
 

 

 

 

ABSTRACT 

Microbial Community Gene and Environmental Relationships in Phosphorus 
Biogeochemical Cycling within Streams 

Erick S. LeBrun, Ph.D. 

Mentor: Sanghoon Kang, Ph.D. 

Microbial communities of Bacteria, Archaea, and Fungi are known to play 

integral roles in phosphorus (P) biogeochemical cycles. P is a vital ecosystem nutrient 

due to its utilization in many of the biological molecules and processes necessary for life. 

P is generally considered a limiting nutrient and a sudden influx or overabundance of it 

can cause drastic ecosystem effects. Stream systems are particularly sensitive to P inputs, 

primarily anthropogenic inputs, and suffer sever effects such as eutrophication as a result. 

The enclosed chapters take an in-depth look at microbial communities from all three 

taxonomic groups within stream and unique wetland environments representing P 

gradients or potentially unique P environments. We first characterize and investigate the 

relationships of microbes existing in the open water column to their local environment as 

well as environmental P. We then build on this foundation using functional 

metagenomics to explore microbial P cycle gene relationships to each other and then 

directly to environmental P. Throughout this process, we utilize frontier technologies, 

methods, and statistics to help elucidate these complex relationships. We further 

introduce new methods and analyses such as the System Relation Overview of Gene 



Grouping (SROGG) and compare and contrast some existing methods for investigation 

like computational functional predictions and functional microarray analyses. Compiled, 

these studies offer a clearer picture of the quasi-mechanics of environmental microbial P 

cycling. They also highlight the magnitude of gap that exists relating to this type of study 

and offers a doorway along with tools for further research into the field. 
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CHAPTER ONE 
 

Introduction 
 
 

Background 
 
 Phosphorus (P) is one of three primary nutrients of importance in living systems 

alongside Carbon (C) and Nitrogen (N) (Miltner and others 1998). The nutrient P is 

important in numerous processes necessary for life including the production of ATP, 

nucleic acids, and phospholipids. There is a large body of evidence to suggest that P is 

the limiting nutrient in a number of systems (Schindler 1977; Smith 1984; Krom et al. 

1991; Elser et al. 2007; Vitousek et al. 2010). Much of this work has been focused on 

freshwater ecosystems. An influx of anthropogenic P to a system can have significant 

impact on an environment and ecosystem, particularly a freshwater ecosystem resulting 

in adverse responses such as eutrophication (Sharpley et al. 1994; Correll 1998; 

Anderson et al. 2002). Anthropogenic sources are primarily wastewater along with 

agricultural fertilization and ranching (Correll 1998; Bennett et al. 2001) and these inputs 

are predicted only to increase in the future (Tilman et al. 2001). In consideration of this, it 

is important that we understand the interactions and response of ecosystems to the related 

increase in P. 

 It is well accepted that microbes are integral to the P cycle with environmental 

bacteria, archaea, and fungi being responsible for solubilization and mobilization of P. 

However, these mechanisms are little understood (Van Der Heijden et al. 2008; 

Richardson and Simpson 2011). Because of their unique P biogeochemical abilities and 
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foundational role in organic P cycling, microbes make an excellent target for studying P 

relationships in ecosystems. 

 Study of microbial communities and phosphorus to date has been largely focused 

on the field of agriculture and plant interactions in soil microbial communities (Van Der 

Heijden et al. 2008; Sharma et al. 2013; Fox et al. 2014). Microbial inoculations have 

shown potential for improving efficiency in P uptake by crops and improving the amount 

of P waste and fertilization cost involved in agriculture as well as to assist with growth in 

biochar soils used for carbon sequestration (Sharma et al. 2013; Fox et al. 2014). 

 Microbial relationships to P in environmental settings are also a topic of interest 

and are potentially more important than the agricultural questions as these studies both 

inform us on the environment and can be extrapolated for practical applications. The bulk 

of work on microbial communities in natural freshwaters has focused on the interactions 

of nutrients and biomass (Cotner and Biddanda 2002; Scott et al. 2012; Gorniak et al. 

2013; Xu et al. 2013; Godwin et al. 2016). The mechanisms of P utilization and cycling 

in individual microbial taxa has occurred on specific genes such as ppx and ppk (Brewis 

et al. 1993; Qi et al. 1997; Prágai and Harwood 2002; Dyhrman et al. 2006; Kamat et al. 

2011) and specific taxa (e.g. Acinetobacter) (Jansson 1993; Saralov et al. 2000; Prágai 

and Harwood 2002; Ghaffar et al. 2017). These studies cover only a very small 

proportion of the microbial taxonomic diversity involved in P cycling in nature. The 

majority of this work has also been conducted in simple and controlled environments 

than what is often seen in nature. Applying the findings from lab based studies to 

complex microbial communities consisting of large numbers of microbial taxa and 

populations in an environmental setting can prove difficult. This is made all the more 
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difficult because these microbial communities can be considered to consist of bacteria, 

archaea, and fungi with fungi requiring a differentiated approach due to variation in their 

genomics from bacteria and archaea. 

 There exists then several gaps in our understanding of microbial P 

biogeochemical processes. There is a gap in our understanding of microbial community 

structure and function relationships to P inputs in stream systems for both 

bacteria/archaea and fungi. A gap also exists in understanding the complex interactions 

and mechanisms involved in P biogeochemical cycling at the community and system 

levels. At the root of these issues exists a gap in the current reference material and lack of 

a generally accepted methodology for answering questions related to environmental 

microbial community structure and function for P specific nutrient cycling. Because of 

this, the microbial input to P biogeochemical systems is often written off as too complex 

and microbial interactions are summarized as general mineralization and solubilization 

(Richardson and Simpson 2011). 

 
Project and Core Chapter Objectives 

 The chapters enclosed here are designed to address some of the afore mentioned 

gaps through experimental design, analysis, and interpretation. The approach taken is to 

first build the foundation of knowledge necessary to explore microbial community 

relationships to a range of environmental variables in a P sensitive system using 

genomics. Next is to build on this foundation looking at microbial relationships 

specifically to P cycle functions through a mechanistic lens. Then finally, to pave the way 

for future research in this field through the comparison of tools for researching nutrient 

specific microbial populations and relationships. 
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 Chapter two takes a look at microbial structure, function, and relationships in a 

large stream system representing a gradient of P levels. This chapter is focused towards 

the goal of building the necessary foundation of knowledge for further study and looks 

specifically at bacteria and archaea. Structure is explored using next generation 

sequencing (NGS) of 16S rRNA genes to ascertain taxonomic composition and structure. 

Community function is constructed using computationally predicted functional 

metagenomes (PFMs). The chapter outlines the relationship of structure and function to 

multiple environmental variables including total phosphorus (TP) along with land usage 

metrics. Strong relationships exist between community structure and function in the 

chapter study. However, the relationships for structure and function differ significantly 

acting in a “decoupled” manner as outlined in more detail in the chapter. 

 Chapter three is also focused on the goal of building the necessary foundation for 

further exploring microbial community relationships to P using genomics. However, this 

chapter focuses on fungal community structure and functional relationships to 

environmental variables including TP in the same gradient system as chapter one. 

Structure is explored using NGS of ITS2 regions to ascertain taxonomic composition and 

structure. Community function is constructed using computationally predicted functional 

metagenomes (PFMs) using different software than was utilized for bacteria/archaea 

study. This chapter describes how fungi detected in the system are related to TP 

exclusively among collected environmental variables. A large number of terrestrial fungi 

were detected. The relationship found is not likely to be causative in either direction but 

rather representative of responses to non-collected catchment factors impacting each. The 

fungi found in the study are likely transient and allochthonous being present in the 
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context of dispersal. This suggests a potentially overlooked means of dispersal for 

terrestrial fungi. 

 Chapter four begins the next step of the project plan to look at microbial 

community relationships to P biogeochemical cycling through a mechanistic lens. In 

chapter four, whole community metagenomics sequencing is utilized to construct 

empirical functional profiles for communities from the same P gradient system and 

looking specifically at genes related to P cycling. The chapter uses a new, purpose 

created analysis called a System Relational Overview of Gene Groupings (SROGG) to 

illustrate relationships between functional gene groupings, communities, and P. The 

SROGG provides a quasi-mechanistic view of P utilization in the system. The chapter 

study finds that relationship involving orthophosphates (PO4) and PO4 levels themselves 

are overwhelmingly prevalent in the system. This is true even of more oligotrophic sites. 

Relationships to organophosphates show a much more site specific distribution that is not 

as strongly related to the levels of TP, PO4, or organophosphate as it is to other catchment 

properties such as wastewater inputs. 

 Performing a study similar to the one in chapter four can be extremely costly and 

work intensive. To that end, chapter five compares to methods of obtaining microbial 

community function other than whole metagenome sequencing. The chapter looks at the 

ability of PFMs and another method, microarray detection, to detect diversity and 

community homogeneity in a unique basalt-soil wetland forest system. The project goal 

addressed by this chapter is testing and comparing potential tools for utilization in future 

nutrient specific genomic study. Chapter five illustrates how PFMs are likely the better 
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choice between the two methods for utilization is studies like the one presented in chapter 

three. 
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CHAPTER TWO 
 

Microbial Community Structure and Function Decoupling Across a Phosphorus Gradient 
in Streams 

 
This chapter published as: LeBrun ES, King RS, Back JA, Kang S. 2018. Microbial 
Community Structure and Function Decoupling Across a Phosphorus Gradient in 

Streams. Microb Ecol 75:64–73. doi:10.1007/s00248-017-1039-2. 
 
 

Abstract 

Phosphorus (P) is a key biological element with important and unique 

biogeochemical cycling in natural ecosystems. Anthropogenic phosphorus inputs have 

been shown to greatly affect natural ecosystems, and this has been shown to be especially 

true of freshwater systems. While the importance of microbial communities in the P cycle 

is widely accepted, the role, composition, and relationship to P of these communities in 

freshwater systems still hold many secrets. Here, we investigated combined bacterial and 

archaeal communities utilizing 16S ribosomal RNA (rRNA) gene sequencing and 

computationally predicted functional metagenomes (PFMs) in 25 streams representing a 

strong P gradient. We discovered that 16S rRNA community structure and PFMs 

demonstrate a degree of decoupling between structure and function in the system. While 

we found that total phosphorus (TP) was correlated to the structure and functional 

capability of bacterial and archaeal communities in the system, turbidity had a stronger, 

but largely independent, correlation. At TP levels of approximately 55 μg/L, we see sharp 

differences in the abundance of numerous ecologically important taxa related to 

vegetation, agriculture, sediment, and other ecosystem inhabitants. 
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Introduction 

Microbial communities are extremely important in environmental and 

biogeochemical processes in nature with diversity being a key component [1–3]. It is well 

established that in addition to being P consumers, microbial communities affect the 

amount of available P for other ecosystem inhabitants through accessing P that is 

unavailable to other organisms and making it available [2–5]. Recent culture-based work 

looking at microbial communities and stoichiometric relationships between nutrients in 

freshwaters has shown that community assemblies shift dependent on phosphorus 

availability as well [6, 7]. This demonstrates a complex relationship where microbial 

community assemblages affect environmental P and environmental P affects microbial 

community assemblages in return [8, 9]. 

Shifts in environmental P may have impacts on community structure, diversity, 

and functional capability as well [10]. The results of previous studies exploring the 

relationship between species composition and function using a wide range of methods 

have been inconsistent. If we consider a strong correlation between community structure 

and function to be “coupled,” and a disconnect between the two to be decoupled, several 

studies have found community structure and function coupling [11, 12], others show 

decoupling [10, 13, 14], and many show a mixture of results [15, 16]. A mixture of 

coupling and decoupling or varying degrees of coupling seems the most likely response 

as some studies finding coupling such as in Garcia-Palacios et al. [11] hint at decoupled 

aspects and studies finding decoupling do not present the decouple as a complete 

disconnect. A large degree of uncertainty exists in lotic systems about the resiliency of 

microbial communities to environmental stress [17]. A decoupling of structure and 
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function could indicate potential differences in community resiliency to environmental 

conditions. Functional redundancy of aquatic microbial communities may also be a good 

indicator of community resiliency to environmental stress [18, 19]. 

Environment-driven microbial community structuring in aquatic systems has been 

studied extensively since the 1970s. Until recently, this study has largely been conducted 

using microscopy and low-resolution community fingerprinting methods such as DGGE 

and TRFLP while relatively little work has been performed using high-throughput 

approaches such as next generation sequencing (NGS) technologies to better capture 

complex microbial communities [20]. Studies of microbial diversity have been a keystone 

of aquatic ecosystem research, but lotic systems have been underrepresented when 

compared to marine and lentic systems [21]. River and stream ecosystems are sensitive to 

anthropogenic P inputs often resulting in eutrophication under increased P levels [22–24]. 

Decreasing the gap in understanding between the P in lotic systems and microbial 

community structure has the potential to act as the foundation for bringing the 

mechanisms of this relationship to light. 

The purpose of this study was to examine microbial community structure, 

function, and diversity across a total phosphorus (TP) gradient in freshwater streams. We 

hypothesized that (1) in an environment displaying a strong TP gradient, TP would be a 

strong correlate of community structure and (2) the overall functional capability of the 

sampled communities would be strongly coupled to their structural assembly in their 

relationship to TP. We tested these hypotheses by using next generation sequencing to 

look at microbial community structure and predicted functional capability in a system of 

streams representing a strong TP gradient. 
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Methods 

 
Sampling 

The study area was a collection of streams and rivers along the Oklahoma-

Arkansas border, an area with known P enrichment problems [25–27]. We selected 

sampling sites with TP levels ranging from 18 to 163 μg/L. Sampling was performed in 

October of 2014. At each of the 25 sampling sites (Appendix A: Fig. A.S1), 50 mL of 

water was collected approximately 10 cm below the water surface and vacuum filtered 

with approximately 10 kPa of pressure through two filter sizes. A stacked filtration 

through a 1-μm PALL-type A/E glass fiber filter was conducted and then a PALL 

SUPOR 200 0.2-μm filter for bacterial and archaeal collection. Only the 0.2-μm filters 

were used in this study. Filters were stored at 4 °C less than 7 days for transport and then 

transferred to −80 °C until processed for DNA extraction. 

 
Environmental Data 

Total phosphorus (TP), total N (TN), sestonic chlorophyll-a, total suspended 

solids (TSS), turbidity, pH, specific conductance, dissolved oxygen, and temperature 

were measured at each site at the same time when bacterial and archaeal samples were 

collected. Molar concentrations of carbon (C), P, and N were calculated from dissolved 

organic carbon (DOC), TP, and TN and used to calculate ratios of C/P and C/N. 

Unfiltered water samples were used for TP and TN. TP was digested with 

persulfate in an autoclave at 121 °C for an hour then analyzed on a Lachat 8500 series 2 

using the ascorbic acid-molybdate method [28]. TN was digested with persulfate and 
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sodium hydroxide (NaOH) in an autoclave at 121 °C for an hour. Samples were cooled 

and boric acid solution was added, then the sample was analyzed on a Lachat 8500 series 

2 using the sulfanilamide cadmium reduction method [28]. For sestonic chlorophyll-a, 1 

L of water was filtered onto a 0.45-μm filter then frozen. A 90% ethanol extraction was 

performed in a heated (78 °C) water bath for 10 min [29]. Total suspended solids (TSS), 

turbidity, pH, specific conductance, dissolved oxygen, and temperature were measured at 

each site at the same time when bacterial and archaeal samples were collected using a 

YSI EXO2 multiparameter data sonde (Yellow Springs, OH). 

TP was measured at each site in August 2014 and October 2014 because of the 

likelihood that antecedent P conditions would drive bacterial and archaeal community 

composition as estimated by the October 2014 sampling. The October 2014 sampling 

event was a low water event resulting in abnormally high point data TP levels at some 

sites; thus, an average TP spanning August and October sampling events was used for 

subsequent analyses. This average was more representative of typical stream TP levels 

while still capturing the increase in TP leading into sampling. 

