from chemists, especially Hans Fischer. It was in 1864 that Stokes first observed chlorophylls a 

and b by using partition methods to isolate the mixture of these two pigments from green leaves
3
. 

The first synthetic preparation of a porphyrin was reported by Thudichum in 1867
4a

. In 1884, 

Nencki isolated the first pure porphyrin by preparing hematoporphyrin hydrochloride directly 

from isolated heme
4b

. It was in 1906 that Willstätter’s group eventually separated these two 

chlorophylls (a and b) from each other. Their separation was based on Stokes’ partition methods; 

besides that, they also introduced the column chromatography
5
 for the separation. After 

separation, from combustion experiments, Willstätter realized that these chlorophylls contained 

the metal magnesium. One year later, he confirmed that magnesium was part of the chlorophyll 

molecule from his experiments and he reported that chlorophylls were organomagnesium 
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complexes. After that, experiments were performed to remove the magnesium and to generate a 

metal-free product, named ―pheophytin‖. After chemical manipulation, such as burning, 

oxidization, reduction, and pyrolysis, many of the degradation products were found to be 

pyrroles or contain pyrrolic residues. Using less drastic degradation, much of the original 

molecules were retained and found to be deeply colored stable substances. Then, in 1912, 

Küster
6
 suggested that pheophytin and chlorophylls shared a similar macrocyclic structure, in 

which four pyrrole derived rings were joined to each other by methane bridges. This structure is 

now known as the porphyrin macrocycle. Initially, when Küster proposed his suggested structure, 

Fischer (who was the major porphyrin researcher of the day) doubted his results. It was because 

Fisher thought there would be a stability problem issue with the large ring-size present in 

Küster’s proposal. Then, in 1925, Keilin
7 

discovered that heme (see 1 in Figure 1-2) was an 

organic complex of iron. His discovery was soon confirmed by Fischer and Kämmerer. Also, 

iron was removed from heme, and protoporphyrin IX was generated. The subsequent chemical 

manipulation provided similar results as those of pheophytin. One year later, in 1926, Fisher 

synthesized etioporphyrin-I. From his own synthesis, Fisher also realized the presence of similar 

aromatic structure as suggested by Küster and accepted Küster’s idea. By the late 1930’s, 

Willstätter and Fischer had already worked out the complex structures of both chlorophyll a (see 

3 in Figure 1-2) and heme (see 1 in Figure 1-2) from hemoglobin
8
. It was a surprise to discover 

that although chlorophyll and heme were such difference in their appearances and functionalities, 

they actually shared a similar basic macrocylic structure and gave similar visible spectra. Later 

on, the structures of heme (see 1 in Figure 1-2) and protoporphyrin IX (6) opened the way to 

understanding how the prosthetic group of the cytochromes c isolated from many living things 

could play a crucially important role in biological electron transport
9
.  
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In the 1940’s chromatography became widely used as an important tool in product 

separation and purification; this provided great opportunities to study the complex structures of 

tetrapyrroles. It was in 1948 that vitamin B12 was first isolated as deep red colored crystals
10

. Its 

structure was studied in both the USA and Britain, separately by two teams led by Karl Folkers 

and Sir Alexander Todd. Based on their studies and the efforts of many other research groups, in 

1953, cobalt was found in vitamin B12. At that time, even the macrocyclic ligand that held cobalt 

was identified
11

. It was found that there was a direct link between rings A and D to form a 

smaller macrocycle in vitamin B12, which is different from heme (1) and chlorophyll a (3). The 

parent ring system of vitamin B12 was named corrin.  Then, in 1960, Woodward accomplished 

the first total synthesis of chlorophyll a
12

. 

1.2 Overview of Porphyrins 

1.2.1 Introduction 

 

 

Figure 1-3. Fischer (left) and IUPAC (middle and right) nomenclature systems for porphyrins. 

 

Porphyrin research has been well-established for over a century. It was Thudichum
4a

 who 

first isolated a porphyrin from hemoglobin in 1867. Ever since then, attracted to their interesting 

physical, chemical, and spectroscopic properties and the essential biological functionalities of 

porphyrins, scientists from many different areas have devoted themselves to porphyrin research. 

So far, there has been at least nine Nobel Prizes in Chemistry have been awarded for outstanding 
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achievements in porphyrin chemistry. Most recently there have also been published the twenty 

volumes of ―The Porphyrin Handbook‖. Here, only a brief overview of related porphyrins 

aspects will be discussed, which is intended to help the reader better understand the research 

projects that will be discussed in detail in the following chapters of this Dissertation. 

Porphyrins naturally occur as colored pigments and have been described as ―the Pigments 

of Life‖
12

. Porphyrins and their derivatives occur widely in nature and play important roles in 

biological processes. Representative examples of porphyrin derivatives are hemes, (found in 

myoglobins, hemoglobins, cytochromes, catalases and peroxidases), chlorophylls and 

bacteriochlorophylls. Nature uses them in the most important processes of photosynthesis 

(chlorophylls and bacteriochlorophylls), and in oxygen-transportation, in electron-transfer and 

also in catalytic oxidations (hemes). For example, heme, the iron(II) complex of protoporphyrin 

IX, is the prosthetic group in hemoglobins and myoglobins. These heme proteins play the 

essential roles of transporting and storing molecular oxygen, which is needed for all cellular 

respiration. Heme can catalyze the oxidation of substrates using hydrogen peroxide in 

peroxidases, and catalyze the breakdown of hydrogen peroxide to water and oxygen in catalases. 

Besides these naturally existing porphyrin derivatives, synthetic porphyrins have found 

important applications in the medical research area. Due to their intriguing physical, chemical 

and biological properties, porphyrins and their metalated complexes have also attracted lots of 

interests from various interdisciplinary research areas. 

It was in 1912 that Küster first proposed the existence of the intricate porphyrin ring 

system, which was late confirmed by Fischer. Now it has been well-accepted that the porphyrin 

macrocycle is an aromatic system, consisting of four pyrrole units which are linked by four sp
2
 

hybridized meso-carbons and this model has been confirmed by many hundreds of X-ray 
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structures
6
. Currently there are two nomenclature systems for the numbering of porphyrins and 

related systems (see Figure 1-3). The older one is the so-called the ―Fischer system‖. In this 

system, the meso positions are labeled by a Greek lettering system, and the four pyrrolic sub-unit 

rings are also labeled with the capital letters A, B, C, and D. However, the ―Fischer system‖ does 

not identify all carbons on the porphyrin skeleton. The more modern and more thorough scheme 

is called the ―IUPAC system‖, which identifies every carbon in the macrocyclic ring. Besides 

that it also numbered the carbon of the substituents in more complex systems
12a

. 

 

 

Figure 1-4.  The tautamerization of porphyrins, which show the six possible delocalization 

pathways of porphyrins. 

 

Although there are 22 π-electrons inside the porphyrin macrocyle, only 18 electrons are 

found to actually participate in any one delocalization pathway, which is consistent with 

Hückel’s [4n+2] rule for atomicity, where n = 4. The different 18 electron-delocalization 

pathways are shown Figure 1-4
13a

. The other four electrons situated outside of the delocalization 

pathway are located on the two double-bonds opposite to each other at pyrrole rings, which are 

commonly known as the B and D rings in the Fisher system. The isolation of them from the 

delocalization pathway, in a cross-conjugated manner, makes these two double bonds easily to 
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be reduced or oxidized using numerous reactions. Typical examples are: catalytic hydrogenation, 

reduction with diimide, and hydroboration. The reduction products for porphyrins are usually 

chlorins or bacteriochlorins. As a typical aromatic system, porphyrin is also able to undergo a 

number of electrophilic aromatic substitution reactions (EAS), such as nitration, halogenation 

and formylation on any unsubstituted meso- and/or β-pyrrolic positions
13b-c

. However, the 

quaternary α-pyrrolic carbons rarely participate in any kind of reactions.  It was found that the 

reducing of the aromatic character from the delocalization pathways can induce dramatic 

changes in the spectroscopic properties
14

. 

There are two pyrrolenine nitrogen atoms (pKa~6) and two inner-core NH groups 

(pKa~16) in porphyrins. The former can act as a base to accept protons and the latter can act as 

an acid to provide protons. The pyrrolenine nitrogen atoms can be protonated by strong acids, 

such as sulfuric acid and trifluoroacetic acid (TFA). The inner-core nitrogen protons can be 

removed by bases and metals. Also the presence of these nitrogen atoms makes most of the 

porphyrin derivatives amphoteric and shows both acidic and basic behavior
13b-c

. Also they can 

serve as an inner chelating pocket and provided various opportunities for chemical modifications. 

In most cases, the insertion of metals into the porphyrin macrocycles is easy and the removal of 

them can be achieved with Brønsted-Lowry acids without affecting the macrocyclic conjugation. 

Some represent metalloporphyrins are Cu, Ni, Zn, Fe and Co centered porphyrins.  

The NMR spectra of the aromatic tetrapyrrole show anisotropic effects
15

. When there is a 

magnetic field applied, a ring current is generated and a local magnetic field similar to that in 

benzene is induced. In the proton NMR spectrum, the interior nitrogen protons normally appear 

between δ -4 and -2 due to the high shielding by the ring current. The deshielded meso-protons 

usually appear at very low field (δ ~ 10 ppm) and the pyrrolic protons are also deshielded and 
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tend to resonate at δ 8 to 9, which shows big shift compared to that of pyrrole at δ ~ 6 ppm. 

However, when there is aggregate formation of these porphyrins, their NMR spectra tends to be 

hard to assign.  

Visible absorption spectroscopy is also a powerful tool to probe the structure of the 

tetrapyrrole chromophore of porphyrins. The macrocyclic conjugation gives several 

characteristic weak absorption bands, which are called Q bands and are located between 450-700 

nm; there is one major absorption band known as the Soret band, which is an intense absorption 

band (ε > 100,000) located between 400 and 450 nm
16

. The Soret band is characteristic of the 

macrocyclic conjugation, and it disappears when the aromatic delocalization pathway is 

disrupted.  Porphyrin derivatives show deep colors and have strong absorptions in the visible 

region near 400 nm, with their molar extinction coefficients to be about 10
5
 Mol/L. The color 

difference among porphyrins is attributed to the different absorption spectra associated with 

different unique tetrapyrrolic structure. For example, natural porphyrins have dark red colors, but 

their reduced form, such as chlorins, show dark green or blue green colors. Thus the modification 

of the peripheral double bond of the porphyrins can cause changes of the absorption spectra, both 

the intensity and the wavelength. However, as long as the 18 π-electron cyclic pathway remains, 

the intense Soret band would also remains. The Soret band is absent only when porphyrin 

macrocyclic conjugation is disrupted. On the other hand, although the chelation, pH and different 

peripheral substituent arrays change the absorbance energy intensities and even change the color 

of the compounds, it usually only involves the Q band absorptions, and leaves the Soret band 

intact. 
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1.2.2 Synthetic Methodologies: 

   

Figure 1-5. Historically and biologically important porphyrins.  

 

Figure 1-6. Chemical structure of heme, chlorophyll a and bacteriochlorophyll. 

 

Fisher, the ―father of porphyrin chemistry‖, reported the first total synthesis of the 

porphyrins etioporphyrin-III and octamethylporphyrin, in 1926 (see Figure 1-5). In 1929 Fischer 

synthesized and named protoporphyrin-IX (see Figure 1-5), which is the free base porphyrin of 

hemin
17

. Since then, a large number of synthetic routes have been developed for the preparation 

of both symmetrical and unsymmetrical porphyrin derivatives for structural, mechanistic, 

synthetic and biological studies. Here, some of the most commonly used synthetic methodologies 

are described. Porphyrin syntheses often started from the syntheses of a large class of pyrroles. 

Hans Fischer had already perfected early pyrrole synthetic work and also the syntheses of a 
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variety of porphyrins
18

. His early research work had inspired many research groups throughout 

the world to participate and devote their efforts to improve porphyrin synthetic methodology. 

Now, there are several routes to generate porphyrins. One of them is to modify natural products. 

For example, the modification of chlorophylls a or b, bacteriochlorophylls and hemin (see 

Figure 1-6) can be used to generate very desirable porphyrins.  

Although porphyrins can be generated from total synthesis starting from monopyrrolic 

subunits, the types of porphyrins that can be generated are very limited. Recently, many 

improved synthetic routes have been reported, which now provide easy access to useful 

porphyrins. Currently the syntheses of symmetric porphyrins including both the octa-ß 

substituted or tetra-meso substituted porphyrins, involve the tetramerization of a suitable 

monopyrrolic subunit
19

. However, little progress has been made for the unsymmetric porphyrin 

synthesis. 

1.2.2.1 Tetramerization of Pyrroles: 

It was Rothemund who first introduced monopyrrole tetramerization to tetra-

arylporphyrin syntheses
20

. Rothemund and Menotti who showed that H2TPP could be slowly 

generated at high temperature by reacting benzaldehyde with pyrrole in a sealed tube and using 

pyridine as solvent. This reaction is called the ―Rothemund Reaction‖. The highest yield of 

H2TPP obtained from this reaction was about 11% by using Zn(OAc)2 as a metal template in the 

presence of high pressure. By changing solvents from pure pyridine to a mixture solvent of 

methanol/pyridine at atmospheric pressure, both H2TPP and the chlorin (dihydro) form of H2TPP 

were obtained. The chlorin obtained is referred to as tetraphenylchlorin (H2TPC), which can be 

converted to H2TPP by oxidization with oxygen or DDQ. Due to the harshness reaction 

conditions of the Rothemund reaction, only very few benzaldehdes can be used in this reaction. 
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Thus, it is not practical to prepare H2TPP and the above route becomes rarely used after the 

development of Adler-Longo conditions. The Adler-Longo method was developed in 1964, and 

represents an improvement in H2TPP synthesis that was achieved by refluxing the mixture of 

pyrrole and benzaldehyde in propionic acid under open air conditions
21 

(see Scheme 1-7). 

 

Scheme 1-7. Synthesis of H2TPP using Adler-Longo conditions. 

 

 

Scheme 1-8. Synthesis of H2TPP using Lindsey conditions. 

 

Adler and Longo studied many solvent systems with a variety of salts present to enhance 

the formation of H2TPP. At atmospheric pressure, by refluxing pyrrole and benzaldehyde in 

propionic acid, H2TPP was obtained in up to 20% yield. The reaction conditions were relatively 

mild, from which a much higher yield was achieved and also it has much faster reaction rate 

compared with Rothemund conditions. The milder conditions allowed the preparation of 
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porphyrins with a wide variety of functionalities attached. Although it gave a vast improvement 

over the Rothemund method, this reaction condition still had its limitations. It was still relative 

harsh and more sensitive functionalities failed to survive. Also the purifications became more 

difficult due to the formation of tar. Despite all these drawbacks, it was still the most efficient 

method for the syntheses of meso-tetra-alkylporphyrins at that time. 

In 1986, Lindsey optimized the method and developed an improved synthesis of 

porphyrins, under so called ―Lindsey conditions‖ (see Scheme 1-8). This is by far the most 

effective route for synthesizing symmetrical porphyrins. For example, the preparation of 

porphyrins with the same substituents on all four meso-positions, or all eight of β-pyrrolic 

positions, or a combination of them. Under Lindsey conditions, the synthesis of porphyrin is 

done in two steps through the formation of porphyrinogen from monopyrrole tetramerization and 

a subsequent separate oxidation
22

. 

It was successfully demonstrated by Lindsey that the formation of H2TPP could be 

achieved under equilibrium conditions, and under this situation many functional groups could 

survive. A colorless porphyrinogen was first formed, followed by a subsequent oxidation step 

with p-chloranil or DDQ. H2TPP was formed by dissolving benzaldehyde and pyrrole in 

dichloromethane in a 10
-2

 M solution. The acid catalyst (BF3•Et2O or TFA) was typically added 

at a dilution of 10
-3

 M. The yields of porphyrins generated under these conditions were improved 

to around 30-40%. It was found that the use of p-chloranil for the oxidation typically gave higher 

yields than the case when DDQ was used as oxidation reagent. Lindsey and coworkers 

discovered that not only the oxidation reagent, but the reaction time, the concentration of starting 

materials and the acid catalyst could also affect the reaction. It was found by altering the 

concentration of acid, the yield was only slightly affected. However, the yields of H2TPP were 
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decreased a lot by varying the reagent concentrations to ten-fold higher and ten-fold lower than 

10
-2

 M. The oxidation rate depended on the oxidizing agent. For example, the oxidation can 

finish within minutes by using DDQ, while it requires an hour to complete the oxidation when p-

chloranil was used. The efficiency of Lindsey conditions have been proved for both tetra-

arylporphyrins and meso-tetra-alkylporphyrins, giving unprecedented yields. 

1.2.3 Applications of Synthetic Porphyrins 

Porphyrins play vital roles in biological systems, not only in nature but also in 

applications in material science and medicine areas. 

1.2.3.1 Applications in Material Science 

Porphyrins-based molecular wires are appealing because polyporphyrin systems 

containing redox active and/or photoactive units, which allows the long-distance delocalization 

of electron density, thus makes them ideal systems for electron- or energy- transfer
23

. Earlier 

research using porphyrins and related compounds to study electron transfer was focused on 

modeling the photosynthetic reaction center and on a better understanding of the complex 

mechanism of photosynthesis
23a

. Covalently-linked bisporphyrins and quinine-substituted 

porphyrin dimers and trimers were built and used to mimic the electron transfer process in 

biological systems. Recently, more study has been focused on using supramolecular porphyrin 

arrays as potential photonic molecular wires.  

Certain heme-containing enzymes such as cytochrome P450 have been found to perform 

hydroxylation of alkanes and epoxidation of unfunctionalized alkenes
24

. Noncovalent hydrogen-

bonding interactions have been found to be the most important factor in dynamically regulating 

the active site for PCET (Proton-Coupled Electron Transfer) reactivity inside some of these 

enzyme systems. As a result, a lot of research has been developed to design porphyrin molecules 



15 
 

for biomimetic models for heme-containing enzymes. Recently, porphyrins functionalized with 

hydrogen-bond synthons have been widely studied because they could be used as efficient 

building blocks for construction of supramolecules with appealing structural and electronic 

properties. Among these, the so-called ―Hangman Porphyrins‖ have attracted much recent 

interest, because of the prospective application they have for unraveling the hydrogen bonding 

effect on energy and electron-transfer reaction. Due to the rigidity of the spacer used in these 

systems, a side-to-side arrangement of the porphyrin macrocycle and hydrogen-bond 

functionality has been shown. These hangman porphyrins have simplified the construction of 

biomoleculaes with engineered distal sites as platforms able to control both proton and electron 

transfer, which provides the opportunity to precisely control the functional nature of a hydrogen-

bonding group
25

. Despite these advantages, the elucidation of structure/reactivity relationships of 

PCET catalysis is difficult in porphyrin systems. Significant challenges are posed by the lengthy 

total synthesis and tedious purification of porphyrin platforms and their intractability to modular 

modifications
26

. In the meanwhile, heteroatom-bridged calixarenes, such as the oxygen-bridged 

calix[4]arenes, are easy to access and modify and also display unique chemical and physical 

properties
27

. Inspired by the easy availability and the unique discrete 1,3-alternate conformations 

of oxacalix[4]arenas, the design and synthesis of hangman porphyrin analogs with 

oxacalix[4]arene as spacer to hang hydrogen synthons over porphyrin macrocycle
28

 become very 

attractive, and this will be discussed in Chapter 4.   

1.2.3.2 Biological Applications of Porphyrins - Photodynamic Therapy (PDT) 

PDT is a binary therapy which combines light and a photosensitizer in the presence of 

oxygen to destroy tumors or unwanted tissues
29 

(see Figure 1-9). It has been found that many  
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Figure 1-9. How photodynamic therapy works. Copy from website (2007) 

(http://www.bmb.leeds.ac.uk/pdt/images/4man/). 

 

porphyrin derivatives are effective photosensitizers for PDT treatment of cancers. Due to their 

selectively accumulation ability in tumor tissues, retain for relatively long periods, low-dark 

toxicity, high chemical stability, high affinity for serum proteins, ability to form stable 

complexes with variety of metal ions, fluoresce, and absorb strongly in the visible region of the 

optical spectrum, porphyrin derivatives are also the most widely explored sensitizer/tumor active 

compounds
30

.  

 

Figure 1-10. How toxic singlet oxygen generated. 

 

Although the distribution of porphyrin based sensitizers in the body is still under 

investigation, it is believed that some structural features, such as the nature of peripheral groups, 

coordinated metal ions and accompanying axial ligands will affect the uptake and retention of 

porphyrin-molecules in tumors
31

. In PDT, the photosensitizer has a negligible dark toxicity to the 

body while it is accumulated preferentially in the rapidly dividing cells
32

. Also, it has been 

http://www.bmb.leeds.ac.uk/pdt/images/4man/
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hypothesized that porphyrins have the tendency of association with plasma proteins, particularly 

low density lipoproteins (LDL), while the increasing level of LDL receptors has been found in 

cancer cells
33

. Usually, photosensitizers are injected into the bloodstream and it is generally 

believed that amphiphilic molecules that bear both hydrophobic sites and hydrophilic sites 

should improve tumor-specificity (see Figure 1-9). At the absence of light, the photosensitizer is 

harmless and has no effect to either healthy or abnormal tissue. When exposed to a carefully 

regulated specific light dose, it becomes activated and can rapidly destroy the tissue irradiated 

with the light. Compared to the other currently available cancer therapeutic methods, such as 

chemotherapy, radiotherapy and surgery (or a combination of these methods), PDT has the 

advantage of preferential accumulation of the photosensitizer in the target tissue and precise 

selectivity of the treatment by controlling the illumination
34

. Figure 1-10 shows a modified 

Jablonski diagram of the mechanism for PDT. After the light penetrates the tissue, the 

photosensitizer is excited and reacts with other substrates, mainly the molecular oxygen to 

generate highly cytotoxic species, including singlet oxygen, superoxide anion and hydroxyl 

radicals, which can cause irreversible damage to the tumor cells
34

. Ground state (
1
S) is the stable 

electronic configuration of photosensitizers
35

. With an appropriate wavelength of light irradiation, 

the photosensitizer is excited to its singlet excited state (
1
S*). When it decays to the ground state, 

the fluorescence radiation enables the identification of tumor tissue. Meanwhile, it can also 

undergo a nonradiative process of inter-system crossing (ISC) to convert the photosensitizer 

from a singlet state to a triplet excited state (
1
T*) or through internal conversion to release the 

energy as heat. The relaxation of photosensitizer from the triplet excited state to the ground state 

usually through two pathways: release of phosphorence radiation, or non-radiatively transferring 

its energy to another molecule with a triplet ground state. ISC involves a change in the electron 
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spin, thus it is a spin-forbidden pathway and imposes a relatively long time on the triplet state, 

allowing interaction with adjacent molecules of the photosensitizer. Molecular oxygen has a 

triplet ground state and is abundant in tissue. It can interact with the triplet state photosensitizer 

to generate highly cytotoxic species. A good photosensitizer can go through this pathway with 

high efficiency.  

 

Figure 1-11. Chemical structure of hematoporphyrin. 

Hematoporphyrin (see Figure 1-11) was the first evaluated porphyrin for PDT and it is 

readily available from blood. Back to the early 1960s, Lipson et al. had already prepared a 

derivative of hematoporphyrin (HPD) which displayed an enhanced selectivity for PDT. HPD is 

a mixture of hematoporphyrin, protoporphyrin-IX, hydroxyethylvinylporphyrin and other 

complex compounds containing dimeric and oligomeric derivatives of hematoporphyrin
36

. In 

1981, Dougherty et al. prepared a more purified form of HPD, known today as Photofrin®, from 

gel exclusion chromatography. Photofrin® was approved in the USA by the Food and Drug 

Administration (FDA) and it also is now approved in eleven European countries. Over the last 

two decades, Photofrin® has been used successfully in the treatment of both early and advanced 

stages of the lung cancer. Although it has shown curative for a range of cancers, Photofrin® has 
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some well-documented drawbacks for the PDT treatment: First of all, it is a complex mixture of 

HPDs and there are reproducibility problem associated with both the synthesis and its 

pharmacological benchmarking; second, Photofrin® absorbs weakly in the therapeutic window, 

thus there is limited usage of this compound in treating deep-seated tumors; third, there is long 

retention time of this drug in normal skin and thus Photofrin® induces prolonged skin 

sensitivity
37

. Due to these problems associated with Photofrin®, many research efforts have been 

devoted to the development of new or improved compounds for PDT since the early 1980s.  

An ideal PDT photosensititizer should have good pharmacokinetic properties, 

fluorescence, and an increased absorbance in the red region of the optical spectrum; it should 

have a high quantum yield of the triplet state, efficient generation of cytotoxic oxygen species, 

appreciable selectivity for malignant tissue over normal tissue, and low dark toxicity
38

. Among 

these, the most important issue is the strong absorption in the therapeutic window (between 650-

750 nm) to ensure the deep penetration of light through tissue and with minimal light scattering. 

Over the last decades, research to develop new photosensitizers has been mainly focused on the 

synthesis of porphyrin based sensitizers and on their structure-functionality relationships. Among 

those, chlorins, benzoporphyrins, phthalocyanines, and expanded porphyrin analogs have been 

found to be strong long wavelength absorbers
39

.  Mono-L-aspartyl chlorin e6 (MACE, NPe6, 

Talaporfin, LS-11) and mono-carboxylic acid (BPD-MA, Visudyne™), which are obtained either 

from chlorophyll or from protoporphytin, are important naturally derived second generation 

photosensitizers. These two, as PDT photosensitizers, are currently undergoing human clinical 

trials for the treatment of various cancers and age-related macular degeneration
40

. In the 

meanwhile, synthetically derived second generation photosensitizers, such as the symmetric 
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meso-tetra(m-hydroxyphenyl)chlorin (m-THPC, Foscan®) and Sn(IV)-etiopurpin (SnET2, 

PuryltinTM), are in their early clinical trials for the treatment of various cancers
41

.  

1.3 Benzoporphyrins 

1.3.1 Overview of Benzoporphyrins 

Benzoporphyrin refers to the type of porphyrin that has aromatic subunits fused at the β-

pyrrolic positions (see Figure 1-12).
 
When there are four aromatic subunits fused at the β-

pyrrolic positions of porphyrin, they are called tetrabenzoporphyrins (TBPs) (see 1-10 in Scheme 

1-9).
42 

TBPs are chemically stable compounds, and have unique chemical, physical and 

spectroscopic properties. Among those, their absorption spectra are significantly shifted to the 

infrared region due to the extended π-conjugation. Different from porphyrin derivatives, which 

can absorb light between 380-400 and 500-560 nm, TBPs have absorbance in the near IR region, 

which allows deep light penetration into tissue and they are therefore suitable photosensitizers in 

photodynamic therapy (PDT) of cancer
43

. They can act as models for naturally occurring 

tetrapyrrole derivatives. They have similar physical properties compared with phthalocyanine, 

which is one of the most widely studied organic pigments, having many applications in industry 

as dyes, inks, catalysts, electrical conductors and other optical materials. Similarly, TBPs have 

found applications as opto-electronic materials, nonlinear optical materials, and luminescent 

markers for oxygen, near-IR labeling dyes, and pH sensors in biomedical imaging
44

. 

Benzoporphyrins were first discovered in trace amounts in various oil shales and petroleum
45

. 

Despite the increasing interests in their syntheses and characterization, researches on 

tetrabenzoporphyrins (TBPs) have progressed slowly due to the difficult synthetic access to these 

compounds. Above all, unsymmetrical (non-tetra) benzoporphyrins such as the 
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monobenzoporphyrins and dibenzoporphyrin (see Figure 1-12), have proven to be very difficult 

to synthesize. 

 

Figure 1-12. Chemical structures of unsymmetrical benzoporphyrins.  

 

1.3.2 Syntheses of Benzoporphyrins  

 

Scheme 1-9. Previous symmetrical benzoporphyrin synthetic routes. 
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Helberger and coworkers first described the syntheses of TBPs from ocyanoacetophenone 

and various phthalimidines
46

. Back then, there were two main approaches for the synthetic 

development of benzoporphyrins: The first approach was the high temperature condensation 

using phthalimidine derivatives at the presence of a metal template; the second approach was the 

condensation of pyrroles with mesocarbon donors
47

. Later on, many improved syntheses of 

benzoporphyrin were reported (see Scheme 1-9).  

The initial improvement of TBP synthesis was made by Linstead’s group, in which TBPs 

were prepared by high temperature condensation (350-400 °C) of 1-6 or 1-7 (see Scheme 1-9) in 

the presence of metal salts, such as iron, zinc, magnesium, cadmium, or metallic acetates
48

. The 

metalated symmetrical benzoporphyrins thus obtained were usually very impure and required 

extensive purification processes. Later on, Vogler and Kunkely used the template reaction of 2-

acetylbenzoic acid (see 1-8 in Scheme 1-9) with zinc(II) acetate in the presence of aqueous 

ammonia and molecular sieves at 400 °C to improve the reaction efficiency and simplify the 

purification process
49

. Also, they found that the condensation of phthalimide or its potassium salt 

with sodium acetate or malonic acid (see 1-9 in Scheme 1-9) in the presence of zinc(II) acetate at 

360 °C could afford TBPs. Vogler and Kunkley’s synthesis affords the corresponding 1-10 in a 

more pure form in 17% yield
50

.  

Metalated symmetrical benzoporphyrins can also be synthesized using Rothemund 

conditions, in low yields, from unstable isoindoles through inert atmosphere pyrolysis in the 

presence of metals or metal salts, or from refluxing in a high-boiling solvent (1,2,4-

trichlorobenzene or 1-chloronapthalene). Remy improved the synthesis of metalated symmetrical 

benzoporphyrins by high temperature condensations of isoindole (see 1-15 in Scheme 1-10) and 

formaldehyde in the presence of a metal or metal salt
51

. It was found that metal salts play an 
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important role in Remy’s method. In the presence of metal salts the yield achieved for the target 

compound was 53%. In the absence of the metal salt, only very low yields were achieved. Under 

similar condition, when changing from formaldehyde to benzaldehyde, the metalated 

tetraphenyltetrabenzoporphyrin was obtained as the major product together with a mixture of 

partially meso-substituted metallo-TBPs
52

.  

 
Scheme 1-10. Recently improved syntheses of benzoporphyrins 

 

Recently, Vicente et al. developed milder and more modern synthetic methods to prepare 

metalated symmetrical benzoporphyrins (see Scheme 1-10)
53

. Starting from pyrroles (1-11 and 1-

12 in Scheme 1-10), which can be obtained from classical Barton-Zard conditions
54

, firstly the 

reduction with lithium aluminum hydride was performed; subsequently cyclotetramerization was 

performed in acetic acid, and finally oxidation was achieved by using DDQ. The mixtures of 

isomers of phenylsulfonyl-substituted porphyrins were separated in 60% yield from this reaction. 

The elimination of the phenylsulfinate units was achieved under basic condition and subsequent 
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oxidation was performed by using DDQ. After isolation, the target metalated symmetrical 

benzoporphyrins 1-10 were obtained in 53% overall yield. Meanwhile, Ono et al. avoided the use 

of instable isoindole in the preparation of 1-10 by generating a masked isoindole 1-14 and 

subsequently using it for the reaction
55

. Ono’s improvement was performed by reducing 1-14 

with lithium aluminum hydride, then acid catalyzed cyclotetramerization, and eventually 

oxidation with DDQ. After isolation, 1-13 was obtained in 30% yield. The eventual generation of 

tetrabenzoporphyrin 1-10 was achieved in very pure form in quantitative yield through a retro-

Diels-Alder reaction by just simply heating 1-13 at 200 °C. 

The condensation of benzodipyrromethene hydrobromides and Diels-Alder type reaction 

involving β-vinyl porphyrins and activated dienophiles can also be used to generate 

benzoporphyrins
56

. Compared with porphyrins, unsubstituted TBP has very poor solubility due 

to its extended, planar, π-conjugated system and high π-π stacking (aggregation) tendency. Thus, 

the physicochemical property evaluation of these compounds has been slow. However, the 

tetraaryl substituted tetrabenzoporphyrins have enhanced solubility due to their significantly non-

planar structure due to the steric hindrance effect generated from the four meso-aryl substituents.  

1. 4 Overview of Chlorin-e6 as a PDT Sensitizer 

The development of the so-called ―2
nd

-generation‖ of photosensitizers is aimed to 

increase the efficiency of photosensitizers in PDT, expand their applications in PDT, and 

maintain the advantages of currently approved photosensitizers. Current research has focused on 

the improvement of their photophysical and pharmacokinetic properties. Chlorins have strong 

absorptions at the ideal part of the therapeutic region. The electron delocalization pathway of 

chlorins is shown in Figure 1-13. Unlike the porphyrins, there are no chlorin-based 

photosensitizers that have been approved in the United States by the FDA. However, mono-(L)-
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aspartylchlorin-e6 is currently in advanced-stages of clinical trials as a 2
nd

-generation of 

photosensitizer.  

 

Figure 1-13. The tautomeric structure of chlorins. 
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Figure 1-14.  The comparation of the UV-vis absorption spectra of porphyrin (top) and chlorin 

(bottom). 

 

 

Mono-(L)-aspartylchlorin-e6, known as talaporfin or NPe6 or LS-11 is a derivative of 

chlorophyll a. More specifically, NPe6 is an aspartic acid conjugate of chlorin-e6
57

. It was 

prepared from pheophorbide a, which was prepared by transesterification of chlorophyll a with a 

methyl ester group at the phytyl ester position
58

. The isocyclic ring-opening reaction of 

pheophorbide a, followed by saponification of the methyl esters, and subsequent coupling with a 

protected aspartic acid; after final step deprotection, NPe6 was obtained
59

. As a chlorin 

derivative, NPe6 has characteristic long wavelength absorption at 666 nm (see Figure 1-14), 

which allows for greater light penetration, thus increasing the utility of photons compared to 

Photofrin®. Upon irradiation, NPe6 gives good yields of long-lived triplets with the lifetimes 



26 
 

ranges from 500 to 800 μs, thus giving high yields of cytotoxic singlet oxygen. Furthermore, it 

can rapidly clear from normal tissue, having negligible residual photosensitivity in tissues. 

Compared with Photofrin® in PDT of cholangiocarcinoma, NPe6 (see Figure 1-15) shows many 

advantages: it can reduce tumor volume, inhibit tumor re-growth, and increase depth of tissue 

injury up to 67%. Also, the undesired side effect of residual skin photosensitization has been 

found to be decreased
60

.  

 

Figure 1-15. Chemical structures of temoporfin (left), the main component (hematoporphyrin) of 

Photofrin® (middle) and NPe6 (right). 

 

In the binary treatment modalities, stability is especially significant. Degradation 

products will shift the light absorbtion wavelength outside of the laser therapy window and 

makes the treatment ineffectual. Chlorophyll a derivatives have increased stability due to their 

unusual structural characteristics, which is hard to access from current synthetic methods
61

. As a 

chlorophyll-a derivative, NPe6 has increased stability compared to the other chlorin 

photosensitizers, such as temoporfin (Figure 1-15, left), which can readily oxidize back to 

porphyrin. In order to improve the efficiency of photosensitizers in PDT, amphiphilicity is 

required
62

. Recently, it was found that small differences in photosensitizer structure, even 

involving regioisomerism of substituents, can bring the huge functional differences, for example 
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in subcellular localization, which has already been demonstrated as a factor in the mode of cell 

damage (i.e., necrosis vs. apoptosis)
63

. Chlorophyll a derivatives related to chlorin e6 have three 

carboxylic side chains, thus providing synthetic handles for easy access for modifications to 

generate novel amphiphilic photosensitizers. The success of NPe6 as a photosensitizer has 

attracted much interest in the optimization of its synthesis. 

