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Abstract 

Spherical vesicles consisting of phosphatidylcholines in which diacetylene groups have 

been inserted in the hydrocarbon tail centers give rise to hollow cylindrical tubes, known as 

“tubules”.   The study of tubules has become an area of intense interest in recent years due to 

their unusual morphology, which raises several profound theoretical issues and suggests their use 

in a variety of applications.  Tubule hollowness suggests medical and industrial encapsulations as 

well as filtration and purification applications.  These potential uses, e.g., for drug and gene 

delivery, requires optimization of their morphology for the application.  Tubules have many 

technologically desirable properties, such as a very narrow distribution in diameter and length.  

The ability of the hydrocarbon tails' diacetylene groups to be polymerized suggests post-

assembly modifications may be possible.   Tubules are also susceptible to alignment with electric 

and magnetic fields, and being able to manipulate tubules in these ways can lead to a variety of 

new and innovative applications.  

 Our main area of study will be the exploration of tubule formation mechanisms via 

interactions with other molecules.  The phospholipid, DC(8,9)PC (1,2-bis(10,12-

tricosadiynoyl)sn-glycero-3-phosphocholine), is the most heavily-studied, and therefore serves as 

the standard to which comparisons can be made when the tubule-forming molecule is altered or 

when other components are added to the system.  These morphological changes are critical to 

one of our primary technological motivations, the encapsulation and delivery of drugs.  It is 

hoped changes of tubule size and shape resulting from either: a) the changes we make to the 

tubule-forming molecule; or b) the actions of the added molecule will yield; information about 

tubule internal structure.  For example, intrinsic curvatures, bending moduli and correlation 

lengths, physical properties that must play important roles in determining tubule morphology, 

 xvi



can be measured directly in these perturbed systems and compared to pure DC(8,9)PC tubules’ 

moduli. Studying the effects that certain molecules have on tubule formation can give us a better 

idea about the structural morphology and, most importantly, may allow optimization of that 

morphology for a particular application. 
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Chapter 1 

Background, Overview, and Research Synopsis 

1.1 Background  

1.1.1 Discovery of Tubules 

In 1989, Yager and co-workers discovered that phospholipids modified by the insertion 

of diacetylene groups spontaneously formed tubules, hollow cylinders of diameter 0.5 µm and 

lengths up to 200 µm.1-4  The prototypical diynoic lipid is the diynoic phosphatidylcholine 1,2-

bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine, DC(8,9)PC, (shown in Figure 1.1).  

Studies involving diynoic derivatives show that these molecules self-assemble to form 

microscopic hollow cylinders, with a helical trace evident on the exterior, creating a chiral object 

whose structure is similar to a paper drinking straw.  DC(8,9)PC and many of its derivatives are 

the simplest tubule-forming molecules (a growing number of compounds that form tubules are 

appearing in the literature), and this simplicity makes them the best candidates for studying the 

relationship between the molecule’s structure and its self-assembly behavior.  

 
Chiral Carbon

 

OPO
N

O

O
O

O

O

O

 

 
 
 
Figure 1.1  Chemical structure of 1,2-bis(10,12-tricosadiynoyl)sn-glycero-3-phosphocholine 
[DC(8,9)PC]. 

 

A number of non-diynoic compounds, including peptides,5-7 gemini surfactants,8-12 

multiple “-ene-“-containing compounds and others13,14 are currently being added to the group of 
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tubule-forming compounds that spontaneously form cylindrical structures; typically all these 

compounds produce cylinders of diameter ≈0.1 ≤ d ≤ ≈1µm, with lengths ranging from a few to 

several hundred µm.  Some of these structures are hollow, some are essentially solid, and some 

are cochlear.15  One is hard-pressed to identify what molecular features enable self-assembly 

behavior, and which features (if any) are shared within this class of molecules. 

In addition to its structural simplicity, DC(8,9)PC presents an excellent opportunity for 

self-assembly study because it forms relatively large (and hence easy-to-study microscopically) 

cylinders.  An important facet of DC(8,9)PC’s simplicity is that it differs from a manifold of 

natural and synthetic phosphatidylcholines that do not form tubules only by virtue of the diynes 

in its hydrocarbon tails’ mid-sections.  Clearly, these diynes are an “enabling” feature for tubule 

formation: saturated and semi-saturated DC(8,9)PC analogs do not form tubules. 

1.1.2 Chiral Sub-structure 

A simple cylinder is an achiral object, but DC(8,9)PC cylinders possess a chiral sub-

structure.  It is apparent that tubules form as a result of a flat ribbon winding helically (and hence 

chirally), resulting in the tubule “drinking straw” structure.  Since the energetics of phospholipid 

bilayer membrane self-assembly is driven largely by the shielding of hydrophobic hydrocarbon 

tails from the aqueous environment, one should expect bilayer sheets to be discs.  Circles are the 

minimum perimeter-per-area structure because they minimize the exposed hydrophobic tail at 

the bilayer’s edge.  At a non-zero temperature thermal effects cause the flat membrane to 

undulate; given sufficient membrane size and fluctuation, one should ultimately expect opposing 

edges of the sheet to encounter each other and fuse.  (Indeed, one should ultimately expect these 

energetically-expensive edges to vanish completely as the sheet bends to form a spherical 

vesicle.)  Justifying the energetics of the approximately 200:1 aspect-ratio ribbon that 
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subsequently winds to form a tubule is a significant theoretical challenge.8  Four apparently 

independent pathways to tubule formation are known, and no one has devised a way to isolate 

any single process.  Thermal analysis has proven to be problematic because of the inability to 

control the pathways by which tubules form.     

R-DC(8,9)PC tubule exteriors are always right-handed helices, while the mirror-image S-

DC(8,9)PC enantiomer always yields tubules possessing left-handed helical sub-structure.16  The 

remarkable correspondence between helical handedness (hereafter, “helicity”) and the 

molecule’s chirality suggests powerfully that tubule formation is directed by molecular 

chirality.17-19  The so-called “chiral packing” theory develops the idea that DC(8,9)PC’s chiral 

shape causes the “directors” -- molecules’ long axes -- of adjacent molecules in the tightly-

packed bilayer membrane to be tilted slightly with respect to each other, and this tilt is uniform 

in a given direction along the length of the membrane.  The propagation of this offset angle leads 

the membrane molecules to twist helically in a manner that ultimately winds to form closed 

cylinders, tubules.   

A competing, but less accepted, “chiral symmetry-breaking” theory asserts that the 

membrane ribbon chiralizes (that is, selects its helicity) randomly.20,21  To resolve which theory’s 

assumptions are correct, an achiral DC(8,9)PC isomer β–TFL was made by interchanging one of 

the ester-linked hydrocarbon tails attached to the glycerol backbone’s central carbon atom with 

the phosphocholine head group, forming a symmetric β-tubule-forming lecithin (β-TFL) that 

lacks a chiral center (see Figure 1.2).22  This compound formed tubules at the same yield and 

under the same conditions as DC(8,9)PC, proving that tubule formation is not dependent on 

molecular chirality, and that the process appears to be better-described by the more general chiral 

symmetry-breaking theory.  β-TFL produces an equal number of right and left-handed tubules.22  
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These results reveal that the chiral packing theory alone is not adequate to explain the tubule 

structure, and yet the chiral symmetry-breaking theory alone does not explain the remarkable 

helicity: chirality correspondence found with enantiopure R- or S-DC(8,9)PC.  
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Figure 1.2  Chemical structure of achiral DC(8,9)PC isomer, “β–TFL”. 

1.1.3 Tubule Formation 

Additional theoretical challenges in explaining tubule structure and formation result from 

the distinct, rather disparate physical processes by which tubules are seen to form:  we have 

observed three distinct phospholipid tubule formation mechanisms.  All three occur in ethanolic 

DC(8,9)PC solutions heated above 50oC that are cooled slowly (approximately 5oC/hour) to 

room temperature.  These solutions become turbid upon cooling to ~40oC; small angle x-ray 

scattering (SAXS) shows this turbidity to be a consequence of multilamellar vesicles; optical 

microscopy shows these vesicles to be of the usual spherical symmetry.  When the solution 

reaches room temperature, tubules form.  Approximately 90% of the lipid found as tubules 

ultimately precipitates as tubules, while the balance remains in clear solution at room 

temperature; no other self-assembly products are found.  Tubule self-assembly persists over a 

wide range of pH, solvent composition, and ionic strength. 

Tubules may also be prepared in an isothermal process, where dilute DC(8,9)PC lipid in 

pure ethanol is slowly titrated with water, in which the phospholipid is less soluble.  This 

solution also becomes turbid and tubules eventually precipitate.  An alternative to direct titration 
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involves putting the pure ethanol/DC(8,9)PC solution into a dialysis bag and placing this bag in a 

large water reservoir. 

 The thermal process is experimentally more accessible because temperature is easier to 

control on a microscopic scale than is solvent composition, e.g., via a hot stage-equipped 

microscope or a SAXS experiment conducted upon a sufficiently thin sample that is under 

computer-mediated temperature control.  For these technical reasons, the isothermal process’ 

kinetics have not been studied as thoroughly as those of the thermal process, and this process 

will not be discussed further, other than to say it produces the same product with about the same 

yield.  

In contrast, the thermal process has been extensively characterized by in situ Nomarski 

differential interference phase contrast microscopy (DIC) and SAXS probes, and its products by 

atomic force microscopy (AFM) and electron microscopy.  DIC has been particularly powerful 

in resolving the three tubule formation mechanisms, which we now summarize. 

1.1.3.1 Emergence from Vesicles 

Under conditions of ultra-slow cooling ( dT
dt ≈  0.1 oC/hr), DIC reveals the dominant 

tubule self-assembly mechanism to be the rapid (≈1.0 µm/s) growth of helices from spherical 

multilamellar vesicles.23  SAXS shows the spherical vesicles to be in the chain-melted, 

disordered Lα phase, while the product tubules are in the chain-frozen, highly-ordered tilted Lβ’ 

phase as shown in Figure 1.3.24 

A. B. 

 

 

Figure 1.3  A.  Lα chain melted phase, B.  Lβ’ chain-frozen phase. 
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As mentioned above, DC(8,9)PC tubule size permits direct DIC microscopy observation 

of the process.  As the vesicle is cooled from the Lα phase, nodules appear on the surface of the 

vesicle; under conditions of ultra-slow cooling these nodules can persist for tens of minutes.  

Helical ribbons then abruptly begin to nucleate and grow from these nodules, and a typically a 

tangled “nest” of tubules form as all the material in the spherical vesicle converted to tilted Lβ’ 

phase tubules over the course of tens of seconds. These ribbon-like structures emerge and 

lengthen from the spherical vesicles as helices.  A second growth process is occurring 

simultaneously:  As the ribbons grow in length they also widen slowly, until the ribbon’s 

opposing long edges meet, thereby forming a continuous cylinder.  While this meeting of the 

edges seemingly abolishes ribbon edge exposure to the aqueous environment and the associated 

energetics expense, the perseverance of the helical ridge makes evident these edges do not fuse.  

While this may be an effect of the tubule’s non-fluid, chain-frozen Lβ’ phase, several examples 

are known where the helically-would ribbon’s opposing edges do not meet.  For example, a 

considerable portion of DC(8,9)PC microstructures made in solutions where ethanol is replaced 

with isopropanol are found as “open” helices,17 and approximately 10% DC(8,9)PC phosphonate 

tubules are also found in this state under conditions where all DC(8,9)PC microstructures are 

closed cylinders.25,26  Also, a number of unrelated tubule-forming systems have exhibited open 

helical structures.27,28  As amphiphilic structure formation is driven initially by reducing the 

hydrocarbon tail/water interaction, the widespread exposed hydrocarbon tail along the extended 

ribbon edge remains a difficulty when explaining the stability of these open helices.  (Later, the 

“tubelet”, a structure discovered in this lab, will be discussed, that explains the stability of the 

long ribbon and the persistence of the helical trace upon the tubule exterior.) 

 6



 SAXS shows that DC(8,9)PC tubules formed in ethanolic solutions are multilamellar, i.e., 

they are composed of coaxially nested cylinders (shown in Figure 2.1);24 DIC permits the direct 

observation of the outer tubule layers’ formation and shows that these outer cylinders form from 

a very different mechanism than do the tubules’ innermost cylinder, involving material transport 

between the solution and the condensed phase, in contrast to the inner cylinder’s growth from a 

large reservoir of super-cooled Lα phase spherical vesicles.23   

 DIC shows that several minutes after all Lα phase DC(8,9)PC spherical vesicles have 

been converted to Lβ’ phase tubules, a growth front propagates along the now continuous-walled 

cylinder’s axis.  It is apparent that the Lβ’ phase cylinders formed from the spherical Lα phase 

vesicles now serve as nucleation sites for dissolved phospholipid in the still-cooling saturated 

solution.  At v ≈ 0.1µm / sec, this outer cylinder’s growth is an order of magnitude slower than 

that of the core’s growth.    

 The sphere-to-tubule transition is thermally reversible, but substantial thermal hysteresis 

is observed.  In the spherical, Lα phase to helical Lβ’ phase conversion, under ultra-slow cooling, 

tubule nucleation and growth typically occurs two or three degrees Celsius below the tubule 

melting temperature.  This means that the rapidly formed tubule cores form from super-cooled 

Lα phase spherical vesicles, while the much slower outer layer growth appears to be quasistatic 

in nature.   

The discrepancy of outer and inner cylinders growth rates is reflected most surprisingly 

in their chiral sub-structure: AFM probes of the quickly-formed tubule core’s helicity shows that 

they are almost equally divided between left and right-handed helicities, in marked contrast to 

the absolute uniformity of the slowly-formed outer cylinders’ helicity, which corresponds to the 

chirality of the DC(8,9)PC used.23  This experiment was done by preparing a glass slide whose 
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entire surface was covered with air-dried tubule suspension.  This glass slide was then slowly 

dipped over the course of about 5 seconds into a 90% ethanol/water solution.  The slide was then 

quickly withdrawn and swirled in a 4 liter beaker containing pure water.  The 90% ethanol 

solution dissolves tubules at room temperature, but the slow lengthwise dipping of the glass slide 

into the ethanolic solution beaker created an “exposure gradient” – the bottom of the slide 

endured 10 seconds of exposure to this solution, while the top part of the slide endured only 

about ½ a second.  It was found that the portion of the slide that endured the most exposure to the 

solution was wiped clean of tubules and residue, while the portion of the slide that endured the 

briefest exposure showed no real signs of the solvent’s effects.  Lying between these two 

extremes were regions where the solvent had sufficient time to strip away tubule exteriors, 

revealing the core.  While the counting statistics are poor, it was clearly evident that while R-

DC(8,9)PC tubule exteriors always possess right-handed helicity and the S-DC(8,9)PC 

enantiomer always produces left-handed helicity, the inner cylinder helicities are apparently 

random, hence determined kinetically during the rapid conversion of the super-cooled spherical 

vesicle to cylinder. 

A variation of this experiment was to use water-immersion Nomarski optics and add tiny 

amounts of pure ethanol to the droplet being examined.  Once again, the counting statistics are 

poor, but there is clear evidence of violations of the chirality/helicity correspondence required of 

the chiral-packing class of theories. 

The presumed absolute correspondence between molecular chirality and cylinder helicity, 

as seen on the tubule exterior essentially required a “chiral-packing” theory, in which the 

mesoscopic scale (≈1 µm) helical winding is ultimately traceable to the molecule’s chirality.  

The observation of enantiopure tubule cores possessing the “wrong” helical sense of handedness 
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breaches this association, and the robust formation with the achiral DC(8,9)PC isomer (Figure 

1.2) shows that the chiral packing theory must be re-evaluated.  “Re-evaluated” rather than 

discarded, because as mentioned above, the chiral symmetry-breaking theory alone is insufficient 

to describe the dramatic influence of molecular chirality upon the tubule exterior.   

1.1.3.2 Growth from Solution 

 The second tubule formation mechanism is growth directly from solution, i.e., in cooling 

saturated DC(8,9)PC solution, as in the previous mechanism, but in regions where spherical 

vesicles are absent.  This mechanism has been observed only a few times and is therefore 

presumably a minor contributor to the product.  The tubules forming under this mechanism 

appear to grow at both ends, at apparently the same v≈0.1µm speed as the ensheathment of the 

tubules described in the previous mechanism, and concurrently with tubule ensheathment.  