Catchments were delineated in ArcGIS version 10 by utilizing the geographic 

coordinates of each stream reach to define a catchment outlet. We estimated the 

contributing area of each outlet on the basis of flow accumulation values derived from a 

30-m digital elevation model (DEM) from the USGS National Elevation Dataset. Land 

use in each catchment was estimated from the National Land Cover Data (NLCD) raster, 

which was based on the 2011 Landsat Thematic Mapper. 
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Library Preparation 

DNA was extracted from the 0.2-μm filters using a Mo Bio PowerWater® DNA 

extraction kit with the manufacturer’s protocol. Quantification of extractions was 

performed using a Qubit 3.0 fluorometric system, and samples showing no 

DNA extraction were discarded from the study at this time. DNA yields were less than 1 

ng/μL causing us some initial concern about coverage but resulted in sequence depth of 

~70,000 up to ~250,000 sequences per site and good sampling coverage per the 

rarefaction curves generated downstream (Appendix A: Fig. A.S2.A). 

An initial PCR amplification of the 16S ribosomal RNA (rRNA) gene V4–V5 

region was conducted using 515F forward and 926R reverse primers [30] modified to 

include adapters for future indexing. PCR was done using 2X Platinum™ Green Master 

Mix from Invitrogen. PCR specifications were 1 cycle for HotStart step at 94 °C for 2:00 

min, then 30 cycles of 94 °C denaturation step for 0:45 min, 50 °C annealing step for 

1:00 min, and 72 °C elongation step for 1:30 min. Successful PCR was identified through 

electrophoresis gel. PCR cleanup was conducted using an Agencourt AMPure XP kit and 

with the standard protocol from Beckman Coulter Life Sciences. Final PCR product 

quantification was conducted using Qubit 3.0. 

A second round of PCR amplification was run in order to add unique indices to 

each sample as well as Illumina sequencing adapters. PCR was again done using 2X 

Platinum™Green Master Mix kit from Invitrogen. PCR specifications for the second 

round of PCR were 1 cycle for HotStart step at 94 °C for 2:00 min, then 8 cycles of 94 °C 

denaturation step for 0:45 min, 59 °C annealing step for 1:00 min, and 72 °C elongation 

step for 1:30 min. Cleanup and quantification were performed in the same manner as the 
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first round of PCR. Samples were then pooled so that 10 ng of DNA from each sample 

was present in the final library. 

 
Sequencing 

Sequencing was performed on an Illumina MiSeq system using a MiSeq Reagent 

Kit v3 2X300 with paired-end reads. Libraries were spiked with 20% PhiX Control. 

 
Sequence Processing 

Initial sequence processing including filtering and demultiplexing was conducted 

through the 16S metagenomics pipeline in Illumina BaseSpace. Paired-end read fastq 

files for each sample were extracted for downstream processing. Additional sequence 

processing was done using Quantitative Insights Into Microbial Ecology (QIIME) [31]. 

Paired-end reads were aligned first using the join-fastq algorithm from ea-utils [32]. 

Resulting sequences were then filtered at a Phred score of 20. Chimeric sequences were 

identified and removed using the USEARCH algorithm [33]. OTU picking was 

performed open reference using uclust against the Greengenes 13_8 database with a 0.97 

similarity cutoff followed by de novo OTU picking [34]. Alpha diversity metrics were 

computed by QIIME as part of this pipeline using a rarefaction depth of 70,500 allowing 

use of all sites included in this study. 

 
Construction of Predicted Functional Metagenomes 

Predicted functional metagenomes (PFMs) were constructed from 16S rRNA 

gene sequence data using Phylogenetic Investigation of Communities by Reconstruction 

of 
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Unobserved States (PICRUSt) [35]. OTU tables were normalized by count, and the PFMs 

were generated using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database 

[36, 37]. PFMs were then grouped at KEGG level 3 representing the most diverse and 

specific functional groupings available. 

 
Statistical Analysis Software 

All analyses were performed in the R software package v.3.2.3 [38] with 

appropriate packages and scripts. OTU table BIOM files from QIIME were either 

exported to tab delimited format directly from QIIME or were imported for use in R 

using the phyloseq package version 1.14.0 in R [39]. 

 
Ordinations, Models, and Comparisons 

Non-metric multidimensional scaling (NMDS) ordinations were constructed using 

the vegan package version 2.4–0 [40] to describe community dissimilarity in 

unconstrained space. OTU tables were log10(x + 1) transformed, and distances were 

computed as both Bray-Curtis and UniFrac. NMDS for Bray-Curtis distance 16S rRNA 

data and PFMs were performed on three axes, and 16S rRNA UniFrac distance was also 

performed on three axes. Redundancy analysis (RDA) models were also built in the 

vegan package in order to describe the community structure ordinations in 

environmentally constrained space. NMDS and RDA plots were created using the 

ggplot2 package in R [41]. Environmental gradients were built on NMDS ordinations 

using ordisurf from the vegan package. ordisurf uses general additive model (GAM) 

model building to overlay environmental variables in the ordination space [42]. RDA 

model selection was performed by starting with an initial model including all collected 
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variables and manually removing collinear variables in an effort to maximize adjusted R2 

and minimize the magnitude of difference between R2 and adjusted R2. 

16S rRNA and PFMdata was compared with a Mantel test using the mantel 

function in the vegan package with the Pearson method and 1000 permutations in order to 

test for similarity between the data sets [43]. PROcrustean randomization TEST of 

community environment concordance (PROTEST), a potentially more sensitive detection 

method than a Mantel test, was also used to compare NMDS ordinations as well as RDAs 

using the protest function in the vegan package [44]. PROTEST uses scaling and 

rotations to maximize alignment in ordinations as a multivariate measure of concordance 

in species abundance and environmental datasets along with permutation-based 

significance testing [44]. All PROTEST analyses were performed with 1000 

permutations. 

 
Environmental Groupings and Analysis 

Because preliminary environmental fitting against NMDS ordinations as well as 

RDA models suggested that turbidity and TP were both important in the system; sites 

were divided into turbidity and TP groups of Low, Med, and High for each variable 

independently. Group cutoffs were determined at apparent breakpoints in the distribution 

of our collected turbidity and TP data. Low for TP was set for sites below 40 μg/L and 

High as above 70 μg/L. Low for turbidity was set for sites below 1 Nephelometric 

Turbidity Units (NTU) and High as above 2.0 NTU. The designation of groupings for 

each site can be viewed in Appendix B: Table B.S1. Multivariate ANOVA-type analyses 

including PERMANOVA and ANOSIM were then performed with 1000 permutations 
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using the vegan package to test for significant relationships between and among 

groupings. 

 
Network Construction and Analysis 

In order to visualize site relatedness and clustering, networks were constructed 

from phyloseq imported data using the network package version 1.13.0 and igraph 

package version 1.0.1 in R and Bray-Curtis distance [45–47]. The Bray-Curtis cutoff 

used for each network was the smallest value that allowed for the inclusion of all 25 sites. 

For 16S rRNA data, this value was 0.72, and for PFM data it was 0.028. Network 

clustering for each network was performed using a spin-glass model and simulated 

annealing via the cluster_spinglass function in the igraph package. Clustering from 

networks was compared using the normalized mutual information method (NMI) via the 

compare function in igraph package. Heatmaps were built using the heatmap.2 function 

in the gplots package version 3.0.1 [48]. Heatmap dendrograms were built using Bray-

Curtis distance and uclust WPGMA clustering. Taxa that do not represent more than 

1.5% of relative abundance in any site were removed post clustering for visual clarity. 

 
Total Phosphorus Range of Greatest Impact 

Threshold analysis for TP and turbidity was performed using the TITAN 2.1 

package in R [49]. Threshold Indicator Taxa Analysis (TITAN) identifies environmental 

variable values maximizing taxa frequency and abundance using bootstrapping to identify 

reliable indicator taxa and the sum of indicator taxa value Z-scores to identify the 

environmental values representing the peak of increase or decline of the taxa [50]. The 

number of bootstraps performed in our TITAN 2.1 analyses was 500. For genus-level 
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analysis, referenced genera observed more than three times were used, and for OTU-level 

analysis, OTUs observed more than 15 times were used. The same analysis was 

performed for turbidity as well. 

 
Functional Redundancy Testing 

Functional redundancy can be represented by the relationship between functional 

and species diversity with less correlation representing more redundancy [19, 51]. In 

order to test for functional redundancy in the system, Shannon diversity scores were 

computed for all sites in both the 16S rRNA and PFM data sets. Shannon diversity scores 

for each data set were plotted against each other, and potential correlations were explored 

using a GAM through the mgcv package version 1.8- 11 in R [52]. GAM models were 

also used to model Shannon diversity correlation with turbidity for both 16S rRNA and 

PFM data. 

 
Results 

 
Environmental Relationship to Community Structure and Function 

Vector fitting of environmental variables onto the NMDS ordinations identified 

turbidity and TP as the strongest and most significant environmental factors. The NMDS 

ordinations overlaid with turbidity and TP help to show trends of placement in ordination 

space with environment gradients for both 16S rRNA data and PFM data (Fig. 2.1).  

Contours for both turbidity and TP fit well with the distribution of sites in ordination 

space albeit in somewhat orthogonal directions. The turbidity gradient represents an 

almost linear fit to the ordination space distribution for the PFM data whereas more 
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smoothing was involved in the 16S rRNA data. 16S rRNA UniFrac and Bray-Curtis 

ordinations were very similar with a PROTEST correlation statistic of 0.88 (p = 0.001). 

 

 

Figure 2.1: NMDS ordinations. A) 16S rRNA community with Bray-Curtis distance. 
Yellow to red gradient represents turbidity environmental fit, and gray lines represent TP 
(stress 0.067). B) Predicted functional metagenome with Bray-Curtis distance. Yellow to 
red lines represent turbidity environmental fit, and gray lines represent TP (stress 0.030) 
 

The RDA model for 16S rRNA data included turbidity, TN, pasture land 

coverage, and C/P ratios (Fig. 2.2.a). TP was collinear with TN so it was removed from 

the model. The model had an adjusted R2 value of 0.107, and an ANOVA-like 

permutation test for the constraining variables was significant with a p value of 0.001. 

The RDA model for the PFM data included turbidity, TP, developed land coverage, C/N 

ratios, and C/P ratios (Fig. 2.2.b). The model-adjusted R2 was 0.394, and an ANOVA-like 

permutation test for the constraining variables was significant with a p value of 0.001. 

PERMANOVA and ANOSIM on the 16S rRNA data for TP grouping were both 

significant. Only PERMANOVA was significant for TP grouping on the PFM data where 

ANOSIM was not (Table 2.1). PERMANOVA and ANOSIM on the 16S 

rRNA data for turbidity groupings were also both significant. The analyses were also 

significant for the PFMs and turbidity groupings (Table 2.1) 
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Figure 2.2: RDA model constrained ordinations. A) RDA model for the 16S rRNA 
community (adj. R2 = 0.106, p = 0.001). B) RDA model for PFMs (adj. R2 = 0.380, p = 
0.001) 
 

Table 2.1: Results from multivariate analyses.  

Statistical 
approaches 

   Turbidity Grouping  TP Grouping 

   16S rRNA  PFM  16S rRNA  PFM 

ANOSIM  R  0.636  0.432  0.213  0.102* 

  p  <0.001  0.002  0.013  0.077* 

PERMANOVA  F  3.401  7.92  1.735  2.710 

  p  0.002  0.002  0.013  0.037 
 

* Not significant (= 0.05). 

 
Structure and Function Relationship 

The OTU table and PFM, and dissimilarity matrices of each, were prepared for 

the structural and predicted functional capacity aspects of the communities. A Mantel test 

of 16S rRNA and PFM data returns no significant correlation between the dissimilarity 

matrices of the two data sets. The PROTEST correlation statistic for the RDA models 

was 0.57 (p = 0.01), and PROcrustes error plotting shows varying magnitudes and 

directions of change in ordination space (Appendix A: Fig. A.S3). 
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Linear and GAM modeling proved unproductive for diversity relationship to TP. 

A GAM model for 16S rRNA diversity shows a significant negative association between 

turbidity and Shannon diversity index values (R2 adj. = 0.322, p = 0.008) (Appendix A: 

Fig. A.S4.A). A GAM model of PFM diversity against turbidity shows a negative 

association with turbidity as well (R2 adj. = 0.593, p < 0.001) (Appendix A: Fig. A.S4.B). 

16S rRNA and PFM networks by site relatedness were also visually quite 

different with very different clustering. In addition to being visually different, network 

clustering differed statistically with an NMI score of 0.430. Networks for 16s rRNA and 

PFMs appeared to both cluster well visually with turbidity groupings rather than TP 

groupings (Appendix A: Fig. A.S5). Many nodes differ in linked partners, and clusters 

differed in composition, number of connections to other clusters, and connection sites. 

 
Total Phosphorus Range of Greatest Impact 

TITAN 2.1 identified five separate indicator genera decreasing in abundance 

(decreasers) and eight indicator genera increasing in abundance (increasers) in response 

to TP levels. OTU-based analysis identified a large number of OTUs in both the increaser 

and decreaser categories. Increasers and decreasers intersect at just below 55 μg/L of 

TP (Fig. 2.3). The 95% confidence intervals for the analysis identify a range from 52 to 

58 μg/L TP for decreasers and 74.5 to 79.6 μg/L for increasers. In terms of sheer number 

of taxa, decreasers were much more prevalent than increasers. A TITAN analysis 

performed on turbidity indicated a strong threshold value right around 2.0 NTU mostly of 

decreasers, but interestingly, Sediminibacterium saw a significant increase 

(Appendix A: Fig. A.S6). 
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Figure 2.3: TITAN 2.1 analysis. A) Plot of pure and reliable indicator taxa along the TP 
gradient. Black symbols correspond to genera that declined with increasing TP (z−), 
whereas open symbols correspond to those that increased (z+). Symbols are sized in 
proportion to the magnitude of the response (z-score). Horizontal lines represent 5th and 
95th quantiles of values of TP resulting in the largest change in genus zscores among 
1000 bootstrap replicates. B) Plot of sum z-scores for genus level taxa. Steep slopes 
indicate major change points in abundance. C) Plot of pure and reliable OTUs changing 
abundance around the threshold region. D) Plot of sum z-scores for OTU-level taxa 
 

Diversity and Community Taxonomy 

The heatmap in Fig. 2.4 illustrates abundance trends across sites at the order level. 

Several unique genera displayed strong differences in relative abundance between 

groupings based on TP. Relative abundance of Acinetobacter from the order 

Pseudomonales varied with TP grouping increasing from very little (0.89%) in high TP 

sites to relatively much more in low TP sites (9.84%) (Appendix A: Fig. A.S2.B). 
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Bacteria of the family Cytophagaceae were also much more abundant in high TP sites 

(Appendix A: Fig. A.S2.B). Abundance of bacteria of the genus Fluvicola from the order 

Flavobacteriales also increased with TP showing greater abundance in higher groupings. 

 

 

Figure 2.4: Heatmap of 16S community structure at the Order level by site (taxa observed 
>1.5% of total abundance only) 
 

Discussion 

 
Turbidity 

Turbidity was an important factor in our analyses despite utilizing only the 0.2- to 

1-μm fraction which likely removed many larger particle-associated bacteria. We would 

expect this to limit a large amount of particle associated bacteria, but the turbidity factor 
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still had a strong relationship to both the structure and the functional capacity of the 

studied communities. 

The primary ecological effect of turbidity in stream systems is to limit light 

availability [53]. Interactions between light availability and phosphorus on algal growth 

have previously been demonstrated as important for algal growth and community 

composition [54]. Turbidity also introduces sediment to the system and, along with it, 

particle-associated organisms. We did see soil-associated taxa such as Pseudomonas, 

Cytophaga, Micrococcus, Bacillus, and Agrobacterium present in our communities 

despite the focus on the 0.2- to 1-μm fraction. It is important to note, however, that the 

highest turbidity Nephelometric Turbidity Unit (NTU) values from the study sites were 

still relatively low (0.5–3.5 NTU) when compared to large rivers, lakes, or estuaries that 

are considered turbid, where turbidity typically exceeds >10–20 NTU [55]. Sampling for 

this study also occurred under base flow conditions representing the likely lowest 

turbidity conditions. 

