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Abstract 

The focus of the dissertation is developing the optimization problem of finding the minimum-

cost operational plan of block stacking with relocation as well as devising a solution procedure to 

solve practical-sized instances of the problem. Assuming changeable row depth instead of 

permanent row depth, this research is distinguished from conventional block stacking studies. 

The first contribution of the dissertation is the development of the optimization problem under 

the assumption of deterministic demand. The problem is modeled using integer programming as 

a variation of the unsplittable multi-commodity flow problem. To find a good feasible solution of 

practical-sized instances in reasonable time, we decompose the original problem into a series of 

generalized assignment problems. In addition, to establish a good lower bound on the optimal 

objective function value, we apply a relaxation based upon Lagrangean decomposition in which 

the relaxed problem separates into a set of shortest path problems and a set of binary knapsack 

problems. 

The second contribution of the dissertation is the development of the optimization problem 

under the assumption of stochastic demand. The problem is formulated as a discrete time finite 

horizon Markov decision process model, incorporating the recursive daily situation of 

determining the assignment of product lots to storage areas for a day based on uncertain daily 

demand and observed system information. To tackle computational intractability in solving 

practical-sized instances, we develop a heuristic solution approach taking an on-line manner by 

instantly determining an action for a single observed state rather than an off-line manner by 

predetermining an action for every state. 
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CHAPTER 1. Introduction 

This dissertation investigates block-stacking operations. Specifically, optimization models are 

developed for block-stacking operations when the relocation of unit loads is allowed. 

Optimization models are mathematically formulated and solution procedures are developed to 

solve practical-sized instances of block-stacking operations. The results of the study can benefit a 

business operating a block stacking warehouse by reducing the combination of storage space and 

material handling costs. 

 
1. Research Motivation 

Block stacking is a storage method commonly used in a warehouse for unitized items. With 

limited or no supporting equipment, unit loads are stacked on top of each other and arranged in 

stacks within rows on the floor. Figure 1.1 illustrates the arrangement of unit loads in stacks and 

rows when block stacking is employed. 

 

Figure 1.1: Example of block stacking 

Compared to the storage of unit loads in selective storage rack, block stacking storage is 

characterized as having restricted accessibility to stored unit loads and having smaller equipment 
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investment cost. Weighing the pros and cons of accessibility and equipment cost, block stacking 

is preferred for the long-term storage of slow-turnover items and for the storage of large-volume 

and fast-moving lots (Ross, 1993); thus, block stacking is often used to store appliances, food 

and beverages, household product, tires, bags of potting mix and fertilizer, and construction 

materials, among other products (Matson and White, 1982, Sonnentag et al, 2014). 

In planning block- stacking storage, choosing the row depth (maximum number of stacks in 

the row) for a product lot is important. With the stack height (maximum number of unit loads in 

the stack) generally given as a fixed value for a product lot, the row depth determines how unit 

loads are aligned on the floor over its storage life. The row depth dictates the extent of the space 

loss caused by last-in, first-out storage and retrieval in a storage row and affects material 

handling efficiency. 

A fundamental assumption of previous block-stacking research is the row depth designated 

for a product lot is permanent and not changeable. Because changing row depth for a product 

during its storage life requires additional material handling and can cause difficulty in inventory 

management, changing row depth is rarely considered in practice. Therefore, previous research 

has tended to be based on an assumption of permanent row depth. 

However, as demonstrated in this research, prohibiting changes in row depth over a product’s 

storage life can lead to a requirement for significantly greater storage space than is required 

when row depths are allowed to change during a product’s storage life. Likewise, when 

employing block stacking in an existing warehouse, by allowing row depths to be changed 

during a product’s storage life, the storage capacity of the warehouse can be increased 

significantly. In the end, allowing storage depth to change is a decision involving tradeoffs of 

capital cost (storage space) and operating cost (material handling). 
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2. Research Organization 

The remainder of the dissertation is organized as follows: 

 CHAPTER 2. Block Stacking Multiple Products with Relocation under Deterministic Demand 