Because these tubules appear to grow at the same time and same rate as the multilamellar 

tubules’ outer layers, one can tentatively conclude that this mechanism is essentially the same 

first-order phase transition of solvated molecules to the Lβ’ phase that occurs during the 

formation of multilamellar tubules’ outer layers. 

1.1.3.3 Detachment from Sheets 

 The final tubule formation mechanism appears to be a minor contributor to tubule 

formation, as in the case of tubule growth from solution.  Indeed, it is possible this mechanism 

does not occur at all in the bulk solution in which tubules are prepared, and only under ultraslow 

cooling of lipid solutions undergoing optical microscopy.  This third process begins with the 

formation of large parallelogram-shaped phospholipid multilayer sheets, on the order of 300 µm 

x 100 µm, on the surface of the glass microscope slide.  As seen in Figure 1.4, these sheets 

contain striations parallel to their long edges, and in time (typically about a second) five to 
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fifteen parallel phospholipid tubules form through the edgewise detachment from these striations, 

with the resulting ribbon winding helically, growing in length, and traveling perpendicular to it’s 

long axis, as if tethered to the large surface-bound sheet.  This process happens over the course 

of ~1 s.  While this mechanism appears to be a minor contributor to the overall product, it is 

important because it is very similar to one proposed in 1996 by Selinger and coworkers for 

tubule formation in bulk solution from large spherical vesicles or flat sheets.18  Consequently, the 

possibility that this mechanism is more dominant in bulk than our infrequent observations of it 

would suggest cannot be dismissed.  

 

 

 

 

 

 

 

Figure 1.4  Nomarski DIC micrograph of DC(8,9)PC tubule array formed by the edgewise 
separation and helical winding of 1 µm-width ribbons from a large (300 µm x 100 µm), 
surface-bound parallelogram phospholipid multi-layer sheet (marked by the arrow).  Note 
the faint line running along the sheet’s long axis.   

 

1.1.4 Theoretical Challenges 

Tubules are thus seen to form through at least three very different mechanisms: 1) 

emergence from spherical Lα phase multilamellar vesicles cooled below the Lβ’ phase melting 

temperature; 2) as “free-standing” structures formed through the first-order crystallization of 

lipid from the cooling saturated lipid solution; and, 3) the edgewise separation and helical 

winding of ribbons from large, surface-stabilized multilamellar sheets that form as saturated lipid 
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solutions cool.  All mechanisms involve the helical winding of ribbon-like structures and 

“barber-pole” windings are evident on tubules formed by these mechanisms.   

 An adequate theoretical model does not exist for explaining the different tubule structures 

or their formation through the diverse mechanisms.  Among the questions a satisfactory theory 

must address for all tubule formation mechanisms include how a ribbon having a 200:1 aspect 

ration spontaneously forms, particularly in view of the highly unfavorable energetics of the 

extended exposed hydrophobic edge, and how this ribbon chiralizes and winds to form a closed 

cylinder.  In Chapter 3 a structure discovered in this laboratory,29 the “tubelet”, will be described, 

that resolves many of the theoretical problems in tubule formation theory, and that has profound 

technological consequences, especially for the central topic of this dissertation, drug 

encapsulation.        

1.2 Overview 

1.2.1 Phosphonates 

Having described the known tubule formation processes, we now consider tubules made 

from the different molecules of Figure 1.5 which all share the apparently necessary (for 

phosphatidylcholines, at least) diynoic tails, but differ in their hydrophilic headgroups.   

 

 

 

 

R O P
O

O

R

O

O

N
OO

B. 

R O
P

O
N

O
O

R

OOO

(CR=

A. 

H2)8 C C C C (CH2)9CH3

Figure 1.5  Chemical structure of A. S-“C4” DC(8,9)PC phosphonate derivative and B. R-
“C3” DC(8,9)PC phosphonate derivative. 
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1.2.1.1 C4-phosphonate 

As the glycerol backbone has a definite influence on tubule morphology (R-DC(8,9)PC 

forms right-handed tubules, while S-DC(8,9)PC forms left-handed tubules),16 it is important to 

study modifications made to this portion of the molecule to see how tubule morphology is 

altered.  The outcome of replacing the oxygen linkage to the phosphate group with a methylene 

group (-CH2-) created a new tubule-forming phospholipid, “C4-phosphonate”.25 The 

phosphonate was selected because many phosphonate analogues of phosphorylated natural 

products function as inhibitors for enzymes for which the natural product is a substrate.30,31  

Given enzymes’ well-known substrate specificity, and their acceptance of phosphonate analogs 

as substrate, the (-CH2-)/O substitution seemed like a change that could be sufficiently small that 

tubule-forming ability would be conserved, and would be small enough that any observed change 

could be considered significant.  

It was found that the C4-phosphonate fashions tubules in the same manner as DC(8,9)PC: 

1) the ethanol/water ratios for optimal yields are alike; 2) tubule yields are 90%; and, 3) the 

tubule-forming temperatures for the compounds are within 1oC of each other.  Also, tubule 

lengths are very comparable; DC(8,9)PC and C4-phosphonate have tubule lengths of ~26 µm 

and ~23 µm respectively.  Despite the similarities, there are some remarkable differences:  1) 

C4-phosphonate tubules have diameters of ~1 µm, twice that of DC(8,9)PC; 2; they have a 

greater propensity to flatten when placed upon a substrate – that is, they seem to be less rigid 

than DC(8,9)PC tubules; and most consistent with this change, 3) while the phosphonate tubule 

diameter doubled, there is a decrease in the number of coaxially nested cylinders; that is, 

phosphonate tubule wall thickness is half that of DC(8,9)PC tubules.   
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1.2.1.2 C3-phosphonate 

Another phosphate analogue was synthesized, since the substitution of the phosphoryl 

oxygen by a methylene group was successful in altering tubule morphology.  The new molecule 

was made by removing the phosphonate oxygen atom.  Since this analogue has a 3-carbon 

glycerol backbone, it is referred to as “C3-phosponate”.26   

 Tubule formation occurs in the same manner as DC(8,9)PC and the “C4” phosphonate, 

where the solvent ratios, tubule yields, and tubule-forming temperatures are similar.  As with the 

“C4” phosphonate, there was also a 2-fold increase in tubule diameter, yielding tubules with ~1 

µm diameters but with shorter lengths of ~16 µm.   

1.2.1.3 Conservation of Interlamellar Spacing 

These phosphonate molecules reveal a most interesting phosphatidylcholine tubule 

property, namely, that interlamellar spacing, as determined by SAXS, is a tightly conserved 

quantity.  DC(8,9)PC tubule interlamellar spacing is 64.7 Ångstroms, while the two DC(8,9)PC 

phosphonate derivatives (whose diameters are twice that of DC(8,9)PC) have interlamellar 

spacings of 65.3 and 62.6 Ångstroms.25,26  These measurements are consistent with a long-axis 

(director) tilt of 32o from the membrane normal for completely expanded, all-trans methylene 

molecular configurations as projected by Caffrey et al.32  The few Ångstroms’ variation between 

different molecules’ tubules interlamellar spacings are small in comparison to the two-fold 

changes in tubule diameter.  The SAXS correlation lengths ξ, which is a measure of tubule wall 

thicknesses, are nearly halved from the DC(8,9)PC 430 Ångstroms to 210 Ångstroms as the 

tubule diameters doubled.26 

 Tubules made from the phosphonates of Figure 1.5 deposited onto glass substrates 

sometimes partly unravel at their ends, permitting direct measurement of membrane thickness by 
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AFM.  Investigation of these tubules on flat substrates shows that the flat, unraveled portions 

have heights approximately twice that expected of a single bilayer at the known long-axis tilt of 

32o (Thomas, unpublished result). Accordingly, these tubule walls must consist of two bilayers 

(that is, four monolayers).  Since phosphonate tubule wall SAXS correlation lengths are half that 

of DC(8,9)PC, we conclude DC(8,9)PC tubule walls are four bilayers thick.  AFM measurements 

provide confirmation of SAXS results.  

1.2.2 Phospholipid/Protein Cones 

DC(8,9)PC tubule-forming solutions where a protein, lysozyme, has been added exhibits 

the same strict conservation of bilayer spacing and tubule wall thickness.  The 

DC(8,9)PC/lysozyme mixture’s prevailing products are that of a gently tapered cone instead of 

the expected hollow cylindrical tube.33  Although, some undistorted tubules are present, the 

majority in this protein-containing solution are conical.  Like DC(8,9)PC tubules, these cones 

have helical ridges, but they are more distinct.  DIC video microscopy shows cone formation to 

be very similar to protein-free tubule formation, the principal difference being that cones 

emanate from proteinaceous nodules that precipitate early in the cooling cycle, rather from the 

Lα phase spherical vesicles of the protein-free system.  While DC(8,9)PC tubule cycle reverses 

back to spherical vesicles when reheated, DC(8,9)PC/lysozyme systems do not convert back to 

vesicles upon heating.  When cones are subjected to reheating they seem to dissolve back into 

solution, suggesting spherical vesicles do not form; however, cones do re-appear when the 

solution is cooled again.  Also, cone formation occurs ~10oC higher than that of DC(8,9)PC 

tubule solutions free of protein.   

Spatially-resolved energy dispersive x-ray spectroscopy (EDS) tuned to the protein’s 

sulfur-bearing cysteine residues shows the protein is disseminated uniformly along the cone 
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length, but is not found elsewhere on the electron microscopy substrate, indicating that lysozyme 

is associated with the lipid.33  SAXS results confirm that cones also consist of four bilayers 

spaced at 66.2 Ångstroms, very close to the interlamellar spacing of 64.7 Ångstroms for protein-

free tubules.  The addition of protein disrupts normal tubule formation and causes cones to form 

instead of cylinders, suggesting that tubule morphology may be optimized for a specific 

application through the addition of such agents, or common polymers such as polyethylene oxide 

(PEO) or polyethylene glycol (PEG).     

1.2.3 Tubules with Tunable Diameters   

Diacetylenic lipids produce 0.5 µm diameter tubules no matter what the length of the acyl 

chain or the placement of the diacetylene groups; however, a recent study using a mixed lipid 

system composed of short-chain saturated phospholipid “spacers” and diacetylenic phospholipids 

demonstrates another approach that could avoid the need to resort to costly and time-consuming 

syntheses to control tubule diameter.34  A decrease in tubule diameter leads to higher-aspect ratio 

structures.   

Control of tubule diameter will have a major impact on technologies that may use tubules 

for their aspect ratios. Two examples spring to mind:  1) the release of encapsulated materials 

from a tubule will undoubtedly depend upon the tubule diameter; and 2) as discussed below, the 

somewhat surprisingly sole determinant of tubules’ effective aerodynamic diameter is the 

tubule’s diameter - - tubule length plays almost no role in tubule aerodynamic behavior. 

Mixtures of diacetylenic phospholipids DC(m,n)PCs and saturated lipids DC(m`)PCs, 

reveal a connection between the n segments of the acyl chains in the diacetylenic 

phosphocholines and the diameter of tubules produced from these lipid mixtures.34   
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1.2.3.1 Result of Acyl Chain Length of Saturated Spacer Lipids 

Singh et al. studied lipid mixtures prepared with DC(8,9)PC and DC(m`)PC ranging from 

8-12 carbon long acyl chains in order to determine the effects that the chain length would have 

on tubule diameter.34  Tubule diameters were measured immediately after tubule formation was 

complete (4oC), after annealing for 105 days (4oC), and after 120 hours at room temperature.  

Both DC(6)PC and DC(8)PC are unable to conceal the functionality of the diacetylene groups in 

DC(8,9)PC from interacting with neighboring diacetylene groups, and tubules with smaller 

diameters resulted from secondary interference effects.  After annealing, the diameters remain 

unchanged, within error, but after storing at room temperature, DC(6)PC-doped specimens 

formed helical ribbons and DC(8)PC-doped solutions’ mean tubule diameter increased.  

DC(9)PC and DC(10)PC hydrocarbon tails, however, are long enough to interact with the 

diacetylenes, or perhaps interfere with diyne/diyne interactions present in the tubule 

phospholipid bilayers, and tubules with much larger diameters form.  Upon room-temperature 

annealing, however, these larger diameters decrease to approximately the usual DC(8,9)PC 

diameter after annealing, making these tubules technologically appealing.  The DC(9)PC spacer 

tubule morphology equilibrates at room temperature, while the DC(10)PC forms vesicles.  The 

measurements for these diameters are shown in Table 1.1, showing that tubule diameter can be 

controlled by the length of the acyl chain in the spacers and annealing can lead to desirable 

properties. 

1.2.3.2 Result of Diacetylenic Acyl Chain Length 

 Using the saturated spacer lipid, DC(7)PC, which equals the m segment (m = 8) of 

DC(m,n)PC, the effect of the n segment was determined.34  For n = 9, 11, and 13, diameter sizes 

were approximately 55, 63, and 108 nm respectively.  The results reveal that as the n segment 
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Table 1.1  Tubule diameters as a result of acyl chain length.34 

 

DC(n)PC Tubule Diameter (nm) 

Immediately (4oC) 

Tubule Diameter (nm) 

105 Days (4oC) 

Tubule Diameter (nm)  

120 h ( 25oC)  

DC(6)PC ~57 ~58 ~30 Helical Ribbons 

DC(8)PC ~52 ~52 ~89  

DC(9)PC ~124 ~63 ~75  

DC(10)PC ~93 ~55 ~167 Vesicle 

increases so does the tubule diameter.  Similar studies where the m and m` segments were 

increased by two display the same results: diameter increases as the n segment increases.  Both 

studies also prove that the diameter size is independent of the total diacetylenic acyl chain length.  

For instance, DC(8,11)PC and DC(10,9)PC have the same amount of carbons in their acyl chains 

and have approximately the same diameters of their tubules (~70 and ~69 nm) after annealing. 

1.2.3.3 DNPC 

 A mixture of DC(8,9)PC and the short chain saturated lipid 1,2-bis(dinonanoyl)-sn-

glycero-3-phosphocholine, DNPC, yields tubules with diameters ranging from 50-60 nm.35  The 

addition of DNPC also increases the efficiency of polymerization, which can be important in 

mechanical as well as encapsulation (especially subcutaneous injection) applications.  

Suspensions of DNPC/DC(8,9)PC held at room temperature for longer period of time show that 

tubules convert to a network of entangled ribbons. 

 The annealing that occurs in these multi-component lipid membranes underscores the 

metastable nature of the initial tubule formation.  In other words, tubule formation is clearly 
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kinetically-driven, and the subsequent annealing is presumably a tendency towards the 

thermodynamically-stable product. 

1.2.4 Positioning and Alignment 

 The assembly of tubules into patterns on substrates is key in cultivating some of their 

potential applications.  Zhao et al. discovered that by combining dewetting and microfluidic 

networks, DC(8,9)PC can be aligned into two-dimensional ordered arrays onto glass substrates.36  

The capillary force induces a flow that pulls tubules into the microfluidic network and aligns 

them in the channels.  A patterned gold (Au) substrate with alternating 1-dodecanethiol (DDT) 

monolayer and Au stripes was made using a polydimethylsiloxane (PDMS) stamp.  The 

alternating hydrophilic and hydrophobic stripes allow for selective positioning of the tubules; the 

tubules adsorb on the hydrophilic Au stripes in the stripe direction as a result of the 

phosphocholine group, which is hydrophilic.  The resulting tubules remain consistent with 

normal tubule’s morphology, suggesting aligned tubules are not deformed in the process.  Some 

of the factors effecting tubule alignment include withdrawal rate, moving contact line, and 

adsorption time.  As the withdrawal rate increases, the angular distribution becomes restricted.  

The aligned tubules are perpendicular to the contact line because of surface tension.  The 

quantity of aligned tubules also increases as the adsorption time increases.  The ability to align 

tubules in large amounts onto substrates will enhance their use for a number of applications.   

1.2.5 Bending and Radial Deformation of Tubules on SAM 

 Droplets of DC(8,9)PC tubule solution air dried on hydrophobic DDT self-assembled 

monolayers undergo an interesting morphology change from a straight cylinder to a cylinder bent 

into a circular arc and can form a near spherical configuration.37   These tubules typically have 

persistence lengths of ~41 µm.  Several tubules so bent can be positioned to fashion an annular 
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structure.  In contrast, when DC(8,9)PC tubule solution droplets are dried on a hydrophilic Au 

surface, they quickly wet the surface and do not form curved tubules.  A shrinking contact line as 

the droplet desiccates is what causes this curve in the tubules, and it is a gradual process since 

the exterior remains smooth, with no apparent cracking.  Being able to understand the 

mechanical properties of tubules is vital for application development.   