These factors make it difficult to separate out precisely what factors turbidity may 

be representing. Turbidity showed no correlation to total chlorophyll, and although it did 

correlate with total suspended solids and was collinear with several terrestrial type factors 

such as catchment area and flow, that is not the whole picture. Turbidity can be a poor 

measurement of sedimentation [56], and preliminary data exploration shows that 

sediment was likely not as prevalent in this sampling event as it is during other times of 

the year with similar turbidity measures. Total suspended solids only represented a small 

proportion of the turbidity measure in our data and was lower (x = 2.0 mg/L, s = 1.75)  
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than 10 historical measurements on all sites over the course of 2 years (x = 3.7 mg/L, 

s = 6.87) within the same system as well. 

The water column for the most turbid sites possessed an uncharacteristic and 

unidentified gray tint to the naked eye that was not readily apparent during other months 

of the year. This may be indicative of a biological factor such as the bacterial 

colonization of mineral particles or bacterial aggregates increasing turbidity scores. 

Therefore, turbidity here is probably a complex mixture of terrestrial and biological 

factors but further work is needed in order to explain this phenomenon. 

 
Structure and Function Relationship 

In addition to visual differences, the results of multiple analyses including the 

Mantel test, PROcrustes, and PROTEST analyses together indicate that structure and 

predicted functional capacity likely have features that are both coupled and decoupled in 

this system. Rather than seeing complete coupling or decoupling, we instead see 

indications of a degree of some decoupling. This appears to support the inconsistent 

results seen in previous studies and may mean a different result in terms of the degree of 

coupling when focusing on different specific ecosystem functional traits as opposed to 

the entire functional metagenome [15, 16]. 

Diversity relationship to turbidity appears to be one strongly coupled facet in this 

system. This indicates a potentially large environmental impact on taxa diversity with 

ongoing pollution and eutrophication of streams and rivers [57] which according to our 

results could lead to reduced functional diversity as well because the two appear to share 

a coupled diversity response. This is in contrast to the diversity relationship to TP which 

resulted in no productive linear or GAM models. 
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Functional Redundancy 

We considered one possible explanation for any decoupling that we saw between 

structure and function to be functional redundancy. The GAM model for redundancy 

indicates a strong relationship between functional capability and species diversity in this 

system (Appendix A: Fig. A.S7). There does not appear to be much functional 

redundancy which could imply that environmental changes affecting diversity could have 

major implications for these communities. 

The similarity of 16S rRNA UniFrac and Bray-Curtis ordinations seems to 

indicate that these communities have a strong evolutionary structural component and may 

maintain and develop unique communities over longer periods of time than would be 

expected in this type of fast moving lotic system. A recent study in catchment 

bacterioplankton found evidence that spatial factors are more important than temporal 

factors in determining community composition in lotic river systems supporting the 

development of unique community structures based on location and environmental 

parameters [58]. 

 
Nutrient Stoichiometric Relationships 

The appearance of C/P and C/N ratios in our models is supported in previous 

research including research into changes in biomass incorporation based on C/P ratios 

[4]. The purpose of our study was to explore microbial communities across a gradient of 

TP, but the effects of C/P ratios should continue to be explored. Our results indicate only 

a relationship but not the direction of the relationship. Interestingly, the directions of TP 

and C/P ratios in the models were almost antithetical which is also supported in the 
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literature [59]. The same was true for TN and C/N ratios. DOC by itself was not a strong 

correlate in any of our analyses although possibly due to collinearity. 

 
Total Phosphorus Range of Greatest Impact 

The steep decline of taxa near the ~55-μg/L TP value identified by TITAN 

analysis fell in the middle of our “middle” grouping for TP. This value would suggest 

that for microbial communities, any lotic freshwater site with a TP level of greater than 

55 μg/L might be considered as a high TP site. This number is higher than threshold 

values found for other taxa in other systems. Previous work on benthic periphyton has 

indicated a slightly lower threshold for benthic periphyton taxa using regression-tree 

analysis in a wide-scale study in Canada [60], and an application of TITAN on benthic 

periphyton in Texas revealed an assemblage level threshold of approximately 20 μg/L TP 

[61]. Previous study of algal biomass has also indicated a lower threshold of 25 μg/L 

depending on light availability; however, this refers only to soluble reactive phosphorus 

and not to total phosphorus [54]. 

 
Diversity and Community Taxonomy 

QIIME diversity analysis and TITAN threshold analysis both identified taxa that 

could be of interest to P dynamics in this system. The QIIME diversity analysis identified 

Acinetobacter which has been known to accumulate polyphosphates and 

polyhydroxyalkanoates in lownutrient environments [62] allowing it to thrive in 

environments with relatively low concentrations of orthophosphates (e.g., [63]). The 

Lower TP sites may give Acinetobacter a competitive advantage over taxa that are more 

dependent on readily available P. 
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Within the threshold range of TP identified by TITAN analysis, we see a decrease 

in genus Cytophaga, a microbe associated with chitin consumption and with large 

organic matter decomposition [64] as well as Agrobacterium, Nesterenkonia, and 

Dysgonomonas. We see a significant increase in Clavibacter, a genus containing 

pythopathic pathogens affecting agriculture [65], and in Cloacibacterium, a genus 

originally isolated from wastewater in the central USA [66]. 

The heatmap in Fig. 2.4 illustrates how some sites are dominated by a few taxa 

where other sites are distributed much more evenly. The review performed by Zeglin [20] 

indicates a significant differentiation of many of these taxa’s parental phyla across stream 

“compartments” with relatively consistent taxonomic abundance within compartments. 

However, our results would seem to indicate quite a bit of variation in those phyla within 

the same compartment (water column) among these different sites. 

 
Conclusions 

Although TP may not be the strongest factor involved in the structure of microbial 

communities in this system during this October 2014 sampling, it remains undoubtedly 

an important factor in this stream and river system representing a strong P gradient. 

Testing via three separate methods including MANOVA-like tests, ordination, and RDA 

modeling, all identify TP as a factor in community and functional capability assembly. 

Turbidity displays a strong relationship to our system despite the potential 

limiting of large particle-associated microbes by using the 0.2- to 1-μm fraction. It is easy 

to see how a strong or complex factor such as turbidity, missing factors, or data 

resolution limitations may mask other important factors in these systems. 
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We found that TP is important to both community structure and the PFM of the 

combined bacterial and archaeal community in this lotic freshwater system but in a 

decoupled fashion which is contrary to what we expected. These results indicate that 

looking expressly at community structure without function may show an incomplete 

ecosystem picture. 

Our results showing a lack of functional redundancy in this system and the 

potential impacts of diversity change illustrate why further study of lotic freshwater 

microbial communities in the context of P is important to our understanding of the 

microbial ecology and biogeochemical nutrient cycling in these systems. 

It is important that we begin to look at the mechanisms for P biogeochemical cycling in 

lotic freshwater microbial communities beyond the characterization and modeling of 

structure, function, and diversity in order to better understand how they structure in 

relation to environmental P uptake and mobilization as members of a larger ecosystem. 

While these mechanisms are not addressed as part of this initial study, we have 

demonstrated that PFMs along with metagenome exploration may offer excellent tools to 

begin this investigation. 
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Abstract 

While fungi are intimately associated with substrates in freshwater systems, the role 

of fungi in the open water column is less well defined. Using next generation sequencing 

of 0.2 μm–1 μm filtered water columns samples, we detected abundant and diverse fungal 

sequences across 25 stream and river sites in the Ozark region of Oklahoma and Arkansas. 

Fungal communities were only weakly related to stream environmental metrics with the 

exception of total phosphorus (TP). We infer from our results that TP is acting as a proxy 

for unique catchment effects. We observed patterns of dominant community taxa at higher 

taxonomic groupings but lower taxonomic groupings were site specific. OTU functional 

assignment showed the majority of sequences to be related to plant and animal pathogens, 

and some saprotrophs. The likely allochthonous origin and strong site specificity of these 

fungi suggest overlooked dispersal via lotic waterways, which may have important 

biogeographic consequences for fungi. 

 
Introduction 

Fungi in aquatic ecosystems have been extensively studied, typically focusing on 

substrate surfaces such as allochthonous leaf litter in freshwater in the context of 

decomposition (Suberkropp and Klug, 1976; Nikolcheva and Bärlocher, 2005; Sridhar 
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et al., 2008). One of the topics that has been largely neglected is fungi in the water column 

not associated with substrates or sediment. One study that assessed fungal biomass in the 

upper 1 m of the water column in 32 temperate streams in Poland found a significant 

correlation between fungal biomass and total nitrogen (N) and phosphorus (P) in water 

using regression and Pearson correlation analysis (Gorniak et al., 2013). Community 

structure and role were not directly investigated but direct fungal participation in water 

column nutrient cycling was hypothesized (Gorniak et al., 2013). 

Another possible explanation for fungal presence in the water column is simply the 

deposition of hyphal fragments or other potential propagules from air, upstream water, 

detritus deposition, and root to stream contact. Water column dispersal is well studied for 

aquatic hyphomycetes (Ingold, 1942; Thomas et al., 1991; Suberkropp and Wallace, 1992; 

Sridhar and Bärlocher, 1994) but such inputs could provide an overlooked means of 

dispersal for terrestrial fungi as well. In fact, fungus-like Oomycete plant pathogens of the 

genus Phytophthora are well known to disperse via river systems (Li, 2016). Recent studies 

clearly show that some true fungi are dispersal-limited (Peay et al., 2012; Cline and Zak, 

2014; Peay and Bruns, 2014), leading to strong biogeographic distribution patterns (Taylor 

and Bruns, 1999; Peay et al., 2010). 

Most work on dispersal in terrestrial fungi has focused on movement of aerial 

spores (Brown and Hovmøller, 2002; Pashley et al., 2012; Savage et al., 2012; Grinn-

Gofroń and Bosiacka, 2015), including next generation sequencing studies of indoor air 

(Amend et al., 2010; Adams et al., 2013). While aquatic hyphomycetes have received 

attention with respect to diversity of decomposers and macroscopic life stages (Fabre, 

1998a, 1998b, 1998c), there have been few studies of the roles of river systems in the 
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dispersal of true fungi in general, particularly by very small propagules. Given the fact that 

streams and rivers serve as ecological aggregators of processes throughout their watershed 

catchments (Frissell et al., 1986; Allan, 2004; Bormann and Likens, 2012), and that 

riverine dispersal is important in numerous other taxa, e.g. fish, insects, reptiles, and plants 

(Maguire, 1963; Bermingham and Avise, 1986; Bunn and Hughes, 1997; Bernatchez and 

Wilson, 1998; Miller et al., 2002; Santamaría, 2002; Petersen et al., 2004; Pellegrino et al., 

2005; Vanschoenwinkel et al., 2008), the lack of fungal studies represents a major gap. 

A potential hurdle to investigating dispersal via the water column is determining 

whether or not fungi detected are active aquatic community members or are transient and 

inactive. There is a large body of evidence linking fungi to the phosphorus (P) cycle in 

soils (Bolan, 1991; Schachtman et al., 1998; Van der Heijden et al., 2008). High total 

phosphorus (TP) is also an indicator of excessive nutrients from catchments feeding into 

streams and rivers (Schindler, 1977; Carpenter et al., 1998) and has a large impact on 

aquatic systems (Bennett et al., 2001; Anderson et al., 2002; Hart et al., 2004). Exploring 

fungi across a gradient of TP allows identification of relationships of free living fungal 

communities to P in the water column. 

The bulk of water-column particulate matter consists of eroded soils and particulate 

organic matter (Schlesinger and Melack, 1981; Waters, 1995; Bilotta and Brazier, 2008). 

Fungi are both ubiquitous in soils and are directly involved in colonizing and decomposing 

organic matter in streams (Christensen, 1989; Gessner, 1997). To focus on dispersal via 

small fungal cells, fragments, and spores in the water column, it is desirable to exclude 

fungi associated with particles using a method like size filtering (APHA, 1998). Here, we 

analyze total fungal diversity in a microscopic fraction (0.2–1.0 μm) across a river system 
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spanning a range of TP. While many fungal cells are larger than 1 μm, we anticipated good 

detection of fungi through small cells, spores, and cell fragments. The ecological gradient 

is representative of differences in multiple catchment properties such as vegetation and 

nutrient cycling across the varied watersheds enhancing the exploration of relationships 

between fungal communities and the environment in the system. 

 
Methods 

 
Sampling 

Extraction of genomic DNA (gDNA) from water-column filter samples was 

described in detail in LeBrun et al., (2017) (LeBrun et al., 2017). The study area was a 

collection of mid-order (3rd-5th) streams and rivers along the Oklahoma-Arkansas border, 

an area with known P enrichment problems (Fig. D.S1) (Green and Haggard, 2001; 

Haggard, 2010; Haggard and Soerens, 2006). Sampling was performed in October of 2014. 

Additional site characteristics are also available through a study by Cook et al., 2017 (in 

press) where data on these sites was collected at regular intervals over 2 y. The sampling 

sites represented a gradient of TP levels from 7 to 173 μg/L. Sample processing involved 

a stacked filtration of 50 mL of water from ∼10 cm below the surface in the water column 

through a 1 μm glass fiber filter and then a 0.2-μm filter. Only components collected on the 

0.2-μm filters were used in extracting the gDNA for this study (i.e. the 0.2–1.0 μm size 

fraction). 

 
Environmental data 

Environmental data including dissolved organic carbon (DOC), total phosphorus 

(TP), total N (TN), C:N ratio, C:P ratio, sestonic chlorophyll-a, total suspended solids 
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(TSS), turbidity, pH, dissolved oxygen (DO), temperature, and specific conductance in 

stream/river water along with catchment size and catchment and land use factors including 

percentage pasture land, percentage impervious cover, percentage developed land were 

collected as reported in LeBrun et al., (2017) (LeBrun et al., 2017). In brief, water 

chemistry was measured using YSI EXO2 multiparameter data sonde (Yellow Springs, 

OH) and standardized water testing (APHA, 1998). Catchments were delineated using 

ArcGIS and land usage was estimated from the National Land Cover Data (NLCD) raster 

(ESRI, 2011. ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems 

Research Institute.). 

 
Library preparation 

Library preparation for this study started with the gDNA collected in LeBrun et al. 

(2017). An initial PCR amplification of the ITS2 region was conducted using 5.8S_Fun 

and ITS4_Fun primers (Taylor et al., 2016) modified to include adapters for future 

indexing. PCR was performed using 2× Platinum™ Green Master Mix from Invitrogen. 

PCR specifications were 1 cycle for HotStart step at 94 °C for 2 min followed by 30 cycles 

of 94 °C denaturation step for 45 s, 50 °C annealing step for 1 min, and 72 °C elongation 

step for 1.5 min. Successful PCR was identified through 1% agarose gel electrophoresis 

run at 70 V for 40 min. PCR cleanup was conducted using an Agencourt AMPure XP kit 

(Beckman Coulter Life Sciences) following the manufacturer's protocol. Final PCR 

product quantification was conducted using a Qubit 3.0 system. 

A second round of PCR amplification was run to add unique indices to each sample 

as well as Illumina sequencing adapters. PCR was again performed using 

2× Platinum™ Green Master Mix. PCR specifications for the second round of PCR were 
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1 cycle for HotStart step at 94 °C for 2 min followed by 8 cycles of 94 °C denaturation step 

for 45 s, 59 °C annealing step for 1 min, and 72 °C elongation step for 1.5 min. Cleanup 

and quantification were performed in the same manner as the first round of PCR. Samples 

were then pooled so that 10 ng of DNA from each sample was present in final library. 

Sequencing was performed on an Illumina MiSeq system using a MiSeq Reagent 

Kit v3 2 × 300 with paired-end reads. Libraries were spiked with 20% phiX control. 

