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ABSTRACT 

The diffusion of polyelectrolytes in low-salt or salt-free aqueous solutions is a 

controversial question. It has been intensively discussed since it was discovered in 

1978. Most previous experimental data were obtained from dynamic light scattering 

(DLS), whose precision, however, was reduced by stringent sample preparation and 

weak scattering of polyelectrolyte in low-salt solution. For the most commonly 

studied polyelectrolyte, poly(styrenesulfonate sodium salt) (NaPSS), the harsh 

polymerization condition and the manufacturing procedure lead to hydrophobic 

defects and aggregations, which also block a correct insight about the diffusion of 

polyelectrolyte. In contrast to DLS, fluorescence photobleaching recovery (FPR) 

directly looks on the optical trace of the self-diffusion of labeled molecule and is 

relatively insensitive to the thermodynamic interactions among the polymer. In this 

work, an efficient synthesis of fluorescein isothiocyanate (FITC) labeled 

poly(styrenesulfonate sodium salt) (NaPSS) under mild conditions is presented. This 

fluorescent polyelectrolyte, with 100% degree of sulfonation and no hydrophobic 

defects, was directly synthesized from monomer. The product was characterized by 

mass spectrometry, GPC/MALLS, 1H NMR, and fluorimetry. Twelve fractions with 

various molecular weights were obtained by injecting the sample solution into an 

analytical-scale GPC. The self-diffusion of some fractions was measured with FPR. 

The dependence of the diffusion coefficient on molecular weight is in agreement with 

the power-law. The partial specific volume of NaPSS in aqueous solution and salt 

solution were also determined by examining the densities of these solutions. 
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CHAPTER 1 INTRODUCTION: DYNAMICS OF POLYELECTROLYTES 
IN SOLUTIONS AND FLUORESCENCE PHOTOBLEACHING RECOVERY 

1.1 POLYELECTROLYTES IN SOLUTION 

1.1.1 POLYELECTROLYTES 

Polyelectrolytes are polymer chains containing a variable amount of ionizable 

monomers. These groups can dissociate in aqueous solutions and make the polymers 

charged by leaving ions of one sign bound to the chain and dissociating counterions in 

solution. In contrast to most neutral organic-soluble polymers, polyelectrolytes are 

significant for being soluble in water.  

Polyelectrolytes are everywhere around us and in us. Most biopolymers, including 

DNA and proteins, are polyelectrolytes, and many water-soluble polymers of 

industrial interest are charged. The polyelectrolytes combine both properties of 

electrolytes and polymers. Their solutions are electrically conductive like electrolytes 

and often viscous like polymers. Some polyelectrolytes can dissociate completely in 

solutions for most reasonable pH values. They are said to be strong electrolytes, e.g., 

with SO3H units derived from a strong acid (Figure 1.1 (b)), all monomer units are 

dissociated, and the charges are said to be quenched. Others are said to be weak 

polyelectrolytes. Their charged monomer units are derived from a weak acid or base, 

e.g., monomers with COOH groups (Figure 1.1 (b)). In solution, not all groups are 

dissociated, and the degree of dissociation depends on the pH of the solution; each 

chain can be viewed as a random copolymer of monomers with COO- and COOH 

groups that fluctuate; the distribution of charges are controlled by the pH, 

concentration of counterions, and polyions. The physical properties of polyelectrolyte 
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solutions are also affected by the degree of dissociation.  

 

 

 

 

 

 

 
Figure 1. 2 A snapshot of a configuration of polyelecotrolytes and their dissociated 
counterions from a molecular dynamics simulation.2 Reprint with the permission of 
Dr. Craig Pryor and Dr. James Donley 
 

1.1.2 POLYELECTROLYTES IN SOLUTIONS 

The solution properties of polyelectrolytes have been studied for more than 50 

years. In the case of flexible polyelectrolyte solutions, the strength of electrostatic 

interaction is mainly influenced by the presence of a low-molecular-weight salt, 

which screens charges. In the region of high salt concentration, the polyelectrolyte 

chains behave similarly to flexible neutral macromolecules. This behavior has been 

understood well in terms of the scaling theory.3  

A much more complicated situation arises if we want to understand the behavior 

Figure 1. 1 Examples of polyelectrolyte for (a) strong polyelectrolyte, (b) weak
polyelectrolyte 
 

(a) (b) 

OHO

n

Polyacrylic acid (PAA)
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of a polyelectrolyte solution in the region of low salt or salt-free concentrations. In 

some cases a qualitative understanding is available but a quantitative interpretation is 

still lacking. For the others, even the origin of the phenomena observed remains 

partially obscure. This indicates the present treatments of polyelectrolyte behavior are 

incomplete and that some fundamental new views are needed to obtain a full 

understanding. Although a considerable of polyelectrolyte investigations have been 

done through different experimental methods, including static and dynamic light 

scattering,4-10 small-angle x-ray scattering (SAXS),11-14 small-angle neutron scattering 

(SANS),15-18 viscosity,19-21 and NMR, they very often lead to controversial 

conclusions. This situation is due to the fact that experiments on polyelectrolytes 

always turned to be extremely difficult. A unique insight on the structure and the 

dynamical behavior of polyelectrolyte solutions are intensively prohibited by several 

aspects: 

1. In contrast to the properties of the well understood “ordinary phase” (when the 

salt is in excess and the single polyelectrolyte chain is observable), the 

polyelectrolyte will form large and unidentified objects with co-ions when it is in 

the low-salt or salt-free solutions. 

2. For the flexible polyelectrolytes, their shapes change with the ionic strength. Such 

a conformational change imposes another challenge on the understanding of 

flexible polyelectrolytes. It is still controversial what structure of the flexible 

polyelectrolyte forms at low ionic strength. 

3. For all value of cp/cs (cp is the concentration of polyelectrolyte, cs is the 
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concentration of added salt), the properties of the polyions are additionally 

controlled by absolute value of added salt.  

So far, polyelectrolytes have found a widening field of applications based on their 

specific properties. For example, they have been employed to either stabilize colloidal 

suspensions or to initiate precipitation. They are used to impart a surface charge to 

neutral particles, enabling them to be dispersed in aqueous solutions. In our daily life, 

they appear as conditioners, flocculants, drag reducers, and even some ingredients of 

food. They also make contributions to the investigation of biochemistry and pharmacy. 

There have been numerous of papers regarding the using of polyelectrolytes for 

implant coatings, for controlled drug delivery, for self-assembled films in polymeric 

sensors, for artificial muscles and other applications.22 The polyelectrolyte models 

have been used to analyze the structure and behavior of biomacromolecules, such as 

DNA, RNA and proteins.23, 24 Therefore, the current confusing situation of 

polyelectrolyte solution is far from satisfactory, and more thorough investigations are 

in strong demand. 

1.2 DYNAMICS OF POLYELECTROLYTE IN SOLUTION 

Among those complex and controversial properties of polyelectrolytes in solution, 

the presence of multipolyion domains in polyelectrolyte solutions is intensively 

discussed since they were first discovered by Schurr: a very slow diffusion mode of 

poly-L-lysine in low salt range was reported.25-27 Figure 1.3 shows this phenomenon: 

at a certain ratio of cp/cs, there is an accompanying drastic decrease in the diffusion 

coefficient and an increase in scattering intensity observed by dynamic light scattering. 
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The value of this ratio is only known approximately, varying from 1≤ cp/cs ≤5 for 

monovalent counterions.  

Later, more investigations indicated5-7, 10, 28-30 that such a “slow mode” can be 

found for essentially all studied polyelectrolytes, and this behavior is universally 

govern by the ratio of cp/cs. Although this phenomenon was attributed to the formation 

of an “extraordinary phase”,31, 32 it does not means that this behavior is due to a phase 

transition. It is not appropriate to simply adopt this term of “extraordinary phase”.  

Figure 1. 3 Apparent diffusion coefficient Dapp vs log[NaBr] for 
poly(L-lysine)•HBar (DP=955) at t=22-23˚C at pH 7.8. Circle denote 1.0 mg/mL and 
squares denote 3.0 mg/mL (Lys)n.25 Reprinted with permission of John Wiley & Sons, 
Inc.  
 
1.2.1 DYNAMIC LIGHT SCATTERING FOR STUDYING DYNAMIC 

PROPERTIES OF POLYELECTROLYTE IN SOLUTIONS 
 

Various experimental techniques have been used to study the dynamic properties 

of polyelectrolyte in solutions, including light scattering, small-angle neutron 

scattering (SANS), small-angle x-ray scattering (SAXS), electrophoretic light 
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scattering, viscosity, and NMR. Among them, Dynamic Light Scattering (DLS) is the 

most common method for examining the diffusion coefficient of polyelectrolytes in 

solution. Most published papers, mentioned in this study, are based on the 

experimental data of DLS. 