1.2.6 Templated Synthesis 

The narrow distribution in diameter and length of tubules could lead to their use as 

templates for growth of inorganic salts, organic crystals, and polymers.  Templated synthesis can 

provide a means to control the resulting crystalline material or polymer structure and 

morphology.  Block copolymers,38 lipids,39 and liquid crystals40 have been used as templated 

media due to their highly organized structures, making DC(8,9)PC tubules also a great candidate 

for templated synthesis.  The templated synthesis of the conducting polymer, polypyrrole (Ppy), 

from a solution of DC(8,9)PC lipid tubules has been reported.41  The Ppy strand morphology 

progression occurs along the edges or seams of the tubule and not on the tubule surface.  The 

width of the Ppy strand is dependent on polymerization times, illustrating the ability to control 

resulting properties of this templated synthesis.  Tubules that have not completely formed 

(twisted ribbon-like structures or open tubules) have two parallel edges where the Ppy strands 

grow and trace each other.  Fully formed tubules have one Ppy strand that aligns on the surface 

in a helical fashion, along the barber-pole winding.  Ppy rings are often found at the end of the 

tubule, even on tubules where Ppy strands have not formed along the edges or seams.  Since the 

reaction could transpire either along the edges or on the surface, what causes Ppy strands to 

selectively grow along the edges?  According to the twisted bilayer ribbon theory, the edges 

consist of exposed hydrophilic regions; therefore, the acetylene groups may contribute to the 
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adsorption of Ppy onto the edges.  It may also be the favored site because of the high surface 

energy related to the curved edges.  Whatever the circumstances, the edge is the preferred 

location for the polymerization of pyrrole using tubules as a template.   

1.3 Research Synopsis  

The potential for technological applications is apparent immediately, and suggested 

tubule uses include: a substrate for the helical crystallization of proteins, templated synthesis of 

inorganic salts, organic crystals, and drug encapsulation.  This dissertation will focus primarily 

on two things:  Probing the relationship between the DC(8,9)PC molecular structure and the 

morphology of its self-assembly products, and in a practical vein, how such modifications might 

lead to their optimization for the application of drugs.  We describe a previously unobserved 

structure, the “tubelet”, in Chapter 3, encapsulation of several drugs (Chapter 4), addition of co-

surfactants (Chapter 5), and chemical modifications made to DC(8,9)PC (Chapter 6). 
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Chapter 2 

Materials and Methods 

2.1 Materials 

 1,2-bis(10,12-tricosadiynoyl)sn-glycero-3-phosphocholine (DC(8,9)PC) [Catalog # 

870016, Avanti Polar Lipids, Inc.], absolute ethanol [AAPER Alcohol and Chemical Company], 

distilled water, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) [Catalog # 850725, 

Avanti Polar Lipids, Inc.], lysozyme (from chicken egg white) [CAS # 12650-88-3, Sigma], and 

cholesterol [CAS # 57-88-5, Aldrich, 99%],  were used as received.   

Chemotherapy agents, carboplatin, methotrexate, and mitoxantrone, were fresh, surplus 

clinical materials supplied by Drs. Neal Mauldin & David Hunley of the LSU Veterinary School.  

These clinical materials were aqueous solutions; pure crystalline carboplatin was provided by 

Spectrum Pharmaceuticals, Irvine, CA. 

Materials used in syntheses (described in Chapter 6) include glycerol [CAS # 56-81-5, 

Sigma, 99%], acetone [CAS # 67-64-1, Aldrich, 99%], p-TsOH [CAS # 9192-52-5, Aldrich 

98.5%], diethylchlorophosphate [CAS # 814-49-3, Aldrich, 97%], ethyl ether [CAS # 60-29-7, 

Aldrich 99.7%], pyridine [CAS # 110-86-1, Aldrich 99.8%], oleic acid [CAS # 112-80-1, Sigma-

Aldrich, 99%], linoleic acid [CAS # 60-33-3, Sigma, 99%], γ-linolenic acid [CAS # 506-26-3, 

Sigma, 99%], sodium bicarbonate [CAS # 144-55-8, Aldrich 99.5%], chloroform [CAS # 67-66-

3, Aldrich 99%], potassium carbonate [CAS # 584-087, Aldrich 99.99%], sodium sulfate [CAS # 

7757-82-6, Aldrich 99%], and 1,3-dicyclohexylcarbodiimide [CAS # 36049-771, Aldrich 99%], 

were used without further purification.  Methylene chloride [CAS # 75-09-2, Aldrich 99.5%] was 

distilled over calcium hydride.  Ethyl acetate [CAS # 141-78-6, Aldrich 99.8%] and hexane 

[CAS # 110-54-3, Aldrich 95%] were distilled over sodium metal.   
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2.2 Methodologies 

2.2.1 Tubule Stock Solution Preparation 

 A stock solution of tubules was prepared by adding DC(8,9)PC lipid to a mixture of 

ethanol and water (at various ratios) at a concentration of 1mg of lipid/ml of solvent.  The lipid 

was dissolved by heating to 50oC while vigorously stirring until the solution became clear.  The 

solution was slowly cooled back to room temperature. It first becomes turbid as it enters the high 

temperature spherical vesicle phase, where the phospholipid is in the Lα phase, or chain-melted 

phase. Upon cooling further, the low temperature Lβ’ phase is entered, which is the time when a 

white precipitate of tubules form from a now-clearing solution.  This so-called “thermal” tubule 

formation process is shown schematically in Figure 2.1.  

2.2.2  Protein-Modulated Tubules 

 Lysozyme in the amount of 1 mg was added to 1ml of stock solution of DC(8,9)PC (with 

an ethanol to water ratio of 90:10 v:v).  This mixture was then taken through the standard 

thermal tubule formation cycle.  As before, upon cooling the solution became turbid, and 

clarifies upon further cooling as tubules precipitate.   

2.2.3 Addition of Chemotherapy Agents 

 The chemotherapy agents (methotrexate, mitoxantrone, and carboplatin) were added to 

the stock solution of DC(8,9)PC (with an ethanol to water ratio of 75:25 v:v) at the supplied 

clinical concentrations.  Once a drug was added to the stock solution, it was subjected to the 

standard thermal cycle, heating to clarity and cooling back to room temperature.  Turbidity 

indicates the formation of light-scattering structures, e.g., the spherical vesicles, but tubule 

formation is certain only when a precipitate has formed and it is microscopically examined for 

the presence of tubules.   
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Figure 2.1  Tubule preparation. 

 

2.2.4 Addition of DOPE and Cholesterol 

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and cholesterol were added to 

the stock solution of DC(8,9)PC (with an ethanol to water ratio of 75:25 v:v) at various 

concentrations.  Once DOPE and cholesterol were added to the stock solution, it was heated to 

clarity and cooled back to room temperature.  Again, all turbidity indicates is the formation of 

light-scattering structures, e.g., the spherical vesicles or similarly-sized structures, but tubule 

formation is certain only when a precipitate has formed and it is microscopically examined for 

the presence of tubules. 
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2.3 Instrumentation and Theory 

2.3.1 Optical Microscopy 

 Differential interference contrast microscopy (DIC) was conducted with a Nikon Diaphot 

300 inverted microscope equipped with 60x and 100x Nomarski objectives.  A small amount of 

the sample was placed on a glass microscope slide, air dried and viewed or covered with a glass 

coverslip and mounted upon the oil-immersion microscope stage for viewing. 

2.3.2 Theory of Nomarski DIC 

Nomarski DIC is a type of interference microscopy; interference microscopy is generally 

used in samples that have low optical density (i.e., refractive index) changes at interfaces, such 

as at a membrane/solution interface, making these edges difficult to see.1  Interference effects are 

used to enhance the contrast of materials being viewed. 

Interference occurs when a single optical beam is split and the two beams recombine after 

traveling along paths of optical lengths that differ by any length not happening to be an integral 

multiple of the light’s wavelength.  This path difference can be “real” – that is, physical distance, 

or a consequence of the two beams encountering media of different indices of refraction.  

In the practice of interference microscopy, a doubly-refractive crystal plate underneath 

the sample specimen splits the beam into two spatially-resolved beams that differ in phase, 

typically ¼ a wavelength.1  Typically these beams are recombined just before the eyepiece, with 

an additional ¼ wavelength retardation introduced.  Combining two beams differing by ½ 

wavelength should of course result in cancellation, i.e., a dark field of view.  But, variations of 

the specimen’s index of refraction contained within its structure, introduces additional phase 

differences between the two spatially-resolved beams.  That is, in any part of the sample in 

which neighboring regions vary in refractive index, the two beams are slowed down or refracted 
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by different amounts (light travels slower in areas with a higher refractive index).  When these 

two beams are reunited after exiting the specimen, differences in brightness occur that 

correspond to the differences in refractive index (or thickness) of the sample can now be seen, 

except for the (highly unlikely) possibility that the sample has introduced exactly ½ wavelength 

between the two beams. 

The splitting and recombination of light beams is usually done in two ways: 1) by using 

reflective surfaces; or 2) birefringent crystals.2  In the first, the light can take two different paths 

by reflection from a series of reflecting surfaces, and the second, the light is split into two beams 

and recombined by using birefringent crystals (as in the case of Nomarski DIC).       

Similar to phase contrast microscopy, interference microscopy allows viewing of 

otherwise transparent objects having even slightly different indices of refraction.2  This is 

accomplished by translating the phase changes in light traveling through the specimen’s different 

optical densities into changes of amplitude of the recombined wave.  In phase contrast 

microscopy, the contrast enhancement is attained by a single beam of light, and the diffraction is 

caused by the sample in order to produce destructive or constructive interference.  In interference 

microscopy, the image is obtained from two beams of light passing separately through the 

sample in different regions with different refractive indexes.  

Nomarski DIC was developed in the 1950s.  It is distinguished by a noticeable relief 

effect giving a three-dimensional appearance, and shallow field depth.  The characteristic three-

dimensional image appears due to the shearing effect of the Nomarski prisms (see Figure 2.2 for 

DIC light path).  Light first passes through a polarizer, which selects light whose electric field is 

aligned along a particular direction.  This plane polarized light passes through a Nomarski 

modified Wollaston prism that is positioned 45o with respect to the polarized light beam.  The 
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prism consists of two quartz wedges that are cemented together along their hypotenuse.  The 

shear takes place at the quartz-air interface of the lower prism.  Refraction at this interface causes 

the sheared wave fronts to converge outside the prism.  (In the Wollaston prism, shear takes 

place at the cement boundary.)  The 45o prism orientation splits the incident plane-polarized 

beam into two perpendicular, equal constituents.  As the components travel through the 

condenser, they exit parallel to each other and continue through the sample specimen and 

objective.  A second Nomarski modified Wollaston prism located behind the objective causes the 

recombination of the two constituents.  The analyzer assembles the vibrational directions parallel 

in order for the light rays to interfere at the intermediate image plane.   
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Figure 2.2  Nomarski differential interference contrast microscopy; showing light path 
(adapted from McCrone). 
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2.3.3 Atomic Force Microscopy (AFM) 

 Contact-mode atomic force microscopy (AFM) probes of samples were obtained with a 

Digital Instruments BioScope, equipped with silicon nitride NanoProbe SPM tips.  The sample 

was prepared in the same fashion as the optical microscopy samples, air dried on a glass slide.  

Images shown are representative of the entire sample.  After acquiring the images, an image 

flatten method was performed.  In the micrographs shown the brightest regions of the scan are 

the tallest features.      

2.3.4 Theory of AFM 

 The atomic force microscope, also referred to as, scanning probe microscope, was 

developed by G. Binnig, et al. in 1986.3,4  AFM gives significant information about surface 

features.  AFM images are created by measuring the interaction of forces between the tip, which 

is attached to the end of a cantilever, and the surface.  As the cantilever is scanned across a 

surface by a piezoelectric tube, the z-axis, or vertical component, is measured in order to gain 

information about differences in height.5  This difference in height is recorded as the laser beam 

that is positioned on the cantilever is reflected onto a photodiode (see schematic in Figure 2.3).  

The height is calculated from the z displacement of the cantilever and the spring constant of the 

cantilever.  

In this dissertation, contact mode AFM was employed.  In this mode, the tip is brought in 

contact with the surface and the cantilever deflection remains steady throughout scanning.6  This 

is done by using a feedback loop, where a constant force is maintained between the cantilever 

and the specimen by moving the scanner vertically, so the force between the tip and the 

specimen remains balanced.  This vertical distance is then measured by the photodiode.    
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Figure 2.3  Schematic of atomic force microscopy. 

 

2.3.5 Scanning Electron Microscopy (SEM) 

 A drop of the sample was placed upon a conductive carbon substrate (12mm diameter 

Carbon Adhesive Tabs from Electron Microscopy Sciences) on top of an aluminum stub and air 

dried.  The air dried samples were then sputter coated with a gold/palladium mixture under 

vacuum in an Edwards S150 sputter coater before viewing.  The specimen was examined on a 

Cambridge Steroscan 260 Scanning Electron microscope. 

2.3.6 Theory of SEM 

 Scanning electron microscopy was developed in the early 1950s.  It uses electrons, 

instead of light (in the case of optical microscopy), to create an image, and it provides a greater 

depth of focus as a result.7  It also is able to create 3-dimensional images, unlike optical 

microscopy and transmission electron microscopy.  SEM has an electron gun at the top of the 

microscope that produces an electron beam, usually a Tungsten hairpin filament.  This filament 

is a loop of Tungsten that functions as a cathode as it releases electrons towards the anode when 

sufficient electrical bias is supplied.  The electron beam travels vertically down the column of the 
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microscope as it passes through an anode, which speeds up the electrons, and a series of 

electromagnetic lenses that focus and define the beam as it approaches the sample.  When the 

electrons hit the sample, backscattered and secondary electrons are produced.  Backscattered 

electrons are a result of the electron beam interacting with the nucleus of the atom.  These 

electrons will circle the nucleus, where they pick up speed due to the positive charge in the 

nucleus, and head back out of the sample.  These electrons are collected in a detector.  Secondary 

electrons, on the other hand, are produced as a result of the electron beam interacting with 

electrons in the atom.  Since the electrons in the atom have a negative charge, the electrons that 

have entered the specimen are slowed down as it repels the specimen electrons.  The electrons in 

the specimen are forced out of the atom and exit the sample.  Since they are moving slowly, the 

detector collecting secondary electrons must have a positive charge.  The detectors collect both 

backscattered and secondary electrons and translate them into a signal that can be viewed as an 

image.   

2.3.7 Energy Dispersive Spectroscopy (EDS) 

 A drop of the sample was placed on a copper planchette and air dried.  The sample was 

them viewed with a JEOL 2010 High-resolution Transmission Electron Microscope (HRTEM) 

attached with an EDAX EDS x-ray analysis for composition analysis. 

2.3.8 Theory of EDS 

Energy dispersive spectroscopy is a non-destructive analytical tool.  It is able to give 

quantitative composition information without the introduction of standards into the specimen 

because x-ray fluorescence wavelengths and fluorescence yields from the calibrated electron 

beam are well-known.8  EDS allows scans as small as 0.5 microns in size and has minimum 

detection limits varying from 0.1 weight % to a few weight %.    Elements with atomic numbers 
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ranging from Boron (Z=5) to Uranium (Z=92) can be detected using this technique.  When an 

electron beam interacts with the sample, if the electrons are of sufficiently high energy to ionize 

are at least promote an atom’s K electron to an L, M, N edge, or and L electron to an M, N, edge, 

and so forth, x-rays are produced as the higher-shell electrons cascade down towards the 

vacancy. The x-rays are collected by a high-resolution detector, usually a SiLi crystal (a Silicon 

crystal doped with small amounts of Lithium).  X-rays that are emitted from the sample atoms 

are characteristic in energy and hence wavelength to the element of that atom and also give 

information on which shells lost electrons and which shell has replaced them.   
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Chapter 3 

A New Tubule Formation Intermediate: The Tubelet* 

3.1 Introduction 

Optical microscopy presents some powerful advantages:  1) temperature control is easily 

done; 2) the specimen need not be desiccated; and, 3) the microscope observation can be 

videotaped, enabling “real-time” studies of tubule formation.  But, tubule sizes are not ideal for 

optical microscopy studies.  Even with a 100× objective and a 10× eyepiece, the highest power 

elements available, the tubules’ helical substructure is generally very difficult to resolve.  Also, 

at these high magnifications, the focal plane (i.e., depth of view) is very narrow (≈0.1 µm), 

making observation of the whole tubule difficult.  Because optical microscopy, as practiced here, 

is a transmission-mode probe, the specimen must be sufficiently transparent, e.g., thin enough for 

light to be transmitted through it; and in our particular case, the tubule suspension must be 

sufficiently dilute so that isolated tubules can be observed.  So, while optical microscopy has 

provided some of our most dramatic observations – most especially “real-time” tubule formation 

-- optical microscopy was in fact generally limited to confirming the presence of tubules and 

cones in DC(8,9)PC/lysozyme mixtures in specimens destined for AFM or electron microscopy 

study, because the features of interest require these higher magnifications to characterize. 