 
Sequence processing 

Demultiplexing was conducted through Illumina BaseSpace. Paired-end read fastq 

files for each sample were extracted for downstream processing. Additional sequence 

processing was carried out using Quantitative Insights Into Microbial Ecology (QIIME) 

version 1.9.1 (Caporaso et al., 2010). Paired-end reads were combined using the fastq-join 

algorithm from eautils (Aronesty, 2013). Un-paired reads were discarded at this time. The 

resulting sequences were then filtered with a maximum unacceptable Phred quality score 

of 20. Chimeric sequences were identified and removed using the UCHIME algorithm 

within USEARCH (Edgar, 2010). Operational taxonomic unit (OTU) picking was 

performed via open reference with a 0.50 pre-filter using uclust against the dynamic 

UNITE database version 7 with a 0.94 similarity cutoff. Singleton sequences were removed 

during OTU picking and taxonomy was assigned with the UNITE database as reference. 

Reads identified as Plantae or Protista were then manually removed from the resulting OTU 

table via filtering. 

Functional information in the form of guild assignment to OTUs was performed 

using the online version of FUNGuild (Nguyen et al., 2016). FUNGuild parses OTUs 

into “guilds” or “functional groupings”based on their taxonomic assignments and 
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ecological data extracted from the literature (Nguyen et al., 2016). Guilds are 

representative of species, whether related or unrelated, that exploit the same class of 

environmental resources in a similar way. 

 
Statistical analysis software 

All analyses were performed in the R software package v.3.2.3 (R Core Team, 

2015) using various packages and scripts as identified. OTU table BIOM files from QIIME 

were either exported to tab delimited format directly from QIIME or imported for use in R 

using the phyloseq package version 1.14.0 in R (McMurdie and Holmes, 2013). 

 
Diversity, ordinations, models, and comparisons 

Diversity metrics for Shannon (H’), Simpson (1-D), and Inverse Simpson (1/D) 

indices were calculated using the vegan package version 2.4–0 (Oksanen et al., 2016). 

Sample overlap was calculated using the Morisita-Horn index and bootstrapping (n = 200) 

in the vegetarian package version 1.2 (Charney and Record, 2012). Heatmaps were built 

using the heatmap.2 function in the gplots package version 3.0.1 (Warnes et al., 2016). 

Heatmap dendrograms were built using Bray-Curtis distance. Taxa that do not represent 

more than 1 percent of relative abundance in any site were removed post clustering for 

visual clarity. 

Non-metric multidimensional scaling (NMDS) ordinations were constructed to 

describe community dissimilarity in unconstrained space using the vegan package. NMDS 

using Bray-Curtis distance was performed for ITS2 and Guild datasets. NMDS plots were 

created using the ggplot2 package in R (Wickham, 2006). Environmental gradients were 

built on NMDS ordinations using ordisurf from the vegan package. Ordisurf uses 
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Generalized Additive Modeling (GAM) model building to overlay environmental variables 

in the ordination space (Marra and Wood, 2011). 

ITS2 and Guild data were compared with a Mantel test using the mantel function 

in the vegan package with the Pearson correlation method and 1000 permutations in order 

to test for similarity between the data sets (Smouse et al., 1986). PROcrustean 

randomization TEST of community environment concordance (PROTEST), a potentially 

more sensitive detection method than a Mantel test, was also used to compare NMDS 

ordinations in the vegan package (Jackson, 1995). PROTEST uses scaling and rotations to 

maximize alignment in ordinations as a multivariate measure of concordance in datasets 

along with permutation based significance testing (Jackson, 1995). All PROTEST analyses 

were performed with 1000 permutations. Mantel and PROTEST analyses were also used 

to investigate relationships between fungal community assemblages and the bacterial 

community assemblages from LeBrun et al. (2017) for the 23 sites shared between the two 

studies. 

 
Environmental groupings and analysis 

Due to the experimental design focusing on a TP gradient, sites were divided into 

groups of Low, Med, and High TP. Group cutoffs were determined at apparent breakpoints 

in the distribution of collected TP data. Low for TP was set for sites below 40 μg/L and 

High as above 70 μg/L. The designation of groupings for each site can be viewed 

in Table D.S1. Multivariate ANOVA (MANOVA) like non-parametric analyses including 

PERMANOVA and ANOSIM were then performed with 1000 permutations using the 

vegan package to test for significant TP group related dispersion and variation. 

 



46 

Network construction and analysis 

To visualize taxa relatedness and clustering, networks were constructed from data 

imported through phyloseq using the network package version 1.13.0 and igraph package 

version 1.0.1 in R with Bray-Curtis distances (Butts et al., 2015; Butts et al., 2008; Csardi 

and Nepusz, 2006). Clustering for each network was performed using a spin-glass model 

and simulated annealing via the cluster_spinglass function in the igraph package. 

 
Additional modeling and testing 

Redundancy Analysis (RDA) models were built in the vegan package (Oksanen 

et al., 2016) in order to describe the community structure in environmentally constrained 

space for both OTU and FUNGuild data. RDA model selection was performed by starting 

with an initial model including all collected variables and manually removing collinear 

variables in an effort to maximize adjusted R2 and minimize the magnitude of difference 

between R2 and adjusted R2. 

Generalized Additive Models (GAMs) were built individually for each collected 

environmental variable against Shannon, Simpson, and inverse Simpson diversity scores 

calculated using relative abundance data. GAMs were built using the mgcv package 

(Wood, 2001) for multiple environmental metrics. 

Indicator species analysis was performed using the IndVal function in R from the 

labdsv package (Roberts, 2013) with 2:6 clusters and 1000 iterations. Indicator species 

analysis identifies important taxa for typologies created from any classification procedure 

independently from the classification method (Dufrêne and Legendre, 1997). 

Threshold analysis for TP and turbidity was performed using the TITAN 2.1 

package in R (Baker et al., 2015). Threshold Indicator Taxa ANalysis (TITAN) identifies 
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environmental variable values maximizing taxa frequency and abundance using 

bootstrapping to identify reliable indicator taxa and the sum of indicator taxa value Z scores 

to identify the environmental values representing the peak of increase or decline of the taxa 

(Baker and King, 2010). The number of bootstraps performed in our TITAN analysis was 

200. The genus taxonomic level was used and only taxa observed more than 3 times across 

all sites were used. 

 

 

Figure 3.1: Heatmap of community structure at the Phylum level by site. Dendrograms are 
constructed with Bray-Curtis distance. 
 
 

Results 

 
OTU counts and site diversity 

We identified from 48 to 168 fungal taxa at each site across the 25-site system 

(mean = 85, SD = 33.25) (Table D.S1). Shannon index values ranged from 1.59 to 3.36 

(mean = 2.35, SD = 0.53), Simpson index values ranged from 0.66 to 0.94 (mean = 0.84, 
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SD = 0.08), and inverse Simpson index values ranged from 2.98 to 17.25 (mean = 7.99, 

SD = 3.90) (Table D.S1). The Morisita-Horn overlap index was CD = 0.179 (SE = 0.0003). 

The heatmap of taxa at the Phylum level shows groupings of sites primarily dominated by 

one of the phyla Basidiomycota, Ascomycota, or Chytridiomycota (Fig. 3.1). 

 
Network analysis 

Network analysis showed small, distinct clusters of ecologically related taxa at the 

genus level (Fig. 3.2). The majority of taxa represented OTUs that made up less than 1% 

of total abundance and so will be referred to as “rare” taxa for this study. The relationships 

shown are between taxa throughout the sites. 

 
Guild designations 

42% of ITS2 OTUs were classified into guilds by FUNGuild. The majority of taxa 

fell into animal and plant pathogen guilds as well as unidentified saprotrophs (Fig.3.3). 

 
NMDS ordinations and RDA models 

For NMDS ordination with taxonomic data, sites were dispersed fairly evenly 

through ordination space with no apparent clusters of sites. However, a pattern of sites 

positioning in a related manner emerges when considering TP groupings (Fig. 3.4). The TP 

gradient fit to the ordination using GAM explained 32.6% of deviance with p = 0.02. 

NMDS ordination with the FUNGuild data showed slightly more separation between 

potential groups of sites (Fig. D.S2). The TP gradient fit to the ordination using GAM 

explained 48.2% of deviance with p < 0.01. Results from PERMANOVA and ANOSIM 

were both significant for TP groupings with F = 1.48 (p = 0.02) and R = 0.131 (p = 0.03). 
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The Mantel test between the fungal ITS2 data and the bacterial 16S NMDS data 

from LeBrun et al. (2017) for the 23 overlapping sites showed no significant correlation 

(rm = -0.033, p = 0.94). Procrustean PROTEST comparison between fungal and bacterial 

NMDS ordinations had a correlation statistic of 0.48 with p = 0.013. The Procrustes error 

plot is shown in Fig. D.S3. 

 

 

Figure 3.2: Taxonomic network generated using Bray-Curtis distances. Isolated taxa have 
been removed leaving only Taxa with at least one connecting edge. Node size represents 
total abundance of that taxon on a log scale. Taxa with red nodes represent less than 1% of 
total abundance while yellow nodes indicate taxa not considered “rare”. Taxa labeled 
“unidentified.xy” were unable to be classified at the genus level. 
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Figure 3.3: Heatmap of FUNGuild identified guild abundance by site. Dendrograms are 
constructed with Bray-Curtis distance. 
 

 

Figure 3.4: NMDS ordination of ITS2 community with Bray-Curtis distance (Stress 0.155). 
Gradient represents environmental TP fit to ordination using GAM.  
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Attempts to model taxonomic community structure using Redundancy Analysis 

(RDA) and GAMs with collected environmental and land use variables were unproductive 

as none of the environmental variables resulted in a significant model. The final RDA 

model for FUNGuild data included TP, carbon to P ratio (C:P), DOC, DO, temperature, 

and pH with an adjusted R2 of 0.345 and p = 0.014 (Fig. 3.5). The direction of C:P was the 

antithesis of to DOC and TP, indicating a relationship differing from TP or DOC, and so it 

was kept in the model. 

 

 

Figure 3.5 RDA model of environmental variables and FUNguild designations at each site 
(adj. R2 = 0.345, p = 0.014). 
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Indicator species and total phosphorous gradient relationship 

Indicator species analysis was able to identify a few indicator taxa in our system; 

however, the results were not consistent across multiple runs and clustering levels, and 

identified taxa were few and most only weakly significant. Two taxa that were consistently 

identified were the genus Hygrocybe (d = .9804, p = .014) at lower clustering levels (2–6 

k-means clusters) and the genus Entophlyctis (d = .948, p = 0.039) at higher clustering 

levels (6–10 k-means clusters). Unfortunately, the reason for these species as indicators for 

the relevant sites remains elusive, although the log abundance of Entophlyctis was weakly 

related to TP by GAM (Deviance explained = 9.33%, p < 0.001). TITAN was unable to 

identify any reliable indicator taxa or change points in system related to the TP gradient. 

 
Discussion 

 
Site specificity of fungal assembly 

Taxa in the system showed a high site specificity. Visually, site distributions in 

ordination space were widely dispersed and taxonomic heatmaps (Fig. D.S4 – Fig. D.S8) 

illustrate the increasing site specificity at lower taxonomic levels. This increase is to be 

expected; however, even at the class level, sites are distinct. We also found quantitative 

support for this site specificity. For Morisita-Horn, CD = 0 represents a system of samples 

with no overlap, while CD = 1 represents a system of samples with complete overlap (Jost, 

2007). Thus, the observed value of CD = 0.179 indicates very little taxonomic overlap. 

Little community overlap in the system likely affected network analysis with the majority 

of taxa being removed from the final network due to nodes having no edges along with 

making it difficult for indicator species and TITAN analyses to identify indicator taxa. In 
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a previous study on bacteria and archaea within the same system, we were able to establish 

that there were no overwhelming effects of stream connectivity or downstream flow in the 

system (LeBrun et al., 2017). The site specificity in the current study also illustrates a lack 

of effects caused by any site flow connectivity (Fig. D.S8). 

 
Taxa relationships identified by network analysis 

The majority of identified relationships involve rare taxa (Fig. 3.2); taxa sharing a 

relationship tended to be found in the same abundances within the system. This finding 

could be indicative of taxa replacing each other in roles within the different catchments or 

may be an artifact of the network construction due to site specificity. Either way, these 

relationships warrant additional investigation. These rare taxa showed no relationship to 

environmental variables in the stream when separated from the overall community. 

 
Nutrient cycling and environmental interactions 

Analyses investigating fungal relationships to TP provided mixed results. The 

GAMs built with the ordinations for both taxonomic and FUNGuild data show a significant 

relationship between TP and placement in ordination space. It must be taken into account 

that both ordinations had stress values bordering on the “suspect” range (0.155 & 0.104). 

However, a relationship to TP is supported by the significant PREMANOVA and 

ANOSIM tests. The taxonomic composition of the detected fungi did not correlate with 

any variables in RDA. Diversity was also unrelated to environmental metrics as shown by 

the lack of significant GAM models. 

Functional composition of the fungal assemblage via FUNGuild designations 

appears to be more closely tied to collected environmental variables than was taxonomic 
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composition. The TP gradient explains a higher percentage of deviance in the ordinations 

and the RDA model ties the functional designations to catchment and stream variables. The 

decoupling between taxa assemblage and function makes sense in light of the specificity 

of taxa at each site. However, the primary functional designations in the system, 

animal/plant pathogens and saprotrophs, do not intuitively apply to non-substrate (i.e. not 

on detritus, other organic material, or sediment) water column processes, meaning these 

fungi are likely transient. 

Bacterial/archaeal communities in this system have previously been connected to 

wider ecological data (LeBrun et al., 2017) and the detected fungal communities are only 

weakly related to the bacterial communities. The small but surprisingly significant 

PROTEST correlation score is probably indicative of catchment effects, spatial 

autocorrelation, or a relationship to an allochthonous, terrestrial subset within the bacterial 

community. Ordinal TP GAMs explain significant site organization in ordination space for 

both fungi and bacteria. PROTEST is known to be more sensitive than a Mantel test 

(Jackson, 1995) and so is capable of capturing these types of minor effects; however, the 

Mantel test was insignificant and the Procrustes error plot shows no cohesive trends or 

patterns (Fig. D.S3). 

We infer from the collective results that a correlation does exist between the fungi 

detected at each site and TP but that the fungi are likely transient and allochthonous rather 

than being active water column community members. TP likely represents unique 

catchment features such as vegetation, that are difficult to identify due to a large number 

of environmental factors that could not be included in this study such as vegetation. Stream 

TP is a product of numerous catchment factors, so covariation of these factors with TP is 
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very possible (King et al., 2005). This allochthonous origin is further supported by the 

identification of several taxa within the system such as the Hygrocybe identified in 

indicator species analysis. Hygrocybe is a terrestrial agaric with spore sizes larger than 

expected to pass through our 1-μM filter. Hence, it is unclear why it was so readily detected 

or whether we were capturing DNA from spores or cell fragments. While our findings 

corroborate prior findings of a TP correlation with fungi in the water column (Gorniak 

et al., 2013), our best guess based on our analyses of community structure and predicted 

function is that these fungi are not major participants in nutrient cycling within the water 

column itself. 

 
Relationship of P to pathogens 

In both constrained and unconstrained ordinations of FUNGuild data, there is a 

clear distinction between placement of Low and High TP grouped sites with Med grouped 

sites somewhat mixed in with one or the other. An increase in the abundance of some 

bacterial pathogens coincided with increased TP in a previous study of the same system 

(LeBrun et al., 2017). There appears to be a high potential for factors that result in high P 

(e.g. agricultural pollution or waste water inputs) to have a relationship to the presence and 

abundance of both bacterial and fungal pathogens. Pathogens in soil can cause negative 

density dependence in communities of vegetation (Laliberté et al., 2015). Distribution of 

vegetation has a strong relationship to both P levels and soil microbial communities 

(Langille et al., 2013). All of these inputs affect waterways (Bormann and Likens, 2012). 

While we have not established causation in the relationship between P and pathogens, there 

exists a potential feedback loop of pathogens affecting P and P affecting pathogens within 



56 

catchments and waterways. This is likely a complex relationship that would require further 

study to fully understand as our data only hint at such a possibility. 

 
The water column as a dispersal medium 

There are multiple lines of evidence suggesting an allochthonous origin for fungal 

taxa detected in this study. The identified taxa are not likely active in stream nutrient cycles 

or processes and they are only loosely related to bacterial communities in the system, if at 

all. Our focus on a smaller size fraction favors detection of small cells and fragments. In 

guild analysis, most taxa were identified as pathogens and saprotrophs. Organisms in these 

categories have potential benefits from aquatic dispersal as streams are rife with the detritus 

for saprotroph colonization and have access to vegetation and animals for pathogen 

colonization. 

