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ABSTRACT 
 

A novel tetraphosphine ligand rac-et,ph-P4 (et,ph-P4 = 

PEt2CH2CH2(Ph)PCH2P(Ph)CH2CH2PEt2) is used for the formation of a highly active and 

regioselective hydroformylation catalyst. The active catalytic species, Rh2H2(-CO)2(et,ph-

P4)]2+, is formed in situ under H2/CO pressure. This is one of the most impressive examples of 

homobimetallic cooperativity in homogeneous catalysis. The fragmentation of this catalyst by 

CO has been investigated and confirmed by in situ NMR spectroscopic studies. A new 

tetraphosphine ligand rac-et,ph-P4-Ph (et,ph-P4-Ph = PEt2(o-C6H4)P(Ph)CH2(Ph)P(o-

C6H4)PEt2) has been synthesized to combat this fragmentation problem. However, the inability 

to successfully separate the meso and racemic isomers of the ligand has led to more alteration 

of the basic structure of the tetraphosphine ligands. 

The current alteration being explored in an attempt to solve this separation problem is 

the replacement of the central methylene bridge by a tertiary amine. Experimentation has been 

conducted on the basis of a retrosynthetic analysis with the possibility of two pathways for 

formation of these aza-bridged ligands. The new ligands have not been afforded as of yet due to 

the difficulty in purification of the intermediate products. A simple Grignard-mediated 

phosphorus-carbon coupling reaction has been attempted with an amine bridge (RN(PhPCl)2, 

but impurities in the starting material and decreased reactivity of the amine bridge led to results 

that were undesirable. The second synthetic route relies upon coupling PEt2(o-C6H4)PPhCl with 

a primary amine to afford the desired ligand, but the inability to obtain the pure phosphorus 

compound has hindered progress. 
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Chapter 1: Hydroformylation 

1.1. Introduction to Hydroformylation 

Hydroformylation, also known as oxo synthesis, was discovered in 1938 by Otto Roelen while 

working at Ruhrchemie.1 During his work on cobalt-catalyzed Fischer-Tropsch synthesis, he 

observed the conversion of ethylene, H2, and CO to propanal.1 In the hydroformylation reaction, 

alkenes are converted to aldehydes when reacted with H2/CO (syngas) in the presence of a 

catalyst Scheme 1.1. Hydroformylation is the largest industrial homogenous process producing 

more than 15 billion pounds of aldehydes per year. 

 

Figure 1.1.  General hydroformylation reaction scheme. 

Hydroformylation of -olefins results in two isomers of the aldehydes, linear (normal) and 

branched (iso). The linear aldehydes are used industrially for detergents and plasticizers. The 

branched aldehydes usually have a chiral carbon alpha to the aldehyde that is important in the 

production of fine chemicals and drugs.2 Figure 2.1 shows some reactions that are utilized 

commercially to yield fine chemicals from aldehydes.3 

1.2. Cobalt Hydroformylation Catalysts 

 The first hydroformylation catalyst used by Roelen was the unmodified cobalt hydrido-

carbonyl complex, HCo(CO)4. The conditions for the reaction are quite harsh with a 1:1 CO:H2 

pressure of 200-300 bar and a temperature of 200-250 °C. The regioselectivity of C2-C7 1-

alkenes is 2-4:1 linear to branched aldehydes and decreases as the alkene length increases. In 

addition to the harsh conditions, the active cobalt catalyst, HCo(CO)4,  and its precursor, 

Co2(CO)8, are rather toxic.3  
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Figure 1.2.  Commercially employed reactions of aldehydes. 

It was not until 1961 that a widely accepted mechanism for cobalt-catalyzed 

hydroformylation was proposed by Heck and Breslow (Fig. 1.3) .4 The mechanism begins with 

hydrogenation of the bimetallic complex (A) to form the active monometallic cobalt hydride 

catalyst (B). The catalytic cycle begins with dissociation of CO and addition of the alkene 

substrate. This is followed by migratory insertion to form the alkyl species (D). A second 

migratory insertion occurs giving way to the acyl complex (E). A CO ligand dissociates then an 

oxidative addition of H2 takes place. Reductive elimination gives the aldehyde product and the 

active catalyst is regenerated. 

A modified-cobalt catalyst was developed by Slaugh and Mullineaux at Shell in 1968.5 

The use of trialkylphosphine to produce HCo(CO)3(PR3) as the active catalyst had dramatic 

effects on the rate, regioselectivity, and reaction conditions. The H2/CO pressure decreased to 

50-100 atm and the temperature could be increased without decomposition of the catalyst at 

these lower pressures. Hydrogenation of the alkenes to alkanes is an undesirable side reaction 

that ranges from 10-20%.  
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Figure 1.3.  Heck-Breslow cobalt-catalyzed hydroformylation mechanism. 

The selectivity of the linear to branched aldehyde ratio increased from 2-4:1 to 7-8:1 with the 

addition of the sterically directing alkylphosphine ligand. The reaction rate did suffer by being 5-

10 times slower than the unmodified catalyst, but the increase in selectivity for the linear 

aldehyde product is more important to Shell for the detergents and surfactants that they 

produce. 

1.3.  Rhodium Hydroformylation Catalysts  

In the late 1960’s, Wilkinson and coworkers made a landmark discovery with the use of 

a modified rhodium catalyst, HRh(CO)(PPh3)2, for hydroformylation.7  This phosphine rhodium 

H2/CO). The generally accepted mechanism for the PPh3-modified rhodium catalyst was 

catalyst was found to be active under very mild conditions (70-100°C; 5-25 atm H2/CO) and 

even at ambient conditions (25°C; 1 atm H2/CO). The selectivity for the product varied with 

conditions (20:1 at 25°C, 1 atm H2/CO; 9:1 at 50°C, 1 atm H2/CO; 3:1 at 25°C, 80-100 atm 

proposed by Wilkinson and is shown in Figure 1.4. 
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 The rhodium-catalyzed hydroformylation mechanism begins with dissociation of a CO 

ligand and coordination of the alkene substrate to the unsaturated rhodium-hydride complex. 

This is followed by a migratory insertion of the alkene into the hydride-rhodium bond to form the 

alkyl species. Oxidative addition of H2 occurs and the aldehyde product is reductively eliminated 

to reform the unsaturated rhodium-hydride species. 

 

Figure 1.4.  Proposed mechanism for rhodium-catalyzed hydroformylation. 

 The work of Pruett and Booth and coworkers led to the commercialization of modified-

rhodium catalyzed hydroformylation. They discovered that the addition of excess PPh3 created a 

commercially viable catalyst system at 125-150 psig and 100-125 °C.6 Excess phosphine ligand 

is necessary to stabilize the rhodium catalyst in order to inhibit the formation of an unsaturated 

14 electron species. These species can lead to rhodium-induced phosphine fragmentation 

forming an alkyldiphenylphosphine ligand or bridged dirhodium complexes. With insufficient 

PPh3, more active and less selective carbonyl-rich catalysts are formed. However, a very large 

concentration of PPh3 causes the hydroformylation reaction to be quite slow but has the highest 

selectivity to linear aldehyde.  
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1.4.  Mono- and Bis- Phosphine and Phosphite Ligands for Hydroformylation Catalysts 

 The original phosphine ligand for rhodium-catalyzed hydroformylation, 

triphenylphosphine (PPh3), used by Wilkinson and coworkers7 showed far higher activity and 

regioselectivity than its cobalt predecessor. Modification of the “R” groups on the phosphine 

(PR3) and the use of phosphite (P(OR)3)  ligands greatly influences the rate, regioselectivity, 

and stereoselectivity of the aldehyde product. Alterations of the R-groups on the ligands control 

the acceptor/donor ability and steric bulk of the ligands. Controlling the number of metal-bonding 

atoms, the bite angle, and the coordination geometry of polydentate phosphine/phosphite 

ligands are additional ways that the catalyst can be tailored. 

 In the mid-1970’s, Chadwick Tolman developed methods to categorize the steric and 

electronic factors of a wide assortment of phosphine ligands. The results of his studies were 

published in 1977.8 Although it can be difficult to separate electronic and steric effects, Tolman 

developed the system to quantify these effects in phosphine ligands, where they are very 

important.  

