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Abstract 

 Efforts to improve the technology for DNA analyses stimulated the work presented here 

to develop a series of fluorescent probes that would aid in the increased multiplexing capabilities 

allowing the ability to detect multiple targets in a single measurement. Typically, spectral 

discrimination has been used to identify each DNA fragment in sequencing or diagnostic 

applications by means of unique emission properties from several labeling dyes.   This has been 

accomplished with labels that fluoresce in the visible region. The limitations with these dyes is 

the broad emission profile making discrimination difficult, high intrinsic biological fluorescence 

and structural differences of the dyes leading to differences in the electrophoretic mobility of 

labeled oligonucleotides, complicating sorting using electrophoresis.  The use of labeling dyes 

that fluoresce in the near-IR has several advantages including reduced background interference, 

increased sensitivity due to decreases in Raman scattering, and can be excited using inexpensive 

diode lasers allowing time-resolved measurements to be carried out. Thus, lifetime 

discrimination in parallel with color discrimination can potentially offer increased multiplexing 

capabilities for a variety of DNA analysis applications. 

 Strategies are reported that produce symmetrical metal-free and metallo-phthalocyanine 

dyes, Pc and MPc, respectively that contain various numbers of water solubilizing carboxylic 

acid groups on their periphery that provide a dual role by also serving as functional groups to 

covalently link primary amine-containing targets to these dyes.  The influence of the number of 

solubilizing groups and metal center on the spectral and photophysical properties were evaluated.  

MPc dyes containing 4, 8, or 16 carboxylic acid groups exhibited similar absorption and 

emission maxima (677 nm and 686 nm, respectively) with the molar absorptivity of the Q-band 

~105 M-1cm-1.  Results indicated that the fluorescence lifetimes and quantum yields varied as a 

function of the metal center; the degree of carboxylation did not significantly alter these 
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properties in DMSO, but did mediate the solubility and aggregation states when placed in 

aqueous solvents.  Results also showed that the conjugate, produced by covalently linking an 

MPc to biological entities, generated a red-shift in the emission maximum with a fluorescence 

lifetime shorter than that of the native MPc dye. 
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Chapter 1   
Theory of Fluorescence Spectroscopy and Near-IR Detection 

 
1.1 Theory of Fluorescence Spectroscopy 
 
  Fluorescence spectroscopy has been recognized as a significant technological 

achievement over the past years and has permitted new avenues in molecular dynamics to be 

explored. 1-3   Due to its specificity, high sensitivity to small modifications in the structural 

dynamics and function of biological complexes, and the ability to detect very low concentrations, 

fluorescence spectroscopy has become the primary analytical tool in the disciplines of chemistry 

and biochemistry. 2,4,5  Pioneering work by Stokes and Förster demonstrated the usefulness of 

fluorescence spectroscopy and in recent years, it has been used in a wide range of applications  

including cell identification and cell imaging, and detection for DNA sequencing.6-10   This 

chapter presents the theory of fluorescence spectroscopy, together with examples of fluorescent 

probes to illustrate the potential use of this technique as a method for the analysis and 

identification of fluorescent dye-labeled targets in complex biological systems.   

 Luminescence occurs when molecules are excited by the absorption of energy and emits 

light from electronically excited states as it relaxes to the ground state.1,11   The excitation time is 

on the order of 10-14 to 10-15 s, with the rate of emission depending on the nature of the excited 

state.1    A simplified schematic of the Jablonski diagram depicting the quantum processes of 

absorption and emission is shown is Figure 1.1. The electronic states are divided into singlet 

states, S0, S1, and S2, in which all electron’s spin are paired (multiplicity = 1), and triplet states in 

which two electrons have parallel spins. Each electronic state is associated with vibrational states 

represented by lighter horizontal lines.  Initially, the molecule occupies the lowest singlet state, 

S0. After absorption of a photon, the molecule occupies a vibrational level of an excited singlet 

state (e.g. S2).  The excited molecule then relaxes to a vibrational level of the lowest excited 
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 singlet state within about 10-11 s through a process called ″internal conversion.″ 

 
Figure 1.1  Simple schematic of the Jablonski diagram depicting the excitation of a molecule by 
the absorption of light and the relaxation process of the excited molecule. 
 
Fluorescence emission occurs when the molecule further relaxes to the ground state from the 

lowest excited singlet state dissipating energy in the form of light.2,11,12  Typically, the emission 

process is rapid, occurring in approximately 108 s-1.  Consequently, when a molecule is in the 

excited singlet state, an electron can change its spin (spin unpaired) resulting in a transfer of the 

excited molecule to an excited triplet state through intersystem crossing.2      The molecule then 

rapidly relaxes to the lowest vibrational level of the first excited triplet state and emission is 

observed in the form of phosphorescence, which occurs in 10-4 to 10 s.  In addition to 

fluorescence and phosphorescence, other non-radiative deactivation pathways include 

intramolecular charge transfer and intermolecular processes such as electron transfer and 

excimer formation (dimers associated with excited electronic states).13 A characteristic of the 

fluorescence emission is a shift to a longer wavelength  referred to as the Stokes’ shift due to loss 

of energy caused by the rapid decay of the molecule to the lowest vibrational level of the excited 

state and the molecule decaying to higher vibrational levels of the electronic ground state.11   
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1.1.1 Quantum Efficiency 

 As mentioned previously, a molecule can return to the ground state through several 

deactivation pathways.  The number of molecules that emit photons after being excited is 

measured by the fluorescence quantum yield of that fluorophore:  

 number of quanta emitted 
number of quanta absorbedFΦ =  (1.1) 

The quantum efficiency and the observed fluorescence lifetime (τf) are related by the  
 
following equation; 

 r
F r f

r nr

k k
k k

τΦ = =
+

 (1.2) 

where rk  is the emissive rate of the fluorophore and nrk  is the nonradiative rate.  The quantum 

yield can easily be determined by measuring the fluorescence emission of a dilute sample 

relative to a standard, which has the same absorption maximum and for which the quantum yield 

is known.14  The efficiency of the fluorescence emission is dependent on several variables, which 

include concentration, temperature and excitation wavelength.1,14  The fluorescence intensity of a 

molecule can be decreased as a result of quenching, which can be categorized as either 

collisional or static.1,15  Collisional quenching refers to the return of a molecule to the ground 

state upon interaction with another molecule in solution, referred to as the quencher.  Static 

quenching involves the formation of complexes in the excited state that are not fluorescent.16   

 One of the major bottlenecks to fluorescence detection is  the photostability of the 

fluorophore.17,18   Photobleaching of a fluorophore refers to the irreversible destruction of a 

molecule induced by light. The photodestruction quantum efficiency, Фd, can be determined 

by the following equation; 

 1
d

a bk τ
Φ =  (1.3) 
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where bτ is the average photobleaching lifetime, ak  is the absorption rate, and Фd is the 

photodestruction quantum yield.  The absorption rate is expressed by the equation; 

 a ak Iσ=  (1.4) 

where, σa is the absorption cross section (3.8×10-21 cm2/molecule) multiplied by the molar 

absorptivity (cm-1M-1) and I is the laser intensity (photons cm-2 s-1). The photodestruction 

quantum efficiency can be assessed directly by monitoring the decrease in fluorescence intensity 

or by flash photolysis generating photobleaching by short excitation pulses and analyzed using 

absorbance.18-20 The stability of a molecule is a dye-dependent property and is significantly 

affected by environmental conditions such as temperature and atmospheric conditions.21-23 

1.1.2 Fluorescence Lifetimes 

 Many biological studies rely on the change in fluorescence intensity to monitor analytes 

in response to changes such as quantum yields upon binding, and inner filtering effects.  

However, the fluorescence intensity can vary due to light scattering and photodestruction of 

fluorophores limiting their use for the aforementioned applications.  Thus, several studies have 

begun to explore lifetime-based technologies for probing molecular targets.24-26  The 

fluorescence lifetime is a measure of the amount of time an ensemble of molecules in the excited 

state returns to the ground state by emission.  For lifetime measurements, the fluorescence 

intensity observed is proportional to the number of excited molecules at time t, according to the 

following expression; 

 0( ) exp( / )I t I t τ= −  (1.5) 

where 0I  is the intensity at time zero. The lifetimeτ is the inverse of the total decay rate 

expressed by the sum of the rate constants of several first-order processes:  

 1
f

r nrk k
τ =

+
 (1.6) 
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where rk  (s-1) is the radiative decay rate constant, nrk (s-1) is the non-radiative decay rate 

constant  and τf (ns) is the fluorescence lifetime.  The non-radiative decay process is composed of 

several rates, which is expressed by a linear combination of their decay constants;  

 nr i ec ic pd dk k k k k k= + + + +  (1.7) 

where intersystem crossing ( ik ), external conversion ( eck ), internal conversion ( ick ), 

predissociation ( pdk ), and dissociation ( dk ) are the respective processes. Observed fluorescence 

lifetimes are typically 10-7 – 10-10 s.  

1.1.3 Radiative Lifetimes 

 The natural lifetime of a fluorophore represents the fluorescent decay process in the 

absence of nonradiative decay processes and is expressed by the following equation: 

 0
1

rk
τ =  (1.8) 

The natural lifetime is related to the spontaneous processes of absorption and emission by a 

fluorescent molecule through the Einstein relation.27  Einstein’s equation was only useful for 

atomic systems, but in 1962 Strickler and Berg modified this equation to apply it to polyatomic 

molecules.27  Thus, the Strickler-Berg equation can be used to calculate the radiative decay rate 

using the equation;  

( )9 3 1
1 22.880 10 lnr f avk v g g d vε− −= × < > ∫  (1.9) 

where g1/g2 is the ratio of degeneracy levels of the electronic states of the compound, lnd vε∫ is 

the integrated extinction coefficient multiplied by the reciprocal of the average value of the 

wavenumber; 

 3 1
3

( )
( )f av

I dv
I dv
νν

ν ν
−

−

∫
< > =

∫
 (1.10) 
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obtained experimentally by taking the integral over the entire fluorescence emission band and 

multiplying the same integration by the cubed fluorescence intensity, and rk is the radiative rate 

constant.28   In theory, the Strickler-Berg equation provides a means for calculating the 

probability of spontaneous emission and is directly proportional to the probability of absorption 

for most transitions. In the case of weak transitions, there may be up to 30% error in this 

calculation.11  

1.1.4 Steady-State and Time-Resolved Fluorescence  

 In addition to spectral information provided by steady-state fluorescence, time-resolved 

fluorescence is a means that provides time-related information of a particular analyte.  Time-

resolved fluorescence can reveal information about a molecule’s behavior such as decay kinetics, 

conformational changes, its interaction with other macromolecules, and distinguishes between 

static and dynamic quenching.  Steady-state fluorescence in conjunction with time-resolved 

fluorescence have become powerful tools for investigating various photophysical phenomena 

such as structure and dynamics in proteins, rotational diffusion and excited-state proton transfer 

reactions that are not available when performed in only the steady-state mode.1   Techniques 

used for measuring intensity decay profiles are frequency-domain and time-domain methods.1   

Both techniques yield the same information and differ only in how the time-resolved data is 

obtained.  In frequency-domain, the sample is excited with a sinusoidal modulated beam.  

Fluorescence emission occurs at the same frequency, but it is delayed compared to the modulated 

excitation.     The phase shift (ф) and demodulation, M, can then be used to extract the lifetime.  

In time-domain methods, the sample is excited continuously with a pulsed light.  The time-

dependent intensity is measured following the excitation pulse, and the lifetime is determined 

from the slope of a plot of the intensity versus time.  Both techniques offer several benefits. 

Time-domain techniques offer high sensitivity, an outstanding dynamic range and linearity, and 
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well-defined statistics for proper weighting of each data point.  Benefits of frequency-domain 

include lifetime-based decomposition of spectra into their components is simple compared to 

time-domain and data collection is generally faster.  A challenge associated with time-domain 

measurements is the pile-up effect in which the number of detected fluorescence photons is high 

compared to the number of excitation pulses resulting in distorted counting statistics causing the 

fluorescence decay to appear shorter.29  The instrumentation for steady state and time-resolved 

fluorescence is discussed in the following sections. 

1.2 Fluorescence Measurements and Instrumentation 

1.2.1 Steady-State Fluorescence   

 Steady-state emission profiles are generally recorded on a single beam 

spectrofluorometer, that records in the spectral range of 200-1100 nm.  The instrument consists 

of excitation and emission monochromators each containing gratings for specific wavelengths, a 

light source, a photomultiplier tube (PMT), shutters used to cut out excitation light and a 

computer for data acquisition and analysis.  Figure 1.2 illustrates the standard components of a 

typical spectrofluorometer with the traditional “L-shape” configuration commonly seen in 

commercially available instruments to avoid background from non-absorbed radiation.30 

Light sources can be categorized as continuum or line sources depending on the spectral 

distribution of the emitted radiation.30  Traditional continuum sources include gas filled arc 

lamps such as argon, mercury, and xenon lamps, which emit in the UV to visible, typically 200 

to 650 nm.  The most common source used for fluorescence spectroscopy is a 450 W high 

pressure Xenon arc lamp, providing a continuous spectrum of light ranging from the ultraviolet 

(250 nm) to infrared (700 nm). The white light generated is due to ionized Xe atoms colliding 

with electrons from the atoms yielding continuous emission.1  Xenon lamps are available in 

either continuous mode (DC) or pulsed sources (AC). 
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 Figure 1.2 Schematic of a spectrofluorometer. The basic components are a light source, 
excitation and emission monochromators and photomultiplier tube for detection.   
 

They are encased in optically clear glass envelopes due to the danger of explosion because the 

xenon gas is under high pressure.  Additionally, the housing serves to collimate and focus the 

lamp output into the entrance slits of the monochromators.1  It is important to mention here that 

when using xenon arc lamps for steady-state measurements, incorporating a mirror at the back of 

the lamp directs additional energy toward the output, maximizing the intensity of light that is 

focused on the entrance slit of the excitation monochromator, thereby increasing the sensitivity 

of the measurements. 1,30   

 Monochromators separate light into various wavelengths accomplished using slits, 

mirrors that produce a parallel beam of irradiation, and diffraction gratings or prisms.   
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Figure 1.3 Spectral distribution (irradiance) for various arc lamps including the xenon lamp. 
(Courtesy of Newport; used with permission). 
 
 The slit widths are variable and a typical monochromator will have slits for the exit and 

entrance.   Light enters the monochromator through entrance slits and is collimated using lenses 

or mirrors before striking a dispersing surface, which separates the light into component 

wavelengths.  The two types of dispersing elements found in monochromators are prisms and 

gratings with the latter being the most common due to low fabrication costs, and better 

wavelength separation.30  For prism monochromators, light is dispersed as a result of refraction; 

in grating monochromators, angular dispersion results from diffraction occurring at the surface 

of concave or planar gratings.  Grating monochromators are widely used due to their high 

resolution, and dispersion properties that are independent of wavelength.  A number of filters are 

available that transmit selected light or prevent light at certain wavelengths from passing 

through.1 Examples of filters include optical filters such as colored glass or quartz and 

interference.30 
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 Characteristics of an ideal detector include high sensitivity, high signal-to-noise ratio, and 

a rapid and steady response over a range of wavelengths. 30  Photomultiplier tubes (PMT) are 

widely used and are generally the most preferred detectors in fluorescence spectrometers.  

Photomultiplier tubes are composed of a photocathode and electrodes called dynodes that are 

fixed at constant but different negative potentials to amplify the signal.  Photons that strike the 

photocathode cause secondary electrons to be emitted and these electrons then strike the first 

dynode causing additional electrons to be generated. Depending on the number of dynodes and 

overall voltage, the current is amplified by this cascade effect and the voltage is then measured.1    

Photomultiplier tubes are highly sensitive to high levels of ultraviolet and visible light.  

Furthermore, they have extremely fast response times.  One limitation of the PMT is the noise 

from various sources in the tube such as thermal emission, resulting in dark current.   

1.2.2 Time-Correlated Single Photon Counting (TCSPC) 

 This technique is like a “stopwatch” whereby a time clock starts as the excitation pulses 

begin. The method consists of exciting a fluorescent molecule by a continuous train of light 

pulses.  Each pulse is detected by a photodiode that produces a start signal used to trigger the 

voltage ramp of a time-to-amplitude converter (TAC).  The voltage ramp is stopped upon 

detection of the first fluorescence photon from the sample.  By repeating this sequence an 

adequate number of times, a histogram of arrival times is compiled. The data are then processed 

using appropriate deconvolution and fitting procedures.  Typically, three curves are associated 

with a fluorescence decay including the instrument response function, the measured data and the 

calculated data.  The instrument response function is the response of the instrument usually 

measured using a dilute scattering solution.  
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1.2.2.1 Components for TCSPC Instrumentation 

 A block diagram of a TCSPC instrument is shown in Figure 1.3. For conventional 

TCSPC measurements, one of the most intricate parts of time-resolved fluorescence 

measurements is the constant fraction discriminator (CFD) that extracts with high precision the 

arrival time of electrical photon pulses that vary in amplitude.  The CFD splits the detector signal 

into two parts, one part which is an amplified and delayed version of the original signal by about 

half of the pulse width.   

 τp = 0.2 – 100 ps

SSttaarrtt  
((SSttoopp))  

PPuullsseedd  
LLiigghhtt  SSoouurrccee  

EExxcciittaattiioonn  

RReeffeerreennccee  
PPuullssee  

EEmmiissssiioonn  

DDaattaa  AAnnaallyyssiiss  

DDeetteeccttoorr  

SSttoopp  
((SSttaarrtt)) 

SSaammppllee  

CCFFDD  

TTAACC  

MMCCAA  
CCFFDD  

td = 25 

 

Figure 1.4 Schematic of a time-correlated single photon counting (TCSPC) instrument. The 
instrument consists of a light source, time-to-amplitude converter (TAC), constant fraction 
discriminator (CFD), mutichannel analyzer (MCA), and computer for data analysis. 
 

The signal derived from combining the two parts changes polarity when a constant fraction of 

the pulse height is reached.  A zero crossing signal is  formed independent of the input pulse.1  

The time-to-amplitude converter (TAC) measures the time interval between the excitation pulse 

and the arrival time of the emitted photon.  The TAC can operate in a reverse start-stop mode, 
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which enables the TAC to record at reduced speeds due to the cycle rate controlled by the photon 

detection rate and not the repetition rate of the laser.1 The multi-channel analyzer (MCA) 

measures the voltage from the TAC and stores them in a time bin, or channel.  MCA’s are 

generally comprised of 2048-8192 channels, which are further divided into smaller parts.1  

1.2.2.2 Data Analysis Methods for TCSPC Measurements 

Two procedures used for fluorescence decay analysis is one based on weighted least-

squares and the other based on maximum likelihood estimation (MLE).  In the least-squares 

method, referred to as nonlinear least squares (NLLS), one assumes a model to describe the data.  

The goal is then to obtain the parameter values that provide the best estimate match between the 

experimental data and the calculated decay using the parameter values that are assumed.  This is 

accomplished by minimizing the goodness of fit parameter, χ2 where; 

 
2[ ( ) ( )]2

( )1

N t N tn ck k
N tk k

χ
−

= ∑
=

 (1.11) 

The value of 2χ  is the sum of the squared deviations between the experimental value, ( )kN t  and 

the expected value ( )c kN t  divided by the squared deviations expected.  For multiple exponential 

decays, a procedure that mathematically matches the measured data to the assumed data 

precisely is iterative reconvolution.  

 For MLE, the lifetime is calculated according to the following relationship 

 / /1 1 1

1
1 ( 1) ( 1)f f

m
T mT

t ie m e N iNτ τ− − −+ − − − = ∑  (1.12) 

where m is the total number of time channels, T is the time width of each channel, tN is the total 
number of photocounts used in calculation, and iN is the number of photocounts in the time 

channel. The lifetime is determined from the data using reiterative techniques. 
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1.3 Factors Affecting Fluorescence 
 
1.3.1 Intramolecular Effects 
 
 The molecular structure of a fluorophore can have an effect on the quantum efficiency of 

fluorescence. For example, structural rigidity plays a key role in the fluorescence intensity of a 

chromophore with a more rigid structure typically resulting in enhanced fluorescence, whereas 

lack of rigidity results in enhanced internal conversion and an increase in radiationless decay.1,30  

Structural modifications such as the addition of substituents may influence the fluorescence 

properties of the compound due to enhanced rates of non-radiative processes which, depend upon 

the nature and position of the substituent, can alter both the emission profile as well as the 

quantum efficiency. For example, electron accepting functional groups such as –COOH and -

NO2 possess  low-lying π* orbitals from which an electron can be promoted to an unoccupied 

orbital of the fluorescent molecule causing the electron density to be shifted from the macrocycle 

to the substituent as a consequence of the transition quenching the fluorescence.  Observed 

changes include additional bands due to vibrational transitions and bathochromic shifts in the 

absorption and emission spectrum because of an increase in the extent of the π-electron 

configuration.  

 Complexation with a metal ion can also have a profound influence on the fluorescence 

characteristics of the molecule.  Many transition metal ions have electrons that can be promoted 

to an orbital of the chromophore causing mixing of the electronic states that result in the 

appearance of charge transfer bands in the fluorescence spectrum.    Generally, macrocycles 

complexed with closed shell diamagnetic metal ions such as zinc and gallium fluorescence 

strongly, with fluorescence spectra similar to the chromophore. Paramagnetic metal ions 

however, are found to interact strongly with the atomic orbitals of the macrocycle, resulting in 

quenching of the fluorescence due to increased efficiency of intersystem crossing, a direct 
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consequence of unpaired electrons in the d-orbitals.11 It is also well established that heavy atom 

substituents also quench the fluorescence because of spin-orbital coupling (heavy atom effect) in 

which the metals’ atomic orbitals conjugate with the first antibonding orbitals of the macrocycle 

to which an electron is promoted increasing the probability of intersystem crossing.  Spin orbital 

interactions are dependent on the atomic number, Z, to the fourth power, and increase in atomic 

number increases spin orbit coupling.31,32  

1.3.2 Environmental Effects 

 The nature of the environment such as solvent, pH, and temperature has shown to have a 

great impact on photophysical properties of fluorescent molecules, for example, spectral shifts in 

the emission wavelengths due to solvent interactions resulting from changes in the dipole 

moment of the fluorophore and lowering of the excited state energies.1  Numerous equations 

have been derived that relate the differences in energy due to such interactions 1,2  Oshima 

investigated solvent effects on the photophysical properties of aniline dyes and reported marked 

differences observed in the fluorescence intensity and lifetime due to the hydrophobic nature of 

the solvent.33  The intensity generally increases as the solvent viscosity increases since fewer 

molecules collide, thereby losing energy associated with internal conversion.34  In addition, 

solvents that contain heavy atoms decrease the fluorescence of a molecule due to increased rates 

of intersystem crossing. The effect of a heavy atom as a function of geometry and distance 

between the heavy atom and chromophore have been studied by Kavarnos and co-workers, who 

concluded that the position of the heavy atom plays an important role in the interaction between 

singlet and triplet states.35  Water as a solvent plays an important role in the fluorescence 

behavior of dyes because it serves as the preferred medium in biological studies.  
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1.4 Characteristics of Ideal Probes 

 The use of fluorescent dye molecules as a means of detecting many complex biological 

targets allows researchers to investigate complex systems with high sensitivity.   When designing 

fluorescent probes, thermal stability and photostability, molar absorptivity, high quantum yields, 

and excitation and emission wavelengths are important features to consider for the qualitative 

and quantitative analysis of biomolecules.36  Desirably, the absorption and emission maximum of 

the fluorescent reporter is in a spectral range that biomolecules do not show intrinsic 

fluorescence, which will increase selectivity and sensitivity.  Ideally, a fluorescent probe would 

possess an extinction coefficient of at least 20,000 L mol-1 cm-1 , a high quantum yield (>0.1), 

high photostability, solublity in aqueous media to reduce aggregate formation , and high 

reactivity toward the target analyte.37-39  The size of the fluorophore should also be considered, 

as small, rigid fluorophores are less perturbative of the target’s local environment.  Additionally, 

matching the appropriate dye sets with the wavelength of the excitation source is critical and 

with the advancement in technology, most continuous sources, in which the radiation changes 

slowly as a function of wavelength, offer flexibility.40 These properties in combination with 

sensitive instrumentation can potentially allow label detection at the sub-picomolar level.41 

 Fluorescent probes can be covalently or non-covalently attached to the target 

molecule.36,42,43  When a fluorescent dye is covalently bound to a  biomolecule, it is desirable 

that the spectral and photophysical properties of the label are primarily unaffected by attachment  

to the target molecule.40,43  A number of covalent fluorescent probes are available that can attach 

to target molecules through reactive groups such as isothiocyanates and succinimidyl esters that 

bind to primary amine groups on peptides, proteins and oligonucleotides.   Fluorescent probes 

that attach to target molecules through non-covalent interactions are also available.  These 

fluorophores usually exhibit weak fluorescence until associated  to the target . This has proven 
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useful in a variety of applications such as detection of PCR fragments.  Some commonly used 

fluorescent probes are described below with the choice of probe dependent upon the specific 

application.  