Phytophthora, although not a true fungus, offers an excellent example of pathogen 

delivery to terrestrial plants via streams. Although Phytophthora is known for infecting 

agricultural and wild plants on land, its primary method of dispersal is through the water 

column and monitoring and detection is carried out directly in streams (Sutton et al., 2009; 

Hulvey et al., 2010). A fungal pathogen dispersing through an aquatic system is less 

dependent on chance than it is through aerial dispersal. The water column might act as a 

vehicle of pathogen delivery directly to a host, be it plant or animal. In addition, aquatic 

dispersal offers the advantages of protection from drought and UV stress that apply 

strongly to aerial dispersal. Further investigation of fungal pathogen dispersal patterns 

through natural streams and rivers seems warranted, as anthropogenic inputs to streams 

continue to grow (Søndergaard and Jeppesen, 2007). 
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Conclusions 

Here we have documented a surprisingly large number of fungal taxa occurring in 

the 0.2 μm - 1 μm fraction of the water column. These taxa mostly consist of pathogens 

and saprotrophs from the Basidiomycota, Ascomycota, and Chytridiomycota but their 

species composition varied greatly by site. We infer that these taxa are likely present due 

to deposition from allochthonous sources. The site specificity, diversity, and abundance of 

terrestrial fungi suggest an overlooked means of dispersal that could promote or reinforce 

biogeographic patterns in terrestrial fungal communities. 
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CHAPTER FOUR 
 

A Metagenome-based Investigation of Gene Relationships for Non-substrate Associated 
Microbial Phosphorus Cycling in the Water Column of Streams and Rivers 

 
This chapter is a preprint of a paper currently in review for publication: LeBrun ES, King 
RS, Back JA, Kang S. 2018. A metagenome-based investigation of gene relationships for 

non-substrate associated microbial phosphorus cycling in the water column of streams 
and rivers. In review. 

 
 

Abstract 

Phosphorus (P) is a nutrient of primary importance in all living systems and it is 

especially important in streams and rivers which are sensitive to anthropogenic P inputs 

and eutrophication. Microbes are accepted as the primary mineralizers and solubilizers of 

P improving bioavailability for organisms at all trophic levels. Here we use a genomics 

approach with metagenome sequencing of 24 temperate streams and rivers representing a 

total P (TP) gradient to identify relationships between functional genes, functional gene 

groupings, P, and organisms within the P biogeochemical cycle. Combining information 

from network analyses, functional groupings, and system P levels, we have constructed a 

System Relational Overview of Gene Groupings (SROGG) which is a cohesive system 

level representation of P cycle gene and nutrient relationships. Using SROGG analysis in 

concert with other statistical approaches, we found that the compositional makeup of P 

cycle genes is strongly correlated to environmental P whereas absolute abundance of P 

genes shows no significant correlation to environmental P. We also found orthophosphate 

(PO4
3-) to be the dominant factor correlating with system P cycle gene composition with 
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little evidence of a strong organic phosphorous correlation present even in more 

oligotrophic streams. 

Introduction 

Phosphorus (P) is one of the three primary nutrients of importance in living 

systems alongside Carbon (C) and Nitrogen (N) [1]. The nutrient P is important in 

numerous processes necessary for life including the production of ATP, nucleic acids, 

and phospholipids. There is a large body of evidence to suggest that P is the limiting 

nutrient in a number of systems [2–6]. An influx of anthropogenic P to a system can have 

significant impact on an environment and ecosystem, particularly a freshwater ecosystem 

resulting in eutrophication [7–9]. The bulk of organisms can only utilize orthophosphates 

(PO4
3-) for biological processes [10–13] and there are limited natural inputs of PO4

3- to 

freshwater systems; the primary source of PO4
3- being eroded mineral rocks. Due to the 

limitation of natural PO4
3- inputs into systems, microbial populations are believed to play 

an important role in P biogeochemical cycling due to their ability to mineralize organic 

phosphorus making it available to other organisms and their ability to solubilize P by 

changing the properties of systems to favor the release of bioavailable PO4
3- [14]. 

Anthropogenic sources are primarily wastewater along with agricultural 

fertilization and ranching [8, 15] and these inputs are predicted only to increase in the 

future [16]. In consideration of this, it is important that we understand the interactions 

and response of ecosystems to the related increase in P. Because of their unique P 

biogeochemical abilities and foundational role in organic P cycling, microbes make an 

excellent target for studying P relationships in ecosystems. There has already been much 

work towards understanding microbes and P. The bulk of work on microbial 
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communities in natural freshwaters has focused on the interactions of P, N, C, and 

biomass [17–21] or on chemical properties using methods like isotope detection of 

nutrients [22, 23]. More detailed mechanistic study has occurred on specific genes [24–

28] and specific organisms (e.g. Acinetobacter) [24, 29–31] although the bulk of this 

work has been conducted in more simple and controlled environments than what is often 

seen in nature. Unfortunately, these findings are difficult to translate to complex 

microbial communities consisting of large numbers of microbial taxa and populations in 

an environmental setting. Microbial organisms exist in nature as members of complex 

community amalgamations rather than monocultures suggesting biogeochemical 

pathways should be considered in the whole community metagenome rather than the 

genome of any specific isolated organism in order to understand microbial community 

ecosystem interactions. There exists then a gap in our understanding of microbial P 

biogeochemical processes at the community and system levels in terms of mechanisms. 

In fact, the microbial input to P biogeochemical systems is often written off as too 

complex and microbial interactions are summarized as general mineralization and 

solubilization [12]. 

 Metagenome sequencing offers an opportunity to address the gap in community 

and system microbial P biogeochemical with a quasi-mechanistic approach utilizing 

genomics and bioinformatics. Here, we use the microbial metagenomes of 24 temperate 

stream sites to investigate the abundance and composition of microbial P cycle related 

genes and their relationships to P and to each other within the system. The 24 streams and 

rivers represent a gradient of total P (TP) and PO4
3-. We focus on the non-substrate 

associated bacterial/archaeal community in the water column by filtering out particle-
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associated communities [32, 33]. Looking at functional gene groupings representing P 

biogeochemical cycle pathways within communities as a whole rather than isolated to 

specific organisms we target an approach between the general “mineralization and 

solubilization” and the “specific genes within specific organisms” in order to build a 

meaningful representation of microbial P cycling at the community and system level. We 

hypothesized that gene composition and abundance would be strongly associated with TP 

and that functions related to organic or inorganic P would exhibit strong relationships to 

levels of those nutrients accordingly. 

Methods 

Sampling and Sequencing 

The study area was a collection of streams and rivers along the Oklahoma-

Arkansas border, an area with known P enrichment problems (Figure E.S1)[34–36]. The 

sampling sites represented a gradient of TP levels from 7 µg/L to 173 µg/L. The genomic 

DNA (gDNA) used in this study came from LeBrun et al. (2017)[32].  In brief, samples 

were collected ~10 cm below the surface in the water column and 50 mL of water was 

run through a stacked filtration of a 1 µm glass fiber filter and then a 0.2 µm membrane 

filter for each site. Only components collected on the 0.2 µm filters were used in 

extracting the gDNA. gDNA was sent to Molecular Research LP (MR DNA) 

(Shallowater, TX) for metagenome sequencing. gDNA first underwent linear 

amplification performed by MR DNA and then was sequenced using an Illumina HiSeq 

2500 2x150bp paired end reads to a minimum depth of 10 million reads per sample. 
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Sequence Processing and Data Extraction 

Resulting raw read data provided by MR DNA was then processed in house. 

Paired-end reads were aligned and filtered at a Phred score of 20 using the join-fastq 

algorithm from eautils [37]. Unpaired reads were discarded at this time. Remaining reads 

were then aligned using DIAMOND version 0.9.10 [38] against the NCBI NR database 

as downloaded on June, 15 2017 [39]. Mapping using MEGAN GI to taxonomy and GI 

to SEED was then performed on the alignments using MEGAN 6 community edition 

[40]. Taxonomic and SEED results were extracted from MEGAN 6 at multiple 

hierarchical levels in tab-delimited format for downstream analysis. 

 
SEED Classified Groupings 

SEED analysis resulted in three tiers of classifications for P cycling with the most 

general being simply “Phosphorus Utilization” and the most specific being known genes 

and enzymes. The six nodes of the mid-tier SEED classifications for P were selected as 

the functional “gene groupings” for this study. They include “P Uptake” for the uptake of 

PO4
3-, “Phosphoenolpyruvate Phosphomutase” for the synthesis of phosphonates, 

“Alkylphosphate Utilization” for the processing of alkyl phosphates, “Phosphonate 

Metabolism” for phosphonate utilization, “High Affinity Phosphate Transporter and 

Control of PHO Regulon” (HAPHO) for intracellular transport and polyphosphate 

storage, and “Phosphate Metabolism” for general PO4
3- related metabolic processes. A 

detailed breakdown of gene inclusions for each group is available in Supplementary 

Table 1. A seventh grouping, “Total Membrane Transport” was also included in order to 

quantify a relationship between water column bacteria/archaea and particle associated P. 

Note that some genes are found in multiple functional groups potentially increasing group 
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relatedness. We found capturing these relationships to be desirable as functions utilizing 

the same genes should be more related and our analyses downstream largely do not show 

an overpowering effect.  

Phosphorus Data 

Filtered water samples (0.45 µm) were analyzed for dissolved PO4-P on a Lachat 

QC 8500 series 2 using the ascorbic acid-molybdate method [41]. Unfiltered water 

samples were acidified with H2SO4 (2 µl H2SO4 per ml sample) and digested with 

persulfate in an autoclave at 121 °C for an hour then analyzed on a Lachat QC 8500 

series 2 using the ascorbic acid-molybdate method [41] for TP determination. 

Statistical Analysis Software 

All analyses were performed in the R software package v.3.2.3 [42] using the 

identified packages and scripts. 

Network Analyses 

Several relational networks were generated. All networks were constructed using 

network package version 1.13.0 and igraph package version 1.0.1 in R [43–45].  

The first network constructed we refer to as the “intuitive” network. This network 

was constructed by hand assigning adjacency to P functional gene groupings as vertices 

based on the presence of shared genes or input and output molecules of the functional 

groups. Direction of relationships in this network was included using the same logic of 

output to input with an arrow representing the product input from the source and the tail 

representing the product output. Two way relational arrows were using in the case of 
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shared genes between functional groups or outputs and input being shared by both 

groupings. 

 The second network constructed we refer to as the “data-based” network and it 

was constructed using Bray-Curtis dissimilarity on the observed distribution of genes in 

the functional groupings within the system. This is a non-directional network to explore 

the dissimilarity relationship between functional groupings. We also constructed a third 

network using the same parameters with an inclusion of the “Total Membrane Transport” 

SEED group in the data based network to assess its relationships to TP and other P 

functional gene groupings.  

 The relationship between the data-based network and a non-directional version of 

the intuitive network was tested using a Mantel test with the Pearson correlation method 

and 1000 permutations on the representative adjacency matrices through the vegan 

package in R [46] in order to ascertain similarity between the data and the hypothesized 

relationships. 

 
System Relational Overview of Gene Groupings (SROGG) 

Using combined information from the system gene networks, we constructed a 

whole system representation we refer to as the System Relational Overview of Gene 

Groupings (SROGG). The purpose of the SROGG is to show a complex series of 

relationships including genes, pathways, and nutrients in one understandable community 

and system level view. It incorporates already known information on genes and pathways 

along with experimental system data to better explain microbial community P dynamics.  

Information from all three networks was combined to create the SROGG. The 

majority of relationships in the SROGG came from the data-based network and the 
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magnitude of the edges. The relationships connecting Total Membrane Transport came 

from the inclusive network. Added to this are relationships identified in both the intuitive 

and data-based networks that we believed to be important but did not meet threshold 

values in the data-based network. We inferred directions of relationships from the 

intuitive network as the data-based network is non-directional. Lastly, we added 

hypothesized relationships that cannot be tested in the system due to data or experimental 

limitations. 

For a visual representation of relative gene abundance in the context of TP and 

PO4
3-, we included radar charts in our SROGG showing gene count numbers in each 

functional grouping relative to total number of P related genes detect at the site as well as 

relative TP and PO4
3-

 levels. Radar charts were constructed using the fmsb package 

version 0.6.1in R [47]. 

Ordinations and Generalized Additive Models (GAMs) 

Non-metric multidimensional scaling (NMDS) ordinations were constructed using 

Bray-Curtis dissimilarity through the vegan package for each functional gene grouping 

except for Phosphoenolpyruvate Phosphomutase as it did not possess enough individual 

genes to ordinate. Gradient GAM models for four variables, TP, PO4
3-, PO4:TP ratio, and 

non-PO4 were built on the NMDS ordinations using ordisurf from the vegan package 

[48]. NMDS plots for ordinations with significant GAM models were created using the 

ggplot2 package in R [49]. Non-ordinal GAMs were also built using both absolute and 

relative gene counts in each functional grouping as well as absolute total P gene counts 

with TP, PO4
3-, PO4:TP ratio, and non-PO4 using the mgcv package version 1.8-19 [50]. 
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Taxonomic Bubble Plots 

Bubble Plots for identifiable taxa associated with each functional gene group were 

constructed using the ggplot2 package. Taxonomic identities were assigned through 

MEGAN using the May, 2017 NCBI protein accession to taxonomy database [39]. Prior 

to plotting, taxonomic assignments were assessed manually and corrections were made to 

account for missing or incorrectly identified hierarchical taxonomic levels. The data 

contained a diverse mix of taxonomic calls terminating at multiple hierarchical levels so 

all information was included in bubble plots sorted in an orthological manner so that 

levels are more easily discernable. 

 
Results 

 
Networks 

The Mantel test between the adjacency matrices of the intuitive and data-based 

networks resulted in a Mantel statistic of 0.67 with p = 0.003. The primary differences 

between the two networks (Figure 4.1) include a connection directly between TP and the 

Phosphoenolpyruvate Phosphomutase in the data-based network, a connection between 

Phosphoenolpyruvate Phosphomutase and HAPHO in the intuitive network, a connection 

between Phosphoenolpyruvate Phosphomutase and P Uptake in the intuitive network, and 

a connection between Phosphonate metabolism and HAPHO in the intuitive network. The 

Total Membrane Transport inclusive network was very similar to the data-based network 

with the addition of edges between Total Membrane Transport and P Uptake, P 

Metabolism, and HAPHO (Figure E.S2). 
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Figure 4.1: Networks: A) "Intuitive" network. Directions were chosen based on factors as 
labelled in the figure. B) “Data-based” network. Edges are weighted according to strength 
of the relationship (1 – Bray-Curtis dissimilarity). Bray-Curtis cutoff for visualization = 
0.935. 

System Relational Overview of Gene Groupings (SROGG) 

We summarized the combination of information from the 3 generated networks as 

well as how we hypothesize P reserves and solubilized/insolubilized P relates to 

functional groupings (Figure 4.2). The relative presence radar charts show Phosphate 

Metabolism prevalence to be high across all sites regardless of P levels. Relative presence 

of genes in other functional groups tended to be more sporadically distributed across the 

range of P although general trends can be observed. For example, P Uptake appears 

relatively higher at lower P sites along with HAPHO and Total Membrane Transport. 

Alkylphosphate Utilization appears to be relatively higher at high P sites. Relative 

Phosphoenolpyruvate Phosphomutase shows no real trends in terms of total relative 

abundance nor does Phosphonate Metabolism.    