 CHAPTER 3. Block Stacking Multiple Products with Relocation under Stochastic Demand 

 CHAPTER 4. Conclusions and Future Research 

 APPENDIX A. Cost Model of Dynamic Block Stacking Operations 

 APPENDIX B. The Dynamic Block Stacking Problem with Random Demand 

In CHAPTER 2, under the assumption of deterministic demand, the optimization problem of 

finding the minimum-cost operational plan of block stacking with relocation is formulated. The 

problem is modeled using integer programming as a variation of the unsplittable multi-

commodity flow problem. To find a good feasible solution of practical-sized instances in a 

reasonable time, we decompose the original problem into a series of generalized assignment 

problems. In addition, to establish a good lower bound on the optimal objective function value, we 

apply a relaxation based upon Lagrangean decomposition in which the relaxed problem separates 

into a set of shortest path problems and a set of binary knapsack problems. CHAPTER 2 

contributes (i) the first model for block stacking multiple products with changeable row depth, 

(ii) a solution method based on a strategy of decomposing the original problem into smaller and 

easier-to-solve sub-problems and, (iii) the quantitative analysis of the block stacking storage 

system’s behavior when changing row depth by relocation is allowed. 

In CHAPTER 3, under the assumption of stochastic demand, the optimization problem of 

determining the minimum-cost operational plan of block stacking with relocation is developed. 

The problem is formulated as a discrete time, finite horizon, discrete event Markov decision 

process model, incorporting the recursive daily situation of determining the assignment of 
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product lots to storage areas for a day based on uncertain daily demand and observed system 

information. To tackle computational intractability in solving practical-sized instances, we 

develop a heuristic solution approach by taking an on-line manner by instantly determining an 

action for a single observed state rather than an off-line manner by predetermining an action for 

every state. CHAPTER 3 contributes (i) the first model for block stacking multiple products with 

changeable row depth under stochastic demand and (ii) a solution method based on sampling 

technique guaranteeing reliability and efficiency in solving practical-sized instances. 

CHAPTER 4 summarizes the dissertation and presents conclusions drawn from the findings 

of the study. It provides an overall insight into block stacking with changeable row depth and 

addresses how the research results can be used in operating a block stacking system. In addition, 

it includes recommendations for further research.  

APPENDIX A introduces a block stacking cost model with the changeable row depth. The 

developed model differs from existing cost models by including relocation cost. It is based on a 

single product lot’s daily operations and thus, easily modeled as the cost function of a daily 

operational plan of block stacking. In developing the optimization problems of CHAPTER 2 and 

CHAPTER 3, we assume a cost function derived from the cost model provided in APPENDIX A. 

APPENDIX B contains a reprint of a published proceeding paper, “The Dynamic Block 

Stacking Problem with Random Demand”; it addresses block stacking a single product with 

relocation under stochastic demand. Several technical terms and notations in the original paper 

are revised in APPENDIX B to match terminology of the dissertation. As an extension of the 

earlier research, CHAPTER 3 is based on the mathematical model and the findings of 

APPENDIX B. 
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CHAPTER 2. Block Stacking Multiple Products with Relocation under Deterministic 

Demand 

Abstract 

An optimization model is formulated for block stacking multiple products with relocation under 

deterministic demand. It assumes changeable row depth instead of permanent row depth unlike the 

conventional optimization model for block stacking. It determines an assignment of product lots to 

storage areas each day given known inventory levels and daily demands over a time horizon to 

minimize total operating cost. The problem is modeled using integer programming as a variation of 

the unsplittable multi-commodity flow problem. To obtain good feasible solutions of practical-

sized instances in reasonable time, we decompose the original problem into a series of generalized 

assignment problems. In addition, to establish a good lower bound on the optimal objective 

function value, we apply a relaxation based upon Lagrangean decomposition in which the relaxed 

problem separates into a set of shortest path problems and a set of binary knapsack problems. 