1.4.1 Visible Fluorescent Probes (400-650 nm) 

 The most common organic dyes used for probing biomolecules are visible fluorophores 

due to their availability from commercial sources and the availability of excitation sources, such 

as argon lasers.  However, there are disadvantages to working in the visible region. The increase 

in background noise due to scattering of the exciting photons and autofluorescence by 

biomolecules interferes with the analytical signal.38,43  In addition, the fluorescence can be 

quenched on conjugation to biomolecules and their conjugates are pH sensitive.44  Lefevre and 

coworkers reported on the use of several Texas red and rhodamine derivatives in an effort to 

improve conjugation reactions using these labels.55  Sjöback characterized the properties of 

fluorescein conjugated to nucleic acids and determined the conjugates existed in two 

conformational states at neutral pH, which are important for biological studies.45  
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Figure 1.5 Examples of visible dyes, FITC and Alexa Fluor 488, commonly used for fluorescent 
labeling. 
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1.4.2 Near-Infrared (NIR) Probes (650-1000 nm)  

 Near-IR fluorescence has become a promising alternative to visible fluorescence for a 

variety of applications. Advantages include an increased signal-to-noise ratio arising from 

significant reductions in the background, since only a few molecules show intrinsic fluorescence 

in the near-IR spectral region. In addition, Raman cross sections are reduced compared to visible 

wavelengths.46  Traditional fluorescent dyes used in covalent attachment to biomolecules are the 

carbocyanine dyes, consisting of an aromatic or heteroaromatic ring structures linked by a 

conjugated polymethine chain (see Figure 1.6).   These dyes demonstrate a shift in the absorption 

and emission maximum wavelengths resulting from increasing the length of the polymethine 

chain.   
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Figure 1.6 Basic structure of carbocyanine dyes used as fluorescent reporters. 

Tricarbocyanine dyes have been used for a variety of biological applications, including DNA 

sequencing,47 PCR,48 and labeling of amino acids,49 peptides50 and proteins (see Figure 1.7).   

However, the major limitations associated with the carbocyanine dyes are their poor chemical 

and photochemical stabilities, low quantum yields in aqueous media and major spectral changes 

when placed in aqueous solutions.38,51-54 39  Recently, Alexa Fluor dyes have been made 

commercially available that exhibit strong absorption in the near-IR region and have high 

extinction coefficients. The use of Alexa fluor dyes for a number of biological applications 

including immunofluorescence staining and flow cytometry has been reported.23,44 
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Figure 1.7 Structure of tricarbocyanine dye previously reported for use in DNA sequencing 
applications.38 
 

1.4.3 Metal Phthalocyanines (MPc’s) as Near-IR Fluorescent Probes 

 Although the availability of fluorescent probes has increased in the last decade, the 

existence of stable fluorescent probes for use in sensitive biological systems and DNA 

multiplexing is unsatisfactory due to poor water solubility and broad emission profile.  The 

ability to tailor the spectral and photophysical properties make MPc dyes excellent candidates for 

use in complex biological assays.  MPc dyes exhibit unique properties that, together with 

sophisticated time-resolved instrumentation, allow sensitive detection that exceeds what is 

obtainable with conventional near-IR dye-systems.  Therefore, the aim of this research presented 

herein is to develop near-IR fluorescent, photostable MPc’s that can be readily conjugated to 

biological targets and to characterize their photophysical and photochemical properties for 

labeling peptides, proteins, and oligonucleotides.  The applications of these dyes includes 

labeling single stranded DNA for increased multiplexing capabilities in DNA sequencing and 

FRET based detection techniques for molecular diagnostics.   
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Chapter 2 
Water Soluble Metal Phthalocyanines: The Role of the Functional Groups on the Spectral 

and Photophysical Properties 
 
 2.1 Introduction 
 

Phthalocyanines (Pc) and their metal complexes (MPc) have attracted considerable 

interest and have been found to be highly promising candidates for a variety of uses such as 

liquid crystals,1,2 photosensitizers,3-5 and in various chemical sensing applications.6,7  The 

properties that make Pc/MPc dyes particularly attractive as potential bioassay reagents include 

their high molar absorptivity,8,9 resistance to chemical and photochemical degradation,10 

absorption and emission in the deep red region of the electromagnetic spectrum,9,10 long lifetimes 

with high quantum yields,10 and a wide range of accessible chemical structures allowing the 

design of compounds capable of meeting certain needs.11  The difficulties associated with these 

dyes includes their propensity to form aggregates due to molecular stacking resulting in low 

quantum yields,12,13 limited solubility in aqueous media, formation of mixed isomers during 

synthesis,14,15 and difficulties in purifying these dyes to homogeneity using standard 

chromatographic methods.16  Unfortunately, these limitations have severely limited the use of Pc 

and MPc dyes as potential labeling reagents for ultra-sensitive fluorescence-based 

measurements. 

MPc’s and Pc’s are chemically robust and photochemically stable due in part to the 

nitrogens located within the aromatic macrocycle and the peripherally-fused benzene rings.17,18  

These dyes possess a strong absorption band in the near-IR due to the extended π−conjugation 

system around the ring structure.3,10  Pc’s can coordinate a variety of metals in their central 

cavity, which further enables tailoring their spectral and photophysical properties because the 

metal can affect the pathways of the excited MPc returning to the ground state, in particular the 

rate of intersystem crossing resulting from metal-ligand spin-orbit coupling.19,20  In addition, 
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interaction of the metal with the π system of the Pc can modify the electron distribution of the 

macrocycle resulting in additional absorption bands and/or bathochromic shifts in existing bands, 

which are highly dependent upon the paramagnetic properties of the central metal.   

Several examples have appeared in the literature in which Pc derivatives have been 

described with emphasis placed on the synthesis of the Pc with a primary goal of tuning the 

water solubility and aggregation effects for their use in photodynamic therapy.21,22  For example, 

Vicente and coworkers reported on the synthesis and cell uptake of ZnPc’s bearing 16-carboxylic 

acids to reduce aggregation for use as a potential photosensitizer for cancer therapy.5  Ng et al. 

synthesized dendritic phthalocyanines and studied their aggregation behavior, which was 

influenced by interactions with surfactants.23  Margaron et al. synthesized several different ZnPc 

dyes to evaluate their use for photodynamic therapy.4  Results indicated that the phototoxicity 

increased with decreasing number of sulfonate groups on the periphery.  Sener et al. reported on 

the synthesis and spectroscopic studies of MPc’s substituted with dicarboxyethyl substituents 

designed to control intermolecular dimerization of the MPc’s in solution.24  Spectroscopic 

evaluation indicated a high propensity of these compounds to dimerize at pH > 6.  Unfortunately, 

none of the aforementioned work described the role of the solubilizing groups on the 

photophysical properties of the MPc or Pc dyes or has used the peripheral water solubilizing 

groups (i.e., symmetrical Pc dyes) as an attachment scaffold to biomolecular targets.  Several 

groups have reported the use of asymmetrical MPc derivatives as fluorescent labeling reagents 

bearing a single isothiocyanato group for tagging monoclonal antibodies or oligonucleotides.25,26  

Asymmetrical MPc’s, which are comprised of water solubilizing groups and a functional group, 

however, are difficult to prepare and isolation of the desired product is often challenging as a 

result of statistical mixtures of substituted Pc’s obtained during synthesis. 
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Herein, we report on the synthesis, spectroscopic and photophysical properties of several 

symmetrical Pc’s and MPc’s that can potentially serve as fluorogenic labeling reagents for near-

IR fluorescence applications that exhibit favorable water solubility, minimal aggregation effects 

in aqueous media and facile conjugation routes to primary-amine containing targets.  We made 

use of symmetrical MPc’s as the labeling reagents for conjugation due to their ease of 

preparation and simplified purification methods.  We examined alkoxy substituted MPc’s having 

peripheral four, eight and sixteen carboxylate groups and a variety of central metal ions (Al(OH), 

Ga(OH), Zn, Ni, Pt and Pd) as well as  metal-free Pc’s in order to evaluate the spectroscopic and 

photophysical effects of these substitutions on the base chromophore and aggregation properties.  

These water solubilizing groups were also used for the covalent attachment of biomolecules to 

the fluorophore.  Fluorescence quantum yields, radiative lifetimes and photobleaching quantum 

yields, which are crucial in determining the feasibility of using any dye as reporters for high 

sensitivity analyses of biological molecules, will be reported and related to the degree of 

carboxylation of the MPc.  In addition, the spectral and photophysical properties will be 

examined upon conjugating an MPc dye to a biological target (i.e., streptavidin).   

2.2 Materials and Methods  
 
2.2.1 Reagents and Samples 

 Spectral grade dimethyl sulfoxide (DMSO) and dimethylformamide (DMF) were 

obtained from Aldrich Chemical Co. (Milwaukee, WI).  N-hydroxysuccinimide ester (NHS), and 

N,N-dicyclohexylcarbodiimide (DCC) was purchased from Sigma-Aldrich Co. (Milwaukee, 

WI).  3-(Cyclohexylamino)-1 propanesulfonic acid (CAPS) and 4-(2-Hydroxyethyl) piperazine-

1-ethanesulfonic acid (HEPES) were obtained from Sigma.  HPLC grade acetonitrile was 

purchased from Aldrich Chemical Co. and used without further purification.  Triethylammonium 

acetate (TEAA) buffer and streptavidin from streptomyces avidinii were purchased from Fluka 
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(St. Louis, MO).  Zinc acetate and nickel acetate tetrahydrate were finely ground, dried at 110 ºC 

under vacuum for 30 h and stored in sealed vials; palladium (II) chloride, platinum (II) chloride, 

anhydrous aluminum chloride, anhydrous gallium chloride, anhydrous tin (IV) chloride were 

used as received.   

Chromatographic separations were obtained using a Jasco HPLC (Jasco, Inc., Easton, 

MD) equipped with a diode array and fluorescence detector. Reverse-phase HPLC 

chromatography was performed using a Supelco C-18 column (Bellefonte, PA) with a linear 

gradient of 5-95% acetonitrile/0.1% TEAA for 45 min. at a flow rate of 1 mL/min.  Analysis of 

the HPLC data was performed using EZChrom software provided by JASCO.  The purity of 

MPc’s was verified by the observance of a single peak detected at 680 nm.  Thin Layer 

Chromatography (TLC) was performed using silica gel as the stationary phase.  Flash 

chromatography was performed with silica gel of particle size 60 μm. Melting points were 

determined using a Fisher-Johns melting point apparatus.  NMR spectra were recorded on a 

Bruker DPX-250. GC-MS spectra were recorded on a Hewlett Packard 5971A mass 

spectrometer in EI mode at 70 eV.  MALDI mass spectra were recorded on a Bruker ProFLEX 

III MALDI-TOF mass spectrometer. 

2.2.2 Synthesis of Metal and Metal-Free Phthalocyanines (MPc’s) 

 The synthesis of the MPc’s was performed in collaboration with Dr. Hammer’s 

laboratory by Dr. Guifa Su and Dr. Serhii Pakhomov. A mixture of 4-nitrophthalonitrile (for the 

synthesis of 1, see Scheme 2.1), 4,5-dichlorophthalonitrile (7 mmol, for the synthesis of 2 and 3, 

see Scheme 2.2 and 2.3, respectively), substituted 4-hydroxybenzoate (for 1, 7.5 mmol and for 2 

and 3, 15.4 mmol) and dried potassium carbonate (6.38 g, 46.2 mmol) in anhydrous DMF (50 

mL) was stirred overnight at 85°C in an inert atmosphere.  After cooling to room temperature, 

the mixture was diluted with ethyl acetate (60 mL) and water (40 mL).  The organic layer was 
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separated and the aqueous phase was extracted with ethyl acetate (2 x 50 mL).  The combined 

organic layers were washed with a saturated solution of NaHCO3 (40 mL), brine (40 mL) and 

dried over Na2SO4.  The solvents were removed in vacuo, and the crude product was purified by 

column chromatography on silica gel using dichloromethane/acetonitrile mixture (20/1) as an 

eluent to furnish 1-3. 

4-(4-Pentoxycarbonyl) phenoxyphthalonitrile (1): 88 %, mp 48-49 °C, 1H NMR (CDCl3) δ 8.15 

(d, 2H, J = 8.7 Hz), 7.77 (d, 1H, J = 8.7 Hz), 7.35 (d, 1H, J = 2.3 Hz), 7.30 (d, 1H, J = 8.7 Hz), 

7.12 (d, 2H, J = 8.7 Hz), 4.34 (2H, t, OCH2, J = 6.7 Hz), 1.79 (m, 2H, CH2), 1.42 (m, 4H, 

CH2CH2), 0.94 (t, 3H, J = 7 Hz, CH3). 

4,5-Bis(4-pentoxycarbonyl) phenoxyphthalonitrile (2): 88 %, mp 77-78 °C, 1H NMR (CDCl3) δ 

8.11 (dd, 4H, J = 2.1, 6.8 Hz), 7.35 (s, 2H), 7.03 (dd, 4H, J = 2.1, 6.8 Hz), 4.33 (t, 4H, J = 6.7 

Hz, 2 CH2O), 1.78 (m, 4H, 2 CH2), 1.41 (m, 8H, 2 (CH2)2), 0.94 (t, 6H, 2 CH3, J = 7.1 Hz). 

4,5-Bis(3,5-dimethoxycarbonyl) phenoxyphthalonitrile (3): 74 %, mp 202-203 °C, 1H NMR 

(CD3CN) δ 8.33 (t, 2H, J = 1.45 Hz), 7.75 (d, 4H, J = 1.45 Hz), 7.63 (s, 2H, J = 1.45 Hz), 3.87 

(s, 12 H, 4 CO2CH3). FAB (glycerol) 544.8 (M+) (calculated on C28H20N2O10 544.47). 

Syntheses of Phthalocyanines (typical procedure). 2,9,16,23-Tetrakis(4-

carboxyphenoxy)-phthalocyanato zinc (II)(6a, Scheme 2.1, Path B): A mixture of 4-(4-

pentyloxycarbonylphenoxy)phthalonitrile (0.670 g, 2.0 mmol), anhydrous zinc acetate (0.183 g, 

1.0 mmol) and dry pentanol (5 mL) was heated to 65°C under argon.  DBU (0.4 mL, 2.5 mmol) 

was added dropwise to the mixture, which was subsequently refluxed for 24 h. The solvents were 

removed in vacuo and the residue was purified by column chromatography on silica gel using 

hexanes/ethyl acetate mixtures (3/1) as the eluent. The fractions were combined and the solvents 

were evaporated to dryness.  The residue was dissolved in THF (40 mL) and added dropwise to a 

solution of LiOH•H2O (1.568 g, 36.6 mmol) in 70% aqueous methanol (100 mL).  The mixture 
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was stirred at 60oC for 17 h.  The organic solvents were removed in vacuo, the aqueous phase 

washed with chloroform (3 x 20 mL) and acidified to pH 2 with HCl (4 M).  The resultant 

precipitate was centrifuged, washed with chloroform (3 x 20 mL) and oven dried at 60oC.  
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Figure 2.1 Schematic of the synthesis of 2,9,16,23-tetrasubstituted Pc’s. 

Syntheses of Phthalocyanines (typical procedure). 2,9,16,23-Tetrakis(4-carboxyphenoxy)-

phthalocyanato zinc (II) (6a, Scheme 2.1, Path A): A solution of 2,9,16,23-tetrakis(4-

pentoxycarbonylphenoxy)phthalocyanato zinc (II) (5a), 0.430 g, 0.307 mmol) in THF (40 mL) 

was added dropwise to a solution of LiOH•H2O (1.568 g, 36.6 mmol) in 70% aqueous methanol 

(100 mL).  The mixture was stirred at 60oC for 17 h.   
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Figure 2.2 Schematic of the synthesis of 2,3,9,10,16,17,23,24-octabsubstituted MPc’s 

The reaction mixture work-up was done as above.  MS (MALDI-TOF, anthracene) produced an 

isotopic cluster peak at m/z 1120.88 (MH+). 1H NMR (DMSO-d6) δ 9.04 (br, 4H), 8.65 (br, 4H), 

8.13 (m, 8 H), 7.85 (br, 4H), 7.48 (m, 8H).  2,3,9,10,16,17,23,24-Octakis(4-pentoxycarbonyl)-

phenoxyphthalocyanine (7, Scheme 2, Path A): A mixture of 4,5-bis(4-

pentoxycarbonylphenoxy)phthalonitrile (2, 1.08 g, 2 mmol) in dry n-pentanol (10 mL) was 

stirred at 90oC under argon and DBU (0.32 mL, 2 mmol) was added dropwise.  The mixture was 

refluxed for 38 h.  n-Pentanol was removed in vacuo and the crude product was purified by 

column chromatography (silica gel, eluent hexane/ethyl acetate 9:1 to 4:1). MS (MALDI-TOF, 

anthracene) yielded an isotopic cluster peak at m/z 2164.47 (M+). 
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2,3,9,10,16,17,23,24-Octakis(4-pentoxycarbonylphenoxy)phthalocyanato zinc (II) (8a, Path A, 

see Scheme 2.2):A mixture of 2,3,9,10,16,17,23,24-octakis(4-pentoxycarbonylphenoxy)-

phthalocyanine (7, 110 mg, 0.05 mmol), anhydrous zinc acetate (37 mg, 0.2 mmol) and dry DMF 

(10 mL) was refluxed under argon (12 h).   
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Figure 2.3 Schematic of the synthesis of hexadeca substituted ZnPc. 

The flask was cooled on an ice-water bath for 20 min.  The mixture was poured into a beaker 

containing 13 g of crushed ice and the precipitate was filtered and washed with cold water, and 

then air dried. The crude product was purified by column chromatography (silica gel, eluent: 

hexane/ethyl acetate, 4:1 to 3:1). MS (MALDI-TOF, anthracene) yielded an isotopic cluster peak 

at m/z 2227.84 (M+).   
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Synthesis of zinc phthalocyanine N, hydroxysuccinimide ester.  The synthesis of  NHS ester 

derivatives of carboxylate zinc-Pc 6a was adapted from a published procedure and will only be 

described briefly here.27  A solution of carboxylate Pc 6a was dissolved in dry DMF and added 

to a solution of NHS and DCC (1.5 equiv. each) in dry DMF. 
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Figure 2.4 Synthesis of ZnPc-N, hydroxysuccinimide ester using DCC in the presence of DMF. 
 
The reaction was carried out at room temperature under agitation and allowed to react overnight.  

The reaction was then pooled and the product was precipitated by the addition of diethyl ether, 

isolated by centrifugation and dried under vacuum for several hours (see Figure 2.4). 

2.2.3 Spectral and Fluorescence Measurements of Metal-Free and MPc’s 

 UV/Vis Spectra.  Absorption spectra were collected on an Ultrospec 4000 single beam 

UV/Visible spectrophotometer (Amersham Biosciences, Piscataway, NJ) with 1-cm quartz 

cuvettes using SWIFT software (Amersham Biosciences).  The concentrations of the MPc dyes 

used in these measurements were 1 - 100 x 10-6 M to minimize the formation of aggregates.28  

The molar absorptivity was calculated from a least squares fit of the absorbance versus 

concentration for each dye.  An absorption spectrum of the reference solvent, which was DMSO, 

was obtained and subtracted prior to the acquisition of each spectrum.   
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 Fluorescence Measurements.  Steady-state fluorescence spectra were acquired using a Spex 

Fluorolog-3 equipped with a 450 W Xenon light source (Horiba Jobin Yvon, Edison, NJ) and a 

Hamamatsu R928 photomultiplier tube (Bridgewater, NJ).  DM300 software was used for data 

analysis.  Fluorescence spectra were obtained using an excitation wavelength of 680 nm for Pc 

and MPc dyes with a bandpass of 2 nm for both the excitation and emission monochromators. 

The quantum yields were determined relative to a secondary standard using the 

equation;29,30  

Φf(x) = (Astandard/Asample) (Fsample/Fstandard) (nsample/nstandard)2 Φstandard      (1) 

where Fsample and Fstandard are the measured fluorescence for the sample and standard respectively, 

Astandard and Asample are the measured absorbance, nsample and nstandard are the refractive index of the 

solvent used for the sample and standard, respectively, and Φstandard is the quantum yield of the 

secondary standard.  The secondary standard used in these experiments was 

diethyloxatricarbocyanine iodide (DOTCI).  The quantum yield of DOTCI has been reported to 

be 0.63 in DMSO.31  For the determination of the quantum yields, the secondary standard was 

excited at 680 nm to avoid post correction analysis. To minimize any error due to reabsorption or 

aggregation, all measurements were made with highly dilute solutions having an absorbance 

between 0.04 and 0.05 for a 1 cm path length.  

 Time-Resolved Fluorescence Measurements.  Time-resolved fluorescence decays were 

collected using time-correlated single photon counting (TCSPC) acquired on a Fluotime 200 

instrument (Picoquant, Berlin Germany).  The excitation source was a 680 nm pulsed diode laser 

(PDL 800, Picoquant).  Since rotational diffusion could lead to distortion of the fluorescence 

decay, a polarizer was inserted into the system and set at the magic angle of 54.7°.  The 

spectrometer consisted of a monochromator (ScienceTech 9030) and a photomultiplier tube 

(PMS 182-M single photon detection).  All electronics for TCSPC were situated on a single PC 

card resident on the bus of the PC and consisted of a constant fraction discriminator and time-to-

digital converter with an instrument response function of ~450 ps (FWHM).  Time-resolved data 

were analyzed using FluoFit software (Picoquant, Berlin Germany).  The fluorescence decays 
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were collected until ~10,000 counts were accumulated in the time channel with the most counts 

and fit to single or multi-exponential functions by an iterative reconvolution algorithm using 

nonlinear least squares.  The instrument response function was always collected to the same 

maximum number of counts as the fluorescence decay data.  The quality of the fit was 

determined by the randomness of the weighted residuals and the value of χ2. 

 Photobleaching Measurements.  Bleaching curves were recorded by continuously irradiating 

several MPc dyes, and commercially available dicarbocyanine, IRD700, and tricarbocyanine, 

DOTCI for several minutes under air using a 680 nm diode laser (Picoquant, Berlin Germany) as 

the excitation source. The beam waist was measured by mounting a razor blade on a translation 

stage and measuring the beam power using a laser power meter.  The product of I0σ (laser 

intensity in photons s-1 cm-2 × absorption cross section in cm2) was kept constant for all samples 

to eliminate absorption rate (ka) differences in the bleaching curves.  The absorption cross 

section was determined by multiplying 3.8 × 10-21 by the molar extinction coefficient.   The dyes 

were dissolved in DMSO at a concentration of 1.0 μM and were not degassed.  A linear least 

squares fit to a semi-log plot of time versus the fluorescence intensity was used to calculate the 

photobleaching rate.  The quantum yield of photobleaching was determined from the following 

equation: 

 1
b

a dk
τ =

Φ
          (2) 

where,
bτ is the photobleaching lifetime (s), ka is the absorption rate (s-1), and Φd is the 

photobleaching quantum yield.  An estimation of the photon yield per molecule was calculated 

from the ratio of the fluorescence quantum yield to the photo-destruction quantum yield. 

