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ABSTRACT 

Renewable energy is a major concern due to increased world energy 

consumption.  In particular, solar energy is a type of renewable energy source that uses 

devices known as solar cells to convert sunlight to electricity.  Specifically, devices 

referred to as dye-sensitized solar cells (DSSCs) employ dyes to absorb solar energy.  

Dyes derived from ruthenium complexes have been typically used in DSSCs. 

Unfortunately, several disadvantages are associated with current ruthenium complex 

photosensitizers, which can be attributed to limited supply and expense of metals, as 

well as reduced absorption in the near-infrared region of the electromagnetic spectrum.  

Accordingly, this dissertation is a discussion of novel dyes referred to as group of 

uniform materials based on organic salts (GUMBOS) for application as photosensitizers 

in DSSCs.  These GUMBOS are solid phase organic salts composed of bulky ions that 

have melting points from 25°C to 250°C.  Importantly, GUMBOS can be tuned for 

multiple functions based on selected ions resulting in interesting physiochemical 

properties.  In addition, nanomaterials derived from GUMBOS (nanoGUMBOS) can also 

result in significant properties.   

The first part of this dissertation involves the synthesis and characterization of 

nanoGUMBOS from cyanine dyes.  These nanomaterials are prepared via a facile self-

assembly approach, and spectral and electrochemical properties are investigated.  In 

one study, controlled properties of cyanine-based nanoGUMBOS are found to be 

dependent on the counterion associated with the cationic dye.  In another study, 

GUMBOS derived from cyanine dyes with increasing methine chain lengths are 

synthesized.  In addition, binary nanomaterials consisting of two different cyanine 
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methine chain length GUMBOS are prepared.  The effect of Förster resonance energy 

transfer between these latter nanomaterials enhances fluorescence into the near-

infrared region of the electromagnetic spectrum.  The individual and binary 

nanoGUMBOS offer possible use as sensitizers that extend into the near-infrared region 

of the electromagnetic spectrum. 

The second part of this dissertation entails the incorporation of cyanine-based 

GUMBOS and nanoGUMBOS into DSSCs.  In this study, various preparation methods 

are used for formation of titanium dioxide semiconductor electrodes.  Solar cells 

comprised of these electrodes and cyanine-based GUMBOS are fabricated, and the 

performances of these DSSCs are investigated.



1 
 

CHAPTER 1  
INTRODUCTION 

 

1.1 Solar Energy 

Advances in renewable energy production are a major concern in recent years 

due to increased world energy consumption.  In 2011, the United States energy 

consumption was 97.5 quadrillion British thermal units (Btu), or 3.26 terawatts (TW).1  A 

major source of this energy consumption was provided by use of nonrenewable carbon-

based fuels, i.e. petroleum, natural gas, and coal (Figure 1.1).1  Unfortunately, 

nonrenewable energy sources are known to be detrimental to the environment, primarily 

as a result of carbon dioxide emissions.   

 

Figure 1.1 United States energy consumption in 2011 reproduced from the U.S. Energy 
Information Administration (March 2012).1 

 
The use of renewable energy sources affords promising methods to reduce fuel 

dependence by replenishing energy over a short period of time.  In particular, solar 

energy is a continuous and abundant energy source obtained directly from sunlight.  

More than 120,000 TW of solar energy reaches the surface of the earth,2 which is five 

orders of magnitude greater than the energy consumed in the United States in 2011. In 
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such applications, energy from solar emission is converted to electricity by use of 

devices known as photovoltaics, or solar cells.  However, with only 1% of energy 

consumption obtained by solar energy, continued research and development is a driving 

force to efficiently harness and exploit this natural source of energy.   

1.2 Development of Solar Cells 

Solar cells absorb energy in the form of photons from sunlight, which is used to 

generate electricity by migration of electrons through an external load.  This concept of 

converting sunlight to electricity was initially established as a result of the discovery of 

the photovoltaic effect by Becquerel in 1839.3  In this experiment, the production of 

current was achieved between two platinum electrodes by illumination while the 

electrodes were immersed in an electrolyte solution containing silver halide salt.  This 

discovery became a foundation of the development of solar cells.  Thereafter, an 

advancement by Ohl at Bell Laboratories in 1941 used a p-n junction of a doped single 

silicon crystal to produce two types of semiconductor material known as p-type 

(positive) and n-type (negative) semiconductors (Figure 1.2).4  When these 

semiconductors are in contact, positive (hole) and negative (electron) charge carriers 

diffuse to opposite charged regions generating an intrinsic electric field.  At equilibrium, 

the p-n junction does not have a net charge resulting in a depletion region that forms at 

this junction.  Upon illumination, photons with energy greater than the band gap (Eg), i.e. 

the energy difference between the valence band (Ev) and conduction band (Ec), are 

absorbed by a semiconductor and result in generation of an exciton, or electron-hole 

pair.  The intrinsic electric field separates the charge carriers and forces the electron to 
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migrate through an external load to ultimately generate current before recombining with 

a hole.   

It was not until 1954 that a commercial solar cell was developed by Chapin, 

Fuller, and Pearson at Bell Laboratories.5  This solar cell was based on a p-n junction 

composed of silicon and yielded an energy conversion efficiency of 6%.  More recently, 

Green has reported the highest energy conversion efficiency of 24.7% for single 

crystalline silicon solar cells based on use of a p-n junction.6  Unfortunately, these first 

generation solar cells require expensive manufacturing of greater than $1/watt for 

production of high purity single crystals (Figure 1.3).7   In addition, silicon absorbs only 

ultraviolet light that results in the need for a thick silicon layer to obtain adequate 

electromagnetic absorption.   

  
Figure 1.2 Diagram of a p-n junction (a) at equilibrium and (b) under illumination. 

  
Thin film solar cells, classified as second generation devices, have been 

developed based on binary and multi-junction semiconductors to overcome the 

absorption disadvantage of crystalline silicon solar cells.  These semiconductors provide 

better absorption which allows for use of less material and reduces manufacturing cost 

n-typep-type

Ev

Ec

depletion region

n-typep-type

Eg

electric field

h+

e-
hν

a b 
hole

electron



4 
 

as low as $0.50/watt.7  Thin film solar cells include materials such as amorphous silicon, 

cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and gallium 

arsenide (GaAs).  In that regard, a conversion efficiency of 10.1% has been achieved 

for amorphous silicon solar cells, which are typically used in low power devices such as 

calculators.8  Thin film solar cells consisting of CdTe and CIGS have been reported to 

exhibit a conversion efficiency of 17.3% and 19.9%, respectively.9,10  Although the 

aforementioned thin film solar cells are relatively less expensive, efficiencies are lower 

than crystalline silicon solar cells.  A more expensive thin film solar cell comprised of 

GaAs has been found to exhibit a high conversion efficiency of 28.8% and is mainly 

used for space applications.9  

 

Figure 1.3 Classification of solar cells into three categories i.e. first, second, and third 
generation, based on materials used, maximum conversion efficiency obtained, and 
associated cost of power.  Obtained from reference.7 

 
The desire to develop low cost solar cells with increased efficiency is dependent 

on maximum energy conversion.  However, achieving maximum energy conversion is 

limited due to energy loss by heat and inadequate photon absorption.  This hindrance 
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results in a maximum thermodynamic efficiency of 30% for p-n junction solar cells, 

which was calculated by Shockley and Queisser.11  Research to increase efficiency 

greater than the Shockley-Queisser limit at low cost has led to the development of a 

third generation of solar cells.  In particular, a third generation device known as dye-

sensitized solar cells (DSSCs) employs nanomaterials to broaden the potential to 

optimize efficiency.  

1.3 Nanomaterials in DSSCs 

The field of nanotechnology focuses on developments and applications of 

materials and devices at the molecular level.  Materials at the nanoscale, ranging from 1 

to 100 nm, are found to exhibit distinct physical, chemical, and electrical properties as 

compared to bulk materials due to a higher surface area to volume ratio.  For instance, 

nanomaterials have been reported to have tunable absorption and energy level 

depending on the size of the nanostructures.12  These properties are commonly found in 

semiconductor nanomaterials resulting in absorption onset shifts to shorter wavelengths 

and increase band gap as the size of the nanomaterials decrease.  Research on such 

significant physiochemical properties has led to innovative applications of engineered 

nanomaterials in areas such as medicine,13 ,14 electronics,15 and energy.16,17   

The use of nanomaterials in DSSCs was developed by Gratzel and O’Regan in 

1991 via nanocrystalline titanium dioxide (TiO2) particles.18  This DSSC consisted of a 

dye derived from a ruthenium complex that was adsorbed on the surface of TiO2 

nanoparticles and generated a conversion efficiency of 7.9%.  Since development, 

research related to DSSCs continues to increase over the years (Figure 1.4).  As a 

result, a conversion efficiency of 11% has been achieved for DSSCs using ruthenium 
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complexes.19,20  In comparison to silicon and thin film solar cells, DSSCs are have been 

found to be more cost efficient (less than $0.50/watt) due to the abundance of TiO2.
7 

The following section involves examination of the principle of DSSCs. 

 
Figure 1.4 Number of publications per year since 1991 based on a literature search 
using the keywords “solar” and “dye-sensitized.” 
 
1.3.1 Principles of DSSCs 

The operating principle of DSSCs consists of the photoexcitation of a dye upon 

irradiation of light and the transfer of electrons to generate current (Figure 1.5).  This 

device is assembled in a sandwich-like structure by the use of two transparent 

conductive oxide (TCO) glass substrates.  Several components are incorporated in 

DSSCs including a working and counter electrode, electrolyte, and dye sensitizer.  In 

that regard, the working electrode is composed of an oxide semiconductor such as TiO2 

nanoparticles with dye molecules adsorbed on the semiconductor surface.  An electron 

in the dye is excited to a higher energy state upon absorption of photons.  This electron 

is transferred from the excited state energy level of the dye to the conduction band of 

TiO2.  The electron migrates through a TiO2 nanocrystalline network to the TCO 

electrode and reaches an external load to produce current.  Subsequently, the electron 
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travels through a catalyst TCO counter electrode and reduction-oxidation (redox) couple 

electrolyte to regenerate the dye to the ground state. 

 

Figure 1.5 Diagram of a DSSC consisting of a dye sensitizer, TiO2 working electrode, 
catalyst counter electrode, and electrolyte. 
 

For energy conversion to be successful in DSSCs, three main processes must be 

achieved: light absorption, electron injection, and electron regeneration.  The timescale 

of these electron transfer processes is also important to optimize parameters (Figure 

1.6).  The initial process entails absorption of photons from sunlight by a dye, which 

promotes electrons in dye molecules to an excited electronic state in femtoseconds.  

Subsequently, an electron transfers over a period of picoseconds to the conduction 

band of TiO2 resulting in an oxidized dye.  The electron migrates through the 

nanoparticle network in milliseconds generating current at an external load.  Following 

current generation, the electron passes through the catalyst counter electrode to the 

electrolyte.  A mediator in the electrolyte restores the oxidized dye via electron transfer 

over a period of nanoseconds to the ground state.   
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Unfortunately, competitive transitions can also occur that reduce energy 

conversion.  Upon excitation, the electron can undergo radiative and non-radiative 

processes that cause dye molecules to decay from the excited state to the ground state 

in nanoseconds.  A process known as recombination can also occur that transfers the 

electron in milliseconds from the conduction band of TiO2 to the ground state of a dye or 

to the electrolyte mediator.  The key components of DSSCs have been investigated to 

overcome recombination processes and optimize conversion efficiency.  The 

subsequent sections involve discussion of the ideal requirements for each component 

and emphasis of conducted studies. 

 

Figure 1.6 Schematic of the primary (green) and recombination (red) electron transfer 
processes and timescale of DSSCs. 
 
1.3.2 Working Electrode 

An important function for DSSCs is the capability to transport electrons to an 

external load.  Electron transport is achieved by a working electrode that consists of a 

wide band gap oxide semiconductor deposited on a TCO glass substrate.  A wide band 

gap oxide semiconductor only absorbs in the ultraviolet region of the electromagnetic 
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spectrum, which allows for absorption of photons by dye molecules with limited 

interference.  Specifically, the use of oxide semiconductor nanomaterials, having an 

increased surface area relative to bulk materials, enables enhanced dye adsorption on 

the semiconductor surface.   

A variety of nanostructures has been studied to optimize conversion efficiency, 

i.e. nanoparticles, nanotubes, and nanorods (Figure 1.7).  Generally, an anatase 

crystalline form of TiO2 nanoparticles has been used in DSSCs due to a large band gap 

of 3.2 eV and stability against photocorrosion.  These nanoparticles are typically 

deposited on a fluorine-doped tin oxide (FTO) glass substrate due to its thermal stability 

and low resistance that allows for better electron transport.  Thus far, fabrication of 

DSSCs employing a mesoporous network composed of uniform TiO2 nanoparticles has 

led to a high conversion efficiency of 11%.19,20   

As compared to nanoparticles, the use of ordered TiO2 nanotube arrays provides 

increased surface area via two-dimensional cylindrical nanostructures with a hollow 

core.  In such nanotube arrays, a conversion efficiency around 3% has been reported 

using dyes derived from ruthenium complexes.21,22,23  Additionally, an increase in 

conversion efficiency to 4.9% and 6.9% has been observed for longer nanotubes.24,25  

Nanorods and nanowires have a cylindrical shape similar to nanotubes but lack a hollow 

core.  The use of TiO2 nanowires has been found to exhibit an increased conversion 

efficiency of 9.3% as compared to nanorods, which are similar to nanotube arrays with a 

conversion efficiency of 3%26,27  This increase has been attributed to the network of 

nanowires.  
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Figure 1.7 Types of nanostructures used in DSSCs, i.e. nanoparticles, nanotubes, and 
nanorods. 
 

Other oxide semiconductors have also been investigated using a variety of 

nanostructures.  For instance, the use of different zinc oxide (ZnO) nanostructures has 

led to an increase in conversion efficiency due to higher surface area and better 

orientation.28,29   Law et al. prepared ZnO nanowires that exhibited one-fifth the surface 

area of a nanoparticle electrode resulting in increased dye adsorption and a conversion 

efficiency of 1.5%.28  This efficiency was greater than both ZnO and TiO2 nanoparticles 

under the same conditions.  Similar conversion efficiencies of 1.1% for ZnO nanowires 

and 1.6% for ZnO nanotubes have been reported.30,31  Conversely, Hosono et al. 

fabricated ZnO nanosheets that generated a conversion efficiency of 3.9% that was 

attributed to the upright standing orientation of these sheet-like particles.29  

1.3.3 Counter Electrode 

The counter electrode in DSSCs is used to transport electrons from an external 

load to a redox mediator in the electrolyte.  Such electrodes consist of a catalyst 

deposited on a TCO glass substrate to reduce energy loss.  Typically, a thin layer of 

platinum (Pt) has been used as preferred material due to its high catalytic activity.  

However, the desire to further reduce cost of solar cells has led to research for cost 

efficient materials such as carbon materials and polymers.  
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Carbon materials have been reported as promising low cost alternatives to Pt for 

counter electrodes due to good catalytic activity, high conductivity, and corrosion 

stability.  Carbon materials such as activated carbon,32 mesoporous carbon,33 and 

carbon nanotubes34 have been found to generate conversion efficiencies ranging from 

3.5% to 7.7%, which are similar to Pt counter electrodes studied under the same 

conditions.  Conversely, a relatively high conversion efficiency of 9.1% has been 

reported by Murakami et al. using carbon black as a catalyst for the counter electrode.35  

This enhanced performance using carbon black was attributed to the use of a thick 

carbon layer that resulted in a decrease in the charge transfer resistance.   

Polymers have also been applied as catalyst for counter electrodes.  For 

instance, a counter electrode consisting of doped poly(3,4-ethylenedioxythiophene) 

(PEDOT) has resulting in a conversion efficiency of about 3.7%.36  Furthermore, the use 

of PEDOT in polymer-carbon and polymer-Pt composites has been found to yield a 

conversion efficiency of about 4.4%.37,38  In addition, the use of polymers has led to the 

development of flexible plastic substrates resulting in conversion efficiencies ranging 

from 5.4% to 7.4%.39,40,41,42  

1.3.4 Electrolyte 

Another important consideration for DSSCs is the need to restore the oxidized 

dye to the ground state via electron transfer from a redox couple mediator in the 

electrolyte.  An ideal redox couple mediator consists of suitable kinetics for rapid 

regeneration of the oxidized dye and slow recombination between electrons in the 

conduction band of TiO2.  Based on these factors, the most preferred electrolyte is 

composed of an iodide/triiodide redox couple dissolved in organic solvent.  However, 
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new redox mediators including cobalt-based electrolytes have been investigated as 

alternatives to the iodide/triiodide redox couple to improve the conversion efficiency.  

