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Abstract 

Supply chain collaboration programs, such as continuous replenishment program (CRP), 

is among the most popular supply chain management practices. CRP is an arrangement between 

two partners in a supply chain to share information on a regular basis for lowering logistics costs 

while maintaining or increasing service levels. CRP shifts the replenishment responsibility to the 

upstream partner to avoid the bullwhip effect across the supply chain. This dissertation aims to 

quantify, measure, and expand the benefits of CRP for the purpose of reducing logistics cost and 

improving customer service. The developed models in this dissertation are all applied in different 

case studies supported by a group of major healthcare partners. The first research contribution, 

discussed in chapter 2, is a comprehensive data-driven cost approximation model that quantifies 

the benefits of CRP for both partners under three cost components of inventory holding, 

transportation and ordering processing without imposing assumptions that normally do not hold 

in practice. The second contribution, discussed in chapter 3, is development of a verifiable 

efficiency measurement system to ensure the benefits of CRP for all partners. Multi-functional 

efficiency metrics are designed to capture the trade-off in gaining efficiency between multiple 

functions of logistics (i.e. inventory efficiency, transportation efficiency, and order processing 

efficiency). In addition, a statistical process control (SPC) system is developed to monitor the 

metrics over time. We discuss suitable SPC systems for various time series behaviors of the 

metrics. The third contribution of the dissertation, discussed in chapter 4, is development of a 

multi-objective decision analysis (MODA) model for multi-stop truckload (MSTL) planning. 

MSTL is becoming increasing popular among shippers while is experiencing significant 

resistance from carriers. MSTL is capable of reducing the shipping cost of shippers substantially 

but it can also disrupt carriers’ operations. A MODA model is developed for this problem to 



 

incorporate the key decision criteria of both sides for identifying the most desirable multi-stop 

routes from the perspective both decision makers.  
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1 

1 INTRODUCTION 

We are currently in the era of constant and fast change in consumer behaviors and 

expectations, explosion of new products that seek to fulfill customer’s new needs, intense 

competition between companies in gaining market share, and using data analytics as a leverage 

to boost sales and lower costs. In such an environment, customer satisfaction cannot be achieved 

easily. They no longer accept out of stocks, excessive sales prices, and delayed deliveries. 

Supply chain management is truly challenged at the present time to appropriately cope with these 

changes in consumer behavior. It is fair to say that the retail industry is a pioneer in elevating 

customer expectations and innovating solutions. However, other industries, such as healthcare, 

need to catch up quickly because consumers, soon or later, will expect the same level of standard 

from every provider. Supply chain collaboration and multi-stop trucking have been amongst the 

effective solutions that companies use to cope with many of such challenges. In chapter one and 

two, we shed light on cost modeling and performance measurement of supply chain collaboration 

programs, while the third chapter devotes to a fairly recent concept in the transportation sector, 

multi-stop truckload planning.  

Different types of supply chain collaboration programs have been proposed and evolved 

over time since late 1980’s when Walmart introduced the concept. Continuous Replenishment 

Program (CRP), or sometimes known as Vendor Managed Inventory (VMI), is the most common 

form of such programs. CRP is a collaboration initiative between two partners, normally a 

supplier and a retailer, to lower the logistics cost and increase service performance. It requires 

the supplier (upstream partner) to manage the replenishment process using inventory and demand 

information shared by the retailer (downstream partner). Decision making within supply chain 

collaboration programs, especially at the managerial level, oftentimes relies on a leader’s “gut 
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instinct” rather than data-based analytics. Decisions such as whether to start/continue a CRP 

relationship with a partner are oftentimes made very simplistically based on past experiences. 

Likewise, evaluation of current relationships often consists of a simple comparison of the 

relationship with similar ones. In many cases, collaboration programs are initiated between two 

partners for a very specific reason, which mostly has minimal improvement impact, while the 

full potential of the program is yet to be realized. The first chapter of this dissertation contributes 

to this area by developing a multi-echelon model to approximate the cost of supply chain within 

a CRP relationship for both partners. The model approximates three cost components of 

inventory holding, transportation, and order processing for a multi-product, one supplier one 

retailer system subject to service level constraints. The model is applied on healthcare supply 

chain network that supports replenishment of healthcare distributors from a manufacturer. The 

model answers three key questions: 1) What is the cost savings impact of CRP on each partner? 

2) How does it vary across a distribution network? 3) How does it vary across different cost 

components? 

The original benefit of CRP or VMI systems is reducing inventory levels by removing the 

bullwhip effect from the replenishment process in the supply chain (Lee et al., 1997). However, 

various academic studies and industry practices have revealed that significant transportation and 

order processing savings can also be achieved in VMI by proper shipment consolidation and 

timely replenishment (Çetinkaya et al., 2008; Parsa et al., 2017). The challenge begins when the 

partners care more about some of the benefits than others. This behavior, which is somewhat 

inevitable, could become destructive and oftentimes leads to the failure of collaborative 

relationships. It is essential to consider the objectives of all involved partners in order to build 

trust, maintain a VMI relationship, and utilizing its full potential. Our collaboration with a group 
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of major healthcare partners in the U.S. confirmed that maintaining a successful VMI 

relationship needs a verifiable efficiency measurement system to ensure the benefits of VMI for 

all partners. 

The crucial point is that an effective system for monitoring VMI relationships needs a 

group of efficiency metrics that can capture the trade-off in gaining efficiency between various 

functions of logistics such as inventory holding, transportation and order processing. Since VMI 

shifts the replenishment responsibility to upstream partner, it can be manipulated to favor a party 

or at least be conceived for doing so. As Gunasekaran and Kobu (2007) identified through a 

multi-faceted literature review on supply chain and logistics performance metrics, there are 

numerous overlapping metrics with 85% of them being quantitative, mostly concerned with 

financial performance, and focused on a single function of logistics operations (i.e. inventory, 

transportation, etc.). There has not been a significant work to design metrics that explore the 

relationship between functions or propose a statistical screening framework to monitor them over 

time. The second chapter of this dissertation proposes multi-functional efficiency metrics that 

can capture the trade-off in gaining efficiency between multiple functions of logistics. There is a 

trade-off between gaining efficiency in inventory holding and in transportation, which mostly 

concerns with maintaining an optimal level of shipment consolidation. The same is true for 

inventory holding efficiency versus order processing efficiency. In the second chapter, we 

develop metrics that can illustrate the status of a system with respect to such tradeoffs over time. 

We also determine optimal trade-off levels for the developed metrics. In addition, a statistical 

process control (SPC) system is developed to monitor them over time. The SPC system suggests 

whether the system is acting normal or if a significant shift has happened. We elaborate the 
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application of metrics and suitable statistical methods to develop SPC systems using datasets 

obtained from a major healthcare manufacturer. 

VMI arrangements empower upstream partners by giving them the full responsibility of 

replenishing the downstream partners. They can adjust replenishment quantity and timing of 

their customers in order to use a single vehicle for delivering to multiple locations. This mode of 

transportation is called multi-stop truckload (MSTL) and is rapidly gaining market share, mainly 

from the less-than-truckload (LTL) business. Besides VMI, other factors, such as congestion in 

urban areas and achieving more certain delivery time, have led shippers to use MSTL more 

frequently. While shippers have shown great interests in offering MSTLs to carriers, carriers 

have become more reluctant to accepting them. MSTLs can impose extra costs to carriers and 

disrupt their operations by making drivers unavailable for longer periods and interrupting their 

network flow balance. On the other hand, rejections from carriers cause shippers to go to their 

next preferred carrier, which is often more expensive. Therefore, the problem is a multi-objective 

decision analysis from the perspective of shippers. They should offer multi-stop routes that not 

only maximize their cost savings but have a desired level of acceptance chance from carriers. In 

a recent empirical study, Chen and Tsai Yang (2016) has identified the key properties of MSTLs 

that contribute to their acceptance chance from carriers.  

The chapter three of this dissertation proposes a multi objective decision model to 

identify the best two-stop routes that maximize the cost savings for the shipper and fulfill the 

most important load acceptance criteria of the carriers, which are out-of-route miles and 

proximity of stops. The model provides a trade-off capability for selecting routes with more 

appeal to either shipper or carrier. The application of the model is discussed for a healthcare 

supply network. We use weekly forecast data at the SKU level along with shipping and distance 
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information of the distribution network to compute the potential savings of every possible two-

stop route via an exhaustive search. The routes with positive savings will be subject to a multi 

objective decision model that selects the best routes given the load acceptance criteria of carriers. 

The chapter provides an insightful sensitivity analysis that can help shippers to wisely offer 

multi-stop routes that maximize their savings and acceptance rate. 
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2 CHAPTER 1 

2.1 Introduction 

Introduced and popularized in the late 1980’s by Walmart and Proctor & Gamble, 

Continuous Replenishment Programs (CRPs) are one of the most commonly used supply chain 

collaboration (SCC) initiatives. Variants of CRPs are sometimes represented as Vendor Managed 

Inventory (VMI) in academia and among practitioners. CRP requires the manufacturer (upstream 

partner) to manage the replenishment process by using inventory and demand information shared 

by the distributor (downstream partner). Hence, CRP resembles a centralized inventory control 

system. CRP has been adopted by many organizations from different sectors, including the 

healthcare sector, and continues to be one of the best practices for improving supply chain 

performance (Waller et al. 1999, Krichanchai & MacCarthy 2016). This research is motivated by 

a leading healthcare manufacturer who is interested in quantifying the benefits of CRP 

relationships with healthcare distributors in order to select the most profitable partners for their 

continuous replenishment programs and to set fair profit sharing contractual terms. The 

distributors are separate entities and are not internal parts of the manufacturer’s organization. In 

a typical healthcare supply chain, distributors are supplied directly from manufacturers and 

hospitals are supplied directly from distributors. 

The initial motivation behind collaboration in supply chains was reducing the bullwhip 

effect, which reduces the required amount of inventory across the chain (Lee et al. 1997). In 

addition, industrial practices and academic research revealed other benefits of CRP that are 

available in transportation and ordering costs (Disney et al. 2003, Zhang et al. 2007, Van der 

Vlist et al. 2007). However, implementing a CRP between two partners requires significant 

investments for the technological requirements of the arrangement. The partners need to have 
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Warehouse Management Systems (WMS) and Electronic Data Interchange (EDI) capabilities to 

share accurate demand and inventory information on a daily basis (Angulo et al. 2004). In a 

complicated supply chain (SC), in which the relationship between two partners could easily grow 

into a network with a few hundred lanes and thousands of SKU’s, the decision of entering a CRP 

relationship or terminating one can have substantial cost and service impacts. As discussed in 

Sabath & Fontanella (2002), SCC has been difficult to implement and part of the problem has 

been the failure in differentiating the most profitable customers from the rest. Furthermore, a 

successful CRP relationship should include a fair revenue or profit sharing contact that 

incentivizes both partners to work together to optimize the entire SC (Giannoccaro & 

Pontrandolfo 2004, Cachon & Lariviere 2005, Li et al. 2015). The first step to set a fair and 

motivating contract is to have an accurate estimation of future cost savings.  

This paper presents a cost approximation model with service level constraints under 

stationary stochastic demand. Service levels to end customers (i.e. hospitals) and to a distributor 

are measured by the probability of meeting the demand immediately from stock (i.e. type 1 

service measure). We considered a two-echelon serial supply chain in which a product is shipped 

from a manufacturer distribution center (DC) to a distributor DC. A CRP between a 

manufacturer and distributor normally contains a network of various demand and supply 

locations (nodes) that are connected through channels (links). This model is able to accurately 

estimate the cost savings at the channel level, location level, and network level. The cost savings 

are computed for the inventory holding, transportation and order processing cost components for 

both partners. We demonstrate the model on a case study in a healthcare supply chain.  To 

analyze a multi-product system, we developed the concept of a “standardized item” as a 

representation of the product mix on each channel. Therefore, the present paper considers a 
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problem setting of a manufacturer that supplies a distributor with a single product (standardized 

item). To summarize, the model answers the following fundamental questions about a CRP 

relationship: 1) What is the cost savings impact of CRP on each partner? 2) How does it vary 

across a distribution network? 3) How does it vary across different cost components? 

The remainder of this paper is organized as follows. The next section reviews the related 

literature on SCC modeling with emphasis on the impact of CRP on the total cost of SC. Section 

3 provides the assumptions of the model and an overview of the model structure. Sections 4 

through 6 discuss the cost components of the model and impact of CRP on each. Section 7 

presents the results of the case study, followed by the final section that presents conclusions and 

future work. 

2.2 Literature Review 

SCC models started with the emergence of Quick Response (QR) in late 1980s and early 

1990s when J.C. Penny implemented this model in the apparel industry to shorten the long lead 

times (Iyer & Bergen 1997). During the same time frame, Walmart introduced the Retail Link 

platform that connects suppliers with the end customer demand data (Stalk et al. 1992). The next 

version of SCC model was introduced in the grocery industry as Efficient Consumer Response 

(ECR). Spartan Stores (Schiano & McKenney 1996), HEB (Clark et al. 1994), Campbell Soup 

(Cachon & Fisher 1997) and Proctor and Gamble (Keh & Park 1997) were pioneers in 

implementing ECR strategies (Sahin & Robinson 2002). The main purpose of ECR was to 

improve the responsiveness of the SC to consumer demand in the grocery sector. The largest 

reported benefits under ECR have come from Continuous Replenishment Programs (CRP), 

which were eveloped as a new mechanism for managing the flow of information and products 

between a supplier and a group of retailers (Cachon & Fisher 1997). CRP accounted for 38% of 
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the total grocery industry ECR savings, and since then CRP has been implemented in many other 

SC sectors often under the name of Vendor Managed Inventory (Waller et al. 1999, Keh & Park 

1997). CRP rearranges the conventional system of ordering and replenishment characterized by 

the transfer of purchase orders from the distributor to the manufacturer. CRP is a process of 

restocking where the manufacturer ships to the distribution center full loads that are supposed to 

satisfy a prearranged level of stock (Derrouiche et al., 2008). Oftentimes in CRP, the distributor 

is responsible for providing demand forecasts to the manufacturer, while in VMI the 

manufacturer generates forecasts using the demand data shared by the distributor. In VMI, the 

manufacturer is the primary decision-maker in order placement and inventory control, by 

determining the appropriate inventory levels of each of the products (within agreed upon bounds) 

and the appropriate inventory policies to maintain the levels (Derrouiche et al., 2008). In 

summary, CRP is a relationship with a more balanced distribution of power between a vendor 

and a retailer but VMI shifts the power more to the vendor. Finally, the most advanced form of 

SCC is Collaborative Planning, Forecasting and Replenishment (CPFR) where all members of a 

SC jointly develop demand forecasts, production plans, and inventory replenishments. The 

conditions that rationalize upgrading from CRP to CPFR are investigated by Sari (2008) and 

Kamalapur et al. (2013). The focus of this study is technically on CRP but since VMI and CRP 

are often used interchangeably in both academia and industry, the literature review covers both 

types of collaboration programs. 

In positioning this paper, the broad framework proposed by Torres et al. (2014) is very 

useful. They categorize published academic literature on VMI into five groups of: strategic, 

statistical characterization, analytical modeling (deterministic and stochastic), simulation, and 

game theory (Table 1). This paper fits into the third group, where VMI arrangements are 
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modeled by either deterministic or stochastic approaches. For completeness, we review 

representative papers in two groups most relevant to this paper: analytical modeling and 

simulation modeling. Another classification of VMI literature is presented in Govindan (2013), 

which suggests six dimensions of: inventory, transportation, manufacturing, general benefits, 

coordination/collaboration, and information sharing (Table 1). 

Table 1: Two classifications of published academic literature on VMI 

based on Torres et al. (2014) and Govindan (2013) 

# Research methodology  # Problem focus 

1 Strategy  1 Inventory 

2 Statistical Characterization  2 Transportation 

3 Analytical Modeling  3 Manufacturing 

4 Simulation  4 General benefits 

5 Game Theory and Contracts  5 Coordination/Collaboration 

   6 Information Sharing 

In this section, we review the literature by combining the two classification schemes 

shown in Table 1. Govindan (2013) classifies the VMI literature based on problem focus and 

Torres et al. (2014) categorizes them based on research methodology. Figure 1 presents a Venn 

diagram to visualize the position of papers within the problem focus areas. The research 

methodology used in each paper is indicated by a number next to each paper. To further clarify 

the contribution areas, we add order processing as a new dimension to the dimensions proposed 

in Govindan (2013). Order processing includes activities in both ends of a CRP or VMI program 

such as picking, packing, loading, unloading, receipt verification, sorting, and putting away. As 

illustrated in Figure 1, this paper is located at the intersection of inventory, transportation, and 

order processing where analytical and simulation models have been proposed to study the 

impacts of VMI arrangements.  
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Inventory 
Impact

Transportation 
Impact

Coordination & 
Collaboration

Manufacturing 
Impact

Order Processing 
Impact

General 
Benefits

Information 
Sharing

Research methodologies used:
(1) Strategy
(2) Statistical characterization
(3) Analytical modeling
(4) Simulation
(5) Game theory and VMI contracts

(4) (Anthony and 

Censlive 2006)

(4) (Yang et al. 2003)
(3) (Xu and Leung 2009)
(3) (Razmi et al. 2010)
(3) (Pasandideh et al. 2011)
(2) (Dong et al. 2014)

(5) (Li et al. 2015)

(3) (Cachon and Zipkin 1999)
(3) (Achabal et al. 2000)
(5) (Wang et al. 2004)
(4) (Sari 2008)
(3) (Wong et al. 2009)
(5) (Yao et al. 2010)

(4) (Waller et al. 1999)
(4) (Song and Dinwoodie 2008)
(3) (Savaşaneril and Erkip 2010)

(3) (Gavirneni et al. 1999)
(3) (Cachon and Fisher 2000)
(3) (Lee et al. 2000)
(3) (Yao and Dresner 2008)

(2) (Daugherty et al. 1999)
(4) (Angulo et al. 2004)

(1) (Blatherwick 1998)
(2) (Kuk 2004)
(1) (Niranjan et al. 2012)

(1) (Holweg et al. 2005)
(1) (Mikael Ståhl Elvander 
et al. 2007)

(3) (Dong and Xu 2002)
(3) (Yao et al. 2007)
(3) (Zhang et al. 2007)
(4) (Ofuoku 2009)
(3) (Darwish and Odah 2010)
(3) (Zavanella and Zanoni 2009)
(3) (Zanoni et al. 2012)
(3) (Torres et al. 2014)
(5) (Lee and Cho 2014)
(3) (Mateen et al. 2015)
(3) (Choudhary and Shankar 2015) (4) (Southard and 

Swenseth 2008)

(3) (Yang et al. 2010)

(3) (Toptal and Çetinkaya 2006), (Cetinkaya et al. 2008)
(3,5) (Nagarajan and Rajagopalan 2008)
(3) (Gümüs et al. 2008)
(3) (Bookbinder et al. 2010)
(4) (Kiesmüller and Broekmeulen, Robertus Alphonsus 
Cornelis Maria 2010)
(4) (Lyu et al. 2010)
(3) (Lee and Ren 2011)
(4) (Mangiaracina et al. 2012)
(3) (Kannan et al. 2013)
(3) (Choudhary et al. 2014)
(3) (Choudhary and Shankar 2015)
(3) (Mateen and Chatterjee 2015)

 
Figure 1: A graphical representation of published literature on VMI based on focus area and 

methodology 

We remark that the papers that share the same spot in the literature with this paper have 

not investigated the true impact of CRP on transportation and order processing costs. Almost all 

of these papers assume constant ($/item) transportation and order processing costs in their 

models. The constant rate cost structures overlook the more complicated cost structures of FTL, 

LTL, and parcel transportation modes. The same is true for order processing cost because 

handling activities at both vendor and retailer are driven by shipment size and variety of products 
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to process. Thus, a constant rate cost structure does not capture the impact of CRP on this cost 

component. In addition, a vendor normally uses a combination of the three transportation modes 

to transport the demand to a retailer; however, the developed models in the literature assume a 

single type of truck (i.e. full truckload) as the only means of transportation. In summary, the 

literature includes simplified models that show the shipment consolidation opportunities of CRP 

and indicate the associated transportation and order processing benefits without proposing a 

representative model that considers realistic cost structures.  

Toptal & Cetinkaya (2006) study the benefits of VMI in transportation by using transport 

vehicles (i.e. having full truckloads) in a single-period setting. The paper studies a VMI 

relationship between a vendor and a buyer with stochastic demand and a single item with a short 

life cycle. Transportation cost is modeled as a combination of a fixed cost rate component, which 

represents ordering/replenishment cost, and a step-wise cost component, which represents the 

truck cost. A single type of truck (i.e. full truckload) is assumed as the only means of 

transportation. The results indicate that the vendor’s expected profit is not necessarily increasing 

in buyer’s order quantity, which is against the traditional belief on economies of scale in VMI. 

This work is extended in Cetinkaya et al. (2008) by modeling the vendor’s demand as a 

stochastic bulk arrival process. Assuming a fixed cost of ordering, dispatching and 

transportation, and using cost approximation expressions, they show that the use of quantity 

based consolidation policies for outbound shipments can result in up to 57% cost savings.  

Gumus et al. (2008) examine the benefits of Consignment Inventory (CI) for a single 

item system with deterministic demand using a joint economic lot sizing framework. The total 

cost function includes three cost components of inventory, ordering and transportation while 

ordering and transportation costs are assumed to be fixed. Bookbinder et al. (2010) develop a 
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deterministic demand model to quantify the benefits of VMI in comparison with a regular 

independent decision-making system and a central decision-making system (i.e., both vendor and 

customer are members of the same corporate entity). The assumption is one vendor supplies a 

single product to one customer and similar to Gumus et al. (2008), ordering/ material handling 

and transportation costs are assumed to be fixed. Under a constant demand rate, the paper 

identifies the conditions that develop three possible outcomes of VMI, named as efficient system 

(both partners benefit), potentially-efficient system (total cost decreases but only one partner 

benefits), and inefficient system (system’s total cost increases). Kannan et al. (2013) further 

extend this work to an analysis of one-vendor, multiple-buyer, and stochastic demand, motivated 

by a pharmaceutical case study. The paper provides useful insights on cost savings by making 

assumptions about possible impacts of VMI. Similar to many studies, ordering, handling, and 

transportation costs are assumed to be independent of shipment size. 

Kiesmüller & Broekmeulen, Robertus Alphonsus Cornelis Maria (2010) consider a multi-

product serial two echelon inventory system with stochastic demand and use a simulation study 

to determine the benefit of VMI from economies of scale in order picking activities. Order 

picking cost is modeled with two components: i) a fixed ordering cost per order line and ii) 

traveling distance of order picker in warehouse. They assume VMI enables the vendor to enlarge 

the preferred order quantities of the retailer to benefit from economies of scale and increase the 

utilization of transportation trucks and order picker. Similar to Toptal & Cetinkaya (2006) they 

assume a single type of truck as the only means of transportation. The results show if inventory 

holding costs are relatively low compared to the handling and transportation costs, a reduction in 

the number of order lines can reduce the total cost at the vendor. This study did not include the 

handling cost at the retailer side and is limited to a specific warehouse layout. 
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In two different case studies, Lyu et al. (2010) and Mangiaracina et al. (2012) 

collaborated with international grocery manufacturers and retailers to quantify the value of VMI 

in different cost components. The critical impact of VMI is enabling the manufacturer to plan the 

replenishment for optimizing transportation using a multi-stop policy. The results indicate that 

manufacturer’s benefits are always greater but retailers have higher savings percentage rates. 

Lee and Ren (2011), proposed a periodic-review stochastic inventory model to examine 

the benefits of VMI in a global environment. The paper uses a (s, S) policy for the supplier and 

shows that VMI provides an opportunity for the supplier to achieve economies of scale in 

production and delivery. Production/delivery cost is modeled together with a fixed component 

and a variable component.  

Choudhary et al. (2014) compared the value of VMI with the value of Information 

Sharing via a two-echelon analytical model that assumes the transaction of a single item between 

a supplier and a retailer under time varying deterministic demand. Fixed ordering, setup, 

handling, and transportation costs are assumed with negligible lead times. The results emphasize 

the importance of transportation savings in VMI by indicating that when handling and 

transportation costs are negligible the cost benefits of shifting from IS to VMI is not significant. 

Mateen & Chatterjee (2015) developed a similar model with the same assumptions for one 

vendor and multiple retailers with a focus on modeling the transportation savings using an 

efficiency factor. Choudhary & Chatterjee (2015) extended the previous model by considering a 

non-stationary stochastic demand process and multiple retailers. However, the assumptions for 

ordering, handling and transportation costs remained unchanged. 
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2.3 Model Assumptions and Structure 

The model described in this paper estimates the cost of inventory holding, order 

processing and transportation for each SC channel separately. A channel is a pairing of a 

manufacturer distribution center (DC) and a distributor DC. The difference between one channel 

and another could be significant due to a variety of factors such as product mix, transportation 

requirements, demand characteristics, etc. The followings are the critical assumptions of the 

model along with the logic behind using them: 

• We considered a two-echelon serial supply chain in which a product is shipped from a 

manufacturer DC to a distributor DC. The concept of “standardized item” is developed to 

analyze a multi-item system in the case study.  

• Manufacturer and distributor are two separate entities and are not internal parts of each 

other’s organizations.  

• This paper does not investigate the impact of CRP on the manufacturing plant level, 

which in fact can be very significant. The focus of the model is on the cost of distribution 

(i.e. inventory holding, transportation, and order processing) from a manufacturing DC to 

a distributor DC under service level requirements (Figure 3).  

• The demand process at the distributor DC and manufacturer DC is modeled as Poisson 

process and compound Poisson process respectively. Usage of Poisson process for 

demand modeling is very common, especially when the underlying arrival process is 

unknown, and is used numerously in the context of SCC modeling (Cheung & Lee 2002, 

Lyu et al. 2010). Stationary stochastic process is very suitable for modeling the demand 

in CRP relationships because as Krichanchai & MacCarthy (2016), Mateen & Chatterjee 

(2015), and Niranjan et al. (2012) suggest, the most suited items for CRP have stable and 
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low variability demand. In the case of non-stationary demand, our model can be used as a 

piece-wise stationary function for approximation. 

•  All the cost components of the model are shared between the manufacturer and 

distributor excluding the transportation cost which is the responsibility of manufacturer 

only. This assumption is used by many papers including Mangiaracina et al. (2012) and 

Kannan et al. (2013). The main reason is the fact that CRP requires the manufacturer to 

take the responsibility of replenishment and since replenishment pattern directly affects 

the transportation cost, CRP partners oftentimes agree on transferring the cost of 

transportation to the manufacturer. 

• Transportation cost contains three components of FTL, LTL and Parcel costs. FTL unit 

cost is $/mile, while LTL and Parcel costs are on a per load basis using a cost structure 

based on distance and weight. The determination of transportation mode in the model is 

based on the demand size (i.e. combination of volume and weight). 