In the DLS experiment, the intensity auto-correlation function is defined as 

0
1
2  

Where t is the delay time and  is the time-average scattering intensity. 

The correlation function is converted into the normalized second-order 

correlation function using the relation: 

1  

Where B is the baseline, and f is an instrumental parameter (0 < f < 1). 

In many cases, the electric field autocorrelation function, ,  is a single 

exponential:  

Г  

Where Г is the decay rate (the inverse of the correlation time). The translational 

diffusion can be calculated according to: 

Г  

Where Dm is the mutual diffusion coefficient, q is the scattering vector,   sin θ, 

with n as the refrative index of the sample,  as the incident laser wavelength in 

vacuo, and   as scattering angle. 

In a polyelectrolyte solution, several processes with different relaxation rates, Г, 

are expected to contribute to . The distribution function, Г ,  of the 

Eq. 1. 2 

Eq. 1. 4 

Eq. 1. 1 

Eq. 1. 3 
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amplitudes of Г and  are related by Eq. 1.5 

Г Г Γ∞    

For example, when  contains two distinguishable relaxation modes, it can 

be analyzed using a combination of two exponential functions  

exp  Г exp  Г  

Where Af and As are amplitudes. 

Solving Eq. 1.6 is known as a Laplace inversion. The conversion can be carried 

out by program CONTIN.33, 34 

1.2.2 DIFFUSION OF LOW MOLECULAR WEIGHT SALT 

Because the low molecular weight salt ions in polyelectrolyte solutions are 

counterions and co-ions and have an effect on the electrostatic field, it is appropriate 

to mention their dynamic properties here. Compared to macromolecules, these small 

ions have a very fast diffusion process and a low scattering contribution observed by 

light scattering experiments. Although this fast diffusion rate is still relatively well 

within the capability of current dynamic light scattering instrumentation, the 

extremely weak scattering single due to the small size of such ions poses a problem. 

Therefore, the measurement of the small ion diffusions by light scattering is difficult. 

One of the more interesting papers to explore conterions specifically was reported by 

Marian Sedlak et al.4 He successfully measured the diffusion of small ions in a pure 

solution and in a “mixture with polyions”. They reported that the corresponding 

diffusion coefficient of small ion can be expressed as 

Eq. 1. 5 

Eq. 1. 6 
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Γ 1 Z
Z
|Z /Z |  

Where Γ2(q) is the inverse relaxation time, q is the scattering vector, sin , 

Da and Db are the values of uncoupled diffusion coefficient of particular ions, and Za 

and Zb are the charges. This predicted value by this equation agrees with the value of 

experimentally obtained diffusion coefficient. 

1.2.3 DIFFUSION OF POLYELECTROLYTE IN SOLUTIONS 

Polyelectrolyte solutions in practice have a wide of molecular weight distribution 

and should be principally considered as mixtures. Besides, polyions are not always 

distributed homogeneously in solutions and mixtures, but instead may form larger 

structures referred to as domains or clusters. These structures also contribute to the 

overall scattering intensity and can be therefore considered as an additional 

component of the system.  

The diffusion of polyions in polyelectrolyte solutions is strongly influenced by 

three factors: 1) the effective charge of the polyion; 2) the concentration of added salt; 

and 3) the polyion concentration  

For weak polyelectrolytes, a stronger dissociation is reached by adding 

counterions, which interact with dissociated polymer chain to effectively reduce high 

charge. The ratio of the molar concentration of added counterions to the monomer 

concentration of the polyions is defined as α. The diffusion coefficient of polyions 

increases upon increasing α and levels off at higher values of α. According to the 

Oosawa-Manning35-37 theory, the onset of counterion condensation corresponds to the 

situation where the mean intercharge spacing along the chain, Ac, equals the Bjerrum 

Eq. 1. 7 
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length lB, which defined as ε B
 (e is the electron charge, ε is the dielectric 

permittivity, B is Boltzmann’s constant, and T is temperature).  

For strong polyelectrolytes, the diffusion coefficient depends on the concentration 

of added salt. Generally, the mutual diffusion coefficient increases with the decrease 

of the added salt concentration, cs. At high cs, the diffusion coefficient of polyion is 

independent of the salt concentration, and the values resemble those of equivalent 

neutral polymers. The diffusion coefficient decreases with increasing molecular 

weight at high cs. This is also similar to neutral polymers where the diffusion 

coefficient is inversely dependent on the friction factor, i.e.,   , where 

f is the friction factor and β is the factor related with the structure of polymer in 

solution. On the contrary, the diffusion coefficient at low cs is independent of 

molecular weight. The polyelectrolytes diffuse extremely slowly when the 

concentration of added salt is very low, which is termed as the extraordinary phase.  

After the discovery of the “ordinary-extraordinary” transition, Schmitz, K. S.38 et 

al reported that there were actually a fast mode and a slow mode diffusion 

simultaneously existing in DLS measurements of salt-free or low-salt dilute 

polyelectrolyte solutions in comparison with the translational diffusive relaxation 

mode of individual neutral chains with similar lengths.39 Later, this splitting of 

relaxation mode were verified by both synthetic and biological polyelectrolytes in 

low-salt or salt-free solutions.  

So far, various experimental data indicate that the fast-mode diffusion coefficient, 

Df, is independent of molecular weight, while the slow-mode diffusion coefficient, Ds, 
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decreases with the increase of molecular weight. Figure 1.5 and Figure 1.6 shows the 

dependence of Df and Ds on the molecular weight in logarithmic coordinates, 

respectively. The sample used is NaPPS in c = 45.6 g/L with the scattering angle θ = 

90º 

 

Figure 1. 4 Schematic partitioning of Dapp as a function of ionic strength. Reprinted 
with permission from [39]. Copyright 1983, American Institute of Physics.  
 

 

Figure 1. 5 Dependence of fast-mode 
diffusion coefficient Df on molecular 
weight. Reprinted with permission from 
[5]. Copyright 1992, American Institute 
of Physics 

Figure 1. 6 Dependence of slow-mode 
diffusion coefficient Ds on molecular 
weight. Reprinted with permission from 
[5]. Copyright 1992, American Institute 
of Physics. 
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The light scattering measurements show that Ds increases with scattering angle 

while Df is nearly independent of scattering angle. Figure 1.7 shows the linear 

function of Ds vs sin θ  and the independence of Df on the molecular weight. 

 
1.2.4 INTERPRETATION OF DYNAMICS OF POLYELECTROLYTE IN 

LOW-SALT OR SALT-FREE SOLUTIONS  
 

Several different theoretical models have been developed for interpretation of 

various experimental data taken in low-salt or salt-free solutions. Lifson and 

Katchalsky40 assumed that charged macromolecular chains are rigid-like rods because 

of very strong, unscreened repulsive interactions between charges along the chain. It 

was suggested that there is a hexagonal structure with the parallel ordering which is 

due to the intermolecular interactions.  

Figure 1. 5 Dependencies of diffusion coefficients Df and Ds on scattering angle θ:  
Mw = 1 200 000, c = 45.6 g/L. Reprinted with permission from [5]. Copyright 1992, 
American Institute of Physics 
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 DeGennes41 et al. summarized the behavior of polyelectrolytes in solutions as a 

function of polymer concentration. They examined several concentration regions and 

distinguished the critical concentrations. At the lowest polymer concentration, the 

intermolecular interactions are reduced by the large separation between polymer 

chains. The polyions are fully stretched and behave like single molecules. When 

concentration moves to higher regime, the intermolecular interactions become larger 

and the polyions cannot freely orient any longer. They may form an ordered lattice. 

Further increasing the concentration gives rise to an overlap of chains and formation 

of a transient network. Under these conditions macromolecules become more flexible, 

and a characteristic correlation length, ζ, can be introduced to describe the system. In 

this model there is no direct contact between chains because of repulsive electrostatic 

interactions.  

 The isotropic model of de Gennes was later reconsidered by Odijk,3 who derived 

scaling relations based on the concept of an electrostatic persistence length. It takes 

into account the electrostatic contribution from the polyelectrolyte effect of increased 

stiffness of chains. The total persistence length Lt is then given as a sum of the 

electrostatic persistence length Le and persistence length Lp which characterizes the 

chain stiffness in the absence of charges. The persistence length Lt decreases with the 

concentration as c-1. A critical concentration c* is introduced when Lt ≈ l, where l is the 

contour length of the polyelectrolyte. Three different regimes are defined for c > c*. 

For c*< c < c** the tridimensional lattice is deformed but retains some anisotropy. 