The electronic parameter  (chi) is based on the carbonyl IR stretching frequencies 

based on Ni(CO)L3 compounds.9 The electronic factors strongly influence the rate of 

hydroformylation catalysis. Electron donating ligands, such as alkyphosphines, on rhodium 

catalysts tend to slow the catalysis. The increased donation to the metal center causes more -

backbonding to occur, strengthening the metal-CO bonds, which causes the CO ligand to 

dissociate more slowly and generates saturated 18 e- complexes that can’t coordinate alkene or 

H2. Phosphite ligands, on the other hand, are generally poor -donors and moderately good -

acceptors.  When used in hydroformylation P(OR)3 ligands usually generate extremely active 

catalysts, but often with lower regioselectivity.  In most cases, phosphorus containing ligands 

increase the rate of rhodium catalyzed hydroformylation as follows: phosphites > 

arylphosphines (with electron-withdrawing substituents) > triphenylphosphine > 
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alkylphosphines.9  Phosphite ligands decompose easily, which is another limiting factor in their 

use in hydroformylation catlaysis.   

The steric parameter  (theta) was developed because the presence of three R-groups 

allows for a remarkable degree of tailoring of the steric profile of the phosphine ligand. Also 

known as the Tolman cone angle, the steric parameter was initially based on space-filling CPK 

molecular models. The cone was constructed to embrace all substituents attached to the 

phosphorus atoms when the R3P-M distance was 2.28 Å.9 The steric bulk of the PR3 ligand 

dramatically affects the selectivity of the aldehyde product in hydroformylation catalysis. More 

bulky phosphine ligands favor the linear aldehyde product. However, the ligand can become too 

bulky, such as PCy3 (Cy = cyclohexyl) and the alkene substrate is not able to coordinate when 

two PCy3 ligands are bound to the Rh.   

In 1981, Emily Kuntz, while at Rhone-Poulenc, developed a sulfonated-PPh3 ligand, 

P(Ph-m-SO3
-Na+)3 (tppts) (Fig. 1.5). The rhodium catalyst that was formed, HRh(CO)[P(Ph-m-

SO3
-Na+)3]3, was very soluble in water (1 kg ligand/1 kg water). This discovery led to a biphasic 

hydroformylation system that was commercialized by Ruhrchemie.9 Due to the insolubility of 

longer chain alkenes in water, this system is only viable for the hydroformylation of propene and 

butene. In the early-to-mid 90’s, Herrmann and coworkers prepared several other sulfonated 

 

Figure 1.5.  Various ligands used in biphasic hydroformylation. 

ligands, Bisbis-Na, Norbos-Na, and Binas-Na, for biphasic hydroformylation (Fig. 1.5).10 

Catalysts containing these ligands had greater activities than tppts (tppts = 1; Bisbis-Na = 5.6, 
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Norbos-Na = 7.4, and Binas-Na = 11.1). The regioselectivity of the Bisbis-Na and Binas-Na 

were also quite impressive at 32:1 and 49:1 linear to branched ratio respectively. 

  Phosphite ligands are better -acceptors than phosphine ligands. This means that the 

rate of formation of the product with be increased due to the faster dissociation of the CO ligand, 

which is generally the rate determining step for the catalytic cycle. In 1969, Pruett and Smith 

reported triphenylphosphite and several ortho-substituted triphenylphosphite ligands for the 

hydroformylation of 1-octene and methyl methacrylate.6 Van Leeuwen and Roobeek11 

discovered that the use of a bulky monophosphite ligand in the hydroformylation of relatively 

unreactive alkenes proceeded with high reaction rates. They also determined through their 

efforts that the selectivity for the linear aldehyde increased as the electron withdrawing nature of 

the ligands increased. Phosphite ligands are often used for the hydroformylation of unreactive 

alkenes if regioselectivity is not an issue. These include tributene,12a di- and 

tricyclopentadiene,12b and methacrylic acid alkyl esters.12c They are also used in the 

hydroformylation of internal alkenes due to fast isomerization of the double bond. Phosphite 

ligands are much easier to synthesize relative to phosphines (alkyl or aryl). Their downfall lies in 

the fact that they are far more likely to undergo hydrolysis and fragmentation reactions leading 

to limited catalyst lifetimes (turnover numbers). 

 The bisphosphites in Figure 1.6 were reported as early as 1956,13 but were not 

introduced as ligands for hydroformylation until 1987 by Bryant and coworkers.14 A low ligand to 

metal ratio has to be used because of the bulkiness and chelating nature of these ligands. Too 

high of a ligand:metal ratio would cause the catalyst to deactivate. These rhodium-bisphosphite 

catalysts were able to achieve a 95% linear-to-branched selectivity with 1-alkenes at 100 °C and 

20 bar. This is a much larger than the 70% linear-to-branched ratio of the bulky monophosphite 

ligands.  

 The development of the bisphosphine ligand BISBI (Fig. 1.7) by Tom Devon at Texas 

Eastman15 marked another significant ligand development in hydroformylation catalysts. This 
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Figure 1.6. Bulky bisphosphite ligands. 

ligand gave exceptional selectivity for the linear aldehyde product (30:1 l:b for propene). 

Investigation into the activity of the BISBI ligand led to the discovery of backbone and bite angle 

effects of bisphosphine ligands. These effects were studied by Casey and Whiteker16 by 

comparing BISBI to other chelating bisphosphine ligands. They developed the idea of the 

natural bite angle (n) which is “the preferred chelation angle, determined only by ligand 

backbone constraints and not by metal valence angles.” The natural bite angles were 

determined by molecular mechanics calculations. Through their studies, Casey and Whiteker 

determined that the high regioselectivity toward the linear product was attributed to the preferred 

equatorial-equatorial bisphosphine coordination on the catalytically active species, 

[HRh(diphosphine)(CO)2]. The equatorial-equatorial bonding mode occurs because of BISBI’s 

large bite angle, 113°. 

 

Figure 1.7.  BISBI; Introduced to hydroformylation by Tom Devon. 

 In 1990, Prof. Piet van Leeuwen, at the University of Amsterdam, began investigating 

ligands with bite angles larger than 99°.17 The series that were synthesized are known as 
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Xantphos ligands (Fig. 1.8) because the backbone is based on the organic heterocyclic 

compound xanthene. The bite angles of the series range between 102° and 121°. The catalysts 

formed with these ligands proved to be very selective for the linear aldehyde, with 

benzylnixantphos giving linear-to-branched ratios as high as 70:1. Through the work of 

Kranenburg18 and Van der Veen,19 it was shown that the general trend for the Xantphos-based 

rhodium catalysts was an increased linear-to-branched ratio and rate with increasing bite angle. 

However, they did find that once the bite angle grew too wide, the trend diminished. 

 

Figure 1.8.  Examples from the Xantphos series and their calculated natural bite angles. 
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Chapter 2: Bimetallic Cooperativity in Hydroformylation 

2.1.  Introduction 

 One of the first suggestions of bimetallic cooperativity in homogeneous catalysis was 

given by Heck in 1961 in his proposed mechanism for cobalt catalyzed hydroformylation.1 Heck 

did not favor this idea due to the low concentration of each species, but suggested it as a 

possibility. In the bimetallic pathway, HCo(CO)4 and Co(acyl)(CO)4 take part in an 

intermolecular hydride transfer to reductively eliminate the aldehyde product and form the 

starting bimetallic precursor of the active catalyst (Fig. 2.1). 

 

Figure 2.1.  Proposed bimetallic pathway by Heck. 

Polymetallic clusters were investigated as hydroformylation catalysts in hopes that they 

would have a synergistic effect when applied to the catalytic process. These types of catalysts 

tend to have drawbacks when used in hydroformylation catalysis. Pittman and coworkers 

reported the use of cobalt clusters, but they suffered from low linear-to-branched ratios (5:1 for 

1-pentene) and the use of very high H2/CO pressures (400-1100 psig).2  Süss-Fink and 

coworkers reported a cluster catalyst [HRu3(CO)11]
 with high regioselectivity (70:1 l:b) for the 

hydroformylation of propylene. The problem they encountered was the very low rate (55 TO in 

66 h at 10 bar H2/CO).3 

 The use of a dirhodium thiolate-bridged catalyst was reported by Kalck in 1988 for the 

hydroformylation of 1-hexene.4 The data presented by the authors showed a highly active and 

regioselective catalyst when PPh3 was added to the system. Kalck proposed the mechanism, 

which incorporates two intramolecular hydride transfers. However, studies on the system 
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performed by Southern5 and van Leeuwen6 have shown that the dirhodium species readily 

fragments and forms the active monometallic catalyst: HRh(CO)2(PPh3)2. 