 Labeling of Streptavidin with ZnPc 6a Active Ester.  Conjugation of ZnPc 6a to streptavidin 

was performed in 0.1 M HEPES buffer, pH 8, using a streptavidin concentration of 10μM.  A 

solution of N-hydroxysuccinimide tetraester of ZnPc 6a in DMSO was added to the streptavidin 

solution to achieve the desired dye-to-protein molar concentration ratio of 10:1.  The reaction 

was incubated at room temperature for 24 h followed by analysis and purification using reverse-
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phase HPLC.  Separation of the products was performed on a C18 column using a linear gradient 

of 30-75 % acetonitrile/0.1TEAA for 30 minutes at a flow rate of 1 mL/min.  The elution of the 

conjugates was monitored using fluorescence detection at 686 nm for excitation and 693 nm for 

emission.  

2.3 Results 

2.3.1 Synthesis of Metal and Metal-Free Phthalocyanines   

 Figure 2.1-2.3 describes the methods used to prepare tetra-, octa-, and hexadeca-

carboxylate Pc’s and MPc’s.  The metal-free analogues, which can serve as precursors for 

various MPc’s, are usually prepared by base-promoted cyclization of phthalonitriles.  For the 

synthesis of MPc’s one can imagine two routes: one through the introduction of the central metal 

into the metal-free Pc (Path A in Schemes 2.1-2.3) or direct metal templated MPc preparation 

(Path B in Figures 2.1-2.3).  

The starting substituted phthalonitriles 1-3 were prepared from 4-nitrophthalonitrile or 

4,5-dichlorophthalonitrile and appropriate phenols according to literature protocols.5,32,33  

Synthesis of the previously reported Zn-tetracarboxylate Pc 6a starts with phthalonitrile 1 as the 

pentyl ester.34,35  Refluxing of 1 in pentanol in the absence of a metal salt (Scheme 2.1, Path A) 

gives the metal-free, tetra-ester Pc 4.  Refluxing of it in DMF in the presence of an excess (>10 

equiv.) of Zn(OAc)2 converts it to the ZnPc tetra-pentyl ester 5a.   

The preparation of this compound is more directly accomplished by refluxing of 

phthalonitrile 1 in pentanol in presence of DBU and Zn(OAc)2 (Scheme 2.1, Path B).  This direct 

synthetic route also works well for the preparation of Ni, Pd and Pd MPc’s as tetra-pentyl esters 

5d-5f.  Because Path B consists of one less step than Path A, the overall yields of the compounds 

prepared by this method were higher than those for Path A.  Moreover, the cyclization itself is 
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facilitated in the presence of the metal giving higher yields for the synthesis of MPc’s than for 

metal-free Pc’s.   

For Group IIIa MPc’s, direct synthesis of tetracarboxylates GaPc 6b and AlPc 6c by 

refluxing the substituted phthalonitrile and the appropriate metal salt in n-pentanol in an inert 

atmosphere with the subsequent hydrolysis of MPc’s esters 5b and 5c failed.  Thus, only Path B 

was available for the synthesis of these derivatives which consists in the reaction of metal free Pc 

(tetra-ester) 4 refluxed with GaCl3 or AlCl3 to give esters metallated Pc’s esters 5b and 5c, 

correspondingly. 

Table 2.1 Absorption (λa) and emission (λe) maxima of a metal free (H2Pc) and several MPc 
dyes. The dyes were suspended in DMSO.  HPLC retention times (tR) for the MPc’s using a 
reverse phase column and the exact mass as determined by MALDI-TOF-MS of each dye is also 
listed. 

MALDI-MS  
Compound 

λa
a 

(nm) 
λf

a 
(nm) 

εa 
(M-1cm-1) 

Molecular 
formula Calculated Found 

tR
b 

 
ZnPc 6a 677 687 2.85 × 105 C60H33N8O12Zn 

(MH+) 
1121.15 (MH)+ 1120.88 19.2 

GaPc 6b 680, 696 689 2.94 × 104 C60H32N8O12Ga  
[(M-OH) +] 

1125.14 (M-OH) 

+ 
1124.76 19.1 

AlPc 6c  677 683 3.00 × 104 C60H33N8O13Al 
(M +) 

1100.20 (M+) 1099.82 19.3 

NiPc 6d 673 Weak 
Fluorescence 

2.71 × 104 C60H32N8O12Ni 
(M+) 

1115.15 (M+) 1114.82 19.1 

PdPc 6e  665 Weak 
Fluorescence 

N.M.c C60H32N8O12Pd 
(M+) 

1162.12 (M+) 1162.37 19.1 

PtPc  6f 696 Weak 
Fluorescence 

N.M.c C60H32N8O12Pt 
(M+) 

1251.18 (M+) 1250.98 19.1 

ZnPc 9a 678 686 2.75× 105 C88H48N8O24Zn 
(M+) 

1665.22 (M+) 1665.34 22.5 

ZnPc 12 676 689 2.67× 105 C96H48N8O40Zn 
(M+) 

2018.13 (M+) 2018.50 26.1 

H2Pc 6g 654, 675 686 3.3 × 104 C60H35N8O12 
(MH+) 

1059.24 (MH+) 1059.45  

 
a. All measurements were made at a concentration of 1 x 10-6 M.  Molar absorptivities were 
calculated at λmax. b. HPLC conditions: 5-95% acetonitrile/0.1 M TEAA at a flow rate of 1 
mL/min.  c. N.M., not measured. Cannot be determined reliably due to aggregations 

 

The methyl ester of phthalonitrile 1 works well for either Path A or Path B, but gives 

mixtures of esters in the resulting Pc (or MPc) ester products, complicating their purification.  In 
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order to avoid such complications, we prefer to match the ester group to the preferred alcohol.  

Pentanol gives the most flexibility in terms of temperature range for the reaction and thus, the 

pentyl ester of starting phthalonitriles (1-3) has become our standard.  To generate either the 

metal-free Pc or MPc tetracarboxylates, their pentyl esters are saponified with LiOH in a tertiary 

mixture of water, THF and methanol.  Both the MPc esters and the lithium salts generally stay 

soluble in this medium and upon acidification with aqueous HCl, the pure free acids are readily 

obtained in quantitative yields. Purification of these compounds can be accomplished by washing 

the precipitate with chloroform and dissolving the solid in aqueous hydroxide solution and re-

precipitating the free acid (Pc or MPc) into aqueous acid (HCl). 

Table 2.2  Absorption (λa) and emission (λe) maxima of metal free (H2Pc) and MPc dye pentyl 
esters. Extinction coefficients (ε) and the exact mass, as determined by MALDI-TOF-MS are 
also listed. 

MALDI-MS  
Compound 
 

# of  
COOH 
groups 

Solvent λa (nm)  
[ε (M-1cm-1)] 

Molecular 
formula 

Calculated Found

H2Pc 4 4 CHCl3 664 (5.67 × 104 ), 
701 (6.50 × 104 ) 

C80H74N8O12  1338.54 (M+) 1338.30 

ZnPc 5a 4 CHCl3 677 C80H72N8O12Zn  1400.46 (M+) 1400.69 
GaPc 5b 4   C80H73ClN8O12G

a 
1441.43 
(M+H)+ 

1441.22 

AlPc 5c  4   C80H73ClN8O12A
l 

1399.49 
(M+H)+ 

1399.68 

NiPc 5d 4 CHCl3 670.5 (9.27 × 104) C80H73N8O12Zn  1395.47 
(M+H)+ 

1395.10 

PdPc 
(methoxy-
ethyl ester) 
5e  

4 pyridine 
DMSO  

664 (5.70 × 104 ) 
665.5 

C72H57N8O16Pd  1395.29 
(M+H)+ 

1394.87 

H2Pc 7 8 CHCl3 664 (1.04 × 105 ), 
700.5 (1.21 × 105 ) 

C60H32N8O12Pt  2162.92 (M+) 2163.06 

ZnPc 8a 8 CHCl3 680.5 C128H128N8O24Zn 2224.83 (M+) 2225.12 
GaPc 8b 8 CHCl3 697 (1.90 × 105 ) C128H129ClN8O24

Ga 
2268.61 
(M+H)+  

2268.69 

H2Pc 10 16 CHCl3 662.5 (1.47 × 105), 
699. 5 (1.64 × 105 ) 

C176H210N8O40 3077.47 (M+) 3077.64 

ZnPc 11 16 DMSO 643 (4.65 × 104 )    

 
Alternatively, a DMF solution of the free acid can be precipitated into an excess of 

diethyl ether. Because the central atom of the group IIIa MPc’s is trivalent, the MPc’s should 
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have axial ligands.  According to the MALDI data, the ligand of Ga and Al MPc’s (esters) is 

chloride (see Table 2).  Under the subsequent hydrolysis reaction conditions, chloride is 

substituted by a hydroxyl group.  This transformation is seen in the MALDI analysis of 

tetracarboxylate AlPc 6c, where the molecular ion C60H33N8O13Al is observed. The 

corresponding GaPc 6b does not exhibit molecular peaks in MALDI-TOF as only (M-OH)+ 

peaks are observed. Despite the absence of mass spectral evidence for the hydroxyl ligand on the 

GaPc 6b, we assume its presence in analogy with AlPc 6c and its requirement for filling of the 

Ga valencies. 

For the synthesis of the octa and hexadeca substituted MPc’s 9 and 12 (see Figures 2.2 

and 2.3, respectively), we used the same synthetic routes. It is possible to use both paths A and 

B, but again the use of path B gave higher yields. Phthalonitriles 2 and 3 used in the syntheses of 

MPc’s esters 8 and 11, are more sterically hindered and having different aromatic electron 

density because of substitution, so their cyclization reaction gave lower yields of Pc’s and 

MPc’s.  Increasing the reaction temperature did not increase the yields of the final compounds. 

The rate of hydrolysis of pentyl esters of such MPc’s 8 and 11 is slower and required up to 5 

times higher concentrations of the hydroxide of to achieve complete saponification.  

2.3.2 Spectral Properties   

 Absorption spectra of Pc dyes typically have two main bands, one in the UV and another 

in the near-IR.  The higher energy band (~350 nm) is known as the B or Soret band.17,36  The 

lower energy band, typically appearing around 680 nm, is often referred to as the Q-band.  The 

Q-band exhibits vibronic structure in solution between 610 and 640 nm.17,37,38  

The absorption and fluorescence emission properties, including the molar absorptivities 

for the Pc and MPc’s containing various degrees of carboxylation are listed in Table 2.1.  The 

absorption and emission spectra of the ZnPc dyes with different degrees of carboxylation are 

shown in Figures 2.5A and 2.5B, respectively.   
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Figure 2.5 Absorption (A) and emission (B) spectra of ZnPc dyes along with the ZnPc 
6a/streptavidin complex. The emission spectra were obtained at an excitation wavelength of 675 
nm.  The emission spectra were normalized to the maxima.  All emission spectra were collected 
in DMSO at a concentration of ~1.0 μM, while the absorption spectra used dye concentrations 
that varied from 1-100 μM. 
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Tetracarboxylate ZnPc 6a shows a single absorption peak at 677 nm with a blue-shifted band at 

610 nm.  Upon excitation at 675 nm, 6a exhibited strong fluorescence with a maximum at 687 

nm and a shoulder at 759 nm. The absorption and emission spectra for octa and 

hexadecacarboxylate ZnPc 9a and 12 in DMSO were similar to those exhibited by 

tetracarboxylate ZnPc 6a.  However, the emission shoulder appearing at ~759 nm for 6a and 12 

was absent in the case of 9a.   

 The absorption and emission spectra of the following tetracarboxylates - metal free Pc 6g, 

GaPc 6b and AlPc 6c in DMSO are shown in Figures 2.6A and 2.6B, respectively.  GaPc 6b 

exhibited a split in its Q-band with absorption maxima at 680 nm and 696 nm, while AlPc 6c 

showed only a singlet Q-band with an absorption maximum at 677 nm.  In the case of metal free 

Pc 6g, a very broad absorption spectrum was observed with a Q-band split showing a maximum 

at 675 nm.   
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Figure 2.6 Normalized absorption (A) and emission (B) spectra for a metal free Pc and several 
metal substituted Pc dyes (Zn, Al, Ga) dissolved in DMSO. The emission spectra were excited at 
the absorption maximum for each dye at a concentration of 1.0 μM.  In all cases, the tetra-
carboxylated dyes were used in these measurements. 
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Figure 2.6 Continued 

GaPc 6b, AlPc 6c and metal free Pc 6g showed emission maxima that ranged between 683 and 

689 nm with a slight red-shift seen for the maxima in the series, Al, H2 and Ga.  The absorption 

maxima, extinction coefficients and MALDI-MS data for the MPc esters 5, 8 and 11 are also 

listed in Table 2.2.  The absorption characteristics are consistent with the data seen for the free 

acids.  In addition, the calculated mass agreed favorably to that obtained from the MALDI-MS, 

indicating the assigned molecular structure of the dye was correct.   

The absorption spectra of tetra-, octa- and hexadecacarboxylate ZnPc 6a, 9a and 12, 

tetracarboxylate AlPc 6c and GaPc 6b in HEPES at pH 8 are illustrated in Figures 2.7.  The 

absorbance was also measured in CAPS at pH 11 and the results were the same as those shown 

in Figure 2.7.  Most of these compounds showed similar absorption maxima, but broader 

absorption envelopes compared to the same spectra in DMSO with the absorption maximum 

slightly blue-shifted (~645 nm in HEPES compared to ~675 nm in DMSO).  However, 9a and 12 

showed absorption characteristics in both HEPES and CAPS buffer that were very similar to 

those observed in DMSO, both in terms of the spectral widths and absorption maxima.  
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2.3.3 Photophysics of MPc’s 

 The fluorescence quantum yields of the MPc complexes were measured with respect to a 

secondary standard, diethyloxatricarbocyanine iodide (DOTCI), in DMSO, which has a 

documented quantum yield of 0.63 31.  The quantum yields for ZnPc 6a, 9a and 12 with different 

degree of carboxylation ranged from 0.40 – 0.41, while the quantum yields for GaPc 6b and 

AlPc 6c were 0.58 and 0.60, respectively.   
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Figure 2.7 Absorption spectra for MPc's in HEPES buffer, pH 8. The concentrations of dyes 
used in these measurements were 1.0 x 10-6 M. The absorption spectra were normalized with 
respect to the absorption maxima. 
 

The quantum yields were also determined for the MPc’s in CAPS buffer at pH 11 with the result 

shown in Table 2.3.  The quantum yields for the ZnPc’s 6a, 9a and 12 and GaPc 6b were 0.10, 

whereas the quantum yield for AlPc 6c was determined to be 0.30.  The radiative decay rates for 

several of the MPc’s were estimated using the emission and extinction profiles and the Strickler-

Berg equation 39, which yielded rates calculated for ZnPc 6a, GaPc 6b and AlPc 6c of 0.64 × 

109s-1, 0.58 × 109 s-1, and 0.48 × 109 s-1, respectively (see Table 2.3).  
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The fluorescence lifetimes for each MPc dye are given in Table 2.3.  ZnPc 6a had a 

lifetime of 3.1 ns with its decay kinetics adequately described by a single exponential function.  

AlPc 6c was best fit to a double exponential function yielding fluorescence lifetimes of 5.0 and 

0.64 ns.  In addition, GaPc 6b exhibited a multi-exponential decay with the longest lifetime 

being 3.5 ns.  Octacarboxylate ZnPc 9a was best fit to a monoexponential function with a 

lifetime of 2.9 ns while hexadecacarboxylate ZnPc 12 displayed a lifetime of 2.8 ns (see Table 

2.2).   

Table 2.3 Fluorescence lifetimes (τf), fluorescence quantum yields (Φf), photobleaching quantum 
yields (Φd), and photon yields per molecule (nf) for the standard, DOTCI, metal free and several 
metal Pc dyes.  The χ2 value for each decay profile is also presented.  All of these photophysical 
properties were measured in DMSO, except for the fluorescence quantum yields measured in 
H2O (CAPS, pH = 11.0) and the ZnPc 6a/streptavidin conjugate, which was measured in HEPES 
buffer (pH = 8.0). 
 

 
Compound 

 
τf 
(ns) 

 
τ2 
(ns) 

 
Φf 

 
Φf    
H2O 

 
Φd 

 
nf 
 

 
kr 
(ns-1) 

 
χ2 

ZnPc 6a 
ZnPc 9a 
ZnPc 12 

3.1 
2.9 
2.8 

 
 
 

0.41 
0.40 
0.40 

0.11 
0.11 
0.12 

5.0 × 10-7 

4.3 × 10-7 

1.3 × 10-7 

1.3 × 106 
1.4 x 106 
5.0 × 106 

0.64 1.43 
1.49 
1.27 

GaPc 6b  3.5 0.57 0.58 0.14 2.3 × 10-6 2.7 ×105 0.58 1.48 
AlPc 6c 5.0 0.64 0.60 0.31 2.8 × 10-5 2.1 × 104 0.48 1.09 
DOTCI n.d* n.d* 0.63  7.0 × 10-3 90.0   
IRDye 700 n.d* n.d* 0.70  4.6 × 10-6 1.5 × 105   
ZnPc 6a/ 
streptavidin 

2.85   0.16     

 
NOTE:  Radiative rates were calculated using the Strickler-Berg relationship. Samples were 
prepared to have an optical density of ≤ 0.05 at the λmax. 
*The fluorescence lifetimes for DOTCI and IRD700 were not determined (n.d.). 
 
 The photodestruction quantum yields along with the photon yields per molecule for tetra-

, octa- and hexadecacarboxylate ZnPc 6a, 9a and 12, as well as AlPc 6c and GaPc 6b are listed 

in Table 2.3.  The results indicate decreased photostability for AlPc 6c compared to ZnPc 6a 

with a photobleaching quantum yield of 2.8 × 10-5 for AlPc and 5.0 × 10-7 for ZnPc.  For the 

ZnPc’s 6a, 9a and 12, increasing the degree of carboxylation provided dyes with increased 

photostabilities and consequently, improved photon yields on a per molecule basis.  A qualitative 
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examination of the photobleaching data showed that these ZnPc dyes were significantly more 

photostable than a commercially available tricarbocyanine dye (see Figure 2.8).  
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Figure 2.8 Photobleaching profiles for several ZnxCPc dyes, IRD700, and DOTCI.  The 
photobleaching decay profiles were collected using 680 excitation by constantly irradiating a 1.0 
µM solution and continuously monitoring the fluorescence emission.   Results taken from 
experiments performed in collaboration with Dr. Michael Allen. 

 

The photophysical and spectral properties were also investigated when tetracarboxylate 

ZnPc 6a was covalently attached to streptavidin, a 55 kDa protein.  Results indicated a slight 

shift in the absorption and emission maxima for the conjugate compared to the dye with the 

absorption maxima appearing at 687 nm and the emission maxima at 693 nm (see Figures 2.9A).  

In addition, the fluorescence lifetime of the conjugate was found to be 2.85 ns, slightly shorter 

than that seen for the ZnPc dye. Evaluation of the ZnPc-streptavidin conjugation mixture was 

analyzed using reverse-phase chromatography with fluorescence detection used to monitor both 

the conjugate and free ZnPc dye.  The chromatograms for the reaction mixtures of ZnPc 6a only 

and streptavidin conjugated to 6a and 12 are shown in Figures 2.9A and 2.9B.  The labeling 

reaction as can be seen, the free dye peak is visible in the ZnPc/streptavidin reaction since the 

dye was available at a 10-fold molar excess compared to the protein. 
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Figure 2.9 Chromatogram showing the elution of (A) ZnPc 6a by itself (tr = 19.2 min), ZnPc 
6a/streptavidin conjugate (tr = 23.1 min, 28.5 min and 35.0 min) along with ZnPc 12/streptavidin 
conjugate (B).  The fluorescence detector was set at λex = 686 nm and λem = 693 nm.  See 
experimental section for an explanation of the chromatographic conditions. 
 



 45

Also, the chromatogram demonstrated the presence of multiple peaks that were not present for 

the reaction mixture containing no streptavidin, indicating that streptavidin molecules are 

multiply labeled with ZnPc 6a.  

2.4 Discussion 

Modeling and experimental evaluation of the electronic properties of Pc’s and MPc’s 

have been reported.40-42  As a starting point, Gouterman’s model provides useful background in 

predicting the origin of the main spectral features of metal and metal free Pc’s in terms of four 

orbitals, HOMO-1, HOMO, LUMO, and LUMO+1.43,44  The Q band is assigned to the a1u (π) to 

eg (π*) transition, while the B band is assigned to an a2u (π) to eg (π*) transition.  In Pc’s, the 1a1u 

and 1a2u orbitals become widely separated in energy resulting from the presence of the aza 

bridges and consequently, the Q and B bands appear at approximately 680 nm and 350 nm, 

respectively.45,46  For metal free Pc’s, Q-band splitting is indicative of D2h symmetry with the 

orbital degeneracy lifted, while the symmetry of MPc’s is generally D4h.
47  Depending on the size 

of the metal ion, accommodation of the metal can result in doming or ring expansion in the 

macrocycle causing the symmetry of the molecule to become distorted 48, inducing electronic 

perturbations that are manifested by bathochromic shifts in the absorption bands and/or Q-band 

splitting.  Significant mixing of the transition metal d-orbitals and the π orbitals of the 

macrocycle produce changes in the electronic features of the MPc’s as well with the extent of 

interaction dependent upon the nature of the central metal.  The metal-macrocycle interaction has 

been analyzed in detail by Rosa et al.49 

For the MPc’s investigated in this paper, the absorption spectra for tetra-, octa- and 

hexadecacarboxylate ZnPc 6a, 9a and 12 and tetracarboxylate AlPc 6c are typical for MPc 

compounds exhibiting a sharp and narrow Q band suggesting monomeric species and a higher 

energy Soret band when placed in DMSO solvents (see Figures 2.5 and 2.6).  In addition, they 

showed an additional shoulder to the blue of the Q-band, which can be attributed to combination 

overtones of Q-band electronic transitions.49  For gallium phthalocyanine, it has been reported 

that the Ga center is approximately 0.45 Å out of plane; the Q-band split observed in this study 

suggested that doming did occur in this MPc causing a split in the orbital degeneracy due to 
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symmetry changes.50  The absorption spectrum with a split in the Q-band for metal free Pc 6g is 

also consistent with D2h symmetry.  

Pc complexes with a light closed-shell central metal ion are typically highly fluorescent.19  

The fluorescence emission of the Pc’s studied in this report in DMSO have strong emission 

peaks around 687 nm with the emission profile for tetracarboxylate ZnPc 6a showing a small 

shoulder around 750 nm, which may indicate ligand-to-metal charge transfer.  Excitation at 696 

nm for GaPc 6b resulted in no detectable fluorescence, suggesting vibronic splitting of the S1 

electronic state.  The NiPc 6d, PdPc 6e and PtPc 6f showed weak fluorescence (see Table 2.1) 

due to these metals larger atomic numbers compared to the Zn, Al, and Ga metal centers, 

resulting in higher rates of intersystem crossing from spin orbit coupling artifacts. 

For many MPc compounds, self-association occurs readily in aqueous solutions due to 

intermolecular association with the degree of association dependent upon the identity of the 

metal ion and the peripheral substitutions on the benzo groups.17,51  For example, introduction of 

substituents in the 1,3 positions produces a shift to the red as opposed to substituents placed at 

the 1,4 positions.  Aggregation effects of several Pc dyes have been documented.52,53  Two main 

aggregate species have been identified as J and H aggregates with J-aggregates marked by a red-

shift in the monomer peak due to head-to-tail aggregation, while H-aggregates correspond to 

face-to-face dimerization marked by a blue shift.54,55   The absorption spectra for ZnPc 6a in 

HEPES buffer at pH 8 (see Figure 2.7) exhibited extensive broadening of the Q band with a blue 

shift in the absorption maximum indicative of H-aggregate formation.  In addition, AlPc 6c and 

GaPc 6b showed the same artifacts in their absorption profiles collected in HEPES buffer.  

