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ABSTRACT 

 Simple water soluble lanthanum and europium complexes are effective at 

detecting neutral sugars as well as glyco- and phospholipids. In solutions at 

physiologically relevant pH the fluorescent lanthanum complex binds neutral sugars with 

apparent binding constants comparable to those of arylboronic acids. Interference from 

commonly occurring anions is minimal. The europium complex detects sialic acid-

containing gangliosides at pH 7.0 over an asialoganglioside. This selectivity is attributed, 

in large part, to the cooperative complexation of the oligosaccharide and sialic acid 

residues to the metal center, based on analogous prior studies. In MeOH, 

lysophosphatidic acid (LPA), a biomarker for several pathological conditions including 

ovarian cancer, is selectively detected by the europium complex. LPA is also detected via 

a fluorescence increase in human plasma samples. The 2-sn-OH moiety of LPA plays a 

key role in promoting binding to the metal center. Other molecules found in common 

brain ganglioside and phospholipid extracts do not interfere in the ganglioside or LPA 

fluorescence assays. 

  

 



 
CHAPTER 1 

INTRODUCTION 
 
1.1. Lanthanide Complexes in Supramolecular Chemistry 

 Lanthanides complexes have gained significant attention due to their unique 

chemical and physical properties.1.1 The prime interest towards such complexes originate 

from so-called “ligand-field extension”. Unlike transition metal complexes wherein the 

ligand complexation is of both covalent and ionic character, lanthanide coordination is 

largely ionic. Consequently, lanthanides, even if in electrically neutral form, can bind to 

additional neutral or ionic ligands whereby they can achieve coordination numbers up to 

12.  

Eu N

N

N
O

O

(H3C)3C

(H3C)3C

3  

Figure 1.1. Europium tris(2,2,6,6-tetramethyl-3,5-heptadionate) and highly coordinated 
complexation with terpryridine. 
 
 Consequently, the use of such complexes have been widely reported in: (a) light 

converters, (b) Nuclear Magnetic Resonance and (c) catalysts in both chemical and 

biological systems. The field of application of lanthanides have also strecthed out to 

molecular recognition, especially recognition of biomolecules such as amino acids, 

nucleic acids, charged carbohydrates. 

 Although such biomolecules have been known to participate to several 

physiological conditions, their in vivo functions  are  not  fully  understood.  Hence,  their  
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quantification in physiological states by simple spectroscopic methods are of paramount 

importance. Hence, we have turned our attention to the design and synthesis of 

lanthanide-based chemosensors to quantify neutral carbohydrates and certain cancer 

biomarkers such as  lysophosphatidic acid (LPA) and gangliosides.  

1.2. Selective Detection of Lysophosphatidic Acid for Early Diagnosis of Ovarian 
Cancer 

 
 Ovarian cancer is a devastating health problem.  Nearly 10 million women in the 

US are at high risk for ovarian cancer.  There are 26,000 new US cases per year.1.2  The 

lack of effective methods for the early diagnosis of ovarian cancer is a serious health 

problem.  Ovarian cancer is a deadly gynecological disease.  

 Survival rates increase dramatically with early diagnosis.  Ovarian cancer is 

extremely difficult to detect early enough to allow for effective treatment.  To quote from 

a recent assessment: "Ovarian cancer is an insidious disease that kills more than 15,000 

Americans each year.1.3  The lethality of this disease stems from our inability to diagnose 

it easily and early; this is because its symptoms — such as nausea, loss of appetite and 

abdominal discomfort — are common to many disorders.  Consequently, most women 

are diagnosed with ovarian cancer in the late stage of the disease, for which the five-year 

survival rate is less than 30%. Yet, survival rates soar to over 90% if the disease is 

discovered when cancer is still localized to the ovaries."1.2,1.3 There are significant 

barriers to the diagnosis of early stage ovarian cancer. 

 Current methods used to identify ovarian cancer include transvaginal ultrasound, 

laparoscopy, or positive emission tomography.  While transvaginal sonography shows 

promise for early detection, it is too expensive to be widely used for routine screening.1.4    
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The correlation of altered levels of serum biomarkers to ovarian cancer have been the 

subject of many studies.  The protein CA-125 is currently the main biomarker of choice.  

However, other physiological conditions also promote increased CA-125 levels.  CA-125 

is less specific in premenopausal women.  The well-known low accuracy of CA-125, 

even in combination with other methods, has led to intensive efforts to find better 

biomarkers.  For instance, detailed computer analyses of the mass spectrometric data 

obtained from ovarian cancer and non-cancer subjects afforded nearly 100% accuracy of 

detection.1.5  This exciting report indicates that the early detection of ovarian cancer may 

be possible; however, this method is expensive, not point-of-care, and different analyses 

of the same data suggest different biomarker molecules.  For a detailed discussion of the 

drawbacks and complexity of this method, see references 1.2 and 1.6. 

 It is generally agreed that LPA monitoring is a useful biomarker for early 

detection.  LPA (oleoyl-L-α-lysophosphatidic acid) is a bioactive phospholipid with 

mitogenic and growth factor-like activities, an “oncolipid,” which stimulates the 

proliferation of cancer cells, and, as concluded in a recent review, "ovarian cancer 

appears to be driven through the production and action of LPA."1.8 There is general 

agreement in the biomedical literature that monitoring plasma LPA levels is potentially a 

highly promising way to detect ovarian cancer in its early stages.1.2,1.7,1.8  Findings in this 

area came from the lab of Xu et al., who found that plasma LPA levels afford a more 

sensitive diagnostic compared to CA-125.  

 LPA’s use as a biomarker is limited due to current problems with its monitoring.  

Large-scale population studies with the capability of yielding more-precise estimates of 

the sensitivity and specificity of LPA, both alone and in combination with other markers, 

for both screening and detection of recurrence, are necessary, as stated in a recent paper 
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of Sutphen et al.1.7  Currently, there are no methods that allow for very efficient 

monitoring of elevated LPA.  For example, using analytical HPLC, researchers could not 

separate some LPAs from lysophosphatidyl inositols (LPIs). In a recent article, scientists 

from Sloan-Kettering state that LPA is a potentially useful ovarian cancer biomarker; 

“however, the current method of measuring LPA, which involves lipid extraction 

followed by gas chromatography, may limit its utility.”1.9   

 Additionally, controversy regarding the reliability of LPA as an early-stage 

ovarian cancer marker exists due to problems with LPA isolation and handling: 

"…differences in the results from the groups likely arise from challenges in the collection 

and handling of plasma to prevent post collection production, metabolism or loss of LPA.  

A very significant complication is that during sample incubation prior to many analyses, 

significant enzyme generated elevation in serum LPA levels occurs (i.e., non-tumor-

related), greatly hindering diagnosis of ovarian cancer."1.8  

 A summary of specific current problems with LPA detection: 

(a) It is difficult to extract and quantify LPAs in the presence of other lipids [e.g., 

phosphatidylcholine, (PC) and sphingomyelin (SM)], which are present at much higher 

concentrations (in addition to LPI).1.10

(b) Routine laboratory analysis demands minimum sample preparation. The LPA 

extraction process is complex and time-consuming, due in part to the structure of the 

LPAs. Ideally, direct LPA detection from blood without any sample preparation is 

required.1.7,1.10 
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(c) Studies have revealed that plasma LPA levels can be misleading.  If the sample is 

incubated, LPA levels increase via biosynthesis via lysophospholipase activity, rather 

than originating from tumors!  Hence, LPA detection in plasma will be misleading as 

long as non-tumorogenic biosynthesis is not blocked. 

O

O

OH
O C17H35

P
O

O
O-

O C13H27
P
O
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Figure 1.2. The structures of LPA and other phospholipids. 

  

 To date, several methodologies have been used to address the selective and 

sensitive detection of LPA. These include HPLC1.10, tandem mass spectroscopy1.6, thin-

layer chromatography (TLC)1.11, capillary electrophoresis with indirect ultraviolet 

detection,1.12 radio-enzymatic assays1.13 and voltage clamped Xenopus oocytes.1.14 These 
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approaches involve expensive, sophisticated devices and complicated procedures 

unsuited for point-of care applications; for example,  

(i)          GC analysis necessitates esterification of the lipids prior to analysis. Although 

techniques such as HPLC or GC and mass spectroscopy may achieve selectivity and 

sensitivity, simpler methods allowing routine diagnosis of LPA are more desirable. 

(ii)      The problems related to LPA separation via 2D-TLC are complicated by the 

fact that the same LPA salts with differing counter ions (e.g., calcium and sodium) 

exhibit different mobilities, regardless of the nature of stationary phase material. 

(iii)      Colorimetric and fluorometric techniques are generally preferred, due to their 

simplicity. The only colorimetric LPA detection reported uses an enzymatic cycling 

method.1.15  In general, enzymes have relatively limited shelf life and stability and are 

relatively expensive, compared to synthetic materials.  In the particular case of this 

aforementioned of the enzyme cycling method, indirect detection (peroxide) is used to 

determine LPA levels.  However, this methodology has to date never been cited since its 

publication (2003) in the context of its embodying a feasible method for LPA detection.  

(iv) Direct chromatographic detection with absorption spectroscopy is feasible but 

at wavelengths below 215 nm. Unfortunately, this region is where solvent and solvent 

trace impurity absorption becomes substantial.1.10 

1.3. Non-hydrolytic Detection of Gangliosides 

Glycosphingolipids (GSLs) are complex lipid molecules that are components of 

eukaryotic cell membranes.1.16  The structures of some sphingolipids are shown in Figure 

1.1.  Typically, they consist of at least one monosaccharide that is glycosidically linked to 

hydrophobic lipid residues such as sphingosine or ceramide.  The nature of these lipids 
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depends on the cell type; sphingosine is mostly found in mammalian cells whereas 

phytosphingosine is encountered in yeast and plant cells.  Modifications of the lipid 

backbone that range from phosphorylation to gluco- and galactosylation generate large 

structural diversity.  Indeed, more than 300 biomolecules are currently known as 

glycosphingolipids. They are an integral part of the eukaryotic cell membrane with their 

sugar residues residing on the outer layer of the membrane.  The orientation of the sugar 

residues renders these glycolipids critical in numerous intercellular processes including 

cellular protection against both mechanical and chemical damage, proliferation, 

differentiation, cell-cell recognition and cell development.  They moreover function as 

receptors for lectins, selectins, toxins and viruses. However, their in vivo functions are 

not fully understood.1.16  

Their metabolism is linked to the synthesis of several biomolecules. 

Glycosphingolipids are synthesized in the endoplasmic reticulum and Golgi apparatus 

while being catabolized in lysosomes.  The condensation of palmitoyl-CoA and serine is 

a common step in all glycosphingolipid syntheses which initiate the individual 

biosynthetic pathways.  Whereas the anabolism of glycosphingolipids allows access to 

several metabolic products (for instance, sphingomyelin can be synthesized from 

ceramide simply via the addition of a phosphorylcholine residue), their catabolism is 

mostly essential for biomolecular recycling purposes.  This recycling route commences 

with the import of macromolecules into lysosomes by several mechanisms such as 

endocytosis, pinocytosis, phagocytosis and autophagocytosis.  Therein, macromolecules 

are cleaved by acidic hydrolytic enzymes and some accessory proteins that are utilized 

for sequential degradation. Thereafter, the hydrolytic products are carried back to the 

cytoplasm for reutilization.  This process is also essential since it constitutes the first step 
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of the synthesis of some key molecules such as ceramide which is vital in signal 

transduction.1.16  
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Figure 1.3. The structures of selected sphingolipids. 
 