2.2.  Discovery of a Cooperative Dirhodium Catalyst 

 Some of the best evidence of bimetallic cooperativity has been produced by Stanley and 

coworkers7 with their dirhodium catalyst. Stanley uses a novel bridging and chelating 

tetraphosphine ligand, meso- and rac-et,ph-P4, to bind two rhodium centers via a 

conformationally flexible, methylene bridge to test the theory of bimetallic cooperativity in 

hydroformylation. The development of these ligands (Fig. 2.2) resulted in the formation of 

catalyst precursor rac-[Rh2(nbd)2(et,ph-P4)](BF4)2 (nbd = norbornadiene) by the reaction of rac-

et,ph-P4 with 2 equivalents of [Rh(nbd)2]BF4 (Fig. 2.3). The meso-precursor is synthesized the 

same way using meso-et,ph-P4.  A meso-catalyst is formed but the reactivity and selectivity are 

significantly lower than its racemic counterpart. Upon investigation, the racemic dirhodium active 

catalytic species, rac-[Rh2H2(-CO)2(et,ph-P4)]2+, has surpassed the rate and regioselectivity of 

most monometallic hydroformylation systems. 

 

Figure 2.2. Synthesis of meso and racemic 
et,ph-P4.            

 Figure 2.3. Synthesis of the catalyst precursor, 

rac-[Rh2H2(-CO)2(et,ph-P4)]
2+ 

 

There are several reasons for the increased rate and selectivity of the racemic version of 

the catalyst. The flexible methylene bridge allows the catalyst to exist in open- and closed-

modes with (Fig. 2.4) rhodium-rhodium distances of 5-7 Å8a and <3 Å,8b respectively. The 

racemic species can more easily form the a closed-mode geometry with a lower energy edge-
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sharing bioctahedral structure to facilitate the important intramolecular hydride transfer reaction 

steps. The meso species can perform the desired intramolecular hydride transfer, but it has 

more difficulty transforming to the closed-mode due to the two cisoidal chelating phosphine 

arms that limit the coordination environment around the Rh centers relative to the racemic 

ligand (Fig 2.5). 
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Figure 2.4.  Open- and closed-mode dirhodium complexes. 

 

Figure 2.5.  Intramolecular hydride transfer in racemic and meso catalysts. 

 The mechanism for the bimetallic hydroformylation proposed by Prof. Stanley is depicted 

in Figure 2.6. It begins with the open-mode pentacarbonyl complex A undergoing the oxidative 

addition of H2 to produce the mixed oxidation state complex B, with Rh(+1)/Rh(+3) centers. The 

first intramolecular hydride transfer occurs to form the active catalytic species (with two Rh(+2) 

centers) D, through the intermediate C. An open site for the alkene species to coordinate is 

formed by the dissociation of a terminal CO ligand to form complex E. A migratory insertion of 

the alkene into the hydride-Rh bond occurs to form complex F. A CO ligand coordinates to the 

open site and undergoes a migratory insertion into the alkyl-Rh bond to form G. At this point, the 

second intramolecular hydride transfer occurs to reductively eliminate the aldehyde product and 
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form complex H, which can then react with H2 to reform complex C or coordinate a CO ligand to 

produce the open-mode complex A. 

 

 

Figure 2.6.  Stanley's proposed bimetallic hydroformylation mechanism. 

2.3.  Confirmation of Bimetallic Cooperativity 

 The first strong evidence of bimetallic cooperativity in Prof. Stanley’s catalyst was that 

similar monometallic species tested ([Rh(nbd)(P2)]BF4 where P2= Et2PCH2CH2PEt2, 

Et2PCH2CH2PMePh, Et2PCH2CH2PPh2, or Ph2PCH2CH2PPh2) were terrible hydroformylation 

catalysts. The results of these hydroformylation runs gave only 1-2 TO/h, 3:1 linear to branched 

product regioselectivity, and 50-70% alkene isomerization.7a, 9 

To further test the theory of bimetallic cooperativity, the methylene bridge of et,ph-P4 

was replaced by a “rigid” p-xylene and propylene bridges (Fig. 2.7). This forced the rhodium 

centers to be spaced far enough to stop or hinder interaction with one another. These analogs 

of the et,ph-P4 ligand also resulted in extremely poor hydroformylation catalysts, with results 
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similar to the previously tested monometallic catalysts (0.5-6 TO/h, 3:1 l:b product 

regioselectivity, 50-70% alkene isomerization, and hydrogenation side reactions).7a, 9 

 

Figure 2.7.  Spaced bimetallic analogs. 

2.4.  Polar-Phase Hydroformylation 

 The initial results published for Stanley’s hydroformylation catalyst, rac-[Rh2(nbd)2(et,ph-

P4)]2+, were very impressive. As shown in Table 2.1, the racemic catalyst was more than double 

the rate and over 1.5 times more selective than the industrially used Rh/PPh3 system. The 

meso-[Rh2(nbd)2(et,ph-P4)] species was far less active and selective than its racemic 

counterpart with many more side reactions.7a 

Table 2.1.  Hydroformylation* of 1-hexene. 

Catalyst (or Precursor 
Initial TOF 

(hr 1) 
L:B Iso Hydro 

rac-[Rh2(nbd)2(et,ph-P4) 1200 25:1 2.5% 3.4% 

HRh(CO)(PPh3)2 
(0.8M PPh3) 

540 17:1 1% <0.1% 

meso-[Rh2(nbd)2(et,ph-P4) 55 14:1 24% 10% 

*90 psig 1:1 H2/CO; 90 C; 1 mM catalyst; 1 M 1-hexene (1000 equivalents); acetone solvent. 

 These catalytic runs were performed in acetone as the solvent. The catalyst performed 

very well in this solvent but it, like most homogeneous catalysts, was difficult to separate from 

the product. Since the aldehyde product is non-polar, a polar phase was added to the solvent 

system in hopes that the aldehyde product would separate and allow the catalyst to remain in 

the water/acetone layer. With the addition of a 30% water/acetone solvent system, an increase 
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in the activity (initial TOF 20 min-1 to 30 min-1) and selectivity (l:b 25:1 to 33:1) were observed. 

This shift to a water/acetone solvent increased the rate of hydroformylation by [rac-Rh2(- 

CO)2(et,ph-P4)]2+ by 50%, increased the l:b aldehyde selectivity to 33:1, and reduced side 

reactions to less than 0.5%.  30% water (by volume) in acetone also greatly increased the 

lifetime of the dirhodium catalyst. Initially in the acetone solvent at 90 °C and 90 psig H2/CO, the 

catalyst was completely deactivated within 80 minutes. In the water/acetone solvent system 

under the same conditions, a mere 10% deactivation of the catalyst was observed after 2 hours. 

Unfortunately, the use of the polar phase solvent did not solve the catalyst/product separation 

problem because the dirhodium catalyst is more soluble in the aldehyde product than the water-

acetone solvent.10 

2.5.  H2/CO Ratio Studies 

 Dr. Bobby Barker initially studied the effect of varying H2/CO ratios and pressures in the 

dirhodium catalyst system.11 From in situ spectroscopic studies and hydroformylation runs at 

higher pressures, it was believed that CO played a major role in the fragmentation of our 

catalyst (see Chapter 3 for more detail). Due to the lack of literature on this type of study, Barker 

performed the H2/CO studies on our catalyst and several monometallic catalysts. His results 

showed that changing H2/CO pressure and ratio had a remarkable effect on our catalyst. As 

shown in Table 2.2, increasing the H2/CO ratio greatly increases the selectivity of the aldehyde 

product. The linear to branched ratio increased to 152:1 (99.3%) in the highest ratio studied. 

Barker found that decreasing the total pressure from 90 psig to 45 psig with a 1:1 H2/CO ratio 

caused an increase in the linear to branched selectivity from 33:1 (97.1%) to 55:1 (98.2%), 

although a 33% decrease in the rate was observed. For the subsequent studies, the CO partial 

pressure was kept at 22.5 psig and the H2 partial pressure was increased the proper amount to 

give the desired H2/CO ratio. As the ratio was increased to 2:1 and 3:1, the linear to branched 

ratio increased to 64:1 (98.5%) and 75:1 (98.7%) respectively. At a 4:1 H2/CO ratio, the initial 

turnover frequency increased dramatically to 46 and the linear to branched ratio increased to an 
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Table 2.2.  Rh2 hydroformylation data from variable H2/CO ratio and pressure studies. 
Performed by Dr. Bobby Barker. Conditions: 90 °C, 1 M 1-hexene (1000 equiv.), 1 mM Rh 
catalyst, solvent  = 30% H2O in acetone, constant pressure conditions, 1000 rpm stirring; 
pressures listed as psig, TOF = initial turnover frequency, TON = total turnover number, L:B = 
aldehyde linear to branched regioselectivity, Isom. = alkene isomerization. * ca. 5% n-heptanol 
produced 

H2/CO pH2 pCO TOF TON L:B % linear Isom 

1:1 45.0 45.0 30(2) 1000 33:1 97.1 <1% 

1:1 22.5 22.5 20(1) 1000 55:1 98.2 <1% 

2:1 45.0 22.5 27(2) 1000 64:1 98.5 <1% 

3:1 67.5 22.5 30(2) 1000 75:1 98.7 <1% 

4:1 88.0 22.5 46(1) 1000 152:1 99.3 7.7%* 

1:4 22.5 82.5 - 0 - - - 

1:3 22.5 67.5 - 0 - - - 

incredible 152:1 (99.3%). This great increase was accompanied by 7.7% isomerization and 5% 

hydrogenation of the aldehyde product. 