We are going to focus our attention now on the protein-containing specimens described 

in section 1.2.2.1 As droplets of the protein-containing suspension deposited on electron 

microscopy carbon substrates air dried over a period of a few hours, a waxy deposition bed 

formed as the saturated solution containing the tubules evaporated.2  Upon further drying, this  

_______________________________ 

*Portions of this Chapter were reprinted with permission from Journal of the American 
Chemical Society, Copyright (2005) American Chemical Society. 
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waxy deposition bed cracked, forming a pattern reminiscent of a desiccated lakebed.  We 

surmise that the mixture of tubules, cones, tubelet ribbons and protein (undoubtedly a random 

coil at our ethanol concentrations) initially form a gel, which, as drying continues, fractures, 

creating the surface seen in Figure 3.1.  Under identical conditions, protein-free specimens, 

which are known to be free of cones and ribbons, stay completely smooth and do not crack upon 

drying.  

 

 

 

 

 

 

 

 

 
 
Figure 3.1  A low-magnification scanning electron micrograph of an air-dried deposition 
bed of DC(8,9)PC-lysozyme specimen subjected  to the tubule/cone formation process, 
showing extensive cracking of the deposition bed.  The scale bar is 2mm.  Reprinted with 
permission from reference 2, Copyright (2005) American Chemical Society.   

 

The vertical surfaces exposed in these cracks are, in many ways, similar to those revealed 

by freeze-fracture processes, except that this process is gentler, and because the exposed crack 

faces are vertical (or nearly so), they present the great benefit of conserving orientational 

information with respect to the bulk specimen.  That is, the interior exposed by this process is not 

randomly selected, as it would be with conventional freeze-fracture techniques, but rather, it 
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allows us to examine assembly products as a function of depth from the deposition bed surface.  

This remarkable, wholly unexpected behavior enables examination, in detail, far greater than 

conventional freeze-fracture allows, a previously-unknown structure that we call the “tubelet”.  

The extent of detail that can be observed is seen clearly in Figure 3.2, in which tubelets are seen 

to extend from the deposition bed into free space, freeing the object from interfering background, 

e.g., overlapping nearby structures and dried bulk solution.  Since the object projects into space, 

the electron microscopy stage can be rotated and/or translated in order to obtain very high-

contrast images from a single tubelet from several viewpoints. 

 

 

 

 

 

 

 

 

 

Figure 3.2  Scanning electron micrograph of a protein-bearing deposition bed crack 
discontinuity.  Cones are evident on the unbroken bed face, but tubelets are only resolvable 
when they emerge at the crack discontinuity.  Reprinted with permission from reference 2, 
Copyright (2005) American Chemical Society.   
 

 

Figure 3.2 shows tubelets to be structures similar to a flattened fire hose that can twist 

about its long axis, wind helically about this axis, or remain flattened.  The topological 

differences between a phospholipid bilayer ribbon and the nearly edge-free tubelet are 
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immediately recognizable:  The “fire hose” tubelet structure addresses the solvation energetics 

problems that exist with the flat bilayer ribbon by virtue of nearly eliminating ribbon edge-

associated energy costs, except of course, at the flattened tubes’ ends.  (Of course, the membrane 

bending energy at the flattened ribbon’s edges cannot be ignored, but as will be discussed later, 

these sharply-curved features may be a consequence of membrane chiralization, and actually 

represent a lower energy state than the unflattened cylinder.)  Tubelet structure also explains the 

conservation of interlamellar spacing observed over a wide range of tubule compositions and 

diameters - - no matter how you twist or wind a tubelet, its intrinsic interlamellar spacing will be 

detected by x-ray diffraction.1,3,4  Indeed, SAXS and AFM results show that without exception 

tubule walls have thicknesses that are multiples of two DC(8,9)PC bilayers, which is most easily 

interpreted as a consequence of tubelet structure, as suggested in Figure 3.3. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 3.3  Cross-section of proposed tubelet structure.  Note that it has a height of two 
bilayers, twice that of a simple bilayer.  For clarity, each tail drawn actually represents two 
tails of the phospholipid. 
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Renditions of 3-dimensional objects in two dimensions can lead to gross exaggerations, 

e.g. “flat” representations of the earth all contain significant distortions.  In this way, this Figure 

3.3 dramatically over-emphasizes the packing defects that must occur at the tubelet’s edges; we 

expect that molecules in the vicinities of the creases would tilt out of the plane and fill this space 

effectively.  The principal idea of Figure 3.3 is to show the repeating vertical distance – created 

by the phospholipid multilayer – that would be consistent whether this fundamental building 

block were wound, twisted or remained flat. 

 3.2 Deposition Bed  

 Examination of the dried deposition bed shows it to be vertically stratified with ribbon-

like structures appearing out of the crack face at some depth from the surface (~1 µm), seen in 

Figure 3.4.  The lysozyme/tubule mixture forms an entangled fluid network whose structure is a 

consequence of gravity, electrostatic charge, and surface tension, and we surmise the cracking 

process that exposed the deposition bulk interior was gentle enough to not disturb this 

stratification.  That is, the solvent evaporates slowly, causing the sample to form a gel, locking 

these components at their equilibrium electrostatic positions.  As the evaporation continues, the 

gel steadily desiccates, decreasing the volume of the deposition bed and forming deep cracks 

perpendicular to the surface.  The ribbons are usually pulled ~ 20 µm from the crack before 

breaking.  It is apparent from the length and alignment of the ribbon-like structures that the 

contraction and splitting of the bed is a gentle process.  These observations are coherent with 

accounts of sol-gel processes where the stratification is distinguished by electrostatic charge 

separation energy minimization.5  Our studies suggest that stratification places tubules and cones 

only at the air/liquid surface of the deposition bed; they are not found at any distance away from 

the surface.   
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Figure 3.4  Scanning electron micrograph “edge-on” view of a DC(8,9)PC-lysozyme 
deposition bed crack, showing stratification and broken ribbon-like structures projecting 
into free space.  Reprinted with permission from reference 2, Copyright (2005) American 
Chemical Society.   
 

 

Since tubules and cones appear to be restricted to the bed surface, and tubelets are only 

observed within the deposition bed, surface characterization techniques such as SEM and AFM 

are unable to detect these tubelets under normal conditions.  Tubelets also can not be 

distinguished by TEM; at the lipid concentrations required for these studies (and those resulting 

from air-drying required for TEM) tubelets simply cannot be differentiated in the tangled mass of 

self-assembled structures composing the gel.  On rare occasion a flat, untwisted tubelet is located 

at the air/deposition cake surface and can be seen by surface probes, but until now, such 

structures were interpreted as partially submerged tubules.  For these reasons, the tubelet, which 

we interpret to be the principal tubule and cone precursor, remained unobserved until these 

experiments were conducted.  

3.3 Tubelets 

We emphasize that the contrast between vacuum and the crack surface allow highly 

detailed examination of the deposition bed structure normal to the substrate surface, and 
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especially of tubelets projecting from the crack.  Tubelets usually extend ~ 20 microns from the 

crack, but there are regions ranging from sub micrometer lengths to tubelets that emerge from 

one crack face, extend for over 100 µm until reentering the opposite crack face.  Tubelets within 

a region are approximately the same length due to the environment within that region.   

The cracks are not of uniform width along their length, and presumably did not widen at 

a uniform rate (or even time) throughout the deposition cake.  Areas are observed where crack 

separation occurred rapidly, leaving only short tubelets projecting from the crack face, while in 

other areas, 100 µm long tubules are seen to emerge from one crack face and enter the opposing 

face; it is possible that such cracks widen slowly enough for “slippage” to occur as the tubule 

emerged from the drying gel. 

It is difficult to determine tubelet total length, since at least one tubelet end is buried in 

the deposition bed.  Tubelets entering the deposition bed close to the surface can be observed up 

to 30 µm in length using SEM before the tubelet becomes hidden.  This gives a total observation 

length of approximately 50 µm and is consistent with the tubelets lengths on the order of 100 

microns, which is expected for tubule formation.   

 Tubelets are always flattened in a (1) cylindrically wound state, type “A” curvature 

(termed by Oda et al.),6 (2) axially twisted state, type “B” curvature, or an (3) untwisted, 

unwound state, although these are rarely seen, at least under our observation conditions. 

 3.3.1 Cylindrically Wound Tubelets 

Although type “B” tubelets prevail, cylindrically wound type “A” tubelets are also 

observed winding like that of a ribbon to form a cylindrical structure seen in Figure 3.5.  This 

type “A” formation is a precursor to tubule formation.   
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3.3.2 Axially Twisted Tubelets 

The axially twisted tubelets, type “B”, wind about the long axis of the fine structure 

shown in Figure 3.5.  Under these conditions, this type “B” structure is most often seen.   

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 3.5  Scanning electron micrograph view of a crack face discontinuity from which 
structures possessing types of “A” and “B” windings are seen to project.  Reprinted with 
permission from reference 2, Copyright (2005) American Chemical Society.   
 
 

3.3.3 Flat Tubelets 

Both wound and twisted tubelets have flat regions where they emerge from the crack, this 

may be due to the stretching that occurs when the material dries and the crack faces separate.  

Although very rare, there are areas where flat tubelets can be observed.  Flat tubelets are often 

found in groups, as in Figure 3.6, which suggests the consistency of formation conditions at the 

time of separation (it is possible that the tubelets had not yet chiralized at the time of crack 

separation).  
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Figure 3.6  Scanning electron micrograph of unwound tubelets at a narrow crack interface.  
Reprinted with permission from reference 2, Copyright (2005) American Chemical Society.   
 
 

3.3.4 Other Regions 

Transitions between axial, cylindrical, and flat regions are frequently detected, as seen in 

Figure 3.7.  The winding or twisting can change at flat/“A”, flat/“B”, or “A”/“B” connections.  

Another transition can be seen in Figure 3.7, where there is a kink in “B”/“B” and it is possible at 

these kinks for the twisting pattern to reverse.  The cylindrical curvature and axially twisted 

phenomenon mentioned above has been observed in an unrelated gemini surfactant system.6  

(The cylindrical curvature is seen to form helical ribbons, while the twisted tubelets exhibit 

“Gaussian” curvature.)  By studying charged gemini surfactants, the determination was made 

that long chain surfactants favor helical ribbons while short-chain surfactants favor twisted 

ribbons.  The authors also developed a theory that for membranes in a fluid phase, a twisted 

ribbon has the lowest free energy, and that crystalline order is not compatible with this Gaussian 

curvature,7 and that a helically-wound ribbon must be stabilized by crystalline order.  Therefore, 
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they believe that twisted ribbons and helical ribbons result from fluid membranes and crystalline 

membranes, respectively.   

 

 

 

 

 

 

 
 
 
 
 
Figure 3.7  Scanning electron micrographs.  (Top): A tubelet that emerges from a crack 
face with a right-handed type "B" winding, changes to flat configuration at its center, and 
resumes a right-handed type "B" winding before emerging at the opposing crack face 
discontinuity, (Bottom): A tubelet that undergoes a continuous transition from a type "A" 
winding at its left, to a type "B" winding at its center, and finally to a flat state as it enters 
the crack discontinuity.  Both scale bars are 10 µm.  Reprinted with permission from 
reference 2, Copyright (2005) American Chemical Society.   
 
 

3.4 Tubelets as a Precursor 

When tubules were first observed, deGennes suggested that they form as a result of a flat 

bilayer that winds to form tubules because of a ferroelectric charge separation resulting in the 

leading and trailing ribbon edges possessing slight amounts of opposing charge.8  This theory 

was disproven by salt-screening experiments intended to interfere with this self-assembly 

mechanism.9  Close examination of Figure 3.8 shows a topologically much more complicated 

structure - tubelets are not flat, but are actually hollow flattened tubes that wind up to form 

hollow cylindrical tubules.   
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Figure 3.8  Scanning electron micrograph of an axially-twisted (type "B") tubelet, with 
characteristic 3 µm twist periodicity and a 90 degree kink where axial twist handedness 
sometimes, but not always, changes chiral sense.  (This structure's left-handed twist does 
not change chiral sense at this junction.)  (Inset): Magnification of the hollow tubelet's right 
end.  The scale bar is 1 µm.  Reprinted with permission from reference 2, Copyright (2005) 
American Chemical Society.   
 

 

Our observations suggest the process shown in Figure 3.9:  1) A continuous hollow 

bilayer tube, the “tubelet,” forms 2) the tubelet flattens spontaneously into either a cylindrical 

type “A” or axial type “B” curvature, or rarely, with no curvature.  Our findings strongly suggest 

that DC(8,9)PC tubules and DC(8,9)PC/lysozyme cones are a result of the helical winding of 

these previously-unobserved tubelets.  This model explains several of the problematic tubule 

features.   

First, the unfavorable solvation energy along the edges of the ribbon before it winds to 

form a tubule is minimized.  The sharp curvature occurs as a result of the tubelet becoming 

flattened, and membrane chiralization through spontaneous chiral symmetry breaking may play a 

significant role in the formation of creases and flattening of the initial, unflattened tubelets.  

Several papers have discussed the idea that chiral defects must form in adequately large chiral 
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domains.6,10,11  We conjecture that as tubelets grow, increasing in length and perhaps diameter, 

such chiral defects occur and result in the twist (configuration “B”), or helical winding 

(configuration “A”). Our experimental discovery suggests profound re-evaluation of the ribbon 

edge/tubelet crease contributions to tubule energetics be undertaken.  

  

 

 

 

 

 

 

 

 

 

 
 
Figure 3.9  The formation of type "B" and "A" curvature structures appears to begin with 
the formation of the cylindrical tubelet (left), which spontaneously flattens (center).  The 
tubelet occasionally remains flattened but far more likely assumes a type "B" curvature 
conformation (top right) or a cylindrical "A" curvature (bottom right).  The inset drawing 
indicates the bilayer orientation of the amphiphilic molecules.  Reprinted with permission 
from reference 2, Copyright (2005) American Chemical Society.   

 

 

Second, the persistence of the “barber-pole” ridge on the surface of the tubule and the 

stability of propanol/DC(8,9)PC helices12 and phosphonate DC(8,9)PC derivative helices3,4 are 

made clear by this model.  The ridges are not a result of two membranes meeting edge-to-edge 
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and fusing together but occur as two hydrophilic membranes form a junction.  The “open” 

helices found in propanol/DC(8,9)PC and DC(8,9)PC phosphonate derivatives are thus seen to 

present hydrophilic headgroups along their edges,  instead of exposed hydrocarbon tails under 

earlier tubule structure models.   

 A third tubule feature problem that is addressed by the discovery of tubelets is the tightly 

conserved interlamellar spacing found in tubules of different dimensions, compositions, and 

symmetry.  SAXS and AFM show that phosphonate and DC(8,9)PC tubule walls are either two 

or four bilayers thick – odd number of bilayers are never observed.  This is sensible if the bilayer 

“ribbon” is actually a collapsed bilayer tube.  Using this model, the tubule in Figure 3.5 should 

have a wall thickness of two bilayers and the tubule wall thickness can be in increments of two 

bilayers, consistent with the SAXS and AFM determinations. 

Are tubelets generated as a result of the introduction of protein into the system and not 

related to the formation of tubules?   That is, does the protein deform existing cylindrical tubules 

into helically-wound tubelets?  While the look and dimensions of the type “A” helical winding 

tubelet seen in Figure 3.5 and the bottom of Figure 3.7 provide a strong case for tubelets being a 

tubule precursor, they have only been detected in specimens containing protein.  Nonetheless, we 

contend that tubelets are indeed tubule predecessors in protein free systems but can not be seen 

by SEM and TEM. 