• Order processing cost contains two components of order generation cost and handling 

cost. Order generation cost component is assumed to be fixed ($/order), which implies an 

independency from order size. This is a realistic assumption because orders are normally 

generated electronically and automatically based on inventory levels and replenishment 

parameters with minimal manual labor intervention. In contrast, the handling cost 

component, which includes picking, packing, loading, unloading, receipt verification, 

sorting, and putting away, heavily involves manual labor and is greatly dependent on the 

order size and the variety of items on a purchase order. Therefore, handling cost is 

assumed to be variable and a function of order size and variety of items. 
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The model estimates the SC cost through a historical demand data analysis, which 

provides the basic demand characteristics of a channel such as product mix, demand variability, 

and order frequency. Figure 2 illustrates the model structure and its major components. Inventory 

holding cost of each channel is estimated using a (r, Q) system and channel-specific inventory 

policy parameters. The transportation cost of each channel is estimated by selecting the 

appropriate transportation mode (i.e. FTL, LTL or Parcel) using the demand characteristics, and 

channel specific transportation data such as rate, distance, order frequency, product mix and item 

dimensions. Order processing cost, which includes both order generation cost and handling cost, 

is driven by the ordering frequency of each channel. The impact of CRP on each cost component 

will be discussed in the following sections.  
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Figure 2: Model structure 
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2.4 Inventory Holding Cost 

The first challenge of inventory holding cost modeling is the fact that thousands of 

different SKUs are regularly being ordered by the distributors while each SKU’s demand has a 

different underlying stochastic process, different unit cost and possibly different holding charge. 

The problem becomes even more challenging because each shipment (e.g., a full truckload) 

contains several different SKUs and each SKU has different characteristics such as unit weight 

and volume that are important in transportation cost modeling. Thus, we simplify the problem in 

such a way that does not hurt the accuracy of cost approximations but enables the efficient 

analysis of system costs. We focused on the “significant few” instead of the “trivial many” items 

as a well-established strategy to cope with the size of the problem. An analysis of the demand 

data on all channels revealed that the Pareto rule clearly defines the demand pattern of items for 

each channel. As a general rule among all channels, the top 20% of items in terms of monetary 

value (demand × price) make up 80% of the volume, weight and monetary value of the shipped 

items on a channel. Therefore, we reduced the size of the demand data for each channel to only 

the top items that represent at least 80% of the volume, weight and monetary value of the 

channel demand. We call this set of important items that is different for each channel the 

“standardized item set” which is representative of the product mix for each channel. In the 

demand and cost modeling, the characteristics of the standardized item set (e.g., unit price, unit 

volume, and unit weight) are considered as the weighted average characteristics of the entire set. 

The mathematical illustration of standardized item set and its characteristics are as follows: 

𝑑𝑖,𝑡 demand of item 𝑖 in period t 

𝑝𝑖 unit price ($) of item 𝑖 

𝑤𝑖 unit weight (𝑙𝑏) of item 𝑖 
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𝑣𝑖 unit volume (𝑓𝑡3) of item 𝑖 

𝑁  set of all items ordered in period T 

𝑀 standardized item set 

𝑃 weighted average unit price ($) of the standardized item set 

𝑊 weighted average unit weight (𝑙𝑏) of the standardized item set 

𝑉 weighted average unit volume (𝑓𝑡3) of the standardized item set 

Note that 𝑡 and T should be appropriately selected based on the planning strategies. In the 

case study section (section 2.7), 𝑡 and 𝑇 are assumed to be a week and a year. T should be 

sufficiently long (e.g., a year) to represent the real demand of the channel. The relationship 

between the total demand of a channel and the demand of the standardized item set is defined as 

follows: 

 

∑∑𝑝𝑖×𝑑𝑖,𝑡
𝑖∈𝑀

𝑇

𝑡=1

≥ 0.8×∑∑𝑝𝑗×𝑑𝑗,𝑡
𝑗∈𝑁

𝑇

𝑡=1

 (1) 

 

∑∑𝑤𝑖×𝑑𝑖,𝑡
𝑖∈𝑀

𝑇

𝑡=1

≥ 0.8×∑∑𝑤𝑗×𝑑𝑗,𝑡
𝑗∈𝑁

𝑇

𝑡=1

 (2) 

 

∑∑𝑣𝑖×𝑑𝑖,𝑡
𝑖∈𝑀

𝑇

𝑡=1

≥ 0.8×∑∑𝑣𝑗×𝑑𝑗,𝑡
𝑗∈𝑁

𝑇

𝑡=1

 (3) 

The characteristics of the standardized item set for each channel are computed as follows: 

 
𝑃 =

∑ ∑ 𝑝𝑖𝑑𝑖,𝑡𝑖∈𝑀
𝑇
𝑡=1

∑ ∑ 𝑑𝑖,𝑡𝑖∈𝑀
𝑇
𝑡=1

 , 𝑊 =
∑ ∑ 𝑤𝑖𝑑𝑖,𝑡𝑖∈𝑀
𝑇
𝑡=1

∑ ∑ 𝑑𝑖,𝑡𝑖∈𝑀
𝑇
𝑡=1

  ,

𝑉 =
∑ ∑ 𝑣𝑖𝑑𝑖,𝑡𝑖∈𝑀
𝑇
𝑡=1

∑ ∑ 𝑑𝑖,𝑡𝑖∈𝑀
𝑇
𝑡=1

 

(4) 
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2.4.1 Demand Modeling 

Figure 3 illustrates the dynamics of ordering between the echelons of a supply chain in 

both CRP and non-CRP relationships. In a non-CRP relationship, the manufacturer DC does not 

have visibility of the end customer demand information and only receives the ordering 

information from the distributor DC. In a CRP relationship, the manufacturer DC replenishes the 

distributor DC automatically and on a regular basis without receiving any order information. In 

return, the manufacturer DC ensures an agreed upon service level and inventory level over time 

at the distributor DC. To enable such an arrangement, they share demand, forecast, and inventory 

level information on a regular basis (normally daily) through EDI transactions. 
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Figure 3: Ordering dynamics in non-CRP (top diagram) and CRP (bottom diagram). Dashed 

arrows indicate information flow and solid arrows indicate physical flow  

In order to estimate the demand parameters that a distributor realizes from end customers, 

we study the orders that the distributor sends upstream to the manufacturer. The historical order 

data of the standardized item set for each channel contains the required information about the 
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orders that a distributor DC sends to a manufacturer DC. The orders are realized over time for 

the entire standardized item set in order to compute order frequency, size and variance of the 

orders associated with the distributor. The sequence of standardized orders is mathematically 

defined in Equation (5) where 𝑑𝑖,𝑡 is the amount of item i ordered in period t. 

 𝐷𝑡 = ∑ 𝑑𝑖,𝑡𝑖∈𝑀    for t = 1, … , T (5) 

Equation (5) indicates that the demand at each period t (𝐷𝑡) is realized as the 

accumulation of the amounts ordered for all the items in period t (i.e. items that are identified in 

the standardized item set). 

𝑂𝐹̅̅ ̅̅ 𝐷 

the average order frequency of a distributor DC to a manufacturer DC (i.e. average 

time between positive demand occurrences 𝐷𝑡 > 0 over period T). 

𝐸[𝐷𝑡] the mean order size (i.e. average of positive demand values 𝐷𝑡 > 0 over period T). 

𝑉𝑎𝑟[𝐷𝑡] 
the variance of order size (i.e. variance of positive demand values 𝐷𝑡 > 0 over 

period T). 

𝜇𝑐 the mean demand rate at the distributor DC level 

𝜎𝑐
2 the variance of demand rate at the distributor DC level 

𝜇𝑤 the mean demand rate at the manufacturer DC level 

𝜎𝑤
2  the variance of demand rate at the manufacturer DC level 

The arrival rate of demand is assumed to follow a Poisson process with rate 𝜆𝑐, where 

𝜆𝑐 = 𝑂𝐹̅̅ ̅̅ 𝐷, which means the time between demand occurrences are independent and follow 

an exponential distribution with parameter 1/𝜆𝑐. The mean and variance of the demand rate 

(units/time) is derived as 𝜇𝑐 = 𝜎𝑐
2 = 𝑂𝐹̅̅ ̅̅ 𝐷×𝐸[𝐷𝑡]. In order to clarify with an example, if 𝑂𝐹̅̅ ̅̅ 𝐷 is 3 

times per week and 𝐸[𝐷𝑡] is 300 units then the weekly mean and variance of demand is 900 units.  

http://en.wikipedia.org/wiki/Exponential_distribution
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The demand at the manufacturer level is a complicated stochastic process that depends on 

the distribution of the time between replenishments from a manufacturer DC to a distributor DC, 

and the size and variance of the replenishment orders. Here we assume the demand at the 

manufacturer level also follows a compound Poisson process. The basis for this assumption is 

appropriate in many situations because the distributor DC receives the end customer demand on 

a regular basis (𝑂𝐹̅̅ ̅̅ 𝐷) with certain size and variance and they just transfer the demand to the 

upstream echelon with much more variability due to the bullwhip effect. The constructed 

compound Poisson process for the manufacturer level has the same arrival rate (i.e. 𝜆𝑤 = 𝑂𝐹̅̅ ̅̅ 𝐷) 

with the following mean and variance of demand rate (units/time): 

 𝜇𝑤 = 𝜆𝑤×𝐸[𝐷𝑡] = 𝑂𝐹̅̅ ̅̅ 𝐷×𝐸[𝐷𝑡] = 𝜇𝑐 (6) 

 𝜎𝑤
2 = 𝜆𝑤×[𝑉𝑎𝑟(𝐷𝑡) + (𝐸[𝐷𝑡])

2] = 𝑂𝐹̅̅ ̅̅ 𝐷×[𝑉𝑎𝑟(𝐷𝑡) + (𝐸[𝐷𝑡])
2] (7) 

The last piece of demand modeling is to represent the demand during lead time at the 

manufacturer DC. This lead time represents the time required for the manufacturing plant to 

resupply the manufacturer DC. 

𝐿𝑤 lead time from the manufacturing plant to manufacturing DC 

𝐷(𝐿𝑤) demand during lead time at manufacturing DC 

according to Svoronos & Zipkin (1988) and assuming that: 

 𝐷(𝐿𝑤) ~ 𝐺𝑎𝑚𝑚𝑎 (𝐸[𝐷(𝐿𝑤)], 𝑉𝑎𝑟[𝐷(𝐿𝑤)]) (8) 

we can approximate the following: 

 𝐸[𝐷(𝐿𝑤)] ≅ 𝑂𝐹̅̅ ̅̅ 𝐷×𝐸[𝐷𝑡]×𝐸[𝐿𝑤] (9) 

 𝑉𝑎𝑟[𝐷(𝐿𝑤)] ≅ 𝐸[𝐿𝑤]×𝜎𝑤
2 + 𝜇𝑤

2×𝑉𝑎𝑟[𝐿𝑤] (10) 

The reason behind approximating 𝐷(𝐿𝑤) using the Gamma distribution is the robustness 

of this distribution in accurate estimation of demand during lead time when the actual 
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distribution is unknown (Rossetti & Ünlü 2011). In the next section, the inventory performance 

metrics at both levels of distributor and manufacturer are discussed. 

2.4.2 Manufacturer Inventory Holding Cost & Performance 

In order to quantify the performance of inventory management at the manufacturer, the 

following relevant inventory metrics are considered: 

𝐼𝑤̅ the average inventory level at the manufacturer DC. 

𝐵̅𝑤 the average back order level at the manufacturer DC. 

𝑅𝑅̅̅ ̅̅ 𝑤 the average ready rate at the manufacturer DC 

The inventory systems at both levels of manufacturer and distributor are modeled 

assuming a  (𝑟, 𝑄) system. 𝑟𝑤 and 𝑞𝑤 denotes the reorder point and reorder quantity at the 

manufacturer DC. 

 𝑟𝑤 =  𝐸[𝐷(𝐿𝑤)] + 𝑁
−1(𝜏𝑤)×√𝑉𝑎𝑟[𝐷(𝐿𝑤)] (11) 

 

𝑞𝑤 = √
2×𝑘𝑤×𝜇𝑤
𝜏𝑤×ℎ

 (12) 

In Equation (11) & (12), 𝑘𝑤 and 𝜏𝑤 denote the ordering cost and the required service 

level at the manufacturer DC, respectively. Equation (12), which computes 𝑞𝑤 subject to a fill 

rate constraint (𝜏𝑤), is an approximation of a lower bound that is obtained in Agrawal & 

Seshadri (2000) and a heuristic approach discussed on page 226 of Zipkin (2000). A safety factor 

requirement is normally set above 90%. In the case study, 𝜏𝑤 is set to be 98%. 𝑁−1(𝜏𝑤) denotes 

the safety stock factor, which is the inverse of the standard normal cumulative distribution with 

in stock probability of 𝜏𝑤. Having 𝑟𝑤 and 𝑞𝑤 computed, the performance metrics at the 

manufacturer DC are calculated as follows (Zipkin 2000): 
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 𝐼𝑤̅(𝑟𝑤, 𝑞𝑤) =
1

2
𝑞𝑤 + 𝑟𝑤 − 𝐸[𝐷(𝐿𝑤)] + 𝐵̅𝑤(𝑟𝑤, 𝑞𝑤), (13) 

 
𝐵̅𝑤(𝑟𝑤, 𝑞𝑤) =

1

𝑞𝑤
[𝐹2(𝑟𝑤) − 𝐹

2(𝑟𝑤 + 𝑞𝑤)], (14) 

 𝑅𝑅̅̅ ̅̅ 𝑤(𝑟𝑤, 𝑞𝑤) = 1 −
1

𝑞𝑤
[𝐹1(𝑟𝑤) − 𝐹

1(𝑟𝑤 + 𝑞𝑤)], (15) 

where 𝐹1 and 𝐹2 are the first and second order loss functions of the demand during lead 

time distribution (assumed to be Gamma here). The total holding cost at the manufacturer DC 

(Equation (17)) can be computed using the average inventory estimation (𝐼𝑤̅) and unit holding 

cost (ℎ𝑤). While 𝐼𝑤̅ is already computed (Equation (13)), unit holding cost can be computed by 

multiplying the manufacturer holding charge (𝑖𝑤) to the standardized item cost (𝑃) (Equation 

(16)). 

 ℎ𝑤 = 𝑖𝑤𝑃 (16) 

 𝐻𝐶𝑤 = ℎ𝑤𝐼𝑤̅ (17) 

In-transit inventory cost, which usually is part of the manufacturer total cost, should be 

computed. First, average in-transit inventory level should be estimated by multiplying the mean 

demand rate to the transportation time (i.e., 𝑇𝑐) (Equation (18)). Then, the cost of in-transit 

inventory can be computed as shown in Equation (19): 

 𝐼𝜂̅ = 𝐸[𝐷𝑡]×𝑇𝑐 (18) 

 𝐻𝐶𝜂 = ℎ𝜂𝐼𝜂̅ (19) 

2.4.3 Distributor Inventory Holding Cost & Performance 

In order to calculate the same performance metrics for the distributor DC, we need to first 

model the demand during lead time at the distributor level (𝐷(𝐿𝑐)). The lead time at the 

distributor level contains two components: order processing/transportation time from the 

manufacturer DC to the distributor DC (i.e., 𝑇𝑐) and the back order waiting time (𝑇𝐵𝑊). 
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 𝐿𝑐 = 𝑇𝑐 + 𝑇𝐵𝑊 (20) 

 𝐸[𝐿𝑐] = 𝐸[𝑇𝑐 + 𝑇𝐵𝑊] = 𝐸[𝑇𝑐] + 𝐸[𝑇𝐵𝑊] (21) 

 𝑉𝑎𝑟[𝐿𝑐] = 𝑉𝑎𝑟[𝑇𝑐 + 𝑇𝐵𝑊] = 𝑉𝑎𝑟[𝑇𝑐] + 𝑉𝑎𝑟[𝑇𝐵𝑊] (22) 

The expected value and variance of transport time (𝐸[𝑇𝑐], 𝑉𝑎𝑟[𝑇𝑐]) depend on the carrier 

and order processing time. However, the expected value of back order waiting time is computed 

as follows: 

 
𝐸[𝑇𝐵𝑊] =

𝐵̅𝑤(𝑟𝑤, 𝑞𝑤)

𝜆𝑤
 (23) 

Using the approximation provided in Hopp & Spearman (2011) on page 619 we can also 

approximate the variance of back order waiting time as follows: 

 
𝑉𝑎𝑟(𝑇𝐵𝑊) ≅

1 − 𝑅𝑅𝑤̅̅ ̅̅ ̅̅

𝑅𝑅𝑤̅̅ ̅̅ ̅̅
×(𝐸[𝑇𝐵𝑊])

2 (24) 

The standard approach to model the demand during lead time is to fit a distribution to the 

mean and variance of the demand during lead time. 

 𝐸[𝐷(𝐿𝑐)] = 𝐸[𝐿𝑐]×𝐸[𝐷𝑡] (25) 

 𝑉𝑎𝑟[𝐷(𝐿𝑐)] = 𝐸[𝐿𝑐]×𝜎𝑐
2 + (𝐸[𝐷𝑡])

2×𝑉𝑎𝑟(𝐿𝑐) (26) 

Now, 𝑟𝑐 and 𝑞𝑐 which denote the reorder point and reorder quantity at the distributor DC 

can be estimated: 

 𝑟𝑐 =  𝐸[𝐷(𝐿𝑐)] + 𝑁
−1(𝜏𝑐)×√𝑉𝑎𝑟[𝐷(𝐿𝑐)] (27) 

 𝑞𝑐 = 𝐸[𝐷𝑡] (28) 

In Equation (27), 𝜏𝑐 represents the required service level at the distributor DC. Knowing 

𝑟𝑤 and 𝑞𝑤, the performance metrics at the distributor DC such as average inventory level 

𝐼𝑐̅(𝑟𝑐, 𝑞𝑐), average back order level, 𝐵̅𝑐(𝑟𝑐, 𝑞𝑐), and average ready rate 𝑅𝑅̅̅ ̅̅ 𝑐(𝑟𝑐, 𝑞𝑐) can be 
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computed using the same equations used for the manufacturer DC (Equations (13), (14)& (15)). 

The only difference is that the parameters of the gamma distribution for computing first and 

second order loss functions are 𝐸[𝐷(𝐿𝑐)] and 𝑉𝑎𝑟[𝐷(𝐿𝑐)] here. Once the metrics are computed, 

the total holding cost at the distributor DC (Equation (30)) can be computed using the average 

inventory estimation (𝐼𝑐̅) and unit holding cost (ℎ𝑐): 

 ℎ𝑐 = 𝑖𝑐𝑃 (29) 

 𝐻𝐶𝑐 = ℎ𝑐𝐼𝑐̅ (30) 

2.4.4 Impact of CRP 

Supply chain coordination programs such as CRP align different stages of the supply 

chain by exchanging useful and accurate information between them and allowing the 

manufacturer to control the flow of products throughout the supply chain. This collaboration 

among players improves the accuracy of forecasting, reduces lead times, and ultimately reduces 

the variability of demand in the supply chain and is known as the Bullwhip Effect (Lee et al. 

1997). 

The first impact of CRP is the reduction in the mean order lead time and its variance 

(𝐸[𝐿𝑐]& 𝑉𝑎𝑟[𝐿𝑐] in Equation (21) & (22)) which result in a reduction of the inventory levels at 

both distributor’s DC and in-transit. CRP essentially enables the distributor to reduce their own 

inventory by lowering the reorder point (Equation (27)) since the mean and variance of demand 

during lead time is reduced. The reorder point protects the distributor against the variability of 

demand during lead time, and CRP justifies a lower reorder point that is sufficient for 

maintaining the fill rate. Obviously, in-transit inventory will be reduced since 𝐸[𝐿𝑐] is reduced, 

which means the transportation period is shorter. 
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The second impact of CRP is the reduction in the required level of inventory at the 

manufacturer DC. This is achieved through lower variability of demand that manufacturer DC 

typically realizes in CRP. As Equation (13) shows, inventory level at the manufacturer DC (i.e. 

𝐼𝑤̅(𝑟𝑤, 𝑞𝑤)) is depended on the reorder point (𝑟𝑤), which is itself dependent on the variance of 

demand during lead time (Equation (11)). In addition, as Equation (10) indicates, the variance of 

demand during lead time (i.e. 𝑉𝑎𝑟[𝐷(𝐿𝑤)]) is dependent on the variance of demand at the 

manufacturer DC level (i.e. 𝜎𝑐
2). Finally, as Equation (7) indicates, 𝜎𝑐

2 is dependent on the 

variance of order sizes coming from the distributor DC (i.e. 𝑉𝑎𝑟(𝐷𝑡)). Therefore, in the model 

𝑉𝑎𝑟(𝐷𝑡) is the root cause of the required inventory level for satisfying the fill rate. Although in 

CRP, the manufacturer DC does not receive orders from downstream and has a full control of 

replenishment process, 𝑉𝑎𝑟(𝐷𝑡) is still a good indicator of reduction in 𝜎𝑐
2. 

2.5 Transportation Cost 

This cost component represents the cost that the carrier charges the manufacturer to move 

the freight from the manufacturer’s DC to the distributor’s DC. We assumed that the freight is 

shipped directly from the manufacturer’s DC to the customer’s DC via ground transportation 

modes. 

2.5.1 Cost Estimation 

The first critical parameter in estimating the transportation cost on each channel is the 

size of shipments on the channel, which is a function of the customer’s demand. Another 

important parameter is average shipment frequency, which normally has an indirect relationship 

with shipment size. In general, the combination of average shipment frequency and average 

shipment size should satisfy the demand over time. Transportation cost normally depends on the 

volume or the weight of shipments. The following equations estimate the volume and weight of 
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the standardized orders for a channel. Subscript “ij” represents a channel from a manufacturer’s 

DC i to a distributor’s DC j. 

 𝑆̂𝑖𝑗
𝑣 = 𝐸̂[𝐷𝑡]𝑖𝑗×𝑉𝑖𝑗 (31) 

 𝑆̂𝑖𝑗
𝑤 = 𝐸̂[𝐷𝑡]𝑖𝑗×𝑊𝑖𝑗 (32) 

These two parameters provide sufficient information on the size of each order, which is 

required for selecting a cost-effective shipping mode to transport the freight on a channel. 

Shipment frequency depends on what shipping mode will be selected to transport the demand. 

Selecting a more consolidated mode will result in less shipment frequency while utilizing the 

smaller shipping modes requires making frequent shipments. There are three shipping modes 

available for the manufacturer to choose from: full truckload (FTL), less than truckload (LTL) 

and parcel. While FTL is the most cost-effective shipping mode, it is not the best choice for low 

demand channels. This is also true for selecting a shipping mode between LTL and parcel. At 

this stage, we estimate the transportation cost of one standardized order considering the most 

cost-effective manner. Later in Section 2.5.2, we will adjust the cost estimation based on the 

ordering frequency of the channel and the historical transportation performance. 

Depending on the shipping mode, carriers charge their customers using different rules 

and in return, customers set certain shipping mode selection rules to select the most cost-

effective mode. These rules normally have lower and upper limits. In this case study, the 

manufacturer determined volume limits for declaring a shipment as an FTL. Any standardized 

order that has volume size (𝑆̂𝑖𝑗
𝑣 ) below the lower limit will be shipped via LTL except for those 

that are less than 150 lbs. which are considered small package and will be shipped via parcel. In 

addition, there is a maximum weight limit for FTL shipments, which is 45000 lbs. in most of the 

states in the U.S. 



30 

𝑉𝑚𝑖𝑛
𝐹𝑇𝐿 lower volume limit for FTL shipments (𝑓𝑡3)   

𝑉𝑚𝑎𝑥
𝐹𝑇𝐿 upper volume limit for FTL shipments (𝑓𝑡3)   

𝑊𝑚𝑎𝑥
𝐹𝑇𝐿 upper limit for the weight of a FTL shipment (𝑙𝑏) 

𝜔𝑖𝑗 distance from channel 𝑖 − 𝑗 (mile) 

𝑅𝑖𝑗
𝐹𝑇𝐿 FTL rate on channel 𝑖 − 𝑗 ($/mile) 

𝑅𝑖𝑗
𝐿𝑇𝐿 LTL rate on channel 𝑖 − 𝑗 ($/lb) 

𝑅𝑖𝑗
𝑃𝑎𝑟𝑐𝑒𝑙 parcel rate on channel 𝑖 − 𝑗 ($/lb) 

𝑇𝐶𝑖𝑗 transportation cost estimate for channel 𝑖 − 𝑗 ($) 

𝐴𝑇𝐶𝑖𝑗 adjusted transportation cost estimate for channel 𝑖 − 𝑗 ($) 

The number of required shipments for each standardized order on any channel can be 

calculated using both weight and volume limits: 

 
𝑁𝐹𝑇𝐿
𝑊 = ⌊

𝑆̂𝑖𝑗
𝑤

𝑊𝑚𝑎𝑥
𝐹𝑇𝐿
⌋ (33) 

 
𝑁𝐹𝑇𝐿
𝑉 = ⌊

𝑆̂𝑖𝑗
𝑣

𝑉𝑚𝑖𝑛
𝐹𝑇𝐿⌋ (34) 

𝑁𝐹𝑇𝐿
𝑊  and 𝑁𝐹𝑇𝐿

𝑉 are the required number of FTL shipments considering the weight limit 

and volume limit, respectively. Based on the characteristics of the standardized item set (unit 

weight and unit volume), the truck may either exceed the volume limit or weight limit first, 

which would result in different values for 𝑁𝐹𝑇𝐿
𝑊  and 𝑁𝐹𝑇𝐿

𝑉 . In such case, the required number of 

FTL shipments should be the larger value: 

 𝑁𝑖𝑗
𝐹𝑇𝐿 = 𝑀𝑎𝑥 (𝑁𝐹𝑇𝐿

𝑊  , 𝑁𝐹𝑇𝐿
𝑉 ) (35) 

If 𝑁𝑖𝑗
𝐹𝑇𝐿 becomes zero for a channel, this means that the demand does not support FTL 

shipments. Therefore, LTL or/and parcel should be used for transportation. Parcel shipments 
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normally have the maximum weight limit of 150 lbs. and this is a common rule across different 

industries (i.e. 𝑊𝑚𝑎𝑥
𝑃𝑎𝑟𝑐𝑒𝑙 = 150 lbs.) If 𝑁𝑖𝑗

𝐹𝑇𝐿 ≥ 1, then one or multiple FTL shipments should be 

sent to satisfy the demand; however, there is a remainder that needs to be shipped via non-FTL 

shipping modes. Let 𝑠̂𝑖𝑗
𝑤 be the weight estimate of the remainder (lb) for channel 𝑖 − 𝑗. If 𝑠̂𝑖𝑗

𝑤 ≤

𝑊𝑚𝑎𝑥
𝑃𝑎𝑟𝑐𝑒𝑙, the remainder will be shipped by a parcel shipment; otherwise, an LTL shipment will 

be dispatched. This means that 𝑠̂𝑖𝑗
𝑤 can only be shipped via either LTL or parcel. Thus, an 

indicator function is used to reflect this fact in the total cost function: 

𝐼(𝑖𝑗) = {
1                       𝑖𝑓 𝐿𝑇𝐿 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑜𝑟 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑖 − 𝑗
0                 𝑖𝑓 𝑃𝑎𝑟𝑐𝑒𝑙 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑜𝑟 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑖 − 𝑗

 

Carriers normally charge the shippers on a per mile basis ($/mile) for FTL shipments and 

on a per pound basis ($/lb) for LTL and parcel shipments. The transportation cost functions for 

each standardized order on channel 𝑖 − 𝑗 are calculated using Equations (36). 