Defects in GSL metabolism can potentially have severe consequences that result 

in metabolic disorders.  Interestingly, these disorders are related to their catabolism, not 

their biosynthesis.  There is no disease known to originate from defects in 

glycosphingolipid synthesis.  Conversely, failure in their catabolism results in their 

extensive accumulation in tissues, which leads to physiological conditions also known as 

lysosomal storage diseases. To date, more than 40 different types of lysosomal storage 

diseases are known.  Although the frequency of each lysosomal storage disease is 

relatively rare, their cumulative effect can be significant.1.16
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The deficiency of the corresponding hydrolytic enzymes in lysosomes is the 

origin of the storage diseases. The reason for this deficiency is defects in genes that 

encode the enzymes. Studies toward the underlying mechanism of these defects have 

revealed that the expressed enzymes possess relatively low or no activity.  Accordingly, it 

was found that mutations in genes cause alterations in nucleotide bases that are in close 

proximity to the active site.  These mutations include base substitution, insertion or 

deletion and partial gene deletion.  Relatively mild mutations, on the other hand, may 

alter the stability of both mRNA and the enzymes.  The severity of the disease is 

determined by the extent of the mutations.  Although regarded as indirect effects, 

mechanisms such as deficiency in lysosomal enzyme transport or localization are also 

known. The lack of enzymes and the associated lysosomal storage diseases are 

summarized in Table 1.1.1.16-1.18 

Gangliosides (Figures 1.2 and 1.3) are the sialic acid-containing 

glycosphingolipids.   They exhibit the greatest structural variation and complexity of the 

GSLs.  Gangliosides are characterized by a high amount of stearic acid (C18, about 80%) 

in their  hydrophobic region, as well as C16, C20 and C22.  Changing the fatty acid 

component to α-linoleic acid alters biological activity dramatically in vitro. However, it is 

the carbohydrate moiety that is of primary importance in determining distinctive 

ganglioside properties.  In any given cell type, the number of different gangliosides may 

be relatively small, but their nature and compositions may be characteristic and highly 

relevant to the functioning of the cell.1.16-1.18 
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Table 1.1. Sphingolipid, glycosphingolipid and lysosomal storage diseases (adapted from 
reference 1.16d). 

Disease Enzymatic defect GSL storage material 
Gaucher β-glucosidase, saposin 

C activator 
Glucosylceramide, 

GM1, GM2, GM3, GD3, 
Glucosylsphingosine 

Sphingolipid 
activator deficiency 

Sphingolipid activator 
protein 

Glycolipids 

GM1 gangliosidosis GM1 gangliosidosis GM1, GM2, GM3, GD1A 
Tay Sachs β-Hexosaminidase A GM2, other glycolipids 
Sandhoff β-Hexosaminidase A 

and B 
GM2, other glycolipids 

GM2 activator 
deficiency 

GM2 activator protein GM2, other glycolipids 

Krabbe β-Galactosidase Galactosylceramide 
Fabry α-Galactosidase A Globotriaosylceramide 

and blood group B substances 
Metachromatic 
leukodystrophy 

Arylsulfatase A, saposin 
B activator 

Sulphated glycoproteins 
and glycolipids, and GM2 

Farber Ceramidase Ceramide, GM3 
Niemann-Pick A & B Sphingomyelinase Sphingomyelin, GM2, GM3 

Fucosidosis α-Fucosidase Fucosides and glycolipids 
 

Mucolipidosis II & III 
 

 
GlcNac transferase 

 

Oligosaccharides, 
mucopolysaccharides, 

lipids, GM1 
Mucopolysacharidosis 

I, II, III, VII 
Various enzymes 

 
GM2 and GM3 

 
Alpha mannosidosis Α-mannosidase GM2, GM3 

Galactosialidosis Protective protein 
cathepsin A 

GM1, GM2, GM3 
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Figure 1.4. Structures and symbolism for gangliosides and their asialo derivatives, 
glucosylceramide, and N-acetyl-α-neuraminic acid: (GlcCer): R, i; (GalCer): R, ii; 
(LacCer): R, i, ii; (GA2): R, i, ii, iii;  (GA1): R, i, ii, iii, iv;  (GM4): R, ii, A;  (GM3): R, i, 
ii, A; (GM2): R, i, ii, iii, A;  (GMl): R, i, ii, iii, iv, A; (NeuAc): A (adapted from ref. 1.19). 
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As the brain develops, the content of gangliosides and the degree of sialylation 

increases. Numerous biological properties of gangliosides related to cellular and 

molecular recognition have been attributed to the sialic acid residues.  They are involved 

in the binding and the transport of positively charged molecules as well as the attraction 

and repulsion of the cells.  Due to their terminal position on glycolipids, sialic acids 

mostly function as receptors for a large variety of molecules such as hormones, toxins, 

viruses, cells and bacteria.  In addition, they behave as ligands for lectins and selectins 

during a number of cell-cell and cell-matrix processes.  Interestingly, they are known to 

shield the recognition sites whereby the activation of the immune system is inhibited.  

Accordingly, oversialylation of the cell surface results in the protection of malignant 

cells.  For these reasons, it is clear that sialic acids play roles in tumor biology. In fact, 

imbalances in sialic acid levels can have clinical manifestations such as alterations in cell 

adhesion, a condition implicated in some cancers, and graft rejection.  An increase in the 

levels of both soluble and cellular sialic acid can thus be a marker for cancer.1.17 

However, since the levels of sialic acids can also be altered by non-pathological factors 

(e.g., smoking, pregnancy and age), altered levels do not solely indicate the presence of 

cancer and must be viewed in conjunction with other markers for diagnostic purposes.1.2 

N-Acetylneuraminic acid (Neu5Ac) is the most abundant form in humans.  As a 

part of glycosphingolipids (i.e., the gangliosides) or glycoproteins, they typically occupy 

the terminal position of the glycan chain.  An interesting aspect of sialic acid chemistry is 

that the anomeric configuration is determined by whether sialic acid is in a free or 

conjugated form. In solution, the anormeric equilibrium between the α- and β-  favors  the  
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Scheme. 1.1. Pathways for the biosynthesis of the common series of gangliosides 
involving sequential activities of sialyltransferases and glycosyltransferases. 
   

latter.  However, sialic acids, when conjugated to biomolecules, are predominantly in the 

α-anomer form.1.17

• Major Biochemical Properties of Gangliosides.  Gangliosides are ligands for 

myelin stability and aid in nerve regeneration by binding a myelin-associated 

glycoprotein.  They can act as cell-type specific antigens controlling cell growth and 

differentiation and intercellular interactions.  They play key roles in the immune systems 

and serve as biomarkers of cancerous tissue.   They regulate cell signaling, serving as 

receptors for interferon, epidermal growth factor, nerve growth factor and insulin.  

Gangliosides bind to bacterial toxins and mediate interactions between microbes and host 

cells during infections.  Genetic defects in catabolism lead to ganglioside accumulation. 

In generalized gangliosidosis, excess GM1 in the nervous system results in mental 
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retardation and liver enlargement.  In Tay-Sachs syndrome, GM2 accumulation in the 

brain leads to mental retardation and blindness.1.16-1.18 

Table 1.2. Selected examples of studies using total ganglioside determination for 
research on various cancers.   

Disease Levels Matrix Reference
Colorectal Cancer 15.6 – 58.6 mg/dL Serum 1.4 

Pancreatic Adenocarcinoma 16.6 – 34.6 mg/dL Serum 1.5 
 
 

Advanced Ovarian Cancer 

2.7 – 4.8 mg/mL/105 
cells/24 h 

 
14 – 40 mg/mL 

 
18 – 57 mg/mL 

Tumor Cells 
 
 

Peritoneal Fluid 
 

Plasma 

1.6 

 

• The Significance of Total Ganglioside Determination for Modern Biomedical 

Research.  Gangliosides account for 6 % of brain tissue.  The main gangliosides found in 

the human brain are GM1, GD1a, GD1b and GT1.  GM3 is mainly localized in extraneural 

tissues. The overall composition of the gangliosides can be influenced by environmental 

factors as well as by nerve stimulation or drug administration.  The determination of total 

ganglioside content is highly useful in studying storage diseases (Table 1.1) and in the 

investigation of specific cancers (Table 1.2).1.20-1.24  Recent investigations show that 

serum total ganglioside (STG) levels have shown promise as a potential tool for assessing 

the response to immunotherapy in melanoma patients.1.23  Additionally, in a recent 

example, total ganglioside content was recently shown to increase by 20-fold in studies 

involving the links between lipid metabolism and Alzheimer’s disease.1.24a 

This represents a relatively small subset of many recent investigations. 

Ganglioside detection is a major challenge.  Because biological media contain a high 

content of other lipids, extensive purification of gangliosides by methods such as 

reversed-phase chromatography and DEAE-Sephadex columns are often required prior to 
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analysis.  Table 1.3 summarizes the most commonly used current methods for 

ganglioside detection.  Simple and rapid, reliable and user-friendly techniques are 

needed:   

According to Tsui et al.,1.24b “conventional strategies for profiling gangliosides 

suffer from poor reproducibility, low sensitivity, and low throughput capacity.  Prior 

separation of gangliosides by thin-layer chromatography and/or high-performance liquid 

chromatography not only was tedious and laborious but also could introduce uneven 

losses of molecular species.”  These researchers prove that it is necessary to separate 

phospholipids from gangliosides to obtain satisfactory MS data.  In fact the method 

ultimately used required partitioning of gangliosides into an aqueous phase to obtain 

enrichment.  Aqueous phase partitioning requires purification via gel filtration to remove 

low molecular weight contaminants such as salts and peptides.  Percent recovery in the 

aqueous phase was not described; however, others have described moderate sample 

losses during sample handling prior to analysis. 

In another recent representative example, Sato et al.1.24a used the following 

procedure prior to analyzing total ganglioside content in embryonal carcinoma cells:  

lipids were extracted from cells successively in CHCl3/MeOH, total lipid extract was next 

“further purified”, then separated by TLC using CHCl3/MeOH/0.2 % CaCl2 (55:45:10), 

detected with orcinol sulfuric acid reagent and quantified with a dual-wavelength flying 

spot scanner in reflectance mode at 500 nm.  This method also partitions and detects 

other “acidic glycolipids”.  Therein, potential interferences/co-elution was not described.  

More importantly, the orcinol reagent is non-selective and reacts with reducing sugars. 

Sample pre-treatment procedures may be written in a somewhat simplified 

manner in experimental sections.  For example, in a recent volume of Methods in 
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Enzymology (vide infra), an initial “total lipid extraction” step can entail lyophilization, 

pulverization, re-suspension in solvent, sonication, 18 h re-extraction, centrifugation, re-

extraction, clarification, extract combination, concentration, centrifugation, partitioning 

and drying.  This is all done prior to the partitioning of gangliosides from other lipids.  

The ensuing partitioning step involves addition of mixed alcohol solvents to the extract, 

vortexing, sonication, addition of saline solution, alternating vortexing and sonication, 

centrifugation, removal of the organic solvent and repartioning the aqueous layer.  

Alternating vortexing and sonication is again repeated, and organic solvent is removed 

followed by lyophilization.  The sample is then loaded onto a Sephadex G-50 column 

using very precise specifications.  Recoveries from the individual steps are reported to be 

93 % or higher. 

It is, in other words, relatively tedious to purify the gangliosides and prepare them 

for analysis.  We thus propose an extensive study aimed at developing highly selective 

receptors.  Our goal is to provide simple and enabling new methods for ganglioside 

research and ultimately for the early and efficient screening of ganglioside-related 

diseases.  We envision that the detailed spectroscopic work planned will guide the near 

future development of reagents not just for detecting gangliosides, but also neutral 

glycolipids.  For example, future targets would include the smaller glycosphingolipids 

glucosylceramide and lactosylceramide, for which there aren't good reagents available. 

Table 1.3. Major current techniques used for ganglioside detection and their associated 
challenges (summarized from the introduction in reference 1.9b). 

Technique Main Challenge 
Antibodies 

 
TLC 

 
Cross-react with multiple gangliosides and/or glycoprotein species 
with similar carbohydrate epitopes. 
 
Low resolution does not adequately resolve heterogeneity of 
gangliosides 
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Table 1.3. Continued 
 

HPLC 
 
 

MS/TLC or 
MS/HPLC 

 
Tandem MS/MS 

 

 
Laborious purification, and requiring derivatization with 
chromogens/fluorogens 
 
Tedious purifications/derivatizations 
 
 
Ganglioside ionization is significantly suppressed by samples 
containing other biomolecules such as phospholipids 
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CHAPTER 2 
 

LANTHANIDE COMPLEXES AS FLUORESCENT INDICATORS  
FOR NEUTRAL SUGARS AND CANCER BIOMARKERS* 

 

2.1. Introduction 

Nature uses tools such as lectins for the molecular recognition of saccharides. An 

important mode of lectin binding involves the coordination of a carbohydrate ligand to a 

metal center. C-type lectins recognize saccharides in a calcium-dependent manner.2.1 The 

similar properties of lanthanides and calcium render trivalent lanthanides ions useful 

substitutes for Ca2+ in studying proteins.2.2 Herein, we describe the utility of water 

soluble salophene2.3-lanthanide complexes (Figure 2.1) towards addressing three current 

challenges:  (i) the detection of neutral carbohydrates at physiologically-relevant pH, (ii) 

the selective detection of gangliosides and (iii) the selective detection of lysophosphatidic 

acid (LPA).      