 SEM and TEM investigation of the smooth regions of specimen containing protein reveal 

the coexistence of cones and tubules (seen in Figure 3.2), but neither technique detects tubelets 

in these uncracked regions.  However, the crack of Figure 3.2 shows tubelets are there in large 

quantity.  It appears SEM is unsuccessful in finding tubelets in the smooth regions because they 

are sufficiently far below the deposition bed surface to be detectable.  On the other hand, TEM is 
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unable to resolve tubelets because of the closely packed structures within the ~ 12 µm deposition 

bed depth.  At the protein-bearing specimen’s deposition bed cracks, tubelets are seen in 

remarkable detail over large distances when they project from the crack face because there is no 

background obstruction of the specimen.  These structures can only be found at distances of ~1 

µm below the deposition bed surface.  We believe that tubelets are also present in protein-free 

specimens, but are not detectable because they are within the specimen’s interiors, and protein-

free specimens do not crack to expose the inside of the deposition bed.  If protein-free systems 

would form cracks, the beds’ internal organization and intricate structures could be compared.  

Vertical slices made into these specimens with a razor blade do not reveal tubelet structures, 

however, the enormous artifacts that slicing makes in the sample, renders them completely 

uninterpretable.  Extended efforts using conventional freeze-fracture techniques also failed to 

reveal these structures, in part because of the loss of orientational information, but largely due to 

the very limited sizes of regions that freeze-fracture would expose.  

 There similarities of cone and tubule structure seen not only in optical video microscopy 

but in SEM and SAXS studies of their internal structures strengthen the argument that cylinders 

and cones are more alike than dissimilar.  The helical ridges on the both structures’ exteriors, the 

remarkable conservation of interlamellar spacing, and the tubule wall thicknesses (always 

consisting of multiples of two bilayers) suggest strongly that tubule and cones are different 

manifestations of the tubelet precursor. 

3.5 Conclusions 

 The interactions of gravity, electrostatic charge, and surface tension cause the structure of 

entangled protein-fortified fluid matrix to gel, crack, and expose the interior structure of the bulk 

droplet, revealing a previously-unobserved structure, the “tubelet”.  These tubelets appear to be 
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tubule precursors in protein-free systems and of tubules and cones in systems containing protein. 

The tubelet-as-precursor structure explains several important tubule characteristics and may 

signify a major shift in our understanding of their structure and how they form.  The possibility 

of using tubules in applications such as biomedical encapsulation should be reassessed as well: 

rather than offering a simple 0.5 µm cylinder, from which encapsulated drugs would be expected 

to diffuse from so rapidly as to make the encapsulation pointless, tubules should now be regarded 

as a secondary winding of a smaller tube that may provide longer encapsulant retention times 

that are significantly longer than what would be expected from a simple hollow cylinder.  
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Chapter 4 

Encapsulation Studies with Chemotherapy Agents 

4.1 Introduction 

 To determine whether or not tubules can be used as vehicles for medicines, it is first 

necessary to see whether or not they can even form in the presence of the drugs. This can be 

done in a straightforward fashion by optical microscopy, atomic force microscopy (AFM), and 

scanning electron microscopy (SEM).  These probes will also allow us to see if structure of the 

tubule is the changed by the drugs. 

If tubule formation persists in the presence of drugs, it must be in at least one of three 

places.  The drug can stay in the bulk of solution, in the solution contained in the hollow tubule 

or tubelet composing the tubule, or become integrated into the tubule membrane.  So long as 

either possibility (2) or (3) occurs, water-soluble and water-insoluble drugs can be considered for 

encapsulation:  Water-soluble drugs will be encapsulated in the solution within the tubelet, or 

inside the larger tubule cavity, while water-insoluble drugs will partition within the membrane, 

i.e., with the hydrophobic tails of the phospholipid.  AFM experiments will determine the effects 

that the drug has on tubule morphology, while energy dispersive spectroscopy (EDS EDAX) can 

help determine the location of the drug. 

 Tubule dimensions allow them to be aerosolized.1  This property, along with the 

presumed biocompatibility of phospholipids with tissue membranes, suggests strongly that 

tubules can serve as benign drug carriers and be used in aerosol therapies.  Aerosol therapy has 

two evident applications: medicines can be inhaled for application to respiratory tract tissue for 

treatment of asthma, epithelial cancer, or other illnesses of the lung.  Interestingly, control of 

tubule diameter alone would permit regulation of their effective aerodynamic diameter, which in 
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turn would permit drug delivery to a specified distance along the respiratory tract.2  Medicines 

can also be introduced into the circulatory system by inhalation for target sites outside of the 

lung.  This delivery mode may enhance the efficacy of the medicine, for blood from the lungs is 

dispersed throughout the body before passing through the liver, where many drugs are processed 

for excretion.  Not only could it enhance the efficacy, it could provide an alternative route for 

drug delivery of chemotherapy agents, which are currently administered intravenously.  As 

cancer research is of very high interest, this can open many doors for these types of drugs. 

 Chemotherapy drugs are used to kill rapidly growing cancer cells.  But, these drugs also 

kill healthy, rapidly growing cells such as stomach lining cells, red blood cells, platelets, and 

white blood cells.  Being able to deliver the drug in a fashion that would minimize exposure to 

those tissues while targeting the cancer cells could prove more beneficial to treatment, as well as 

minimize the side effects.  Although most chemotherapy drugs are delivered though an IV, some 

forms of chemo are delivered orally.  If tubules can be used to encapsulate chemotherapy drugs, 

it may be possible to deliver these drugs though an inhaler.   This could be a useful way to 

deliver any chemotherapy drug, if an adequate quantity can be delivered to the body.  For the 

specific application of lung cancer, however, massive doses of the toxic drug can be delivered 

locally to the cancerous lesions, and because the dose is delivered to the desired point of action, 

the dose to the body overall can be quite small, sparing the stomach lining, blood cells, etc.  By 

changing tubule diameter, we can manipulate the effective aerodynamic diameter of the tubule 

allowing us to determine which part of the lung the drug filled tubule would travel.2  The larger 

the tubule diameter, the larger the aerodynamic radius, and the further down the bronchial tubes 

the tubule will travel.  In this way, concentrating the toxic chemotherapeutic agents at the desired 

point can permit larger doses at the cancerous site and lower doses to the body in toto.   

 51



 Another potential medical use does not involve aerosolization, but rather, direct 

implantation into the body, e.g., via subcutaneous injection.  The anticipated advantage of this 

technique would be the slow release of encapsulated drugs directly “upstream” from the tumor, 

inflamed joint, etc., from which the tubules have been implanted.  The slow, “point” source 

release could potentially deliver would be particularly promising for a number of the drugs.  One 

should also consider that this “point” specificity may not matter for some drugs, but that tubules’ 

potential long release time could nevertheless provide a substantial benefit, e.g., the continuous 

release of growth hormone over a period of weeks or even months.  

4.2 Methotrexate Studies 

 Methotrexate (MTX), N-[4-[[(2,4-diamino-6-pteridinyl)methyl]-methylamino]benzoyl]-

L-glutamic acid, whose chemical structure is shown in Figure 4.1, is used as a treatment for 

breast and lung cancers and autoimmune diseases, such as Crohn’s disease and rheumatoid 

arthritis.3  MTX is an antimetabolite; it is similar enough in structure to participate in normal 

biochemical reactions but different enough to interfere with normal division and function of 

cells.  This is due to the fact that MTX is a folic acid analogue.4,5  In 1947, aminopterin was 

synthesized by changing the 4-oxo moiety of folic acid to 4-NH2.6  This slight change in the folic 

acid caused the vitamin to become very toxic by the body’s inability to differentiate it from the 

essential folic acid.  It was used successfully in childhood leukemia but its toxicity inspired 

development of its 10-methyl congener, MTX, in the 1950s.5   Since it also is a folic acid 

analogue, it is able to inhibit enzymatic pathways for biosynthesis of nucleic acids by 

substituting for folic acid.  This inhibition interferes with the production and maintenance of 

DNA, allowing MTX to be used as a chemotherapy agent.7  It is a yellow fluid that can be 

administered intravenously, through a central line, or into a PICC line or given as an IV drip.3  It 
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can also be injected into the muscle, artery, or fluid surrounding the spinal cord.  It can also be 

administered orally, if taken with plenty of water.   The side effects include loss of blood cells, 

diarrhea, tiredness, sore mouth and taste change, skin changes, inflammation of the cornea, 

blurred vision, hair loss, sensitivity to sun, changes to lung tissue, and kidney and liver damage.3  

Delivery of this potent drug to the desired point of action could minimize these serious side 

effects.  
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Figure 4.1  Chemical structure of methotrexate. 

A sample was prepared by adding methotrexate to the standard 1 mg lipid / ml stock 

solution, where the percentage of drug in the sample was very high, 28 weight%.  The sample 

was subjected to the canonical DC(8,9)PC tubule formation process, that is, heating to 45oC, 

where, as with pure DC(8,9)PC specimens, the solution became clear.  The sample was then 

allowed to cool slowly back to room temperature where it became a cloudy yellow solution, 

indicating that tubules had formed.  Optical microscopy was performed in order to confirm the 

presence of tubules.  At this very high drug concentration, the number of tubules seen is 

significantly lower than in the pure DC(8,9)PC sample, but it was somewhat surprising to find 

that tubules form at all at such high MTX concentrations.  Some new features are introduced in 

this specimen, shown in the AFM shown in Figure 4.2.  The image shows some branch-like 

structures (resembling crystallization) and some very high structures that look like clumps 
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(possibly the drug's effect on the lipid, or the drug itself) around the tubules that have not been 

observed previously.  Control experiments performed with MTX do not exhibit these features 

either; the AFM scans of MTX under the same conditions (in ethanol/water solution and taken 

through the thermal cycle), remain featureless.  These tall structures make AFM difficult because 

their height exceeds the ≈ 6 µm height maximum of the AFM, compromising several of the 

raster scan lines during the AFM scan.   
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Figure 4.2  100 µm x 100 µm contact mode atomic force micrograph of DC(8,9)PC doped 
with 28% methotrexate.  

 

It is possible, however to take a closer look at a clean area – one free of these tall 

structures -- once the large-area scan has been captured by using the zoom feature when working 

up data.  Such an area is shown in Figure 4.3.   

Given the positive outcome of tubule formation at this high MTX concentration, other 

samples were made at lower MTX concentrations to see if the drug’s influence – apparent 

changes in tubule structure and possible MTX co-precipitation - will continue at these lower 
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MTX concentrations. Methotrexate was added to the lipid stock solution where the percentage of 

drug was 8%.  The sample was taken through the normal tubule formation process and once 

again showed the presence of tubules by optical microscopy.  The AFM of Figure 4.4 shows that 

tubules are much more plentiful as expected due to the higher relative lipid concentration, but 

still not as numerous as in pure DC(8,9)PC samples.  Their diameter is larger in comparison to 

that of MTX-free DC(8,9)PC tubules’ 0.5 µm diameter, indicating a significant interaction 

between the drug and lipid has occurred.  A closer look at the scan reveals that tubule diameter 

has increased to about 1.25 µm, seen in Figure 4.5. One possibility is that the drug is filling the 

inside of the tubule causing it to swell, thus increasing the diameter.  Another possibility is that 

the MTX/lipid membrane interaction has reduced the membrane’s intrinsic curvature, resulting 

in larger-diameter structures.  Further studies must be performed to determine the location of 

methotrexate in the samples and the modified membrane’s bending moduli. 

 

 

 

 

 

 

 

 

 
 
 
Figure 4.3  50 µm x 50 µm contact mode atomic force micrograph of DC(8,9)PC doped with 
28% methotrexate. 
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A.                                                                                 B. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 4.4  100 µm x 100 µm contact mode atomic force micrographs of A. DC(8,9)PC 
tubules (shown for comparison) and B. DC(8,9)PC tubules doped with 8% methotrexate. 
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Figure 4.5  10 µm x 10 µm contact mode atomic force micrographs of A. DC(8,9)PC tubules 
(shown for comparison and B. DC(8,9)PC tubules doped with 8% methotrexate. 
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4.3 Mitoxantrone Studies 

 Mitoxantrone, 1,4-dihydroxy-5,8-bis[[2-[(2-hydroxyethyl)amino]ethyl]amino]-9,10-

anthracenedione dihydrochloride, shown in Figure 4.6, is another chemotherapy agent used 

primarily to treat breast cancer, myeloid leukemia, and non-Hodgkin lymphoma.8  It is also used 

for treatment of multiple sclerosis (MS).8  It can not cure MS, but it can lengthen the time 

between relapses.  Mitoxantrone is an antineoplastic or “antitumor antibiotic”, which is able to 

interfere with the growth of cancer cells by blocking an enzyme, topoisomerase II, which is 

required for cell division.9,10  When this enzyme is blocked, cells are unable to divide and grow 

into new cells.  Antineoplastics also generate free radicals that damage DNA and cell 

membranes.  Mitoxantrone is a dark blue fluid that can be injected into the vein for 5 to 20 

minutes a day for 3 consecutive days or once every 3 weeks.8  Some of the side effects include 

changes in liver function, sore mouth, reduction in platelet production leading to bruising or 

bleeding, anemia, nausea, and weakness.8   
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Figure 4.6  Chemical structure of mitoxantrone. 

 A sample was prepared using mitoxantrone at the very high concentration of 28 weight%.   

Mitoxantrone was added to the previously-prepared lipid stock solution and heating to 50 oC, 

where the solution was a clear dark blue.  As the solution cooled back down to room 

temperature, it was hard to determine if a precipitate had formed due to the darkness of the 

solution.  Optical microscopy and AFM were conducted on the sample, and because tubules were 
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hard to locate, we conclude that the high concentration of mitoxantrone inhibited, but did not 

completely prevent tubule formation.  Some tubules were present, as seen in Figure 4.7.  

  

 

 

 

 

 

 

 

Figure 4.7  100 µm x 100 µm contact mode atomic force micrograph of DC(8,9)PC doped 
with 28% mitoxantrone. 
  

When the concentration of mitoxantrone was reduced to 8%, tubules were, as with MTX, 

much more numerous, but again, their number is still not quite as large as that of pure 

DC(8,9)PC stock solution run through the thermal cycle without addition of mitoxantrone.  

Again, as in the methotrexate sample seen in Figure 4.2, there is a presence of high structures 

that interfere with the scan.  This again, could be the result of the presence of drug in the sample.  

Even though, the drug is added at 8%, much lower than the original sample with 28%, it 

obviously has an effect on tubule morphology.  Tubules can definitely form after being doped 

with mitoxantrone, but their morphology is altered and the number of tubules is significantly 

lower, as seen in Figure 4.8.  A closer look at the tubules formed indicates that their morphology 

has been altered to yield tubules of much larger diameters, as seen in the isolated tubule of 

Figure 4.9, showing the dramatic increase in tubule diameter from 0.5 µm to 2.5 µm.   
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Figure 4.8  100 µm x 100 µm atomic force micrographs of A. DC(8,9)PC tubules (shown for 
comparison) and B. DC(8,9)PC tubules doped with 8% mitoxantrone. 
 

 

 

 

A.                                                                                   B. 

 

 

 
 
 
 
 
 
 
 

 
Figure 4.9  10 µm x 10 µm atomic force micrographs of A. DC(8,9)PC tubules (shown for 
comparison) and B. DC(8,9)PC tubules doped with 8% mitoxantrone. 
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4.4 Carboplatin Studies  

 Carboplatin [cis-diamine (1, 1-cyclobutane-dicarboxylato) platinum (II)], shown in 

Figure 4.10, is another chemotherapy drug that is used to treat a wide variety of cancers, 

including ovarian and lung cancer.11  Platinum-containing compounds are often used as 

chemotherapy agents.12-14  Carboplatin was derived from cisplatin, which was discovered in the 

1970s for the treatment of cancer, in an attempt to reduce toxicity.15,16  It is an alkylating agent, 

as it transfers alkyl groups to other molecules, and stops tumor growth by cross-linking guanine 

nucleobases in DNA strands, preventing cell division and leading to eventual cell death.17-19   It 

is a clear fluid that is currently administered as an infusion drip into the vein through a cannula, a 

tube inserted into the vein, or through a central line that is inserted under the skin into a vein near 

the collar bone.11  As with most chemotherapy drugs, the side effects are numerous.  Some of 

these include loss of blood cells, nausea, vomiting, diarrhea, fatigue, loss of appetite and taste, 

changes in hearing, numbness in hands and feet, and loss of hair.11  Carboplatin also has side 

effects that may not occur for months or years after the treatment has been stopped.  Ironically, 

one delayed effect is the induction of another cancer, leukemia.  These side effects can possibly 

be minimized if the drug could be administered in another fashion, via an inhaler, or if the drug 

could be targeted to the site of the cancer via injection, minimizing exposure of the whole body 

to the drug.  
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Figure 4.10  Chemical structure of carboplatin. 
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A sample was prepared by adding carboplatin in to the lipid stock solution, where the 

percentage of drug in the sample was 28 weight%.  The sample was heated to 55 degrees Celsius 

where the solution became clear.  The sample was then allowed to cool slowly back to room 

temperature where it became a cloudy solution, indicating that tubules had formed, which was 

confirmed by optical microscopy.  At this high drug concentration, AFM results were generally 

poor because of the presence of tall structures that had been seen in samples where MTX was 

added.  We tentatively conclude, as control studies with carboplatin under these same conditions 

(in ethanol/water and taken through the thermal cycle) remain relatively featureless, that these 

tall structures are carboplatin/lipid co-precipitate.  There is some evidence of cones in our 

sample; one gently-tapered structure is shown in Figure 4.11.   

