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FOREWORD 

This Dissertation, divided in 5 chapters, is concerned with the gas-phase formation of 

environmentally persistent free radicals from thermal degradation of catechol, hydroquinone, 

phenols and Tobacco.  The first chapter, the introductory part of the present work, gives a broad 

view on the combustion generated persistent free radicals, their health impacts, and the 

importance of their gas-phase study.  The second chapter describes the experimental part of this 

work which basically relies on radicals’ characterization employing the Electron Paramagnetic 

Resonance (EPR) coupled with the Low Temperature Matrix Isolation technique (LTMI). The 

formation of Environmentally Persistent Free Radicals was studied at low and atmospheric 

pressure. Mass analyses of the thermal degradation products of the precursors were performed 

employing the Gas-Chromatography Mass Spectroscopy (GC-MS). The results are reported in 

the third chapter.  The discussion part of this dissertation presented in chapter 4 shed light on the 

understanding of gas-phase radical formation depending on their environment.  In chapter five, a 

summary of the main findings is presented.  
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ABSTRACT 

Catechol, hydroquinone and Phenol are major constituents of the mainstream tobacco smoke. 

The toxicity of tobacco has been attributed to the ability of catechol and hydroquinone to 

undergo endogenous or exogenous redox cycling to form semiquinone type radicals responsible 

of Reactive Oxygen Species (ROS) formation. ROS such as hydroxyl radicals can cause severe 

oxidative stress on biological tissues and can provoke severe signaling pathways leading to 

cardiovascular and pulmonary dysfunctions and carcinogenesis. Given that semiquinone type 

radicals are organic radicals, characterized by their high instability and reactivity; it is somewhat 

surprising that they can live long enough mostly when associated with atmospheric fine particles 

to induce the biological damages reported in the literature. Thus identification of the exact nature 

of the free radicals, their origin, the reason for their stability and persistency, and their health 

impacts appear to be an increasing environmental issue.  

Consequently, we have performed studies of the thermal degradation of catechol, 

hydroquinone and phenol and structurally similar derivatives that have been proposed as 

progenitors of semiquinone type radicals. Tobacco pyrolysis has also been investigated. We have 

employed in conjunction with the Electron Paramagnetic Resonance (EPR), the technique of 

Low Temperature Matrix Isolation in which catechol, hydroquinone, phenols and Tobacco were 

pyrolyzed in both low and atmospheric pressures reactor that was directly connected to a liquid 

nitrogen-cooled cold finger located in the EPR cavity of a Bruker EPR spectrometer. 

Comprehensive potentially persistent free radicals identification associating additional 

experimental and mathematical tools has led to the acquisition of the EPR spectra of p-

Semiquinone, o-Semiquinone, cyclopentadienyl and phenoxy radicals. The 

hydroxycyclohexadienyl radical, one of the unexpected radicals according to the decomposition 

mechanism developed earlier, was found during the atmospheric pyrolysis of phenol. The 



 xv

supposedly very labile radical identified was the hydroxycyclopentadienyl.  The methylperoxide 

type radicals were found when trace of oxygen was used during the pyrolysis experiments.  

The precursors pyrolysis product analysis employing GC-MS revealed the formation of 

naphthalene, indenol, indene, benzofuran-2-methyl, indenone, fluorene, and acenaphthylene, 

thus giving additional evidence of the formation of both labile and potentially persistent free 

radicals.  
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CHAPTER 1: INTRODUCTION 

1.1 General Introduction 

The goal of the present study is to characterize the potentially environmentally persistent free 

radicals formed from the thermal degradation of basic precursors such as catechol, 

hydroquinone, and phenols found in mainstream tobacco smoke1-4.  Catechol, hydroquinone and 

phenol supposedly form semiquinone and phenoxy types radicals detected in Particulate Matter 

(PM) which toxicity has been reported in the literature5-7.  

Semiquinone radicals are highly active in oxidative stress that can lead to cancer, mutations, 

and alteration of DNA 8-10.  Phenoxy radicals can also combine to form polychlorinated dibenzo-

p-dioxins / dibenzofurans (PCDD/F), the most potent toxic environmental pollutants 11. 

Cyclopentadienyl radical toxicity is not clearly and solely established. However, 

cyclopentadienyl type radicals are known to be environmentally persistent12 and are precursors to 

Polycyclic Aromatic Hydrocarbons (PAHs) formation13,14. Semiquinone type radicals have been 

found in tobacco 15 , 8 and thought to be the causes of tobacco toxicity16. 

However, for organic radicals such as semiquinone, known to be very reactive, to be stable 

enough to cause damage in living tissue is quite surprising.  Thus the determination of the exact 

nature of radicals formed during the pyrolysis of precursors found in the mainstream tobacco 

smoke is important to establish the link.  The combustion sources that generate the semiquinone 

containing PM are numerous.  The following paragraph will present a summary of those sources.  

1.2 Combustion Sources of Particulate Matter 

One of the greatest of mankind’s achievements is the ability to make fire.  Fire making 

produces heat used in variety of ways. Over the time, people have used combustion to generate 

energy needed to sustain life. Archaeological research holds evidence that control fire had been a 

humankind reality 1 to 1.8millions years ago (UNESCO-Fossil Hominid Sites) where the 
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primary sole source of energy was wood.  Wood remains a viable energy source worldwide. 

However, the need of diversification of energy sources has led to the search for fossil fuels, such 

as petroleum, natural gas and coal. 

Power plants use those sources to supply the vast majority of the world's electricity today; the 

International Energy Agency states that nearly 80% of the world's power comes from these 

sources.  The burning of fuels of any kind not only provides human with certain welfare, but also 

generates by-products which by polluting the environment can harm people. 

 Combustion-generated harmful PM has been extensively investigated and reported in the 

literature.  The combustion of wood in residential fireplaces and wood stoves accounted from 10 

to 20% of the total fine particle emissions in United States according to U.S. Environmental 

Protection Agency data for 199517.  Wood species grown in Northeastern United States revealed 

that the fine particulate mass emission rates from their combustion ranged from 2.7 to 11.4g per 

Kg of wood  burned18, while those grown in the Southern United States PM mass emission 

ranged from 4.3 to 6.8g per Kg of wood burned19.  Even higher rates have been reported 20. 

Polychlorinated dibenzo-p-dioxins and polychlorinated furans (PCDD/F) are the most toxic 

environmental pollutants. Combustion and thermal processes are the primary source of their 

formation21-26.  Fine particulate matters are also formed from motor vehicles, power plants, meat 

charbroiling,  and cigarette smoke27,28. 

The mechanism by which free radicals are formed is under intensive scientific scrutiny. 

Several researches have shown that combustion sources are primary causes of radical formation. 

The hydrocarbon fuel, coal and wood burning are combustion processes by which energy is 

released for the human welfare.  The sustainability of the combustion process is radicals driven. 

The concentration of free radicals that a given material can release strongly determines the 
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flammability of the material.  This speeds up initiation and propagation reactions, leading to the 

combustion of the material.  Given that fuels contain significant amount of Catechol (CT) 

hydroquinone (HQ), and phenols29-33, the link between fuels burning and environmental 

pollution has been well established.  Phenol, HQ, and CT are found in the thermal degradation of 

lignin and other polymeric plant materials that usually contain aryl ether and aryl alcohol 

linkages29, 30, 34, 35. 

Biomass burning also releases significant quantity of CT, HQ and phenols18, 36, 37.  CT, HQ 

and phenols are also formed from coal burning 32, 33, 38.  Their derivatives including quinones and 

PAHs have been reported in both atmospheric aerosols and combustion-generated particulate 

matter (PM).  In 2004, a report gave evidence of their occurrence in atmospheric total suspended 

particulate (TSP) at concentrations of 5.0-730 µg/m3 39. 

The emissions of HQ and CT from wood-burning fireplaces were reported to be 0.3-10 

mg/g and 1.7-9.8 mg/g of organic carbon, respectively18,19.  The emissions of CT from open 

burning of agricultural biomass were reported to be 0.060-1.2 mg/g of organic carbon and 0.11-

4.0 mg/g for other quinones 31.  Methoxyhydroquinones and methoxyphenols (e.g. syringols) are 

frequently reported in biomass combustion emissions as partial decomposition products of 

lignin34,40. 

Methoxyhydroquinones have been reported to be 0.50-3.0 % of total biomass burned 41. 

Methoxyphenol concentrations were reported in airborne PM at concentrations of 0.10-22 

ng/m342
.  From 900 up to 4200 mg of methoxyphenol is released per Kg of burnt wood and 

biomass43-45.  The burning of tobacco generates major organic components such as phenol, CT 

and HQ46-53.  Refineries, power plants and motor vehicles contribute significantly to CT, HQ and 
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phenol emission. The huge effort put in vehicle designs and gasoline formulations has somehow 

reduced the emissions of air pollutants. However, combustion-generated air pollutants are still of 

major concern mostly in cities with high population densities. 

The emissions of quinone from catalyst-equipped gasoline-powered motor vehicle are 

reported to be 0.849 µg/km versus 25.4 µg/km for no catalyst-equipped gasoline-powered motor 

vehicle54.  Also, emissions of quinones were reported to be 15-140 µg/g in gasoline exhaust 

particles55
 and 7.90-40.4 µg/g in diesel exhaust particles39.  Light-duty gasoline vehicles 

technology classes reported the emission of benzoquinone in low emission vehicles, three-way 

catalyst equipped vehicles, and smoking vehicles to be 2.0 µg/L, 85 µg/L, 3200 µg/L of fuel 

consumed respectively in gas-phase and 1.8 µg/L, 46 µg/L, 1500 µg/L of fuel consumed 

respectively in particle-phase56. Significant reduction of benzoquinone emission from heavy-duty 

diesel vehicles has been achieved. In 1995, the benzoquinone emission was estimated to be 

28000 µg/L versus 510 µg/L in 1999 of fuel consumed in gas-phase and 1600 µg/L versus 230 

µg/L in particle-phase56. 

From the presentation of those data, it is obvious that combustion of fuels is the cause of 

major environmental pollution, leading to necessarily regulatory action.  For example, the United 

States Environmental Protection Agency has adopted a new health effects-based Ambient Air 

Quality Standard that limits the maximum allowable ambient concentrations of fine 

particulates57.  An estimate of 30 billion US dollars per year will be needed to meet these 

standards and require the development of new control technology58. Table 1.1 summarizes the 

sources of the environmentally Persistent Free Radical (PFRs ) precursors. 
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Table 1.1 Sources of Environmentally Persistent Free Radicals 

       Categories                       PFR Precursors  Comment   References 

                     Phenols 
Type of 
Woods 

   CT    HQ Phenol 
Yellow 
poplar1 

4.127 7.609 na 

White ash1 1.741 1.621 na 
Sweet-gum1 1.383 1.435 na 
Mochemut 
hickory1 

9.865 10.119 na 

Loblolly 
pine1 

2.600 0.763 na 

Slash pine1 1.711 0.295 na 
Red maple 2 0.799 0.625 na 
Northern red 
oak2 

5.434 5.570 na 

Paper birch2 1.110 0.919 na 
Eastern 
white pine2 

1.512 0.356 na 

Eastern 
hemlock2 

0.952 1.146 na 

Balsam fir2 7.11 4.793 na 
Oak3 na na 0.3-68 
Eucalyptus3 na na 0.1-106 
Pine3 na na 0.1-125 

  Oxy-PAH 
 1,4 

naphthalene
dione 

1H-
phenalen-1-
one 

Benzanthrone 

Yellow 
poplar1 

0.110 0.474 0.164 

White ash1 0.008 0.299 0.205 
Sweet-gum1 0.006 0.163 0.088 
Mochemut 
hickory1 

0.017 0.379 0.173 

Loblolly 
pine1 

0.018 0.244 0.108 

Slash pine1 0.016 0.280 0.094 
Red maple 2 0.010 very low 0.117 

     
 
   
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Wood Smoke 

N. red oak2 0.007 0.046 0.066 

Fine Particle 
emissions 
from 
combustion 
of Woods 
grown in the 
southern1  , 
north-
eastern2 of 
United States 
Measured in 
mg/g of 
Organic 
Carbon OC, 
and San 
Joaquin 
Valley (CA) 3 

in µg/g of 
wood 
(na: not in 
the original 
source) 

(1) (2002) Fine, P.;  Cass, 
G.; Simoneit, B.; Env & 
Tech. 
 
(2) (2001) Fine, P.;  Cass, 
G.; Simoneit, B.; 
Environ.Sci. Technol. 
 
 (3) (2001) Nolte, C.; 
Schauwer, J.; Cass, G.; 
Simoneit, B.; Environ.Sci. 
Technol. 
 
 

 

                                   Phenols 
 CT a  HQ a  Phenol a 
Bright 1 5.8-6.0 4.1-4.5 2.2-2.4 
Burley 1  3.1-3.2 3.5-3.7 2.0-2.2 
Oriental 1 5.9-6.0 3.6-3.8 1.4-1.6 
Mix    

                                 Polyphenols 
 Chlorogenic 

acid 
Quinic acid Caffeic acid 

Bright 1 9.7 1.9 0.19 
Burley 1  0.4 1.4 ~ 0.01 
Oriental 1 9.0 1.2 0.15 

 
 
 
 
 
 
Tobacco Smoke 

Mix    

a: µg/mg 
of TPM of 
mainstrea
m tobacco 
smoke 

1- (2006) Wooten, J.; 
Chouchane, S.; McGrath, T. 
E. 

          1-Phenols     
  CT HQ Phenol 

Open 
burning of 

(2005) Hays, M.; Fine, P.; 
Geron, C.; Kleeman,M.; 

(Table Cont’d) 
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Rice straw 

 
1.179 

 
0.710 
(methylbeze
nediol) 

 
0.371 
(methoxybeze
nediol) 

 
Wheat straw 

 
0.060 

0.104 
(methylbenz
enediol) 

0.095 
(methoxybeze
nediol) 

                          2- Oxy-PAHs 
 Anthracene-9,10 

dione 
 

Rice straw ND  

 
 
Biomass Burning 

Wheat straw 0.033  

agricultural 
biomass 
(mg/g of 
OC) 
 
ND: Not 
Detected 

Gullett, B; Atmosp. Env. 

 

Phenols 

 CT   HQ Phenol 
 na 1 na 1 1 5-25µg/cm3 

    

                       PAHs, Oxy-PAHs 
 Bezoquinon

e 
1,4 
naphthaquin
one 

 

     
  
 
 
Municipal Waste 

 11-5µg/cm3 11-5µg/cm3  

Semivolatile 
compounds 
µg/cm3 of 
waste 

(1998) 
1-Trenholm, A.; Waste 
Management 

                 Oxy-PAHs 
 Benzoqui

none 3 
Anthrace 
-9,10-
dione 1 

1,4 
Naphtho
quinone 3  

Benz(a) 
anthracene
-7,12-dione 
2 

     
 
 
 
Motor Vehicles  1-5 

µg/cm3 
0.849-    
25.4µg 
/kma 

1-5 
µg/cm3 

0.02-0.26 
ng/m 3 

a catalyst-
equiped-
non 
catalyst 
equipped 
motor 
vehicles 

1-(2002) Schauer, J.; 
Kleeman, M.; Simoneit, B.  
Environ.Sci. Technol 
2-(2002) Zheng, M.; Cass, 
G.; Edgerton, E. 
Environ.Sci. Technol 
3-(1998) Trenholm, A. 
Waste Mangement 

                    Phenols 
 CT HQ Phenol 
 
Foliar Fuels1 

 
na 

 
Na 

 
0.5 -3%  
of PM2.5 
mass 

 
Coal 

   

 
Peat3 

  29.6-46.4ppm 

Candle    

                            OxyPAHs 
 Anthracened

ione/ 
anthracene 

Benz(a)anth
racene 7,12-
dione 

Corocene/pyre
ne(PAH) 

 
Foliar Fuels1 

   

 
Coal4 

/0.002-
4.691mg/g 

0.073-0.217 
g/mg 

1.119mg/g 
0.075-4.3 

 
Peat3 

   

    
 
 
 
  
 
 
 
Fuels Burning 

Candle2 0.09-
0.05mg/g of 
wax/beeswa 

0.007-
0.02mg/g of 
wax/beeswa 

 

 
Mass of 
methoxy 
Phenol of 
total PM2.5 
mass 
emission 
from wax 
and beeswax 
(paraffin) 

1-(2002) Hays, M.; Geron, 
C.; Linna, K.;Smith, D. 
Environ.Sci. Technol 
2- (1999) Fine, P.; Cass, G. 
Environ.Sci. Technol 
. 
3- (2004) Jefford, A. 
London 
4- (2004) Yingjun, 
C.;Xinhui, B.; Jiamo, F. 
Fuel 
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1.3 Health Effects of Fine Particles 

 Fine particles are known to be very toxic and their health related effects are well 

documented.  Several epidemiological studies in both the United States and Europe, have 

concluded that exposure to fine particulates increases mortality due to heart and lung disease59-64.  

The magnitude of their health impact is potentially enormous: fine particle toxicity may cause up 

to 450,000-600,000 deaths per year in the United States 65.  Ambient air pollution is the result of 

complex mixture of volatiles and particulates from various sources including vehicle exhaust 

pipes, flaring of hydrocarbons at refineries sites, coal burning at power plants, burning trash or 

crops after harvest  still in use in many developed countries66. The size and composition 

distribution of fine particulate matter from motor vehicles, wood burning, and cigarette smoke 

27,28,67-69 significantly impact human health. 

Particles which sizes are greater than 10 µm, once inhaled, can pass through nose or 

mouth to penetrate the larynx.  They can eventually be exhaled. The ones which sizes are 

between 10 µm and 2.5 µm, can follow air stream through the larynx and enter the trachea and 

the bronchial regions of the lung.  They can also be removed.  However, those particles with 

sizes less than 2.5 µm deposit deep into the alveolar regions of the lung and even diffuse directly 

into the blood stream.  

It is well established that fine particulate matters produce acute cardiovascular 

malfunction indirectly through the induction and perpetuation of inflammatory responses in the 

lung 66.  Worse, particles with the sizes of 0.1 µm can penetrate deep into the lower respiratory 

tract and diffuse into the blood stream then get to the heart where they may cause many heart 

diseases including the influences of the cardiac myocytes and cardiovascular functioning 70-72.  

Exposure to fine particulate matter causes acute inflammatory response73  asthma and chronic 

obstructive pulmonary disease74.  
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It has been reported that the number of deaths due to respiratory viral infections is 

increased on high concentration of ambient air pollution days 75.   Cardiac myocyte degeneration 

76 and changes in heart rate 77 when exposed to environmental pollutants for even a short period 

of time have been shown.  

Fine particles toxicity has been attributed to their association with free radicals 78-80.  

PFRs are chemical compounds with one or more unpaired electrons, sufficiently stable towards 

decomposition and resistant to further reaction and can exist for long period of time in the 

atmosphere.  

Those PFRs that potentially include semiquinone-type and phenoxyl-type radicals are 

highly resonance stabilized and are formed in combustion systems or thermal processes such as 

burning of cigarette, biomass fuels, fossil fuels, coal, and hazardous materials 81-83.  Recent 

studies have reported that semiquinone and phenoxyl radicals are persistent when they are 

associated with combustion generated fly-ash. Thus they can exist for long period of time and be 

transported over considerable atmospheric distances 5-7.  Semiquinone radicals are highly active 

in oxidative stress that can lead to cancer, mutations, and alteration of DNA 8-10.  Phenoxyl 

radicals can also combine to form polychlorinated dibenzo-p-dioxin / dibenzofuran (PCDD/F) 

which is the most potent toxic environmental pollutants 11. Cyclopentadienyl radical toxicity is 

not clearly and solely established.  

However, cyclopentadienyl type radicals are known to be environmentally persistent.12 

and is precursor to PAHs formation 13,14.  Due to the structural similarity of semiquinone and 

phenoxyl radicals; and possible further decomposition of semiquinone and phenoxyl radicals to 

form cyclopentadienyl radical, Hydroquinone, Catechol, chlorinated benzenes, phenol, and 

chlorinated phenols are chosen as their precursors in the present study. The main reason of this 
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choice is that Hydroquinone, Catechol, and phenols occur naturally in all type of fuels and are 

used in a variety of ways that can have serious health impacts. 

1.4 Occurrence, Use and Health Impacts of Phenols, Hydroquinone, and Catechol  

Phenols, Catechol and Hydroquinone natural occurrence has been reported in the literature. 

Phenol is found in variety of biological substances such as leaves, plants, hardwoods, fish tissue  

animal waste, and water 84-87.  Likewise, Catechol (CT) and Hydroquinone (HQ) are found in a 

variety of forms as natural products from plants and animals.  The hazardous substances data 

bank (HSDB, 1993) reported that CT is found in onions, apples, and even in the leaves or 

branches of oak and willow trees. CT and HQ have been identified in roasted coffee beans 88
 and 

in the leaves of blueberry, cranberry, cowberry and bearberry plants 89.  HQ is also contained in 

tea at concentration up to 1% of total ingredients 90.  HQ was observed in the tissue cultures of 

Antennaria-microphylla and Euphorbia-esula 91, 92 and in the explosion chamber of beetle 93,94
 . 

The natural occurrence of phenol, catechol and hydroquinone that implies their daily use in 

variety of ways can lead to serious health issues.  

    The usefulness of phenol, catechol (CT) and hydroquinone (HQ) has been fully 

investigated.  Cosmetic and hygienic products employ phenol.  Variety of indoor products 

ranking from mouth washes, shaves, creams, to throat lozenges contain phenol 95.   Phenol is also 

employed in the manufacture of synthetic products such as plastics, fibers, adhesives, resins, and 

rubber (HSDB, 1991).  

 HQ and CT are used in many fields including graphic arts, photographic developers; 

antioxidants, polymerization inhibitors, and pharmaceuticals.  In medicine, CT and HQ are used 

both for cosmetics and medical skin preparations.  They serve as de-pigmenting agent to lighten 

small areas of hyper-pigmented skin89
 or in ingredient of permanent hair dyes and color 

preparations 96,97.  HQ and CT are used in medical and industrial X-ray films98
 as well as 
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developer in black-and-white photography or related graphic arts such as lithography and 

rotogravure89,98-100.  They are widely used in the manufacture of rubber antioxidants, monomer 

inhibitors, and food antioxidants to prevent deterioration in many oxidizable products89,101.  

Application of a CT antioxidant protocatechuic acid on 12-Otetradecanoylphorbol- 13-acetate 

induces inflammatory responses in mouse skin102. The hypochlorous acid, a powerful pro-

inflammatory oxidant produced by activated neutrophils, to protect liposomes against iron-

ascorbate-induced oxidation is scavenged by abietic acid-derived CT103.  It is obvious that 

catechol, phenol and hydroquinone contribute to human welfare.  However, they become very 

harmful and toxic at a given dose as it is known, dose makes toxicity. 

When inhaled, phenol, HQ or CT can induce coughing, burning sensations, labored 

breathing in humans104-107
 as well as reduced bone marrow and corneal damage in mice 107-111. 

Cigarette smoking is the leading cause of preventable death in the United States.  More than 

400,000 deaths per year (clinnimmune-immunotoxicology report, 2003) is tobacco toxicity 

related. A typical smoker inhales more than 100 µg of HQ or CT per cigarette 16
 and ~280 µg of 

phenol per cigarette112.   In studies of repeated-dose toxicity of phenol, "slight" changes in the 

liver and "slight to moderate" kidney damage were observed in rats receiving 50 (liver) or 50 and 

100 (kidney) mg phenol/kg-body weight per day (gavage in 1% water solution) over six 

months113,114, followed by considerate weight loss due to less consumption of water by the 

exposed animals 115, 116.  Even thought their toxicity level in human is not well established, those 

values seem enough to cause diseases given that heavy smokers smoke at least 20 cigarettes per 

day. It is also reported that the use of phenol in the surgical procedure of skin peeling produces 

cardiac arrhythmias117. 

Toxicological studies of Hydroquinone showed that Hydroquinone has reproducibly to 

induce benign neoplasms in the kidneys of male F344 rats dosed orally either by gavage (25 and 
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50 mg/kg body weight) or diet (0.8%)118.  Inhibitions of ribo-nucleotide reductase that cause 

immediate cessation of DNA synthesis in proliferating lymphocytes 46,119 is due to HQ or CT 

concentration as low as 10µM .  50µM of HQ or CT is reported to instantaneously block more 

than 90% DNA synthesis120. 