This is the regime where Lt » ζ. Above c** (the concentration where the lattice melts), 
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the system is in an isotropic phase with Lt « ζ, and the macromolecule may be viewed 

as an ideal chain of “blobs” with average dimension ζ. Each blob is treated as a 

wormlike chain with fully exerted excluded-volume effect. In the former regime, we 

have ζ ~ c-1/2 and R ~ c-1/2, and in the latter we have ζ ~ c-3/8 and R ~ c-5/16 or ζ ~ c-5/8 

and R ~ c-3/16 for the case when Lt≈Le or Lt≈Lp, repectively. Table 1.1 describes the 

details of these regimes.  

 

Table 1. 1 The phase diagram for aqueous polyelectrolyte solution without added 
salt.  

Region Conc. range Qualitative remarks 

A  Very dilute; negligible interaction between 
the polyions 

B  Dilute/semidilute; polyions remain rigid and 
interact strongly 

C = III  
Drastic decrease in the viscosity due to large 
decrease in polyion dimension 

D = I + III  Fuoss law; chain behavior 

E  Rouselike polymer behavior 

 

Muthukumar42,43calculated the excluded volume of polyelectrolyte in solution as 

a function of various ions concentrations. He proved that the bare excluded volume 

interaction and the electrostatically screened Coulomb interaction between any two 

segments are both screened by the presence of polyelectrolyte chains at nonzero 

concentration. This excluded volume screening leads to an attractive component in the 

effective potential interaction at intermediate distances between two segmental 

charges of the same sign. 



 

14 

Drifford44 and Sedlak28 proposed that the fast mode diffusion was a coupled 

diffusion of the charged species in solution: polyions and counterions. In ths solution, 

the concentration fluctuation of counterions induces an electric force which attracts 

their surrounding polyions. The polyions were dragged by the much faster motion of 

counterions and result in the presence of fast mode diffusion.  

The explanations proposed for the slow mode are interesting, but they have not 

been proved completely. Stigter45 suggested that the slow mode might result from an 

isotropic-anisotropic transition in rodlike polyions due to repulsive polyion-polyion 

interactions. However, there is no optical evidence of orientation such as 

birefringence.  

The concept of domains in solution has also been used to interpret results of 

dynamic light scattering experiments that show the occurrence of an extremely 

slow-diffusive mode for low-salt polyelectrolyte solutions.39 

Schmitz46 et al. have proposed a temporal aggregate model. There are polyion 

clusters which coexist with the free polyions. To stabilize the clusters there is a 

balance of repulsive and attractive forces. The repulsive forces are random Brownian 

motions which favor disruption. Attractive forces are presumed to result from 

fluctuating dipole fields generated by the sharing of the small ions by several polyions. 

Although this model is quite attractive, there is no sufficient experimental data to 

confirm it. 

There are also several theories47, 48 that treat polydispersity as the cause of the 

slow mode. That is, Ds represents exchange diffusion, i.e., diffusion of the local 
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degree of polydispersity. However, the slow mode is observed also when the polyion 

sample is nearly monodisperse, such as NaPSS. Alternatively, cluster formation might 

be viewed as a type of polydispersity.  

1.3 FLUORESCENCE PHOTOBLEACHING RECOVERY 

1.3.1 INTRODUCTION 

If a fluorescent sample is put under a fluorescence microscope, a phenomenon 

would be found that if one observes a fluorescent sample within a 40× objective for a 

long time, and then switches to a 10× objective, it may appear that a dark hole has 

been burned into the sample (Figure 1.8). This is variously known as photobleaching, 

fading, photofading, and photodecay. Photobleaching is mainly due to photochemical 

reactions induced by the light used for excitation. The absorption of light, prerequisite 

for fluorescence, entails the raising of molecules to the excited state. The excited state 

is virtually a different chemical species, usually much more reactive than in the 

corresponding ground-state molecule. A small but significant proportion of the excited 

molecules, instead of fluorescing, undergo a photochemical reaction with the 

production of a new molecule which may be non-fluorescent, or at least 

non-absorbent at the excitation wavelength. 

The dark hole in the Figure 1.8 is burned by exposure to a bright light which is 

focused by the 40× objective. A recovery would be found after a period. This is 

caused by diffusive exchange between the bleached molecules and unbleached 

molecules in the rest of the sample.  

Fluorescence Photobleaching Recovery (FPR) (also named as fluorescence 
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recovery after photobleaching (FRAP)) is a technique basing on the photobleaching. It 

measures the rates of simple transport processes such as diffusion or convective flow 

or rates of transport coupled with chemical reactions in open systems. The 

measurement can be described by three steps: 

1. The fluorescence of a small, select region of the sample is measured using a 

illuminating light that is not strong enough to cause rapid degradation of the 

signal.  

2. The fluorescent moieties in this defined region are irreversibly photobleached by 

exposure to a pulse of bright light. 

3. The return of fluorescence to that same region, due to the exchange by diffusion 

of bleached molecules with unbleached molecules that originally lay outside the 

selected volume, is monitored. 

Recovery of fluorescence is due to the diffusion or flow of the unbleached 

molecules in the surrounding region. Therefore, the analysis of recovery rate is related 

Figure 1. 6 FPR. Left: epifluorescence image acquired with 40× objective. Middle: 
after 10 min illumination, a spot has been bleached in the pattern, now taken with 10× 
objective. Right: recovery is almost complete after 30 min (still 10× objective). Traces 
show intensity across the middle of the image1. Reprint with the permission of 
Springer. 
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to the self diffusion coefficient of the fluorescence molecules. 

1.3.2 ADVANTAGES OF FPR 

Currently, besides FPR, there are many other diffusion detective techniques  

commercially available, e.g., dynamic light scattering (DLS), analytical 

ultracentrifugaion (AUC), and diffusion ordered NMR spectroscopy (DOSY). Each of 

them has particular advantages: DLS with a modern correlator is able to study a wider 

range of diffusion coefficients in a single measurement than any competitor; DOSY 

excels at small, rapid diffusers that may not scatter enough light for DLS; and AUC 

can succeed at very low concentrations. All of these methods share the advantage over 

FPR that no fluorescent label need be attached or naturally present.1 

In return for the trouble of labeling the macromolecule, FPR offers unmatched 

selectivity: one exactly observes the diffusers that have been labeled. Compared with 

the mutual diffusion coefficient from DLS and AUC, the measured optical tracer less 

reflects the thermodynamic interaction. The optical tracer self diffusion coefficient is 

not quite the same as the self diffusion coefficient from DOSY, because the 

concentration gradient between bleached and unbleached molecules has an associated 

chemical potential gradient. It is expected to be very small, though, compared to 

chemical potential gradients arising from variations in the concentration of the 

macromolecules themselves, on which DLS and AUC rely. The optical tracer self 

diffusion coefficient from FPR can be collected over a much wider range of values 

than that DOSY can measure, and requires just microliters of sample.  
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1.3.3 INSTRUMENT OF FPR 

The objective of FPR is to observe the transition of the fluorescence in a 

geometrically well-defined volume, which is defined by the illumination volume. FPR 

measurements are capable to study small systems. This advantage is obtained by 

using an epifluorescence microscope in conjunction with a laser as the illuminating 

light source. In this section, an equipment associated with a 

modulated-photobleaching is described because it enables shallow bleaches allowing 

each diffuser produces a single exponential decay. Figure 1.9 shows a simplified FPR 

instrument in our lab. It consists of an ion laser, an epifluorescence microscope, 

focusing, intensity modulation optics, a photomultiplier tube with photon counting 

electronics, accessory electronics for controlling shutters and protecting the 

photomultiplier tube, and computer interfacing for controlling the experiment and 

collecting the data.  

 

 

 

 
 
 
 

Figure 1. 7  Schematic representation of an FPR system. The laser beam is reflected 
by a mirror (M1) onto a beam splitter (B1) to maximize the reflection at the back 
surface. The weaker beam (the monitor beam) is passed unimpeded to the second 
beam splitter (B2) where it is recombined with the stronger beam (the bleach beam) 
after two internal reflections. The bleach beam is blocked (except during the bleach) 
by a shutter (S2). The beam is aligned with the optical axis of the microscope by a 
pair of mirrors (M2+M3) in a beam steerer. The single lens L provides the appropriate 
focusing prior to entry into the epifluorescence condenser of the microscope. The first 
shutter (S1) permits blocking of the entire beam between experiments.  
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1.3.4 THEORY OF FPR 

In FPR experiments, the principal task is to measure the fluorescence transport 

from an open region of solution as a function of time. This is interpreted in terms of 

the concentrations or numbers of fluorescent labeled molecules in the observation 

region. The fluorescence intensity is expressed in terms of F. As showed in Figure 

1.10, the F0 and F(∞) is the pre-bleach intensity and the immediate post-bleach 

intensity, respectively. F(∞) is not always same as F0.  