 𝑇𝐶𝑖𝑗   =  𝑇𝐶𝑖𝑗
𝐹𝑇𝐿 + 𝐼(𝑖𝑗) ∙ 𝑇𝐶𝑖𝑗

𝐿𝑇𝐿 + (1 − 𝐼(𝑖𝑗)) ∙ 𝑇𝐶𝑖𝑗
𝑃𝑎𝑟𝑐𝑒𝑙                 

=  𝑁𝑖𝑗
𝐹𝑇𝐿 ∙ 𝜔𝑖𝑗 ∙ 𝑅𝑖𝑗

𝐹𝑇𝐿 + 𝑠̂𝑖𝑗
𝑤 ∙ (𝐼(𝑖𝑗) ∙ 𝑅𝑖𝑗

𝐿𝑇𝐿 + (1 − 𝐼(𝑖𝑗))

∙ 𝑅𝑖𝑗
𝑃𝑎𝑟𝑐𝑒𝑙) 

(36) 

 

2.5.2 Cost Adjustment 

The cost estimation obtained from section 2.5.1 is based on an ideal situation where the 

demand is 100% certain and transportation mode selection is made based on a set of rules which 

will result in a very efficient transportation. In reality, factors such as order size variability, 

arrival pattern of orders over a week, and expedited shipping requests disturb the efficiency of 

mode selection process. Therefore, when we look at the actual shipping pattern on a channel we 

observe inefficiencies that involve excessive LTL and Parcel shipments. In this section, we take 

those inefficiencies into consideration by adjusting the estimation. In order to adjust the value of 
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𝑇𝐶𝑖𝑗 based on the historical transportation efficiency of channels, a transportation efficiency 

metric (𝐶𝑖𝑗) is constructed. Later in section 2.5.4, the impact of CRP on the transportation cost, 

which can be summarized as improved shipment consolidation, is modeled using the same 

metric. The detail of the metric is discussed in the second chapter of Parsa (2017). The metric 

captures the cost efficiency of transportation on each channel by incorporating the shipping rates 

of each mode (i.e. FTL, LTL, Parcel), space utilization of dispatched FTL trucks, the distance on 

the channel, and the weight limit of shipping trucks. Mateen & Chatterjee (2015) also proposed 

an efficiency factor to model the impact of CRP on transportation but without discussing the 

contributing elements of the factor. 𝐶𝑖𝑗 is the transportation efficiency score of channel 𝑖 − 𝑗 and 

it could vary between 0 and 100, where zero represents a channel on which the entire demand is 

shipped via parcel, and 100 indicates a channel where the entire demand is shipped via fully 

space-utilized FTL trucks. The metric can be computed for channel 𝑖 − 𝑗 over a certain period of 

time using the linear function in Equation (37), where 𝑊𝑖𝑗
𝐹𝑇𝐿, 𝑊𝑖𝑗

𝐿𝑇𝐿, 𝑊𝑖𝑗
𝑃𝑎𝑟𝑐𝑒𝑙 are efficiency 

weights (on the scale of 100) to represent the cost efficiency of each mode based on their 

associated shipping rates. To account for empty space within FTL trucks, average space 

utilization of FTL trucks (𝑢̅𝑖𝑗), is multiplied to 𝑊𝑖𝑗
𝐹𝑇𝐿. Lastly, 𝑃𝑖𝑗

𝐹𝑇𝐿, 𝑃𝑖𝑗
𝐿𝑇𝐿, 𝑃𝑖𝑗

𝑃𝑎𝑟𝑐𝑒𝑙 are the portions 

of the total demand shipped via FTL, LTL and Parcel respectively over the same period of time. 

 
𝐶𝑖𝑗 = 𝑢̅𝑖𝑗×𝑊𝑖𝑗

𝐹𝑇𝐿𝑃𝑖𝑗
𝐹𝑇𝐿 +𝑊𝑖𝑗

𝐿𝑇𝐿𝑃𝑖𝑗
𝐿𝑇𝐿 +𝑊𝑖𝑗

𝑃𝑎𝑟𝑐𝑒𝑙𝑃𝑖𝑗
𝑃𝑎𝑟𝑐𝑒𝑙 (37) 

This metric (𝐶𝑖𝑗) is significantly dependent on the demand volume because high demand 

channels have a better potential of consolidating the shipments and gaining higher 𝐶𝑖𝑗 values. 

This fact is shown in Figure 4 where the metric is computed for 143 non-CRP and CRP channels 

and the relationship between demand and 𝐶𝑖𝑗 values is plotted.  
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We remark that 𝑇𝐶𝑖𝑗 is a cost figure for the highest “achievable” transportation efficiency 

level for channel 𝑖 − 𝑗. In order to adjust 𝑇𝐶𝑖𝑗 estimation, we need to find the associated metric 

value for the 𝑇𝐶𝑖𝑗 estimation (let it be 𝐶𝑖𝑗
𝑚𝑎𝑥) and compare it with 𝐶𝑖𝑗 to understand how close the 

transportation on channel 𝑖 − 𝑗 is performed to the highest achievable efficiency level. The 

difference between 𝐶𝑖𝑗 and 𝐶𝑖𝑗
𝑚𝑎𝑥 is how much our initial estimation (i.e. 𝑇𝐶𝑖𝑗) needs to be 

adjusted. Now, the problem is to determine representative 𝐶𝑖𝑗
𝑚𝑎𝑥 values for channels. Figure 4 

shows that high demand channels generally have higher 𝐶𝑖𝑗 values while they might not perform 

at the highest achievable efficiency level. In contrast, low demand channels tend to have lower 

scores whereas they might perform at their best possible level. In other words, not all channels 

can achieve the efficiency level of 100. For instance, a channel with the weekly demand volume 

of 200 𝑓𝑡3 is not able to support FTL shipments therefore; the efficiency score of 100 is not 

achievable and should not be considered as an appropriate 𝐶𝑖𝑗
𝑚𝑎𝑥 value. To overcome this issue, 

we can categorize the channels to multiple demand size categories and determine a different 

highest achievable efficiency level (𝐶𝑖𝑗
𝑚𝑎𝑥) for each category. This allows setting a fair and 

achievable transportation efficiency level for the channels because channels that share the same 

demand category have close demand volume; therefore they can share a common 𝐶𝑖𝑗
𝑚𝑎𝑥 value. 

Table 2 shows the demand categorization that we used for our case study, where five 

categories are considered. To determine 𝐶𝑖𝑗
𝑚𝑎𝑥 value for each, we initially look at the top 

performers; however, any dataset contains outliers; for example, a channel that only shipped 

once or twice in the past six months due to an irregular rapid demand surge is not representative 

of the channels of the category. Thus, we considered the 3rd quartile of the efficiency scores in 

each category as an achievable level (i.e. 𝐶𝑖𝑗
𝑚𝑎𝑥 is the 3rd quartile of black points in Figure 4). As 
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Figure 4 indicates, CRP channels tend to perform more efficient in transportation; therefore we 

compute different achievable transportation efficiency levels for them using the 3rd quartile of 

CRP scores in each category (i.e. 𝐶𝑖𝑗
𝐶𝑅𝑃 is the 3rd quartile of yellow points in Figure 4). 

Table 2: Channel categories based on weekly demand (Case study example) 

Demand Category (𝒇𝒕𝟑) 

(x-axis of Figure 4) 
𝑪𝒊𝒋
𝒎𝒂𝒙

 𝑪𝒊𝒋
𝑪𝑹𝑷 

[0, 800) 16.91 20.27 

[800 , 1600) 28.14 57.28 

[1600 , 2400) 60.07 78.60 

[2400 , 3200) 57.30 76.61 

[3200 , 12000) 67.53 85.06 

Once 𝐶𝑖𝑗 and 𝐶𝑖𝑗
𝑚𝑎𝑥 are computed for channel 𝑖 − 𝑗, an adjustment multiplier (𝜌𝑖𝑗) can be 

computed to adjust the total transportation cost estimation (𝑇𝐶𝑖𝑗): 

 

𝜌𝑖𝑗 =

{
 

 
𝐶𝑖𝑗
𝑚𝑎𝑥

𝐶𝑖𝑗
                       𝑖𝑓 𝐶𝑖𝑗 < 𝐶𝑖𝑗

𝑚𝑎𝑥  

1                                     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (38) 

Therefore, total adjusted transportation cost for channel 𝑖 − 𝑗 will be: 

 𝐴𝑇𝐶𝑖𝑗 = 𝑂𝐹̅̅ ̅̅𝐷
𝑖𝑗
×𝜌𝑖𝑗×𝑇𝐶𝑖𝑗 (39) 

2.5.3 Validation 

The last step in the transportation cost modeling is to validate the output of the model. 

The goal is to compare the cost estimation of the model with the historical transportation cost. 

Historical shipping data along with the shipping rates (𝑅𝑖𝑗
𝐹𝑇𝐿 , 𝑅𝑖𝑗

𝐿𝑇𝐿 , 𝑅𝑖𝑗
𝑃𝑎𝑟𝑐𝑒𝑙) and distances enable 

the calculation of the historical transportation cost for each channel. The model uses Table 2, 

which is constructed using the data of 143 channels, to adjust the estimation. However, in order 

to avoid bias in the validation process, a new set of 57 channels is selected that do not overlap 

with the 143 channels that are used for determining the 𝐶𝑖𝑗
𝑚𝑎𝑥 values in Table 2. 
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Let 𝐻𝑇𝐶𝑖𝑗𝑘 be the historical transportation cost for channel 𝑖 − 𝑗 at week 𝑘. 

Let 𝐻𝑇𝐶̅̅ ̅̅ ̅̅
𝑖𝑗 be the average weekly historical transportation cost for channel 𝑖 − 𝑗. 

In the validation process, we compare the values of 𝐻𝑇𝐶̅̅ ̅̅ ̅̅
𝑖𝑗 and 𝐴𝑇𝐶𝑖𝑗 for each channel. 

They both represent an estimate of weekly transportation cost for channel 𝑖 − 𝑗. While 𝐻𝑇𝐶̅̅ ̅̅ ̅̅
𝑖𝑗 is 

based on the historical data, 𝐴𝑇𝐶𝑖𝑗 is the output of the model. The validation metrics used in this 

section are: 

o Error (𝐸𝑖𝑗)     = 𝐴𝑇𝐶𝑖𝑗 − 𝐻𝑇𝐶̅̅ ̅̅ ̅̅
𝑖𝑗 

o Relative error (𝑅𝐸𝑖𝑗)   = 
𝐸𝑖𝑗

𝐻𝑇𝐶̅̅ ̅̅ ̅̅ 𝑖𝑗
  

Table 3 also summarizes the model validation results numerically. Overall the model 

performs very good considering average relative error of -4% which is equivalent of $65.  

Table 3: Validation metrics summary 

Validation Metric Value 

Average Error (
∑ 𝐸𝑖𝑗
57
1

57
) -$65 

Average Relative Error (
∑ 𝑅𝐸𝑖𝑗
57
1

57
) -4% 

2.5.4 Impact of CRP 

So far in Section 2.5, we have constructed a modeling framework to compute the 

transportation cost of a channel in a supply chain. We have also validated the results of the 

model using empirical data. This section investigates the impact of a CRP relationship on 

transportation cost. As discussed in the literature review section, supply chain collaboration 

programs have shown its capability in consolidating the shipments, which results in reduction in 

the transportation cost (Cetinkaya et al. 2008, Southard & Swenseth 2008) The transportation 

efficiency metric that is used in Section 2.5.2 to adjust the transportation cost estimation is also 
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used here to compare the performance of CRP with non-CRP in terms of transportation (Figure 

4) and quantify the cost of transportation in CRP. CRP clearly improves transportation efficiency 

due to the ability of the manufacturer in controlling the replenishment process, consolidating the 

shipments, and utilizing more cost-effective transportation modes. The metric captures the 

shipping consolidation effect of CRP using two parameters: i) average space utilization of trucks 

(𝑢̅𝑖𝑗) and ii) usage rates of transportation modes (𝑃𝑖𝑗
𝐹𝑇𝐿, 𝑃𝑖𝑗

𝐿𝑇𝐿, 𝑃𝑖𝑗
𝑃𝑎𝑟𝑐𝑒𝑙). CRP generally shows 

higher 𝑢̅𝑖𝑗 values across the channels and higher usage rate of more consolidated modes (𝑃𝑖𝑗
𝐹𝑇𝐿 > 

𝑃𝑖𝑗
𝐿𝑇𝐿 > 𝑃𝑖𝑗

𝑃𝑎𝑟𝑐𝑒𝑙). A combination of these two parameters is reflected in the metric and a clear 

difference between CRP and non-CRP is visible in Figure 4. 

 
Figure 4: Transportation efficiency metric for 143 channels: CRP vs. Non-CRP 

In order to predict the cost of transportation in CRP for non-CRP channels, we quantified 

the difference between CRP and non-CRP scores in Figure 4. The values of 𝐶𝑖𝑗
𝐶𝑅𝑃 in Table 2 are 

the 3rd quartile of the CRP efficiency scores in each demand category for CRP channels and are 

considered as the achievable target levels. 

The two required parameters to estimate the transportation cost of channel 𝑖 − 𝑗 in CRP 

are 𝐶𝑖𝑗 and 𝐶𝑖𝑗
𝐶𝑅𝑃. We need to compute the CRP multiplier (𝜌𝑖𝑗

𝐶𝑅𝑃) to adjust 𝐴𝑇𝐶𝑖𝑗 accordingly: 
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𝜌𝑖𝑗
𝐶𝑅𝑃 =

{
 

 
𝐶𝑖𝑗

𝐶𝑖𝑗
𝐶𝑅𝑃                        𝑖𝑓 𝐶𝑖𝑗 < 𝐶𝑖𝑗

𝐶𝑅𝑃 

1                                 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

 (40) 

Hence, the total transportation cost of channel 𝑖 − 𝑗 in CRP (𝐴𝑇𝐶𝑖𝑗
𝐶𝑅𝑃) will be: 

 𝐴𝑇𝐶𝑖𝑗
𝐶𝑅𝑃 = 𝜌𝑖𝑗

𝐶𝑅𝑃×𝐴𝑇𝐶𝑖𝑗 (41) 

2.6 Order Processing Cost 

This cost component represents the cost of physical and technological activities 

associated with generating a purchase order (PO) at a distributor location, sending it to the 

manufacturer, handling it at a manufacturer DC, and receiving it at the distributor location. It 

also includes the cost of ordering and receiving associated with orders to the upstream 

manufacturing plants. Figure 5 illustrates the ordering mechanism graphically.  

Let 𝑘1 be the cost of ordering at the distributor level ($/PO) 

Let 𝑧1 be the cost of receiving at the distributor level ($/PO line) 

Let 𝑘2 be the cost of order processing at the manufacturer DC level ($/PO) 

Let 𝑧2 be the cost of handling the orders at the manufacturer DC level ($/PO line) 

Let 𝑘3 be the cost of ordering to the upstream at the manufacturer DC level ($/PO) 

Let 𝑧3 be the cost of receiving from upstream at the manufacturer DC level ($/PO line) 

While the cost of ordering (𝑘1) and receiving orders (𝑧1) are the distributor’s cost, the 

manufacturer is responsible for processing the incoming orders (𝑘2) from the distributor, 

handling cost at the DC (𝑧2), ordering (𝑘3) and receiving costs (𝑧3) from the upstream. While the 

ordering and order processing costs (𝑘1,2,3) are driven by number of POs, the receiving and 

handling costs (𝑧1,2,3) are driven by PO lines which are essentially different items on a PO.  
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The unit cost parameters that are defined above are estimated using an Activity Based 

Costing (ABC) approach. This methodology identifies the activities associated with each task 

and allocates cost to them by measuring the required time and labor. In this section, we present 

the modeling framework to compute the total cost of ordering and handling for both distributor 

and manufacturer knowing the unit cost parameters.  

2.6.1 Distributor Cost 

Ordering cost is driven by the number of orders that a distributor sends to a manufacturer 

and is not dependent on the size of orders. Therefore, the weekly ordering cost for channel 𝑖 − 𝑗 

can be computed as follows: 

 𝑂𝐶𝑖𝑗
𝒹 = 𝑂𝐹̅̅ ̅̅𝐷

𝑖𝑗
×𝑘1 (42) 

On the other hand, receiving cost is driven by the number of different item types that a 

distributor receives on each PO (i.e. number of PO lines). The reason is that receiving activities 

such as receipt confirmation and put-away, are performed on a per-item-type basis. This means 

the variety of items on each PO (i.e. number of PO lines) is a main driver of the receiving cost. 

Assuming 𝑙𝑖̅𝑗 is the average weekly number of PO lines that are received on channel 𝑖 − 𝑗, the 

weekly receiving cost is computed as follows: 

 𝑅𝐶𝑖𝑗
𝒹 = 𝑙𝑖̅𝑗×𝑧1 (43) 

Figure 5: Ordering & handling cost components 

Manufacturer DC 

Manufacturer Plant 

Distributor DC 

𝒌𝟏 𝒛𝟏 

𝒌𝟐 

𝒌𝟑 𝒛𝟑 

𝒛𝟐 
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Note that the units of the terms in Equation (43) are $/period t = PO line/period t * $/PO 

line where period t is assumed as a week in the case study. 𝑙𝑖̅𝑗 is not among the model inputs and 

needs to be estimated. We built a regression model to find the predictors of this parameter among 

the model inputs. We found two significant predictors. First is the size of the standardized item 

set for a channel (i.e. |𝑀|), which is the number of items in the set, and second is the demand 

size of channel (i.e. 𝑂𝐹̅̅ ̅̅ 𝐷×𝐸[𝐷𝑡]). The regression model was built using the data of 68 channels 

with 𝑅2 of 0.9. We also cross validated the model by splitting the data into training and testing 

sets with the split ratio of 60%. The trained model performed acceptable on the testing set with 

mean absolute percentage error (MAPE) of 22% and 𝑅2 of 0.83. Therefore, we estimated 𝑙𝑖̅𝑗 for 

each channel using the following regression model: 

 𝑙 = 0.19836×|𝑀| + 0.154511×(𝑂𝐹̅̅ ̅̅ 𝐷×𝐸[𝐷𝑡]) (44) 

Later in section 2.6.3, we will discuss how we built a similar model for predicting 𝑙𝑖̅𝑗 in 

CRP. To summarize, 𝑂𝐶𝑖𝑗
𝒹 + 𝑅𝐶𝑖𝑗

𝒹 is the distributor’s share of ordering and handling cost. 

2.6.2 Manufacturer Cost 

First, the exact number of items that a distributor receives each week needs to be shipped 

from a manufacturer DC. Therefore, the cost of handling at the manufacturer DC, which includes 

picking, packing and shipping activities, can be computed using the estimated 𝑙𝑖̅𝑗: 

 𝑃𝐶𝑖𝑗
𝓂 = 𝑙𝑖̅𝑗×𝑧2 (45) 

As discussed earlier, the manufacturer has the cost of processing the incoming orders in 

addition to the cost of ordering to the upstream. 

 𝑂𝑃𝐶𝑖𝑗
𝓂 = 𝑂𝐹̅̅ ̅̅𝐷

𝑖𝑗
×𝑘2 (46) 

 𝑂𝐶𝑖𝑗
𝓂 = 𝑂𝐹̅̅ ̅̅𝑊

𝑖𝑗
×𝑘3 (47) 
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Equation (46) represents the processing cost of the incoming orders from downstream, 

and Equation (47) is the cost of ordering to the upstream. However, the order frequencies are not 

the same because the (r, Q) system of the upstream relationship requires different ordering 

parameters to satisfy the demand to the downstream. Therefore, 𝑂𝐹̅̅ ̅̅𝑊
𝑖𝑗

 needs to be estimated using 

𝐸[𝑋(2)] and 𝑞𝑤, which are the mean of the demand rate and the reorder quantity at the 

manufacturer DC (Section 2.4.1 and 2.4.2). 

 𝑂𝐹̅̅ ̅̅𝑊𝑖𝑗
=
𝜇𝑤
𝑞𝑤

 (48) 

Note that 𝜇𝑤 and 𝑞𝑤 vary by channel but for notation consistency with Section 2.4, we 

don’t add ij subscript to Equation (48).  

The receiving cost of the incoming orders from the manufacturing plant can be computed 

in the same way the receiving cost is computed for the distributor (Equation (49)).   

 𝑅𝐶𝑖𝑗
𝓂 = 𝐿̅𝑖𝑗×𝑧3 (49) 

𝐿̅𝑖𝑗 is the average weekly number of PO lines that are received from the upstream. To 

summarize, 𝑃𝐶𝑖𝑗
𝓂 + 𝑂𝑃𝐶𝑖𝑗

𝓂 + 𝑂𝐶𝑖𝑗
𝓂 + 𝑅𝐶𝑖𝑗

𝓂 is the manufacturer’s share of ordering, handling 

and receiving cost. 

2.6.3 Impact of CRP 

In this section, we discuss the impact of CRP on the distributor and manufacturer DC’s. 

The first benefit that a distributor immediately realizes in CRP is that ordering cost (𝑂𝐶𝑖𝑗
𝒹) 

becomes (essentially) zero because the manufacturer will automatically replenish the distributor 

by monitoring the inventory levels and using demand forecasts shared by the distributors 

(Kannan et al. 2013, Bookbinder et al. 2010). It is noteworthy that for small distributors that do 
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not have information sharing mechanisms such as EDI in place, CRP requires a setup cost to 

provide the required system for information sharing. 

Order processing cost for the manufacturer (𝑂𝑃𝐶𝑖𝑗
𝓂) will also change in CRP because the 

manufacturer does not need to process any incoming PO’s but instead should generate orders for 

the distributors. We found that order processing issues such as discrepancies, combining split 

orders etc. reduces virtually to zero in CRP. The process of order generation in CRP is very 

straight-forward and fast but requires higher skilled workers. By using the ABC approach, we 

found that ultimately 𝑘2 reduces in CRP. 

In order to quantify the impact of CRP on the distributor’s handling cost (𝑅𝐶𝑖𝑗
𝒹) and 

manufacturer’s handling cost (𝑃𝐶𝑖𝑗
𝓂), we need to look for any change in both 𝑙𝑖̅𝑗 and 𝑘 values. A 

data analysis indicated that CRP distributors receive items in larger quantities but less frequently, 

as opposed to frequent and smaller quantities for non-CRP distributors. This implies significantly 

less put-away, sorting and receipt confirming activities in the receiving dock for CRP distributors 

and also less handling cost for the shipping DC. Figure 6 illustrates this fact for 158 different 

CRP and non-CRP channels. Obviously, as a channel becomes larger (x axis), it is likely to 

receive more variety of items (y axis). However, this happens at a faster rate for non-CRP 

channels. To quantify the impact of CRP on the distributor’s receiving cost (𝑅𝐶𝑖𝑗
𝒹) and 

manufacturer’s handling cost (𝑃𝐶𝑖𝑗
𝓂), we need to predict these costs in CRP. As discussed earlier 

and Equation (43) & (45) indicate, 𝑙𝑖̅𝑗 is the driver of both cost components. As Figure 6 

illustrates, 𝑙𝑖̅𝑗, which is represented on the y axis, is expected to be lower for CRP channels. 

Thus, we fit a regression model (i.e., Equation (50)) to the existing 76 different CRP data points 

(lighter colored points) on Figure 6 to predict 𝑙𝑖̅𝑗 in CRP. We found the exact same predictors of 
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regression Equation (44) as the significant ones here with 𝑅2 of 0.98. We also cross validated the 

model by splitting the data into training and testing set with the split ratio of 60%. The trained 

model performed well on the testing set with MAPE of 16% and 𝑅2 of 0.97.  

 𝑙𝑖̅𝑗
𝐶𝑅𝑃 = 1.077136×|𝑀| + 0.020362×(𝑂𝐹̅̅ ̅̅ 𝐷×𝐸[𝐷𝑡]) (50) 

 
Figure 6: Variety of items ordered and received on each channel (𝑙𝑖̅𝑗 vs. 𝑙𝑖̅𝑗

𝐶𝑅𝑃) in a sample of 158 

CRP and non-CRP channels on 4 different DCs where each DC supplies a specific product line 

Any change in the handling unit cost values (𝑧1 and 𝑧2) is not really a function of CRP 

because handling activities in DC’s are still the same. They could change from a DC to another 

depending on many other factors such as DC layout and material handling devices. Therefore, 

(𝑅𝐶𝑖𝑗
𝒹) and (𝑃𝐶𝑖𝑗

𝓂) will change in CRP only due to a reduction in 𝑙𝑖̅𝑗 which can be computed for 

both CRP and non-CRP using regression models. 
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2.7 Model Application on a Case Study 

In this section, we apply the model on a case study in which the benefits of a CRP 

relationship between a healthcare manufacturer and an independent distributor is quantified for 

both partners. The manufacturer has four DC’s across the U.S. while the distributor has a 

network of 20 DC’s mostly spread on the eastern half of the U.S. (Figure 7). 

 
Figure 7: Case study illustration: 4 manufacturer DC locations (dark squares)  

and 20 distributor DC locations (lighter circles) 

Although this business relationship could be as large as 80 different distribution channels 

(4×20), some of the channels are not practically active due to the demand and supply 

characteristics of the network. An initial data analysis showed that 72 channels regularly 

distribute the supply across the country and they will be the focus of this case study. We first 

illustrate the application of the model on one channel as an example and then show the output of 

the model on all the 72 channels. 

2.7.1 Channel Instance 

Consider a channel from the manufacturer’s DC in Georgia (GA) to a distributor’s DC in 

the Chicago area. Before computing the demand parameters, we should first set the basic inputs 

for the channel. These inputs are provided in appendix (Table 6). Then, we compute the demand-
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related inputs using the historical demand and shipping data of the channel. As discussed in the 

beginning of Section 2.4, the standardized item set has to be identified for the channel. The total 

number of items shipped on this channel is 1503 and per Equations (1)-(4), 301 items are 

identified as the set (|𝑀| = 301) with the following characteristics: 

𝑃 = $149,      𝑊 = 8.5 𝑙𝑏𝑠. ,     𝑉 = 1.28 𝑓𝑡3 

Once the standardized item set is defined, we can realize 𝐷𝑡 over time and compute 

demand parameters. The followings are the weekly estimates: 

𝑂𝐹̅̅ ̅̅ 𝐷 = 2.6,       𝐸[𝐷𝑡] = 1121,       𝑉𝑎𝑟[𝐷𝑡] = (590)
2 

Now we can use the model to calculate each cost component for non-CRP and CRP. 

Tables in the appendix show this calculation process.  

As mentioned before, a reduction in 𝑉𝑎𝑟[𝐷𝑡] and 𝑉𝑎𝑟[𝑇𝑐] represents the impact of CRP 

on the holding costs of manufacturer and distributor, respectively. We approximate the impact of 

CRP by reducing 𝑆𝑑[𝐷𝑡] and 𝑉𝑎𝑟[𝑇𝑐] by 50%. This is what we concluded after extensive 

investigation, including interviews and comparative data analysis of CRP and non-CRP 

channels. 