The potency of HQ and CT is attributed to their capability to exist as semiquinone radical 

form causing cancer, mutations, and many health issues. Semiquinone radical has been reported 

in cigarette smoke5,9
 and demonstrated to be highly redox-active toward producing reactive 

oxygen species (ROS) in biological systems9,121,122. 

ROS induces oxidative stress in living organisms which is currently considered to be 

significant causes of the health impacts of airborne fine particulate matter66,78,121,
 

123,124.  

Cigarette smoke enhances tumor cell invasions and metastasis, thus spreading cancer in the 

whole body 125.  Semiquinone type radicals and ROS from cigarette smoking have been shown to 

cause oxidative DNA damage, stress on lung tissues126-129. 

Semiquinone radical also has been reported in wood smoke and other combustion sources. A 

study of wood burning indicates the generation of radicals and ROS that break cellular DNA 

strands in cultured raw 264.7 mouse macrophage cells130.  Even if the initial DNA cell is 

damaged, human immune system has the ability to repair it.  However, the reparation can be 

stopped or delayed by the presence of radical in the bloodstream.  Phenol significantly 

contributes to health damage. 

By losing the hydrogen atom of its hydroxyl group, phenol may exist in form of phenoxy 

radicals.  Phenoxy radical toxicity is well documented.  In 1999, a study on the oxidation of the 

fluorescent dye 2',7'-dichlorofluorescein (DCF) by horseradish peroxidase was reported 

suggesting that  DCF could be oxidized either by horseradish peroxidase-compound I or -

compound II with the obligate generation of the DCF phenoxyl radical (DCF·). In turn, DCF· 
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oxidizes GSH, generating the glutathione thiyl radical (GS·). Similarly, DCF· oxidized NADH, 

generating the NAD· radical that reduced oxygen to superoxide 131, confirming the belief that 

phenoxyl radical may also have a major impact on human health to the same extend of the 

semiquinone radicals.  Furhtermore, studies have shown the direct implication of phenoxy 

radicals in tobacco toxicity132, glutathione depletion133, DNA adduction134, 135 generation of 

reactive oxygen species136 and its contribution to the anti oxidant mechanism of myricetin. 

1.5 Formation of Cyclopentadienyl, Phenoxy, and Semiquinone Radicals 

The toxicity of the PM has been attributed to their association with environmentally 

persistent free radicals78.  Combustion-generated radicals have been extensively investigated 6, 7, 

67, 81-83, 137-148.  Several attempts have been explored to draw the mechanisms of 

cyclopentadienyl, phenoxyl and semiquinone type radicals formation based on products 

distribution of the combustion of suitable precursors.  However, few studies have really focussed 

attention on the environmentally Persistent Free Radicals (PFRs) formation in gas-phase 12,7.  

The most representative precursors used in the understanding of persistent free radicals 

formation were Catechol and Hydroquinone not only because of their structural similarity, but 

also because of their common aromatic properties and their natural occurence.  

Phenol, a likely reaction intermediate in the decomposition of hydroquinone and catechol, is 

also used as precursor of the environmentally persistent free radicals. Figure 1.1 depicts the 

molecular structures of Hydroquinone, Catechol, phenol, para-semiquinone, ortho-semiquinone, 

parabenzoquinone, phenoxyl and cyclopentadienyl radicals.  Free Radicals formation from 

precursors can occur either in pure gas phase or on surface mediated radical formation.  

In the gas-phase, endothermic dissociation of the oxygen-hydrogen bond of HQ, CT or 

phenol forms semiquinone140 or phenoxy radicals149. Radical-molecule interaction can also, in 

gas phase lead to the abstraction of hydrogen atom of the hydroxyl group of HQ, CT or phenol.  
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In the presence of high concentration of initiated radicals the radical-molecule interaction forms 

semiquinone or phenoxyl 140,142-144,150. 

 

 Scheme 1.1 displays possible routes of formation of semiquinone radical form HQ and CT 

molecules and phenoxyl radical from phenol in gas-phase.  

Likewise, the chemisorption onto particulate matters of molecules of similar structure as 

phenol, catechol and hydroquinone such as monochlorobenzene ( MCBz), 1,2-dichlorobenzene 

(1,2-DCBz),  2-monochlorophenol (2-MCP), 4-chlorophenol (4-MCP) and  1,4 dichlorobenzene 

can lead to the formation of substituted or non-substituted phenoxyl radical. Chlorinated 
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Figure 1.1 Formula structure of Hydroquinone, Catechol, phenol, para-semiquinone, ortho-
semiquinone, p-Benzoquinone, o-Benzoquinone, phenoxyl and cyclopentadienyl radicals. 
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benzenes such as MCBz and 1,2-DCBz may bind to the surface of particulate matter and form 

phenoxyl radical or chlorinated phenoxyl radical through hydrogen chloride 

Heterogeneous reaction of precursors at surfaces can lead to surface-generated radical formation.  

Semiquinone radicals may form on the surface of combustion generated fly-ash through the 

elimination of water and electron transfer to the metal surface in chemisorption 

Process 6, 151, 152. Scheme 1.3 depicts possible routes of formation of semiquinone radical 

from HQ or CT and phenoxyl radical from phenol (on a metal surface). 

 

OH

OH O.

OH

OH

OH

O.

OH

O.

OH

O.

OH

+ R .

-RH

-RH

+ R .
- H .

- H .

 

OH O.O.

- H . + R .

- RH  

Scheme 1.1: General Formation of Semiquinone and phenoxyl Radicals in Gas-Phase 
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Scheme 1.2 Gas-Phase Formation of CPD from Phenoxy Radical (adapted from reference 142 
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elimination and electron transfer 152,  153 as shown in scheme 1.4. 2-MCP and 4-MCP can 

proceed to the formation of substituted chlorophenoxyl radical either by water or hydrogen 

chloride elimination.   

The mechanism of phenyl type radical formation either in gas phase or onto metal surface 

seems straightforward.  However, cyclopentadienyl radical formation may be very complex 

because of the possibility of the existence of several routes leading to the radical. The simpler 

route, as depicted in Scheme 1.2 is through phenoxy radical with elimination of carbon 

monoxide 142-144, 150, 154, 155. 
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Scheme 1.3: Semiquinone and Phenoxyl Radicals Formation  Respectively from HQ or CT 
and Phenol on a Metal Surface (adapted from 156). 
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Scheme 1.4: Formation of Phenoxyl Radical and Chlorinated Phenoxyl Radical on a 
Metal Surface from Chlorinated Benzene (adapted from reference 156) 

CT and HQ thermally degrade to yield CPD as major product in given temperature domain 

12. It has been shown that phenol is one of major products of CT pyrolysis 156, and an important 

reaction intermediate for catechol, hydroquinone and resorcinol 157, 140.  It therefore can be 

suggested that the simplest route for CT or HQ thermal decomposition is through phenol 

formation that generates phenoxy radical which by elimination of carbon dioxide lead to CPD 

formation.  See reference 12 for the scheme of the reaction.  The presence of CPD radical in all 

temperature domain of the Pyrolysis of CT and HQ suggests that some heterogeneous reactions 

with the wall are occurring which favour its formation even at low temperature 12. 

Radicals exhibit very short lifetime in the gas-phase or in solution 158, 146, 147; however, they 

can be stabilized and exist for a very long period of time when they associate with surface of 

some particulate matter that contain transition metals 6, 7, 138, 139, 78. Fine particles of fly ash are 

normally generated from combustion sources that contain transition metals and persistent 

radicals 81, 82, 67. The interaction between phenoxy-type radicals may result in the formation of 

hazardous pollutants such PCDD/F and PAHs. 
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1.6 Hazardous Pollutant Formation from Radicals 

It has been demonstrated that free organic radicals are precursors to the formation of 

hazardous pollutants such as naphthalene, dioxins/furans and their congeners 26, 159-161.  Even 

thought only combustion products distribution analysis was the key element in implicating 

radicals in the formation of hazardous pollutants, those studies gave good understanding of the 

mechanisms of the formation of naphthalene and its derivatives, the dichlorodiobenzo-dioxins 

and furans. 

1.6.1 Formation of PCDD/Fs 

PCDD/Fs are found as trace products from many combustion and other thermal processes;  
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Scheme 1.5 General mechanism of the formation of aPCDD/Fs from polychlorinated phenoxy 
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they are also found in fish, sediment, and soil 162.  Extremely toxic, research focuses have been 

on PCDD/Fs for decades.  The most toxic among PCDD/F is the 2,3,7,8-tetrachlorodibenzo-p-

dioxin (TCDD). TCDD, even at ppb level, bio-accumulates in living tissues  

and causes birth defects, cancer, skin disorder, liver damage, and suppression of the immune 

system 163. In combustion processes, radical-radical interaction of phenoxyl and/or 

chlorophenoxyl radicals is the main mechanism pathway to the formation of PCDD/Fs 159, 164-166 

1.6.2 Formation of Naphthalene, Hydroxynaphthalene, Dihydroxynaphthalene, 1H-Indenol 
and 1H-Indene 

The formation of Naphthalene and its chlorinated congeners from combustion of phenol and 

chlorinated phenols has been reported in the literature 143, 155, 167-171.  In this radicals identification 

study, the atmospheric pyrolysis of phenol and chlorinated phenols, catechol and hydroquinone 

yielded, in addition to radicals identified by EPR, products that have been identified as 

naphthalene, hydroxynaphthalene, dihydroxynaphthalene, 1H-Indenol, and 1H-Indene by GC-

MS 14  

PAHs formation has been explained by the combination of the propargyl radical to give non 

radical species or radical species that subsequently undergo rearrangement to non-radical 

species167, 172,173.  In 1975, Naphthalene formation from phenol was first reported 174.  However, 

Naphthalene is thought to be formed from the condensation of two CPD radicals 175, or the 

condensation of two molecules of Cyclopentadiene 155  Scheme 1.6 depicts the naphthalene 

formation mechanism as in reference 175 

The formation of 1-Hydroxynaphthalene proceeds by the condensation of one molecule of 

CPD and  one molecule of HydroxyCyclopentadienyl radical as proposed in reference 14.  The 

formation of 1H-Indene, reported in the literature 176, 167, 14, is thought to proceed in this study by 

carbon monoxide elimination from 1- Hydroxynaphthalene as depicted by Scheme 1.7  
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Likewise, the formation of Naphthalene diol-1-8 resulted from the condensation of two 

HydroxyCyclopentadienyl radicals.  By elimination of CO, the 1H-Inden-7-ol is formed as 

shown in Scheme 1.8 

1.7 Rationale for the Current Study 

Over decades, intensive scrutiny of radical basically in medicine and biology has been achieved 

177-179. Radical formation has been investigated primarily in liquid-phase 8, 180, 181. Given that 

radicals are short live, spin trapping was used to stabilise them for study purposes 182-184 

Catechol, hydroquinone and phenols, being major components of cigarette smoke 

mainstream 46-53, they supposedly form, during combustion processes, semiquinone type radicals 

whose deadly actions have been reported in the literature 132, 134, 135, 121 

.  

HH
H

H

H H

-H

HH

H

- H

.

+

.

.

.

..

.

Naphthalene

Cyclopentadienyl Cyclopentadienyl

 

Scheme 1.6 Formation of naphthalene from CPD-CPD interaction pathway as predicted in 
reference 175 
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Semiquinone type radicals are organic radicals and supposed to be very unstable. It is 

somewhat surprising that they can be very stable to cause tissues damage.  Therefore, it is of 

utmost importance that the exact nature of radicals formed during the gas-phase pyrolysis of 

catechol, hydroquinone, phenols and tobacco, their persistency and reason of their stability be 

investigated.  

. To our knowledge, no such study is reported in the literature at the present time. We have 

therefore employed precursors that are more likely to generate the environmentally persistent and 

deadly free radicals.  Catechol, hydroquinone and phenol are the primary precursors used in this 

study followed by compounds with structural similarity to the formers such as anisole, para-

chlorophenol, ortho-chlorophenol, benzene, and chlorobenzene.   

Radicals’ identification has been rendered possible by employing compounds that can 

directly deliver specific radicals.  We employed the tricarbonylcyclopentadienylmanganese  (ŋ 5-

C5H5Mn(CO)3) 185 to generate pure CPD radical.  The di-tert-butylperoxide 186-188 at low 

temperature was used along with phenol to get pure phenoxy radical. Photolysis of the main 

precursors yielded semiquinone type radicals.  Low pressure and atmospheric experiments were 

carried out alongside with GC-MS to characterize persistent free radicals 

GC-MS analysis of pyrolysis products was useful in determining the very unstable radicals 

formed but whose spectra could not be acquired due to their low steady concentration 

corroborated by their strong reactivity.  We have also had strong look on how the presence of 

traces of oxygen affected the radical nature.  Table 1.2 summarizes previous works that studied 

Persistent Free Radicals in various aqueous and solids media. 
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Table 1.2 EPR Spectral Characteristics of PFRs 

Radical Media T,oC # of Lines g ,center hfsc a(G) ∆H p-p, (G) ∆HTotal (G) Ref. 

p-SQ b Methanol  -95 5 2.00468 c 2.368  15 189 

p-SQ Methanol  -110 5  2.00468 c   2.368 21 189 

p-SQ Methanol  -160 Unres. singlet 

 

 2.00468 c  2.368 25 

189

 

p-SQ 
Dimetho-xyethane  22 5  NA  NA 

0.45(single 

line) 
8.5 190 

p-SQ  Powder  -196 singlet  NA - 5.55 25 190 

 

o-SQ 
Liquid  room 9 

 3.68 

 0.76 

0.15 

(individual 

line) 

8 9 

o-SQ Liquid d room singlet NA - 5.2 27   191 

p-SQ anion Ethanol 19 5 2.00466 2.368       9  192 

p-SQ protonated e Ethanol 19 
triple double-

triplets 
NA 

0.29 

5.09 

1.86 

      13  192 

Phenoxy 
CCl4 

Photooxidation 
22 multi lines 2.00530 

7.01 

2.05 

10.13 

     27 193 

p-Cl Phenoxy 
CCl4 

Photooxidation 
22 14 2.00630 

6.56, 

1.99 
27  193 

Phenoxy 
Phenol aqueous sol., 

radiolysis 
room multi lines 2.00461 

6.61(2), 

1.85(2), 

10.22 

 194 

Phenoxy/bulk f 
Polyradical, in 

benzene 
room 

Poorly 

resolved 

singlet 

2.00450 

13 

195 

(Table cont’d) 
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CPD g Toluene -37 6 NA 6.05  33 196 

CPD Solid matrix -196 6 NA 5.6  46 197 

CPD Crystal 70-120K 6 2.0044 6.2 3.5 31.3 198 

CPD Solid matrix, CO2 -196 6 2.00508 h 6.06  44 12 

Tyrosil radical in 

protein R2F 
Frozen Solution 15 K 5 2.00517   52 199 

Tyrosil radical in 

protein R2-2 
Frozen Solution 10 K 5 2.0053   48 200 

 

a hfsc- hyperfine splitting constant, b SQ – semiquinone, c measured at room temperature, NA 

- not available in the original source, d the protein derived radical by one-electron oxidation 
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Scheme 1.7  Proposed mechanismof the formation o 1-hydroxnaphthalene from the condensation 
of one molecule of CPD and one molecule of hydroxyCPD followed by the formation of 1H-
indene by elimination of CO from the formed Hydroxynaphthalene. 
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of immobilized L- DOPA, PH = 7.4, e  photolysis of p-benzoquinone solution in acidic 

solution of ethanol (mono protonated p-benzoquinone neutral radical, triple double-triplets), 

hs values; 0.29 (3,5 ring proton), 5.09 (2,6 ring proton), 1,86 (hydroxyl proton), f  

poly(phenylenevinylene)-attached phenoxyl radicals, ferromagnetic interaction through 

planarized and π-conjugated skeletons, g cyclopentadienyl radical, h high value. 

inhomogeneous broadening. 
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CHAPTER 2: EXPERIMENTAL  

2.1 Introduction 

The main goal of the current research is to detect and characterize potentially 

environmentally persistent free radicals occurring during the pyrolysis of suitable precursors and 

tobacco.  Tobacco samples used in this study derived from cigarette packages obtained from 

Philip Morris USA and British American Tobacco Companies.  Catechol, hydroquinone and 

phenol samples were obtained from Aldrich, 99.5% purity.  

The major component of the experimental set up for this study is the Electron Paramagnetic 

Resonance part to which different samplings set up are connected to, depending on the type of 

experiments.  Basically, two sets of experiments were run: the low pressure and the atmospheric 

pressure radicals’ identification.  The Low Temperature Matrix Isolation technique was 

employed to trap formed radicals arising from the gas-phase pyrolysis/photolysis of precursors 

and tobacco.  All EPR spectra were recorded on a Bruker EMX-20/2.7 EPR spectrometer 

(Bruker Instruments, Billerica MA) with dual cavities, X-band, 100 kHz, and microwave 

frequency, 9.53 GHz.  The typical parameters for all radicals’ identification were: sweep width 

set to 200 G, microwave power was varied from 0.1 to 20 mW, modulation amplitude set ≤ 4 G, 

the time constant is variable.  Values of g-factors were calculated using Bruker’s WINEPR 

program.  Gas Chromatography- Mass Spectroscopy was employed to do mass analysis of the 

products of the pyrolysis.  

2.2 The Electron Paramagnetic Resonance Spectroscopy 

The capture and identification of radicals has been in used for decades to characterize foods, 

drugs, and environmental samples.  Electron Paramagnetic Resonance (EPR) or Electron Spin 

Resonance (ESR) spectroscopy is suitable for radicals study.  It is an analytical technique that 

permits to detect and characterize molecules with unpaired electrons.  Its great advantage 
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compared to other analytical tools is that its does not destroy, alter or interfere with the 

molecules in the sample under investigation.  EPR has variety of applications.  

In chemistry, kinetics of radical reactions, polymerization reactions, spin trapping 1, organo-

metallic compounds, catalysis, petroleum research 2, oxidation and reduction processes, and 

biradicals and triplet states of molecules are studied using EPR3-5.  Physics and materials 

research has intensively employed EPR. 

In physics, measurement of magnetic susceptibility, transition metal 6, lanthanide, and 

actinides ions, conduction electrons in conductors have received EPR application 7. In materials 

research of degradation of paints and polymers by light, polymer properties 8, defect in diamond, 

optical fibers, laser materials, organic conductors, influence of impurities and defects in 

semiconductors9, properties of novel magnetic materials 10, high Tc superconductors, and 

behavior of free radicals in corrosion10,  EPR has been employed.  

Ionization radiation that studies alanine radiation dosimetry 11, controlled of irradiated foods, 

archeological dating 11, short-live behavior of organic free radicals produced by radiation, 

radiation effect and damage, and radiation effects on biological compounds 1, EPR has been an 

important analytical tool. The most important application of EPR is in medicine and biology 12-14. 

 The study of the free radicals in living tissues and fluids, antioxidants, radical scavengers, 

drug detection, metabolism and toxicity, enzyme reactions, photosynthesis, oxygen based 

radicals, nitric oxide in biological systems 15, carcinogenic reactions are studied employing EPR 

technique 16.  Most of biological reactions proceed from reduced and energy-rich carbohydrates 

to oxidized, energy-poor carbon dioxide.  The one electron steps in redox reactions imply that in 

biological tissues, free radical intermediates are formed even though they may be too short-lived 

to observe.  Thus applications of electron paramagnetic resonance to study those reactions have 
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received considerable scientific scrutiny.  Given the importance of EPR, it is fundamental to 

have some understanding of the basic theory behind the big applications cited above. 

2.2.1 EPR Theory 

The EPR theory is based on Zeeman Effect.  In an atom, different electrons may have same 

energy level.  In the presence of a magnetic field, the degeneracy is broken due to at least the 

electron spin number.  Pauli Exclusion Principle states that two electrons in an atom can not have 

all four same quantum numbers; they will differ at least by their spin number.  Thus, the spin 

number is the key point in Zeeman Effect.  The total Hamiltonian for an atom can be divided into 

three parts: 

                                                                                                                                                       (1) 

Where           is the sum of hydrogenlike Hamiltonians, 

                                                                                                                                                       (2) 

         represents the interelectronic repulsions, 

                                                                                                                                                       (3) 

and OSH .
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  is the spin-orbit interaction  
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where L and S are respectively the electron orbital angular momentum, and the electron angular 

spin and                                                                                                                                         (5) 

Vi is the potential energy experienced by the electron i of mass me in the atom, rij, is the distance 

between two electrons, ri is the distance between the electron and the nucleus, and e’ is the 

reduced electron charge. C is the speed of light.  

C ~ 3x10^ 8 m/s; me = 9.1x10^-31 Kg.; e’ = e/2Π. 

Considering only H0, all atomic states corresponding to the same electronic configuration are 
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lifted, thus splitting each configuration into terms.  If finally HS.O is added, this splits each term 

into levels.  Each level is composed of states with the same value of J and is (2J+1)-fold 

degenerate 17.  The degeneracy of each level can be removed by applying an external magnetic 

field: the Zeeman Effect.  That is when the use of EPR is utmost fundamental where fine 

structure of radicals can be investigated.  The g-factors are important data in EPR spectra 

analysis.  Their values arise from the perturbation due to the magnetic field that is applied to 

resolve the degeneracy of each electronic level.  

Suppose B is the external applied magnetic field, the magnetic potential energy of the atom 

in the applied external field is  

VM  =
→→

− B.µ                                                                                                                                    (6) 

where 
→

µ , the magnetic moment of the atom, consists of the electronic and the nuclear parts. 

However, the nuclear part is many orders of magnitude smaller and will be neglected in this 

presentation. Therefore, 

→→

−= Jgβµµ ,                                                                                                                                 (7) 

where µβ is the Bohr magneton, 
→

J is the total electronic angular momentum, and g is the gyro 

magnetic ratio (g-factor).  The operator of the magnetic moment of an electron is the sum of the 

contributions of the orbital angular momentum 
→

l and the spin angular momentum
→

s , with 

each multiply by the appropriate related gyro magnetic ratio: 

)(
→→→

+−= sglg slβµµ ,                                                                                                                   (8) 

In the case of L-S coupling, one sums over all the electrons in the atom to obtain 

〉+〈=〉+〈=
→→→→→

∑ SgLgsglgJg slisil
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)( ,                                                                                     (9) 
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where 
→

L  and 
→

S  are the total orbital momentum and spin of the atom. Averaging is done over a 

state with given value of the total angular momentum.  When the spin-orbit interaction 

dominates over the effect of the external magnetic field, 
→

L  and 
→

S  are not separately conserved, 

but the total angular momentum 
→

J  =
→

L + 
→

S is.  The time “averaged” orbital vector and spin 

vector are respectively the projection of orbital and spin vectors onto the direction of
→

J . 
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Assuming that 
→

B is oriented along the Z-axis, BmBJ j=
→→

.  (14), jm being the Z-component of 

the total angular momentum.  

Plugging equations (12), (13), and (14) into (11), we get: 
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The quantity in square bracket of equation 15 represents the Lande g-factor Jg of the atom. 
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where 1=Lg and 0023192.2=Sg  (the anomalous gyro magnetic ratio where the deviation of 

the value from 2 is due to the relativistic effects, also the g-value of a free electron).  When we 

take 2≈Sg , then equation 16 becomes the most known g-value expression:  17-19  
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This is the result of weak-field application that splits each level into 2J+1 states, each state 

having different value of mj .  

Through the energy level diagram, it is clear that the application of external magnetic field 

will split the energy levels to states.  However, if the atom’s nucleus has a non zero spin, the 

nuclear  spin magnetic moment interacts with the electronic spin and orbital moments to give rise 

to the hyperfine splitting very important in organic radicals identification.  Physically, the 

nuclear spin angular momentum I adds vectorially to the total electronic angular momentum J, 

giving the total angular momentum F of the atom: F = I + J.  To illustrate the hyperfine structure 

theory, let’s take example on the hydrogen atom. The ground state of hydrogen has I =1/2 for the 

proton and J = 1/2. Therefore the quantum number F can be 0 or 1, corresponding to the proton 

and the electron spins being antiparallel or parallel. The transition 01→=F gives a line at 

1420MHz, the 21-cm line emitted by hydrogen atoms in the outer space discovered in 1951 17. 
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Figure 2.1 Effect of inclusion of successive terms in the atomic Hamiltonian for 1s2p helium 
configuration. HB is not part of the atomic Hamiltonian but is due to an applied external magnetic  
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ms= 1/2

ms= -1/2

E =h v = g u0B

Magnetic 
field off

Magnetic
field on

Resonant
Field  

Figure 2.2.Resonance Condition 



 47

EPR is the spectroscopic technique that is employed to detect species having one or more 

unpaired electrons.  When an external magnetic field is applied, the paramagnetic electrons 

either orient in a direction parallel or anti-parallel to the direction of the magnetic field.  This 

phenomenon creates two different energy levels for the unpaired electrons and making it possible 

for absorption of electron-magnetic radiation to occur when electrons are driven between the two 

energy levels.  The condition where the magnetic field and the microwave frequency are “just 

right” to produce an absorption is known as the resonance condition.  