Ironically, despite its interesting properties and the increasing attention to its synthesis, 

there was a great amount of ambiguity associated with the structure identification for NPe6. The 

first report of NPe6 came from a patent filed in 1987, in which it was claimed that NPe6 was 

probably a mixture of regioisomers. With isolation from HPLC a pure compound was achieved, 

and it was called NPe6
64

.  Ever since then, all academic publications shared the idea that NPe6 

was the 17
3
-position regioisomer of mono-(L)-aspartylchlorin-e6. Although none had shown any 

convincing evidence of this structure, everybody accepted this theoretically favored structure. In 

1998 a Japanese research group proposed an alternative view of the structure of NPe6 in the 

journal Heterocycles; they claimed that NPe6 was actually the 15
2
-position regioisomer.  This 

conclusion was based on a 2D-NMR study result obtained in D2O. The results on this paper were 

not accepted by the porphyrin community due to the seriously complicated NMR analysis 

associated with chlorin aggregations in water
65

.  Moreover, the new result was counterintuitive 

from a mechanistic perspective, which was the main reason for ambiguous structure analysis. 

Since no protecting group strategies had been employed during the synthesis, with three 

carboxylic acids at the chlorin periphery readily available for coupling, it was expected that the 

17
3
-position coupling product would be the major product if the coupling mechanism is through 

the classic carboxylic acid activation with DCC. In 2006, our group reported the X-ray structure 

of the tetramethyl ester of authentic NPe6, which was achieved from methylation of commercial 
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available NPe6 with diazomethane
66

. This clealy showed that authentic NPe6 is the 15
2
-aspartyl 

regioisomer. The unambiguous syntheses of all three NPe6 regioisomers and the difunctional 

NPe6 ―DACE‖ were also reported by our group
67

. Since the formation of the new NPe6 (the 15
2
-

regioisomer) structure was hard to explain thus it became necessary to discover the underlying 

mechanism for the unique formation of this structure. Chapter 6 will present the related 

mechanism study results. 

1.5 Overview of Porphycene 

 

Figure 1-16. Chemical structure of porphycene (right) and porphyrin (left). 

 

The name of porphycene combines both porphyrin and acene together, in order to 

describe its unique structural constitution (see Figure 1-16)
68

. The increasing interests in 

porphyrin researches led to the discovery of porphyrin isomers such as porphycene in 1986 by 

Vogel
68

. Two years later, in 1988, he also reported the first heteroporphycene
69a

. In 1993, Merz 

and coworkers reported the synthesis of tetrathiaporphycenes
69b

. One year later, Cava and 

coworkers also reported their independent synthesis of this type of porphycene
69c

. Following 

these initial reports, the synthesis of corrphycene
70a

 and hemiporphycene
70b

 were report in 1994, 

and the synthesis of isoporphycene
71

 was reported in 1996. The preparation of porphycenes 

usually starts from a 5,5’-diformyl-2,2’-bipyrrole. A low-valent titanium coupling reaction was 

used for the final step cyclization reaction, often the McMurry coupling
72

. Shortly after the 

synthesis of porphycene, Vogel and his coworkers realized that porphycenes possess a strong 

intense absorption at the phototherapeutic window for PDT (between 600 and 800 nm), and that 
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this was red-shift compared to porphyrin systems. Thus they proposed that porphycenes might 

serve as an important photosensitizer in the photodynamic therapy of cancers.
72,73

 Ever since 

then, many porphycene derivatives have been synthesized. It was found that the peripheral 

substitutents of porphycenes can affect the photoexcited triplet states of free-base porphycenes. 

Richert et al. prepared the tetramethoxy- and dimethoxy-porphycenes and subsequently 

converted them into their 9-acetoxy-substituted derivatives. Among these, 9-acetoxy-2,7,12,17-

tetrakis (β-methoxyyethyl)porphycene has been used for PDT of psoriatic lesions. Also, 

extensive preclinical and phase I /II clinical trials with this dye have been performed
74

.  

Considering the dominant role that metalloporphyrins play in porphyrin chemistry, the 

metalation of porphycene also attracted lots of interests. Due to the strong intra-core NH-N 

hydrogen bonding  and the rectangular shape of the four central nitrogen atoms, the metalation of 

porphycene is relatively difficult compared to porphyrins, and the type of metalloporphycenes 

that have been reported
71a,72, 75

 are limited. There are several other ways to modify porphycenes, 

which mainly involve: 1) modification at the pyrrolic nitrogens
76

; 2) catalytic hydrogenation; 3) 

post-synthetic skeletal modification
77

. 

The characteristic spectrum properties of porphyrinoid aromatic system can be found in 

the absorption spectra of porphycenes. There is one split Soret-like band around 370 nm and 

three enhanced Q-band absorptions in their UV-vis spectra. With the higher intensity of Q-band 

absorption compared to those of porphyrins, porphycenes are more attractive compared with 

porphyrin derivatives for application in PDT of cancers
72,73

.  Compared to porphyrins, the NMR 

spectra of porphycene shows great high  field shift of the internal NH protons, from around -2~-

4ppm to around +3ppm
78

. 
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CHAPTER 2. β,β’-FUSED METHYLENEPROPANOPORPHYRINS 

2.1 Introduction 

Porphyrins can be used as chemical sensors
1-3

, catalysts
4,5

, and as molecular devices
6,7

. 

Among those, porphyrin systems functionalized with redox groups, such as ferrocene, have been 

reported in the last decades and have found potential applications in solar energy conversion
1-3

. It 

was found that the properties of these systems depended on the efficient π-overlap between the 

central porphyrin unit and the peripheral substitutents. Lately metallocene-modified porphyrins, 

as charge-transfer materials, have also attracted much attention due to their wide applications as 

molecular conductors and molecular magnets. Metallocene-modified porphyrin complexes have 

been studied over the last decades
8-9

. In most cases, the metallocene fragments were connected to 

the porphyrin through various spacers at meso- or at β- position of porphyrins. For example, the 

direct connection of the metallocene to the meso-positions of porphyrins through a single C-C 

bond, an aromatic system, or via conjugated double or triple bonds
1,10,11 

have been reported. 

However, the spectroscopic and electrochemical results indicate negligible strong 

communications between the two fragments. This is attributed to the poor overlap (if any) 

between the two aromatic π-systems.  

In the meanwhile, the design and synthesis of covalently linked multiporphyrin arrays 

became a frontier research area in porpyrin chemistry. These multiporphyrin arrays
12

 have 

unique photo-electronic properties
13-16

, and have attracted much recent interest because they play 

important roles in many areas such as in light harvesting,
17

 energy and electron transfer,
18

 and 

multielectron redox catalysis
19

. The construction of these multiporphyrin arrays also required an 

extended π-electron network. Among the fused porphyrin dimers and oligoporphyrins being 

reported, significant novel spectroscopic properties
20-21 

were observed; in particular, the 
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formation of bisporphyrin sandwich complexes has been shown to dramatically change the redox 

properties of porphyrins. It was found that in bis(porphyrin) sandwich complexes, the porphyrin 

complexes acted as both the electron-donor and electron-acceptor species
22

. The initial study in 

our group had shown that the fusion of two porphyrins at β-positions could enhance the overlap 

of the two π-systems, and enhance the interactions between the redox moieties. The formation of 

sandwich complexes can enhance the overlap of porphyrin HOMOs to assist the energetic 

situation of both the porphyrin-porphyrin bonding and anti-bonding orbitals. It is reported that 

the large metal ion in these bis(porphyrin) sandwich complexes are generally much easier to 

oxidize than the corresponding monoporphyrin
23-24

, since the large metal ion is able to hold two 

porphyrin macrocycles close enough to raise the HOMO energy level. For the metallocene-

containing bisporphyrin and oligoporphyrins, there is long distance communication from 

frameworks that should find attractive applications in nanoelectronics.  

On the other hand, the covalently linked porphyrin arrays, especially cofacial 

porphyrins
25,26

 have been widely studied in the past two decades because of their unique photo-

electronic properties. Particularly, these cofacial porphyrins have found potential applications as 

electron-energy transfer moieties in molecular wires
21,27

. So far, several fused bisporphyrins and 

oligoporphyrins have been synthesized
28

. Among these, the most successful cofacial porphyrins 

are the so-called ―Pacman Porphyrin‖ systems, which consist of two octa-alkylporphyrins held 

almost cofacial through a single rigid bridge.
 25

 However, the synthesis of cofacial porphyrins 

has been, and will still remain, a challenge.
29

  

The development of new methods for carbon-carbon bond formation is at the heart of 

organic synthesis. The most desirable methods are those that are easily accomplished in large 

scale, operate near ambient temperature, and do not require drastic reaction conditions. Usually, 
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the construction of carbocyclic rings requires the preparation of highly functionalized 

intermediates.  The reactions of atomic oxygen with unsaturated organic compounds have 

demonstrated that the primary reactive intermediates can undergo extensive rearrangement 

before forming isolable oxygenated products
30,31

. The reactions of triplet oxygen atoms with 

olefins
32

, methylenecycloalkanes
31

, and phenylethylenes
33

 have been reported.  

The construction of these bisporphyrins and oligoporphyrins required efficient syntheses 

of mono-methylenepropanoporphyrins and bismethylenepropanoporpyrins. In this Chapter, the 

efficient synthesis of these porphyrin monomers will be discussed. Based on these monomers, 

the construction of novel bisporphyrins will also be discussed.  

2.2 Results and Discussion 

2.2.1 Syntheses of β,β’-Fused Methylenepropanoporphyrins  

The tandem carbon-carbon bond formation catalyzed by Pd(0) through [3+2] 

cycloaddition has been reported
34-37

. In most cases, a strongly electron-withdrawing group, such 

as ester, nitrile, nitro, ketone or sulfone, is required to activate the double bond towards the 

cycloaddition.  In the meanwhile, there are few reports about the reactivity of the activated 

double bonds toward this [3+2] cycloaddition
38

. Also it is required that the Pd(0) be generated in 

situ for the 1,3-dipolar cycloaddition. Solvents also found an important role in this type reaction. 

For example, the substitution of toluene with THF could greatly shorten the reaction time and 

enhance the cycloaddition yield
39

.  When considering the readily available selective nitration of 

porphyrin, the Pd(0) catalyzed [3+2] cycloaddition reaction of 2-[(trimethylsilyl)methyl]-2-

propen-1-yl acetate with electron-deficient double bonds are very attractive in building 

methylenepropanoporphyrins
38

. A Michael-addition, followed by the ring-closure reaction, is 

believed to be the mechanism
40-42

 for this reaction.  
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2.2.1.1 Synthesis of β,β’-Fused Mono-methylenepropanoporphyrins 

It’s well known, that although there are a total of 22π-electrons in the porphyrin system, 

only 18 of them are involved in any of the delocalization pathways (see Figure 2-1). The other 

four electrons that are not participating in the delocalization are located at the opposite two 

peripheral double bonds. These two cross-conjugated double bonds have isolated alkene 

properties. It was found that when there was a nitro group attached at the β-position of a 

porphyrin, as in 2-nitro-5,10,15,20-tertraphenylporphyrins, the nucleophilic addition to that 

specific position became very easy. Thus, based on the nitroporphyrins, a range of β-substituted 

porphyrins could be obtained. Our group previously had reported the utility of 2-nitro-

5,10,15,20-tertraphenylporphyrins for double-bond activation on the periphery of porphyrins due 

to the readily available preparation of 2-nitroporphyrins in large scale and without the 

requirement for chromatography purification
43, 44

.  
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Figure 2-1. Tautomerism of free base porphyrin (left) and metalloporphyrin (middle to right). 

 

Here, nickel(II) and copper(II) were chosen as the central metal of the porphyrin, due to 

the facts that nickel(II) porphyrins are robust, can survive both the strong acidic and basic 

conditions, and could be used directly for NMR study. On the other hand, it is easy to generate 
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free base porphyrin from copper(II) porphyrins and subsequently other types of metal salts can 

be inserted to form various types of metalloporphyrin. 
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Scheme 2-1. Methylenepropanoporphyrin synthetic route. Reaction conditions: a) M(acac)2, 

MeOH/CHCl3 = 1/3, reflux; b) LiNO3, AcOH / Ac2O / CHCl3, reflux; c) Pd(OAc)2, (i-PrO)3P, 2-

[(trimethylsilyl)methyl]-2-propen-1-yl acetate, THF, Argon, reflux. 

 

The syntheses of β,β’-fused methylenepropanoporphyrin monomers 2-1-3 (see Scheme 2-

1) were started from 5,10,15,20-tertraphenylporphyrin (H2TPP), which was easily synthesized 

from the Adler-Longo condensation of pyrrole and benzaldehyde
45

. Considering the 
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regioselectivity differences between free-base porphyrin and the metalloporphyrin for the 

nitration reaction, the insertion of metal before nitration was mandatory
46, 47

.  

Quantitative metalation of porphyrin to generate 2-1-1 was performed at refluxing 

temperature by dissolving H2TPP in methanol/chloroform (v/v = 1/3) in the presence of 10 

equivalents of metal acetylacetonate [M(acac)2]. After filtration to remove the excess amount of 

M(acac)2,  the desired product 2-1-1 was obtained. Further recrystallization was performed from 

MeOH/DCM. The subsequent mono-nitration to generate 2-1-2 was performed in 

chloroform/acetic acid (AcOH); acetic anhydride (Ac2O) and lithium nitrate (LiNO3) was used as 

the nitration-reagent. The resulting 2-1-2-Cu was isolated in 78% yield and a similar yield was 

obtained for 2-1-2-Ni. The preparation of mono-methylenepropanoporphyrin 2-1-3 was achieved 

by Pd(0) catalyzed [3+2] cycloaddition reaction as described in the literature
38

. The catalyst, 

Pd(0), was prepared in situ by reacting of Pd(OAc)2 with triisopropylphosphite [(i-PrO)3P] in 

THF under strict air-free conditions at room temperature. It generally took 30 minutes for the 

generation of Pd(0). It was found that even a minute amount of air could ruin the generation of 

the Pd(0) catalyst. The solution changed color from yellow to colorless with the generation of 

Pd(0). To this colorless THF solution of Pd(0), was added solid 2-1-2, and followed by 2-

[(trimethylsilyl)methyl]-2-propen-1-yl acetate with exclusion of air. Immediately, this reaction 

mixture was placed in a preheated (90 
o
C) oil bath and refluxed for a period of 2 days. TLC was 

used to follow the reaction. Upon the complete consumption of the starting material, the reaction 

temperature was raised to 100 
o
C, and the mixture was refluxed for an additional period of 2 days. 

After the reaction mixture was cooled to room temperature, the desired 2-1-3 was purified using 

a silica gel column eluted with DCM/hexane (v/v = 1/10). After removing the solvent under 
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vacuum, 2-1-3-Cu was obtained as a reddish brown solid in 85% yield; 2-1-3-Ni was obtained in 

similar yield.  

It was found that the presence of metal at the porphyrin central was very necessary for 

ensuring the success of this Pd(0) catalyzed cycloaddition reaction. The use of free-base 

porphyrin for this coupling reaction failed to generate the desired product. The nature of the 

metal also played an important role for the success of this reaction. It was noticed that despite the 

fact that the Pd(0) catalyzed cyclization reaction works well for both 2-1-2-Cu and 2-1-2-Ni, it 

can only generate tiny amounts of 2-1-3-Zn when 2-1-2-Zn was used.    

 

Figure 2-3. X-Ray structure of 2-1-3-Cu (CuTPPCp): A) top-view, B) side-view. 

 

Figure 2-3 shows the X-ray structure of 2-1-3-Cu. The crystal was obtained by diffusion 

of hexane into a concentrated DCM solution of 2-1-3-Cu. The 24-atom porphyrin ring system 

has a flattened saddle conformation, with mean out-of-plane deviation 0.18 Å and maximum 

0.417(9) Å. The Cu atom lies 0.017(1) Å from this plane and forms Cu-N distances in the range 

1.975(7) - 2.006(6) Å.  The five-membered ring carrying the exocyclic C=C bond is nearly  
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Scheme 2-2.  Double-bond migration under weak acid catalytic condition. 
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Scheme 2-3. ZnTPPCp synthesis. Reaction conditions: a) 5% H2SO4/TFA; b) Zn(OAc)2, 

MeOH/CHCl3 = 1/3, reflux. 

 

planar, with mean deviation 0.03 Å, and it is coplanar with the pyrrole ring fused to it. In the 

presence of p-toluenesulfonic acid (p-TsOH) as a weak acid catalyst, 2-1-3-M (M = Cu, Ni) was 

successfully converted into its regioisomer 2-2-1-M (M = Cu, Ni) (see Scheme 2-2) in around 

90% yield in refluxing CHCl3 solution after a period of one day. It was not possible to obtain the 

desired 2-2-1-Zn from the Pd(0) catalyzed [3+2] reaction with znic(II)porphyrin. An alternative 

route to prepare 2-2-1-Zn from demetalation of 2-1-3-Cu and subsequent insertion of zinc(II) 

also failed. The demetalation works well and generated a 95% yield of free-base porphyrin; 
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however the metalation reaction using the zinc(II)-salt was only performed in extremely low 

yield (see Scheme 2-3). It was found that most of the starting material free-base porphyrin was 

converted into extreme polar mixtures with a green color. This is attributed to the easy photo-

oxidation properties in the presence of air due to the photosensitizing properties of 2-1-1-Zn. 

After this, porphyrin 2-1-3-Cu was treated with lithium diisopropylamide (LDA)
48-50

 at 0 
o
C (see 

Scheme 2-4). The color of the solution changed from red to green, which indicated deprotonation 

of the fused cyclopentadienide ring system. This color change is attributed to the delocalization 

of electrons from the porphyrin π-system of 2-1-3-Cu with the aromatic cyclopentadienide. After 

adding FeCl2 to the reaction mixture under strict air-free conditions, it was allowed to continue 

stirring at room temperature for an additional period of one day. 

 

Scheme 2-4.  Bis-copper(II) porphyrinatoferrocene complex synthesis. Reaction conditions: a) 

LDA, THF, 0 ºC~r.t.; b) FeCl2, THF, reflux; 7.5 % yield. 

 

MALDI-TOF mass spectrometry gave a peak at MW 1510.1 corresponding to the 

formation of 2-4-1. Silica gel plates were used for the purification, eluted with 

DCM/cyclohexane (v/v = 15/1).  In the optical spectrum for 2-4-1, there was a broad Soret band 

[UV-vis: λmax CH2Cl2 (log ) 410 nm (5.04)] and no well-defined Q bands were observed.  
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2.2.2 Synthesis of β,β’-fused Bis-methylenepropanoporphyrins. 

Selective Synthesis of cis-Bis(methylenepropano)porphyrins  
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Figure 2-4. Six regioisomers of the di-nitro-5,10,15,20-tetraphenylporphyrin. 

It was considered, in the planning of this project, that opp-bis(methylenepropano) 

porphyrins might eventually yield opp-bis(cyclopentadienide)porphyrins that could be used for 

construction of novel conducting redox materials. The syntheses of these 

bis(methylenepropano)porphyrins involved the preparation of 2-n (n = 1-6) (see Scheme 2-5 and 

2-6), which was prepared from extending the reaction time of the mono-nitration reaction and 

with the use of excess amounts of nitration reagents (see Scheme 2-1). The six regioisomers of 

dinitroporphyrin 2-1 to 2-6 were obtained as a mixture in around 60% total yield. Only a tiny 

amount of the mono-nitro-product and trinitro-products were obtained.  After a short silica gel 
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column separation, the six regioisomers of dinitroporphyrin 2-1 to 2-6 (see Figure 2-4) were 

separated as a mixture from the other nitro-products. 
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Scheme 2-5. Selective cis-Bis(methylenepropano)copper(II)-porphyrin dsynthesis. Reaction 

conditions: a) LiNO3, AcOH/Ac2O/CHCl3, reflux; b) Pd(OAc)2, (i-PrO)3P, 2-

[(trimethylsilyl)methyl]-2-propen-1-yl acetate, THF, argon, reflux. 

 

.  

Figure 2-5. X-Ray structure of 2-5-1: top-view (Left); side-view (right). 
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Without further purification, this mixture was used directly for the subsequent [3+2] 

cyclolization reaction to prepare bis(methylenepropano)metal(II)-porphyrins 2-5-1 and 2-6-1. 

Surprisingly, it was found that in both cases, only the cis-regioisomer of the 

bis(methylenepropano)porphyrin (2-5-1 and 2-6-1) was obtained from this reaction and that was 

no trans-regioisomer (based on TLC and 
1
H-NMR spectroscopy). 
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Scheme 2-6. Selective synthesis of 2-6-1. Reaction conditions: a) LiNO3, AcOH/Ac2O/ CHCl3, 

reflux; b) Pd(OAc)2, (i-PrO)3P, 2-[(trimethylsilyl)methyl]-2-propen-1-yl acetate, THF, argon, 

reflux.  

 

This selective formation of the cis-regioisomer during the Pd(0) catalyzed cycloaddition 

of dinitroporphyrin was first observed for the preparation of 2-5-1 from CuTPP(NO2)2, as shown 

in Scheme 2-5. It was surprising to find that the Pd(0) catalyzed cycloaddition of 

dinitroporphyrin [2-n (n = 1-6)] was faster than the cyclization of the mono-nitro-porphyrin (2-1-

2). Separation was performed on a silica gel column eluted with DCM/hexane (v/v = 1/10). 
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Although the reaction for the preparation 2-5-1 was faster, as indicated from the color-change 

during the reaction (from green to reddish brown), the isolated yield was lower - only a 35% 

yield was obtained. The X-ray structure of 2-5-1 is shown in Figure 2-5. The crystal was grown 

by diffusion of hexane into a concentrated chloroform solution of 2-5-1. The molecule has two 

cis-oriented exocyclic double bonds as shown in the X-ray structure. The reproducibility of this 

regioselectivity was tested by using the mixture of dinitro-Ni(II)-porphyrins (2-1-Ni to 2-6-Ni). 

MALDI-TOF mass spectrometry gave a peak at MW 774.2 corresponding to the formation of the 

bis-cycloaddition product 2-6-1 (see Figure 2-6).  

  

Figure 2-6. Characterizations of 2-6-1. MALDI-TOF (left) and 
1
H-NMR spectra (right); red-

arrows indicate the β-proton position of porphyrin in the NMR.  

The 
1
H-NMR spectrum (see Figure 2-6) gave a split peak for the porphyrin β-protons, 

which corresponds to the formation of the cis-regioisomer of the bis-cycloaddition product 2-6-1.  

At first, we attributed the selective formation of the cis-regioisomer to a different reaction 

pathway of the two regio-isomer formations. We assumed the cis-regioisomer was formed 

through a kinetic process while the trans-regioisomer was formed from a thermodynamic process. 

In that case, the extended reaction time would help the generation of the trans-regioisomer. 

Efforts to achieve the trans-regioisomer failed. Even when the reaction time was increased to two 
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weeks, still no trans-regioisomer formation was detected. We attributed this to release of a proton 

and NO2 during the reaction which was poisoning the Pd(0) catalyst. Thus extra amounts of 

catalyst were also added (two equivalents) and still only a trace amount of trans-regioisomer was 

detected after extension of the reaction time to two weeks. 

Seletively Synthesis of trans-Bismethylenepropanoporphyrins: 
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Scheme 2-7. First approach to the trans-bis(methylenepropano)porphyrin. Reaction conditions: a) 

Pd(OAc)2, (i-PrO)3P, 2-[(trimethylsilyl)methyl]-2-propen-1-yl acetate, THF, argon, reflux; b) 

LiNO3, AcOH/Ac2O/CHCl3, reflux; c) Pd(OAc)2, (i-PrO)3P, 2-[(trimethylsilyl)methyl]-2-propen-

1-yl acetate, THF, argon, reflux.  

 

 After failing to generate the trans-regioisomer of 2-7-1 from the Pd(0) catalyzed 

cyclization reaction of the mixture of dinitro-porphyrin of regioisomers, alternative routes were 

tried.  The first approach was to follow the previous synthetic route of a former group member 

(see Scheme 2-7). For this approach, the mono-methylenepropanoporphyrin was used as starting 
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material; after one nitration compound 2-7-2 was generated. After a subsequent Pd(0) catalyzed 

cyclization reaction, the mixture of regioisomers of bis(methylenepropano)porpyrins (2-5-1 and 

2-7-1) was obtained in 28% overall yield. Despite the fact that the yield was acceptable, the 

separation was extremely difficult. Instead of column separation, silica gel plates were required 

for the separation, which limited the scale of the desired product prepared and made it 

unpractical. In this case, attracted to the selective synthesis of cis-regioisomer of 

bismethylenepropanoporphyrins (2-5-1 and 2-6-1), we began to seek the alternative synthetic 

route for the selective synthesis of the trans-regioisomer of bis(methylenepropano)porphyrin (2-

7-1). It was noticed that there was different electron delocalization pathway between metal-

porphyrin and free-base porphyrin, and so we expected to achieve the selective formation of the 

trans-regioisomer (2-8-1) from Pd(0) catalyzed cycloaddition of the mixture of trans-

regioisomers of dinitroporphyrins. In other words, we selected to drive the formation of the 

trans-regioisomer by forcing the initial nitro groups to give the trans-dinitroporphyrin.  The 

preparation of trans-dinitroporphyrin was achieved from reactions shown in Scheme 2-8. The 

demetalation reaction to remove copper(II) from 2-1-2-Cu was performed using 5% H2SO4 in 

95% TFA, from which 2-1-2-2H was achieved in 98% yield. Subsequently, we wanted to insert 

metal and then subject it to the Pd(0) catalyzed cyclization reaction. However, the nitration of 2-

1-2-2H failed to generate the desired trans-regioisomer of dinitro-product 2-8-1; instead only the 

mixture of tri-nitroporphyrins (2-8-3) was obtained (see Scheme 2-8). To achieve the selective 

formation of the trans-dinitroporphyrins, four groups were introduced to the opposite four β-

positions of the starting porphyrin. The main idea was to block the formation of the cis-

dinitroporphyrin. Upon selective formation of the mixture regioisomers of trans-dinitroporphyrin 

2-9-4, we expected to obtain the desired trans-bis(methylenepropano)porphyrin 2-7-1 after Pd(0)  
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Scheme 2-8. Second approach for the selective syntheses of trans-

bis(methylenepropano)porphyrin. Reaction conditions: a) 5% H2SO4/TFA, r.t.; b) LiNO3, 

AcOH/Ac2O/CHCl3, reflux. 

 

catalyzed cyclization. The regioselectivetertrabromination of free-base porphyrin H2TPP was 

performed in chloroform and excess NBS was used. To avoid the potential dehalogenation 

reaction in the following nitration and Pd(0) catalyzed reaction associated with the presence of 

these bromines, four methyl groups were introduced from the Suzuki-coupling reaction, to form 

2-9-2. As shown in Scheme 2-9, 2-9-1 was obtained by refluxing the free-base porphyrin (H2TPP) 

with 6.7 equivalents of NBS in CHCl3
51

 for 4 hours. 
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Scheme 2-9. Third approach for the selective formation of trans-

bis(methylenepropano)porphyrin 2-9-5. Reaction conditions: a) NBS, CHCl3, reflux 4 hrs; b) 

Pd(PPh3)4, CH3B(OH)2, THF/toluene, argon, reflux; c) Ni(acac)2, MeOH/CHCl3 = 1/3, reflux; d) 

LiNO3, AcOH /Ac2O/CHCl3, refluxing; e) Pd(OAc)2, (i-PrO)3P, 2-[(trimethylsilyl)methyl]-2-

propen-1-yl acetate, THF, argon, refluxing for 5 days.  

 

TLC and UV-vis were used to follow this reaction. The reaction was stopped when TLC 

indicated no starting material left and the Soret band shifted to 430 nm in the UV-vis spectra. 

After stopping this reaction, it was cooled to room temperature and cleaned up using a short 

silica gel plug to remove excess NBS, washing with DCM to collect the desired product. After 

removing the solvent under vacuum, the solid was washed with methanol three times, and 2-9-1 

was obtained in 65% yield as a purple solid. No further purification was performed. The Suzuki-

coupling reaction between 2-9-1 and CH3B(OH)2 was performed by refluxing them in 

THF/toluene (v/v = 3/2) under argon.  It took a period of two days under strict air-free 

condition
52

 to finish this reaction. Pd(PPh3)4 was used as catalyst, and 2-9-2 was obtained in 87% 
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yield after separation. Because of the huge polarity differences between the starting material 2-9-

1 and the desired product 2-9-2, the separation was very convenient. Only a very short silica gel 

plug was required. Pure DCM was used to elute down the small amount of starting material 2-9-

1. After that, the eluting solvent was changed to the mixture solvents of DCM/ethyl acetate (v/v 

= 10/1). 2-9-2 was obtained as a green fraction from the column and after removing the solvents 

under vacuum it was obtained as purple microcrystals. The high polarity of 2-9-2 is attributed to 

the nonplanar distortion of porphyrin macrocyle to form the saddle conformation associated with 

the presence of the tetra-methyl groups at the β-positions. 

The insertion of Ni(II) was performed by refluxing 2-9-2 with an excess amount of 

Ni(acac)2 in chloroform/methanol (v/v = 1/3) overnight. After filtration, 2-9-3 was obtained in 

98% yield. Although the mono-nitration of 2-9-3 was completed within 0.5 hour and the yield 

was around 90%, the dinitration to generate 2-9-4 by simply extending the nitration time and 

increasing the amount of nitration reagent used, was slower. After separation, only 35% yield of 

2-9-4 was obtained, with large amounts of the trinitro-porphyrins as byproducts. No further 

purification was performed before submitting the mixture of regioisomers of 2-9-4 to the Pd(0) 

catalyzed cycloaddition reaction. Unfortunately, the cyclization reaction of 2-9-4 was found to be 

extremely slow. According to TLC, only a small amount of 2-9-5 was obtained after refluxing it 

for five days.  

Faced with all the problems associated with either the selective dinitration or the final 

step cyclization, finally, the selective formation of 2-7-1 was approached from the Pd(0) 

catalyzed cycloaddition of free-base nitroporphyrin. Encouraged by the fact that the Pd(0) 

catalyzed cyclization of metal(II) porphyrin 2-8-2 predominantly gave the cis-regioisomer ,a 

literature search presented an interesting selectivity associated with ―chlorin formation‖
53
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Scheme 2-10. Selective formation of chlorins from porphyrins: top, isobacteriochlorin; bottom, 

bacteriochlorin. 
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Scheme 2-11. The chlorin intermediate directs the formation of bis(methylenepropano)porphyrin  

processes.  

 

In the literature, it was found that in either oxidation or reduction of the β-position 

double-bond of porphyrins, there was a preferential formation of bacteriochlorins for the free-
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base porphyrin, and isobacteriochlorins for the metal-porphyrin (see Scheme 2-10). We attributed 

the selective formation of the cis-regioisomers for the metal-porphyrin to the formation of 

chlorin-intermediate (see Scheme 2-11). Since the cyclization of the dinitro-metal(II) porphyrin 

had been found result in the selective formation of cis regioisomer, it would be very reasonable 

for the achievement of the trans-regioisomer when dinitrated free-base porphyrin was used for 

the cyclization.  
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Scheme 2-12. Chlorin induces the regioselectivity for the formation of 

bis(methylenepropano)porphyrins. 

 

The chlorin intermediate was observed in the formation of the 2-1-3 and could even be 

isolated when performing the cyclization reaction at low temperatures. It was converted into 

porphyrin by increasing the temperature from 90 
o
C to 100 

o
C over 24 hours or even a longer 

period. Two modified routes were planned to improve the synthesis rate and yield. The first 

modification was based on reaction shown in Scheme 2-9. It was started from 2-9-4, after 

performing the mononitration and by the Pd(0) catalyzed cyclization reactions; the second 

nitration was performed and followed by the second Pd(0) catalyzed cyclization reaction. 
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Another modification route was designed to introduce copper(II) instead of nickel(II) into the 

porphyrin before dinitration, and then removal of the copper(II) before the final Pd(0) catalyzed 

cyclization reaction. By doing this, we envisioned the Pd(0) catalyzed cyclization of the free-

base porphyrin might be able to generate the desired trans-isomers of 

bis(methylenepropano)_porphyrin. In the second improved approach, copper(II) was first 

removed under acidic condition to obtain the free-base dinitrated porphyrin; then under strictly 

air-free condition the Pd(0) catalyzed reaction was performed. Unfortunately, the trans-

bis(methylenepropano)porphyrin was obtained, but in extremely low yield. MALDI-TOF mass 

spectrometry gave a peak at 718 corresponding to the formation of 2-13-1, the 
1
H-NMR 

spectrum indicated the formation of this trans-isomer. 
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Scheme 2-13. Forth approach in the selective formation of the trans-

bis(methylenepropano)porphyrin. Reaction conditions: a) 5% H2SO4/TFA, DCM, r.t.; b) 

Pd(OAc)2, (i-PrO)3P, 2-[(trimethylsilyl)methyl]-2-propen-1-yl acetate, THF, argon, reflux.  

 

2.2.3. Construction of Cofacial Bisporphyrins 

Our group has previously synthesized several fused metallocenoporphyrin derivatives 

and bisporphyrin-metallocenes.
24

 An unexpectedly efficient synthesis of a cofacial metallo-

bisporphyrin was found from a simple DBU catalyzed carbon-carbon bond formation followed 

by a self-sensitized oxygenation reaction at room temperature. The β,β’-fused 
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methylenepropanoporphyrin 2-1-3 served as a key precursor in the construction of both cofacial 

bisporphyrin and the metallocenoporphyrins.
24

 In particular, we made use of literature 

observations that methylene cycloalkanes can be oxygenated to give very useful intermediates
21

, 

and in this particular case, formation of cofacial bis-porphyrin systems.  

p-TsOH

CHCl3, ref luxN

N N

N

Ni

N

N N

N

Ni

2-13-1  

Scheme 2-13. Double-bond migration under acidic condition failed to generate 2-13-1. 
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Scheme 2-14. Formation of 2-14-1 under DBU catalyzed reaction in DCM at room temperature. 

 

By using a weak acid catalyst (p-TsOH), 2-1-3 had been successfully converted into its 

regioisomers 2-2-1 with the formation of an endo-position double bond in 90% yield (see 

Scheme 2-2)
 16

. Despite the high yield of the endocyclic double bond formation under weakly 

2-14-1 
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acidic condition, with the presence of two methylenepropano groups at 2-6-1, only extremely 

low yields of 2-13-1 were generated from this p-TsOH-catalyzed double-bond migration reaction 

(see Scheme 2-13). Since weakly acidic condition failed to generate the desired product 2-13-1 in 

acceptable yield, a base-catalyzed migration reaction was performed by using DBU as the base 

catalyst. At first, 2-1-3-Cu was used, with DBU as base and DCM as solvent. Surprisingly, it 

was found after the reaction mixture had stirred for 52 hours at room temperature under air in the 

presence of light, no desired product 2-13-1 was generated from 2-1-3-Cu. Instead an interesting 

porphyrin dimer 2-14-1 was obtained in 60% yield after chromatographioc separation using 

DCM/EtOAc (see Scheme 2-14).  

 

 

Figure 2-7. X-Ray structure of 2-14-1:  A, top-view; B, side-view. 

 

Fortunately, we were ale to obtain the crystal from the diffusion of hexane to a 

concentrated DCM solution of 2-14-1. The X-ray structure is shown in Figure 2-7. The two 

porphyrin macrocycles are partially overlapped as shown from the top-view of the X-ray; the 

side-view clearly indicates the cofacial arrangement of these two porphyrin macrocyles with 

approximately parallel porphyrin planes [dihedral angle 4.1(5)º], and a perpendicular distance 
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between coordination planes of approximately 4.2Å. The Cu–Cu distance is 5.290(4) Å, and Cu-

N distances fall within the range 1.942(8) - 2.002(8) Å. 
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Scheme 2-15. Formation of 2-15-1 under DBU catalyzed condition in DCM at room temperature. 