As discussed in Section 2.5.4, transportation efficiency scores (𝐶𝑖𝑗 , 𝐶𝑖𝑗
𝑚𝑎𝑥 , 𝐶𝑖𝑗

𝐶𝑅𝑃) adjust 

the transportation cost estimation (𝑇𝐶𝑖𝑗) for both CRP and non-CRP relationships.  

In this example, we showed how the potential partners for CRP can use the model to 

predict the cost savings of a channel. Table 4 provides a summary of weekly costs and savings 

for the selected channel. It also shows how the distribution of costs and savings change by 

moving from non-CRP to CRP.  
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Table 4: Summary of costs and savings for the channel instance 
 Non-

CRP 

Cost 

Distribution 

of SC cost 

CRP 

Cost 

Distribution 

of SC cost 

CRP 

savings 

($) 

CRP 

savings 

(%) 

Distribution 

of savings 

Distributor $ 2,256 16.32% $ 1,482 16.49% $ 774 34.30% 16.01% 
Manufacturer $ 11,569 83.68% $ 7,509 83.51% $ 4,060 35.09% 83.99% 
Supply Chain $ 13,825 100.00% $ 8,991 100.00% $ 4,834 34.96% 100.00% 

2.7.2 Case Study Results and Discussion 

This section presents the expected cost savings of CRP across the entire network. Such 

information is critical for both partners from different perspectives. First, it clarifies the impact 

of CRP not only on their organizations and but on the entire supply chain which could justify any 

initial investment associated with CRP. Second, it helps companies in setting up the partnership 

contract in a mutually beneficial manner. 

The results reveal that the cost of supply chain, which is an accumulation of both 

manufacturer and distributor’s costs across the network, will be reduced by 19.1% in CRP. As 

Table 5 indicates, the distributor will gain 33% of the total savings while the manufacturer gains 

the remaining 67%. The larger gain of the manufacturer is due to the fact that transportation is 

managed and paid by the manufacturer. However, Table 5 shows that the distributor saves more 

than what they contribute to the total cost of supply chain (i.e. 33% > 22%). This is why the 

distribution of total cost between two partners shifted towards the manufacturer in CRP. 

Table 5: Distribution of CRP savings and supply chain cost between both partners 

 Distribution of SC 

cost in non-CRP 

Distribution of 

CRP Savings 

Distribution of SC 

cost in CRP 

Distributor 22% 33% 19% 
Manufacturer 78% 67% 81% 

The largest portion of the total cost for each partner is in inventory holding cost. This is 

due to the high sales price of items in the medical device industry (Figure 8). The results show 

that CRP reduces the cost in every cost component for both partners except for transportation 
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where some channels do not expect reductions (Figure 9). This is due to the high transportation 

efficiency of those channels in non-CRP where no significant improvement is expected in CRP.  

 
Figure 8: Distribution of cost components in the supply chain and for each partner1 

 
Figure 9: Variability of cost reductions in each component across channels: manufacturer vs. 

distributor 

 

Figure 9 also depicts the variability of cost reductions across the channels in which there 

is a noticeable pattern. The results indicate that manufacturer’s benefits are greater but retailers 

have higher savings percentage rates. This is a very important observation that tremendously 

                                                 
1 OHR stands for ordering/handling/receiving cost component. 

0

25

50

75

100

Manufacturer Distributor

Total Cost Reduction (%)

0

25

50

75

100

Manufacturer Distributor

Holding Cost Reduction (%)

0

25

50

75

100

Manufacturer

Transportation Cost Reduction (%)

0

25

50

75

100

Manufacturer Distributor

Ordering/Handling/Receiving Cost Reduction (%)



47 

helped both partners in the negotiation process to reach a sustainable agreement for starting a 

CRP. Mangiaracina et al. (2012) observed the same savings pattern in their case study. The 

distributor saves more in OHR cost because of first, zero ordering cost in CRP (𝑂𝐶𝑖𝑗
𝒹) and second 

more improvement room in the handling cost (𝑅𝐶𝑖𝑗
𝒹). The distributor also benefits more from 

holding cost savings because the impact of lead time, and variance of lead time 

(𝐸[𝐿𝑐]& 𝑉𝑎𝑟[𝐿𝑐]) is significant on decreasing the reorder point (𝑟𝑐) that is needed for meeting 

the service level.  

A sensitivity analysis on channel savings indicates that the general perception that higher 

savings belong to larger channels is not necessarily correct. The graph on the left of Figure 10 

illustrates that although an increasing trend in monetary savings is visible as channels become 

larger, the slope is different for each product family. Therefore, the combination of channel size 

and product mix is a better indicator of monetary savings magnitude in CRP. On the other hand, 

percentage of savings in CRP (i.e., [CRP savings/cost in non-CRP] ×100) does not show the 

same pattern (graph on the right) as channel size increases. Percentage savings is an indicator of 

improvement potential of channels in CRP. Overall, these two graphs suggest that monetary 

savings might increase as channel size increases but improvement potential does not increase in 

the same way.  
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Figure 10: Sensitivity of savings to channel size 

2.8 Conclusion and Future Work 

This paper contributes to the literature by developing a data-driven model that captures 

the cost savings of CRP in different cost components and for both partners. In addition, the 

model does not impose assumptions that normally do not hold in practice. As discussed in the 

literature review section, most of the analytical and simulation models that have been developed 

either do not consider the impact of CRP on all the cost components or contain certain 

assumptions that limit the applicability of the models.  

Another advantage of this model is that costs are estimated at the channel level. This 

allows the model to capture the dynamics of a business relationship between two potential CRP 

partners thoroughly. The model is used in a case study to help a healthcare manufacturer in 

analyzing a potential distributor for CRP. The results reveal that savings significantly vary across 

the channels depending on product mix, demand characteristics, handling and transportation 

requirements, etc. In addition, manufacturer and distributor locations experience different levels 

of expected savings. Results showed that the distributor generally gains more savings than the 

manufacturer in the shared cost components. The model substantially helped the CRP partners to 

have a clear understanding of the financial benefits of CRP, which is crucially important for 
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selecting the partners effectively and setting fair contractual terms. One of the future works of 

this study is performing a comprehensive sensitivity analysis on various input parameters of the 

model. This can provide a great insight to the process of evaluating and selecting partners. 

Although the model provides helpful insights about the benefits of CRP, it could be 

improved in different ways. First, the standardized item set is assumed to be a representative of 

product mix on each channel and the average characteristics of items demanded on that channel. 

A good area of improvement is proposing a methodology that better captures the variability 

across the product mix and its impact on the cost components. Another natural improvement is 

extending the model to the upstream where the manufacturer’s DCs interact with the 

manufacturing plants. The impact of CRP on the upstream is not considered in this paper but is a 

valuable extension to the model. 

One of the immediate future directions for this research is motivated by the fact that 

organizations do not enter into a strategic relationship such as CRP just because of cost savings 

(Parsa et al., 2016). They consider other factors that sometimes outweigh the cost savings of a 

CRP relationship. Those factors are generally qualitative factors and may have considerable 

influence during the decision-making process. Factors such as trust, team attitude, cooperation, 

power shift, implementation capability and shared business philosophy should be considered. A 

multi-objective decision model that can integrate the quantitative and qualitative decision factors 

would be a great contribution.  
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Appendix 

 

Table 6: Basic inputs for the model 

Parameter Value Parameter Value 

𝜔𝑖𝑗 919 miles 𝜏𝑤 98% 

𝑅𝑖𝑗
𝐹𝑇𝐿 $1.71 per mile 𝑖𝑐 & 𝑖𝑤 20% $/$/year 

𝑅𝑖𝑗
𝐿𝑇𝐿 $15.59 cwt2 𝐸[𝑇𝑐] 7 days 

𝑅𝑖𝑗
𝑃𝑎𝑟𝑐𝑒𝑙 $21.20 cwt 𝑉𝑎𝑟[𝑇𝑐] 4 hours 

𝑉𝑚𝑖𝑛
𝐹𝑇𝐿 960 𝑓𝑡3 𝑘1 $5.50 /order 

𝑉𝑚𝑎𝑥
𝐹𝑇𝐿 2000 𝑓𝑡3 𝑧1 $0.89 /order line 

𝑊𝑚𝑎𝑥
𝐹𝑇𝐿 45000 lbs. 𝑘2 $3.73 /order 

𝜏𝑐 99% 𝑧2 $0.20 /PO line 

 

 

 

 

 

 

  

                                                 
2 “cwt” denotes cost of transportation ($) per 100 lbs. This is a common unit of measure in transportation 
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Table 7: Inventory holding cost calculation for a channel (CRP vs. Non-CRP) 

 Parameter Non-CRP CRP 

M
an

u
fa

ct
u
re

r 
𝐸[𝐷𝑡] 1,121 1,121 

𝑉𝑎𝑟[𝐷𝑡] (590)2 (295)2 

𝑟𝑤 7,109 6,753 

𝑞𝑤 211 211 

𝐼𝑤̅ 4,370 4,002 

𝐵̅𝑤 70 58 

𝑅𝑅̅̅ ̅̅ 𝑤 0.96 0.96 

𝐻𝐶𝑤 $2,504 per week $2,293 per week 

In
 

tr
an

si
t 𝐼𝑇̅ 2,914 2,914 

𝐻𝐶𝑇 $1,670 per week $1,670 per week 

D
is

tr
ib

u
to

r 

𝐸[𝑇𝑐] 7 days 7 days 

𝑉𝑎𝑟[𝑇𝑐] 16.8 ℎ𝑜𝑢𝑟𝑠2 8.4 ℎ𝑜𝑢𝑟𝑠2 

𝑟𝑐 5,423 4,787 

𝑞𝑐 1,121 1,121 

𝐼𝑐̅ 2,713 2,084 

𝐵̅𝑐 4 1.5 

𝑅𝑅̅̅ ̅̅ 𝑐 0.992 0.995 

𝐻𝐶𝑐 $1,555 per week $1,194 per week 
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Table 8: Transportation cost calculation for a channel (CRP vs. Non-CRP) 

 Parameter Non-CRP Estimation CRP Estimation 

M
an

u
fa

ct
u
re

r 
𝑆̂𝑖𝑗
𝑤 9,528 9,528 

𝑆̂𝑖𝑗
𝑣  1,435 1,435 

𝑁𝐹𝑇𝐿
𝑊  0 0 

𝑁𝐹𝑇𝐿
𝑉  1 1 

𝑁𝑖𝑗
𝐹𝑇𝐿 1 1 

𝑠̂𝑖𝑗
𝑤 0 0 

𝑇𝐶𝑖𝑗
𝐹𝑇𝐿 $1,571 $1,571 

𝑇𝐶𝑖𝑗
𝐿𝑇𝐿 0 0 

𝑇𝐶𝑖𝑗
𝑃𝑎𝑟𝑐𝑒𝑙 0 0 

𝑇𝐶𝑖𝑗 $1,571 $1,571 

𝐶𝑖𝑗 40.29 40.29 

𝐶𝑖𝑗
𝑚𝑎𝑥 67.53 − 

𝜌𝑖𝑗 1.676 − 

𝐶𝑖𝑗
𝐶𝑅𝑃 − 85.06 

𝜌𝑖𝑗
𝐶𝑅𝑃 − 0.474 

𝐴𝑇𝐶𝑖𝑗 $6,845 $3,242 
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Table 9: Ordering and handling cost calculation for a channel (CRP vs. Non-CRP) 

  Parameter Non-CRP CRP 

M
an

u
fa

ct
u
re

r 

O
rd

er
 

P
ro

ce
ss

in
g

 𝑘2 $3.73 $4.29 

𝑂𝐹̅̅ ̅̅𝐷
𝑖𝑗

 2.6 2.6 

𝑂𝑃𝐶𝑖𝑗
𝓂 $9.70 $11.15 

H
an

d
li

n
g

 𝑧2 $0.70 $0.70 

𝑢̅𝑖𝑗 772 418 

𝑃𝐶𝑖𝑗
𝓂 $540.40 $292.60 

D
is

tr
ib

u
to

r 

O
rd

er
in

g
 𝑘1 $5.50 $0.00 

𝑂𝐹̅̅ ̅̅𝐷
𝑖𝑗

 2.6 2.6 

𝑂𝐶𝑖𝑗
𝒹 $14.30 $0.00 

H
an

d
li

n
g

 𝑧1 $0.89 $0.69 

𝑢̅𝑖𝑗 772 418 

𝑅𝐶𝑖𝑗
𝒹 $687.08 $288.42 
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3 CHAPTER 2 

3.1 Introduction 

Monitoring the performance of a supply chain is essential for the success of all the 

involved organizations as well as in communicating the necessary information for decision 

making. Performance measurement can reveal the areas that need improvement in order to meet 

customer expectations and strategic objectives (Chan, 2003). Traditionally, performance 

measurement is defined as the process of quantifying the effectiveness and efficiency of action 

(Neely et al., 1995). As Gleason and Barnum (1982) defined, effectiveness as “the extent to 

which an objective has been achieved” and efficiency as “the degree to which resources have 

been used economically.” Chan (2003) identified seven attributes as the important metrics for 

supply chain performance measurement, where two of them, cost and resource utilization, are 

quantitative. The profit of an enterprise is directly depended on the cost of its operations. In the 

distribution sector, cost is mostly a function of transportation, inventory and order processing 

activities; therefore, efficiency of logistics operations plays a key role in profitability.  

This research is motivated by a collaborative project, with major healthcare 

manufacturers and distributors, about proper execution of a vendor managed inventory (VMI) 

program in the healthcare sector. The key incentive behind VMI is reducing inventory levels, 

while it enables gaining cost efficiency in transportation and order processing. Different 

industries have different priorities in performance measurement depending on their primary 

function. The healthcare sector, like many other sectors, substantially suffers from high 

inventory levels which is a key contributor to the excessive cost of logistics within the sector. 

Therefore, lowering inventory levels is the main objective of their VMI programs. However, 

both literature and industry practices have shown that significant transportation cost savings can 
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be achieved in VMI through shipment consolidation and timely replenishment (Çetinkaya et al., 

2008; Parsa et al., 2017). Utilizing the full potential of a VMI program is a collaborative 

endeavor between partners. Our experience shows that this can only be achieved if the objectives 

of all involved parties are considered. Thus, a verifiable performance measurement system that 

can monitor inventory, transportation and order processing efficiency over time is necessary to 

ensure the benefits of VMI for all partners.  

As Gunasekaran and Kobu (2007) identified through a multi-faceted literature review on 

supply chain and logistics performance metrics, there are numerous overlapping metrics with 

85% of them being quantitative, mostly concerned with financial performance, and focused on a 

single function of logistics operations (i.e. inventory, transportation, etc.). There has not been a 

significant work to design metrics that explore the relationship between functions or propose a 

statistical screening framework to monitor them over time. In this paper, we present multi-

attribute efficiency metrics that can show the trade-off in gaining efficiency between multiple 

functions of logistics.  

One of the challenges for downstream partners in VMI programs is ensuring a desired 

service level for end customers, which requires holding enough inventory. On the other hand, 

gaining efficiency in transportation requires shipment consolidation which can be harmful from 

the perspective of inventory efficiency. It is essentially a tradeoff between inventory efficiency 

and transportation efficiency. A similar trade-off exists between inventory efficiency and order 

processing efficiency. In this paper, we develop metrics that can illustrate the status of a system 

with respect to such tradeoffs over time. In addition, we determine optimal trade-off levels for 

each metric as well as develop a statistical process control (SPC) system to monitor them over 

time. The SPC system suggests whether the system is acting normal or if a significant shift has 
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happened. We will discuss how to use appropriate statistical methods for various time-series 

behaviors of the metrics. The discussion will be coupled with examples on the application of the 

metrics in a healthcare supply chain, using datasets obtained from a group of major healthcare 

partners in the U.S. 

3.2 Literature Review 

Research in the area of supply chain performance measurement has been active since 

early 1990’s. The research contributions can be categorized into two groups. One group is 

focused on proposing individual metrics to measure performance, while the other group proposes 

appropriate measurement systems. The definition of performance can be different for each 

organization and it depends on the goals of the organization. There is not a consensus in the 

supply chain literature about the definition of performance. In the literature, performance has 

been defined as a combination of other measures or so-called performance dimensions. However, 

from the most general and holistic view, many categorized these dimensions into two general 

groups of efficiency and effectiveness (Mentzer and Konrad, 1991). In other words, performance 

has been defined as a function of effectiveness and efficiency.  

As Gleason and Barnum (1982) defined, effectiveness is “the extent to which an 

objective has been achieved” and efficiency is “the degree to which resources have been used 

economically.” Therefore a well-balanced and interconnected group of metrics from both 

categories of efficiency and effectiveness forms a good performance measurement system. Other 

researchers have introduced additional dimensions for performance in order to propose a more 

comprehensive concept with greater level of details. For example, Beamon (1999) introduced 

flexibility as the third dimension of performance. Flexibility in a supply chain represents the 

ability of responding to a changing environment. Likewise, Fugate et al. (2010) and Langley  Jr 
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and Holcomb (1992) introduced differentiation as the third dimension to performance. 

Differentiation refers to logistics superiority when compared to competitors.  

From another standpoint, individual metrics can be categorized into “hard” and “soft” 

metrics. Hard metrics are strictly quantitative such as net income or days of inventory on hand 

while soft metrics, such as customer satisfaction ratings, are more qualitative and are subject to 

personal judgments. Since some dimensions of performance cannot be measured quantitatively 

(e.g. customer service satisfaction), hard measures should be supplemented with soft ones in a 

well-representative measurement system (Chow et al., 1994).  

The primary goal of physical distribution is to move goods from the supplier all the way 

to final the selling points. In this mission, the two most important criteria that determine the 

execution performance are cost and customer service (Mentzer and Konrad, 1991). We know 

that companies seek to reach a point that serves their desired balance between cost and customer 

service, or in other words efficiency and effectiveness. Therefore, a good performance 

measurement system in supply chain management is usually a mix of soft, hard, efficiency and 

effectiveness metrics.  

Caplice and Sheffi (1994) studied research that proposed several criteria to consider when 

selecting individual performance metrics for monitoring logistics operations. Individual metrics 

are the building blocks of a measurement system and their “goodness” is essential to 

performance measurement. The paper summarizes the evaluation criteria existing in the literature 

to eight different criteria: validity, robustness, usefulness, integration, economy, compatibility, 

level of detail, and behavioral soundness. It is practically impossible to develop metrics that 

perform excellent in each of the eight criteria. The paper investigates the critical tradeoffs that 

exist between the criteria. The same authors also proposed a useful set of evaluation criteria for 
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selecting the right combination of metrics to design a balanced and meaningful logistics 

measurement system (Caplice and Sheffi, 1995). 

One way to perform an overall evaluation or to monitor performance as a whole is to use 

economic theory called utility. Utility is the final performance measure of a system when 

multiple active performance metrics are considered. Assume there are n metrics and each has a 

value 𝑥1, 𝑥2, … , 𝑥𝑛. In utility theory, there is a function called the utility function, which maps 

these attributes into a single cardinal utility 𝑢 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛). The form of utility function is 

usually approximated through a simplified function such as a linear additive model. There are 

similar scoring methods such as a Kiviat graph, where good and bad attributes alternate so a 

good performer results in a star-shaped graph (Figure ). Spider graph is another scoring method 

in which the total performance is expressed as the percentage of the surface covered by the 

diagram created by connecting actual scores (Figure ). In other words, performance is 

summarized as a single number (Kleijnen and Smits, 2003). 

  

Figure 1: Kiviat graph (left) and Spider graph (right) 

Perhaps the initial effort toward developing a comprehensive and balanced performance 

measurement system is made by Kaplan and Norton (2005) with the balanced scorecard 

methodology. Supply chain performance used to be monitored by only financial accounting 

measures such as sales figures, cash flow and operating income. These measures were criticized 
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by many due to their backward-looking focus and their inability to cope with the new terms of 

competition and the idea that traditional financial metrics do not enhance success factors such as 

customer satisfaction, quality, employee motivation and etc. In other words, the traditional 

performance measurement had not looked at the entire picture. The balanced scorecard approach 

complements the financial measures by adding operational measures that are mostly focused on 

customer satisfaction, innovation, and improvement activities, which drive future financial 

performance. The scorecard methodology provides four critical perspectives to managers, 

especially senior executives who want to view the most complete picture of company’s status. 

The four perspectives are: financial perspective, customer perspective, internal business 

perspective, and innovation and learning perspective. Each perspective is divided to a number of 

goals and each goal associates with a metric that reflects the performance with respect to the 

corresponding goal and perspective. To summarize, balanced scorecard provides an integrated 

dashboard of metrics that should be monitored to have a comprehensive picture of business 

performance. The importance of integrated metrics and their implementation process are 

investigated by other prominent research works such as Bullinger et al. (2002) and Lambert and 

Pohlen (2001) where they extend the use of balanced scorecard within the supply chain 

operations reference model (SCOR). 

Performance measurement in supply chain collaboration programs, such as a continuous 

replenishment program (CRP) or vendor managed inventory (VMI), is very important. Several 

benefits of such programs have been achieved by suppliers, retailers, manufacturers and 

customers. These benefits are also well documented in the literature. The benefits include cost 

reductions throughout the supply chain, bullwhip effect reduction, improved service, sales 

increase, improved product availability, shorter lead times, etc. (Disney et al., 2003; Lee et al., 
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1997). On the other hand, implementing and maintaining supply chain collaboration programs 

impose extra costs to partners such as technological investments (e.g. advanced warehouse 

management and electronic data interchange systems), and higher skilled planners (Barratt, 

2004). Many of the collaboration efforts failed in the past mostly due to lack of trust, fear of 

failure and operational complexity (Kohli and Jensen, 2010). Therefore, monitoring the 

performance of a supply chain collaboration program, once it is initiated, is crucial for partners 

and eventually for the success of the program.  

As mentioned before, correct metrics that represent both efficiency and effectiveness 

need to be selected for performance measurement. Collaboration programs are primarily 

implemented to reduce costs and improve the service level. Thus, a mix of metrics from both 

operational and financial stand points that cover both dimensions of performance should be used 

for a meaningful assessment. The metrics that have been used are inventory levels, cycle time, 

fill rate, transportation cost, sales, market competitiveness, and etc. (Kohli and Jensen, 2010).  

3.3 Metrics 

3.3.1 Transportation and Inventory Efficiency (TIE) Metric 

Transportation and inventory management can potentially be contradictive. 

Transportation efficiency can be increased by achieving a higher level of consolidation, which is 

potentially against inventory efficiency and possibly effectiveness because not only it can 

increase inventory levels but may increase the chance of stock out. A metric that can illustrate 

the trade-off between transportation and inventory efficiencies and be used to monitor efficiency 

over time is valuable. In addition, it can be coupled with a similar hybrid effectiveness metric to 

monitor performance over time. 
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The idea is to guarantee a certain fill rate level for incoming demands and computing the 

required replenishment quantity and cycle time that can satisfy that fill rate requirement. Our 

assumption is stochastic approximation of demand over time and different fill rate requirements 

based on an ABC classification. The classification helps to treat items appropriately without 

setting a single fill rate requirement for all of them. The time period that the demand is supposed 

to represent can vary but here we assume weekly demand because the replenishment decisions 

are made on a weekly basis in the data available. This will generally cause weekly performance 

metrics to be tabulated. However, this decision should be made wisely and with more analytical 

considerations.  

The rest of this section is a mathematical illustration of the metric followed by a case 

study that illustrates the application of the metric on a healthcare supply chain demand dataset. 

λ𝑗,𝑡 the aggregate demand of class 𝑗 items in week t (Qty/week) 

𝑘 the cost of ordering ($/order) 

𝑖 the holding charge ($/$/week) 

𝑐𝑗̅ the average unit cost of class j items ($/item) 

𝜏𝑗 the fill rate requirement for class j items 

𝑞𝑗,𝑡
∗̂  an estimate of optimal aggregate order quantity for class j items in week t (Qty) 

𝑂𝐹𝑗,𝑡
∗̂  an estimate of optimal aggregate order frequency for class j items in week t 

𝑂𝐹𝑡
∗̂  an estimate of optimal aggregate order frequency for all items in week t 

𝑄𝑡
∗̂ an estimate of optimal aggregate order quantity for all items in week t (Qty) 

𝑄𝑣,𝑡
∗̂  volume estimate of optimal aggregate order quantity for all items in week t (𝑓𝑡3) 

𝑄𝑤,𝑡
∗̂  weight estimate of optimal aggregate order quantity for all items in week t (lbs.) 
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𝑣𝑗̅ the average unit volume of class j items 

𝑤𝑗̅̅ ̅ the average unit weight of class j items 

At this stage, we look at each lane in the supply network separately because 

transportation decisions are normally made at the lane level. A lane is a supply connection 

between a supplier (manufacturer) and their customer (distributor). Therefore, all the above 

parameters should be computed for each lane separately which makes the metric monitor each 

lane separately. First, we need to compute the order quantity and frequency that can satisfy the 

fill rate requirement of each item class. Optimal order quantity subject to a fill rate constraint (𝜏𝑗) 

can be approximated using a lower bound that is obtained in Agrawal and Seshadri (2000) and a 

heuristic approach discussed on page 226 of Zipkin (2000). 

q𝑗,𝑡
∗̂ = √

2𝑘𝜆𝑗,𝑡
𝑖𝑐𝑗̅𝜏𝑗

            ,           𝑂𝐹𝑗,𝑡
∗̂ =

𝜆𝑗,𝑡
𝑞𝑗,𝑡
∗̂
                  𝑗 ∈ {𝐴,𝐵, 𝐶}  

There are likely to obtain different optimal order frequency values for different item 

classes (i.e. 𝑂𝐹𝑗,𝑡
∗̂  varies across item classes in each week). In order to compute 𝑄𝑡

∗̂, which is an 

estimate of optimal aggregate order quantity for all item classes in week t, we need to have a 

common order frequency across the item classes. In order to avoid increasing inventory levels, 

we choose the largest order frequency among the order frequency of three item classes: 

𝑂𝐹𝑡
∗̂ = 𝑚𝑎𝑥  {𝑂𝐹𝑗,𝑡

∗̂ }  𝑜𝑣𝑒𝑟 𝑗  

Hence, an estimate of optimal aggregate order quantity for all items in week t (i.e. 𝑄𝑡
∗̂) 

can be computed: 

𝑄𝑡
∗̂ =

∑ 𝜆𝑗,𝑡𝑗

𝑂𝐹𝑡
∗̂
           ,           𝑄𝑣,𝑡

∗̂ = 𝑄𝑡
∗̂×
∑ 𝜆𝑗,𝑡𝑗 𝑣𝑗̅

∑ 𝜆𝑗,𝑡𝑗

           ,             𝑄𝑤,𝑡
∗̂ = 𝑄𝑡

∗̂×
∑ 𝜆𝑗,𝑡𝑗 𝑤𝑗̅̅ ̅

∑ 𝜆𝑗,𝑡𝑗
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 Now, in order to understand how well actual shipment quantities match the optimal 

weekly order quantities, they will be compared with each other. The metric will illustrate this 

comparison over weeks. In other words, the metric will show over time, how close weekly 

average shipment size is to the optimal shipment size. If historical weekly average shipment size 

is larger than the optimal size (i.e. 𝑄𝑣,𝑡
∗̂ ), it means excessive shipment consolidation is applied to 

make transportation too efficient. This typically causes higher inventory levels at the destination 

and could lead to a high chance of stock out due to infrequent replenishment. On the other hand, 

if the average shipment size is smaller than the optimal size, it means transportation is inefficient 

due to the insufficient shipment consolidation which in turn makes inventory holding to be 

excessively efficient. This metric will capture the trade-off between inventory and transportation 

efficiency and will show how a system performs over time with respect to this trade-off.   