BghE 0µν ==∆ .                                                                                                                       (18) 

 where ν is the radiation frequency (Hz) that meets the resonance condition.  

h is Plank’s constant value ( h= 6.64x10-34 J.S), 0µ is the Bohr magnetron constant value 

( 0µ =9.27x10-24 J/T). 

 However, in equation (18) at a fix radiation value, the resonance phenomenon occurs by 

varying the intensity of the applied magnetic field.  In this study, the latter option was employed 

to register the absorption curves.  The spectra registered on a Bruker spectrometer model EMX 

10/2.7 (Bruker Instruments, Billerica, MA) are the first derivative of the absorption spectra.  

2.2.2 Importance and Physical Significance of the EPR g-values 

One of radical characteristic parameters is the g-factor or g-value.  The g-factor can be a 

complex tensor depending on the molecular environment that it characterises.  The g-value, 

along with the hyperfine splitting, usually represents a complex number that tells of the radical 

nature.  It represents the extent to which the external magnetic field splits the energy levels of the 

radicals under investigation and accounts for both the Orbital-Spin coupling and Orbital-

perturbation of the wave function of the unpaired electrons.  Simply put, the g-value measures 

how the magnetic environment of the unpaired electrons differ from that of a free, gas-phase 

electron (g = 2.0023).  The g-values of EPR spectra usually measured at the center of the EPR 
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spectra in principle are indicative of the types of radicals present.  When the EPR spectrum arises 

from only one radical, only one g-value is obtained.  In principle, the g-values of EPR spectra 

can be used to determine whether a radical is carbon-centered or oxygen-centered.   

In general, the closer the unpaired electron is to an oxygen atom, the greater the g-value 

due to higher electron density that leads to strong spin-orbital coupling:  for carbon-centered 

radicals, g <2.0030 (e.g., graphitic carbon g = 2.0028)20;  PAH radicals, g ~ 2.0026 21;  aryl 

radicals, g<2.0024 , (e.g.,phenyl, 1- and 2- naphthyl, 1- and 9-anthracyl, and 1-pyrenyl) 22;  for 

carbon-centered radicals near an oxygen, g = 2.0030-2.0040 23;  and for oxygen-centered 

radicals, g  >2.0040 24-27.  However, these values can be shifted by matrix interactions or other 

substituents such as chlorine 25.  In addition, if the unpaired electron is not exclusively centered 

on a single atom (viz. through delocalization or complex formation) the EPR spectrum can 

broaden.  The presence of multiple radicals can also result in an apparently broadened EPR 

spectrum making it impossible to use the g-values to identify the radicals.  

2.2.3 Low Temperature Matrix Isolation 

Radicals are known to be very reactive due to the presence of unpaired electrons in their 

structure.  Thus their study requires an environment that will keep them “alive” for the duration 

of the study.  Given that the concentrations of reactive free radicals in biological systems are 

usually too low for direct EPR detection, the spin trapping method was developed to allow 

immobilization, detection and analysis of free radicals28-30.  The method consists of using a 

“trap” to catch the radical. The trap can be stable radical molecule in either liquid or solid phase. 

The most spin traps used are 2-methyl-2-nitrosopropane31,  tertiary nitrosobutane 32, N-t-butyl-

alpha-phenylnitrone 33, 34, the well studied 5,5-dimethyl-1-pyrroline 1-oxide (DMPO) 35.  Among 

the nitrones used as spin trap, DMPO has received the most attention 29.  This method has been 

very successful trapping radicals in liquid and solid phases to identify them by EPR 
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spectrometry.  However, by trapping radicals, the electronic density of their unpaired electrons is 

modified, and one can even assist to what in the literature is termed inverted trapping where the 

spin adduct is formed by electron transfer without the reaction of a radical, leading to wrong 

conclusions.  

The EPR g-values of complexed radicals are usually lower than those of un-complexed 

radicals due to the transfer of electron density from the radicals to the complexing agent 36, 37 

Unfortunately, such problems arise from the most used nitrones such as DMPO, N-phenyl-

Alpha-ter-butylnitrone (PBN), and 2-methyl-2-nitrosopropane (MNP, tBuNO) 38 exposing some 

of the spin-trapping technique limitations.  The use of some liquids (DMSO, ethanol) interferes 

in radicals EPR spectra because of their electron attracting nature, making their interpretation 

even more complicated.  The gas-phase spin trapping is even more complicated because of 

radical-radical fast interaction.  

The technique referred to in the literature as low temperature matrix isolation is suitable in 

isolating and keeping the gas-phase formed radicals as long as their EPR characterization will 

last. The huge advantage of this technique is that the radicals are not electronically influenced by 

the trap structure as in the case of spin trap.  With the LTMI-EPR, real radicals are directly 

identified. The LTMI-EPR technique is well known in the literature 39-43.  LTMI EPR allows 

accumulation and detection of trace quantities of radicals from the gas-phase as well as the 

determination of the reaction kinetic behavior of gas-phase reactions 39.  We have successfully 

employed this technique in this study.   It consists of freezing gas-phase formed radicals at liquid 

nitrogen temperature (77K) in a gas matrix which characteristics allow the radicals’ survival. The 

matrix should be inert.  Thus it does not react with the radicals.  The matrix should also be rigid 

to cryogenically bloc radical diffusion by keeping them at isolated sites in the matrix.  Finally, 
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the matrix should be volatile so that during annealing process, very reactive radicals will be 

annihilated, leaving behind the more persistent ones.  

2.2.4 Pyrolysis Experiments  

2.2.4.1 Experimental Set-Up 

The main and unchangeable part of the experimental set up is the liquid nitrogen-cooled 

Dewar which cooled finger is located in the cavity of the EPR spectrometer.  Upon exiting the 

flow reactor the pyrolysis/photolysis products are cryogenically trapped onto the cold finger of 

the cold Dewar at 77K (-196oC).  This allows detection and identification of the gas-phase 

formed radicals arising from the reactor.  A rotary pump was used to pump the gas effluent 

through the cold finger of the Dewar, thus maintaining the total working pressure at ~ 0.1 Torr. 

 The variable experimental part of the experimental set up is the sampling system which 

depends on experimental conditions.   For low pressure Pyrolysis of catechol, hydroquinone and 

phenols, a flow reactor was used and its outlet connected to the Dewar through a transfer line. 

The atmospheric pyrolysis of catechol, hydroquinone and phenol uses a different sampling 

set up.  The homemade tubular flow reactor additionally to its outlet connected to the flow 

transfer line that hooks it up to the Dewar has another outlet open up to the atmosphere. 

However, a gas trap at liquid nitrogen temperature was used on the atmospheric line to collect 

part of the pyrolysis products for GC-MS mass analysis purpose.  A quartz diaphragm of 

appropriate pinhole diameter of 10µm is used to reduce the pressure from atmospheric pressure 

to ~ 0.1 torr to allow easy pyrolysis products pumping towards the cold finger of the Dewar.  An 

electrically heated furnace hosts the pyrolysis reactor.  

 The reactor is a homemade tubular flow quartz reactor which dimensions allow variable 

vaporized compounds residence time.  Its inner diameter and length are respectively 12mm and 

40mm and it can stand temperature up to 1200C.  An independent thermo-controller connected 
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Figure.2.3 Cold Dewar Assembly 

to the flow reactor through a high temperature thermocouple is employed to set and vary the 

vaporized gas pyrolysis temperature. 
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The samples of CT, HQ, and phenol are vaporized in an electrical furnace (vaporizer in the 

photograph taken from the rear side) which temperature is independently controlled by a thermo-

controller by the means of a thermocouple. 

In the CT and HQ experiments, all transfer lines between the vaporizer and the cold finger of 

the Dewar were maintained at temperature ~ 80-90oC to avoid condensation of sample and 

products in the lines. 

A turbo, two stage pump DCU Pfeiffer Vacuum was employed to pump the reagent through a 

gas manifold directly connected to the Cold Dewar outlet.  The pump maintain the desired 

working pressure to 0.1 to 0.3Torr.  It pumps when needed the vaporized samples through the 

reactor to the cold finger of the Dewar.  It is also used while flushing the equipment line and the 

samples  

A homemade gas manifold is used to monitor the working pressures readable through the 

pressure gauges in the system.   Between the gas manifold and the pump, a liquid nitrogen trap 

Figure 2.4 Assembly for atmospheric pyrolysis experiments 
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was employed to avoid excessive chemical getting into the pump. 

A rough (first stage)part of the turbo pump is initially used to clean the samples and the 

transfer lines by removing basically the air (oxygen) from the system.  

 

 
 
Figure 2.5 Photograph of the Experimental layout 
 

2.2.4.2 Experimental Procedure 

2.2.4.2.1 Pyrolysis of Catechol, Hydroquinone and Phenol 

For the pyrolysis of catechol, hydroquinone and phenol, almost same experimental procedure is 

followed except for some minor differences due to their vapor pressures.  Catechol and 

hydroquinone have very low vapor pressures.  Thus they needed to be vaporized prior to their 

Pyrolysis.  Experiments were carried out by loading HQ, CT, or phenol (>99.5 % pure) into a 
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Pyrex container-vaporizer in a constant temperature oven held at 50-75 oC for the vaporization of 

the sample of CT and HQ and at 15 oC. 

                                                                                                                                                            

 
Figure 2.6 Cold Dewar in EPR cavity-Front view  Cold Dewar connected to the vaporizer-

Rear view 
 

To avoid condensation of the vaporized CT and HQ samples on the transfer line to the cold 

Finger of the Dewar, the transfer line was insulated and held at a temperature of 80-90 °C 

employing heating tapes and blankets.  Phenol’s high vapor pressure allows experiments at either 

room temperature or 0°C.  All samples were at a total pressure of carrier gas of ~ 0.1 - 0.3 Torr 

for the low pressure pyrolysis of the precursors, and 760 Torr for the atmospheric pyrolysis 

measured by the on-line pressure gauges in the system. The experimental set-up for the 

atmospheric conditions pyrolysis is depicted in figure 2.3.  The carrier gases used for this 

research are nitrogen and carbon dioxide.  The pressure of the test compound was maintained at 

≤ 0.1 torr.  Upon exiting the vaporizer, the vaporized sample entered the tubular-flow quartz 

reactor (i.d. = 12 mm, length = 40 mm) located in an electrically heated furnace.  Radical 
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accumulation time ranged from 10 to12 minutes, starting point of the saturation.  Reagents are 

pumped by means of rotary pumps at a pressure of 0.1 Torr through the electrically heated 

pyrolysis zone.  Pyrolysis products are condensed onto the cold finger of the Dewar placed in the 

EPR cavity and cooled by liquid nitrogen. Carbon dioxide (or other gases that can be used to 

generate an appropriate matrix) can be introduced at a given flow as a main carrier gas into the 

pyrolysis zone.  Once the sample is loaded in the vaporizer, the sample, the transfer line and the 

Dewar were flushed long enough under the carrier gas flow (CO2 or N2) to remove oxygen from 

the sample and the system.  The flushing is done by the rough pump at a rate of 60cc/min. Given 

that Catechol and Hydroquinone have very low vapour pressure, slightly heating their samples 

during the flushing period helps to get rid of absorbed/adsorbed oxygen. Phenol’s samples do not 

need the pre-heating because of phenol’s high vapour pressure. After sufficient flushing, the 

vaporizer hosted by a furnace was set at the sample vaporizing temperatures, 50 or 75 o C for 

Catechol and Hydroquinone, 15 o C for phenol.  The flow meters   in the system allow 

monitoring the time of residence of the vaporized sample in the pyrolysing reactor held at the 

experimental temperature  by a thermo-electric furnace. The radical accumulation starts when the 

Dewar is filled with liquid nitrogen.  A rotary pump is used to pump the pyrolyzed products 

through the liquid nitrogen cooled Dewar.  Freezing of radical onto the cooled finger of the 

 

Figure 2.7 Tobacco Atmospheric Pyrolysis  Assembly  



 56

Dewar can be observed by the dropping of the total reagent pressure (from 0.1 Torr to 10^-3 

Torr) and most of the time by the slight change of cold finger color.  The accumulation lasts 

generally 10 to 12 minutes during which EPR spectra of frozen radicals are acquired every 

minute.  The end of the accumulation time is marked by the non increasing EPR signal intensity 

of the radicals.  At the end of the accumulation, the carrier gas flow was stopped, and the sample 

vaporizer closed. More EPR spectra of total radical were then registered in the absence of 

thermal noise generated by the interaction of the hot gas flow with the cooled finger of the 

Dewar.  This is the time in the experiment where the power dependence of radical accumulation 

is performed to get the microwave power saturation curve. The annealing experiment is 

performed to allow the most reactive radicals to terminate, living behind the most persistent ones 

2.2.4.2.2  Pyrolysis of Tobacco  

Tobacco sample is loaded in a Pyrex tube (i.d =6mm, Length= 5cm) to mimic actual cigarette 

seize.  The qualitative tobacco pyrolysis experiments were undertaken to characterize free 

radicals formed during the gas-phase pyrolysis of three tobacco blends obtained from Phillips 

Moris USA tobacco company.  For the quantitative tobacco pyrolysis generated radicals, four 

tobacco blends from British American Tobacco (BAT) were used. Each time, 0.25gram of 

tobacco was employed.  To keep the sample from flying during flushing, quartz woods was put 

at the two ends of tobacco sample in the experimental tube.  The sample is flushed with nitrogen 

gas for 30 minutes to remove absorbed/adsorbed oxygen.  Thereafter, the sample is dried at 100 o 

C for 10 minutes by a thermo-electric furnace.  During the drying up of tobacco, heavy smoke is 

observed showing vaporization of water and some very volatile tobacco components.  

2.2.4.2.3 The Time of Residence of the Vaporized Samples in the Reactor 

The residence time is a very crucial part of any chemical reaction.  In the case of the 

pyrolysis/photolysis of Catechol, Hydroquinone and Phenol the residence time allows the 
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formation and the survival of radicals.  The flow meters in the system permit the monitoring of 

the residence time.  In general, in our experiments, a residence time of 4ms was used.  The 

residence time in the tubular flow reactor was calculated employing the formula: 

⎟
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r   where R= radius of the reactor, L its length, W the carrier gas flow, Ta the 

ambient Temperature and Texp the experimental Temperature. 

Table 2.1 depicts the variation of the flow W in terms of Texp , the ambient temperature being the 

EPR Spectroscopy’s room temperature held at 15 o C at a residence time of 4ms 

Table 2.1 Temperature Dependence Variation of Gas Flow for a Constant Residence time 

       Texp (o C)      Texp (K)   Flow Rate (mL/min) 

400 673 483.7 

450 723 450.3 

500 773 421.1 

550 823 395.6 

600 873 373.0 

650 923 352.7 

700 973 334.6 

725 998 326.2 

750 1023 318.2 

775 1048 310.6 

800 1073 303.4 

825 1098 296.5 

850 1123 290.0 

(Table cont’d) 
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2.2.5 Photolysis Experiments 

In this study, the UV photolysis experiments of Catechol, Hydroquinone and phenol were 

carried out in the gas phase using the same experimental equipment of LTIM EPR discussed 

elsewhere  44.   The aim of these experiments was to generate oxygen centered semiquinone and 

phenoxy type of radicals directly from the gas phase photolysis of suitable precursors at lower 

temperatures and freeze them at liquid nitrogen temperature.   The huge advantage of photolysis 

is that it is possible to prevent thermal degradation and transformation of formed radicals and 

transfer them at low pressure to the cold zone. 

The photolytic cell, a simple suprasil 1 quartz tube was used to load the sample in lieu of 

the reactor. The sample was irradiated by UV light at 253.7nm from the side.   The 253.7 nm  

light was emitted by conventional mercury vapor ozone free lamp (pencil type), Jelight 

Company, Inc.  This double bore lamp, with a 9mm OD, has a 4 inch lighted length with a 

capable power of about 9mW/cm2 at 254nm measured at a distance of 0.75 inch from the lamp. 

 

 

875 1148 283.6 

900 1173 277.5 

925 1198 271.7 

950 1223 266.2 

            975 1248 260.8 

            1000 1273 255.7 
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2.2.6Annealing Experiments 

The annealing experiments consist of fractional elimination of the most reactive radicals. 

Gradual warming of the Dewar resulted in the matrix annealing and selective annihilation of the 

more reactive radicals such that the spectra of the more persistent, individual radicals in the 

mixture could be discerned.  The cold finger of Dewar was slowly warmed by removing liquid 

nitrogen with a bubbling stream of nitrogen gas.  Annealing of the matrix by warming the cold 

finger resulted in some reactive radicals, being annihilated by radical-radical recombination.  On 

the other hand it is known that radical diffusion in cold matrix occurs at a temperature well 

below the melting point of the matrix 45.  Usually the radicals begin to disappear when the 

temperature rises to between one-tenth and one-third of the melting point. In the present study 

where CO2 is the most used both as carrier gas and isolation matrix, the temperature at which the 

radicals are annihilated varies between ~ 176 - 130 K.   

2.3 Gas Chromatography-Mass Spectroscopy 

Toxic organic compounds such as Dioxins/ Furans and PAHs gas-phase formation has been 

demonstrated through radical formation.  Phenols, chlorinated benzene and chlorinated phenols 

are the precursors to the formation of PCDD/Fs through phenoxyl/semiquinone types radicals 

intermediates 46-48
.  Those conclusions on radical intermediate PCDD/Fs and PAHs formation 

were drawn based on combustion products distribution.  The present study’s goal is to 

demonstrate the formation of the persistent radicals at low and atmospheric pressures.  The 

atmospheric conditions were one golden opportunity to collecting products formed from the 

pyrolysis of Phenols, Catechol and Hydroquinone and do their GC-MS analysis while acquiring 

the EPR spectra of formed radicals.  To do this, a gas trap was put on the atmospheric line of the 

system at 2 inches from the center of the homemade quartz reactor.  Pyrolysis products collection 

was done under liquid nitrogen and Carbon dioxide flow.  After the accumulation of pyrolysis 
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products, CO2 was evacuated with ethanol under hoods and the ethanol evaporated to permit 

concentration of products for GC-MS analysis.  1µl of the substrate was injected in the GC-MS 

for the pyrolysis products analysis.  The products were analyzed using an Agilent Technologies 

6890N GC system coupled with a 5973 Masse Selective Detector.  Products separation was 

completed employing a 30m, 0.25m i.d., 0.25 film thickness column (Restek Rts 5mx) with a 

temperature program ramp from -60 to 300 o C at 15 o C/min.  Detection of products was 

obtained on the Agilent 5973 Mass Selective Detector operating in full-scan mode from 15 to 

350 amu.  The GC/MS software, an Automated Mass Spectral Deconvolution and Identification 

System (AMDIS-DSWA NIST. 1997), was used to identify the products of the atmospheric 

pyrolysis of all precursors.  
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CHAPTER 3: RESULTS * 

This section presents the results of low pressure pyrolysis of catechol (CT), hydroquinone 

(HQ), and phenol at various temperatures.  It shows temperature dependence of radical signal 

EPR intensity and radical shape.  The photolysis of CT, HQ, and phenol yielded pure 

semiquinone types radical that were compared to those of their pyrolysis at low temperature 

region.  The atmospheric pressure pyrolysis of CT, HQ, and phenol at 750oC gave additional 

insights to the understanding of radical behavior, alongside with the effects of trace of oxygen 

on radical shape.  

Positive identification of spectra of radicals formed from the gas-phase pyrolysis of CT, HQ, 

and phenol was complicated because the spectra were the convolution of more than two radicals 

most of the times. Thus additional experiments to generate spectra of unique radical employing 

pure compounds were undertaken.  The results of mathematical manipulations of spectra 

employing the Simfonia software were additional and necessarily data in the identification of 

radicals.  

The preliminary pyrolysis of the precursors was undertaken to establish the basic 

understanding of the research, the experimental optimum conditions that pertain radicals’ 

isolation and identification, and the assembly of the necessarily sampling equipment and 

precursors purchasing.  Experimental conditions are very important in any scientific work. 

Initially, we have generally set the residence time to 10 ms, the vaporization of solid state 

precursors at 50 0C for all precursors, and varied the EPR spectrometer parameters. As can be 

seen in the detailed pyrolysis experiment of each precursor, the residence time, and the 

vaporization temperatures depend on the physical properties of each precursor. For instance, 

Catechol and Hydroquinone have very low vapour pressures (~0.001mmHg).  Not only we found 

* Portions of this chapter reprinted by permission of the American Chemical Society 
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that the optimum vaporization temperature was 75 0C, but also the residence time change from 

10 ms to 4 ms was important for radical survival. Phenol whose vapour pressure is higher 

(0.03mmHg) was set at a vaporization temperature of 15 0C, and even at 0 0C.While all the 

transfer line in Catechol and Hydroquinone pyrolysis experiments was thermally insulated and 

held at 80-90 0C, phenol pyrolysis did not need this additional care. Overall, the first step in this 

research had focused on the qualitative observation of radicals.  

3.1 Low Pressure Pyrolysis of Phenol 

Phenol vaporized at 15 o C was pyrolyzed from 400 to 1000 o C. The time and temperature 

dependence radical accumulation from phenol pyrolysis show pattern different from catechol and 

hydroquinone. The following paragraphs report interesting results from detailed phenol study.  

The pyrolysis of Phenol at low pressure was conducted employing the flow reactor which 

temperature was varied from 400 t0 1000oC. The pyrolysis products were pumped by the means 

of a turbo pump through the cold finger of the Dewar.  

We employed the technique of the Low Temperature Matrix Isolation (LTMI) EPR 1, in 

which phenol vaporized at 15 o C was pyrolyzed in a low pressure reactor (0.01- 0.1 torr) which 

was directly connected to a liquid nitrogen-cooled cold finger situated within the EPR cavity of a 

Bruker EPR spectrometer Figure 2.3 

3.1.1 Total Radical Yield 

Phenol at 15 0C was pyrolyzed from 400 to 1000 0C. At a given temperature, radicals 

accumulation was performed for 12 min, and the radicals EPR spectra registered every minute. 

This has the double advantage to follow on screen both the change in radicals’ shape and 

intensity and to correlate radicals’ accumulation to time for kinetic study purpose. Unlike 
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Figure 3.1 Time Dependence of Radical EPR Intensity From the Pyrolysis of Phenol. A linear 
trend with excellent correlation Intensity vs.  radical accumulation time was observed in all 
temperature domain. DI/N value is the double integrated (DI) intensity of the EPR spectrum that 
has been normalized (N) to account for the conversion time, receiver gain, number of data points 
and sweep width  

catechol and hydroquinone, the radicals from the pyrolysis of phenol EPR signal intensities at 

various temperatures exhibit a linear correlation with the accumulation time. 

The radical accumulation time dependence of radicals EPR intensity depicted in figure 3.1 

was obtained from considering the radical EPR intensities at 6 minutes for various temperatures.  

We have decided to draw the temperature dependence of radical EPR intensities at 6min, the half 

time of our radical accumulation lapse to avoid the saturation region that was observed in the 

cases of CT and HQ. 