Comparing block stacking with changeable row depth and permanent row depth, the former 

requires less storage capacity and incurs less operating cost. The newly proposed block stacking 

uses floor space efficiently by timely changing row depth. It not only alleviates honeycomb loss 

and enables the product lot to yield occupied storage locations to another product lot if required. Its 

merit is magnified when storage capacity is insufficient based on the inventory level. 

 

Keyword 

Block stacking, deterministic demand, changeable row depth, multi-commodity flow problem, 

time horizon decomposition heuristic, Lagrangean decomposition heuristics 
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1. Introduction 

Block-stacking storage, also known as floor storage, is a common storage method used in a 

warehouse. It consists of unitized items stacked on top of each other with stacks arranged on the 

floor; typically, limited or no supporting equipment is used. Compared to modern selective 

storage rack, block-stacking storage is old-fashioned and is somewhat inconvenient in placing 

and retrieving loads. It, however, can be an attractive alternative because of the low investment 

cost of equipment as long as it is applied in a suitable storage environment. See Tompkins et al. 

(2010) and Bartholdi and Hackman (2014) for brief descriptions of the block stacking storage 

method. 

A block-stacking storage system is comprised of storage areas having the same or different 

depths, lengths, and heights. Unit loads are placed in these storage areas, forming stacks and 

rows in reserved positions. A stack is a vertical set of unit loads and a row is a horizontal set or 

line of stacks. Stacks are arrayed back-to-back in a row and rows are placed next to each other in 

the storage area. The stack positions and the row positions in the storage area are explicitly 

designated. We refer to the stack as a full stack if it fully occupies the volume of space reserved 

for the stack position; otherwise, it is referred to as a partial stack. Similarly, a full row and a 

partial row are defined. Figure 2.1 illustrates a block stacking storage system consisting of a 3-

deep storage area and a 5-deep storage area. It includes full and partial stacks, full and partial 

rows, stack positions, and row positions. 

When planning a block stacking storage system, a determination of how unit loads of each lot 

are to be arranged is an important issue. One can simply specify the stack height or the maximum 

number of unit loads in the stack and the row depth or maximum number of the stacks in the row. 

Consequently, one must determine the stack height and the row depth for each lot when designing 
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the system. In practice, the stack height is often determined by storage restrictions such as ceiling 

height, the storage/retrieval equipment used, and possible load crushing, whereas the row depth is 

adjustable. For this reason, finding an optimal row depth to minimize space cost and/or material 

handling cost has been the primary research topic associated with block stacking storage. 

 

Figure 2.1: Instance of block stacking storage system 

Row depth is closely related to the space utilization of the block stacking storage system. To 

ensure rotation of inventory and reduce the number of times a unit load is moved, generally, 

neither unit loads of different products nor unit loads of different lots of the same product are 

stored in the same row. (Bartholdi and Hackman, 2014).  Following this storage rule, open space 

in the row position is not used until the position has been completely vacated. This unusable 

storage capacity is a peculiar phenomenon of the block stacking storage method; the incurred 

space loss is referred to as honeycombing (Tompkins et al., 2010). Accordingly, the row depth 

dictates the extent of the honeycomb loss and, resultantly, space utilization. 

This operational issue of honeycomb loss led to previous studies focusing on finding an 

optimal row depth, one that minimizes operating cost incurred from required space and/or 
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material handling. To achieve the objective of optimizing space utilization and reducing material 

handling, researchers have tried to properly determine a single row depth for a single product lot, 

a set of row depths for a single product lot, a single row depth for multiple product lots, or a set 

of row depths for multiple product lots. When splitting a lot is allowed, a row depth is chosen for 

each separated portion of the lot in a given set of row depths. Considering its common 

employment in warehouses and its long history, a relatively small number of papers have been 

published on the subject. 

A fundamental assumption of previous papers is a permanent row depth for a lot. In other 

words, researchers have assumed the row depth designated does not change over its storage life. 