 
  

 

  

  

 

 
 
 
 
Figure 4.11  15 µm x 15 µm atomic force micrograph of DC(8,9)PC tubules doped with 
28% carboplatin.  This seems to be cone-shaped. 

 

As with the previous drugs, another sample was again made with carboplatin at a 

concentration of 8%.  As before tubules became much more abundant, and again they had 

significantly larger diameters than tubules made from drug-free DC(8,9)PC stock solution (as 

seen in Figure 4.12).  A smaller scan area (that is, at higher magnification) shows tubules with a 
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diameter of approximately 2 µm (see Figure 4.13) much larger of those made from pure 

DC(8,9)PC. 

 
A.                                                                            B. 

 
 

 

  

 

 

 

 

 
Figure 4.12  100 µm x 100 µm contact mode atomic force micrographs of A. DC(8,9)PC 
tubules (shown for comparison) and B. DC(8,9)PC tubules doped with 8% carboplatin. 
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Figure 4.13  10 µm x 10 µm contact mode atomic force micrographs of A. DC(8,9)PC 
tubules (shown for comparison) and B. DC(8,9)PC tubules doped with 8% carboplatin. 
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Carboplatin presents an unusual study opportunity because it contains the high-Z 

element, platinum.  Platinum’s K, L, and M fluorescence is easily differentiated not only from the 

carbon, hydrogen, oxygen, nitrogen and phosphorus contained by DC(8,9)PC, but from any  

metals such as copper, iron, etc. that might compose the electron microscopy grid the specimen 

lies upon.   That is, carboplatin is intrinsically “labeled” for EDS EDAX probes. 

The second, less carboplatin-rich sample was examined using EDS EDAX where we 

were able to locate the carboplatin in the sample.  Figure 4.14 shows EDAX emanating from the 

tubule; fluorescence yield data indicates that the tubule is 4.5 weight % platinum, a surprisingly 

high value.  This finding is underscored by the fact that Pt was not detected anywhere else on the 

deposited specimen surface except on, or within 0.5 µm of the tubules.  The area on the tubule 

exterior (Figure 4.15), revealed platinum present in concentrations of 24.1 weight %, suggesting 

the carboplatin either adheres to the tubule exterior, or is integrated into the tubule’s membrane.  

Figure 4.16 shows that there was absolutely no detectable platinum on the areas of the substrate 

where tubules were not present.   These results indicate that carboplatin adheres to tubule 

exteriors, or incorporates into the membranes, and does so voraciously.  This result is the most 

promising so far with our encapsulation studies.   It is possible that our interpretation that 

carboplatin adheres to the tubule exterior is an artifact resulting from the fact that the sample is 

air dried before it is examined:  If the tubule dries flat, then it is possible that if the carboplatin 

was captured inside the tubule in solution, it may be released upon drying, producing a high 

concentration near the tubule.  But, spatial resolution with EDAXS can be limited by secondary 

electron scattering within the substrate, and the 0.5 µm distance from the tubule edge where Pt is 

found may be an artifact of this “blossoming.”  Whether carboplatin resides in or on the tubule, it 

is apparent that tubule’s potential utility as encapsulation agents merit further research.   
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Elemental Analysis: 
CK – 75.9 weight % / 87.8 atomic % 

OK – 10.5 weight % / 9.1 atomic % 

PK – 3.5 weight % / 1.6 atomic % 

CuK – 5.7 weight% / 1.2 atomic % 

PtL – 4.5 weight % / 0.3 atomic % 

 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.14  Energy dispersive spectroscopy results of the tubule itself. 

 

 

 

 

 

 Elemental Analysis: 
CK/OK – 39.2 weight % / 72.0 atomic % 

PK – 15.4 weight % / 14.6 atomic % 

CuK – 21.3 weight% / 9.8 atomic % 

PtL – 24.1 weight % / 3.6 atomic % 

 

 

 

 

 

 

Figure 4.15  Energy dispersive spectroscopy results at the perimeter of the tubule. 

 64



 

 

 

 

 

 

 

 

Elemental Analysis: 
CK – 83.0 weight % / 94.3 atomic % 

OK – 3.3 weight % / 2.8 atomic % 

CuK – 13.7 weight % / 2.9 atomic % 

 

Figure 4.16  Energy dispersive spectroscopy results of the substrate area without tubules 
present.   
 

4.5 Conclusion  

 The encapsulation studies prove that it is possible to form tubules in the presence of a 

drug.  The chemotherapy drugs do, however, have a couple of effects on the tubule morphology.  

First, when chemotherapy agents are added at 28%, tubules are not as plentiful and there seems 

to be an existence of high structures in the AFM scans, which are tentatively interpreted as being 

the drug itself co-precipitating alongside the tubules.  Alternatively, these high drug 

concentrations may interfere with tubules formation, creating regions of non-tubule, drug-

containing “bulk” lipid.  The drugs all increase the diameter of the tubules as well.  This effect 

persists when the drugs are added to attain 8% concentrations.  EDS results show that carboplatin 

is centered around the tubule and apparently no carboplatin at all is left in the solution after 

tubules have formed.  More experiments need to be performed in order to gain a better 

understanding of what is happening when the tubules are drying and becoming flattened (or 
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releasing the carboplatin).  Also further studies need to be examined with methotrexate and 

mitoxantrone to determine where it is located throughout the tubule. 
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Chapter 5 

Optimization of Phospholipid Tubule Morphology 

5.1 Introduction 

It is important to understand the significance of optimizing tubule morphology for drug 

encapsulation applications. Tubule drug-loading capacity presumably scales with tubule size, 

that is, a larger tubule should deliver a larger dose.  Because the amount of drug administered to 

the body is adjusted simply by regulating the number of drug-bearing tubules that are delivered, 

the question of why it is important to control tubule size occurs naturally.  The answer is two-

fold:  1)  The drug release rate and the duration of its release are certain to depend upon tubule 

length and diameter; and 2) In aerosol-delivery respiratory therapy modalities, the deposition 

location in the respiratory tract is almost solely a function of tubule diameter.1 

There are two ways to regulate tubule diameter. The first is to modify the tubule-forming 

molecule, e.g., the doubling of tubule diameter by using phosphonate DC(8,9)PC derivatives 

rather than DC(8,9)PC.2,3  This requires considerable (and expensive) synthetic effort and the 

result is “quantized” in the sense that a given molecule tends to produce tubules of a given, and 

possibly off-optimum diameter and length.  The second approach is to add co-surfactants, or so-

called “spacer” lipids that modify whatever processes lead to membrane chiralization and 

winding, or polymers or proteins that exert similar effects, presumably by similar mechanism(s).4 

This latter approach could prove useful for a number of applications, for tubule diameter is 

presumably continuously adjustable by this approach, and the co-surfactant or polymer could be 

an inexpensive, stable material. Optimizing tubule dimensions for a particular application by the 

addition of co-surfactant or large molecules may result in non-cylindrical morphologies that may 

affect their performance (for better or worse), e.g. the protein lysozyme added to the cooling 
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spherical DC(8,9)PC vesicles produces gently-tapered hollow cones, rather than the cylinders 

formed in protein-free systems.5  Whether or not the conical transformation caused by the large 

lysozyme molecule is desirable remains a question for further study. 

In this chapter, two molecules, semi-saturated DC(8,9)PC analog 1,2-dioleoyl-sn-

glycero-3-phosphoethanolamine, (DOPE) and cholesterol, are investigated in order to regulate 

tubule morphology.  
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5.2 DOPE Studies 

The semi-saturated DC(8,9)PC analog 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine 

(DOPE) shown in Figure 5.1 was selected as a co-surfactant for its similarity to DC(8,9)PC and 

its unusual tendency to form inverted hexagonal phases above 10 degrees Celsius.6,7  DOPE was 

added in various weight ratios and taken through the thermal tubule formation process to 

determine if tubule formation persisted in view of DOPE’s ability to form inverted hexagonal 

phases, and if so, what changes might be seen in tubule structure.  

 
 
 
 
 
 
 
 
 
 
 
Figure 5.1  Structure of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine, (DOPE). 
 

 

DOPE was first added to existing 1 mg lipid / ml EtOH/H2O stock solution to obtain a 

1:1 DOPE:DC(8,9)PC weight ratio or 1.2 mole%.  At this very high ratio, tubule formation was 

seen to persist, as seen in Figure 5.2, and tubule diameters increased from 0.5 µm to ~1-2 µm 
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upon this introduction of DOPE.  So, at this concentration, DOPE did not prevent tubule 

formation, and exerted only a small change upon tubule structure.  

 

A.           B. 

 

 

 
 
 
 
 
 
 
 
 

 
Figure 5.2  100 µm x 100 µm contact mode atomic force micrograph of A. DC(8,9)PC 
tubules (shown for comparison) and B. DOPE:DC(8,9)PC [1:1] tubules, showing an 
increase in diameter. 
 

Given this somewhat surprising outcome, samples were prepared at a 2:1 

DOPE:DC(8,9)PC weight ratio or 2.5 mole%. Figure 5.3 shows that tubule formation still 

persists at the 2:1 DOPE:DC(8,9)PC weight ratio, but now tubule diameters are found to range 

from 1 µm to 6 µm.  These results are consistent with those of Singh et al.; simpler “spacer 

lipids”, short-chain saturated phospholipids, were used to tune the diameter of DC(8,9)PC 

tubules.4  When chain lengths are long enough, these spacer lipids can penetrate the membrane to 

the depth of the DC(8,9)PC diacetylene groups, thus interfering with diyne/diyne interactions.  

This interference causes an increase in tubule diameter above the otherwise narrowly disperse 

0.5 µm diameter; and DOPE’s chain length is just long enough to “mask” the diacetylene group 

interactions and cause an increase in diameter.  So, in conclusion, the presence of DOPE does 
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not cause a change in phase or a disruption in the lamellar phase out of which tubules form, even 

at preponderant concentrations of 4:1 DOPE:DC(8,9)PC (4.9 mole%).  
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Figure 5.3  100 µm x 100 µm contact mode atomic force micrograph of A. DC(8,9)PC 
tubules (shown for comparison) and B. DOPE:DC(8,9)PC [2:1] tubules, showing an 
increase in diameter. 

      

5.3 Cholesterol Studies 

Cholesterol, shown in Figure 5.4, is a rigid ring system with a short branched 

hydrocarbon tail.  It is largely hydrophobic due to its possessing only one hydrophilic moiety, a 

hydroxyl group.  Even so, the distal position of the hydroxyl group makes this hydrocarbon 

amphipathic.  Cholesterol is known to insert itself into bilayer membranes with the hydroxyl 

group forming a H-bond with the polar headgroups of the phospholipid and the short branched 

hydrocarbon tail aligning with that of the hydrophobic region of the phospholipid hydrocarbon 

tail.8  By inserting itself into the membrane in this fashion, cholesterol is able to decrease the 
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mobility of the phospholipid tails and cause them to expand or straighten, resulting in an increase 

of bilayer thickness.9-11   
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Figure 5.4  Chemical structure of cholesterol 

 

As cholesterol is known to generally increase lipid chain order and bilayer thickness in 

membranes, it was added to the standard  DC(8,9)PC thermal cycling mixture to study its effects 

upon tubule formation, which result from a highly unusual DC(8,9)PC membrane.   

Another reason for choosing cholesterol is that it can serve as an indication of how other 

molecules having the same characteristics might act in the membrane.  If cholesterol can be 

successfully incorporated into the membrane, other steroids such as sex hormones, anti-

inflammatory agents such as prednisone, etc. may act in a similar fashion.  There has been much 

interest in recent years on the delivery of steroid hormones such as estradiol, progesterone, and 

testosterone.  Because these molecules’ structures are derived from cholesterol, cholesterol is an 

excellent model for these other compounds.  

Cholesterol was added to a solution of previously-formed tubules at various mole% ratios 

and taken through the tubule formation thermal cycle, i.e., heating the suspension to clarity and 

cooling slowly.  Surprisingly at 11 mole% cholesterol, no detectable change was seen in tubule 

morphology, as seen in the SEM image Figure 5.5.  Tubule diameter and morphology remained 

unchanged at lower cholesterol concentrations as well.  
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Figure 5.5  Scanning electron micrograph of DC(8,9)PC tubules with 11 mole% cholesterol, 
showing tubule morphology is consistent with that of pure DC(8,9)PC. 

 

When DC(8,9)PC is doped with higher amounts of cholesterol significant changes in the 

morphology can be observed.  Figure 5.6 shows an atomic force micrograph of DC(8,9)PC 

tubules with 40 mole% cholesterol, showing an increase in diameter.  Upon the addition of 30 

and 40 mole% cholesterol, tubule diameter increases because of the addition of cholesterol, as 

shown in Figure 5.7.  The trend discerned is that as the amount of cholesterol increases, so does 

tubule diameter, which is interpreted as the expected increase in bilayer thickness.   

In order to determine whether or not this presumed bilayer thickness was occurring, AFM 

section analysis was performed on the samples.  AFM cross-sections of DC(8,9)PC and 

phosphonates are observed to be trapezoidal and not the expected semi-circular shape that an 

unflattened tubule would generate.2  As the AFM tip is rastered across the sample in a horizontal 

fashion, the vertical displacement is translated as the sample height.  When the tip reaches the 

cylinder’s edge, it is unable to reach under the segment of the cylinder whose portion is tangent 

is normal to the substrate surface.  The section analysis tool can give information on the height of 

the tubules, which can reveal information about the thickness of the bilayers, because it is known  
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Figure 5.6  100 µm x 100 µm contact mode atomic force micrograph: A. DC(8,9)PC tubules 
(shown for comparison) and B. DC(8,9)PC tubules with 40 mole% cholesterol, showing a 
change in tubule morphology. 
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Figure 5.7  50 µm x 50 µm contact mode atomic force micrograph: A. DC(8,9)PC tubules 
with 30 mole% cholesterol and B. DC(8,9)PC tubules with 40 mole% cholesterol 
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that tubules’ circular cross section flattens upon drying.  A height measurement thereby yields 

information about bilayer thicknesses.  All measurements were made under the same conditions 

in order to make our comparisons as accurate and consistent as possible.  The pure DC(8,9)PC 

height profile, shown in Figure 5.8, reveals that tubule heights are ~100 nm, while 30 mole% 

cholesterol/DC(8,9)PC specimens gave tubule heights of ~200 nm, as seen in the height profile 

in Figure 5.9.  Tubule height for 40 mole% cholesterol/DC(8,9)PC increases to ~30 nm, as 

shown in Figure 5.10.  Tubule wall thickness appears to depend upon the cholesterol content.   

So, AFM section analysis reveals that above a certain mole% threshold (somewhere above 11%) 

tubule wall thickness increases in an apparently linear fashion upon the addition of cholesterol.   