3.1.2 Temperature Dependence of Radical Yield 

Figure 3.2 depicts the variation of the radical EPR intensity vs. temperature.  It shows that 

with increase temperature from 400 to 1000 0C, the radical intensity increases as well. It will be 

interesting to go beyond 1000 0C to see the curve behavior.  It is noteworthy to see the sharp 

increase of radical yield starting from 800 0C giving the proof of enormous yields of radical from 

the pyrolysis of phenol beyond 800 0C. 
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Figure 3.2 Temperature dependence of radicals Yield from the pyrolysis of Phenol. DI/N value is 
the double integrated (DI) intensity of the EPR spectrum that has been normalized (N) to account 
for the conversion time, receiver gain, number of data points and sweep width 
[http://www.bruker-biospin.com/winepr.html?&L=0].  A sharpe increase of radical intensity 
starting from 850 0C resulted from an abundant yield of radical from phenol pyrolysis beyond 
850 0C 

3.1.3 Persistent Free Radical Formation From Phenol 

As it can be seen from the graph of Figure 3.2, the temperature dependence of radical 

formation from pyrolysis of phenol shows different shape of radical EPR spectra.  At low 

temperature (‹ 450 oC) a clean 6 line spectrum was observed.  As the temperature increases, the 

EPR spectra show increased shoulder, evidence that the EPR spectra at temperature higher than 

400 oC are the convolution of several gas-phase formed radicals trapped onto the cold finger of 

the Dewar. 
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The 77 K EPR initial spectra from phenol pyrolysis at 950 oC, (Figure.3.3) are similar to the 

previously reported spectra from the gas-phase pyrolysis of of phenol at 750 oC 1.  At 

temperature below 750oC, The EPR spectra resemble the high-temperature pyrolysis spectra, but 

with somewhat altered spectral intensities 

The LTIM EPR technique, in spite of its many advantages, is limited in identification of 

trapped radicals when the observed EPR spectra arise from two or more species 1.   One of the 

principal EPR spectral identification parameters, apparent g-value (as a maximum point of the 

integrated curve), does not convey conclusive structural information when the EPR spectrum is a 

convolution of two or more species.  Constituent radicals in a mixture can only be distinguished 

by judicious variation of the experimental conditions (temperature, pressure, annealing 
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Figure 3.3 A representative EPR spectrum from the pyrolysis of phenol above 850oC 
(bottom spectrum) compare to its EPR spectrum at 750oC (top spectrum) 
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parameters etc) followed by computer analysis of digitally stored spectra.  This procedure was 

used to simplify EPR spectra of gas-phase radicals trapped from phenol pyrolysis over the wide 

temperature region of 400 to 1000 o C.  As it will be clear from chapter 4, phenoxy and 

cyclopentadienyl (CPD) radicals EPR spectra were identified giving the evidence of phenoxy 

and CPD radicals being dominant potentially environmentally persistent free radicals in different 

temperature domain during the pyrolysis of phenol. 

3.2 Low Pressure Pyrolysis of Hydroquinone 

This paragraph shows results from low pressure pyrolysis of Hydroquinone over a 

temperature range of pyrolysis 350 to 1000oC at a total working pressure of ~ 0.1 Torr. 

We employed the technique of the Low Temperature Matrix Isolation (LTMI) EPR 1, in 

which hydroquinone vaporized at 75 o C was pyrolyzed in a low pressure reactor (0.01- 0.1 torr) 

which was directly connected to a liquid nitrogen-cooled cold finger situated within the EPR 

cavity of a Bruker EPR spectrometer Figure 2.3 

3.2.1 Total Radical Yield 

Unlike the accumulation time dependence of phenol which followed a linear trend in all 

temperature domains, the time dependence of hydroquinone pyrolysis as well as of catechol 

reached saturation towards the 10-12 min radical accumulation.  More importantly, in the 

pyrolysis of hydroquinone as of catechol, there was a decrease in radical intensity beyond 800o C  

3.2.2 Temperature Dependence of Radical Yield 

The 77 K EPR spectra from Hydroquinone pyrolysis over the temperature range of 350 to 

975 oC as well as total radical yields vs. temperature is presented in Figure 3.4.  As can be seen, 

the total radical yields increase from 350 to 850 o C and decreases at higher temperature.  Based 

on the identified types of radicals, three temperature region can be fairly divided: low 
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temperature region from 350 to 725 C where neutral p-semiquinone, p-SQ (p-hydroxyl 

phenoxyl) radicals are dominant, high temperature region from 850 to 975 C where 

Unlike the time dependence of phenol which followed a linear trend in all temperature 

domains, the time dependence of hydroquinone as well as of catechol reached saturation towards 

the 10-12min radical accumulation.  More importantly, in the pyrolysis of hydroquinone as of 

catechol, there was a decrease in radicals intensity beyond 800 o C as depicted in figure 3.4 

cyclopentadienyl radicals (CPD radical) are dominant, and intermediate temperature region from 

725 to 975 C where a mixture of p-SQ and CPD radicals exist 
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Figure 3.14 Time Dependence of Total Radical Accumulation from the Pyrolysis of 
Hydroquinone from 700 to 950 o C. In most cases, saturation arises between 10 and 12 
minutes of the accumulation. The radicals yield increase from 700 to 850 o C, and decreases 
above 850 o C DI/N value is the double integrated (DI) intensity of the EPR spectrum that has 
been normalized (N) to account for the conversion time, receiver gain, number of data points 
and sweep width [http://www.bruker-biospin.com/winepr.html?&L=0].   
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Figure 3.4 Temperature dependence of the total radical yields from the low pressure pyrolysis 
of hydroquinone in flow of CO2 carrier gas (0.2 torr). DI/N value is the double integrated (DI) 
intensity of the EPR spectrum that has been normalized (N) to account for the conversion time, 
receiver gain, number of data points and sweep width [http://www.bruker-
biospin.com/winepr.html?&L=0].  Right side; the representative EPR spectra of carbon dioxide 
matrix isolated radicals from the pyrolysis of hydroquinone are depicted above the black line (as 
un-annealed spectra at 77 K, 1 scan) and below the line (as annealed spectra).  Left side; the 
representative EPR spectra of carbon dioxide matrix isolated radicals from the low temperature 
pyrolysis (black line, 5 scan).  All spectra were registered at characteristic parameters; sweep 
width 200G, modulation amplitude 4G, time constant 5.12ms, microwave power 5mW.  
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g = 2.0048

 

Figure 3.6 ERP featureless singlet line from the pyrolysis of HQ at temperature below   
600oC 

3.2.3 Persistent Free Radical formation From Hydroquinone 

 If the nature of radicals from HQ pyrolysis generally is clear in low temperature (p-

semiquinone) and high temperature regions (cyclopentadienyl radicals), their nature in the 

intermediate temperature region 725 to 850 oC is not straightforward.  Based on proposed HQ 

pyrolysis mechanisms 1, 29, 30 CPD radicals, p-semiquinone, phenoxy, phenyl as well as 

 

Figure.3.5 EPR spectra of frozen radicals from HQ pyrolysis at 950 C registered at sweep 
width 200 G, modulation 4 G, time constant 5.12 ms, and microwave power 5 mW. Black line 
is the un-annealed while the red line is the annealed EPR spectra of radicals. 
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Figure 3.7 Representative EPR Spectra from the Pyrolysis of HQ at 700-800oC. 
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Figure 3.8 A Representative EPR spectrum from the pyrolysis of HQ at 800-1000oC 

hydroxycyclopentadienyl (OHCPD) radicals all be formed.  In the discussion (chapter 4), we will 

present some experimental evidences of coexistence of these mentioned radicals. 
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Figure 3.9 Time dependent accumulation of radicals from the pyrolysis of catechol. A 
non-linear trend was obtained at all temperatures where saturation is reached between 10 
and 12 minutes of accumulation of radicals. The signal intensity DI/ Nis the Double 
Integration (DI) of  the surface area of the first derivative EPR spectrum normalized to N 
to account for the conversion time, receiver gain, number of data points, and sweep

3.3 Low Pressure Catechol Pyrolysis 

In the catechol pyrolysis experiments, catechol in solid state is vaporized at 75oC in an 

electrically heated vaporizer.  The gas was pumped through a flow reactor which temperature is 

varied from 300 to 1000 o C. The feed rate of catechol is calculated by dividing the weight of 

catechol used by the time it elapses.  The effluent pyrolysis products were condensed onto the 

finger of the Dewar cooled by liquid nitrogen. .Despite  

the numerous advantages of LTMI-EPR technique, it is limited in identifying trapped 

radicals when the observed EPR spectra comprise more than one species 1.  Even the 

apparent g-value, one of the principal EPR spectral identification parameters does not 

convey conclusive structural information when the EPR spectrum is a convolution of two 

or more species29.  Therefore additional experiments were designed to appropriately 

distinguish radicals in a complex mixture arising from the gas-phase pyrolysis of 



 74

catechol.  This comprises the photolysis at room temperature of catechol, the generation 

of pure CPD radical employing the tricarbonylcyclopentadienylmanganese, the computer 

analysis of digitally stored spectra acquired over a wide temperature range of 300-

1000oC.   

3.3.1 Total Radical Yield 

The time dependence radical accumulation from the pyrolysis of CT shows trends that 

resemble those of HQ.  A non-linear trend characterizes the accumulation of radicals from 

catechol pyrolysis where saturation is reached between 10 and 12 minutes of accumulation 

(Figure.3.9). 

3.3.2 Temperature Dependence of Radical Yield 

As the temperature dependence of radical yield of HQ pyrolysis, there is an increase of 

radical yield as the temperature increases. A maximum radical yield was observed around 850oC, 

followed by a decrease in yield as the temperature increases.  Different shapes of radical EPR 

signal were observed. 
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Figure 3.10 A representative EPR spectrum from the pyrolysis of CT at 400-600oC with g = 
2.00481-2.00610, ∆p-p = 14.480-15.780
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Figure 3.11: Temperature Dependence of Total Radicals Yield from the Gas-
phase Pyrolysis of Catechol. An increase of signal intensity obtained by the 
Double Integration of the EPR first derivative signal normalized to N was 
observed that reached a maximum value at 750-800oC. 

3.3.3 Persistent Free Radical From Catechol  

 As the pyrolysis temperature of CT increases, the shape of radical EPR spectrum varies from a 

singlet line at around 500oC to 6 line spectra with increase shoulder. This gives evidence that 

several radicals are formed during pyrolysis of CT and trapped onto the cold finger of the the 

liquid nitrogen cooled Dewar 

3.4 Pyrolysis of Tobacco 

After the detailed study of mainstream Tobacco smoke major components 36-39 which are 

catechol, hydroquinone and phenols, allegedly causes of tobacco toxicity 40-45
 ,  the next step was 

to determine radicals that are formed during the pyrolysis of tobacco.  The goal of this important 

endeavor was to compare radicals formed from the pyrolysis of the standards and tobacco in 

order to establish the necessarily link if any at all.  
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Figure 3.12 Overall width of raw BAT tobacco EPR spectrum.  

The overall pyrolysis experiments of tobacco have followed the same experimental 

procedures as for the precursors where the Low Temperature Matrix Isolation technique is 

coupled with EPR for the registration of the EPR signal of the frozen radicals arising from the 

gas-phase pyrolysis of tobacco at low and atmospheric pressure conditions.  The carrier gas used 

in the pyrolysis study of tobacco was nitrogen.  Four blends of tobacco obtained from Phillips 

 Morris USA (Virginia, Burley, Oriental, and Mix) were employed in the low pressure study. For 

the atmospheric pressure study, we employed three blends (Bright, Burley, and Oriental) 

provided by British American Tobacco company.   Figure 3.12 The apparent singlet line 

 marked A has a high g-value = 5.17122 while the six line splitting marked B with a g-value = 

2.07221 represents a superposition of Manganese and organic radicals in tobacco. 

3.4.1 Free Radical Yield 

Figure 3.12 depicts the EPR spectrum of Tobacco in a wide magnetic field that shows the 

metallic contents of tobacco. The singlet line marked A represents iron EPR spectrum (literature) 

with high g-value = 5.17122 and total width ∆Htotal = 210.934 and the six lines spectrum 
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marked B depicts the superposition of manganese and organic radical in tobacco with a g-value = 

2.07221 and ∆HTotal = 521.4G.  

A restriction of the magnetic field to measure only the organic radical in raw tobacco is 

represented in Figure 3.13 where the g-value = 2.00474 and ∆Hp-p = 7.227G. 

3.4.2 Persistent Free Radical From tobacco 

The low and atmospheric pressure pyrolysis of all blends of tobacco yielded noisy, 

featureless singlet line EPR spectra. . Figure 3.15 presents the typical EPR spectrum from 

Virginia blend, a representative spectrum for all three blends.  

 
Table 3.1 Concentration of Free Radical from four blends of Tobacco 
 
 Virginia Burley Mix Oriental 
DI/N * 0.0278 0.0727 0.138 0.0316 

 

2 .0 6 2 .0 4 2 .0 2 2 .0 0 1 .9 8 1 .9 6 1 .9 4

g -v a lu e s  

 Figure 3.13 EPR spectrum of Organic radical in raw tobacco g =2.00474 at the center with ∆Hp-p = 7.227G 
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DI/N value is the double integrated (DI) intensity of the EPR spectrum that has been normalized 

(N) to account for the  conversion time, receiver gain, number of data points and sweep width 

[http://www.bruker-biospin.com/winepr.html?&L=0] 

Given the complexity of tobacco due to its numerous organics and inorganic components, 

collecting the Total Particulate Matter (TPM) on the filter gives insights of radicals production. 

Figure 3.14 depicts the radical intensity yields collected on the cold finger of Dewar during the 

gas-phase pyrolysis of four blends of tobacco (Virginia, Burley, Oriental, and Mix). 

3.5Additional Experiments 

The LTIM EPR technique, in spite of its many advantages, is limited in identification of 

trapped radicals when the observed EPR spectra arise from two or more species 1.  One of the 

principal EPR spectral identification parameters, the apparent g-value (as a maximum point of 

the integrated curve), does not convey conclusive structural information when the EPR spectrum 

is a convolution of two or more species.  Constituent radicals in a mixture can only be 

distinguished by judicious variation of the experimental conditions (temperature, pressure, 

annealing parameters etc) followed by computer analysis of digitally stored spectra. 

Consequently, we performed additional experiments to clearly identify gas-phase radical EPR 

spectra of individual radical. .The paragraphs will present the experiments along with the results 

they allow to achieve 
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Figure 3.14.   Radical yields observed in TPM condensed directly  
on the cold finger from gas phase pyrolysis of four tobacco blends.  .   
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Figure.3.17 EPR spectra of frozen radicals from HQ pyrolysis at 950 C registered at sweep 
width 200 G, modulation 4 G, time constant 5.12 ms, and microwave power 5 mW. Black line 
is the un-annealed while the red line is the annealed EPR spectra of radicals. 
 

 

 

Figure 3.16  The step by step annealing of radicals from pyrolysis of phenol at 700 oC.  All 
spectra were registered at the same conditions (Sweep width - 200G, modulation amplitude - 4G, 
microwave power - 20 mW, time constant - 5.12ms). 
  

3.5.1 Annealing Experiments 

During the pyrolysis experiments of CT, HQ, and phenol, radical EPR spectra were acquired 

during radical accumulation time.  At the end of the accumulation period, the sample transfer 

line was close, thus the hot carrier gas which contact with the cold finger of Dewar that was 

/causing the boiling of liquid nitrogen is removed.  This allowed acquisition of the last EPR 
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radical under less noisy conditions.  We termed the last acquired EPR spectrum “initial radical 

EPR spectrum.  In fact the initial radical EPR spectra are convolution of several radicals trapped 

onto the cold finger of the Dewar.  The annealing experiments allow annealing the matrix, thus 

annihilating the more reactive radicals that diffuse and recombine as neutral molecules leaving in 

the spectrum the more persistent individual radicals.  Figure 3.16,3.17, 3.18..show annealing 

results of initial EPR spectrum from the pyrolysis of phenol, hydroquinone and catechol 

respectively.  

As it can be seen, in our annealing experiments, the more persistent free radical EPR spectra  

exhibit a sextet with intensity distribution of 1:5:10:10:5:1, a g-value of 2.00420-2.00504, 

hyperfine splitting constant of 6.02 G, and a peak-to-peak width of 3.01 G, characteristics of 

CPD radicals.  The microwave power dependence experiments allow to observe some more 

radicals that annealing experiments could not allow. 

3.5.2 Microwave Power Dependence Experiments 

The power dependence of EPR spectra of radicals at 77 K from phenol pyrolysis at 700 oC, 

phenol photolysis at room temperature, and CPD radicals from ŋ 5-C5H5Mn(CO)3 pyrolysis at 

250 oC are presented in Figure 3.19. CPD radical spectra were observable up to microwave 

g=2.00417un-annea led
a n n e a le d g = 2 .0 0 4 2 0

 
   Figure 3.18.  EPR spectra of carbon dioxide matrix isolated radicals from the pyrolysis of 
catechol at 850 oC before (un-annealed spectrum, DI/N ª = 1.120) and after annealing (middle 
spectrum, DI/N ª = 1.114). (ª DI/N value is the double integrated (DI) intensity of the EPR 
spectrum that has been normalized (N) to account for the conversion time, receiver gain, number 
of data points and sweep width [http://www.bruker-biospin.com/winepr.html?&L=0].   
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powers of 36 – 40 mW with insignificant saturation occurring at powers even greater than 40 

mW.  CPD radical spectra did not change in shape or intensity distribution over the entire region, 

which is consistent with reports in the literature 19, while pure phenoxyl radicals saturated easily 

at less than ~ 1.5 mW (triangles, dotted line in Figure 3.19).  It is also evident from Figure 3.19 

that the magnetic susceptibility of phenoxyl radicals at microwave powers less than 2 mW is 

significantly higher  

 than that of CPD radicals while at higher power, this is reversed.  If we assume a mixture of 

these two radicals, we would expect an intermediate saturation behavior of this mixture as is the 

case of the EPR spectra from pyrolysis of phenol (cf. Figure 3.19), which begins to saturate at 

powers less than 10 mW.   

The large magnetic susceptibility of CPD radicals at high power (20 mW)), causes the EPR 

spectra resulting from the pyrolysis of phenol (cf. Spectrum A in Figure 3.20) to be dominated 
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Figure 3.19 Microwave power dependence of CPD radicals at 77 K from pyrolysis of ŋ 5-
C5H5Mn(CO)3 at 250 oC (squares), radicals from phenol pyrolysis at 700 oC (circles) and phenol 
photolysis (triangles). 
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by the CPD spectrum.  Decreasing the power, results in relative growth of two peaks marked “a” 

and “b” that resemble that of phenoxyl radicals (compared with overlaid spectra of pure 

phenoxyl radical, red line in spectrum D).  Subtraction of the EPR spectrum of phenoxyl from 

spectrum D results in spectrum E that clearly resembles that of CPD.  This is additional evidence 

of existence of phenoxyl as well as CPD radicals from phenol pyrolysis at 750 oC. 

3.5.3 Photolysis of Phenol, Hydroquinone and Catechol 

The goal of the photolysis experiments was to generate pure free radical EPR spectrum 

from the photo-dissociation of the hydrogen atom of the hydroxyl group of phenol, hydroquinone 

and catechol to compare to radical EPR spectra generated from the pyrolysis of the precursors. 

- Photolysis of Phenol 

The aim of the photolysis reaction of phenol is to generate pure phenoxy type radical to 

0.05 mW

D g = 2.00443

Subtraction result

E g = 2.00431B

2 mW

g = 2.00435

A

20 mW

g = 2.00433

C

0.1 mW

g = 2.00441

ba

ba

bab
a

 
Figure 3.20.  Effect of microwave power on the 77 K EPR spectra of radicals from the pyrolysis of 
phenol at 750 oC is depicted in spectra A-D.  Overlaid in red in Spectrum D, is the EPR spectrum of 
pure phenoxyl radical.  The peaks labeled a and b are the most dependent on microwave power.  
Subtraction of the spectrum of pure phenoxyl radical from spectrum D result in the residue 
spectrum E, which is characteristic of CPD radical. 
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g = 2.0060

 

Fig 3.21: Photolysis of Phenol at room Temperature. A very broad 5 un-resolved lines
spectrum with g = 2.0060  

compare with radicals observed during the gas-phase pyrolysis of phenol at low temperature 

domain. .  It is known that 250 to 300 nm photoexcitation of phenol in solution results in its partial 

photo-dissociation to phenoxyl radical and a hydrogen atom 7, 9, 10. The EPR spectrum from the 

room temperature, low pressure, photolysis of phenol vapor in CO2 flow (total pressure ~ 0.2 torr) 

using the LTMI EPR technique is depicted in Figure 3.21.  This broad spectrum consists of 5 

nonresolved lines with apparent g = 2.00600 at 77 K in a carbon dioxide matrix and microwave 

power 0.202mW.  A very complex spectrum, 15 or more lines, of phenoxyl radicals has been 

reported in liquid media 11-13. 

- Photolysis of Hydroquinone  

In this study, the UV gas-phase photolysis of HQ was carried out using the same 

experimental equipment for pyrolysis.  Instead of pyrolysis reactor as a photolytic cell a simple 

suprasil 1 quartz tube was used which was irradiated by UV light at 253.7nm from the side.   
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CT Photolysis g = 2.0052

 

Figure. 3.23  CT) photolysis at room temperature yielded a very weak EPR signal with g = 
2.0052, characteristic of oxygen-centered radical. 

 

The aim of photochemical experiments of HQ was straightforward: generate oxygen-centered 

phenoxy type of radicals directly from the gas phase photolysis of suitable precursors at lower 

temperatures and freeze them at liquid nitrogen temperature.  The huge advantage of photolysis 

is that it is possible to prevent thermal degradation of formed radicals and transfer them at low 

pressure to cold zone for EPR acquisition.  

A singlet line EPR spectrum comparable to the HQ pyrolysis EPR spectrum at 350 o C was 

observed. Figure 3.22 depicts the photolysis of HQ. 

• Photolysis of Catechol 

 

HQ Photolysis g = 2.0044

 

Figure 3.22.  EPR spectrum of the products of the photolysis of HQ. A featureless singlet line 
characteristic of Para-Semiquinone Radical 
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Figure3.24 CPD EPR Spectrum of the Pyrolysis of 
Tricarbonylcyclopentadienylmanganese at 250oC. Pure CPD radical was generated with g 
= 2.00438, and ∆Hp-p= 3.32G 

The photolysis of catechol at room temperature allows the oxygen-hydrogen 

homolytic bond dissociation, thus pertaining to the formation of the neutral O-semiquinone 

radical depicted in Figure 3.23.  It may be argued the formation of radicals such as the 

neutral O-phenoxy di-radical from the elimination of both hydrogen atoms of the two OH 

groups of catechol, a biphotonic type radicals. Such a di-radical is highly unstable and will 

either decompose, transform, recombine or eliminate as neutral molecule 35. 

3.5.4 Pyrolysis of Tricarbonyl-cyclopentadienylmanganese (ŋ 5-C5H5Mn(CO)3) at 
250oC.   
The mechanism of the gas-phase pyrolysis of ŋ 5-C5H5Mn(CO)3 has been thoroughly 

investigated8 using conventional and IR laser-powered homogeneous pyrolysis in combination 

with  matrix isolation EPR spectroscopy.  The decomposition was consistent with initial stepwise 

loss of CO, followed ultimately by release of CPD radical. 
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We generated CPD radicals from pyrolysis of ŋ 5-C5H5Mn(CO)3 in a CO2 gas flow at less 

than 0.2 Torr total pressure.  The spectrum exhibits an isotropic 1:5:10:10:5:1 sextet .  The EPR 

spectrum of these radicals was compared and subtracted from the annealed EPR spectrum of 

phenol, HQ and CT pyrolysis products at 950 oC (cf. Figure 3.25, dotted black line).  Clearly 

the spectra are in excellent agreement, and the difference spectrum presented in the lower trace 

indicates that very few other radicals were present after annealing.   

This mathematical substraction of spectra clearly shows that at temperature above 

800oC, phenol, HQ and CT pyrolysis yields CPD as dominant radical. 

 

 

Figure 3.25.  Comparison and subtraction of EPR spectra of carbon dioxide matrix isolated 
CPD radicals from the pyrolysis of (ŋ 5-C5H5Mn(CO)3) at 250 oC (red line, g = 2.00431) with 
the annealed-residue spectrum of precursorl pyrolysis at 950 oC ( dotted line, g = 2.00430).  The 
lower trace is the difference spectrum.  The spectra were registered at a sweep width of 150  G, 
modulation amplitude of  4 G, time constant of 5.12 ms, microwave power of 5m W.  

Aunannealed

 

Bpartly annealed 

 

Cannealed

 
 
Figure 3.26. Step by step annihilation of initial spectrum A (g = 2.00745) to the final phenoxyl radical spectrum C (g 
= 2.00582).  EPR spectra registration conditions: sweep width - 200G, modulation amplitude - 4G, time constant - 
5.12ms, microwave power - 5mW. The control reaction of 450 ppm of DTBP in a carbon dioxide flow produced a very 
weak anisotropic signal. 
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3.5.5 Pyrolysis of Di-tert-butylperoxide  

Di-tert-butylperoxide (DTBP), when pyrolyzed at 250oC yields the tert-butoxy radical.  