In order to make the comparison between optimal shipment size and average weekly 

shipment size correctly, we need to use the most representative 𝑄𝑡
∗ estimate (𝑄𝑡

∗̂ or 𝑄𝑣,𝑡
∗̂  or 𝑄𝑤,𝑡

∗̂ ). 

Transportation cost and decisions are driven by size properties of shipments which are normally 

cube and weight. Shippers use them to determine a suitable transportation mode for their 

shipments. Whether to use cube or weight depends on whether products cause a shipping truck to 

exceed its cube limit first or weight limit first. Once this rule is established, each week’s demand 

size determines the best transportation mode to use. If the demand is less than the cutoff limit 

between FTL and LTL, LTL is the best mode to use and the metric value will be computed using 

𝑄𝑤,𝑡
∗̂  because LTL cost structure uses shipment weight as the cost driver. In contrast, if demand is 

within the FTL limits, FTL should be selected and the metric for will be using 𝑄𝑣∗̂ and this is due 

to our assumption that the cube limits of shipping truck is exceeded first. 

𝑠̅𝑤,𝑡 the average shipment weight (lbs.) on a lane in week t 
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𝑠̅𝑣,𝑡 the average shipment volume (𝑓𝑡3) on a lane in week t 

𝑀𝑡 the value of the metric in week t 

The value of metric in each week is the following ratio: 

𝑀𝑡 =

{
 
 

 
 (
𝑠̅𝑤,𝑡

𝑄𝑤,𝑡
∗̂⁄ )×100       if LTL is the mode

(
𝑠̅𝑣,𝑡

𝑄𝑣,𝑡
∗̂⁄ )×100       if FTL is the mode

 

𝑀𝑖 values vary from zero to virtually infinity because average shipment size (i.e. 𝑠̅𝑤,𝑡 or  

𝑠̅𝑣,𝑡) can become much larger than optimal order quantity (i.e. 𝑄𝑤,𝑡
∗̂  or 𝑄𝑣,𝑡

∗̂ ). However, 100 is the 

target level for this metric, where average weekly shipment size is equal to the estimate of 

optimal order quantity. Above the target level, as metric values become larger, the system 

becomes excessively efficient in transportation and inefficient in inventory management. On the 

other hand, below the target level as metric values decrease, we see small size/frequent 

shipments, which indicate transportation inefficiency and excessively efficient inventory 

management (Figure 2) 

Too efficient transportation
Not efficient inventory

Not efficient transportation
Too efficient inventory

Time

Metric value

100
Balanced trade-off

 
Figure 2: a schematic graph for the TIE metric 

We computed this metric to monitor the efficiency of transportation and inventory 

operations for a healthcare supply chain. A data set containing two years of demand and shipping 
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data is used. The shipped items are classified into three groups of A, B, and C with 0.98, 0.9, and 

0.85 fill rate requirements (i.e. τ). Inventory carrying charge (i.e. i) is assumed to be 20% 

annually while ordering cost (i.e. k) is assumed to be $50 per order, where an order represents a 

purchase order that can contain multiple items. Figure 3 depicts the developed metric over two 

years on a weekly basis for an example lane from Atlanta, GA to Dallas, TX.  

 
Figure 3: TIE metric scores over time for an example lane 

As Figure 3 shows, the metric scores are mostly under the target level which clearly 

implies inventory efficiency is preferred to transportation efficiency. There is also a visible 

upward trend to achieve better transportation efficiency. The target line represents optimal trade-

off between inventory and transportation efficiency considering the associated costs and fill rate 

requirements. Points below the target line indicate frequent and small size shipments which 

suggest poor shipment consolidation. On the other hand, inventory had been managed efficiently 

since small size/frequent shipments are used to satisfy the demand over time.  

To summarize, this metric shows the trade-off between transportation and inventory 

efficiency over time. In addition, scores of a lane over time can be aggregated into a single score 

and be used as an aggregate efficiency score to compare efficiencies of multiples lanes with each 

other. It is noteworthy that this metric does not provide decisive insights into effectiveness of 
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either transportation or inventory management because if we define effectiveness as satisfying 

the demand on time, any value of this metric does not help in drawing a conclusion.  

3.3.2 Order Processing and Inventory Efficiency (OIE) Metric 

Order processing involves a set of activities that starts with a customer generating a 

purchase order (PO) and finishes with the same customer putting away the received purchase 

order in warehouse. Figure 4 graphically list the activities involve in order processing. 

SupplierCustomer

1- Generating PO

2- Sending PO

3- Receiving PO

4- Picking up and counting
5- Pallet building and 
loading

Transportation

6- Unloading pallets
7- Unwrapping, matching & sorting
8- Putting away
9- Reporting overage, shortage 
and damage cases

Figure 4: Order processing activities 

There are several factors that increase the efficiency of order processing such as material 

handling automation, electronic PO processing, etc. However, our cost analysis revealed that 

order frequency and size of orders (in particular, quantity ordered for each item) are the main 

drivers for efficiency of order processing activities. The entire process of order processing 

becomes more efficient, and possibly effective, if order quantities round up to multiple numbers 

of tiers or pallets. There are three reasons behind this claim. First of all, when order quantities 

round up to the nearest multiple of tier or pallet, order frequency decreases. In other words, the 

orders become larger and more consolidated which reduces the work load and travel time in DC. 

Second, activities 4, 7, and 8 in Figure 4 are the most time consuming and costly activities of 

order processing (i.e. our studies show that they make up more than 75% of the total time and 

cost) and they are negatively impacted when the order quantities are not multiples of tier or 

pallet. Picking up, counting, sorting, and putting away processes become much faster and 
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efficient when tiers or pallets need to be processed instead of individual piece picking. Third, 

ordering tier and pallet quantities make pallet building and loading easier and also reduces the 

number of overages, shortages and damages (OSD) during the transportation phase.  

However, one important point to consider is that rounding up to multiple numbers of tiers 

or pallets might increase the inventory levels and cost. Therefore, in this metric we focus on the 

trade-off between inventory holding cost and order processing cost. Just like the previous metric, 

we consider three classes of items and show the efficiency trade-off between order processing 

and inventory holding. The metric that we introduce in this section shows the efficiency of 

historical order processing in comparison with the best-case scenario, where optimal quantities 

are rounded up to the closest tier or pallet sizes. By choosing to round up (and not round down), 

we make sure that we do not increase the chance of stock out. 

The metric will be developed to monitor the efficiency of order processing at both 

individual item level and item class level (i.e., three item classes of A, B and C). The metric will 

be used over time and for each lane separately because the class of items could differ among the 

lanes. Similar to the previous section, the time increment is assumed to be weekly but it could be 

assumed differently. The rest of this section is a mathematical illustration of the metric followed 

by a case study that illustrates the application of the metric on a healthcare supply chain demand 

data set. 

λ𝑗,𝑡 the demand for item 𝑗 in week t (Qty/week) 

𝑘 the cost of ordering per item ($/item) 

𝑖 the holding charge ($/$/week) 

𝑐𝑗 the unit cost of item j ($/item) 

𝜏𝑗 the fill rate requirement for item j 
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𝑞𝑗,𝑡
∗  the optimal weekly order quantity for item j in week t (Qty) 

𝑂𝐹𝑗,𝑡
∗  the optimal weekly order frequency for item j in week t 

𝑡𝑗 the number of cases in a tier for item j (i.e. tier quantity) 

𝑝𝑗 the number of cases in a pallet for item j (i.e. pallet quantity) 

𝑂𝐹𝑗,𝑡 weekly order frequency of item j in week t 

First, we need to compute the optimal order quantity and frequency that can satisfy the 

fill rate requirement for each item: 

 

𝑞𝑗,𝑡
∗ ≅ ⌈√

2𝑘𝜆𝑗,𝑡

𝑖𝑐𝑗𝜏𝑗
⌉             ,           𝑂𝐹𝑗,𝑡

∗ =
𝜆𝑗,𝑡

𝑞𝑗,𝑡
∗    (1) 

In order to achieve efficiency in order processing and not increasing the chance of stock 

out, we round up 𝑞𝑗,𝑡
∗  to the nearest multiple of corresponding tier quantities (𝑡𝑗). 𝑞𝑗,𝑡

𝑐𝑜𝑛 indicates 

the rounded-up order quantity and 𝑂𝐹𝑗,𝑡
𝑐𝑜𝑛 is the corresponding frequency: 

 

𝑞𝑗,𝑡
𝑐𝑜𝑛 = {

⌈
𝑞𝑗,𝑡
∗

𝑡𝑗
⌉ 𝑡𝑗    𝑖𝑓 𝑞𝑗

∗ ≠ 0

0            𝑖𝑓 𝑞𝑗
∗ = 0

              ,              𝑂𝐹𝑗,𝑡
𝑐𝑜𝑛 =

𝜆𝑗

𝑞𝑗,𝑡
𝑐𝑜𝑛 (2) 

As indicated earlier in this section, order frequency is one of the main efficiency drivers 

of order processing activities. The metric compares actual weekly order frequency 𝑂𝐹𝑗,𝑡 with 

𝑂𝐹𝑗,𝑡
𝑐𝑜𝑛 to indicate how efficient the order processing has been with respect to the trade-off with 

inventory holding. 𝑂𝐹𝑗,𝑡
𝑐𝑜𝑛 represents the “optimal” trade-off between order processing efficiency 

and inventory holding efficiency because it is the smallest order frequency that generates an 

order quantity (i.e. 𝑞𝑗,𝑡
𝑐𝑜𝑛) with the size of multiple tiers. In other words, 𝑞𝑗,𝑡

𝑐𝑜𝑛 represents an order 

quantity that is rounded up just about enough to achieve the closest order processing efficiency. 
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Hence, in our metric we assign score of 100 to 𝑂𝐹𝑗,𝑡
𝑐𝑜𝑛 and compute a relative score for 𝑂𝐹𝑗,𝑡 

which represents the historical ordering. 

𝜌𝑗,𝑡 the metric score for historical ordering (𝑞𝑗,𝑡, 𝑂𝐹𝑗,𝑡) for item j in week t    

 
𝜌𝑗,𝑡 = (

𝑂𝐹𝑗,𝑡
𝑐𝑜𝑛

𝑂𝐹𝑗,𝑡
)×100 (3) 

This metric will be compared against 100, which is the target and the score for ordering 

tier quantity. As illustrated in Figure 5, above the target level, as metric value becomes larger, 

system becomes excessively efficient in order processing and inefficient in inventory 

management. Below the target level as metric value decreases, we see small size/frequent 

shipments, which indicate order processing inefficiency and excessively efficient inventory 

management. 
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Figure 5: a schematic graph for order processing/inventory efficiency metric 

We computed this metric for the same instance lane to monitor the efficiency of order 

processing and inventory and the trade-off between them over time. A data set containing two 

years of demand data is used in which the shipped items classified into three groups of A, B, and 

C with 0.98, 0.9, and 0.85 fill rate requirements (i.e. τ). Inventory carrying charge (i.e. i) is 
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assumed to be 20% annually while ordering cost (i.e. k) is assumed to be $1.55 per individual 

item. Figure 6 depicts the metric over time for an individual A-class item with high demand. 

 
Figure 6: OIE metric scores for an individual A-class item on an example lane over time 

The metric values are fluctuating around the target line but sometimes they are 

significantly distant from the balanced trade-off level. For example, toward the end of 2016, the 

metric score is at 350 (i.e. 𝜌𝑗,𝑡 = 350) which indicates that order processing is very efficient due 

to an order quantity that is substantially larger than the optimal level. Large order sizes cause 

reduction in order frequency which increases order processing efficiency. However, this is 

achieved at the expense of losing inventory efficiency because the order size in that week can 

excessively increase the inventory level. 

Monitoring the efficiency of order processing is not practical when it is at the individual 

item level. Companies normally do not treat items individually; they instead classify them into 

three classes of A, B and C and manage each class differently. It is much easier and practical to 

monitor efficiency for each class of items. Therefore, we will modify the metric and tailor it for 

the item class level instead of individual item level. Let 

𝛽𝑛,𝑡 the metric score of historical ordering for item class n in week t    
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The metric can be computed for each item class (three classes of A, B and C) by taking 

the weighted average of the individual item scores within the same class. The weights are the 

demand magnitudes of individual items (i.e. λ𝑗,𝑡): 

 
𝛽𝑛,𝑡 =

∑ 𝜌𝑗,𝑡×λ𝑗,𝑡𝑗∈𝑛

∑ λ𝑗,𝑡𝑗∈𝑛

 (4) 

𝛽𝑛,𝑡 is the equivalent of 𝜌𝑗,𝑡 at the item class level and can be similarly monitored over 

time to ensure the efficiency of order processing and its trade off with inventory efficiency. 

Monitoring three charts per lane is much more reasonable and practical than one chart per 

individual item per lane. Using the same data set, we computed 𝛽𝑛,𝑡 for three item classes on the 

same lane from a DC in Atlanta to a customer location in Dallas (Figure 7). 
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Figure 7: Order processing metric scores for three item classes on an example lane over time 

The striking trend that draws attention in the first glance is that the metric (𝛽𝑛,𝑡) is almost 

consistently below the target line. As discussed earlier, metric values below the target level 

indicate small size/frequent shipments, which cause order processing inefficiency and 

excessively efficient inventory efficiency. The consistency of this pattern over time means that 

both partners in this VMI relationship have been over-cautious about inventory efficiency and 

did not value the efficiency that they could have gained from order processing. However, there is 

a significant upward trend in the second half of 2016 for A-class items which suggests a change 

in ordering patterns at the end of the year. 
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Another important trend to observe is that as item class changes from C to B and to A, 

the difference between the black line and the target level shrinks. This trend suggests that as the 

importance level of items increases, the replenishment pattern for the class becomes closer to the 

balanced trade-off level. Simply put, the most important reason behind this trend is that the 

demand for B-class and C-class items do not support tier quantity replenishment. Let’s reiterate 

that the target line at 100 represents replenishments at the closest tier quantity (𝑡𝑗) larger than the 

optimal order quantity (𝑞𝑗,𝑡
∗ ). Oftentimes for B-class and C-class items 𝑞𝑗,𝑡

∗ ≪ 𝑡𝑗, thus when 𝑞𝑗,𝑡
∗  

values get rounded up to 𝑞𝑗,𝑡
𝑐𝑜𝑛 for attaining order processing efficiency (i.e. 𝑞𝑗,𝑡

𝑐𝑜𝑛 = ⌈
𝑞𝑗,𝑡
∗

𝑡𝑗
⌉ 𝑡𝑗), 𝑞𝑗,𝑡

𝑐𝑜𝑛 

values become far larger than the optimal level (i.e. 𝑞𝑗,𝑡
𝑐𝑜𝑛 ≫ 𝑞𝑗,𝑡

∗ ) which is undesirable due to 

inventory management considerations such as expiration and etc.  

To illustrate the substantial gap between 𝑞𝑗,𝑡
𝑐𝑜𝑛 and 𝑞𝑗,𝑡

∗  values for B-class and C-class 

items, we compute and plot the hypothetical OIE scores if we ordered optimal quantities for 

every item in every week. This can be performed by replacing 𝑂𝐹𝑗,𝑡
𝑐𝑜𝑛 with 𝑂𝐹𝑗,𝑡

∗  in Equation 3 

and re-computing 𝛽𝑛,𝑡 in Equation 4. As shown in Figure 8, the gap between the yellow lines and 

100 is substantial for B-class and C-class items. The yellow line represents the optimal ordering 

pattern in a hypothetical situation. This suggests that on this particular lane, A-class items, which 

form 70% of the monetary transactions, are the most capable items for gaining order processing 

efficiency through replenishment adjustment. For B-class and C-class items, the gap between the 

yellow line and 100 is too much to compromise for gaining order processing efficiency by tier 

ordering. 
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Figure 8: Order processing metric scores for three item classes on an example lane over time. 

Black line represents the historical ordering pattern and yellow line represents the optimal 

ordering pattern is a hypothetical situation. 

In order to go beyond the lane perspective for this metric and be able to monitor the 

inventory and order processing efficiencies at the supply chain network level, we propose a 

modified version of OIE metric. This metric is not to be observed over time and instead offers a 

picture over an extended period of time such as a quarter or longer. It has two components that 

represent the efficiency of operations with respect to inventory holding and order processing. 

The metric will be monitored on two axes, each representing a component, which form a 

quadrant plot. Starting with the inventory component, we define: 
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𝐸𝑗,𝑡 = 100 (1 −

𝑂𝐹𝑗,𝑡

𝑂𝐹𝑗,𝑡
∗ ),       𝑆𝑙 =

∑ ∑ 𝜆𝑗,𝑡 𝐸𝑗,𝑡𝑗∈𝑛𝑡

∑ ∑ 𝜆𝑗,𝑡 𝑗∈𝑛𝑡
 (5) 

where 𝑆𝑙 denotes the inventory score for a lane over a period of time (x axis in Figure 9). 

Likewise, the order processing score (𝑆𝑙
′) can be computed in a similar fashion (y axis in Figure 

9): 

 
𝐸𝑗,𝑡
′ = 100 (1 −

𝑂𝐹𝑗,𝑡

𝑂𝐹𝑗,𝑡
𝑐𝑜𝑛),       𝑆𝑙

′ =
∑ ∑ 𝜆𝑗,𝑡 𝐸𝑗,𝑡

′
𝑗∈𝑛𝑡

∑ ∑ 𝜆𝑗,𝑡 𝑗∈𝑛𝑡
 

(6) 

A quadrant plot can visualize the metric and be useful to evaluate lanes based on their 

(𝑆𝑙, 𝑆𝑙
′) scores. Figure 9 describes what each quadrant means but the key point is that the center 

of the graph (𝑆𝑙 = 0, 𝑆𝑙
′ = 0) represents the best scenario where 𝑂𝐹𝑗,𝑡 = 𝑂𝐹𝑗,𝑡

∗ = 𝑂𝐹𝑗,𝑡
𝑐𝑜𝑛. The 

center obviously is the ideal which can only happen hypothetically because it requires the 

optimal order quantity be equal to tier quantity for all the items in a lane. However, it is a valid 

reference to compare the relative position of other lanes to it. Moving away from center indicate 

worsening the conditions in the corresponding quadrant (Figure 9). The bounds on the graph are 

worth discussing because axes are bounded on the positive sides but not on the negative sides. 

The reason is that order frequency (𝑂𝐹𝑗,𝑡) has a natural lower bound of zero but does not have 

any upper bound. Technically and empirically, 𝑂𝐹𝑗,𝑡 can be much larger than 𝑂𝐹𝑗,𝑡
∗  or 𝑂𝐹𝑗,𝑡

𝑐𝑜𝑛 

which makes the axes on the graph boundless on the negative sides.  
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Figure 9: a schematic quadrant plot for the network-level OIE metric 

Figure 10 illustrates the application of this metric on set of 20 lanes that support a VMI 

relationship between two partners in a healthcare supply chain network in 2016. It depicts the 

clear distinction in metric scores for the three item classes. This figure indicates that the pattern 

that we observed for a particular lane across its item classes (Figure 7) actually exists across the 

network. Another important trend to observe is the inclination of points toward the third quadrant 

along the y-axis. This indicate the overemphasis on inventory efficiency and lack of efficiency in 

order processing. The positive take from the figure is that A-class items, which form 70% of the 

monetary transactions on the network and 66.5% of the total volume (𝑓𝑡3) transported, are 

spread around the center. Given the pattern present in Figure 10, solely looking at A-class items 

would also be insightful. Figure 11 illustrates that the demand size of lanes does not necessarily 

associate with better efficiency levels. 
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Figure 10: a quadrant plot of the network-level OIE metric for 20 major lanes 

 
Figure 11: a quadrant plot of the network-level OIE metric for 20 major lanes (only A-class 

items). Size of the dots corresponds to the demand size of the lanes (Qty) 

3.3.3 Transportation Cost Efficiency Metric 

Transportation cost and specifically shipping cost depends on various factors. Companies 

that ship frequently, normally have year-long contracts with carriers that offer negotiated rates. 
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FTL carriers charge the shippers on a per mile basis while LTL and parcel carriers charge on a 

per load basis with rates that are primarily based on weight and distance. Although parcel 

shipments can only be 150 lbs. or lighter, FTL and LTL carriers accept shipments of any size. 

However, it is not economical to ship shipments that are larger than a size threshold with LTL or 

smaller than that threshold with FTL. Shippers normally determine the best threshold for mode 

selection based on various factors such as cost, product dimensions, and stackability. It is a well-

known fact that FTL is a more cost-effective mode than LTL and LTL is a more cost-effective 

mode than parcel. In fact, the motivation behind initiatives such as shipment consolidation or 

multi-stop trucking is to benefit from better shipping rates of FTL shipments. The metric that we 

propose here focuses on the cost of shipping by incorporating the cost difference between 

shipping modes and other factors that affect shipping cost such as the space utilization of FTL 

trucks. This metric can be used to monitor cost efficiency over time; however, it is more 

meaningful to use at an aggregate level for evaluating the efficiency of transportation across the 

network. This would enable a comparison of lanes with each other over a long period of time. 

The essence of this metric is the existing difference between the rates of FTL, LTL, and 

parcel. The main driver of metric score is proportion of shipped volume by each mode. 

Therefore, lanes with higher usage of FTL would have higher scores than lanes with 

predominantly LTL shipments. Another driver is space utilization of FTL trucks because FTL 

shipments become more economical as the utilization of space within the trucks increases. In 

fact, FTL would not be an economical mode if the available space in trucks remains substantially 

unutilized. Therefore, lanes with higher average FTL space utilization would have higher metric 

scores.  
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As mentioned above, shippers are charged by different rules depending on the 

transportation mode. FTL is per mile basis, LTL is per hundred pound (cwt) on a lane by lane 

basis, and parcel is per pound and distance. To make a comparison between modes, the pricing 

rules should be converted into a common one. Thus, we convert LTL and parcel rates to $/mile, 

which is the pricing rule of FTL. The conversion process uses lane distance and typical truck 

weight capacity (45000 lbs.) to change LTL and parcel rates to $/mile. Table  shows this process.  

𝑑 the distance (mile) of a lane 

𝐶𝑤 the weight capacity of trucks on a lane (it is normally 45000 lbs.) 

Table 1: Conversion of LTL and parcel costing rules to FTL cost rule 

 FTL LTL Parcel 

Pricing unit of measure $/mile cwt ($/100 lbs.) $/lb/mile 

Conversion - Step 1 $/mile cwt/(100×𝑑) = $/lb/mile $/lb/mile 

Conversion - Step 2 $/mile ($/lb/mile)×𝐶𝑤  = $/mile ($/lb/mile)×𝐶𝑤  = $/mile 

Since the shipping rates are different from lane to lane, the savings impact of utilizing 

FTL shipments varies among the lanes. Therefore, the metric should capture this difference on a 

lane by lane basis by performing the rate conversion process for every lane separately. For the 

sake of simplicity and easy interpretation, this metric is designed to be a unit less metric that can 

vary from 0 to 100, where zero indicates the lowest efficiency and 100 indicates the maximum 

efficiency. The lowest efficiency is a situation where the entire demand is shipped via the most 

expensive shipping mode, which is normally the parcel mode. In contrast, the highest efficiency 

is a situation where the entire demand is shipped via the most economical shipping mode, which 

is 100% space utilized FTL’s.  

Thus, we need to rescale the converted shipping rates (i.e. $/mile rates in Table ) to unit 

less numbers between 0 and 100 that represent the efficiency level of each shipping mode. These 
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numbers are called efficiency weights. The rescaling process is performed for each lane 

separately and using a linear decreasing function shown in Figure 12. 

𝑟𝑖 the $/mile rate of transportation mode 𝑖 on a lane.     𝑖 ∈ {𝐹𝑇𝐿, 𝐿𝑇𝐿, 𝑃𝑎𝑟𝑐𝑒𝑙} 

𝑊𝑖 the efficiency weight of mode i on a lane.   𝑖 ∈ {𝐹𝑇𝐿, 𝐿𝑇𝐿, 𝑃𝑎𝑟𝑐𝑒𝑙} 

𝑃𝑖,𝑡 the percentage of shipped volume on a lane via mode 𝑖 in week 𝑡.   

𝑢̅𝑡 the average space utilization of FTL trucks in week 𝑡. 

$/mile
 

 

As discussed earlier, space utilization of truck is another efficiency driver of 

transportation operations. Truck space is an available capacity for shippers and if not used, it is 

still paid for. FTL carriers charge shippers on dollar per mile basis thus any empty space in a 

truck is a lost opportunity for shippers. This is only applicable for FTL shipments since LTL and 

parcel cost structure is on a dollar per pound basis. In order to reflect this in the metric, 

efficiency weight of FTL should be reduced by the lost space in the shipped trucks. Therefore, 

average space utilization of FTL shipments over time period t (i.e. 𝑢̅𝑡) will be multiplied to 

efficiency weight of FTL, which is originally set at 100. Once the efficiency weights (𝑊𝑖) are 

obtained for a lane, the metric score can be computed over time (e.g. weekly) by multiplying the 

𝑟𝐿𝑇𝐿 𝑟𝐹𝑇𝐿

> 0 

𝑊𝐹𝑇𝐿 = 100 

𝑊𝐿𝑇𝐿 

𝑊𝑃𝑎𝑟𝑐𝑒𝑙 = 0 
𝑟𝑃𝑎𝑟𝑐𝑒𝑙 

Figure 12: Rescaling linear function to transform $/mile 

shipping rates (𝑟𝑖) to efficiency weights (𝑊𝑖) 

𝑊𝑖 
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percentage usage of modes over time period t (𝑃𝑖,𝑡) to the corresponding efficiency weights (𝑊𝑖).  

Since shipping rates do not change frequently (i.e. they usually change on a yearly basis due to 

contact renewals), 𝑟𝑖 and 𝑊𝑖 do not have time subscripts.  

𝜙𝑡 the value of transportation cost efficiency metric in week 𝑡. 

𝜙𝑡 = 𝑢̅𝑡𝑊𝐹𝑇𝐿𝑃𝐹𝑇𝐿,𝑡 +𝑊𝐿𝑇𝐿𝑃𝐿𝑇𝐿,𝑡 +𝑊𝑃𝑎𝑟𝑐𝑒𝑙𝑃𝑃𝑎𝑟𝑐𝑒𝑙,𝑡 

For monitoring the cost efficiency of transportation on a single lane, 𝜙𝑡 can be tracked 

over time. One difference that this metric has in comparison with the previous ones, is that there 

is no common target level for all the lanes. 𝜙𝑡 values of low volume lanes are expected to be less 

than high volume lanes because their demand does not support FTL shipments, therefore they are 

not able to achieve high scores in this metric. Thus, we expect to see a correlation between 

demand and 𝜙𝑡 values across lanes within a supply network (Figure 13).  