Changing the row depth is possible by relocating remaining unit loads from the current 

designated storage area to a newly assigned storage area. The relocation, however, is rarely 

considered in practice because of additional material handling and the need to keep track of 

inventories. Thus, the permanent row depth is a very reasonable assumption. However, changing 

the row depth and relocating the remaining inventory can have considerable benefits by 

offsetting additional material handling with space savings. Specifically, changing the row depth 

can increase space utilization by reducing honeycomb loss and, consequently, decrease space cost. 

The paper by Lee et al. (2016) appears to be the only published investigation of the impacts of 

allowing a lot’s row depth to change by relocating its remaining inventory. They consider a 

single lot under stochastic demand conditions whereas we consider multiple lots and assume 

deterministic demand. Although we are not aware of other research that formally studies 

changing the row depth in a block stacking storage system, many papers have noted the possible 

benefits of relocation and recommended it as a topic for future research. (Kind, 1965, 1975; 

Roberts, 1968; Gavin, 1979; Goetschalckx and Ratliff, 1991; Ross, 1993). Kind (1965, 1975) 



9 
 

mentioned honeycomb losses can be reduced by relocating remaining unit loads in a mostly 

depleted lot to shorter rows, but recommended against constant re-warehousing. Ross (1993) 

noted relocation incurs considerable expense of labor and can result in damage to items. Roberts 

(1968) pointed out in some cases presently stored items in a storage row must be re-warehoused 

in order to assign adequate space to another product lot. 

Unlike previous research, this paper relaxes the permanent row depth assumption in a block 

stacking system and allows changes in row depth by relocation. To distinguish block stacking 

with relocation and without relocation, we refer to the former as Dynamic Block Stacking (DBS) 

and the latter as Static Block Stacking (SBS). We address the dynamic block stacking 

optimization problem under deterministic demand and determine the row depths for product lots 

each day given known inventory levels and daily demands over a time horizon to minimize total 

operating cost. The row depth represents the storage area where a product lot is accommodated 

during the day. The problem is referred to as Block Stacking Multiple Product with Relocation 

under Deterministic Demand (BSMPwRuDD) and its solution defining which product lot is 

stored in which storage area for a day over a time horizon is called a dynamic block stacking 

plan or DBS plan. In developing the mathematical model of the problem, we construct a cost 

model based on daily operations such as storage, replenishment, retrieval, and relocation. 

Additionally, to solve large-sized instances, we devise a solution procedure based on the strategy 

of decomposing a difficult-to-solve problem into a set of easier-to-solve problems. The result of 

numerical experiments verifies the benefit of dynamic block stacking versus static block stacking 

by its lower operating cost and reduction in required floor space. It also shows, for practical-

sized instances, the heuristic solution procedure developed surpasses solutions obtained using 

CPLEX in terms of computation time and solution quality. 
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We contribute (i) the first model for block stacking multiple products with changeable row 

depths, (ii) a solution method based on a strategy of decomposing the original problem into 

smaller and easier-to-solve sub-problems and, (iii) the quantitative analysis of the block stacking 

storage system’s behavior when changing row depths by relocation is allowed. 

The remainder of the paper is organized as follows. In Section 2, block stacking literature is 

reviewed and previous papers are characterized by common features. Section 3 addresses the 

fundamental assumptions of BSMPwRuDD and mathematically formulates it as a variation of 

the network-flow-based integer program. Section 4 introduces a solution method consisting of an 

upper bound procedure based on a time horizon decomposition heuristic and a lower bound 

procedure based on a Lagrangean decomposition heuristic. Based on the results of numerical 

experiments, Section 5 validates the solution procedure developed, verifies the benefit of DBS 

over SBS, and provides a comprehensive insight into the relocation behavior of a block stacking 

storage system adopting changeable row depths. Section 6 draws conclusions from the research 

and provides recommendations for future studies. 

 
2. Literature Review 

This section reviews block stacking storage research literature. Although block stacking is also 

common within an intermodal container terminal, we focus solely on its application within a 

warehouse. Container terminals employ different storage rules, such as allowing consolidation of 

unit loads of diverse groups in a stack and in a row. For more information regarding the block 

stacking storage method used within a container terminal, we refer the reader to Carlo et al. 