NMDS Ordinations and GAMs 

The ordinated composition of each functional gene group was fitted with TP, 

PO4
3-, non-PO4 and PO4:TP ratio GAMs. All NMDS ordination and fit GAM results are 

shown in Table 4.1. TP and PO4
3-

 resulted in several significant models while Non-PO4
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Figure 4.2: System Relational Overview of Gene Groupings (SROGG). Solid black lines 
are supported in and weighted by the data based network from Figure 4.1. Dotted lines 
are supported in the intuitive network and are believed important but fell below the 
threshold value in the data based network. Gray lines are hypothesized relationships as 
they involve objects or distinctions not included in the study. The outer ring of the radar 
charts represents the maximum value of TP or relative gene abundance independent of 
each other. PO43- is proportional to TP. 
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Table 4.1: Results from NMDS ordinations and fitted GAM models.
Total P 
genes 

Phosphonate 
Metabolism 

Alkylphosphate 
Utilization HAPHO 

Phosphate 
metabolism P uptake 

K (Axes) 3 2 2 3 3 3 

Stress value 0.107 0.06 0.104 0.06 0.106 0.06 

TP 
Deviance 
Explained 54.7% 3.75% 13.9% 47.1% 48.6% 0.38% 

p 0.001 0.368 0.114 0.006 0.002 0.383 

Model Axes 1&3 1&2 1&2 1&2 2&3 1&2 

PO4 
Deviance 
Explained 61.3% 37.2% 32.1% 66% 61.3% 35.8% 

p 0.001 0.092 0.07 0.001 0.001 0.045 

Model Axes 2&3 1&2 1&2 1&2 2&3 2&3 

PO4:TP 
Deviance 
Explained ~0% ~0% ~0% 3.84% ~0% ~0% 

p ~1 ~1 ~1 0.318 ~1 ~1 

Model Axes NA NA NA 1&3 NA NA 

Non-PO4 
Deviance 
Explained 48% ~0% 4.26% 8.78% 33% 1.67% 

p 0.002 ~1 0.267 0.222 0.023 0.37 

Model Axes 1&3 NA 1&2 2&3 2&3 1&2 

*Bold values indicate a significant result ( = 0.05)

resulted in 2 significant models and PO4:TP ratio resulted in none. The ordination and 

GAM for all P genes in the system are shown in Figure 4.3. Ordination and GAMs for all 

remaining significant results are provide in the Supplementary Figures (Figure E.S3 – 

E.S10). There were no significant models for the Phosphonate Metabolism or

Alkylphosphate Utilization gene groupings. 

Taxonomic Contributions to Functional Gene Groups 

A significant portion 45.3% to 100% (mean = 90.1% SD = 11.9%) of detected 

genes at all sites for all functional groups (45.3% to 100% (mean = 90.1% SD = 11.9%) 

were identified to a taxonomic hierarchy although the hierarchical level of assignment 

varies greatly. The bubble plot showing taxa associated with Alkylphosphate Utilization 
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can be viewed in Figure 4.4. Bubble plots for all remaining functional gene groups are 

much larger and more complex and can be viewed in the Supplementary Figures (Figure 

E.S11-E.S15). Overall, the distribution of taxa across the TP gradient for the functional 

groups was diverse and showed no real trends or clusters with the exception of possibly 

Acinetobacter, which was seen much more frequently and low TP sites.   

 

 

Figure 4.3: NMDS ordination of all P cycle related genes at each site (stress = 0.107). 
The TP gradient is fit using a GAM (Dev exp = 54.7%, p = 0.001). 
 
 
 



78 

Figure 4.4: Taxa identified within the Alkylphosphate Utilization gene grouping. Only 
sites with detected genes in that gene grouping are shown. Sites are arranged from low 
TP (Blue) to high TP (Red). 

Discussion 

Intuitive and Data-Based Network Differences 

A connection between TP and Phosphoenolpyruvate Phosphomutase was not 

included in the intuitive network because it was believed that although the 

Phosphoenolpyruvate Phosphomutase functional group produces organic phosphates, the 

relationship was not expected to be meaningful enough. Inclusions of the 

Phosphoenolpyruvate Phosphomutase edges in the intuitive network were mostly due to 

the idea that the PO4
3- used in the pathway has to originate from somewhere, however, no 

significant explanatory relationships exist in the data-based network. Similarly, the edge 

between Phosphonate Metabolism and HAPHO was included in the intuitive network 
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because the resulting PO4
3- from the functional group then has to be used by the system. 

Again, the relationship was not significant in the data-based network. 

 
System Relational Overview of Gene Groupings 

Strong relationships shown to HAPHO are all intuitive as the groupings provide 

or receive PO4
3- in phosphorus metabolic processes. The strong relationships between 

some other groupings such as that between Phosphonate Metabolism and 

Phosphoenolpyruvate Phosphomutase may be explained by similar taxa possessing 

multiple organophosphate pathways; however, the strength of the Alkylphosphate 

Utilization gene grouping to TP levels is more difficult to explain. It is especially 

puzzling due to the fact the SROGG shows more relative Alkylphosphate Utilization 

genes, for organophosphate pathways, at higher TP/PO4 levels. One potential explanation 

is that alkyl phosphate sources include pesticides used in agriculture [51, 52]. Presence of 

alkyl phosphate can be used to measure exposure to pesticides [53, 54] and other 

processed material such as flame retardants [55]. High Alkylphosphate Utilization sites in 

the study are all associated with significant wastewater discharge. This wastewater 

discharge includes human waste, pasture, and poultry processing waste. The strong 

presence of organisms capable of processing alkyl phosphates at these sites suggests that 

a large amount of alkyl phosphate is making it into these streams through wastewater 

discharge or that the organisms themselves originate from the wastewater treatment 

process. Direct alkyl phosphate measurements would confirm this along with 

identification of the source of alkyl phosphate. 

Another interesting set of relationships are those of Total Membrane transport to 

PO4
3-

 related gene groupings. Phosphate Metabolism, HAPHO, and P Uptake all possess 
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some form of transport genes and so make up some portion of the Total Membrane 

Transport gene grouping. What is surprising is how strong these relationships are. The 

Total Membrane Transport gene grouping is compiled using all known membrane 

transport genes from the metagenome data. P related genes are only a small portion of the 

total metagenome dataset. It is apparent from our findings though that Total Membrane 

Transport is strongly related to PO4
3- gene groupings and in particular to Phosphate 

Metabolism. 

A gene expression study with the cyanobacteria Microcystis und P stress showed 

strong up-regulation of PHO genes in the HAPHO group at low P levels [56]. The 

gradient design of the study captures enough ecological and evolutionary response to 

detect this in the metagenome as well. This can be seen in the distribution of relative 

HAPHO genes at low P sites as shown in the HAPHO radar plot of the SROGG (Figure 

4.2). 

Community Gene Composition and P 

Our results clearly show that the compositional makeup of genes within 

communities is correlated to system P levels demonstrating that community genes are 

sorting differently based on P levels. While GAMs on ordinations of gene composition 

produced several significant models with high deviance explained, the GAMs performed 

on absolute abundance, relative abundance, and diversity of genes and groupings resulted 

in no significant models at all. This finding is enhanced visually in the taxonomic bubble 

plots. No consistent shifts of relative abundance are immediately apparent in any of the 

specific taxa associated with P cycle genes. Acinetobacter may be an exception to this as 

it looks to feature more heavily in the low P sites and in the gene compositions of 
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organophosphate related functional groupings. Previously, we identified an increased 

presence of Acinetobacter at the low P site in the system as well with 16S rRNA gene-

based taxonomic data with computational functional predictions and hypothesized the 

taxa to be important in the P cycle at these sites due to its ability to accumulate 

polyphosphates and polyhydroxyalkanoates [32, 58]. 

 From the same study, we also found several taxa that increase or decrease within 

the system around a threshold TP level of ~55 µg/L [32]. These findings may seem 

contradictory; however, the current study tells only that we do not see clear trends of 

taxonomic shift in specific taxa originating genes within the functional groups. The 

results suggest that there is importance to the compositional makeup of genes in the 

community independent of taxa which seems to corroborate our previously proposed 

decoupling of taxonomic structure and function within the system [32]. 

 
Importance of Organic Phosphorus 

Our results show that functional group gene composition in this system is 

dominantly correlated with PO4
3-. While we did not have direct measurements of 

different organophosphates, the non-PO4 fraction of TP resulted in significant models for 

only Total P Genes and Phosphate Metabolism and deviance explained was much lower 

than models including PO4
3-. Additionally, no P metrics from the system resulted in 

significant models for the functional groupings specific to organic phosphorous. 

However, when considering the grouping as a whole in the system, relationships with 

environmental P do exist as shown in the SROGG analysis. 

 There is undoubtedly an evolutionary impetuous to organisms possessing P 

mineralizing genes and related organisms in this system are likely to be using available 
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organophosphate sources. In NMDS GAM models, the fraction containing 

organophosphate (non-PO4) fails to explain distributions in ordination space but the 

SROGG shows some strong relationships between organophosphate gene groupings and 

TP such as the relationship between TP and Alkylphosphate Utilization. Due to the 

identified relationship but inability to model, it is difficult to quantify the importance of 

organophosphate in community gene sorting within this system. Genes for processes 

associated with organophosphate processing are not constantly abundant at every site 

despite relative non-PO4 being fairly invariable across all. However, there are definitely 

examples of sporadically distributed bacterial communities in the system with an 

abundance of these mechanisms available. These findings seem to suggest that the 

importance of mineralization to the system is context specific to other site properties and 

not strongly related to measured P levels. Instead it is likely related to factors not 

captured in this study such as the availability of specific organophosphates as suggested 

by the Alkylphosphate Utilization relationship or more complex ecological involvement 

like the need for production of phosphonolipids [59] or phosphonate dependent 

antibiotics [60]. 

Solubilization of P 

Our results investigating solubilization using Total Membrane Transport should 

be viewed cautiously. Exudation of protons, mineral ions, organic acids, and other 

molecules can affect the solubility of particle-associated P [61, 62]. It is for this reason 

we targeted Total membrane transport as an indirect measure of solubilization. Because 

this measure is indirect at best, it is still difficult to realistically quantify solubilization 

here although it is safe to say some relationship exists based on our data. The solubility of 
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P in the system likely results from a complex mixture of factors including pH, particle 

and substrate-associated microbes, and turbidity or sedimentation levels just to name a 

few. Still, using total membrane transport gives us a straightforward and semi-

quantitative way of indirectly gauging solubilization in some capacity within the system. 

 
Ecosystem P Cycling and Genomics 

Perhaps one of the most important takeaways from this study is that despite the 

extensive study of environmental P cycling, there is still a lot of work to be done.  Certain 

genes inherently lend themselves better to taxonomic assignment than others [63]. 

However, the varied accuracy to which taxa were able to be assigned to our detected 

genes and the highly variable hierarchical level assignment highlight a need for continued 

work improving references for genomic P study. There is still much to be learned about 

how P biogeochemical cycling works at the whole community and system levels and how 

environmental relationships may be impacted in the future. 

 
Conclusions 

We conclude that although P biogeochemical cycling in microbial communities is 

complex, it can be meaningfully represented in a cohesive manner using the SROGG 

method. We infer from our results that the composition and distribution of P related 

genes is stronger in its relationship to natural P levels than total gene abundance. PO4
3- is 

the dominant form of P studied in relation to the P gene composition of non-substrate 

associate microbial communities in this system. The fraction of P containing organic P 

does not show significant relation to gene sorting for any functional gene grouping 

including gene groupings specifically utilizing organic P. Although we present a cohesive 
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picture of genomic P relationships and gene sorting in a natural system here, there is still 

much to be learned about the mechanics at the system and community levels and further 

study including improvement of P related reference databases is still needed. 
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CHAPTER FIVE 

A Comparison of Computationally Predicted Functional Metagenomes and Microarray 
Analysis for Microbial P Cycle Genes in a Unique Basalt-soil Forest 

This chapter published as: LeBrun ES and Kang S. 2018. A comparison of 
computationally predicted functional metagenomes and microarray analysis for microbial 

P cycle genes in a unique basalt-soil forest. F1000Research. 7:179 (Version 1)(doi: 
10.12688/f1000research.13841.1) 

Abstract 

Here we compared microbial results for the same Phosphorus (P) biogeochemical 

cycle genes from a GeoChip microarray and PICRUSt functional predictions from 16S 

rRNA data for 20 samples in the four spatially separated Gotjawal forests on Jeju Island 

in South Korea. The high homogeneity of microbial communities detected at each site 

allows sites to act as environmental replicates for comparing the two different functional 

analysis methods. We found that while both methods capture the homogeneity of the 

system, both differed greatly in the total abundance of genes detected as well as the 

diversity of taxa detected. Additionally, we introduce a more comprehensive functional 

assay that again captures the homogeneity of the system but also captures more extensive 

community gene and taxonomic information and depth. While both methods have their 

advantages and limitations, PICRUSt appears better suited to asking questions 

specifically related to microbial community P as we did here. This comparison of 

methods makes important distinctions between both the results and the capabilities of 

each method and can help select the best tool for answering different scientific questions. 
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Introduction 

Relating the functionality of microbes to environmental factors is one of the 

primary goals in microbial ecology. With the advent of modern genomic technologies 

such as next generation sequencing and microarray hybridization there are more options 

than ever to test environmental community’s genomics and functional capabilities. 

Metagenome sequencing is one of the most thorough and comprehensive methods 

currently available for looking at microbial community gene compositions (1–5) but can 

be costly and generate enormous data sets that require a large amount of work in 

processing, analysis, and storage. Two technologies currently in use for looking at 

community functional profiles that can be less expensive and more accessible than 

metagenome sequencing include computationally predicted functional metagenomes 

(PFMs) (6) and microarray analyses (7). These technologies both have known advantages 

and disadvantages (8) but investigation into how they compare in the same system is still 

needed. 

Here we compare PFMs from Phylogenetic Investigation of Communities by 

Reconstruction of Unobserved States (PICRUSt) (6) to GeoChip (9) microarray data. 

While both methods are distinct, they can each be applied to an environmental 

community gene pool to estimate the presence and abundance of genes within the 

community genomic landscape related to function. Resulting datasets from each 

technique are tables showing counts of genes or functions as determined by either probes 

(microarray) or reference data (PFMs) and is therefore are directly comparable in the 

context of functional gene landscapes within the system. We utilize 20 sites in a unique 

basalt-soil Gotjawal forest on Jeju Island in Korea. Despite being both rocky, lava-
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formed basalt and having dense vegetation (10), this forest is considered a wetland 

environment due to the homogenous, rocky soil and its capacity for absorbing water (11). 

All 20 sites, though spatially separated by distance of 5 km to 65 km (Figure G.S1), 

showed strong homogeneity in bacterial/archaeal community assemblies in 16S rRNA 

gene taxonomic analysis (Figure G.S2) and so act as replicates in this system for the 

current study. This makes it ideal for comparing the technologies. We specifically look at 

how these technologies perform related to the same phosphorus (P) cycle genes as the 

unique basalt-soil environment has the potential to be a unique P environment (12–14). 

Methods 

Data origination and processing 

GeoChip 4.0 data for P cycle genes came from Kim et al. (15) For sequencing 

data, we started with raw sequencing files also from the study by Kim et al. (16). Paired-

end reads were combined using the join-fastq algorithm from eautils (17). Un-paired 

reads were discarded at this time. Additional sequence processing was performed using 

Quantitative Insights Into Microbial Ecology (QIIME) version 1.9.1 (18). Sequences 

were then filtered with a maximum unacceptable Phred quality score of 20. Chimeric 

sequences were identified and removed using the UCHIME algorithm within USEARCH 

(19). Operational taxonomic unit (OTU) picking was performed via open reference using 

uclust against the Greengenes 13_8 database with a 0.97 similarity cutoff (20). Singleton 

sequences were removed during OTU picking and taxonomy was assigned with 

Greengenes 13_8 database as reference. 
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Only reads identified in closed reference picking were used for the PICRUSt 

analysis. Using PICRUSt (6), predicted functional metagenomes (PFMs) were 

constructed from the resulting 16S rRNA sequences. PFMs were generated using the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) database (21,22) as a functional 

reference. 

 
Genes studied 

The GeoChip 4.0 data provided probe data for genes identified as “phytase”, 

“ppk”, and “ppx”. We identified these genes in the KEGG database to have the KEGG 

orthology (KO) numbers K01083 and K01093 for phytase, K00937 for ppk, and K01514 

for ppx These KO numbers were the only PICRUSt results extracted for direct 

comparison. Additionally, we built another P assay in PICRUSt utilizing 417 KO 

numbers associated with P (Table S1). 