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 1. 8  Timing diagram for FPR experiment, with definition of terms 

 

If F(t) represents the fluorescent intensity at time t following a bleaching whose 

bleaching depth is characterized by parameter k, the value of k can be calculated as: 

1                       Eq. 1. 8 

The percentage of dye groups bleached can be calculated as 

                                              100%                                     Eq. 1. 9 

There are various bleaching patterns have been reported. A schematical summary 
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is showed as Figure 1.11 

Currently, most FPR measurement is practiced by placing a mask on the rear 

image plane of the microscope and creating a pattern on the sample during the 

photobleaching step. Striped patterns are convenient because of the easy availability 

of Ronchi rulings, an optical element in which black stripes are etched into glass at a 

regular distance. If L represents the pattern size in the sample, the spatial frequency of 

the pattern is defined as = 2π/L 

The fluorescent sample after bleaching appears to a square wave in fluorescent 

intensity as a function of distance, x, which as showed in Figure 1.10. The bright and 

dark regions are equal in width. The diffusion of fluorescence in the pattern can be 

described in the Fourier series function:  

, 0 sin sin 3 sin 5 sin 7

                              Eq.1. 10 

The variable C represents the initial contrast: 

| 0 |                  Eq.1. 11 

Where Fmin is the minimum intensity along the square wave pattern. Eq.1. 10 

neglects edge effects at the boundary of the striped pattern and the circular or 

Gaussian illumination profile. The relaxation of the square wave pattern amounts to 

multiple simultaneous instances of diffusion in a sine wave boundary condition. This 

problem can be integrated by Fourier transform: the fundamental decays as 

exp[-DK2t]. Therefore, most exponential items in Eq 1.10 are ignorable, and only a 

few terms are needed to represent the fluorescence recovery integrated over all x. The 

signal obeys to: 
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     Eq. 1.12 

This equation can be handled by a nonlinear fit package. If C is estimated, it also can 

be linearized except for the first few data points at early times. Usually, a constant 

baseline term B or a function B(t) would be added to address the recovery 

incompletion or a nominally slanted background caused by the spot recovery process. 

 

1.3.5 SAMPLE LABELING 

Compared with other diffusion detectors, FPR experiments take advantage of the 

selectivity and sensitivity of fluorescence spectroscopy. The price for these 

Figure 1.11 Various types of photobleaching patterns.1 Reprint with the permission 
of Springer 
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advantages is the frequent necessity to use fluorescien or its derivate as probe. In 

studies of diffusion or aggregation, the probe is likely to be small. In studies of 

chemical kinetics, it is probable that the rates of reactions and the equilibrium 

constants may be affected by the probe. In such cases the choice of probe and/or the 

site of labeling may greatly affect the results and alternatives should be explored. 

 
Figure 1. 12. A modulation detector functions to convert a shallow, typically 5-10%, 
spatial modulation in fluorescent intensity (solid line, in this case almost a square 
wave) into a large, time-dependent voltage (dashed line, in this case almost a triangle 
wave.1 Reprint with the permission of Springer. 
 

There are some concerns about the species of fluorescent probe. First, since the 

fluorescence microscope generally employs ion-lasers for illumination, the 

fluorophore must absorb in the region 450-530 nm or 514.5-660 nm depending on the 

laser type. Second, the probe must be photostable., so that little photolysis occurs 

during the observation of the recovery of fluctuations. Yet for FPR experiment, it is 

necessary that the probe can be irreversible photolysed so that the developed theories 

are applicable to the data analysis. Furthermore, it is desirable to maximize the 
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fluorescence quantum yield to enhance the sensitivity. A number of quite different 

fluorephores satisfy most of these criteria, and some of these are listed in the Table 1.2 

along with their chemical structure shown in Figure 1.13.  

There is no strict guideline about how many dye molecules to attach. Too many 

dyes can affect the structure of the macromolecule. It is proposal that photobleaching 

byproducts may cut neighboring chains and result in too-rapid diffusion for the 

damaged polymer. Since FPR exhibits excellent sensitivity, trace amount of labeling 

results in adequate signal. For uniform macromolecules, it is better to start by adding 

enough dye to label one in ten or one in a hundred macromolecule.  

1.4 STATEMENT 

In the study of this thesis, a fluorecein isothiocyanate(FITC) labeled 

poly(styrenesulfonate sodium salt) is polymerized through the ATRP. The synthesis is 

started from monomer, styrenesulfonate, and gives 100% sulfonate degree to the 

product. This synthesis also takes advantage of the living feature of ATRP which 

results in a narrow polydispersity. The attachment of FITC label was confirmed by 

mass spectroscopy, fluorescence spectroscopy, and fluorescent photobleaching 

recovery. The level of labeling was estimated with fluorimeter. This labeled NaPSS 

was then separated into 12 different fractions by rejecting the sample solution into an 

analysis scale GPC/MALLS. The self-diffusion of these fractions were investigated 

by means of FPR . 
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Table 1.2 Some commonly used fluorescent molecules 

Fluorescent proble  
(nm) (nm

) 

φf Comments 

Fluorescein (1) 490 520 0.15-0.3

φf  depents on degree of 
labeling because of 
self-quenching. Emission 
is pH sensitive. 
Photostable 

Tetramethylrhodamine 
(2) 550 580 0.1 

Fairly hydrophobic and 
chemistry of labeling is 
harder in aqueous media. 
Extensive dialysis needed. 
Photostable 

Eosine (3) 522 560 
(690)

Very low
phosphor
escence 

Good probe for rotational 
diffusion. Low 
fluorescence yield is less 
good for FPR 
measurements 

Lissamine rhodamine 
(4) 540 570 Low Easier to label with than 

(2) but lower φf. 

Nitrobenzoxadiazole 
(NBD-Cl)(5) 

340(-Cl) 
430(-SR) 

470(-NHR)
480(-NR2) 

--- 
520 
530 
530 

0 
--- 

0.05 
0.05 

Good probe to react with 
SH or amino groups. 
NBD-Cl is not 
fluorescent. Emission 
wavelength and yield are 
very solvent dependent. 
Photostable 

NBD-methyl amino- 
hexanoic acid-NHS (6) 480 535 0.05 Developed to react with 

hindered amines 
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Figure 1.13 Chemical structures of some commonly used fluorescent molecules and 
the reactive groups available with these. The names and spectroscopic characteristics 
are listed in the table 
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CHAPTER 2 SYNTHESIS AND CHARACTERIZATION OF 
FLUORESCEIN ISOTHIOCYANATE LABELED 
POLY(STYRENESULFONATE SODIUM SALT) 

2.1 INTRODUCTION 

Since the “extraordinary behavior” of polyelectrolyte in salt-free or low-salt 

solutions was discovered by Lin, S. C.25 in 1978, the correct interpretation of this 

phenomenon has been debated for more than a quarter century. So far, most studies 

were done by dynamic light scattering (DLS); however, the scattering of visible light 

from polyelectrolyte solutions at low ionic strength is so weak that long acquisitions 

are required to get a reliable DLS signal. That means the dust or undissolved bits of 

polymer can corrupt the measurement. Compared with light scattering, Fluorescence 

Photobleaching Recovery (FPR) is expected to provide crucial information about 

transport behavior of the molecule and any aggregates. Unlike mutual diffusion 

coefficient gotten from DLS, FPR measures the optical tracer self diffusion coefficient 

which does not reflect the thermodynamic interaction. Therefore, FPR is an easily 

repeatable approach that provides new insight about the dynamic properties of 

polyelectrolyte in low-salt or salt-free solutions.   

Pseudolinear and regularly branched water-soluble macromolecules are 

commercially available in fluorescently labeled form; these include dextrans and 

poly(amidoamine) dendrimers. The same is not true for the most commonly chosen 

example, poly(styrenesulfonate) sodium salt (NaPSS), which is a linear strong 

polyelectrolyte. The commercial NaPSS is produced by sulfonating polystyrene under 

harsh conditions;49, 50 however, it still may not be possible to achieve 100% degree of 
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sulfonation.51, 52 The residual hydrophobic patches along the chains may group 

together, leading to aggregation.53-55 There are some other concerns involved in the 

NaPSS synthesis and processing: the freeze-drying may give rise to more 

aggregates;56, 57 the filtering may remove the aggregates or domains;58, 59 and the 

contact with trace amounts of hydrophobic substances may responsible for the slow 

mode.60 Another problem is how to prepare NaPSS for the FPR measurement. The 

commercial NaPSS lacks highly reactive functional groups that would permit the 

direct attachment of fluorescein or its derivatives. In the 1990’s, a two-step synthesis 

path was developed: chlorinate the sulfonate group in a PCl3/POCl3 mixture or pure 

POCl3, and then attach the fluoresceinamine.61 Because of the poor solubility of 

NaPSS in PCl3/POCl3 and POCl3, this heterogeneous reaction may result in uneven 

chlorination leading to uneven distribution of labeling. This will give rise to 

hydrophobic patches along the NaPSS chains.  