However, as the degree of carboxylation increased, the absorbance spectra more resembled those 

in DMSO, where aggregation effects were expected to be minimal.  For example, octa- and 

hexadecacarboxylate ZnPc 9a and 11 showed narrow absorption envelopes with the absorption 

maximum very similar to that seen in DMSO.  Therefore, high degrees of carboxylation (>4 

carboxylate groups) seem to be fairly effective in minimizing ground state aggregation for ZnPc 

dyes.  Interestingly, tetracarboxylate ZnPc 6a in CAPS buffer (pH = 11.0) showed a narrower 

absorption profile compared to this same compound in HEPES, suggesting a smaller propensity 
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to aggregate at higher pH, which could be ascribed to a higher population of deprotonated 

species at higher pH values.  

The trends observed in the quantum yields for each MPc in DMSO can be explained in 

terms of heavy atom effects.19,46  As the atomic number of the heavy atom, which in this case is 

the metal center, increases one would expect the quantum yield to decrease due to increases in 

the intersystem crossing rate resulting from heavy-atom induced spin-orbit coupling.  For the 

data collected herein, the quantum yields for Zn, Ga, and Al did show an increase as the atomic 

number decreased for this series.  Indeed, previous reports on MPc’s have indicated that Al-

analogs typically show relatively larger quantum yields compared to other MPc’s due to its 

smaller atomic number.56  Inspection of the data in Table 2.3 also indicated that the degree of 

carboxylation added to the ZnPc macrocycle did not significantly affect the fluorescence 

quantum yields for this series of dyes when in DMSO. 

In HEPES (pH = 8.0), the quantum yields for the MPc compounds studied herein were 

observed to be less than 1% (data not shown). However, when the buffer pH was increased 

(CAPS, pH = 11.0) the fluorescence quantum yields for all of these dyes improved dramatically 

(see Table 2.3).57 The fluorescence quantum yield for the ZnPc 6a /streptavidin conjugate was 

also found to be significantly higher compared to the free dye only in HEPES buffer.  If we 

assume that the quantum yields for the ground state aggregated forms of these dyes are 

negligible compared to their monomeric counterparts, the relatively small quantum yields seen 

for these dyes in HEPES buffer is most likely due to a lower ground state population of the 

monomeric form.  While differences in extinction should correct for this population difference, 

the broad absorption profiles associated with the aggregates produce an apparent extinction 

coefficient that does not correct for the lower number of monomeric species (see equation 1).  

The fluorescence lifetimes for the MPc’s showed the same trend as that seen for the  

fluorescence quantum yields, with the lifetime of AlPc 6c significantly longer than that of ZnPc 

 6a and GaPc 6b, which have larger atomic numbers compared to Al and thus, would be  
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expected to show shorter fluorescence lifetimes based on heavy-atom mediated effects.  As can 

also be noticed in the data displayed in Table 2.3, the fluorescence lifetimes were generally 

independent of the number of substituents added to the periphery of the ZnPc dyes.  The identity 

of the short-lived component observed for Al and Ga is uncertain.   

The nature of MPc intermolecular interactions intimately affects the photostability of 

MPc’s and plays a central role in determining the number of photons generated per molecule, a 

key parameter in a number of ultra-sensitive fluorescence measurements and imaging as well.17  

Among the MPc’s investigated in this work, tetracarboxylate AlPc 6c was nearly 2 orders of 

magnitude less photochemically stable compared to the same tetracarboxylate ZnPc 6a and one 

order of magnitude less stable than GaPc 6b.  Interestingly, the photodestruction quantum yields 

for tetra-, octa- and hexadecacarboxylate ZnPc 6a, 9a and 12 showed increased photostability 

with higher degrees of carboxylation.  It is clear that a high degree of carboxylation mitigates 

intermolecular interactions resulting in enhanced photostabilities.  The photobleaching quantum 

yields reported in Table 2.3 illustrate the superiority of the Pc dyes compared to their cyanine 

counterparts as they dyes are less photochemically stable and thus, provide fewer photons on a 

per molecule basis.  A detailed investigation of the photostability of several metal 

phthalocyanines has been discussed previously.58  The authors examined factors that influenced 

the photobleaching process suggesting that photobleaching was related to the change in the 

electronic distribution of the molecular structure influenced by the identity of the metal center.  

The carboxylic groups not only provided a means for improving the water compatibility 

of the Pc dyes investigated herein, but could serve the dual function of allowing for their 

chemical modification by reacting the peripheral carboxylate groups with N-hydroxysuccinimide 

and DCC to form an activated ester for the covalent binding of targets bearing primary amine 

groups, such as streptavidin.  Inspection of the spectral properties of the ZnPc 6a/streptavidin 

complex indicated a slight bathochromic shift in its absorption maximum compared to the free 

dye in DMSO as well as a slight red-shift in its emission maximum.  The dye-to-protein 

concentration ratio was set to 4 to 1 in order to minimize multiple streptavidin molecules 

strapped to a single molecule 6a due to the four active sites around the periphery of the dye.  
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However, there was still the appearance of several peaks within the chromatographic trace (see 

Figure 2.9A) besides the free dye and single dye/protein conjugate peak indicating the existence 

of multiple streptavidins attached to the dye. While hexadecacarboxylate ZnPc 12 could be 

viewed as a better labeling fluor due to its improved water compatibility and photochemical 

stability, the presence of these spurious conjugates, besides the 1:1 complex, would make 

purification and quantification difficult (see Figure 2.9B).  

2.5 Conclusions 

This work presented facile routes for the preparation of heavily carboxylated MPc-type dyes and 

also, the photophysical and spectral properties of several metal free and MPc derivatives and the 

effects of the metal and ring substituents on these properties.  In general, the MPc dyes exhibited 

higher photostability compared to other commercially available fluorophores used for near-IR 

applications, which will have important ramifications in ultra-sensitive measurements as well as 

imaging.  The fluorescence quantum yields and lifetimes were found to depend on the metal 

substituent, but not on the degree of carboxylation.  

The challenge with the use of MPc-based dyes is their poor compatibility with aqueous 

solvents due to their high propensity to undergo self-aggregation.  However, aggregation artifacts 

could be mitigated through modification of the periphery of the macrocycle by appending large 

numbers of polar/ionic groups that inhibit dye-dye interactions.  For the dyes investigated here, 

incorporating carboxylic acid groups proved to be an effective approach for minimizing ground 

state aggregation as observed from the spectral properties of octa- and hexadecacarboxylate 

ZnPc’s 9a and 12 in buffered media.  Interestingly, high degrees of carboxylation also provided 

better photochemical stabilities.  The initial results obtained for the conjugation studies has 

prompted future work to focus on the optimization of labeling conditions with various ZnPc 

dyes, especially those that are heavily carboxylated to provide high quantum yield and 

photostable conjugates that can be easily purified.  
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Chapter 3  
Labeling Peptides, Proteins and Oligonucleotides with Metal Phthalocyanines for Highly 

Sensitive Fluorescence Detection Applications 
 
3.1 Introduction to Fluorescence Labeling Techniques 

 Technology that relies on the use of fluorescent probes for the sensitive detection of 

biological substances is becoming increasingly important in the fields of genomic and 

proteomics that aims at high throughput screening and quantifying biological processes at the 

single molecule level.1,2  When used with a sensitive detection device, fluorescent labeling is an 

excellent strategy that can provide a direct method as a means for identifying, assaying and 

visualizing biomolecules with high precision and resolution.2-4  However, the limitation in using 

this technique is the availability of suitable fluorescent compounds that possess functional groups 

that are chemically reactive towards functional groups on the biomolecule.  We have recently 

shown the potential of MPc’s as fluorescent probes for labeling streptavidin.5  This chapter 

briefly discusses the fundamental of labeling chemistry and illustrates the use of MPc’s in 

labeling proteins and peptides, and results are compared to labeling with commercially available 

fluorophores. 

 Two primary approaches that can be used for tagging biomolecules are covalent and non-

covalent coupling.  Non-covalent labeling involves ionic, electrostatic, hydrophobic, and 

hydrogen bonding interactions, while covalent coupling requires a reactive functional group on 

the fluorophore to covalently attach to the biomolecule.6-11 Legendre and coworkers separated 

proteins that were non-covalently labeled with two commercially available near-IR dyes, 

diethylthiatricarbocyanine iodide (DTTCI) and IR-125.12  In their studies, changes in the 

absorption/emission spectra and fluorescence lifetimes were observed due to hydrophobic 

interactions with the bound protein.12   Davidson et al. investigated the spectroscopic and binding 

properties of tricarbocyanine dyes, hexamethylindotricarbocyanine iodide (HITCI) and 
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diethylthiatricarbocyanine iodide (DTTCI) to double-stranded DNA. Results showed a 

significant enhancement in the fluorescence intensity in the presence of double-stranded DNA 

labeled with HITCI, and a 128-fold enhancement with DTTCI compared to intercalating dyes 

such as ethidium bromide.10  Williams and coworkers investigated both non-covalent and 

covalent labeling of human serum albumin (HSA) with indocyanine green and found that 

covalently labeled HSA was more stable compared to noncovalently  labeled HSA.7  Flanagan et 

al. reported on covalent labeling of amino acids with tricarbocyanine dyes, while Duan and 

coworkers demonstrated covalent labeling of monoclonal antibodies with phthalocyanines 

bearing a single isothiocyanate group.10  Recently, Peng and coworkers reported on the covalent 

attachment of SiPc to antibodies.13   

 Both modification techniques, however, suffer from drawbacks. Although non-covalent 

reactions occur at a faster rate, they are generally less stable compared to covalent labeleing.7,14 

For covalent labeling, the chemistry is often complex and laborious compared to non-covalent 

methods that only require mixing the fluorescent dye and biomolecule with no additional steps 

needed.8,9,14,15 Commonly used fluorescent probes in non-covalent labeling include naphthalene 

dyes and squarylium dyes that are highly fluorescent in a complex biological system mainly due 

to the environment in which these dyes exist and a variety of fluorescent staining dyes such as 

acridine orange, comassie blue, and colloidal gold.7,14,16   Fluorophores commonly used for 

covalent bonding include Alexa Fluor and cyanine dyes that can be synthesized to react towards 

a number of functionalities.17     

 Functional groups that bind to biomolecules containing primary amines are the most 

common functional groups on modification reagents.  For example, isothiocyanate is a functional 

group that reacts with nucleophiles such as amines and sulfhydryls.  The reaction involves attack 

of the nucleophile on the electrophilic carbon of the isothiocyanate group and the resulting 
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electron shift creates a thiourea linkage between the isothiocyanate and the amine group.  The 

only stable product of these reactions is with primary amines however, and they are relatively 

unstable in aqueous conditions.18   Aryl halide reagents such as fluorobenzene can also be used 

to form covalent bonds between a fluorophore and amine-containing biomolecules.  This 

reaction, however, is not specific for primary amines.  The most widespread used method for 

covalently labeling a biomolecule with a fluorescent dye is the use of carbodiimides that can be 

used to form highly reactive O-acylisourea derivatives, known to react selectively with primary 

amine groups to create stable amide bonds.18  Although, the O-acylisourea derivative is also 

relatively short-lived, the addition of an N-hydroxysuccinimide (NHS) ester increases the 

stability of the derivative. The latter method was chosen for these studies due to the ability of 

carbodiimides to activate the carboxylic acids located on the periphery of the MPc’s dyes and 

create a stable amide bond between the MPc dye and the target biomolecule. 

3.1.1 Fundamental Aspects of Carbodiimide Coupling Chemistry 

Carbodiimides react with carboxylic acids to form a stable covalent bond between the 

fluorescent dye and the biomolecule containing primary amines.  The general use of these 

compounds was first introduced by the pioneering research of Khorana and his investigation into 

their role in peptide and nucleotide synthesis.19,20  These cross-linking reagents have since 

remained a popular choice for labeling because these compounds mediate the linkage between 

primary amines and carboxylic acid groups through the formation of amide bonds with no 

intervening linker necessary.  Carbodiimides are either organic soluble or water-soluble, with the 

latter being the preferred choice for modification reactions because of the hydrophilicity of most 

biological targets.  The structure of these compounds is shown in Figure 3.1   1-Ethyl-3(3-

dimethylaminopropyl) carbodiimide hydrochloride (EDC) is typically used due to its water 

solubility and any excess reagent can easily be removed by simple purification techniques such 
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as gel filtration, while N,N'-dicyclohexyl-carbodiimide (DCC) is generally used for labeling 

reactions employing hydrophobic fluorescent dyes.18   A drawback to using EDC and DCC is the 

lability of the intermediate and the susceptibility of hydrolysis back to carboxylic acid groups as 

a competing reaction.21  

 The reaction mechanism illustrating the steps involved in converting carboxylic acids to 

active esters using EDC is shown in Figure 3.2.   

H3C N C N N

N C N
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Figure 3.1 Structure of EDC and DCC used for converting carboxylic acid functional groups to 
active O-acylisourea derivative for labeling biomolecules containing primary amines forming 
stable amide bonds. 
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Figure 3.2 Schematic representing the derivatization of carboxylic acid functionalities using 
EDC coupling chemistry. The addition of NHS produces a more stable amide bond between 
primary amines and carboxylic acid groups. (1) reaction with EDC without the addition of NHS; 
(2) hydrolysis reaction; (3) reaction with EDC and NHS. 
 



 58

The reaction takes place by reacting an equimolar amount of EDC to a solution containing the 

fluorophore creating an O-acylisourea intermediate.   In the presence of an active nucleophile, an 

amide bond is formed and the urea derivative is released as a byproduct that can easily be 

removed using chromatographic purification techniques.22   A modified approach is to use a 

succinimidyl ester derivative (i.e. N-hydroxysuccinimide (NHS)) in conjunction with EDC to 

create a more stable intermediate.  The coupling chemistry using EDC/NHS is highly efficient 

under optimal conditions and the conjugate yield increases compared to using only EDC.23   Liu 

and coworkers reported on the preparation of luminescent silica nanoparticles using EDC and 

NHS coupling to covalently immobilize monoclonal antibodies for cell imaging applications.24  

Hua demonstrated the use of EDC/NHS coupling to label immunoglobulin antibodies with 

water-soluble quantum dots.25 A detailed review of carbodiimide chemistry has been reported by 

Williams and coworkers.26  

 This chapter discusses the use of carbodiimide coupling as a means to label biological 

moieties with metal phthalocyanines (MPc’s) by converting the carboxylic acids located on the 

periphery of MPc’s to functional succinimidyl esters.  Here, we show the feasibility and 

versatility of labeling with zinc tetracarboxylate phthalocyanine (Zn4CPc) by reacting Zn4CPc 

with several biomolecules, and examine the effect of a biomolecule on the intrinsic properties of 

Zn4CPc dye (see Figure 3.3).  We also demonstrate the chromatographic separation of the 

bioconjugates using reverse-phase chromatography. 

3.2 Materials and Methods 

 N, N-dicyclohexal carbodiimide (DCC), N-hydroxysuccinimide (NHS), 

Dimethylsulfoxide (DMSO), triethylammonium acetate (TEAA), and HEPES were purchased 

from Sigma-Aldrich (St. Louis, MO).  HPLC grade acetonitrile was obtained from Fluka (St. 

Louis, MO) and used without further purification.  Amine modified M13mp18 universal primers 
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Figure 3.3 Structure of tetracarboxylate metal phthalocyanine (Zn4CPc) used for labeling 
reactions. The synthesis of Zn4CPc has been discussed in detail previously.5 

 

(sequence: GTAAAACGACGACCAGT) with a six or a twelve-carbon chain linker were 

purchased from IDT DNA (Coralville, IA).   Streptavidin and bovine serum albumin (BSA) were 

acquired from Sigma-Aldrich (St. Louis, MO).  Insulin chain B was obtained from Fluka (St. 

Louis, MO).  The active NHS ester derivatives of Zn4CPc (ZnPc-NHS) was synthesized 

according to a published procedure and is discussed in detail elsewhere.5  Since ZnPc-NHS ester 

is in the active form, solutions of the derivatives were prepared immediately before labeling 

procedures.  Labeling was carried out by dissolving insulin chain B, oligonucleotide or BSA in 

0.1 M HEPES buffer pH 8, at a concentration of 0.1 mg/mL.  A stock solution of ZnPc-NHS was 

prepared by weighing a small amount of ZnPc-NHS and dissolving the dye in DMSO at a 

concentration of 1 mg/mL.  An aliquot of the dye solution was immediately added to the protein 

solution dropwise to achieve a dye-to-protein ratio of 10:1.  The reaction was vortexed at room 

temperature overnight. After incubation, the reaction mixtures were desalted using sephadex G-

25 desalting columns. 
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The fractions were then collected and further analyzed using ion-paring reverse-phase HPLC.   

3.2.1 Instrumentation 

 MALDI Analysis.  Samples were desalted using ZipTipC18 desalting columns prior to analysis.  

Trihydroxyacetophenone (THAP) matrix solution was prepared at a concentration of 10 mg mL-

1 in a 1:1 (v/v) EDTA/ACN. A 5 mL aliquot of the ZnPc-conjugate sample was mixed with 5 

mL of matrix solution.  The final mixture was spotted on the silicon sample plate and allowed to 

dry using a heat gun for 10 sec.  The ZnPc-conjugate samples were spotted directly onto a 

sample plate with 2,4,6 Trihydroxyacetophenone (THAP) as the matrix, prepared as a 50:50 

mixture of EDTA and acetonitrile.  MALDI-TOF was acquired on a Bruker ProFlex MALDI-

TOF mass spectrometer (Bruker Daltonics Inc., Billerica, MA) with delayed ion extraction 

equipped with a N2 laser (λ = 337 nm).  The instrument was operated in both positive and 

negative mode.  The mass spectra were recorded in the range of m/z 1500-7500. 

 13C NMR analysis.  A stock solution of Zn4CPc was prepared by dissolving 3 mg in DMSO-d6 

to make a final concentration of 3 mM.  A diluted sample of Zn4CPc was prepared and DCC and 

NHS were added in a 4 molar excess of the dye. The solution was mixed and allowed to react for 

45 minutes. Using a microsyringe, all samples were transferred to NMR tubes and analyzed on a 

Bruker DPX 400 13C NMR equipped with a 5 mm Z-gradient inverse probe.    

 Reverse-Phase Chromatography.  Chromatographic separation was performed on a JASCO 

HPLC (Jasco, Inc., Easton, MD) equipped with a photodiode array and fluorescence detector. 

Separation was performed on a C18 reverse phase column (Supelco, Pennsylvania USA).  The 

data was acquired using EZChrom software provided by JASCO.   HPLC buffer A was 0.1% 

TEAA in water and buffer B was 0.1% TEAA in acetonitrile.  The conditions used for separation 

was a linear gradient for 45 min. at a flow rate of 1 mL/min.  The detection was monitored using  
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photodiode array (PDA) at wavelengths 260 nm and 680 nm, and fluorescence detection at 677 

nm for excitation and 683 nm for emission.   

 Spectroscopic Analysis.  Absorbance measurements were acquired on an Ultrospec 4000 

UV/Visible spectrophotometer (Piscataway, NJ) equipped with deuterium and tungsten lamps.  

Analysis was performed using SWIFT II software provided by the manufacturer.  Steady-state 

fluorescence measurements were acquired on a Spex Fluorolog 3 (Edison, NJ). Fluorescence 

lifetime measurements of the labeled conjugates were acquired on a time-correlated single 

photon counting (TCSPC) instrument previously described in Chapter 2.   

 Functional Activity Test.  Functional activity tests for ZnPc-streptavidin were performed using 

biotin labeled microspheres purchased from Molecular Probes (Eugene, Oregon). The 

microspheres (0.2 μm) are supplied as aqueous suspensions containing 1 % solid and 0.02 % 

Tween, which serves as a blocking agent to minimize nonspecific binding.  The number of 

microspheres per mL of solution was determined to be 7.2 × 108 using the following equation; 
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3

6 10C
ρ π φ

×
× ×

    (1.1) 

where, C is the concentration (g/mL) of the suspended beads,φ  is the diameter of the 

microspheres (μm), and ρ is the density of the microspheres in g/mL.  Zn4CPc-Streptavidin 

conjugate was added to a 5 mL aqueous suspension of the microspheres for 30 minutes at room 

temperature and then centrifuged for 20 min at 3000 × g to separate the protein-labeled 

microspheres from unreacted dye. The supernatant was discarded and the formed pellet was 

resuspended in buffer and gently vortexed and centrifuged as described previously 3 times (three 

washes).  The protein conjugate microsphere was then resuspended in HEPES and further 

analyzed by measuring the steady-state fluorescence.  To determine non-specific binding of 

Zn4CPc to the solid surface, a control reaction was performed in which ZnPc was added without 
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the presence of streptavidin in the same fashion (Figure 3.4).  In addition, a control reaction of 

streptavidin incubated with the biotinylated microspheres was carried out to determine any 

background fluorescence from streptavidin. 
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Figure 3.4 Schematic illustrating the experimental set up for attaching dye labeled streptavidin 
to biotinylated microspheres. 
 

3.3 Results and Discussion 

3.3.1 13C NMR Analysis of Derivatized Zn4CPc 

 13C NMR is a powerful and useful tool for providing structural information of both 

organic and inorganic species as well as information on the motion of such species.10  Structural 

elucidation of the formation of ZnPc-NHS was performed using 13C NMR.  In Figure 3.5 is the 
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13C NMR spectrum for Zn4CPc dissolved in DMSO-d6.  A chemical shift at 166.67 ppm 

corresponds to the carboxylic acid functional groups located on the periphery of the 

phthalocyanine dyes.  The peak observed at 131 ppm is due to the solvent.   
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Figure 3.5 13C NMR spectrum of Zn4CPc dissolved is DMSO.  Concentration of the Zn4CPc 
solution: 3 mM. 
 

 

Figure 3.6  13C  NMR spectrum representing the NMR shift for N, hydroxysuccinimide. The 
concentration of NHS dissolved in d6-DMSO was 12 M. 
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Figure 3.7 13C NMR spectrum illustrating the appearance of an NMR peak indicative of the 
active ester formation.  
 

The NMR spectrum for N, Hydroxysuccinimide (NHS) is shown in Figure 3.6 exhibiting a peak 

shifted further downfield at 172.74 ppm corresponding to the carboxyl group.  In Figure 3.7 is 

the NMR spectral results for ZnPc-NHS with the appearance of a new peak observed slightly 

further downfield with a chemical shift at 170.38 ppm due to the carboxylic acids being 

converted to active NHS esters. The disappearance of the carboxyl groups is significant in that it 

suggests all four carboxylic acid groups have been converted to NHS esters. 

3.3.2 Spectral Properties of Labeled BSA, Insulin Chain B and Oligonucleotide 

 The tetracarboxylated Zn phthalocyanine (Zn4CPc) dye provided a means for their 

chemical modification by reacting the peripheral carboxylic acids with NHS and DCC to form an 

activated ester for the covalent binding of targets bearing primary amine groups.   Streptavidin, 

BSA, Insulin Chain B, and a 6-carbon amino modified oligonucleotide were chosen as model 
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systems due to these compounds possessing a number of primary amines and their commercial 

availability.  BSA is a single chain polypeptide consisting of 530 amino acid residues with a high 

content of cysteine residues. Insulin chain B possesses two primary amine groups available for 

labeling and streptavidin is tetrameric protein with several primary amines. 

Figure 3.8 shows the absorption and emission spectra for ZnPc-Insulin Chain B in 

10%DMSO/HEPES at pH 8.  The spectra exhibits a small shift in the absorption and emission  
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Figure 3.8 Normalized overlay of the absorption and emission spectra of ZnPc-insulin chain B 
conjugate in 10%DMSO/HEPES. The fluorescence emission spectrum was obtained using an 
excitation wavelength of 610 nm. The dye-to-peptide ratio was set at 10:1. Concentration of 
ZnPc used for conjugation was 10-6 M. 

 

maxima at wavelengths 680 nm and 686 nm, respectively compared to the absorption and 

emission maximum of the unreacted Zn4CPc in HEPES at pH 8 that shows significant 

broadening indicative of extensive aggregation (please refer to Chapter 2).   