 A problem with Dr. Barker’s studies was that the hydroformylation runs were done with 

fixed gas ratios in batch autoclaves.  If you are feeding in a 3:1 H2/CO gas mixture, the 

hydroformylation catalysis is only consuming a 1:1 H2/CO stoichiometry.  This leads to “left-

over” H2 and a steadily increasing H2/CO gas mixture ratio in the autoclave.    

Dr. Catherine Alexander tried to get more dramatic results with increased gas ratios by 

doing 10,000 turnovers.12 Unfortunately, the “left-over” H2 “problem” causes very serious 

problems when trying to do more turnovers, leading to catalyst degradation and very poor 

results. This lead to the true realization of the problems involved in running different gas ratios in 

our batch autoclaves.  Dr. Alexander tried a host of experiments to initially charge the autoclave 

with the appropriate H2/CO gas mixture, then pressure add the 1-hexene substrate with a 1:1 

H2/CO feed gas in order to maintain the appropriate gas ratio in the autoclave.  Experimental 

difficulties led Dr. Alexander and Prof. Stanley to undertake a major redesign of the autoclaves 

to allow far easier assembly/disassembly and cleaning.   
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Chapter 3: Design and Synthesis of Aza-Bridged Tetraphosphine Ligands 

3.1.  Introduction 

 Although our catalyst is very active and very selective toward hydroformylation of 

alkenes, it suffers from fragmentation problems. Generally speaking, fragmentation and 

decomposition can lead to catalyst deactivation and is a very common problem. Oxidation of the 

phosphorus ligands is one source of catalyst decomposition. This can be limited through the 

careful removal of oxygen and hydroperoxides from substrates, solvents, and equipment. 

Ligand oxidation can also be avoided by adding excess ligand to the reaction mixture, as in the 

Rh/PPh3 hydroformylation system. Unfortunately for our dirhodium tetraphosphine catalyst, the 

work of Monteil1 demonstrated that the addition of excess PPh3 causes a dramatic decrease in 

the rate and selectivity of hydroformylation. As the concentration of PPh3 increases, the catalyst 

activity continues to decrease until it is almost completely inhibited. Due to these results, the 

addition of excess PPh3 or et,ph-P4 to inhibit ligand oxidation is not an option for our catalyst 

system. 

Fragmentation of monometallic rhodium-phosphine catalysts usually occurs in one of 

three ways: 1) oxidative addition of a P-C bond to the Rh center, 2) nucleophilic attack on a 

coordinated phosphine, and/or 3) ortho-metallation.2 Oxidative addition of a P-C bond to the Rh 

center can lead to the formation of stable rhodium clusters with phosphide-bridges that are 

inactive for hydroformylation (Fig. 3.1a). Alternatively, a less active rhodium-phosphine catalyst 

can be formed by reductive elimination of a Rh-alkyl and the diphenylphosphide group. This 

forms a diphenylalkylphosphine ligand which is less sterically directing, leading to lower linear-

to-branched aldehyde regioselectivities, and a stronger electron donor than the starting PPh3 

(Fig. 3.1b), which generates a less active catalyst. Ortho-metallation, also known as an 

intramolecular C-H oxidative addition, occurs with activation of the ortho-carbon-hydrogen bond. 

The ortho-C-H initially coordinates to the electron-rich metal center and does a C-H oxidative 
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addition to form a 4-membered metallocycle (Fig. 3.1c), which is a poor catalyst. Lastly, 

nucleophilic addition to the coordinated phosphorus atoms can occur if nucleophiles are present 

in the reaction mixture. The nucleophiles that are known to readily perform this attack are 

acetate, methoxy, hydroxyl, and hydride (Fig. 3.1d).  

 

Figure 3.1. Routes to ligand decomposition. 

Our dirhodium catalyst’s “fragmentation” is not attributed to the same causes as the 

monometallic rhodium species with triarylphosphine ligands. Prof. Stanley has proposed the 

mechanism for the decomposition of our Rh2-catalyst shown in Figure 3.2, which is based on 1D 

and 2D 31P NMR, 1H NMR, and HMBC spectra. 

Due to the flexibility of the external phosphine arms, it is proposed that 1 and A are in 

equilibrium. Both 1 and A are active for hydroformylation, with A being less selective due to the 

decrease in steric hindrance for incoming alkenes. Higher CO partial pressures lead to the 

formation of A which puts the catalyst on a path of decomposition. Conversely, increasing the 

H2 partial pressure favors the formation of 1, leading to a higher l:b ratio in product formation. 

The replacement of a donating PR3-donor with a -back-bonding CO to form A makes the Rh 

more electron-deficient. This deficiency, in turn, favors the reductive elimination of H2 to form B, 

which can lose a rhodium center to form C. At this point C can either react with another  
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Figure 3.2. Proposed fragmentation pathway for the dirhodium catalyst. 

molecule of C to form 2 (currently proposed preliminary structure), or the et,ph-P4 ligand can 

wrap around one rhodium center to form 3. Both complexes, 2 and 3, are very poor 

hydroformylation catalysts.  Prof. Stanley believes that 2 is responsible for the alkene 

isomerization and hydrogenation side reactions seen.   

3.2.  Evolution of the P4 Ligand 

This proposed fragmentation problem motivated Prof. Stanley to design a new ligand 

that would have a more rigid framework using o-phenylene linked arms to hold the external 

phosphines in closer proximity to the metal center.  We call this ligand et,ph-P4-Ph, or P4-Ph 

(Fig. 3.3). Using a 1,2-disubstituted phenylene bridge instead of the rotationally more flexible 

ethylene groups in the P4 framework should generate an extremely strong chelating 

bisphosphine unit.   

The synthetic scheme to build this ligand was designed by Dr. Alex Monteil (Fig. 3.3)1 

and features Mg-I exchange reactions. A slight modification has been made in which 1,2-

diiodobenzene has been replaced by 1-bromo-2-iodobenzene to ensure that the first reaction of 

(iPr)MgBr and the aryl halide only occurs at one site - the more reactive iodide - on the benzene 

ring to decrease the chance of byproducts. All attempts to separate the meso- and racemic  
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Figure 3.3. Synthetic scheme for the et,ph-P4-Ph ligand. 

isomers of the P4-Ph ligand have been, so far, unsuccessful. Marc Peterson, of the Stanley 

group, attempted to make derivatives of the P4-Ph ligand by adding different groups onto the 

para position on the internal phenyl rings (Fig. 3.4). This was done in hopes of achieving the 

desired separation of the racemic and meso- isomers of the ligand by recrystallization. He had 

success in forming the  –NMe2 and –t-Bu para-substituted primary halophosphines (83% yield). 

 

Figure 3.4. Et,ph-P4-Ph with para-substituted internal phenyl rings. 

Reduction of these compounds to the primary phosphines was attempted with lithium aluminum 

hydride, but only the phenylphosphine ring with the t-Bu moiety could be reduced. Having 
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accomplished this, the next step was to form the bisphosphine bridge. The overall yield for the 

synthetic scheme was extremely low (9%) so higher yield routes to this general ligand 

framework are still needed. 

The next step of ligand evolution comes in the form of “PNP” type ligands. Prof. Stanley 

suggested that replacing the methylene bridge with a tertiary amine bridge might allow an easier 

isomer separation (Fig. 3.5). It could also simplify the synthesis due to higher yielding routes to 

P-N(R)-P bridges. 

  

Figure 3.5. The new aza-bridged et,ph-P4-Ph ligand. 