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.8  Atomic force microscopy section analysis yielding DC(8,9)PC tubule height 
profile.  Tubule height ~100 nm. 
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Figure 5.9  Atomic force microscopy section analysis yielding DC(8,9)PC tubules with 30 
mole% cholesterol tubule height profile.  Tubule height ~200 nm. 
 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 5.10  Atomic force microscopy section analysis yielding DC(8,9)PC tubules with 40 
mole% cholesterol tubule height profile.  Tubule height ~300 nm. 
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5.4 Conclusions 

 Tubule formation persists in the presence of both DOPE and cholesterol, but the 

morphology of the tubules is altered by the presence of these molecules.  DOPE did not cause a 

change in phase or apparently otherwise disrupt the DC(8,9)PC lamellar phase from which 

tubules form, even at concentrations as high as 4:1 DOPE:DC(8,9)PC.  But DOPE is able to 

significantly alter the tubule diameter up to sizes of ~6 µm.  Cholesterol is also able to alter 

tubule morphology with concentrations above a certain mole% threshold (11 mole%).  Above 

this mole% threshold, tubule wall thickness increases in an apparently linear fashion with respect 

to cholesterol concentration.  
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Chapter 6 

Modifying DC(8,9)PC to Create New Tubule-forming Molecules 

6.1 Introduction 

Given the striking correspondence between DC(8,9)PC chirality and the helical sense of 

handedness (helicity) of the tubule exterior, molecular chirality was understandably at the center 

in the development of tubule theory.1-6  But as described in Chapter 1, Thomas et al. developed 

two results inconsistent with these “chiral packing” theories:  1) tubules’ inner cylinder’s helicity 

is random,7 and more strikingly, 2) that molecular chirality is not essential for membrane 

chiralization to occur8. Armed with these new discoveries, we embarked upon developing a 

series of compounds to determine what DC(8,9)PC molecular features enable tubule formation.  

Since it is now known tubules can form from achiral DC(8,9)PC analogs, it is clear that the 

diynes are the enabling feature, and their contribution must be investigated. 

Inspiration is drawn from recent results in liquid crystal physics, namely the so-called 

achiral "banana" or "bow”-shaped molecules that spontaneously form locally-chiral phases, by 

way of a chiral symmetry-breaking transition.9,10  We speculate the tubule forming molecule, 

DC(8,9)PC, may enter such a "bow" conformation by rotations of tail segments about the diyne 

and form chiral mesoscale structures by the same mechanism as the "bow"-shape liquid crystals 

do, shown in Figure 6.1. 

 

 

 

 
Figure 6.1   Represents the tails of the phospholipid rotating about the diyne to enter the 
“bow” confirmation. 
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This hypothesis was tested by synthesizing compounds in which the diynes in the 

DC(8,9)PC tails are replaced by either a cis- or trans- "ene" bond.   When cis ene bonds lie in the 

tails, the hydrocarbon tails are forced into a "bow" shape, but trans ene bonds exclude that 

conformation, and essentially result in a more-or-less straight hydrocarbon tail.  Oleic acid, 

linoleic acid, and γ-linolenic acid (Figure 6.2) were selected as sources for the hydrocarbon tails 

of the phospholipid because of their number of cis bonds.  Oleic acid has one cis bond, while 

linoleic and γ-linolenic acids have two and three, respectively.  This range in the number of cis 

bonds can possibly force a “bow” confirmation to varying degrees as seen in Figure 6.2, if they 

were constrained to lie in a plane, as forced to draw them.  One of three outcomes can be 

expected: 1) The cis- AND trans compounds form tubules; 2) Neither cis- and trans compound 

forms tubules; 3) Only one compound forms tubules.  The cis compounds were selected as a 

starting point, for tubule formation from these compounds would confirm our conjecture, but in 

order to fully understand and confirm this theory, the trans-“ene” bond must be synthesized.  

That is to say, if our “bow” chiral symmetry-breaking model speculation is correct, we expect 

outcome #3, specifically, that the cis compound will form tubules, and that the trans compound 

will not. However, given the primitive state of understanding of tubule formation, outcomes #1 

and #2 and even #3 with the trans compound would be groundbreaking.  

6.2 Synthetic Steps 

6.2.1 Acetonide Protection of Glycerol 

The first step in the synthesis of the DC(8,9)PC derivatives requires protection of the 1,2 

diol on the glycerol backbone shown in Scheme 6.1.  The protected glycerol is made by adding 

an acetonide group and is frequently used for the protection of 1,2 and 1,3 diols.11  Literature 
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provides verification that the 1,2-acetonide is preferred over the 1,3-derivative; however, it is 

structure-dependent.12   

 

 

A.                                                                                                             B. 
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Figure 6.2  Structures of A. oleic acid, B. linoleic acid, and C. γ-linolenic acid. 
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Scheme 6.1  Acetonide protection of glycerol. 
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6.2.2 Addition of Diethylchlorophosphate  

Phospholipids are synthesized by esterification (Scheme 6.2) of an alcohol to the 

phosphate of phosphatidic acid (1,2-diacylglycerol 3-phosphate).  The third oxygen on glycerol 

is bonded to phosphoric acid through a phosphate ester bond.13,14   

 
 

 

 

Scheme 6.2  Addition of diethylchlorophosphate. 

6.2.3 Deprotection 

 Deprotection of the glycerol backbone, shown in Scheme 6.3, will be achieved through 

hydrolysis of the acetonide, using p-TsOH and ethanol (Scheme 4).11,14 
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Scheme 6.3  Deprotection of glycerol backbone. 

 

6.2.4 Addition of Fatty Acid Tails 

The addition of long chain acids (oleic, linoleic, and γ-linolenic) to glycerol will be 

accomplished via an ester linkage (Scheme 6.4).13,14 
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Scheme 6.4  Addition of fatty acid tails.  

 

6.3 Equipment   

 1H-NMR (400MHz) and 13C-NMR (100MHz) data was acquired on a JOEL JNM-

ECP400 FT-NMR spectrometer, using CDCl3 as the solvent.   

6.4 Synthesis 

6.4.1 Acetonide Protection 

Glycerol (47.6 g, 51.6 mmol), acetone (90 ml), chloroform (200 ml), and p-TSOH (8.9 g, 

5.2 mmol) were added to a round bottom flask attached to a Dean-Stark apparatus and refluxed 

for 10 hours.  The reaction mixture was allowed to cool to room temperature and neutralized by 

stirring with potassium carbonate (3.0 g) for 1 hour.  The reaction mixture was vacuum distilled 

to obtain 3.10 g of 1,2-O-isopropylidene glycerol (2) (74%).  1H-NMR (CDCl3) δ 1.36 (s,3H), 

1.45 (s, 3H), 3.60 (dd, 1H), 3.62 (dd, 1H), 3.97 (dd, 1H), 4.15 (m, 1H).  13C-NMR (CDCl3) δ 

25.3, 26.8, 63.1, 65.8, 76.3, 109.5.  

6.4.2 Addition of Diethylchlorophosphate 

A solution of (2) (6.0 g, 4.5 mmol)  in anhydrous ether/pyridine (12.5 m, 1:1 v/v)  was 

stirred under nitrogen for ~20 minutes at 0o C before adding diethylchlorophosphate (13.19 ml, 

9.1 mmol).  The reaction immediately formed a white precipitate and was stirred for 30 minutes.  

The reaction mixture was poured over 125 g of ice and reached room temperature as the ice 

melted.  An extraction was carried out with 100 ml ether followed by a wash with copper sulfate.  
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The mixture was washed with water, saturated brine, dried with Na2SO4, and filtered.  The 

sample was concentrated under reduced pressure to obtain 5.96 g of phosphate.  The phosphate 

compound (3) was used without further purification.   1H-NMR (CDCl3) δ 1.21-1.52 (m, 12H), 

2.07-2.33 (m, 2H), 3.67 (dd, 1H), 4.15 (m, 5H), 4.30 (m, 1H). 

6.4.3 Deprotection   

A mixture of (3) (2.96 g, 11 mmol) and p-toluenesulfonic acid (326 mg, 1.6 mmol) in 

ethanol (85 ml), was refluxed for 14 hours under Nitrogen at room temperature.  Sodium 

bicarbonate was added to the reaction to neutralize the acid.  The mixture was filtered and placed 

on the rotovap.  The residue was re-dissolved in chloroform (50 ml) and filtered through Celite 

before concentrating under reduced pressure, yielding 1.99 g (79%).  The material was used 

without further purification (4). 1H-NMR (CDCl3) δ 1.25 (dd, 6H), 2.12 (m, 2H) 3.40 (dd, 1H), 

3.68 (dd, 2H), 4.10 (m, 5H), 4.20 (m, 1H). 13C-NMR (CDCl3) δ 16.3, 61.1, 66.5, 69.8, 75.3.  

6.4.4 Addition of Fatty Acid Tails 

6.4.4.1 (9Z,9`Z)-3-(diethoxyphosphoryloxy)propane-1,2-diyl dioctadec-9-enoate 

A solution of deprotected starting material (4) (1.99 g, 9.5 mmol) and 1,3-

dicyclohexylcarbodiimide (4.31 g, 21.0 mmol) in methylene chloride (7 ml) was stirred before 

adding pyridine (0.14 g, 1.7 mmol), oleic acid (5.64 g, 19 mmol), and more methylene chloride 

(35 ml).  The mixture was stirred under Nitrogen for 48 hours at room temperature.  After 

reaction was complete, the mixture was filtered over Celite and placed on the rotovap.  The 

concentrated material was then re-dissolved in hexane, filtered again over Celite, and evaporated 

to yield 5.09 g (71%) of yellow oil (5).  The purification of the oil was carried out by flash 

chromatography on silica gel using hexane/ethyl acetate (10:1).  1H-NMR (CDCl3) δ 0.86 (t, 
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5H), 1.23-1.97 (m, 58H), 2.28-2.37 (m, 10H), 4.06-4.13 (m, 6H), 5.31 (m, 8H)  13C-NMR 

(CDCl3) δ 14.2, 22.7, 24.8, 25.4, 26.5, 29.5, 31.2, 32.0, 76.8, 77.1, 77.4, 128.1, 130.2, 155.2.  

6.4.4.2 (9Z,9'Z,12Z,12'Z)-3-(diethoxyphosphoryloxy)propane-1,2-diyl dioctadeca-9,12-
dienoate 
 
 A solution of deprotected starting material (4) (1.70 g, 8.1 mmol) and 1,3-

dicyclohexylcarbodiimide (3.69 g, 17.9 mmol)) in methylene chloride (7 ml) was stirred before 

adding pyridine (0.14 g, 1.7 mmol), linoleic acid (4.8 g, 17.1 mmol), and more methylene 

chloride (35 ml).  The mixture was stirred under Nitrogen for 48 hours at room temperature.  

After reaction was complete, the mixture was filtered over Celite and placed on the rotovap.  The 

concentrated material was then re-dissolved in hexane, filtered again over Celite, and evaporated 

to yield 4.12 g (65%) of yellow oil (5), which was used without further purification for tubule 

studies.   1H-NMR (CDCl3) δ 0.90 (t, 6H), 1.11-1.84 (m, 53H), 2.01-2.29 (m, 8H), 4.09 (m, 6H), 

4.21 (dd, 2H), 5.3 (m, 8H).    13C-NMR (CDCl3) δ.14.2, 22.7, 24.8, 25.7, 27.3, 29.4, 30.9, 49.8, 

76.8, 77.3, 128.1, 130.3, 154.2. 

6.4.4.3 (6Z,6`Z,9Z,9'Z,12Z,12'Z)-3-(diethoxyphosphoryloxy)propane-1,2-diyl dioctadeca-
6,9,12-trienoate 
 
 A solution of deprotected starting material (4) (0.272 g, 1.3 mmol) and 1,3-

dicyclohexylcarbodiimide (0.621 g, 3 mmol) in methylene chloride (7 ml) was stirred before 

adding pyridine (21.5 mg, 0.03 mmol), γ-linolenic acid ((0.80 g, 2.9 mmol) 4.8 g, 17.1mmol), 

and more methylene chloride (35 ml).  The mixture was stirred under Nitrogen for 48 hours at 

room temperature.  After reaction was complete, the mixture was filtered over Celite and placed 

on the rotovap.  The concentrated material was then re-dissolved in hexane, filtered again over 

Celite, and evaporated to yield 1.14 g (51%) of yellow oil (5), which was used without further 

purification for tubule studies.   1H-NMR (CDCl3) δ 0.91 (t, 6H), 1.08-1.89 (m, 43H), 2.00-2.43 
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(m, 10H), 3.92 (m, 6H), 4.12 (dd, 2H), 5.31 (m, 12H). 13C-NMR (CDCl3) δ 14.1, 22.7, 23.9, 

25.7, 27.2, 29.4, 30.9, 32.9, 77.5, 128.2, 129.7, 130.5, 172.1.  

 
6.5 Results 

The oleic acid tail compound (containing one cis moiety per tail), (9Z,9`Z)-3-

(diethoxyphosphoryloxy)propane-1,2-diyl dioctadec-9-enoate,  was studied first to test if tubules 

could form from molecules forced to be in the “bow” shape.  Originally, the new compound was 

treated as DC(8,9)PC, adding 1 mg/ml of solution (ethanol:water, 75:25).  Upon this preparation, 

the solution was immediately clear, revealing that the material was completely dissolved, even 

before heating.  Since DC(8,9)PC tubules are present at room temperature, this result was not 

very promising.  The sample was then titrated with water, in order to make the compound less 

soluble in the solution.  A total of 1835 µl was added before the material became cloudy, 

practically reversing the solvent ratio (ethanol:water 26:74), at room temperature.  As the 

mixture was heated to 45oC, it turned cloudier. (Upon heating the comparable DC(8,9)PC 

solution to this temperature, it becomes clear).  The oleic-acid-based compound mixture finally 

turned clear at ~70 oC, indicating that the compound was now in solution.  Upon returning back 

to room temperature, the solution remained clear, indicating that the material was still in solution 

and no tubules had precipitated.  As a last measure, the mixture was put in the freezer (~5oC) for 

~1 hour in order to induce the phase transition to tubules.  Indeed, the solution became cloudy 

and was examined by optical microscopy, where a small number of tubules (Figure 6.3) and 

some other irregular structures (Figure 6.4) were seen.  While this is not the robust DC(8,9)PC 

outcome, tubules are indeed present, strongly supporting the notion that the “bow” conformation 

is necessary for tubule formation. 
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Figure 6.3  100 µm x 100 µm atomic force micrograph of new tubule-forming compound, 
showing that some tubules are present.   

 

 

 

 

 

 

 

 

 

 
 
 
Figure 6.4  100 µm x 100 µm atomic force micrograph of new tubule-forming compound, 
showing rigid, sheet-like structures.   

 

It is not clear if this lower phase transition temperature is a kinetics effect or a 

consequence of using a solvent system that happens to be far from optimal for this new 
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molecule; it is possible that both are in play.  Supporting the idea that this molecule’s tubule 

formation kinetics are slow is the observation that once formed, the tubules did not melt at room 

temperature, and that going far below the Lα-to-Lβ′ transition temperature simply sped up the Lα-

to-Lβ′ phase transition.  As far as the notion that solvent composition may require optimization is 

the observation that methanolic and propanolic DC(8,9)PC solutions produce somewhat different 

self-assembly structures than ethanolic ones; it is natural to assume that this new molecule’s 

optimum solvent composition might be different from that of DC(8,9)PC.  

The 10-15 µm diameter tubules that are present are much larger than the traditional 0.5 

µm DC(8,9)PC tubule.  Figure 6.4 shows some objects that are not completely understood at this 

point in time.  They appear to be sheets similar to those formed by DC(8,9)PC shown in Figure 

1.4, from which tubules form, but we cannot exclude the possibility this is merely bulk crystal.  

It is possible for sheets to exist and tubules not to form, but in this case, it seems that both the 

sheets and tubules are present.     

Several combinations of ethanol/ water and varying the amount of lipid were investigated 

in order to discover the optimum conditions for normal tubule precipitation to occur with this 

new compound.  Figure 6.5A and 6.5B and show the well-known “starburst” pattern left after an 

Lα spherical vesicle has radiated from a center (the spherical vesicle) and been completely 

converted to tubules. Several of these clusters can be seen in Figure 6.5A.  Both Figures 6.5A 

and 6.5B scans are representative of the entire sample as indicated by the two completely 

different areas that are showing this starburst phenomenon.  Another critical structure in these 

micrographs is the presence of a faint, thin but large sheet in the midst of these clusters.  This 

structure is tentatively interpreted to be the flat sheet from which tubules can form, as discussed 

in Section 1.1.3.3.   
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A.                                                                              B. 

 
 
Figure 6.5  A. and B. 100 µm x 100 µm atomic force micrograph of new tubule-forming 
molecule, arrows are pointing to sheets.   
 