In figure 3.9 is shown the absorption and emission spectrum of the ZnPc-BSA conjugate 

in DMSO/HEPES that displays an absorption and emission maxima of 683 nm and 686 nm.    In 
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addition, we examined the absorbance and emission of ZnPc-oligonucleotide in HEPES and the 

resulting spectra, Figure 3.10, shows an extra peak at 637 nm and the monomeric peak at 683 

nm.  An overlay of the unlabeled oligonucleotide is shown for comparison of the peak at 254 nm 

due to the oligonucleotide.  The peak observed at 637 nm is due to the formation of H-aggregates 

marked by a broad peak blue-shifted from the monomer.11   
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Figure 3.9 Normalized overlay of the absorption and emission spectra for ZnPc-BSA conjugate 
along with the absorption spectrum for unconjugated BSA. The BSA-to-dye ratio was set at 10:1. 
The excitation wavelength maximum was 683 nm and the emission maximum was 686 nm. The 
dye concentration was 1 × 10-6 M.   
 

The bathochromic shift observed in the absorption and emission maximum is due to an increased 

solubility of the ZnPc in aqueous buffer due to the presence of the oligonucleotide.   These 

results agree with previous studies by Owens and coworkers that reported a chemical shift to 

longer wavelengths for oligonucleotides labeled with asymmetrical Pc’s.11  The broadening of 

the absorption spectra observed for the ZnPc-oligonucleotide conjugate in aqueous buffer 
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solution resulted from extensive ground state aggregation. Addition of a small amount of DMSO 

to the aqueous solution of ZnPc-conjugates increased their solubility resulting in preference for 

the monomer compared to pure aqueous media.  
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Figure 3.10 Absorption spectra of oligonucleotide and ZnPc-oligonucleotide conjugate in 
HEPES buffer. The broad peaks at 637 nm and 683 nm are indicative of H-aggregation. The dye-
to-primer ratio was 10:1 with a dye concentration of 1 × 10-6 M. 
 

Streptavidin has the unique ability to bind to biotin, naturally occurring vitamin H, with high 

affinity (Ka = 1015M-1) and specificity.12  The ability of ZnPc-streptavidin conjugate to bind with 

biotin was tested in a biotin-binding assay with the use of biotin microbeads.  Free Zn4CPc was 

used as a control reaction to determine the extent of non-specific binding of Zn4CPc on the 

polystyrene-based microspheres, which retains some hydrophobic characteristics.  The 

fluorescence spectra for the Zn4CPc control and the ZnPc-streptavidin conjugate is shown in  

Figure 3.11.  Our results indicate that the ZnPc-streptavidin conjugate binds to the biotinylated 
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Figure 3.11 Fluorescence emission spectrum of ZnPc-streptavidin bound to biotinylated 
microspheres and a control reaction with no streptavidin added to the solution.  Non-specific 
binding of the dye is minimal. Excitation wavelength: 680 nm, [dye] = 1 × 10-6 M. 
microbeads and that Zn4CPc exhibits low non-specific interaction with the solid surface. 

3.3.3 Fluorescence Lifetime of Labeled Streptavidin 

 The fluorescence lifetime is a parameter that has been used in biological assays due to the 

lack of lifetime data available for fluorescent dyes and the availability of dyes that show unique  

lifetime characteristics upon derivatization.  The measured lifetime for ZnPc-streptavidin was 

2.85 ns in comparison to the fluorescence decay of free ZnPc found to be 3.1 ns (see Figure 

3.12).  The lifetimes were fit to monoexponential decay.  The χ2 value for Zn4CPc-streptavidin 

conjugate and the Zn4CPc was determined to be 1.34 and 1.43, respectively.  Attempts to fit the 

lifetimes to a double-exponential decay did not increase the goodness of the fit.  

 In an attempt to characterize the conjugates using MS analysis, MALDI-TOF was carried 

out as a soft ionization technique to verify the covalent attachment of the biomolecule to ZnPc-

NHS.   
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Figure 3.12 Fluorescence decay profile of ZnPc-streptavidin in HEPES buffer at pH 8 and the 
instrument response function (A) along with the fluorescence decay profile of Zn4CPc (B).  
Weighted residual shown for zinc phthalocyanine and the conjugate. χ2 values of 1.34 and 1.43 
represents a good fit of the decay profile. 
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Mass data was unobtainable for ZnPc-streptavidin and ZnPc-oligonucleotide possibly due to an 

increased amount of the ZnPc-insulin conjugate present in solution.  MALDI analysis was 

obtained for ZnPc-insulin chain B and the result is shown in Figure 3.13.  The spectrum gave a 

major signal at m/z 1546.67 and 4678.12 corresponding to the unreacted ZnPc-NHS and insulin 

chain B conjugate, respectively.   

 

Figure 3.13 Mass spectrum of ZnPc-insulin chain B conjugate dissolved in a 1:1 (v/v) solution 
of 2,4,6 Trihydroxyacetophenone (THAP) matrix. Mass spectrum acquired by MALDI-TOF 
using a 337 nm nitrogen laser operated in negative mode. 
 
3.3.4 Separation of Labeled Conjugates Using Reverse Phase Chromatography  

 The chromatographic separation for ZnPc-insulin chain B conjugate is shown in Figure 

3.14.  As can be seen, insulin chain B eluted at 4.5 min (Figure 3.14A). The chromatogram for 

the ZnPc-conjugate is shown in Figure 3.14 B.  The detection of insulin chain B was performed 

using a  photodiode array (PDA) with detection monitored at wavelength 260 nm, and ZnPc- 

insulin chain B was monitored using fluorescence detection at 686 nm. 
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 Figure 3.14 Chromatogram of unlabeled insulin chain B (A) with a retention time of 4.5 min, 
and Zn4CPc labeled insulin chain B (B) with peaks eluting at 5.2 min, unresolved peaks at ~ 16 
min, and a peak eluting at 28 min. Separation was performed using a reverse-phase column and a 
linear gradient of 0.1%TEAA/ACN for 35 min.  Detection was performed using a PDA and 
fluorescence detector system.  Concentration of ZnPc-NHS used in reaction: 10-6 M. The dye-to-
peptide ratio was 10:1. 
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  Two resolved peaks are present in the separation of the Zn4CPc labeled insulin chain B with an 

elution time of 5.2 min. and 30 min. with unresolved peaks eluting around 20 min.  Insulin chain 

B contains two primary amines that are available for labeling with pKa’s of 8.4 and 9.8, 

respectively.  ZnPc possesses four active ester groups that are available for labeling.  The peak 

observed at 5.2 min can be due to monosubstituted insulin chain B and the unresolved peaks at 

20 min can be indicative of multiply labeled insulin chain B. Under reverse-phase HPLC 

conditions, free ZnPc is expected to elute later compared to the conjugate, therefore, the peak at 

30 min. is possibly due to unreacted ZnPc.  The dye-to-protein concentration ratio was set to 10-

to-1 in order to minimize multiple molecules strapped to a single Zn4CPc molecule due to the 

four active sites around the periphery of the dye.   

3.3.5 Influence of Amino Linker Chain Length on the Conjugation of Amine Modified 
Oligonucleotides 
 
 Depending on the length of the amine linker, the biological functionality of the 

biomolecule can be compromised due to intramolecular interaction of the dye molecules.27,28  It 

has been demonstrated previously that an increase in the length of the linker unit between the 

biomolecule and the functional moiety significantly reduces intramolecular interaction between 

the two molecules serving as a simple means to restore the biological function of the 

biomolecule.28  Soini reported on the preparation of palladium (II) coproporphyrin as labeling 

reagents and the effect of the linker unit on the reaction kinetics ad biological activity of Ig 

conjugates.29  An increase in the linker length resulted in increased phosphorescence of the 

conjugate and the biological activity was maintained.  We investigated the influence of the 

length of the carbon chain amino linker on the labeling of oligonucleotides determined based on 

the intensity of the fluorescence detection using HPLC.  Figure 3.15 illustrates the schematic of a 

single ZnPc molecule attached to a single strand oligonucleotide modified with a six-carbon 

chain amino linker.  An increase in the amine linker appeared to give an increased amount of the 
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conjugate observed in the chromatogram (Figure 3.16).  A possible reason for the decreased 

amount of conjugate seen with the C6-amine linker may be the ability of the linker to quench the 

excited state of the conjugate or the decreased symmetry of the conjugate.28, 29  For the metal 

phthalocyanine used in the experimental, all four carboxyl groups are activated, however due to 

steric hindrance only two oligonucleotides are capable of being linked to the dye moiety.  

Nesterova et al. recently determined the labeling efficiency by HPLC method (unpublished 

data).30 
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Figure 3.15 Illustration of the conjugate structure for Zn4CPc labeled with an oligonucleotide or 
peptide. The oligonucleotide has an amino modified linker attached to the 5’ end.  See 
experimental section for labeling details. 
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Figure 3.16 HPLC reverse-phase chromatographic separation of ZnPc-oligonucleotide conjugate 
using a C6-amino linker (A) and a C12-amino linker (B) attached to the primer.  Dye 
concentration: 10-5 M; 10:1 dye-to-primer ratio. Chromatographic separation was performed with 
a linear gradient of 0.1% TEAA/ACN (see experimental for details). 
 
3.4 Conclusions  
 
 In conclusion, we have demonstrated the ability to label several biomolecules with 

Zn4CPc labeling dyes ideal as fluorescent tags for biological assays requiring highly sensitive 

detection.  Zn4CPc was chosen for these studies because it is highly fluorescent and showed 

favorable water solubility compared to the other MPc’s synthesized for this work.  Converting 

the carboxylic acids on the periphery of the dye to functional N, hydroxysuccinimide (NHS) 

esters was performed with relative ease and can be performed under mild conditions.  
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Carbodiimide coupling chemistry yielded a stable ZnPc-NHS derivative to allow conjugation of 

bovine serum albumin (BSA), insulin chain B and an oligonucleotide.    Multiple products were 

observed in the chromatogram when Zn4CPc was labeled to insulin chain B due to multiple 

target molecules attached to Zn4CPc dye molecules that possesses several functional groups.  

The exact reason for the observed decreased amount of oligonucleotide conjugate formed when 

using a shorter aliphatic linker is unclear, however recent results showed an increase in labeling 

efficiency when the longer linker was used.30  Furthermore, the data show that changes in the 

fluorescence lifetime of the dye might be used advantageously in developing fluorescence-based 

assays 

3.5 References 

(1) Doi, N.; Takashima, H.; Kinjo, M.; Sakata, K.; Kawahashi, Y.; Oishi, Y.; Oyama, R.; 
Miyamoto-Sato, E.; Sawasaki, T.; Endo, Y.; Yanagawa, H. Genome Res. 2002, 12, 487-492. 

(2) Lefevre, C.; Kang, H. C.; Haugland, R. P.; Malekzadeh, N.; Arttamangkul, S.; Haugland, 
R. P. Bioconjugate Chemistry 1996, 7, 482-489. 

(3) Kapanidis, A. N.; Weiss, S. J. Chem. Phys. 2002, 117, 10953-10964. 

(4) Kelly, T. A.; Hunter, C. A.; Schindele, D. C.; Pepich, B. V. Clinical Chemistry 
(Washington, DC, United States) 1991, 37, 1283-6. 

(5) Verdree, V. T., Su, G. Pakhomov, S., Allen, M.A., Countryman, A.C., Soper, S.A.., 
Hammer, R. P. Journal of Fluorescence 2007, In print. 

(6) Patonay, G.; Salon, J.; Sowell, J.; Strekowski, L. Molecules 2004, 9, 40-49. 

(7) Williams, R. J.; Lipowska, M.; Patonay, G.; Strekowski, L. Analytical Chemistry 1993, 
65, 601-605. 

(8) de Jong, E. P.; Melanson, J. E.; Lucy, C. A. Electrophoresis 2004, 25, 3153-3162. 

(9) Colyer, C. Cell Biochemistry and Biophysics 2000, 33, 323-337. 

(10) Davidson, Y. Y.; Gunn, B. M.; Soper, S. A. Applied Spectroscopy 1996, 50, 211-21. 

(11) Hammer, R. P.; Owens, C. V.; Hwang, S. H.; Sayes, C. M.; Soper, S. A. Bioconjugate 
Chemistry 2002, 13, 1244-1252. 



 76

(12) Legendre, B. L.; Soper, S. A. Applied Spectroscopy 1996, 50, 1196-1202. 

(13) Peng, X.; Sternberg, E.; Dolphin, D. Electrophoresis 2005, 26, 3861-3868. 

(14) Welder, F.; Paul, B.; Nakazumi, H.; Yagi, S.; Colyer, C. L. Journal of Chromatography 
B-Analytical Technologies in the Biomedical and Life Sciences 2003, 793, 93-105. 

(15) Patonay, G.; Kim, J. S.; Kodagahally, R.; Strekowski, L. Applied Spectroscopy 2005, 59, 
682-690. 

(16) Nakazumi, H.; Colyer, C. L.; Kaihara, K.; Yagi, S.; Hyodo, Y. Chem. Lett. 2003, 32, 804-
805. 

(17) Berlier, J. E.; Rothe, A.; Buller, G.; Bradford, J.; Gray, D. R.; Filanoski, B. J.; Telford, 
W. G.; Yue, S.; Liu, J. X.; Cheung, C. Y.; Chang, W.; Hirsch, J. D.; Beechem, J. M.; Haugland, 
R. P.; Haugland, R. P. Journal of Histochemistry & Cytochemistry 2003, 51, 1699-1712. 

(18) Hoare, D. G.; Koshland, D. E. Journal of the American Chemical Society 1966, 88, 2057-
2061. 

(19) Schaller, H.; Khorana, H. G. Journal of the American Chemical Society 1963, 85, 3828-
3831. 

(20) Weimann, G.; Khorana, H. G. Journal of the American Chemical Society 1962, 84, 4329-
4333. 

(21) Hermanson, G. T. Bioconjugate techniques; Academic Press: San Diego, 1996. 

(22) Ibrahim, I. T.; Williams, A. Journal of the Chemical Society-Perkin Transactions 2 1982, 
1455-1458. 

(23) Staros, J. V.; Wright, R. W.; Swingle, D. M. Analytical Biochemistry 1986, 156, 220-222. 

(24) Liu, S.; Zhang, H. L.; Liu, T. C.; Liu, B.; Cao, Y. C.; Huang, Z. L.; Zhao, Y. D.; Luo, Q. 
M. Journal of Biomedical Materials Research Part A 2007, 80A, 752-757. 

(25) Hua, X. F.; Liu, T. C.; Cao, Y. C.; Liu, B.; Wang, H. Q.; Wang, J. H.; Huang, Z. L.; 
Zhao, Y. D. Analytical and Bioanalytical Chemistry 2006, 386, 1665-1671. 

(26) Williams, A.; Hill, S. V.; Ibrahim, I. T. Analytical Biochemistry 1981, 114, 173-176. 

(27) Benson, S. C.; Zeng, Z. X.; Glazer, A. N. Analytical Biochemistry 1995, 231, 247-255. 

(28) Zhu, Z. R.; Chao, J.; Yu, H.; Waggoner, A. S. Nucleic Acids Research 1994, 22, 3418-
3422. 

 



 77

(29) Soini, A. E.; Yashunsky, D. V.; Meltola, N. J.; Ponomarev, G. V. Luminescence 2003, 
18, 182-192. 

(30) Nesterova, I. V., Verdree, Vera T., Pakhomov, Serhii, Hammer, Robert P., Soper, Steven 
A. Submitted 2007. 



 78

Chapter 4  
Fluorescence Microplate-Based Assays for High Throughput Optimization of Protein 

Labeling Using Functionalized Zinc Phthalocyanine 
 

4.1 Introduction 

In recent years, the number of organic and inorganic fluorescence compounds available for 

labeling proteins has increased and protein labeling has been well documented.1-5  However, 

there remains a need for a versatile set of fluorescence dyes that can label proteins possessing 

diverse properties with high efficiency and selectivity.  Challenges involved in labeling proteins 

include the production of a mixture of labeled products due to the presence of several amino 

groups on the protein that can react with the fluorescent moiety containing a reactive group for 

the primary amine; avoiding over-labeling of the protein causing self-quenching of the conjugate 

due to the close proximity of dye molecules; and modifying proteins without affecting its 

biological activity. Several authors have reported a decrease in fluorescence intensity when a 

protein is attached to a fluorescent dye because of one of the aforementioned challenges.  For 

example, Ravdin and coworkers reported on the labeling of α-bungarotoxin with tetramethyl-

rhodamine citing a decrease in fluorescence intensity due to the energy transfer between closely 

attached dye molecules and the formation of non-fluorescent derivatives.6  Goussu and 

coworkers observed a 50% loss in the fluorescence intensity of protein conjugates with Cy3.7  

Previously, our group reported on the preparation of streptavidin conjugated with Zn4CPc and 

results indicated streptavidin molecules bearing two or more dye molecules (refer to Chapter 2 

for details).   

 Experimental parameters for optimal labeling of proteins with fluorescein,8 Alexa dyes,9 

as well as Bodipy dyes10 have been reported, however, this information is not available for 

protein labeling with MPc fluorophores that represent promising candidates for bioanalytical 

applications requiring labeling fluorophores due to their photophysical characteristics and the 
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ability to alter the spectral properties of these dyes with minor structural changes.  Therefore, it is 

desirable to develop a generalized protocol  that can provide optimized conjugation conditions 

for labeling proteins with MPc and other dyes as well so that the targets retain their relatively 

high activity and the dyes show high fluorescence intensity even when heavily labeled.   

 In this report, we exploit the strength and specificity of streptavidin-biotin interactions for 

generating a procedure for optimizing the labeling conditions for the covalent attachment of 

fluorescent dyes to proteins using  Zn4CPc as the model.  This method involved the activation of 

all four carboxyl groups of Zn4CPc with N-hydroxysuccinimide (NHS) and 1-ethyl-3-[3-

(dimethylamino) propyl] carbodiimide (EDC) and reacting the resulting Zn4CPc active ester 

(ZnPc-NHS) with streptavidin under different labeling conditions.  Optimizing the labeling 

conditions were performed using a 96-well plate with biotin immobilized on the surface of each 

microwell for high throughput selection of proper reaction conditions to obtain a high yield of 

the conjugate and maintain protein activity.  Parameters such as buffer pH, concentration ratio of 

Zn4CPc to streptavidin, and solvent composition were evaluated.   

 4.1.1 Challenges Using Metal Phthalocyanines as Labeling Reagents  

 Phthalocyanines (Pc’s) are attractive fluorophores as a means of detecting biological 

molecules due to their unique spectroscopic characteristics.  They have received much attention 

as reagents for photodynamic therapy 11-14 and are becoming increasingly popular in other 

biological application areas such as cell imaging, and thin films.15-19  To date, only a few reports 

have appeared discussing the conjugation of  phthalocyanines to biological targets, as this 

remains challenging due to the complex structure, hydrophobicity of the unsubstituted 

chromophore, and the tendency of the Pc’s to form aggregates in aqueous solutions.20, 21    La 

Jolla Blue, one of the first fluorescence probes produced from the phthalocyanine class of dyes 

containing  axial ethylene glycol ligands, was conjugated to amine modified oligonucleotides for 
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nucleic acid hybridization assays monitored using transient-state polarized fluorescence 

measurements.22  Chernonosov and coworkers reported on the conjugation of 

Co(II)tetracarboxyphthalocyanine with oligonucleotides for investigating the thermodynamic 

characteristics of DNA duplexes formed with the conjugates.23  Li reported on the synthesis and 

spectroscopic properties of zinc(II)phthalocyanine conjugated to adenine concluding the 

conjugates possessed strong intermolecular interactions due the presence of the nucleobase 

substituent resulting in unusual spectral features attributed to aggregation.24 Mikhaleno et al. 

reported on the preparation of phthalocyanine derivatives conjugated to amino acids.25 Huang 

and coworkers studied the covalent interactions of silicon(IV) phthalocyanine with serum 

albumin for use in photodynamic therapy.26   Nesterova and coworkers demonstrated the use of 

asymmetrical Zn(II) phthalocyanine (ZnPc) to label oligonucleotides reporting improved  

solubility of ZnPc in aqueous media when conjugated to an oligonucleotide due to the charge of 

the phosphate backbone, however, the formation of aggregates still occured.8, 27, 28  We recently 

demonstrated the use of Zn4CPc to label peptides and proteins.27, 29  

4.1.2 Streptavidin-Biotin Binding and Its Use in Bioassays 

 Biotin is a water-soluble vitamin that is an essential nutrient involved in important 

biological activities such as metabolism of amino acids.30, 31  The chemical structure of biotin is 

shown in Figure 4.1.   
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Figure 4.1 Chemical structure of biotin.  
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Streptavidin, a 60 kDa protein produced by Streptomyces, is a tetrameric protein consisting of 

four identical subunits with a molecular weight of 15,000 and binds to 4 mol of biotin per mol of 

protein.  The tetrameric structure of streptavidin is shown in Figure 4.2.31, 32  

 

Figure 4.2 Tetrameric structure of streptavidin used as a model protein for optimization of the 
conjugation reaction with Zn4CPc. Each subunit has a molecular weight of 15 kDa.31 
 
The binding affinity between biotin and streptavidin is > 10-15 M due to a number of hydrogen 

bonding and van der Walls interactions from each streptavidin subunit involved in the binding of 

biotin to streptavidin.31  The specificity and strong binding feature of this system affords its use 

for many biological applications to include detection, and purification of nucleic acids and 

proteins.30, 33-35 With the high availability of biotinylated materials, this classic model was useful 

for microplate-based binding assays to evaluate several labeling conditions. 

4.2 Materials and Methods 

4.2.1 Reagents and Samples 

   All reagents and materials were received and used without further purification.  1-ethyl-

3-[3-(dimethylamino)propyl]carbodiimide (EDC) and N-Hydroxysuccinimide ester (NHS) were 

purchased from Sigma-Aldrich (St. Louis, MO, USA)  Dimethylsulfoxide (DMSO), N-(2-
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hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) and carbonate buffer were purchased 

from Sigma-Aldrich (St. Louis, MO, USA). Sephadex LH-20 columns were purchased from GE 

Healthcare (Piscataway, NJ).  Streptavidin from Streptomyces avidinii was also purchased from 

Sigma-Aldrich.  Reacti-Bind biotin coated 96-well plates, purchased from Pierce Biotechnology 

(Rockford, IL, USA), were clear to minimize background fluorescence and light absorption.   

The activated ester form of Zn4CPc was synthesized in-house by Dr. Serhii Pakhomov using a 

method adapted from a procedure by Koval et al. with the structure of the fluorophore shown in 

Figure 4.3 (refer to Chapter 2 for synthesis details).36
  Dye solutions were first prepared by 

dissolving the dye in DMSO to ensure the dyes existed as monomers prior to the labeling 

reactions. 
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Figure 4.3 Molecular structure of the active N-hydroxysuccinimide (NHS) ester form of 
Zn4CPc.  All four carboxyl groups are converted to NHS esters outlined by a procedure 
published by Koval et al.36  Synthesis was performed in-house in collaboration with Dr. 
Hammer’s laboratory. 
 
4.2.2 Conjugation of Zn4CPc Activated Ester (ZnPc-NHS) to Protein 

 Streptavidin was conjugated to Zn4CPc-NHS as described previously in Chapter 2. 

Briefly, a 0.1 M stock solution of protein was freshly prepared by dissolving 5 mg of streptavidin 
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in HEPES.  A stock solution of Zn4CPc-NHS in DMSO was also prepared to give a final 

concentration of 1 mM.  Aliquots of Zn4CPc-NHS were slowly added to vials containing the 

protein diluted with 10 mM HEPES buffer to obtain the desired concentration ratio. The vials 

were then capped and covered with aluminum foil to avoid photodegradation of Zn4CPc-NHS.   

The labeling reactions were vortexed at room temperature for 24 h and then purified by size 

exclusion chromatography using a sephadex LH-20 columns.  Sephadex LH-20 columns were 

chosen because they are designed for use solvent mixtures of organic and aqueous solvents.  

Fractions were collected and analyzed spectrophotometrically. 