To address these issues, a new strategy was developed to synthesize the 

fluorescein isothiocyanate (FITC) labeled NaPSS. A virgin NaPSS sample is directly 

co-polymerized from monomeric styrenesulfonate sodium salt and FITC-labeled 

4-aminostyrene via atom transfer radical polymerization (ATRP). This monodispersed 

NaPSS has 100% degree of sulfonation and no hydrophobic defeats. No drying 

procedure was involved during the polymerization, and the material does not come 

into contact with hydrophobic impurities. Dialysis centrifuge result and fluorescence 

spectra show that the FITC was successfully attached to the polymer. The diffusion  

of this labeled samples could be studied by FPR.  
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2.2 EXPERIMENTAL 

2.2.1 MATERIALS 

4-styrenesulfonic sodium salt, 4-vinylaniline (97%), fluorescein isothiocyanate 

isomer I (FITC), copper(I) chloride (99.995+%), 2,2’-bipyridine (99+%) (bpy), and 

deuterium oxide (D2O) were purchased from Aldrich. Bromo-p-toluic acid (97%) 

(BPT) was purchased from Acros Organic. Silica Gel (63-200 nm particle size, 60 Å 

pore size) was purchased from Scientific Adsorbents Inc. Methanol (anhydrous) and 

tetrahydrofuran (THF) were purchased from Fisher Scientific. Molecularporous 

membrane tubing was purchased from Spectrum Laboratories, Inc.. Nanopure water (> 

18.0 MΩ cm, Barnstead) was used throughout the experiment. All chemicals were 

used without further purification.  

2.2.2 SYNTHESIS OF FITC-LABELED 4-AMINOSTYRENE 

FITC 38mg (0.1 mmol) and 200 proof ethanol (8 mL) were added into a 

round-bottom flask. The solution was stirred, and a condenser and septa were 

connected to the flask. N2 was introduced to the solution through a bubbler. Then 10 

NH2

OO OH

N

COOH

C S

+ HN

O OHO

NH

HOOC

C

S

Figure 2.1 Reaction scheme for FITC-labeled 4-aminostyrene 
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mg (0.09 mmol) of 4-aminostyrene and 38 mg (0.10 mmol) were added to this 

solution under N2 atmosphere. The use of excess FITC is designed to facilitate the 

labeling reaction. The reaction mixture was conducted at 50˚C for 1 hour. The 

reaction was carried out for 24 hours at room temperature. 0.0825g solid, including 

product and unreacted dye, was gotten after rotary evaporation. A schematic regarding 

the synthesis is illustrated in Figure 2.1. 

2.2.3 SYNTHESIS OF POLY(STYRENESULFONATE SODIUM SALT) 

The “patchless” NaPSS was synthesized through atom transfer radical 

polymerization (ATRP) as described by S. P. Armes.62 50 mL of Nanopure water and 

50 mL of methanol were degassed with filtered N2 for 30 minutes. 4.89g (21.3 mmol) 

of 4-styrenesulfonic sodium salt was first dissolved in 22 ml degassed Nanopure 

water in a round-bottomed flask. 51 mg (0.24 mmol) of initiator, BPT, was added into 

the solution and the pH was adjusted to 10~11 with 1M NaOH (~1.2 ml) so as to just 

completely dissolve the initiator. 6 mL of degassed methanol was added to the 

solution. Then this solution was purged with filtered N2. After 30 minutes, 24 mg of 

copper(I) chloride (0.24 mmol; 1 equiv.) and 74 mg of bpy (0.48 mmol; 2 equiv.) 

were added in solution while maintaining a slow N2 purge. The reaction solution 

turned to brown and was stirred at the room temperature. After 48 hours, the reaction 

was stopped by opening the flask to air. 5 mL anhydrous methanol and 5 mL 

Nanopure water were added into the reaction solution. The solution turned to blue 

after about 30 minutes. The product was checked by adding several drops of solution 
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into methanol. Some white precipitate was seen.  

The reaction solution then was purified through a silica gel column to get rid of 

the copper ions. A mixture solute (methanol/Nanopure water = 28ml/100ml) was used 

to wash the column until no polymer can be gotten from the eluate. The product was 

obtained by rotary evaporation, and the final yield was 98%. This sample was purified 

at least three times by dissolving in water and then precipitating with methanol before 

the GPC grading.  

2.2.4 SYNTHESIS OF POLY(FITC-LABELED 
AMINOSTYRENE-CO-STYRENESULFONATE SODIUM SALT) 

The protocol of poly(FITC-labeled aminostyrene-co-styrenesulfonate sodium salt) 

synthesis is fundamentally the same as that used for the virgin NaPSS synthesis. All 

of the FITC-labeled aminostyrene prepared in 2.2.2 was dissolved in 5 mL methanol 

and degassed with filtered N2 for 15 minutes. This solution was added into the 

reaction mixture by syringe after the step of adjusting the pH to 10~11. The reaction 

was conducted for 44 hours at the room temperature. After purified through a silica 

gel column, the eluate was bright yellow. A yellow precipitate was resulted when 

several drops of this eluate was added to methanol. A light brown product was 

Figure 2.2 Reaction scheme for the polymerization of poly(FITC-labeled 
aminostyrene-co-styrenesulfonate sodium salt) 

HN FITC SO3 Na

+ n+m

N SO3 Na

nCu(I)Cl, bpy
3:1 H2O/methanol mixture

room temperature

SO3 Na FITC

m
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obtained by rotary evaporation, and the final yield is 97.7%. Preparation of the 

poly(FITC-labeled aminostyrene-co-styrenesulfonate sodium salt) is shown in Figure 

2.2. 

2.2.5 PURIFICATION OF POLY(FITC-LABELED 
AMINOSTYRENE-CO-STYRENESULFONATE SODIUM SALT) 

Poly(FITC-labeled aminostyrene-co-styrenesulfonate sodium salt) (2.68 g) was 

dissolved in 50 mL Nanopure water and stirred for 30 minutes. During this time, a 

dialysis tube (Spectra/Pro Membrane, MWCO=3,500) was boiled in Nanopure water 

for 15 minutes. Then the solution was added into this dialysis tube, and the tube was 

put in a 2-liters beaker which was fully filled with Nanopure water and stirred with a 

magnetic bar. The dialysis water was changed for every 2 hours for the first 6 hours 

and then changed for every 6 hours. The dialysis effect was checked after 2 days and 

4 days: 0.3 ml dialyzed solution was added in Microcon (MWCO=3,000) and 

centrifuged for 30 minutes at 10000 RPM (g-field= 12000); the solution in the lower 

layer was then tested for the absence of free dye by visual observation in a 488 nm 

laser. No free day could be seen after 4 days dialysis.  

2.2.6 CHARACTERIZATION 

 Molecular Weight Distribution. The molecular weight and polydispersity index 

were obtained by GPC/MALLS using a Wyatt multiangle light scattering (DAWN 

HELEOS) and quasielastic light scattering (QELS) instrumentation along with an 

Optilab rEX differential refractometer and ASTRA V software. The specific refractive 

index increment, dn/dc, was taken as 0.198 mL/mg.63 The GPC column was PL 
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Aquagel-OH mixed 8 μm (Polymer Laboratories). Samples were dissolved in the 

mobile phase, 200 mM NaNO3 + 10 mM NaH2PO4 + 2 mM NaN3, adjusted to pH 7.5. 

The injected volume was 0.10 mL, and the flow rate was 0.5 mL/min. The 

weight-average molecular weight and its standard deviation were calculated from 

three or more repeat measurements. In estimating Rg, a random coil model was 

selected in the Wyatt Astra software.  

 1H NMR Spectra. 1H NMR spectra were acquired on a Bruker APX 300 

spectrometer at 25˚C with a 90º pulse of 6.95 μs. 5 w% of product was dissolved in 

D2O for 48 hours before NMR measurement. The extraordinary amount of product 

was designed to highlight the trace of FITC dye.  

 Fluorescence Spectroscopy. Fluorescence spectra were recorded with Perkin-Elmer 

luminescence spectrophotometer LS 50B. A quartz cuvette with 1-cm path length was 

used. Nanopure water was adjusted to pH ~7.5 with 1.0 M NaOH/HCl, and labeled 

NaPSS was dissolved in this solute to prepare 0.5 mg/mL sample. The scanned 

wavelength was from 350 nm to 600 nm.  