3.3.  Changes in the Catalyst by Ligand Variation 

 3.3.1.  The et,ph-P4 Ligand 

The original tetraphosphine ligand, et,ph-P4, is a coordinating ligand that strongly binds 

to the metal centers. Normally, an alkylated phosphine ligand is too strong a  donor to use 

successfully in rhodium-catalyzed hydroformylation. It causes the CO ligands to bond too 

strongly to the rhodium centers because of the increased electron density on the metal center 

and increased -backdonation to the CO ligands. Dissociation of a CO ligand is vital to allow a 

saturated 18-electron complex to form a reactive 16-electron complex allowing coordination of 

the alkene or H2. To allow facile dissociation of a CO ligand, the strong donor ability of the P4 

ligand is compensated by having a dicationic dirhodium catalyst, in which each Rh centers is in 

the +2 oxidation state.3 
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 3.3.2.  The et,ph-P4-Ph (aka P4-Ph) Ligand 

The new et,ph-P4-Ph is a weaker -donor/better -acceptor due to the ethylene linkages 

being replaced by mildly electron-withdrawing ortho-phenylene linkages. This should decrease 

the electron density on the rhodium centers allowing for faster dissociation of CO ligands. More 

electron deficient metal centers typically lead to a more active hydroformylation catalyst. 

Regioselectivity of the product should not be a major concern with the P4-Ph ligand because 

our catalyst containing the et,ph-P4 is not subjective to the normal distortion of monometallic 

catalysts upon alkene addition due to the rigid structure enforced by the ligand, Rh-Rh bonding, 

and bridging CO ligands. The closer proximity of the external phosphorus atoms to the metal 

centers caused by the ortho-phenylene linkages may not completely inhibit dissociation of the 

arms due to the decreased donor ability of all the phosphorus atoms of the ligand, but it should 

coordinate orders of magnitude more strongly than our first generation et,ph-P4 ligand. 

 3.3.3.  The RN-P4-Ph Ligands 

Replacing the methylene bridge with an amine bridge can have electronic and steric 

effects on the catalyst. The flexibility of the bridge should change a little due to the amine’s 

ability to adopt a trigonal planar geometry. Peterson and coworkers4 performed an ab initio 

study comparing diphosphinomethane (dpm) and diphosphinoamine (dpa). It showed that the 

optimal central angle for dpm is 113° while the optimal angle for dpa is 122° as it adopts a 

trigonal planar geometry (sp2 hybridized N atom). These calculations are in agreement with solid 

state structures of bis(diphenylphosphino)amine (dppa) and bis(diphenylphosphino)methane 

(dppm). The tension placed on the ligand when chelating a single metal due to the larger natural 

central angle of the PNP-ligand may explain why these ligands have a stronger tendency to 

bridge two metal centers rather than chelate a single metal center. The central angle for dpa, 

122°, is closer to the angle needed to bridge two metal centers, 125°-130°. Conforming to this 

“ideal” bridging geometry only requires a 1.3 kcal mol-1 distortion for dpa, while 5.6 kcal mol-1 is 

required for dpm. Favoring binuclear coordination is exactly what we want for our catalyst, since 
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one of the fragmentation pathways leads to a chelated and thermodynamically very stable 

mononuclear complex (see Figure 3.2).  The ability to easily add a wide variety of central R 

groups to the N-atom of the PNP ligand is also a big advantage that we do not have with the P-

CH2-P-based ligands.  Adding a bulkier group to the central N-atom could favor closed-mode 

bimetallic structures that we believe are important in catalysis.   

These PNP ligands can also be tuned to favor chelation.  Recently, Butcher and 

coworkers5 have reported diphosphazanes with bulky groups attached to the phosphorus 

atoms, EtN[P(OR)2]2 (R = -C6H3
iPr2-2,6 and C6H3Me2-2,6). These bulky groups cause a 

decrease in the central PNP bond angles to bring them closer to the angles needed to chelate 

one metal center, 109.5° and 113.1° respectively. The phenyl rings on the internal phosphorus 

atoms can be substituted in the ortho positions with methyl, ethyl, or isopropyl substituents to 

possibly decrease the PNP angle.  

Adding the amine bridge will cause the internal phosphines to be better electron donors 

than the methylene bridged phosphines, and the alkyl group attached to the amine can be 

altered to tailor the donation of the internal phosphines. This added donor tunability could be 

used, if necessary, to combat some of the decrease in the donation caused by the ortho-

phenylene linkages.  

 As stated previously, the racemic ligand is the desired form and makes the active 

catalytic species. Norman and coworkers reported 9-12:1 meso:racemic ratio for the synthesis 

of i-PrN[PhP(i-PrNH)]2.
6 Our normal et,ph-P4 ligand racemizes at 120°C to give a 48%/52% 

meso/racemic mixture after approximately 12 hours. The new PNP ligands may not be able to 

withstand these temperatures which could lead to decomposition of the ligand. This might pose 

a serious problem in ligand synthesis if we cannot obtain a good quantity of the racemic ligand. 

 Replacement of the methylene bridge with an amine bridge can cause significant 

changes in the coordination and structural features of the formed complexes. With suitable 

substituents on the P and N atoms, these ligands can stabilize metal-metal bonds, which we 
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believe is important in our hydroformylation catalysis. A review by Balakrishna et al. highlights a 

large variety of PNP-Mx complexes.7 As seen in Figure 3.6, PNP ligands can cause formation of 

clusters, bridged species without M-M bonds, bridged species with multiple metal-metal bonds, 

and metal centers containing bidentate and monodentate ligands. 

 

Figure 3.6.  Some examples of PNP-metal complexes. 

3.4.  Fragmentation and Side Reactions of PNP Ligands 

 Several problems may arise with the use of PNP ligands. These ligands are susceptible 

to metal assisted cleavage when complexed with transition metals to give undesired products 

(Fig. 3.7).8 Cleavage of a P-N bond can lead to iminophosphane type bridging ligands that 

donate to the metal centers through the phosphorus and nitrogen of the fragmented ligand and 

a separate bridging phosphide ligand.  

 

Figure 3.7.  Some examples of metal assisted cleavage of PNP ligands. 
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 It has recently been reported that the reaction of P(III)-N bonds of PNP compounds with 

aldehydes can lead to phosphine oxidation accompanied by C-insertion into the P-N bond or 

formation of -hydroxy phosphine oxides. 9 As seen in Figure 3.8, when bis(diphenyl- 

 

Figure 3.8. Fragmentation of PNP ligands via reaction with aldehydes. 

phosphino)alkylamines were treated with 2 equivalents of furfural, benzaldehyde, or 

paraformaldehyde, C-insertion of the carbonyl carbon occurred in the P-N bond with oxidation of 

phosphorus from P(III) to P(V). This is similar to the Pudovik reaction (Fig. 3.10a). The proposed 

mechanism for this reaction is illustrated in Figure 3.9. It begins with nucleophilic attack on the  

 

Figure 3.9.  Proposed mechanism for C-insertion into a P-N bond. 

carbonyl carbon by the nitrogen atom to form species B. The lone pair of electrons on the 

phosphorus atom attacks the R group on the positively charged ammonium ion, which forms 

species C. The negatively charged oxygen attacks the positive phosphorus center to form a 
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1,3,2-oxazaphosphorine compound (D). The oxazaphosphorine then forms a phosphine oxide 

(E) and an imine (G). Electrophilic addition of F onto the N-C double bond leads to the formation 

of complex H which has an electron deficient nitrogen. The positive charge on the nitrogen can 

be stabilized by the adjacent phosphorus atom (I) to allow migration of the R group and give the 

final product (J). Another possible reaction that can occur with aldehydes is the formation of -

hydroxy phosphine oxides, similar to the Abramov reaction (Fig. 3.10b). This reaction occurs 

from an initial P-N bond cleavage to form Ph2P(O)H, which reacts with the aldehyde to form the 

-hydroxy phosphine oxide. These reactions (Fig. 3.8) have not yet been shown to occur while 

the ligand is bound to a metal center, which we find encouraging.  But, if our catalyst does lose 

a rhodium center as proposed in Figure 3.2 structure C, formation of the -hydroxy phosphine 

oxide or C-insertion could occur when complex C is in solution with the aldehyde product of the 

hydroformylation reaction. 

 

Figure 3.10. (a) Pudovik and (b) Abramov reactions. 

3.5.  Applications 

 After extensive searching, no literature results were obtained in which PNP ligands were 

used in hydroformylation catalysts. This is most likely due to the fact that the related PCP 

bridging or chelating ligands make poor hydroformylation catalysts. They are however used in 

several other reactions. In 1999, Gimbert and coworkers used a dicobalt compound containing a 

bridging PNP ligand with various substituents on the N and P atoms for use in asymmetric 

Pauson-Khand reactions.10 These ligands were very effective in the reaction with yields >98% 
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with the bimetallic complex shown in Figure 3.11. These catalysts were also useful in providing 

the expected adduct from the less reactive indene in 72% yield, which is much higher than the 

best literature describing a 52% yield for this reaction. 