For instance, Yella et al. have reported a conversion efficiency of 12% using a porphyrin 

dye and cobalt(II/III)tris(bipyridyl)-based redox electrolyte in acetonitrile.43  Although the 

aforementioned redox electrolytes have resulted in high solar cell performance, the use 

of organic solvents can result in solvent evaporation and solar cell instability attributed 

to low boiling point and volatility.  

Electrolytes composed of ionic liquids (ILs) have been studied to reduce the 

effects of solvent evaporation and instability in DSSCs.  These ILs are molten salts 

composed of ions with opposing charge.  Compared to uniformly packed salts such as 

sodium chloride that has a melting point of 800 °C, ILs are arranged in asymmetric 

packing due to a bulky ion resulting in a reduced melting point at or below 100 °C.  

Specifically, ILs with melting points at or below 25 °C are referred to as room 

temperature ionic liquids while ILs that extend to 100 °C are known as frozen ionic 

liquids.  Interesting physiochemical properties of ILs such as negligible vapor pressure, 

tunable viscosity, high ionic conductivity, and high chemical and thermal stability have 

led to application as solvents in synthesis and catalysis,44 as well as separations.45 
 The 

fields of electrochemistry46 and energy conversion47 have also been influenced by ILs.  

The aforementioned properties of ILs are particularly ideal for electrolytes in 

DSSCs.48  Generally, IL electrolytes are composed of cations such as imidazolium, 

pyridinum, or quarternary alkylammonium ions and halide or non-coordinating anions 

including hexaflorophosphate and bis(trifluoromethanesulfonyl)imide (Figure 1.8).49  

Many DSSCs employ the following composition as a typical solvent-based IL electrolyte: 
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1-propyl-3-methylimidazolium iodide (PMII), iodine, and an additive such as guanidinium 

thiocyanate dissolved in N-methoxypriopionitrile, acetonitrile, or a mixture of acetonitrile 

and valeronitrile.50 For instance, Wang et al. have reported a conversion efficiency of 

7.0% using a mixture of  PMII and 1-ethyl-3-methylimidazolium thiocyanate with a 

ruthenium-based sensitizer.51  More recently, solvent-free IL electrolytes have been 

investigated that use low viscous ILs such as 1,3-dimethylimidazolium iodide and 1-

methyl-3-ethylimidazolium iodide to replace organic solvents.49   

Similar to ILs, polymers have also been incorporated as quasi-solid or solid 

electrolytes for solid state DSSCs to reduce undesired effects of evaporation and 

instability.52  In that regard, the influence of a polymer additive polyaniline has also been 

examined in a solvent-free IL electrolyte that resulted in an efficiency of 2.81%.53  

Moreover, an IL polymer gel electrolyte composed of PMII and poly(vinylidenefluoride-

co-hexafluoropropylene) (PVDF-HFP) has been reported to produce a conversion 

efficiency of 5.3%.54   

 
Figure 1.8 Structures of common cations and anions in ionic liquids. 
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1.3.5 Photosensitizing Dye 

Another important component of DSSCs is the photosensitizing dye which is 

used to absorb photons from sunlight and transfer electrons to generate current.  Ideal 

dye sensitizers absorb photons in the visible and near-infrared regions below 920 nm of 

the solar irradiance spectrum (Figure 1.9).   

 

Figure 1.9 Solar irradiance spectrum encompassing the ultra-violet, visible, and infrared 
regions of the electromagnetic spectrum.55 

 
In addition, dye sensitizers possess suitable redox properties for efficient electron 

transfer to overcome possible recombination and reduce loss of efficiency throughout 

the solar cell.  For this reason, the oxidation potential and excited state oxidation 

potential  of the sensitizer are closely matched with the potentials of the iodide/triiodide 

electrolyte (0.4 V vs NHE) and conduction band of TiO2 (-0.5 V vs NHE), respectively.  

The ideal spectral and redox properties of these dye sensitizers can be optimized by the 

structure of the dye.  For instance, the use of anchoring groups such as carboxyl groups 

is important to enable for strong interaction with TiO2 for better charge transfer.  The 

following section involves discussion of the advantages and drawbacks of different 
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types of photosensitizers: metal complexes, quantum dots, and organic dyes.  In 

particular, organic dyes have been found to overcome limitations of the other 

photosensitizers. 

Dyes derived from ruthenium complexes consisting of have been commonly used 

in DSSCs since development (Figure 1.10) due to the ability to introduce ligands for 

optimizing spectral properties and energy levels.56  These dyes consist of strong donor 

and anchoring group ligands to increase charge transfer.  Currently, an efficiency of 

11% has been reported using dye derived from ruthenium complex, namely N3 and 

Black dye.19,20  Although the use of ruthenium dyes as sensitizers has produced a high 

conversion efficiency, these dyes are found to possess disadvantages attributed to the 

limited supply of these precious metals and reduced absorption in the near-infrared 

region of the electromagnetic spectrum.57  

 

Figure 1.10 Structures of dyes derived from ruthenium complexes. 
 

The use of quantum dots (QDs) can overcome spectral limitations of ruthenium 

dyes.  These nanocrystalline semiconductors are composed of inorganic materials that 

provide tunable absorption and energy level depending on the size of the nanostructure.  

As the size of QDs decreases, the absorption onset shifts to shorter wavelengths and 

the band gap increases.  Thus, QDs require varying sizes for simultaneous absorption 
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in the visible and near-infrared region.58  Currently, a conversion efficiency of about 4% 

has been reported for QD-sensitized solar cells using cadmium sulfide and cadmium 

selenide, independently.59,60  However, a disadvantage of these sensitizers is the 

presence of recombination processes that reduce charge transfer, which is necessary 

for further improvement in the conversion efficiency of QDs.  

The development of organic dyes as photosensitizers allows for the design of 

structures to be tailored for optimal spectral and electrochemical properties.  This 

characteristic provides a broader range of structures to be investigated and has the 

potential to overcome drawbacks of ruthenium dyes and QDs, i.e. reduced absorption in 

the near-infrared region of the electromagnetic spectrum and the presence of 

recombination processes that reduce charge transfer.  A variety of organic dyes such as 

indolines,61,62 perylenes,63 and triphenylamines64,65 have been synthesized at low cost 

that exhibit desirable properties such as high molar extinction coefficients and broad 

absorption spectra (Figure 1.11).  In particular, various molecular designs of coumarin 

dyes have been reported that resulted in conversion efficiencies ranging from 4%-

7.6%.66,67,68  A class of cyanine dyes, including merocyanines and squaraines, have 

also been investigated as sensitizers with conversion efficiencies ranging from 3.1% to 

5.4%.69,70,71  Although organic dyes have been found to provide adequate conversion 

efficiencies by tailoring the structures, a challenge of these and metal dyes is the 

presence of aggregation that can reduce conversion efficiency. 
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Figure 1.11 Structures of several organic dyes. 
 
1.3.6 Dye Aggregates 

Aggregation is the self-association of molecules that results in changes of 

spectral behavior compared to monomeric species.  This phenomenon was first 

independently discovered by Jelley72 and Scheibe,73 who reported the aggregation of 

pseudoisocyanine iodide (PICI) at high concentrations in aqueous solution and at solid-

liquid interfaces.74  These aggregates are known as Jelley (J) or Scheibe aggregates, 

appellations honoring these discoverers.  As a result, cyanine dyes have been 

extensively studied for aggregation and used in silver halide emulsions for 

photography.74  Moderation of spectral properties in self-assembled molecules is 

attributed to excitonic splitting, as has been explained by Davydov et al.75 and Kasha et 

al.76 using molecular exciton coupling theory (Figure 1.12).  Such theory allows for 

variations in aggregation, which lead to interactions between the transition dipole 

moments of the molecules, resulting in differences in splitting of the excited state.  The 

arrangement of molecules is based on the slip angle (α) which is between the 

chromophore axes and center-to-center line.  The formation of J-aggregates is a result 
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of head-to-tail molecular stacking and typically exhibits a narrow and bathochromically 

shifted absorption band with respect to the monomer.  In addition, J-aggregation also 

results in enhanced resonance fluorescence.  In contrast, H- (hypsochromic) 

aggregates are formed as a result of molecular stacking in a card pack manner.  This 

aggregate type is typically found to exhibit a hypsochromically shifted absorption band 

with respect to the monomer and results in little to no fluorescence.  More recently, 

randomly-oriented aggregates have been classified as those without any specific order 

of stacking, with conservation of the spectral properties of the monomer.  In addition, 

the extent of aggregation depends on various factors including concentration, solvent 

polarity, temperature, pH, and ionic strength.77 

 

Figure 1.12 Molecular exciton coupling theory containing molecular arrangement of 
aggregates. 
 

Aggregation of dyes used as sensitizers in DSSCs can result in reduced 

conversion efficiency due to intermolecular quenching or excess molecules that act as 
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filters.78  The ability to reduce or control aggregation is important to improve conversion 

efficiency.  In this regard, molecular design modifications including the use of increased 

alkyl chains, as well as the addition of π–π stacking and bulky substituents has been 

applied to various dyes to suppress aggregation.62,79,80  For instance, Barea et al. have 

reported an increase in conversion efficiency from 3.3% to 6.4% using porphyrin dyes.81  

In addition, the incorporation of coadsorbates such as chenodeoxycholic acid (CDCA) 

and 4-tert-butylpyridine (TBP) in DSSCs have also been found to limit aggregation and 

improve conversion efficiency in organic dyes such as indoline and coumarin.62,67  

Similarly, the addition of TBP in DSSCs with ruthenium complexes has also resulted in 

an increase in conversion efficiency from 5.8% to 7.5%.82  Overall, these methods 

reduce aggregation by blocking the effects of charge recombination.83 

In contrast, beneficial characteristics have been reported in recent studies by 

controlling dye aggregates.  Properties of both J- and H-aggregation have been found to 

improve conversion efficiency of DSSCs.  Mann et al. have found that H-aggregates of 

rhodamine-based dyes result in broad absorption and increased light harvesting 

efficiency.84  In particular, the presence of aggregation in cyanine dyes has also been 

investigated for potential aid in optimizing conversion efficiency of DSSCs.85  In this 

regard, the use of controlled J-aggregates of a merocyanine dye has been reported to 

achieve a conversion efficiency of 4.5% by Sayama et al.86 

1.4 Nanomaterials Derived from a Group of Uniform Materials Based on 
Organic Salts (nanoGUMBOS) 

 
The Warner research group has developed a class of materials referred to as a 

group of uniform materials based on organic salts (GUMBOS).87  These GUMBOS are 

solid phase organic salts composed of bulky, poorly coordinated ions resembling frozen 
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ILs, with the exception of melting points that frequently extend well past the 

conventional upper bound for ILs (100 °C).  The melting point could, in practice, fall 

anywhere in the 25–250 °C window (Figure 1.13).  Importantly, GUMBOS retain many 

of the attractive properties inherent to those of ILs and can be tuned to exhibit 

multifunctional properties based on the selected cation and anion.  In addition, 

nanomaterials derived from GUMBOS (nanoGUMBOS) combines the interesting 

properties of both ILs and nanomaterials.  Initially reported by Tesfai et al., 

nanoGUMBOS composed of both tetrafluoroborate (BF4

–
) and tetrachloroferrate  

(FeCl4
–
) anions demonstrated tunability in which nanoparticles containing FeCl4

– anion 

were observed to retain magnetic properties.87  Thus far, nanoGUMBOS of varying ion 

pairs offer potential as candidates for biomedical,87 antibacterial,91 optoelectronic,92,93 

and light harvesting94,95 ,96 applications.  

 
Figure 1.13 Temperature difference between ionic liquids and GUMBOS. 
 

1.4.1 Cyanine-based NanoGUMBOS 

 In particular, our group has explored the formation of nanoGUMBOS using a 

heptamethine cyanine dye 1,1’,3,3,3’,3’-hexamethylindotricarbocyanine (HMT) iodide.  

Bwambok et al. initially observed that nanoGUMBOS containing this cationic near-

infrared (NIR) dye resulted in a broad absorption spectrum and slight shift in the 
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fluorescence emission spectrum as compared to the GUMBOS in solution.88  These 

changes in the spectral properties were attributed to aggregation of the cationic dye.  In 

this study, nanomaterials of the NIR fluorescent compound were employed as 

contrasting agents for biomedical imaging applications.  In a subsequent study by Das 

et al. variation of the anions paired with HMT were observed to retain controlled 

aggregation and spectral properties.94  These results further suggest the presence of 

aggregation, specifically of both J- and H- aggregates in different proportions. 

1.5 Analytical Techniques Used 

1.5.1 Ultraviolet-Visible Spectroscopy 

 Ultraviolet-visible (UV-Vis) spectroscopy is used to study molecules that absorb 

light in the ultraviolet and visible regions of the electromagnetic spectrum.  When a 

sample is exposed to light, molecules absorb photons resulting in promotion of an 

electron in the molecule from the ground state to an excited state.  This change in 

energy is monitored by use of a spectrophotometer.  A typical spectrophotometer 

consists of a light source, monochromator, sample, and detector (Figure 1.14).  Light 

passes through a monochromator that allows for a selected wavelength to transmit 

through to the sample.  This transmitted light is detected by a photodiode array.  

Absorbance (A) of the sample is determined by A = log(Iₒ/I) where Iₒ is the incident 

intensity and I is the transmitted intensity.  Furthermore, the Beer-Lambert law is used 

to describe absorbance in relation to concentration denoted as A = εbc where ε is the 

molar extinction coefficient (M-1cm-1), b is the pathlength or distance light travels through 

the sample (cm), and c is the concentration of the sample (M).  An absorption spectrum 

is obtained by plotting absorbance versus wavelength. 
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Figure 1.14 Schematic of a UV-Vis spectrophotometer. 
 
1.5.2 Fluorescence Spectroscopy 

The processes of fluorescence and other electronic transitions are illustrated 

using a Jablonski diagram (Figure 1.15).  As shown in this energy level diagram, 

absorption (A) is a process that promotes a molecule to an excited electronic state in 

femtoseconds.  The excited molecule may undergo a non-radiative transition between a 

higher and lower energy state known as internal conversion (IC) that occurs in 

picoseconds.  A radiative process called fluorescence (F) can occur when the molecule 

returns from a lower vibrational level of the excited singlet state (S1) to a ground state 

(So) over a period of nanoseconds.   

 
Figure 1.15 Schematic of the Jablonski diagram. 
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In addition to fluorescence, a non-radiative process called intersystem crossing (ISC) 

involves a transition from a singlet state to a triplet state (T1).  After undergoing internal 

conversion to a lower vibrational level of the excited triplet state, a relatively slow 

radiative process known as phosphorescence (P) can take place over a span of 

milliseconds.  The probability of a molecule to fluoresce or phosphoresce is described 

by the quantum yield, which is a ratio of the number of photons emitted relative to the 

number of photons absorbed. 

Fluorescence spectroscopy is a technique that measures fluorescence of 

molecules by use of a spectrofluorometer.  A spectrofluorometer consists of a light 

source, two monochromators, a sample, and a detector (Figure 1.16).   

 
 
Figure 1.16 Schematic of a spectrofluorometer. 
 
Generally, excitation light ranging from 200 nm to 900 nm passes through an excitation 

monochromator that allows for a selected excitation wavelength to transmit through the 

sample.  Subsequently, emitted light travels through an emission monochromator to 

isolate fluorescence emission which is collected by a photomultiplier tube.  This 

emission monochromator is positioned orthogonally from the excitation light to attenuate 
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light scattering.  Data from steady-state fluorescence measurements are presented as 

an emission spectrum plotting fluorescence intensity versus wavelength.  Using this 

technique, several fluorescence parameters can be investigated including lifetime, 

anisotropy, and Förster resonance energy transfer. 