4.2.3 Reactivity Binding Assay   

Four parameters of the conjugation reaction were investigated: 

• The amount of Z4CnPc-NHS added to the reaction mixture varied from 1-to-1 molar 

ratio Zn4CPc-NHS to protein to a 15-fold excess of Zn4CPc-NHS 

• The pH of the reaction was varied from pH 7 to 9.5 

• The ZnPc-NHS concentration varied from 10 μM to 100 μM 

• The amount of aqueous solvent added to the reaction was varied from 20% to 70% 

HEPES. 

Figure 4.4 illustrates the assay format in which each well contained a reaction mixture under the 

different labeling conditions.  The numbers above the microplate represent the concentration of 

Zn4CPc-NHS used for labeling and the numbers to the right represent the pH of HEPES in each 

well with the different dye-to-protein ratio. For example, in the well marked A1 is a reaction 

mixture with a dye-to-protein ratio of 1-to-1, Zn4CPc-NHS concentration of 10 μM in DMSO 

and HEPES at pH 7.  The amount of aqueous solvent is shown as a percentage.  Aliquots of the 

labeling reaction mixture were added to the biotin-coated wells and allowed to incubate for 30 

min at room temperature.   To determine the amount of non-specific adsorption of Zn4CPc to 
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streptavidin, the protein was allowed to incubate in a micro-well for 5 min in the absence of 

Zn4CPc that was subsequently added to the well and allowed to react for an additional 30 min.  

In addition, a control experiment of Zn4CPc-NHS in the absence of protein was carried out to 

determine the degree of nonspecific binding of Zn4CPc-NHS to the immobilized biotin. The 

plate was covered with aluminum foil to avoid photodegradation of the dye. After incubation, the 

plate was washed by adding 3 x 200 μL of 10 mM HEPES buffer. For assay measurements, the 

wells were filled with 200 μL of HEPES/DMSO and analyzed by fluorescence emission.  

A

B

C

D

E

F

G

H

1 2 3 4 5 6 7 8 9 10 11 12

10

7 1:1

1010

8

9

10:1 15:1

Dye Concentration, μM

15 15 15 25 25 25 100 100 100

pH

1:1

1:1

1:1

45%

60%

 

Figure 4.4 Schematic representing the microplate assay used for evaluating the optimal 
conditions. Parameters that were evaluated include pH, dye concentrations, dye-to-protein ratio, 
and amount of aqueous solvent (percentage).  
 

4.3 Results and Discussion 

4.3.1 Optimal Conditions for Labeling Streptavidin with ZnPc-NHS  

 MPc’s represent a class of fluorophores in which  only a few have reported on the 

conjugation of these dyes to proteins.  Chen illustrated the use of a resonance light scattering 

(RLS) technique for quantitative measurements of proteins in human serum samples for clinical 

testing with tetra-substituted sulphonated aluminum phthalocyanine (AlS4Pc).37  Results from 

these studies showed that the RLS technique provided a convenient method for determining total 
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protein concentration in human serum with high sensitivity (detection limits of 16.1 ng ml-1) and 

good selectivity.  Ogunsipe reported on the conjugation of non-transition metal phthalocyanines 

to bovine serum albumin.38 Here, we report on the optimal conditions for labeling streptavidin 

with Zn4CPc-NHS to provide a general optimized protocol that can easily be adapted for 

labeling proteins with MPc derivatives.  Initially, an experiment was performed to evaluate the 

relative fluorescence units (RFU) for the Zn4CPc-streptavidin conjugate compared to unreacted 

Zn4CPc-NHS and  unlabeled streptavidin when incubated in the microwell with biotin for 30 

min and then washed repeatedly with buffer.  The results from these studies are shown in Figure 

4.5.   

 

Figure 4.5 A comparison of the relative fluorescence intensity of unreacted streptavidin, free 
Zn4CPc, buffer, and streptavidin-dye conjugate. Results show minimal nonspecific adsorption of 
the free Zn4CPc-NHS.  Excitation wavelength was 680 nm with an emission wavelength of 693 
nm. The samples were incubated in the microwell for 30 minutes prior to rinsing. 
 
The RFU was 7 times more intense for the Zn4CPc-streptavidin conjugate in comparison to the 

measured intensity of the unlabeled streptavidin.   Background autofluorescence was observed 

with streptavidin alone; however, the intensity is relatively small.  Originally, before the reaction 

mixture was incubated in the microwell, purification using gel-filtration was performed to isolate 
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the conjugate.  When unconjugated Zn4CPc was incubated with no streptavidin present and low 

non-specific binding was observed without purification, labeling of streptavidin proceeded 

without any pre-purification of the reaction mixture (Figure 4.6).  

685 695 705 715 725 735 745 755

5.0x102

1.0x103

1.5x103

2.0x103

2.5x103

3.0x103

3.5x103

4.0x103

4.5x103

Fl
uo

re
sc

en
ce

 In
te

ns
ity

 (m
V

)

Wavelength (nm)

 

Figure 4.6 Fluorescence emission of Zn4CPc in the well with immobilized biotin in the absence 
of streptavidin. Results indicated minimal non-specific interaction of Zn4CPc with immobilized 
biotin. 
 
 The previously reported method for the conjugation of streptavidin with Zn4CPc was a 

simple procedure using conditions that resulted in over modification of the protein that can lead 

to a decrease in the reactivity of the protein.  Thus, the use of a microplate assay allowed for the 

high throughput analysis of each condition in the labeling reaction in a single experiment.  

Optimization was determined by analyzing each conjugation reaction in a single well and the 

fluorescence intensity was measured at the maximum emission wavelength of 693 nm.  Several 

modifications to the labeling procedure were made.  The pH of the conjugation reaction was 

originally pH 5-6. However, carbodiimides are generally more stable at higher pH.39 Thus, in the 

present work, the pH range was 7 to 9.  The effect of pH on the fluorescence intensity is shown 
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in Figure 4.7. From these results, the optimal pH was observed at pH 8.  At higher pH, the 

intensity significantly decreased.   
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Figure 4.7 Fluorescence emission spectrum of Zn4CPc-streptavidin conjugate under varying pH 
conditions.  The conjugate reaction mixture was allowed to incubate in the well with 
immobilized biotin for 30 min prior to rinsing 3 times with HEPES. Dye concentration used was 
10 μM with a dye-to-protein ratio of 10-to-1. 
 
This is expected since the rate of hydrolysis of the active ester converting back to the carboxylic 

acid is expected to increase at a higher pH resulting in a decreased yield of the conjugate due to 

hydrolysis (see Figure 4.8).40,39 Second, buffer conditions of the conjugation reaction were 

evaluated. Several groups have reported optimum coupling with the use of carbonate buffer.27  In 

the present work, HEPES buffer was found to be optimum due to its suitability at physiological 

pH and compatibility in mixed organic aqueous solvents.41 The temperature remained constant 

for all reactions at 37°C due to previous studies showing an increase in the conjugate yield at this 

temperature.42  Table 4.1 summarizes the conjugation reactions with Zn4CPc-NHS.  
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Figure 4.8 Schematic depicting hydrolysis of the N-hydroxysuccinimide active ester by which 
the ester converts back to the carboxyl group as a competing reaction. At high pH values, the rate 
of hydrolysis increases. 
 
Table 4.1 Optimal method conditions for the general labeling of proteins. Parameters such as 
concentration, pH of buffer and amount of organic content were evaluated. 
 

Method 
# 

ZnPc-NHS 
(μM) 

Dye:Protein 
ratio 

%DMF Buffer Temp. 
°C 

1 10 1:1 70 HEPES 37 
2 10 10:1 70 HEPES 37 
3 10 15:1 70 HEPES 37 
4 15 1:1 70 HEPES 37 
5 15 10:1 70 HEPES 37 
6 15 15:1 70 HEPES 37 
7 25 1:1 70 HEPES 37 
8 25 10:1 70 HEPES 37 

9 25 15:1 70 HEPES 37 
10 50 1:1 70 HEPES 37 
11 50 10:1 70 HEPES 37 
12 100 15:1 70 HEPES 37 
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Figure 4.9 shows the comparison of Zn4CPc concentration on the fluorescence intensity. The 

increase in fluorescence intensity indicates an increase in the conjugate yield, which enhances 

the fluorescence creating an environment that favors emission of the Zn4CPc dye.  A 

concentration of 15 μM was found to give the best results with a measured fluorescence intensity 

of 3.7 × 105.  A high concentration of Zn4CPc-NHS (100 μM) resulted in a decrease in the 

fluorescence intensity possibly due to increased aggregation. It is well established in literature 

that the formation of dimers and higher order aggregates is prevalent in MPc dyes at high 

concentration (10-4-10-3).43   For example, Reddi et al. showed that on increasing the 

concentration of aluminum tetrasulfonated phthalocyanine (AlPcS4), the fluorescence emission 

intensity appears to decrease.44    
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Figure 4.9 Fluorescence analysis of Zn4CPc-streptavidin conjugate as a function of (A) Zn4CPc 
concentration and (B) pH of HEPES buffer.  Excitation, 680 nm; 5 nm slit width. Final volume 
of the labeling reaction incubated in the microwell was 200 μL at room temperature for 30 min 
and  detected at an emission wavelength of 693.  This pH range was chosen due to the solubility 
of Zn4CPc at this pH range. 
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Wagner and coworkers noted a decrease in the fluorescence intensity of gallium phthalocyanines 

due to aggregation effects resulting from high concentration of the dye.45  Figure 4.10 compares 

the emission characteristics at different dye-to-protein ratios.  A 10-to-1 ratio was found to give 

the highest fluorescence intensity, while a 15-to-1 ratio dramatically decreased the fluorescence 

intensity.  This can be due to fluorescence energy transfer (FRET) between dye molecules in 

close contact because of the tertiary structure of streptavidin consisting of closely neighboring 

primary amine groups.31,46  For example, the tertiary structure of streptavidin shows each subunit 

contains lysine groups closely positioned.31 
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Figure 4.10 Fluorescence intensity of Zn4CPc-streptavidin conjugate with varying dye-to-
protein ratio.  
 
 The amount of aqueous solvent was also varied to determine the minimum amount of 

organic solvent needed in the labeling reaction to solubilize Zn4CPc. Figure 4.11 shows the 

fluorescence intensity of labeled streptavidin in various amounts of HEPES buffer.  Increasing 

the amount of aqueous content in the reaction mixture decreases the amount of conjugate that 

was produced.  At >70% HEPES, precipitation of Zn4CPc was observed due to its insolubility in 
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aqueous solvents. In addition, upon examination of the absorption spectrum, the reaction mixture 

showed extensive ground-state aggregation (see Figure 4.12).   
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Figure 4.11 Fluorescence intensity of Zn4CPc-streptavidin conjugate as a function of the 
amount of HEPES in the reaction solution.  The intensity continues to decrease as the amount of 
organic content lowers. 
 

550 575 600 625 650 675 700 725 750 775 800
0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Ab
so

rb
an

ce
 (A

U
)

Wavelength (nm)

 

Figure 4.12 Absorption spectrum of Zn4CPc-streptavidin conjugate mixture in 80/20 
HEPES/DMSO exhibiting extensive aggregation. 
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4.4 Conclusions 

 In conclusion, a simple and versatile protocol was developed for elucidating optimal 

labeling conditions of proteins using fluorescent dyes with Zn4CPc-NHS used as the model.    

By adjusting several experimental conditions such as buffer pH, concentration of the reactants 

and dye-to-protein molar ratio, a high amount of the conjugate was obtained as determined by 

the increase in fluorescence intensity.  In these studies, it was found the optimal concentration of 

Zn4CPc used for labeling was approximately 10 μM.  The effect of the dye-to-protein ratio 

demonstrated that the presence of a 15-fold excess of dye decreased the fluorescence intensity 

possibly due aggregation.  A careful balance of aqueous to organic solvent is needed to minimize 

aggregation while maximizing the yield of the conjugate. The optimal amount of organic content 

was found to be 70%.  Negative controls in the absence of protein resulted in low nonspecific 

binding of Zn4CPc to the immobilized biotin indicating the fluorescence intensity is due to 

conjugated streptavidin bound to the immobilized biotin.    
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Chapter 5  
The Electrophoretic Behavior of Metal Phthalocyanines and Labeled Complexes Using 

Capillary Zone Electrophoresis 
 
5.1 Theory of Electrophoresis  
 
 In the past few years, capillary electrophoresis (CE) has become a powerful tool among 

analytical methodologies for highly efficient separations of a variety of complex mixtures 

including peptides and proteins,1-5 amino acids,6-9 and nucleic acids.10-13 Due to instrumentation 

simplicity, short separation times, and on-line detection, this technique has demonstrated its use 

in a wide range of applications such as drug discovery,14 protein characterization,15-17and 

analysis of pharmaceuticals.18-20    CE offers several advantages compared to traditional 

separation techniques including very high separating efficiency because there is no mass transfer 

between phases; minute sample requirements; and limited consumption of buffer reagents.21-23 

Thus, the benefits of CE make it an ideal system for the selective separation of MPc’s and their 

bio-conjugates.  Previously, we examined HPLC (Chapter 3) as the separation platform for 

analyzing MPc’s and biomolecules tagged with Zn4CPc.  In this chapter, the potential use of CE 

is evaluated to determine its suitability as a complementary technique for separating MPc’s and 

MPc conjugates.  Separation of the MPc conjugates was achieved with both conventional and 

microchip CE. 

Electrophoresis is defined as the movement of charged analytes that are separated into 

individual species based on their mass-to-charge ratio as they migrate through a capillary filled 

with an electrolyte under the influence of an applied electric field.  The bulk flow of the liquid 

electrolytes, referred to as the electroosmotic flow (EOF), drives charged and neutral analytes 

towards one end of the capillary.   In the presence of electrolytes, negatively charged silanol 

groups attract positively charged counterions creating a layer of tightly bound cations on the 
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capillary surface due to electrostatic interactions.24  A second layer, called the diffusional layer, 

contains cations in solution that move freely due to thermal motion, giving rise to a potential 

difference (zeta potential) near the capillary surface (Figure 5.1).24   During separation, because 

of this “double layer” build-up, the EOF moves all species towards the negative electrode 

(cathode).   Neutral analytes move at the same rate as the EOF, and cations move faster than 

anions, as depicted in Figure 5.2. 

EOF

+
ANODE CATHODE

diffusional layerN
N N

N

 

Figure 5.1 Depiction of the formation of a “double layer” near the capillary surface. The 
direction of the EOF moves all charged species toward the cathode. “N” represents neutral 
species. 
 

The linear velocity of the EOF is dependent upon the zeta potential and can be calculated 

by the Helmholtz-von Smoluchowski equation:23   

 ( / )eof Eν εζ η=  (5.1) 

where eofν is the velocity, ε is the dielectric constant ( )2 -1 -1C J M , ζ is the zeta potential, η is the 

buffer viscosity ( )-1N s m  and E is the electric field ( )-1Vm .23-25  The velocity of the EOF can be 

measured by observing the migration time of a neutral marker (i.e. methanol, DMSO), as the 

neutral analyte would have insignificant interaction with the capillary walls, does not possess an 

electrophoretic mobility and can be readily detected.26  Although this approach is simple and the 
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most common, other approaches for measuring the EOF have been described.26, 27  Huang et al. 

described a technique for measuring the EOF that does not require injection or detection of a 

neutral marker based on the time history of the electrical current during electrophoresis. Altria 

and coworkers measured the EOF by determining the mass of electrolyte transferred to the outlet 

over time.28 

 

Figure 5.2 Schematic of capillary electrophoresis separation mechanism.29 
 

The profile of the EOF is flat, giving a uniform flow through the capillary that contributes 

to the high separation efficiency and less band broadening due to low dispersion of analyte 

zones.24 Figure 5.3 shows the flat profile in CE compared to the laminar flow profile commonly 

seen in pressure driven separation techniques such as HPLC.   

 

 

 

 

 
Figure 5.3 Depiction of electroosmotic flow profile compared to laminar flow profile typically 
seen for other analytical techniques such as HPLC. 

 

Altering the surface charge on the capillary wall (zeta potential) by varying fundamental 

parameters such as buffer pH, ionic strength, and temperature can affect the direction or rate of 

the EOF.  For example, at basic pH (>7), the silanol groups on the inner wall are ionized, giving 
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the wall a negative charge, whereas at acidic pH (<7), the capillary wall is uncharged making the 

dominating force of separation electrophoresis.   The use of additives that adsorb to the capillary 

wall can also result in a decrease or a reverse flow of the EOF.30-34 

As the EOF drags analytes through the capillary, an electrical force is exerted on the 

charged species and this force is represented by the equation; 

 = F qE  (5.2) 

where q is the net charge of the molecule and E is the strength of the electric force. 

In addition, it experiences a frictional force that pulls the analyte in the opposite direction of its 

movement.  For a spherical ion, this frictional force is proportional to the velocity of the 

molecule given by; 

 F 6 Rf πη=  (5.3) 

 
where η is the viscosity of the solution, and R is the ion radius.  During electrophoresis, the two 

forces offset each other and as a result, steady-state conditions are reached.  The charged species 

travel through the capillary at a rate defined as: 

 e
q= Ff

μ  (5.4) 

 
where eμ  is the electrophoretic mobility.  From the equation, differences in the electrophoretic 

mobility of molecules are based on properties such as size, shape and charge of the analyte.21   

  The apparent mobility of the ionic species, defined as the time it takes for the analyte to 

reach the detector, takes into account the influence of the EOF.  The relationship between the 

apparent mobility, μapp, and the actual mobility of the solute, μ, is given by,  

 app osμ μ μ= +  (5.5) 
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where osμ is defined as the electroosmotic flow.  As a result, the analytes are separated into 

“zones” based on their different apparent mobility.   

 A measure of the separation (peak) efficiency is determined based on the number of 

theoretical plates, N, calculated by; 

 
1/ 2

16 mtN
w

=  (5.6) 

where w1/2 is the width at half peak height. 

5.1.1 Instrumentation 

 Instrumentation for CE is simple and easily automated consisting of a capillary column 

immersed in two buffer vials; one at the cathode end where the sample is injected and the other 

placed at the anode end where the sample is detected, a high voltage supply, a detector, and data 

acquisition station.  A schematic illustrating the components for a typical CE system is shown in 

Figure 5.4. 

 

Figure 5.4 Basic components of a CE separation system. A capillary open on both ends are 
immersed in buffered solutions, across which a high voltage is applied. Detection is performed 
on-column. 
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  Conventional separation is carried out in a narrow bore fused silica capillary available in 

a wide range of inner (10 to 200 μm) and outer diameters.  Optimal conditions for separations 

are generally 25-75 μm I.D. and 350-400 μm O.D., however  it is worthy to mention here, 

columns with smaller inner diameters are able to dissipate heat more efficiently due to higher 

surface-to-volume ratio preventing zone broadening, resulting in higher separation efficiencies.35  

The effective length of the capillary, defined as the length from the point of injection to the point 

of detection, is generally a large portion of the total length to be able to apply an electric field 

and decrease the time necessary for capillary conditioning and fraction collection.    Reservoirs 

filled with the buffer also contain the electrodes used to provide electrical contact between the 

high voltage supply and the capillary.   The high voltage is supplied with the use of a DC power 

supply used to apply up to 30 kV and current levels of 200-300 mA.  

 For highly efficient and reproducible separations, the sample volume injected must be 

small in reference to the size of the capillary.36  Injection of the sample into the capillary is 

accomplished by hydrodynamic or electrokinetic injection.  Hydrodynamic injection, applying a 

pressure for a certain amount of time driving a small plug of analyte into the capillary while 

immersed in sample solution, is the most widely used injection mode due to the absence of 

differences in the injection concentration for ionic species with different electrophoretic 

mobilities.37   However, because the flow profile for hydrodynamic injection is parabolic, sample 

dispersion can occur causing significant band broadening.21, 37     Generally, the amount of sample 

injected is less than 2% of the total capillary volume and can be calculated using the Hagen-

Poiseuille equation, 

 
4Pd tV

128 Linj
π

η
Δ

=  (5.7) 
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where PΔ is the change in pressure in the capillary, d is the capillary diameter, t is time, 

η denotes buffer viscosity, and L is the total capillary length.  A sample introduced onto the 

column by electrokinetic injection is performed by placing the sample solution at the anodic end 

and applying voltage with a field strength 3 to 5 times lower than the field strength used for 

separation.  Variations with electrokinetic injection may occur because of the different rates the 

analyte enters the capillary due to differences in mobilities.36 The injection volume for 

electrokinetic injection is determined by 

 
2( )e eof V r Ct

Q
L

μ μ π+
=  (5.8) 

where V is the voltage, r is the capillary radius, C is the analyte concentration, t represents time 

and L is the capillary length.21, 36  For electrokinetic injection, the amount of sample injected is 

dependent on several parameters. A number of articles in the literature address the influence of 

the amount of material injected on the separation efficiency.38-42  

   Several detection modes are available for CE separation in which the analytes are 

detected as they move through the capillary (on-column) or after elution (post-column).   For on-

column detection, a detection window is created by removing a portion of the capillary coating 

making it optically transparent enabling detection with high resolution. The most commonly 

employed detection methods include UV-Vis, fluorescence , and conductivity  with UV-V being 

the most universal detection scheme.   

5.1.2 Modes of Separation 

Capillary electrophoresis encompasses several separation modes offering versatility and 

specificity for the relevant application including capillary zone electrophoresis (CZE), micellular 

electrokinetic chromatography (MEKC), and capillary gel electrophoresis (CGE).21, 36 In CZE, 

also referred to as free solution capillary electrophoresis, separation of ionic species are due to 

the analytes migrating at different velocities creating “zones” (see equations 5.2-5.4).   MEKC 
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separations are based on the hydrophobic/ionic interactions with the micelle.43    At 

concentrations above the critical micelle concentration (CMC), micelles are essentially spherical 

aggregates of surfactants with hydrophobic tails and charged head groups that migrate with or 

against the EOF.44, 45  In capillary gel electrophoresis, a cross-linked polymer acts as a 

“molecular sieve” separating solutes based on size.  As molecules move through the polymeric 

network, migration is reduced for larger molecules compared to smaller species.36, 46   

5.1.3 Separation of Metal Phthalocyanines (MPc’s)  

The separation and analysis of Pc’s and their metal derivatives has long been a challenge 

for many researchers due to the isomeric structures that form during ring synthesis.47-49  The 

complexity of the mixture along with their notorious insolubility in aqueous solvents makes 

separation difficult using conventional chromatographic techniques.  Reverse-phase liquid 

chromatography (RP-HPLC) is routinely used for the separation and purification of Pc’s and 

metal complexes.48, 50, 51  The usefulness of RP-HPLC can be limited, however, due to the similar 

properties of the structural isomers, aggregation, solubility and the strong tendency to adsorb to 

the columns’ stationary phase.52  For example, the formation of structural isomers of tetra- 

butylphthalocyanine posed a problem for Hanack and coworkers in their attempt to completely 

separate the isomeric mixture using HPLC. They were able to isolate only two of the isomers 

formed during synthesis.53  Görlach was able to achieve separation of the structural isomers of 

2(3)-tetraalkyloxysubstituted Pc by employing a nitrophenyl stationary phase linked to the silica 

surface requiring tedious chromatographic procedures.54   

Recently, CE has proven to be a useful technique for the separation of porphyrin 

derivatives, which are structurally similar to Pc’s and this work has been well documented in the 

literature.55-59  Chan reported on the electrophoretic separation of an oligomeric mixture of 

haematoporphyrin, a photosensitizer used in photodynamic therapy, using free solution capillary 
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electrophoresis (FSCE).  In their studies, complete separation of the mixture was obtained when 

sodium dodecyl sulfate (SDS) was added to the background electrolyte (BGE).  Wu et al 

demonstrated the selective separation of porphyrin isomers with a differing number of carboxylic 

side chains using ionic surfactants combined with bovin serum albumin (BSA) reporting better 

separation was achieved with SDS in the run buffer compared to sodium taurodeoxycholate.60    

A nonaqueous CE system was developed by Bowser for the separation of a complex mixture of 

porphyrin derivatives found in photofrin.55 Zhang reported on the complete separation of the free 

acid forms of porphyrins by FSCE using a variable wavelength epifluorescence microscope as 

on-column detection.61  

While a number of studies have been reported on the electrophoretic analysis of 

porphyrin derivatives, only a few studies have been documented describing the CE analysis of 

MPc’s and no attempts have been made to examine MPc labeled conjugates.  Barbosa and 

coworkers investigated the efficiency of capillary electrophoresis to monitor the purity of 

sulphonated cobalt (II) phthalocyanine after several purification treatments concluding CE was 

an adequate analytical method for use in determining the degree of purity.62  Dixon studied the 

extent of sulphonation for several MPc’s by capillary electrophoresis in conjunction with mass 

spectrometry at pH 6 and 9 with better separation achieved at higher pH.63  Peng and coworkers 

reported on the optimization of several experimental conditions such as buffer pH, additives, and 

organic solvents for the separation of porphyrin and phthalocyanine regioisomers with laser-

induced fluorescence detection.52  Despite these reports, the affect of critical factors on the 

electrophoretic mobility of MPc’s such as the central metal, degree of peripheral substitution, 

and solubility in aqueous media have not been extensively investigated.   These factors become 

very important when using MPc’s as fluorescent probes for applications such as DNA 

sequencing or genotyping. 
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In this report, FSCE was used to examine the electrophoretic behavior of several MPc’s 

(M = Zn, Al, and Ga) bearing 4 to 16 carboxylic acid groups and the separation efficiency with 

the use of a binary solvent system with organic media. Physical parameters that can affect 

separation efficiency such as molecular structure and electronegativity of the metal ion will be 

considered.  The migration behavior of insulin chain B, used here as a model peptide conjugated 

to  Zn4CPc, was also determined.  In addition, the separation of native peptides generated from 

trypsin digested with β-casein and then covalently labeled with Zn4CPc was also examined.  