Time

Metric 
value

100

Low volume lanes

Medium volume lanes

High volume lanes

0

 
Figure 13: Expected values of 𝜙𝑡 over time for different size lanes 

Lastly, if t is assumed to be a long period of time (e.g. 6 months or one year) then an 

overall efficiency level for lanes can be computed, analyzed and plotted on a single graph to 

evaluate the efficiency of the entire network over a long period of time. Figure 14 illustrates the 

transportation cost efficiency scores of 143 lanes over a period of 6 months. Each point on the 

graph represents a lane in a healthcare supply network that support major distributors across the 
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United States. The most noticeable pattern is an increase in scores (y axis) as demand increases 

(x axis). More importantly, the graph shows that lanes that are managed in a continuous 

replenishment program (CRP) performed significantly better over the 6 months period. CRP 

gives the replenishment responsibility to the supplier which has resulted in a better consolidation 

achievement. This metric is a good complement to the other two metrics that are discussed 

earlier because first it only focuses on cost and second it provides a big picture on the 

transportation efficiency. 

 
Figure 14: Transportation cost efficiency scores of 143 different lanes over a period of 6 months 

3.4 Statistical Process Control System 

The purpose of this section is to develop statistical process control (SPC) systems to 

monitor the metrics over time. An SPC system ensure whether a time-series maintains a state of 

statistical control or any departure from statistical control has occurred. A state of statistical 

control is known as a process that generates independent and identically distributed (iid) random 

variables. Departures from statistical control are discovered by plotting data on a variety of 

control charts. Departures are signals to search for special causes that might cause out of control 
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situations. We present a framework for appropriate SPC approaches for different time-series 

behaviors of the developed metrics. We will discuss time-series models for SPC under different 

scenarios including situations where independent and identically distributed observations do not 

exist. Oftentimes in practice, including in logistics, the presence of autocorrelations, non-

stationarity and other time-series effects limit the applicability of traditional control charts. In 

this section, we briefly discuss traditional SPC for independent and identically distributed 

observations. We then discuss developing control charts for dependent, stationary and not 

necessarily normally distributed observations. Finally, we present a detailed framework for 

screening autocorrelated and non-stationary time-series which are commonly encountered in 

practice including in our case. 

The metrics developed in sections 3.3.1 and 3.3.2 generate time-series observations that 

should be monitored over time to detect any significant process mean change to subsequently 

call for corrective action. The metrics have a target or optimal level (i.e. 𝜇0 = 100) that should 

be used to monitor the process mean 𝜇 against it. The Shewhart 𝑋̅ chart is a useful SPC tool to 

accomplish this objective. This chart plots the sample means, 𝑋̅’s, of subgroups of the individual 

observations {𝑋1, 𝑋2, … } and is essentially testing the hypotheses 𝐻0: 𝜇 = 𝜇0 versus 𝐻1: 𝜇 ≠ 𝜇0 

conducted over time, using 𝑋̅ as the test statistic. Failure to reject the null hypothesis (𝐻0) 

indicates in control process, otherwise, it is said to be out of control. This decision mechanism 

can be graphically displayed on a control chart with an upper control limit (UCL) and a lower 

control limit (LCL) extended on a horizontal axis which indicates the time order of the observed 

test statistic, 𝑋̅. The y axis indicates the metric value and as time elapses, we observe the metric 

values, compute sample mean (𝑋̅), and plot them on the chart. The region between LCL and 

UCL is the acceptance region of 𝐻0 and whenever 𝑋̅ falls outside the control limits, it suggests 
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that the process mean (𝜇) might have significantly shifted from the target (𝜇0) due to some 

assignable cause. In order to construct the control charts, which requires LCL and UCL, we need 

to estimate the process mean and variance using some historical data taken when the process is 

considered in control. Let’s assume the data consists of k samples of size n where we denote the 

ith sample mean and variance by 𝑋̅i and 𝑆𝑖
2. Then the estimated process mean (𝑋̿) and variance 

(𝑆2) are: 

 

𝑋̿ =∑𝑋̅𝑖

𝑘

𝑖=1

           𝑎𝑛𝑑           𝑆2 =∑
𝑆𝑖
2

𝑘

𝑘

𝑖=1

 (7) 

Assuming {𝑋1, 𝑋2, … } follows the normal distribution, the control limits for the 𝑋̅ chart 

are approximately: 

 𝐿𝐶𝐿 = 𝑋̿ − 𝑧 (1 −
𝛼

2
) 𝑆/√𝑛  

𝑈𝐶𝐿 = 𝑋̿ + 𝑧 (1 −
𝛼

2
) 𝑆/√𝑛 

(8) 

where 𝛼 is the false alarm rate and 𝑧𝛼 indicates the 𝛼 quantile of the standard normal 

distribution. The center line for the 𝑋̅ chart is obviously 𝑋̿ which is the average of all 𝑋𝑖’s. For 

more information see Montgomery (2009). The two key assumptions here are normal 

distribution for observations and independency between them. If the metric values found to be 

independent or un-correlated over time and follow a normal distribution then the presented limits 

can be applied to monitor them on a 𝑋̅ chart. The only limitation of this method in our case is 

that it requires sampling. Sample size (n) normally needs to be greater than two and less than or 

equal to five. Since our metrics generate weekly observations, for n = 4 one needs to wait and 

collect data for four weeks to create one sample observation for the control chart. To overcome 

this issue, we suggest the moving range chart which is designed for monitoring individual 
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measurements. The moving range is defined as 𝑀𝑅𝑖 = |𝑥𝑖 − 𝑥𝑖−1|, which is the absolute value of 

the first difference of the data. The control limits of the individual observations chart are: 

𝐿𝐶𝐿 = 𝑋̿ − 3
𝑀𝑅̅̅ ̅̅̅

1.128
             ,            𝑈𝐶𝐿 = 𝑋̿ + 3

𝑀𝑅̅̅ ̅̅̅

1.128
 

where 𝑀𝑅̅̅̅̅̅ is the average of all the moving ranges of two observations. The value of 

1.128 is the unbiasing constant (𝑑2), read from table for sample size of two, to make 
𝑀𝑅̅̅ ̅̅ ̅

1.128
 an 

unbiased estimator of standard deviation (Montgomery, 2009). 

Normality and independency of observations are two major assumptions that often do not 

hold in practice. We often encounter observations such as stock market indices that are 

statistically dependent or correlated. Later in this section we show that these two assumptions do 

not hold for the developed metrics in this chapter as well. When autocorrelation exists in a time-

series, the true variance of 𝑋̅ involves covariances between 𝑋𝑖’s that are not well-estimated by 

the pooled sample variance 𝑆2 in Equation 7. When the normality of observations is the only 

assumption in question, the bootstrap method can be used to compute control limits (Liu and 

Tang, 1996). If the observations are neither independent nor normal but they are only “weakly 

dependent”, a modification of the original bootstrap method, called moving block bootstrap 

method can be used to develop a valid 𝑋̅ control chart. Liu and Tang (1996) discusses how to 

develop such control charts using the bootstrap method and moving block bootstrap method in 

great detail. Weakly dependent refers to a situation where the correlation between 𝑋𝑖 and 𝑋𝑖+ℎ 

tends towards zero sufficiently quickly as h goes to infinity (i.e.  𝑐𝑜𝑟𝑟(𝑋𝑖, 𝑋𝑖+ℎ) → 0 as ℎ → ∞). 

This essentially requires a stationary time series, which is again does not always appear in 

practice. Therefore, moving block bootstrap would not be able to develop valid control limits 

where non-stationary autocorrelated time-series exist. This is a common pattern appearing in 
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practice such as in U.S. electricity consumption data or in oil sales price records (Cryer and 

Chan, 2008). Later we show that autocorrelated non-stationary is the most common pattern 

appearing for our metrics in the case study. 

 When systematic time-series effects, such as autocorrelation or non-stationarity, are 

present, standard Shewhart control charts lead to a substantial chance of not detecting special 

causes that truly exist while observing apparent special causes that do not exist. The main reason 

is presence of common causes that appear in the form of trend or seasonality or generally 

speaking autocorrelation behavior. Standard Shewhart control charts, such as the 𝑋̅ chart, are 

able to signal special causes when the common cause is an iid process. Alwan (1992) studies the 

effect of autocorrelation on the standard Shewhart charts for individual observations with fixed 

(i.e. 3-sigma) control limits. They discuss that in a non-iid process, where the mean is constantly 

changing, using a single chart would require to continually move the control limits centered 

around the estimated conditional means where the width of limits is calculated from the variation 

of residuals. However, based on the literature, the most common method for developing control 

charts in the case of autocorrelated and non-stationary observations is presented in Alwan and 

Roberts (1988). Their approach suggests modeling systematic non-random behavior by using the 

autoregressive integrated moving average (ARIMA) models which ultimately leads to two basic 

charts rather than one: 

I) Common Cause Chart (CCC): a chart of fitted values based on ARIMA models. It 

provides guidance in understanding the process. This chart does not have control limits 

and instead provides a representation of the current and estimated state of the process. 

II) Special Cause Chart (SCC): a standard 𝑋̅ chart of residuals from fitted ARIMA models. 

All traditional settings of the process control for iid observations are applicable here. 
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Although the CC chart does not have limits, Wardell et al. (1992) propose control limits 

on the CC chart in the case of ARMA (1,1) which is a stationary process.  

ARIMA models aim to describe the autocorrelations in the data. A time series {𝑌𝑡} is said 

to follow an autoregressive integrated moving average (ARIMA) model if the dth difference 

𝑊𝑡 = ∇
𝑑𝑌𝑡 is a stationary ARMA process. In other words, if {𝑊𝑡} follows an ARMA (p,q) 

model, we say that {𝑌𝑡} is an ARIMA (p,d,q) process. For practical purposes, the first or at most 

the second difference (i.e. d = 1 or 2) is sufficient to create a stationary time series (Cryer and 

Chan, 2008). Let’s assume {𝑊𝑡} is the first difference of {𝑌𝑡} (𝑊𝑡 = 𝑌𝑡 − 𝑌𝑡−1) then 

ARIMA(p,1,q) will be: 

 𝑊𝑡 = 𝑐 + 𝜙1𝑊𝑡−1 + 𝜙2𝑊𝑡−2 +⋯+ 𝜙𝑝𝑊𝑡−𝑝 + 𝑒𝑡 − 𝜃1𝑒𝑡−1 − 𝜃2𝑒𝑡−2 −⋯− 𝜃𝑞𝑒𝑡−𝑞 (9) 

where p is the order of the autoregressive part, q is the order of the moving average part 

and {𝑒𝑡} represent an unobserved white noise series, that is, a sequence of identically distributed, 

zero-mean, independent random variables. The procedure discussed in Alwan and Roberts 

(1988) proposes fitting such a model (Equation 9) to the time series, using the fitted values as the 

CC chart, and using the residuals to build an 𝑋̅ control chart. The residuals are the difference 

between the observations and the corresponding fitted values: 

 𝑒𝑡 = 𝑦𝑡 − 𝑦̂𝑡 (10) 

If an ARIMA model with a good fit is selected, then the residuals are expected to be 

uncorrelated with mean of zero; otherwise the ARIMA model needs to be improved. Later, we 

will discuss developing the CCC and SCC charts for a time series of the transportation and 

inventory efficiency metric (TIE), discussed in section 3.3.1, over two years on a channel 

instance. 
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Consider a demand channel from a supplier DC in Atlanta, GA to a customer DC in 

Montgomery, NY. We have computed the TIE metric for two years on a weekly basis (Figure 

15). As the autocorrelation function graph (ACF) and the partial autocorrelation function graph 

(PACF) show, there is a strong autocorrelation in the time series. They illustrate correlation 

between lagged values of the time series (𝑟𝑘 where k is the lag). In an iid process, where there is 

no autocorrelation, both ACF and PACF spikes are supposed to lie within the critical limits 

±2/√𝑇 where T is the length of the time series. The ACF also indicates that the time series is 

non-stationary because the spikes decrease slowly with a large and positive value of 𝑟1. In a 

stationary process, ACF spikes drop to zero relatively quickly and do not go beyond the 

significance limits (Hyndman and Athanasopoulos, 2014). In addition to interpreting the ACF 

plot, we can perform a more formal test, called the Ljung-Box test, which considers a whole set 

of 𝑟𝑘 values as a group, rather than treating each one separately. The test statistic is the 

following: 

 

𝜔 = 𝑇(𝑇 + 2)∑(𝑇 − 𝑘)−1𝑟𝑘
2

ℎ

𝑘=1

 (11) 

If there was no significant autocorrelation, then 𝜔 would have a 𝜒2 distribution with (h – 

K) degrees of freedom, where h is being the maximum lag being considered and K is the number 

of parameters in a time-series model. Since we are applying it on a raw data rather than the 

residuals from a model, K is equal to zero. The value of h is suggested to be 𝑇/5 but not larger 

than 10 for achieving the best performance. Using the stats package in R we performed the test 

on the TIE time-series which resulted in the p-value of 2.9×10−7 which confirms significant 

autocorrelation in the time series. 
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Figure 15: Transportation and Inventory Efficiency (TIE) metric time series, the corresponding 

autocorrelation function chart (ACF) and partial autocorrelation function chart (PACF) 

In order to fit an ARIMA model, the order of the model, which is the appropriate values 

for p, d, and q, need to be selected. In addition, the parameters 𝑐, 𝜙1, … , 𝜙𝑝, 𝜃1, … , 𝜃𝑞 need to be 

estimated (Equation 9). Order selection and parameter estimation of ARIMA models are based 

on using maximum likelihood estimation (MLE) technique and the Akaike’s information criterion 

(AIC) as the performance indicator. AIC is helpful in determining the order of an ARIMA model 

and can be written as: 

 𝐴𝐼𝐶 = −2 log(𝐿) + 2(𝑝 + 𝑞 + 𝑘 + 1) (12) 

where L is the likelihood of the data and the last term in parenthesis is the number of 

parameters in the model (including the variance of residuals). k indicates if the model has a 

constant c or not hence, 𝑘 = 1 if 𝑐 ≠ 0 and 𝑘 = 0 if 𝑐 = 0. Statistical software packages obtain 

the order of ARIMA models by minimizing the AIC or AICc which is known as the corrected 

AIC, a variation of the original AIC presented in Equation (12) (Hyndman and Athanasopoulos, 
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2014). Once the order of an ARIMA model is identified, the parameters 𝑐, 𝜙1, … , 𝜙𝑝, 𝜃1, … , 𝜃𝑞 

need to be estimated. MLE is the technique that is commonly used to estimate the parameters by 

maximizing the probability of obtaining the data that has been observed. Since the logarithm of 

the likelihood function is more convenient to work with than the likelihood itself, for given 

values of p, d, and q, statistical packages try to maximize the log-likelihood when estimating the 

parameters (Cryer and Chan, 2008). 

There are certain rules that are helpful to determine the order of an ARIMA model. Rules 

that are based on the patterns of ACF and PACF graphs are fairly subjective and not decisive in 

determining the best p, d, and q values of an ARIMA model. There have been several attempts to 

automate ARIMA modeling in the past few decades using different approaches. Some of them 

have been implemented in commercial software packages; for example, Gómez (1998) proposed 

an automatic method for multiplicative seasonal ARIMA modeling for TRAMO and SEATS 

software. (Liu, 1988) developed another automatic method based on a filtering method and 

heuristic rules for seasonal ARIMA, which then used in the SCA-Expert software. Another 

approach for univariate ARIMA modeling that allows intervention analysis is developed by 

Mélard and Pasteels (2000) for software package TSE-AX. Perhaps Forecast Pro (Goodrich, 

2000) is the most well-known commercial software for its excellent automatic ARIMA 

algorithm, however it has not been documented publicly.  

We use one of the recent automatic ARIMA modeling algorithm, known as the 

Hyndman-Khandakar algorithm, which is implemented in the forecast package in R. As 

discussed thoroughly in Hyndman and Khandakar (2008), this algorithm determines the number 

of differences d in an ARIMA model by using the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) 

test. The KPSS test is a hypothesis test of stationarity to determine whether differencing is 
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required to achieve a stationary time-series. This algorithm determines the values of p and q by 

minimizing the AICc measure and using a stepwise search to traverse the model space. The use 

of stepwise search and some approximations is to speed up the search; therefore, it is possible 

that the model with minimum AICc will not be identified. However, the auto.arima() function 

allows turning off the approximation (approximation=FALSE) or the stepwise search 

(stepwise=FALSE). It is also helpful to choose the model based on subjective judgment (using 

Arima() function) and compare its AICc with the result of the auto.arima() function. It is 

important to note that auto.arima() or Arima() functions perform as expected when a time-

series with stable variation is passed. If a time-series shows variation that increases or decreases 

with the level of the series, then a logarithmic or power transformation should be applied to 

stabilize the data before developing a model. Section 3.2 of Hyndman and Athanasopoulos 

(2014) discusses transformations in further detail. Note that in case of seasonality in the data, 

seasonal ARIMA models that include additional seasonal terms should be developed. Once a 

model is chosen, it is necessary to plot the ACF of the residuals and ensure that they look like 

white noise process.  

Now let’s consider the TIE time-series illustrated in Figure 15 and develop an ARIMA 

model. We first look at the output of auto.arima() function. Since the time-series does not show 

any instability in variation over time, it does not need any transformation therefore we can pass 

the data directly to the auto.arima() function. We also use the function when no approximation 

or stepwise search is used. 

#1 auto.arima(TIE) 

#2 auto.arima(TIE, approximation = FALSE, stepwise = FALSE) 
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They resulted in ARIMA (3,0,2) with AICc of 909.13 and ARIMA (2,0,2) with AICc of 

907.93 respectively. As they both indicate, 𝑑 = 0 which means the algorithm recognizes this 

time-series as stationary with no need for differencing. Although the time-series does not show 

significantly visible non-stationarity, the ACF graph hints the other way. The first difference of 

the TIE time-series is illustrated in Figure 16.  

 
Figure 16: The first difference of the transportation and inventory efficiency (TIE) metric 

Both the differenced time-series and its ACF and PACF graphs have much stronger 

characteristics of a stationary process. Given the first difference is improving, we can use the 

following visual rules of ARIMA modeling (Hyndman and Athanasopoulos, 2014) to select an 

appropriate order for the model:  

• The data may follow an ARIMA (p,d,0) model if the ACF and PACF plots of the differenced 
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o the ACF is exponentially decaying or sinusoidal; 

o there is a significant spike at lag p in the PACF, but none beyond lag p. 

• The data may follow an ARIMA (0,d,q) model if the ACF and PACF plots of the differenced 

data show the following patterns: 

o the PACF is exponentially decaying or sinusoidal; 

o there is a significant spike at lag q in the ACF, but none beyond lag q. 

Based on the above rules, ARIMA (0,1,1) seems an appropriate model. Developing 

ARIMA (0,1,1) using Arima() function results in the AICc of 900.35, which is better than the 

outputs of the automatic algorithm. Other models such as ARIMA (1,1,0) and ARIMA (1,1,1) 

are also tested but they all result in higher AICc levels. After all, it is reassuring that Alwan and 

Roberts (1988) argues that precise model identification may not be essential to effective process 

control because several alternative ARIMA models may fit the data about equally well. The 

Arima() function sets 𝑐 = 0 by default (Equation 9) but by using argument include.drift = 

TRUE we can include the constant c. For the current example, including a constant results in a 

higher AICc measure which is undesirable. It is also noteworthy that auto.arima() automates 

the inclusion of a constant. Given that the first order integrated moving average, ARIMA (0,1,1), 

is the superior model and assuming {𝑌𝑡} is the original series, the model equation is: 

 𝑌𝑡 = 𝑌𝑡−1 + 𝑒𝑡 − 0.7112𝑒𝑡−1 (13) 

At this stage, we should ensure that the residuals of the model form an iid process with 

mean of zero. Figure 17 plots the residuals, their histogram, and the ACF graph. The residuals 

appear to be stationary and following a normal distribution with mean of zero. However, the 

ACF graph has one spike on lag 9 that goes beyond the significance limits. Therefore, as 

discussed earlier, we can use the Ljung-Box test to examine if there is autocorrelation remained 
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in the residuals. The result of the test indicates that there is no significant autocorrelation in the 

residuals (p-value = 0.3724).  

 
Figure 17: The residuals of the fitted model, ARIMA (0,1,1) 

Since an appropriate ARIMA model is identified for the TIE data of this particular lane to 

Montgomery NY, we can develop the common cause chart (CCC) and the special cause chart 

(SCC) as discussed before. The CC chart is a chart of fitted values based on ARIMA (0,1,1), 

which helps in understanding the process by providing a representation of the current and 

estimated state of the process. The CC chart presents a view of the level of the process and its 

evolution over time. We know that the most desirable level of the process is 100, which 

represents the optimal balance between transportation and inventory holding efficiencies. 

Deviations from that level entail economic loss caused by supply chain management. For this 

particular lane, the CC chart (Figure 18) clearly shows that inventory efficiency has been 
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consistently favored over transportation efficiency over year 2015 and 2016 (see Figure 2). There 

has not been a single week that the TIE score is above 100 to indicate an over-consolidation of 

shipments to gain transportation efficiency.  

 
Figure 18: The Common Cause Chart (CCC) for the TIE values of the instance channel 

The process shows that small shipments have been sent frequently to keep the inventory 

levels low which in turn caused losing shipment consolidation opportunities. The two important 

visible patterns in the CC chart are: 1) the presence of two peaks in the process around months 3 

and 9 in each year and 2) a slight increase in the level of the process from year 2015 to 2016. 

One speculation is whether the demand pattern drives the TIE values, meaning when demand 

rises, more consolidation opportunities causes TIE values to increase. Looking at Figure 19, and 

comparing it to the CC chart, there is no visible indication of correlation between them. In fact, 

the correlation coefficient of 0.034 confirms this fact as well. 
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Figure 19: Weekly demand level of the channel to Montgomery NY 

The SC chart is a chart of residuals from the fitted ARIMA model. In order to construct 

the SC chart, the control limits need to be computed. Since the process is iid and we want to 

monitor individual observations, we should use the moving range control chart as discussed 

earlier.  

 
Figure 20: The Special Cause Chart (SCC) for the TIE values of the instance channel 
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This chart is essentially a standard control chart for residuals and can be used in 

traditional ways to detect any special causes, without the risk of confusing special causes with 

common causes. While the CC chart shows the underlying process, the SC chart detects sudden 

and substantial shocks due to assignable causes rather than common causes. In addition to 

considering observations outside the UCL and LCL as out of control, run count rules should also 

be used to detect out of control situations (Montgomery, 2009). In the example illustrated in 

Figure 20, there is no indication of out of control situations. This means that the focus should be 

on identifying the common causes that drive the pattern existing in the CC chart. 

3.5 Summary 

 As discussed earlier, monitoring efficiency metrics are essential for logistics excellence 

in a supply chain system. This study has offered new metrics that can capture the trade-off in 

achieving efficiency between distinct functions of logistics. Logistics functions that are 

considered are transportation, inventory holding, and order processing, which greatly contribute 

to the profitability of any distribution operation. In addition, optimal trade-off levels are 

proposed for each metric as well as a statistical process control system to monitor them over 

time. We discussed how to utilize appropriate statistical methods for various time-series 

behaviors that might appear for the metrics. Another key contribution of this study is providing 

data-driven and traceable metrics that quantify possible tendencies in favoring efficiency in 

certain functions over others. This is particularly helpful for enhancing communications between 

partners in supply chain collaboration programs, such as VMI. Such programs attract potential 

partners for different reasons, thus, each partner might seek a different or sometimes competing 

objective. The metrics that are proposed here enable decision makers to communicate factually 

and work collectively toward balanced efficiency levels using statistical control systems. 
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3.6 Future Work 

This research study introduces a new approach to supply chain efficiency screening and 

performance measurement. It opens new research directions for future to develop a better 

understanding about the impacts of using such metrics, its applications in other areas besides the 

supply chain management. The following are the main specific directions for future research that 

we recommend: 

• Conducting sensitivity analysis on the parameters in the metrics in order to understand 

their impact on the metrics, 

• Conducting a correlation analysis for metrics to identify the circumstances under which 

they provide redundant information, 

• Conducting a case study to apply the metrics on datasets from both VMI relationships and 

non-VMI relationships. This would evaluate the ability of the metrics to capture the 

difference in efficiency of different supply chain arrangements,   

• Developing effectiveness metrics that can provide similar trade-off representation in 

across different logistics functions, 

• Investigating whether companies see the optimal trade-off levels aligned with their 

strategic objectives and other considerations. What could be the rationale behind favoring 

the efficiency of one logistics function (e.g. inventory holding) over others?  

• Assess the “goodness” of metrics using the evaluation criteria that are discussed in the 

literature for logistics metrics (Caplice and Sheffi, 1994). Collecting inputs from 

operations and logistics managers from different industries will be insightful. 
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4 CHAPTER 3 

4.1 Introduction 

Multi-Stop Truckload (MSTL) is becoming increasingly popular among shippers (i.e. 

companies that need their products transported) for shipping less than truckload (LTL). 

According to a massive dataset from CH Robinson, the business share of MSTL has increased 

from 6.42% in 2013 to 7.39% in 2015. This is due to its cost savings potential, shorter transit 

time, reduced damages, more certain delivery time, and positive environmental impacts. At the 

same time, carriers have become more cautious about accepting multi-stop load tenders because 

they tend to impose extra travel distance, higher cost of operation, longer detention time for 

drivers, and cause disruptive effects on the flow balance of the carriers’ transportation routes.  

The trucking industry primarily consists of two modes of transport: Full Truckload (FTL) 

and Less-than-Truckload (LTL). MSTL, which mostly targets the LTL market, consists of using 

one full truckload to deliver to multiple locations on a single trip. While it is mostly recognized 

as a new transportation option, many still consider it as a variant of FTL. The main reason is that 

the pricing structure of MSTL is very similar to the pricing structure of FTL within the United 

States. In the truckload market, there are two pricing alternatives, spot market and annual pricing 

contracts. Companies that regularly need a large volume of products to be shipped often set 

annual pricing contracts with carriers to secure lower prices and avoid the volatility and 

uncertainty of the spot market. Although contracts added more certainty to the freight 

transportation, uncertainty is not completely removed because carriers are not obligated to accept 

all the loads offered by the shipper. The primary advantage of contracts over the spot market is 

the fixed cost per mile for different lanes (lanes are pairs of origin cities and destination cities) 

while in the spot market freight is put up for bid. The MSTL market uses the same annual 
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contract pricing format with an addition of stop-off charges on a per stop basis and shippers have 

tried to take advantage of this pricing structure and reduce their transportation cost. A very recent 

study by Chen and Tsai Yang (2016) shows that carriers have become more selective in 

accepting multi-stop load tenders and tried to implicitly increase the cost of MSTL shipments. 