Fluorescence lifetime is the average time a molecule spends in the excited state 

before returning to the ground state.  This process occurs in nanoseconds and can be 

examined via a time-domain method.  Time-domain fluorescence employs a pulsed 

excitation source to measure fluorescence intensity as a function of time.  This time-

dependent intensity is used to obtain lifetime or decay time from the slope of a plot of 

log I(t) versus time (t).  Time-correlated single-photon counting (TCSPC) is commonly 

used to measure these decays.  The TCSPC counts at least one photon per excitation 

pulse, which is time-correlated by the time-to-amplitude converter (TAC).  This TAC 

measures voltage over time and consists of a start and stop time, which are related to 

the detection excitation pulse and first emitted photon, respectively.  The time between 

pulses in the TCSPC is measured up to four times the longest decay time. 

Fluorescence anisotropy measurements determine varying fluorescence 

intensities along different planes.  Due to random orientation of fluorophores in solution 

molecules are particularly excited when exposed to polarized light.  Figure 1.17 

illustrates the use of polarizers in the measurement of fluorescence anisotropy.  The 

value of fluorescence anisotropy (r) is the average angular displacement of molecules in 

the excited state97 after excitation with vertically polarized light and is given by  

   
        

         
           (1) 
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where G is the grating factor to correct for instrumental responses, such as the emission 

wavelength and detector.  Parameters Ivv and Ivh correspond to the fluorescence 

emission intensities measured parallel and perpendicular to the vertically polarized 

excitation, respectively.97 

 
 
Figure 1.17 Schematic configuration of fluorescence anisotropy. 

 
Förster resonance energy transfer (FRET) is a non-radiative process that occurs 

between donor molecules in an excited state and acceptor molecules in a ground state.  

This energy transfer can occur when the distance between the donor and acceptor 

molecules is 1-10 nm and an overlap of the donor emission spectrum and acceptor 

absorption spectrum is present (Figure 1.18).97  The area of overlap known as the 

spectral overlap integral (J(λ)) can be determined using the following formula 

𝐽(𝜆)   
∫  ( ) ( )    

 

 

∫  ( )  
 

 

            (2) 

where ε is the molar extinction coefficient of the acceptor,  f(λ)  is the normalized 

emission spectrum of the donor, and λ is the wavelength.  The energy transfer efficiency 

(E) can be obtained using the given equation 
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𝐸  1 −
   

  
            (3) 

where Fda and Fd are the fluorescence intensities of the donor in the presence and 

absence of the acceptor, respectively. 

 
Figure 1.18 Spectral representation of Förster resonance energy transfer between a 
donor and acceptor. 
 
1.5.3 Transmission Electron Microscopy 

Transmission electron microscopy (TEM) is a technique used to visualize and 

characterize materials (Figure 1.19a).  The use of electrons under vacuum allows for 

higher magnification and resolution of materials as compared to light microscopy.  As a 

result, TEM has become a useful tool for research at the nanoscale.  An electron gun is 

employed to generate an electron beam that is focused by the use of condenser lenses 

under a magnetic field.  Once the electrons penetrate through the sample, transmitted 

electrons are magnified by objective lenses and projected on a phosphor screen to 

generate an image.  This image can be captured via a photographic or charge-coupled 

device (CCD) camera.  The resulting contrast image is dependent on the density of the 

sample.  In this regard, darker regions of the image identify dense areas of the material 
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that limits transmission of electrons, while lighter regions characterize less dense areas 

that allow electrons to pass through the sample. 

1.5.4 Scanning Electron Microscopy 

Similar to TEM, scanning electron microscopy (SEM) uses lenses to focus an 

electron beam on a sample to produce an image (Figure 1.19b).  For this technique, the 

electron beam scans across the sample, which is coated with a thin conductive metal 

layer, using a scanning coil.  This scanning process generates secondary electrons that 

are emitted when incident electrons interact with atoms near the surface of a sample 

resulting in the release of valance electrons.  These signals are detected via a 

photomultiplier tube and commonly used to obtain an image.  This image is based on 

the surface topography of the sample, in which more secondary electrons escape at the 

surface as compared to those that travel through the sample.  

  
 
Figure 1.19 Schematic of a (a) transmission electron microscope and (b) scanning 
electron microscope. 
 

a b 
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1.5.5 Polarized Optical Microscopy 

Polarized optical microscopy (POM) is a technique used to study the crystal 

structure and organization of a material.  Such microscopes are equipped with a light 

source, polarizer, analyzer, and camera (Figure 1.20).  Light, which vibrates in all 

planes, travels through a polarizer to filter and allow only one vibrational plane to pass 

(0°).  Once the polarized light passes through a sample, the transmitted light proceeds 

to an analyzer or second polarizer that is in a cross polarized position (90°) and an 

image is captured using a camera.  This resulting image can provide characterization of 

crystallinity and organization based on the isotropy of a material.  Generally, crystalline 

materials are anisotropic, i.e. having a refractive index that is dependent on 

directionality.  In this regard, an anisotropic sample can cause birefringence, i.e. the 

splitting of a polarized beam of incident light into two rays as a result of passing through 

a sample, which produces a bright image.  In contrast, an isotropic sample has a 

refractive index that is equal in all directions which allows polarized light to pass through 

the material unaltered resulting in the appearance of a dark image.   

 
Figure 1.20 Schematic of a polarized optical microscope. 
 
1.5.6 Cyclic Voltammetry 

Cyclic voltammetry (CV) is a technique used to study electrochemical processes 

of a species that can undergo oxidation and reduction reactions by the transfer of 
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electrons.  In such reactions, potential or voltage is applied as a driving force, while 

current is the electron flow resulting from the reaction.  This process is measured using 

a potentiostat and an electrochemical cell containing three electrodes: working, 

reference, and counter (Figure 1.21).   

 
Figure 1.21 Diagram of a CV system containing a potentiostat, data acquisition system, 
electrochemical cell, and three electrodes i.e. reference (RE), working (WE) and counter 
(CE) immersed in supporting electrolyte solution. 
 
In that regard, the potentiostat is an electrical instrument that monitors and controls the 

difference in potential between the working and reference electrodes, as well as 

measures the current flow between the working and counter electrodes.  Overall, the 

working electrode measures potential and current of a sample on the surface of the 

electrode where the electrochemical reaction takes place.  The potential at this working 

electrode is varied over time with respect to a reference electrode of constant potential.  

In addition, the working electrode measures current response relative to a counter 

electrode that introduces current into the system.  These electrodes are immersed in a 
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solution containing a supporting electrolyte composed of a nonreactive ionic species 

that provides excess electrons.  When potential is applied to the electrodes, a fixed 

range is scanned in a forward and reverse manner at a constant rate (Figure 1.22a).  In 

CV, a cyclic voltammogram is obtained by plotting the measured current against 

potential at a given range (Figure 1.22b).  

   
 
Figure 1.22 Representation of a (a) potential versus time plot and (b) current versus 
potential plot. 
 

The use of CV provides information on electron transfer properties such as redox 

potential and band gap.  In this regard, the redox potential of a species is calculated by 

an average of the anodic (Epa) and cathodic (Epc) peak potentials.  The band gap (Eg) of 

a species can also be determined using the following equations. 

          (4) 

         (5) 

The electrochemical band gap (Eg EC) is calculated by use of the difference in the 

energy level of the lowest unoccupied molecular orbital (LUMO) and highest occupied 

( )g EC LUMO HOMOE eV E E 

     - + +

HOMO paE eV =-1e E V vsFc /Fc +4.8 VFc /Fc vs Zero 
 

a b 
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molecular orbital (HOMO).  These values are ascertained versus a vacuum with 

ferrocene (Fc+/Fc) as an internal reference. 

1.5.7 Solar Cell Conversion Efficiency 
  

Solar cell characterization involves the measurement of current as a function of 

voltage under illumination to determine conversion efficiency.  Generally, a solar 

simulator containing a xenon arc lamp is used as a light source which is calibrated by 

use of an air mass filter (AM 1.5G) to generate a spectrum comparable to the solar 

irradiance spectrum (Figure 1.9).  Under illumination, a difference in potential between 

the working and counter electrodes of a solar cell causes electrons to migrate through 

the cell and generate current.  This resulting current is measured by use of a 

sourcemeter to obtain a current-voltage (I-V) curve (Figure 1.23).  

 

Figure 1.23 Representation of an I-V curve used to characterize a solar cell. 
 
Using the I-V curve, several critical parameters can be obtained to determine the 

performance of the solar cell.  In particular, the fill factor (FF) measures the I-V 

characteristic of an actual solar cell relative to an ideal cell using the formula 

   
         

       
            (6) 
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where Vmax and Imax are the respective maximum voltage and current at the maximum 

power output.  The open-current voltage (Voc) is the voltage when current is zero and 

provides detail about the structure and energy of the solar cell.  Whereas, the 

photocurrent density at short-circuit current (Jsc) is the measured current when voltage 

is zero for a given area of the cell.  A ratio of the maximum power output (Pmax) to the 

power input (Pin) is defined as the conversion efficiency (η) using the following formula 

   
    

   
 

          

   
 1              (7) 

where the power input is generally maintained at a standard condition of 100 mWcm-2 

by the solar simulator.   

1.6 Scope of the Dissertation 

This dissertation is a summary of the morphological, spectral, and 

electrochemical properties of GUMBOS and nanoGUMBOS derived from cyanine dyes.  

Furthermore, these cyanine-based dyes were utilized as photosensitizers in DSSCs.  

The second chapter is a description of the synthesis of GUMBOS with various anions 

and the preparation of their corresponding nanostructures.  The use of the anions NTf2‾ 

and BETI‾ resulted in different morphologies and broad absorption spectra.  In addition, 

the electrochemical properties of cyanine-based GUMBOS were examined using cyclic 

voltammetry.  This study was found to exhibit suitable potential values which suggest 

that these materials may be beneficial for application as photosensitizers in DSSCs.  In 

the third chapter, the cation of the cyanine-based nanoGUMBOS was altered by 

increasing the methine chain lengths.  A mixture of these GUMBOS was used to form 

binary nanomaterials, which were characterized by UV-Vis absorption spectroscopy, 

fluorescence spectroscopy, and cyclic voltammetry.  It was found that the binary 
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nanomaterials exhibited broad absorption spectra, as well as tunable emission due to 

the occurrence of FRET.  This tunable emission of the binary nanomaterials suggests 

potential for application as sensitizers in the visible to near-infrared region of the 

electromagnetic spectrum.  Furthermore, adequate electrochemical properties also 

indicate the use of these materials in DSSCs.  Application of cyanine-based GUMBOS 

as photosensitizers in DSSCs was investigated in the fourth chapter.  Solar cells were 

fabricated using various methods for syntheses of TiO2, as well as incorporating the 

GUMBOS.  Characterization of the solar cells resulted in a conversion efficiency of 

0.73% by use of electrospun nanofibers doped with TiO2 nanoparticles and cyanine-

based GUMBOS. 
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CHAPTER 2 
ANION-CONTROLLED MORPHOLOGIES AND SPECTRAL FEATURES 

OF CYANINE-BASED NANOGUMBOS – AN IMPROVED 
PHOTOSENSITIZER* 

 

2.1 Introduction 
 

Nanomaterials based on functional organic molecules are of considerable 

interest due to their strikingly different optoelectronic properties1 and high 

photoluminescence2 as compared to their inorganic counterparts.  Low-dimensional 

organic nanostructures are of further significance for their applications as optical 

waveguides,3,4,5 lasers,1,6 field effect transistors,7 sensors,8 and optoelectronic devices.9  

Several strategies have been employed for fabrication of organic nanostructures with 

variable morphologies and properties.  Strategies reported thus far include both non-

templated and template-induced molecular self-assemblies.10,11,12  The non-templated 

approach primarily involves the driving forces of assembly of the molecules themselves 

through properties such as hydrogen bonding, van der  aals forces, π-π stacking, 

cation- π and donor-acceptor interactions, and so forth.  The perfect design of an 

organic molecule that will yield desirable properties in self-assembled nanostructures 

has been the focus of various studies performed over the last decade.13,14  

 Nakanishi and coworkers have developed perylene microcrystals using a simple 

reprecipitation method.15,16  The development of this reprecipitation process has 

overcome the difficulties of nano- and microcrystal fabrication.  The formation of 

microcrystalline perylene was induced as a result of aggregation.  Notably, aggregation 

                                                 
* This chapter previously appeared as Jordan, A. N.; Das, S.; Siraj, N.; de Rooy, S. L.; 
Li, M.; El-Zahab, B.; Chandler, L.; Baker, G. A.; Warner, I. M., Anion-controlled 
morphologies and spectral features of cyanine-based nanoGUMBOS - an improved 
photosensitizer. Nanoscale 2012, 4 (16), 5031-5038.  It is reproduced by permission of 
The Royal Society of Chemistry. 



43 
 

via ordered self-association of molecules can result in changes of spectral behavior as 

compared to the monomeric species.  The formation of J-aggregates, for example, is a 

result of head-to-tail molecular stacking and typically exhibits a narrow and 

bathochromically shifted absorption band with respect to the monomer.  In addition, J-

aggregation also results in enhanced resonance fluorescence.  In contrast, H- 

(hypsochromic) aggregates are formed as a result of molecular stacking in a card pack 

(stacking) manner.  This aggregate type typically exhibits a hypsochromically shifted 

absorption band with respect to the monomer and typically displays little to no 

fluorescence.  More recently, randomly-oriented aggregates have been classified as 

those without any specific order of stacking, with conservation of the spectral properties 

of the monomer.  Moderation of these spectral properties in self-assembled 

nanostructures is attributed to excitonic splitting, as has been explained by Davydov et 

al.17 and Kasha et al.18 using molecular exciton coupling theory.  Such theory allows for 

variations in aggregation, which lead to interactions between the transition dipole 

moments of the molecules, resulting in differences in splitting of the excited state.  

Knowledge of aggregation characteristics has been applied to further understanding the 

behavior of fluorescent organic nanoparticles (FONs).  A common challenge of FONs is 

fluorescence quenching, which is either considered to be an effect of the solid state or 

an effect of H-aggregation of the chromophores.  Conversely, a phenomenon called 

aggregation-induced emission enhancement (AIEE) exhibits an opposite effect.  Instead 

of fluorescence quenching, FONs can display an enhanced emission due to formation 

of J-aggregates.  Examples of this process have been reported by Tang and coworkers 
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who have developed numerous biological19,20 and chemical21,22 sensors based on AIEE 

tetraphenylethene derivatives.  

 FONs studied thus far have exhibited various sizes, shapes, and spectral 

properties.  These properties are attributed to chemical composition and intermolecular 

interactions that can result in highly ordered molecular self-assemblies.  Recently, our 

group has reported the non-templated control of spectral properties in nanoGUMBOS 

derived from a near-infrared dye.23  However, to the best of our knowledge, control of 

the morphology of these nanoparticles using a template-free approach remains an 

outstanding challenge.  Thus, the ability to simultaneously influence the morphology and 

spectral features of organic low-dimensional nanomaterials without alteration in the 

primary dye’s skeleton is an exciting development.     

 Cyanine dyes, in particular, are well-known to form aggregates by self-assembly.  

This was first independently discovered by Jelley24 and Scheibe,25 who reported the 

aggregation of pseudoisocyanine at high concentrations in aqueous solution and at 

solid-liquid interfaces.26  These aggregates were initially called Jelley (J) or Scheibe 

aggregates, appellations honoring these discoverers.  As a result, cyanine dyes have 

been extensively studied for aggregation and used in silver halide emulsions for 

photography.  Further studies have led to application of these dyes in biosensors27 and 

semiconductor materials,28 as well as possible uses in gold and silver nanoparticle 

coatings.29  Recently, Pandey and coworkers have reported the formation of controlled 

aggregation states of anionic cyanine dyes in aqueous solution using water-miscible 

ionic liquids (ILs).30  Cyanine dye aggregates have also displayed different 

morphologies depending on their molecular structures.31,32  The formation of spherical 
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pseudoisocyanine nanoparticles has been previously studied by use of an ion 

association approach with borate anions at varying ratios in which no aggregates were 

observed.33  Pseudoisocyanine nanocrystals have also been examined with 

polyelectrolyte capsules that formed aggregates at a concentration of 3 µM.34  However, 

to the best of our knowledge, thus far there exists no report on the demonstration of 

counterion controlled morphologies and aggregation properties in nanomaterials derived 

from salts of pseudoisocyanine.  Hence, this study is the first report of the kind, 

especially from the point of view of a non-templated approach to controlled morphology 

and enhanced fluorescence of nanomaterials at low concentrations.    