O

O

OHO

OHO N

N

O

O

OCH3

OCH3

Ln

2.1 Ln = La3+

2.2 Ln = Eu3+
 

Figure 2.1. Salophene-lanthanide complexes. 

*Reprinted in part with permission from Proceedings of the National Academy of 
Sciences of the United States of America, 2006, Volume 103, pages 9756-9760; Onur 
Alpturk, Oleksandr Rusin, Sayo O. Fakayode, Weihua Wang, Joege O. Escobedo, Isiah 
M. Warner, Williams E. Crowe, Vladimir Kral, Jeff M. Pruet, and Robert M. Strongin, 
Lanthanide Complexes as Fluorescent Indicators for Neutral Sugars and Cancer 
Biomarkers. Copyright 2006 National Academy of Sciences, U.S.A. 
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2.2 Results and Discussion 

2.2.1. Detection of Neutral Sugars at Physiological pH. 

 A main problem in the detection of neutral sugars with artificial receptors is 

competitive binding by bulk water. Elevated solution pH is therefore typically required to 

attain a useful degree of coordination and signal transduction in the most innovative new 

metal-based detection methods.2.4 There is an unmet demand for biomimetic sugar 

sensing agents that function in neutral buffer solution.2.4 Since La3+ and Ca2+ exhibit 

relatively strong affinity for saccharides as compared to most other metal ions,2.5 we 

hypothesize that 2.1 may be useful for detecting sugars in neutral aqueous media. 

Interestingly, lanthanides can extend their ligand coordination number by the addition of 

either neutral or charged ligands through ligand-sphere extension, leading to highly 

coordinated complexes.1.1  

Addition of saccharides (1.1 × 10-3 M) to a solution of 2.1 (5.53 × 10-6 M, 0.1 M 

HEPES buffer, pH 7.0) promote readily-monitored increases in emission (Figure 2.2).2.6  
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Figure 2.2. Fluorescence changes observed upon titration of 2.1 with D-glucose in 0.1M 
HEPES buffer, pH 7.0. The concentration of 2.1 is 6 × 10-6 M. The concentration of 
glucose is increased from 0 to 6 × 10-4 M. Excitation is at 360 nm, emission is monitored 
at 400 nm. 
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Lanthanide coordination to salens whereby the ligand conformation is brought 

into a more rigid cyclic structure, increases ligand-centered fluorescence emission.2.6 

Ternary complex formation upon saccharide addition apparently enhances this latter 

effect. In the 1H-NMR of a solution of 2.1 and D-glucose in D2O, the imine protons of 

2.1 exhibit a modest up-field shift, in keeping with analogous salophene-metal complexes 

upon binding analytes2.3 (Figure 2.3). 

 

 
Figure 2.3. 1H-NMR study of glucose titrated with 2.1: (a) 1.8 mg of glucose in 0.75 ml 
of D2O; (b) after addition of 0.2 equiv 2.1; (c) after the addition of 0.4 equiv 1; (d) after 
addition of 0.6 equiv 2.1 (1.5 mg of 2.1 in 0.1 ml of D2O in each addition).  The imine 
protons of 2.1 exhibits a modest up-field shift (from 9.84 ppm to 9.79 ppm) in keeping 
with analogous salophene-metal complexes upon binding analytes (see reference 2.3 for 
analogous responses in the NMR of other salophenes upon tertiary complex formation). 
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Figure 2.4.  (Top) Job’s plot of 2.1 and D-glucose in 0.1M HEPES buffer pH 7.0 and 
(Bottom) Job’s plot of 2.1 and maltotriose in 0.1M HEPES buffer pH 7.0 both of which 
indicate a 1:1 stoichiometry. 

 

The continuous variation indicates a 1:1 stoichiometry between glucose, maltose, 

maltotriose and 2.1 (Figure 2.4). Glucose, maltose and maltotriose exhibit binding 

constants of 500, 1666 and 2500 M-1 respectively. These values compare very favorably 

to those of sugar-boronate complexes.2.7 This is significant since boronic acid-containing 

fluorophores are currently reagents of choice for sugar detection in aqueous and mixed-

aqueous media. The emission enhancements shown herein in the presence of neutral 

sugars range from ca. 25% – 60% (Figure 2.5).  

Common   anions   (citrate,  phosphate  and  pyrophosphate) studied  under  these 

conditions promote relatively weaker emission responses. Additionally, bovine serum 

albumin-containing solutions exhibit increased fluorescence only when glucose is 

present. The concentration of glucose in plasma is typically ca. 10-3. The next most 
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abundant monosaccharides are galactose and fructose, present at concentrations of 2 

orders of magnitude less than that of glucose.  Investigations towards minimizing 

potential interferences as well as improving selectivity for specific neutral sugars are in 

progress.  
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Figure 2.5. Relative fluorescence emission (400 nm) changes observed in solutions of 
2.1 (5.53 × 10-6 M) in the presence of mono-, oligosaccharides, anions (1.1 × 10-3 M), 
BSA (1 mg/mL) and a mixture of BSA and glucose (1 mg/mL and 1.1 × 10-3 M, 
respectively) in HEPES buffer solution (pH 7.0). The standard deviation (n=3 for each 
analyte) of the relative fluorescence intensity ranges from 0.01-0.027. 
 

2.2.2. The Selective Detection of Gangliosides under Neutral Conditions 

 It is well-known that an increase or decrease in total sialic acid levels (conjugated 

plus freely circulating) in biological fluids can indicate the occurrence of certain cancers. 

The acid-catalyzed liberation of bound sialic acid residues from gangliosides for assay 

typically results in destruction of the analyte.2.8 In the case of enzymatic hydrolysis 
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incomplete sialic acid liberation is a problem.2.9 Effective sensing agents for sialic acid-

containing gangliosides (Figure 2.6) are needed. 
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Figure 2.6.  The structures of asialo-GM1 and GM1. 

Selectivity towards various anionic substrates can be tuned via the appropriate 

choice of lanthanide metal.2.10  Importantly, Sillerud et al. have provided precedent for 

favorable cooperative binding interactions of the oligosaccharide and sialic acid moieties 

of micellar gangliosides with Eu3+.2.11 For example, the higher affinity of Eu3+ to GM1 as 

compared to sialic acid was attributed not only to an electrostatic interaction with the 

GM1 sialic acid carboxylate but also to secondary interactions with the proximal 

oligosaccharide hydroxyls.  This results in a coordination shell (Figure 2.7).   
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Figure 2.7.  Left:  Coordination of GM1 to Eu3+.  Right:  Free sialic acid 

We thus hypothesize that 2.2 may afford enhanced signaling in the presence of 

charged gangliosides as compared to neutral sugars and sialic acid. Compound 2.2 
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promotes the detection of sialic acid-containing gangliosides selectively compared to 

asialo-GM1 (Figure 2.8 and Figure 2.9). In contrast, 2.1 affords greater fluorescence 

enhancement than 2.2 in the presence of neutral asialo-GM1 (Figure 2.10).  

The smaller the ionic radius of a lanthanide is, the more significant are the 

intramolecular interactions between its ligands. The salophene ligands of 2.1 and 2.2 

contain both polar and apolar moieties. The combination of these latter structural features 

along with the smaller ionic radius of Eu3+ compared to La3+, apparently renders 2.2 a 

better substrate for detecting anionic gangliosides compared to 2.1. 
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Figure 2.8. Fluorescence intensity change of solutions of 2.2 (5.53 × 10-6 M) in response 
to added gangliosides (0.5 mg/mL, ca. 10-4 M each) and sialic acid (1 × 10-3 M) in 0.1 M 
HEPES buffer solution (pH 7.0). Excitation 360 nm, emission 400 nm. 
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Figure 2.9. Relative fluorescence intensity changes of solutions of 2.2 (5.53 × 10-6 M) in 
HEPES buffer pH 7.0 in the presence of various gangliosides, phospholipids and other 
charged and neutral analytes. Ganglioside concentration = 0.5 mg/mL, ca. 10-4 M each.  
Concentration of other analytes = 1.1 × 10-3 M. The standard deviation (n=3) of the 
relative fluorescence intensity for each analyte ranges from 0.01-0.11.  Proteins such as 
myelin and BSA were studied at 1 mg/mL concentrations. Asialoganglioside GM1 = 
Asialo-GM1; monosialoganglioside GM1 = GM1; disialogangliosides = GD1a and GD1b; 
L-α-phosphatidyl inositol = PI; L-α-phosphatidyl ethanolamine = PE;                               
L-α-phosphatidyl serine = PS; CMP-NANA=Cytidine-5'-mono phospho-N-
acetylneuraminic acid).  
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Figure 2.10. Relative fluorescence intensity spectra of compounds 2.1 and 2.2 in the 
presence of gangliosides in 0.1M HEPES buffer pH 7.0.  Gangliosides GM1 and GD1a 
contain sialic acid moiety; Ganglioside asialo-GM1 does not contain the sialic acid 
moiety.  
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Figure 2.11. 1H-NMR study of a titration of sialic acid with 2.2: (a) 0.73 mg of sialic 
acid in 0.75 ml of D2O; (b) after addition of 0.2 equiv 2.2; (c) after the addition of 0.4 
equiv 2.2; (d) after the addition of 0.6 equiv 2.2 (0.35 mg of 2.2 in 0.1 ml of D2O in each 
addition).  When sialic acid is titrated with 2.2, the NMR signals corresponding to the 
protons on the glycerol side chain and pyranose ring undergo substantial peak-
broadening. The 3-Hax proton, on the same side of the pyranose as the carboxylate 
moiety, is relatively closer to the metal site than 3-Heq.  The axial proton resonance of 
carbon 3 broadens to a greater extent than that of 3-Heq.   

 

The sialic acid residue of GM1 binds Eu+3 via multiple coordination sites     

(Figure 2.7). Free sialic acid binding (as predominantly the β-pyranose form) to metals 

has also been reported.2.12 The carboxylate, pyranose ring and glycerol side-chain 

oxygens of sialic acid directly participate in coordination. When sialic acid is titrated with 
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2.2 in D2O, the 1H-NMR signals corresponding to the protons on the glycerol side chain 

and pyranose ring undergo substantial peak-broadening. The 3Hax proton, on the same 

side of the pyranose as the carboxylate moiety, is relatively closer to the metal site than 

3-Heq.  The axial proton resonance of carbon 3 broadens to a greater extent than that of    

3-Heq (Figure 2.11).  

Many compounds are present in typical ganglioside extracts (Figure 2.7-2.9).2.13 

Major components include free sialic acids, phospholipids, myelins, proline and 

glucosamine.  These and many structurally-related compounds do not interfere with 

ganglioside detection in neutral buffer solution (Figure 2.7). Interestingly, the 

disiaiogangliosides (GD1a and GD1b, Figure 2.9)-2.2 complexes show stronger emission 

than the corresponding complex of monosialo GM1-2.2.   

Based on these results, we conclude, in agreement with Sillerud et al., that a sialic 

acid moiety appended to an oligosaccharide sequence leads to enhanced affinity. 

Comparison of the fluorescence spectra of 2.2 in the presence of GM1 with neutral asialo 

GM1 as well as several other analytes suggests that proximal oligosaccharide-sialic acid 

sequences are important factors leading to signal transduction (Figure 2.7). 
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Figure 2.12. The structure of disialigangliosides GD1a and GD1b.  
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Gangliosides and neutral sugars can also be monitored using the well-known 

fluorescent europium(III)-tetracycline (Eu-Tc) complex.  The Eu-Tc complex exhibits 

efficient ligand to metal energy transfer (LMCT).2.14 This allows for fluorescence 

monitoring at the common europium emission wavelength of 615 nm, rather than at the 

ligand emission, as in the case of 2.1 or 2.2 (Figure 2.13).  The Eu-Tc complex is well-

known to exhibit fluorescence emission enhancement upon complexation via 

displacement of bound water.2.14 However, the Eu-Tc complex is not as selective as 2.1 

and 2.2. It exhibits fluorescence emission enhancement in the presence of several neutral 

sugars and anions. 
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Figure 2.13. Fluorescence intensity change of solutions of Eu-Tc complex (5.53 ×         
10-6 M) in response to added gangliosides (1.1 × 10-4 M) and sialic acid (1 × 10-3 M) in 
0.1 M HEPES buffer solution (pH 7.0). Excitation is at 390 nm, emission at 615 nm. 
 