The pyrolysis of DTBP was used to generate phenoxyl radicals through reacting the radicals 

produced by its decomposition with phenol 14-16:   

1. t-BuO-OBu-t  2 t-BuO. 

2. t-BuO.    Me. + Me2CO 

3. t-BuO. +RH(PhOH)   t-BuOH + R.(PhO.). 

 Accordingly, we pyrolyzed a mixture of 450 ppm of DTBP and 250 ppm phenol at 250 

C in a flow of carbon dioxide (~0.2 torr).  The EPR spectra at 77 K of the pyrolysis products are 

depicted in Figure 3.26.  Step by step annealing of the matrix converted the un-annealed 

spectrum A (g = 2.00745) to intermediate spectrum B (g = 2.00607) and the fully annealed 

spectrum C (g = 2.00582) which matches exactly the spectrum of the photochemically generated 

phenol    

3.5.6 Atmospheric Pressure Pyrolysis of Phenol, Hydroquinone, and Catechol 

Atmospheric pressure pyrolysis of the precursors at 750oC was performed to see the 

influence of high gas-phase radical concentration on their EPR spectra.  It should be expected 

that the more radicals are formed due to the higher sample concentration, the easier will be their 

radical-radical recombination to form neutral molecles 

• Atmospheric Pressure Pyrolysis of Phenol at 750oC 

atmospheric pyrolysis was undertaken from 400 to 750 o C. The noticeable point about  

the atmospheric pressure pyrolysis of phenol is that the initial spectra are so noisy that any 
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Figure 3.27 Atmospheric pressure pyrolysis of Phenol at 750 o C. Very persistent superposition of 
radicals was observed. A: after annihilation with a total width of ∆H Tot =156G, clearly shows  the 
sextet characteristic of CPD which is superposed with other unidentified radicals, and g= 2.00455. 
B: after further annihilation ∆H Tot =136G close to that of hydroxycyclohexanedienyl radical. 

reasonable assignation is possible.  Most of the time, the short time accumulation of 

radicals, and the difficulty turning EPR cavity did not permit a time dependence of radical 

accumulation.  Interestingly, after annealing of the matrix, very persistent radicals were 

observed that lasted more than one hour.  Additionally, clear CPD radical was observed 

superposed to a very broaden radical with total width of 156G. Figure 3.27A.  Further 

annihilation permits to get spectrum in Figure 3.27B.  At lower temperature, different 

shapes of radicals EPR spectra were observed.  For instance, from 400 to  600 o C, the 

spectra depicted in Figure3.27B has characteristics close the those of 

Hydroxycyclohexadienyl (OHCHD) reported in the literature  23, 24.  The  OHCHD type 

radicals have g value  of 2.0028 24 and a total width of ~ 130 -135G.  A g-value of 2.0028 

is a pure carbon-centered radical.  However, it can also characterize a carbon-centered  
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radical which carbon atom is vicinal to an oxygen atom25.  The radical EPR spectrum in 

Figure 3.27B has a g-value 2.00334, and a total width of 136G vs. 2.0028 and 130-135G  

reported respectively for OHCHD radical in the literature 23, 24  Also the broadening of the 

first line in the spectrum presented in figure. 3.28 shows presence of phenoxy radical that 

has already been identified 26.  A seventh line could be observed in addition to the regular 

CPD radical sextet and intensity distribution, giving the evidence of the presence of an un-

identified radical.  CPD radicals, unlike the low pressure pyrolysis were dominant even at 

low temperature.  This may be due to the fact that phenoxy radicals, due to it high pressure 

react to form PCDD/F or Hydroxy naphthalene, therefore disappear from the system as 

will be seen in the discussion part of this work.  

 

2 .0 8 2 .0 6 2 .0 4 2 .0 2 2 .0 0 1 .9 8 1 .9 6 1 .9 4

g -v a lu e s

 

 Figure 3.28 Apparent superposition of several radicals: CPD arises from the known   
sextet; phenoxy radical as shown by the broadening of the first line of the spectrum; an 
additional seventh line on the right side of the spectrum, evidence of the presence of an 
un-identified radicals. 
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• Atmospheric Pressure Pyrolysis of Hydroquinone 

As in the case of phenol, the goal of the atmospheric pressure pyrolysis of Hydroquinone is 

two fold: First it consists in having a close look to the change in radical formation induced by the 

high gas pressure.  Second, the simultaneous accumulation of gas-phase formed radicals and 

pyrolysis products collection in a trap allows GC-MS analysis to determine the very unstable 

radicals that condense to form molecular products.  The atmospheric pyrolysis of hydroquinone 

was performed at 750 o C.  

Unlike the low pressure pyrolysis at the same temperature where very weak and non-well 

resolved EPR spectra were registered at the beginning of the accumulation process, the 

atmospheric pressure pyrolysis yields well resolved and strong EPR signal at the beginning of 

the accumulation. It is clear that CPD is dominant radicals at this temperature while in the low 

pressure pyrolysis, a complex mixture of radicals was detected. Figure 3.29 shows the EPR 

spectrum of radical at 6min accumulation time.  It is clear this is a superposition of several 

radicals.  However, the CPD sextet can be very well seen.  Annealed and further annealed 

spectra show a clear dominance of CPD radicals. 

• Atmospheric Pressure Pyrolysis of Catechol 

As in the cases of phenol and hydroquinone, the low pressure pyrolysis of CT has been 

performed. Figure.3.30 represents typical radical EPR spectrum from the pyrolysis of CT.  The 

first line of the EPR spectrum is broadened.  This is the evidence of the superposition of at least 

two radicals from which the sextet clearly indicates CPD radicals.  The same broadening seen in 

the case of the pyrolysis of HQ is also seen here, giving evidence of the formation of phenoxy r. 
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   Fig.3.29 Atmospheric Pyrolysis of HQ. Strong and well resolved EPR spectra with shoulder 
at the beginning of accumulation of radicals. CPD radical is superposed to unknown radicals. 

3.5.7 Effects of Trace of Oxygen on Radical: Case Study of Hydroquinone 

Tobacco smoking is a process that  involves oxygen.  Thus it is important to have a close 

look at the effects of oxygen on the standards, major components of mainstream tobacco smoke 

which are catechol, hydroquinone and phenols 36-39.  In this endeavor, we use hydroquinone as 
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Figure 3.30 EPR spectrum of radicals from the atmospheric pressure pyrolysis of CT. The 
broadening of the firt spectrum line is indicative of superposition of at least two radicals. The 
sextet represents the CPD. The more likely cause of the broadening of the line is phenoxy 
radical. 
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case study, varying oxygen concentration from 15 to 700ppm.  The following paragraphs report 

on the interesting findings. 

• The Oxygen EPR signal Associated with the EPR signal of pyrolyzed HQ 

The LTMI EPR technique is a great tool to identifying the trace amounts of oxygen in a 

sample frozen on cold finger 46.  The presence of oxygen in the pyrolysis system can be directly 

viewed from the two sides of EPR spectra (Figure. 3.31, black line), which represents the most 

important oxygen line known as E line (K=1, J=2, M=1 2 46.)  Note that the oxygen peaks in 

both sides of initial spectrum can be removed easily by annealing procedure (Figure.3.31, red 

line). The black line is a convolution of two radicals: the p-SQ radical that we had already 

identified from both the pyrolysis below 600 o C and the room temperature photolysis of HQ 

(Fig. 4, red line); and the Oxygen radicalspectrum marked by * in the black line of Figure3.31 

•  Effects of Oxygen Concentration on the Nature of Radicals   

We have pyrolyzed HQ in varying Oxygen concentrations from 15 to 700 ppm.  The lowest 

concentration of O2 was ~ 15 ppm.  This value corresponds to the background vacuum value of 

**

 

Figure.3.31 Frozen p-SQ radicals EPR spectra from pyrolysis of HQ at 550 o C: the black line is un-
annealed spectrum (peaks with asterisk represent adsorbed molecular oxygen), the red line after annealing. 
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      Figure 3.32 The effect of oxygen on the shape 

of the EPR spectra of frozen radical from the 
pyrolysis of HQ at 750oC. The spectrum C-A 
subtraction represents CH3O2 radicals EPR 
spectrum 

10-4 torr of air.  The spectrum of radicals from HQ pyrolysis was assigned as A in Figure.3.32.  

Increasing oxygen concentration in the carrier 

gas  up to 700 ppm and higher leads to the 

formation of broader spectra B (~ 350 ppm O2) 

and C (at 700 ppm O2 and higher).  The 

mathematical difference C-A gives EPR 

spectrum which is typical for the RO2 and, 

particularly CH3O2 radicals well documented in 

the literature by the shape and overall spread (~ 

75-80 gauss), hyperfine splitting in the bottom of 

spectra ~ 5.42 G and high g value 2.010 at 

crossing of the base line3, 46.  The rational of the 

formation of CH3O2 radical during pyrolysis of 

HQ in trace of oxygen will be discussed in 

chapter 4.   

3.5.8 GC-MS Analysis of Products of Atmospheric Pressure Pyrolysis of Phenol 
Hydroquinone and Catechol 

 
The GC-MS experiment is additional experiment to analyze the pyrolysis products 

distribution during the gas phase atmospheric pressure pyrolysis of the precursors.  A liquid 

nitrogen cooled trap was set on the atmospheric line of figure 2.4.  Simultaneous radical 

accumulation on the cold finger of the Dewar and pyrolysis products accumulation in the trap 

were performed.  The chromatogram showed in addition to several other compounds the 

formation of naphthalene. This result is consistent with the literature 27.  Naphthalene is known 

to form from the condensation of two CPD radicals as shown in Scheme 1.6 28. 
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The GC-MS analysis of the products of the pyrolysis of hydroquinone reveals beside the 

formation of naphthalene as the result of the condensation of two CPD radical, interesting two 

ring compounds such as indene and hydroxyl-indene. As we will discuss in chapter 4, the GC-

MS detection of indene and hydroxyl-indene is the evidence that hydroxycyclopentadienyl (HO-

CPD) radical is formed, but recombines either with CPD or another HO-CPD to form either 

indene or hydroxyl-indene through CO elimination 

The GC-MS analysis of the products of Catechol pyrolysis reveals formation of fluorene 

(m/z =166), and 1H-Indenol (m/z = 132) and its isomer 1H-Inden-1-one_2,3_ dihydro, 

acenaphthylene (m/z = 152), Benzofuran-7-methyl, Benzofuran-2-methyl (m/z =132).  As will 

be shown in chapter 4, the products of Catechol pyrolysis give additional evidence of both labile 

and persistent radical formation 
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CHAPTER 4: DISCUSSION * 

4.1 Radicals from Phenol 

The room temperature photolysis of Phenol yielded a five line non-well resolved EPR 

spectrum that we positively identified as phenoxy radical. The pyrolysis of phenol at both low 

and atmospheric pressures yielded superposition of radicals difficult to identify without 

additional mathematical and experimental tools.  Even the LTMI technique, in spite of it 

numerous advantages, is limited in the identification of trapped radicals when the observed EPR 

spectra are the convolution of more than two radicals. 1.  However, CPD radical was clearly 

identified at high temperature as dominant radicals.  Intermediate temperature phenol pyrolysis is 

very complicated to interpret as far as the type of gas-phase formed free radicals.  It is believed 

that CPD formed from either catechol or hydroquinone pyrolysis derived from phenol known to 

be intermediate product of the pyrolysis of both precursors.  In the following paragraphs, the 

discussion during which generated free radical spectra will be compared and contrast to gas-

phase radical spectra from the pyrolysis of phenol will be presented along with detailed free 

radical identification methods. 

The positive identification of radicals formed during the pyrolysis of phenol between 800 and 

1000oC was achieved by combining several experimental and mathematical tools. The annealing 

of the initial spectra showed that approximately half of the initial radicals where made of 

phenoxy radicals and some other un-identified radicals such as phenyl, and alkyl radicals.  The 

second half is basically made of well resolved, symmetrical, annealed spectrum that was 

identified to CPD.  

The CPD radical from the pyrolysis of phenol has been compared to the pure one generated 

by pyrolysing the tricarbonylcyclopentadienylmanganese at 250oC in a CO2 gas flow at less than 

0.2 Torr total pressure.  The spectrum exhibits an isotropic 1:5:10:10:5:1 sextet 2 that matched 

* Portions of this chapter reprinted by permission of the American Chemiocal Society 
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the CPD from the pyrolysis of phenol.  The positive identification of phenoxy radical was done 

by comparing the pure phenoxy radical generated from both the photolysis of phenol 3-5 and its 

low pressure, gas-phase reaction with the di-ter-butylperoxide 6-8 to the 5 line spectrum observed 

in the stepwise annealing experiments 

Due to the small difference of the components of the g-tensors for phenoxy radicals, an 

anisotropic spectral analysis is impossible on the X-band because many anisotropic peaks 

overlap 9.  The single characteristic parameter in our case is the high g-value (2.00482-2.00500 at 

high microwave power, >2 mW) which is in the range of g-value for phenoxy radicals in liquid 

solution (~2.00461) and substituted phenoxyl radicals (non-halogenated) in various media of 

~2.00530 (Table 1.1).  This shift of the g-value depends significantly on the spin density of the 

phenolic oxygen, ρo
π.  Theoretical and experimental studies of model compounds suggest that 

there is a positive, direct proportionality between ρo
π and the g-value 

10, 11.  The presence of a 

hydrogen bond to the oxygen reduces ρo
π and, consequently, the g-factor 12, 13.  As a result, 

hydrogen bonding in aqueous solution results in the somewhat lower g-factor of 2.00461 14 while 

higher g-values of ~ 2.00530 are observed in more non polar solvents such as CCl4 15, 16(Cf. 

Table 1.1). 

We performed additional experiments to determine if phenoxyl radical was generated by 

pyrolysing phenol without carrier gas.  The reason for this is that if CPD/Phenoxy radicals are 

not diluted by CO2 then, based on their differing stability/reactivity behaviour, they may partially 

dimerize and result in simpler, more interpretable EPR spectra.  In the absence of CO2, the 

spectrum (cf. Figure 4.1, line A) resembles the residue (difference) spectrum.  Annealing 

converted spectrum A (DI/N= 24.18) to much better resolved spectrum B (DI/N=11.07), and 

finally spectrum C (DI/N=8.00).  Decreasing the microwave power to 0.2 mW resulted in 

spectrum D (red line, DI/N = 3.7, g = 2.00468).  This residue spectrum matches very well the 
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EPR spectrum of pure phenoxyl radical (overlaid at the same g value scale, red line in spectrum 

D).  Thus, the combination of performing the experiments without a matrix and with annealing 

promotes CPD/Phenoxyl radicals destruction at different rates, that, along with reducing the 

microwave power (masking of CPD radicals), enhances the spectrum of phenoxyl over that of 

CPD such that it can be clearly resolved (vide infra, Figure 4.1).  All these procedures result in a 

residue spectrum (Figure 4.1D) nearly identical to that of phenoxyl and confirming its formation 

from pyrolysis of phenol from 800 to 1000oC. 

The EPR spectra in the temperature region of 700 to 800 o C is similar to the high 

temperature phenol pyrolysis spectra, but with somewhat altered intensities.  Using the 

observation that  

increasing the microwave power readily saturates the EPR spectrum of phenoxy radicals but not 

CPD radicals 1, 17, we performed a series of phenol pyrolysis experiments from 700 to 800oC to 

further investigate the nature of radicals in the mixture.  

CPD radical spectra were not readily saturated at microwave power below 40mW.  Also the 

spectra shape and intensity distribution were not change with microwave power variation, which 

is consistent with reports in the literature 17.  However, phenoxy radicals saturated easily at 

microwave power less than 2 mW.  That fundamental difference behavior of CPD and phenoxy 

DCBA

annealedun-annealed

0.2 mW
g = 2.00468

1 mW
g = 2.00417

5 mW
g = 2.00417

5 mW
g = 2.00480

Figure 4.1 EPR spectra of frozen radicals (at 77 K) from phenol pyrolysis at 950 oC.  A - Initial spectrum 
at 5 mW power. B - After annealing at 5 mW power.  C - Annealed spectrum at 1 mW. D -annealed 
spectrum at 0.2mW (red line) overlaid with the spectrum of pure phenoxyl (black line) recorded under the 
same conditions (from phenol  photolysis at 0.2 mW power). 
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radical to microwave power variation gives the evidence that the pyrolysis of phenol between 

700-800oC yielded a mixture approximately made of 50% CPD and 50% phenoxy radical as 

supported by the calculations in chapter 3. 

At 400o C, the pyrolysis of phenol yielded a weak EPR signal that was clearly identifiable as 

CPD radical (cf Figure. 4.2A). The high activation energy barrier of CPD for the elimination of 

CO from phenoxy radical (44-52 Kcal/mol) would seem to preclude CPD formation at 400oC via 

gas-phase reaction18-20.  Consequently, the formation of CPD is attributed to a wall reaction. At a 

contact time of ~ 4ms and a pressure of 0.2 Torr ( reactor diameter ~ 12mm), the calculated 

diffusion time of a gas-phase phenol molecule to the quartz wall is only ~ 70 µs, which means 

that the phenol molecules can collide with with the wall almost 60 times prior to exiting the 

reaction zone. 

The fact that we did not observe characteristic peaks for phenoxy radical at 400 oC suggests 

that the wall reaction of phenol proceeds directly to CPD without forming phenoxy radical as a 

stable intermediate.  Surface-induced decomposition of phenol has been reported as low as 125 

K through rupture of C6H5O-H bonds 21.   In this work, a surface reaction mechanism on Pt(III) 

was developed in which surface-adsorbed C5H3 and H2 (or C5H5, the authors could not 

ba

B g = 2.00445A
g = 2.00468

 
Figure 4.2.  77K EPR spectra of radicals from pyrolysis of phenol in CO2 flow at 400 oC 
(spectrum A) and at 600 oC (spectrum B). Registration parameters: Spectrum A- sweep width 
-200G; modulation amplitude -2G, time constant -20.48ms, power 2 mW, 5 scans. Spectrum 
B - sweep width- 200G, modulation amplitude- 4G, time constant- 5.12ms, power- 2 mW, 1 
scan. 
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distinguish these products) were formed.  Increasing the temperature to 600 oC accelerates the 

homogeneous gas-phase formation of phenoxy radicals, resulting in the characteristic peaks of 

phenoxy radical labeled a) and b) depicted in Figure 4.2 B.  

The high CPD radical to phenoxy radical ratio was a bit surprising in the light of the stability 

of phenoxy radical proposed in the literature22, 23.  To address this question using our 

experimental results, we have modeled our experimental data with a core phenol pyrolysis model 

from the literature24 using CHEMKIN kinetic package25and a perfectly-stirred, plug-flow reactor 

application (150 ppm phenol in flow of CO2, total flow pressure 0.2 torr, contact time 4 ms).  

The reaction kinetic input file was that proposed by Horn 24 without any changes in the kinetic 

parameters (cf. Table 4.1). 

Table 4.1 Reaction Kinetic Model for the Pyrolysis of Phenol adapted from reference 24 

 Reactions Considered A B E 

1 C6H5OH=C5H6 + CO 1.00E+12 0.0 60740.0 

2 C6H5OH= C6H5O + H 3.20E+15 0.0 81500.0 

3 C6H5OH+H= C6H6 + OH 2.20E+13 0.0 8000.0 

4 C6H5OH+H= C6H5O + H2 1.15E+14 0.0 12400.0 

5 C6H5OH+H= C6H5O + H2O 6.00E+14 0.0 0.00 

6 C6H5O= C5H5+ CO 7.40E+11 0.0 43800.0 

7 C5H6 = C5H5+H 4.00E+14 0.0 77000.0 

8 C5H6+H= C5H5+H2 2.80E+13 0.0 2260.0 

9 C5H6+H= C3H5+ C2H2 6.60E+14 0.0 12310.0 

10 C5H5= C5H5(L) 7.50E+11 1.0 77000.0 

11 C5H5(L)= C3H3+ C2H2 3.70E+11 0.0 30000.0 

(Table cont’d) 
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12 2 C5H5= C10H8+2H 2.00E+13 0.0 4000.0 

13 2 C3H3= C6H5+H 1.00E+13 0.0 0.0 

14 C3H3+H= C3H4 5.00E+13 0.0 0.0 

15 C3H4+H= C3H3+ H2 5.00E+07 2.0 5000.0 

16 C3H4+H= CH3+ C2H2 1.00E+14 0.0 4000.0 

17 C6H5 = C6H5(L) 2.50E+13 0.0 70500.0 

18 C6H5(L) = C4H3 + C2H2 7.90E+62 -14.7 57000.0 

19 C4H3 = C4H2 + H 1.60E+43 -9.3 43100.0 

A is in units of mole-cm-sec-K. E is in units of cal/mole, (k = A Tbexp(-E/RT) 

Examination of the results in Table 4.2 indicates that the C5H5 to C6H5O ratio is >1 

above 1073 K and CPD increasingly dominates as the temperature increases. 

Table 4.2 CPD and Phenoxyl concentrations from the Phenol Reaction Kinetic Model 

 873 K   973 K 1073 K 1173 K 1273 K 

C5H5 0.64E-10 0.80E-07 0.12E-04 0.36E-03 0.38E-02 

C6H5O 0.28E-08 0.28E-06 0.48E-05 0.18E-04 0.43E-04 

C5H5/C6H5O  0.023 0.3 2.5 19.7 88.4 

Percent consumption of 

C6H5OH 

0.0 2.0 2.4 4.0 26.0 

 

Based on this model, phenoxyl radical concentrations are most sensitive to the rates of reactions 

2 and reaction 6.  Reactions 4, 3, and 5 affect its concentration to a lesser degree in the order 

given.  The CPD radical concentration is most sensitive to reaction 2 with lesser sensitivity to 

reactions 6, 4, 3, 1, in that order. 
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 The high CPD to phenoxyl ratio can be understood if we analyze closely the results of the 

scheme in Table 4.1 

1. The relation, k2 = 0.15k1, was necessary to explain the experimental yields of hydrogen atoms 

at very short times (~ 200µs) for the pyrolysis of phenol in shock-tube experiments according 

to reference 24.  This results in a significant contribution to CPD formation through reactions 

1 and 8. 

2. Phenoxyl radicals are actively decomposed to CPD at a higher rate (reaction 6) than CPD is 

decomposed to olefinic products (reactions 10 and 11).  

3. The generation of radicals in chain propagation reactions also favors CPD radical (reaction 8) 

over phenoxyl (reaction 4) because [H] >> [OH] 24 and formation of phenoxyl through well 

known reaction C6H5OH+OH →C6H5O + H2O is depressed.  

These factors result in CPD being the dominant Environmentally Persistent Free Radical at 

temperatures > 973 K.  Below 973 K, the modeling calculation does not result in any conversion 

of phenol to CPD radical.  However, because we have experimentally demonstrated the existence 

of CPD radicals at temperatures < 973 that is not predicted by the model, formation of CPD by 

wall reactions is therefore implicated.  

Insertion of a pathway for dimerization of phenoxyl radicals (reactions 20 and 21) 26 did not 

change significantly the  C5H5 to C6H5O ratio, probably due to the low steady-state concentration 

of phenoxy radicals at 1173 K. 

2C6H5O
· → C12H10O2   k20 = 8.64 10^11exp (1254.0 cal/mol/RT)                  (20) 

C12H10O2 → 2C6H5O    k21 = 3.16 10^15exp (-51000.0 cal/mol/RT)               (21) 
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The rate of dimerization reaction of CPD, k12 =2.00 10^13 exp (-4000 cal/mol/RT) 

cm3/mole.sec is comparable with the dimerization reaction of phenoxyl radicals, k20 =8.6 

10^11exp (1254cal/mol/RT) 27, (e.g. k12 / k20 ~ 1.3 at 700 K and 3 at 1000 K)  

All of these factors lead to CPD radicals being the dominant Persistent Free Radical over 

phenoxy radicals under low pressure conditions. 

The atmospheric pressure pyrolysis of phenol at 750 o C gave additional information leading 

to the confirmation of the formation of CPD and phenoxy radicals during pyrolysis of Phenol. 

The GC-MS analysis reveals the formation of naphthalene known in the literature to proceed 

from condensation of two CPD 28.  We did not observe any dioxin or furan type molecules that 

would suggest formation of phenoxy radical.  However, the low phenoxy radical to CPD radical 

ratio could explain that phenoxy radicals are formed and rapidly decompose to CPD to the extent 

where their steady state concentrations did not allow formation of detectable level of PCDD/Fs. 