 In this study, pseudoisocyanine iodide (PICI)  was modified by use of an anion 

exchange reaction with lithium bis(trifluoromethanesulfonyl)imide (LiNTf2) and lithium 

bis(perfluoroethylsulfonyl)imide (LiBETI) to produce the water-insoluble salts 

pseudoisocyanine bis(trifluoromethanesulfonyl)imide and pseudoisocyanine 

bis(perfluoroethylsulfonyl)imide, [PIC][NTf2] and [PIC][BETI], respectively.  These dyes 

are representative of a class of materials which we have come to refer to as GUMBOS 

(i.e., groups of uniform materials based on organic salts).35,36  As described in the 

previous chapter, GUMBOS are essentially ionic organic salts that retain many of the 

attractive properties inherent to those of ILs.  NanoGUMBOS were synthesized from 

[PIC][NTf2] and [PIC][BETI] GUMBOS by employing a simple reprecipitation method in 

an aqueous dispersion.  The properties of the nanoGUMBOS were examined by use of 

various techniques such as transmission and scanning electron microscopy (TEM and 

SEM), as well as absorption and fluorescence spectroscopies.  Investigation of the 

electrochemical properties of the GUMBOS was also evaluated via cyclic voltammetry.  
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As a result of the studies reported here, we have established a rapid and facile 

approach to control the overall shape and associated optical features of low-

dimensional nanoGUMBOS fabricated at low concentrations from an identical cationic 

building block.  These nanomaterials have potential applications as nanosensors and 

dye sensitizers in photovoltaics. 

2.2 Materials and Methods 

2.2.1 Materials  

1,1’-diethyl-2,2’-cyanine iodide or pseudoisocyanine iodide (97%) and lithium 

bis(trifluoromethanesulfonyl)imide (99.95%) were purchased from Sigma Aldrich and 

used as received.  Lithium bis(perfluoroethylsulfonyl)imide was obtained from 3M.  

Ethanol was purchased from Pharmaco-AAPER and used as received.  Ultrapure water 

(18.2 MΩ cm) was used from ELGA model PURELAB ultra water filtration system.  A 

BRANSON 3510RDTH model bath ulstrasonicator (335W, 40kHz frequency) was used 

at room temperature for syntheses of the nanoGUMBOS.  Carbon-coated copper grids 

(CF400-Cu, Electron Microscopy Sciences, Hatfield, PA) were used for TEM imaging. 

2.2.2 Synthesis and Characterization of PIC-based GUMBOS 

Pseudoisocyanine iodide (PICI) was modified by use of an anion exchange 

reaction (Figure 2.1) using a method previously reported.23,35  Two novel dyes were 

synthesized using LiNTf2 and LiBETI.  In a typical synthesis, a mixture of PICI and 

LiNTf2 (1.1 eq) was dissolved in a biphasic solution of methylene chloride and water 

(2:1, v/v) and stirred for one day at room temperature.  The ion-exchanged dye product 

was insoluble in water and transferred to the lower organic layer.  The methylene 

chloride layer was collected and washed several times with fresh deionized water to 
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completely remove residual LiI byproduct.  Subsequently, the methylene chloride was 

removed under vacuum at 40 °C by use of a rotary evaporator followed by freeze-drying 

overnight to afford solid [PIC][NTf2].  A similar procedure was implemented to 

synthesize [PIC][BETI].  The melting points of [PIC][NTf2] and [PIC][BETI] GUMBOS 

were determined by use of a MEL-TEMP capillary melting point apparatus.  The PIC-

based GUMBOS were characterized using 13C NMR (Bruker Avance 400MHz, [D6] 

DMSO), 19F NMR (Bruker DPX 250MHz, [D6] DMSO), and elemental microanalysis 

(Atlantic Microlab, Norcross, GA).  

2.2.3 Preparation of PIC-based NanoGUMBOS 

[PIC][NTf2] and [PIC][BETI] nanoGUMBOS were prepared by use of an additive-

free reprecipitation method.23,35  The procedure consists of the addition of 1   μL of a 1 

mM ethanolic solution of GUMBOS to   mL (~3  μM) of DI water under sonication for   

min.  

 

Figure 2.1 Synthesis of [PIC][NTf2] and [PIC][BETI] using an anion exchange reaction. 
 
2.2.4 Microscopy Characterization of NanoGUMBOS 

Electron micrographs were obtained for characterization of the size and 

morphology using a JEOL100CX transmission electron microscope and JSM-
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6610, JSM-6610LV high and low vacuum scanning electron microscope (JEOL USA, 

Inc., Peabody, MA).  Height characterization was confirmed by AFM using Nano-R AFM 

system, which was operated in contact mode with an n-type silicon probe (Pacific 

Nanotechnology, Inc./Agilent Technologies, Santa Clara, CA).  Selected area electron 

diffraction (SAED) was performed to determine crystallinity by the use of a JEOL JEM-

2010 high-resolution transmission electron microscope at an accelerating voltage of 200 

kV.  An aliquot (5 µL) of PIC-based nanoGUMBOS was drop-casted onto a carbon-

coated copper grid or gold-coated mica substrate and air dried at room temperature.  

Polarized optical microscopy was performed using an Olympus BH polarizing optical 

microscope with an MD 1900 camera.  For these measurements, a few microliters of 

the sample were dropped onto a pre-cleaned glass slide and air dried.  The images 

were then captured using a variety of angles between the polarizer and the analyzer.  

2.2.5 Absorption and Fluorescence Studies of GUMBOS and NanoGUMBOS 

Absorbance measurements were obtained using a Shimadzu UV-3101PC UV-

Vis-NIR scanning spectrometer (Shimadzu, Columbia, MD) at 20 °C with a slit width of 2 

nm.  Fluorescence emission, fluorescence quantum yield, and fluorescence anisotropy 

were performed on a Spex Fluorolog-3 spectrofluorimeter (model FL3-22TAU3; Jobin 

Yvon, Edison, NJ) at room temperature with slitwidths of 5 nm.  A 0.4 cm quartz cuvet 

(Starna Cells) was used to collect the absorbance and fluorescence measurements.  A 

second 0.4 cm quartz cuvet was filled with water for use as a control blank.  

Fluorescence studies were all performed through adoption of a synchronous scan 

protocol with right angle geometry.  Fluorescence spectra were corrected for inner filter 

effects using a standard formula.37  Quantum yield (Φ) measurements were performed 
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using Rhodamine  G (R G) (Φ =  .92 in water) as a standard.  The nanoGUMBOS 

were prepared using a reprecipitation method and diluted to obtain absorbance below 

0.1, at and above the excitation wavelength (524 nm).  The same protocol was followed 

for the standard as well.  Fluorescence lifetime measurements were performed at 

Horiba Jobin Yvon, NJ using time domain mode.  A picoseconds pulsed excitation 

source of 495 nm was used and emission was collected at 550 nm with a TBX detector.  

The time correlated single photon counting (TSCPC) mode was used for data 

acquisition with a resolution of 7 ps/ channel. 

2.2.6 Electrochemical Studies of GUMBOS 

Electrochemical measurements were performed under anaerobic conditions 

using an Autolab PGSTAT 302 potentiostat from Eco. Chemie.  A three-electrode 

system consisting of an Ag/Ag+ reference electrode, Pt working electrode, and Pt 

counter electrode was employed.  Measurements were conducted in acetonitrile with 

 .1 M tetrabutylammonium hexafluorophosphate (TBAPF ) as a supporting electrolyte 

and ferrocene (Fc+/Fc) as an internal reference having a formal potential of  . 3 V vs 

 HE. 

2.3 Results and Discussion 

2.3.1 Synthesis and Characterization of [PIC][NTf2] and [PIC][BETI] GUMBOS 

Pseudoisocyanine iodide was reacted with 1.1 molar equivalent of lithium 

bis(trifluoromethanesulfonyl)imide to yield [PIC][NTf2] with a melting point of 245 °C.  A 

similar procedure was employed to produce [PIC][BETI] with a melting point of 170 °C.  

Elemental analysis characterization for the GUMBOS is shown in Table 2.1. 
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[PIC][NTf2]: 
13C NMR (400MHz, [D6] DMSO), δ (ppm): 1 3. 2 (s), 139.18 (s), 138.39 (s), 

133.30 (s), 129.76 (s), 125.55 (s), 122.15 (s), 116.86 (s), 89.51 (s), 44.79 (s), 12.26 (s).  

19F NMR (250MHz, [D6] DMSO), -79.17 (s).   

[PIC][BETI]: 13C NMR (400MHz, [D6] DMSO), δ (ppm): 1 3. 3 (s), 139.04 (s), 138.39 

(s), 133.29 (s), 129.76 (s), 125.54 (s), 125.07 (s), 122.15 (s), 116.86 (s), 89.51 (s), 

44.78 (s), 12.26 (s).  19F NMR (250MHz, [D6] DMSO), δ (ppm): -78.99 (s), -117.85 (s).   

Table 2.1 Elemental analysis of PIC-based GUMBOS 

PIC-based 
GUMBOS 

C 
Theory    Found 

H 
Theory    Found 

N 
Theory    Found 

F 
Theory     Found 

[PIC][NTf2] 49.37%  49.61% 3.79%     3.81% 6.91%     6.91% 18.76%   18.57% 
[PIC][BETI] 45.86%  46.19% 3.25%     3.24% 5.94%     5.97% 26.89%   25.75% 

 
2.3.2 Characterization of Size and Morphology of NanoGUMBOS 

Examination of TEM and SEM micrographs of [PIC][NTf2] and [PIC][BETI] 

nanoGUMBOS revealed interesting and dramatic changes in morphology upon variation 

in the counteranion associated with the PIC cation (Figure 2.2).  The [PIC][NTf2] 

nanoGUMBOS were found to form distinct diamond-like structures with an average 

respective length, width, and height of 656 ± 139 nm, 334 ± 74 nm, and 66 ± 30 nm.  In 

contrast, [PIC][BETI] nanoGUMBOS exhibited rod-like structures with an average 

respective length and width of 1.5 ± 0.83 µm and 88 ± 26 nm.  The distinct change in 

morphology of these nanomaterials was attributed to ordered repetition of the molecular 

stacking.  The head-to-tail type of molecular orientation within the [PIC][NTf2] 

nanoGUMBOS led to the diamond-like structures.  Likewise, the repetition of the parallel 

stacked units led to the formation of [PIC][BETI] nanorods.  Similar self-assembly 

structures and properties have been reported using the reprecipitation method to 

prepare rubrene38 and quinacridone derivatives.39  These compounds consist of 
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relatively similar aromatic structures that could contribute to the rod and diamond-like 

nanostructures. 

   

   

Figure 2.2 TEM (left) micrographs of (a) [PIC][NTf2] and (c) [PIC][BETI] nanoGUMBOS. 
Scale bars are 1 µm. SEM (right) micrographs of (b) [PIC][NTf2] and (d) [PIC][BETI] 
nanoGUMBOS. Scale bars are 5 µm. 
  

The use of polarized optical microscopy (POM) revealed appreciable 

birefringence for [PIC][NTf2] nanoGUMBOS, while [PIC][BETI] nanoGUMBOS exhibited 

very little to no birefringence (Figure 2.3).  SAED suggested that both the 

nanoGUMBOS were amorphous.  Thus, birefringence of the nanomaterials was 

attributed to the anisotropic ordered molecular arrangement in the J- and H-aggregates.  

Previous studies have observed the birefringent property of cyanine dyes in aqueous 

solution at concentrations of 10-3 molar.40,41  Although the  distinct [PIC][NTf2] and 

[PIC][BETI] nanostructures were not observed under POM, likely due to the low 

resolution of the instrument, birefringence of the nanoGUMBOS was clearly visible from 

a b 

c d 
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these micrographs.  This property enhances the potential application of these 

nanomaterials as building blocks for optoelectronic devices.5  

   

   

Figure 2.3 POM of [PIC][NTf2] (top) and [PIC][BETI] (bottom) nanoGUMBOS at various 
angles 0° (a,b) and  45° (c,d). The scale bars are 50 µm. 
 
2.3.3 Absorption Studies of GUMBOS and NanoGUMBOS 

Examination of absorption spectra of PICI, [PIC][BETI], and [PIC][NTf2]  

GUMBOS in ethanolic solution showed similar spectra (Figure 2.4).  Two monomeric 

peaks at 490 and 524 nm were observed, due to two different vibrational transitions.42  

However, dramatic changes in spectral properties were noticed upon formation of the 

nanoGUMBOS in aqueous dispersion (Figure 2.5).  An increase in absorbance was 

observed as the concentration increased (Figure 2.6).  However, concentrations above 

60 µM resulted in precipitation in the aqueous dispersion.  More specifically, [PIC][BETI] 

nanoGUMBOS exhibited a reduced monomer absorbance at ~524 nm.  In addition, a 

new blue shifted peak appeared at 450 nm with tail broadening in the longer wavelength 

 

b a 

d c 
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region.  The hypsochromic shift in the absorption spectrum of [PIC][BETI] nanorods was 

attributed to the formation of H-aggregates or sandwich-like arrangements of the dye 

molecules within this nanomaterial.  The [PIC][NTf2] nanoGUMBOS exhibited a similar 

decrease in the monomer absorbance, with the appearance of a new strong red shifted 

band at 590 nm.  This new red shifted peak suggests formation of J-aggregates within 

the diamond-like nanostructures.  The molar extinction coefficients of the 

nanoGUMBOS were in ranges from 1.2–1.5 × 104 M-1cm-1 (Table 2.2). 

 

Figure 2.4 Absorption spectra of PICI, [PIC][NTf2], and [PIC][BETI] in ethanolic solution. 
 

 

Figure 2.5 Absorption spectra of PICI in aqueous solution and [PIC][NTf2] and 
[PIC][BETI] nanoGUMBOS suspended in water at a concentration of 30 µM. 
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Figure 2.6 Absorption spectra of (a) [PIC][NTf2] and (b) [PIC][BETI] nanoGUMBOS at 
various concentrations. 
 

In studies reported to date, J-aggregates usually display a narrow, 

bathochromically shifted absorption spectrum.24,25  However, this signature is mostly 

encountered for J-aggregates in solution.  A relatively broader J-aggregate peak has 

been observed for nanoparticles as a result of less optimal J-aggregation and a lack of 

motional narrowing in the nanoparticles.8,43  Lattice disorder is considered to be another 

possible explanation for this spectral broadening.44  To the best of our knowledge, this is 

the first observation that reports a non-templated control of J- and H-aggregates in 

FONs derived from PIC dyes at an extremely low concentration (30 µM).  Moreover, the 

broadness of the absorption spectra achieved in these nanomaterials encompassing the 

entire visible region and extending to the near infrared region can be considered 

extremely important for their application as photosensitizers in energy harvesting 

devices such as solar cells.  

2.3.4 Fluorescence Studies of GUMBOS and NanoGUMBOS 

The fluorescence data complements our conclusions from absorption data 

(Figure 2.7).  Formation of J-aggregates in the [PIC][NTf2] nanoGUMBOS resulted in a 

new red shifted fluorescence peak at 590 nm, with 590 times enhancement in 

a b 
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fluorescence intensity as compared to an aqueous PICI solution (575 nm) of the same 

concentration.  Fluorescence was also observed near the same wavelength as the J-

aggregate absorption peak.  This resonance fluorescence of [PIC][NTf2] nanoGUMBOS 

reconfirms the presence of J-aggregates in these diamond-like nanostructures.  The 

observed striking enhancement in fluorescence emission intensity in the [PIC][NTf2] 

nanoGUMBOS is considered to be a combined effect of J-aggregation and restriction in 

intramolecular rotation (RIR) in the solid state.45  In contrast, [PIC][BETI] nanoGUMBOS 

displayed a weaker fluorescence peak at ~577 nm that was a result of H-aggregation.  

In spite of H-aggregation, the fluorescence emission intensity of [PIC][BETI] 

nanoGUMBOS was 40 times higher than the emission of PICI in water.  This 

observation was attributed to RIR within the nanoGUMBOS.  