5.1.4 Electrophoresis Considerations of MPc’s 

5.1.4.1 Role of Metal 

 Several modeling approaches have been developed in an attempt to understand the 

relationship between the structure and mobility of a metal complex. So far, these approaches are 

mathematical interpretations using multivariate regression techniques.  Timerbaev suggested that 

for any metal complex, the identity of the metal does not play a significant role in the 

electrophoretic mobility.  For our studies, the metal ion does not significantly alter the overall 

charge of the complex.  The nature of the axial ligand complexed to the metal atom will also 

change the migration rate as a result of the electron charge density distribution of the complex.64 

5.1.4.2 Role of peripheral groups 

  A varying number of ionizable groups substituted on the periphery of MPc’s can alter the 

electrophoretic mobility based on differences in the net charge as well as the degree of water 

solubility.   Generally, under normal polarity and alkaline conditions, complexes carrying an 

increasing number of anionic substituents will migrate to the detector slower resulting in a higher 

electrophoretic mobility, whereas for cationic moieties, the observed migration rate is reversed.58  

Reports have been published comparing the electrophoretic mobility of several complexes with a 

varying number of charged substituents. For example, Schofield and coworkers reported on the 
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use of CZE to separate a mixture of sulphonated zinc phthalocyanine according to the degree of 

substitution.65  An increasing number of sulphonate groups resulted in multiple peaks partially 

resolved.  The authors suggested that with direct sulphonation, there are four positions on the 

benzene ring substituents can reside and sulphonate groups in the 3 position on the benzene ring 

resulted in increased hydrophobic interaction with the nitrogen groups located on the 

chromophore producing a variation in the charge distribution accounting for the multiple peaks 

observed in the electropherogram.65  Weinberger illustrated the separation of urinary porphyrins 

possessing two to eight carboxylic acid groups exploring the effect of biological fluids on the 

separation efficiency using FSCE and MEKC.  The authors concluded the use of MEKC with the 

presence of an anionic surfactant was found to provide better separation by controlling the 

adsorption of the porphyrins on the capillary wall.66    

5.1.4.3 Aggregation Effects of MPc’s (buffer issues) 

Peripheral substitution with ionizable groups such as carboxyl groups improves the 

solubility of MPc’s, in aqueous solvents, however the propensity to form ground state aggregates 

remains an issue in CZE causing decrease in separation efficiency, distorted peak shapes, and 

reduced plate counts due to band broadening.55, 67 68  Several parameters such as ionic strength 

and buffer pH can contribute to the degree of aggregation.62  One experimental approach that has 

proven to minimize aggregation is the addition of organic modifiers to the carrier electrolyte 

increasing the solubility of hydrophobic molecules.68-73     Other advantages to using organic 

modifiers in the carrier electrolyte include increases in separation selectivity and efficiency due 

to differences in dielectric constants and solvent viscosity;  the use of high separation voltages 

due to lower dielectric constants producing higher field strengths for rapid analysis times, and 

less Joule heating.68  A fundamental understanding of these changes was published in recent 

reviews presented by Huie and coworkers,72 Fillet,74and Steiner.75  Our group recently reported 
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that an increase in pH plays an effective role in minimizing the mechanism for aggregation of 

MPc’s in aqueous solvents (see Chapter 2). 

5.2 Experimental 

5.2.1 Materials and Methods 

Carboxylate substituted MPc dyes (ZnxCPc, where x = 4, 8, and 16; Al4CPc, and 

Ga4CPc) were synthesized in-house by Serhii Pakhomov in collaboration with Dr. Hammer’s 

laboratory.  Detailed information on the synthesis is provided elsewhere.76   Alexa Fluor 680 was 

purchased from Molecular Probes (Carlsbad, CA).  Dimethyl sulfoxide (DMSO), 4-(2-

Hydroxyethyl) piperazine 1-ethanesulfonic acid (HEPES), and streptavidin were purchased from 

Sigma-Aldrich (St. Louis, MO).  HPLC grade methanol, insulin chain B, β-casein, 

iodoacetamide, and ammonium bicarbonate were also purchased from Sigma-Aldrich (St. Louis, 

MO). Dithiothreitol (DTT), boric acid, and 3-cyclohexylamino-1 propanesulfonic acid (CAPS) 

were purchased from Fluka (St. Louis, MO).  Modified trypsin solution was purchased from 

Promega (Madison, WI).  Deionized water (18 MΏ) was provided in house (Nanopure filtration 

system, Barnstead, Chicago, IL).  Sephadex LH-20 was purchased for GE Healthcare 

(Piscataway, NJ).  The buffer solutions were 40 mM borate, pH 9, and 10 mM CAPS, pH 11.  

Buffer solutions were prepared by dissolving the acid in deionized water and adjusting the pH 

with 1 M NaOH measured with a pH meter model 410 (Thermo, Waltham, MA).   The buffer 

was then filtered with a 0.22 μm pore size filter prior to use. BGE were prepared by increasing 

the amount of methanol (20% to 80%) added to the buffer solutions.  MPc’s were dissolved in 

the running buffer at concentrations in the range of 1μM to 10 μM.    Zn4CPc labeled insulin 

chain B was prepared by dissolving the peptide in HEPES buffer, pH 8 (1 × 10-5 M) and adding 

enough dye solution to produce a 10-fold molar excess of Zn4CPc.  The reaction was incubated 

overnight at room temperature in the dark.  Zn4CPc and Alexa Fluor dyes were covalently 
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labeled with streptavidin at a dye/protein ratio of 15:1 at room temperature in 500 μL reaction 

solutions as follows: 1 μM protein (dissolved in 0.1 M HEPES) was reacted with 150 μM dye 

dissolved in DMSO.  After the reaction was incubated overnight, the mixture was purified using 

Sephadex LH-20 and dissolved in HEPES buffer.   

 The digestion of β-casein was performed using a procedure modified from Pierce.55  

Briefly, β-casein (1.0 μg – 10 μg, 10 μL) was incubated with 15 μL of ammonium bicarbonate 

(50 mM) and DTT (100 mM) for 5 min at 95°C. Iodoacetamide (3 μL) was added to the β-casein 

solution and incubated in the dark for 20 min.  Modified trypsin was added (5 μL) and incubated 

at 37°C for 10 h.  A molar excess of Zn4CPc-NHS (15:1) was added to the peptides and the 

reaction mixture was incubated overnight at room temperature.   

5.2.2 Instrumentation 

5.2.2.1 Capillary Electrophoresis 

CZE was performed on an Agilent 3D capillary electrophoresis system (Agilent, Foster 

City, CA).   The system was equipped with UV-Vis photodiode array detection.  Analysis of the 

separations was performed using ChemStation software provided by Agilent Technologies.  A 

polyimide coated silica capillary column, 75 μm i.d., 375 μm o.d. (Polymicro, Phoenix, AZ) was 

cut to a length of 50 cm and a detection window was created by burning a small portion of the 

polyimide coating using a flame.  The capillary column was rinsed with 1.0 M NaOH for 1 h 

followed by a 2 h wash with deionized water. The column was then equilibrated with the BGE 

for 30 min, consisting of methanol/borate buffer at pH 9.0.  The sample was introduced by 

electrokinetic injection at 15 kV for 5 s.  The separations were performed at a voltage set at 30 

kV and a column temperature of 24°C.  Normal polarity was used for the separation of the 

MPc’s.  Between each run, the capillary was equilibrated with the BGE for 20 min.  Because 
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MPc’s have strong absorption in the UV region of the spectrum, the diode array detector was set 

to 260 nm and 345 nm.   

Microchip electrophoresis of streptavidin labeled with Alexa Fluor 680 and Zn4CPc was 

carried out with a laser-induced fluorescence (LIF) system that was constructed in-house. 

Briefly, a helium-neon laser source (NT 54-151, Edmund Industrial Optics, Barrington, NJ) 

provided an excitation wavelength of 633 nm, which was filtered using a line filter (XF-1026, 

Omega, Brattleboro, VT) before it was reflected off a dichroic mirror (XF-2022, Omega) into a 

40X objective (Melles Griot, Zevenaar, the Netherlands). The objective focused the laser beam 

into the microchannel positioned on an x-y-z translational stage. Emission from dye-labeled 

streptavidin was collected by the same objective, passed through the dichroic mirror and an 

emission band pass filter (XF-3030, Omega) before it impinged onto a photomultiplier tube (RT-

1508, Hamamatsu, San Jose, CA), which transduced the photon events. A pulse converter (TB-

01, HORIBA Jobin Yvon Inc., Edison, NJ) was used to shape the output prior to the data being 

processed by an I/O card (CB-68 LP) and a PCI board (PCI-6601) both from National 

Instruments (Austin, TX).  

Voltage was applied using a high voltage power supply (EMCO, Sutter Creek, CA) via 

0.3 mm diameter platinum wires (Scientific Instrument Services, Ringoes, NJ), which was used 

to make electrical contact with the fluid reservoirs of the microchip. The power supply and 

associated relays were controlled by an analog output (D/A) card (PCI-DDA04/12, National 

Instruments) of the computer. Voltages and data acquisition were controlled by in-house written 

LabView software (National Instruments). During separation, the buffer was pre-electrophoresed 

for 5 min at 250 V/cm through the separation channel.  The separation channel was 11 cm in 

length with channel dimensions of 20 μm in width and 120 μm in depth.  The samples were 

loaded by applying 250 V/cm across the injection channel for 50 s and the separations were run 
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at 150 V/cm.  Pull Back voltages were applied to prevent sample leakage in to the injection 

cross.  Laser-inducted fluorescence detection was measured at an excitation wavelength of 633 

nm.  

5.3 Results and Discussion 

5.3.1 Electrophoretic Separation of MPc’s 

5.3.1.1 Effect of Metal Center of Mobility 

Figure 5.5 illustrates the structure of the MPc’s studied in this report, having 4, 8, or 16 

carboxylic acids as substituents around the periphery.   
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Figure 5.5 Structure of MPc with carboxylic acid functional groups substituted on the periphery 
of the macrocycle.  M = Zn, Al, and Ga. 

 

To examine the influence of the metal ion on the electrophoretic mobility, conventional 

free solution CE was performed on Al4CPc, Ga4CPc, and Zn4CPc.  Figure 5.6 shows the 
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electropherograms of Zn4CPc, Ga4CPc, and Al4CPc, which possessed migration times of 10.1 

min, 10.3 min, and 10.6 min, respectively.  The electrophoretic analysis was performed with 

80% methanol in the BGE to reduce aggregation and increase the solubility of the MPc’s.  Figure 

5.6 shows a single peak indicating the MPc dyes exist in the monomeric state.  The 

electrophoretic mobilities for Zn4CPc, Al4CPc, and Ga4CPc were calculated using DMSO as a 

neutral marker to determine the μos and are presented in Table 5.1.  Zn4CPc and Ga4CPc have an 

electrophoretic mobility of -1.01 × 10-4 cm2V-1s-1 and -1.03 × 10-4 cm2V-1s-1, while the 

electrophoretic mobility for Al4CPc was slightly increased at -1.07 × 10-4 cm2V-1s-1.   
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Figure 5.6 CZE separation of (A) Zn4CPc, (B) Al4CPc, and (C) Ga4CPc in 80/20 
methanol/borate buffer, pH 9.  Separation was performed in a bare silica capillary column, 75 
μm i.d., 375 μm o.d. with a total effective length of 40 cm, field strength = 300 V/cm. Samples 
were introduced using electrokinetic injection at 10 kV for 5 s. UV-Vis detection was monitored 
at 260 nm.  Dye concentrations: Zn4CPc: 1 × 10-5 M, Al4CPc: 1 × 10-6 M, Ga4CPc: 1 ×10-6 M 
 
Results from a previous study suggested Al4CPc possessed an –OH axial ligand, which may 

account for the slight decrease in the electrophoretic mobility of Al4CPc attributed to the 

deprotonation of the –OH ligand at high pH. A second factor is the valence of the central metal 
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ion. While Zn has a valence of +2, Ga and Al are trivalent.  The charge of this macrocycle is -2 

and thus the Zn complex will have a net charge of neutral with Al4CPc and Ga4CPc having a net 

charge of +1.  However, it seems that the central metal ion has a negligible effect on the 

electrophoretic mobility, except in cases where an axial ligand may be present.64, 77, 78  
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Figure 5.7  CZE separation of Zn8CPc dye with a migration time of 12.47 min.  Separation 
conditions were the same as those used in Figure 5.6.  The dye concentration was 2.0 x 10-6 M 
with detection at 345 nm. 
 
5.3.1.2 Effect of Peripheral Groups on Mobility 

 We have incorporated carboxylic acid groups around the MPc ring to increase water 

solubility and at pH 9, MPc’s exist predominately as negative ions resulting from the 

deprotonation of the acid groups.  Under normal polarity, MPc’s with a greater number of 

carboxylic acid groups should migrate to the detector later and possess a higher electrophoretic 

mobility due to the increase in negative charge.79   This trend was observed for the ZnxCPc 

series with varying degrees of carboxylation.  Figure 5.7 shows the electropherogram for 

Zn8CPc dye, with a migration time of 12.47 min.  Shown in Figure 5.8 is the electropherogram 
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for Zn16Pc with a migration time of 16.39 min. The electrophoretic mobilities for Zn8CPc and 

Zn16CPc were calculated to be 1.33 × 10-4 and 1.45 × 10-4, respectively (see Table 1).  With 

Zn16CPc bearing twice the number of carboxylic acid groups, we would expect to see a larger 

difference in the mobility of Zn8CPc and Zn16CPc. The close similarity in the electrophoretic 

mobility for Zn8CPc and Zn16CPc can be due to the presence of protonated carboxylic acid 

groups (pKa range from 3.5 to 8.5) accompanied with an increase in size decreasing the 

mobility.79  Studies reporting the electrophoretic analysis of porphyrins with a different number 

of carboxylic side chains at high pH obtained similar results.79  The authors found that 

porphyrins with eight carboxylic acid side chains migrated last and porphyrins substituted with 

only four carboxylic acid groups had the highest mobility. 
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Figure 5.8 Electropherogram of Zn16CPc with a migration time of 16.39 min.  Detection was 
accomplished with UV detection at 340 nm.  Dye concentration: 10-6 M. 
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Separation efficiency of the MPc’s was determined by calculating the number of 

theoretical plates using the following equation; 

 2

1/ 2

5.5( )rtN
w

=  5.8 

where, tr is the migration time and w1/2 is the peak width at half height.  The electrophoretic 

mobility of the MPc’s, along with the theoretical plates and relative standard deviations (RSD) 

were calculated and the results are summarized in Table 1. The plate count generated was over 

100,000 for Zn16CPc having the highest number of theoretical plates. The plate numbers were 

found to increase as the number of carboxylic acids increase for the ZnPc series and the plate 

numbers  for Ga4CPc and Al4CPc calculated to be much lower resulting from poorer solubility 

in the CZE buffer. 

Table 5.1 Electrophoretic mobility, theoretical plates, and standard deviation for the native 
MPc’s studied.  All dyes were dissolved in the running buffer at concentration of 10-6 M. 

Dye (MPc) Migration Time 
(min) 

Theoretical 
Plates 

μe 
(cm2/VS) 

%RSD 
n = 5 

Zn4CPc 10.3 495,883 1.01 × 10-4 4.4 
Zn8CPc 12.47 528,325 1.33 × 10-4 4.4 
Zn16CPc 16.39 648,327 1.49 × 10-4 4.3 
Ga4CPc 10.3 119,867 1.01 × 10-4 4.5 
Al4CPc 10.6 126,118 1.07 × 10-4 4.6 

 

5.3.1.3 Effect of Aggregation on Mobility (carrier electrolyte selection) 

  The aggregation behavior of Pc’s in aqueous solution is well-known and the degree of 

aggregation is largely dependent on the electrolyte concentration.80, 81   In an attempt to evaluate 

the effect of electrolyte on the aggregation of MPc’s, we examined the absorption properties and 

the electrophoretic analysis of Zn4CPc in the presence of NaCl, added at increased molar 

concentrations to the dye solution. The concentration of Zn4CPc was kept constant (1 μM) to 

ensure the dye exists in the monomeric form before the addition of NaCl.  Figure 5.9 shows the 

absorption spectra of Zn4CPc dissolved in 80/20 methanol/borate solvent mixture with the 
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addition of NaCl.  Zn4CPc has an absorption maxima of 677 nm in this solvent mixture with no 

NaCl added.  Introducing NaCl to the solution resulted in a decrease of the monomer peak at 677 

nm and an increase in a new peak blue-shifted to 640 nm due to J-aggregate formation.82  The 

enhancement of aggregation is due to an increase in the solvent dielectric constant reducing the 

π-electron repulsion between two dye molecules known as the “salt effect”. 80, 83   
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Figure 5.9 Effect of NaCl on the absorption spectra of Zn4CPc in 80/20 methanol/borate 
mixture.  An increase in electrolyte concentration increases aggregation by the increase 
appearance of an aggregate peak at 640 nm.  
 
Figure 5.10 shows the effect of increased salt concentration on the electrophoretic performance 

of Zn4CPc. The electropherogram exhibited two sharp peaks with migration times of 4.1 and 

10.3 min, respectively, and a broad peak at 7.2 min.  At 0.05 M NaCl, monomeric dye peak 

previously identified as peak 3 is still present in solution also seen in the absorption profile 

(Figure 5.10 A).  As the amount of salt increases, the monomer peak disappears and peaks 1 and 

2 increase in absorbance intensity.  At 0.2 M NaCl, band broadening of peak 2 worsens due to 

significant aggregation at this moderately high concentration of salt present in solution.84 
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Figure 5.10  Effect of the presence of salt on the CE separation of Zn4CPc. Carrier electrolyte: 
40 mM borate buffer, pH 9. Salt concentration: 0.05 M NaCl (A), 0.1 M NaCl (B), and 0.2 M 
NaCl (C). 
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Figure 5.10 continued 

 It is worth noting that as you increase the salt content, the migration times for the monomer 

increased from 4.1 min to 5.0 min for peak 1 and 7.1 to 9 min for peak 2.   At higher salt 

concentrations, the migration times increase resulting from a decrease in the effective charge of 

the analyte due to increase shielding effect.84, 85  In addition, a higher salt content compresses the 

double layer and decreases the EOF, which will increase the apparent mobility of Zn4CPc. Ding 

and coworkers studied the electrophoretic mobility of inorganic and organic anions containing 

various salts at high concentrations.  Sufficient separation of the analyte was possible if the 

buffer electrolyte contained three times the amount of salt than the analyte solution. 84 

5.3.1.4 Effect of Methanol Concentration 

 It has previously been shown the use of pure aqueous running buffers for the separation 

of cationic tricarbocyanine dyes resulted in poor separation efficiency due to extensive 

aggregation in water.68  The use of organic modifiers in the BGE enhances separation selectivity 



 118

of hydrophobic complexes by changing the magnitude of the EOF, reducing current in the 

capillary resulting in less joule heating and increasing the resolution.68, 86 71    The influence of 

methanol in a mixed organic/aqueous buffer system on the electrophoresis of Zn4CPc was 

evaluated.  Methanol was chosen as the organic modifier to enhance the solubility of MPc’s by 

decreasing aggregation.  In Figure 5.11, the electropherogram of Zn4CPc electrophoresed with 

60/40 methanol/borate solvent mixture is shown.   
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Figure 5.11 Electrophoretic analysis of Zn4CPc separation in 60/40 methanol/borate running 
buffer at pH 9. Sample concentration: 1 × 10-5 M.  Detection was monitored at wavelength of 
260 nm.  Other separation conditions are given in Figure 5.6. 
 

As can be seen, the migration time decreased to 7.8 min compared to 10.3 min in 80% methanol.  

The mobility of Zn4CPc continued to decrease to a migration time of 4.6 min as the water 

content increased as shown in Figure 5.12.  At lower percentages of methanol, the results were 

poor due to the insolubility of Zn4CPc. Figure 5.13 shows the apparent mobility of Zn4CPc as a 

function of methanol content in the carrier buffer.  The decrease in migration time for Zn4CPc 

with increasing water content is likely due to the changes in the solvent viscosity and solvation 
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properties of Zn4CPc.68, 87  The EOF, which contributes to the migration time of the analyte, is 

also increased as the amount of water content increases, generating a shorter separation path for 

the analyte.   
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Figure 5.12 Electropherogram of Zn4CPc obtained in 20/80 methanol/borate running buffer. 
Conditions: 50 cm capillary; 40 mM borate buffer (pH 9).  
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Figure 5.13 Apparent mobilities of Zn4CPc as a function of the methanol content in the BGE. 
The CZE conditions are described in the experimental section. 
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At higher percentages of methanol, separation was not obtained resulting from much longer 

migration times due to the increase in methanol in the running buffer.   

5.3.1.5 Effect of pH  

 The effect of pH on the electrophoretic mobility of Zn4CPc was briefly examined.  

Shown in Figure 5.14 is the electrophoretic analysis of Zn4CPc separated in CAPS at pH 11. The 

migration time remained unchanged at pH 11 compared to pH 9. At pH 11, both the silanol 

groups on the capillary wall and the carboxylic acid groups are deprotonated, therefore, little 

change of the EOF should occur. However, peak fronting is observed likely as a result of poor 

solubility of Zn4CPc    
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Figure 5.14 Effect of pH on the CZE of Zn4CPc. The running buffer consisted of 80/20 
methanol/CAPS at pH 11. Dye concentration: 3 × 10-5 M. Other experimental separation 
conditions are described in Figure 5.6. 
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5.3.2 Electrophoretic Separation of Labeled Insulin Chain B and Digested β-casein 

  To investigate the use of CZE for the analysis of MPc-labeled peptides, the 

electrophoretic behavior of insulin chain B and tryptic-digested β-casein previously labeled with 

Zn4CPc was evaluated. While Zn8CPc and Zn16CPc could be viewed as better fluorophores due 

to increased solubility in buffered media, Zn4CPc was used for labeling in these studies due to 

ease of purification and quantification of the conjugate (see chapter 2).  Insulin is a small 

globular protein comprised of two chains, A and B.89  Insulin chain B is a peptide made up of 30 

amino acids consisting of a hydrophobic core due to the presence of carbon rich amino acids.  It 

has two primary amine groups, phenylalanine at the η-terminus and lysine at the C-terminus, that 

are available sites for fluorescent labeling.89, 90  The amino acid sequence of insulin chain B is 

given in Figure 5.16. 