(2014). Previous literature reviews of the block stacking storage method in a warehouse can be 

found in Ashayeri and Gelders (1985) and Gu et al. (2010). 
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Table 2.1 summarizes papers that consider the problem of optimizing row depths, and further 

characterizes those papers according to solution, inventory profile, assumptions, objective 

function, and solution procedure. We found 19 block stacking storage papers published between 

1961 and 2017. 

In Table 2.1, the “solution” column categorizes the output of each paper's optimization 

problem using the following abbreviations 

 SL 

 SS 

 SM 

 MS 

 MM 

 CS 

 CM 

single row depth for layout satisfying a given storage population 

single row depth for a single product lot 

single row depth for multiple product lots 

multiple row depths for a single product lot 

multiple row depths for multiple product lots 

changeable row depth for a single product lot 

changeable row depths for multiple product lots 

Lee et al. (2016) is the first and only published paper studying changeable row depths. 

The “inventory profile” column in Table 1 indicates if the inventory profile is assumed to be 

at the aggregate-level or the granular-level. With an aggregate-level inventory profile, in 

computing the value of the objective function, the inventory level is given as a fixed value, such 

as the maximum inventory level or average inventory level; with a granular-level inventory 

profile, fluctuations of inventory level over the time horizon are considered by using the 

cumulative number of rows occupied over the storage life of the product lot. The feature of 

inventory profile is abbreviated as follows: 

 A 

 GD 

 GS 

aggregate-level inventory profile 

granular-level inventory profile assuming deterministic demand 

granular-level inventory profile assuming stochastic demand 
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Table 2.1: Characterization of articles by solution type, solution procedures, objective function 
considerations, and assumptions 

Paper Solution Inventory 
Profile Scope Objective 

Function 
Solution 

Procedure Note 

This paper CM GD HN FM M, H  

Thorton (1961) SL A NN FN E  
Hemmi (1963) SL A NN FN E  
Kind (1965, 1975) SS GD HN FN E, D  
Moder and Thornton(1965) SL A NN FN E  

Berry (1968) 
SL A HN VM D Conventional aisle configuration 
SL A HN VM D Diagonal aisle configuration 

Roberts (1968) 

MM A HN FN, FM, VN M One row per one SKU, Variable block length 
MM A HN FN, FM, VN H One row per one SKU, Fixed block length 
MM A HN FN, FM, VN M Multi-rows per one SKU, Variable block length 
MM A HN FN, FM, VN M Multi-rows per one SKU, Fixed block length 

Kooy (1981) MS GD HL FN E  

Matson (1982) 

SS GD HN FN E, D  
SS GD HN FM E  
SM GD HN FN E  
MS GD HL FN M, H  
MM GD HN FN M, H  

Rickles and Elliott (1985) SL A HN FN E  

Goetschalckx and Ratliff (1991) 
MS GD HL FN M, H  
MM GD HL FN H Pattern perfectly balanced warehouse 

Larson et al. (1997) MM A HN FM H  
Koster (2010) SM A HN FN D  

White et al. (2013) 
SS A HN FM E Dedicated storage 
SS GD HN FM E Random storage 
MS GD HL FM E  

Bartholdi and Hackman (2014) SM GD HN FN D  

Matson et al. (2014) 
MS A HL FM M Dedicated storage 
MS GD HL FM M Random storage 

Sonnentag et al. (2014) 

SM A HN FM E, D  Dedicated storage 
SM GD HN FM E, D Random storage 
MM A HL FM E, M Dedicated storage 
MM GD HL FM E, M Random storage 

Kay (2015) 

SM A HN FN D Dedicated storage 
SM A HN FN D Random storage 
SM A HN VN D Dedicated storage 
SM A HN VN D Random storage 

Lee et al. (2016) CS GS HN FM M  
Derhami et al. (2017) SM GD HN VN D Finite production rate 
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The “scope” column in Table 1 addresses if honeycomb loss and/or lot splitting is 

incorporated in the mathematical model. Even though honeycomb loss is a characteristic of block 

stacking storage, some early models omitted it in computing space utilization of a layout; space 

utilization was defined as the ratio of the designed storage area to total space, including a service 

area such as an aisle. In the literature, honeycomb loss was implicitly considered by the 

integrality property of the number of rows required or explicitly calculated based on unused 

time-space in a storage row. In some cases, it is simply approximated with an assumption. 