 

Figure 3.11. Bimetallic cobalt catalyst for asymmetric Pauson-Khand reactions. 

` These ligands have been utilized in polymerization/oligomerization catalysts. In 2001, 

Wass and coworkers reported a nickel (II) complex containing a bis(diarylphosphino)-

methylamine ligand that was highly active toward the polymerization of ethylene yielding high 

molecular weight polymers (Fig. 3.12a).11 Its performance was near that of the best nickel-

based systems.12 Another feature of this catalyst was that it was poison tolerant exhibiting 

activity with up to 10% (by volume) water content. In 2007, they also reported up to 95% 

isoprene trimerisation with PNP-chromium catalysts (Fig. 3.12b).13 The activity, 660 h-1, was 

more than two orders of magnitude higher than all previously reported isoprene trimerisation 

catalysts. 

 

Figure 3.12. (a) Isoprene trimerisation catalyst; (b) Ethylene polymerization catalyst. 
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3.6.  Retrosynthetic Analysis of the Aza-Bridged Ligand 

To form the aza-bridged ligands, there are two possible disconnection points which 

would allow the ligand to be synthesized (Fig. 3.13). Most of the synthesis relies on the work 

performed by Monteil.1 Monteil’s work, based on that of Boymond et al.,14 employed a simple 

iodine-magnesium exchange that was very effective in the synthesis of the arms of P4-Ph and 

 

 Figure 3.13.  Retrosynthetic analysis of RN-P4-Ph ligands.  

proceeded in greater than 90% yield. This technique was used to build both the “large arm” and 

“short arm.” At disconnection 1, the large arm and a primary amine are coupled by an Sn2 

reaction to form the aza-bridged ligand. At disconnection 2, the short arm is coupled with an 

“amine bridge” through a Grignard-mediated reaction to form the aza-bridged ligand. 

3.7.  Synthesis of RN-P4-Ph by “Large Arm”-Amine Coupling 

The short arm ((2-bromophenyl)diethylphosphine) is easily synthesized from 1-bromo-2-

iodobenzene, isopropylmagnesium bromide, and diethylchlorophosphine in excellent yield 

(>85%) and is isolated by distillation under reduced pressure (Fig. 3.14a). To form the large arm 

(chloro(2-(diethylphosphino)phenyl)phenylphosphine), the same basic procedure is followed 

and dichlorophenylphosphine is reacted with the Grignard species (Fig. 3.14b). Attempts were  
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Figure 3.14. Preparation of (a) ((2-bromophenyl)diethylphosphine) and (b) chloro(2-
(diethylphosphino)phenyl)phenylphosphine utilizing halide-magnesium exchange reactions. 

made with several solvents (heptane, hexane, pentane, benzene, petroleum ether, 

dichloromethane, tetrahydrofuran) to isolate the desired large arm from the crude reaction 

mixture (white paste-like substance) but all were unsuccessful in giving a pure compound (Fig. 

3.15). Distillation of the compound under an inert atmosphere at reduced pressure (0.25 Torr) 
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Figure 3.15. 31P NMR of heptane and benzene extraction of the large arm. 

was unsuccessful and caused the product to decompose in the distilling flask due to the 

excessive heating (up to 280 °C). We believe that one way to combat the isolation problem is to 
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replace dichlorophenylphosphine with the mono protected species, (N,N-diethylamino)-

chlorophenylphosphine. One problem faced when trying to extract the large arm is that it cannot 

be treated with water to remove magnesium salts and quench unreacted Grignard reagent due 

to the reactive halophosphine. Therefore, an organic solvent extraction is not very helpful. Prof. 

Stanley suggested quenching with an organic soluble anhydrous [HNR3][anion] salt followed by 

an organic extraction. This has not been performed but is worth researching. If the large arm is 

made in which the P-Cl bond is replaced with P-NEt2, a successful extraction could possibly be 

performed and a pure compound isolated (Fig. 3.16). The protected phosphine is then treated  
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Figure 3.16. 31P{1H} NMR of (N,N-diethylamino)[2(diethylphosphino)phenyl]phenylphosphine. 

with 4 equivalents of ethereal HCl to obtain the large arm. Initial results seemed impressive for 

the synthesis of the mono-protected large arm. When the compound was deprotected with HCl, 

two products formed, a clear liquid and translucent crystals, both of which showed resonances 

in 31P{1H} NMR (Fig. 3.17). The crystalline solid has been recrystallized by vapor diffusion 

crystallization and will soon be analyzed by x-ray crystallography. Prof. Stanley suggested that 

there is a possibility that the solid is the same species as the liquid product that has been 
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protonated by the large excess of HCl. This reaction needs to be performed again with a 

stoichiometric amount of ethereal HCl so that a protonated phosphorus species will be inhibited.  

 

Figure 3.17. 31P{1H} NMR spectra of products obtained from the deprotection of the mono-
protected large arm. 

The resonance at 14 ppm in Figure 3.16 was thought to be the starting material, (2-

bromophenyl)diethylphosphine, which failed to react with (iPr)MgBr. The Grignard reaction was 

performed a second time and it was confirmed by 31P{1H} NMR that the reaction did go to 

completion. (N,N-diethylamino)chlorophenylphosphine was added dropwise at 25 °C and the 

solution was stirred overnight. Upon quenching with water, a thick white precipitate formed in 

the aqueous layer. The organic layer was removed and the aqueous layer was extracted with 

diethyl ether. The 31P{1H} NMR spectra (Fig. 3.18) of the crude organic extractions is somewhat 

different from the spectra obtained when it was first performed. The aqueous quench layer 

needs to be analyzed to determine what species makes up the white precipitate. This may give 

some insight on whether the peak at 14 ppm is starting material that  
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Figure 3.18. 31P{1H} NMR of what might be (N,N-
diethylamino)[2(diethylphosphino)phenyl]phenylphosphine from most recent synthesis. 

reformed during the quench or if it is just a coincidence that the peak is the same as the starting 

material.  Once this arm is obtained, coupling with a primary amine should afford the desired 

ligand, RN-P4-Ph.  

3.8.  Synthesis of RN-P4-Ph by Grignard-mediated “Small Arm”-Amine Bridge Coupling  

The second synthetic approach to the aza-bridged ligands is using a Grignard-mediated 

coupling of the small arm and an amine bridge. The amine bridge is synthesized from a primary 

amine slowly treated with 2 equivalents of dichlorophenylphosphine at 0°C while trapping 

liberated HCl with excess pyridine or triethylamine (Fig. 3.19a). Filtration of the ammonium salts 

and removal of the solvent in vacuo affords the amine bridge in 30-40% yield. It was then 

discovered that the reaction to synthesize the amine-bridges never went to completion. Some 

dichlorophenylphosphine was always present in the final solution. To correct this, the final 

mixture was treated again with 1 equivalent of the primary amine and excess pyridine or 

triethylamine. This additional reaction was used to recently synthesize the tert-butyl amine 
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Figure 3.19. Synthetic scheme involving a Grignard-mediated coupling. 

 

Figure 3.20. 31P{1H} NMR of t-butyl amine bridge after the initial reaction and second amine 
addition. 

bridge and Figure 3.20 shows a large increase in the product peak (~120 ppm) and a large 

decrease in the size of the dichlorophenylphosphine peak (~162 ppm). The ethyl and cyclohexyl  

amine bridges need to be resynthesized according to this procedure in order to obtain pure 

compounds. The most recent amine bridge to be attempted is para-tert-butyl aniline as the 

primary amine used. The crude 31P{1H} NMR for this bridge (Fig. 3.21) shows two possible 

product peaks (112 ppm, 126 ppm) and a dichlorophenylphosphine peak (~162 ppm). An 
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attempt to remove the dichlorophenylphosphine by vacuum distillation (heated only to 85 °C to 

prevent decomposition) was made but without success. However, all the peaks in the NMR 

spectra changed. There was a decrease in the dichlorophenylphosphine peak, an increase of 

the peak at 126 ppm, and a decrease in the peak at 112 ppm. It is possible that the reaction  

 

Figure 3.21. 31P{1H} NMR of the initial reaction to form p-tert-butyl aniline bridge and after 
distillation. 

requires more vigorous conditions to go to completion and that the peak at 112 ppm is the 

intermediate compound to the amine bridge. 