2.2.3. The Selective Detection of Lysophosphatidic Acid 

MeOH solutions containing 2.2 exhibit increased emission in the presence of 

commercially available lysophosphatidic acid LPA (oleoyl-L-α-lysophosphatidic acid Na 

salt, 5.53 × 10-6 M λex 360 nm λem 403 nm). Solutions containing commercial 
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phosphatidic acid PA (3-sn-phosphatidic acid Na salt) exhibit minor fluorescence 

changes at 400 nm (Figure 2.14 and 2.15), even at millimolar PA levels. 
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Figure 2.14.  Fluorescence intensity change of solutions of 2.2 (5.53 × 10-6 M) in 
response to added LPA or PA (1.1 × 10-4 M) in MeOH. Emission is at 360 nm, excitation 
at 400 nm. 

 

 

Figure 2.15.  Relative fluorescence intensity changes of solutions of 2.1 or 2.2 (5.53 × 
10-6 M) in response to added LPA or PA (1.1 × 10-4 M) in MeOH. Emission is at 360 nm, 
excitation at 400 nm. The standard deviation (n=3) of the relative fluorescence intensity 
for each analyte ranges from 0.01-0.03. 
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Distinct affinities of LPA and PA for 2.2 can be interpreted in terms of the 

magnitude of their corresponding negative charges.2.15 Intramolecular hydrogen bonding 

between the phosphate and the 2-sn-OH moieties is observed in the crystal structure of 

LPA, and is known to persist at physiological pH (Figure 2.16).2.16 The phosphate 

hydroxyl of LPA is thus more prone to ionization as compared to the phosphate proton of 

PA. This generates a higher negative charge on the LPA phosphate, facilitating proposed 

binding to 2.2 dominated by ionic interactions.  
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Figure 2.16. Intramolecular hydrogen bonding patterns of LPA and PA explain the lower 
pKa of LPA (see reference 2.16). 
 

The free hydroxyl oxygen of LPA may also serve as a cooperative binding site to 

the lanthanide. It is known that a second coordinating site, especially one containing a 

hard atom such as oxygen or nitrogen, enhances lanthanide affinity (see also Figure 5).2.17 

Indeed, we observe significant broadening of the 1H-NMR resonances corresponding to 

protons on carbons 1-3 (Figure 2.15) of LPA compared to the other peaks. We propose 

that this latter feature, in combination with the relatively higher negative charge of LPA 

compared to PA, should allow selective detection of LPA compared to PA, using 2.2.  
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Figure 2.17.   Relative fluorescence intensity changes of solutions of 2.2 in MeOH     
(5.53 × 10-6 M) in the presence of various phospholipids (LPA and PA ca. 10-3 M) and 
other charged and neutral analytes. Concentration of other analytes = 1.1 × 10-3 M. The 
standard deviation (n=3) of the relative fluorescence intensity for each analyte ranges 
from 0.01-0.11. 
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Figure 2.18.  Structure of LPA and other phospholipids investigated.   
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Figure 2.19. 1H NMR study of the titration of LPA with 2.2: (a) 1 mg of LPA in 0.75 ml 
D2O; (b) after addition of 0.2 equiv 2.2.  Significant broadenings of the 1H-NMR 
resonances corresponding to protons on carbons 1-3 (3.7 ppm to 4.1 ppm on Figure 2.14) 
of LPA are observed. 
 

Ovarian cancer is a global problem.  A main reason for the low survival rate of 

ovarian cancer is the fact there is no method for early detection.  There is evidence that 

lysophosphatidic acids (1-acyl-glycerol-3-phosphates), the simplest phospholipids, are 

promising markers for the early detection of ovarian cancer.2.18 Current assays for LPA 

are unsuitable for routine diagnostic and point-of-care use. LPA is relatively difficult to 

detect in nonpolar lipid extracts. LPA is detected selectively by 2.2 via an increase in 

fluorescence in MeOH.  Figure 2.13 shows that well-known components of phospholipid 

extracts 2.19,2.20 do not afford fluorescent emission signals comparable to that of LPA in 

solutions of 2.2 in MeOH.  

We observe a correlation between fluorescence intensity and LPA concentration 

in MeOH extracts of lyophilized human plasma previously spiked with LPA (as well as 

LaCl3 to remove neutral interferents, Figure 2.15). LPA is detected in the concentration 

range 1.83 × 10-5 M to 9.15 × 10-5 M (Figure 11).  Physiological concentrations of LPA in 

plasma are ca. < 0.1 to 6.3 μM.  Danger levels for ovarian cancer are ca. ≤ 43.1 μM.2.18  
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Figure 2.20.  Relative fluorescence emission vs. concentration at 437 nm of methanolic 
extracts of blood plasma samples containing 2.2 and various concentrations of LPA. 
When carried out in triplicate the standard deviation of the relative fluorescence intensity 
does not exceed 0.03. 

 
2.3. Conclusion 

To date, the lack of receptors that effectively mimic lectin binding is largely due 

to the inability to achieve sugar-metal coordination under neutral conditions.  The design 

of compound 2.1 is inspired by calcium-saccharide interactions found in C-type lectins. It 

allows for the successful detection of neutral mono- and oligosaccharides in neutral 

buffer solution. Analogs of 2.1 that promote high selectivity for specific sugars in the 

visible and near-IR spectral regions will be reported in due course.  Our initial studies to 

date show that complex 2.2 exhibits enhanced fluorescence emission with anionic lipid 

analytes that possess proximal hard atom (oxygen) coordination sites, such as the alpha 

hydroxyl of LPA and the oligosaccharide hydroxyls of gangliosides. This is in excellent 

accord with prior studies of related systems.2.17 Compound 2.2 can be used to selectively 
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detect (i) sialic acid-containing gangliosides in buffer solution and (ii) LPA in MeOH.  

These latter results are steps towards developing non-hydrolytic assays for sialic acid and 

facilitating the detection of LPA, respectively.  Our initial focus has been on the 

selectivity and the signal transduction mechanisms. The complexity of the biomolecules 

and the nature of the emission (i.e., ligand emission rather than lanthanide emission) 

render the structural study of the tertiary complexes highly challenging. X-ray 

crystallographic analysis and further extensive NMR investigations to reveal the precise 

nature of the tertiary complexes will be reported in due course. 

2.4. Materials and Methods. 

2.4.1. Materials and Instrumentation 

All chemicals were purchased for Sigma-Aldrich and used without further 

purification.  Gangliosides were purchased from Calbiochem. Phospholipids were 

purchased from Avanti Polar Lipids. Fluorescence spectra were recorded using a 

spectrofluorimeter SPEX Fluorolog-3 equipped with double excitation and emission 

monochromators and a 400W Xe lamp.  1H and 13C NMR spectra were acquired on a 

Bruker DPX-250 or   DPX-300 spectrometer.  All δ values were reported in ppm.  

Coupling constants are reported in Hz.  Fourier-Transform Infrared Spectra were 

acquired on a Tensor 27 Infrared Spectrophotometer (Bruker Optics Inc.).  MS were 

performed on a Bruker ProFLEX III MALDI-TOF mass spectrometer. 

2.4.2. Synthesis of compounds 2.1 and 2.2 

The scheme describing the synthesis of 2.1 and 2.2 follows: 
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Scheme 2.1.  Synthesis of compounds 2.1 and 2.2. 2.1, Ln = LaCl3, 2.2, Ln=EuCl3. 

2.4.3. Synthesis of 2.4 

To a suspension of K2CO3 (3.76 g, 27.24 mmol) in DMF (60 mL) under N2, 

catechol 2.3 (1 g, 9.80 mmol) in DMF (20 mL) and O-acetyl-2-(2-chloro-ethoxy)-ethanol 

(2.1 g, 18.16 mmol) in DMF (10 mL) are added. The final mixture is heated overnight at 

100 ˚C.  K2CO3 is filtered. After the reaction mixture is diluted with EtOAc (60 mL), it is 

washed with H2O (4 × 30 mL). The organic phase is dried over Na2SO4 and concentrated 

under reduced pressure. The product is obtained as yellow oil (1.5 g, 44.5%). 1H NMR 

(250 MHz, DMSO-d6) δ (ppm): 1.99 (6H, s, CH3) 3.69 (8H, m, CH2)  4.09 (8H, m, CH2) 

6.92 (4H, m, ArH). 13C NMR (62.5 MHz, DMSO-d6) δ (ppm): 21.6, 65.0, 69.1, 69.3, 

69.8, 115.2, 122.1, 149.2, 171.2.   

2.4.4. Synthesis of 2.52.21 

2.4 (1.6 g, 4.32 mmol) is dissolved in DCM (50 ml). The solution is cooled on an 

ice bath and fuming HNO3 (12 mL) is added. The ice-bath is removed and the solution is 

stirred overnight at room temperature. The reaction mixture is poured onto a mixture of 

ice and water (80 mL). The organic phase is collected, neutralized with 10% NaHCO3 

and washed with H2O. The organic layer is dried over anhydrous Na2SO4. The solvent is 
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removed under reduced pressure. The product is chromatographed on silica gel to give 

compound 2.5 (1.6 g, 80.5%). 1H NMR (250MHz, DMSO-d6) δ (ppm): 1.97 (6H, s, CH3) 

3.68 (2H, t, CH2) 3.80 (2H, t, CH2) 4.10 (2H, t, CH2) 4.33 (2H, t, CH2) 7.79 (2H, s, ArH). 

13C NMR (62.5 MHz, DMSO-d6) δ (ppm): 21.4, 55.7, 64.0, 69.3, 70.4, 110.1, 136.7, 

152.0, 171.2. 

2.4.5. Synthesis of 2.6 

To a solution of 2.5 (0.52 g, 1.13 mmol) in MeOH (30 mL), KOH (0.13 g, 2.26 

mmol) is added. The mixture is stirred at room temperature for 4 hours. The reaction 

mixture is neutralized with 2N HCl. MeOH is removed under reduced pressure. The 

product is extracted with DCM. After washing with H2O, the organic layer is dried over 

anhydrous Na2SO4. After removing DCM under reduced pressure, 2.5 is obtained (0.33 g, 

76.9%) and is used without further purification in the subsequent steps. 

2.4.6. Synthesis of 2.1   

Compound 2.6 (0.2 g, 0.53 mmol) is dissolved in MeOH (15 mL). Raney Ni is 

added. Hydrogenation is carried out at 50 psi and monitored via H2 consumption. Raney 

Ni is removed by filtration through celite.  The filtrate containing 2.7 is immediately used 

in the next step to prevent any unwanted oxidation.  To a refluxing solution of LaCl3 

(0.13 g, 0.53 mmol) in 10 mL MeOH, o-vanillin (0.16 g, 1.1 mmol) in 10 mL MeOH and 

the solution containing  2.7 are simultaneously added over 20 min. The final solution is 

refluxed for 2 h.  The reaction mixture is concentrated under reduced pressure and the 

residue washed with EtOAc (3x 5 mL). The product is obtained as a dark-red solid    

(0.37 g).  13C-NMR (62.5 MHz, DMSO-d6) δ (ppm): 49.4, 56.5, 56.9, 61.1, 69.7, 69.8, 

73.1, 73.3, 113.8, 114.0, 118.4, 120.0, 120.9, 123.4, 149.2, 151.4, 192.8.  MALDI-Tof 
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(m/z): calcd. C30H34LaN2O10, 721.13; found, 721.48. IR (cm-1) 3206.20, 1614.33, 

1439.22, 1209.10, 1036.87. 

2.4.7. Synthesis of 2.2  

This compound is synthesized as described above for 2.1 except EuCl3 is used 

instead of LaCl3.  The product is obtained as a dark-red solid (0.35 g).  13C-NMR (62.5 

MHz, DMSO-d6) δ (ppm): 49.4, 56.6, 57.0, 61.1, 69.7, 69.8, 73.1, 73.4, 118.4, 119.3, 

120.1, 120.9, 123.4, 147.3, 149.0, 149.3, 151.6, 192.8. MALDI-Tof (m/z): calcd. 