Splitting a lot into different row depths is another critical consideration in determining optimal 

row depths; if a product lot can be split among two or more row depths, it makes the problem 

more difficult to solve. In many papers, heuristics methods were proposed to obtain solutions. In 

many papers, heuristic methods were proposed to solve the problem of block stacking with lot 

splitting. In early papers, lot splitting occasionally indicated a storage policy of storing unit loads 

of a product lot, not in a single storage row, but in storage rows having the same depth. To 

represent which assumption is made, we use the following abbreviations. 

 HL 

 HN 

 NL 

 NN 

both honeycomb loss and lot splitting 

only honeycomb loss 

only lot splitting 

neither honeycomb loss nor lot splitting 

The “objective function” column of Table 2.1 indicates the factors involved in each paper's 

objective function. This column shows either floor space or volume space is represented in the 

objective function, and if material handing cost is or is not considered in the objective function. 

When both space and material handling are considered, they are generally represented 

monetarily. Entries in this column include the following abbreviations. 
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 FM 

 FN 

 VM 

 VN 

floor space and material handling 

only floor space 

volume space and material handling 

only volume space 

The “solution approach” column in Table 2.1 indicates which solution procedure is used, 

recommended, and/or adopted to find a solution. The solution procedure is categorized as using 

enumeration (E), differentiation (D), mathematical programming (M), or heuristics (H). An 

enumeration approach finds an optimal row depth for a lot by considering all feasible solutions. 

Some papers relax the row depth’s integrality and identify a row depth that satisfies optimality 

conditions derived from differentiating the resulting cost function. A mathematical programming 

approach uses an optimization model and a technique such as dynamic programming or binary 

integer programming to obtain an optimal solution. Heuristics seek to obtain, with reasonable 

computational effort, a cost-efficient, but possibly suboptimal, row depth. 

The “Note” column in Table 2.1 contains unique aspects of a paper. When multiple models are 

developed from one paper and cannot be categorized using the designations in the table, the entry 

in the column addresses any unique characteristics and clarifies the difference(s) among them. 

Excluding Lee et al. (2016), all studies in Table 2.1 assume the row depth for a lot is 

permanent and did not consider changing the row depth by employing relocation. Interestingly, a 

few papers investigated the block stacking storage method from an operational viewpoint 

(Marsh, 1979; Derhami et al. 2016) using simulation. None of these papers allows the row depth 

for a lot to change during its storage life. 

Our work is distinct from all previous studies by allowing changeable row depth for multiple 

product lots. Existing papers focus on finding an optimal row depth over a time horizon and, 
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consequently, an optimal design of the system; whereas, this paper seeks an optimal row depth 

each day over a time horizon and, as a result, seeks an optimal operating plan for the system. 

Compared to conventional research of block stacking, this study employs a more complicated 

mathematical model due to a larger number of decision variables. 

 
3. Mathematical Model 

In this section, we describe the mathematical model of BSMPwRuDD in determining an optimal 

DBS plan by specifying which product lot is stored in which storage area for each day over a 

time horizon. The model’s objective is to minimize total cost incurred by daily operations of 

DBS: storage, replenishment, retrieval, and relocation. The cost of each is referred to as floor 

space cost, replenishment cost, retrieval cost, and relocation cost, respectively. Details regarding 

the costs and how they are calculated are provided in APPENDIX A of the dissertation. The 

notation of Table 2.2 is considered in this section. 