The coupling step (Fig. 3.19b) was attempted between the cyclohexyl and tert-butyl 

amine bridges (both not purified) and the short arm but was unsuccessful after stirring at room 

temperature for 24 hours. The crude reaction mixture contained only the initial reactants when 

analyzed by 31P{1H} NMR. Refluxing the mixture for an additional 24 hours was attempted in 

hopes that more vigorous reaction conditions would cause the desired reaction to occur but with 

no success.  
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P(III)-N bonds are displayed as single bonds but analyzing bond length shows that there 

is some double bond character present.  A P-N single bond is approximately 1.75 Å – 1.80 Å, 

whereas the P-N bond lengths in PNP ligands are approximately 1.60 Å – 1.69 Å. Partial double 

bond character most likely occurs because of the -interaction between the p orbital of the 

nitrogen and an empty d orbital of each of the phosphorus atoms. Furthermore, the decrease in 

reactivity of the phosphorus atoms on the bridge is due to the nitrogen center. The lone pair on 

the nitrogen atom increases the nucleophilicity of the phosphorus atoms. Normally, the 

phosphorus can act as an electrophile in a substitution reaction because of the empty d orbitals, 

but an increase in nucleophilicity will make the phosphorus less susceptible to nucleophilic 

attack. 

The Finkelstein reaction is a reaction in which an alkyl chloride or alkyl bromide is 

treated with sodium iodide (or potassium iodide) in acetone to afford an alkyl iodide.3.15 The 

transformation can occur by an SN1 or SN2 reaction depending on the nature of the alkyl halide. 

This reaction is an equilibrium reaction that follows Le Chatelier’s principle. Sodium iodide is 

much more soluble in acetone than sodium chloride and bromide and the precipitation of these 

salts drives the reaction to completion by removing the chloride and bromide ions from solution. 

This same methodology was applied to the amine bridge in hopes that the phosphorus 

centers would be more reactive to nucleophilic attack with replacement of the chlorines for the 

better leaving group, iodine. The amine bridge was allowed to stir in the presence of KI for 24 

hours in THF (Fig. 3.22a). As time progressed, the solution became more orange and a yellow 

precipitate formed, which is indicative of the less soluble KCl. The reaction was monitored by 

31P{1H} NMR, but due to poor spectra, the proof of a halide exchange is not definitive. The last 

coupling step (Fig. 3.22b) has been performed without purification of the iodine-containing 

bridge and isolation of the product has been attempted. The product that was formed was more 

soluble in the aqueous layer than the organic layer and remained in the aqueous layer after 
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workup. This was not observed until the aqueous layer was neutralized with bleach before 

discarding. This sequence of reactions needs to be performed again and careful isolation of 

each intermediate must done in order to obtain clear evidence that the desired products are 

being made. Also, the amine bridge was thought to be pure when the initial Finkelstein-type 

reaction was performed, however there was unreacted dichlorophenylphosphine present from 

the synthesis of the bridge. 

 

Figure 3.22. Synthesis of RN-P4-Ph utilizing the Finkelstein reaction. 

3.9. Future Work 

 Our work has not yet afforded us with the RN-P4-Ph ligands, which is our main focus at 

this point. Synthesis of the large arm through the protected derivative followed by coupling with 

the primary amine will be attempted. The Finkelstein-type reaction to give us the desired ligand 

has been completed, but the ligand has not yet been isolated. If one of these paths is 

successful, separation of the isomers is the next challenge. Solvent crystallization will be 

attempted first since it gives a good separation of the et,ph-P4 ligand. Separation of the isomers 

may be possible by HPLC, which should also be attempted. 

 To date, no considerable effort has been made to achieve a resolution of the ligand 

isomers with chiral resolving agents. Diastereomeric crystallization of chiral molecules by way of 

chiral resolving agents is an older, well known method to obtain the desired compound. This 

process is performed by a trial-and-error basis due to the large number of resolving agents and 

solvent variations. The most likely chiral compounds to give the desired separation are 



 

39 
 

carboxylic acids, such as amino acids, tartaric acids, etc.. I believe that this would be a good 

project to invest time into as it might prove very beneficial to our ligand separation problems.  
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Chapter 4: Experimental Section 

All synthetic procedures were performed using standard Schlenk and dry box 

techniques.  All solvents and chemicals used were purchased from Aldrich and used without 

further purification.  31P NMR spectra were recorded on a Bruker 250 MHz spectrometer.  

Chemical shifts are reported relative to H3PO4 (external standard). 

4.1.  Synthesis of (2-Bromophenyl)diethylphosphine 

 

Figure 4.1. 31P{1H} NMR of (2-bromophenyl)diethylphosphine. 

A solution of 1-bromo-2-iodobenzene (60.45 g, 214 mmol) in THF (200 mL) is treated at 0 °C 

with a 1.089 M solution of isopropylmagnesium bromide in THF (203 mL, 221 mmol) which is 

diluted with THF (200 mL). The Grignard solution is kept at 55 °C to prevent the cannula from 

becoming clogged. The resulting solution is stirred at 0 °C for 6 h. The solution, remaining at 0 

°C, is added dropwise to diethylchlorophosphine (26.61 g, 214 mmol) in THF (200 mL), which is 

cooled to 25 °C. The slightly yellow solution is allowed to warm to room temperature and stir 

overnight. Water (100 mL) is added, and the organic layer is separated. The aqueous layer is 

extracted with diethyl ether (3 x 100 mL). The organic extracts are combined and dried over 
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Na2SO4. All solvent is removed in vacuo to yield a slightly yellow liquid. The product is distilled 

via short-path distillation in vacuo to yield 37.18 g (152 mmol) of an air/light-sensitive, colorless 

liquid: bp 116-122 °C (0.25 Torr). 

% Yield: 71% 

31P{1H} NMR (C6D6): δ = 14.1 (s) 

4.2.  Synthesis of Chloro(N,N-diethylamino)phenylphosphine 

 

Figure 4.2. 31P{1H} NMR of chloro(N,N-diethylamino)phenylphosphine. 

A solution of dichlorophenylphosphine (50.00 g, 279 mmol) in petroleum ether (400 mL) is 

cooled to 78 C. Diethylamine, 2.5 equivalents, (51.08 g, 698 mmol) in petroleum ether (50 

mL) is added dropwise (rate: 1drop/s) to the phosphine. Upon completion, the solution is 

allowed to slowly warm to room temperature while stirring overnight to result in a light yellow 

liquid with a white precipitate. The solution is filtered in the glovebox through a coarse fritted 

funnel to remove all ammonium salts, and the white precipitate is rinsed several times with 

petroleum ether. The solvent is removed in vacuo to yield a non-viscous, cloudy, light yellow 

liquid  (36.72 g, 170 mmol). The product is distilled in vacuo with a Vigreux column to separate 
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the desired product from the starting material, collecting the fraction between 65-90 C (0.25 

Torr). 

% Yield: 61% 

31P{1H} NMR (C6D6): δ = 148.3 (s) 

4.3.  Attempted Synthesis of (N,N-diethylamino)(2 (diethylphosphino)phenyl)-

phenylphosphine  
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Figure 4.3. 31P{1H} NMR of (N,N-diethylamino)(2-(diethylphosphino)phenyl)phenylphosphine. 

A solution of (2-bromophenyl)diethylphosphine (5.87 g, 24.0 mmol) in THF (80 mL) is cooled to 

0 C. A 0.665 M solution of isopropylmagnesium bromide in THF (at 50 C) is added to the 

previous solution dropwise via cannula. The resulting solution is stirred at 0 C for 6 h. After 6 h, 

it is added dropwise via cannula, while still at 0 C, to a solution of chloro(N,N-

diethylamino)phenylphosphine (5.23 g, 24.3 mmol) in THF (50 mL) which was cooled to 78 C. 

The resulting solution is allowed to slowly warm to room temperature while stirring overnight to 

yield a transparent, orange solution. Water (18 mL) is added and the organic layer is separated. 
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The aqueous layer is extracted with diethyl ether (3 x 50 mL). The organic extracts are 

combined and dried over Na2SO4.  It is filtered and the solvent in removed in vacuo. Product 

was carried to the next step (reacted with ethereal HCl; yield was calculated to be greater than 

100% so it was reacted with HCl assuming it was 100%). 

% Yield: 108% (may be due to residual amine) 

31P{1H} NMR (C6D6): δ = 67.4 ppm (s), 51.5 ppm (s), 48.2 ppm (s), 46.3 ppm (s), 45.8 ppm (s), 

43.7 ppm (s), 34.9 ppm (s), 21.9 ppm (s), 14.1 (s) 

4.4.  Attempted Synthesis of Chloro(2-(diethylphosphino)phenyl)phenylphosphine 
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Figure 4.4. 31P{1H} NMR of the products obtained in the synthesis of chloro(2-
(diethylphosphino)phenyl)phenylphosphine. 