 
Figure 2.7 Fluorescence spectra of PICI in aqueous solution and [PIC][NTf2] and 
[PIC][BETI] nanoGUMBOS suspended in water at a concentration of 30 µM. 
  

Fluorescence quantum yields (Table 2.2) for PICI in water and [PIC][NTf2] and 

[PIC][BETI] nanoGUMBOS coincided with the fluorescence spectra.  The PICI 

compound exhibited an extremely low quantum yield, 3.89 × 10–4, in water which was 

attributed to twisted intramolecular charge transfer (TICT) states.  In contrast, 
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[PIC][NTf2] nanoGUMBOS exhibited two orders of magnitude enhancement in 

fluorescence quantum yield as compared to the parent compound in aqueous solution.  

This was attributed to the presence of highly fluorescent J-aggregates and restricted 

TICT in the nanomaterials due to enhanced rigidity.  The quantum yield of [PIC][BETI] 

nanoGUMBOS also revealed an order of magnitude enhancement in fluorescence 

quantum yield as compared to the parent compound.  This increase in the quantum 

yield is due to the RIR within the nanoGUMBOS as previously noted.  The quantum 

yield values obtained in our studies for PICI without J-aggregation at the experimental 

concentration of 30 µM and in [PIC][NTf2] nanomaterials with J-aggregation are close to 

the values reported in the literature.46,47  However, in the studies performed so far, J-

aggregation or the 100 times enhancement in quantum yield was observed at very high 

concentrations (~1 mM) and/or in the presence of certain templates.46,47  Our study 

demonstrates similar improvements at nearly 100 times lower concentration in the 

nanomaterials using a template free approach. 

Table 2.2 Fluorescence quantum yields and lifetimesa of PICI in aqueous system and 
[PIC][NTf2] and [PIC][BETI] nanoGUMBOS 

Dyes λmax
b /H2O 

(nm) 
εmax

b /104 
(M-1cm-1) 

Quantum Yield  
(Φ) 

Lifetime  
(τ) 

PICI 524 1.5 3.89 × 10-4 11–16 psc 
[PIC][NTf2] 590 1.4 1.09 × 10-2 98 ps (98%), 1.22 ns (2%) 
[PIC][BETI] 450 1.2 2.16 × 10-3 234 ps (30%), 4.52 ns (70%) 

aThese values include the percent of contribution for each component. bThe maximum 
absorption wavelength and molar extinction coefficient.  cObtained from reference 48. 

 
2.3.5 Fluorescence Lifetime Measurements 

Lifetime decay (Table 2.2) of [PIC][NTf2] nanoGUMBOS was best fitted to a  

biexponential decay with  98% contribution from a 98 ps component and 2% 

contribution from a 1.22 ns component.  The short-lived component was assigned to the 
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J-aggregates.  The presence of J-aggregates as indicated by the red-shifted absorption 

band and resonance steady state fluorescence is complementary to the lifetime data.  

The significantly low contribution from a longer component may be attributed to the 

presence of very small amounts of randomly oriented aggregates in which the lifetime is 

enhanced due to restricted rotation in the solid state.47  The lifetime decay of 

[PIC][BETI] nanorods was also best described by a double exponential decay model 

and the data revealed the likely presence of two major components.  The value with 

30% contribution possessed a lifetime of 234 ps and 70% contribution was from a 

longer component of 4.52 ns.  Since H-aggregates are non-fluorescent, they will not 

contribute to fluorescence decays.  As observed from the absorption spectrum, the 

major fluorescing species in this case was the randomly oriented component which has 

characteristics similar to that of the monomer.23  Hence, the longer lifetime component 

was assigned to randomly oriented species in the nanorods.  The fairly long-lived 

lifetime of the major lifetime component and enhanced fluorescence of the nanorods 

compared to PICI aqueous solutions suggests highly restricted TICT within the 

nanorods suspended in aqueous dispersion.  PICI solutions in water usually exhibit an 

extremely short lifetime lying between 11-16 ps which explains its extremely low 

quantum yield.48  The shorter component (234 ps) of the nanorods may be assigned to 

some differently oriented random aggregates.  The possibility of J-aggregation in the 

nanorods can be reasonably excluded based on the steady-state measurements.  Dual 

fluorescence lifetime components and increased quantum yield of PICI has been 

reported in the literature due to adsorption of the dye on polymeric layers wherein a J-

aggregate peak was not observed in the absorption spectrum.48  
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2.3.6 Fluorescence Anisotropy 

 The formation of J- and H-aggregates in the respective PIC-based 

nanoGUMBOS was further confirmed by use of fluorescence anisotropy measurements 

(Figure 2.8).  Fluorescence anisotropy (r) is a measure of the average angular 

displacement of molecules in the excited state37 after excitation with vertically polarized 

light and is given by 

   
        

         
           (1) 

where G is the grating factor to correct for instrumental responses, such as the emission 

wavelength and detector.  Parameters Ivv and Ivh correspond to the fluorescence 

emission intensities measured parallel and perpendicular to the vertically polarized 

excitation, respectively.37  Upon excitation at 524 nm, anisotropy spectra of [PIC][NTf2] 

and [PIC][BETI] nanoGUMBOS exhibited peak minima at 590 and 578 nm, respectively.  

These peak minima were similar to the emission maxima of [PIC][NTf2] and [PIC][BETI] 

nanoGUMBOS. 

      
Figure 2.8 (a) Fluorescence anisotropy of [PIC][NTf2] and [PIC][BETI] nanoGUMBOS. 
(b) Magnified plot of [PIC][NTf2] shown in panel (a). 

a b 
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 Anisotropy studies of PIC aggregates have reported values close to the 

theoretical anisotropy values that range from -0.2 to +0.4, with the anisotropy being low 

(< 0) in the H-aggregate  region and increasing sharply to 0.35 in the J-aggregate 

region.49   In this study, it was observed that [PIC][NTf2] nanoGUMBOS, comprised of J-

aggregates, had higher positive anisotropy values than [PIC][BETI] nanoGUMBOS that 

are mainly composed of H-aggregates.  This contrast was attributed to slower rotational 

diffusion within the [PIC][NTf2] nanoGUMBOS as a result of higher ordered stacking in 

these nanostructures, suggested by the diamond-like structures of [PIC][NTf2].  The 

negative fluorescence anisotropy of [PIC][BETI] nanorods may be attributed to the 

faster rotational diffusion of the individual molecules within the nanorods.  It was 

observed from the absorption study, as well as both the steady-state and time domain 

fluorescence studies that the nanorods are comprised mainly of H-aggregates and 

randomly oriented aggregates, of which the H-aggregates are non-fluorescent.  Thus, 

only the randomly oriented aggregates contribute to the fluorescence anisotropy.  

 It is well documented in the literature that the fluorescence of cyanine dyes is 

quenched by cis-trans isomerization.  This process can very easily occur in randomly 

oriented aggregates due to the absence of any definite π-π stacking.50  In contrast, the 

ordered stacking within the highly fluorescent J-aggregates of [PIC][NTf2] can 

substantially reduce the cis-trans isomerization, thereby explaining its positive 

fluorescence anisotropy values.  Although the anisotropy values were attenuated, they 

still agreed with previous findings regarding PIC J- and H-aggregates in solution.  This 

difference is hypothesized to result from aggregates formed in the nanoGUMBOS 
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suspension in the present study as compared to those commonly observed in PIC 

solutions. 

2.3.7 Electrochemical Energy Levels and Band Gap Calculations 

Cyclic voltammetry was performed in acetonitrile using the PIC-based GUMBOS, 

as well as the parent compound for comparison.  Cyclic voltammograms of the PIC-

based GUMBOS revealed a reversible oxidation profile at a potential range from 1.2 V 

to  .  V, which were identified as the reactions of PIC˙2+/PIC+ (Figure 2.9).  The 

increase in current and multiple electron transfer processes exhibited by the parent 

compound, PICI, was attributed to the presence of iodide, which can also undergo 

oxidation and reduction reactions. 

 
Figure 2.9 Cyclic voltammograms of PIC-based GUMBOS (1 mM) in acetonitrile with 
0.1 M TBAPF6 on Ag/Ag+ electrode at 0.1 V/s. 

 
 The oxidation potential (Eox) was calculated by the average of the anodic and 

cathodic peak potentials.  This oxidation potential along with the absorption and 

emission spectra of the PIC-based GUMBOS were used to determine the excited state 

reduction potential (E*
red) where E0-0 represents the 0-  transition energy state and λint is 

the intersect wavelength of the normalized absorbance and emission spectra.51  

Normalized absorption and emission spectra of the PICI, [PIC][BETI], and [PIC][NTf2]  
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GUMBOS in acetonitrile displayed similar spectra that were used to determine a λint of 

534 nm (Figure 2.10).   

 
Figure 2.10 Normalized absorption and emission spectra of PIC-based GUMBOS in 
acetonitrile (30 µM) used to determine the intersect wavelength (λint). 
 
The band gap (Eg) of the PIC-based GUMBOS was determined by the onset 

wavelength (λonset) at which the negative tangent line of the lowest energy absorbance 

peak intersects with the linear tangent line of the absorption tail (Figure 2.11).52  The 

λonset of the PIC-based GUMBOS in acetonitrile was ascertained at 556 nm.  The 

highest occupied molecular orbital (HOMO) energy level was calculated vs vacuum with 

Fc+/Fc as a reference by the following equation 

     - + +

HOMO paE eV =-1e E V vsFc /Fc +4.8 VFc /Fc vs Zero 
           (2) 

where Epa is the anodic potential.  The sum of the HOMO values and band gaps 

afforded the values of the energy level of the lowest unoccupied molecular orbital 

(LUMO).  The aforementioned potentials and band gaps were reported in Table 2.3. 
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Figure 2.11 Absorption spectra of PIC-based GUMBOS in acetonitrile (30 µM) used to 
determine the onset wavelength (λonset). 
 

Table 2.3 Redox potentials and band gap of PIC-based GUMBOS obtained from UV-Vis 
absorption 

Dyes Eox
a
 (V) E0-0

a
 (V) E*

red
b (V) HOMOc (eV) LUMOc (eV) Eg (eV) 

PICI 1.30 2.33 -1.03 -5.53 -3.23 2.24 
[PIC][NTf2] 1.29 2.32 -1.02 -5.50 -3.25 2.23 
[PIC][BETI] 1.31 2.32 -1.02 -5.56 -3.24 2.22 

aThe potentials were reported as V vs NHE. bThe excited state reduction potential was 

obtained by equation *

0 0red oxE E E    cThe LUMO value was calculated by equation 

 LUMOE eV = +EHOMO gE . 

  
The electrochemical properties of the PIC-based GUMBOS suggested the 

potential application of these solutions, and possibly the nanoGUMBOS, in dye-

sensitized solar cells (DSSCs).  Ideal dye sensitizers should absorb photons over a 

wide range, particularly in the wavelength maximum of solar irradiance.  It should also 

possess a closely matched excited state and TiO2 conduction band energy as well as a 

positive redox potential to overcome possible recombination and reduce loss of 

efficiency throughout the cell.53  Using an energy level scheme of a DSSC (Figure 2.12), 

the GUMBOS presented favorable electron injection from the excited state of the dye to 

the conduction band of a titanium dioxide semiconductor with a potential of -0.5 V vs 

NHE.  These features also indicated the ability for regeneration of the oxidized dye from 

an iodide/triiodie redox couple electrolyte with a potential of 0.4 V vs NHE. 
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Figure 2.12 Energy level schematic of PIC-based GUMBOS in a DSSC reported as V vs 
NHE. 

 
2.4 Conclusions 

 We have successfully demonstrated, for the first time, a novel template-free 

approach to controlling the morphology and aggregation in nanomaterials by simple 

variation of the counteranion.  The J-aggregation of [PIC][NTf2] with diamond-like 

nanostructures induced 590 times enhancement in fluorescence intensity and two 

orders of magnitude enhancement in fluorescence quantum yield as compared to the 

parent compound.  This work is considered a significant contribution towards controlling 

the morphology of fluorescent organic nanomaterials. [PIC][NTf2] nanoGUMBOS also 

exhibited high birefringence that can enhance the potential application of these 

nanomaterials.  Examination of [PIC][BETI] nanoGUMBOS reflects the presence of H-

aggregation with strong and broad blue shifted absorption.  The [PIC][BETI] nanorods 

also revealed low birefringence and one order of magnitude enhancement in 

fluorescence quantum yield as compared to the parent compound.  It is evident from the 

present study that the counterion associated with the dye cation can govern the 

morphology, as well as the spectral and optical properties of the nanomaterials.  The 

broadness of the absorption spectra encompassing the visible and near infrared regions 
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emphasizes the possible use of these nanomaterials as photosensitizers in solar cells.  

Investigation of the electrochemical properties of the PIC-based GUMBOS displayed 

potentials that may be beneficial for further applications as photosensitizers in solar 

cells.  We believe that the template-free controlled morphology of PIC-based 

nanoGUMBOS opens a new direction in the field of low-dimensional nanomaterials.  

These classes of nanomaterials may be potential candidates for applications as dye 

sensitizers in photovoltaics, nanosensors, optical waveguides, and optoelectronic 

devices, some of which are currently under investigation. 
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CHAPTER 3 
NEAR-INFRARED EMITTING BINARY NANOMATERIALS 

 

3.1 Introduction 

Nanomaterials, ranging from 1 to 100 nm, have gained considerable attention as 

compared to bulk materials due to higher surface area to volume ratios that result in 

distinct physiochemical properties.  Research on such significant properties has led to 

innovative applications of engineered nanomaterials in areas such as medicine,1,2 

electronics,3 and energy.4,5  In particular, the use of organic nanomaterials to tune 

emission is of interest due to use in applications for sensing, optoelectronics, and light 

harvesting systems. 

A common approach to tuning the emission spectra is based on Förster 

resonance energy transfer (FRET).  This non-radiative process involves the transfer of 

energy from donor molecules in the excited state to acceptor molecules in the ground 

state.6  The extent of FRET is dependent on the overlap of the donor emission spectrum 

and acceptor absorption spectrum, as well as the distance between the donor and 

acceptor.  In this regard, Yao and coworkers have examined the use of organic 

nanomaterials to tune emission via FRET.7,8,9  It was found that the energy transfer 

efficiencies of the nanomaterials were dependent on the molar ratios of the donor and 

acceptor molecules.  These binary organic nanomaterials have demonstrated potential 

as candidates for applications in electroluminescent, optoelectronic, and sensing 

devices. 

As previously mentioned, our group has reported the formation of nanomaterials 

derived from a class of materials referred to as group of uniform materials based on 

organic salts (GUMBOS).10  These GUMBOS can be tailored for multiple functions 
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based on the selected cations and anions.  In addition, nanomaterials derived from 

GUMBOS (nanoGUMBOS) can also afford interesting physiochemical properties.  Thus 

far, these nanoGUMBOS have offered potential as candidates for biomedical,10 

antibacterial,14 sensing,15 optoelectronic,16,17 and light harvesting18,19,20 applications.   

Several studies have been reported which involve the formation of 

nanoGUMBOS using cyanine dyes that form aggregates by self-assembly.  Bwambok 

et al. initially observed that nanoGUMBOS containing heptamethine cyanine dye 

1,1’,3,3,3’,3’-hexamethylindotricarbocyanine (HMT) iodide resulted in a broad 

absorption spectrum and slight shift in the fluorescence emission spectrum as 

compared to GUMBOS in solution.11  These changes in the spectral properties were 

attributed to aggregation of the cationic near-infrared (NIR) dye.  In addition, 

nanomaterials of the NIR fluorescent compound were employed as contrasting agents 

for biomedical imaging applications.  In a subsequent study by Das et al., variation of 

the anions paired with HMT was found to produce controlled aggregation and spectral 

properties.18  The results further suggest the presence of aggregation, specifically of 

both J- and H- aggregates in different proportions.  More recently, de Rooy et al. have 

reported the formation of nanostructures derived from thiacarbocyanine-based 

GUMBOS of increasing methine chain lengths.19  Aggregation of these binary and 

ternary nanomaterials produced tunable fluorescence emission attributed to FRET.   