 

 

  

Figure 2-8.  MALDI-TOF mass spectrum of 2-15-1.  

 

Ni 

Ni 

2-15-1 



61 
 

The effort of removing copper(II) from 2-14-1 to generate free-base porphyrin dimers 

using 95% TFA and 5% H2SO4 only caused decomposition. In the meanwhile, 2-1-3-Ni was also 

used in the same reaction condition, and 2-15-1 was obtained in 45% yield after a silica gel 

column separation (see Scheme 2-15). MALDI-TOF mass spectrometry gave a peak at 1482.2 

corresponding to the losing of one water molecule from 2-15-1 (see Figure 2-8).  Surprisingly, 

with the presence of an additional substituent group at the meso-position of the porphyrin, no 

reaction was detected based on TLC and MALDI-TOF and all starting materials were recovered 

(see Scheme 2-15). This result indicated that the electron delocalization of porphyrin macrocyle 

might be the cause of the formation of porphyrin dimers. Several reactions were designed and 

performed to search for the underlying mechanism for this reaction (see Scheme 2-16 and 

Scheme 2-17). In the absence of either light or air, or both of them, no desired porphyrin dimers 

were formed, with only a small amount of intermediate being detected. Thus both the light and 

air were critical for this reaction. Already many metalloporphyrin are known as 

photosensitizers
55-57

, and used as catalysts for the oxidation of the isolated double bonds of small 

molecules at the presence of air and light
58

.  

N

N N

N

M
DBU

CH2Cl2

M= 2H, Cu, Ni, Zn

N.R.

 

Scheme 2-15. With the presence of bulky t-butyl group at the meso-position of porphyrins, no 

reaction occurs. 
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Scheme 2-16. Designed reaction eliminating either light or air or both of them; no desired 

porphyrin dimers were detected. 

 

 Thus, we rationalized that this reaction occurred through a self-photooxidation process.  

Although photosensitization by paramagnetic copper(II) porphyrins is unusual, it is not unique.  

Skalkos and coworkers have shown that some copper(II) porphyrins can be used in 

photodynamic therapy
56

, and Chandrasekhar et al. have shown that a copper(II) porphyrin can be 

used to promote cleavage of DNA
57

.
  

Furthermore, several copper(II) porphyrins have shown 

applications in the oxidation of alkenes to ketones, alcohols and related compounds
58

. 
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52%

2-17-1  

Scheme 2-17. With the double-bond migrated 2-2-1-Cu as the starting material, the oxidized 

product 2-17-1 was formed in 52% isolated yield, which serves as key intermediate for the 

formation of porphyrin dimer 2-14-1. 
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Figure 2-9.  MALDI-TOF mass spetrum (left) and UV-vis spectrum (right) of 2-17-1. 

 

With the presence of the endo-cyclic double bond of 2-2-1-Cu, when DBU as base in 

DCM at room temperature in the presence of both light and air, a new green spot was detected on 

TLC after letting the reaction mixture stir for 5 hours. Upon separation using a silica gel column, 

2-17-1 was isolated in 52% yield. MALDI-TOF mass spectrometry gave a peak at 743.3 

corresponding to the formation of 2-17-1 and confirmed the addition of one oxygen atom to the 

starting material (see Figure 2-9). FT-IR spectroscopy gave a peak at 1738 cm
-1 

corresponding to
 

the presence of a ketone in the target compound 2-17-1. The UV-visible spectrum of 2-17-1 

displayed a split Soret band and relatively intense Q bands (see Figure 2-9). The splitting of the 

Soret band has been observed on unsymmeterical porphyrins and is from charge-transfer within 

this molecule. 

 In summary, both 2-1-3 and 2-2-1 were stable in the solid state. However, while 

handling their solutions in air, it became apparent that they were being converted into the 
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oxidized byproducts from TLC and MALDI-TOF.  In the dark, in solution under argon, both 2-1-

3 and 2-2-1 were perfectly stable. Also, with the separate presence of either air or light, both 2-1-

3 and 2-2-1 were stable. However, once exposed to both light and air, they were rapidly 

converted into the oxidized byproducts.  The presence of conjugated endocyclic double bond 

made 2-2-1 more unstable when exposed to light and air. The major product was an α,β-

unsaturated ketone
 
2-17-1, which was isolated in 52% yield. Based on these experimental results, 

we propose a self-photooxidation mechanism for the formation of these porphyrin dimers (see 

Figure 2-10). A literature search revealed numerous examples of photooxygenation of organic 

molecules bearing exo-cyclic alkenes. Of particular relevance was the work of Havel
21

 who 

showed that methylenecycloalkanes react with triplet oxygen.  Methylenecycloalkanes were 

shown to yield epoxides, and alkenones among other oxygenated products.  In other work, 

alkenyl-linked [60]fullerene derivatives have been shown to self-photooxygenate to give allylic 

alcohols,
58

 and Saracoglu et al.
55

 have shown, for example, that cycloheptatriene derivatives can 

be photooxygenated in the presence of H2TPP (2) as a singlet oxygen sensitizer, to give the 

norcaradiene endoperoxides and bis-epoxide derivatives.  The relevance of this literature became 

apparent when, upon treatment with DBU, porphyrin 2-1-3 afforded a 60% yield of the 

oxygenated bis-porphyrin 2-14-1 (see Figure 2-11). As shown in Figure 2-11, we propose 

compound 2-1-3 undergoes photooxidation with triplet oxygen to generate epoxide 2-8, from 

which the diol 2-9 and allylic alcohol 2-10 is subsequently formed.  Meanwhile, the endocyclic 

alkene compound 2-2-1 is photo-oxidized to give the epoxide 2-11 and then converted into the 

diol 2-12, from which the allylic alcohol 2-13 is generated.  Then the Michael addition generates 

intermediates 2-17-1 and 2-14.  The subsequent Michael addition reaction between anion 2-14  
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Figure 2-11.  Proposed mechanism for the formation of cofacial bisporphyrin dimers from 2-1-3 

and 2-2-1.  
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and α,β-unsaturated ketone 2-17-1 generates the epoxide 2-15, from which the ring-opening 

reaction was performed and 2-14-1 was obtained.   

The optical spectrum of 2-14-1 is shown in Figure 2-12, and is dramatically different 

from the conjugated ferrocene sandwich porphyrin dimer 2-4-1 (see Figure 2-12). The 

characteristic red-shifted of Q-bands shown by 2-14-1, indicate π-stacking between the two 

porphyrins. On the other hand, the decreasing intensity of the Soret band together with the 

disappearance of Q-bands of 2-4-1, indicate a direct electronic communication between the two 

porphyrin systems associated through the ferrocene.  

 

Figure 2-12. UV-Vis spectra in dichloromethane at 1 x 10
-6

 M. 2-1-3-Cu (solid line), 2-14-

1(dotted line) and 2-4-1(dashed line). 

 

 Besides the identification of intermediate 2-17-1, there is also other preliminary 

evidence to support the proposed mechanism for the generation of 2-14-1 (see Figure 2-11). 
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When DBU was replaced with a weak Lewis acid (silica gel), a small amount of 2-14-1 was also 

detected from the refluxing of 2-1-3-Cu in THF for a period of 2 days (see Scheme 2-18). 

N
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extremely low yield

Reflux

N

NN

N
Cu

N

NN

N
Cu

O

OH
HO
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Scheme 2-18. The self-photooxidation of 2-1-3-Cu under weakly acidic conditions.   

 

Figure 2-13.  MADLI-TOF of the two major intermediates from reaction shown in Scheme 2-18. 
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The yield of 2-14-1 was admittedly low compared to that under basic conditions; however, two 

additional porphyrins were isolated as major products.  MALDI-TOF mass spectrometry gave a 

peak at 743.341 for the less polar one, and another peak at 758.101 for the more polar porphyrin 

(see Figure 2-13).  

The MALDI-TOF results indicated one or two oxygen atoms have been added to the 

starting material 2-1-3-Cu.  For the more polar product, besides the 758.101 peak, there was also 

another peak at 742.2 shown in the MALDI spectrum, indicating that a facile loss of one oxygen 

atom had taken place.
 
 The molecular weights of these two products were well in agreement with 

the two important intermediates (2-17-1 and 2-14) as proposed in Figure 2-11. We believe that 

these two reactions (DBU and/or silica gel) might share similar reaction mechanisms. The slight 

difference happened at the nucleophilic addition step: under basic conditions, it was the hydroxyl 

group that acted as the nucleophilic reagent while under Lewis acid catalyst conditions, water 

was the nucleophilic reagent. The different nucleophilic ability of these two reagents made high 

temperature necessary for the acidic condition reaction and explained why a very low yield of 2-

14-1 was obtained under these conditions.  The whole mechanism (see Figure 2-11) involves 

several mono oxidations of double bonds to form epoxide intermediates. These critically 

important major intermediates, epoxides and spiro-epoxides, had been previously reported in the 

literature associated with the reactions of methylenecycloalkanes with triplet oxygen
11

. In our 

case, the triplet oxygen was generated in situ from dioxygen activated by 2-1-3-Cu.  

2.3 Experiment 

2.3.1 General Information 

All reactions were monitored by TLC using 0.25 mm silica gel plates with or without UV 

indicator (60F-254). Silica gel (Sorbent Technologies 32-63 m) was used for flash column 
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chromatography. 
1
H- and 

13
C-NMR spectra were obtained on either a DPX-250 or an ARX-300 

Bruker spectrometer. Chemical shifts (δ) are given in ppm relative to residual CHCl3 (7.26 ppm, 

1H), or DCM (5.32 ppm, 1H) unless otherwise indicated. Electronic absorption spectra were 

measured on a Perkin Elmer Lambda 35 UV-Vis spectrophotometer. MALDI-TOF mass spectra 

were obtained on an Applied Biosystems QSTAR XL, using positive method with dithranol as 

matrix. Materials obtained from commercial suppliers were used without further purification. 

2. 3.2 Procedure for the Synthesis of 2-14-1  

 A mixture of β,β’-fused copper(II) methylenepropanoporphyrin 2-1-3-Cu (100 mg, 0.14 

mmol) and DBU (100 mL, 0.67 mmol) was dissolved in CH2Cl2 (20 mL) and stirred at room 

temperature in air for 52 hours. Upon the completion of the reaction, the separation was 

performed on a silica gel column using CH2Cl2 as eluting solvent. The title porphyrin 2-14-1 was 

obtained in 60% yield (63 mg, 0.042 mmol). UV/Vis: max CH2Cl2 (log ) 413 nm (5.62), 545 

(4.40), 585 (3.83); MS (HR-MALDI-TOF) C96H62Cu2N8O3 (M
+
): Calcd m/z for 1502.3553; 

Found 1502.1324. A crystal of 2-14-1 (See Figure 2-7) was grown by slow diffusion of hexane 

into the concentrated dichloromethane solution of 2-14-1. 

2.3.3 Procedure for synthesis of porphyrin 2-17-1 

 A mixture of endocyclic alkene porphyrin 2-2-1 (100 mg, 0.14 mmol) and DBU (100 mL, 

0.67 mmol) was dissolved in CH2Cl2 (20 mL) and was stirred at room temperature under air for 5 

hours. The separation was performed on a silica gel column using CH2Cl2 /hexane (v/v =1/2) as 

eluting solvent. The tile green porphyrin 2-17-1 was obtained in 52% yield (54 mg, 0.072 mmol). 

UV/Vis: max CH2Cl2 (log ) 338 nm (4.72), 399 (5.22), 454 (5.47), 549 (4.25), 584 (4.30), 637 

(4.65); MALDI-TOF C48H30CuN4O (M+H): Calcd m/z for 742.2; Found 742.5. 
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2.3.4 Procedures for synthesis of 2-1-3 

 The preparation of 2-1-3-Ni was performed under strictly air-free conditions. The Pd(0) 

catalyst was prepared in suit by reacting Pd(OAc)2 (113 mg, 0.5 mmol) with 

triisopropylphosphate (3 mmol) in 100 ml dry THF. The reaction mixture was stirred at room 

temperature for a period of 30 minutes. Porphyrin 2-1-2-Ni (1.42 g, 2 mmol) was weighed and 

added directly into a Schlenck reaction flask. Subsequently 2-[(trimethylsilyl)methyl]-2-propen-

1-yl acetate (0.5 mmol) was added. Then the reaction temperature was raised to 90 
o
C and the 

mixture was refluxed at this temperature for 2 days. TLC and MALDI-TOF were used to follow 

this reaction. When most of the starting material was consumed, the reaction temperature was 

raised to 100 
o
C and the mixture was refluxed at this temperature for an additional period of 2 

days. Solvent was removed under vacuum and the residue was applied to a silica gel column for 

separation; hexane/DCM was used as eluting solvent. After removing the solvent under vacuum, 

the desired product 2-1-3-Ni was obtained as a reddish brown solid in 82% yield (1.19 g). MP > 

300
o
C; 

1
H-NMR (250 MHz, CDCl3) ppm: 8.75-8.72 (m, 6H), 8.01-7.97 (m, 4H), 7.87-7.83 (m, 

4H), 7.70-7.63 (m, 12H), 4.99-4.98 (m, 2H), 3.48-3.46 (m, 4H).  

2-1-3-Cu was prepared in a similar procedure as described above for 2-1-3-Ni. MALDI-TOF 

Calcd. for C48H32N4Cu, 728.3. Found, 728.1. Anal. Calcd for C48H32CuN4.C6H14: C, 79.62; H, 

5.69; N, 6.88. Found: C, 79.22; H, 5.72; N, 7.05. UV/vis: λmax DCM (log ε) 414 nm (5.64), 536 

(4.27), 568 (3.49).X-Ray data: C48H32CuN4HCl3, triclinic space group P-1, a = 12.940(4), b = 

13.185(5), c = 13.694(7) A˚, a = 108.12(2), b = 117.71(2), c = 90.22(2), V = 1935.0(14) A˚ 
3
, T = 

110 K, Z = 2, R = 0.094 (F2 > 2r), Rw = 0.271 (all F2) for 5879 unique data and 514 refined 

parameters. CCDC 280898. 

 



71 
 

2.3.5 Procedures for synthesis of 2-2-1 

The preparation of 2-2-1-Cu was performed by mixing of porpyrin 2-1-3-Cu (432 mg, 0.6 mmol) 

with p-TsOH (17 mg, 0.1 mmol) in 15 mL of chloroform and then refluxed for a period of 24 

hours. After cooling down to room temperature, excess of p-TsOH was filtered off. The 

remained solution was washed with saturated aqueous Na2CO3 and water. Solvent was removed 

under vacuum and the residue was submitted to silica gel column separation. The eluting solvent 

was hexane/DCM. The desired product was obtained in 90% yield (390 mg) after 

recrystallization from MeOH/DCM. MALDI-TOF: calcd m/z for C48H32CuN4 728.3; found 

727.9; UV/vis λmax DCM (log ε) 411 nm (5.51), 540 (4.36). 

2-2-1-Ni was prepared similar to 2-2-1-Cu as described above from 2-1-2-Ni. 
1
H-NMR (250 

MHz, CDCl3) ppm 8.78-8.73 (m, 6H), 8.03-7.97 (m, 8H), 7.71-7.66 (m, 12H), 5.57 (s, 1H), 3.10 

(s, 2H), 2.10 (s, 3H). MALDI-TOF Calcd. for C52H36N4Ni, 775.6. Found, 775.6. 

2-1-2-Ni: 
1
H-NMR (CDCl3, 250 MHz) ppm 8.99 (s, 1H), 8.71-8.65 (m, 6H), 8.00-7.96 (m, 8H), 

7.72-7.62 (m, 12H). MALDI-TOF Calcd. for C44H27N5NiO2, 716.4. Found 716.4. 

2.3.6 Procedures for synthesis of 2-6-1 and related Compounds 

The preparation of 2-6-1 was similar to that of 2-1-3-Ni. After the in situ preparation of the Pd(0) 

catalyst, the mixture of isomers of dinitro-Ni(II)TPP (383 mg, 0.5 mmol) was added into the 

reaction mixture and allowed to stir at 90 
o
C for a period of 2 days. Then the temperature was 

raised to 100 
o
C for an additional 2 days. TLC and MALDI-TOF indicated the selective 

formation of cis-isomer 2-6-1-Ni. After separation using silica gel TLC, the desired 2-6-1-Ni was 

obtained in 35% yield (134 mg). 
1
H-NMR (CDCl3, 250 MHz) ppm 8.79 (d, 2H, J = 5.0 Hz), 8.72 

(d, 2H, J = 5.0 Hz), 7.93-7.98 (m, 2H), 7.86 (d, 4H, J = 7.5 Hz), 7.77 (d, 2H, J = 7.5 Hz), 7.69-
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7.60 (m, 12 H), 4.97 (s, 4H), 3.48 (d, 8H, J = 10.0 Hz). MALDI-TOF Calcd. for C52H36N4Ni, 

775.6. Found, 775.1.  m.p. > 300 
o
C.  

2-5-1 was prepared in a similar procedure as described for 2-6-1-Ni, with a similar yield 33%. 

MALDI-TOF Calcd. for C52H36N4Cu, 780.4. Found, 780.0.  

2-7-2-Cu: MALDI-TOF Calcd. for C96H62N8Ni2O3 [M-H2O], 1475.0. Found, 1474.7. 

2.3.7 Procedure for preparation of 2-9-1 

Recrystallization of NBS was performed in hot water followed by drying at 80 °C under vacuum 

for a period of 6 h. H2TPP (600 mg, 1.0 mmol) was dissolved in CHCl3 (120 mL) and freshly 

recrystallized NBS (1.0 g, 6.0 mmol) was added into the solution which was refluxed for a 

period of 4 h. After cooling to room temperature, CHCl3 was removed under vacuum. The 

residue was then washed with methanol (2×40 mL) to remove the succinimide impurities. Then 

the residue as a purple solid was dissolved in CHCl3 and purified on a silica gel column with 

CHCl3 as the eluting solvent. The first fraction from the column was collected and the solvent 

was removed under vacuum. The solid was further recrystallized from CHCl3 /CH3OH (1:3). 

After filtration and removal of the solvent under vacuum, 3-2 was obtained in 66% yield (600 

mg). 
1
H NMR (CDCl3, 250 MHz): ppm 8.70 (s, 4H), 8.20-8.17 (m, 8H), 7.80-7.78 (m, 12H), 

−2.90 (s, 2H). UV–vis (DCM): λmax (nm) (log ε): 437 (5.50), 535 (4.34), 613 (3.60), 687 (4.12). 

MALDI-TOF Calcd for C44H26Br4N4: 930.3. Found 930.4.  

2.3.8 Procedures for Preparation of 2-9-3 

The preparation of 2-9-2 was achieved from Suzuki-coupling reaction
52

. 2-9-1 (465 mg, 0.5 

mmol), Pd(PPh3)4 (225 mg, 0.02 mmol) anhydrous K2CO3 (1.2 g, 8 mmol),and CH3B(OH)2 (120 

mg, 2 mmol) in THF/toluene (v/v = 3/2) 100 ml. The reaction mixture was degassed and then let 

it stirred at 90 °C under argon atmosphere for 3 days. After completion of reaction, the solvent 
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was removed under vacuum. The crude product was dissolved in CHCl3 and washed with 

saturated aqueous NaHCO3 solution followed by saturated aqueous NaCl solution, and the 

organic layer was dried over anhydrous Na2SO4. After reducing the solvent under vacuum, the 

reaction mixture was loaded on a silica gel column. Only a very short silica gel plug was 

required. Pure DCM was used to elute down the small amount of starting material 2-9-1. After 

that, the eluting solvent was changed to the mixture solvents of DCM/ethyl acetate (v/v = 10/1). 

2-9-2 was obtained as a green fraction from the column and after removing the solvents under 

vacuum it was obtained as purple microcrystals in 87% yield (292 mg). 
1
H NMR (CDCl3, 250 

MHz) ppm: 7.94 (m, 8H), 7.58 (m, 4H), 7.47 (m, 8H), 6.76 (m, 20H), 1.84 (s, 12H), -1.68 (s, 2H). 

MALDI-TOF Calcd for C48H36N4 668.8. Found 668.7. The insertion of Ni(II) was performed by 

refluxing 2-9-2 (268 mg, 0.4 mmol) with an excess amount of Ni(acac)2 (4mmol) in 

chloroform/methanol (v/v = 1/3) overnight. After filtration, 2-9-3 was obtained in 98% yield 

(285 mg). 
1
H-NMR (CDCl3, 250 MHz) ppm 7.47 (m, 8H), 7.12 (m, 4H), 7.02 (m, 8H), 6.68 (m, 

20H), 1.58 (s,12H). MALDI-TOF Calcd. for C48H36N4Ni, 727.5. Found, 727.8.  

2.3.8 Procedure for Preparation of 2-17-1 

A mixture of endocyclic alkene porphyrin 2-2-1-Cu (100 mg, 0.14 mmol) and DBU (100 µL, 

0.67 mmol) in DCM (20 mL) was stirred at room temperature under air for 5 h. The mixture was 

purified by column chromatography on silica gel using DCM/hexane (v/v = 1/2) as eluent, giving 

the green porphyrin 2-17-1 in 52% yield (54 mg, 0.072 mmol). UV/vis: λmax DCM (log ε) 338 

nm (4.72), 399 (5.22), 454 (5.47), 549 (4.25), 584 (4.30), 637 (4.65); MALDI-TOF 

C48H30CuN4O [M+H]: Calcd m/z for 742.2. Found 742.5. 
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2.3.9 Procedures for Preparation of 2-14-1, 2-15-1 and Related Compounds 

A mixture of β,β’-fused copper(II) methylenepropanoporphyrin 2-3-1 (100 mg, 0.14 mmol) and 

DBU (100 µL, 0.67 mmol) in DCM (20 mL) was stirred at room temperature in air for 52 h. The 

mixture was purified by column chromatography on silica gel using DCM as eluent, giving the 

title porphyrin 2-14-1 in 60% yield (63 mg). UV/vis: λmax DCM (log ε) 413 nm (5.62), 545 

(4.40), 585 (3.83). MS (HRMALDI-TOF) C96H62Cu2N8O3 (M+): Calcd m/z for 1502.3553. 

Found 1502.1324. The crystal of 7 was grown by slow diffusion of hexane into dichloromethane 

solution. X-ray data for Compound 2-14-1, C96H60Cu2N8O3, triclinic space group P-1, a = 

14.174(6), b = 16.881(8), c = 17.876(10) A ˚, a = 99.97(3),b = 101.23(3), c = 99.171(17), V = 

4048(3) A˚
 3

, T = 110 K, Z = 2, R = 0.101 (F2 > 2r), Rw = 0.278 (all F2) for 100,38 unique data 

and 448 refined parameters. CCDC 280897. 

2-16-1 was obtained in a similar procedure as described above. MALDI-TOF Calcd. for 

C96H62N8Ni2O3 [M-H2O]
+
, 1475.0. Found, 1474.7. 

2-4-1: MALDI-TOF: calcd m/z for C96H62Cu2FeN8 1510.5. Found 1510.1. UV/vis: λmax 

DCM (log ε) 410 nm (5.04). 

2.4 Conclusions and Future Work 

 Using Pd(0) catalyzed [3+2] cyclization reactions, under strictly air-free conditions, a 

series of mono-methylenepropanoporphyrins and bis(methylenepropano)porphyrins had been 

synthesized. The selective formation of both cis-bis(methylenepropano)porphyrins and trans-

bis(methylenepropano)porphyrins has been accomplished from the corresponding 

nitroporphyrins. Starting from mono-methylenepropanoporphyrins, a new type of self-sensitized 

photooxidation reaction was accidently discovered, from which β,β’-cofacial porphyrin dimers 

were built. The mechanism for this reaction was also studied in some detail.  
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 Future research will be focused on the use of the bis(methylenepropano)porphyrins to 

build either ferrocenoporphyrin monomers with two ferrocenes in each structure, and the 

building of sandwich ferrocenoporphyrin trimers.  
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CHAPTER 3. BENZOPORPHYRINS FROM THE RING-CLOSING-

METATHESIS 

3.1 Introduction 

Chemical modification of natural and synthetic porphyrin macrocycles and their 

peripheral substituents have attracted intense interests for a number of years. By developing new 

methodologies for easy access to functionalized porphyrins and their derivatives, the tedious 

total synthesis of porphyrins can be avoided and a variety of new porphyrin derivatives can be 

efficiently synthesized
1
. Among the chemical modifications, the functionalization of 

tetrapyrroles at their β-pyrrolic positions is particularly attractive because of the potential 

applications involving addition of new bonds to directly conjugate the porphyrin macrocycle
2
.  

Porphyrins with extended π-conjugated systems are always attractive because of their 

potential applications in the medicinal area, such as the photodynamic therapy treatment of 

cancers (PDT) and in material science, such as electric and electro-optic materials of use in a 

number of commercial areas
3
. Theoretically, the most obvious way to extend the π-conjugation is 

to convert porphyrins into the corresponding benzoporphyrins
4
. However, the efficiency and 

selectivity of benzoporphyrin syntheses to achieve pure regioisomers are still problems. 

The synthesis of benzoporphyrins has been limited to a number of methods, most of 

which are based on either the total synthesis of porphyrins or the Diels-Alder reaction of intact 

porphyrins
5
. Among those, the total syntheses of benzoporphyrins usually require high 

temperature, the product is generated in low yield, and tedious separation was invariably 

required. Furthermore, the regioselective synthesis remains a challenge. In most cases, total 

synthesis of porphyrin can only generate symmetrical benzoporphyrins
5b-5f

. Although mono-

benzoporphyrins have been obtained from Diels-Alder reactions, still the yields were very low 

and the separation was still hard
5g

. Thus, currently even the synthesis of symmetrical TBPs 
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(tetrabenzoporphyrin) is still a challenge
6
, not to mention the regioselective synthesis of 

unsymmetrical benzoporphyrins.  

 

Figure 3-1. Selective brominations at the β-positions of porphyrins. 

 

The efficiency of the regioselective β-bromination of porphyrins (see Figure 3-1) has 

been reported
7
, which provided the opportunity to selective modify porphyrins at the β-position. 

So far, with the exception of 3-5, all the other β-brominated porphyrins 3-1 to 3-4 have been 

synthesized. The insertion of metal into these halogenated porphyrins resulted in an increase of 

their stability towards strong oxygen donors. Partially substituted bromoporphyrins have been 

used as important precursors for the synthesis of synthetically inaccessible porphyrins. 

Nowadays, various metal-catalyzed reactions have been widely used to efficiently construct 

carbon-carbon bonds. Among these, the Suzuki-coupling reaction is a very powerful tool in 

organic synthesis. It is suitable to introduce various functional groups, such as aryl, alkyl, allyl, 
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and alkyl, to the β-position of porphyrin macrocycle by coupling halide-substituted porphyrins 

with the corresponding boronic acids or esters
8
. 

Recently, with the advent of efficient catalysts, the olefin metathesis has emerged as a 

powerful tool for the formation of C-C bonds. Figure 3-2 shows the chemical structure of the 

common catalyst used for metathesis, the so-called ―Grubbs’ 2
nd

 generation catalyst‖. Olefin 

metathesis has many advantages, including the high activity, durability and excellent tolerance 

toward functional groups. In the past decades, it has been widely used in advanced organic and 

polymer chemistry in synthesis of both natural and artificial products
9
.  

 

Figure 3-2. Chemical structure of Grubbs’ 2
nd

 generation catalyst. 

 

Being aware of the importance and challenge of benzoporphyrin synthesis, and with the 

consideration of the readily available regioselectively brominated porphyrin at the β-position, 

plus the efficiency of Suzuki-coupling and olefin metathesis, we designed a new synthetic route 

to improve the synthetic efficiency and selectivity of benzoporphyrin regioisomer syntheses.  

3.2 Results and Discussion 

The general synthetic approach to benzoporphyrin regioisomers starts with the syntheses 

of bromoporphyrins. Among those, the tetrabromoporphyrin 3-2 was the easiest one to access. 

The synthesis of 3-2 is very straightforward (see Figure 3-0)
7
, and was first reported by Crossley 
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and coworkers. The product was indentified by UV–vis, 
1
H NMR and MALDI-TOF mass 

spectrometry.  

N
H

CHO

propionic acid

140oC, 0.5 hour

N

NH N

HN N

NH N

HN

Br

Br

Br

Br

NBS, CHCl3

3-2  

Scheme 3-0. Regioselective tetrabromination of H2TPP to generate 3-2. 

 

 

Figure 3-3. Reactivities of 3-2-3.  

 

The starting material, H2TPP, was obtained by Adler-Longo condensation reaction as 

described in Chapter 2. The mixture of H2TPP and 6.0 equivalents of N-bromosuccinimide (NBS) 

were dissolved in dry CHCl3 and allowed to reflux for a period of 4 hours. After cooling it to 

room temperature, the CHCl3 was removed under vacuum. The residue was then washed with 

methanol to remove the succinimide impurities. Then the residue was dissolved in CHCl3 and 

purified on a silica gel column with CHCl3 as the eluting solvent. The first fraction from the 

column was collected and the solvent was removed under vacuum. The solid was further 
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recrystallized from CHCl3/CH3OH (1/3). After filtration and removal of the solvent under 

vacuum, 3-2 was obtained in 66% yield.  

N

N N

N

Cu

NO2

N

N N

N

Cu

N

NH N

HN

NO2

N

NH N

HN

Cu(OAc)2

CHCl3/MeOH

AcOH/Ac2O/CHCl3

LiNO3

H2SO4

3-1-1

3-1-23-1-3  

Scheme 3-1. Preparation of β-nitro metalloporphyrin and free-base porphyrin. 

 

With increasing amounts of NBS, the yields became lower and no higher brominated TPP 

products were observed from UV-vis, MALDI-TOF, and NMR even with NBS excesses up to 12 

equivalents. It was found that the presence of nitro group at the β-position of porphyrins assisted 

the electrophilic substitutions to be selectively performed on the double bond at the antipodal 

pyrrole ring. The directing effect of the nitro group in the regioselective functionalization of 
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porphyrin is shown in Figure 3-3. Thus the nitro group was introduced to assist the 

regioselectively synthesize of both the hexabromoporphyrin 3-3 and 

dibromotetraphenylporphyrin 3-1.  

In the meanwhile, the nitro group displayed unique reactivity in peripheral 

functionalizations of porphyrins. By introducing the nitro group at the β-position of porphyrins 

to generate 3-2-2 and 3-2-3, we also envisioned a subsequent easy access to the further 

functionalized of porphyrin β-positions. The preparation of nitro-functionalized porphyrins is 

shown in Scheme 3-1. 

N

NH N

HN

NO2

N

NH N

HN

NO2

Br

Br

N

NH N

HN

Br

Br

a b

3-13-2-1  

Scheme 3-2. Regioselective dibromination of 3-1-3 to generate 3-2-1 and 3-1. Reaction  

conditions: a) NBS, CHCl3; b) toluene, heat. 

 

2-Nitroporphyrins 3-1-2 and 3-1-3 presented a reactivity profile that is similar to simple 

nitroalkenes.  A wide range of nucleophiles can react with the β-position of porphyrins, through 

Michael additions, to generate new β-substituted porphyrins and functionalized chlorins.  The β-

nitro group can also undergo SN2 type electrophilic substitution with softer nucleophiles such as 

thiolates with no requirement for activation assistance from other electron-withdrawing 

functional groups. The synthesis of both dinitro-tertraphenylporphyrin and hexanitro-

tetraphenylporphyrin started from the synthesis of the corresponding nitroporphyrins either in 
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metalated form 3-1-2 or metal-free form 3-1-3 (see Scheme 3-1). As described in Chapter 2, 

these nitroporphyrins were obtained in high yields with simple purification due to the huge 

polarity difference generated before and after the introduction of the nitro group to the porphyrin. 

The demetalation of 3-1-2 to generate 3-1-3 was achieved by using concentrated H2SO4. 

Porphyrin 3-1-2 was dissolved in a minimum amount of concentrated sulfuric acid with 

alternating stirring and sonication for a period of 1 hour. After this it was poured into a mixture 

of ice/water and the 3-1-3 was extracted with CHCl3. The organic phase was subsequently 

washed with water and saturated aqueous NaHCO3. After drying over Na2SO4, the solvent was 

removed under vacuum. Recrystallization from CHCl3 /MeOH gave 3-1-3 as a dark purple 

powder in 74% yield.  

The dibromoporphyrin 3-2-1 was obtained from the bromination of metal-free 

nitroporphyrin 3-1-3 with 2.4 equivalents of NBS in ethanol-free chloroform (see Scheme 3-2). 

The reaction mixture was left to reflux for a period of 12 hours. After cooling it to room 

temperature, the reaction mixture was poured through an alumina plug (Grade III) and eluted 

with CHCl3. After removal of solvent under vacuum, the resulting solid was further 

recrystallized from CHCl3/MeOH.  The desired 3-2-1 was eventually obtained as a brown 

powder in 80% yield. The nitro group was compatible with the demetalation process. The 

removal of the nitro group was performed with NaBH4 as a reducing reagent to generate 3-1 

through the corresponding nitrochlorin (2,3-dihydro-2-nitroporphyrin) intermediate, which was 

readily converted into tetraphenylporphyrins by refluxing in chloroform with the assistance of 

silica gel or in toluene at high temperature (around 100 
o
C). Porphyrin 3-2-1 was dissolved in 

cold dry THF placed in an ice-salt bath and 1.8 equivalents of NaBH4 were added into the 

solution under argon. After the reaction mixture was left stir for a period of 1 hour, the ice bath  
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Scheme 3-3. Regioselective hexabromination to generate 3-3-1, 3-3-2, 3-3-3 and 3-3. Reaction 

conditions: a) NBS, 1,2-dichloroethane, reflux; b) and d) H2SO4; c) NaBH4, DMSO. 

 

was removed and stirring was continued at room temperature for an additional 1 hour. The 

reaction was monitored by UV-vis spectra. When the Soret band was blue-shifted from 436 to 

424 nm, the reaction was stopped, DCM was added and then the reaction mixture was poured 

into water. The separated organic phase was then washed twice with water, dried over Na2SO4 

and the solvent was removed under vacuum. The residual solid was dissolved in CHCl3 and 

filtered through a short alumina plug (Grade III) and eluted with CHCl3.  After reducing the 

solvent volume under vacuum, silica gel was added into the reaction mixture and refluxing under 

argon was continued for an additional period of 1 day. Then it was cooled to room temperature, 

the silica gel was removed by filtration thoroughly washed with CHCl3. After removing solvent 
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under vacuum and subsequent recrystallization from CHCl3/MeOH, 3-1 was obtained as a purple 

powder in 83% yield. Hexabromoporphyrin 3-3-1 was obtained from the hexabromination of 3-

1-2 with excess amounts of NBS in boiling 1,2-dichloroethane (see Scheme 3-3). To the 1,2-

dichloroethane solution of 3-1-2 was added 10 equivalents NBS and it was refluxed for a period 

of 16 hours under argon. After cooling to room temperature, the reaction mixture was poured 

into a silica gel plug and eluted with CHCl3. After removal of the solvent under vacuum and 

subsequent recrystallization from CHCl3/MeOH, 3-3-1 was obtained as a dark green powder in 

68% yield. This reaction was careful monitored by UV-vis spectrophotometry. Extended 

refluxing times should be avoided because of the slow degradation of the desired product and a 

concomitant decrease in the yield.  The demetalation of 3-3-1 to generate 3-3-2 was achieved 

with concentrated H2SO4. A minimal amount of DCM was added to dissolve 3-3-1 into a suitable 

round bottom flask. After slow removal of the solvent by rotation under vacuum, an oily film 

was formed on the inner surface of the flask. Then a minimal amount of concentrated sulfuric 

acid was added to the flask to dissolve the film, followed by alternating stirring and sonication 

for a period of 1.5 hours. After pouring the mixture into ice/water, 3-3-2 was extracted with 

CHCl3. The organic phase was subsequently washed with water and saturated aqueous NaHCO3. 