α-Phe-Val-Asn-Gln-His-Leu-Cys-Gly-Ser-His-Leu-Val-Glu-Ala-
Leu-Tyr-Leu-Val-Cys-Gly-Arg-Gly-Phe-Phe- Tyr-Thr-Pro-Lys-ε  

 
Figure 5.15 Amino acid residue sequence of insulin chain B with one N-terminal primary amine 
and one ε primary amine on the lysine residue available for labeling. 
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Figure 5.16 Electropherogram of insulin chain B dissolved in HEPES pH 8 at a sample 
concentration of 1 mM. Detection was monitored at a wavelength of 260 nm using a photodiode 
array (PDA). 
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The electropherogram for insulin chain B showed a single peak with a migration time of 5.2 min 

(Figure 5.16).  The electropherogram of labeled insulin chain B is represented in Figure 5.17.  

Modification of insulin chain B with Zn4CPc-NHS afforded a reaction mixture containing a 

number of possible conjugation products due to labeling of two primary amine groups with 

several of the four binding sites on Zn4CPc-NHS.  Electrophoresis of the reaction showed 

several peaks with migration times between 20 and 25 min and a minor peak 1 previously 

identified as unreacted Zn4CPc.  Peaks 2-4 and 5-7 can be identified as multi-substituted insulin 

chain B of both amine groups. Specifically, the reaction may contain a mixture of 

monosubstituted, di- and trisubstituted insulin chain B possessing different migration times 

because of the difference in charge of the Zn4CPc conjugate.   
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Figure 5.17 Free solution electropherogram of insulin chain B conjugated to Zn4CPc.  The 
amount of dye used was a 10-fold molar excess over the peptide. Sample was injected using 
electrokinetic injection for 5 sec.  UV detection was monitored at 340 nm.  The conjugate 
reaction mixture was purified using sephadex LH-20 prior to electrophoresis.    



 123

Zn4CPc modified with several insulin chain B molecules is expected to migrate last due to the 

increase in negative charge and size of the conjugate. 

 CZE separation of the peptide fragments produced from tryptic-digested β-casein labeled 

with Zn4CPc was also evaluated.  β-casein, a phosphoprotein (23 kDa), was used here as a 

model protein because its peptide map has been well identified when digested with trypsin.91  

Trypsin is a proteolytic enzyme, which cleaves proteins at arginine and lysine residues 

generating peptide fragments of different molecular weights.91 The sequence of peptide 

fragments are listed in Table 5.2.    

Table 5.2 Sequence of theoretical tryptic peptides for β-casein.   
 

Fragment 
no. 

Sequence of Tryptic Peptide Fragment 

1 R 
2 K 
3 VK 
4 INK 
5 SVLSLSQSK 
6 AVPYPQR 
7 IEK 
8 HK 
9 VLPVPQK 
10 GPFPIIV 
11 IHPFAQTQSLVXPFPGPIPNSLPQNIPPLTQTPVVVPPFLQPEVMGVSK 
12 EAMAPK 
13 EMPFPK 
14 DMPIQAFLLYQEPVLGPVR 
15 YPVEPFTESQSLTLTDVENLHLPLPLLQSWMHQPHQPLPPTVMFPPQ 
16 FQSEEQQQTEDELQDK 
17 ELEELNVPGEIVESLSSESSITR 

 

Tryptic digestion of β-casein and peptide mapping using CZE has been previously 

reported.91, 92  The electrophoresis of Zn4CPc labeled β-casein prior to digestion is shown in 

Figure 5.17.  The CZE analysis of the tryptic digest of β-casein before and after labeling with 

Zn4CPc is represented in Figure 5.18 with a blow-up representation of several regions shown in 
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Figure 5.19.  The migration of the peptide fragments was directly related to the net charge of the 

analyte. At pH 9, positive and negative charged peptides exist in the mixture.  Based on the 

calculated charges at this pH, the migration of the peptide fragments can be predicted.  The 

numbered peaks in the electropherogram refer to the fragment number listed in Table 5.2.   

All peaks can be identified in the electropherogram corresponding to the expected tryptic 

fragments.   Several peaks exhibited shifts to a longer migration time for the labeled peptide 

fragments due to the negatively charge dye moiety attached, altering the structure and net charge 

of the peptides.  The peak identified as β-casein is evident in both electropherograms (see Figure 

5.19 C). The peak observed at 22 min is of the undigested β-casein, which is in agreement with 

previous findings.91  Incomplete digestion of β-casein is frequently observed due to the dilute 

nature of the protein/trypsin mixture.91 When a higher concentration of trypsin was used to 

ensure complete digestion, extra peaks appeared in the electropherogram due to autolysis of 

trypsin (data not shown). 

 

Figure 5.18 Electropherogram showing the separation of Zn4CPc labeled β-casein in a 40 mM 
borate buffer at pH 9.  Sample was injected onto a bare silica capillary using electrokinetic 
injection for 5 sec and detected using a PDA monitored at 340 nm.   
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Figure 5.19 Capillary electropherogram of unlabeled peptides (A) and Zn4CPc labeled peptides 
(B) generated from trypsin digestion of β-casein.  Capillary electrophoresis was performed at pH 
9.1 in 40 mM borate buffer. The sample was electrokinetically injected onto the column at 15 
KV for 5 s and separated using a carrier buffer at V = 30 KV.  Separation was monitored at 345 
nm. Peak labeled “P” represents undigested β-casein.  
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Figure 5.20 A blow up of several regions representing the electropherogram of Zn4CPc labeled 
β-casein digested with the enzyme trypsin. 
 
 It has been demonstrated that attaching a biomolecule moiety to Zn4CPc-NHS greatly 

increases the water solubility of the complex.93  Thus, separation of the labeled peptides was 

achieved with no organic modifier added to the running buffer.   Legendre reported on the use of 

laser-induced fluorescence (LIF) detection for the analysis of labeled tryptic digested β-casein 

and β-lactoglobulin A with commercially available near-IR tricarbocyanine dyes.94  However, 

the authors were unable to assign peaks observed in the electropherogram.  

 To evaluate Zn4CPc and Alexa Fluor dyes for use in LIF microchip separations, studies 

were performed to compare their fluorescence intensities when covalently attached to 
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streptavidin.  Zn4CPc and Alexa Fluor dyes have been used for pre-column labeling of amino 

acids, peptides, and proteins in conventional capillary electrophoresis.95-98  Zn4CPc has an 

absorption maximum of 677 nm with a molar extinction coefficient of 250,000 cm-1M-1, while 

the molar extinction coefficient for Alexa Fluor is 250,000 cm-1M-1 with an absorption maximum 

of 680 nm.  The quantum efficiency for Zn4CPc and Alexa Fluor is 0.4 and 0.6, respectively.  

Streptavidin contains four lysine residues and an N-terminal amine that can potentially react with 

Zn4CPc and Alexa Fluor dyes.  Figure 5.21 shows the electropherogram of Zn4CPc in the 

absence of streptavidin. The results indicate two well-resolved peaks migrating at 100 and 127 s.  

These peaks are most likely a result of Zn4CPc-NHS and the product of hydrolysis of the 

activated Zn4CPc ester.  Figure 5.22 shows the microchip separation of Zn4CPc-streptavidin 

conjugate in HEPES buffer at pH 8.  Results showed several peaks separated with a peak eluting 

at 150 s, and several peaks eluting between 500 and 580 s. 
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Figure 5.21 Microchip (PMMA) electrophoresis of Zn4CPc active ester without the presence of 
streptavidin. Dye concentration: 150 μM, injection time: 50 s.  Separation was performed in 
HEPES, pH 8.  Detection monitored using laser-induced fluorescence detector at an excitation 
wavelength of 633 nm. 
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The peak observed early in the separation is mostly likely due to unreacted Zn4CPc present in 

solution.  The peaks eluting later in the separation are due to a mixture of multiply labeled 

streptavidin.  The extra peak observed in the control reaction of Zn4CPc is absent in the 

electropherogram of the Zn4CPc-streptavidin conjugate because the reaction mixture was 

subjected to size-exclusion purification prior to analysis eliminating the lower molecular weight 

impurities.   
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Figure 5.22 Electropherogram of ZnPc-streptavidin conjugate separated on PMMA microchip. 
Protein concentration: 1 μM, dye-to-protein ratio: 15-to-1, injection time: 50 sec.  Separation 
was performed in HEPES at pH 8 and detection was monitored using a laser-induced 
fluorescence detector at an excitation wavelength of 633 nm. 
 

These results are compared to streptavidin modified with a commercially available dye, Alexa 

Fluor 680. Results are shown in Figure 5.23 exhibiting several peaks eluting around 200 s.  

Labeling with Zn4CPc gave slightly lower fluorescence intensities with increased migration time 

for the conjugate compared to the Alexa Fluor-streptavidin conjugate due to the excitation source 
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wavelength (633 nm) not optimized at the excitation wavelength of Zn4CPc.  In addition, the 

fluorescence quantum yield of Zn4CPc was found to decrease upon conjugation to streptavidin.76  

One possibility for the slower migration time for the ZnPc-streptavidin conjugate is because of 

the increased negative charge of the ZnPc dye compared to Alexa Fluor.97  In addition, the 

difference in labeling yield will also contribute to the migration differences.   
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Figure 5.23 Electropherogram of Alexa Fluor-streptavidin conjugate obtained on an uncoated 
microchip. Sample injection time: 50 s. Dye concentration: 150 μM. Dye-to-protein ratio for 
labeling: 15-to-1. 
 
5.3.2.1 Effect of pH  
 
 The separation of proteins and peptides in capillary zone electrophoresis without the use 

of additives or organic modifiers is based on differences in their electrophoretic mobility, which 

is related to the charge density of the protein/peptide.92  Manipulating the selectivity of the 

separation can be achieved by altering the buffer pH, modifying the charge density of the 
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peptide.  Buffers at low pH are often used to ensure homogeneity of the solution and to give 

reproducible separations.99 Disadvantages with working at low pH however, include decrease in 

separation efficiency of similarly charged species, and denaturation of the protein resulting in 

irreversible adsorption of the protein to the capillary walls.100  For the studies reported here, the 

buffer was maintained at pH 9.0 in which the complex mixture of labeled digested protein 

contains both positively and negatively charged peptide fragments.  Hence, separation of the 

peptide fragments was possible in a single electrophoretic run with high resolution. The pKa for 

the primary amines of β-casein tryptic fragments have been reported.90 Selecting a buffer pH 

above the pKa, the amine groups were protonated.  The effect of pH on the separation of Zn4CPc 

labeled tryptic peptide fragments was studied using phosphate buffer at pH 2. The results are 

shown in Figure 5.24. As can be seen, the use of phosphate buffer at lower pH resulted in a loss 

of separation of the peptide fragments possibly due to capillary adsorption. 
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Figure 5.24 CZE electropherogram of tryptic peptide fragments produced from β-casein 
digestion. Separation was performed using 40 mM phosphate buffer at pH 2.   
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5.4 Conclusions 

 In conclusion, we have demonstrated CZE as a useful technique for determining the 

migration behavior of MPc complexes and biomolecules labeled with Zn4CPc-NHS.  The 

identity of the metal center was found to play no significant role in the electrophoretic mobility 

of MPc’s and the axial ligand had a greater influence.  We have shown that the use of a mixed 

organic/aqueous running buffer with high organic content enhances the separation efficiency of 

ZnxCPc’s due to improved solubility and decreased propensity to form ground state aggregates.  

An increase in the number of carboxylic acid groups on the periphery of the chromophore 

increased the migration time for each of the dyes due to the increase in size and negative charge 

of Zn8CPc and Zn16CPc.  Electrophoretic analysis of insulin chain B labeled with ZnPc-NHS 

via primary amine groups was demonstrated.  In addition, β-casein digested with trypsin is an 

excellent peptide to study the effect of the Pc moiety on the mobility of the peptide fragments.  

No significant adsorption of the peptide fragments to the capillary wall was evident due the 

absence of peak broadening and tailing in the electropherogram.   Due to increased water 

solubility of the labeled conjugates, the optimal conditions were found to be different compared 

to the conditions for the native dyes requiring the addition of organic solvent in the background 

electrolyte.   
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Chapter 6 
Unsuccessful Approaches, Summary and Future Experiments 

 
6.1 Unsuccessful Labeling Approaches 

 Initially, a two-step route was used to label biomolecules with symmetrical zinc 

tetracarboxylate phthalocyanine (Zn4CPc) by adding EDC/NHS to active N, 

hydroxysuccinimide functional groups on symmetrical zinc tetracarboxylate phthalocyanine 

(Zn4CPc) and conjugating biomolecules in sequence (Figure 6.1).  This approach was not 

preferred because tt was found that the method produced low yields of the conjugate because  
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Figure 6.1 Schematic illustrating the reaction to convert carboxylic acid groups to active 
functional esters while reacting with amino modified primer simultaneously. 
 
converting the carboxylic acid groups competed with the conjugation reaction and a large 

amount of Zn4CP precipitated out of solution due to its insolubility in aqueous solvents.  Figure 

6.2 is an example of a chromatogram showing the separation of the reaction mixture.  The results 

showing only the dye peak eluting early and the primer peak eluting around 12.2 minutes was 

expected due to the precipitation of Zn4CPc.  Thus, it was determined the conjugation procedure 

needed to be optimized; therefore several methods were tried in an attempt to achieve the desired 

yield of the conjugate. For example, the cationic detergent cetyltrimethylammonium bromide 

was used to precipitate the oligonucleotide increasing the hydrophobicity of the oligonucleotide 

making it more soluble in non-aqueous solvents due to the MPc dye soluble in organic solvents.    
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The reaction mixture was analyzed by ion-exchange chromatography and the result is shown in 

Figure 6.3.  Here, a chromatogram representing a control reaction in the absence of Zn4CPc was 

overlaid to identify changes in the retention time of the oligonucleotide that may indicate the 

presence of a different species.  Results only show what appears to be unreacted Zn4CPc and 

unlabeled oligonucleotide. Recently, a method published by Koval and coworkers was adapted in 

which the carboxylic acid groups on Zn4CPc are converted to functional succinimidyl esters and 

this compound is isolated and purified prior to labeling.1  The chromatographic separation of this 

reaction mixture is shown in Figure 6.4.  In comparison with previous results, the conjugate yield 

increased.  From the results, the presence of a peak with retention time of around 14 min. that is 

absent in control reactions indicated the formation of the conjugate.   

 

Figure 6.2 Anion-exchange chromatogram of a labeling reaction mixture consisting of Zn4CPc, 
EDC/NHS, and oligonucleotide present in solution. Precipitates formed when carbonate buffer 
was added. Concentration: 10-5 M Dye:10-6 M DNA. 
 

 The purification of labeled oligonucleotides was found to be challenging due to the 

aggregation tendency of MPc dyes and the complicated pattern of multiply labeled biomolecules 

making identification of the desired product difficult.  In addition, little was known about the 

retention mechanism of Zn4CPc-labeled oligonucleotide.  The initial experimental conditions 
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were the use of an anion exchange column and sodium perchlorate as the elution buffer in which 

separation is driven by the negative charge of the oligonucleotide. The results shown in Figure 

6.3 were acquired using anion-exchange chromatography.  

 

 

Figure 6.3  HPLC chromatogram of labeling reaction mixture. Reaction quenched using NaOH. 
Concentration ratio: 15:1 Dye:DNA (10-3 M:10-5 M) Analysis method - 0-90 % NaClO4 in 30 
minutes using anion exchange column. Detection was monitored at 260 nm.  Black line 
represents DNA only. 

 
 
Figure 6.4 Anion-exchange chromatography of a 1 mM Zn4CPc-oligonucleotide reaction 
mixture.  Fractions were collected and monitored at 260 nm.  Dionex DNAPac anion-exchange 
(4 × 250 mm analytical column), 13 μm column.  Gradient from 0% to 75% 0.375 M NaClO4 in 
45 minutes, room temperature. 
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The separation was monitored at 260 nm due to both Zn4CPc and the oligonucleotide absorbing 

in this region.  It was suggested the fluorescent dye significantly affects the retention of the 

oligonucleotide due to the hydrophobicity of the label.  This was found to be the case and our 

group recently demonstrated the use of reverse-phase chromatography using triethylammonium 

acetate (TEAA) as an ion-pairing reagent as an optimal separation technique for the isolation and 

purification of the MPc-oligonucleotide conjugate.2    

 HPLC analyses was not sufficient to identify the eluting peaks as the conjugates. 

Therefore, we employed LC-MS and MALDI-MS to identify the components of the reaction 

mixture.  Previous reports have been made employing MALDI-MS in an attempt to obtain 

structural information on MPc’s, however, there are no reports to our knowledge of MPc 

bioconjugates characterized by MALDI-MS.3   

 

Figure 6.5 Mass spectra of Zn4CPc-oligonucleotide conjugate.  MALDI-TOF was acquired on a 
Bruker Pro-Flex equipped with a 337 N2 laser.   
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Therefore, fractions from chromatographic separations were collected and submitted for MALDI 

analysis.  An example of the results obtained from MALDI-TOF analysis of Zn4CPc-

oligonucleotide conjugate is shown in Figure 6.5.  The expected mass for the conjugate is 

approximately 7100 Da or higher depending on the number of dye molecules attached to the 

oligonucleotide.   

6.2 Summary 
 
 Fluorescence-based technologies have played an increasing role in the development of 

high sensitivity assays making the detection and analysis of complex biological systems possible.    

The research presented in this manuscript focused on the characterization of the photophysical 

and photochemical properties of a set of fluorophores with unique characteristics that have been 

synthesized for applications involving near-IR detection.  The major drive in developing near-IR 

fluorophores was the increased sensitivity within this spectral region due to less matrix 

interferences.  The cardinal of this research lies in the ability to label a variety of biological 

entities with these fluorophores producing conjugates with reasonably high yields that are 

suitable for ultra sensitive fluorescence detection in applications such as bio-imaging or DNA 

sequencing.5-8 

 Chapter 1 reviews the theory of fluorescence spectroscopy.  This chapter focused on the 

process of emission and the recent development of detection in the near-IR region of the 

electromagnetic spectrum which has shown to be advantageous over visible. fluorescence 

detection systems.8, 9  These advantages include simplified instrumentation, and less background 

interference due to the low number of molecules that fluoresce in this region.  The major 

bottleneck of near-IR fluorescence-based detection is finding an appropriate set of fluorophores 

with desirable spectroscopic properties.   
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 Much of the work performed in near-IR fluorescence labeling focuses on the use of 

carbocyanine dyes, but the photochemical instability of these fluorophores prompted the 

development of alternative dyes.  Chapter 2 introduced dye sets that were suitable for near-IR 

detection.  Within this chapter, the preparation of metal phthalocyanine derivatives, porphyrin 

analogs, synthesized in collaboration with Dr. Hammer’s laboratory was described, detailing the 

spectral and photophysical characterization of several metal phthalocyanine compounds.   The 

photophysical properties are of crucial importance in determining the suitability of the 

chromophore in NIR fluorescence based detection systems.  Pc’s have been of interest in the 

application of photodynamic therapy because they are photochemically reactive resulting in high 

yields of singlet oxygen formation 10-12.  The MPc’s have high extinction coefficients, high 

quantum yields, and absorption and emission maxima in the NIR (λabs = 680 nm, λem = 686 nm). 

Several spectral changes can occur because of aggregation depending on solvent properties such 

as ionic concentration and pH.  This chapter also highlighted an additional property that is 

unique with phthalocyanines to possess a different fluorescence lifetime when a different metal 

ion was inserted into the central cavity of the macrocycle with lifetimes varying from 2.9 for 

Zn4CPc to 5.0 for Al4CPc.  These differences allow for sufficient discrimination of these dyes 

when used in applications such as DNA sequencing in a two-color, four-lifetime arrangement.  

These dyes also exhibited superior photostabilities compared to commercially available dyes.  

Disadvantages include aggregate formation and solubility in aqueous media.   

 Chapter 3 presented a general route for modifying biomolecules with MPc’s.   A popular 

approach employed carbodiimide coupling converting carboxylic acid groups to N, succinimidyl 

esters that are highly reactive towards the target molecule containing available primary amines.  

This type of derivatization was chosen due to the ease of preparation and it was found to be 

straightforward producing high yields of the conjugate.13-15  We presented work in which an 



 144

oligonucleotide, streptavidin and insulin chain B were covalently attached to Zn4CPc using 

excess dye.  The analysis of the conjugate mixture was performed using reverse-phase HPLC 

(RP-HPLC) and results indicated multiple dye molecules attached to one streptavidin molecule 

due to several functionalized carboxylic acids available for labeling.  The functionality of 

streptavidin to bind to its natural target, biotin, was also examined by fluorescence measurements 

of ZnPc-streptavidin conjugate attached to biotinylated microspheres. 

 Chapter 4, which was a continuation of chapter 3, was dedicated to the optimization of 

the carbodiimide coupling approach for labeling Zn4CPc to proteins with streptavidin used as a 

model for a microplate assay.  In essence, biotin was immobilized on the surface of microplate 

wells and the Zn4CPc-streptavidin conjugate was added.  After incubation, the bound conjugates 

were detected using fluorescence detection at the wavelength 686 nm.  This assay was ideally 

suited for investigating the optimal labeling conditions in a high-throughput format.  Results 

were in agreement with recent studies citing the optimal conditions for labeling ZnEPc with 

oligonucleotides, which provided an optimal are pH 8, and a minimal amount of organic 

content.2   

 For the analysis of sequencing reactions in a single electrophoretic lane, the use of dyes 

that have similar dye structure prevents mobility shifts due to structural differences.16  Chapter 5 

concentrates on the use of capillary zone electrophoresis (CZE) in determining the effect of the 

metal ion and peripheral substitution on the electrophoretic mobility of the MPc’s.  Chapter 5 

also presented the CZE of Zn4CPc conjugates determining the electrophoretic behavior of 

Zn4CPc-insulin chain B conjugate.  In addition, this chapter demonstrated the usefulness of CZE 

in applications such as peptide mapping with the fragments labeled with Zn4CPc.  These results 

were acquired using UV-Vis detection.  Lastly, near-IR laser induced fluorescence (LIF) 

detection coupled to microchip electrophoresis was applied to compare the fluorescence intensity 
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of covalently labeled streptavidin with Zn4CPc and commercially available Alexa Fluor 680. It 

was concluded the instrumentation setup was not optimized for detecting at the maximum 

wavelength of the Zn4CPc and resulted in low fluorescence intensity for the conjugates.    

6.3 Current and Future Work 

 Much of the work presented here describes the use of symmetrical zinc phthalocyanine 

for the covalent attachment to biomolecules for DNA sequencing.  Several labeling sites that are 

available on the biomolecule along with four active esters located on the periphery of the 

phthalocyanine dye results in multiple labeling.  Future works may include the use of Pc 

derivatives containing a different metal center for the covalent attachment to peptides, proteins, 

and single stranded DNA.  The significance of this work is that a different metal center changes 

the fluorescence lifetime, which would allow increased multiplexing capabilities due to lifetime 

discrimination in conjunction with color discrimination between dye labeled nucleotide bases for 

applications such as DNA sequencing.  Future studies could also include developing 

asymmetrical phthalocyanines containing an axial ligand to decrease aggregate formation.  

Asymmetrical phthalocyanines are of growing interest for labeling procedures due to the lack of 

multiple labels that could potentially interfere with the analysis in applications such as DNA 

sequencing.  Applications involving fluorescence resonance energy transfer (FRET) -based 

detection for sample analysis are currently under investigation in our laboratory using 

asymmetrical MPc’s.  Figure 6.6 shows a schematic of the asymmetrical MPc’s with a single 

primary amine group or carboxylic acid group. The presence of ethylene glycol groups helps to 

increase their solubility in both organic and aqueous media.  These studies are based on FRET 

between Ni4CPc and Zn4CPc with Ni4CPc as an acceptor because Ni4CPc shows very weak 

fluorescence and Zn4CPc as a donor.  Lastly, studies to determine the potential use of MPc’s as 

photosensitizers for photodynamic therapy will also be investigated. 
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Figure 6.6 Structure of asymmetrical Pc dyes for labeling biomolecules.  
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