A solution of 2 M ethereal HCl (52 mL, 104 mmol) is treated dropwise at 78 °C with a solution 

of (N,N-diethylamino)(2-(diethylphosphino)phenyl)phenylphosphine (8.948 g, 25.9 mmol) in 

diethyl ether (38 mL). Once the addition is complete, the solution is allowed to warm to room 
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temperature and stir overnight. The solvent was removed in vacuo to result in a viscous liquid 

and a clear, crystalline precipitate. 

% Yield: Not calculated due to the formation of a liquid and a solid product 

31P{1H} NMR (C6D6): FOR SOLID PRODUCT:  = 51.3 ppm (s), 40.8 ppm (s), 21.0 ppm (s), 

18.9 and 18.4 ppm (d), 1.9 ppm (t), 3.1 ppm (t), 3.7 and 3.9 ppm (d), 47.2 ppm (s) 

FOR LIQUID PRODUCT:  = 103.2 ppm (s), 2.1 - 2.9 (m), 10.4 ppm (s) 

4.5.  Attempted Synthesis of Bis(chlorophenylphosphino)cyclohexylamine 

 

Figure 4.5. 31P{1H} NMR of bis(chlorophenylphosphino)cyclohexylamine. 

A solution of dichlorophenylphosphine (17.906 g, 100 mmol) in THF (65 mL) is treated with 

cyclohexylamine (4.966 g, 50.1 mmol) and excess pyridine (16.201 g, 206 mmol) in THF (80 

mL) at 0 °C. The resulting yellow solution was allowed to warm to room temperature and stir 

overnight. A precipitate formed and half of the solvent was removed in vacuo. The solution was 

cooled to near freezing, filtered through a coarse fritted funnel, and the solids in the funnel were 

rinsed with cold THF. The filtrate and rinses were combined and passed through a neutral 

alumina column and rinsed with THF. The solvent was removed in vacuo to result in 13.837 g 
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(36 mmol) of a light yellow oil. The percent yield was not accurate because the product was not 

purified. 

31P{1H} NMR (C6D6): 129.5 ppm (s), 127.9 ppm (s) (all other peaks are impurities) 

4.6.  Attempted Synthesis of Bis(chlorophenylphosphino)ethylamine 

 

Figure 4.6. 31P{1H} NMR of bis(chlorophenylphosphino)ethylamine. 

A 50 mmol batch was used. The product (10.674g, 32 mmol) was a translucent orange oil. The 

percent yield was not accurate because some dichlorophenylphosphine was still present. 

31P{1H} NMR (C6D6): 135.6 ppm (s) 

4.7.  Attempted Synthesis of Bis(chlorophenylphosphino)tbutylamine 

A 50 mmol batch was used. The product (6.805 g, 19 mmol) was a translucent orange oil which 

contained dichlorophenylphosphine. It was then diluted with 75 mL THF and one equivalent of 

tert-butylamine and 4 equivalents pyridine were added slowly at 0 °C. The solution was stirred 

for 4 h at room temperature, the ammonium salts were filtered and rinsed with cold THF, and 

the solvent was removed in vacuo. The percent yield was not calculated as a small amount of 

dichlorophenylphosphine was still present. 
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31P{1H} NMR (C6D6): 119.9 ppm (s), 162 ppm (s) (dichlorophenylphosphine) 

 

Figure 4.7. 31P{1H} NMR of bis(chlorophenylphosphino)tbutylamine. 

4.8.  Attempted Synthesis of Bis(chlorophenylphosphino)p-tbutylaniline 

A solution of para-tert-butylaniline (3.733 g, 25 mmol) and pyridine (7.92 g, 100 mmol) in 100 

mL THF were added dropwise at 0 °C to a solution of dichlorophenylphosphine (8.995 g, 50 

mmol) in 50 mL THF. Upon completion of the addition, it was allowed to stir for 4 h at room 

temperature. Approximately half of the solvent was removed in vacuo and the solution was 

filtered while cooled to near freezing and the ammonium salts were rinsed with near freezing 

THF. The crude 31P{1H} NMR showed presence of dichlorophenylphosphine so the product 

mixture was attempted to be distilled in vacuo up to 85 °C but no dichlorophenylphosphine 

came over in the receiving flask. Another NMR was taken in which the peaks changed as 

follows: 162 ppm (dichlorophenylphosphine) decreased, 126 ppm increased, and 112 ppm 
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Figure 4.8. 31P{1H} NMR of bis(chlorophenylphosphino)p-tbutylaniline. 

been calculated since a pure product has not been isolated. 

31P{1H} NMR (C6D6): 112 ppm (s), 126 ppm (s), 162 ppm (s) (dichlorophenylphosphine) 

4.9.  Synthesis of Phenylphosphine 

 

Figure 4.9. 31P{1H} NMR of phenylphosphine. 



48 
 

A solution of dichlorophenylphosphine (37.5 g, 203 mmol) in t-glyme (160 mL) is slowly treated 

with lithium aluminum hydride (10.0 g, 256 mmol) in t-glyme (285 mL) while both are at 0 °C. 

The solution is allowed to warm to room temperature and stir overnight. The product is isolated 

via trap-to-trap distillation as a clear, colorless liquid (18.979 g, 172 mmol). 

Yield: 79% 

31P{1H} NMR (C6D6):  = 121 ppm (s) 

4.10.  Synthesis of Bis(phenylphosphino)methane 

 

Figure 4.10. 31P{1H} NMR of bis(phenylphosphino)methane. 

A solution of phenylphosphine (17.6 g, 160 mmol), dichloromethane (6.9 g, 81 mmol), in N,N-

dimethylformamide (150 mL) is slowly treated with 58% v/v aqueous potassium hydroxide (32 g, 

570 mmol) while both are at 0 °C. This resulted in the formation of a yellow precipitate and 

orange solution. The solution was slowly warmed to room temperature and stirred overnight 

which resulted in white precipitate and a clear, colorless solution. Degassed water (50 mL) was 

added and the precipitate dissolved within 30 minutes. The aqueous layer was extracted with 

pentane (3 x 65 mL) and dried over anhydrous sodium sulfate. The solvent was removed in 

vacuo to yield a clear, colorless liquid (8.096g, 35 mmol). 
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Yield: 44% 

31P{1H} NMR (C6D6):  = 53 ppm (s) (racemic), 54 ppm (s) (meso) 

4.11.  Synthesis of Diethylchlorophosphine 

 

Figure 4.11. 31P{1H} NMR of diethylchlorophosphine. 

A solution of phosphorus trichloride (70.90 g, 515 mmol) in t-glyme (90 mL) is slowly treated 

with a 10% excess of diethylzinc (70.12 g, 567 mmol) in t-glyme (120 mL) while both solutions 

are kept at 0 °C. The solution is allowed to warm to room temperature and stir for 1 hour. The 

product, a clear, colorless liquid, is isolated by trap-to-trap distillation (53.39 g, 429 mmol). 

Yield: 83% 

31P{1H} NMR (C6D6):  = 128 ppm (s) 

4.12.  Synthesis of Vinyldiethylphosphine 

A solution of vinyl magnesium bromide (111 mL (1 M in THF), 111 mmol; 20% excess) and t-

glyme (100 mL) is heated in vacuo to remove all THF. It is then slowly treated with 

diethylchlorophosphine (11.4 g, 91.5 mmol) in t-glyme (100 mL) while a temperature of 0 °C is 

maintained. Trap-to-trap distillation affords the clear, colorless liquid product (8.26 g, 71.1 

mmol). 
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Yield: 78% 

31P{1H} NMR (C6D6):  = 18 ppm (s) 

 

Figure 4.12. 31P{1H} NMR of vinyldiethylphosphine. 

4.13.  Synthesis of racemic and meso et,ph-P4 

 

Figure 4.13. 31P{1H} NMR of racemic and meso et,ph-P4. 
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Vinyldiethylphosphine (2.2 eq.) (13.0 g, 112 mmol) and bis(phenylphosphine)methane (1 eq.) 

(6.2 g, 27 mmol) are combined in a flask and irradiated with a UV light while stirring for at least  

8 h. Excess vinyldiethylphosphine is removed in vacuo (90 °C) to result in a clear, slightly 

yellow, viscous liquid ( 12.5 g, 27 mmol). 

Yield: 100% 

31P{1H} NMR (C6D6):  = 16 ppm (t) (arms), 24 ppm (t) (racemic), 25 ppm (t) (meso); [30.3 

ppm (s) and 30.6 (s) are impurities. 
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