After drying over Na2SO4 the solvent was removed under vacuum. Subsequent recrystallization 

from CHCl3/MeOH and filtration gave 3-3-2 as a green powder in 95% yield. The removal of the 

nitro group from 3-3-1 to generate 3-3-3 and 3-3 was achieved with NaBH4 as the reducing 

reagent. To a dry DMSO solution of 3-3-1 under argon was added 1.8 equivalents of NaBH4 and 

the reaction mixture was stirred at room temperature. The solution was initially green and soon 

turned brown in color. Stirring was continued for around 2 hours and then the reaction was 

stopped (when the Soret band gave a 22 nm blue-shift). After adding DCM, the reaction mixture 
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was poured into water. The organic phase was then washed several times with water. After 

reducing the solvent volume under vacuum, the solution was placed in the refrigerator for around 

3~6 hours. After filtration, pure 3-3-3 was obtained as a dark brown precipitate, in 55% yield. 

Compared to the metalated porphyrin 3-3-1, the green solution of 3-3-2 easily underwent slow 

decomposation under even slightly basic conditions. Thus the reduction of 3-3-2 with NaBH4 

failed to generate 3-3. Instead, 3-3 was obtained from the demetalation of 3-3-3 with 

concentrated H2SO4 in a method similar to the generation of 3-3-2. 3-3-3 was dissolved in 

concentrated H2SO4 for a period of 1 hour with alternating stirring and sonication. After it was 

poured into the mixture of ice/water and 3-3 was extracted with CHCl3. The organic phase was 

subsequently washed with water and saturated aqueous NaHCO3. After drying over Na2SO4, the 

solvent was removed under vacuum. Recrystallization from CHCl3/MeOH gave 3-3 as a dark 

purple powder in 74% yield.  

The Suzuki-coupling reactions were performed in toluene at 100 ºC (see Scheme 3-4).  

The mixture of bromoporphyrin (3-1 to 3-4), Pd(PPh3)4 (5 mmol % catalyst /Br) and K2CO3 were 

dissolved in freshly distilled toluene, to which 2-allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 

was added through a syringe. This coupling reaction required strictly air free conditions. TLC 

and MALDI-TOF mass spectrometry were used to follow the reaction. When most of the 

bromoporphyrin had been consumed, the reaction was stopped. After diluting with DCM, the 

solution was poured into water. The organic layer was separated and dried over anhydrous 

Na2SO4. After reducing the solvents under vacuum, the solution was applied to a silica gel 

column and separated with DCM/hexane as eluent. After removing solvent under vacuum, 3-4-n 

(n = 1 ~ 5) were achieved in 49% ~ 84% yields. The solution was found to have a dramatic color 

and polarity change associated with this coupling reaction; the color of the starting materials was 



89 
 

reddish brown while it was green for 3-4-n (n = 2,3). The starting materials showed low polarity, 

while 3-4-n (n = 2,3) showed very high polarity. 
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Scheme 3-4. Suzuki-coupling to generate metathesis precursors. Reaction conditions: a) 2-allyl-

4,4,5,5-tetramethyl-1,3,2-dioxaborolane, anhydrous potassium carbonate, 100 ºC. 

 

Thus, the separation was easily performed. It is surprising to see that the use of 2-allyl-

4,4,5,5-tetramethyl-1,3,2-dioxaborolane in the Suzuki-coupling reaction had indeed provided 

high yields. Boron-esters, such as 2-allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, have been 
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reported in the literature to have very limited reactivity in the Suzuki-coupling reaction. Thus it 

usually required to convert them into the corresponding boronic acid before coupling to achieve 

efficiency and high yields
10

.  

 

Figure 3-4. X-Ray structure of 3-4-2: above, top view; bottom, side view. 
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Scheme 3-5. Metathesis followed by oxidation to generate dibenzoporphyrin 3-5-2. Reaction 

conditions: a) 10% Grubbs’ 2
nd

 generation catalyst, dry DCM, 40 ºC; b) DDQ, THF.  

 

The X-ray structure of the RCM (ring-closing-metathesis) reaction precursor 3-4-1 is 

shown in Figure 3-4. The side view clearly shows the two allyl groups pointing toward each 

other, which facilitate the metathesis reaction process. The RCM reaction to form the 

benzoporphyrin precusors was performed in dilute DCM (10
-2

 M concentration) to avoid any 

intermolecular olefin metathesis reactions. The allyl-substituted porphyrins 3-1-n (n = 1 ~ 5, 0.1 

mmol) from the various Suzuki-coupling reactions were dissolved in anhydrous DCM. Grubbs’ 

II catalyst (0.0025 mmol/allyl group) in anhydrous DCM was added dropwise into the above 

porphyrin solutions. The solution was then heated under reflux overnight in an atmosphere of 

argon.  TLC and MALDI-TOF mass spectrometry were used in monitoring progress of the 

reaction. When all starting material had been consumed, the reaction was stopped. After cooling 

to room temperature and concentration, a silica gel column was used for purification, using 

DCM/hexane as the mobile phase. After a short silica gel column separation, 3-5-1 was obtained 

in 91% yield. DDQ was subsequently used to oxidize 3-5-1 to the corresponding 

benzoporphyrins in almost qualitative yield. A dramatic color change was ssociated with the 

oxidation: 3-5-1 gives a reddish solution while 3-5-2 is green solution. Following the same 

procedure, monobenzoporphyrins (see Scheme 3-6) were obtained in 87% yield (3-6-1) and 85% 
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yield (3-6-2). Also, tribenzoporphyrins (see Scheme 3-7) were obtained in 83% (3-7-1) and 82% 

yield (3-7-2). 
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Scheme 3-6. Metathesis followed by oxidation to generate monobenzoporphyrin 3-6-1 and 3-6-2. 

Reaction conditions: a) Grubbs’ 2
nd

 generation catalyst, dry DCM, 40 ºC; b) DDQ, THF. 
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Scheme 3-7. Metathesis followed by oxidation to generate tribenzoporphyris 3-7-1 and 3-7-2. 

Reaction conditions: a) Grubb’s 2
nd

 generation catalyst, dry DCM, 40 ºC; b) DDQ, THF. 

 

The X-ray structure of 3-5-2 was shown in Figure 3-5. The porphyrin macrocyle was 

adopted a saddle conformation, which was attrictuted to the presence of four phenyl group at the 

meso-position of porphyrin. The UV-vis spectra of monobenzoporphyrin (3-6-2), 

dibenzoporphyrin (3-5-2) and tribenzoporphyrin (3-7-2) are plotted in Figure 3-6. With the 

increase in of the number of benzo-groups attached to the porphyrin macrocyle, there was a clear 

red shift of both the Soret band and the Q-bands. This confirmed that the presence of benzo-

groups provides extended conjugation to the porphyrin macrocyle. 
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Figure 3-5. X-ray Structure of 3-5-2. 

 

Following the generation of benzoporphyrin precursor 3-5-1, the Diels-Alder reaction 

was performed upon it. We envisioned the generation a more extended π-conjugated porphyrin 

system from this reaction - the so called ―anthracenoporphyrin‖ 3-8-2 (see Scheme 3-8). The 

diene precursor used in this Diels-Alder reaction, 1,4-dihydro-2,3-benzoxathiin-3-oxide was 

generated as a liquid according to the literature
11

. The preparation of 3-8-2 was performed by 

mixing 1,4-dihydro-2,3-benzoxathiin-3-oxide with 3-5-1 at the ratio of 3/1 in  toluene and  
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Figure 3-6. UV-vis spectra of benzoporphyrins in DCM: 3-5-2 (dash), 3-6-2 (solid) and 3-7-2 

(dot). 

 

subsequently refluxing the reaction mixture at 120 ºC under argon. TLC was used to follow the 

progress of the reaction. The reaction was stopped when most of the starting material had been 

consumed. After separation on a silica gel column, 3-8-1 was obtained in 58% yield. However, 

the oxidation of 3-8-1 to generate 3-8-2 was problematic. Firstly, the direct use of 3-8-1 in the 

DDQ oxidation in THF resulted in no generation of 3-8-2 both after a long period of room 

temperature reaction or at refluxing conditions over 24 hours. Both MALDI-TOF and 
1
H-NMR 

spectra indicated partial oxidation of 3-8-1, as shown in Figure 3-7. The UV-vis spectra gave 

absorption peaks (λmax) at 426, 459, 545, 640 and 696 nm. Secondly, the metal zinc was 

inserted into the porphyrin central cavity using Zn(OAC)2 in hot MeOH/CHCl3 overnight.  
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Scheme 3-8. The approach to generate anthracenoporphyrins. Reaction conditions: a) 1,4-

dihydro-2,3-benzoxathiin-3-oxide, toluene, 120 ºC; b) DDQ, THF; c) Zn(OAc)2, MeOH/CHCl3. 

 

Figure 3-7. MALDI-TOF mass spectrum of 3-8-1. 
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Figure 3-8. MALDI-TOF spectra of 3-8-1-Zn (left) and 3-8-1 (right) regenerated upon DDQ 

oxidation. 
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Scheme 3-9. The approach to generate benzochlorin 3-9-1. Reaction conditions: malononitrile, 

reflux, K2CO3 in dry THF, followed by DDQ oxidation in toluene at 120 ºC. 

 

After separation of 3-8-1-Zn through filtration, DDQ was used for the oxidation. Still no 

desired 3-8-2 was obtained from this reaction; instead MALDI-TOF spectra indicated the use of 

DDQ only resulted in the regeneration of 3-8-1 by removing the metal zinc from the porphyrin 

central cavity (see Figure 3-8). Change of chelated metal to copper(II) before DDQ oxidation 

also failed to generate the desired compound 3-8-2. The Diels-Alder reactions were therefore 

abandoned.The modification of nitro-monobenzoporphyrins to generate benzochlorins was 

performed by reaction of 3-6-1 with malononitrile at 65 °C in THF with K2CO3 as base (see 
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Scheme 3-9)
2
.  The mixture of K2CO3 and 1.3 equivalents of malononitrile in dry THF were 

refluxed for a period of 1 hour under argon. After cooling to room temperature, 0.4 equivalents 

of 3-6-1 were added to the mixture. The temperature was slowly increased to 65 °C and stirring 

was continued for an additional 6 hours. Using TLC to follow the reaction and stopped it upon 

the disappearance of 3-6-1 on TLC. Again the reaction mixture was cooled to room temperature 

and diluted with DCM. After washing with water, and drying over anhydrous Na2SO4, the 

solvent was removed under vacuum. The crude chlorin was purified by chromatography on a 

short silica gel column eluted with DCM/EtOAc. Instead of a red fraction usually observed for 

the chlorins, an unexpected product was obtained in 68% yield.  

 

Figure 3-9. MALDI-TOF spectrum of the product generated from reaction shown in Scheme 3-9. 
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Instead of adding two malonoitrile groups to porphyrin, MALDI-TOF showed a peak at 

MW 923.6, corresponding to the addition of four malononitrile groups to the porphyrin 

macrocycle (see Figure 3-9). In the meanwhile, it gave a characteristic chlorin band on UV-vis 

spectra, which indicated the formation of a chlorin. However, the color of the solution was deep 

green instead of red often observed for most of the chlorin system. 

3.3 Conclusions 

An efficient transition catalyzed synthetic route was developed for the selective syntheses 

of the benzoporphyrin regio-isomers. This synthetic route avoided the total synthesis route for 

making benzoporphyrin and achieved the high regio-selectivity in generation of benzoporphyrin 

regio-isomers. The further usage of the synthetic precursors for the generation of the other type 

of extended porphyrin system will also be studied in our group in the future. 

3.4 Experiment 

3.4.1 General information 

All reactions were monitored by TLC using 0.25 mm silica gel plates with or without UV 

indicator (60F-254). Silica gel (Sorbent Technologies 32-63 m) was used for flash column 

chromatography. 
1
H- and 

13
C-NMR spectra were obtained on either a DPX-250 or an ARX-300 

Bruker spectrometer. Chemical shifts (δ) are given in ppm relative to residual CHCl3 (7.26 ppm, 

1H), or DCM (5.32 ppm, 1H) unless otherwise indicated. Electronic absorption spectra were 

measured on a Perkin Elmer Lambda 35 UV-Vis spectrophotometer. MALDI-TOF mass spectra 

were obtained on an Applied Biosystems QSTAR XL, using positive method with dithranol as 

matrix. Materials obtained from commercial suppliers were used without further purification. 
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3.4.2 Syntheses and Characterization 

General procedure for metathesis and subsequent oxidation 

The allyl-substituted porphyrins 3-1-n (n = 1 ~ 5, 0.1 mmol) from the various Suzuki-coupling 

reactions were dissolved into anhydrous DCM. Grubbs II catalyst (0.0025 mmol/allyl group) in 

anhydrous DCM was added dropwise into the above porphyrin solutions. The solution was then 

heated under reflux overnight in an atmosphere of argon. TLC and MALDI-TOF spectra were 

used in monitoring the reaction. When all starting material had been consumed, the reaction was 

stopped. After cooling to room temperature and concentration, a silica gel column was used for 

purification, using a mixture of DCM/hexane as the mobile phase. After the short silica gel 

column separation, 3-5-1 was obtained in 91% yield. DDQ (182 mg, 0.8 mmol) was 

subsequently used to oxidize 3-5-1 to the corresponding benzoporphyrin (64 mg, 0.09 mmol) in 

almost qualitative yield. The solution was again found to undergo a dramatic color change 

associated with the oxidation: 3-5-1 was reddish in solution while 3-5-2 gave a green solution.  

3-6-1: 87% yield. MALDI-TOF Calcd for C48H33N5O2 [M+H]
+
 712.271, found 712.149. UV-vis 

(DCM) λmax (nm): 383 (log ε 5.10), 439 (5.72), 536 (4.64), 614 (4.11), 680 (4.32). 
1
H-NMR 

(300 MHz, CDCl3) 8.97 (1H, s), 8.85-8.88 (2H, m), 8.63-8.67 (2H, m), 8.21-8.25 (4H, m) 8.09-

8.12 (4H, m), 7.68-7.81 (12H, m), 5.73 (2H, s), 3.27 (4H, s), -2.62 (2H, s). Mp >300 ºC. 

3-5-1: 91 % yield. MALDI-TOF Calcd for C52H38N4 [M]
+
 718.9, found 718.9. 

1
H–NMR (250 

MHz, CDCl3): ppm 8.50 (s, 4H), 8.15-8.0 (d, 8H, J = 7.5), 7.77-7.66 (m, 12 H), 5.85 (s, 4H), 

3.50 (s, 8H), -2.83 (s, 2H). Mp >300 ºC. 

3-6-2: 85% yield. MALDI-TOF Calcd for C48H33N4 [M+H]
+
 665.271, found 665.201. UV-vis 

(DCM), λmax (nm): 407 (log ε 4.95), 425 (5.70), 518 (4.38), 596 (3.88) and 650 (3.01). δH (300 
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MHz, CDCl3) 8.87 (2H, d, J = 5.9 Hz), 8.77 (2H, d, J = 5.9 Hz), 8.71 (2H, s), 8.19-8.24 (8H, m), 

7.74-7.93 (12H, m), 7.36-7.39 (2H, m), 7.12-7.16 (2H, m), -2.61 (2H, s). Mp > 300 ºC. 

3-5-2: MALDI-TOF Calcd for C52H35N4 [M+H]
+
 715.286, found 715.798. UV-vis (DCM) λmax 

(nm): 413 (log ε 4.76), 435 (5.67), 525 (4.37), 618 (3.75) and 675 (3.85). δH (300 MHz, CD2Cl2) 

8.76 (4H, d, J = 7.38 Hz), 8.53 (4H, d, J = 6.99 Hz), 8.28 (4H, s), 8.12-8.17 (4H, m), 8.00-8.05 

(4H, m), 7.84-7.89 (4H, m), 7.56 (8H, s). Mp > 300 ºC. 

3-7-1: 83% yield. MALDI-TOF Calcd for C56H35N5O2 [M+H]
+ 

809.279, found 809.422. UV-vis 

(DCM) λmax (nm): 394 (log ε 5.02), 448 (5.73), 543 (4.62), 615 (4.26), 682 (4.09). δH (300 

MHz, CD2Cl2) 8.93 (1H, s), 8.88-8.92 (2H, m), 8.71-8.73 (2H, d, J = 6.03 Hz), 8.16-8.27 (8H, 

m), 7.73-7.91 (12H, m), 7.30-7.34 (2H, d, J = 11.0 Hz), 7.08 (2H, s), -2.35 (2H, s). Mp  > 300 ºC. 

3-7-2: 82% yield. MALDI-TOF Calcd for C56H37N4 [M+H]
+
 765.302, found 765.670. UV-vis 

(DCM) λmax (nm): 428 (log ε 4.97), 450 (5.70), 553 (4.31), 590 (4.37), 628 (4.04), 685 (3.86). 

δH (250 MHz, CD2Cl2) 8.44 (2H, s), 8.21-8.30 (10H, m), 7.82-7.97 (12H, m), 7.42-7.45 (2H, m), 

7.30-7.34 (2H, m), 7.14-7.20 (4H, m), 7.02-7.05 (1H, m), 6.93 (1H, d, J = 7.24 Hz), -1.2 (2H, 

brs). Mp >300 ºC. 

3-6-3: UV-vis (λmax nm/DCM): 394, 448, 543, 615, 682.  
1
H-NMR (250 MHz, CDCl3) 8.99 (s, 

1H), 8.87-8.82 (m, 2H,), 8.64-8.61 (m, 2H), 8.28 (d, 2H, J = 5.0 Hz), 8.22 (d, 2H, J = 5.0 Hz), 

8.13-8.10 (m, 4H), 7.83-7.70 (m, 12H), 5.30 (s, 4H), 3.26 (s, 8H), -2.62 (2H, s). Mp >300 ºC. 

3-2-3: 
1
H-NMR (250 MHz, CDCl3): ppm 9.06 (s, 1H), 9.02 (s, 1H), 8.95 (s, 1H), 8.91 (s, 2H), 

8.73 (s, 2H), 8.21 (br, 8H), 7.80 (s, 12H), -2.61 (s, 2H). MALDI-TOF Calcd for C44H29N5O2, 

659.7. Found 659.8. Mp >300 ºC. 
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General Procedure for Diels-Alder Reaction 

The Diels-Alder reaction was typically performed on 3-5-1. The diene precursor used in this 

Diels-Alder reaction, 1,4-dihydro-2,3-benzoxathiin-3-oxide was generated as a liquid according 

to the literature
11

. The preparation of 3-8-2 was performed by mixing 1,4-dihydro-2,3-

benzoxathiin-3-oride with 3-5-1 in the ratio of 3/1 in  toluene and subsequently refluxing the 

reaction mixture at 120 ºC under argon. TLC was used to follow the reaction. 3-8-1: UV-vis 

(λmax DCM /nm) 427, 456, 545, 584, 642, 698. MALDI Calcd. for C68H46N4, 919.1. Found, 

918.6. 3-8-1-Zn: UV-vis (λmax DCM /nm) 440, 470, 579, 641, 732.  

The preparation of Benzochlorin 3-9-1. 

A mixture of K2CO3 (34 mg, 0.25mmol) and malononitrile (20 µL, 0.3 mmol) in dry THF (1 mL) 

was stirred for 1 h at reflux under argon. The reaction mixture was cooled to room temperature, 

and 3-6-1 (21 mg, 0.03 mmol) was added to the mixture. The temperature was slowly increased 

to 65 °C and the mixture was allowed to stir for 6 h until all starting material and intermediate 

cyclopropylchlorin had disappeared (monitored by TLC). The reaction mixture was cooled, 

diluted with DCM (20 mL), washed with H2O, dried over anhydrous Na2SO4, filtered, and 

evaporated to dryness. The crude chlorin was purified by chromatography on a short silica gel 

column eluted with DCM/cyclohexane (2/1), and the red band was collected. UV-vis (λmax 

DCM /nm) 424, 481, 515, 547, 629, 686.  

Genral procedure for Suzuki-Coupling Reaction 

The mixture of bromoporphyrin (3-1 to 3-4) (0.1 mmol) with Pd(PPh3)4 (57.8 mg/Br, 0.05 mmol 

/Br) and K2CO3 were dissolved in freshly distilled toluene, to which 2-allyl-4,4,5,5-tetramethyl-

1,3,2-dioxaborolane (33.6 mg/Br, 0.2 mmol/Br) was added through a syringe. Strictly air free 
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conditions was required. TLC and MALDI-TOF were used to follow the reaction. When most of 

the bromoporphyrin had been consumed, the reaction was stopped. 

3-4-3:
1
H NMR (250 MHz, CDCl3): ppm 8.37 (s, 4H), 8.15-8.09 (m, 8H), 7.75-7.63 (m, 12 H), 

5.69 -5.64 (s, 4H), 4.76 (d, 4H, J = 10.0 Hz), 4.47 (d, 4H, J = 7.5 Hz), 3.51 (s, 8H), -2.50 (s, 2H). 

MALDI-TOF Calcd for C56H46N4:775.0. Found 775.8.  

3-4-4: 
1
H NMR (250 MHz, CDCl3): ppm 8.33-8.22 (m, 9H), 7.76-7.71 (m, 12H), 5.35-5.12 (m, 

6H), 4.65-4.42 (m, 8H), 4.11-3.97 (m, 4H), 3.40-3.18 (m, 8H), 2.82 (s, 4H), -1.94 (s, 2H). 

MALDI-TOF Calcd for C62H53N5O2: 900.1. Found 901.7.  

3-4-1: MALDI-TOF Calcd for C50H37N5O2: 740.0. Found 740.0.  

General procedures for Bromination 

3-2-1: A mixture of 3-2-3 (2.0 g, 3.0 mmol) and N-bromosuccinimide (1.4 g, 2.4 equiv) in dry 

chloroform (ethanol free, 250 mL) was refluxing for a period of 12 h. After being cooled to room 

temperature, the reaction mixture was poured into an alumina plug (Grade III) and eluted with 

CHCl3. After removing of solvent under vacuum, the resulting solid was further recrystallized 

from CHCl3/MeOH.  The desired 3-2-1 was eventually obtained as a brown powder in 80% yield 

(1.97 g). UV-Vis (λmax nm): 442, 543, 695; MALDI-TOF Calcd for C44H27Br2N5O2, 817.5. 

Found 817.8.  

3-1: NaBH4 (80 mg, 2.2 mmol) was added to a cold solution (ice/NaCl) of 3-2-1 (1.0 g, 1.2 

mmol) in dry THF (50 mL) under argon. After allowing the reaction mixture to stir for a period 

of 1 h, the ice bath was removed and the mixture was stirred for an additional 1 h. This reaction 

was monitored by UV-vis spectrophotometry. When the Soret band was blue shifted from 436 to 

424 nm, the reaction was stopped, DCM (200 mL) was added and then the reaction mixture was 

poured into water (around 200 mL). The separated organic phase was washed twice with water 
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(200 mL each), and after drying over anhydrous Na2SO4, the solvent was removed under vacuum. 

The residual solid was dissolved in DCM and filtered through a short alumina plug (Grade V) 

and eluted with CHCl3. After reducing the volume of solvent under vacuum to around 400 mL, 

the silica gel (80 g) was added into the reaction mixture and it was refluxed under argon for a 

period of 1 d. It was cooled to room temperature and the silica gel was removed by filtration, 

followed by a thorough washing with CHCl3. After removing the solvent under vacuum and 

subsequent recrystallization from CHCl3/MeOH, 3-1 was obtained as a purple powder in 83% 

yield (782 mg). UV-Vis (λmax nm /DCM): 431, 534, 601, 652; MALDI-TOF Calcd for 

C44H28Br2N4, 772.5. Found m/z 772.5.  

3-3-1: The mixture of 3-1-2 (3.0 g, 4.25 mmol) and NBS (7.5 g, 10 equiv) was dissolved in 1,2-

dichloroethane (300 mL) and was refluxed for a period of 16 h under argon. After cooling to 

room temperature, the reaction mixture was poured into a silica gel plug and eluted with CHCl3. 

After removing the solvent under vacuum and subsequent recrystallization from CHCl3/MeOH, 

the desired product 3-3-1 was obtained as a dark green powder in 68% yield (3.4 g). This 

reaction was careful monitored by UV-vis spectrophotometry. Extension of the reflux times 

should be avoided in order to prevent the slow degradation of the desired product and a 

concomitant decrease in the yield. UV-Vis (λmax nm/DCM): 465 nm, 591, 635;  MALDI-TOF 

Calcd. for C44H21Br6CuN5O2, 1194.6. Found 1194.9.  

3-3-2: Porphyrin 3-3-1 (1.2 g, 1.0 mmol) was placed in a 200 mL round bottom flask and a 

minimal amount of DCM was added to dissolve it. After slow removal of the solvent by rotation 

under vacuum, an oily film was formed on the surface of the flask. Then concentrated sulfuric 

acid (40 mL) was added and the mixture was alternately stirred and sonicated for a period of 1.5 

h. It was poured into a mixture of ice/water, and the demetalated product was extracted with 
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CHCl3. The organic phase was subsequently washed with water (40 mL), and saturated aqueous 

NaHCO3 (40 mL). After drying over Na2SO4 and reducing the solvent volume to around 50 mL 

under vacuum, 50 mL of MeOH was added. After subsequent further concentration, and 

filtration, 3-3-2 was obtained as a green powder in 95% yield (1.1 g). UV-Vis (λmax nm /DCM), 

472, 579, 635, 751; MALDI-TOF Calcd for C44H23Br6N5O2, 1133.1. Found 1133.0.  

3-3-3: Porphyrin 3-3-1 (1.2 mg, 1.0 mmol) was dissolved in dry DMSO (30 mL) under argon, 

and NaBH4 (66 mg, 1.8 mmol) was added into the solution with stirring. The solution was 

initially green and soon turned into brown. Stirring was continued for around 2 h. When the 

Soret absorption band showed a 22 nm blue-shift, the reaction was stopped. After adding 500 mL 

of DCM, the reaction mixture was poured into 500 mL of water. The organic phase was washed 

several times with water (500 mL each). After reducing the solvent volume to around 30 mL 

under vacuum, the solution was placed in the refrigerator for around 3~6 hours. After filtration, 

pure 3-3-3 was obtained as a dark brown precipitate in 55% yield (650 mg). MALDI-TOF Calcd 

for C44H22Br6N4Cu: 1149.6. Found 1149.6.  

3-3. Compared to the metalated starting material, the green solution of 3-3-2 was relatively 

unstable even under slightly basic conditions. Thus the reduction of 3-3-2 was not tried. The 

desired free-base hexabromotetraphenylporphyrin was obtained from the demetalation of the 

corresponding metallo-hexabromotetraphenylporphyrin 3-3-3 using concentrated H2SO4.  3-3-3 

(350 mg, 0.3 mmol) was dissolved in 50 mL concentrated sulfuric acid for a period of 1 h with 

alternating stirring and sonication. After this it was poured into ice/water, and the demetalated 

product was extracted with 50 mL of CHCl3. The organic phase was subsequently washed with 

water (50 mL), and saturated aqueous NaHCO3 (50 mL). After drying over anhydrous Na2SO4, 

the solvent was removed under vacuum. Recrystallization from CHCl3/MeOH gave 3-3 as a dark 
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purple powder in 74% yield (230 mg).  UV-Vis (λmax nm /DCM) 473, 548, 634, 728; MALDI-

TOF Calcd for C44H24Br6N4: 1088.1. Found 1088.2.  

3-2: Recrystallization of NBS was performed in hot water followed by drying at 80 °C under 

vacuum for a period of 6 h. H2TPP (600 mg, 1.0 mmol) was dissolved in CHCl3 (120 mL) and 

freshly recrystallized NBS (1.0 g, 6.0 mmol) was added into the solution which was refluxed for 

a period of 4 h. After cooling to room temperature, CHCl3 was removed under vacuum. The 

residue was then washed with methanol (2×40 mL) to remove the succinimide impurities. Then 

the residue as a purple solid was dissolved in CHCl3 and purified on a silica gel column with 

CHCl3 as the eluting solvent. The first fraction from the column was collected and the solvent 

was removed under vacuum. The solid was further recrystallized from CHCl3 /CH3OH (1:3). 

After filtration and removal of the solvent under vacuum, 3-2 was obtained in 66% yield (0.6 g). 

1
H NMR (CDCl3, 250 MHz): ppm 8.70 (s, 4H), 8.20-8.17 (m, 8H), 7.80-7.78 (m, 12H), −2.90 (s, 

2H). MALDI-TOF Calcd for C44H26Br4N4: 930.3. Found 930.4.  
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CHAPTER 4. “HANGMAN PORPHYRIN” ANALOGS 

4.1 Introduction 

The mechanisms of proton-coupled electron transfer (PCET) processes occur in many 

natural systems
1–3

. It has been the subject of several investigations using model porphyrin-based 

compounds
4, 5

. Such studies indicate that either a face-to-face or side-to-side arrangement of the 

acid–base and redox sites are crucial for efficient proton and electron transfers
6
. On the other 

hand, the hydrogen-bond framework in heme model systems has served as a determinant in the 

heme structure and function. Thus the targeted synthesis of model systems containing one or 

more hydrogen-bond functionalities attracts much of research interest
7–10

. Porphyrins have 

interesting structural and electronic properties, especially the so-called ―hangman porphyrins‖ 

(see Figure 4-1).  

  

Figure 4-1. Chemical structures of Hangman Porphyrins (left) and related cofacial bisporphyrins 

(middle to right). 

 

Hangman porphyrins serve as attractive PCET model systems and allow the control of 

both the proton and electron transfers. In the meanwhile, they also provide methods to the 

specific modification of PCET model system with specific proton-donating group and specific 

arranging it to the special region of metalloporphyrin redox site
6
. As a potential model system for 

investigations of hydrogen-bond frameworks and the related energy transfer in natural 

systems
6,11–19

, Hangman porphyrins bearing hydrogen synthons with different pKa values have 

been reported
6, 13– 19

.
  
The acidity of these systems was found to influence the PCET rate and the 
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stability of the catalyst during PCET process
6, 15c

. However, the synthesis of such models 

presents several challenges due to very long synthetic routes and tedious separation using 

currently available methods. Furthermore, routes lack susceptibility to modular modifications of 

the target systems
14

. Calixarenes have been extensively studied in recent years because of their 

interesting chemical and physical properties
20–32

. Among these, heterocalixarenes are far less 

prevalent in the chemical literature, especially the oxacalixarenes. Although the modest yield 

synthesis of oxacalixarene was first reported in 1966, their further studies are especially scarce
26

. 

Previous synthesis of oxacalixarene was based on a nucleophilic aromatic substitution and this 

had been used to efficiently synthesize highly functionalized oxacalixarenes. However, this 

requires high temperature and extended reaction times. Recently, Katz et al.
30

 made a significant 

improvement in oxacalixarene synthesis. This improved synthesis selectively chose bases and 

solvents and allowed the reaction to proceed at room temperature with high yields (Scheme 4-1).  

O

O O

NO2
O2N

O2N NO2

OOH

OH
F

O2N NO2

F

R1 R1 R1

K2CO3

DMSO, r.t.

> 90 % yield  

Scheme 4-1. Recent improved synthesis of the symmetrical oxacalix[4]arenes from literature. 

 

Based on this improved synthesis, Vicente’s research group have recently reported the 

synthesis of oxacalix[4]arene-linked bisporphyrins (see Figure 4-2) through nucleophilic 

aromatic substitution reaction of 1,5-difluoro-2,4-dinitrobenzene with a 3,5-dihydroxyphenyl-

containing porphyrin
33

. Despite these advances in recent research aspects of heterocalixarenes, 
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the efficient synthesis of unsymmetric heterocalixarenes remains a challenge, especially for the 

case of oxacalixarenes.  

N

NH N

HN

O

O2N NO2

O

NO2O2N

OO

N

HNN

NH

 

Figure 4-2. The X-ray structure of oxacalix[4]arene-linked cofacial porphyrin, which clearly 

shows the 1,3-alternative conformation (Left, chemical structure; Right, X-ray) from the 

literature. 
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Figure 4-3. Recent improved synthesis of unsymmetrical heterocalix[4]arenes from literature. 

 

Recently, Wang and Yang
24

 developed a fragment-coupling approach to the O- and N-

bridged calixarenes based on triazine fragment. Still this reaction needs long reaction times in 

general (see Scheme 4-3). Attracted to the unique discrete 1,3-alternating conformations of 

oxacalix[4]arenes
20–33

, we envisioned to design and synthesize porphyrin containing 

oxacalix[4]arenes with hydrogen synthons being suspended over the porphyrin macrocycle. We 
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believed that the compounds would be useful in PCET as heme model systems and also serve as 

efficient synthetic approaches to unsymmetrical oxacalixarene and heterocalixarene in organic 

synthesis. 

4. 2 Results and Discussion 

N

NH N

HN

O

O2N NO2

NO2O2N

O

F

F
N

NH N

HN

O

O2N NO2

NO2O2N

O

O

O

R R

O

NO2O2N

O2N NO2

O

F

F

a b

Porphyrin-containing linear trimer Aryl-containing linear trimer  

Scheme 4-2. Retro-synthetic analysis of the designed unsymmetrical porphyrin-

oxacalix[4]arenes. 
 

Our synthetic strategy is shown in Scheme 4-4. Inspired by the fragment coupling 

reaction in the unsymmetrial heterocalixarene synthesis, our synthesis used a [3+1] fragment 

coupling reaction, from which a series of novel unsymmetrical oxacalix[4]arenes were achieved 

from the nucleophilic aromatic substitution of functionalized meta-dihydroxybenzenes with 1,5-

difluoro-2,4-dinitrobenzene. The target compound could be synthesized either from the 

porphyrin-containing linear trimer or from the aryl-containing linear trimer, as shown in Scheme 

4-2. Either way, the efficient preparation of the linear trimer was required. Attracted to the 

convenience to react the porphyrin containing linear trimer with different readily available 

dihyroxybenzenes in the formation the target compounds, we started to use the approach as 

shown in Scheme 4-2. 

The synthesis of the 5-(3,5-dihydroxyphenyl)-triphenylporphyrin (4-3-1) was shown in 

Scheme 4-3. A mixture of 1 equivalent of 5-(3,5)-dimethylbenzaldehyde, 3 equivalents of 

benzaldehyde and 4 equivalents of freshly distilled pyrrole was dissolved in dry DCM. The 
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solution was stirred for 10 minutes under argon. Subsequently, a catalytic amount of a DCM 

solution of 2.5M BF3
.
OEt was added to the reaction mixture. The reaction mixture was stirred 

under argon with avoidance of light. TLC was used to follow the reaction. After adding DDQ to 

the reaction mixture, stirring was continued for an additional 45 minutes. Then the volume of 

solvent was reduced and the residue was applied to a silica gel column using hexane and DCM 

as eluting solvents. After removal of solvent under vacuum, 4-3-2 was obtained as purple powder 

in 8.5% yield.  

N

NH N

HN

HO OH

N

NH N

HN

MeO OMe

MeO

MeO

CHO

N
H

Benaldehyde
Propionic acid
Refluxing, 2h

pyrridium hydrochloride

200--220oC 77%

4-3-14-3-2

Scheme 4-3. Synthesis of 3, 5-dihydroxy-tetraphenylporphyrin 4-3-1.  
 