 

6.6 Conclusions 

In conclusion, the new compound containing oleic acid tails formed tubules.  The 

conditions for this initial study are certain to not be optimized, but this early success with this 

compound indicates that triple bonds are not necessary for tubule formation, and suggest 

powerfully that the hydrocarbon tail segments attached to the triple bonds present tails in a 

“bow” configuration, and that the chiral symmetry-breaking theory developed for “banana” 

liquid crystals may now be the best starting point for developing a general tubule structure and 

formation theory.  As seen in the images above, tubules can be obtained without diynes in the 

tails, but instead with a cis ene bond present that forces the molecule into a “bow” shape.   

Another important factor to point out is that this new tubule-forming phospholipid has an 

ester headgroup, instead of a choline headgroup as in DC(8,9)PC, proving further that the 

headgroup has little, if any effect whether tubule formation is possible.  It is likely that the shape 
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and charge distribution of the choline headgroup may further enhance the packing of the 

phospholipids, and it may possibly yield tubules in greater numbers.  There is still much to be 

studied about these compounds, including investigation of the linoleic and γ-linolenic acid tails, 

along with synthesizing the expected counter-example trans-“ene” compounds that cannot access 

“bow” configurations.     
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Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

7.1.1 A New Tubule Formation Intermediate: The Tubelet 

Perhaps the most important result reported in this dissertation, both in terms of theory and 

application, is the discovery of the structure we call the “tubelet,” a previously-unobserved 

structure, apparently the precursor to the tubule.1 This structure was serendipitously discovered 

through the addition of lysozyme at approximately 1 mg protein / ml DC(8,9)PC stock solution 

during the standard tubule formation thermal cycling.  Lysozyme’s presence unexpectedly 

promoted crack formation in the drying droplet of sample placed atop a carbon electron 

microscopy stem.  Probing these cracks in the deposition bed with scanning electron microscopy 

allowed unprecedented detailed examination of the liquid specimen’s interior, which was 

exposed at the crack interface in a manner similar to conventional freeze-fracture techniques.  

The slow and gentle surface-cracking behavior exposes these structures for extended lengths into 

free space – completely eliminating the background of the dried specimen and the dense thicket 

of other structures it contains.  This remarkable stroke of luck allows clear and unambiguous 

characterization of these previously unobserved tubelets over lengths up to approximately 50 

microns. 

This discovery shows that tubules are not comprised of a helically-wound flat bilayer 

membrane at all,2 but are instead formed by flattened tubelets, whose structure is topologically 

much more complex than a phospholipids bilayer ribbon.  The tubelet may be thought of as a 

flattened firehose, where the firehose wall is composed of a phospholipids bilayer.  Such a 

structure explains a number of otherwise difficult-to-justify tubule features, such as the 

 92



extraordinarily high aspect ratio of the tubule precursor.  That is, the simple phospholipids 

bilayer ribbon has hydrocarbon tails exposed to the aqueous environment along its enormous 

perimeter, while the tubelet is edge-free (except perhaps for the circular cross-sections at the 

tubelet’s ends).  Another behavior that is well-explained by the tubelet as a tubule precursor is 

the tightly-conserved interlamellar spacing found in tubules whose diameters may differ by a 

factor of 5, or by tubules made by DC(8,9)PC derivatives:3,4 the interlamellar spacing is a 

reflection of the collapsed firehose spacing, and not of independent, coaxial phospholipids 

bilayer ribbons. 

The tubelet structure also provides critical new insights regarding the use of tubules as 

drug delivery vehicles.  This is so because the ~0.5 µm diameter DC(8,9)PC tubule could easily 

be dismissed as encapsulation agents because their diameter is too great to provide significant 

drug retention time.  But, the secondary winding of a smaller tube (that is, the tubelet), and the 

more convoluted exit pathway an encapsulant must traverse are expected to greatly enhance 

retention times over that expected from a simple cylinder.   

7.1.2 Encapsulation Studies with Chemotherapy Agents 

The encapsulation studies reported in this dissertation demonstrate that it is possible to 

form tubules in the presence of a variety of chemotherapy agents, and do so at clinically-relevant 

concentrations.  Methotrexate, mitoxantrone, and carboplatin did not significantly hinder tubule 

formation, but in all three cases, the drugs did exert significant effects upon tubule morphology.  

This implies significant drug/tubule interaction, and as discussed, in the carboplatin case, EDS 

unambiguously shows this interaction is indeed encapsulation, or at the very least, strong 

association with the tubule surface. 
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When any of these 3 chemotherapy agents are present at concentrations of approximately 

28 weight%, tubule yield drops precipitously and non-tubule structures appear that are not seen 

in drug-free DC(8,9)PC samples or drug-containing samples at lower concentrations.  These 

structures are presumably co-precipitated lipid, drug, or some mixture of the two.  It is found that 

tubule diameter increases upon the addition of any of these drugs over the concentration range 

studied; this outcome strongly suggests that the drugs decrease the membrane’s intrinsic 

curvature, the hallmark feature of tubule formation.  In turn, this diameter increase is most easily 

interpreted as interference with the tubule formation mechanism, most likely by incorporation of 

the drug into the membrane, but the possibility of strong association between the drug and the 

membrane’s headgroups cannot be dismissed from our data.  

As mentioned, carboplatin presents a special opportunity, for it contains platinum, and 

energy dispersive spectroscopy (EDS) can be used to easily locate the carboplatin without the 

possibility of confusing it with other metals present in the electron microscopy grid.  The 

carboplatin was found to be in (or, as we must permit, possibly on), the tubules or within the 

region around the tubule that is defined by the EDS spatial resolution.  A centrally important fact 

from the EDS spectroscopy is that there is essentially no platinum found away from the tubule.  

This absence of Pt in specimen regions lying between tubules merits special comment. 

We know that tubules fall to the bottom of the droplet within minutes after its deposition 

on the electron microscopy stem, and the droplet dries over the course of time.  As the droplet 

dries, the solution, which contains DC(8,9)PC “monomer” and carboplatin in equilibrium with 

the DC(8,9)PC/carboplatin tubules forms a round, waxy disk, with the tubules lying at the 

bottom of the disk.  That is to say, these inter-tubule regions represent significant amounts of the 

solution, considering that the droplet is initially about 1 mm in height (compared to the 0.5 µm 
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DC(8,9)PC tubule diameter). That EDS spectroscopy failed to detect Pt in these regions suggests 

that tubules are voraciously effective as carboplatin encapsulants. 

Although the three drugs mentioned above permitted tubule formation at clinical 

concentrations, an example of a drug that was a powerful inhibitor of tubule formation is 

bleomycin, a mixture of cytotoxic glycopeptide antibiotics, which is isolated from a strand of 

bacteria found in soil and dying vegetation, Streptomyces verticillus.5  Given that tubules were 

merely distorted into cones by lysozyme, it is important to understand why this bleomycin is so 

potent an inhibitor of tubule formation.     

7.1.3 Optimization of Phospholipid Tubule Morphology 

Optimizing tubule properties, such as their dimension, for a particular application by 

adding a co-surfactant or other small molecule, could be necessary in drug delivery, either to 

counter the drug’s own effects upon tubule morphology, or perhaps to enhance these effects. 

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) was selected as a co-surfactant 

in order to determine how it might affect tubule morphology.  This choice was made because 

DOPE is known to induce an inverse hexagonal phase.6,7  Interestingly, DOPE did not affect 

tubule formation, even at the very high [DOPE:DC(8,9)PC] concentrations of 4:1.  DOPE did, 

however, cause a dramatic increase in tubule diameter, ranging from 0.5 µm to some 6 µm, 

within a single sample.  These larger tubules could possibly increase the drug loading capacity of 

a given tubule; dosage to the patient would accordingly be adjusted by decreasing the number of 

tubules dispensed.  

Another molecule known to modify membrane structure, cholesterol, was used to 

determine if it would have an effect on tubule formation.  Cholesterol is known to increase 

bilayer thickness in phospholipids and increase membrane fluidity.8-11  As discussed in Chapter 
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5, AFM section analysis shows directly that it was able to do so with DC(8,9)PC, and the tubules 

did exhibit an in increase in bilayer thickness from 100 nm up to 200 and 300 nm upon the 

addition of 30 and 40 mole% respectively.    

7.1.4 Modifying DC(8,9)PC to Create New Tubule-forming Molecules 

A completely different, but far more labor-intensive approach to regulating tubule 

structure is to modify the tubule-forming molecule.  For example, Thomas et al. demonstrated 

that changing the headgroup was successful in altering tubule morphology, creating tubules with 

larger diameters.3,4 

We chose to synthesize a class of compounds whose design was inspired by results from 

liquid crystal physics.   The new compounds were designed to test whether the tails’ diynes are 

the feature that enables tubule formation.  Specifically, the reason that the diynes enable tubule 

formation may be that they enable DC(8,9)PC tails to enter into the “bow” confirmation 

described by Clark et al.12,13 

Three compounds were made with at least one cis bond in their tails, in order to force a 

“bow” confirmation; the counter-example would be the corresponding trans compounds which 

cannot enter a “bow” configuration.  Studies of the first compound, with oleic acid tails 

(9Z,9`Z)-3-(diethoxyphosphoryloxy)propane-1,2-diyl dioctadec-9-enoate, indicate that tubule 

formation is possible from these “ene” compounds, and that the “bow” chiral symmetry-breaking 

mechanism described by Clark is the mechanism that chiralizes the tubule-forming membrane.  

Interestingly, tubules produced by this compound are significantly larger (~10-15 µm range).  

Another feature of great interest seen in the sample are large sheets, which we tentatively 

interpret as being the sheets from which ribbons separate edge-wise from the sheet’s long edge.  

It is important to note that our compound does not have a polar headgroup, as in the case of 
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DC(8,9)PC, which further illustrates that the “bow” confirmation in the tails is what allows 

tubule formation. 

7.2 Future Work 

There is still much to be learned about tubule formation and morphology in order to 

efficiently develop tubules for potential applications.  Although the chemotherapy agents were 

able to increase tubule diameter, leading us to believe that the drug is possibly entering the 

membrane or interfering with the membrane chiralization, thereby increasing tubule diameter.  

To optimize tubule morphology for drug encapsulation, it will be important to locate exactly 

where the drug resides.  EDS was used in the case of carboplatin, but other methods (such as 

small angle x-ray scattering) could also be used to confirm this result and determine the location 

of the other drugs, methotrexate and mitoxantrone.  SAXS can give information about membrane 

spacing and the extent over which this spacing is conserved.  This information would allow us to 

infer where the drug is located.  NMR can also be used to determine if encapsulation has been 

successful.  A sample can be prepared with the drug, thoroughly washed with water to ensure 

that any drug that remained in the solution will no longer be present, centrifuged to get a pellet, 

and then examined with standard liquid NMR techniques.  Because tubules are crystalline, and 

are very large and hence stationary, the encapsulated drug should not be able to tumble freely, 

and this anisotropic condition should result in essentially no detectable NMR signal.  Such a 

sample can then either be titrated with ethanol in order to dissolve the tubule, or simply heated 

above the spherical vesicle formation temperature, releasing any drug located in the membrane 

into solution. In either case, if drug is released from the solid tubule phase into solution, it will 

show up on the NMR spectra.  Subtler questions regarding the location, orientation and 

conformation of the drug can be answered using MAS or solid-state NMR, but the use of simple, 
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conventional liquid NMR techniques as described to find if there is any drug in the membrane is 

a sensible first step.   

The successful incorporation of cholesterol into the membrane of DC(8,9)PC serves as a 

model for the incorporation of other important, closely-related compounds.  For instance, 

hormones having similar structures to that of cholesterol (testosterone, progesterone, etc.), 

should be studied in order to determine if tubules can be used as vehicles for these types of 

amphipathic compounds.  Also, the fact that cholesterol was able to increase bilayer thickness 

may prove useful for expanding the hydrophobic regions in the tubule, thus creating a larger 

space for hydrophobic drugs to reside.  After the addition of cholesterol, water insoluble drugs 

should be added to determine if drug loading can be increased.   

We have shown tubules form from a compound that is structurally significantly different 

from DC(8,9)PC.  The oleic acid tail compound should be investigated further to determine its 

optimal conditions for tubule formation.  Along with these studies, the other two compounds 

with linoleic acid and γ-linolenic acid, must be investigated.  In order to fully prove the “bow” 

conformation theory of tubule formation, the trans compounds must be made.  While the 

expected outcome is no tubule formation, this “null” result must be demonstrated under a wide 

range of conditions before we can be confident it is in fact correct.  

 
7.3 References 

 
1.  Mishra, B. K.; Garrett, C. C.; Thomas, B. N. Phospholipid Tubelets. Journal of the American 

Chemical Society 2005, 127 (12), 4254-4259. 

2.  Schnur, J. M.; Ratna, B. R.; Selinger, J. V.; Singh, A.; Jyothi, G.; Easwaran, K. R. K. 
Diacetylenic lipid tubules: experimental evidence for a chiral molecular architecture. Science 
(Washington, DC, United States) 1994, 264 (5161), 945-947. 

3.  Thomas, B. N.; Corcoran, R. C.; Cotant, C. L.; Lindemann, C. M.; Kirsch, J. E.; Persichini, 
P. J. Phosphonate Lipid Tubules. 1. Journal of the American Chemical Society 1998, 120 
(47), 12178-12186. 

 98



4.  Thomas, B. N.; Lindemann, C. M.; Corcoran, R. C.; Cotant, C. L.; Kirsch, J. E.; Persichini, 
P. J. Phosphonate Lipid Tubules II. Journal of the American Chemical Society 2002, 124 (7), 
1227-1233. 

5.  Blenoxane (bleomycin sulfate for injection) . Bristol-Myers Squibb.  2005.  
Ref Type: Pamphlet 

6.  Cullis, P. R.; De Kruijff, B. The polymorphic phase behavior of phosphatidylethanolamines 
of natural and synthetic origin. A phosphorus-31 NMR study. Biochimica et Biophysica Acta, 
Biomembranes 1978, 513 (1), 31-42. 

7.  Rand, R. P.; Fuller, N. L. Structural dimensions and their changes in a reentrant hexagonal-
lamellar transition of phospholipids. Biophysical Journal 1994, 66 (6), 2127-2138. 

8.  Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of 
the Cell; 3rd ed.; Garland Publishing, N.Y.: 1994. 

9.  Hui, S. W.; He, N. B. Molecular organization in cholesterol-lecithin bilayers by X-ray and 
electron diffraction measurements. Biochemistry 1983, 22 (5), 1159-1164. 

10. Nezil, F. A.; Bloom, M. Combined influence of cholesterol and synthetic amphiphillic 
peptides upon bilayer thickness in model membranes. Biophys J 1992, 61 (5), 1176-1183. 

11. Smondyrev, A. M.; Berkowitz, M. L. Structure of 
dipalmitoylphosphatidylcholine/cholesterol bilayer at low and high cholesterol 
concentrations: molecular dynamics simulation. Biophysical Journal 1999, 77 (4), 2075-
2089. 

12. Maclennan, J. E.; Clark, N. A.; Walba, D. M. Biaxial model of the surface anchoring of bent-
core smectic liquid crystals. Physical Review E: Statistical, Nonlinear, and Soft Matter 
Physics 2001, 64 (3-1), 031706-1-031706/6. 

13. Walba, D. M.; Korblova, E.; Shao, R.; Maclennan, J. E.; Link, D. R.; Glaser, M. A.; Clark, 
N. A. A ferroelectric liquid crystal conglomerate composed of racemic molecules. Science 
(Washington, D. C. ) 2000, 288 (5474), 2181-2184. 

 
 

 99



Appendix A 
 

Supplemental NMR Data 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.1  1H-NMR of 6.4.4.1. 
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Figure A.2  13C-NMR of 6.4.4.1. 
 
 
 

k

j j

a
j

a

i

m

h
m

h

c

e

e

e

f

h

l

l

h

f

e

e

d

g

b

a

c

e

e

f

f

h

l

h

h

f

e

e

e

g

b

a O
O

P
O

O

O
O

O

O 
 
 
 
 
 
 
 
 
a-14.2; b-22.7; c-24.8; d-25.4; e-26.5; f-29.5; g-31.2; h-32.0; i-76.8; j-77.1; k-77.4;  
l-130.2; m-155.2 
 
 
 
 
 
 

 101



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure A.3  1H-NMR of 6.4.4.2. 
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Figure A.4  13C-NMR of 6.4.4.2. 
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A.5  1H-NMR of 6.4.4.3. 
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