The study applies predictive analytics on a large representative dataset of loads and identifies 

significant factors that affect both the behavior of carriers in accepting MSTL and the actual 

price of the load. Factors such as distance, number of stops, proximity of stops, additional 

distance to travel, lead time, stop-off charge, and origin-destination states, impact both the cost 

of MSTL and the acceptance rate from carriers. Chen and Tsai Yang (2016) develop regression 

models to predict the cost and the acceptance chance of multi-stop load tenders. Companies can 

use this study to plan their transportation network and wisely offer multi-stop routes that 

maximize their savings and acceptance rate.  

This chapter proposes a multi objective decision model to identify the best two-stop 

routes that maximize the cost savings for the shipper and fulfill the most important load 

acceptance criteria of the carriers, which are out-of-route miles and proximity of stops. The 

model provides a trade-off capability for selecting routes with more appeal to either shipper or 

carrier. The application of the model is discussed for a healthcare supply network. We use 

weekly forecast data at the SKU level along with shipping and distance information of the 

distribution network to compute the potential savings of every possible two-stop route via an 

exhaustive search. The routes with positive savings will be subject to a multi objective decision 

model that selects the best routes given the load acceptance criteria of carriers.  
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4.2 Literature Review 

Multi stop trucking is also known as milk run because the practice originates from the 

dairy industry. It involves a delivery vehicle that visits multiple locations on a single trip to 

either drop off or pick up orders. According to Chen and Tsai Yang (2016), who used a massive 

dataset obtained from CH Robinson (contains about 4 million shipment records), 55% of MSTLs 

were picked up from one location and dropped off at two locations. The next common type of 

MSTL, which takes 26% of the loads, is picking up from one location and dropping off at three 

locations. Besides milk run, direct shipping, cross-docking, and tailored networks are other types 

delivery methods (Du et al., 2007). The automobile industry is one of the pioneers in 

implementing milk run logistics, primarily in the upstream of the supply chain where 

manufacturers pick up parts from suppliers to support production processes. Numerous 

companies including Toyota in both Japan and the United States, Shanghai GM in China, 

Volkswagen and Jaguar Land Rover in Europe, Turk Tractor in Turkey, and an automotive 

manufacturer in Indonesia have implemented and benefited from milk run logistics over the 

years (Brar and Saini, 2011). Although the most accessible benefit is in transportation cost 

through reduction in traveled miles, there are other substantial benefits in areas such as inventory 

holding cost, CO2 emissions, and truck utilization (load factor). Ricoh Express doubled loading 

efficiency from 30% to 65% by implementing optimized milk run transportation. They 

significantly shortened travel distances which resulted in 35% reduction in CO2 emissions (Brar 

and Saini, 2011). In the retail sector, a study of 750 stores in Japan showed that a milk run 

delivery system that consolidates vendor shipments to retail stores in Tokyo can reduce the 

number of truck deliveries by 5.5% (Akiyama and Yano, 2010). Walmart stores is greatly 

benefiting from multi stop trucking in the U.S. by leveraging their own private fleet. Milk runs 
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can also reduce inventory significantly because deliveries can become more frequent and in 

smaller sizes. For example, Shanghai GM reported 30% reduction in inventory in addition to 

20% reduction in transportation trips and 30% integrated logistics cost reduction (Xu, 2003). 

The milk run problem can be categorized into three types: supplier milk run, customer 

milk run, and mixed milk run. They are respectively focused on inbound transportation planning, 

outbound transportation planning, and hybrid delivery, which considers bypassing the 

distribution center (DC) as plausible (i.e. direct shipments from suppliers to customers) (Sadjadi 

et al., 2009). The focus of the present paper is on customer milk run category, which concerns 

order drop-off to customers. The milk run problem can be defined as a special kind of vehicle 

routing problem (VRP) with time windows and a limited number of vehicles (Eroglu et al., 

2014). Many operations research studies have developed mathematical models and heuristics to 

optimize multi stop truckload planning under various assumptions. Yildiz et al. (2010) developed 

a mixed integer program for Robert Bosch LLC, a leading automotive parts manufacturer, to 

combine shipments on the same route but opposite flows into returning empty containers from a 

milk run trip. They also investigated the impact of crossdocking in the study. You and Jiao 

(2014) developed a mathematical model and used the Clark-Wright savings algorithm to solve 

large scale milk run problems for a courier company. They assume single type of delivery 

vehicle and fixed cost structures for transportation. Hosseini et al. (2014) developed an integer 

programming model and a hybrid heuristic solution approach to minimize shipping cost by 

reducing the number of required identical vehicles. Sadjadi et al. (2009) included due dates and 

inventory costs in their analysis. They considered a waiting cost for delivery trucks at each 

supplier as well as an assumption for shipping loads being increments of pallet loads for each 

item. A mathematical model was developed with a genetic algorithm solution approach along 
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with a computational study to solve a small-scale problem that includes a maximum of ten 

suppliers and fifty parts. 

Multi stop truckload (MSTL) in the U.S. is priced using the annual contract pricing 

structure of the truckload (FTL) market. Such contracts set per mile rates ($/mile) for origin and 

destination city pairs (i.e. lanes) between shippers and carriers. The only difference for MSTL 

lies in the “stop-off charges” (SOC), which are per stop charges ($/stop) for additional 

intermediate stops (Chen and Tsai Yang, 2016). Although annual contracts add certainty for 

shippers, carriers are not obligated to accept all the loads offered by shippers. Once a load is 

rejected, shippers need to go to the next preferred carriers in their routing guide. Chen and Tsai 

Yang (2016) showed that multi stop loads have higher rejection rates from carriers than direct 

loads. They used a supervised classification algorithm known as logistic regression to model 

carrier behavior towards multi stop loads. They identified significant factors such as out-of-route 

miles, proximity of stops, number of stops, SOC, and continuous move potential to predict the 

chance of acceptance. According to Caldwell and Fisher (2008), load tenders rejection can 

increase the cost of transportation because shippers normally place the cheaper carriers at higher 

positions in their routing guide. They observed a 7.9% cost increase in initial rejection followed 

by 3.2% in subsequent rejections. Load rejections not only increase the transportation cost but 

also disrupt the delivery plans and negatively impact other dependent operations. Therefore, the 

main challenge for shippers is not only to offer the most profitable multi-stop loads but have 

them be accepted by the carriers. In this chapter, we develop a model that helps shippers to select 

the best two-stop routes with respect to both aspects of this decision problem. 
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4.3 MSTL Cost Savings 

This study focuses on the manufacturers (i.e. shippers) in the MSTL market and develops 

a model that enable them to integrate cost savings maximization with the most important carrier 

acceptance criteria. One of the typical distribution systems in any sector is a network of 

distributors that receive products from manufacturers and send them downstream to retailers or 

wholesalers or hospitals (Figure ). Manufacturers sell their products to numerous distributors and 

ship them via different carriers with whom the manufacturer maintains annual contracts. Both 

manufacturers and distributors own DCs, typically spread around their target geographical areas. 

In this section, we discuss the process of cost savings calculation to identify the most profitable 

pairs of distributor locations for two-stop deliveries over time. 

Manufacturer

Distributors

Hostpitals

 
Figure 1: A representation of healthcare supply chain 

The following list represents the critical assumptions of the study along with the logic 

behind using them: 

1. The replenishment system resembles a VMI or CRP system in which the manufacturer 

makes the replenishment quantity and timing decisions, 

2. The demand pattern across the network at the aggregate level is stationary over a yearly 

time period. This allows the cost savings estimates of one year to be valid for the next 
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year planning. This assumption can be valid depending on the industry or product family 

or etc.  

3. Two-stop delivery system: vehicles are only allowed to stop for two drop-offs. Therefore, 

once a vehicle is dispatched, it will only visit delivery locations, 

4. The demand at two distributor locations can only be combined and delivered via a two-

stop trip if their order dates are not apart by more than a week, 

5. MSTL rates are the same as the FTL rates ($/mile) associated with the final stop plus an 

additional stop-off charge that normally varies between $50 and $100 per extra stop. 

The model is developed for a network with one manufacturer DC because the two-stop 

delivery system only allows multiple drop-offs. Therefore, to analyze a network with multiple 

manufacturer DC’s, the model needs to be executed multiple times. Since this is a transportation 

problem, load size is the main characteristic that needs to be considered. Therefore, for each 

distributor location, the demand is aggregated across SKUs and bucketed into weekly periods 

(assumption 4). Then, given the total weekly demand at distributor locations, all possible 

combinations of two-stop routes per week are evaluated. For each pair of distributor locations, 

the delivery sequence with the shorter travel distance is considered (i.e. depot  A  B or depot 

 B  A). This process is an exhaustive search to compute the cost savings for every two-stop 

delivery over the planning period. For populated networks, where the number of delivery 

locations does not allow an exhaustive search, heuristic algorithms such as the Clark-Wright 

algorithm can be used (You and Jiao, 2014). The savings potential of every two-stop route is the 

difference between the shipping costs of i) two separate direct deliveries and ii) a two-stop 

delivery. Let 

𝐷𝑥 the total weekly demand at location 𝑥 (𝑓𝑡3) 
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𝐷𝑥
𝑀𝑆𝑇𝐿 the weekly demand at location 𝑥 that can be sent via a two-stop delivery (𝑓𝑡3) 

𝑊𝑥
𝑀𝑆𝑇𝐿 the weekly demand at location 𝑥 that can be sent via a two-stop delivery (𝑙𝑏𝑠.) 

𝐿𝐿 the lower cube limit for dispatching a FTL or MSTL truck (𝑓𝑡3) 

𝑈𝐿 the upper cube limit for dispatching a FTL or MSTL truck (𝑓𝑡3) 

𝑟𝑥 the FTL shipping rate from the manufacturer DC to location 𝑥 ($/𝑚𝑖𝑙𝑒) 

𝑆𝑇 the stop-off charge ($/intermediate stop) 

𝑙𝑑,𝑤 the LTL rate for a load with delivery distance of 𝑑 and weight of 𝑤 (cwt) 

𝑑𝑥,𝑦 the driving distance from location 𝑥 to location 𝑦 (𝑚𝑖𝑙𝑒) 

𝑑𝑥 the driving distance from depot to location 𝑥 (𝑚𝑖𝑙𝑒) 

𝐶𝑥,𝑦
𝑑𝑖𝑟𝑒𝑐𝑡 the total shipping cost to location 𝑥 and 𝑦 via a single stop/direct system 

𝐶𝑥,𝑦
𝑀𝑆𝑇𝐿 the total shipping cost to location 𝑥 and 𝑦 via a two-stop system 

𝑆𝑥,𝑦 the total savings associated with two-stop delivery to location 𝑥 and 𝑦 

The highlighted parameters above are known and do not need to be estimated. 𝐷𝑥 is 

known from the weekly bucketed demand data. 𝐿𝐿 and 𝑈𝐿 are shipping policy parameters of the 

manufacturer DC. 𝑟𝑥 is the FTL rate of each lane that is negotiated between the manufacturer and 

contract carriers. 𝑑𝑥,𝑦 (or 𝑑𝑥) is essentially the distance matrix of the distribution network. The 

remaining variables need to be estimated for each route. To compute the savings, LTL rates are 

critical because the main target of MSTL is the LTL market. LTL cost structure is more 

complicated than FTL and is a function of both distance and weight (Mendoza and Ventura, 

2009). Therefore, we estimated the LTL rates by developing a regression model on a dataset of 

3,569 LTL shipments, obtained from a healthcare manufacturer, that contains total cost figures, 

lane distance, and weight. Equation (1) is the generic regression equation that we obtained.  
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 𝑙𝑑,𝑤 = 𝑤
−𝛼𝑒𝛽𝑑 (1) 

where w and d represent the weight of a load and distance of the corresponding lane, α 

and β are constant values that cannot be disclosed for confidentiality reasons. Figure 2 illustrates 

the LTL dataset in blue dots as well as the fitted values of the regression model in red dots. The 

regression model in Figure 2 shows a good fit with 𝑅2 of 0.71 and a good accuracy with relative 

percent error of -5% which means over-estimating CWT by 5%. The residuals of the model 

(Figure 3) also do not show any systematic pattern indicating that the model has captured the 

patterns in the data quite well. 

 
Figure 2: LTL shipment dataset (blue dots) and the fitted values from the model (red dots) 
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Figure 3: Residual analysis of the regression model 

To compute the savings associated with a two-stop delivery, we need to estimate the 

available demand for the delivery, 𝐷𝑥
𝑀𝑆𝑇𝐿. The total weekly demand at a location (i.e. 𝐷𝑥) could 

be so high that direct, fully utilized FTL shipments can be used without needing two-stop 

delivery planning. In such case, 𝐷𝑥
𝑀𝑆𝑇𝐿 becomes the remaining volume that cannot be shipped via 

direct FTL. By comparing the total weekly demand (i.e. 𝐷𝑥) with the upper and lower cube limits 

of the manufacturer DC (i.e. 𝐿𝐿 and 𝑈𝐿), 𝐷𝑥
𝑀𝑆𝑇𝐿 can be determined: 

 

𝐷𝑥
𝑀𝑆𝑇𝐿 = {

𝐷𝑥                                     𝑖𝑓 𝐷𝑥 < 𝐿𝐿
𝐷𝑥                        𝑖𝑓 𝐿𝐿 ≤ 𝐷𝑥 ≤ 𝑈𝐿
𝐷𝑥 mod 𝑈𝐿                   𝑖𝑓 𝐷𝑥 > 𝑈𝐿

 (2) 

Given 𝐷𝑥
𝑀𝑆𝑇𝐿, the difference between the cost of direct shipments (𝐶𝑥,𝑦

𝑑𝑖𝑟𝑒𝑐𝑡) and the 

shipping cost of two-stop delivery (𝐶𝑥,𝑦
𝑀𝑆𝑇𝐿) is the expected savings (Equation 3). To compute 

𝐶𝑥,𝑦
𝑑𝑖𝑟𝑒𝑐𝑡, we need to define it for all possible scenarios. Since either of direct FTL or LTL can be 

used for delivering to location x and y, there are four different ways of shipping via two direct 

single-stop deliveries (i.e. FTL+FTL, FTL+LTL, LTL+FTL, LTL+LTL). Equation 4 lists these 

four scenarios, the conditions associated with each, and their corresponding cost equations. 

 𝑆𝑥,𝑦 = 𝐶𝑥,𝑦
𝑑𝑖𝑟𝑒𝑐𝑡 − 𝐶𝑥,𝑦

𝑀𝑆𝑇𝐿 (3) 
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𝐶𝑥,𝑦
𝑑𝑖𝑟𝑒𝑐𝑡 =

{
 
 
 

 
 
 
𝑟𝑥 𝑑𝑥 + 𝑟𝑦𝑑𝑦                                                  𝑖𝑓 𝐷𝑥

𝑀𝑆𝑇𝐿 > 𝐿𝐿 𝑎𝑛𝑑 𝐷𝑦
𝑀𝑆𝑇𝐿 > 𝐿𝐿

𝑟𝑥 𝑑𝑥 + (𝑊𝑦
𝑀𝑆𝑇𝐿×

𝑙𝑑,𝑤
100

)                             𝑖𝑓 𝐷𝑥
𝑀𝑆𝑇𝐿 > 𝐿𝐿 𝑎𝑛𝑑 𝐷𝑦

𝑀𝑆𝑇𝐿 < 𝐿𝐿

(𝑊𝑥
𝑀𝑆𝑇𝐿×

𝑙𝑑,𝑤
100

) + 𝑟𝑦 𝑑𝑦                            𝑖𝑓 𝐷𝑥
𝑀𝑆𝑇𝐿 < 𝐿𝐿 𝑎𝑛𝑑 𝐷𝑦

𝑀𝑆𝑇𝐿 > 𝐿𝐿

(𝑊𝑥
𝑀𝑆𝑇𝐿×

𝑙𝑑,𝑤
100

) + (𝑊𝑦
𝑀𝑆𝑇𝐿×

𝑙𝑑,𝑤
100

)        𝑖𝑓 𝐷𝑥
𝑀𝑆𝑇𝐿 < 𝐿𝐿 𝑎𝑛𝑑 𝐷𝑦

𝑀𝑆𝑇𝐿 < 𝐿𝐿

 (4) 

The only rational feasibility condition for a two-stop delivery to location x and y, is 𝐿𝐿 <

𝐷𝑥
𝑀𝑆𝑇𝐿 + 𝐷𝑦

𝑀𝑆𝑇𝐿 < 𝑈𝐿, which ensures the capacity constraint of the shipping vehicles. For each 

pair of 𝑥 and 𝑦 that satisfies this condition, 𝐶𝑥,𝑦
𝑀𝑆𝑇𝐿 can be computed as follows:  

 𝐶𝑥,𝑦
𝑀𝑆𝑇𝐿 = 𝑟𝑦(𝑑𝑥 + 𝑑𝑥−𝑦) + 𝑆𝑇 (5) 

The value of 𝑆𝑥,𝑦 can be computed for all possible xy pairs over a sufficiently long period 

of time (e.g. a year to capture possible seasonality effects) to evaluate the savings potential of 

each pair. Savings potential has two key indicators: I) average expected weekly savings (𝑆𝑥̅,𝑦 in 

Equation 6) II) expected savings frequency (𝐹̂𝑥,𝑦 in Equation 7). While the first one is an 

indicator of savings magnitude, the second one is an indicator of savings consistency over time. 

They are both important indicators for shippers to evaluate the profitability of routes. 

 
𝑆𝑥̅,𝑦 =

∑ 𝑆𝑡
𝑥,𝑦𝑇

𝑡=1

𝑇
 (6) 

 
𝐹̂𝑥,𝑦 =∑ 𝐼𝑡

𝑇

𝑡=1
     𝑤ℎ𝑒𝑟𝑒     𝐼𝑡 = {

1        𝑖𝑓  𝑆𝑥,𝑦
𝑡 > 0

0        𝑖𝑓  𝑆𝑥,𝑦
𝑡 ≤ 0

 (7) 

where t is the week index and 𝑇 = 52 if one year of data is used to estimate 𝑆𝑥̅,𝑦 and 𝐹̂𝑥,𝑦. 

If savings potential was the only criteria to succeed in offering MSTL tenders, the above 

two indicators would be the only representatives of the decision factors. The problem becomes 

more interesting knowing that savings only matters to the shippers. Carriers have their own 

criteria for accepting loads, which oftentimes have nothing to do with the savings potential for 
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the shippers! As discussed in the literature review section, Chen and Tsai Yang (2016) identified 

these criteria through an empirical study. The two crucial decision factors for carriers are out-of-

route miles and proximity of stops. Out-of-route miles is the extra distance that needs to be 

traveled to visit an intermediate stop before arriving at the final destination. 

4.4 Multi-objective Decision Analysis (MODA) 

We propose a multi-objective decision model to assist shippers in selecting the best two-

stop routes considering i) savings magnitude (𝑆𝑥̅,𝑦) ii) savings consistency over time (𝐹̂𝑥,𝑦) iii) 

out-of-route miles (𝑅𝑥,𝑦), and iv) proximity of stops (𝑑𝑥,𝑦). While the first two seek the shipper’s 

benefit, the last two affect carriers’ acceptance chance. In this section, we first discuss the 

components of MODA in general and how they support the process of selecting routes. Then we 

focus on applying MODA on the problem to integrate the four above factors to select the best 

routes. 

MODA is an evaluation methodology that uses the decision criteria to measure how well 

different candidate solutions (e.g. two-stop routes in our problem) satisfy the fundamental 

objective of the stakeholders in the decision-making problem. Prior to measuring the value of 

any candidate solution, a qualitative model must be constructed that captures the critical 

objectives of the stakeholders. Then MODA will quantify the value of each candidate solution 

with respect to the objectives that are identified in the qualitative model. The process can be 

listed as follows: 

1. Collect the views of stakeholders 

The stakeholders of a decision problem are the parties that are influenced by the decision (e.g. 

shipper and carriers in our problem). 

2. Determine the fundamental objective 
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The most basic and high-level objective the stakeholders are trying to achieve. 

3. Determine the objectives and sub-objectives 

Any fundamental objective contains various aspects so it can be broken out to specific 

objectives that each points out to one aspect of the fundamental objective. 

4. Construct the value tree 

A pictorial representation of hierarchy of identified objectives. The fundamental objective is 

placed on the top while the relations between objectives and value measures shape the tree. 

5. Determine the value measures 

Each objective at the lowest level of the value tree needs a value measure. A measure assesses 

how well each candidate solution attains the corresponding objective.  

6. Determine the value functions 

Each value measure has a different scale with different units. Value functions are used to 

convert candidate solution scores on the value measures to a standard unit. 

7. Weights 

A value, normally between 0 and 1, that represents the importance of a value measure. The 

weights should sum to 1.  

8. Quantitative value model 

This is a quantitative method for trading off conflicting objectives (Kirkwood, 1996). Although 

different mathematical relationships can achieve this, we use the most common method called 

the additive value model to calculate the value of each candidate solution. 

A complete review of MODA can be found at Parnell et al. (2011), where various aspects of the 

methodology are discussed along with examples from multiple application areas. 
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4.4.1 Model Development 

The views of shippers and carriers, as the primary stakeholders of MSTL business, lead 

to the fundamental objective. Our collaboration with a major manufacturer in the healthcare 

industry indicates that cost savings is the main objective of shippers because on the customer 

service side, they are almost certain that transitioning from LTL to MSTL would increase the 

quality of delivery for customers. As discussed earlier, 𝑆𝑥̅,𝑦 and 𝐹̂𝑥,𝑦 are appropriate value 

measures for the shipper’s objective. On the other hand, studies such as Chen and Tsai Yang 

(2016) show that carriers’ main objectives are to avoid extra travel miles and extra detention or 

dwell time (which refers to the time periods that drivers become idle due for over-night stays or 

unloading delays). Out-of-route miles and proximity of stops are the value measures that capture 

carriers’ objectives. Given such information, we can develop the value tree, where the 

fundamental objective is at the top, objectives at the second tier, and value measures at the third 

tier (Figure 4). 

Maximize MSTL savings 
and acceptance chance

Maximize cost 
savings

Maximize 
acceptance 

chance

Savings 
consistency

Savings 
magnitude

Proximity of 
stops

Out-of-route 
miles

 
Figure 4: Value tree 
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All four value measures in Figure 4 can be obtained for any two-stop route. While 

savings magnitude (𝑆𝑥̅,𝑦 ) and consistency (𝐹̂𝑥,𝑦) are discussed in section 4.3, out-of-route miles 

(𝑅𝑥,𝑦) and proximity of stops (𝑑𝑥,𝑦) can be obtained from a map service such as Google maps.  

As indicated in the development process of MODA, at this stage we need to develop 

value functions for the value measures. Value functions convert different scales of value 

measures to a common scale that ranges from 0 to 100. This determines a value for each route by 

adding up its scores on the value measures. Each value function has an x-axis and a y-axis, where 

the x-axis is the scale of the value measure (e.g., dollar savings) and y-axis is a standard unit-less 

scale from 0 to 100. Continuous value functions typically follow four basic shapes of linear, 

concave, convex, and S curve (Figure 5). Depending on the impact of each value measure, value 

functions could be either monotonically increasing, as indicated in Figure 5, or decreasing. As 

suggested in Kirkwood (1996), the shape of value functions is determined by consulting with 

subject experts. Once the general shape is determined, the experts should identify the 

increase/decrease in value from a specific incremental increase in the measure scale. Repeating 

this multiple times up to the maximum on the measure scale will produce a piecewise linear 

function. The instance functions in Figure 5 are produced in a linear piecewise fashion. Let 

𝑘𝑖 be the score of measure 𝑖 on the x-axis of the value function 

𝑣(𝑘𝑖) be the value of measure 𝑖 on the y-axis of the value function  
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Figure 5: Value function types for MODA 

A two-stop route would have 𝑘1, …, 𝑘4 scores that correspond to the four value measures 

shown in Figure 4. Value functions would then convert 𝑘1, …, 𝑘4 scores to 𝑣(𝑘1), …, 𝑣(𝑘4) 

values that all have common scales (i.e. [0, 100]).  

Typically, decision makers do not view all value measures equally. Measure weights (𝑤𝑖) 

are supposed to capture the importance of measures to the decision makers and incorporate them 

to the value model (Equation 8). The weights depend on both the importance of the value 

measure and the impact of varying the score of value measures. Swing weight matrix is one of 

the well-known methods to determine the weights. This method assesses measure weights by 

“swinging” the value measure score from its worst to its best. Parnell and Trainor (2009) 

discusses this method in detail with examples. There are various ways besides the swing weight 

matrix to elicit weights from stakeholders which are discussed in (Clemen and Reilly, 2001; 

Kirkwood, 1996). Once the weights are determined, we can evaluate two-stop routes using a 

value model that generates total value for each route (Equation 8). A value model is a 

mathematical expression that provides trading off capability among objectives. MODA has many 

different relationships to do this but we will use the most common method called the additive 

value model to calculate how well each route satisfies identified objectives: 

 

𝑉(𝑥, 𝑦) =∑𝑤𝑖𝑣(𝑘𝑖)

4

𝑖=1

= 𝑤1𝑣(𝑆𝑥̅,𝑦) + 𝑤2𝑣(𝐹̂𝑥,𝑦) + 𝑤3𝑣(𝑅𝑥,𝑦) + 𝑤4𝑣(𝑑𝑥,𝑦) (8) 
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A higher total value indicates a better two-stop route given the weights, value functions 

and its measure scores. MODA enables us to evaluate the routes based on multiple objectives 

that influence the success of MSTL. We can gain valuable insights by performing a sensitivity 

analysis on the elements of MODA and observe how the results change. Weights and value 

functions are the elements that can be subject to sensitivity analysis to gain further insights on 

the most robust high-performing routes.  

4.5 Case Study 

This study is focused on the distribution network of a major healthcare manufacturer that 

has four DC’s across the U.S. They ship their products to numerous independent distributors via 

different carriers with whom the manufacturer maintains annual contracts. Distributors operate 

their own distribution networks to replenish hospitals as the end customers in the supply chain. 

The relationship between manufacturer and its distributors constitutes a distribution network 

with four manufacturer DC’s that support the demand at 96 distributor DC locations (Figure 6). 