C30H34EuN2O10, 735.14; found, 735.34. IR (cm-1) 3104.00, 1638.44, 1444.54, 1214.76, 

1018.07. 
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Figure 2.21. 1H-NMR Spectrum of 2-(2-chloroethoxy)ethyl acetate in DMSO-d6 
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Figure 2.22. 13C-NMR Spectrum of 2-(2-chloroethoxy)ethyl acetate in DMSO-d6 
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Figure 2.23. 1H-NMR Spectrum of 2.4 in DMSO-d6 
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Figure 2.24. 13C-NMR Spectrum of 2.4 in DMSO-d6 
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Figure 2.25. 1H-NMR Spectrum of 2.5 in DMSO-d6 
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Figure 2.26. 13C-NMR Spectrum of 2.5 in DMSO-d6 
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Figure 2.27. 1H-NMR Spectrum of 2.6 in DMSO-d6 



 46

 

Figure 2.28. 13C-NMR Spectrum of 2.1 in DMSO-d6. 
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Figure 2.29. MALDI TOF Spectrum of 2.1. 
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Figure 2.30. FTIR Spectrum of 2.1. 
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Figure 2.31.  13C-NMR Spectrum of 2.2 in DMSO-d6. 
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 Figure 2.32. MALDI.TOF of Spectrum of 2.2. 
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Figure 2.33. FTIR Spectrum of 2.2. 
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Figure 2.34. Fluorescence intensity changes of 2.1 (5.53 × 10-6 M) in the presence of 
mono- and oligosaccharides (1.1 × 10-3 M) in buffer solution (pH 7.0). 
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Figure 2.35.  Binding isotherm observed upon titration of 2.1 with D-glucose in 0.1 M 
HEPES buffer, pH 7.0. The concentration of 2.1 is 6 × 10-6 M. The concentration of 
saccharide is increased to 6 × 10-4 M. Excitation is at 360 nm, emission is monitored at 
400 nm. 
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Figure 2.36.  Fluorescence intensity spectra of 2.2 in the presence of various 
concentrations of LPA in MeOH. 
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Figure 2.37.  Fluorescence intensity spectra of 2.2 in the presence of various 
concentrations of PA in MeOH. 
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Figure 2.38.  Fluorescence intensity at 400 nm of solutions containing 2.2 in the presence 
of various concentrations of PA and LPA. 
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CHAPTER 3 
 
 

MACROCYCLE-DERIVED FUNCTIONAL XANTHENES AND PROGRESS 
TOWARDS CONCURRENT DETECION OF GLUCOSE AND FRUCTOSE* 

 
3.1. Introduction 

 
There has been great progress made towards the design, synthesis and evaluation 

of organic dyes functionalized with boronic acids for sugar detection.3.1  There are 

relatively few studies, however, addressing the simultaneous detection of common 

sugars, such as glucose and fructose, in mixtures.3.1,3.2  It has been known for decades that 

boronic acids exhibit relatively high affinity for fructose compared to other saccharides.3.3  

More recently several glucose-selective chemosensors have been synthesized.3.1  Nearly 

all are based on the key discovery by Shinkai and co-workers that scaffolds containing 

appropriately spaced bis-boronic acid moieties may selectively chelate glucose.3.1  Herein 

we describe novel methodology which shows promise for the detection of both glucose 

and fructose via a combination of UV-Vis and fluorescence spectroscopy.   

 Previously we reported the facile synthesis and isolation of 3.1 on multi-gram 

scale via the acid-catalyzed condensation of resorcinol and 4-formylphenylboronic 

acid.3.4 Compound 3.1 is soluble in aqueous polar aprotic solvents such as DMSO.  We 

observed that colorless DMSO solutions containing 3.1 (Figure 3.1), upon standing or 

heating at  90 °C for 1 min, turned pinkish-purple.  These color changes were monitored  

 

*Reprinted in part with permission from Journal of Fluorescence, 2004, Volume 14, 
pages 609-613; Oleksandr Rusin, Onur  Alptürk, Ming He, Jorge O. Escobedo, Shan Jiang, 
Fareed Dawan, Kun Lian, Matthew E. McCarroll, Isiah M. Warner, Robert M. Strongin. 
“Macrocycle-Derived Functional Xanthenes and Progress Towards Concurrent Detection of 
Glucose and Fructose”.  
 



 57 

 

with UV-Vis spectroscopy via the appearance of new absorptions at 465 nm, 500 nm and 

536 nm.3.5   

We found that upon heating eleven aqueous DMSO solutions each containing 

boronic acid resorcinarene macrocycles and eleven respective saccharides, a different 

solution color could be observed by visual inspection corresponding to each sugar.3.5 The 

colorimetric responses were rapid, quantifiable and reproducible.  More recently, we 

applied similar methodology towards the colorimetric detection of neutral 

oligosaccharides.3.6 

Mechanistic investigations, based on extensive spectroscopic, chromatographic 

and crystallographic studies, revealed that the color formation in the macrocycle-

containing solutions was due to the formation of ring-opened acyclic oligomers 

possessing xanthene chromophores (3.2 in Figure 3.1).3.6  Our studies were greatly 

facilitated by the pioneering work of Weinelt and Schneider who had earlier described 

the reversible mechanism of resorcinarene macrocycle genesis in homogeneous 

solutions.3.7   

OH
OH HO OH HO OH

HO HO

B(OH)2 B(OH)2B(OH)2 B(OH)2

-H2O

[O]

OOH

n = 0, 1, 2, etc.
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O
HO HOOHOH

n m

B(OH)2 B(OH)2 B(OH)2
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Figure 3.1.  Ring opening of resorcinarene boronic acid macrocycle 3.1 affords acyclic 
oligomers containing xanthene moieties. 
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We determined that the sugar-promoted signal transduction arose via the 

formation of anionic sugar-boronate esters,3.6 in keeping with the well-known properties 

of boronic acid-functionalized dyes.3.1  This was confirmed by 13C-NMR using 

isotopically labeled sugars.3.6  Our results were consistent with the important and useful 

NMR-based characterizations of related sugar-aryl boronates performed by Norrild and 

co-workers.3.8 

3.2. Experimental Section 

Reagents, solvents and human blood plasma were purchased from Sigma-Aldrich.  

Lyophilized blood plasma (5.0 mL) was reconstituted with H2O (2.0 mL) and 

deproteinized by addition of MeCN (3.0 mL).  Clear filtrate was used for the glucose 

detection experiments. 

All spectroscopic data was acquired at room temperature.  Colored solutions of 1 

were produced via preheating DMSO solutions and cooling to room temperature prior to 

adding water or plasma and analytes.  UV-Vis data was obtained using a Spectramax Plus 

384 spectrophotometer (Molecular Devices).  Fluorescence spectra were recorded with a 

HR2000 fiber optic spectrometer (Ocean Optics).  The excitation wavelength was 470 nm 

(Ocean Optics LS-450, blue LED) directed into a fluorescence cuvette via a 600 μm 

entrance fiber, and emission gathered by a 1000 μm optical fiber at λmax 579 nm.  

Configured for fluorescence, the setup used two mirrored screw plugs positioned at 90° 

within the cuvette holder for signal enhancement. 

3.3. Results and Discussion. 
 
Selective detection of fructose and the ratiometric monitoring of fructose and 

glucose via UV-Vis spectroscopy.  We find that fructose promotes a striking solution 
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color change in the presence of preheated, colored arylboronic acid resorcinarene 3.1 

(from pink-purple) instantly at room temperature.  Colorless chemosensor 3.1 (5.2 mM) 

is heated at a gentle reflux for 3 min in DMSO (0.9 mL) in air to afford a colored solution 

containing 3.1.  After cooling to room temperature, fructose (1 equiv) in 0.1 mL H2O is 

added.  A color change from pink-purple to orange-yellow is observed.  Glucose, sucrose, 

maltose, lactose, xylose, and glucose, 3 equiv each, exhibit no color change within 2 h at 

room temperature (Figure 3.2). 

 

Figure 3.2.  A selective color change promoted by fructose is observed at room 
temperature upon addition to a colored solution containing 3.1. 

 

The color change is monitored by observing the ratiometric absorbance intensity 

decrease at 536 nm and increase at 464 nm (Figure 3.3).  The absorbance changes exhibit 

a linear dependence with fructose concentration (R = 0.9079 and 0.9419 at each of the 

two wavelengths, respectively).  The ratio of glucose to fructose in blood plasma is ca. 

100:1.  Addition of 1 equivalent of fructose to a colored solution containing 3.1 at room 

temperature results in an 8.6 % increase in the absorbance at 464 nm.  Addition of 100 
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equivalents of glucose to the fructose/3.1 solution results in no detectable change in the 

fructose/3.1 absorbance at 464 nm.  Addition of a second equivalent of fructose to this 

latter solution results in a readily observable absorbance increase of 3.3 %.   

At 536 nm, the absorbance of solutions of 3.1 is lowered by 20 % upon addition 

of 1 equiv fructose.  Subsequent addition of 100 equivalents of glucose lowers the 

absorbance further by 12 %.  Addition of another equivalent of fructose again lowers the 

absorbance by 24 % (Figure 3.3). 
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Figure. 3.3. Upper:  Addition of fructose to a preheated (3.0 min at reflux) solution of 
3.1 (5.2 x 10-3 M) in DMSO at room temperature affords concentration-dependent 
absorbance changes at 464 nm and 536 nm.  Lower:  UV-Vis spectra of a 9:1 
DMSO:H2O solution containing 3.1 (5.2 x 10-3 M) pre-heated (1.5 min at reflux) (i) 
alone, (ii) upon addition of 1 equiv fructose at room temperature which produces an 
absorbance increase at 464 nm and a corresponding decrease at 536 nm, (iii) upon 
addition of 100 equiv glucose which produces no absorbance change at 464 nm but a 
decrease at 536 nm and (iv) upon addition of a second equivalent of fructose which 
affords a further absorbance increase at 464 nm and decrease at 536 nm. 
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This result indicates the potential feasibility of determining fructose, in the 

presence of excess of glucose, by monitoring fructose concentrations at 464 nm, where an 

absorbance change is not produced in response to glucose.  In addition, one should be 

able to concurrently determine the glucose present in a sample via analysis of the ratio of 

the absorbance at 536 nm (at which wavelength both glucose and fructose promote signal 

changes) to the absorbance at 464 nm, for instance, after the fructose concentration is 

determined at 464 nm. 

The selectivity for fructose appears consistent with our previous binding constant 

studies of neutral sugars.3.6 Additionally, we determined that anionic fructose-boronate 

formation lowers the pKa of the colored xanthenes (3.2), resulting in absorbance changes. 

3.6  It is well-known that xanthene dyes show an increase in absorbance at their shorter 

visible wavelength and a decrease in absorbance at their longer visible wavelength in 

response to a lowering of solution pH.  Thus, we can ascribe the ratiometric responses 

observed at 464 nm and 536 nm in the current studies as due, in large part, to a lowering 

of xanthene pKa upon sugar binding. 

The UV-Vis studies described above would require higher concentrations of 

sugars than typically found in most naturally-occurring biological samples in order to 

generate useful signals.  We are investigating the synthesis and study of new functional 

xanthene dyes with enhanced sensitivity in order to avoid concentration steps in sample 

monitoring.  Since the xanthenes (3.2) are present in colored solutions only at micromolar 

levels, 3.6 their synthesis and/or isolation as discreet compounds should afford materials 

with higher colorimetric sensitivity, since a significant amount of sugar binds to excess 

colorless boronic acid 3.1.  We meantime find, however, that colored solutions containing 
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3.1 show promise for monitoring glucose levels in the range of physiological levels via 

fluorescence spectroscopy. 
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Figure 3.4.  Upper:  Fluorescence emission changes produced upon addition of D-
glucose to a colored solution (DMSO:H2O 9:1) containing 3.1 (5.0 x 10-3 M) at room 
temperature.  The glucose concentration was increased from 0 to 7.4 x 10-4 M.  Lower:  
Fluorescence emission changes produced upon addition of D-fructose to a colored 
solution (DMSO:H2O 9:1) containing 3.1 (5.0 x 10-3 M) at room temperature.  The 
fructose concentration was increased from 0 to 1.8 x 10-3 M. 
 

Enhanced glucose selectivity via fluorescence detection in the range of 

physiological concentrations and in human blood plasma.  The fluorescence emission 

spectra of colored solutions containing 3.1 and added glucose or fructose are shown in 

Figure 3.4. As the sugar concentration is increased we observe concomitant emission 

increases promoted by fructose and glucose.  The significant signaling generated by 

glucose is in contrast to the UV-Vis studies (vide supra) in which relatively much weaker 

absorbance responses were promoted by glucose as compared to fructose. 
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The normal level of D-fructose in human blood plasma is ca. 50 μM.  