We can now confirm, given those results that the decomposition pathway of phenol above 750 o 

C is:PhOH →  PhO.   →   CPD 

 

 

Scheme 4.1 Thermal degradation of the model compound HQ.  Mechanism of the formation of 
various radicals ( reference 32) 
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4.2 Radicals from Hydroquinone 

 
In the light of Scheme 4.1 29, the major radicals expected to be formed from the thermal 

decomposition of Hydroquinone going to the left-hand side of the scheme are respectively 

phenoxy and CPD radicals, and to the right-hand side,  p-semiquinone and 

hydroxycyclopentadienyl radicals.  The following paragraphs report on the efforts of positive 

identification of those radicals. 

The gas-phase pyrolysis of HQ at temperatures above 850oC, critical temperature at which 

the maximum yield of Persistent Free Radicals was achieved, yielded EPR spectra basically 

dominated by the apparent sextet that we have identified to CPD radical.  The initial spectra with 

resolved shape and g-value of 2.0042 closely resemble the literature CPD radical EPR 

spectrum30 Figure 4.3 exhibits the superposition of the computer-generated CPD radical (black 

dotted line) with the experimental annealed spectra (solid redline) of HQ pyrolysis above 850oC. 

It should be noted that during annihilation, the initial relative concentration of frozen radicals 

 

Figure 4.3 Comparison of experimental EPR spectrum from HQ pyrolysis (red solid 
line with the calculated EPR spectrum of CPD (black dotted line).  The following 
experimental inputs were used for theoretical calculations of the CPD radical EPR: 5 
equivqlent protons, g = 2.0051, coupling constant of 6.0G, peak to peak distance 3G.  (Very 
similar spectra were obtained from the pyrolysis of CT) 
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(DI/N = 1.47) decreased by nearly a factor of 10, and we still observed a very strong EPR signal 

that, compared to the pure CPD radical spectrum generated from the pyrolysis of ŋ 5-

C5H5Mn(CO)3 , exhibits same EPR characteristics (six well resolved lines, g-value, ∆Hp-p) as 

this later.   

In this temperature region of 725-850oC, a complex mixture of radicals was observed that 

only a combination of experimental and mathematical tools could help to dissociate. In the 

following paragraphs the methods used in discerning p-Semiquinone, phenoxy, CPD, and 

Hydroxycyclopentadienyl (OHCPD) were reported 

The pyrolysis of HQ in CO2 produced broad, but to some extent resolved spectra 

(Figure.4.4, spectrum A).  Annealing converted spectrum A to isotropic spectrum B, which 

through lowering the microwave power from 5mW to 1mW, converted to an almost singlet line, 

spectrum C.  

The disappearance of resolved lines by lowering the microwave power has previously been 

observed during pyrolysis of phenol 31.  At low microwave power (≤ 1 mW), the higher magnetic 

susceptibility of phenoxyl radicals (as well as for substituted phenoxy radicals, vide infra) results 

in the EPR signal of phenoxy radicals being stronger than CPD radicals.  At higher microwave 

power (> 10 mW), the phenoxyl spectrum is saturated (structure is lost) and the CPD spectrum is 

more apparent31. 

We employed a combination of methods to clearly distinguish radicals formed and trapped 

on to the cold finger of the Dewar.  In addition to the microwave power variation that masques 

some radicals magnetically susceptible to low or high microwave power, we used the 

mathematical tools such as WINEPR and SimFonia software to calculate the g-values, the widths 

of the spectra and most importantly to substrate EPR spectra of pure generated radical from a 

complex mixture of radicals.  
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Fig.4.4. EPR spectra of radicals trapped on the cold finger from the pyrolysis of HQ at 
825 oC in CO2 flow:  Conversion of spectrum A to B by annihilation, B to C (black line) 
by decreasing of power from 5 to 1mW; B-C=D is simple subtraction result, spectrum E 
is CPD radical EPR spectrum.  On spectrum C (black line) the EPR spectrum of p-
semiquinone radicals (red line) from HQ photolysis is overlaid.  All spectra were 
registered at sweep width 200 G, modulation 4 G, time constant 5.12 ms. 

The difference spectrum, D in Figure 4.4 (spectrum B minus spectrum C) matches our CPD 

spectrum generated from the pyrolysis of HQ, which perfectly matches the spectrum of pure 

CPD (spectrum E in Figure 4.4) generated from the pyrolysis of ŋ 5-C5H5Mn(CO)3 at 250 oC 31.  

Thus the annealed Spectrum B (DI/N = 0.4) is a mixture of a trace of CPD radical (DI/N = 0.08) 

(Spectrum D in Figure 4.4) and a dominant p-SQ radical (DI/N = 0.32) (Spectrum C in Figure 

4.4).   

Based on the possible mechanism for thermal decomposition of HQ depicted in Scheme 

4.1, hydroxycyclopentadienyl (OHCPD) radical might be formed 32.  The unimolecular 

decomposition of HQ results in the formation of p-SQ radical, which in analogy to phenoxyl 

radical should form OHCPD upon decomposition via expulsion of CO 33.  OHCPD is also more 

stable thermodynamically with a ∆f H = 45.0 kcal/mol vs. ∆f H = 63.7 kcal/mol for CPD34, 35.  
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The ab-initio calculated activation energies for formation of OHCPD and CPD via expulsion of 

CO from p-SQ and phenoxyl radical are similar, being 59.3-65.1 kcal/mol and 56.4-62.9 

kcal/mol for p-SQ and phenoxy radical, respectively 23. 

However, we did not observe OHCPD in significant concentrations.  Because the 

addition of an OH group to CPD radical should have a minimal effect on the hyperfine splitting 

interaction on ring protons 36, the EPR spectrum of OHCPD radical can be calculated using 

available EPR data for CPD radicals (g = 2.0044, hsc = 6 G, line width ~ 3 G) for 4 equivalent 

protons using Bruker Simphonia simulation package (http://wwwbruker-

biospin.com/winepr.html?&L=0).  To the best of our knowledge, literature EPR spectrum data of 

OHCPD radicals does not exist.  The calculated EPR spectrum for OHCPD is a simple 5-line 

spectrum with an intensity distribution 1:4:6:4:1, whereas, all CPD radicals that we have 

identified possessed 6 lines with an intensity distribution 1:5:10:10:5:1 that matches the 

literature31.  We were not able to detect any 5-line similar to the calculated spectrum of OHCPD 

radical.   

The absence of OHCPD suggests that the formation of p-BQ in Scheme 4.1 through 

reaction 2 dominates over the formation of OHCPD via reaction 1.  Indeed, a simple calculation 

of the ratio of k2 to k1 indicates that at > 900K the main channel of p-SQ radical decomposition 

is formation of p-BQ which dominates by an order of magnitude.  

Table 4.3 Calculated Ratios of k2 to k1 for Pathways Depicted in Figure 4.4 

Temperature(K),  700 900 1000 1100 1200 

k2/k1
a 2.96 11.4 18.3 27 37 

  a An average value of E1 = 62.4kcal/.mol and E2= 70.84 kcal/mol was calculated using  5  
different ab-initio basis sets .  Pre-exponential factors were taken as A1 = 2.5E+12 s-1and A2 
=3.2E+15 s-1   
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The formation of the very stable p-BQ by loss of a second hydroxyl hydrogen versus OHCPD 

formation by expulsion of CO from the p-SQ radicals has been previously proposed at 

temperatures > 1200 K 37.  

 Although p-BQ was the major product formed as p-SQ decomposed, cyclopentadienone was 

observed as the p-SQ concentration decreased, implicating that the decomposition of p-BQ 

proceeded partially through the proposed OHCPD intermediate. Since it supposedly polymerizes 

very rapidly37, it was not possible to detect cyclopentadienone. 

The next step in this work was to identify some products from HQ pyrolysis at 750 oC which 

can be additional evidence to the formation of OHCPD or CPD radicals.  It is known that 

recombination of two cyclopentadienyl radicals, followed by rearrangement and 2 H elimination 

can result in formation of naphthalene 38.  Similarly, the recombination of two OHCPD radicals 

may form dihydroxynaphthalene. By freezing all pyrolysis products on cold trap for further GC-

Ms analysis, in addition to   p-BQ product we have identified naphthalene (recombination of 2 

CPD radicals), hydroxyl-indene, and indene.  The indene formation results from the cross 

reaction between CPD and OHCPD radicals: 

 

OCH3HO
-CH3

OHO OHHO
+ H

m/z =110m/z= 109

m/z= 81

HO
O

m/z = 80

-H

 

Scheme 4.2 Mechanism of the formation of OHCHD radical followed by generation of 
cyclopentadienone molecule (adapted from reference 40) 
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Figure 4.5. Comparison of EPR spectra of frozen radicals at liquid N2 temperature from 
pyrolysis of HQ at 550 oC (black) , photolysis of HQ (red), and photolysis of phenol (blue) 
at room temperature. All spectra were registered at 77 K at sweep widths 200 G, amplitude 
of modulation 4 G, microwave power of 5 mw.

 OHCPD + CPD  (OH)C10H7 (hydroxynaphtalene, M=144)  CO + C9H8 (Indene, M/Z = 

116) 

While the hydroxyindene (C9H8(OH), M/Z = 132) is a result of cross reaction between two 

OHCPD radicals: 

OHCPD + OHCPD  2H + C10H6(OH)2 (dihydroxynaphtalene, M/Z = 160) 

C10H6(OH)2  CO + C9H7(OH). 

In fact the products of direct recombination of OHCPD and CPD radicals, (OH)C10H7 

(hydroxynaphtalene) and two OHCPD radicals, C10H6(OH)2  have not been found in our GC-MS 

analysis of HQ pyrolysis.  However products of their decomposition, indene and hydroxyindene 

have been identified. These facts indicate that hydroxynaphtalene, as well as 

dihydroxynaphtalene are instable at high temperatures and by repulsion of CO converted to 

stable products which are indene and hydroxynaphtene. 

In a previous report, effort in identifying  phenoxy radicals by LTMI EPR technique was 

reported 31.  It was shown that phenoxy radicals are very reactive species and that their steady 

state concentration is too low. Several approaches were integrated to show the presence of 
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phenoxy radical in the pyrolysis radical products of phenol 31 and to conclude that phenoxy 

radical was not dominant radical observed during the pyrolysis of phenol.  

Even though phenol is a major molecular product from the pyrolysis of HQ at temperature 

higher than 700 oC39, phenoxy radical was not detected in our study.  It is understandable when 

we compare the low yield ( less than 5 %) of phenol concentration 39.  As simply can be seen, 

phenol is accumulated during HQ pyrolysis 200 times less than what it is as initial pure reagent 

29.  Consequently, the phenoxy radical concentration should be much lower in the process of 

pyrolysis of HQ and can not be detected by LTMI EPR method employed in this work. To 

confirm the assignment of the featureless spectrum at low temperature pyrolysis of HQ that we 

identified to p-SQ radical, we attempted to generate pure p-SQ radical via photolysis of a 

suitable molecular precursor. 

 Figure 4.5 presents representative spectra from the pyrolysis of HQ (black line), photolysis 

of HQ (red line), as well as from phenol (as a reference spectrum, blue line).  It’s known from 

the literature that UV irradiation at < 300 nm will generate various aromatic oxy-radicals from 

the phenol 15, Catechol 40 and hydroquinone 41.  In the case of HQ photolysis, we generated a 

featureless singlet line at 77 K which, based on its high g-value (2.0044), can be attributed to p-

SQ.  As depicted in Figure 4. 5, this spectrum (red line, ∆H (p-p) = 12G, g = 2.0044) exactly 

matched the spectrum from the pyrolysis of HQ (black line, ∆H (p-p) = 12G, g = 2.0049).  A 

reference spectrum generated from the photolysis of phenol is also presented in Figure4. 5 (blue 

line).  The g value = 2.0047 is typical of oxygen-centered radicals and is in the range of g-values 

for phenoxy-type radicals generated at various conditions, e.g., g = 2.0045 - 2.0049 42 and 

2.005340.  

Although the spectrum obtained from the photolysis of HQ was an exact match to the 

spectrum obtained from its pyrolysis, the g-value of 2.0047 of radicals from low pressure (0.1 - 
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0.08 torr) photolysis of phenol is very close to the g-value from the very low pressure ( ~ 0.01-

0.1 torr) pyrolysis of HQ (g = 2.0049) or photolysis of HQ (g = 2.0044).  The single difference is 

the broadening (∆H (p-p) = 18 G) produced from phenol compared to that produced from HQ 

(∆H (p-p) = 18 G).  The reason for the differences in peak widths can be explained using Bader 

valence electron density data analysis for the various radicals of interest (cf. Table 4.4) 23. 

Table 4.4 Bader Valence Electron Charge Densities 

             %              %           % 

Radical Carbon Hydrogen Oxygen 

o-Semiquinone 52.2 10.6 37.2 

p-Semiquinone 49.8 13.4 36.8 

Phenoxy 63.6 14.8 21.6 

Phenyl 82.2 17.8 na 

 

The delocalization over the aromatic ring in phenoxyl radical is significantly higher (63.6%) 

than in p-semiquinone radical (49.8%).  According to the McConnell relation 43, 44 for protons 

directly bonded to the carbon atoms of the benzene nucleus, ai
H = Q ρi

π, where: the proton 

coupling constant, ai
H, (in gauss, for the proton at position i) is directly proportional to the spin 

density, ρi
π, of a carbon atom i in the aromatic ring, and Q is a proportionality constant expressed 

in magnetic-field units.  It follows from the equation that the higher the spin density on particular 

carbon atom, the higher is the ai
H (and hence the total spread of spectrum 45).  Consequently, a 

high spin density over the aromatic ring in phenoxyl radical leads to a wider overall spectrum 

than in case of o- or p-semiquinone radicals that have greater spin density on the oxygen.  

Exactly the same featureless spectrum with a relatively narrow ∆H (p-p) of 12 G was obtained 
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Fig 4.6 Total radical yield from the gas phase pyrolysis of catechol. The CPD+ 
shows an increase with temperature and reaches a saturation with total conversion 
of Catechol to CPD plus other unidentified radicals. Simultaneously, it was 
observed a faster increase of O-semiquinone radicals up to 650 oC where the O-
semiquinone radical dominates, reaches a maximum yield around 750 oC 
followed by a sharp decrease where the CPD type radicals dominate. 

for pyrolysis of CT under the same conditions (not shown).  This is again consistent with the low 

percentage of charge distribution on carbon for the expected o-SQ.   

The expected ratio of spin densities for phenoxyl and p-semiquinone radicals is 63.6 % 

/49.8% =1.3, which is quite close to the ratio of peak-to-peak widths for suspected radicals, 18 G 

/ 12 G = 1.5.  The slightly higher predicted spectral width may be due to the concentration 

broadening of EPR spectra in the case of phenol (vapor pressure ~ 0.1 torr) while for HQ the 

vapor pressure is estimated ~ 0.01 torr at 70 °C. 

Based on this analysis, we feel confident in assigning the spectrum for pyrolysis of HQ 

from 350 to 725 oC as p-SQ. 

4.3 Radicals from Catechol 

The almost perfect match of the un-annealed and the annealed spectra observable 
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from Figure 3.21 demonstrates that at temperature above 850 o C, it is reasonable to 

conclude that only CPD radicals dominate.  The other radicals observed at lower 

temperature either decompose or recombine.  This experimental fact makes CPD the most 

persistent radical above 800 o C.  All spectra were registered at sweep width 200G, 

modulation amplitude 4G, time constant 5.12ms, microwave power5mW.  

     The calculated DI/N using the Simphonia Software for both the un-annealed and the 

annealed spectra shows values which are consistent with the total conversion of Catechol to a 

sole radical at temperature above 800 o C (Figure 4.6).  We have compared the annealed spectra 

for the pyrolysis temperatures of Catechol above 800oC to that of cyclopentadienyl radical 

generated from the low temperature pyrolysis of tricarbonyl cyclopentadienyl manganese29.  All 

the annealed spectra exhibit an isotropic 1:5:10:10:5:1 sextet which were consistent with the 

cyclopentadienyl radical from the suitable precursor. It is then reasonable to suggest that at 

temperatures higher than 800oC, only CPD can be observed as radical from the pyrolysis of 

catechol, the other short life radicals at those temperatures either recombine to neutral molecules 

or completely decompose.  It has been reported that  catechol starts decomposing around 500oC, 

leading to a maximum phenol yield at 800oC46.  Consequently, phenoxy radical should be 

expected from the pyrolysis of catechol between 700oC and 800oC. Unfortunately, this was not 

the case, thus confirming what we have observed as phenol behavior above 700 oC 29.   However, 

cyclopentadiene reaches its maximum yield at 800oC 46.  Given that assumption on radical 

species such as cyclopentadienyl, vinyl, propargyl and phenoxy radical formation was made 

solely based on the observation of their stable forms, our experiment proves that phenoxy type 

radical observed from the thermal cracking of phenol at temperature above 700oC is not 

dominant in that temperature range, rather, the CPD type radical dominates the spectra29.   This 

finding is consistent with catechol thermal decomposition where phenoxy type radical was not 
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observed at temperature above 800 oC.  A plausible route of catechol pyrolysis above 800 oC is a 

simultaneous scission of C-OH bond and the O-H bond to form water and phenoxy radical that 

immediately undergoes CO elimination to form CPD. 

A spectrum acquired from the pyrolysis of catechol at 750 oC was subjected to the 

microwave power variation.  As it can be observed, the shape of the spectra changes as the 

microwave power varies. The initial spectrum, registered at 5mW, obviously depicts a mixture of 

radicals where the dominant one is the CPD as it shows the characteristic splittings 1.  At 

microwave power above 5mW, the CPD radical shape was observable from the spectrum.  The 

saturation was reached at 20mW.  When the matrix was annealed, the 6lines spectrum is 

converted to a singlet line with a slight splitting at the center.  As it can be seen, the annealed 

matrix spectrum at higher power is identical to the initial spectrum registered at power below 

2mW. Since the matrix annealed spectrum depicts only one radical, the most persistent at the 

pyrolysis temperature, we have identified the matrix annealed spectrum to that of O-

semiquinone.  The evidence of this identification will be shown in next paragraph.  Our 

understanding of spectral shape dependence on microwave power is that some radicals are very 

sensitive to low microwave power while others are to the high microwave power.  In our 

experiment, the radicals in the pyrolysis mainstream mixture, basically the CPD and the O-

semiquinone obey that observation. At low microwave power, we believe that CPD is not 

sensitive.  The singlet line with slight splitting in the center is the O-semiquinone radical that is 

very sensitive to low power. However, at high power, the CPD radicals are more sensitive, thus 

masking the O-semiquinone radicals in the mixture. After annealing the matrix, the 6 line 

spectrum converts to a singlet line with slight splitting at the center even at high power, showing 

that the CPD and o-SQ radicals were dominant radicals in this temperature region. 
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Surprisingly, the anticipated phenoxy and hydroxy-CPD radicals were not isolated as 

products of the pyrolysis of catechol at any temperature range.  In the scheme of catechol 

decomposition pathway that we published 1using hydroquinone as model compound, we initially 

envisioned the formation of phenoxy radicial from Catechol thermal decomposition via phenol 

formation followed by hydrogen atom elimination. The phenoxy radical would further 

decompose eliminating CO molecule to form the cyclopentadienyl radical.  Also, we suggested 

that Hydroxy-CPD radical should be formed from the CO molecule elimination from the O-

semiquinone radical. The suggested decomposition pathways were based on studies that reported 

phenol as major primary product of catechol decomposition with a maximum yield at 800oC 46, 

of 2-MonoChlorophenol thermal decomposition at even lower temperature47, of thermal 

decarbonylation of catechol, hydroquinone and resorlsinol48 and anisole pyrolysis, all yielding 

phenoxy radical49.  

 In our catechol pyrolysis experiments, phenoxy radical may be formed as reported in the 

literature46, 47, 49.  The reasons why the EPR spectra don’t show phenoxy radical are several folds.  

It may be said that our handling of the radical acquisition is not allowing us to detect phenoxy 

radical. This is not possible since in a parallel experiment of pure phenol pyrolysis, we were able 

to acquire and identify phenoxy radical29.  Another possible explanation is the very fast reactivity 

of phenoxy radical with o-Semiquinone radical. In addition to the very fast reactivity of phenoxy 

radical with the O-semiquinone radical, the absence of phenoxyl radical may be accounted for 

the very low phenoxy radical formation below the limit of detection of the EPR cavity.  Given 

that we had vaporized Catechol at a very low rate (2.5x10-3 mmol/min) and that to avoid catechol 

condensation on the wall due to its very low vapor pressure, all the transfer lines from the 

vaporizer to the cold finger of the Dewar need to be maintained at constant and elevated 

temperatures (~ 80oC). Very often, condensation can not be avoided, supporting the idea that 
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little of catechol pyrolysis products reach the detector.  Consequently, phenoxy radical that we 

believe of very low concentration can not be observed through it EPR spectrum acquisition. 

Likely, the hydroxyCPD radical was not observed from the pyrolysis of catechol.  As in 

phenoxy radicals case, the hydroxyCPD may form but has very sort life span in our 

experimental conditions.  We concluded that phenoxy radical and hydroxyCPD are not 

dominant radicals in our experimental conditions. To definitely conclude that hydroxyCPD and 

phenoxyl radical were formed in trace during the pyrolysis of CT, we performed GC-MS 

products analysis. The atmospheric pressure pyrolysis of Catechol allowed collecting both 

radicals onto the finger of the Dewar and pyrolysis products in a trap held at 77K and placed on 

the atmospheric line.   

The online CT pyrolysis products collection has been performed simultaneously with radical 

accumulation. The GC-MS analysis of the products was performed. 

Several compounds have been detected ranging from C6 to C12..    EExxtteennssiivvee  CCaatteecchhooll  ppyyrroollyyssiiss  

pprroodduuccttss  hhaavvee  bbeeeenn  rreeppoorrtteedd  iinn  tthhee  lliitteerraattuurree..    TThhee  yyiieelldd  ooff  nnaapphhtthhaalleennee  aatt  tteemmppeerraattuurree  bbeellooww  880000  

oo  CC  iiss  eexxttrreemmeellyy  llooww  ccoommppaarreedd  ttoo  ootthheerr  PPAAHHss  3399,,  4466,,    5500..    IInn  oouurr  GGCC--MMSS  aannaallyyssiiss  ooff  tthhee  ppyyrroollyyssiiss  

pprroodduuccttss  ooff  ccaatteecchhooll,,  oouurr  ffiinnddiinnggss  aarree  ccoonnssiisstteenntt  wwiitthh  tthhee  lliitteerraattuurree;;  wwee  ccaann  oonnllyy  ddeetteecctt  ttrraaccee  ooff  

nnaapphhtthhaalleennee  tthhaatt  ccoonnffiirrmmss  tthhee  ffoorrmmaattiioonn  ooff  CCPPDD  aatt  775500  oo  CC..    AAddddiittiioonnaallllyy,,  ttwwoo  ttoo  tthhrreeee  mmeemmbbeerr  

rriinngg  ccoommppoouunnddss  wweerree  ddeetteecctteedd..    TThhee  ddeetteeccttiioonn  ooff  11HH--IInnddeennooll    ggiivveess  eevviiddeennccee  ooff  tthhee  ffoorrmmaattiioonn  ooff  

llaabbiillee  rraaddiiccaallss  ssuucchh  aass  hhyyddrrooccyyccllooppeennttaaddiieennyyll  rraaddiiccaall,,  wwhhiillee  tthhaatt  ooff  FFlluuoorreennee  ccoonnffiirrmmss  nnoott  oonnllyy  

tthhee  ffoorrmmaattiioonn  ooff  CCPPDD  rraaddiiccaall  bbuutt  aallssoo  ooff  aalliipphhaattiicc  rraaddiiccaallss  ssuucchh  aass  eetthheennyyll,,  aanndd  aacceettyylleennyyll  

rraaddiiccaallss  4466  

4.4 Radicals from Tobacco 

As it can be expected from the pyrolytic study of catechol, hydroquinone and phenol, the 

pyrolysis of tobacco with the noble goal of identifying persistent free radicals, is very 
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complicated for several reasons.  For the pyrolysis of pure compounds such as catechol, 

hydroquinone and phenol, the complications that arise from the convolution of several radicals in 

the acquired spectra, and the difficulties that necessitated additional experimental and 

mathematical tools in interpreting the spectra in order to assign radicals were signs that the study 

of tobacco, a very complex compound made of not only the precursors studied, but of hundreds 

of other organic compounds51 including pectin, protein, some metals, lignin, cellulose, cryogenic 

acids 52, will not be an easy task.  However, we have diligently investigated the temperature 

dependence gas-phase pyrolysis of tobacco that we believe is a very strong step to future study. 