The hydrolysis of 4-3-2 to obtain 5-(3,5-dimethoxyphenyl)-10,15,20-triphenylporphyrin 

(4-3-1) was performed at 220 °C using an oil bath. A mixture of 1 equivalent of 4-3-2 and 140 

equivalents of pyridine hydrochloride was added to a round-bottom flask and heated to 220 °C in 

an oil bath. Upon the melting of the pyridium hydrochloride at 170 °C, the solution turned green 

in color. TLC was used to follow the reaction and the reaction was stopped when most of the 

starting materials had been consumed. After cooling to room temperature, the reaction mixture 

was poured into cold water and extracted with ethyl acetate. The combined organic layers were 

washed with aqueous 0.1 M HCl and saturated aqueous NaHCO3. After drying over anhydrous 

Na2SO4, the solvent was removed under vacuum. The residue was separated using a silica gel 

column eluted with chloroform/ethyl acetate (1:1). The major fraction was collected and was 
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further purified by recrystallization from DCM/hexane. After filtration and removal of the 

solvent under vacuum, the target porphyrin 4-3-1 was obtained as a purple powder in 84% yield.  
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Scheme 4-4. Synthesis of porphyrin containing linear trimer 4-4-1. 

 

N

NH N

HN

O

O2N NO2

NO2O2N

O

F

F HO

HO

R

4-4-1

R = CHO 4-a

R = COOEt 4-b

R = COOH 4-d

R = OH 4-e

N

NH N

HN

O

O2N NO2

NO2O2N

O

O

O

R

R = CHO 4-5-a

R =COOEt 4-5-b

N

NH N

HN

O

O2N NO2

NO2O2N

O

O

O

N

HNN

NH
+

4-5-1

+

K2CO3
DMSO
r. t.

R =COOH 4-5-d

R = OH 4-5-e

Scheme 4-5. The synthesis of unsymmetrical porphyrin-oxacalix[4]arenes from the porphyrin-

containing linear trimer 4-4-1. 

 

The synthesis of the porphyrin containing the linear trimer 4-4-1 is shown in Scheme 4-6. 

A mixture of 1 equivalent of 4-3-1, 4 equivalents of 1,5-difluoro-2,4-dinitrobenzene and eight 
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Scheme 4-6. The efficient synthesis of unsymmetrical oxacalix[4]arene 4-5-n (n = a-e). 

 

equivalents of K2CO3 was dissolved in phenol-free acetone. The reaction mixture was stirred at 

room temperature under air. After this, acetone was removed under vacuum. The residue was 

separated using a silica gel column eluted with DCM/hexane. After removing solvents under 

vacuum and subsequent recrystallization from hexane/DCM, compound 4-4-1 was isolated in 

80% yield. The synthesis of functionalized oxacalix[4]arene porphyrins 4-5-n (n = a, b, d, e) 

from the coupling reaction between 4-4-1 and readily available dihydroxybenzenes 4-n (n = a, b, 

d, e) is shown in Scheme 4-5.This reaction was performed in DMSO in the presence of finely 

ground K2CO3. Despite the different type of 3,5-dihydroxybenzene reagents used in this reaction, 

the yields of the desired products 4-5-n (n = a, b, d, e) were low (10–25%). The major product 

from these reactions was invariably the symmetric oxacalix[4]arene bisporphyrin 4-5-1
33

. The 

generation of 4-5-1 under these reaction conditions is attributed to the scrambling of the 

porphyrin containing linear trimer 4-4-1. The thermodynamic reversibility of oxacalixarene 

formation during nucleophilic substitution has been studied and confirmed recently by Katz et 
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al.
30

, which is also in agreement with studies reported for thiocalixarenes
34

 and with the 

invariable formation of symmetrical 4-5-1 and the absence of 4-3-1 in our case. To solve the 

scrambling problem of the porphyrin containing linear trimer, the aryl-containing linear trimer 

was used for the [3+1] fragment coupling reaction (see Scheme 4-6). 

A mixture of 1 equivalent of 4-n (n = a–c, e), 3 equivalents of 1,5-difluoro-2,4-

dinitrobenzene and 4 equivalents of finely ground K2CO3 (<80 mm) was dissolved in acetone at 

room temperature. The reaction mixture was stirred for around 1–2 hours at room temperature 

under air. TLC was used to follow the reaction. When the reaction was complete, acetone was 

removed under vacuum. The residue was separated using a silica gel column eluted with DCM. 

After removal of the solvent and washing with hexane (2×10 mL), linear trimer 4-6-n (n = a-c, e) 

was obtained as a white solid in 75–85% yields on multi-gram scale. By simply choosing acetone 

as solvent and 3 equivalents (rather than two) of 1,5-difluoro-2,4-dinitrobenzene, the formation 

of symmetrical oxacalix[4]arene 4-5-1 as a scrambling byproduct was reduced to a minimal 

amount. The linear trimers 4-6-n (n = a–c, e) were then used to generate the target functionalized 

oxacalix[4]arene porphyrins 4-5-n (n = a-e) in 80–86% yields (see Scheme 4-6). A mixture of 1 

equivalent 4-3-1, 1.2 equivalents of 4-6-n (n = a-c, e) and 4 equivalents of finely ground K2CO3 

was dissolved in DMSO. The reaction mixture was stirred at room temperature for a period of 30 

minutes or up to 3 hours. TLC was used to follow this reaction, and the reaction was stopped 

upon complete disappearance of the starting materials. These fragment-coupling reactions are 

very efficient and no higher analogs were detected, compared with other fragment-coupling 

reactions reported in the literature
20–25

. Thus the yields were higher and the separations were 

easier. Using DMSO as the solvent in place of acetone in the ring-closure fragment coupling 



115 
 

reaction improved the yields of the reaction. However, the use of DMSO instead of acetone 

resulted in lower yields of linear trimer formation.  

CO2Et

O NO2

NO2
O2N

O2N O

FF  

Figure 4-4. Chemical structure (left) and X-ray structure (right) of 4-6-b. 

 

The generation of 4-5-d was achieved by hydrolysis of the ester functionality in 4-5-b. 

The hydrolysis under basic conditions by using NaOH aqueous solution failed to generate the 

desired product; instead the starting material decomposed under these conditions, in agreement 

with the scrambling that occurred in the generation of 4-5-1. The hydrolysis under dilute acidic 

condition also failed, leaving the starting material intact. The final successful hydrolysis of 4-5-b 

was accomplished by refluxing it in a mixture of THF/4 M aqueous HCl (v/v = 1/2) for a period 

of 3 days. After separation, 4-5-d was obtained as a purple powder in 95% yield. The 

functionalized oxacalix[4]arenoporphyrins 4-5-n (n = a–e, 1) were characterized by HRMS, UV–

vis, fluorescence, and 
1
H NMR spectroscopy. The structure of trimer 4-6-b was also confirmed 

by X-ray crystallography at T=150K (see Figure 4-4). The crystals of 4-6-b were destroyed by 

cooling to temperatures lower than 150K, apparently as a result of a phase change. The C–F 

distances are 1.331(2) and 1.334(2) A°.  
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The linear trimers 4-6-n (n = a–c, e) shared characteristic 
1
H NMR spectra, with two 

downfield singlets (around 8.9 ppm) for the protons adjacent to the carbons bearing the NO2 

groups, and two upfield singlets (around 6.9 ppm) for the protons adjacent to the carbons bearing 

the F groups. Based on the characteristic upfield chemical shifts observed in the 
1
H NMR spectra 

of oxacalix[4]arenes for the interior protons on the electrophilic (NO2-bearing) aromatic rings
28

, 

it is believed that these compounds adopt 1,3-alternating structures in solution
20–33

. Recent X-ray 

structures
26–33  

have confirmed this conformation of oxacalix[4]arenes in the solid state. 

Table 4-1. 
1
H NMR shifts for the interior protons on the NO2-bearing benzene rings of 

porphyrins 4-5-n (n = a–e, 1). 

 

Porphyrins 4-5-a 4-5-b 4-5-d 4-9-1 4-5-e 4-5-c 

 (ppm) 6.77 6.43 6.70 6.87 6.70 6.49 

 

Table 4-1 shows the 
1
H NMR chemical shifts observed for these protons on porphyrins 4-

5-n (n = a–e) and 4-9-1 (see Scheme 4-9). These results suggest that our functionalized 

oxacalix[4]arene porphyrins also adopt 1,3-alternating conformations in solution, in agreement 

with results reported for symmetrical oxacalix[ 4]arenes
26–33

. Furthermore, computer calculations 

using the AM1 theoretical model incorporated into the Spartan program were performed to 

determine the minimum energy conformations for oxacalix[4]arene porphyrins 4-5-n (n = a-e), 

4-9-1. Such calculations have been found reliable for the determination of geometrical 

parameters in porphyrin arrays
37–40

. Similar optimized geometries were found for all 

oxacalix[4]arene porphyrins (see Figure 4-5) and the calculated structure obtained for 

bisporphyrin 4-5-1 was in agreement with the crystal data
33

. These results suggest, as seen in 

Figure 4-5, favorable 1,3-alternating conformations for all oxacalix[4]arene porphyrins, with the 

hydrogen-bond synthons hanging over an adjacent pyrrole ring. Such a conformation would  
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Figure 4-5. AM1 calculated conformation of 4-5-d. 

N

NH N

HN

OH

OH

HO

HO
N

NH N

HN

OMe

OMe

MeO

MeO
MeO OMe

CHO

CHO N
H

R R

R R

R R R R

RR

+

BBr3

R = H 4-7-3
R = t-butyl 4-7-4

R = H 4-7-1
R = t-butyl 4-7-2  

Scheme 4-7. Synthesis of tetrahydroxyporphyrins 4-7-1 and 4-7-2.   
 

provide a face-to-face structural arrangement for the porphyrin macrocycles and hydrogen-bond 

synthons, therefore making these compounds suitable as model systems for PCET and hydrogen-

bond investigations. The preparation of 4-7-4 was achieved from a mixed aldehyde condensation  



118 
 

CO2Et

O

NO2O2N

O2N NO2

O

F

F

N

NH N

HN

OH

OH

N

NH N

HN

O

O

CO2Et

O

NO2
O2N

O2N NO2

O

DMSO, r.t

K2CO3

HO

HO

O

OO

O2N NO2

NO2O2N

O

EtO2C

+

4-8-1

4-7-1

4-6-b

 

Scheme 4-8. Synthesis of symmetrical porphyrin-bisoxacalix[4]arene 4-8-1. 

 

similar to the preparation of 4-3-1
36

. A mixture of 1 equivalent of 3, 5-dimethylbenzaldehyde, 1 

equivalent of 3, 5-di-tert-butylbenzaldehyde and 2 equivalents of pyrrole was dissolved in dry 

DCM. The reaction mixture was stirred for around 10 minutes under argon before adding a DCM 

solution of 2.5 M BF3
.
OEt. The reaction mixture was stirred under argon and in the dark. TLC 

was used to follow this reaction. After addition of DDQ, the reaction mixture was left to stir for 

an additional 45 minutes. After reducing the solvent under vacuum, the residue was applied to 

silica gel column for separation, eluted with hexane/DCM. The third purple fraction was 

collected. After removal of solvent under vacuum, 4-7-4 was obtained as a purple powder in  



119 
 

CO2Et

O

NO2O2N

O2N NO2

O

F

F

N

NH N

HN

OH

OH

N

NH N

HN

O

O

CO2Et

O

NO2
O2N

O2N NO2

O

DMSO, r.t

K2CO3

HO

HO

O

OO

O2N NO2

NO2O2N

O

EtO2C

+

4-7-2

4-6-b

4-9-1  

Scheme 4-9. Synthesis of symmetrical porphyrin-oxacalix[4]arene 4-9-1. 

 

7.9% yield.  Compound 4-7-2 was obtained from the subsequent demethylation reaction using 

BBr3
35

,
 
similar to the demethylation of 4-3-2, to generate 4-3-1. Compound 4-7-1 was then used 

for the subsequent preparation of bis(oxacalix[4]areno)porphyrin 5,15-di(3,5-

hydroxyphenyl)porphyrin 4-8-1. This ring closure fragment coupling reaction was performed by 

mixing 1 equivalent of 4-7-1 with 2 equivalents of linear trimer 4-6-b and 6 equivalents of 

K2CO3 in DMSO at room temperature under air for a period of 3 hours. Dilute 0.1 M aqueous 

HCl was used to quench the reaction, followed by addition of ethyl acetate to extract the reaction 
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mixture from the water. The resulting organic phase was dried over anhydrous Na2SO4 and 

purified by alumina column chromatography using DCM/ethyl acetate (v/v = 100/1) as eluting 

solvents. After removal of the solvent under vacuum, the major product was obtained in 54% 

yield. Although MALDI-TOF mass spectroscopy gave a peak corresponding to the desired 

compounds 4-8-1, and TLC always gave one spot for the desired compound, efforts to obtain a 

decent NMR spectrum for 4-8-1 failed. We attribute this to the poor solubility of this compound, 

which easily formed aggregates in most organic solvents. Meanwhile, we thought that it might 

also be attributed to rapid conformational changes of this compound in solution from which 

broad NMR signals were observed. 

To solve this problem, we introduced bulky groups into the meso-position of porphyrins, 

to increase the solubility and help reduce aggregation. The generation of 4-9-1 was from a 

similar fragment coupling reaction as in the preparation of 4-8-1, with the substitution of 

porphyrin 4-7-1 to 4-7-2. The desired 4-9-1 was obtained as a purple powder in 84% yield. The 

presence of the four tert-butyl groups at the meso-position of porphyrin 4-7-2 induced high 

solubility of this compound in organic solvents, and its structure, was confirmed by HRMS (a 

molecular ion peak was observed at 1923.5460), UV–vis, fluorescence, and 
1
H NMR 

spectroscopy. Based on the characteristic upfield chemical shifts observed in the 
1
H NMR 

spectra of oxacalix[4]arenes for the interior protons on the electrophilic (NO2-bearing) aromatic 

rings
28

, it is believed that these compounds adopt 1,3-alternating structures in solution
20–33

. The 

photophysical properties of porphyrins 4-5-n (n= a-e) and 4-9-1 are summarized in Table 4-2. 

The long wavelength absorption and fluorescence emission bands for all porphyrins except 4-5-d 

were observed between 646–652 and 652–658 nm. The carboxyl group in porphyrin 4-5-d is 

probably involved in intermolecular hydrogen-bonding, resulting in its distinct absorbance and 
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emission spectra compared with the other porphyrins, as well as its reduced fluorescence 

quantum yield (0.03). All other oxacalix[4]arene porphyrins showed quantum yields between 

0.13 and 0.22. 

Table 4-2. Spectral properties of porphyrins 4-5-n (n = a–e) and 4-9-1 in degassed DCM at room 

temperature.
 a

 Excitation at 415 nm. 
b 

Calculated using 5,10,15,20-tetraphenylporphyrin as the 

standard. 

 

 

4. 3 Conclusions 

An efficient and convenient stepwise fragment-coupling approach to the synthesis of 

unsymmetrical architectures composed of porphyrins and hydrogen-bond functionalities 

anchored to an oxacalix[4]arene spacer is reported. Spectroscopic data and computer calculations 

indicate that these oxacalix[4]arene porphyrins adopt 1,3-alternating conformations. These novel, 

high-yield syntheses of unsymmetrical oxacalix[4]arenes will find applications in 

supramolecular chemistry and in molecular design. 

4. 4 Experiment 

4.4.1 General 

Silica gel (32–63 mm) was used for flash column chromatography. All reactions were 

monitored by TLC using 0.25 mm silica gel plates with or without UV indicator (60F-254). 
1
H 

and 
13

C NMR spectra were obtained on either a DPX-250 or a ARX-300 Bruker spectrometer. 
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Chemical shifts (δ) are given in ppm relative to CDCl3 (7.27), acetone-d6 (2.05), DMSO-d6 (2.50) 

or THF-d8 (1.73) as indicated. Electronic absorption spectra were measured on a Perkin Elmer 

Lambda 35 UV–vis spectrophotometer in the 300–800 nm wavelength region with 0.1 nm 

accuracy. Fluorescence spectra were measured on a Perkin Elmer LS55 spectrometer in the 500–

800 nm wavelength region with 1 nm accuracy. The fluorescence quantum yields were measured 

using the standard method and 5,10,15,20-tetraphenylporphyrin as the standard (quantum yield is 

0.11), according to the literature
41

. Mass spectra were obtained on Applied Biosystems QSTAR 

XL spectrometer. High-resolution mass spectra were obtained on a Q-TOF2 eletrospray at the 

mass spectrometry facility of Ohio State University. All solvents were obtained from Fisher 

Scientific (HPLC grade, Houston, TX) and used without further purification unless indicated. 

Acetone (reagent plus, phenol free, > 99.5%) and DMSO (Biotech grade solvent, 99.8%) were 

purchased from Sigma–Aldrich and used without further purification. K2CO3 was ground and 

dried at 140 
o
C. Compounds 4-d

42
 and 4-3-1

35
 were synthesized according to literature 

procedures. Solvents were dried according to literature procedures
43

.  The computational 

simulations used the AM1 semiempirical Hamiltonian method
44

 incorporated into the quantum 

mechanical Spartan program
45

. The coordinates used to build the porphyrins in this study were 

based on the X-ray crystal structure of 4-5-1
33

. 

4.4.2 Syntheses  

4.4.2.1 Aryl-containing Linear Trimer 4-6-a.  

3,5-Dihydroxybenzaldehyde (4-a) (276.7 mg, 2.0 mmol) was mixed with 1, 5-difluoro-2, 4-

dinitrobenzene (816.5 mg, 4.0 mmol) and K2CO3 (561.4 mg, 4 mmol) in 10 mL of acetone at 

room temperature under air. When the reaction was complete, acetone was removed under 

vacuum. The resulting residue was purified by silica gel column chromatography using 
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DCM/ethyl acetate (v/v = 20/1) for elution. After removal of the solvent under vacuum and 

washing with hexane (2×10 mL), pure linear trimer 4-6-a was obtained as a white solid in 85% 

yield (860.0 mg). 
1
H NMR (300 MHz, CDCl3) δ 10.03 (s, 1H), 8.98 (s, 1H), 8.95 (s, 1H), 7.58 (d, 

2H, J = 2.25 Hz), 7.30 (s, 1H), 7.06 (s, 1H), 7.02 (s, 1H). ESI-MS Calcd. for C19H8F2N4O11 m/z 

506.3, found: 506.5. 

4.4.2.2 Aryl Containing Linear Trimer 4-6-b.  

Ethyl 3,5-dihydroxybenzoate (4-b) (182.0 mg, 1 mmol) was mixed with 1,5-difluoro-2,4-

dinitrobenzene (408.0 mg, 2 mmol) and K2CO3 (560.0 mg, 4 mmol) in 10 mL of acetone at room 

temperature under air. When the reaction was complete, acetone was removed under vacuum. 

The resulting residue was purified by silica gel column chromatography using DCM for elution. 

After removal of the solvent and washing with hexane (2×10 mL), linear trimer 4-6-b was 

obtained as a white solid in 82% yield (451.0 mg). 
1
H NMR (300 MHz, CDCl3) δ 8.94 (s, 1H), 

8.91 (s, 1H), 7.74 (d, 2H, J = 2.34 Hz), 7.19 (s, 1H), 6.96 (s, 1H), 6.92 (s, 1H), 4.39 (q, 2H), 1.38 

(t, 3H). Anal. Calcd for C21H12F2N4O12: C, 45.83; H, 2.20; N, 10.18. Found: C, 45.79; H, 2.26; N, 

9.98. ESI-MS Calcd for C21H12F2N4O12 m/z 550.3, found: 549.8. 

4.4.2.3 Aryl Containing Linear Trimer 4-6-c. 

Compound 4-c (510.4 mg, 2 mmol) was mixed with 1,5-difluoro-2,4-dinitrobenzene (1.63 g, 8.0 

mmol) and K2CO3 (2.21 g, 16 mmol) in 20 mL of acetone at room temperature under air. When 

the reaction was complete, acetone was removed under vacuum. The residue was purified by 

silica gel column chromatography using DCM to the mixture solvents of DCM/ethyl acetate (v/v 

= 20/1) for elution. After removal of the solvent under vacuum and washing with hexane (2×10 

mL), linear trimer 4-6-c was obtained as a white solid in 75% yield (935.0 mg). 
1
H NMR (300 
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MHz, acetone-d6) δ 8.93 (d, 2H, J = 7.67 Hz), 7.93 (m, 4H), 7.69 (s, 1H), 7.65 (s, 1H), 7.60 (d, 

2H, J = 2.21 Hz), 7.48 (s, 1H). ESI-MS calcd for C26H11F2N5O12 m/z 623.4, found: 623.8. 

4.4.2.4 Porphyrin Conatining Linear Trimer 4-4-1.  

5-(3,5-Dihydroxyphenyl)triphenylporphyrin (4-3-1) (32.8 mg, 0.05 mmol) was mixed with 1,5-

difluoro-2, 4-dinitrobenzene (81.6 mg, 0.2 mmol) and K2CO3 (56.0 mg, 0.4 mmol) in 20 mL of 

acetone at room temperature under air. After the reaction was complete, acetone was removed 

under vacuum. The resulting residue was purified by silica gel column chromatography using the 

mixture solvents of DCM/hexane (v/v = 10/1) for elution. Pure linear trimer 4-4-1 was isolated in 

80% yield (40.6 mg) after recrystallization from hexane and DCM. 
1
H NMR (250 MHz, CDCl3) 

δ 8.84 (m, 6H), 8.68 (d, 2H, J¼2.37 Hz), 8.19 (m, 8H), 7.73 (m, 11H), 7.05 (m, 1H), 6.80 (m, 

2H), -3.03 (s, 2H). HRMS (MALDI-TOF) Calcd for [M+H]
+ 

C56H33F2N8O10 m/z 1015.2288, 

found: 1015.2265. UV–vis (DCM) λmax (log ε) 417 (5.84), 513 (4.47), 548 (4.03), 590 (3.85), 

646 (3.58) nm. 

4.4.2.5 Porphyrin 4-5-a.  

Linear trimer 4-6-a (50.1 mg, 0.1 mmol) was mixed with 4-3-1 (64.1 mg, 0.1 mmol) and K2CO3 

(60.3 mg, 0.44 mmol) in 20 mL of DMSO at room temperature under air for 1 h (until TLC 

showed the complete disappearance of starting material). HCl (0.1 M, 40 mL) was used to 

quench the reaction. The water layer was extracted with 100 mL of ethyl acetate, and the organic 

layer was washed once with water and dried over anhydrous Na2SO4. The residue was purified 

by silica gel column chromatography using DCM for elution. Pure porphyrin 4-5-a was obtained 

as a purple solid in 83% yield (92.1 mg) after recrystallization from DCM /hexane. 
1
H NMR 

(250 MHz, THF-d8) δ 10.07 (s, 1H), 8.98 (s, 2H), 8.84 (m, 6H), 8.66 (s, 2H), 8.20–8.21 (m, 6H), 

8.13 (d, 2H, J = 2.10 Hz), 8.00 (d, 2H, J = 2.16 Hz), 7.81–7.82 (m, 9H), 7.64 (s, 1H), 7.52 (s, 1H), 
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6.77 (s, 2H), -2.76 (s, 2H). MALDI-TOF Calcd for [M+H]
+ 

C63H37N8O13 m/z 1114.0, found: 

1114.0. HRMS (ESI) Calcd for [M+H]
+
 C63H37N8O13 m/z 1113.2480, found:1113.2501. UV–vis 

(DCM) λmax (log ε) 418 (5.88), 514 (4.50), 548 (4.11), 591 (3.93), 647 (3.72) nm. 

4.4.2.6 Porphyrin 4-5-b.  

Linear trimer 4-6-b (55.0 mg, 0.1 mmol) was mixed with 4-3-1 (64.6 mg, 0.1 mmol) and K2CO3 

(56.0 mg, 0.44 mmol) in 20 mL of DMSO at room temperature under air (the reaction was 

considered complete after TLC showed the complete disappearance of the starting material). HCl 

(0.1 M, 40 mL) was used to quench the reaction. The water layer was extracted with 100 mL of 

ethyl acetate, and the organic layer was washed once with water and dried over anhydrous 

Na2SO4. The resulting residue was purified by silica gel column chromatography using DCM for 

elution. Pure porphyrin 4-5-b was obtained as a purple solid in 86% yield (100.1 mg) after 

recrystallization from DCM / hexane. 
1
H NMR (250 MHz, CDCl3) d 8.93 (s, 2H), 8.82 (m, 6H), 

8.41 (s, 4H), 8.16 (m, 6H), 8.04 (d, 2H, J = 2.22 Hz), 7.99 (d, 2H, J = 2.22 Hz), 7.71 (m, 9H), 

6.43 (s, 2H), 4.01 (q, 2H), 1.11 (m, 3H), -2.88 (s, 2H). MALDI-TOF Calcd for C65H40N8O14 m/z 

1157.058, found: 1159.198. HRMS (MALDI-TOF) Calcd for [M+H]
+
 C65H41N8O14 m/z 

1157.2742, found: 1157.2787. HRMS (ESI) Calcd for [M+H]
+
 C65H41N8O14 m/z 1157.2742, 

found: 1157.2799. UV–vis (DCM) λmax (log ε) 418 (5.89), 513 (4.51), 548 (4.09), 591 (3.88), 

649 (3.76) nm. 

4.4.2.7 Porphyrin 4-5-c.  

Linear trimer 4-6-c (63.3 mg, 0.1 mmol) was mixed with 4-3-1 (65.7 mg, 0.1 mmol) and K2CO3 

(60.0 mg, 0.43 mmol) in 10 mL of DMSO at room temperature under air for 3 h (until TLC 

showed the complete disappearance of starting material). HCl (0.1 M, 40 mL) was used to 

quench the reaction. The water layer was extracted with 100 mL of ethyl acetate, and the organic 
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layer was washed once with water and dried over anhydrous Na2SO4. The residue was purified 

by silica gel column chromatography using DCM for elution. Pure porphyrin 4-5-c was obtained 

as a purple solid in 83% yield (102.0 mg) after recrystallization from DCM/hexane. 
1
H NMR 

(300 MHz, THF-d8) δ 8.98 (s, 2H), 8.90 (br s, 2H), 8.82 (br s, 4H), 8.20 (br s, 4H), 8.17 (s, 3H), 

8.14 (s, 3H), 7.79–7.81 (m, 9H), 7.63 (s, 2H), 7.56 (s, 1H), 7.35 (s, 1H), 6.95 (d, 4H, J = 2.55 

Hz), 6.70 (s, 2H), -2.84 (s, 2H). MALDI-TOF Calcd for [M+H]
+
 C70H40N9O14 m/z 1230.3, found: 

1230.8. HRMS (ESI) Calcd for [M+H]
+
 C70H40N9O14 m/z 1230.2694, found: 1230.2700. UV–vis 

(DCM) λmax (log ε) 418 (5.57), 515 (4.20), 550 (3.79), 591 (3.49), 652 (3.43) nm. 

4.4.2.8 Bisporphyrin 4-5-1.  

This compound was synthesized and characterized as previously reported
33

. 

4.4.2.9 Porphyrin 4-5-e. 

 Linear trimer 4-6-e (20.3 mg, 0.02 mmol) was mixed with 4-3-1 (2.5 mg, 0.02 mmol) and 

K2CO3 (11.0 mg, 0.08 mmol) in 5 mL of DMSO at room temperature under air for 40 min. HCl 

(0.1 M, 20 mL) was used to quench the reaction. The water layer was extracted with 50 mL of 

ethyl acetate, and the organic layer was washed once with water and dried over anhydrous 

Na2SO4. The residue was purified by silica gel column chromatography using THF/hexane for 

elution. Porphyrin 4-5-e was obtained in 20% yield (4.5 mg). 
1
H NMR (300 MHz, THF-d8)  

9.95 (br s,1H), 9.06 (d, 2H, J = 3.90 Hz), 8.93 (s, 2H), 8.84 (s, 4H), 8.71 (d, 2H, J = 2.0 Hz), 

8.20–8.28 (m, 6H), 8.13 (d, 2H, J = 4.58 Hz), 7.79–7.81 (m, 9H), 7.61 (s, 1H), 6.86 (s, 2H), 6.75 

(s, 1H), 6.70 (d, 2H, J = 6.93 Hz), -2.75 (s, 2H). MALDI-TOF Calcd for [M+H]
+
 C62H36N8O13 

m/z 1102.0, found: 1103.3. HRMS (ESI) Calcd for [M+H]
+
 C62H37N8O13 m/z 1101.2480, found: 

1101.2545. UV–vis (DCM) λmax (logε) 417 (5.75), 513 (4.37), 548 (3.92), 591 (3.71), 646 (3.43) 

nm. 
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4.4.2.10 Porphyrin 4-5-d.  

Hydrolysis of 4-5-d was obtained by dissolving 4-5-b (24.6 mg, 0.02 mmol) in 10 mL of THF, 

followed by addition of 4 M HCl (20 mL). The reaction mixture was refluxed at 60 
o
C in an oil 

bath for 3 days. After completion of the reaction, the mixture was extracted with ethyl acetate 

and the organic layer washed with brine. The resulting residue was purified by silica gel column 

chromatography using DCM/ethyl acetate (v/v = 20/1) for elution. Pure porphyrin 4-5-d was 

obtained in 95% yield (21.5 mg) after recrystallization from DCM/hexane. 
1
H NMR (300 MHz, 

THF-d8) δ 8.97 (s, 1H), 8.93 (d, 2H, J = 4.40 Hz), 8.83 (s, 6H), 8.77 (s, 2H), 8.21 (m, 6H), 8.14 

(d, 2H, J = 1.98 Hz), 8.03 (d, 2H, J = 2.06 Hz), 7.79 (d, 9H), 7.53 (s, 1H), 7.49 (s, 1H), 6.87 (s, 

2H), -2.74 (s, 2H). MALDI-TOF Calcd for [M+H]
+ 

C63H37N8O14 m/z 1129.2, found: 1130.2. 

HRMS (ESI) Calcd for [M+H]
+
C63H37N8O14 m/z 1129.2429, found: 1129.2405. UV–vis (DCM) 

λmax (log 3) 418 (5.43), 514 (3.90), 548 (3.32) nm. 

4.4.2.11 5-(3, 5-Dihoxylphenyl)-10,15,20-triphenylporphyrin 4-7-1. 

5-(3,5-Dimethoxyphenyl)-10,15,20-triphenylporphyrin 4-7-3 (400 mg, 0.6 mmol) and pyridine 

hydrochloride (10.0 g, 86 mmol) were added to a 100 mL round-bottom flask and heated to 

220 °C in an oil bath. Upon the melting of pyridium hydrochloride at 170 °C, the solution turned 

green in color. TLC indicated the formation of the target porphyrin after 2 h reaction. Stirring 

was continued for an additional 4 h, whereupon TLC indicated that most of the starting materials 

had been consumed. The reaction was stopped and the mixture was cooled to room temperature. 

Then the reaction mixture was poured into 400 mL cold water and extracted with 400 mL ethyl 

acetate. The aqueous layer was extracted with ethyl acetate until colorless. The combined 

organic layers were washed twice with 0.1 M HCl aqueous solution and once with aqueous 

saturated NaHCO3. After drying over anhydrous Na2SO4, the solvent was removed under 
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vacuum. The residue was separated on a silica gel column using chloroform/ethyl acetate 1:1 as 

eluting solvent. The major fraction was collected and was further purified by recrystallization 

from DCM hexane. After filtration and removal of the solvent under vacuum, porphyrin 4-7-1 

was obtained in 84 % yield (160 mg). HRMS (MALDI-TOF) m/z 645.2272, calculated for 

C44H28N4O2 645.2290. 
1
H-NMR (DMSO-d6) δ 9.92 (s, 1H), 9.77 (s, 1H), 9.22 (d, 1H, J = 4.3 

Hz), 8.54 (d, 1H, J = 4.9 Hz), 8.28 (d, 1H, J = 3.6 Hz), 8.24 (d, 1H, J = 3.6 Hz), 8.16 (d, 1H, J = 

4.4 Hz), 8.12 (d, 1H, J = 4.5 Hz), 8.03 (m, 6H), 7.78 (m, 9H), 7.22 (s, 1H), 7.08 (s, 1H), 5.95 (s, 

1H), -0.16 (s, 2H). UV-Vis (DCM) λmax (log ε) 422 (4.9), 455 (4.8), 486 (4.7), 583 (3.7), 640 

(3.7), 683 (3.6) nm. 

4.4.2.12 5,15-Di(3,5-dihydroxyphenyl)-10,20-di(3,5-ditert-butylphenyl)porphyrin 4-7-2. 

 3,5-Dimethylbenzaldehyde (0.83 g, 5.0 mmol), 3,5-di-tert-butylbenzaldehyde (1.09 g, 5.0 

mmol), and pyrrole (0.70 mL, 10 mmol) were mixed in a 2 L flask. Dry DCM (1000 mL) was 

added and the solution was stirred for 10 min under argon before 0.4 mL of 2.5 M BF3
.
OEt in 

DCM was added. The reaction mixture was stirred under argon and in the dark for 2 h. DDQ 

(1.64 g) was added and the mixture was stirred for 45 min. The reaction mixture was 

concentrated to give a residue that was purified by silica gel column chromatography using a 

mixture of hexane and DCM for elution. The third eluted purple fraction contained 5,15-di(3,5-

dimethoxyphenyl)-10,20-di(3,5-di-tert-butylphenyl)porphyrin. The solvent was removed under 

vacuum to give 192 mg (7.9% yield) of this porphyrin 4-7-4 as a purple powder. MALDI-TOF 

Calcd for [M+H]
+
 C64H71N4O4 m/z 960.25, found: 960.17. 

1
H NMR (CDCl3) d 9.07 (d, 4H, J = 

4.70 Hz), 9.01 (d, 4H, J = 4.70 Hz), 8.20 (d, 4H, J = 1.68 Hz), 7.91–7.90 (m, 2H), 7.53 (d, 4H, J 

= 2.24 Hz), 6.97–6.99 (m, 2H), 1.63 (s, 36H), -2.63 (s, 2H). To a solution of 5, 15-di (3,5- 

dimethoxyphenyl)-10,20-di(3,5-di-tert-butylphenyl)porphyrin 4-7-4 (0.096 g, 0.1 mmol) in dry 
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DCM (20 mL) at -20 
o
C was added dropwise a solution of BBr3 (0.3 mL, 3.1 mmol) in DCM (1 

mL) with vigorous stirring under argon over a period of 30 min. The reaction mixture was stirred 

at room temperature for a period of 24 h and then poured into water and extracted with ethyl 

acetate (3×50 mL). The combined organic layers were washed successively with brine and 

aqueous NaHCO3 solutions. The organic solution was dried over Na2SO4 and evaporated to 

dryness, giving the title porphyrin 4-7-2 as purple crystals in 91.6% yield (82.7 mg, 0. 092 

mmol). MALDI-TOF Calcd for [M+H]
+
 C60H63N4O4 m/z 904.14, found: 904.21. 

1
H NMR 

(CD2Cl2) δ 9.04 (d, 4H, J = 4.80 Hz), 8.90 (d, 4H, J = 4.75 Hz), 8.70 (s, 4H), 8.15 (d, 4H, J = 

1.81 Hz), 7.96–7.94 (m, 2H), 7.26 (d, 4H, J = 2.18 Hz), 6.84–6.82 (m, 2H), 1.56 (s, 36H), -2.75 

(s, 2H). 