Aggregation is the self-assembly of molecules as a result of forces such as van 

der  aals, hydrogen bonding, π-π stacking, and cation-π interactions.  This self-

assembly of molecules with such intermolecular interactions has been found to yield 

different types of aggregates leading to viable spectral properties.  Such aggregation 
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behavior has been well-studied by Davydov et al.21 and Kasha et al.22 Specifically, 

head-to-tail stacking of molecules results in the formation of J-aggregates that are 

generally characterized by a narrow, bathochromatically (red) shifted absorption band 

and enhanced fluorescence as compared to monomeric species.  In contrast, molecules 

stacked in a card-pack manner are referred to as H-aggregates.  Such H-aggregates 

are typically characterized by a broad, hypsochromatically (blue) shifted absorption 

band with weak to no fluorescence.  Molecules have also been found to form randomly-

oriented aggregates without any specific order of stacking that exhibit spectral 

properties similar to the monomer.   

In our previous work, pseudoisocyanine (PIC)-based nanoGUMBOS have been 

studied that exhibit controlled morphology and spectral properties at low concentration 

(30 µM) by simple variation of the counteranion.20  This behavior was attributed to the 

presence of J- and H-aggregates.  In the present work, PIC-based GUMBOS, the 

shortest methine chain length, and increased methine chain length cyanine-based 

GUMBOS were synthesized and investigated as binary nanomaterials.  In these binary 

nanomaterials, previously studied PIC-based GUMBOS were selected as donor 

molecules due to enhanced emission within nanoGUMOBS, while increased methine 

chain cyanine-based GUMBOS were used as acceptor molecules.  Interestingly, the 

higher methine chain cyanine-based nanoGUMBOS were essentially non-fluorescent in 

an aqueous environment.  However, these materials were found to exhibit significant 

fluorescence as binary nanoGUMBOS which were attributed to the occurrence of FRET.  

The binary nanomaterials were found to have broad absorption and fluorescence 

emission extended to the near-infrared region by tuning the molar ratio.  In addition, 
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stability and electrochemical properties of these GUMBOS were also examined for 

potential use of these new materials for light harvesting and optoelectronic applications. 

3.2 Materials and Methods 

3.2.1 Materials  

1,1’-diethyl-2,2’-cyanine iodide or pseudoisocyanine (PIC), 1,1’-diethyl-2,2’-

carbocyanine iodide or pinacyanol (PC), 1,1’-diethyl-2,2’-dicarbocyanine (DD) iodide, 

and lithium bis(trifluoromethanesulfonyl)imide (99.95%) were purchased from Sigma 

Aldrich and used as received.  Lithium bis(perfluoroethylsulfonyl)imide was obtained 

from 3M.  Ethanol was purchased from Pharmaco-AAPER and used as received.  

Ultrapure water (18.2 MΩ cm) was used from Aries High Purity  ater System.  A 

BRANSON 3510RDTH model bath ulstrasonicator (335W, 40kHz frequency) was used 

at room temperature for syntheses of nanoGUMBOS.  Carbon-coated copper grids 

(CF400-Cu, Electron Microscopy Sciences, Hatfield, PA) were used for TEM imaging. 

3.2.2 Syntheses of Cyanine-based GUMBOS and NanoGUMBOS 

Cyanine-based GUMBOS were synthesized by an anion exchange reaction of 

pseudoisocyanine (PIC) iodide, pinacyanol (PC) iodide, and 1,1’-diethyl-2,2’-

dicarbocyanine (DD) iodide with lithium bis(trifluoromethanesulfonyl)imide (LiNTf2) and 

lithium bis(perfluoroethylsulfonyl)imide (LiBETI) using a method previously reported 

(Figure 3.1).20  Binary nanomaterials were prepared for each anion by use of PIC 

GUMBOS as donors and increased methine chain GUMBOS (PC and DD) as 

acceptors.  Different molar ratios of binary GUMBOS were prepared by keeping PIC 

donor GUMBOS constant while varying PC or DD GUMBOS.  NanoGUMBOS were 

formed by use of a reprecipitation method in which 150 µL of the mixture of GUMBOS 
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was added to 5 mL of DI water under sonication for 5 min.  This procedure was also 

used for synthesis of individual cyanine-based nanoGUMBOS.   

 

Figure 3.1 Chemical structures of parent compounds (a) PICI, (b) PCI, (c) DDI, and 
anions (d) NTf2‾ and (e) BETI‾. 
 
3.2.3 Microscopy Characterization of NanoGUMBOS 

Electron micrographs were obtained for characterization of size and morphology 

using a JEOL100CX transmission electron microscope (JEOL USA, Inc., Peabody, MA).  

An aliquot (5 µL) of nanoGUMBOS was dropcasted onto a carbon-coated copper grid 

and air dried at room temperature. 

3.2.4 Absorption and Fluorescence Studies of GUMBOS and NanoGUMBOS 

Absorbance measurements were obtained using a Shimadzu UV-3101PC UV-

Vis-NIR scanning spectrometer (Shimadzu, Columbia, MD) at room temperature with a 

slitwidth of 2 nm.  Fluorescence emission was performed on a Spex Fluorolog-3 

spectrofluorometer (model FL3-22TAU3; Jobin Yvon, Edison, NJ) at room temperature 

with slitwidths of 5 nm.  A 0.4 cm quartz cuvet (Starna Cells) was used to collect the 

absorbance and fluorescence measurements.  A second 0.4 cm quartz cuvet was filled 

with water for use as a control blank.  Fluorescence studies were all performed through 

 

 

a b 

c 

d 

e 



74 
 

adoption of a synchronous scan protocol with right angle geometry.  Fluorescence 

spectra were corrected for inner filter effects using a standard formula.6   

3.2.5 Stability Studies of GUMBOS and NanoGUMBOS  

Photostability of individual and binary nanoGUMBOS was examined in aqueous 

suspension by use of fluorescence spectroscopy.  Each sample was excited at an 

excitation wavelength of 524 nm for 3000 s with wide slitwidths of 14 nm.  Photostability 

of [PIC][BETI] and [PIC][NTf2] nanoGUMBOS was based on specific emission 

wavelength maximum of 575 nm and 590 nm, respectively.  Photostability of binary 

nanoGUMBOS was examined at an emission wavelength of 670 nm.   

Thermal stability of the cyanine-based GUMBOS was investigated by use of 

thermograviometric analysis.  Samples were measured under nitrogen at a rate of 10 

°Cmin-1 with a temperature range from 23°C up to 600°C.  Thermal decomposition of 

the cyanine-based GUMBOS started between 255°C and 325°C (Table 3.1).   

Table 3.1 Thermal decomposition of cyanine-based GUMBOS 

GUMBOS Tstart (°C) Tonset (°C) 
[PIC][NTf2] – 355 
[PIC][BETI] – 353 
[PC][NTf2] 325 370 
[PC][BETI] 323 362 
[DD][NTf2] 248 363 
[DD][BETI] 275 369 

 
The onset temperatures (Tonset), at which samples lose weight at a faster speed, ranged 

from 353°C to 370°C.  Overall, these results suggest that cyanine-based GUMBOS 

have good thermal stability. 

3.2.6 Electrochemical Studies of GUMBOS 

Electrochemical measurements were performed under anaerobic conditions 

using an Autolab PGSTAT 302 potentiostat from Eco. Chemie.  A three-electrode 



75 
 

system consisting of an Ag/Ag+ reference electrode, Pt working electrode, and Pt 

counter electrode was employed.  Measurements were conducted in acetonitrile with 

 .1 M tetrabutylammonium hexafluorophosphate (TBAPF ) as a supporting electrolyte 

and ferrocene (Fc+/Fc) as an internal reference having a formal potential of  . 3 V vs 

 HE. 

3.3 Results and Discussion 

3.3.1 Morphological Studies of Individual Cyanine-based NanoGUMBOS 

Examination of TEM micrographs of cyanine-based nanoGUMBOS resulted in 

varying morphologies (Figure 3.2).  The distinct diamond-like structure was found to 

exhibit an average respective length and width of 449 ± 96 nm and 241 ± 63 nm.  The 

nanorods of [PIC][BETI]  presented an average length and width of 1.6 ± 0.98 µm and 

153 ± 55 nm, respectively.  The dimensions of these nanoGUMBOS were similar to 

values previously reported, except for the width of [PIC][BETI].  This change in 

morphology was attributed to ordered molecular orientation as a function of the 

associated counteranion.20  Nanomaterials of increased methine chain lengths afforded 

similar morphologies of nanowires and nanorods based on the selected anion.  The 

[PC][NTf2] and [DD][NTf2] nanoGUMBOS formed nanowires with respective average 

lengths and widths of 402 ± 117 nm and 27 ± 7.3 nm for [PC][NTf2] and 275 ± 67 nm 

and 24 ± 9.8 nm for [DD][NTf2].  In contrast, [PC][BETI] nanoGUMBOS were found to 

have a continuous nanowire network with a width of 46 ± 8.1 nm.  Moreover, [DD][BETI] 

nanoGUMBOS resulted in elongated nanorods with respective average lengths and 

widths of 11 ± 2.1 µm and 287 ± 120 nm.  
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Figure 3.2 TEM micrographs of (a) [PIC][NTf2], (b) [PC][NTf2], (c) [DD][NTf2], (d) 
[PIC][BETI], (e) [PC][BETI], and (f) [DD][BETI] nanoGUMBOS. 
 
3.3.2 Spectral Properties of Individual Cyanine-based NanoGUMBOS 

Examination of absorption spectra of cyanine-based nanoGUMBOS resulted in a 

distinct change in aqueous dispersion as compared to cyanine-based GUMBOS in 

ethanolic solution.  Absorption spectra of cyanine-based GUMBOS in ethanolic solution 

were found to exhibit red shifted absorption peaks as the methine chain length 

increased (Figure 3.3).  Specifically, absorption peaks of 490 nm and 524 nm for PIC 

2 µm
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GUMBOS, 564 nm and 605 nm for PC GUMBOS, as well as 652 nm and 710 nm for 

DD GUMBOS were obtained.  It is important to note that this shift to longer wavelengths 

was independent of the associated anion.   

     
Figure 3.3 Absorption spectra of (a) NTf2‾ anion and (b) BETI‾ anion cyanine-based 
GUMBOS in ethanolic solution. 
 
In contrast, absorption spectra of cyanine-based nanoGUMBOS resulted in broad 

absorption bands in aqueous dispersion that were dependent on both the methine chain 

length and associated anion (Figure 3.4).  The [PIC][NTf2] nanoGUMBOS were found to 

exhibit an absorption peak at 524 nm and a red shifted band at 590 nm, which is 

evidence of the formation of J-aggregates within the diamond-like nanostructures.20  

The absorption spectrum of [PC][NTf2] nanoGUMBOS resulted in a blue shifted 

shoulder and peak at 490 and 550 nm, respectively.  Conversely, longer wavelength 

and less intense absorption were observed for [DD][NTf2] nanoGUMBOS with multiple 

peaks at 550, 650, and 695 nm.  Interestingly, [PIC][BETI] and [PC][BETI] 

nanoGUMBOS were found to exhibit similar absorption spectra.  The [PIC][BETI] 

nanoGUMBOS had absorption peaks at 490 and 524 nm, as well as a blue shifted peak 

at 450 nm with tail broadening in the longer wavelength region that were attributed to 

the formation of H-aggregates of the dye molecules within the nanorods.20  The 

a b 
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absorption spectrum of [PC][BETI] nanoGUMBOS resulted in peaks at 595 and 640 nm.  

In contrast, [DD][BETI] nanoGUMBOS displayed broad absorption with peaks at 515 

and 605 nm.  Overall, a blue shift in the absorption spectra was observed for the 

individual cyanine-based nanoGUMBOS as compared to cyanine-based GUMBOS in 

ethanolic solution.  This result was attributed to the formation of H-aggregates within the 

nanomaterials and is in agreement with studies of PCCl and DDI in aqueous 

solution.23,24,25 

                  
Figure 3.4 Absorption spectra of (a) NTf2‾ anion and (b) BETI‾ anion cyanine-based 
nanoGUMBOS in aqueous suspension. 

 
Examination of fluorescence spectra was found to produce a distinct difference in 

the cyanine-based nanoGUMBOS with increasing methine chain length when excited at 

524 nm (Figure 3.5).  The [PIC][NTf2] nanoGUMBOS resulted in a strong fluorescence 

peak at 590 nm, while nanoGUMBOS of [PIC][BETI] were found to exhibit a weaker 

fluorescence peak at ~577 nm.  These PIC-based nanoGUMBOS of both anions also 

revealed a shoulder at 620 nm.  This enhanced fluorescence of [PIC][NTf2] 

nanoGUMBOS and weak fluorescence of [PIC][BETI] nanoGUMBOS, as compared to 

the parent compound of PICI in aqueous solution, were attributed to the formation of J- 

and H-aggregates, respectively.20  In contrast, fluorescence spectra of increased 
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methine chain length cyanine-based nanoGUMBOS resulted in minimal fluorescence for 

both anions.  The nanoGUMBOS of [PC][NTf2], [DD][NTf2], and [DD][BETI] were found 

to exhibit a nominal fluorescence peak at 630 nm.  Furthermore, [PC][BETI] 

nanoGUMBOS were found to have a weak fluorescence at 702 nm.  This little to no 

fluorescence confirms the formation of H-aggregates as observed in the absorption 

spectra.  

          
Figure 3.5 Fluorescence spectra of (a) NTf2‾ and (b) BETI‾ anion cyanine-based 
nanoGUMBOS in aqueous suspension when excited at 524 nm.  Inset: Magnified 
fluorescence spectra of [PC][NTf2] and [DD][NTf2] shown in panel (a) and [DD][BETI] in 
panel (b). 
 
3.3.3 Characterization Studies of Binary NanoGUMBOS 
 

Binary nanoGUMBOS were prepared from GUMBOS with similar anions by use 

of PIC GUMBOS as donor molecules and increased methine chain PC and DD 

GUMBOS as acceptor molecules.  At an equal molar ratio, morphology of the binary 

nanomaterials resulted in different nanostructures based on the associated anions 

(Figure 3.6).  Binary nanoGUMBOS containing NTf2
‾ as an anion, namely 

[PIC][NTf2]:[PC][NTf2]  and [PIC][NTf2]:[DD][NTf2], were found to have similar formation 

of hexagonal-shaped nanostructures with an average diameters of 161 ± 119 nm and 

260 ± 44 nm, respectively.  This was a distinct change in morphology as compared to 

a b
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the respective diamond-like nanostructures and nanowires of the individual cyanine-

based nanoGUMBOS.  In contrast, binary nanomaterials paired with BETI‾ anion 

afforded nanorod and nanowire structures.  The [PIC][BETI]:[PC][BETI]  nanoGUMBOS 

resulted in a network of nanorods with a respective average length and width of 2.2 ± 

0.75 µm and 115 ± 33 nm.  The [PIC][BETI]:[DD][BETI] nanoGUMBOS were found to 

exhibit nanowires with a respective average length and width of 1.5 ± 0.85 µm and 101 

± 37 nm.  These nanostructures also varied from the morphology of the nanorods and 

nanowires of the individual cyanine-based nanoGUMBOS.  

   
 

    
Figure 3.6 TEM micrographs of (a) [PIC][NTf2]:[PC][NTf2], (b) [PIC][NTf2]:[DD][NTf2], (c) 
[PIC][BETI]:[PC][BETI], and (d) [PIC][BETI]:[DD][BETI] binary nanomaterials at a 1:1 
ratio. 
 

3.3.4 Absorption Studies 
 

Absorption spectra of the binary nanomaterials at varying molar ratios were 

found to have similar spectral behavior as the donor absorption spectra of PIC 

2 µm 2 µm
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nanoGUMBOS (Figure 3.7).  Furthermore, additional absorption peaks were obtained 

for some of the binary nanoGUMBOS.  In that regard, [PIC][NTf2]:[PC][NTf2] 

nanoGUMBOS resulted in a new absorption shoulder around 650 nm.  Moreover, 

[PIC][BETI]:[PC][BETI] nanoGUMBOS were found to reveal absorption peaks for molar 

ratios of 1:1 and 10:1 at 595 and 640 nm resulting in further broadening of the 

absorption spectra.  This broadening was attributed to the acceptor absorption spectra 

of individual [PC][BETI] nanoGUMBOS. 