 FPR Measurement. The FPR apparatus has been described in chapter 1. The striped 

pattern was created by illuminating a coarse diffraction grating (Ronchi ruling), which 

was held in the rear image plane of a standard epifluorescence microscope, with an 

intense, brief laser flash. An electromechanical modulation detector system monitors 

the subsequent disappearance of the pattern due to the exchange of molecules that 

were bleached and those that were not. The contrast signal (AC amplitude) from the 

modulation detector decays exponentially: 
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exp  2  (Eq. 2.1) 

Where the spatial frequency of the grating is  2 / , with L representing the 

distance between the same side of adjacent stripes in the Ronchi ruling, and D is the 

optical tracer self-diffusion coefficient. Twelve different K values can be used to 

verify to absence of nondiffusive signal recovery, which could result in finite recovery 

rates even at K= 0. In this work, most runs were performed in triplicate at a single K 

value. 

2.3 RESULTS AND DISCUSSION 

2.3.1 FITC-LABELED 4-AMINOSTYRENE 

Figure 2.3 is the mass spectrometry analysis of FITC-labeled aminostyrene. It 

shows a sharp peak at 509.1171 m/z corresponding to the molecular weight of 

FITC-labeled aminostyrene, 508.48. The difference between these two values is 

assigned as the mass of a proton which loads charge on this molecule. The other peaks, 

348.0314, 390.1462, and 436.0849, are considered to be the fragments and the free 

FITC dye (MW= 389.38). 

2.3.2 UNLABELED NAPSS AND FITC-LABELED NAPSS 

An analysis of the virgin NaPSS, FITC-labeled NaPSS and commercial NaPSS is 

shown in Figure 2.4 with the means of 1H NMR. All of the NMR spectra show the 

feature peaks at 1~2 ppm and at 6~8 ppm, which corresponding to the backbone and 

aromatic ring of NaPSS, respectively. The peak at 4.6 ppm in Figure 2.4 (a) is 
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assigned to residual H2O.  

Unfortunately, the amount of labeled aminostyrene incorporated is too low to be 

precisely characterized by 1H NMR. No 1H peak from aminostyrene or FITC 

appeared in the 1H NMR spectrum because of the low content of these groups. Based 

on the ratio of reagent feed, an upper bound of FITC content can be estimated: the 

percentage of FITC-labeled aminostyrene in poly(FITC-labeled 

aminostyrene-co-styrenesulfonate sodium salt) is less than 0.7 mol %. The percentage 

of styrenesulfonate sodium monomers in poly(FITC-labeled 

aminostyrene-co-styrenesulfonate sodium salt) must be > 99%, which excess the 

degree of sulfonation achieved by most commercially available NaPSS.  

Table 2.1 lists the characterization results for virgin NaPSS, FITC labeled NaPSS and 

commercial NaPSS. The ATRP approach leads to narrow polydispersity indexes for 

virgin NaPSS and FITC labeled NaPSS, 1.11 and 1.07 respectively. Those 

polydispersity indexes are much better than that of bulk commercial NaPSS. The 

molecular weights of virgin NaPSS and FITC-labeled NaPSS are close to each other. 

It indicates that there is no obvious effect of FITC-labeled aminostyrene on the 

polymerization. The GPC/MALLS traces are shown in Figure 2.5. An impurity peak 

was observed in the dRI trace for both labeled and unlabeled product. Some 

measurements were carried out to look for the origin of this impurity. A same peak 

was finally found in the dRI trace of monomer. Therefore, the dRI trace of labled and 

unlabeled NaPSS were normalized by abstract the impurity peak. Figure 2.5 (a) and (b) 

present the GPC trace in order of dRI of monomer, dRI of product before 
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normalization, dRI of product after normalization, and LS of product. Figure 2.6 

shows the M and root mean square (RMS) radius plot of FITC-labeled NaPSS and 

unlabeled NaPSS. 

 

 

Table 2. 2 Characterization of virgin NaPSS, FITC-labeled NaPSS, and commercial 
NaPSS with GPC/MALLS 

Product 4-styrenesufonate 
sodium salt (g) 

FITC-labeled 
aminostyrene (g) Mw 

PDI 
Mw/Mn 

Unlabled 
NaPSS 4.89 0 129,000±600 1.110±0.003

FITC-labeled 
NaPSS 4.89 0.0875 148,000±600 1.071±0.002
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Figure 2.3 Mass spectrometry analysis of FITC labeled 4-aminostyrene  
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Figure 2. 4 1H NMR spectra for: (a) FITC-labeled NaPSS, (b) virgin NaPSS, (c) 
commercial NaPSS 
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Figure 2. 5 GPC/MALLS traces for: (a)virgin NaPSS, (b) FITC-labeled NaPSS 
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Figure 2.6 The M and RMS radius plot of (a) FITC-labeled NaPSS, (b) unlabeled 
NaPSS 

 

 
 
 
 

8 9 108 10
10000

100000

1000000

10

15

20

25

30

35
 LS trace of FITC-labeled NaPSS

Volume/ mL

R
M

S
 radius/nm

lo
gM

 Mw of FITC-labeled NaPSS
 RMS of FITC-labeled NaPSS

8 9 10
10000

100000

1000000

10

12

14

16

18

20

22

24

26

28

30

32

34

Volume/mL

 LS trace of unlabeled NaPSS
 MW of unlabeled NaPPS

lo
gM

R
M

S
 radius/nm

 RMS radius of unlabeled NaPPS

(a) 

(b) 



 

39 

2.3.3 FLUORESCENCE PROPERTIES OF POLY(FITC 
AMINOSTYRENE-CO-STYRENESULFONATE SODIUM SALT) 

The presence of FITC in poly(aminostyrene-co-styrenesulfonate sodium salt) was 

indicated by the yellow color of solution, which had been dialyzed after 4 days. The 

dialysis result was also checked by centrifuge: 0.3 mL solution from dialysis tube was 

added in a Microcone (MWCO=3000) and centrifuged at 10000 RPM (g-field = 

11950) for 30 minutes. Figure 2.7 shows the lower lay solutions in the Microcone 

after centrifuge. The eluent did not appear colored any more after the sample was 

dialyzed for 4 days. It also hardly can see any fluorescence in this eluent under the 

illumination of blue laser light. Then the sample solution was rotary evaporated. 

Figure 2.8 shows the FITC-labeled NaPSS still looks bright yellow after 4 days 

dialysis. The successful attachment of FITC was later confirmed by fluorescent 

spectrum analysis. Figure 2.9 shows the fluorescence spectra of FITC-labeled NaPSS 

at pH 7.5. The positions of excitation peak and emission peak are 492 nm and 518 nm, 

respectively. They are in good agreement with those of recorded fluorescein spectra, 

which with the maximum excitation and emission wavelength at 494 nm and 520 nm 

at pH 8.0.  

The level of dye labeling was estimated by calculating the FITC concentration in 

sample solution. The fluorescence calculation was produced with pure FITC solutions 

at pH 9.5. The maximum excitation and maximum emission wavelengths were set at 

494 nm and 514 nm, respectively. Table 2.2 shows the experimental data and 

calculation result for FITC-labeled NaPSS. The calculation result suggests that about 

four FITC group attached to per ten thousand styrenesulfonate monomer. If taking the 
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weight average molecular weight into account, only one fourth polymer chains are 

singly tagged. Therefore, intramolecular associations between the dye units are 

unlikely to alter the conformation. 

 

 

 
 
Figure 2. 7 The low layer solutions in Microcone after dialysis and centrifuge: (a) 
dialyzed for 2 days, (b) dialysis for 4 days. Both solutions have been centrifuged at 
10000 RPM (g-field=11950) for 30 minutes.  
 
 
 
 

 
 
Figure 2. 8 FITC Labeled NaPSS after 4 days dialysis and rotary evaporation  
 

( a ) ( b ) 
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Figure 2. 9 Fluorescence spectra for FITC-labeled poly(styrenesulfonate sodium 
salt). The sample was dissolved in Nanopure water, which pH was adjusted to ~7.5 
with 0.01 M NaOH/HCl. Emission wavelength: 518 nm. Excitation wavelength: 492 
nm. 

 

Table 2. 2 The level of dye labeling for FITC-labeled NaPSS 

Sample Conc. 
(mg/mL) 

FITC 
conc. 