As discussed, the purpose is to identify the best pairs of distributor DC locations for two-stop 

deliveries over time. The distributors are in a continuous replenishment program which allows 

the manufacturer to make the decision about replenishment quantities and transportation timing. 
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Figure 6: Four blue squares and 96 yellow circles indicate the manufacturer DC’s and 

distributors DC’s respectively 

4.5.1 Results and Discussion 

We begin with cost savings estimations for all possible pairs out of the manufacturer DC 

is Atlanta, GA. Table  lists the given constants and variables as well as the variables that need to 

be estimated for the routes on a weekly basis to finally estimate the savings magnitude (𝑆𝑥̅,𝑦 ) 

and consistency (𝐹̂𝑥,𝑦) of routes. The given constants are the stop-off cost (ST), lower and upper 

cube limits of the manufacturer DC (LL and UL). The given variables are the distance matrix 

(driving distances obtained from the Google maps) and FTL rates obtained from carriers. The 

formulas discussed in section 4.3 are used to estimate the rest of the variables. We used the 

demand of the 96 distributor locations over time for one calendar year and computed the savings 

for every week.  
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Table 1: constants and variables for cost savings estimation 

Given constants Given variables Estimated variables 

for each route on 

each week 

Estimated variables 

for each route 

𝑆𝑇 = $100 𝑑𝑥,𝑦 𝐷𝑥
𝑀𝑆𝑇𝐿 𝑆𝑥̅,𝑦 

𝐿𝐿 = 1200 𝑓𝑡3 𝑟𝑥 𝑊𝑥
𝑀𝑆𝑇𝐿 𝐹̂𝑥,𝑦 

𝑈𝐿 = 2000 𝑓𝑡3  𝑙𝑑,𝑤  

  𝐶𝑥,𝑦
𝑑𝑖𝑟𝑒𝑐𝑡  

  𝐶𝑥,𝑦
𝑀𝑆𝑇𝐿  

  𝑆𝑥,𝑦  

The cost savings analysis leads to identifying 80 two-stop routes that generate total 

annual savings of $590K over 52 weeks. Figure 7 illustrates the distribution of annual savings by 

route. One noticeable pattern, which is expected given the fact that shipments are dispatched 

from Atlanta, is the identification of high savings routes with delivery locations in the west coast. 

 
Figure 7: Distribution of cost savings from the manufacturer DC in Atlanta, GA 
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The realization of savings over time is illustrated in Figure 8. The graph shows a fairly 

consistent average of $10K to $12K per week across the network, except from week 23 to week 

27 where a major decline is realized. The savings trend shows a significant correlation with the 

demand pattern over time (correlations coefficient = 0.69). Thus, demand can be used as a strong 

predictor of savings if needed. 

 
Figure 8: Time series realization of cost savings from the entire network 

It is worth indicating that there are location overlaps between the identified set of 80 

routes because a location can generate savings by getting paired with different locations over 

time. That is why it is important to consider consistency of savings generation (𝐹̂𝑥,𝑦) over time as 

the other important savings indicator. Figure 9 shows the distribution of savings consistency 

(𝐹̂𝑥,𝑦) for the same 80 two-stop routes. The x-axis of the figure does not indicate the same high 

performing routes that are observed in Figure 7. In fact, the correlation between the savings 

magnitude indicator (𝑆𝑥̅,𝑦 ) and the savings consistency indicator (𝐹̂𝑥,𝑦) is - 0.11. Figure 10 

depicts this relationship for the 80 channels that are identified. The insignificant correlation 

reassures the necessity of using both indicators as the cost savings value measures in MODA. 
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Figure 9: Distribution of number of weeks with savings for two-stop routes out of the DC in 

Atlanta, GA 

 
Figure 10: The relationship between 𝑆𝑥̅,𝑦 and 𝐹̂𝑥,𝑦 

Before discussing the developed MODA for the case study, it is insightful to look at the 

summary statistics of the two other decision factors, out-of-route miles (𝑅𝑥,𝑦) and proximity of 

stops (𝑑𝑥,𝑦). Table 2 and Figure 11 indicate that even though the stops might be far away from 
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each other, the constructed routes do not create much out-of-route miles. This can still be 

problematic for carriers because far away stops increase the chance of over-night stays for 

drivers which impose detention charges and make the drivers unavailable for longer times. 

Table 2: Case study results: summary statistics of out-of-route miles and proximity of stops  

 Min 1st Quartile Median Mean 3rd Quartile Max 

𝑅𝑥,𝑦 -19.840 7.252 31.710 102.300 69.860 1074.000 

𝑑𝑥,𝑦 6.59 32.78 124.30 193.60 282.30 1115.00 

 

 
Figure 11: Case study results: boxplot of out-of-route miles (𝑅𝑥,𝑦) and proximity of stops (𝑑𝑥,𝑦) 

At this point, we have all four criteria of the MODA for all the routes. Savings magnitude 

(𝑆𝑥̅,𝑦 ) and consistency (𝐹̂𝑥,𝑦) are estimated, while out-of-route miles (𝑅𝑥,𝑦) and proximity of 

stops (𝑑𝑥,𝑦) are obtained from the Google maps. These are the value measures for the MODA as 

indicated earlier (Figure 4). They need to be converted in standard units using value functions. 

Table 3 lists the range of observations for each criterion in the case study, as well as the value 

functions and weights that are assumed for the model. The value functions are assumed to be 

linear for this case study based on the opinions of subject experts. The weights indicate more 

importance toward the carrier acceptance in order to convince them by offering more appealing 
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routes. Given the weights and value function forms, the total value for each route x,y can be 

computed as shown in Equation 7. Table 4 shows the value measures and 𝑉(𝑥, 𝑦) figures for all 

the 80 routes. 

Table 3: MODA elements for the case study 

Criteria Range Value function Weight (𝒘𝒊) 

𝑆𝑥̅,𝑦 $52 – $2,132 Linear increasing 0.15 

𝐹̂𝑥,𝑦 1 – 49 weeks Linear increasing 0.15 

𝑅𝑥,𝑦 0 – 1,073 mi Linear decreasing 0.4 

𝑑𝑥,𝑦 7 – 1,115 mi Linear decreasing 0.3 

 

 
𝑉(𝑥, 𝑦) = 0.15

100(𝑆𝑥̅,𝑦)

max
𝑥,𝑦

𝑆𝑥̅,𝑦 −min
𝑥,𝑦

𝑆𝑥̅,𝑦
+ 0.15

100(𝐹̂𝑥,𝑦)

max
𝑥,𝑦

𝐹̂𝑥,𝑦 −min
𝑥,𝑦

𝐹̂𝑥,𝑦

+ 0.4×100(1 −
𝑅𝑥,𝑦

max
𝑥,𝑦

𝑅𝑥,𝑦 −min
𝑥,𝑦

𝑅𝑥,𝑦
)

+ 0.3×100(1 −
𝑑𝑥,𝑦

max
𝑥,𝑦

𝑑𝑥,𝑦 −min
𝑥,𝑦

𝑑𝑥,𝑦
) 

(9) 

We indicated earlier that there is location overlap among the 80 routes in Table 4, which 

means there are locations that exist in multiple routes. Now that 𝑉(𝑥, 𝑦) values are available for 

every route, we should select a non-overlapping list of routes by prioritizing ones with the higher 

𝑉(𝑥, 𝑦) figures. This process will select a group of distinct routes that can be offered to carriers. 

Table 5 lists 29 routes that are selected from the original set in Table 4, to exclude location 

overlaps and prioritize higher 𝑉(𝑥, 𝑦) values. 
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Table 4: Total value 𝑉(𝑥, 𝑦) calculation for the 80 two-stop routes 

STOP 1 Cust STOP 2 Cust 𝑺̅𝒙,𝒚 𝑭̂𝒙,𝒚 𝒅𝒙,𝒚 𝑹𝒙,𝒚 𝑽(𝒙, 𝒚) 

DENVER, CO A AURORA, CO C 1372.51 26 17.24 26.95 86.57 

FIFE, WA C SUMNER, WA A 1365.91 16 6.59 4.99 84.49 

ATLANTA, GA C KENNESAW, GA A 249.77 38 27.64 0 82.93 

WHITESTOWN, IN C INDIANAPOLIS, IN A 502.52 36 21.81 42.31 82.74 

SHAKOPEE, MN C CHAMPLIN, MN B 617.58 28 34.86 -3.05 82.37 

DIXON, CA B TRACY, CA A 2132.50 12 75.37 148.95 81.64 

CARSON, CA B ONTARIO, CA B 1000.84 26 52.9 101.18 80.21 

ONTARIO, CA B ONTARIO, CA A 796.55 13 10 10 79.17 

VISALIA, CA C TRACY, CA A 971.64 23 165.51 20.23 78.97 

CHANDLER, AZ B TOLLESON, AZ A 854.32 12 36.94 7.51 78.64 

GRAND PRAIRIE, TX B GRAND PRAIRIE, TX C 519.12 16 10 10 78.11 

OVERLAND PARK, KS B KANSAS CITY, MO A 744.10 12 11.57 21.58 78.01 

CINCINNATI, OH B INDIANAPOLIS, IN A 162.09 36 112.22 38.52 77.97 

RANCHO CUCAMON, CA B CARSON, CA B 1255.35 2 58.46 5.83 77.88 

DEPEW, NY B BUFFALO, NY D 596.09 14 11.9 16.42 77.75 

EDWARDSVILLE, KS C KANSAS CITY, MO A 277.99 23 16.19 31.07 77.62 

MOUNDS VIEW, MN A CHAMPLIN, MN B 473.93 13 13.54 -0.36 77.13 

BIRMINGHAM, AL B OLIVE BRANCH, MS A 255.41 35 216.62 1.68 76.86 

INDIANAPOLIS, IN B WAUKEGAN, IL B 129.32 39 233.09 -0.03 76.81 

ORLANDO, FL C TAMPA, FL B 251.09 30 84.52 66.66 76.46 

BROWNS SUMMIT, NC C SWEDESBORO, NJ B 210.56 49 408.58 -14.44 76.30 

AURORA, CO C ENGLEWOOD, CO B 696.91 5 14.83 1.21 76.14 

OLIVE BRANCH, MS B OLIVE BRANCH, MS A 326.18 14 10 10 76.09 

ALBUQUERQUE, NM A CHANDLER, AZ B 2010.80 7 420.78 -19.84 76.03 

GAINESVILLE, FL A JACKSONVILLE, FL B 127.81 29 71.14 60.76 75.84 

WARRENDALE, PA B BUFFALO, NY D 278.82 29 198.15 1.81 75.64 

ROMULUS, MI B ROMULUS, MI A 263.88 14 10 10 75.64 

EDISON, NJ B MONTGOMERY, NY B 329.80 20 93.11 14.31 75.58 

CAROL STREAM, IL A WAUKEGAN, IL B 447.56 15 54.68 30.6 75.32 

SWEDESBORO, NJ B WEST DEPTFORD, NJ A 311.39 11 11.34 4.47 75.21 

ALLENTOWN, PA A EDISON, NJ B 293.68 19 72.41 24.16 75.21 

HOUSTON, TX B HOUSTON, TX A 260.97 12 10 10 75.00 

EDWARDSVILLE, IL A EARTH CITY, MO B 267.96 14 32.43 15.27 74.87 

SAN DIEGO, CA A ONTARIO, CA B 956.89 17 113.82 117.09 74.85 

HANOVER, MD A SWEDESBORO, NJ B 272.46 17 96.01 2.01 74.61 

KINGS MOUNTAIN, NC A CHARLOTTE, NC B 143.50 14 32.89 2.11 74.44 

HEBRON, KY A INDIANAPOLIS, IN A 279.53 21 113.52 34.72 74.24 

FT LAUDERDALE, FL B FT LAUDERDALE, FL A 290.24 7 10 10 73.64 

WEST DEPTFORD, NJ A EDISON, NJ B 306.63 11 71.7 4.88 73.53 

DETROIT, MI B ROMULUS, MI A 505.44 5 23.78 35.43 73.27 

GREENSBURG, PA A WARRENDALE, PA B 291.56 11 51.29 25.62 73.21 

BEDFORD, MA B FRANKLIN, MA A 463.84 10 45.63 58.52 73.09 
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Table 4 (Cont.): Total value 𝑉(𝑥, 𝑦) calculation for the 80 two-stop routes 

STOP 1 Cust STOP 2 Cust 𝑺̅𝒙,𝒚 𝑭̂𝒙,𝒚 𝒅𝒙,𝒚 𝑹𝒙,𝒚 𝑽(𝒙, 𝒚) 

NAMPA, ID C WILSONVILLE, OR A 1052.37 23 432.68 12.22 72.62 

JACKSONVILLE, FL B FT LAUDERDALE, FL B 177.68 36 326.49 32.35 72.51 

ASHLAND, VA A EDISON, NJ B 233.90 28 294.37 2.82 72.37 

WALNUT, CA A ONTARIO, CA B 470.47 1 16.42 33.03 72.05 

BALTIMORE, MD B EDISON, NJ B 291.54 15 163.8 8.46 72.05 

DURHAM, NC B RALEIGH, NC A 166.74 5 24.69 1.73 72.03 

ELIZABETHTOWN, PA C EDISON, NJ B 484.99 14 154.79 47.95 71.93 

HAMMOND, LA B SAINT ROSE, LA A 178.01 11 50.45 46.37 71.66 

KENNESAW, GA A BUFORD, GA B 109.26 12 52.16 41.23 71.62 

CHARLOTTE, NC B DURHAM, NC B 214.85 11 142.91 5.39 70.92 

TOLLESON, AZ A ONTARIO, CA A 924.77 13 325.73 44.43 70.29 

BUFORD, GA B KINGS MOUNTAIN, NC A 124.94 12 181.93 6.48 69.49 

MONTGOMERY, NY B BEDFORD, MA B 305.48 14 207.1 45.51 69.31 

KNOXVILLE, TN A INDIANAPOLIS, IN A 211.19 28 357.33 36.4 69.27 

SUMNER, WA A WILSONVILLE, OR A 1152.05 7 167.24 201.51 68.60 

RICHLAND, MS A HAMMOND, LA B 151.14 7 134.83 32.65 68.43 

CLEVELAND, OH A ROMULUS, MI B 675.76 11 157.26 156.29 68.34 

OBETZ, OH B ROMULUS, MI A 265.73 11 196.73 54.13 68.05 

URBANDALE, IA A CHAMPLIN, MN B 262.07 11 265.71 29.87 67.04 

NASHVILLE, TN A WHITESTOWN, IN C 208.92 12 310.4 5.07 66.67 

EARTH CITY, MO B WAUKEGAN, IL B 489.64 19 339.32 144.98 64.98 

SOLON, OH B ROMULUS, MI B 290.12 10 168.71 170.06 64.43 

TAMPA, FL B FT LAUDERDALE, FL A 168.23 7 263.33 79.46 63.37 

RALEIGH, NC A SWEDESBORO, NJ B 154.31 15 406.5 45.25 63.14 

SAINT ROSE, LA A HOUSTON, TX A 139.16 3 339.78 33.67 61.51 

KANSAS CITY, MO A CHAMPLIN, MN B 432.87 14 455.52 109.35 61.17 

OMAHA, NE B URBANDALE, IA A 60.55 2 135.73 213.92 59.56 

TULSA, OK A FLOWER MOUND, TX A 109.32 10 259.8 235.19 58.28 

SALT LAKE CITY, UT B DIXON, CA B 634.59 11 671.42 58.92 57.69 

BUFFALO, NY D ROMULUS, MI B 817.87 18 278.25 460.19 57.16 

AUSTIN, TX A FLOWER MOUND, TX A 387.07 4 221.14 369.48 54.54 

WEST VALLEY, UT A SUMNER, WA A 460.39 24 857.36 88.11 54.39 

CHAMPLIN, MN B WAUKEGAN, IL B 718.21 18 402.09 781.33 41.34 

ENGLEWOOD, CO B VISALIA, CA C 445.02 19 1115.1 253.54 39.69 

FLOWER MOUND, TX A KANSAS CITY, MO A 52.37 4 537.87 545.43 37.12 

WILSONVILLE, OR A TRACY, CA A 1134.05 12 628.54 825.79 34.71 

HARLINGEN, TX A FLOWER MOUND, TX A 156.29 1 545.94 858.79 25.25 

FRANKLIN, MA A ROMULUS, MI B 793.31 8 716.49 1073.55 19.56 
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Table 5: The set of 29 non-overlapping two-stops routes 

STOP 1 Cust STOP 2 Cust 𝑺̅𝒙,𝒚 𝑭̂𝒙,𝒚 𝒅𝒙,𝒚 𝑹𝒙,𝒚 𝑽(𝒙, 𝒚) 

DENVER, CO A AURORA, CO C 1372.51 26 17.24 26.95 86.57 

FIFE, WA C SUMNER, WA A 1365.91 16 6.59 4.99 84.49 

ATLANTA, GA C KENNESAW, GA A 249.77 38 27.64 0 82.93 

WHITESTOWN, IN C INDIANAPOLIS, IN A 502.52 36 21.81 42.31 82.74 

SHAKOPEE, MN C CHAMPLIN, MN B 617.58 28 34.86 -3.05 82.37 

DIXON, CA B TRACY, CA A 2132.50 12 75.37 148.95 81.64 

CARSON, CA B ONTARIO, CA B 1000.84 26 52.9 101.18 80.21 

CHANDLER, AZ B TOLLESON, AZ A 854.32 12 36.94 7.51 78.64 

GRAND PRAIRIE, TX B GRAND PRAIRIE, TX C 519.12 16 10 10 78.11 

OVERLAND PARK, KS B KANSAS CITY, MO A 744.10 12 11.57 21.58 78.01 

DEPEW, NY B BUFFALO, NY D 596.09 14 11.9 16.42 77.75 

BIRMINGHAM, AL B OLIVE BRANCH, MS A 255.41 35 216.62 1.68 76.86 

INDIANAPOLIS, IN B WAUKEGAN, IL B 129.32 39 233.09 -0.03 76.81 

ORLANDO, FL C TAMPA, FL B 251.09 30 84.52 66.66 76.46 

BROWNS SUMMIT, NC C SWEDESBORO, NJ B 210.56 49 408.58 -14.44 76.30 

GAINESVILLE, FL A JACKSONVILLE, FL B 127.81 29 71.14 60.76 75.84 

RAMULUS, MI B RAMULUS, MI A 263.88 14 10 10 75.64 

EDISON, NJ B MONTGAERY, NY B 329.80 20 93.11 14.31 75.58 

HOUSTON, TX B HOUSTON, TX A 260.97 12 10 10 75.00 

EDWARDSVILLE, IL A EARTH CITY, MO B 267.96 14 32.43 15.27 74.87 

KINGS MOUNTAIN, NC A CHARLOTTE, NC B 143.50 14 32.89 2.11 74.44 

FT LAUDERDALE, FL B FT LAUDERDALE, FL A 290.24 7 10 10 73.64 

GREENSBURG, PA A WARRENDALE, PA B 291.56 11 51.29 25.62 73.21 

BEDFORD, MA B FRANKLIN, MA A 463.84 10 45.63 58.52 73.09 

NAMPA, ID C WILSONVILLE, OR A 1052.37 23 432.68 12.22 72.62 

DURHAM, NC B RALEIGH, NC A 166.74 5 24.69 1.73 72.03 

HAMMOND, LA B SAINT ROSE, LA A 178.01 11 50.45 46.37 71.66 

AAHA, NE B URBANDALE, IA A 60.55 2 135.73 213.92 59.56 

TULSA, OK A FLOWER MOUND, TX A 109.32 10 259.8 235.19 58.28 

Given the information in Table 5, we can compute the total annual savings of the selected 

29 routes (Equation 10). Figure 12 depicts the distribution of the cost savings among the routes. 

The routes are sorted based on the MODA score, not savings.  

 ∑𝑆𝑥̅,𝑦×𝐹̂𝑥,𝑦
𝑥,𝑦

= $282,667 
(10) 
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Figure 12: Distribution of annual savings for the 29 selected two-stop routes. Sorted based on 

MODA score 

4.5.2 Sensitivity Analysis 

There are various sensitivity analyses that can be insightful for the problem, decision 

factors and the existing relationships between them. In this section, we discuss some of them to 

provide a better understanding on the robustness of results and the relationships between 

parameters of the model.  

As previously indicated, the result of the case study is based on devoting more 

importance to carrier acceptance rather than cost savings (Equation 7. We gave 70% total weight 

to carrier acceptance criteria (𝑑𝑥,𝑦, 𝑅𝑥,𝑦) and 30% to cost savings criteria (𝑆𝑥̅,𝑦, 𝐹̂𝑥,𝑦) in order to 

generate more appealing results for carriers. A key question is what if we flip the importance 

weights and give more importance to cost savings? To answer, we need to re-compute 𝑉(𝑥, 𝑦) 
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using new weights in Equation 7. (i.e. 0.4 for savings magnitude, 0.3 for savings consistency, 

0.15 for out-of-route miles, and 0.15 for proximity of stops. 

 
Figure 13: Distribution of the annual savings for the 27 selected two-stop routes based on more 

importance toward cost savings impact. Sorted based on MODA score 

The model selects 27 routes with the total annual cost savings of $ 283,128, slightly 

higher than the original scenario (Figure 13). The new set contains 7 new routes that did not exist 

in the original set of 29 routes. Another important change is the order of routes in Figure 13. The 

new set places different routes in high priority to create more appeal to the shipper rather than 

carriers.  

While the estimated cost savings of both scenarios are almost the same (≅ $283𝐾), it is 

essential to compare their performances in terms of proximity of stops and out-of-route miles. 

Figure 14 illustrates this comparison clearly. The comparison suggests that flipping the weights 

to favor shippers’ criteria increases proximity of stops significantly, while no noticeable change 
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is realized on out-of-route miles. This change would certainly impact carriers’ behavior toward 

accepting loads. Therefore, since the estimated cost savings of both scenarios are virtually the 

same, it makes sense for the shipper to offer the original set of routes to carriers.  

 
Figure 14: Performance of two scenarios, that are based on weight assignment, on carrier 

acceptance criteria 

Additional sensitivity analyses, especially on the value function forms, would be helpful 

to provide further insights.  

4.6 Summary 

Multi-stop truckload (MSTL) is a new mode of transportation that is gaining market 

share rapidly due to numerous benefits and in some sectors due to necessity. However, there are 

multiple, perhaps conflicting, objectives associated with selecting and operating a multi-stop 

transportation system. The decision-making process is bi-lateral, where both shipper’s and 

carrier’s objectives need to be considered. While shippers seek to minimize the shipping cost, 

carriers want to avoid extra costs and risks associated with MSTL delivery. In this chapter, we 

identified the key objectives of both parties, offered a procedure to estimate the potential cost 

savings of two-stop delivery system, developed a multi-objective decision analysis (MODA) 
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model for the problem, and applied the model on a case study in the healthcare supply chain 

sector. The model enables the decision-makers to incorporate all their preferences into the 

problem-solving process and trade-off between objectives to obtain a solution that satisfies both 

parties. The case study revealed the potential of MSTL in a sizeable supply network as well as 

the capability of MODA in producing desirable solutions for both parties. Solutions are designed 

from the perspective of shippers to offer multi-stop routes that minimize the shipping cost and 

are appealing to carriers. 

4.7 Future Work 

This area has abundant future research potential as various industries are becoming more 

interested in multi-stop transportation. Here we indicate some of the immediate future research 

related to this chapter: 

• Besides MODA, there are other methodologies that could be more useful depending on the 

context and the application area. We think quadratic assignment is another suitable modeling 

approach for the ranking of the identified routes based on the decision criteria.  

• A comprehensive sensitivity analysis on additional key elements of the MODA would be 

useful to better understand the robustness of solutions. To achieve this goal, another case 

study on a larger network with more than two stops would be substantially insightful. 

• Two of the main assumptions in the case study are lower cube limit (LL) of 1200 𝑓𝑡3 and 

upper cube limit (UL) of 2000 𝑓𝑡3. The assumption for UL is very conservative, given the 

fact that the normal capacity of a truck is 3300 𝑓𝑡3. It would be interesting to investigate the 

relationship of UL with various performance measures such as cost savings, proximity of 

stops, or out-of-route miles. 
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5 CONCLUSION AND FUTURE WORK 

This dissertation contributes to the area of supply chain management by developing 

various models for the current challenges in the area. The first chapter presented a 

comprehensive model to accurately approximate the cost savings of continuous replenishment 

programs (CRP). Unlike other published works in the literature, the model did not impose 

assumptions that normally do not hold in practice, especially in transportation and handling cost 

components. The model provides a full perspective to the projected cost savings of both partners 

which helps them to further understand the financial benefits of CRP and reach a sustainable 

profit sharing agreement. The model is implemented for a healthcare manufacturer to analyze its 

CRP relationships with its independent distributors. The results revealed that savings 

significantly vary across the channels depending on product mix, demand characteristics, 

handling and transportation requirements, etc. The results showed that distributors generally gain 

more savings within the shared cost components, which are inventory holding and order 

processing. The results also indicated that small channels have more relative savings potential 

but do not generate substantial monetary savings. This chapter can be expanded in different 

ways. One of the future directions is modeling the decision of starting a CRP relationship based 

on both cost savings and qualitative factors that may outweigh the financial benefits. Factors 

such as trust, team attitude, cooperation, power shift, implementation capability and shared 

business philosophy are amongst them. Another future work is performing a comprehensive 

sensitivity analysis on the key elements of the model to provide useful insights for various types 

of supply chain arrangements. 

  The second chapter developed multi-functional logistics metrics to monitor the 

efficiency of inventory holding, transportation, and order processing operations. The key 
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contribution of this study is providing data-driven and traceable metrics that quantify possible 

tendencies in favoring efficiency of certain functions over others. In addition, a statistical process 

control (SPC) system is devised for monitoring the metrics over time. Various time series 

behaviors of the metrics are discussed and appropriate SPC systems are suggested for them. The 

metrics are particularly useful for monitoring CRP/VMI relationships. Our collaboration with a 

group pf active VMI partners in the healthcare sector confirmed that VMI relationships need a 

verifiable efficiency measurement system that measures the state of efficiency within different 

functions of logistics. The metrics capture the trade-off in gaining efficiency between two 

functions while optimal trade-off levels are estimated as target levels. The metrics enable 

decision makers to communicate factually and work collectively toward the optimal efficiency 

levels using statistical control systems. One of the most immediate future works for this chapter 

is studying the correlation of these metrics and identify the circumstances that lead the metrics to 

provide redundant information. Besides, analytical investigations, applying the metrics on 

different case studies would help in achieving a better understanding of those circumstances. 

Investigating whether companies see the suggested optimal trade-off levels aligned with their 

strategic objectives and other considerations would also be a valuable future work. 

The third chapter is focused on an area that has significant research potential. Multi-stop 

truckload (MSTL) is gaining market share in the transportation sector and that is going to 

continue in the coming years due to an increasing shift in moving distribution centers to urban 

areas. Carriers are the operator of delivery tasks and their behavior toward multi-stop truckload 

offers is the main focus of this chapter. In this chapter, we model the decision of offering MSTLs 

considering both the cost savings potential and carrier acceptance criteria. While shippers seek to 

minimize the shipping cost, carriers want to avoid extra costs and risks associated with MSTL 
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delivery. We showed how to compute the savings potential of two-stop (drop-offs) delivery 

routes, which is the most common form of MSTL business. We developed a multi-objective 

decision analysis (MODA) model to incorporate shippers’ priorities with carriers’ priorities to 

select the most desirable two-stop routes. While savings magnitude and savings consistency are 

important decision criteria for shippers, out-of-route miles and proximity of stops are considered 

as the key decision factors for carriers. The application of the model is discussed in a case study, 

where the potential of MSTL in a sizeable supply network as well as the capability of MODA in 

producing desirable solutions for both parties are shown. The results and sensitivity analysis 

showed that changing the elements of MODA causes the model to select a different set of routes 

with a different preference order. The sensitivity analysis suggested that proximity of stops is 

much more sensitive than other performance measures to changing the weights of the model. 

Among the immediate future works, modeling the problem with alternative approaches such as 

the quadratic assignment, and sensitivity analysis on various elements of the model would be 

insightful. 
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