4.4.2.13 Porphyrin 4-9-1.  

5,15-Di(3,5-dihydroxyphenyl)-10,20-di(3,5-di-tert-butylphenyl)porphyrin 4-7-2 (36.1 mg, 0.04 

mmol) was mixed with linear trimer 4-6-b (44.0 mg, 0.08 mmol) and K2CO3 (33.6 mg, 0.24 

mmol) in 10 mL of DMSO at room temperature under air for 3 h. Dilute HCl (0.1 M × 40 mL) 

was used to quench the reaction and ethyl acetate (2×25 mL) was used to extract the water layer. 

The resulting organic phase was dried over anhydrous Na2SO4 and purified by alumina column 

chromatography using DCM/ethyl acetate (v/v = 100/1) for elution. Porphyrin 4-9-1 was 

obtained in 84% yield (64.7 mg). 
1
H NMR (250 MHz, CDCl3) δ 8.95 (br s, 8H), 8.46 (br s, 4H), 

8.09 (s, 4H), 8.05 (d, J = 1.86 Hz, 4H), 8.02 (d, J = 1.82 Hz, 4H), 7.92 (s, 2H), 7.25 (br s, 4H), 

6.49 (s, 4H), 3.98–4.06 (m, 4H), 1.56 (s, 36H), 1.27 (t, 6H). MALDI-TOF Calcd for [M+H]
+
 

C102H83N12O28 m/z 1923.5, found: 1923.1. HRMS (ESI) calcd for [M+H]
+
 C102H83N12O28 m/z 

1923.5440, found: 1923.5460. UV–vis (DCM) λmax (log ε) 422 (5.79), 518 (4.40), 553 (4.08), 

592 (3.87), 650 (3.85) nm. 
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4.4.2.13 Molecular Structures.  

The crystal structure of linear trimer 4-6-b was determined using data collected at T = 

150 K to q =31.5 with Mo Ka radiation on a Nonius KappaCCD diffractometer. The X-ray 

crystallographic data for 3c can be found in supplementary publication CCDC-626294 available 

from the Cambridge Crystallographic Data Centre. 
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CHAPTER 5. TOTAL SYNTHESIS OF PORPHYCENES AND IMPROVED 

SYNTHESIS OF 2,2’-BIPYRROLES 
5.1 Introduction 

 ―Photofrin‖ is the only sensitizer that is approved by the FDA for use in PDT. As a 

sensitizer consisting of a mixture of hematoporphyrin-derivatives, it is hard to study the 

relationship between individual components and the overall activity
1
. Thus, many new porphyrin 

based photosensitizers have been developed and their PDT efficiency had been tested
2
, many 

being in clinical trials. The major issue limiting the wide application of porphyrin based 

sensitizers in PDT is their weak absorptions in the phototherapeutic windows. Thus many 

chromophore-extended porphyrins have been developed to overcome this problem, as described 

in Chapter 3. Lately, modification of porphyrin backbone to generate its various isomers has also 

been widely studied
3
. Among those, porphycene (see Figure 5-1) has attracted increasing 

research interests.  

 
Figure 5-1. Chemical structure of 5,5’-diformyl-2,2’-bipyrrole (5-1), porphycene (5-2) sappyrin 

and corrole. 

 

Porphycenes are isomeric with porphyrins. It was first synthesized by Vogel and 

coworkers as a novel aromatic macrocyle in 1986
4
. Soon after the first synthesis, it was found 

that porphycenes gave strong absorption bands above 600 nm, where light has the highest 



134 
 

penetration into tissue. Furthermore, porphycene can efficiently generate singlet oxygen upon 

radiation with light, in response to the generation of a photodynamic effect in tissues. Compared 

with porphyrins, the uptake of most available porphycenes shows high efficiency and is usually 

accomplished within 2 hours, while it can take between 24 to 48 hours for Photofrin be taken up
5
. 

Subsequent in vivo studies of the PDT efficiency of porphycenes was very successful. For 

example, the porphycenes tested were between 17 to 220 times more efficient than the currently 

approved sensitizer Photofrin
6
, which made this type of porphyrin isomer very promising as 

photosensitizers in the PDT treatment of cancers.  

 

Scheme 5-1. Common oxidative coupling reactions to achieve 2,2’-bipyrroles. 

 

The efficient synthesis of porphycenes remains a big challenge. Porphycene
6-8

 synthesis 

involves the preparations of a key synthetic precursor - 5,5’-diformyl-2,2’-bipyrroles (5-1), 

which also serves as a key synthetic precursor in the preparation of sapphyrins
9
 and other 

expanded porphyrin analogs
10

. Since the preparation of porphycene was achieved from the 

reductive coupling of 5-1 through one-step McMurry reaction
4,6-8

, we envisioned that the 

efficient synthesis of 5-1 could lead to improved synthetic efficiency for porphycenes.  

The 2,2’-bipyrrole motif occurs in a number of polypyrrole pigments, many of which 

have attracted increasing attention in coordination chemistry, medicinal chemistry and in 

material science
11

. Available synthetic methods for 2,2’-bypyrroles are limited
6,8-9,12-13

 to 
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oxidative coupling and reductive coupling methodologies (see Scheme 5-1). Oxidative coupling
12

 

works only in a limited number of cases and often in low yield, so reductive couplings are 

preferred
6,8-9,13

. Among those, the Ullmann reaction are usually the most widely used method for 

access to 2,2’-bypyrroles. Due to the drastic conditions of the Ullmann coupling reaction, 

sensitive substituents (such as formyl groups), can not be carried through intact; thus, direct 

access to 5-1 (see Figure 5-1) is not possible.  Since the original preparation of 5-1 by Vogel and 

coworkers
6,8 

during their synthesis of porphycene 5-2, only a few variants of the seminal 

synthetic methodology have been described
6,8,13

. All except one
14

 are based on the Ullmann-type 

dimerization of a preformed halopyrrole (see Scheme 5-1).  

 

Scheme 5-2. Previous methodologies for synthesis of 5,5’-diformyl-2,2’-bipyrrole 5-1. 
 

Synthesis of 5-1, as reviewed in detail in the literature
14

, normally requires four key steps 

(see Scheme 5-2): (1) Ullmann coupling of a 2-iodopyrrole-5-carboxylic ester, (2) hydrolysis of 

the ester, (3) decarboxylation of the resulting 5-carboxylic acid, and (4) Vilsmeier-type 
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diformylation. The Ullmann synthesis of biaryls by the copper-induced reductive coupling of 

aromatic halides is of broad synthetic use
15a

. Although some substrates will undergo Ullmann 

reductive coupling under mild conditions, the typical Ullmann coupling is conducted at high 

temperature
15b

. Generally, Ullmann-type reductive coupling of pyrroles works well only when 

there is an electron-withdrawing group present; high temperature is usually required
15b

. 

 

Scheme 5-3. Example of ambient temperature Ullmann-type coupling reaction. 

 

Recently, Liebeskind and coworkers reported an ambient temperature Ullmann-type 

coupling reaction
15c

, but the requirement of specific type of substrates or specific positions of the 

substitutent limits its synthetic application (see Scheme 5-3).  They stated that ―The most 

noticeable limitation of this process is the lack of reaction of aromatic halide substrates not 

possessing a coordinating ortho-substituent‖
 15c

.  

 

Scheme 5-4. Examples of akyl-substituted 2,2’-bipyrroles from a N-protected monopyrrole. 

 

Sessler et al.
13a

 developed an efficient procedure for the preparation of alkyl-substituted 

2,2’-bipyrroles by protection of the pyrrole nitrogen atom before an Ullmann-type coupling 

reaction; this was followed by deprotection of the resulting N-substituted 2,2’-bipyrroles. 

Vogel
13b

 et al. later improved the Sessler method by changing the solvent from DMF to toluene 
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(see Scheme 5-4). Meanwhile, the decarboxylation step – usually a sublimation - involved high 

temperature to which the unstable 2,2-di-unsubstituted bipyrrole was somewhat incompatible. 

This limited the scale up synthesis of the 5,5’-diformyl-2,2’-bipyrrole (the porphycene precursor). 

Although some improvements were made by avoiding the intermediate sublimation
6,8

, still the 

precursor generated for Vilsmeier di-formylation is very unstable, and this has limited the 

generality of the reaction scheme. Since the nature of substituents on the pyrrole system greatly 

influences the performance of the literature reactions, thus precluding the synthesis of some 

attractive target compounds, the total number of compounds 5-1 is still very limited. 

The above synthetic limitations encouraged us to develop new expedited methodology 

for the synthesis of compound 5-1. The relatively harsh conditions required in the copper-

catalyzed Ullmann type reaction prevented its wide application for the synthesis of 

functionalized bipyrroles. Inspired by the rapidly developing field of metal-catalyzed coupling 

reactions, and especially some recently developed palladium-catalyzed couplings of aryl halides 

under mild conditions
16-17

, we decided to try different metals (other than copper) for coupling of 

iodopyrroles. 

  

Scheme 5-5. Examples of room temperature Pd-C catalyzed biaryl coupling reaction in the 

presence of water. 
 

The use of palladium-catalyzed reductive couplings in carbon-carbon bond forming 

reactions has attracted considerable attention in modern synthetic organic chemistry
18a-e

. These 

include the Stille coupling
18b

, the Suzuki-coupling
18c

, the Heck reaction
18d

 and the Sonogashira 

coupling
18e 

reactions, to name only a few. Early usage of Pd-C as the catalyst for the Ullmann 

coupling, under phase-transfer conditions, required refluxing at 100
 
°C, but the high temperature 

for this reaction limits its application in the synthesis of biaryls processing functional groups
18

. 



138 
 

Recently, Pd-C co-catalyzed biaryl synthesis was reported to take place at room temperature (see 

Scheme 5-5) by simply adding water into the reaction system
17

. Meanwhile 2-formyl-5-

iodopyrroles have been used in Sonogashira coupling reactions (see Scheme 5-6) with TMS-

acetylene to build acetylenic and diacetylenic diformyldipyrroles
19

.  

 

Scheme 5-6. Examples of 2-formyl-5-iodopyrroles directly used in the coupling reaction. 

 

5.2 Results and Discussion 

5.2.1 Total Synthesis of Porphycene (CpoTMPn) 
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Figure 5-2. Chemical structure of CpoTMPn. 

 

Porphycenes containing two or four methoxyethyl side chains, such as CpoTMPn (see 

Figure 5-2), are able to enhance and accelerate cellular uptake
6
. The membrane solubility of 

photosensitizers is assumed to be critical in their photodynamic efficiency. The presence of 

nonionic polar side chains in CpoTMPn was found to be able to strongly enhance cellular uptake 

and antitumor activity of porpycenes
3,6, 20

.  

The total synthesis followed the procedures reported by Vogel et al.
21

 and Richert, et al.
6, 

22
 but with small modifications (see Scheme 5-7 through Scheme 5-10).  The synthesis of 

diketone 5-7-2 involved the preparation of activated metal zinc. The metal zinc activation was 
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achieved by adding 3M HCl ito the metal dust with stirring by glass rod. It was then poured  into 

a filter funnel and washed with water, ethanol and diethyl ether in that exact sequence. Then the 

zinc dust was dried in an oven under vacuum. After crushing into fine powder, it was kept in the 

oven under vacuum before use in subsequent reactions.  

N
H

O
CN

Ethyl Bromoacetate
actived Zn dust
THF, Reflux

O

OO

O

NaNO2, Ethyl acetoacetate

Zn, NaOAc, HOAc, 80-85oC CO2Et

EtO2C

O

70% 60%

5-7-15-7-2
 

Scheme 5-7. Synthesis of pyrrole 5-7-1 from classical pyrrole synthesis – the Knorr reaction. 

 

The preparation of 5-7-2 was achieved by reacting methoxylpropionitile with ethyl 

bromoacetate in the presence of activated zinc powder in freshly distilled THF under argon (see 

Scheme 5-7). After workup, the residue, a reddish liquid, was distilled under reduced pressure. 

The desired compound 5-7-2 was collected in the 95~110
o
C temperature range in 70% yield as a 

colorless aromatic liquid. It was found that high temperature should be avoided because the 

desired compound was destroyed at high temperature, giving a highly sticky deep red gel.  

 Compound 5-7-1 was synthesized from 5-7-2 in two steps
23

: 1) the formation of oxime; 2) 

the Knorr reaction to form pyrrole. The formation of the oxime was achieved from reacting of 5-

7-2 with NaNO2 in HOAc as solvent. This process needed to be extremely slow to avoid the 

generation of toxic NOx gas. TLC is strongly recommended to follow this reaction. The TLC 

eluting solvent was hexane/EtOAc (3/1). It should be noticed that the intermediate oxime was 

more polar than desired 5-7-1, which showed polarity similar to the starting material 5-7-2. The 

Knorr condensation reaction was performed at temperature between 80~85
o
C. A water bath was 

strongly recommended rather than an oil-bath. The main reason was the thermal sensitivity of 

this reaction and the strict temperature control required in order to achieve high yield. This 
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condensation reaction could release large amount of heat during a short period, the use of a hot 

water bath provided great control of the temperature by constant addition of ice during the 

reaction process. Also it was important to have zinc always in excess throughout the reaction, 

which was easily achieved by always allowing excess zinc powder in sight throughout the 

addition of oxime. When TLC indicated the disappearance of oxime, the reaction was stopped. 

Recrystalization from ethanol water gave 5-7-1 in 60% yield as a yellowish powder. 
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5-8-2 5-8-1  

Scheme 5-8. Halogenation, hydrolysis, decarboxylative and iodination of monopyrrole to 

generate 5-8-1. 

 

The synthesis of 5-8-1 was achieved from the oxidation of 5-7-1 followed by iodination 

reaction as shown in Scheme 5-8
23a

. The preparation of 5-8-2 from 5-7-1 involved two steps: the 

oxidation and then the hydrolysis. In the oxidation step, the solution of 5-7-1 was placed in an 

ice-bath and stirred at 0 
o
C. If the temperature was higher than 0 

o
C, the intermediate would be 

hydrolyzed by HOAc during the oxidation process, which would resulted in incomplete 

oxidation and also ester formation, thus lowering the yield of the desired acid.  In the hydrolysis 

step, the acetone/water (v/v = 4/1) was used as solvent and the reaction was performed at 

refluxing temperature. The use of this mixture solvent system gave advantages over the use of 

aqueous solution. With the evaporation of acetone, the remaining product was able to separate 

over the water layer as an oil form. Solid NaHCO3 was added into the mixture solution for 

hydrolysis instead of saturated aqueous solution of it. After workup, the resulting fine solid was 

filtered and 5-8-2 was obtained in 45% yield. The iodination of 5-8-2 to generate 5-8-1 was 
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performed in the mixture solvents of 1,2-dichloroethane/water with the mixture of I2/KI as the 

iodination reagent. When the reaction was stopped, Na2S2O3 was added to the reaction mixture in 

portions to remove excess iodine. After removal of the solvent under vacuum, the desired 

product 5-8-1 was achieved in 90% yield. 
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Scheme 5-9. Synthesis of 5,5’-diformyl-2,2’-bipyrroles 5-1-a. 

The preparation of 5-1-a involved the 1) Ullmann-coupling reaction, 2) the 

decarboxylation reaction and 3) Vilsmeier formylation reaction (see Scheme 5-9). The Ullmann-

coupling reaction was performed in DMI at room temperature with Cu-bronze as the coupling 

reagent, under argon. The reaction mixture was a suspended solution with greenish-brown color. 

TLC showed a strong blue luminous spot under UV-radiation (366 nm). After workup, the 

solvents was removed under vacuum, the residue was recrystallized from ethanol. After filtration, 

the desired 5-9-2 was obtained as colorless needles in 60% yield.Following the formation of 5-9-

2, hydrolysis to form the carboxylic acid was performed in ethylene glycol at 200 
o
C with NaOH 

as the base, under argon. TLC was used to follow the hydrolysis reaction. When TLC indicated 

the completion of decarboxylation, the reaction mixture was poured into water and extracted 
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with DCM. The formylation reaction used dry DMF as solvent; thus it was in excess amount. 

After workup, 44% of 5-1-a was obtained from recrystallization from THF. 
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Scheme 5-10. Synthesis of CpoTMPn. Reaction conditions: a) TiCl4, actived Zn dust, THF, 

reflux 10~15min; b) PbO2, hexanoic acid, DCM. 

 

 The preparation of symmetrical porphycene 5-2 was achieved using the McMurry 

reductive coupling of 5-1-a
6, 21-22 

(see Scheme 5-10). Activated zinc metal and freshly distilled 

THF were used for this reaction. TiCl4 was added via syringe into the system all at once. The 

solution turned black color, and then brown. TLC was used to strictly follow the reaction and 

DCM was used as eluting solvent. The desired 5-2 gave a strong red-fluorescence on TLC at 

366nm (UV-radiation) and was obtained as a blue powder in 20% yield. The CpoTMPn 

synthesis was completed by reacting of 5-2 with hexanoic acid in dry DCM. 

5.2.2 Improved Synthesis of 2,2’-Bipyrroles 
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Scheme 5-12. Ullmann coupling reaction that failed to generate the desired 2,2-bipyrrole at both 

room temperature and under refluxing conditions. 

 

Attracted by the importance role of 2,2’-bipyrrole played in the total synthesis of 

porphycenes and the fact that there exists limited access to these bipyrroles, we developed an 
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improved synthetic methodology. The whole idea to improve the 2,2’-bipyrrole synthesis came 

from difficulties experienced by one of our former group members who failed to produce 2,2’-

bipyrrole from the Ullmann Coupling reaction of 2-iodopyrrole 5-b as shown in Scheme 5-12. 
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Scheme 5-13. Our improved synthetic method to the 2,2’-bipyrrole 5-1-b. 

 

 

Scheme 5-14. Versatility of the Pd-C/zinc catalyzed coupling reaction. 

 

The former group member even tried to protect the nitrogen atom of the pyrrole ring in 

compound 5-b with a CO2-t-Bu group coupling reaction at reflux temperatures, but still no 
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desired 2,2’-bipyrrole was obtained. In both cases, no desired product was generated from the 

coupling reaction. At room temperature, all the starting material was recovered. At refluxing 

temperatures, the only product was the protiodehalogenated product. This interesting result 

inspired enough curiosity to study this coupling reaction and search for the possible alternative 

ways to solve the coupling problem. As was mentioned in the introduction part (Chapter 1), 

transition metal catalyzed aryl homo-coupling reactions have been widely used lately to 

efficiently construct carbon-carbon bonds
17-19

. Thus we decided to change the common catalyst 

in the Ullmann Coupling reaction--copper to the other type of metals. We first tried the Ni(II)Cl2 

and Zn as a complex catalyst
24

. In this case, the coupling reaction was performed at the mixture 

solvent of toluene and DMF and using a temperature ranged between 50~60
o
C for overnight (see 

Route c in Scheme 5-13). The desired 2,2-bipyrrole was generated in 30% yield after separation. 

In the meanwhile, the usage of Pd /C and Zn as complex catalyst also gave good result
25

. In this 

catalyst system, the reaction was performed at the mixture solvent of acetone and water at room 

temperature under argon protection. The desired 2,2’-bipyrrole was achieved obtained in 44% 

yield after separation (see Route d in Scheme 5-13). By compared the coupling results from the 

complex NiCl2/Zn catalyst and that of Pd-C/Zn, we chose the later as catalyst system. Although 

it is expensive compared with the NiCl2/Zn system, the Pd-C/Zn catalyst required only room 

temperature conditions and also provided a relatively higher yield, which made it even more 

attractive.  After settling on Pd-C/Zn as catalyst, we used different types of monopyrroles to test 

the versatility of this coupling reaction (see Scheme 5-14). In this improved synthetic approach, 

the homocoupling reactions of 2-iodopyrrole were performed in acetone/water or toluene/water, 

at room temperature under argon. The combined Pd-C/Zn catalyst was used. The yields of this 

coupling reaction are summarized in Table 5-1. Functional groups at the α-position of  
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Table 5-1. Improved coupling of 2-iodopyrroles using the combined Pd/C and Zn as catalyst at 

room temperature under various conditions (PMe= CH2CH2CO2Me). 

Comp R3 R2 R1 Product Yields  

5-b  

CO2Bz 

Me Me 5-1-b 75% 

5-c Me Et 5-1-c 78% 

5-d Me Pr 5-1-d 49% 

5-e PMe Me 5-1-e 51% 

5-m CO2-t-Bu Et Me 5-1-m 32% 

5-n PMe Me 5-1-n 44% 

5-p CO2Et Me Me 5-1-p 19% 

 

Table 5-2. The influence of solvent in the Pd-C-Zn coupling reaction. 
Entry Solvents Ratio (v/v) Major Product Reaction Time Yield Ratio (5-1-o/5-o-H) 

1 Acetone / Water (1/1) 5-o-H ≤ 1 hour 0 

2 Acetone / Water (1/0.1%) ≤ 1 hour 0 

3 Acetone 5-o 1 week -- 

4 Acetone / Water / Toluene (1/1/1) 5-1-o/5-o-H ≤ 2 hours 2 / 8 

5 Toluene / Water (1/1) 5-1-o ≤ 6 hours > 9 / 1 

6 Toluene 5-o 1 week -- 

 

iodopyrroles had important effects on the coupling reaction. Besides the steric hindrance effect, 

the presence of a benzyl ester group at the α-position of the pyrrole gave higher yields than 

pyrroles possessing other types of functional group at that same position. The solvent mixture of 

acetone/water worked well for the coupling reactions of pyrroles that possess a benzyl ester 

group at the α-position, and the yields were found to be excellent with up to gram scales. This 

result indicated that an aromatic ring system such as benzene might stabilize the coupling 

intermediate as described in the literature.
26a

 Thus we believed the change of solvents from 
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acetone/water to toluene/water would be helpful for the coupling reaction of other type 

monopyrroles. Monopyrrole 5-o was used as starting material for the coupling reaction because it 

was one the most reactive monopyrroles in the Ullmann-Coupling reaction. The results are 

shown in Table 5-2.  

The addition of toluene really helped to improve the coupling reaction; however the real 

function served by benzene in the coupling reaction was still unknown. According to the 

disappearance of starting material on TLC, in acetone/water system, reaction took place very fast 

with pyrrole 5-o. However, only trace amounts of the desired 2,2’-bipyrrole 5-1-o could be 

generated, while the protiodehalogenated product 5-o-H was obtained as the major product. 

When organic solvent was changed from acetone to toluene, the yield of 5-o-H was dramatically 

reduced; meanwhile the desired 2,2’-bipyrrole 5-1-o became the major product. Meanwhile, the 

reaction rate was reduced. Water was found to play an important role in this reaction: the 

presence of water increased the reaction rate and allowed room temperature performance of the 

reaction.  Although 5-1-o was one of the few example of 2,2’-bipyrroles that could be easily 

obtained from room temperature Ullmann-Coupling reaction, it usually took around 24~48 hours 

for this reaction to complete under Ullmann conditions. However, it usually took only several 

hours for the completion of coupling 5-o under this improved condition. The absence of water, 

no coupling reaction was observed and only starting materials 5-o was recovered even over a 

long period (up to 4 days). The simple addition of only 0.1% of water into the acetone solution of 

the reaction mixture led to the conversion of most starting material to 5-o-H within 2 hours. 

 The previous preparation of 5,5’-diformyl-2,2’-bipyrrole (see Figure 5-1) was achieved 

from the Ullmann Coupling reaction in our group. Since it usually require high temperature, 

functional groups such as aldehyde do not survive the Ullmann-Coupling conditions. Thus  
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Scheme 5-15: Protected formylpyrrole 5-g under various coupling conditions generated no 

products. Reaction conditions: a) Boc2O, DMAP, DCM; b) Cu-bronze, r.t.; c) Cu-bronze, 100 
o
C; 

d) malononitrile, TEA, MeOH; e) Cu, DMF, refluxing temperature. 
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Scheme 5-16. Ready syntheses of 5-formyl-2-iodine pyrroles. Reaction condition: 1a) CAN, 

HOAc, THF/H2O; 2a) POCl3, DMF, DCM, AcONa; 1b) Pd-C, H2, THF; 2b) LiOH, THF; c) KI, 

I2, 1,2-dichloroethane/H2O.  

 

the literature preparation of 5,5’-diformyl-2,2’-bipyrroles involved the protection of functional 

groups before coupling and subsequently deprotection after coupling. Despite the requirement of 

these stepwise synthetic route to 5,5’-diformyl-2,2’-bipyrrole (see Scheme 5-2), one former 

group member still failed to generate the desired coupling product 5-1-g under various 

conditions from 5-g (Scheme 5-15). The success usage of our improved synthesis in the 

preparation of many other types of 2,2’-bipyrroles inspired us to apply it to the direct synthesis 
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of 5,5’-diformyl-2,2’-bipyrroles. We believed the mild reaction conditions made it possible for 

the directly coupling of formyl-containing monopyrroles without the troublesome protection and 

deprotection processes. On the other hand, the ready availability of 2-formyl-pyrroles from high 

yield reactions
26b

 (see route 1~3 in Scheme 5-16) smoothed the application of this improved 

synthetic method in the preparation of 5,5’-diformyl-2,2’-bipyrroles. The key starting materials, 

2-formyl-5-iodopyrroles 5-4-n (n = f-j) are very easy to generate from 5-5-n (n = f-j) in high 

yields over three steps (as shown in Scheme 5-16). It involved (1) Functionalization at the 

pyrrole α-position with an aldehyde group: this could involve regioselective oxidation of the α-

methyl group of compound 5-5-n (n = f-g, i-j)
27

 using ceric ammonium nitrate
29a 

to give a high 

yield of compound 5-6-n (n = f-g, i-j)
29 

(see route 1 and 3 in Scheme 5-16) or a Vilsmeier 

reaction on an unsubstituted pyrrole to generate compound 5-4-h
 
(92% yield)

 27g
 (see route 2 in 

Scheme 5-16); (2) hydrolysis of the ester without aldehyde protection: this could involve 

catalytic debenzylation of the benzyl esters with Pd-C in THF under H2 (see route 1 and 3 in 

Scheme 5-16) or hydrolysis of alkyl esters using LiOH in THF (more than 90% yield) following 

a literature procedure (see route 2 in Scheme 5-16)
11

, and (3) direct de arboxylative iodination to 

generate compound 5-4-n (n = f-j). The yield in each step is excellent and there is normally no 

need for chromatography. The overall yield for the three steps is generally more than 65%.  

 

Scheme 5-17. New synthetic route to 5,5’-diformyl-2,2’-bipyrrole 5-1-n (n = f-j). 
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Table 5-3. Reductive coupling of 2-iodopyrroles 5-4-n (n =f-j) using 10% Pd-C and Zn at room 

temperature in toluene/water under argon.  
 

Formyliodopyrrole Diformylbipyrrole Yield 
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The aldehyde group was found to be able to survive from this mild coupling condition. 

Starting from 5-formyl-2-iodopyrroles 5-4-n (n = f-j), using this improved method, compounds 

5-1-n (n = f-j) were obtained from the direct coupling of 5-4-n (n = f-j) in a single step (see 

Scheme 5-17). These coupling reactions were performed in toluene/water at room temperature 

under argon, with Pd-C/Zn as the catalyst. The reaction was readily followed by TLC, because 

the target bipyrroles display a very characteristic blue fluorescence under ultraviolet (366 nm) 

irradiation. The yields of this coupling reaction were moderate as shown in Table 5-3. However, 

the overcoming of the decarboxylation step during the synthesis and avoiding the formation of 

unstable intermediates will help the scaled-up syntheses of 5,5’-diformyl-2,2’-bipyrroles. As 

usual in these coupling reactions, the major byproduct was the protiodehalogenation product. 

Similar to the coupling of the other functional group substituent pyrroles, the substitution of 

toluene with acetone caused the ratio of dehalogenated product to increase.  

Figure 5-3 shows the X-ray structure of 2,2’-bipyrrole 5-1-b; the nitrogen atoms have the 

same orientations. Thus we envision that these 2,2’-bipyrroles might also be able to bind small 

ions.  

 

Figure 5-3. X-ray structure of 2,2’-bipyrrole 5-1-b. 

The photophysical properties of 5-1-n (n = b-j, m-p) are summarized in Table 5-4 and 5-5. 

As shown in Table 5-4, most 2,2’-bipyrroles have a blue shift of the λmax in DMSO compared 

with DCM, except for 5-1-o. All these bipyrroles are highly luminescent materials at room 
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temperature, similar to those described in the literature
30

. They also had high quantum yield, thus 

they may show potential use as bioprobes.  The fluorescence quantum yields were measured 

according to the literature methods
31

. The absorption wavelengths were between 231~401 nm 

and they are strongly luminous at about 410 nm.  

Table 5-4. UV-vis of 5-1-n (n = b-j, m-p) in both DCM and DMSO at room temperature.  

 

Bipyr

role 

Absorption λmax (nm) (log 

ε) DCM 

Absorption λmax (nm) (log ε) 

DMSO 

λmax(nm) 

shift 

5-1-b 229 (4.17), 319 (4.46) 318 (4.31) 1 

5-1-c 229 (4.11), 312 (4.26) 293 (4.44) 19 

5-1-d 209 (3.97), 319 (4.37) 317 (4.31) 2 

5-1-e 229 (3.85), 315 (3.95) 294 (4.12) 21 

5-1-f 233 (4.08), 280 (3.90), 363 

(4.32) 

354 (4.26) 9 

5-1-g 232 (4.21), 268 (4.00), 361 

(4.41) 

353 (4.43) 8 

5-1-h 235 (4.27), 382 (4.59), 401 

(4.58) 

370 (4.25) 12 

5-1-i 232 (4.04), 262 (3.82), 356 

(4.24) 

351 (3.94) 5 

5-1-j 231 (3.79), 275 (3.64), 361 

(4.05) 

354 (3.96) 7 

5-1-m 229 (4.10), 318 (4.31) 313 (4.06) 5 

5-1-n 229 (4.02), 317 (4.22) 313 (4.38) 4 

5-1-o 230 (4.47), 250 (4.56), 289 

(4.32), 347 (4.48) 

289 (4.31) 49 

5-1-p 229 (4.00), 317 (4.27) 315 (4.35) 2 
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Table 5-4. Photophysical data for 5-1-n (n = b-j, m-p) in degassed DCM at room temperature.  

 

Comp Emission λmax (nm)  Fluorescence
c 
quantum yield  Stocks Shift(nm) 

DCM DMSO DCM DMSO DCM DMSO 

5-1-b 386
a
 381

d
 0.519 0.717 67 63 

5-1-c 387
a
 377

d
 0.451 0.561 75 84 

5-1-d 387
a
 381

d
 0.564 0.671 68 64 

5-1-e 387
a
 378

d
 0.523 0.487 72 84 

5-1-f 410
b
 418

e
 0.356 0.226 37 64 

5-1-g 410
b
 417

e
 0.321 0.191 49 64 

5-1-h 415
b
 424

e
 0.411 0.398 14 54 

5-1-i 408
b
 414

e
 0.326 0.175 52 63 

5-1-j 410
b
 417

e
 0.320 0.212 49 54 

5-1-m 384
a
 381

d
 0.502 0.705 68 68 

5-1-n 384
a
 381

d
 0.577 0.622 67 68 

5-1-p 382
a
 379

d
 0.550 0.652 65 64 

5-1-o 401
a
 402

d
 0.559 0.579 84 87 

 

a: excitation at 350 nm; b: calculated using quinine sulfate 5% H2SO4 solution as the standard. 

For most of bipyrroles, there is large strong red stokes shifts at around 37~68 nm in DCM 

and 54~84 nm in DMSO were observed, except for bipyrrole 5-1-h, which has a smaller Stokes 

shift around 14 nm and bipyrrole 5-1-o, which had been previously synthesized. However 5-1-h 

also gave the highest quantum yield among all the compounds reported here. The initial tests of 

these bipyrroles as bioprobe were begun by our group technician, Mr. Tim Jensen (see Figure 5-

4), and initial uptake results indicate good potential use of these bipyrroles in bioimaging. 
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Subsequently, the delocolization experiment was performed by using fluorescence light 

microscopy (see Figure 5-5). It was found that 2,2’-bipyrrole 5-1-o gave strong blue 

fluorescence and it was mainly localized in the ER, some of it also was found in mitichron and 

lysosome.  

 

Figure 5-4. Time-dependent uptake of bipyrrole 5-1-o at 10µm by human carcinoma HEp2 cells. 

 

The initial binding study was performed with the 2,2’-bipyrroles based on their 

fluorescence quenching properties. It was a surprise to see that these bipyrroles were able to 

selectively bind to fluoride ions instead of bromide, chloride, phosphate or sulfide ions. Also, the 

binding behaviors of the bipyrroles were different (see Figure 5-6).  For the bipyrroles that have 

benzyl esters (5-1-b) or Boc- (5-1-m) attached at the 5-position, the addition of n-Bu4NF into a 

DMSO solution resulted mainly the reduction of the fluorescence intensity. However, for those 

bipyrroles have CHO-attached to the 5-position, there was a large shift of fluorescence emission. 

With the decreasing of the initial fluorescence intensity, there was an increasing intensity for the 

newly appeared fluorescence emission of this type of bipyrroles. The most interesting binding  



154 
 

 
 

Figure 5-5. Fluorescence microscopy of 5-1-o. 
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Figure 5-6. Fluorescence quenching upon addition of n-Bu4NF to DMSO solutions of 2,2’-

bipyrroles at r.t.. Top figures: 5-1-b (left, benzyl ester series) and 5-1-m (right, Boc series), 

middle figures: 5-1-h (left) and 5-1-j (right), both are CHO series; bottom figures: 5-1-o (left, 

CO2Et series), control experiment (right, no n-Bu4NF added). 
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behavior was observed for 5-1-o, which has an ethyl ester attached to the 5-position of the 

bipyrrole. There was also a shift of fluorescence emission wavelength similar to that of 5-1-h and 

5-1-j, but there was an increase of the fluorescence intensity instead of quenching for this 

compound. The exact reason for this different fluorescence quenching behavior is still under 

investigation. But it seems to be reasonable that besides the binding of bipyrrole to the fluoride 

ion, a protonation/deprotonation process as described in the literature might also be involved. In 

different bipyrrole systems, these two processes might have different contributions to the final 

appearance of the fluorescence emission, which might result the different ―binding‖ behaviors 

shown in Figure 5-6. 

5.3 Conclusions and Future Work 

In summary, we have developed an improved method for synthesis of 2,2’-bipyrroles 

based on a Pd-C/zinc catalyzed homo-coupling in toluene/water at room temperature under argon. 

The presence of water in the reaction system is critically important. These mild reaction 

conditions allow functional groups such as aldehyde and nitrile to be carried through the 

sequence intact. These bipyrroles are strongly luminescent and the new approach should provide 

a ready access to new materials for light-emitting devices and bioimaging. 

5.4 Experiment 

5.4.1 General 

All commercially available solvents and starting materials were used without further 

purification. Silica gel (32-63 m) was used for flash column chromatography. All reactions 

were monitored by TLC using 0.25 mm silica gel plates with or without UV indicator (60F-254). 

Acetone (reagent plus, phenol free, ≥ 99.5%) and toluene (HPLC grade, Houston, TX) were 
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purchased from Sigma-Aldrich without further purification. Palladium, 10% on activated carbon, 

reduced, dry powder was purchased from Strem Chemicals. Zinc dust, < 10 micron, 98+%, was 

purchased from Sigma-Aldrich and activated according to the literature. 
1
H- and 

13
C-NMR 

spectra were obtained on a DPX-250 or an ARX-300 Bruker spectrometer; chemical shifts () 

are given in ppm relative to CDCl3 (7.26 ppm), acetone-d6
 
(3.58 ppm, or DMSO-d6 (2.54 ppm). 

MALDI-TOF mass spectra were obtained on an Applied Biosystems QSTAR XL. Electronic 

absorption spectra were measured on a Perkin Elmer Lambda 35 UV-Vis spectrophotometer in 

the 200-800 nm wavelength regions with 0.1 nm accuracy. Fluorescence spectra were measured 

on a Perkin Elmer LS55 spectrometer in the 360-800 nm wavelength region with 1 nm accuracy. 