   
 

     
Figure 3.7 Absorption spectra of (a) [PIC][NTf2]:[PC][NTf2], (b) [PIC][NTf2]:[DD][NTf2], (c) 
[PIC][BETI]:[PC][BETI], and (d) [PIC][BETI]:[DD][BETI] binary nanoGUMBOS. 
 

3.3.5 Fluorescence Studies  
 

The donor emission and acceptor absorption spectra of cyanine-based 

nanoGUMBOS suggested the possibility of FRET due to overlap of the absorption and 
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fluorescence emission spectra (Figure 3.8).  The spectral overlap integral (J(λ)) was 

determined using the following formula   

𝐽(𝜆)   
∫  ( ) ( )    

 
 

∫  ( )  
 
 

            (1) 

where ε is the molar extinction coefficient of the acceptor,  f(λ)  is the normalized 

emission spectrum of the donor, and λ is the wavelength.  The energy transfer efficiency 

(E) was obtained using the following formula 

𝐸  1 −
   

  
            (2) 

where Fda and Fd are the fluorescence intensities of the donor in the presence and 

absence of the acceptor, respectively.  The J(λ) and E values of the binary 

nanoGUMBOS at a 1:1 molar ratio are compiled in Table 3.2.   

          
Figure 3.8 Normalized fluorescence (dashed) and absorption (solid) spectra of (a) NTf2‾ 
and (b) BETI‾ cyanine-based nanoGUMBOS in aqueous suspension. 
 
Table 3.2 Spectral overlap integral (J(λ)) and energy transfer efficiency (E) of binary 
nanoGUMBOS at a 1:1 molar ratio 

NanoGUMBOS J(λ)/ M-1cm-1nm4 E/ % 
[PIC][NTf2]: [PC][NTf2] 3.86 × 1014 99 
[PIC][NTf2]:[DD][NTf2] 

[PIC][BETI]: [PC][BETI] 
[PIC][BETI]: [DD][BETI] 

5.70 × 1014 
1.30 × 1013 
6.97 × 1014 

92 
99 
89 
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The highest spectral overlap integral value was obtained for [PIC][BETI]:[PC][BETI] 

nanoGUMBOS.  Energy transfer efficiencies for binary nanoGUMBOS of both anions 

were found to exhibit high values of 99% in the case of PIC:PC nanoGUMBOS.  These 

high energy transfer efficiencies were attributed to the compact environment of the 

nanomaterials, presence of J-aggregates from [PIC][NTf2], and blue shifted absorption 

of the acceptor molecules due to the formation of H-aggregates.  Binary nanomaterials 

containing the shortest and longest methine chains, [PIC][NTf2]:[DD][NTf2] and 

[PIC][BETI]:[DD][BETI], resulted in lower energy transfer efficiencies of 92% and 89%, 

respectively.  These lower values of PIC:DD binary nanomaterials were due to reduced 

spectral overlap as compared to PIC:PC binary nanoGUMBOS caused by broadening in 

the longer wavelength region. 

Variations in the fluorescence spectra were observed for binary nanomaterials of 

both NTf2
‾ and BETI‾ anions, which were formed with PIC as donor molecules in the 

presence of PC or DD as acceptor molecules.  At an equal molar ratio, binary 

nanoGUMBOS were found to exhibit a new fluorescence peak at 670 nm, while 

resulting in a decrease of the donor fluorescence peak (Figure 3.9).   

   
Figure 3.9 Fluorescence spectra of (a) NTf2‾ and (b) BETI‾ binary nanoGUMBOS in 
aqueous suspension at 1:1 molar ratio 
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The new emission peak was attributed to the occurrence of FRET from the PIC donor 

molecules to the acceptor molecules.  This was a dramatic change from the little to no 

fluorescence of the individual nanoGUMBOS with longer methine chain lengths.  

Binary nanoGUMBOS also resulted in tunable emission at different molar ratios 

with the same excitation wavelength of 524 nm (Figure 3.10).  It was found that as the 

molar ratios of [PIC][NTf2]:[PC][NTf2] and [PIC][BETI]:[PC][BETI] binary nanoGUMBOS 

increased, the donor fluorescence peaks decreased while the acceptor fluorescence 

peaks increased due to FRET.   

   
 

           
Figure 3.10 Fluorescence spectra of (a) [PIC][NTf2]:[PC][NTf2], (b) 
[PIC][NTf2]:[DD][NTf2], (c) [PIC][BETI]:[PC][BETI], and (d) [PIC][BETI]:[DD][BETI] binary 
nanoGUMBOS. 
 
In contrast, binary nanoGUMBOS containing DD as an acceptor initially resulted in a 

decrease in the donor fluorescence peaks and increase in acceptor fluorescence peak 
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at a 1:1 molar ratio, followed by an increase in the donor peak and decrease in the 

acceptor peak at higher molar ratios.  This was due to a decrease in FRET since there 

was an abundance of donor molecules with respect to acceptor molecules.  

Interestingly, both donor and acceptor fluorescence peaks were observed for 

[PIC][NTf2]:[PC][NTf2] and [PIC][BETI]:[PC][BETI] binary nanoGUMBOS at a high molar 

ratio of 1000:1, which was also attributed to the abundance of donor molecules with 

respect to acceptor molecules.  Furthermore, [PIC][NTf2]:[DD][NTf2] binary 

nanoGUMBOS at 1000:1 molar ratio were found to exhibit multiple fluorescence 

emission at different wavelengths, where a loss of fluorescence intensity at 670 nm 

resulted in a new fluorescence peak at 745 nm (Figure 3.10b).  This spectral behavior 

revealed the ability to tune the emission wavelength of [PIC][NTf2]:[DD][NTf2] binary 

nanoGUMBOS to the near-infrared region.  Thus, the extent of FRET in the various 

binary nanoGUMBOS demonstrated the wide range of tunability in emission 

wavelengths and intensities, which is suitable for numerous applications. 

3.3.6 Photostability Analysis 

Stability of dyes against degradation caused by light, heat, oxygen, and ozone is 

an important consideration for applications such as biomedical imaging, sensing, and 

light harvesting.26  In that regard, photostability of PIC and binary nanoGUMBOS was 

studied and residual emission intensities were obtained (Figure 3.11).  It is important to 

note that photostability of the individual increased methine chain cyanine-based 

nanoGUMBOS was not measured due to lack of fluorescence (Figure 3.5).   



86 
 

 
Figure 3.11 Photostability of cyanine-based nanoGUMBOS. 

 
The cyanine-based nanoGUMBOS were found to have residual emission intensities 

ranging from 53% to 113%.  Specifically, gradual decrease was observed for [PIC][NTf2] 

and [PIC][NTf2]:[PC][NTf2] nanoGUMBOS upon excitation for 3000 s with a residual 

emission intensity of 75% and 87%, respectively.  Photostability of 

[PIC][NTf2]:[DD][NTf2] nanoGUMBOS increased in the first 120 s to 150% followed by a 

steady decrease with a residual emission intensity of 96%.  In contrast, [PIC][BETI] 

nanoGUMBOS resulted in a decrease in 240 s before reaching a plateau that resulted 

in a residual emission intensity of 53%.  A residual emission intensity of 57% for 

[PIC][BETI]:[DD][BETI] nanoGUMBOS was obtained with a decrease in photostability in 

720 s, followed by a slight increase before continuing to decrease.  Conversely, 

photostability of [PIC][BETI]:[PC][BETI] nanoGUMBOS was found to exhibit the highest 

residual emission intensity of 113% due to gradual increase of the emission maximum 

over time.  Generally, photostabilities of the cyanine-based nanoGUMBOS composed of 

NTf2‾ anions were higher than nanoGUMBOS of BETI‾ anions, with the exception for 

[PIC][BETI]:[PC][BETI]  nanoGUMBOS.  These higher photostabilities were attributed to 

the presence of J-aggregates from [PIC][NTf2], which is in agreement with studies of 
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PEGylated cyanine-based nanoGUMBOS.13  The high phototstability of 

[PIC][BETI]:[PC][BETI]  nanoGUMBOS was due to greater spectral overlap that enabled 

improved stability.  Overall, the PIC and binary nanoGUMBOS resulted in high 

photostability that suggest potential in light harvesting and optoelectronic applications. 

3.3.8 Electrochemical Energy Levels and Band Gap Calculations 

Cyclic voltammetry was performed for the cyanine-based GUMBOS in 

acetonitrile (Figure 3.12).   

  

 
Figure 3.12 Cyclic voltammograms of (a) PIC, (b) PC, (c) DD GUMBOS (1 mM) in 
acetonitrile with 0.1 M TBAPF6 vs Fc+/Fc as a reference at 0.1 V/s. 
 
Cyclic voltammograms of PIC GUMBOS revealed a reversible oxidation profile with a 

potential range from 1.1 V to 0.5 V.  In contrast, a quasi-reversible oxidation profile was 

obtained for PC GUMBOS at potential ranges from 0.5 V to 0.1 V.  A quasi-reversible 
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oxidation profile was also displayed for DD GUMBOS with a potential range from 0.5 V 

to -0.2 V.   

Using the cyclic voltammograms, potentials and energy levels of the cyanine-

based GUMBOS were obtained (Table 3.3).  Due to the quasi-reversible profile, the 

oxidation potential (Eox) was calculated from 85% of the maximum peak current.  The 

excited state reduction potential (E*
red) was determined using the oxidation potential by 

the following equations 

𝐸   
  𝐸  − 𝐸                    (3) 

𝐸    
    

    
    (4) 

where E0-0 represents the 0-  transition energy state and λint is the intersect wavelength 

of the normalized absorption and emission spectra.  Similar spectra were observed for 

both anions that revealed a red shift as the methine chain length increased.  The λint of 

PIC, PC, and DD GUMBOS was 539, 619, and 727 nm, respectively.  The band gap of 

the cyanine-based GUMBOS was obtained by the onset wavelength (λonset) at which a 

negative tangent line of the lowest energy absorption peak intersects with a linear 

tangent line of the absorption tail.  The λonset of PIC, PC, and DD GUMBOS was 556, 

635, and 745 nm, respectively.  Energy levels of the cyanine-based GUMBOS were 

calculated by the following equations 

  𝐸    (  )  −1   𝐸  (          ⁄ )     (       ⁄         )        (5) 

𝐸    (  )  𝐸     𝐸             (6) 

where EHOMO is the highest occupied molecular orbital (HOMO) energy level calculated 

vs vacuum with Fc+/Fc as a reference and Epa is the anodic potential.  The lowest 
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unoccupied molecular orbital energy level (ELUMO) is obtained from the sum of the 

HOMO value and band gap.   

Table 3.3 Redox potentials and band gap of PIC GUMBOS obtained from UV-Vis 
absorption 

Dyes Eox
a
 (V) E0-0

a
 (V) E*

red
b (V) HOMOc (eV) LUMOc (eV) Eg (eV) 

[PIC][NTf2] 1.29 2.30 -1.01 -5.50 -3.27 2.23 
[PIC][BETI] 1.31 2.30 -0.99 -5.56 -3.33 2.23 
[PC][NTf2] 0.962 2.00 -1.04 -5.13 -3.18 1.95 
[PC][BETI] 0.972 2.00 -1.03 -5.14 -3.19 1.95 
[DD][NTf2] 0.632 1.71 -1.08 -4.80 -3.14 1.66 
[DD][BETI] 0.701 1.71 -1.01 -4.87 -3.21 1.66 
aThe potentials were reported as V vs NHE.  bThe excited state reduction potential was 

obtained by equation 𝐸   
  𝐸  − 𝐸   .  cThe LUMO value was calculated by equation 

𝐸    (  )  𝐸     𝐸  . 

 
The electrochemical properties of the cyanine-based GUMBOS revealed a 

decrease in oxidation potential with increased methine chain length.  This resulted in a 

decrease in the HOMO energy level and reduced the band gap of the GUMBOS, which 

was expected due to the increase in wavelength as the methine chain length increased.  

The cyanine-based GUMBOS were found to have suitable potentials for possible 

application as sensitizers in dye-sensitized solar cells.  The oxidation and excited state 

reduction potential of the dye are favorable for electron transfer to the conduction band 

of a titanium dioxide semiconductor (-0.5 V vs NHE), as well as an iodide/triiodie redox 

couple electrolyte (0.4 V vs NHE).  

3.4 Conclusions 

In summary, variable methine chain length cyanine-based GUMBOS were 

synthesized to form binary nanomaterials with controlled morphology.  These binary 

nanoGUMBOS were found to exhibit broad absorption and tunable emission for non-

fluorescent acceptor molecules by changing the molar ratio due to the occurrence of 

FRET.  Multiple fluorescence peaks were observed for [PIC][NTf2]:[DD][NTf2] 
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nanoGUMBOS that extended to the near-infrared region.  High energy transfer 

efficiencies were attributed to the compact environment of the nanomaterials, formation 

of J- and H-aggregates, and significant overlap of the absorption and emission spectra.  

Furthermore, high photostability and thermal stability were obtained for the binary 

materials.  The tunable emission of these binary nanomaterials suggest interesting 

properties for potential applications in sensing and light harvesting in the visible to near-

infrared region.  In addition, electrochemical properties of the cyanine-based GUMBOS 

were observed to have suitable potentials for use as sensitizers in dye-sensitized solar 

cells.  Moreover, the ability to tune these GUMBOS enables potential use in 

optoelectronics.  
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CHAPTER 4  
DYE-SENSITIZED SOLAR CELL USING CYANINE-BASED GUMBOS 

 

4.1 Introduction 

 Renewable energy is a major concern due to increased world energy 

consumption.  In particular, solar energy is a continuous and abundant renewable 

source that uses devices known as solar cells to convert sunlight to electricity.  

Specifically, devices such as conventional silicon solar cells have been reported to have 

a high conversion efficiency of 24.7%.1  Unfortunately, these solar cells require 

expensive manufacturing for production of high purity single crystals.  Devices known as 

dye-sensitized solar cells (DSSCs) are a promising low cost alternative to silicon solar 

cells that employ nanocrystalline titanium dioxide (TiO2) particles (Figure 4.1).   

 
Figure 4.1 Diagram of a DSSC consisting of a dye sensitizer, TiO2 working electrode, 
catalyst counter electrode, and electrolyte. 
 
Initially developed by Gratzel and O’Regan in 1991, this DSSC consisted of a dye 

derived from a ruthenium complex adsorbed on the surface of TiO2 nanoparticles that 

resulted in the generation of a conversion efficiency of 7.9%.2  Since development, 
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research related to DSSCs continues to increase over the years.  As a result, a 

conversion efficiency of 11% has been achieved for DSSCs using ruthenium 

complexes.3,4   

An important function for DSSCs is the capability to transport electrons to an 

external load.  Electron transport is achieved by a working electrode that consists of a 

wide band gap oxide semiconductor deposited on a TCO glass substrate.  A variety of 

nanostructures has been studied to optimize conversion efficiency including 

nanoparticles,3,4 nanotubes,5,6,7 and nanorods.8,9  In particular, TiO2 electrospun 

nanofibers have also been reported in DSSCs.10,11,12  Recently, Liu et al. have 

demonstrated the use of electrospinning to prepare polymer nanofibers doped with TiO2 

nanoparticles and a ruthenium complex.13  This technique combines the advantages of 

using nanostructures for increased surface area, as well as maintaining the strong 

interaction between the dye and the surface of TiO2.  However, to the best of our 

knowledge, this preparation technique has not been applied in DSSCs.  The 

electrospinning method is a direct, facile, and controllable approach to fabricate fibers at 

a range of nanometers to micrometers (Figure 4.2).14  This system employs an applied 

voltage at the tip of a needle to overcome the surface tension of a TiO2 polymeric 

solution.  Once this occurs, fibers are produced and collected at a given distance from 

the needle tip.  The diameter of the fibers is controlled by parameters such as the 

applied voltage, flow rate, solution viscosity, and surface tension.  
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Figure 4.2 Schematic of electrospinning apparatus consisting of a power source, 
syringe pump, syringe, needle, and collector. 
 