(mg/mL) 

FITC/styrenesulfonate 
monomer  

(mol/mol cal) 

FITC/NaPSS
(mol/mol cal)

FITC-labeled 
NaPSS 0.05 0.045 0.000373 0.25 

2.3.4 GPC FRACTIONS OF FITC-LABELED NAPSS  

For the study of polyelectrolytes in salt-free or low-salt solutions, the most 

controversial topic is the interpretation of slow mode diffusion. Some researchers 

assigned it to the complicated interactions between charged polymer chains; while the 

others considered it to be a result of clusters or aggregations. Most investigations have 

been devoted to this area, but the prospect is still obscure. It has been observed that 
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the slow mode diffusion is related with the molecular weight of polyelectrolyte 

(Figure 1.5). A series of monodispersed polyelectrolytes with different molecular 

weight will greatly facilitate the study of dynamic properties.  

The FITC-labeled NaPSS were separated with the means of analytical scale GPC. 

Twelve fractions were collected in vials after a single injection of 0.6 mg (0.6 % 

solution×0.1 ml). Although the fractions were diluted in the GPC too low to appear 

yellow color, each fraction was fluorescent in the illumination of blue laser light. 

Table 2.3 shows the GPC analysis of the original samples and fractions. The 

molecular weights of fraction 1 and fraction 12 are opposite with the trend of other 

molecular weight change. These errors are probably due to the inaccuracy of 

calculation; the eluate is too diluted at the outer wings of the GPC peak.   

2.4 CONCLUSIONS 

Poly(FITC-labeled aminostyrene-co-styrenesulfonate sodium salt) was 

synthesized through atom transfer radical polymerization (ATRP). This FITC-labeled 

copolymer has molecular weight at 137,000 and a narrow polydispersity index at 

1.071 which due to the living features of ATRP. This product was dialysized for 4 

days until no more free dye could be washed off by centrifugal dialysis. The sample 

after dialysis appears bright yellow color and still shows typical fluorescence 

emission/excitation behaviors. This FITC labeled copolymer was then separated into 

twelve fractions by analysis scale GPC. All of these fractions were characterized by 

GPC/MALLS. 
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Table 2.3 Characterization of virgin NaPSS, FITC-labeled NaPSS, and 
FITC-labeled NaPSS fractions by GPC/MALLS 

Product 
(L=FITC-labled) Mw PDI 

Mw/Mn 
D/10-7 

cm2s-1 

1 129,000±260 1.11 ------ 

L2 148,000±148 1.07 6.01±0.23 

L2-GPC fraction 
1 

75000±600 1.095  

L2-GPC fraction 
2 

191,000±380 1.011  

L2-GPC fraction 
3 

186000±190 1.002  

L2-GPC fraction 
4 

159000±160 1.002  

L2-GPC fraction 
5 

138,000±280 1.001 2.10±0.214 

L2-GPC fraction 
6 

121,000±240 1.001 2.31±0.263 

L2-GPC fraction 
7 

107,000±210 1.001 2.66±0.375 

L2-GPC fraction 
8 

96,000±200 1.001 3.03±0.58 

L2-GPC fraction 
9 

87,000±170 1.000 3.16±0.634 

L2-GPC fraction 
10 

76,000±150 1.009 3.37±0.668 

L2-GPC fraction 
11 

58,000±290 1.003  

L2-GPC fraction 
12 

107,300±540 1.054  
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CHAPTER 3 OPTICAL TRACER DIFFUSION STUDIES OF 
POLYELECTROLYTE SOLUTIONS 

3.1 INTRODUCTION 

Among those complex and not yet understood properties of polyelectrolyte in 

solution, the presence of extraordinary transition of polyelectrolyte in low-salt or 

salt-free solutions is most intensively discussed since they were first discovered by 

Schurr and his co-workers. A very slow diffusion mode of poly-L-lysine in low salt 

range was reported.25-27 Later, more investigations indicate5-7, 10, 28-30 that such a “slow 

mode” is universal for essentially all investigated polyelectrolytes.31, 32 So far, this 

phenomenon has been attributed to different origins. Schmitz39 proposed an idea that 

the fast mode diffusion is related to the coupled diffusion of polyelectrolyte chains 

and their counterions. The counterions around a parent polyion chain are dense and 

asymmetric. They diffuse very fast and result in electric field fluctuations. The 

polyion chains are trapped by this fluctuation which induces an electrophoretic 

mobility-related diffusive relaxation. For the slow mode diffusion, the proposed 

interpretation is even more interesting but controversial. It has been attributed to the 

dynamics of large, multi-chain domains or some insoluble chain clusters or even a 

defect from the thermal history during the imperfect processing of the polyelectrolyte 

samples.  

Most of these polyelectrolyte investigations were conducted by means of the 

dynamic light scattering (DLS) technique. For the neutral polymers or 

polyelectrolytes in high salt solutions, diffusion coefficients could be calculated from 
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the characteristic decay times which were gotten from the DLS experiment. For the 

polyelectrolytes in low-salt or salt-free solution, however, the situation is more 

complicated. The scattering intensity of polyelectrolytes becomes very weak when 

they are in low-salt or salt-free solutions. This greatly deteriorates the accuracy of 

experimental data. Although recently, the advanced computer and detector techniques 

enable us to conduct better measurements, the preparation of a dustless sample for the 

long acquisition times required by the low scattering intensity is still painful.     

Fluorescence Photobleaching Recovery (FPR) is a technique that relies on 

labeling the polymer chain with a photochromic dye. It is a more convenient and less 

controversial diffusion detector than DLS. Hundreds of runs could be done with 

several microlitter samples in one hour. In contract to DLS, FPR obtains the optical 

tracer self diffusion coefficient and usually obtains diffusion on longer time and 

distance scales.   

The partial specific volume of charged macromolecule in solution provides a 

bridge connecting weight fraction (wt/wt), concentration (wt/vol), and volume 

fraction (vol/vol). It is of importance in the interpretation of polyelectrolyte diffusion. 

The partial specific volume can be determined experimentally through density 

measurement. Since the partial volumes can be looked upon as the sum of the true 

volumes of the ions themselves and of the associated volume changes of the solvent, a 

solute-solvent interaction is required. 

In this study, the densities of various NaPSS concentrations in both aqueous 

solution and salt solution were examined. A FPR device is also used to investigate the 
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translational diffusion of labeled NaPSS in aqueous solutions  

3.2 METHODS 

Density measurements were carried out at 20ºC using a Paar DMA 58 

densitometer. Calibrations were performed with water and at least one calibration 

standard for every different concentration. Commercial NaPSS (Mw=70,000, PDI=1.1) 

sample was dissolved in Nanopure water and 10 wt% NaCl solution, respectively, for 

4 days before measurement. Every density value was estimated from three runs. 

The FPR apparatus has been described in chapter 1. The striped pattern was 

created by illuminating a coarse diffraction grating (Ronchi ruling) held in the rear 

image plane of a standard epifluorescence microscope with an intense, brief laser 

flash. An electromechanical modulation detector system monitors the subsequent 

disappearance of the pattern due to exchange of molecules that were bleached and 

those that were not. Figure 3.1 shows the program screen of FPR software. The white 

dotted line represents the DC amplitude which is the intensity of the illumination light; 

the green dots represent the AC amplitude which indicates the decay of the contrast in 

the bleached strip pattern; the green dotted line is the baseline estimated from the AC 

amplitude before bleaching. The contrast signal (AC amplitude) from the modulation 

detector decays exponentially: 

exp 2     (Eq. 2.1) 

where the spatial frequency of the grating is 2 / , with L representing the 

spatial period projected by the Ronchi ruling into the sample, D is the optical tracer 
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self-diffusion coefficient, and B is the baseline. The experimental data were fitted by 

Anscan. Figure 3.2 is the stimulation screen of Anscan. Many different K values can 

be used to verify the absence of nondiffusive signal recovery, which could result in 

finite recovery rates even at K= 0. Most runs were performed in triplicate at a single 

K value. 

 
Figure 3. 1 The windows of FPR program. White spot line: DC amplitude; green 
spots: AC amplitude; green spot line: baseline. 

Figure 3. 2 The windows of Anscan. The internal window is showing the stimulation 
result calculated by the program. 
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3.3 RESULTS AND DISCUSSION 

3.3.1 DENSITY OF NAPSS SOLUTION 

The partial specific volume,   , of the solute is defined as the change in total volume, 

∂ , per unit mass upon adding an infinitesimal amount, , of the solute at constant 

temperature, T, pressure, p, and composition of the components. 