Fluorescence quantum yields were measured using the standard method and quinine sulfate in 

5% H2SO4 aqueous solution as the standard (quantum yield is 0.55), according to the literature.
31

 

Monopyrroles used to make 2-iodopyrroles were synthesized according to the literature.
27

 

Pyrrole 5-6-h was prepared in the same way as described in the literature
27g 

through a Vilsmeier 

reaction on pyrrole 5c, the synthesis of which has been reported in the literature.
27b

 Pyrroles 5-4-j 

were prepared from 5-6-j according to the literature.
19

 Pd-C (10%) was purchased from Strem 

Chemicals. All the spectral data for CpoTMPn were in agreement with the literature
6,21-22

. For 

more information about these compounds, see scanned spectra at the end of this Chapter. 

5.4.2 Total Synthesis of CpoTMPn 

Preparation of 5-7-2 

The preparation of 5-7-2 was achieved from the reaction of methoxypropionitrile (34 g, 0.4 mol), 

ethyl bromoacetate (267.2 g, 1.6 mol) and activated zinc (104.7 g, 1.6 mol) in 500 ml freshly 

distilled THF under argon condition. A vacuum was pulled over zinc dust for approximately 1 

hour before adding freshly distilled THF. Then the reaction mixture was heated to reflux 
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temperature while stirring. To the refluxing solutions was added ethyl bromoacetate in a 

dropwise manner through an addition funnel. Upon the appearance of a slightly green color in 

the reaction mixture (usually around 0.8~1.0 mol), methoxypropionitrile (34 g, 0.4 mol) was 

added all at once (through a syringe for small amount or through an addition funnel for large 

amount). Then the rest of the ethyl bromoacetate was added to the reaction mixture in a dropwise 

manner over a period of 1 hour. During this period, the color of the solution changed from green 

to brown. Keeping adding until all the ethyl bromoacetate had been added into the reaction 

mixture. After finishing addition of ethyl bromoacetate, the reaction mixture was left refluxing 

for an additional 30 minutes. After cooling down to room temperature, the reaction mixture was 

filtered through a Celite plug to get rid of any unreacted zinc powder. The solvent was then 

removed under vacuum. The residue was deep yellow in color and was dissolved into EtOAc, 

and subsequently 3M HCl (400 mL) was added. It was stirred at room temperature for a period 

of 30 minutes. When stirring was stopped, EtOAc (400 mL) was added into the mixture to 

extract the target compound from the aqueous solution. The organic phase was subsequently 

washed with water, then with concentrated aqueous NaHCO3, and saturated NaCl solution. After 

drying over anhydrous Na2SO4, the solvent was removed under vacuum. The residue, a reddish 

liquid, was distilled under reduced pressure. The desired compound 5-7-2 was collected in the 

95~110
o
C temperature range in 70% yield (52.6 g, 0.28 mol) as a colorless aromatic liquid. It 

was found that high temperature should be avoided because the desired compound was destroyed 

at high temperature, giving a highly sticky deep red gel. 

Preparation of 5-7-1 

 Compound 5-7-1 was synthesized from 5-7-2 in two steps
23

: 1) the formation of oxime; 2) 

the Knorr reaction to form pyrrole. Oxime was generated from the reaction of 5-7-2 (33.2 g, 0.18 
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mol) with NaNO2 (13.34 g, 0.19 mol) in 143 mL HOAc. Dissolving 5-7-2 (33.2 g, 0.18 mol) in 

ice-cold 143 mL HOAc and left it stir in ice-bath. Meanwhile, saturated aqueous NaNO2 (13.34 g, 

0.19 mol) was prepared and placed into the ice-bath before adding into the ice-cool solution of 5-

7-2 (through pipette for small amount and addition funnel for large amount). This addition 

process needed to be extremely slow to avoid the generation of toxic NOx gas. An addition 

funnel was also connected to a bubble flask through tubes to control addition rate. After finishing 

addition of NaNO2 solution, the ice-bath was removed and the reaction was continued to stir for 

a period of 2 hours at room temperature. TLC is strongly recommended to follow this reaction. 

The TLC eluting solvent was hexane/EtOAc (3/1). It should be noticed that the intermediate 

oxime was more polar than desired 5-7-1, which showed polarity similar to the starting material 

5-7-2. When TLC indicated the disappearance of oxime, the reaction was stopped. The resulting 

solution was ready for the use in the next step—Knorr condensation to prepare 5-7-1. The Knorr 

condensation reaction was performed in a three-necked large flask at temperature between 

80~85
o
C. A water bath was strongly recommended rather than an oil-bath. The main reason was 

the thermal sensitivity of this reaction and the strict temperature control could help the 

achievement of high yield since large amount of heat was released over a short period. Water 

bath provided great control of the temperature through constant addition of ice during the 

reaction process. Ethyl acetoacetate (26.4 g, 0.16 mol) was dissolved in 26 mL HOAc in a three-

necked flask and the solution was heated to 80~85
o
C in a hot water bath. Activated zinc (25.4 g, 

0.39 mol) was mixed well with NaOAc (31.8 g, 0.39 mol). This solid mixture was then added 

slowly and frequently in small portion to the refluxing solution through funnel. The addition of 

this mixed solid was alternated with the addition of oxime. Oxime was added to the mixture over 

a period of 30 minutes, while the mixed solid was added over a period of 40 minutes. It was 
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important to have zinc always in excess throughout the reaction, which was easily achieved by 

always allowing excess zinc powder in sight throughout the addition of oxime. After adding all 

the reagents, the reaction mixture was stirred at 80~85
o
C for an additional period of 0.5~1 hour. 

TLC was used to follow this reaction. When TLC indicated the disappearance of oxime from the 

reaction mixture, the reaction was stopped. Recrystalization from ethanol water gave 5-7-1 in 

60% yield (30.6 g, 0.11 mol) as a yellowish powder. 

Preparation of 5-formyl-2-iodine-pyrrole 

 The synthesis of 5-formyl-2-iodopyrrole was achieved from the oxidation of 5-7-1 

followed by iodination reaction as shown in Scheme 5-8
23a

. The preparation of 5-8-2 from 5-7-1 

involved two steps: the oxidation and then the hydrolysis. In the oxidation step, 5-7-1 (5g, 0.02 

mol) was dissolved in HOAc/Ac2O (16.6 ml/3.4 ml). The solution was placed in an ice-bath and 

stirred at 0 
o
C. Under these conditions, Br2 (2.82 g, 0.91 mL) was added to the solution all at 

once. Subsequently, SO2Cl2 (7.56g, 4.55 mL) was added slowly through addition funnel in the 

dark over a period of 2 hours. Once half of the SO2Cl2 (2.5 mL) had been added, acetone was 

added to the ice-bath to ensure the temperature remained below 0
o
C before addition of the rest of 

the SO2Cl2. If the temperature was higher than 0 
o
C, the intermediate would be hydrolyzed by 

HOAc during the oxidation process, which would resulted in incomplete oxidation and also ester 

formation, thus lowering the yield of the desired acid.   

After adding all of the SO2Cl2, the reaction mixture was refrigeratorated for a period of 4 

hours. Then water at room temperature was added to the reaction mixture in a dropwise manner 

until no more violent reaction could be observed. Then additional water was added very quickly.  

The temperature was raised to 60 
o
C and kept there for a period of 30 minutes. Then the mixture 

was poured it into cold water and set aside overnight. After filtration, it was ready for the 
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subsequent hydrolysis. In the hydrolysis step, the filtration residue was dissolved into 120 mL 

mixture of acetone/water (v/v = 4/1) and heated to refluxing temperature. PH-paper indicated the 

solution rapidly changed into acidic at around a period of 20 minutes refluxing. Then solid 

NaHCO3 was added into the mixture solution; the generation of CO2 can be observed during this 

process. Addition of solid NaHCO3 was stopped when no more CO2 was generated from the 

reaction mixture. With the evaporation of acetone, the remaining product was separated over the 

water layer as an oil form. Once the formation of two layers was observed in the refluxing flask, 

the mixture was poured very slowly with constantly stirring into 100 mL cold water. Then let the 

reaction mixture was occasionally stirred with glass rod for a period of 1 hour to ensure complete 

precipitatation. After filtration, the solution was neutralized with 6 M HCl slowly under vigorous 

stirring condition before keeping it at 0
o
C for a period of 8 hours at refrigerator. The resulting 

fine solid was filtered and 5-8-2 was obtained in 45% yield (2.8 g, 0.009 mol). The iodination of 

5-8-2 to generate 5-8-1 was performed in the mixture solvents of 1,2-dichloroethane/water with 

the mixture of I2/KI as the iodination reagent. First NaHCO3 (2.96 g, 0.035 mol) was dissolved 

into 16.5 mL water and heated to 50 
o
C. To this basic solution was added 5-8-2 (2.59 g, 0.008 

mol) rapidly in several portions. When most of 5-8-2 was completed dissolved, 1,2-

dichloroethane (16.5 mL) was added and the temperature was raised to 71 
o
C. Then the saturated 

aqueous solution of I2/KI (2.96 g/ 3.73 g) was added into the mixture over several minutes. The 

reaction mixture was refluxed for an additional 40 minutes. Then Na2S2O3 was added to the 

reaction mixture in portions to remove excess iodine. After separation and removal of the solvent 

under vacuum, the desired product 5-8-1 was achieved in 90% yield (3.20 g, 0.008 mol). 
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Preparation of 5-1-a 

 The preparation of 5,5’-diformyl-2,2’-bipyrrole 5-1-a involved the 1) Ullmann-coupling 

reaction, 2) the decarboxylation reaction and 3) Vilsmeier formylation reaction. The Ullmann-

coupling reaction was performed in DMI at room temperature with Cu-bronze as the coupling 

reagent, under argon. To a round flask was added 5-8-1 (2.97 g, 0.0075 mol), vacuum was pulled 

over the flask and then argon was applied to the system. After that, DMI (15.7 mL) was added. 

Subsequently, Cu-bronze (2.82 g, 0.044 mol) was added into the reaction mixture all at once. 

Then let the reaction to perform at room temperature over a period of 24~48 hours. The reaction 

mixture was a suspended solution with greenish-brown color. TLC showed a strong blue 

luminous spot under UV-radiation (366 nm). After adding water, the reaction mixture was 

filtered through a Celite plug to remove precipitate and then washed with hot chloroform. The 

organic phase was washed with aqueous 20% HNO3, water, and saturated NaHCO3. After 

removing the solvents under vacuum, the residue was recrystallized from ethanol. After filtration, 

the desired 5-9-2 was obtained as colorless needles in 60% yield (2.42 g, 0.0045 mol). 

Following the formation of 5-9-2, hydrolysis to form the carboxylic acid was performed 

in ethylene glycol at 200 
o
C with NaOH as the base, under argon. To ethylene glycol (130 mL) 

was added 5-9-2 (2.42 g, 0.0045 mol) and NaOH (2.15 g, 0.05 mol). After NaOH was 

completely dissolved, the reaction mixture was heated to 100 
o
C under argon. The mixture was 

stirred at this temperature for a period of 30 minutes to achieve the hydrolysis of 5-9-2. TLC was 

used to follow the hydrolysis reaction. Upon the disappearance of 5-9-2 and with the appearance 

of a very polar new spot, the temperature was quickly raised to 200 
o
C for a period of 1 hour. 

When TLC indicated the completion of decarboxylation from the disappearance of the polar spot, 

the reaction mixture was poured into water and extracted with DCM. The organic phase was 
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quickly washed 8 times with water. After drying over Na2SO4, the solvent was removed and the 

residue was put under vacuum for the subsequent use in the formylation reaction. The 

formylation reaction used dry DMF as solvent; thus it was in excess amount. First, phosphoryl 

chloride (6.14 g, 1.7 mL, 0.036 mol) was added into DMF (50 mL) under argon at 0 
o
C, and the 

mixture was stirred at this temperature for a period of 15 minutes before adding the DMF 

solution of the hydrolysis product (2.48 g, 0.01 mol). Then the temperature was raised to 60 
o
C 

and the mixture was refluxed for 1 hour. It was then poured it into the aqueous NaOAC solution 

and stirred at 85
o
C for 1 hour. The formation of a yellowish precipitate was observed. After 

cooling down to room temperature and filtration, the residue was washed with cold water. After 

drying over P4O10 under vacuum, after further recrystallization from THF, 5-1-a was obtained 

44% yield (1.34 g, 0.0044 mol). 

Preparation of 5-2 

 The preparation of symmetrical porphycene 5-2 was achieved using the McMurry 

reductive coupling of 5-1-a
6, 21-22

. Activated zinc metal (20g, 0.31 mol) was put into a flask and 

vacuum was pulled over the flask, argon was then filled the system. Freshly distilled 800 mL 

THF was then added. TiCl4 (16.5 mL, 0.15 mol) was added via syringe into the system all at 

once. The solution turned blacking, and then brown. The reaction mixture was refluxed for a 

period of 3 hours. Then the THF solution of 5-1-a (1.85 g, 6 mmol) was added to the reaction 

mixture in a dropwise manner over a period of 10 minutes. TLC was used to strictly follow the 

reaction and DCM was used as eluting solvent. The desired 5-2 gave a strong red-fluorescence 

on TLC at 366nm (UV-radiation). After cooling to 0 
o
C, 300 mL 50% aqueous ammonium 

solution was added over a period of 1 hour.   After adding 600 mL DCM to the reaction mixture, 

continued stirring for additional 15 minutes. Then the solution was poured into a Celite cake and 
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200 mL DCM was used to wash the cake. The organic layer was washed with water (300 mL). 

After drying over Na2SO4, solvent was removed under vacuum and 5-2 obtained as blue powder 

in 20% yield (325 mg, 0.6 mmol). The CpoTMPn was synthesized using PbO2 (40 mg, 0.167 

mmol) as catalyst and reacting 5-2 (100 mg, 0.184 mmol) with hexanoic acid (2 mL, 0.016 mol) 

in 15 mL dry DCM at room temperature under argon. After workup, CpoTMPn was obtained in 

19.8% yield (24 mg, 0.037 mmol). 

5.4.3 General Procedure for 2-Iodopyrrole 5-4-n (n = b-e, m-p) 

Starting material pyrrole 5-5-n (n = b-e, m-p) was synthesized according to the 

literature
27

. 5-4-n (n = b-e, m-p) were obtained in two steps. Step 1. Hydrolysis: Pd-C (0.066 g, 6 

mmol %) was added into a round bottom flask, to which was added the freshly distilled dry THF 

10 mL to form a suspended solution of Pd-C. The mixture was stirred under a hydrogen 

atmosphere for 20 minutes for the activation of Pd-C catalyst. Finally, 5-5-n (n = b-e, m-p) (1 

mmol) was dissolved into freshly distilled dry THF 50 mL and added into the above solution 

through syringe. After finishing adding all the reagents, the reaction mixture was left under a 

hydrogen gas atmosphere for a period of 6-12 hours while TLC was used to follow this reaction. 

The reaction was stopped when all starting material was consumed and a very polar spot was 

observed on TLC. After finishing the reaction, the reaction mixture was passed through a Celite 

cake to remove Pd-C and subsequently washed with THF several times. After drying over 

anhydrous Na2SO4, solvent was removed under vacuum and the resulting carboxylic acid 

pyrroles were ready for the next step without further characterization. Step 2. Iodination: 

NaHCO3 (302.4 mg, 3.6 mmol) was added to 5 mL water and the solution was sonicated and 

heated to 50
o
C in oil bath. After dissolving of NaHCO3, 5-5-n (n = b-e, m-p) (1 mmol) in 5 mL 

1,2-dichloroethane was added and the reaction temperature was quickly raised to 70 
o
C. Shortly 
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after reaching 70 
o
C, a mixture of I2 /KI (279 mg, 1.1 mmol)/ (367 mg, 2.2 mmol) was dissolved 

into 3 mL water and added into the reaction mixture all at once. Let it continue to stir at refluxing 

conditions for a period of 1 hour. Upon completion of the reaction, it was cooled to room 

temperature and sodium thiosulfate was added to the mixture in small portion under stirring 

condition. Then the reaction mixture was poured into a separatory funeral and the organic layer 

was collected. After drying over anhydrous Na2SO4, solvent was removed under vacuum and the 

residue was recrystallization using methanol or ethanol/water. 

Benzyl 5-iodo-3,4-dimethyl-pyrrole-2-carboxylate 5-4-b
28g

: 81 % yield. mp 127-129 
o
C [lit

28g
 

mp 126-128 
o
C].  

1
H NMR (400 MHz, CDCl3) δ 8.90 (s, 1H), 7.43-7.35 (m, 5 H), 5.33 (s, 2H), 

2.29 (s, 3H), 1.97 (s, 3H). ESI-MALDI Calcd for [C14H14INO2] m/z, 355.01, found: 355.10.  

Benzyl 5-iodo-3-(3-methoxy-3-oxopropyl)-4-methyl-pyrrole-2-carboxylate 5-4-d
28b

: 87 % 

yield. mp 110-112 
o
C [lit

28b
 mp 110-111 

o
C]. 

1
H NMR (250 MHz, CDCl3) δ 8.80 (s, 1H), 7.40-

7.38 (m, 5H), 5.30 (s, 2H), 3.64 (s, 3H), 3.10-3.04 (m, 2H), 2.53-2.47 (m, 2H), 2.00 (s, 3H). ESI- 

MALDI Calcd for [C17H19INO2 + Na]+ m/z, 450.03, found: 449.97.  

Benzyl 5-iodo-3-methyl-4-propyl-pyrrole-2-carboxylate 5-4-e
28c

: 79 % yield. mp 118-120 
o
C 

[lit
28c

 mp 119-120 
o
C].  

1
H NMR (250 MHz, CDCl3) δ 9.01 (s, 1H), 7.45-7.34 (m, 5H), 5.32 (s, 

2H), 2.37-2.32 (m, 5H), 1.52-1.43 (m, 2H), 0.97-0.91 (m, 3H). 
13

C NMR (250 MHz, CDCl3) 

ppm 160.77, 136.58, 131.23, 129.02, 128.66, 127.66, 123.82, 74.13, 66.33, 28.86, 23.84, 14.27, 

11.40. ESI-MALDI Calcd for [C16H18INO2] m/z, 383.22, found: 383.29.  

Tert-butyl 3-ethyl-5-iodo-4-methyl-pyrrole-2-carboxylate 5-4-m
28e

: 77 % yield. mp 105-107 

o
C [lit

28e
 mp 105-107 

o
C]. 

1
H NMR (250 MHz, CDCl3) δ 9.49 (s, 1H), 3.68 (s, 3H), 3.06-2.99 (m, 

2H), 2.54-2.47 (m, 2H), 1.97 (s, 3H), 1.56 (s, 9H). 
13

C NMR (250 MHz, CDCl3) ppm 173.39, 
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159.88, 128.34, 125.49, 124.82, 81.27, 73.10, 51.43, 34.79, 28.34, 21.27, 11.69. ESI-MALDI 

Calcd for C14H20INO4 m/z, 393.04, found: 392.90.  

Diethyl 3-(2-ethoxyethyl)-5-iodo-pyrrole-2,4-dicarboxylate 5-4-o
28h

: 83 % yield.  mp 148-150 

o
C [lit

28h
 mp 150 

o
C]. 

1
H NMR (250 MHz, CDCl3) δ 9.30 (s, 1H), 4.40-4.33 (m, 4H), 3.55-3.52 

(m, 2H), 3.44-3.41 (m, 2H), 3.37 (s, 3H), 1.43-1.36 (m, 6H). ESI-MALDI Calcd for C14H20INO4 

m/z, 393.04, found: 329.90.  

Tert-butyl 3-ethyl-4,5-dimethyl-pyrrole-2-carboxylate 5-5-n
28e

: 77 % yield. mp 105-107 
o
C 

[lit
28e

 mp 105-107 
o
C]. 

1
H NMR (300 MHz, CDCl3) δ 9.38 (s, 1H), 7.40-7.34 (m, 5H), 5.32 (s, 

2H), 3.67 (s, 3H), 3.03-2.98 (m, 2H), 2.53-2.48 (m, 2H), 2.29 (s, 3H), 1.57 (s, 9H).  
13

C NMR 

(250 MHz, CDCl3) ppm 173.39, 159.88, 128.34, 125.49, 124.82, 81.27, 73.10, 51.43, 34.79, 

28.34, 21.27, 11.69. ESI-MALDI Calcd for C14H20INO4 m/z, 393.04, found: 392.90. 

5.3.3 General Procedure for Syntheses of Pyrrole 5-6-n (n = f-i): The following description 

used pyrrole 5-5-i as a representative example for the preparation of pyrrole 5-6-n (n = f-g, i). 

Pyrrole 5-5-i (2.0 g, 0.006 mole) was dissolved in THF (63 mL), and followed by addition of 

HOAc(16 mL) and H2O (16 mL). Then 8.6 equiv of ceric ammonium nitrate (28.2 g, 0.052 mole) 

was added to the mixture all in once. The reaction mixture was stirred at room temperature while 

TLC was used to follow reaction progress. When there remained no starting material left, the 

mixture was poured into 150 mL of water and extracted with DCM (100 mL) three times. The 

organic layer was washed with water (100 mL) three times followed by saturated aqueous 

NaHCO3 (100 mL). Then the organic extracts were combined and dried over anhydrous Na2SO4. 

Finally the solution was concentrated under vacuum to remove the solvents. Recrystallization 

from DCM/hexane gave a slight yellowish fine powder of 5-6-i in 89% yield (1.76 g).  
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Benzyl 3-Ethyl-5-formyl-4-methylpyrrole-2-carboxylate 5-6-f.
27h,29b

 91 % yield. Mp 86-87 °C 

(lit.
27h

 mp 86-87 °C). 
1
H NMR (250 MHz, CDCl3) δ 9.76 (s, 1H), 9.53 (s, 1H), 7.44-7.33 (m, 5H), 

5.34 (s, 2H), 2.79-2.70 (m, 2H), 2.30 (s, 3H), 1.23-1.17 (m, 3H). 
13

C NMR (250 MHz, CDCl3) 

ppm 179.80, 161.25, 137.21, 135.97, 129.06, 128.49, 128.93, 128.84, 127.10, 124.80, 67.04, 

17.24, 16.84, 10.14. ESI-MS Calcd for C16H17NO3 m/z, 271.12, found: 271.18. 

Benzyl 5-Formyl-4-(2-methoxycarbonylethyl)-3-methylpyrrole-2-carboxylate 5-6-g.
27e,f,i

 

89% yield. Mp 79-80 °C (lit.
 2i

 mp 80-81 °C). 
1
H NMR (300 MHz, CDCl3) δ 9.81(s, 1H), 9.52 (s, 

1H), 7.43-7.35 (m, 5H), 5.33 (s, 2H), 3.65 (s, 3H), 3.08-3.03 (m, 2H), 2.59-2.54 (m, 2H), 2.31 (s, 

3H). 
13

C NMR (250 MHz, DMSO- d
6
) ppm 180.49, 173.21, 161.20, 135.92, 132.36, 130.73, 

128.99, 128.91, 128.76, 127.33, 124.75, 67.04, 52.08, 35.28, 19.25, 10.26. ESI- MS Calcd for 

C18H19NO5 m/z, 329.13, found: 329.17. 

Benzyl 4-(2-Cyanoethyl)-5-formyl-3-methylpyrrole-2-carboxylate 5-6-i. 87% yield. Mp 111-

113 °C. 
1
H NMR (250 MHz, CDCl3) δ 10.38 (s, 1H), 9.77 (s, 1H), 7.40-7.31 (m, 5H), 5.35 (s, 

2H), 3.10-3.04 (m, 2H), 2.62-2.57 (m, 2H), 2.33 (s, 3H).
 13

C NMR (250 MHz, CDCl3) ppm 

180.27, 161.19, 135.73, 130.84, 129.43, 129.11, 128.96, 128.81, 127.68, 124.93, 119.36, 67.34, 

20.25, 19.11, 10.35. ESI- MS Calcd for C17H16N2O3 m/z, 296.12, found: 296.15. 

Benzyl 3:4-Butano-5-formylpyrrole-2-carboxylate 5-6-j. The starting material is readily 

available pyrrole 5c. The procedure for the preparation of pyrrole 6c was different from the other 

pyrroles 6. The Vilsmeier complex was prepared by adding 2 mL phosphoryl chloride to 20 mL 

of dry DMF. Then benzyl 3:4-butanopyrrole-2-carboxylate 5c (2.55 g, 0.01 mol) was dissolved 

in 20 mL of dry DMF and added slowly to the reaction mixture through a syringe under ice-bath 

cooling conditions. The ice-bath was then removed and the mixture was refluxed for 45 min. 

Then, 250 mL of aqueous NaHCO3 was added slowly until the pH reached 8. Stirring was 
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continued at 30
o
C until TLC indicated the complete hydrolysis of the intermediate imine salt. 

The solution was extracted with DCM (100 mL) three times, and washed with water (100 mL) 

three times, and finally dried over anhydrous Na2SO4 before removing the solvent under vacuum 

to give the title compound 5-6-h as slightly yellow powder in 92% yield (2.61 g, 0.009 mol). Mp 

111-112 °C. 
1
H NMR (250 MHz, CDCl3) δ 9.71 (s, 1H), 9.58 (s, 1H), 7.41-7.34 (m 5H), 5.34 (s, 

2H), 2.84-2.81 (m, 4H), 1.80-1.78 (m, 4H). 
13

C NMR (250 MHz, CDCl3) ppm 178.98, 160.68, 

135.51, 131.91, 129.17, 128.86, 128.63, 128.42, 128.32, 123.19, 66.57, 22.72, 22.57, 22.36, 

20.89. HRMS (ESI) Calcd for C17H18NO3 [M+H]
 +

 284.1281, found: 284.1209. 

5.4.4 General Procedure for Synthesis of Pyrroles 5-4-n (n = f-i) 

Pyrroles 5-4-n (n = f-j) were obtained in two steps from pyrroles 5-6-n (n = f-i). A typical 

preparation procedure involved two steps: hydrolysis and iodination. The hydrolysis was 

monitored by TLC, there was a big polarity differences between the starting material and the 

product. The following description using 5-4-g as a typical example to illustrate the general 

procedure; the other 5,5’-diformyl-2,2’-bipyrroles were prepared in a similar manner.  

5-Formyl-2-iodo-4-(2-methoxycarbonylethyl)-3-methylpyrrole 5-4-g.  Step 1. Hydrolysis: Pd-

C (180 mg, 6%) was added into a 50 mL round bottom flask and 3 mL of freshly distilled dry 

THF was added to form a suspension. This was stirred under a hydrogen atmosphere capped with 

a balloon at room temperature for 20 min to active the Pd-C. Then, benzyl 5-formyl-4-(2-

methoxycarbonylethyl)-3-methylpyrrole-2-carboxylate 5-6-g (500 mg, 1.52 mmol) was 

dissolved in 6 mL freshly distilled dry THF and added into the above solution through a syringe. 

The mixture was stirred under the hydrogen atmosphere at room temperature for 6-12 h, using 

TLC to follow the reaction; it was stopped when all the starting material has been transformed 

into very polar spot on TLC. Upon completion of the reaction, the mixture was passed through a 
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Celite plug to remove Pd-C, followed by washing with THF (50 mL) three times. After removing 

the combined solvent under vacuum, a grayish white powder of 5-formyl-4-(2-

methoxycarbonylethyl)-3-methylpyrrole-2-carboxylic acid was obtained in 97% yield (348.1 

mg); it was used directly for the next iodination step without characterization. Step 2. Iodination: 

NaHCO3 (453.6 mg 5.4 mmol) was added to 25 mL of water, into which the carboxylic acid 

pyrrole (348.1 mg) obtained from the previous step was added, followed by sonication. Then the 

reaction mixture was placed into a 50
o
C oil bath. Once carboxylic acid pyrrole was completely 

dissolved, 25 mL of DCM was added to the reaction mixture and the temperature was quickly 

raised to 70
o
C. Then, I2 (410.8 mg, 1.6 mmol) and KI (488.2 mg, 2.9 mmol) were dissolved in 15 

mL of water and added to the reaction mixture all at once. The mixture was refluxed for 1 h, 

using TLC to follow the reaction. The mixture was cooled and excess sodium thiosulfate was 

added into the reaction mixture in small portions with stirring to remove excess iodine. The 

reaction mixture was poured into a separatory funeral and the organic layer was collected. After 

drying over anhydrous Na2SO4, the organic solvent was removed under vacuum. After 

recrystallization from MeOH, a slightly yellow powder of 5-4-g was obtained in 85% yield 

(401.4 mg). The overall yield of 5-4-g from 5-6-g was 82% (400mg, 1.25 mmol). 

3-Ethyl-5-formyl-2-iodo-4-methylpyrrole 5-4-f.
29b

 85% yield. Mp 118-120 °C (lit.
29b

 mp 118-

120 °C). 
1
H NMR (250 MHz, CDCl3) δ 10.77 (s, 1H), 9.41 (s, 1H), 2.76-2.70 (m, 2H), 1.99 (s, 

3H), 1.22-1.16 (m, 3H). 
13

C NMR (250 MHz, CDCl3) ppm 176.53, 138.35, 133.38, 126.17, 

83.80, 18.14, 16.89, 11.93. ESI- MS Calcd for C8H10INO m/z, 262.98, found: 263.05. 

5-Formyl-2-iodo-4-(2-methoxycarbonylethyl)-3-methylpyrrole 5-4-g.
29c

 82% yield. Mp 91-

92 °C (lit.
29c

 mp 92 °C).  
1
H NMR (300 MHz, CDCl3) δ 10.66 (s, 1H), 9.41 (s, 1H), 3.64 (s, 3H), 

3.06-3.00 (m, 2H), 2.57-2.51 (m, 2H), 1.96 (s, 3H). 
13

C NMR (250 MHz, DMSO- d
6
) ppm 
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176.45, 172.63, 133.28, 132.84, 125.87, 82.60, 51.69, 35.06, 19.47, 11.46.  ESI- MS Calcd for 

C10H12INO3 m/z, 320.99, found: 321.06.  

3:4-Butano-5-formyl-2-iodopyrrole 5-4-h. 84% yield. Mp 165-167 °C. 
1
H NMR (250 MHz, 

CDCl3) δ 9.48 (br, 1H), 9.34 (s, 1H), 2.84-2.80 (m, 2H), 2.39-2.34 (m, 2H), 1.84-1.76 (m, 4H).
 

13
C NMR (250 MHz, CDCl3) ppm 175.45, 133.53, 132.39, 128.57, 79.05, 23.01(2C), 22.66, 

20.92. HRMS (ESI) Calcd for C9H11N2OI [M+H]
 +

 275.9879, found: 275.9878. 

4-(2-Cyanoethyl)-5-formyl-2-iodo-3-methylpyrrole 5-4-i. 81% yield. Mp 143-145 °C. 
1
H 

NMR (250 MHz, CDCl3) δ 9.76 (s, 1H), 9.47 (s, 1H), 3.14-3.08 (m, 2H), 2.64-2.58 (m, 2H), 2.05 

(s, 3H). 
13

C NMR (250 MHz, CDCl3) ppm 175.81, 133.55, 129.49, 126.47, 118.58, 82.5, 20.41, 

19.12, 11.64. HRMS (ESI) Calcd for C9H10N2OI [M+H]
 +

 288.9832, found: 288.9834. 

5.4.5 General procedure for reductive coupling of 5-4-n to generate 5-1-n (n =b-j, m-p) 

Activated zinc was obtained by washing zinc dust with 3 M HCl and then filtering 

through filter paper, after which it was washed successively with water, ethanol, and diethyl 

ether, and then dried under vacuum. 5-4-b was used as an example to describe the general 

procedure for reductive coupling of compounds 5-4-n (n = b-j, m-p). A mixture of Pd-C (10.0mg, 

10%) and activated zinc powder (100 mg, 1.5 mmol) were placed in a dry 50 mL round bottom 

flask. After removing air under vacuum, the flask was filled with argon. After that, 2 mL of 

toluene was added to the reaction mixture which was stirred at ambient temperature under argon 

protection for 15 mins before adding 2-iodopyrrole 5-4-b (132 mg, 0.5 mmol) dissolved in 8 mL 

of toluene. Then 10 mL distillated water was added through a syringe into the reaction flask. The 

reaction mixture was stirred vigorously at room temperature under argon. It is worth mention 

that the Pd-C purchased from the other source or old catalyst would reduce the yield and in some 

case even no reaction occurs. Also strict air-free and solvent adding sequence will also affect the 
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coupling yield. TLC was used to follow reaction, all of the five 5,5’-diformyl-2,2’-bipyrroles 5-

1-b display a characteristic blue fluorescence under UV irradiation (around 366 nm) on silica gel 

TLC plates. Their DCM, acetone, DMSO and THF solutions also show strong blue luminescent 

properties under the same wavelength illumination at ambient conditions, unlike the starting 

material 5-4-b. Stop the reaction upon the disappearance of the starting material. DCM (40 mL) 

was added and it was sonicated to form two layers.  After removing the water layer, the remained 

solution was filtered through a Celite plug, followed by washing with DCM (100 mL) three 

times. The organic solvents were collected and dried over anhydrous Na2SO4, before evaporation 

under vacuum. The pure target compounds were obtained by using silica gel column to separate 

and eluted with EtOA /hexane (1: 2). Further purification could be performed by recrystallization 

from DCM/hexane, or from ethanol. 

5,5’-Bis(benzyoxyl)-3,3',4,4'-tetramethyl-2,2'-bipyrrole-2,2’-bipyrrole 5-1-b
32

: After 

recrystalizing from MeOH/DCM and washing with hexane (2 × 2 ml), pure 5-1-b was obtained 

as a milk-white solid in 78 % yield (89.0 mg, 0.195 mmol). mp 218-220 
o
C [lit

32
 mp 220 

o
C]. 

1
H 

NMR (250MHz, CDCl3) δ 9.08 (s, 2H), 7.39-7.34 (m, 10 H), 5.25 (s, 4H), 2.31 (s, 6H), 2.02 (s, 

6H). 
13

C NMR (250 MHz, CDCl3) ppm 161.42, 136.25, 128.51, 128.07, 128.03, 127.90, 124.90, 

119.87, 119.00, 65.78, 10.67, 9.89. HRMS (ESI) Calcd for C28H29N2O4 [M+H]
+
:  457.2127, 

found 457.2124. 

5,5’-Bis(benzyoxyl)-3,3'-diethyl-4,4'-dimethyl-2,2'-bipyrrole 5-1-c: After recrystallizing from 

DCM/hexane and washing with hexane (2 × 2 ml), pure 5-1-c was obtained as a milk-white solid 

in 80 % yield (96.9 mg, 0.20 mmol). 
1
H NMR (300 MHz, CDCl3) δ 9.65 (s, 2H), 7.98 (s, 10H), 

5.85 (s, 2H), 3.06-2.94 (m, 10H), 1.65 (s, 6H). 
13

C NMR (300 MHz, CDCl3) ppm 161.35, 136.23, 
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128.50, 128.02, 127.08, 126.82, 124.18, 119.04, 65.74, 17.69, 15.42, 10.59. HRMS (ESI) Calcd 

for C30H33N2O4 [M+H]
+
: 485.2440, found 485.2444. 