Table 2.2: Notations for BSMPwRuDD 

Notation Description 
𝐿𝐿, 𝑙𝑙 number of lots considered, index of lot 
𝑇𝑇𝑙𝑙, 𝑡𝑡 cycle of inventory level profile of single product lot, index of day 
𝑇𝑇 cycle of inventory level profile of multiple product lots, 𝑇𝑇 = 𝐿𝐿𝐿𝐿𝐿𝐿(𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝐿𝐿) 
𝑅𝑅 number of storage areas considered  
𝑞𝑞, 𝑟𝑟 index of present storage area, index of selected storage area 
𝑧𝑧𝑙𝑙  height of the stack of lot, measured in unit loads 
𝑄𝑄𝑙𝑙  order quantity of lot 𝑙𝑙, measured in unit loads 
𝐷𝐷𝑙𝑙  daily demand of lot, measured in unit loads 
𝐼𝐼𝑡𝑡𝑙𝑙  inventory level of lot 𝑙𝑙 at the beginning of day 𝑡𝑡, measured in unit loads,  
𝑑𝑑𝑟𝑟 depth of storage area 𝑟𝑟, measured in unit loads 
𝑃𝑃𝑟𝑟 the number of row positions in storage area 𝑟𝑟 
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Let 𝐼𝐼𝑡𝑡𝑙𝑙 , 𝑡𝑡 = 1, … ,𝜎𝜎𝑙𝑙𝑇𝑇𝑙𝑙, denote the inventory level of product 𝑙𝑙 at the beginning of day 𝑡𝑡, where 

𝜎𝜎𝑙𝑙 denotes the number of rotations of product 𝑙𝑙 during the planning horizon. Without loss of 

generality, we assume 𝜎𝜎𝑙𝑙𝑇𝑇𝑙𝑙 = 𝜎𝜎𝑙𝑙′𝑇𝑇𝑙𝑙′  for all pairs of products 𝑙𝑙 and 𝑙𝑙′, where the values 𝜎𝜎𝑙𝑙 can be 

determined by dividing the least common multiple of {𝑇𝑇𝑙𝑙: 𝑙𝑙 = 1, … , 𝐿𝐿} by 𝑇𝑇𝑙𝑙.  Let 𝑇𝑇 = 𝜎𝜎1𝑇𝑇1 =

𝜎𝜎2𝑇𝑇2 = ⋯ = 𝜎𝜎𝐿𝐿𝑇𝑇𝐿𝐿 denote the common planning horizon.  By assuming the inventory levels for 

each lot 𝑙𝑙 repeat on a 𝑇𝑇𝑙𝑙-day cycle, the collection {𝐼𝐼𝑡𝑡𝑙𝑙: 𝑙𝑙 = 1, … , 𝐿𝐿} repeats on a 𝑇𝑇-day cycle. 

By the definition of 𝐷𝐷𝑙𝑙 and 𝑄𝑄𝑙𝑙, there is no out of stock during the business hours and no back-

order. We assume product lot 𝑙𝑙 is reordered such that when the inventory level is zero at the end 

of business hours of a day, 𝑄𝑄𝑙𝑙 unit loads are replenished before starting business hours of the 

next day. Thus, given {𝐼𝐼1𝑙𝑙 : 𝑙𝑙 = 1, … , 𝐿𝐿}, each lot’s subsequent inventory levels in periods 𝑡𝑡 = 2,…, 

𝑇𝑇 can be determined as 

𝐼𝐼𝑡𝑡𝑙𝑙 = �𝐼𝐼𝑡𝑡−1
𝑙𝑙 − 𝐷𝐷𝑙𝑙 , if 𝐼𝐼𝑡𝑡−1𝑙𝑙 − 𝐷𝐷𝑙𝑙 > 0,
𝑄𝑄𝑙𝑙,             otherwise.          