Fluorescence emission spectra of colored solutions containing 3.1 and added fructose, 

obtained over the fructose concentration range of 20 μM to 100 μM, exhibit no detectable 

fructose-promoted emission.  Healthy levels of D-glucose are ca. 5 mM.  The emission 

spectra of glucose (5.5 x 10–3 M) and 3.1 (1.0 x 10–3 M) in DMSO:H2O, 9:1, as well as in 

a 9:1 DMSO:plasma solution, are shown in Figure 3.5.  Emission increases due to the 

presence of glucose are observed in both cases.  A dependence of fluorescence emission 

intensity on increased glucose levels in plasma is observed (Figure 3.5). 
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Figure. 3.5.  Upper:  Fluorescence emission spectra produced by (i) a preheated (3 min 
at reflux) colored solution (DMSO:H2O 9:1) containing 3.1 (5.0 x 10-3 M) at room 
temperature, (ii) the same conditions but in the presence of 20 μM D-fructose, added at 
room temperature, which affords no observable change in emission, (iii) the same 
conditions as (i) but with added D-glucose (5.3 μM ) which promotes an emission 
increase and (iv) same conditions as (iii) but in deproteinized human blood plasma 
instead of H2O, which exhibits an emission increase in response to added glucose.  
Lower:  Concentration-dependent emission changes produced via room temperature 
additions of D-glucose to a 9:1 DMSO:plasma solution containing 1. 
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The results of the fluorescence studies show that the boronic acid-functionalized 

xanthenes (3.2) may promote the detection of glucose in blood plasma with negligible 

interference from fructose.  New UV-Vis and near-IR absorbing congeners of 3.2, 

possessing functionality for greater potential glucose signaling ability, are currently being 

designed in our lab to address potential fluorescence interference issues in blood plasma.   

The enhanced fluorescence emission promoted by glucose, as compared to its 

relatively weaker UV-Vis responses (e.g., relative to fructose), may be attributed to 

chelation by neighboring boronic acids of 3.2.  It is well-known that glucose can be 

chelated by bis-boronic acids.  This results in chemosensor scaffold rigidification effects, 

which have been previously demonstrated to afford fluorescence emission 

enhancement.1,9  An excess of boronic acid binding sites relative to glucose should 

promote chelation.  The large excess of non-absorbing 3.1 compared to responsive 

fluorophores (3.2) should thus facilitate glucose-promoted emission by competing for 

glucose binding to 3.2.  

3.4. Conclusion 

We have presented evidence that oligomeric xanthene dye-functionalized boronic 

acids, which form in situ from tetraaryl boronic acid resorcinarene macrocycles, show 

promise for the selective detection of glucose and fructose.  The fluorescence studies 

indicate that selectivity for glucose over fructose at physiological levels in plasma may be 

achieved.  Via UV-Vis spectroscopy, we observe high fructose selectivity.  Additionally, 

ratiometry may also be used to simultaneously measure fructose and glucose levels, at 

proportionally higher concentrations.  The mechanistic insights gained from these results 

will aid us in designing improved xanthene-derived chemosensors with tuneable 
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properties.  The synthesis of water soluble and surface-bound congeners of the molecules 

described herein is also in progress. 
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CHAPTER 4 

 
ORGONAMETALLIC COMPLEXES AS THERAPEUTIC AGENTS 

 
 
4.1. Introduction 
 

This chapter describes the synthesis and applications of synthetic organometallic 

complexes herein called metallosalophenes (MSPs).  Included are metal-chelating 

analogs.  The animal studies described herein were performed at Brown University 

Medical School under the direction of Dr. Laurent Brard. 

MSPs are currently employed in the protection of tissues and/or cell types during 

cancer chemotherapy4.1, as de-novo drugs and or analogs possessing such therapeutic 

applications as anti-neoplastic, anti-angiogenic and anticancer activity4.2. More 

importantly, they function as free radical scavengers4.3 in the case of the some other 

diseases such as Alzheimer’s4.4. 

It has now been discovered that a number of MSPs display anticancer activity.  

This has been demonstrated in vitro in various cultured solid tumor cancer cells such as 

neuroblastoma, breast, ovarian, prostate, pancreatic, vulvar, and liver and in other non-

solid human tumors too.  Furthermore, MSP anticancer activity is present in vivo. 
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Figure 4.1. The structures of metallosalophenes  
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The preparation of the salophene-based metal complexes involve a condensation 

reaction of a substituted salicylaldehyde and a substituted diamine.4.5 In general, the 

quantities of these compounds are reacted in a 2:1 molar ratio in absolute ethanol.  The 

solutions are refluxed for 1 h.  The salophene ligand is either precipitated in analytically 

pure form by the addition of water, or the metal complex is generated directly by addition 

of the corresponding metal as its acetate, halide, or triflate salt.   

Another method of preparing the complexes is as follows: the starting diamine is 

R,R- or S,S-1,2-diamino-1,2-diphenylethane and the starting salicylaldehyde is 3-tert-

butylsalicylaldehyde.  A solution of 2.0 mmol of 3-tert-butylsalicylaldehyde in 3 ml of 

absolute ethanol is added dropwise to a solution of 1.0 mmol of (R,R)-1,2-diamino-1,2-

diphenylethane in 5 ml of ethanol.  The reaction mixture is heated to reflux for 1 h and 

then 1.0 mmol of Mn(OAc)2.  4 H2O is added in one portion to the hot (60° C.) solution.  

The color of the solution immediately turns from yellow to brown upon addition.  It is 

refluxed for an additional 30 min and then cooled to room temperature.  A solution of 

10% NaCl (5 ml) is then added dropwise and the mixture stirred for 0.5 h.  The solvents 

are then removed in vacuo and the residue is triturated with 50 ml of CH2Cl2 and 50 ml of 

H2O.  The organic layer is separated and the brown solution is washed with saturated 

NaCl.  Separation of the organic phase and removal of solvent resulted in a crude 

material which can be recrystallized from C6H6/C6H14 to give a (R,R)-salophene-Mn 

complex.   

Salophenes 4.3 and 4.6 are synthesized as per the scheme described below 

(Scheme 4.1. and Scheme 4.2). 
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Scheme. 4.1. The synthesis of 4.3. 
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Scheme. 4.2. The synthesis of 4.6 
4.2. Results and Discussion 

4.2.1. Iron-Salen Complex Inhibits Proliferation of Epithelial Ovarian Cancer Cells  

Given the exciting activity of iron-salen on platinum-resistant SKOV-3 epithelial 

ovarian cancer cells, we re-assessed viability via the MTS assay using a narrow dose 

range (0-5 μM). These additional experiments have re-confirmed the previous 

conclusions (IC50 = 630 nM, Figure 4.2) and added additional insight regarding the 

potency of this iron-salen complex.  

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2. Iron-salen significantly inhibits the viability of SKOV-3 ovarian cancer cells. 
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4.2.2. Acute Toxicity Studies  
 

Iron-salen was administered orally and intra-peritoneally to two groups of 7 

animals and acute toxicity was evaluated by the up-and-down method.  The estimated 

LD50 was >2000 mg/kg body weight (PO) and > 5.5mg/kg, body weight (IP) (Figure 

4.9). 

 

 
Figure 4.3. Acute Toxicity (PO); O = No Response, X = Death within 2-14 days (right)   
 
 
4.2.3. Caspase Activation in vivo 

 
The possible role of caspase-3 in iron-salen induced apoptosis in vivo was 

evaluated by Western blotting wherein the full-length and activated from of caspase-3 are 

probed by the use of specific antibodies. Following treatment, tumor tissue was harvested 

and this tissue was sonicated for 5 minutes. After this material re-suspended in lysis 

buffer, it is separated on 12% SDS PAGE. Subsequently, it is blotted on to PVDF 

membrane and treated with antibodies specific for monitoring both pro- and activated 

caspase-3 (Figure 4.4). Treatment of 344 Fischer rats injected NUTU-19 ovarian cancer 

cells by iron-salen resulted in cleavage of pro-caspase-3 in a dose-dependent manner, as 

evidenced by the appearance of 19 and 17 kDa intermediates. PARP-1 cleavage was 

measured by employing antibodies specific to cleaved PARP-1. Treatment of 344 Fischer 

rats injected NUTU-19 ovarian cancer cells resulted in PARP-1 cleavage in a dose-

dependent fashion, as shown by the increase of the 85 kDa inactive intermediate band. 

Increased PARP-1 cleavage coincided with increased caspase-3 activation. The caspase-3 

and PARP-1 results suggest that iron-salen affects ovarian cancer cells in a similar 

fashion both in vitro and in vivo. 
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Figure 4.4. Caspase-3 activation and PARP-1 inactivation by Iron-Salen 
 
4.2.4. Preliminary Therapeutic Trial 

 

In this preliminary trial, twenty rats, divided into two treatment groups of five 

animals each (0.5 mg/kg and 1.0 mg/kg) and one control group (12 animals) were used. 

The rat ovarian cancer model has been described elsewhere.4.6 NUTU-19 cells were 

cultured to 80% confluence, harvested, counted for cell number and viability, and 

injected intra-peritoneal (IP). Iron-salen was applied to two treatment groups in the form 

of daily IP injections (the stock solution of iron-salen in DMSO/water (20/80 v/v) 

mixture were diluted 100-fold prior to injection) and vehicle (DMSO/water 20/80 v/v) 

was injected to the untreated control group. Two different concentrations of iron-salen 

are determined based on previous in vitro work and acute toxicity results.  

The treatment of experimental animals began in week 3 to mimic the conditions 

following cytoreductive surgery. According to this model, 100% of animals develop 

disease after three weeks and are euthanized secondary to overwhelming tumor burden by 

8-12 weeks (post-injection). Duration of treatment was 12 days and was based on tumor 

burden in the control animals. Animals were monitored for any discomfort and pain per 

IACUC protocols. All twenty animals were euthanized at week 5 and tumor tissue was 

harvested. While control animals showed a constantly elevated amount of hemorrhagic 

ascites, those treated with the iron-salen treated displayed substantially less hemorrhagic 

ascites volume (Figure 4.5). More importantly, decrease in ascitic volume appeared to be 

dose-dependent. The difference was especially substantial in the 1mg/Kg treatment 

group.  

Parallel results were afforded with omental weight between control and treatment 

groups. As previously depicted, it was found to be consistently higher in control animal 

than in treatment groups. Furthermore, 7 (70%) animals afforded response to treatment 
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with iron salen during this preliminary treatment trial. As 40% of treated animals 

displayed a complete response (Figure 4.6 and 4.7), 30% had partial response.  

Consequently, these preliminary in vivo experiments have provided a firm 

evidence that iron-salen is a potent anti-ovarian cancer drug with high potential in the 

treatment of this devastating disease. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5. (Top) Effect of Iron-Salen on Tumor Burden: Weight of Omentum (bottom) 
Effect of Iron-Salen on Hemorrhagic ascites. 
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Figure 4.6. (Left) Photograph of diaphragm in treated rat (1 mg/Kg). Arrow: Normal diaphragm, (right) Photograph of diaphragm in 
control rat. Arrows represent tumor nodules  
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Figure 4.7. (Left) Photograph of omentum in treated rat (1 mg/Kg). A = Stomach, B = Omentum), (right) Photograph of omentum in 
control rat. Arrows represent tumor nodules. 
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4.3. Experimental Section. 
 
4.3.1. Synthesis of 4.8 
 To a suspension of o-vanillin (1.52 g, 9.99 mmol) in of anhydrous ethanol          

(15 ml), 1,2-diaminobenzene (0.54 g, 4.99 mmol) is added. Upon reflux for 2 hours, an 

orange precipitate is afforded. The final compound 4.8 is isolated via suction and washed 

with cold ethanol (1.5 g, 80.2%).4.7 1H-NMR (300 MHz, DMSO-d6) δ (ppm): 3.82         

(s, 6H), 6.9 (t, J = 7.87 Hz, 2H), 7.14 (d, J = 7.34 Hz, 2H), 7.27 (d, J = 7.65 Hz, 2H),      

7.41-7.48 (m, 4H), 8.93 (s, 2H).13C-NMR (62.5 MHz, DMSO-d6) δ (ppm): 57.6, 117.3, 

120.5, 121.3, 121.8, 125.8, 125.8, 129.8, 144.1, 149.9, 152.6, 166.3. 

 
4.8.2. Synthesis of 4.3 

 To a suspension of 4.8 (0.4 g, 1.06 mmol) in anhydrous ethanol (15 ml), 

FeCl3.6H2O (0.286 g, 1.06) is added. Upon reflux for 1 hour, a grey-black precipitate is 

afforded.4.8 The final compound 4.3 is isolated via suction and washed with cold ethanol 

(0.11 g, 21.5%).   