5,5’-Bis(benzyoxyl)-4,4'-bis(3-methoxy-3-oxopropyl)-3,3'-dimethyl-2,2'-bipyrrole 5-1-d: 

After recrystallizing from DCM/hexane and washing with hexane (2 × 2 ml), pure 5-1-d was 

obtained as a milk-white solid in 65 % yield (97.5 mg, 0.16 mmol). 
1
H NMR (250 MHz, CDCl3) 

9.21 (s, 2H), 7.37-7.33 (m, 10H), 5.23 (s, 4H), 3.63 (s, 6H), 3.07-3.01 (m, 4H), 2.54-2.47 (m, 4H, 

2.05-2.00 (m, 6H). 
13

C NMR (250 MHz, CDCl3) ppm 173.89, 161.28, 136.28, 130.82, 128.98, 

128.75, 128.66, 125.30, 120.14, 119.45, 66.56, 51.91, 35.07, 21.11, 10.16. HRMS (ESI) Calcd 

for C34H37N2O8 [M+H]
+
: 601.2550, found 601.2540. 

5,5'-Bis(benzyloxy)-4,4'-dimethyl-3,3'-dipropyl-2,2'-bipyrrole 5-1-e: After recrystallizing 

from MeOH/DCM and washing with hexane (2 × 2 ml), pure 4b was obtained as a milk-white 

solid in 27 % yield (34.6 mg, 0.068 mmol). 
1
H NMR (250 MHz, CDCl3) 8.73 (s, 2H), 7.44-7.33 

(m, 10H), 5.31 (s, 4H), 2.44-2.33 (m, 10H), 1.49-1.39 (m, 4H), 0.89-0.83 (m, 6H). 
13

C NMR 

(250 MHz, CDCl3) ppm 161.09, 136.24, 128.56, 128.13, 127.64, 124.85, 124.44, 118.90, 65.80, 

29.70, 26.56, 24.07, 13.95, 10.65. HRMS (ESI) Calcd for [M+H] C32H37N2O4 [M+H]
+
:  

513.2753, found 513.2759. 

Di-tert-butyl 4,4'-diethyl-3,3'-dimethyl-2,2'-bipyrrole-5,5'-dicarboxylate 5-1-m: After 

separating by using a silica gel column eluted with ethyl acetate and hexane, pure target  5-1-m 

was obtained as a milk-white solid in 31% (32.3 mg, 0.078 mmol). 
1
H NMR (250 MHz, CDCl3) 

δ 8.66 (s, 2H), 2.81-2.72 (m, 4H), 2.05 (s, 6H), 1.58 (s, 18H), 1.19-1.13 (m, 6H). 
13

C NMR (250 

MHz, CDCl3) ppm 161.37, 133.51, 124.49, 120.30, 118.95, 81.10, 28.85, 18.84, 15.52, 10.08. 

HRMS (ESI) Calcd for C24H37N2O4 [M+H]
+
: 417.2753, found 417.2737. 
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5,5’-Di-4,4’-bis(2-methoxycarbonylethyl)-3,3’-dimethyl-2,2’-bipyrrole 5-1-n: After 

separating by using a silica gel column eluted with ethyl acetate and hexane, pure target  11b was 

obtained as a milk-white solid in 44% (58.5 mg, 0.11 mmol).  
1
H NMR (250 MHz, CDCl3) δ 

8.75 (s, 2H), 3.67 (s, 6H), 3.08-3.01 (m, 2H), 2.60-2.54 (m, 2H), 2.05 (s, 6H), 1.56 (s, 18H). 
13

C 

NMR (250 MHz, CDCl3) ppm 173.59, 160.66, 128.92, 123.98, 120.55, 119.12, 81.12, 51.48, 

34.90, 29.67, 20.77, 9.68. HRMS (ESI) Calcd for C28H41N2O8 [M+H]
+
: 533.2862, found 

533.2854. 

3,3',5,5'-tetracarboxylatethylester-4,4'-bis(2-ethoxyethyl)-2,2'-bipyrrole 5-1-o: After 

recrystallization from DCM/hexane and washing with hexane (2 × 2 ml), pure 5-1-o was 

obtained as a milk-white solid in  69% yield (92.5 mg, 0.17 mmol).  
1
H NMR (250 MHz, CDCl3) 

δ 9.42 (s, 2H), 4.49-4.37 (m, 8H), 3.54-3.48 (s, 8H), 3.38 (s, 6H), 1.47-1.40 (s, 12H). FAB MS 

Calcd for C26H36N2O10 m/z, 536.24, found: 536.30. MALDI-TOF MS Calcd for C26H36N2O10 m/z, 

536.24, found: 536.41. 

3,3’,4,4’-tetramethyl-5,5-dicarboxylatethylester -2,2’-bipyrrole 5-1-p: After separating by 

using a silica gel column eluted with ethyl acetate and hexane, pure target 5-1-p was obtained as 

a milk-white solid in 19% (63.1 mg, 0.19 mmol). 
1
H NMR (250 MHz, CDCl3) δ 8.97 (s, 2H), 

4.34-4.25 (m, 4H), 2.31 (s, 6H), 2.05 (s, 6H), 1.38-1.32 (m, 6H). 
13

C NMR (250 MHz, CDCl3) 

ppm 161.70, 127.42, 124.55, 119.60, 119.25, 60.02, 14.47, 10.51, 9.87. MALDI-TOF MS Calcd 

for C18H24N2O4 m/z, 332.17, found: 332.34.  

3,3’-Diethyl-5,5-diformyl-4,4’-dimethyl-2,2’-bipyrrole 5-1-f
9c

. After using the silica gel 

column for the separation the title compound was obtained as a milk-white solid in 35% yield 

(23.7 mg, 0.087 mmol). Mp 240-242 °C (lit.
 9c

 mp 241-242 °C). 
1
H NMR (250 MHz, CDCl3) 

δ11.71(s, 2H), 9.61 (s, 2H), 2.74-2.71 (m, 4H), 1.95 (s, 6H), 1.56-1.10 (m, 6H). 
13

C NMR (250 
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MHz, CDCl3) ppm 177.80, 135.93, 128.89, 128.18, 119.19, 16.93, 16.08, 9.31. HRMS (ESI) 

Calcd for C16H21N2O2 [M+H]
 + 

273.1597, found 273.1601. 

5,5’-Diformyl-4,4’-bis(2-methoxycarbonylethyl)-3,3’-dimethyl-2,2’-bipyrrole 5-1-g. After 

separating by using the silica gel column the title compound was obtained as a milk-white solid 

in 54% yield (52.4 mg, 0.13 mmol). Mp >330 °C (dec.). 
1
H NMR (250 MHz, DMSO-d6) δ 11.7 

(s, 2H), 9.60(s, 2H), 3.57 (s, 6H), 3.00-2.95 (m, 4H), 2.58-2.48 (m, 4H), 1.93 (s, 6H). 
13

C NMR 

(250 MHz, CDCl3) ppm 178.30, 172.61, 131.69, 129.32, 127.79, 119.70, 51.30, 34.51, 19.22, 

9.30. HRMS (ESI) Calcd for C20H25N2O6 [M+H]
 + 

389.1707, found 389.1707. 

3:4, 3’:4’-Bisbutano-5,5’-diformyl-2,2’-bipyrrole 5-1-h. After separating by using the silica 

gel column the title compound was obtained as a milk-white solid in 41% yield (30.3 mg, 0.10 

mmol). Mp >310 °C (dec.). 
1
H NMR (300 MHz, DMSO-d6) δ 11.50 (s, 2H), 9.54 (s, 2H), 2.80 

(m, 4H), 2.50 (m, 4H), 1.67 (br, 8H). 
13

C NMR (250 MHz, DMSO-d6) ppm 177.26, 128.38 (2C), 

126.85, 121.55, 22.94, 22.37, 21.76, 21.22. HRMS (ESI) Calcd for C18H21N2O2 [M+H]
+ 

297.1597, found 297.1605. 

4,4’-Bis(2-cyanoethyl)-5,5’-diformyl-3,3’-dimethyl-2,2’-bipyrrole 5-1-i. After separating by 

using the silica gel column the title compound was obtained as a milk-white solid in 26% yield 

(20.9 mg, 0.065 mmol). Mp >330 °C (dec.). 
1
H NMR (250 MHz, acetone-d6) δ 9.71 (s, 2H), 9.65 

(s, 2H), 3.18-3.12 (m, 4H), 2.71-2.65 (m, 4H), 2.18 (s, 6H). 
13

C NMR (250 MHz, acetone-d6) 

ppm 178.86, 131.00, 130.71, 128.28, 121.43, 120.21, 20.79, 18.99, 9.72. HRMS (ESI) Calcd for 

C18H19N4O2 [M+H]
+ 

323.1502, found 323.1504. 

5,5’-Diformyl-3,3’,4,4’-tetramethyl-2,2’-bipyrrole 5-1-j
9a

. After separating by using the silica 

gel column the title compound was obtained as a milk-white solid in 40% yield (24.4 mg, 0.10 

mmol). Mp >307°C (dec.) [lit.
 9a

 mp 305-307 °C (dec.)]. 
1
H NMR (250 MHz, DMSO-d6) δ 11.66 
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(s, 2H), 9.61 (s, 2H), 2.25 (s, 6H), 1.91 (s, 6H). 
13

C NMR (250 MHz, DMSO-d6) ppm 177.86, 

129.53(2C), 128.06, 119.89, 9.44, 9.00. HRMS (ESI) Calcd for C14H17N2O2 [M+H]
 + 

245.1284, 

found 245.1289. 
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CHAPTER 6. THE UNIQUE REGIOCHEMISTRY OF MONO-(L)-

ASPARTYLCHLORIN-E6  

 

6.1 Introduction 

PDT is a binary cancer therapy that relies on the selective uptake of a photosensitizer into 

tumor tissues, followed by generation of singlet oxygen and other cytotoxic species upon 

irradiation with light of an appropriate wavelength
1-3

. Photofrin® (porfimer sodium) has been 

commercially developed and approved in more than 40 countries as a 1
st
 generation 

photosensitizer. It has limited application in the PDT treatment of cancers, due to the following 

factors: it has low absorption of light within the ―therapeutic window‖ (600-800 nm) and it is 

slow to clear from skin, resulting in residual patient photosensitivity
4
. To extend the application 

of photosensitizers in PDT, so-called 2
nd

-generation photosensitizers, such as LS-11 (6-10) has 

been developed recently. LS-11 is the latest name for mono-(L)-aspartylchlorin-e6, which 

previously had been also known as Talaporfin sodium, NPe6 and MACE. As a chlorophyll 

derivative, LS-11 has been used in advanced-stage clinical trials for PDT.  LS-11 has a strong 

characteristic absorption maximum at 666 nm (solvent dependent), ability to generate cytotoxic 

singlet oxygen in high yields upon irradiation, and enjoys rapid clearance from normal tissue
4-5

. 

Moreover, it has increased stability and amphiphilicity compared with many synthetic chlorins 

tested as PDT sensitizers.  

A patent search identifies LS-11 (at that time ―NPe6‖ or Talaporfin sodium) as the 17
3
-

aspartyl derivative, though the option for a mixture with other regioisomers was left open in the 

patent itself
6
. Surprisingly, in 1998 a very thorough 2D NMR study was published claiming that 

LS-11 is actually the 15
2
-regioisomer

7
 (6-10). Unfortunately, the conclusions in this paper were 

not universally accepted due to the ambiguous NMR spectra of the aggregated compound
8
 in 
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water. Additionally, the result was counter-intuitive from a mechanistic perspective since the 

propionic side chain is the most reactive and also the least steric hindered position compared 

with the acetic and formic analogs. Although this paper also reported the syntheses and 

spectroscopic evaluation of the 17
3
- and 13

1
-positional isomers of 15

2
-LS-11, the yields were 

low and the synthetic routes to these regioisomers were ambiguous. As a result, most papers ever 

since 1998 reported LS-11 to be either the 15
2
-or the 17

3
-aspartyl derivatives, most often the 

latter. The identity of LS-11 has remained a matter of conjecture and the distributors appear to 

have remained silent on the critically important structural issue raised by Gomi et al.
7
. 

Meanwhile, subsequent to the initial patent, our group had also synthesized and biologically 

studied this molecule as well as an over-reacted di-(L)-aspartylchlorin-e6 (―DACE‖) that was 

correctly identified as the 17
3
,15

2
-diaspartyl compound (6-8)

9
. Recently, our group also reported 

the unambiguous improved syntheses of the 13
1
-, 15

2
- and 17

3
-aspartyl regioisomers of LS-11, 

as their tetramethyl esters
10

. The transfer of free acids into esters provided good solubility and 

avoided the formation of aggregates in solution; thus monomeric NMR spectra were obtained. In 

the meanwhile, we were also able to obtain the X-ray structure of the tetramethyl ester of 

authentic LS-11, which was prepared from the coupling of commercially available chlorin-e6 

with aspartic acid derivatives using peptide coupling reagents, such as DCC. Our results are in 

agreement with the recent, though unaccepted, report
7
 that aspartyl group is attached to the 15

2
-

side chain position in chlorin-e6. With the absence of carboxylic protecting groups during the 

synthesis of the commercial material, which is formed clearly as one pure regioisomer, it is 

really surprising to see such a highly regioselective coupling to form uniquely the 15
2
-positional 

LS-11 derivative (6-10). Considering the fact that chlorin-e6 possesses no less than three 

carboxylic acid functional groups, all of which are able to undergo amino-acid coupling reactions, 
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if there is selective formation of one unique regioisomer, then it should be the 17
3
-regioisomer of 

LS-11 instead of 15
2
-aspartyl isomer. However, the regioisomer isolated from experiment is 

indeed the 15
2
-positional LS-11

7, 10 
instead of that at 17

3
. It seems to us that the reaction should 

have an unknown complexity in the pathway which guides the efficient coupling of amino acid 

at the specifically unfavorable 15
2
-position. To discover this pathway, we designed reactions and 

explored MALDI-TOF and NMR techniques. In the meanwhile, we achieved a key improvement 

in synthesizing the 15
2
-positional LS-11, in which organic base was found to play an important 

role during the coupling.  

When using H-Lys (Boc)-OtBu instead of L-aspartic acid, the 15
2
-positional Lys-

substituted chlorin-e6 was also achieved in good yield with high regio-selectivity. 

6.2 Results and Discussion  

We hypothesized that the highly regioselective formation of the 15
2
-positional 

regioisomer was due to the formation of a seven-member anhydride ring intermediate, which has 

high reactivity and can easily undergo a ring opening reaction upon addition of a nucleophilic 

reagent, such as the L-aspartic acid dimethy lester in the absence of a peptide coupling agent (see 

Scheme 6-1). To substantiate our rationale, first we designed a reaction to prove that cyclic 

anhydride ring do form for 6-1 under the coupling condition before the addition of nucleophilic 

reagent. The designed reaction was performed by coupling pure chlorin-e6 with the peptide 

coupling reagent DCC
6,10

. In this coupling reaction, 1 equivalent of chlorine-e6 was suspended in 

dry DCM solution under an argon atmosphere. One equivalent of DCC and 1 equivalent of 

DMAP were dissolved in dry DCM and were added to a DCM solution of chlorin-e6 at room 

temperature under an argon atmosphere. It took around 5-10 minutes for chlorin-e6 to become 

completely dissolved after adding DCC/DMAP. In the meanwhile, the solution changed into a 
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brown color. It took a round 30 minutes before TLC indicated the formation of two new spots, 

which changed color on the TLC plate upon standing. The initial color was brown and 

subsequently it changed into green. The minor of the two products has Rf value at 0.8 and the 

major product has Rf value at 0.4 when 10% acetone/DCM was used as the eluting solvent. 

MALDI mass spectra of the reaction mixture gave two peaks at MW 785 and 578 (see Figure 6-

1).  
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Scheme 6-1. Rationale for the unique formation of 6-5.  

   

Figure 6-1. MALDI-TOF mass spectrum of the reaction mixture (left) and 6-2 (right) with CCA. 
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Scheme 6-2.  Methylation of 6-1 using diazomethane in DCM to generate 6-6. 

 

The separation was performed using silica gel TLC, with 10% acetone/DCM as the 

eluting solvent. However, due to their high reactivity, only tiny amount of pure products could be 

isolated. Thus only MALDI and UV-vis studies were performed with them. The MALDI-TOF 

spectrum gave a peak at 578 for the isolated polar compound, which matched with the formation 
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of 6-1. MALDI-TOF spectroscopy also gave a peak at 785 for the less polar compound, which 

matches with the formation of 6-2. Due to the high reactivity and the ready aggregation behavior 

associated with the presence of free acids in 6-2, decent NMR spectra were not possible. In order 

to obtain good NMR spectra, esterification was performed on 6-1 using excess diazomethane gas 

under strictly moisture free and nucleophile free conditions (see Scheme 6-2).Due to the high 

reactivity associated with the coupling mixture, the esterification reaction was performed directly 

 

Figure 6-2. MALDI-TOF mass spectra of 6-1 (left) and 6-6 (right) with CCA as matrix. 
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Fig.6-3. UV-vis spectra of chlorin-e6 (red) and 6-6 (black) in DMSO at room temperature.  

 

Figure 6-4. Stacked NMR spectra of 6-6 (top) and chlorin-e6 trimethyl ester (bottom).  

 

following the coupling reaction of chlorin-e6 without workup or purification of the coupling 

mixture. The preparation of 6-6 was performed by blubbing excess amounts of diazomethane gas 

through the reaction mixture under a N2 atmosphere. As indicated by TLC, the methylation was 

completed within a couple of minutes. The formation of 6-6 was indicated on TLC as the 

appearance of a major brown spot. However, after isolation from silica gel TLC plate with 10% 

acetone/DCM, only a small amount of pure 6-6 was obtained. We attribute this to the high 

reactivity of anhydride seven-membered-ring of 6-6. Upon applying it to a silica gel TLC plate, 

the anhydride ring of 6-6 could easily be opened to form very polar free acids. This, on the other 
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hand, also supports our rationale that once the anhydride intermediate was formed, the ring 

opening with a nucleophilic reagent would be extremely efficient. Although 6-6 was quickly 

removed from the silica TLC plate still no practical way was found to generate a large amount of 

pure 6-6. Pure 6-6 was however fully characterized by NMR, MALDI and UV-vis spectra. 
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Scheme 6-3. Anhydride ring formation, and byproducts, in chlorin-e6 derivatives. Reaction 

conditions: a) 1 equiv DCC DMAP, dry DCM, argon, room temperature; b) 1 equiv DCC, dry 

DCM, argon, room temperature. 

 

MALDI gave a peak at MW 592 for the formation of 6-6 (see Figure 6-2). Comparing its 

UV-vis spectra with that of chlorin-e6 in DMSO, 6-6 showed a red-shift of around 3-7 nm (see 

Figure 6-3). In our previous report
10

, the ring-opening of the isocyclic ring of methyl 

pheophorbide-a to form the trimethyl ester of chlorin-e6 had resulted in a blue shift of around 2-
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10 nm in DCM. Contrasting to the ring-opening of pheophorbide-a, the red-shift in this case is 

attributable to the anhydride ring formation. 

We compared the NMR spectra of 6-6 with those in the literature
10

 reported for 15
2
-LS-

11 and also with chlorin-e6 trimethyl ester (see Figure6-4). It was found that the methyl ester had 

been definitely been added at the 17
3
-position, while the other two free acids (13

1
- and 15

2
-

positional acids) had been fused to form the anhydride seven-membered-ring. The clear 

disappearance of two methyl ester peaks in chlorin-e6 trimethylester is shown in Figure 6-4. 

While 6-6 was purple in the solid state, it gave a reddish-brown color when dissolved in both 

DCM and DMSO. 

It is worth noticing that base (DMAP) plays an important role in this coupling reaction. 

When only DCC was used without DMAP, under the same reaction condition there was no 

formation of the desired product 6-1 (see Scheme 6-3). In the absence of DMAP, and increasing 

DCC up to 5 equivalents, the coupling of chlorine-e6 only generated two undesired products, 

with 6-2 as a relative major product and 6-3 in a very small amount. MALDI-TOF mass spectra 

showed two peaks, at MW of 783 for 6-2 and MW of 1138 for 6-3 (Figure 6-5). 

         

Figure 6-5. MALDI-MS of the reaction mixture (left), 6-2 (middle) and 6-3 (right) with CCA as 

matrix. 
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On the other hand, small amounts of DMAP (0.32 equivalent) were enough to efficiently 

assist the generation of 6-1, which we believed to be the key intermediate in the generation of 6-

6 in our rationale. Also, it was found that increasing the amount of DMAP was helpful to 

improve the yield of 6-1 based to TLC, but the reaction became slower as a result. 
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Scheme 6-4.  Organic base DMAP plays an important role in the coupling reaction. 

 

The major product generated under these conditions possessed a similar polarity to that of 

chlorin-e6 trimethy ester and in turn less polar than 6-10. There were also several un-isolated low 

yield byproducts. Moreover, the isolated product was very stable and the purification was 

performed using a silica gel column, with 20-30% EtOAc/DCM as eluting solvent. After 
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removing the solvent in vacuum, the major product was obtained as a solid in 24% yield.  Based 

on MALDI and NMR spectra, we hypothesize it might be the isomer of 6-7
12

. MALDI-TOF 

mass spectra gave a peak at MW 1051 for the major product which matches with the chemical 

structure of 6-7 (see Figure 6-6). In solution it gave a very intense green color with a slight blue 

tinge, which is attributed to the ring-opening of anhydride ring.  The unexpected stability of 6-7 

is attributed to the relatively basic media induced by the presence of triethylamine. Also, the 

addition of a methyl group to the free base amine in the DCC backbone might be a possible 

reason for the high stability. Most of reported coupling reactions are performed undser slightly 

 

 

Figure 6-6. MADLI-TOF mass spectra of the coupling reaction mixture in the absence of 

DMAP before diazomethane esterification (left) and 6-7 (right).   

 

basic or neutral conditions. If the isolated product was the isomer of 6-7, then the rationale of 6-6 

formation through the seven-member-ring intermediate would also be supported. It should also 

be noticed that the use of HBTU instead of DCC/DMAP as the coupling reagent provided only 
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chlorin-e6 trimethyl ester, despite the use of different solvents. We attributed this to either the 

poor solubility of HBTU in organic solvents or the survival problem of the seven-membered 

anhydide ring of 6-1 in the presence of HBTU, as described in literature
10

. 
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Scheme 6-5. Ring-opening of the anhydride ring. Reaction conditions: a) 1 equi of L-aspartic 

acid dimethyl ester hydrochloride, 1 equiv triethylamine, dry DCM, room temperature, argon; b) 

excess diazomethane. 

 

    

Figure 6-7. MALDI-TOF of 6-9 (left) and 6-10 (right) with CCA as matrix. 

 

After proving the formation of the seven-membered anhydride ring, and finding it to be 

highly reactive in the presence of nucleophiles, we next needed to prove that the ring opening 

reaction was occurring exactly at the 15
2
-position instead of at 13

1
-position. The amino-acid was 
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generated in situ from L-aspartic acid dimethyl ester by mixing L-aspartic acid dimethyl ester 

hydrochlorid with triethylamine in dry DCM, followed by sonication. The coupling reaction 

mixture of chlorin-e6 with the mixture of DCC/DMAP in dry DCM was used directly for the 

ring-opening reaction (see Scheme 6-5). After most of the chlorin-e6 was converted into 6-6 as 

indicated by TLC and MALDI-TOF spectra, the freshly prepared L-aspartic acid was added. 

MALDI-TOF spectra showed the reaction mixture to have a major peak at MW 751 for 6-9
13

. 

 

Fig 6-8. The stacked UV-vis spectra in SOLVENT of 6-2, 6-6, 6-9 and chlorin-e6. 

 

After methylation with excess diazomethane gas in dry DCM, 6-10 was obtained. After 

isolation from a silica gel column eluted with 30% EtOAc/DCM and removal of solvent under 

vacuum, pure 6-10 was obtained as a solid in 75% yield. MALDI-TOF spectra gave a peak at 

MW 765 for 6-10. After comparing with the literature
10

, 6-10 was assigned to be 15
2
-positional 

LS-11. Thus by using MALDI-TOF spectroscopy to follow the reaction and NMR spectroscopy 

to characterize the key intermediate, we were finally convinced of the underlying anhydride 

mechanism for the unique formation of ―less reactive‖ 15
2
-regioisomer of LS-11. Figure 6-8 
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shows the stacked UV-vis spectra of 6-2, 6-6, 6-9 and the starting material chlorin-e6. The small 

red-shift presented in both 6-2 and 6-6 is attributed to the formation of the seven-membered 

anhydride ring intermediate which was absent in both 6-9 and chlorin-e6.  
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Scheme 6-7. Formation of a lysine derivative of chlorin-e6. Reaction condition: a) 1 equiv 

DCC/DMAP (1/1), dry DCM, argon, room temperature; b) 1 equiv H-Lys (Boc)-OtBu.HCl, 1 

equiv triethylamine, dry DCM, argon, room temperature.  

 

After discovering the underlying mechanism for the unique formation of the 15
2
- 

regioisomer of chlorine-e6, we also improved its synthesis based on a two-step one-pot reaction. 

In this improved synthetic route, MALDI-TOF spectra and TLC were used to detect the 

formation of anhydride intermediate before addition of L-aspartic acid dimethyl ester. By 

dividing the previous one-step one-port reaction
6,10 

into a two-step one-port reaction, the 

selectivity of the coupling was improved.  We also used H-Lys(Boc)-OtBu hydrochloride in 

place of L-aspartic acid dimethyl ester hydrochloride to test of the versatility of the mechanism 

and of our improved synthesis (see Scheme 6-6). The reaction was performed by using 1 

equivalent of DCC and 1 equivalent of DMAP as the coupling reagent to react with chlorin-e6 in 
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DCM, subsequently adding amino-acid and esterifying with excess amounts of diazomethane gas. 

After a silica gel column separation (eluting with 30% EtOAc/DCM), pure 6-11 was obtained in 

65% yield. MALDI-TOF spectra gave a peak at MW 907 for the formation of 6-11 (see Figure 

6-9).  

 

Figure 6-9. MALDI-TOF mass spectrum of 6-11 with CCA as matrix. 

 

The selectivity of this coupling reaction was very high; the only byproduct generated was 

chlorin-e6 trimethyl ester.  

6.3 Conclusion 

In summary, there is a unique-selective formation of the 15
2
-positional chlorin-e6 

derivativs when subjecting cghlorin-e6 to a reaction using a peptide coupling reagent, such as 

DCC/DMAP. The underlying mechanism for this unique selectivity was shown to involve the 

intermediacy of a seven-membered anhydride ring derivative. The organic base DMAP was 

found to play an important role in this unique coupling reaction. Based on this discovery, an 



193 
 

improved synthesis of 15
2
-positional chlorin-e6 was developed, namely a two-step one-pot 

process and the yield was good. The versatility of this coupling reaction was also tested.  

6.4 Experiment 

6.4.1 General 

Silica gel (32–63 mm) was used for flash column chromatography. All reactions were monitored 

and some highly reactive compounds were separated by TLC using 0.25 mm silica gel plates 

with or without UV indicator (60F-254). 
1
H NMR spectra were obtained on either a DPX-250, 

ARX-300 or Varian VS-700 spectrometer. Chemical shifts (δ) are given in ppm relative to 

CD2Cl2 (5.32), CDCl3 (7.27) or DMSO-d6 (2.50) as indicated. Mass spectra were obtained on an 

Applied Biosystems QSTAR XL instrument. All solvents were obtained from Fisher Scientific 

(HPLC grade, Houston, TX) and were used without further purification unless indicated. DMSO 

(Biotech grade solvent, 99.8%) was purchased from Sigma–Aldrich and used without further 

purification.  

6.4.2 Preparation of diazomethane gas (small scale) 

The apparatus consists of a Buckner-type conical flask (A), which was equipped with a magnetic 

bar and a rubber stopper, and another Erlenmeyer flask (B), which was connected to the conical 

flask (A) through polythene tubing. The stopper on the conical flask (A) has two holes, the first 

one is closed with a rubber septum and the second one is used to hold polythene tubing for the 

connection to Erlenmeyer flask (B). For example, the typical preparation of approximately 59 

mmol diazomethane preceeds as follows: Diazald (18g, 84 mmol) was weighed directly into 

flask (A) and ethanol (110 mL, 5 times its weight of diazald) was added. The flask was cooled to 

0 
o
C by using an ice-bath. Flask (B) has the reaction mixture readily for the methylation reaction 

in dry DCM. There must be a good stream of nitrogen gas continuously pasings through the 
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whole system. Concentrated aqueous solution of sodium hydroxide was added dropwise through 

a plastic pipette inserted into the hole on the rubber stopper of flask (A). Upon the complete 

dissolving of diazald, sodium hydroxide was added at a rate of 1 mL every 30 sec. After a few 

seconds yellow diazomethane gas can be found to pass into flask (B), where the desired 

methylation reaction occured. Continuing adding sodium hydroxide solution until the 

disappearance of yellow colour in flask (A) is observed. TLC monitoring of the solution in flask 

(B) showed complete methylation of the acid. The methylation reaction could complete within 

couple of minutes. 

6.4.3 Preparation of 6-2 and 6-3 

Ce6 (60 mg, 0.1 mmol) was suspended in dry DCM 25 mL under Argon. Concentrated DCC (1 

equiv) in dry DCM 5 mL was added into the reaction mixture. After 5-10 minutes, chlorin-e6 

became completely dissolved and the solution showed a brown color. 30 Minutes later, when 

using TLC to follow the reaction, two new brown spots (initial brown in color, later changing to 

green) appeared at Rf 0.9 (6-3, minor) and 0.8 (6-2, major) (as indicate from MALDI-MS 

spectroscopy) when 10% acetone/DCM was used as eluting solvent. Extending the reaction time 

(it usually took 3-4 hours), only a small amount of chlorin-e6 remained according to TLC used to 

follow the reaction. The MALDI spectrum of the reaction mixture gave a major peak at MW 784 

for 6-2 and minor peak at MW 1138 for 6-3. 

6.4.4 The preparation of 6-1 and 6-6 

Chlorin-e6 (60 mg, 0.1 mmol) was suspended in dry DCM 25 mL under argon. Concentrated 

DCC (1 equiv) in dry DCM solution 5 mL and DMAP (0.32 equivalent) were added into the 

reaction mixture. After 4 h, TLC (10% acetone/DCM as eluting solvent) showed two major 

brown sports: the first one at Rf 0.8 (6-2, minor) and a second one at 0.4 (6-1, major). In 
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agreement with TLC, the MALDI spectrum of the reaction mixture gave two major peaks, at 578 

(6-1, major) and 785 (6-2, minor). No anhydride dimer (6-3) was detected under these conditions. 

The separation of 6-1 and 6-2 from the reaction mixtures was performed on TLC plates (silica 

gel) very quickly. Small amounts of each substance were obtained and identified by MALDI 

mass spectra. However, the separation yield was very low due to decomposition of the 

compounds. Both UV-vis spectra of the DCC-adduct and anhydride-acid showed several nm red-

shifts compared with chlorin-e6 trimethyl ester, due to the formation of an extra seven-membered 

ring on the chlorin. 

The methylation of 6-1 to form 6-6 was performed by bubbling diazomethane gas into the DCM 

reaction mixture of 6-1. TLC gave a major brown spot for 6-6. Separation was performed on 

TLC plates (silica gel). The desired 6-6 was fully characterized by MALDI-TOF, NMR and UV-

vis spectroscopy. 

6-6: MALDI-TOF Calcd for C35H36N4O5, 592.7. Found 592.8. UV-Vis (max nm/DMSO): 409, 

505, 541, 614, 668; 
1
H-NMR (CDCl3, 300 MHz)  9.57 (1H, s), 9.29 (1H, s), 8.58 (1H, s), 7.98-

7.93 (1H, m), 6.35 (1H, dd, J = 17.5 Hz), 6.18-6.16 (1H, dd, J = 11.9 Hz), 5.43 (2H, br), 4.53 

(1H, t, J = 8.4 Hz), 4.44 (1H, tr J = 14.7),  3.70-3.67 (8H, m), 3.38 (3H, s), 3.18 (3H, s), 2.70-

2.67 (1H, m), 2.60-2.59 (1H, m), 2.38-2.36 (1 H, m), 1.99-1.97 (1H, m), 1.75-1.74 and 1.70-1.68 

(6H, m), -0.42 (1H, s), -0.52 (1H, s). 

6-7: MALDI-TOF Calcd for C63H86N8O6,1051.4. Found 1051.9.  
1
H-NMR (DMSO-d6, 300 

MHz )  9.74 (1H, s), 9.41 (1H, d, J = 6.0 Hz), 9.13 (1H, t, J = 9.72), 8.20-8.11 (3H, m), 6.41(1H, 

d, J = 17.8 Hz), 6.13 (1H, d, J = 11.4 Hz), 4.56 (1H, d, J = 6.8 Hz), 4.06 (1H, tetra, J = 7.11 Hz), 

3.96 (2H, d, J = 11.0 Hz),  3.84 (2H, s), 3.67-3.62 (6H, d, J = 13.7 Hz), 3.50-3.47 (3H, d, J = 9.8 
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Hz), 3.38 (3H, s), 3.14 (3H, s), 2.53 (3H, s), 2.01 (2H, s), 1.82-1.71 and 1.63-1.59 (10 H, br), 

1.34-1.05 (10H, br), -1.08-1.13 (2H, m). 

6-8: MALDI-TOF Calcd for C63H86N8O6, 1051.4. Found 1051.4.  
1
H-NMR (CD2Cl2, 400 MHz ) 

 9.74 (1H, s), 9.41 (1H, s), 9.13-9.09 (1H, m), 8.19-8.11 (3H, m), 6.41 (2H, d, J = 18 Hz), 6.13 

(1H, d, J = 12 Hz), 3.96-3.92 (1H, m), 3.83 (2H, s), 3.67-3.62 (2H, m), 3.47 (2H, s), 3.38 (6H, s), 

3.14 (3H, s), 2.53 (3H, s), 1.82 (2H, s), 1.60-1.59 (12H, m), 1.22-1.17 (10H, s), -1.08- -1.13 (2H, 

m). 

6-9: MALDI-TOF Calcd for C41H47N5O9, 753.8. Found 753.5. UV-Vis (max nm/DMSO): 402, 

501, 530, 609, 664.  

6-10: MALDI-TOF Calcd for C42H49N5O9, 767.9. Found 767.9.  
1
H-NMR (CD2Cl2, 400 MHz )  

9.71 (1H, s), 9.56 (1H, s), 8.79 (1H, s), 8.07-8.02 (1H, m), 6.36 (1H, d, J = 16 Hz), 6.15 (1H, d, J 

= 12 Hz), 5.30 (1H, s), 4.89 (1H, s), 4.53-4.50 (2H, m), 4.32 (2H, s), 3.80-3.77 (2H, m), 3.60 (5H, 

m), 3.48 (2H, s), 3.43 (2H, m),3.30 (2H, s), 3.13 (2H, s), 2.90 (2H, s), 2.33 (2H, s), 2.07 (1H, s), 

1.78-1.71 (6H, m), 1.30-1.29 (2H, m), -1.26 (1H, s), -1.38 (1H, s). 

6-11: MALDI-TOF Calcd for C51H68N6O9, 909.1. Found 909.1.  
1
H-NMR (CDCl3, 300 MHz )  

9.73 (1H, s), 9.58 (1H, s), 8.78 (1H, s), 8.10-8.01 (1H, m), 6.39 (1H, d, J = 17.8 Hz), 6.17 (1H, d, 

J = 11.4 Hz), 5.22 (2H, s), 4.53 (3H, s), 4.27 (3H, s),  3.80 (2H, s), 3.59 (3H, s), 3.49 (3H, s), 

3.30  (2H, s), 2.91 (2H, s), 2.58 (1H, s), 2.22 (1H, s), 2.06 (2H, s), 1.88 (6H, s) 1.44 (9H, s), 1.29 

(9H, s), -1.30 (1H, s),  -1.43 (1H, s). 
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