Another important component of DSSCs is the photosensitizing dye which is 

used to absorb photons from sunlight and transfer electrons to generate current.  Ideal 

dye sensitizers absorb photons in the visible and near-infrared regions below 920 nm of 

the solar irradiance spectrum.  Dye sensitizers also possess suitable redox properties 

for efficient electron transfer to overcome possible recombination and reduce loss of 

efficiency throughout the solar cell.  For this reason, the oxidation potential and excited 

state oxidation potential of the sensitizer are closely matched with the potentials of the 

iodide/triiodide electrolyte (0.4 V vs NHE) and conduction band of TiO2 (-0.5 V vs NHE), 

respectively.  The ideal spectral and redox properties of dye sensitizers can be 

optimized by the structure of the dye.  

Dyes derived from ruthenium complexes have been typically used in DSSCs.  

Unfortunately, several disadvantages are associated with current ruthenium complex 

photosensitizers, which can be attributed to limited supply and expense of metals, as 

oltage, flow rate, solution viscosity, and surface tension.  
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well as reduced absorption in the near-infrared region of the electromagnetic spectrum.  

Alternatively, organic dyes as photosensitizers has been reported as alternative to for 

solar cell application allow for the design of structures to be tailored for optimal spectral 

and electrochemical properties.  A variety of organic dyes such as coumarins,15,16,17 

indolines,18,19 and triphenylamines20,21 have been synthesized at low cost that exhibit 

desirable properties such as high molar extinction coefficients and broad absorption 

spectra.  In particular, cyanine dyes have also been investigated as sensitizers with 

conversion efficiencies ranging from 3.1% to 5.4%.22,23,24   

Although organic dyes have been found to provide adequate conversion 

efficiencies by tailoring the structures, a challenge of these dyes is the presence of 

aggregation that can reduce conversion efficiency.  The incorporation of coadsorbates 

such as chenodeoxycholic acid (CDCA) and 4-tert-butylpyridine (TBP) in DSSCs have 

been found to limit aggregation and improve conversion efficiency in organic dyes such 

as indoline and coumarin.19,16  In contrast, beneficial characteristics have been reported 

in recent studies by controlling dye aggregates.  In particular, the presence of 

aggregation in cyanine dyes has also been investigated for potential aid in optimizing 

conversion efficiency of DSSCs.25  In this regard, the use of controlled J-aggregates of a 

merocyanine dye has been reported to achieve a conversion efficiency of 4.5% by 

Sayama et al.26 

As previously mentioned, a new class of materials referred to as a group of 

uniform materials based on organic salts (GUMBOS) and nanomaterials derived from 

GUMBOS (nanoGUMBOS) have been found to exhibit interesting physiochemical 

properties that can be tuned for multiple functions based on the selected cations and 
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anions.  In previous studies, cyanine-based nanoGUMBOS were prepared by use of a 

simple reprecipitation method and found to exhibit controlled morphology and 

aggregation by variation of the associated anion.27  Broad absorption of the cyanine-

based nanomaterials was also observed due to differences in molecular self-assembly 

ordering, i.e. H- and J-aggregation.  In addition, electrochemical properties of the 

cyanine-based GUMBOS were reported to have suitable potential values that favor 

electron injection and regeneration processes required in DSSCs.  The present work 

entails the investigation of cyanine-based GUMBOS in DSSCs using an electrospinning 

method for formation of nanofibers.  The TiO2 electrode was composed of nanofibers 

doped with TiO2 nanoparticles and cyanine-based GUMBOS.  Photovoltaic 

performances of the solar cells were found to exhibit improved energy efficiency by use 

of electrospun nanofibers as compared to nanoparticles. 

4.2 Materials and Methods 

4.2.1 Syntheses of Cyanine-based GUMBOS 

Cyanine-based GUMBOS were synthesized by an anion exchange reaction of 

pseudoisocyanine (PIC) iodide with lithium bis(trifluoromethanesulfonyl)imide  (LiNTf2) 

and lithium bis(perfluoroethylsulfonyl)imide (LiBETI) using a method previously 

reported.27  Briefly, a mixture of PICI and LiNTf2 (1.1 eq) was dissolved in a biphasic 

solution of methylene chloride and water (2:1, v/v) and stirred for one day at room 

temperature.  The methylene chloride layer was collected and washed several times 

with fresh deionized water to completely remove residual LiI byproduct.  Subsequently, 

the methylene chloride was removed under vacuum at 40 °C by use of a rotary 
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evaporator followed by freeze-drying overnight to afford solid [PIC][NTf2].  A similar 

procedure was implemented to synthesize [PIC][BETI].   

4.2.2 Preparation of TiO2 Electrodes 

 The nanofibers were electrospun directly on fluorine-doped tin oxide glass 

substrate (FTO, 10 cm x 10 cm) from a solution of 0.3 g poly(vinylpyrrolidone) (PVP) 

doped with 0.03 g TiO2 powder and 4 mM cyanine-based GUMBOS in ethanol (Figure 

4.3).  Formation of the nanofibers was obtained using a syringe, 23 gauge needle, and 

an applied voltage of 15 kV at a distance of 10 cm.   

 

Figure 4.3 Synthesis of electrospun PVP nanofibers doped with TiO2 nanoparticles and 
[PIC][NTf2] GUMBOS. 
 
Two procedures were used to form TiO2 nanoparticles for comparison with the 

electrospun nanofibers.  A paste of TiO2 nanoparticles was prepared as reported by Lee 

et al. in which 0.5 g of anatase TiO2 powder (< 25 nm) and 0.2 g of polyethylene glycol 

(PEG, Mw = 14,000 g/mol) were added to 100 µl of Triton X-100 in 3 ml of acetic acid 

(0.1 M).28  In addition, a solution of TiO2 nanoparticles was synthesized as follows: 25 ml 

of titianium (IV) isopropoxide and 4 ml of 2-propanol were added to 150 ml of deionized 
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water over 20 min.  Nitric acid (70%, 2.5 ml) was added within 10 min, and the solution 

was stirred for 12 h at 70 °C.  Polyethylene glycol (10% w/w) was added to the solution 

that was then placed under vacuum at 60 °C by use of a rotary evaporator.  Electrodes 

were prepared using TiO2 nanoparticle paste and solution by the doctor-blading 

method, followed by heating for 30 min at 450 °C.  Electron micrographs were obtained 

to investigate the morphology of the TiO2 nanomaterials by use of a JSM-6610, JAM-

6610LV high and low vacuum scanning electron microscope (JOEL USA, Inc. Peabody, 

MA).   

4.2.3 Solar Cell Fabrication and Characterization  

The TiO2 electrodes composed of nanoparticles were soaked overnight in 1 mM 

PIC-based GUMBOS ethanolic solutions.  Subsequently, the TiO2 electrodes were 

carefully cleaned with ethanol and dried.  Platinum (Pt) counter electrodes were 

prepared by coating FTO glass substrates with 5 mM solution of H2PtCl6 in 2-propanol, 

followed by heating for 20 min at 400 °C.  The solar cell was assembled by sealing the 

dye/TiO2 electrode and Pt counter electrode together with a thermal melt polymer film 

(Figure 4.4).  An iodide/triiodide electrolyte solution, consisting of 0.5 M lithium iodide 

and 50 mM iodine mixed in acetonitrile, was incorporated into the solar cell through two 

holes drilled in the Pt counter electrode.   

 
Figure 4.4 Photograph image of a fabricated DSSC with use of a quarter as a scale.   
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Solar cell current-voltage (I–V) characteristics were measured by use of a Keithley 2400 

sourcemeter and xenon arc lamp with AM 1.5 G filter (Figure 4.5).  The solar simulator 

was calibrated to one sun with a light power density of 100 mWcm-2.  

 
Figure 4.5 Diagram of solar cell instrumentation that includes a power source, solar 
simulator, solar cell, holding stand, and sourcemeter. 
 

4.3 Results and Discussion 
 
4.3.1 Morphology of TiO2 Electrodes 
 
 Examination of scanning electron micrographs of TiO2 electrodes were found to 

exhibit nanostructures for all TiO2 preparation methods.  Formation of TiO2 electrodes 

prepared from TiO2 paste and TiO2 solution consisted of clusters of nanoparticles that 

produced a uniform coverage on the glass substrate (Figure 4.6 and 4.7).  In contrast, 

one-dimensional TiO2 nanofibers were found to be were randomly deposited on the 

glass substrate with a diameter of 139 ± 34 nm (Figure 4.8).   
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Figure 4.6 (a) Scanning electron micrographs of TiO2 nanoparticles on an FTO 
electrode via TiO2 paste.  (b) Magnification of panel (a). 
 

     
Figure 4.7 (a) Scanning electron micrographs of TiO2 nanoparticles on an FTO 
electrode by use of TiO2 solution.  (b) Magnification of panel (a). 
 

    
Figure 4.8 (a) Scanning electron micrographs of electrospun TiO2 nanofibers on an FTO 
electrode.  (b) Magnification of panel (a). 
 
4.3.2 Performance of DSSCs with Cyanine-based GUMBOS 

The I-V characteristics of DSSCs using the TiO2 preparation methods with a 

ruthenium complex N719, PICI, and [PIC][BETI] GUMBOS were obtained (Figure 4.9 
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and 4.10).  The photovoltaic performances including the short-circuit photocurrent 

density (Jsc), open-circuit photovoltage (Voc), fill factor (FF), and overall power 

conversion efficiency (η) of the solar cell devices were collected (Table  .1).  For the 

device containing N719, the following parameters were obtained: Jsc (2.3 mAcm-2), Voc 

( . 2 V), FF ( .  ), and η ( .89%).  For the device containing PICI, Jsc, Voc, FF, and η 

were found to be 0.30 mAcm-2, 0.19 V, 0.25, and 0.014%.  Similarly, the device 

composed of [PIC][BETI] GUMBOS resulted in the following characteristics: Jsc (0.36 

mAcm-2), Voc ( .1  V), FF ( .2 ), and η ( . 1 %).  In contrast, the device comprised of 

electrospun nanofibers and [PIC][NTf2] GUMBOS was also measured and found to yield 

Jsc, Voc, FF, and η values of 3.  mAcm
-2, 0.47 V, 0.52, and 0.73%.   

         
 

 
Figure 4.9 I-V plots of DSSCs composed of (a) N719, (b) PICI, and (c) [PIC][BETI] 
GUMBOS using TiO2 nanoparticles. 
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Figure 4.10 I-V plot of a DSSC consisting of [PIC][NTf2] GUMBOS electrospun using 
doped nanofibers. 
 
Table 4.1 Photovoltaic performances of dye-sensitized solar cells using aTiO2 solution, 
bpaste, and celectrospinning methods 

GUMBOS Jsc/ mAcm-2 Voc/ V FF η/ % 

N719a 2.3 0.72 0.54 0.89 
PICI b 0.30 0.19 0.25 0.014 

[PIC][BETI]b 0.36 0.157 0.25 0.014 
[PIC][NTf2]

c 2.99 0.47 0.52 0.73 

 
The performance of the solar cell containing a common dye derived from a 

ruthenium complex, N719, and using a TiO2 solution method was found to exhibit a low 

conversion efficiency of 0.89%.  This low efficiency was attributed to the TiO2 coating, 

which required further optimization.  The performance of the TiO2 paste devices was 

similar for both the cyanine parent compound and GUMBOS with a negligible 

conversion efficiency of 0.014%.  This low efficiency may be attributed to desorption of 

the dye on the TiO2 surface.  This desorption might be a result of the lack of an 

anchoring group in the dye structure to bind to the TiO2 surface.  In contrast, higher 

conversion efficiency was observed using the electrospinning technique with [PIC][NTf2] 

GUMBOS.  This increase in efficiency was attributed to improved interaction between 

the dye and TiO2 surface.  As mentioned earlier, the dye was incorporated with the 

TiO2/PVP solution during electrospinning.  This allowed for better contact of the dye 
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molecule on the TiO2 surface within the confinement of the nanofiber.  It is important to 

note that since the cyanine GUMBOS were prepared in ethanolic solution their 

absorption properties are the same.27  Therefore, this increase in efficiency was not due 

to the use of a different dye.  Similar to TiO2 paste devices, the conversion efficiency of 

the electrospinning technique may also be enhanced by use of anchoring groups in the 

dye structure.   

4.4 Conclusions 

For the first time, cyanine-based GUMBOS were applied in DSSCs. Preparation 

of TiO2 electrodes from TiO2 paste and nanoparticle solution were found to yield uniform 

surface coverage.  The formation of nanofibers via an electrospinning technique was 

also used to prepare electrodes.  Performances of DSSCs composed of these TiO2 

electrodes with cyanine-based GUMBOS were measured.  Photovoltaic characteristics 

of the solar cells were found to exhibit an improved conversion efficiency of 0.73% by 

use of electrospun nanofibers as compared to nanoparticles that resulted in negligible 

conversion efficiency.  This lack of efficiency was attributed to limited interaction 

between the dyes and the TiO2 surface.  The interaction may be optimized by 

modification of the dye structures with an anchoring group, which is currently under 

investigation.  
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CHAPTER 5 
CONCLUSIONS AND FUTURE WORK 

 

5.1 Concluding Remarks 

This dissertation work involved the use of novel dye GUMBOS and 

nanomaterials derived from GUMBOS for potential application as sensitizers in DSSCs.  

In the first chapter, an overview of solar cells with a focus on DSSCs was presented.  

Studies related to key components of DSSCs were reported, and analytical techniques 

used in this work were discussed.   

The synthesis and characterization of nanoGUMBOS using cyanine dyes was 

examined in the second chapter. These cyanine nanomaterials were prepared by use of 

a simple reprecipitation method and found to exhibit controlled morphology and 

aggregation by variation of the associated anion. In addition, broad absorption of the 

cyanine-based nanoGUMBOS was reported due to differences in molecular self-

assembly ordering (e.g., H- vs. J-aggregation). Furthermore, electrochemical properties 

of the cyanine-based GUMBOS resulted in suitable potential values that favor electron 

injection and regeneration processes required in DSSCs.  

Studies to further broaden absorption, particularly in the near-infrared region of 

the electromagnetic spectrum, were investigated in the third chapter.  Previously studied 

GUMBOS were combined with novel increased methine chain length cyanine-based 

GUMBOS to form binary nanomaterials.  Spectral properties of these binary 

nanoGUMBOS were found to yield broad absorption and tunable emission that 

extended to the near-infrared region by adjusting the molar ratio, which was attributed to 

FRET.  Additionally, electrochemical properties of these cyanine GUMBOS were also 
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found to exhibit adequate potential values that suggest possible use as photosensitizers 

in DSSCs. 

In the fourth chapter, the incorporation of cyanine-based GUMBOS in DSSCs 

was reported.  Photovoltaic performances of the solar cells were found to exhibit a 

conversion efficiency of 0.73% by use of electrospun nanofibers as compared to 

nanoparticles that resulted in negligible conversion efficiency.  This lack of efficiency 

was attributed to limited interaction between the sensitizers and TiO2 surface.  

Therefore, this interaction may be optimized by modification of the dye structures with 

an anchoring group.  

5.2 Future Work 

Examination of the electrochemical properties of cyanine-based nanomaterials 

will also be examined.  The electrochemical studies involved in this dissertation were 

conducted in solution.  However, nanomaterials can exhibit different characteristics as 

compared to bulk materials.  Therefore, it is important to measure the potential of the 

cyanine-based nanoGUMBOS to confirm use in DSSCs.  These studies will require 

increased concentration of nanomaterials for sufficient analysis by use of cyclic 

voltammetry.  The fabrication of a working electrode comprised of cyanine-based 

nanoGUMBOS deposited on FTO glass substrates can be used to obtain a 

concentrated sample of nanoGUMBOS.  The selection of a suitable aqueous electrolyte 

will also be necessary to allow for optimized analysis.  

This thin film approach can also be applied for investigation of the electron 

transfer process between the sensitizer and TiO2 surface by depositing TiO2 followed by 

concentrated nanoGUMBOS.  The preparation of TiO2 electrodes with cyanine-based 
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nanoGUMBOS can be examined using both electrochemical and spectral techniques, 

i.e. cyclic voltammetry, UV-Vis absorption and fluorescence spectroscopy.  After further 

testing and optimizing DSSCs using the cyanine based-GUMBOS and nanoGUMBOS, 

modification to other significant components in DSSCs will be explored in the presence 

of these materials such as investigating various oxide semiconductor nanostructures 

and ionic liquid electrolytes.   
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