 

4.8.3. Synthesis of 4.6 

 The compound 4.6 is prepared in situ upon from the condensation reaction of    

3,4-diaminothiophene 4.9 and o-vanillin in the presence of FeCl3.6H2O. To a solution of    

o-vanillin (057 g, 3.74 mmol) in of anhydrous ethanol (7 ml),                              

3,4-diaminothiophene.2HCl (0.35 g, 1.87 mmol) and FeCl3.6H2O (0.5 g, 1.87 mmol) are 

added. Upon reflux for 1 hour, a dark-blue precipitate is afforded. The final compound 

4.6 is isolated via suction and washed with cold ethanol (0.52 g, 56.7%). 

 
4.4. References 
 
4.1. a) Malfroy-Camine, B.; Baudry, M. Synthetic catalytic free radical scavengers 

useful as antioxidants for prevention and therapy of disease. US 5,403,834 (b) 
Malfroy-Camine; B.; Doctrow, S. R. Synthetic catalytic free radical scavengers 
useful as antioxidants for prevention and therapy of disease. US 5834509, US 
5,696,109, US 5,827,880.  

 
4.2.     a) Kasugai, N.; Murase, T.; Ohse, T.; Nagaoka, S.; Kawakami, H.; Kubota, S.        

J. Inorg. Biochem., 2002, 91, 349. b) Kariya, K.; Nakamura, K.; Nomoto, K.; 
Kobayashi, Y.; Namiki, M. Cancer Biotherapy, 1995, 10,  139. c) Jerome, A.; 
Carole, N.; Christiane, C.; Alexis, L.; Bernard, W.; Francois, G.; Frederic, B. J. 
Natl. Cancer I., 2006, 98,  236. 



 75

 
Figure 4.8. 1H-NMR of 4.8 
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Figure 4.9. 13C-NMR of 4.8. 
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Figure 4.10. FTIR of 4.8.  
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Figure 4.11. FTIR of 4.3. 
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Figure 4.12. FTIR of 4.6. 
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CHAPTER 1 


INTRODUCTION 
 
1.1. Lanthanide Complexes in Supramolecular Chemistry 


 Lanthanides complexes have gained significant attention due to their unique 


chemical and physical properties.1.1 The prime interest towards such complexes originate 


from so-called “ligand-field extension”. Unlike transition metal complexes wherein the 


ligand complexation is of both covalent and ionic character, lanthanide coordination is 


largely ionic. Consequently, lanthanides, even if in electrically neutral form, can bind to 


additional neutral or ionic ligands whereby they can achieve coordination numbers up to 


12.  


Eu N


N


N
O


O


(H3C)3C


(H3C)3C


3  


Figure 1.1. Europium tris(2,2,6,6-tetramethyl-3,5-heptadionate) and highly coordinated 
complexation with terpryridine. 
 
 Consequently, the use of such complexes have been widely reported in: (a) light 


converters, (b) Nuclear Magnetic Resonance and (c) catalysts in both chemical and 


biological systems. The field of application of lanthanides have also strecthed out to 


molecular recognition, especially recognition of biomolecules such as amino acids, 


nucleic acids, charged carbohydrates. 


 Although such biomolecules have been known to participate to several 


physiological conditions, their in vivo functions  are  not  fully  understood.  Hence,  their  
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quantification in physiological states by simple spectroscopic methods are of paramount 


importance. Hence, we have turned our attention to the design and synthesis of 


lanthanide-based chemosensors to quantify neutral carbohydrates and certain cancer 


biomarkers such as  lysophosphatidic acid (LPA) and gangliosides.  


1.2. Selective Detection of Lysophosphatidic Acid for Early Diagnosis of Ovarian 
Cancer 


 
 Ovarian cancer is a devastating health problem.  Nearly 10 million women in the 


US are at high risk for ovarian cancer.  There are 26,000 new US cases per year.1.2  The 


lack of effective methods for the early diagnosis of ovarian cancer is a serious health 


problem.  Ovarian cancer is a deadly gynecological disease.  


 Survival rates increase dramatically with early diagnosis.  Ovarian cancer is 


extremely difficult to detect early enough to allow for effective treatment.  To quote from 


a recent assessment: "Ovarian cancer is an insidious disease that kills more than 15,000 


Americans each year.1.3  The lethality of this disease stems from our inability to diagnose 


it easily and early; this is because its symptoms — such as nausea, loss of appetite and 


abdominal discomfort — are common to many disorders.  Consequently, most women 


are diagnosed with ovarian cancer in the late stage of the disease, for which the five-year 


survival rate is less than 30%. Yet, survival rates soar to over 90% if the disease is 


discovered when cancer is still localized to the ovaries."1.2,1.3 There are significant 


barriers to the diagnosis of early stage ovarian cancer. 


 Current methods used to identify ovarian cancer include transvaginal ultrasound, 


laparoscopy, or positive emission tomography.  While transvaginal sonography shows 


promise for early detection, it is too expensive to be widely used for routine screening.1.4    
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The correlation of altered levels of serum biomarkers to ovarian cancer have been the 


subject of many studies.  The protein CA-125 is currently the main biomarker of choice.  


However, other physiological conditions also promote increased CA-125 levels.  CA-125 


is less specific in premenopausal women.  The well-known low accuracy of CA-125, 


even in combination with other methods, has led to intensive efforts to find better 


biomarkers.  For instance, detailed computer analyses of the mass spectrometric data 


obtained from ovarian cancer and non-cancer subjects afforded nearly 100% accuracy of 


detection.1.5  This exciting report indicates that the early detection of ovarian cancer may 


be possible; however, this method is expensive, not point-of-care, and different analyses 


of the same data suggest different biomarker molecules.  For a detailed discussion of the 


drawbacks and complexity of this method, see references 1.2 and 1.6. 


 It is generally agreed that LPA monitoring is a useful biomarker for early 


detection.  LPA (oleoyl-L-α-lysophosphatidic acid) is a bioactive phospholipid with 


mitogenic and growth factor-like activities, an “oncolipid,” which stimulates the 


proliferation of cancer cells, and, as concluded in a recent review, "ovarian cancer 


appears to be driven through the production and action of LPA."1.8 There is general 


agreement in the biomedical literature that monitoring plasma LPA levels is potentially a 


highly promising way to detect ovarian cancer in its early stages.1.2,1.7,1.8  Findings in this 


area came from the lab of Xu et al., who found that plasma LPA levels afford a more 


sensitive diagnostic compared to CA-125.  


 LPA’s use as a biomarker is limited due to current problems with its monitoring.  


Large-scale population studies with the capability of yielding more-precise estimates of 


the sensitivity and specificity of LPA, both alone and in combination with other markers, 


for both screening and detection of recurrence, are necessary, as stated in a recent paper 
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of Sutphen et al.1.7  Currently, there are no methods that allow for very efficient 


monitoring of elevated LPA.  For example, using analytical HPLC, researchers could not 


separate some LPAs from lysophosphatidyl inositols (LPIs). In a recent article, scientists 


from Sloan-Kettering state that LPA is a potentially useful ovarian cancer biomarker; 


“however, the current method of measuring LPA, which involves lipid extraction 


followed by gas chromatography, may limit its utility.”1.9   


 Additionally, controversy regarding the reliability of LPA as an early-stage 


ovarian cancer marker exists due to problems with LPA isolation and handling: 


"…differences in the results from the groups likely arise from challenges in the collection 


and handling of plasma to prevent post collection production, metabolism or loss of LPA.  


A very significant complication is that during sample incubation prior to many analyses, 


significant enzyme generated elevation in serum LPA levels occurs (i.e., non-tumor-


related), greatly hindering diagnosis of ovarian cancer."1.8  


 A summary of specific current problems with LPA detection: 


(a) It is difficult to extract and quantify LPAs in the presence of other lipids [e.g., 


phosphatidylcholine, (PC) and sphingomyelin (SM)], which are present at much higher 


concentrations (in addition to LPI).1.10


(b) Routine laboratory analysis demands minimum sample preparation. The LPA 


extraction process is complex and time-consuming, due in part to the structure of the 


LPAs. Ideally, direct LPA detection from blood without any sample preparation is 


required.1.7,1.10 
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(c) Studies have revealed that plasma LPA levels can be misleading.  If the sample is 


incubated, LPA levels increase via biosynthesis via lysophospholipase activity, rather 


than originating from tumors!  Hence, LPA detection in plasma will be misleading as 


long as non-tumorogenic biosynthesis is not blocked. 
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Figure 1.2. The structures of LPA and other phospholipids. 


  


 To date, several methodologies have been used to address the selective and 


sensitive detection of LPA. These include HPLC1.10, tandem mass spectroscopy1.6, thin-


layer chromatography (TLC)1.11, capillary electrophoresis with indirect ultraviolet 


detection,1.12 radio-enzymatic assays1.13 and voltage clamped Xenopus oocytes.1.14 These 
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approaches involve expensive, sophisticated devices and complicated procedures 


unsuited for point-of care applications; for example,  


(i)          GC analysis necessitates esterification of the lipids prior to analysis. Although 


techniques such as HPLC or GC and mass spectroscopy may achieve selectivity and 


sensitivity, simpler methods allowing routine diagnosis of LPA are more desirable. 


(ii)      The problems related to LPA separation via 2D-TLC are complicated by the 


fact that the same LPA salts with differing counter ions (e.g., calcium and sodium) 


exhibit different mobilities, regardless of the nature of stationary phase material. 


(iii)      Colorimetric and fluorometric techniques are generally preferred, due to their 


simplicity. The only colorimetric LPA detection reported uses an enzymatic cycling 


method.1.15  In general, enzymes have relatively limited shelf life and stability and are 


relatively expensive, compared to synthetic materials.  In the particular case of this 


aforementioned of the enzyme cycling method, indirect detection (peroxide) is used to 


determine LPA levels.  However, this methodology has to date never been cited since its 


publication (2003) in the context of its embodying a feasible method for LPA detection.  


(iv) Direct chromatographic detection with absorption spectroscopy is feasible but 


at wavelengths below 215 nm. Unfortunately, this region is where solvent and solvent 


trace impurity absorption becomes substantial.1.10 


1.3. Non-hydrolytic Detection of Gangliosides 


Glycosphingolipids (GSLs) are complex lipid molecules that are components of 


eukaryotic cell membranes.1.16  The structures of some sphingolipids are shown in Figure 


1.1.  Typically, they consist of at least one monosaccharide that is glycosidically linked to 


hydrophobic lipid residues such as sphingosine or ceramide.  The nature of these lipids 
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depends on the cell type; sphingosine is mostly found in mammalian cells whereas 


phytosphingosine is encountered in yeast and plant cells.  Modifications of the lipid 


backbone that range from phosphorylation to gluco- and galactosylation generate large 


structural diversity.  Indeed, more than 300 biomolecules are currently known as 


glycosphingolipids. They are an integral part of the eukaryotic cell membrane with their 


sugar residues residing on the outer layer of the membrane.  The orientation of the sugar 


residues renders these glycolipids critical in numerous intercellular processes including 


cellular protection against both mechanical and chemical damage, proliferation, 


differentiation, cell-cell recognition and cell development.  They moreover function as 


receptors for lectins, selectins, toxins and viruses. However, their in vivo functions are 


not fully understood.1.16  


Their metabolism is linked to the synthesis of several biomolecules. 


Glycosphingolipids are synthesized in the endoplasmic reticulum and Golgi apparatus 


while being catabolized in lysosomes.  The condensation of palmitoyl-CoA and serine is 


a common step in all glycosphingolipid syntheses which initiate the individual 


biosynthetic pathways.  Whereas the anabolism of glycosphingolipids allows access to 


several metabolic products (for instance, sphingomyelin can be synthesized from 


ceramide simply via the addition of a phosphorylcholine residue), their catabolism is 


mostly essential for biomolecular recycling purposes.  This recycling route commences 


with the import of macromolecules into lysosomes by several mechanisms such as 


endocytosis, pinocytosis, phagocytosis and autophagocytosis.  Therein, macromolecules 


are cleaved by acidic hydrolytic enzymes and some accessory proteins that are utilized 


for sequential degradation. Thereafter, the hydrolytic products are carried back to the 


cytoplasm for reutilization.  This process is also essential since it constitutes the first step 
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of the synthesis of some key molecules such as ceramide which is vital in signal 


transduction.1.16  
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Figure 1.3. The structures of selected sphingolipids. 
 