 
Statistical analyses 

All analyses were performed in the R software package v.3.2.3(23). The 

relationship between the PICRUSt and GeoChip data was tested using a Mantel test with 

the Pearson correlation method and 1,000 permutations through the vegan package (24). 

Non-metric multidimensional scaling (NMDS) ordinations were constructed using Bray-

Curtis dissimilarity through the vegan package. A PROcrustean randomization TEST of 

community environment concordance (PROTEST), a potentially more sensitive detection 

method than a Mantel test, was also used to compare the NMDS ordinations to each other 

(25). Figures and plots were created using the ggplot2 package (26). 
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Results and discussion 

Both PICRUSt and GeoChip appear to have captured the homogeneity of the 

system (Figure 5.1). PICRUSt captured much more diversity and depth in terms of taxa 

identified (Figure 5.1) and total counts (Figure 5.2) than GeoChip. PICRUSt identified 

organisms from 40 different phyla where GeoChip identified organisms from 15. Total 

counts at each site for the two methods were on a very different scale. When placed on a 

scale that shows the variation in each set of counts, it becomes apparent that the trends of 

total counts across sites do not match between methods (Figure G.S3). The Mantel test 

resulted in no significant statistic between the two data sets and Procrustes analysis 

confirmed this, showing no significant correlation either (Figure G.S4). The same 

analyses were performed with the data for each gene isolated and each of the three genes 

independently provided similar results of inconsistency between methods to the 

comparison of total gene datasets. There was no correlation between the datasets in 

Mantel or Procrustes analysis and gene counts and trends were markedly different. 

The new PICRUSt assay with 417 P related genes captured the system 

homogeneity but with additional depth (Figure G.S5). The new assay identified 

organisms from 41 phyla similar to the smaller, comparative assay’s 40 but also provided 

data counts per site ranging from ~70,000 to ~110,000. The PICRUSt dataset from the 

new assay not only represents what is likely a better dataset for answering community 

functional questions within the P cycle than the previous, comparative PICRUSt or 

GeoChip datasets but also illustrates an important difference between the two methods. 

While both methods could be considered “closed-format” technologies in that they are 

reliant on the available known references (8), the process of adapting or updating the two 
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methods contrasts. The method of using computational predictions is highly adaptable 

and allows for the easy inclusion or exclusion of additional genes (6). Improving or 

expanding the reference database that computational prediction can be achieved through 

simply updating the curated reference database. The microarray method is more involved 

including the identification, creation, and inclusion of specific target probes into the 

manufacturing of a microarray (7). 

Figure 5.1: Bubble plots of taxa relative abundance detected by the GeoChip 4.0 array 
PICRUSt from 16S rRNA data for P cycle genes found on GeoChip array. 

It is important to note that for our comparison we are specifically looking at 

functional genes within the P biogeochemical cycle. Both methods explored are designed 

for, and capable of looking a more comprehensive whole functional profile for 

communities. Computational functional prediction seems to be better suited to the task of 

viewing independent functional groupings as we did here. While microarrays have shown 

linear relationships to RNA and DNA levels in environmental systems(16,27), they are 

limited in coverage and small sequence divergence can affect quantitative capability (7). 

These quantitative limitations should be carefully considered in light of recent findings 

showing that the composition of P cycle genes in some microbial communities are more 
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closely related to environmental P levels than absolute abundance (1). Computational 

functional prediction again seems better equipped to handle questions related to 

functional gene composition due to the high specificity of probes to taxa and limited 

genes included in microarrays. It is also important to note that the data from both 

methods is representative of DNA present in microbial communities and not true 

expression levels or enzyme abundance. 

Figure 5.2: Plot of total P cycle gene counts as detected by PICRUSt and GeoChip at 
each site. 

Conclusions 

Computational functional prediction and microarray analysis of P cycle genes 

both captured system homogeneity. However, they did not agree in terms of capturing 

absolute abundance or taxonomic composition in P cycle genes. Computational 

functional prediction provided more count depth and taxonomic diversity than microarray 

analysis did. The ease with which computational functional prediction is adapted 

additionally allowed for the capture of additional genes and taxonomic diversity in P 
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function along with increased depth by expanding the PICRUSt assay to include 417 KO 

numbers related to P function instead of the original 4 used in the microarray comparison. 

While we compared two methods for the exploration of functional P cycle genes within 

microbial communities to each other, an additional comparison to whole metagenome 

data in a system would further validate either method. 
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CHAPTER SIX 
 

Conclusions 
 
 

Summary of Findings and Final Thoughts 

 Chapter one and chapter two established some of the necessary groundwork for 

understanding stream system microbial communities, relationships, and dynamics in the 

open water column. The studies included in the two chapters also made several 

independent discoveries that were novel and interesting in their own right. Chapter one’s 

findings of a decoupling between structure and function in communities helps support a 

current debate in the field on the connections between ecosystem inhabitants and what 

they are doing, or capable of doing functionally. This system and community view 

showing a disconnect between the taxonomic structure and functional capability of 

different microbial communities illustrates the importance of simultaneously exploring 

both structural and functional properties in any study. Study of independent taxa and 

functional relationships may miss these important relational nuisances. Chapter one also 

identifies a lack of functional redundancy in bacteria and archaea within the system. 

Functional diversity and redundancy is recognized as a key factor to maintain important 

functions and services of ecosystems (Laureto et al. 2015). The Ozark stream system 

being studied is not only a system sensitive to P inputs but is likely sensitive to many 

other potential disturbances as well. 

 The findings described in chapter two were surprising for a number of reasons. 

Not only were more fungi detectable than was expected, those fungi do not appear to 
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have been biologically active in terms of in stream nutrient cycling. That is not to say that 

they are without ecological importance. The fungi detected were largely from terrestrial 

sources and largely consisted of pathogens. Streams offer a potential avenue of dispersal 

for distribution to crops and livestock in addition to native natural ecosystem inhabitants. 

This means that while fungi are likely not heavily involved in movement of P within the 

open water column itself, they likely play a large role in the broader stream ecosystem 

including catchments. The broad ecological importance of fungi is not surprising 

considering their known important to numerous ecosystems (Harley 1971; Ingham et al. 

1985; Heijden et al. 1998; Van Der Heijden and Horton 2009). In consideration of this, 

their apparent lack of involvement in more specific, suspended water column processes is 

somewhat more surprising. 

Chapter three begins to look through a mechanistic lens at how microbial 

communities are equipped to handle P in streams systems for the P biogeochemical cycle 

specifically. Combining gene abundance data along with system network analyses, both 

empirical and hypothetical, using the SROGG begins to show us a meaningful picture of 

how the presence of theses genes relates to environmental P. We are also able to view 

how P cycle genes tend to sort relative to each other within communities. This 

comparison of the gene composition of entire microbial communities provides 

information on how the communities are related to a natural ecosystem and show 

relationships that would be difficult or impossible to identify utilizing other means due to 

their inherent complexity.  Perhaps one of the most interesting findings in chapter three is 

the disconnect between the presence of organic P genes and the levels of organic and 

inorganic P present. Several sites with strong wastewater inputs showed a trend of high 
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organophosphate gene presence despite high TP and PO4. This phenomena may very well 

be demonstrating the strong magnitude to which anthropogenic inputs impact natural 

microbial communities which would then influence greater ecosystems as a whole (Azam 

et al. 1983; Torsvik and Øvreås 2002; Schimel et al. 2007; Van Der Heijden et al. 2008). 

 Chapter four takes a very direct approach to suggesting alternative tools to whole 

community metagenomic sequencing for the type of work outlined in Chapter three. 

Metagenome sequencing can be expensive and generates massive amounts of data 

needing processing, storage, and analysis. Of the two tools explored in Chapter four, 

computationally predicted functional metagenomes and microarray analysis, the former 

appears to be the better starting point. PICRUSt created PFMs displayed better depth, 

diversity, and versatility for P cycle gene data than GeoChip 4.0. Both tools have viable 

applications to answering various scientific questions but for profiling and investigating 

nutrient specific genes within a system, PFM generation appears superior. 

 As a collection, the previous chapters make a major contribution to addressing the 

previously identified gaps of understanding microbial community structure and function 

relationships to P inputs in stream systems for bacteria, archaea, and fungi as well as 

understanding the complex interactions and mechanisms involved in P biogeochemical 

cycling at the community and system levels. However, they are just beginning to scratch 

the surface of potential discovery in the field. Perhaps the most meaningful contribution 

of the enclosed chapters is in demonstrating exactly how large these knowledge gaps are. 

The included chapter studies establish a solid foundation of knowledge and framework of 

tools for similar investigation in numerous other systems and for other nutrient cycles and 

functions. 
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APPENDIX A 

Supplementary Figures (Chapter two) 
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Figure A.S1: Map of sample sites in Oklahoma and Arkansas. Site mapping for was 
constructed in Quantum GIS version 2.14.7 [2] using the Watershed Boundary Dataset 
(WBD).[1] 

1. Coordinated Effort between the United States Department of Agriculture-Natural
Resources Conservation Service (USDA-NRCS), the United States Geological Survey
(USGS), and the Environmental Protection Agency (EPA). The Watershed Boundary
Dataset (WBD) Was Created from a Variety of Sources from Each State and Aggregated
into a Standard National Layer for Use in Strategic Planning and Accountability.

2. Quantum GIS Development Team (2009) Quantum GIS Geographic Information
System. Open Source Geospatial Foundation Project.
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Figure A.S2: Alpha diversity plots. Only taxa referenced in main text are identified. A) 
Rarefaction curve for rarefaction at 70,500 depth. B) Taxonomic diversity bar chart with 
sites grouped by TP (Genus level). C) Taxonomic diversity bar chart with sites grouped 
by Turbidity (Genus level). 
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Figure A.S3: Procrustes error plot for RDA models for 16S rRNA and PFMs. 
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Figure A.S4: A) GAM model of OTU diversity (Shannon) against turbidity (R2
adj.= 

0.322, p = 0.008). B) GAM model of multifunctional diversity (DUNNO) against 
turbidity (R2

adj.= 0.593, p < 0.001) 
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Figure A.S5: Network plots. A) Network of site relatedness from 16s rRNA data colored 
by turbidity group. Node size represents degree or number of connections for the node. 
B) Network of site relatedness from PFM data colored by turbidity group. Node size 
represents degree or number of connections for the node. 
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Figure A.S6: Turbidity Analysis. A) Plot of pure and reliable indicator taxa along the 
turbidity gradient. Black symbols correspond to genera that declined with increasing TP 
(z-), whereas open symbols correspond to those that increased (z+).  Symbols are sized in 
proportion to the magnitude of the response (z-score).  Horizontal lines represent 5th and 
95th quantiles of values of turbidity resulting in the largest change in genera z-scores 
among 1000 bootstrap replicates. B) Plot of sumZ scores for genus level taxa. Steep 
slopes indicate major change points in abundance. C) Plot of pure and reliable OTUs. D) 
Plot of sumZ scores for OTU level taxa. 
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Figure A.S6: Plot of Shannon diversity index for site 16s rRNA OTU counts against 
Shannon diversity index for site predicted functional metagenome (R2 = 0.748, p < 
0.001). 
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Figure A.S8: Trends for P values of statistical tests on other levels of PICRUSt data. A) 
ANOSIM results. B) PERMANOVA results. C) MRPP results.  
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Figure A.S9: Procrustes error plot for 16S rRNA Bray-Curtis distance NMDS and 
Environmental Variable Bray Curtis NMDS ordinations. 
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APPENDIX B 

Supplementary Tables (Chapter two) 
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Table B.S1: Listing of sampling sites along with designated Total Phosphorus (TP) and 
Turbidity grouping assignments. 
 
Sample Id TP Group Turbidity Group 

BALL1 Med High 

BARR1 Med Low 

BARR3 Low Low 

BARR4 Low Med 

BEAT1 Med Low 

COVE1 Low Med 

FLIN1 Med Low 

FLIN3 High High 
GOOS1 High Low 
ILLI2 Med High 
ILLI3 High High 
ILLI4 Med High 
ILLI5 Med High 
ILLI6 Med High 
ILLI7 Med High 
ILLI8 Med High 
LEE1 Low Low 
OSAG1 High Low 
OSAG2 High Med 
SAGE1 High Med 
SALI1 Low Low 
SPAR1 High Low 
SPAV1 Low Med 
SPAV2 Med Med 
SPRG1 Low Low 
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APPENDIX C 

Supplementary Results (Chapter two) 
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Importance of Functional Data Resolution 

Testing and significance, particularly on the PFM data depended heavily on tier 

resolution of the data and availability and inclusion of different environmental metrics. 

By resolution of the data, we are referring to how aggregated the data is based on 

taxonomic level or function. This was largely not a problem for the OTU data as pure 

OTUs already offer good resolution for that data set and there were no discrepancies in 

the analyses where we did aggregate data by different taxonomic levels such as TITAN 

2.1. Conceptually though, the OTU level would offer a better data resolution than higher 

taxonomic designations such as Phylum. OTUs were generated at 97 percent similarity 

but clustering at 99 percent may still offer even better data resolution and result in trends 

that were not seen at the 97 percent clustering level. 

 For our PFMs, we intentionally selected the KEGG level 3 data a priori from 

PICRUSt as it should offer the best resolution or aggregation to the lowest functionally 

meaningful designation available but in order to satisfy curiosity, we decided to explore 

the effects of using the other available data tiers as well. We found that had we used 

KEGG level 1 or KEGG level 2 groupings we would have seen diluted significance in 

testing (Figure S8). This helps confirm that our a priori selection of KEGG level 3 data 

was the best option available. The resolution issue may be why we had a close to, but 

nonsignificant result with regards to TP grouping in the ANOSIM analysis. Direct 

functional metagenome data may have resulted in even more definitive findings. 

 The inexpensive cost and ease of using PICRUSt make it an invaluable tool and it 

has been used effectively in many systems particularly in medical sciences [1–3]. The 

validity of PICRUSt data has been explored before and it has been shown to be 



120 

dependent on quality of the data and accessibility of available reference genomes [4]. In 

the case of our study, we were able to reference a large number of OTUs but many not to 

lower taxonomic levels like genus. Hartman et al. (2015) recently presented side by side 

measured and PICRUSt predicted metagenomes showing very similar data with a few 

notable exceptions such as genes involved in nitrate reduction. Credibility of PICRUSt 

PFMs is supported by this and similar results between this study and other recent studies 

[5, 6] though there is also evidence that linking taxa to function from 16S rRNA data 

should be approached cautiously [7]. 

Illinois River Effect 

After seeing the Illinois River sites behaving similarly through several exploratory 

data analyses and due to the relatively large size of the Illinois River sites and their 

catchment areas, we were initially concerned about the potential for the Illinois River to 

impose a disproportionate influence on our results. In order to determine whether the 

Illinois River sites had an excessive influence on the results, NMDS ordinations were 

performed using Bray-Curtis distance on the full matrix of environmental data. Procrustes 

analysis including a PROTEST from the vegan package was then used to compare the 

16S rRNA and environmental ordinations for similar trends and relationship in ordination 

space of Illinois River sites that would be indicative of an Illinois River effect.  

In procrustes analysis, a PROTEST correlation statistic of 0.68 (p<0.001) did 

indicate a potential relationship between the full 16S rRNA and environmental metric 

ordinations. However, the Procrustes error plotting indicated random directions and 

magnitudes of travel for Illinois River sites in ordination space with no discernible trends 

or patterns indicating likely little overwhelming Illinois River effect on other analyses 
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(Figure A.S9).  Additionally, on the heatmap of relative abundance showing general 

trends in taxa relative abundance among sites (Figure 2), BALL1, BARR4, and FLIN3 all 

cluster with Illinois River sites in WPGMA clustering further supporting the lack of a 

unique Illinois River effect. 
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APPENDIX D 

Supplementary Material (Chapter three) 
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Supplementary Table 

Table D.S1: Sample sites with total phosphorus grouping and diversity index values. 