Semiquinone type radicals have been reported in cigarette smoke 53,, 54.  The detection 

method use can be the direct collection of Total Particulate Matter (TPM) on a filter (usually 

cellulose filter) or the extraction of the TPM in solution. The free radicals from TPM have been 

classified in two categories.  The first category is made of radicals directly formed during the 

burning of tobacco and the smoking process and the second category encompasses free radicals 

that are not initially present in the smoke, but are formed when TPM is exposed to oxygen or 

biological media 55.  The first category is termed primary radicals whereas the second is termed 

secondary radicals 56.   

A nonsmoker is basically exposed to secondary radicals that are also termed Environmental 

Tobacco Smoke (ETS) 57.  Further classification put semiquinone radicals in the second category 

55, therefore as an ETS.  TPM radicals have been accepted as semiquinone radicals 58,, 59.  

However, recent publications have demonstrated existence or coexistence of carbon-centered 

radicals and oxygen-centered radicals in TPM.  The g-value, one important radical’s 

characteristic that allows the distinction between carbon-centered radicals (g ~ 2.003) and 

oxygen-centered radicals (g ~ 2.004-2.005) 60 become un-operational when the EPR spectra are 

the convolution of several radicals 31.  Thus identification after detection of radicals in TPM 
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becomes very important issue.  Given the successful identification of radicals from the pyrolysis 

of precursors employing the LTMI-EPR technique, we have studied radicals from online gas-

phase tobacco smoke employing the same technique. 

The EPR spectra from the pyrolysis of tobacco at 350 o C display a featureless singlet line 

visibly comparable to the featureless singlet line spectra from the gas-phase pyrolysis of catechol 

and hydroquinone.  We believe that the featureless singlet line spectra obtained from the online 

pyrolysis of tobacco is the superposition of the EPR signal of several radicals and therefore its 

assignation to a given radical is impossible at the present time given that the EPR g-value and the 

spectra widths are not enough for this purpose 31.  However, in the hypothesis that the EPR 

singlet line from the pyrolysis of tobacco arises as the signal of only one radical, which means 

the complete termination at the experimental temperature of all other radicals, we have compared 

its characteristics to the EPR signals obtained from the study of the precursors. 

• Comparison with Phenol’s Radicals 

There was no common characteristic to the singlet line spectra observed from tobacco 

pyrolysis and the spectra from phenol.  In the low temperature region (below 600oC) non well 

resolved five lines spectra with g-value at the center of 2.0058 were observed from phenol 

pyrolysis: the phenoxy radical. Generally, tobacco pyrolysis EPR spectra show singlet line.  At 

higher temperature, phenol pyrolysis yielded CPD radical which can’t be found anywhere in the 

tobacco pyrolysis EPR spectra. 

This observation may be due to the fact that even if CPD radicals are formed, they terminated 

by radical-radical reaction, given that tobacco burning releases several compounds. 

• Comparison with p-Semiquinone and o-Semiquinone Radicals 

The room temperature catechol and hydroquinone photolysis and pyrolysis at temperature 

below 600oC yielded featureless singlet line that we assigned, based on the combination of both 
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experimental and mathematical tools and literature, to o-Semiquinone (o-SQ) and p-

Semiquinone (p-SQ) respectively. The featureless singlet line EPR spectra observed from the 

low temperature (320-380oC) pyrolysis of tobacco resemble apparently o-SQ and p-SQ.  Herein, 

we are going to compare the EPR characteristics of tobacco pyrolysis single line EPR spectra 

to those of o-SQ and p-SQ. 

Our calculations using the SimFonia software showed that the singlet line EPR spectra from 

the pyrolysis of tobacco at low temperature have the following characteristics.  The g-values 

vary between 2.00368 - 2.00399.  This range of g-values is consistent with surface-associated 

carbon-centered radicals where the unpaired electron is vicinal to an oxygen containing 

functional group 61 and partially delocalized, polymeric, phenoxy type radicals 60,, 62.  The peak to 

peak widths (∆Hp-p ) of the EPR spectra from the pyrolysis of tobacco vary between 8.008 and 

10.16G.  These ∆Hp-p values are wider than the one of (∆Hp-p= 6.6G) reported in reference 63 

and that led to the conclusion that p-SQ types radicals were in Tobacco Particulate Matter 

(TPM).  However, the extraction technique used in the cited study may have a narrowing effect 

on the width of the spectra. with ∆Hp-p ~ 12.60-15.60G 65.  To only base our reasoning on those 

values to assume that the radicals from pyrolysis of tobacco are semiquinone types radicals 

seems inconsistent at the present time. Thus the nature of radicals in tobacco pyrolysis needs 

further investigation. 

4.5 Effects of Oxygen on the Nature of Radicals 

The persistence of free radicals is defined as their resistance to react with oxygen for longer 

period of time.  In this paragraph, we are interested on the effect of trace of oxygen on radicals. 

The pure p-SQ radical generated in our study has the following characteristics: g-values 

~2.0044-2.0049, and ∆Hp-p ~ 12G 64, 65.   
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The pure o-SQ generated has g-values ~ 2.0052-2.0061  

In fact EPR spectrum of CH3O2 (C-A) in Figure.3.30 overlaps the spectrum A and a 

spectrum C is generated, where all resolved lines were merged and we have RO2 like radical 

EPR spectrum, C in general.   

In Figure 4.7 a temperature dependence of g-values and ∆H (p-p) of radicals from 

pyrolysis of HQ in CO2 in presence of traces of O2 (~700 ppm) is presented.  This group of 

spectra according to their spectral parameters (g = 2.0078 - 2.0100 and ∆H (p-p) = 14 – 14.9 G 

(Figure4.7)) were different from the group of spectra produced from neat pyrolysis of HQ.  They 

were much broader and possessed high g values (a representative spectrum at pyrolysis 

temperature at 435 oC with g = 2.00935 is presented on the top of Figure.4.7.  

The reason for such differences could be the different experimental pyrolysis conditions.  

It is reasonable that the change of g value by increasing the pyrolysis temperature can be caused 

by the formation of new type of radicals in wide temperature region (400-750oC).  The 

 

Figure 4.7 Temperature dependence of g-values and ∆H p-p of radicals from the 
pyrolysis of HQ in CO2 in presence of traces of O2 (~700ppm).  The top spectrum was 
detected from HQ pyrolysis at 435oC (g = 2.00935). The delivery rate of HQ up to the cold 
zone in flow of CO2 was higher (~ 10-2 mmol/min) than in neat pyrolysis (~ 10-3 mmol/min).  
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broadening of EPR spectra from 9.5 – 12.2 G (neat HQ Pyrolisis) to 14 – 14.9 G (pyrolysis in 

CO2, in presence of traces of oxygen, Figure.4.7) can be attributed not only to the formation of 

new type of radicals (for instance RO2) but also to the effects of concentration broadening (high 

delivery rate of HQ), ion pairing, polar interactions of frozen radicals on cold finger etc 67, 68.  

For instance, concentration broadening or ion pairing of EPR spectra of radicals can be evaluated 

by comparison of the color of the deposits on the finger during neat pyrolysis of HQ (colorless) 

and pyrolysis in CO2 (blue in case of HQ, and pink in case of CT).  Indeed at higher 

concentrations, benzosemiquinone anion radicals exhibit a strong blue hue in frozen solution 69.  

The reason for this color is thought to be due to radical complexes in the concentrated systems 

69,70.   

An influence of ionic environment on broadening the EPR spectra of radicals in solid phase, 

for instance for char radicals from cellulose pyrolysis has been found in presence of ionic 

compounds like alkali carbonates, bicarbonates, NaCl 71.  

4.6 References 

1. L. Khachatryan, Adounkpe, J., Maskos, M., and  Dellinger, B., "Formation of 
Cyclopentadienyl Radicals from the Gas-Phase Pyrolysis of Hydroquinone, Catechol, and 
Phenol," Environ. Sci. Technol., 40, 5071-5076 (2006). 

 
2. D.K. Russell, Davidson, I.M.T., Ellis, A.M., Mills, G.P., Pennington, M., Povey, I.M., 

Raynor, J.B.,  Saydam, S., Workman, A.D., "Mechanicm of pyrolysis of 
tricarbonyl(cyclopentadienyl)manganese and tricarbonyl(methylcyclopentadienyl)manganese," 
Organometallics, 14 (1995), 3717-23. 

 
3. A.S. Jeevarajan, and Fessenden, R.W., "Unusual chemically induced dynamic electron 

polarization of electrons by photoionization," J.Chem.Phys, 96 (1992), 1520-23. 
 
4. A. Bussandri, and Willigen, H. van, "Photoionization of phenolates and scavenging of 

hydrated electrons by NO3
 - : A study of the reaction mechanism by FT-EPR " J.Phys. Chem., 

105 (2001), 4669-75. 
 
5. A. Bussandri, and Willigen, H. van, "FT-EPR study of the wavelength dependence of the 

photochemistry of phenols," J.Chem.Phys, 106 (2002), 1524-32. 
 



 124

6. L. Batt, Benson, S.W., "Pyrolysis of Di-tertiary butyl peroxide: Temperature gradients and 
chain contribution to the rate," J.Chem.Phys, 36 (1962), 895-901. 

7.M.F.R. Mulcahy, Williams, D.J., and Wilmshurst, J.R., "Reactions of free radicals with 
aromatic compounds in the gaseous phase " Aust.J.Chem., 17 (1964), 1329-41. 

 
8.a.P. Yip. C.K., H.O., "Thermal decomposition of di-tert-butyl peroxide in binary mixtures 

near the critical point," Can.J.Chem., 49 (1971), 2290-96. 
 
9.T. Yamaji, Noda, Y., Yamauchi, S., and Yamauchi, J., "Multi-Frequency ESR Study of the 

Polycrystalline Phenoxyl Radical of 
r-(3,5-Di-tert-butyl-4-hydroxyphenyl)-N-tert-butylnitrone in the Diamagnetic Matrix," J. Phys. 
Chem. A 110 (2006), 1196-200. 

 
10. B.S. Prabhananda, J.Chem.Phys, 59 (1983), 2509-12. 
 
11. C.C. Felix, and Prabhananda, B.S. , J.Phys. Chem., 80 (1984), 3078-81. 
 
12. O. Burghaus, Plato, M., Rohrer, M., Mobius, K., MacMillan, F., Lubitz, W., J.Phys. 

Chem., 97 (1993), 7639-47. 
 
13. G. Feber, Isaacson, R.A., Okamura, M.Y., Lubitz, W., "In Springer Series in Chemical 

Physics; Michel-Beyerle, M.E., Ed.," Springer-Verlag, Berlin., (1985), 174-89. 
 
14. S. Un, Tang, X-S., Diner, B.A., Biochemistry, 35 (1996), 679-84. 
 
15. F. Graf, Loth, K., and Gunthard, H-H., "Chlorine hyperfine splittings and spin density 

distribution of peroxy radicals. An ESR and Quantum chemical study.," Helvetica Chimica 
Acta., 60 (1977), 710-21. 

 
16. H. Hiroyuki Nishide, Kaneko, T., Nii, T., Katoh, K., Tsuchida, E., and Lahti, P.M., 

"Poly(phenylenevinylene)-Attached Phenoxyl Radicals: Ferromagnetic Interaction through 
Planarized and ð-Conjugated Skeletons," J.Am.Chem.Soc., 118 (1996), 9695-704. 

 
17. P.J. Barker, Davies, A.G., and Tse, M-W. , "The photolysis of cyclopentadienyl 

compounds of tin and mercury.  Electron spin resonance spectra and electronic configuration of 
the cyclopentadienyl, deuteriocyclopentadienyl, and alkylcyclopentadienyl radicals.  ," J. Chem. 
Soc., Perkin Transaction 2, (1980), 941-48. 

 
18. G. NIST Chemical Kinetics Database 17, MD, . (1998). 
 
19. A.J. Collussi, Zabel, F., and Benson, S.W., "The very low-pressure pyrolysis of phenyl 

ethyl ether, phenyl allyl ether, and benzyl methyl ether and the enthalpy of formation of the 
phenoxy radical.," Inern. J. Chem. Kin., 9 (1977), 161-78. 

 
20.R. Liu, Morokuma, K., Mebel, A.M., Lin, M.C., "Ab inition study of the mechanism for 

the thermal decomosition of the phenoxy radical," J.Phys. Chem., 100 (1996), 9314-22. 
 



 125

21.a.W. Ihm. H., J.M., "Stepwise Dissociation of Thermally Activated Phenol on Pt(III)," 
J.Chem.Phys, B, 104 (2000), 6202-11. 

 
22. J.A. Manion, and Louw, R., "Rates, products, and mechanisms in the gas-phase 

hydrogenolysis of phenol between 922 and 1175 K," J.Phys. Chem., 93 (1989), 3563-74. 
 
23. C.A. McFerrin, R.W. Hall and B. Dellinger, "Ab Initio study of the formation and 

degradation reactions of semiquinone and phenoxyl radicals," Theochem, accepted (2007). 
 
24.C. Horn, Roy, K., Frank, P., and Just, T., "Shock-tube study on the high-temperature 

pyrolysis of phenol " 27th Symp.(Intern.) on Combustion / The Combustion Institute, Pittsburgh, 
PA, (1998), 321-28. 

 
25. R.J. Kee, Rupley, F.M., Miller, J.A.,Coltrin, M.E., Grcar, J.F., Meeks, E., Moffat, H.K., 

Lutz, A.E., Dixon-Lewis, G., Smooke, M.D., Warnatz, J., Evans, G.H., Larson, R.S., Mitchell, 
R.E., Petzold, L.R., Reynolds, W.C., Caracotsios, M., Stewart, W.E., Glaborg, P., Wang, C., 
Adigun, O., Houf, W.G., Chou, C.P., and Miller, S.F., "Chemkin Collection, Release 3.7, 
Reaction Design, Inc.," San Diego, CA, (2002). 

 
26. L.A. Khachatryan, Burcat, A., and Dellinger, B., "An Elementary Reaction Kinetic  

Model for the Gas-Phase Formation of 1,3,6,8- and 1,3,7,9-Tetrachlorinated Dibenzo-p-dioxins  
from 2,4,6 -Trichlorophenol," Combustion and Flame, 132 (2003), 406-21. 
 

27. F. Berho and R. Lesclaux, "The phenoxy radical: UV spectrum and kinetics of gas-phase 
reactions with itself and with oxygen," Chemical Physics Letters, 279 (1997), 289-96. 
 

28. C.F. Melius, M.E. Colvin, N.M. Marinov, W.J. Pitz and S.M. Senkan, "Reaction 
mechanisms in aromatic hydrocarbon formation involving the C5H5 cyclopentadienyl moiety," 
26th Symposium (International) on Combustion; The Combustion Institute: Pittsburgh, PA., 26 
(1996), 685-92. 

 
29. B. Dellinger, S. Lomnicki, L. Khachatryan, Z. Maskos, R. Hall, J. Adounkpe, McFerrin. 

C. and H. Truong, "Formation and stabilization of persistent free radicals 
" ScienceDirect, Proceedings of the Combustion Institute, 31 (2007), 521-28. 

 
30. L. Khachatryan, Adounkpe, J., Maskos, Z., Dellinger, B., "Formation of cyclopentadienyl 

radical from the gas-phase pyrolysis of hydroquinone, catechol and phenol," Environ. Sci. 
Technol., 40 (2006), 5071-76. 

 
31. L. Khachatryan, Adounkpe, J., and  Dellinger, B., "Phenoxyl and cyclopentadienyl 

radicals from the gas-phase pyrolysis of phenol," J.Phys.Chem., A, 112, pp 481-487 (2008). 
 
32. B. Dellinger, Lomnicki S.; Khachatryan, L.;  Maskos, Z.;  Hall, R., W.; Adounkpe, 

J.;McFerrin, C.;  Truong, H., "Formation and stabilization of persistent free radicals," 
Proceedings of the Combustion Institute 31 (2007), 521-28. 

33. Hieu Truong, Slawo Lomnicki and B. Dellinger, "Mechanisms of molecular product and 
persistent radical formation from the pyrolysis of hydroquinone," Chemosphere, in press (2007). 

 



 126

34. M. Karni, I. Oref and A. Burcat, "Ab-Initio calculations and ideal gas thermodynamic 
functions of cyclopentadiene and cyclopentadiene derivatives," J.Phys. Chem. Ref. Data, 20 
(1991), 665-83. 

 
35. X. Zhong and J.W. Bozzelli, "Thermochemical and kinetic analysis of the H, OH, HO2, 

O, and O-2 association reactions with cyclopentadienyl radical," Journal of Physical Chemistry 
A, 102 (1998), 3537-55. 

 
36. M.T. Cocivera, M.; Groen, A., Journal of American Chem. Scociety, 94 (1972), 6598. 
 
37. R.F. Pottie and F.P. Lossing, "Free radicals by mass spectrometry. XXIX. Ionization 

potentials of substituted cyclopentadienyl radicals," Division of Pure Chemistry, National 
research Councel, Ottava, Canada, (1962), 269-71. 

 
38. C.F. Melius, Colvin, M.E., Marinov, N.M., Pitz, W.J., Senkan, S.M., "Reaction 

mechanisms in aromatic hydrocarbon formation involving the C5H5 cyclopentadienyl moiety," 
Proc. Combust. Inst., 26 (1996), 685-92. 
 

39. H. Truong, Copper II Oxide Mediated Formation and Stabilization of Combustion 
Generated Persistent Free Radical In Chemistry Department, (Baton Rouge: Louisiana State 
University, 2007), 157. 

 
40. K. Loth, Graf, F.,  and Gunthard, H-H., "Effects of intramolecular and intermolecular 

proton transfer processes onto the ESR spectra of o-semiquinone radicals.," Chemical Physics 
Letters, 45 (1977), 191-96. 

 
41. J.G. Calvert, and Pitts, J.N. Jr, "Photochemistry," John Wiley & Sons, Inc. (1966), 499. 

 
42. P. Neta, and Fessenden, R.W., "Hydroxyl radical reactions with phenols and anilines as 

studied by ESR.," J.Phys. Chem., 78 (1974), 523-29. 
 
43. H.M. McConnell, Journal of Chemical Physics, 24 (1956), 764. 
 
44. H.M.a.C. McConnell, D.B., Journal of Chemical Physics, 28 (1958), 107. 
 
45. J.A. Weil, Bolton, J.R., Wertz, J.E., "Electron Paramagnetic Resonance," J.Wiley & Sons, 

Inc., NY, (1994). 
 
46. E.B. Ledesma, Marsh, N.D., Sandrowitz, A.K., and Wornat, M.J, "An Experimental 

Study on the Thermal Decomposition of Catechol," Proc. Combust. Inst., 29 (2002), 2299-306. 
 
47.C.E. Evans, and Dellinger, B., "Mechanisms of Dioxin Formation from the High-

Temperature Pyrolysis of 2-Chlorophenol," Environ. Sci.&Technol., 37 (2003), 1325-30. 
48. T. Sakai, and Hattori, M., "Thermal Decomposition of Catechol, Hydroquinone and 

Resorsinol.," Chemistry Letters, (1976), 1153-56. 
 
49. A.V. Friderichsen, Shin, E-J., Evans, R.J., Nimlos, M.R., Dayton, D.C., Ellison, G.B., 

"The pyrolysis of anisole (C6H5OCH3) using a hyperthermal nozzle," Fuel, 80 (2001), 1747-55. 



 127

 
50. N.D. Marsh, Ledesma, E. B., Sandrowitz, A. K., and Wornat, M. J., "Yields of Polycyclic 

Aromatic Hydrocarbons from the Pyrolysis of Catechol [ortho-Dihydroxybenzene]: Temprature 
and Residence Time Effects.," Energy&Fuels, 18(1) (2004), 209-17. 

 
51. D.D. Davis, Nielsen, M.T(edt), "TOBACCO. Production, Chemistry and Technology," 

Chapter 12, Smoke Chemistry, Baker, R.R. (1999), 398-439. 
 
52. G.H. Bokelman, Ryan, W. S., "Analyses of Bright and Burley tobacco laminae and 

stems.," Beitr. Tabakforsch., 13 (1985), 29-36. 
 
53. W.A. Pryor, Stone, K., Zang, L-Y., and Bermudez, E., "Fractionation of Aqueous 

Cigarette Tar Extracts: Fractions that Contain the Tar Radical Cause DNA Damage," Chem.Res. 
Toxicol., 11 (1998), 441-48. 

 
54. B. Dellinger, W.A. Pryor, R. Cueto, G.L. Squadrito and W.A. Deutsch, "The role of 

combustion-generated radicals in the toxicity of PM2.5," Proceedings of the Combustion 
Institute, 28 (2000), 2675-81. 

 
55. B.B. Halliwell, and Poulsen, H.E. Editors, "Cigarete Smoke and Oxidative Stress," 

Springer-Verlag, Berlin Heidelberg, (2006). 
 
56. Z.D. Maskos, B., "Formation of the Secondary Radicals from the Aging of Tobacco 

Smoke," Energy & Fuel, 22 (2008), 382-88. 
 
57. R.R.P. Baker, C.J., "The Origins and Properties of Environmental Tobacco Smoke," 

Environ Int, 16:231245 (1990). 
 
58. W.A. Pryor, Hales, B.J., Premovic, P.I., Church, D.F., "The radicals in cigarette tar: Their 

nature and suggested physiological implications," Science, 220 (1983), 425-27. 
 
59. W.A. Pryor, "Oxy-Radicals and Related Species: Their Formation, Lifetimes, and 

Reactions," Annual Review of Physiology, 48 (1986), 657-67. 
 
60. Z. Maskos, Khachatryan, L., Cueto, R., Pryor, W.A., and Dellinger, B, "Radicals from 

the Pyrolysis of Tobacco," Energy & Fuels, 19 (2005), 791-99. 
 
61.T.M. Flicker, Green, S. A., "Detection and separation of gas-phase carbon-centered 

radicals from cigarette-smoke and Diesel exhaust.," Analytical Chemistry, 70 (1998), 2008-12. 
 
62. S. Lomnicki, Dellinger, B., "A detailed mechanism of the surface-mediated formation of 

PCDD/F from the oxidation of 2-chlorophenol on a CuO/silica surface.," Journal of Physical 
Chemistry A, 107 (2003), 4387-95. 

 
63. W.A. Pryor, Prier, D. G., Church, D. F., "Electron spin resonance study of mainstream 

and sidestream smoke: Nature of the free radicals in gas-phase smoke and in cigarette tar.," 
Environmental Health Perspectives, 47 (1983), 345-55. 

 



 128

64. J.. Adounkpe, Khachatryan, L; Dellinger B., "Radicals from the Gas-Phase Pyrolysis of 
Hydroquinone 1. Temperature dependence of the total radical yield. 
," Fuels and Energy Submitted, (2008). 

 
65. J. Adounkpe, Khachatryan, L; Dellinger B., "Radicals From the Thermal Degradation of 

Catechol," in Preparation, (2008). 
 
66. L. Khachatryan, Niazyan, O., Mantashyan, A.H., Vedeneev, V.I., Teitel'boim, M.A.,, 

"Experimental determination of the equilibrium constant of the reaction CH3+O2<->CH3O2 
during the gas-phase oxidation of methane.," Int.J.Chem.Kin., 14 (1982), 1231-41. 
 

67. D.J.E. Ingram, "Free radicals as studied by Electron Spin Resonance," Butterwords Publ. 
Limited (1958), 210. 

 
68. B.J. Hales, "Immobilized Radicals. 3. Anisotropic saturation of Semiquinones in Protic 

Solvents," The Journal of Chemical Physics, 65 (1976), 3767-72. 
 
69. B.J. Hales, "Immobilized Radicals. I. Principal Electron Spin Resonance Parameters of 

the Benzosemiquinone Radical," Journal of the American Chemical society, 97 (1975), 5993-97. 
 
70. D. Campbell, and Symons, M.C.R., "Unstable intermediates. Part LXVII. ESR spectrum 

of cyclohexadienyl radicals from resorcinol: the mechanism of radiation damage," J.Chem.Soc. 
(A), 9/840 (1969), 2977-78. 

 
71. J.-W. Feng, Zheng, S., and Maciel, G.E., "EPR investigation of the effects of inorganic 

additives on the charring and char/air interactions of cellulse," Energy & Fuels, 18 (2004), 1049-
65. 
 