, ,  

The partial molar volume, , is defined in an analogous way by substituting the 

number of solute grams, , by the number of solute moles, n2 

, ,  

 

  

 

0 10 20 30 40 50 60 70 80 90 100
0.0

0.2

0.4

0.6

0.8

1.0

ρ−1
/ m

L 
g-1

 

 

 aqueous solution
 0.1 M NaCl solution
 linear fit of aqueous solution
 linear fit of 0.1 M NaCl solution

ρ−1
/ m

L 
g-1

wt %

0 10 20 30 40 50
0.000

0.001

0.002

0.003

0.004

0.005

wt %

Standard Deviation

Figure 3. 3 Inverse of density dependence of the weight fraction for the aqueous 
solution and salt solution of commercial NaPSS (Mw=70,000, PDI=1.1). The interior 
graph is the standard deviation for the experimental data and the fitted linear. 
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As it is hard to know the precise molecular weight of polymer, the partial specific 

volume is more commonly measured by macromolecular scientists than the partial 

mole volume. 

Figure 3.3 shows the inverse of the solution density (i.e., V/(g1+g2)) against 

weight fraction of solute (i.e., g2/(g1+g2)). It indicates that both the partial specific 

volumes of NaPSS in aqueous solution and in 0.1 M NaCl salt solution are 

independent with NaPSS concentration. The partial specific volume of NaPSS in 

aqueous solution and salt solution is 0.5743±0.0002 and 0.5637±0.0004, respectively. 

3.3.2 SELF-DIFFUSION OF GPC FRACTIONS WITH FPR 

For the self-diffusion study, all of the fractions in the GPC eluent were sealed in 

FPR rectangular cells (0.3×3.0 mm I.D., VistroCom) and measured with four different 

K value, including K=157, 253, 405.3, and 583 cm-1. Only fractions 5 to 10 have 

accurate relations between diffusion coefficient and the corresponding molecular 

weight. The rest fractions behaved weird which mostly came from the shoulder of 

GPC peak. This is probably due to their too diluted concentration. Figure 3.3 shows 

gamma versus K2 for fractions 5, 7, and 8.  The experimental data when K is at 405.3 

and 583 cm-1 is more acceptable than the other data. Since light labeling and very low 

concentration, the data measured when K is at 157 and 253 cm-1 is too noisy to be 

processed. 

The diffusion coefficients and molecular weight of fraction 5 to fraction 10 are 

presented in Table 3.1. It is clear that the self-diffusion increase with the decrease of 
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molecular weight. The uncertainty in D is higher than the several percent we have 

come to expect of FPR in aqueous systems due to the very low concentrations. The 

range of M values explored is not very wide, but the observed power law slope of 

about -3/5 does meet the expectation for a screened polyelectrolyte chain; i.e., the 

polymer behaves as a random coil in a good solvent in this buffer (200 mM 

NaNO3+10 mM NaH2PO4+2 mM NaN3 adjusted to pH 7.5) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4 FPR result of Г versus K2 for fraction 5, 7, and 8 
 
 
Table 3. 1 Diffusion coefficients of fraction 5 to fraction 10. The result were 
calculation from the liner fit of Figure 3.3 

 Fraction 
5 

Fraction 
6 

Fraction  
7 

Fraction 
 8 

Fraction 
9 

Fraction 
10 

D/10-7 

cm2s-1 
2.10 

±0.21 
2.31 

±0.26 
2.66 

±0.37 
3.03 

±0.58 
3.16 

±0.63 
3.37 

±0.66 

Mw 
138,000 

±280 
121,000 

±240 
107,000 

±210 
96,000 
±200 

87,000 
±170 

76,000 
±150 
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Figure 3. 5 Diffusion of FITC labeled NaPSS fractions obtained from GPC. The 
power law slope over the limited range of Mw available is indicated. 

3.4 CONCLUSIONS 

The density of various NaPSS concentration in both aqueous solution and salt 

solution were examined with densitometry. Both kinds of densities are independent of 

NaPSS concentration. There is no significant difference between the partial specific 

volume of NaPSS in aqueous solution and salt solution, meaning that the structures 

underlying the slow mode are note detectable by densitometry. The self-diffusion of 

the FITC labeled NaPSS fractions, collected from an injection through the analytical 

scale GPC/MALLS, were investigated with FPR. Although all of the fractions have 

obvious fluorescence photobleaching reaction, the behavior of fraction 5 to fraction 

10 is more reasonable. Their diffusion coefficients were estimated by stimulating the 

function between Г and K2. These graphs indicate that there is no free dye in the 

fraction solutions which gives rise to a diffusion even when K=0. These diffusions 

were plotted against the molecular weight. The slope is -0.617, which is in good 
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agreement with power law. This indicates that the polyelectrolyte chains behave like a 

random coil in the GPC buffer.  
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APPENDIX A: PERMISSIONS 

Letters of Permission: 
 
For Figure 1.2 
Dear Xiaowei, 
 
You have our permission to use that image.  However, I have attached possibly better 
ones, which are also unpublished.  These are from a later work of David Heine and I, 
a summary of which was published in Macromolecules: 
Structure of strongly charged polyelectrolyte solutions 
J.P. Donley and D.R. Heine, Macromolecules 39, 8467 (2006). 
 
So you can cite David and I for these if you use these unpublished images.  They are 
from a larger and more realistic simulation.  The first image, asym.png, is a 3-D 
snapshot of the whole simulation configuration at some late time in the simulation run 
(at equilibrium).  The second  is a zoomed-in portion (a spatial slice) of the 
configuration shown in the first image.   Let us know if these are useful. 
 
Regards, 
James 
 
 
 
For Figure 1.3: 
Dear Xiaowei, 
 
Please be advise permissions is granted to use the figure below in your forthcoming 
thesis at Louisiana State University and Agriculture and Mechanical College. Credit 
must appear on every copy using the material and must include the title; the author (s); 
and/or editor (s); Copyright (year and owner); and the statement "Reprinted with 
permission of John Wiley & Sons, Inc." 
 
Please Note: No rights are granted to use content that appears in the work with credit 
to another source. 
 
Sincerely, 
 
Sheik Safdar| Permissions Coordinator| Global Rights - John Wiley & Sons, Inc.| 111 
River St, MS 4-02 
Hoboken, NJ 07030| Ph: 201-748-6512 | F: 201-748-6008| E: ssafdar@wiley.com 
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For Figure 1.4  
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For Figure 1.5, Figure 1.6, and Figure 1.7 
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For Figure 1.8, Figure 1.11, and Figure 1.12 
Dear Xiaowei Tong, 
 
With reference to your request (copy herewith) to reprint material on which Springer 
Science and Business Media controls the copyright, our permission is granted, free of 
charge, for the use indicated in your enquiry. 
This permission 
-       allows you non-exclusive reproduction rights throughout the World. 
-       permission includes use in an electronic form, provided that content is 
       *  password protected; 
       * at intranet; 
-       excludes use in any other electronic form. Should you have a specific project 
in mind, please reapply for permission. 
-       requires a full credit (Springer/Kluwer Academic Publishers book/journal title, 
volume, year of publication, page, chapter/article title, name(s) of author(s), figure 
number(s), original copyright notice) to the publication in which the material was 
originally published, by adding: with kind permission of Springer Science and 
Business Media. 
The material can only be used for the purpose of defending your dissertation, and with 
a maximum of 40 extra copies in paper. 
Permission free of charge on this occasion does not prejudice any rights we might 
have to charge for reproduction of our copyrighted material in the future. 
 
Kind regards, 
Estella Jap A Joe 
Springer 
Rights & Permissions 
— 
Van Godewijckstraat 30 | 3311 GX 
P.O. Box 990 | 3300 AZ 
Dordrecht | The Netherlands 
fax +31 (0) 78 657 6377 
estella.japajoe@springer.com 
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APPENDIX B: LIST OF ABBREVIATIONS AND SYMBOLS 

 

BPT Bromo-p-toluic acid 

bpy 2,2’-bipyridine 

DLS Dynamic Light Scattering 

FITC Fluorescein isothiocyanate 

isomer I 

FPR Fluorescence Photobleaching 
Recovery 
 

GPC/MALLS Gel Permeation 
Chromatography/Multi Angle 
Laser Light Scattering 
 

NaPSS Poly(styrenesulfonate sodium 
salt) 

NMR Nuclear Magnetic Resonance 

THF Tetrahydrofuran 

cs 
Concentration of salt in 
solutions 
 

cp 
Concentration of 
polyelectrolytes in solutions 

D Self-diffusion coefficient 

Dm Mutual diffusion coefficient 

Ds Slow mode diffusion coefficient 

Df Fast mode diffusion coefficient 

e Electron Charge 

ε Dielectric permittivity 
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F Fluorescence intensity 

F0 Pre-bleach intensity 

F(0) Immediate post-bleach intensity 

K Spatial frequency 

k Bleaching depth 

kB Boltzmann’s constant 

n Refractive index 

q Scattering vector 

T Temperature 

α 
Ratio of the molar concentration 
of added conterions to the 
monomer concentration of the 
polyions 

τ Correlation time 

Г Decay rate 

λ Wavelength 

θ Scattering angle 
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