Defects in GSL metabolism can potentially have severe consequences that result 


in metabolic disorders.  Interestingly, these disorders are related to their catabolism, not 


their biosynthesis.  There is no disease known to originate from defects in 


glycosphingolipid synthesis.  Conversely, failure in their catabolism results in their 


extensive accumulation in tissues, which leads to physiological conditions also known as 


lysosomal storage diseases. To date, more than 40 different types of lysosomal storage 


diseases are known.  Although the frequency of each lysosomal storage disease is 


relatively rare, their cumulative effect can be significant.1.16


 8







The deficiency of the corresponding hydrolytic enzymes in lysosomes is the 


origin of the storage diseases. The reason for this deficiency is defects in genes that 


encode the enzymes. Studies toward the underlying mechanism of these defects have 


revealed that the expressed enzymes possess relatively low or no activity.  Accordingly, it 


was found that mutations in genes cause alterations in nucleotide bases that are in close 


proximity to the active site.  These mutations include base substitution, insertion or 


deletion and partial gene deletion.  Relatively mild mutations, on the other hand, may 


alter the stability of both mRNA and the enzymes.  The severity of the disease is 


determined by the extent of the mutations.  Although regarded as indirect effects, 


mechanisms such as deficiency in lysosomal enzyme transport or localization are also 


known. The lack of enzymes and the associated lysosomal storage diseases are 


summarized in Table 1.1.1.16-1.18 


Gangliosides (Figures 1.2 and 1.3) are the sialic acid-containing 


glycosphingolipids.   They exhibit the greatest structural variation and complexity of the 


GSLs.  Gangliosides are characterized by a high amount of stearic acid (C18, about 80%) 


in their  hydrophobic region, as well as C16, C20 and C22.  Changing the fatty acid 


component to α-linoleic acid alters biological activity dramatically in vitro. However, it is 


the carbohydrate moiety that is of primary importance in determining distinctive 


ganglioside properties.  In any given cell type, the number of different gangliosides may 


be relatively small, but their nature and compositions may be characteristic and highly 


relevant to the functioning of the cell.1.16-1.18 
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Table 1.1. Sphingolipid, glycosphingolipid and lysosomal storage diseases (adapted from 
reference 1.16d). 


Disease Enzymatic defect GSL storage material 
Gaucher β-glucosidase, saposin 


C activator 
Glucosylceramide, 


GM1, GM2, GM3, GD3, 
Glucosylsphingosine 


Sphingolipid 
activator deficiency 


Sphingolipid activator 
protein 


Glycolipids 


GM1 gangliosidosis GM1 gangliosidosis GM1, GM2, GM3, GD1A 
Tay Sachs β-Hexosaminidase A GM2, other glycolipids 
Sandhoff β-Hexosaminidase A 


and B 
GM2, other glycolipids 


GM2 activator 
deficiency 


GM2 activator protein GM2, other glycolipids 


Krabbe β-Galactosidase Galactosylceramide 
Fabry α-Galactosidase A Globotriaosylceramide 


and blood group B substances 
Metachromatic 
leukodystrophy 


Arylsulfatase A, saposin 
B activator 


Sulphated glycoproteins 
and glycolipids, and GM2 


Farber Ceramidase Ceramide, GM3 
Niemann-Pick A & B Sphingomyelinase Sphingomyelin, GM2, GM3 


Fucosidosis α-Fucosidase Fucosides and glycolipids 
 


Mucolipidosis II & III 
 


 
GlcNac transferase 


 


Oligosaccharides, 
mucopolysaccharides, 


lipids, GM1 
Mucopolysacharidosis 


I, II, III, VII 
Various enzymes 
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Galactosialidosis Protective protein 
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Figure 1.4. Structures and symbolism for gangliosides and their asialo derivatives, 
glucosylceramide, and N-acetyl-α-neuraminic acid: (GlcCer): R, i; (GalCer): R, ii; 
(LacCer): R, i, ii; (GA2): R, i, ii, iii;  (GA1): R, i, ii, iii, iv;  (GM4): R, ii, A;  (GM3): R, i, 
ii, A; (GM2): R, i, ii, iii, A;  (GMl): R, i, ii, iii, iv, A; (NeuAc): A (adapted from ref. 1.19). 
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As the brain develops, the content of gangliosides and the degree of sialylation 


increases. Numerous biological properties of gangliosides related to cellular and 


molecular recognition have been attributed to the sialic acid residues.  They are involved 


in the binding and the transport of positively charged molecules as well as the attraction 


and repulsion of the cells.  Due to their terminal position on glycolipids, sialic acids 


mostly function as receptors for a large variety of molecules such as hormones, toxins, 


viruses, cells and bacteria.  In addition, they behave as ligands for lectins and selectins 


during a number of cell-cell and cell-matrix processes.  Interestingly, they are known to 


shield the recognition sites whereby the activation of the immune system is inhibited.  


Accordingly, oversialylation of the cell surface results in the protection of malignant 


cells.  For these reasons, it is clear that sialic acids play roles in tumor biology. In fact, 


imbalances in sialic acid levels can have clinical manifestations such as alterations in cell 


adhesion, a condition implicated in some cancers, and graft rejection.  An increase in the 


levels of both soluble and cellular sialic acid can thus be a marker for cancer.1.17 


However, since the levels of sialic acids can also be altered by non-pathological factors 


(e.g., smoking, pregnancy and age), altered levels do not solely indicate the presence of 


cancer and must be viewed in conjunction with other markers for diagnostic purposes.1.2 


N-Acetylneuraminic acid (Neu5Ac) is the most abundant form in humans.  As a 


part of glycosphingolipids (i.e., the gangliosides) or glycoproteins, they typically occupy 


the terminal position of the glycan chain.  An interesting aspect of sialic acid chemistry is 


that the anomeric configuration is determined by whether sialic acid is in a free or 


conjugated form. In solution, the anormeric equilibrium between the α- and β-  favors  the  
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Scheme. 1.1. Pathways for the biosynthesis of the common series of gangliosides 
involving sequential activities of sialyltransferases and glycosyltransferases. 
   


latter.  However, sialic acids, when conjugated to biomolecules, are predominantly in the 


α-anomer form.1.17


• Major Biochemical Properties of Gangliosides.  Gangliosides are ligands for 


myelin stability and aid in nerve regeneration by binding a myelin-associated 


glycoprotein.  They can act as cell-type specific antigens controlling cell growth and 


differentiation and intercellular interactions.  They play key roles in the immune systems 


and serve as biomarkers of cancerous tissue.   They regulate cell signaling, serving as 


receptors for interferon, epidermal growth factor, nerve growth factor and insulin.  


Gangliosides bind to bacterial toxins and mediate interactions between microbes and host 


cells during infections.  Genetic defects in catabolism lead to ganglioside accumulation. 


In generalized gangliosidosis, excess GM1 in the nervous system results in mental 
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retardation and liver enlargement.  In Tay-Sachs syndrome, GM2 accumulation in the 


brain leads to mental retardation and blindness.1.16-1.18 


Table 1.2. Selected examples of studies using total ganglioside determination for 
research on various cancers.   


Disease Levels Matrix Reference
Colorectal Cancer 15.6 – 58.6 mg/dL Serum 1.4 


Pancreatic Adenocarcinoma 16.6 – 34.6 mg/dL Serum 1.5 
 
 


Advanced Ovarian Cancer 


2.7 – 4.8 mg/mL/105 
cells/24 h 


 
14 – 40 mg/mL 


 
18 – 57 mg/mL 


Tumor Cells 
 
 


Peritoneal Fluid 
 


Plasma 


1.6 


 


• The Significance of Total Ganglioside Determination for Modern Biomedical 


Research.  Gangliosides account for 6 % of brain tissue.  The main gangliosides found in 


the human brain are GM1, GD1a, GD1b and GT1.  GM3 is mainly localized in extraneural 


tissues. The overall composition of the gangliosides can be influenced by environmental 


factors as well as by nerve stimulation or drug administration.  The determination of total 


ganglioside content is highly useful in studying storage diseases (Table 1.1) and in the 


investigation of specific cancers (Table 1.2).1.20-1.24  Recent investigations show that 


serum total ganglioside (STG) levels have shown promise as a potential tool for assessing 


the response to immunotherapy in melanoma patients.1.23  Additionally, in a recent 


example, total ganglioside content was recently shown to increase by 20-fold in studies 


involving the links between lipid metabolism and Alzheimer’s disease.1.24a 


This represents a relatively small subset of many recent investigations. 


Ganglioside detection is a major challenge.  Because biological media contain a high 


content of other lipids, extensive purification of gangliosides by methods such as 


reversed-phase chromatography and DEAE-Sephadex columns are often required prior to 
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analysis.  Table 1.3 summarizes the most commonly used current methods for 


ganglioside detection.  Simple and rapid, reliable and user-friendly techniques are 


needed:   


According to Tsui et al.,1.24b “conventional strategies for profiling gangliosides 


suffer from poor reproducibility, low sensitivity, and low throughput capacity.  Prior 


separation of gangliosides by thin-layer chromatography and/or high-performance liquid 


chromatography not only was tedious and laborious but also could introduce uneven 


losses of molecular species.”  These researchers prove that it is necessary to separate 


phospholipids from gangliosides to obtain satisfactory MS data.  In fact the method 


ultimately used required partitioning of gangliosides into an aqueous phase to obtain 


enrichment.  Aqueous phase partitioning requires purification via gel filtration to remove 


low molecular weight contaminants such as salts and peptides.  Percent recovery in the 


aqueous phase was not described; however, others have described moderate sample 


losses during sample handling prior to analysis. 


In another recent representative example, Sato et al.1.24a used the following 


procedure prior to analyzing total ganglioside content in embryonal carcinoma cells:  


lipids were extracted from cells successively in CHCl3/MeOH, total lipid extract was next 


“further purified”, then separated by TLC using CHCl3/MeOH/0.2 % CaCl2 (55:45:10), 


detected with orcinol sulfuric acid reagent and quantified with a dual-wavelength flying 


spot scanner in reflectance mode at 500 nm.  This method also partitions and detects 


other “acidic glycolipids”.  Therein, potential interferences/co-elution was not described.  


More importantly, the orcinol reagent is non-selective and reacts with reducing sugars. 


Sample pre-treatment procedures may be written in a somewhat simplified 


manner in experimental sections.  For example, in a recent volume of Methods in 
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Enzymology (vide infra), an initial “total lipid extraction” step can entail lyophilization, 


pulverization, re-suspension in solvent, sonication, 18 h re-extraction, centrifugation, re-


extraction, clarification, extract combination, concentration, centrifugation, partitioning 


and drying.  This is all done prior to the partitioning of gangliosides from other lipids.  


The ensuing partitioning step involves addition of mixed alcohol solvents to the extract, 


vortexing, sonication, addition of saline solution, alternating vortexing and sonication, 


centrifugation, removal of the organic solvent and repartioning the aqueous layer.  


Alternating vortexing and sonication is again repeated, and organic solvent is removed 


followed by lyophilization.  The sample is then loaded onto a Sephadex G-50 column 


using very precise specifications.  Recoveries from the individual steps are reported to be 


93 % or higher. 


It is, in other words, relatively tedious to purify the gangliosides and prepare them 


for analysis.  We thus propose an extensive study aimed at developing highly selective 


receptors.  Our goal is to provide simple and enabling new methods for ganglioside 


research and ultimately for the early and efficient screening of ganglioside-related 


diseases.  We envision that the detailed spectroscopic work planned will guide the near 


future development of reagents not just for detecting gangliosides, but also neutral 


glycolipids.  For example, future targets would include the smaller glycosphingolipids 


glucosylceramide and lactosylceramide, for which there aren't good reagents available. 


Table 1.3. Major current techniques used for ganglioside detection and their associated 
challenges (summarized from the introduction in reference 1.9b). 


Technique Main Challenge 
Antibodies 


 
TLC 


 
Cross-react with multiple gangliosides and/or glycoprotein species 
with similar carbohydrate epitopes. 
 
Low resolution does not adequately resolve heterogeneity of 
gangliosides 
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Table 1.3. Continued 
 


HPLC 
 
 


MS/TLC or 
MS/HPLC 


 
Tandem MS/MS 


 


 
Laborious purification, and requiring derivatization with 
chromogens/fluorogens 
 
Tedious purifications/derivatizations 
 
 
Ganglioside ionization is significantly suppressed by samples 
containing other biomolecules such as phospholipids 
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