Sample ID 
TP 
Grouping OTUs 

Shannon 
Diversity 

Simpson 
Diversity 

Inverse 
Simpson 
Diversity 

BALL1 Med 102.00 3.04 0.94 15.69 
BARR3 Low 56.00 1.84 0.79 4.83 
BARR4 Low 113.00 3.00 0.93 13.40 
BEAT1 Med 75.00 2.07 0.80 5.11 
COVE1 Low 76.00 2.22 0.84 6.45 
FLIN1 Med 56.00 1.59 0.74 3.90 
FLIN3 High 140.00 3.00 0.89 9.37 
GOOS1 High 63.00 2.17 0.84 6.08 
ILLI2 Med 168.00 3.36 0.94 17.24 
ILLI3 High 100.00 2.95 0.91 10.63 
ILLI4 Med 143.00 2.67 0.87 7.58 
ILLI5 Med 63.00 2.62 0.90 10.35 
ILLI6 Med 122.00 1.84 0.66 2.98 
ILLI7 Med 119.00 3.09 0.91 11.50 
ILLI8 Med 61.00 1.77 0.78 4.56 
LEE1 Low 64.00 2.52 0.90 10.32 
LLEE1 Low 101.00 2.90 0.92 11.87 
MTFK1 Low 65.00 1.72 0.79 4.85 
OSAG1 High 61.00 1.72 0.69 3.22 
OSAG2 High 62.00 2.35 0.86 6.91 
SAGE1 High 55.00 2.39 0.88 8.64 
SPAR1 High 48.00 2.09 0.85 6.68 
SPAV1 Low 50.00 2.34 0.89 9.15 
SPAV2 Med 87.00 1.80 0.78 4.56 
SPRG1 Low 67.00 1.79 0.74 3.87 

      
Mean  84.68 2.35 0.84 7.99 
Standard Deviation 33.25 0.53 0.08 3.90 
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Supplementary Figures 

Figure D.S1: Map of sample sites. Created in QGIS. 
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Figure D.S2: NMDS ordination of FUNGuild designations with Bray-Curtis distance 
(Stress = 0.104).  Gradient represents environmental TP fit to ordination using GAM. 
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Figure D.S3: Procrustes error plot for comparison of fungal ITS2 and bacterial 16s 
ordinations for 23 overlapping sites. 
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Figure D.S4: Heatmap generated at the Class level. Taxa observed <1% removed. 
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Figure D.S5: Heatmap generated at the Order level. Taxa observed <1% removed. 
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Figure D.S6: Heatmap generated at the Family level. Taxa observed <1% removed. 
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Figure D.S7: Heatmap generated at the Genus level. Taxa observed <1% removed. 
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Figure D.S8: Heatmap generated at the OTU/Species level. Taxa observed <1% removed. 
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APPENDIX E 

Supplementary Figures (Chapter four) 
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Figure E.S1: Map of sample sites. Built using QGIS. 
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Figure E.S2: Network including Total Membrane Transport gene grouping in addition to 
the data based network from Figure 1. Edges are weighted by strength of relationship (1 – 
Bray-Curtis Dissimilarity). 
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Figure E.S3: NMDS ordination of all P genes by site. The PO4 gradient is fit using a 
GAM. See Table 1 for metrics. 
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Figure E.S4: NMDS ordination of all P genes by site. The non-PO4 gradient is fit using a 
GAM. See Table 1 for metrics. 
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Figure E.S5: NMDS ordination of High Affinity Phosphate Transporter and Control of 
PHO Regulon genes by site. The TP gradient is fit using a GAM. See Table 1 for metrics. 
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Figure E.S6: NMDS ordination of High Affinity Phosphate Transporter and Control of 
PHO Regulon genes by site. The PO4 gradient is fit using a GAM. See Table 1 for 
metrics. 
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Figure E.S7: NMDS ordination of Phosphate Metabolism genes by site. The TP gradient 
is fit using a GAM. See Table 1 for metrics. 
 

 

 

 

 

 

 

 

 

 

BALL1

BARR3

BARR4

BEAT1

COVE1

FLIN1

FLIN3

GOOS1

ILLI2

ILLI3ILLI4

ILLI5

ILLI6ILLI7

ILLI8
LEE1

OSAG1

OSAG2

SAGE1

SALI1

SPAR1
SPAV1

SPAV2

SPRG1

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

MDS2

M
D

S
3

20 40 60 80
TP ug/L

Phosphate Metabolism Bray-Curtis



140 

Figure E.S8 NMDS ordination of Phosphate Metabolism genes by site. The PO4 gradient 
is fit using a GAM. See Table 1 for metrics. 
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Figure E.S9: NMDS ordination of Phosphate Metabolism genes by site. The non-PO4 
gradient is fit using a GAM. See Table 1 for metrics. 
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Figure E.S10: NMDS ordination of P Uptake genes by site. PO4 gradient is fit using a 
GAM. See Table 1 for metrics. 
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Figure E.S11: Bubble plot showing taxa identified in the Phosphonatate Metabolism gene 
group. Only sites with detected genes in the group are shown. Sites are arranged from 
low TP (Blue) to high TP (Red). 
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Figure E.S12: Bubble plot showing taxa identified in the Phosphoenolpyruvate 
Phosphomutase gene group. Only sites with detected genes in the group are shown. Sites 
are arranged from low TP (Blue) to high TP (Red). 
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Figure E.S13: Bubble plot showing taxa identified in the High Affinity Phosphate 
Transporter and Control of PHO Regulon gene group. Only sites with detected genes in 
the group are shown. Sites are arranged from low TP (Blue) to high TP (Red). For full-
size version, please contact the author with reasonable request. 
 
 
Figure E.S14: Bubble plot showing taxa identified in the Phosphate Metabolism gene 
group. Only sites with detected genes in the group are shown. Sites are arranged from 
low TP (Blue) to high TP (Red). For full-size version, please contact the author with 
reasonable request. 
 
 
Figure E.S15: Bubble plot showing taxa identified in the P Uptake gene group. Only sites 
with detected genes in the group are shown. Sites are arranged from low TP (Blue) to 
high TP (Red). For full-size version, please contact the author with reasonable request. 
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APPENDIX F 

Supplementary Tables (Chapter four) 
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Supplementary Table 
 

Table F.S1: Listing of Genes/Proteins assigned to each SEED functional grouping. 
 

Seed Group Gene/Protein 

Alkylphosphate Utilization 

  Alkylphosphonate utilization operon protein PhnA 

 
 Metal-dependent hydrolase involved in phosphonate 

metabolism 

  PhnB protein 

  PhnH protein 

  PhnI protein 

  PhnJ protein 

  PhnO protein 

  Phosphonates transport ATP-binding protein PhnK 

  Protein RcsF 

  Transcriptional regulator PhnF 
High affinity phosphate  
transporter and control of  
PHO regulon 

 
 Alkaline phosphatase synthesis transcriptional 

regulatory protein PhoP 

  Phosphate ABC transporter 

 
 Phosphate regulon sensor protein PhoR (SphS) (EC 

2.7.13.3) 

 
 Phosphate regulon transcriptional regulatory protein 

PhoB (SphR) 

 
 Phosphate transport ATP-binding protein PstB (TC 

3.A.1.7.1) 

 
 Phosphate transport system permease protein PstA 

(TC 3.A.1.7.1) 

 
 Phosphate transport system permease protein PstC 

(TC 3.A.1.7.1) 

  Phosphate transport system regulatory protein PhoU 

  Polyphosphate kinase (EC 2.7.4.1) 

Phosphate Metabolism 

 
 1-acyl-sn-glycerol-3-phosphate acyltransferase (EC 

2.3.1.51) 

  Alkaline phosphatase (EC 3.1.3.1) 

  Alkaline phosphatase like protein 

 
 Alkaline phosphatase synthesis transcriptional 

regulatory protein PhoP 

  Apolipoprotein N-acyltransferase (EC 2.3.1.-) 

  Exopolyphosphatase (EC 3.6.1.11) 

  Inorganic pyrophospatase PpaX (EC 3.1.3.18) 

  Inorganic pyrophosphatase (EC 3.6.1.1) 

  Integral membrane protein YggT 

  Low-affinity inorganic phosphate transporter 

  Magnesium and cobalt efflux protein CorC 

 
 Manganese-dependent inorganic pyrophosphatase 

(EC 3.6.1.1) 

  Metal-dependent hydrolase YbeY 
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 NAD(P) transhydrogenase alpha subunit (EC
1.6.1.2)

 NAD(P) transhydrogenase subunit beta (EC 1.6.1.2)

 Phosphatase

 Phosphate ABC transporter
 Phosphate regulon sensor protein PhoR (SphS) (EC

2.7.13.3)
 Phosphate regulon transcriptional regulatory protein

PhoB (SphR)

 Phosphate starvation-inducible protein PhoH
 Phosphate transport ATP-binding protein PstB (TC

3.A.1.7.1)
 Phosphate transport regulator (distant homolog of

PhoU)
 Phosphate transport system permease protein PstA

(TC 3.A.1.7.1)
 Phosphate transport system permease protein PstC

(TC 3.A.1.7.1)

 Phosphate transport system regulatory protein PhoU

 Phosphate-specific outer membrane porin OprP

 Polyphosphate kinase (EC 2.7.4.1)
 Predicted ATPase related to phosphate starvation-

inducible protein PhoH

 Probable low-affinity inorganic phosphate transporter

 putative alkaline phosphatase-like protein

 Pyrophosphate-energized proton pump (EC 3.6.1.1)

 Pyrophosphate-specific outer membrane porin OprO
 response regulator in two-component regulatory

system with PhoQ

 secreted alkaline phosphatase

 Sodium-dependent phosphate transporter
 Soluble pyridine nucleotide transhydrogenase (EC

1.6.1.1)
Phosphoenolpyruvate 
Phosphomutase 

 2-aminoethylphosphonate:pyruvate
aminotransferase (EC 2.6.1.37)

 Phosphonopyruvate decarboxylase (EC 4.1.1.82)

Phosphonate Metabolism 
 2-aminoethylphosphonate:pyruvate

aminotransferase (EC 2.6.1.37)

 Phosphonoacetaldehyde hydrolase (EC 3.11.1.1)

 Phosphonoacetate hydrolase (EC 3.11.1.2)

 Phosphonopyruvate decarboxylase (EC 4.1.1.82)

P Uptake 
 Alkaline phosphatase (EC 3.1.3.1)

 Phosphate ABC transporter
 Phosphate transport ATP-binding protein PstB (TC

3.A.1.7.1)
 Phosphate transport system permease protein PstA

(TC 3.A.1.7.1)
 Phosphate transport system permease protein PstC

(TC 3.A.1.7.1)
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Supplementary Figures 

Figure G.S1: Map of Gotjawal forest sample sites on Jeju Island, Korea. Originally 
published in Kim, J.-S. et al. Microbial Community Structure and Functional Potential of 
Lava-Formed Gotjawal Soils in Jeju, Korea. (In review) 
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Figure G.S2: Bar plot of taxa at the phyla level in the system showing taxonomic 
homogeneity across sites. Rarefaction depth of 41,000 used. 
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Figure G.S3: Counts of P genes by PICRUSt and GeoChip scaled independently. 

Black = PICRUSt. Red = Geochip. Separated for scale. 
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Figure G.S4: Procrustes Error Plot for Procrustes analysis between PICRUSt and 
GeoChip datasets. 
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Figure G.S5: A) Bubble plot of taxa identified by new assay at each site. B) Total counts 
identified in new assay at each site by PICRUSt. 

A) 

B)
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Supplementary Table 

Table G.S1: KEGG Orthologies included in “new” PICRUSt P assay. 
 

Gene/Enzyme KEGG Orthology Numbers   

phnA K06193 K19670         

phnM K06162          

phnB K04750          

phnH K06165          

phnI K06164          

phnO K09994          

phnJ K06163          

phnK K05781          

RcsF K06080          

phnF K02043          

phoP K07660 K07658         

pstC K02037          

pstA K02038          

phoR K07636          

phoB K07657 K07657         

pstB K02036          

phoU K05946          

ppk K00937          

plsC K00655          

phoA K01077          

lnt K03820          

ppX1 K01514          

ppaX K06019          

ppa K01507          

yggT K02221          

pit K03306          

corC K06189          

ppaC K15986          

ybeY K07042          

pntA K00324          

pntB K00325          

nnt K00323          

Phosphatase K00906 K01514 K05307 K06366 K08743 K13988 K16054 K17571 K18046 K20220 

 K01077 K01515 K05518 K06367 K08966 K14019 K16055 K17574 K18065 K20278 

 K01078 K01517 K05602 K06368 K09474 K14165 K16340 K17575 K18078 K20389 
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K01079 K01518 K05693 K06369 K09612 K14379 K16662 K17576 K18079 K20437 

K01080 K01519 K05694 K06478 K09880 K14394 K16667 K17579 K18203 K20439 

K01084 K01520 K05695 K06645 K10047 K14395 K16723 K17585 K18398 K20440 

K01085 K01521 K05696 K06776 K10147 K14410 K16833 K17594 K18424 K20551 

K01086 K01522 K05697 K06777 K10909 K14497 K16904 K17605 K18446 K20581 

K01087 K01524 K05698 K06778 K10916 K14501 K16910 K17607 K18447 K20827 

K01089 K01525 K05766 K06881 K11240 K14634 K17453 K17614 K18453 K20860 

K01090 K01526 K05866 K06896 K11532 K14803 K17457 K17615 K18498 K20861 

K01091 K01622 K05867 K06928 K11583 K14819 K17458 K17616 K18568 K20862 

K01092 K02226 K05978 K06949 K11584 K15422 K17459 K17617 K18649 K20866 

K01093 K02374 K05979 K07024 K11725 K15423 K17491 K17618 K18654 K20945 

K01094 K02446 K06018 K07026 K11751 K15424 K17499 K17619 K18693 K20979 

K01095 K02555 K06019 K07053 K11777 K15425 K17500 K17623 K18697 K21013 

K01096 K03084 K06116 K07189 K11915 K15426 K17501 K17816 K18998 K21055 

K01097 K03103 K06117 K07252 K11938 K15427 K17502 K17817 K18999 K21063 

K01098 K03270 K06124 K07293 K12152 K15494 K17503 K17879 K19028 K21064 

K01099 K03273 K06153 K07313 K12328 K15498 K17504 K18018 K19029 K21278 

K01100 K03426 K06162 K07314 K12329 K15499 K17505 K18019 K19030 K21302 

K01101 K03456 K06268 K07315 K12354 K15500 K17506 K18024 K19269 K21403 

K01102 K03574 K06269 K07658 K12584 K15501 K17507 K18025 K19270 K21503 

K01103 K03788 K06270 K07757 K12804 K15502 K17508 K18026 K19283 K21517 

K01104 K03841 K06352 K07758 K12944 K15503 K17509 K18027 K19284 K21797 

K01106 K04041 K06353 K07766 K12945 K15504 K17549 K18032 K19302 K21798 

K01107 K04342 K06354 K07817 K12977 K15529 K17550 K18033 K19581 K21814 

K01109 K04348 K06355 K08050 K12978 K15544 K17552 K18034 K19582 K21830 

K01110 K04354 K06356 K08067 K13084 K15637 K17553 K18035 K19704 K21946 

K01111 K04382 K06357 K08073 K13085 K15640 K17555 K18036 K19705 K22200 

K01112 K04457 K06358 K08075 K13086 K15728 K17556 K18037 K19708 K22223 

K01113 K04458 K06359 K08077 K13216 K15731 K17557 K18038 K19790 

K01122 K04459 K06360 K08114 K13248 K15732 K17558 K18039 K19806 

K01139 K04460 K06361 K08296 K13297 K15759 K17562 K18040 K19812 

K01507 K04461 K06362 K08310 K13555 K15781 K17565 K18041 K20074 

K01509 K04486 K06363 K08312 K13617 K15850 K17566 K18043 K20124 

K01512 K04716 K06364 K08320 K13807 K15909 K17567 K18044 K20201 

K01513 K04765 K06365 K08726 K13987 K15986 K17568 K18045 K20216 

phoH K06217 

oprO_P K07221 

hppA K15987 

phoQ K07637 

SLC20A K14640 
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sthA K00322          

phnW K03430          

EC4.1.1.82 K09459          

phnX K05306          
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