 
 



 
 

129

CHAPTER 5: SUMMARY 

Combustion- generated Particulate Matter (PM) toxicity is attributed to their association with 

semiquinone type radicals 1-4 supposedly formed from redox cycling of catechol (CT), 

hydroquinone (HQ) and structurally similar compounds found in woods, biomass, fuels and 

tobacco 5-12.  

However, semiquinone type radicals have only been reported in the pyrolysis of tobacco 13,14. 

Given that other organic materials such as woods, biomass coals, etc contain CT, HQ and 

phenols, semiquinone type radicals being solely found in tobacco burning is quite surprising.  It 

is therefore very important to investigate the exact nature of radicals formed from the pyrolysis 

of CT, HQ, and phenols to compare to those formed in tobacco.  In the following paragraphs, 

summary of the key findings, employing CT, HQ, phenols and tobacco will be presented. 

5.1 Cyclopentadienyl Radical 

From Scheme 4.1, thermal degradation of CT, HQ, and phenols should lead to phenoxy 

radical that further decomposes to CPD by CO elimination 15.  In our gas-phase phenol thermal 

degradation study, CPD and phenoxy radicals are respectively identified as pyrolysis products 

and their EPR gas-phase spectra acquired.  

The pyrolysis of phenol from 400 to 1000o C shows a linear time dependence of radical 

signal intensity Figure 5.1 while the temperature dependence shows a sudden increase from 

700oC Figure 5.2.  

In this study, and according to Scheme 4.1, CPD radical was detected as the end point of 

phenol (low and high temperatures), catechol and hydroquinone (high temperature) thermal 

degradation.  

The identification of CPD radical was rendered easy first by pyrolysing the 

tricarbonylcyclopentadienylmanganese (η5-C5H5Mn(CO)3 ) at 250oC 16. The pure CPD radical, a 

*Portions of this chapter reprinted by permission of American Chemical Society 
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six lines EPR spectrum, exhibits an isotropic 1:5:10:10:5:1, with a g value of 2.00431, 

characteristic of carbon-centered radicals, and shows a linear microwave power dependence 

consistent with reports in the literature 17.  This spectrum was compared to those from pyrolysis 

of CT, HQ and phenol in step by step annealing experiments. The CPD radical from phenol, CT 

and HQ pyrolysis matches perfectly the pure CPD radical from η5-C5H5Mn(CO)3 .   

The pyrolysis of phenol, CT, and HQ at various temperatures yielded a mixture of radicals 

from which the most abundant and persistent at temperatures above 800 oC are CPD radicals.  At 

temperatures above 850oC, all annealed spectra from the pyrolysis of HQ resulted in an EPR 

spectrum with 6 lines, ∆H (p-p) ~ 3.0 G,  a g-value of 2.00430, and a hyperfine splitting constant 

~ 6.0 G.  Those characteristics link to the CPD radical that we compared with the pure CPD 

radical from the pyrolysis of the tricarbonylcyclopentadienylmanganese (η5-C5H5Mn(CO)3) at  

 

250oC 16.  They were perfect matches.  Our calculation led to the conclusion that CPD radicals 

were dominant at temperature above 850oC during the pyrolysis of HQ.  
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Figure 5.1 A comparative total radical yields from 0 to 12min accumulation time of radicals from 
the pyrolysis of CT(blue), HQ( red) and Phenol(yellow). HQ shows the lowest yield. While total 
radical from phenol keeps an increasingly linear trend, saturation is reached at approximately 10 
min of total radical accumulation from CT and HQ
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5.2 Phenoxy Radical 

The gas-phase phenoxy radical EPR spectrum has not been reported in the literature. Its 

primary precursor should be phenol which is used in this study to characterize the under-

investigation radical.  Several experimental techniques were used and/or combined to positively 

assign the EPR spectrum of phenoxy radical as a non-resolved five lines spectrum. The photo-

excitation of phenol at 250-300nm 18-20 was performed at room temperature.  It yielded a non-

resolved five lines spectrum with a g = 2.0060, characterizing an oxygen centered radical.  This 

spectrum was compared to the pure phenoxy radical spectrum generated from the thermal 

degradation of phenol at 250oC in di-tert-butylperoxide (DTBP) under CO2 flow.  The DTBP is 

known to react with phenol by extracting the hydrogen atom from the hydroxyl group of phenol 

21-23.  The five line spectrum obtained from the reaction of the DTBP with phenol has a g value 

of 2.00582, an oxygen-centered radical.  A perfect match was observed when the two spectra 

were superposed to the one from the thermal degradation of phenol at temperature below 500oC 

conclusively leading to the identification of gas-phase phenoxy radical EPR spectrum. 

However the phenoxy radical EPR spectrum was impossible to detect in the mixture of 

radicals form the pyrolysis of HQ and CT.  Even though the left hand side broadening of 

acquired EPR spectra of products of the pyrolysis of HQ and CT as in the case of the pyrolysis of 

phenol, is the evidence of the presence of phenoxy radical, the latter is completely lost during 

annealing.  

In addition to CPD and phenoxy radical from the pyrolysis of phenol, the hydroxyhexadienyl 

was observed 

5.3 Ortho-Semiquinone and Para-Semiquinone Radicals  

Unlike the pyrolysis of phenol, the time dependence of radical intensity from the pyrolysis of 

Hydroquinone and Catechol showed saturation towards the end of the accumulation period as 
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depicted by Figure 5.1.  The temperature dependence of HQ pyrolysis showed an increase in 

signal intensity from 300 to 850oC, followed by a decrease above 850oC.  From Scheme 4.1, p-

Semiquinone (p-SQ), o-Semiquinone (o-SQ), CPD, phenoxy, and Hydroxycyclopentadienyl 

(HO-CPD) radicals are more likely the most Persistent Free Radicals (PFRs) to form from the 

pyrolysis of HQ and CT.  We have positively identified and acquired p-SQ, and o-SQ radical 

from the pyrolysis at low temperature of HQ and CT respectively. 

A featureless singlet line EPR spectrum was detected from the pyrolysis of HQ at 400oC with 

g = 2.0048-2.005 attributable to oxygen-centered radicals.  The photolysis reaction of HQ 

yielded an EPR spectrum with singlet line and g = 2.0044.  Both spectra with a ∆H (p-p) = 12 G 

were superposed and matched each other. Based on those considerations (singlet line, g-value 

and ∆H (p-p)), we have assigned to this spectrum the para-Semiquinone (p-SQ) radical.  Also, it 

is known that between 500 and 600oC, the major product of the pyrolysis of HQ is the para-

Benzoquinone (p-BQ) formed through expulsion of one hydrogen atom from the p-SQ radical 24. 

Our calculations showed that in the mixture of phenoxy, CPD and p-SQ radicals, p-SQ is the 

dominant radical at temperatures below 750oC. 

The pyrolysis of CT between 400 and 600oC yielded a featureless singlet and strong line EPR 

spectrum with g = 2.0058-2.0061 and a ∆Hp-p = 13.5-15.0 G attributable to oxygen-centered 

radicals. We have performed CT photolysis.  The photolysis reaction of CT yielded a weak EPR 

spectrum with singlet line, g = 2.0052, and a ∆H (p-p) = 12.60-15.6G very close to the values 

reported in the literature for hydroxypyrimidines radicals in aqueous solution 25.  Both EPR 

spectra from CT pyrolysis and photolysis were superposed and matched each other quite well 

except for the height of the spectrum from the pyrolysis which was greater than that of 

photolysis.  This slight difference is attenuated with pyrolysis at lower temperature, but then the 

spectra have a splitting at the center.  Unlike HQ, the literature data to confidently assign spectra 
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observed at low temperature pyrolysis of CT is missing.  We have than to rely on experimental 

variation and mathematical tools to solve the identification issue. We have successfully 

identified o-SQ radical from the pyrolysis of CT at low temperature very much comparable to 

the photolysis radical. 

5.4 Hydroxycyclopentadienyl Radical 

At the present time, our experiments and mathematical manipulations did not allow us to 

acquire OHCPD radical EPR spectrum.  However, the GC-MS analysis of the pyrolysis products 

of CT revealed the formation of fluorene (m/z =166), and 1H-Indenol (m/z = 132) and its isomer 

1H-Inden-1-one_2,3_ dihydro, acenaphthylene (m/z = 152), Benzofuran-7-methyl, Benzofuran-

2-methyl (m/z =132). TThhee  ddeetteeccttiioonn  ooff  11HH--IInnddeennooll    ggiivveess  eevviiddeennccee  ooff  tthhee  ffoorrmmaattiioonn  ooff  llaabbiillee  

rraaddiiccaallss  ssuucchh  aass  hhyyddrrooccyyccllooppeennttaaddiieennyyll  rraaddiiccaall,,  wwhhiillee  tthhaatt  ooff  fflluuoorreennee  ccoonnffiirrmmss  nnoott  oonnllyy  tthhee  

ffoorrmmaattiioonn  ooff  CCPPDD  rraaddiiccaall  bbuutt  aallssoo  ooff  aalliipphhaattiicc  rraaddiiccaallss  ssuucchh  aass  eetthheennyyll,,  aanndd  aacceettyylleennyyll  rraaddiiccaallss  2266..  

A computer-generated Hydroxycyclopentadienyl radical EPR spectrum, a five line spectrum 
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Figure 5.2 Temperature Dependence of Total Radical Yield. CT values to the scale, HQ values 
have been multiplied by 2 and Phenol’s value divided by 10. CT and HQ have the same trends 
with maximum at 800oC and 850 oC while Phenol’s values have a sudden increase by 800 oC. 
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with intensity distribution 1:4:6:4:1 was compared with the EPR spectra from the pyrolysis of 

HQ in all temperature regions.  There was no match.  However, the GC-MS analysis of the 

atmospheric pressure pyrolysis products of HQ revealed the formation of, in addition to 

naphthalene, indene and Hydroxyindene, supposedly results of the CO elimination from either 

Hydroxynaphthalene or Dihydroxynaphthalene themselves results of the condensation of one 

molecule of CPD and one of OHCPD, or the condensation of two molecules of OHCPD.  The 

formation of indene and Hydroxyindene during the pyrolysis of HQ is the evidence of OHCPD 

gas-phase formation.  We concluded that OHCPD is formed but were not persistent enough to 

acquire its EPR spectrum with the various techniques we used in the present study.   

5.5 Methylperoxide Radical 

 It has been demonstrated that the pyrolysis of CT and HQ promotes formation of methyl 

(CH3 ), ethyl (CH3CH2) 27,  26 and acetylene 26  that contributed to the formation of PAHs.  In our 

effort to identify persistent free radicals formed from the pyrolysis of CT, HQ and phenol, we 

have had a close look at the effect of traces of oxygen on the shape of radicals.  In the HQ case, 

we found that increasing oxygen concentration from 15ppm to 700ppm yielded broader EPR 

spectra which widths increase with oxygen concentration.  Mathematical manipulations using 

Simphonia software helped to extract a resulting EPR spectrum with a total width of 75-80 G, 

hyperfine splitting at the bottom of spectra was ~ 5.42G with a g-value of 2.010. The spectrum 

known is the literature as methyl peroxide radical spectrum 28, 29 exhibits exactly same 

characteristics as the one we detected in our study.  We have then positively identified the 

methyl peroxide radical as a persistent radical in addition to p-SQ, and CPD radicals.  

5.6 Radicals from Tobacco 

Semiquinone type radical has been reported in tobacco 14, 30, 31. CT and HQ are known to be 

major constituents of mainstream tobacco smoke.  Our thermal degradation of pure compound of 
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CT and HQ showed formation of o-SQ and p-SQ respectively in addition to CPD, phenoxy and 

OHCPD radicals.  It is therefore expected that the gas-phase pyrolysis of tobacco should yield 

radicals comparable to those formed by the pyrolysis of the precursors.  The pyrolysis of tobacco 

did not give any radical which EPR spectra are close to those of CPD, phenoxy and OHCPD.  

Instead, featureless singlet line EPR spectra comparable to those of o-SQ and p-SQ were 

acquired during the pyrolysis of all blends of tobacco. A comparative study of their 

characteristics was inconclusive.  Therefore, we can not, at the present time confirm that the gas-

phase radicals formed during the pyrolysis of tobacco are either o-SQ or p-SQ.  They are just 

singlet line that gives no further information on their nature. Further investigation on persistent 

gas-phase radicals yielded by the pyrolysis of tobacco is therefore needed to do a comparative 

study of the already determined persistent free radicals from the precursors in the present work 

with the probable persistent radicals from tobacco.  

Table 5.1 gives a summary of the environmentally persistent free radicals observed from the 

pyrolysis of catechol, hydroquinone, and phenol, along with their respective temperature region 

of dominance.  

5.7 Radical from Tobacco Compared to Those from Precursors 

The gas-phase low pressure pyrolysis of pure compounds such as catechol, hydroquinone and 

phenol, major components of mainstream tobacco smoke, yielded variety of radicals among 

which we have identified cyclopentadienyl, phenoxy, o-Semiquinone, p-Semiquinone, and 

hydroxycyclopentadienyl.  Given that catechol, hydroquinone and phenol are found in 

mainstream tobacco smoke, it is expected that the low pressure pyrolysis of tobacco would yield 

radicals comparable to those from the precursors.  The present thorough study did not give the 

expected results.  Several possible explanations to this fact are proposed in the following 

paragraphs 
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Table 5.1.Summary of Key Findings 

Precursors    300-700 700-800 800-850 850-1000 

Phenol Phenoxy 

(trace of CPD) 

 

 

Mixture 

(phenoxy, CPD) 

Phenoxy> CPD 

Mixture 

(phenoxy, CPD) 

CPD>Phenoxy 

 

       CPD 

Hydroquinone p-Semiquinone 

 

 

Mixture 

(p-SQ, phenoxy, 

OHCPD, CPD) 

p-SQ dominates 

 

 

Mixture 

(p-SQ, phenoxy,  

OHCPD, CPD) 

CPD dominates 

 

 

 

         CPD 

 

  Catechol 

o-Semiquinone 

 

 

Mixture 

(o-SQ, phenoxy, 

CPD, OHCPD) 

o-SQ dominates 

Mixture 

(o-SQ, phenoxy, 

CPD, OHCPD) 

CPD dominates 

 

 

      CPD 

Tobacco Singlet line    

 

The first possible explanation is experimental.  During the pyrolysis of pure compounds, the 

complications that arise from the convolution of several radicals and  that necessitated additional 

experimental and mathematical tools in interpreting the spectra in order to assign radicals were 

signs that the study of tobacco, a very complex compound made of not only the precursors 

studied, but of hundreds of other organic compounds32 including pectin, protein, lignin, 

cellulose, cryogenic acids 33, and some metals will not be an easy task. It is possible that the free 
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radicals that are formed during the pyrolysis of tobacco either terminate by radical-radical 

recombination or convolute in the singlet EPR signal that was observed. 

Semiquinone type radicals have been reported in cigarette smoke 34,, 35.  The photolysis at 

room temperature of catechol and hydroquinone as well as their pyrolysis at low temperature 

yielded singlet line EPR spectra that we identified to o-semiquinone and p-semiquinone 

respectively. The pyrolysis of tobacco also yielded a singlet line EPR spectrum.  Logically, the 

possible comparison is between the latter and the o-semiquinone and p-semiquinone radicals.  

The g-values, one of EPR spectra characteristics used to associate carbon-centered or 

oxygen-centered radicals were found to vary between 2.00368 and 2.00399 for the singlet line 

spectra from the pyrolysis of tobacco. This range of g-values characterizes surface-associated 

carbon-centered radical 36 and partially delocalized, polymeric, phenoxy type radicals 37,,   38.  

reported in the literature. o-semiquinone and p-semiquinone radicals that we have identified have 

higher g-values (2.0044-2.0061). Therefore based on the g-values we can not clearly say what 

radicals from the pyrolysis of tobacco give the singlet line EPR spectrum observed. Another EPR 

spectra characteristic is the peak to peak width of the spectrum. 

The width of the singlet EPR spectrum from the pyrolysis of tobacco varies between 8.008 to 

10.156 G, higher than the ~ 6.6G reported in the literature 39 and that led to the conclusion that p-

SQ types radicals were in Tobacco Particulate Matter (TPM ). However, the pure p-SQ radical 

generated in our gas phase pyrolysis/photolysis study has the following characteristics: g-values 

~ 2.0044-2.0049, and ∆Hp-p ~ 12G 15, 40.  The pure o-SQ generated has g-values ~ 2.0052-

2.0061 with ∆Hp-p ~ 12.60-15.60G 40. Those two sets of values (g-values and peak-to-peak 

widths) do not match their counterpart from tobacco gas-phase pyrolysis.  At this point of our 

study, there is no conclusive assignment of the singlet line EPR spectrum from the pyrolysis of 

tobacco. 



 
 

138

The second possible explanation of the non assignment of radical from tobacco compared to 

those from the precursors may be the pyrolysis environment of tobacco.  As said previously, 

tobacco is made of hundred of organic compounds and metal. The rapid destruction of the 

formed radicals either by radical-radical reaction, or radical interaction with surfaces (metal, 

tobacco ash) may explain their non appearance in the EPR spectra.  Metal surface bound radical 

was reported in the literature 41, 42. Given that tobacco contain metals, it is possible that even if 

the radicals are formed, they do not exit the tobacco bed before their destruction. Consequently, 

they can not reach the cold finger of the Dewar to be detected by EPR. 

It may be possible to get a better understanding of radicals formed from tobacco pyrolysis 

employing the Electron Nuclear Double Resonance (ENDOR) technique. This technique 

described as EPR detected NMR (Nuclear Magnetic Resonance) allows simultaneous detection 

of paramagnetic species and nuclei in the vicinity of the unpaired electron, thus giving the 

precise structure of the molecule under investigation 43, 44 

Another experimental tool that will give very good insights in understanding the 

decomposition pathway of the precursors is the Time of Flight (TOF) associated with Mass 

Spectroscopy.  When combined with the Resonance Enhanced Multiphoton Ionization, TOF-MS 

is an ideal tool to accurately identify decomposition fragments of the precursors 45-47. Without 

any doubt, the fragmentation of the precursor will allow not only a qualitative but also a 

quantitative study of its decomposition pathway. 

5.8 Concluding Remarks 

The reported studies were designed to determine if potentially environmentally persistent 

free radicals could be formed from the pyrolysis of suspected precursors, phenol, HQ, and CT.  

Environmental persistence requires a combination of stability (resistance to decomposition) and 

low reactivity (slow rate of reaction with other radicals and molecules, particularly molecular 
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oxygen).  Our pyrolysis experiments did address their high temperature stability but did not 

address reactivity with oxygen which would be the major route of destruction of these radicals in 

the atmosphere and, under some conditions, in combustion systems. 

The thorough study of phenol, HQ and CT thermal degradation revealed that all three 

precursors have similar thermal degradation behavior.  Below 600oC, the pyrolytic 

decomposition of each precursor is characterized by a dominant simple dissociation of the 

hydroxyl hydrogen, leading to phenoxy, o-SQ and p-SQ for phenol, CT, and HQ, respectively.  

The calculated O-H bond dissociation energies of phenol, CT and HQ are consistent with the 

temperatures of initiation of decompositions (300-400oC and 500oC, respectively).  Intermediate 

temperature pyrolysis (600-800oC) of the precursors yielded complex mixtures of radicals 

identifiable only by annealing and microwave power dependence experiments.  Phenoxyl radical 

was identified in this mixture for each precursor.  Above 800oC, the dominant radical from each 

precursor was CPD radical.  

Our experiments demonstrated that during annealing of the matrix, CPD still persisted, while 

other radicals were annihilated, presumably by radical-radical recombination. It is not clear from 

the pyrolysis experiments alone if CPD is less reactive than the other radicals or survives 

because of its initially high concentration. The dominance of CPD radical over phenoxyl and 

semiquinone radicals was quite surprising in the light of the stability of phenoxyl and 

semiquinone radicals proposed in the literature48, 49.  However, our reaction kinetic model for the 

pyrolysis of phenol50 is consistent with the high CPD/phenoxy ratio that leads to the dominance 

of CPD over phenoxy radical in the intermediate pyrolysis temperature region.  

Based on our results, phenoxyl, o-SQ, p-SQ, and CPD are all formed from these precursors 

under some pyrolysis conditions.  O-SQ, p-SQ, and phenoxyl are not stable above 600 C and 
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decompose to form CPD.  CPD is stable enough to survive in measureable concentrations above 

800 C.   

The question is now whether it is reactive with molecular oxygen.  O-SQ, p-SQ, and 

phenoxyl are expected to be less reactive because they can exist in oxygen-centered structures 

that resist reaction with oxygen.  In contrast, CPD is a purely carbon-centered radical that may 

react with oxygen.  Reaction kinetic studies of the rate of reaction of these radicals with oxygen 

should be conducted to determine their reactivity.  Reaction kinetic studies of the rate of 

destruction of phenoxyl, o-SQ, p-SQ, and CPD as a function of initial radical concentration 

should be performed to determine their stability.  The combination of these studies will define 

their persistence under combustion conditions.. 
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APPENDIX 1: ATMOSPHERIC PRESSURE PYROLYSIS OF 2-CHLOROPHENOL, 4-
CHLOROPHENOL, ANISOLE, AND CHLOROBENZENE 
 
1 Introduction 

After a thorough look at the pyrolysis gas-phase products of catechol, hydroquinone and 

phenol, we performed the atmospheric pressure pyrolysis of compounds that have similar 

structure as the latter.  The objective here was to see the decomposition pathway of compounds 

that mimic each of previously studied molecules.  We anticipated that the change in the 

substituants on the benzene ring may reveal the real primarily decomposition pathway of the 

compounds studied.  

We employed 2-chlorophenol, 4-chlorophenol, chlorobenzene and anisole to respectively 

mimic catechol, hydroquinone, and phenol.  Benzene was employed as reference compound.  We 

pyrolyzed each of the compounds in the same experimental conditions as described in the present 

work.  The pyrolysis temperature was 750C.  

2. Molecular Formula of 2-Chlorophenol, 4-Chlorophenol, Anisole, and Chlorobenzene  

The EPR spectra from the chlorinated phenol revealed one additional resolved line and one 

unresolved line in the spectra. This was not observed in the primary studies.  The GC-MS 

pyrolysis products analysis confirmed that the primarily decomposition pathway of the phenols 
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OCH 3 Cl

2-Chloro
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was through CO elimination as can be seen in the formation of chlorinated naphthalene. 

However, non-substituted dioxin formation from chlorophenol suggested chlorine atom 

elimination prior to CO elimination. 

 2-2 EPR Spectra of the Pyrolysis of 4-Chlorophenol 

2 .08 2 .06 2.04 2.02 2.00 1.98 1 .96 1 .94
-2000

-1500

-1000

-500

0

500

1000

1500 In itia l spec trum

Si
gn

al
 In

te
ns

ity

g -value  
2.08 2.06 2.04 2.02 2.00 1.98 1.96 1.94

-600

-400

-200

0

200

400
Annealed spectrum

Si
gn

al
 In

te
ns

ity

g-value  

Fig A 2-EPR spectra of radicals emerging from the pyrolysis of 4-Chlorophenol. The initial spectrum shows a 

shoulder with an additional line. After annihilation, the shoulder is removed but the additional line remained 
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Figure A1- EPR spectra of radicals emerging from the pyrolysis of 2-Chlorophenol. The initial spectrum 

shows a shoulder with an additional line. After annihilation, the shoulder is removed but the additional line 

remained. 
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2-3 EPR Spectrum of the Pyrolysis of Anisole 

 

 

 

 

 

 

 

Fig A 3 Initial spectrum from the pyrolysis of Anisole. A clean CPD like was observed at the beginning of the 

accumulation. There was no need of annealing the clean spectrum 

2.4 EPR Spectra of the Pyrolysis of Chlorobenzene 

Fig A 4B Unannealed spectrum 

 

The clean CPD radical observed after annihilation suggests a decomposition pathway that 

eliminates chlorine and carbon atoms or the presence of impurity in the sample may yield the 

CPD 
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  3 G-C MS Spectra of the Pyrolysis Products of the Precursors 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig A5 GC-MS of Phenol 
 

 
Fig A6 GC-MS of 2-Chlorophenol 
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Fig A7GC-MS of Chlorobenzene 
 
 

 
 
Fig A 8 GC-MS of Anisole 
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Fig A 9 GC-MS of 4-Chlorophenol 
 
 

 
 
Fig A 10 GC-MS of Catechol 
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Fig A 11 GC-MS of Hydroquinone 
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