 (2.1) 

Because 𝑄𝑄𝑙𝑙 = 𝑇𝑇𝑙𝑙𝐷𝐷𝑙𝑙, the inventory levels for product 𝑙𝑙 will satisfy 

𝐼𝐼𝑡𝑡𝑙𝑙 = 𝐼𝐼𝑘𝑘𝑇𝑇𝑙𝑙+𝑡𝑡
𝑙𝑙 ,   ∀𝑙𝑙 = 1, … , 𝐿𝐿,∀𝑡𝑡 = 1, …𝑇𝑇𝑙𝑙 ,∀𝑘𝑘 = 1, … ,𝜎𝜎𝑙𝑙 − 1, (2.2) 

and 

𝐼𝐼1𝑙𝑙 = �𝐼𝐼𝑇𝑇
𝑙𝑙 − 𝐷𝐷𝑙𝑙, if 𝐼𝐼𝑇𝑇𝑙𝑙 − 𝐷𝐷𝑙𝑙 > 0,
𝑄𝑄𝑙𝑙,          otherwise.       

 (2.3) 

To find an optimal DBS plan given {𝐼𝐼𝑡𝑡𝑙𝑙: 𝑙𝑙 = 1, … , 𝐿𝐿; 𝑡𝑡 = 1, … ,𝑇𝑇}, BSMPwRuDD is modeled 

as a network-flow-based integer program. In the directed network, a node indicates a storage area 

specified by a row depth and a day. The 𝑑𝑑𝑟𝑟-deep storage area at day 𝑡𝑡 is represented as node 

𝑡𝑡𝑡𝑡 + 𝑟𝑟 where 𝑡𝑡 = 0, … ,𝑇𝑇 and 𝑟𝑟 = 1, … ,𝑅𝑅. The node set, 𝑁𝑁, is defined as follows: 

𝑁𝑁 = {𝑡𝑡𝑡𝑡 + 𝑟𝑟|𝑡𝑡 = 0, … ,𝑇𝑇,   𝑟𝑟 = 1, … ,𝑅𝑅} ∪ {𝑠𝑠, 𝑒𝑒} (2.4) 
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where nodes 𝑠𝑠 and 𝑒𝑒 indicate the start node and end node, respectively. For 𝑡𝑡 = 0, … ,𝑇𝑇, let 𝑁𝑁𝑡𝑡 =

{𝑡𝑡𝑡𝑡 + 𝑟𝑟|𝑟𝑟 = 1, … ,𝑅𝑅} denote the set of nodes corresponding to day 𝑡𝑡. For convenience of exposition, 

we also define 𝑁𝑁−1 = {𝑠𝑠}. 

In developing the directed graph of BSMPwRuDD, 𝑡𝑡 = 0 represents the last day of the 

previous 𝑇𝑇-day cycle of {𝐼𝐼𝑡𝑡𝑙𝑙: 𝑙𝑙 = 1, … , 𝐿𝐿} and thus, 𝐼𝐼0𝑙𝑙  = 𝐼𝐼𝑇𝑇𝑙𝑙 , 𝑙𝑙 = 1,…,𝐿𝐿. Because relocation cost is 

computed by the assigned storage area at the previous day and the present day, the nodes in 𝑁𝑁0 

are required to exactly express relocation cost at day 1 in the mathematical model of 

BSMPwRuDD. Additionally, by equating the assigned storage area at day 0 and day 𝑇𝑇, the 

mathematical model guarantees a cyclic solution repeats on a 𝑇𝑇-day cycle.  

A directed arc indicates a decision of selecting a storage area for day 𝑡𝑡 given the storage area 

chosen for day 𝑡𝑡-1. The arc originating from node (𝑡𝑡-1)𝑅𝑅+𝑞𝑞 to node 𝑡𝑡𝑡𝑡+𝑟𝑟 denotes the decision 

of storing a lot in a 𝑑𝑑𝑟𝑟-deep storage area for day 𝑡𝑡 after it is stored in a 𝑑𝑑𝑞𝑞-deep storage area on 

day 𝑡𝑡-1. From a node 𝑡𝑡𝑡𝑡+𝑟𝑟, 𝑅𝑅 arcs emanate to all nodes in 𝑁𝑁𝑡𝑡+1 where 𝑡𝑡 = 0, … ,𝑇𝑇-1 and 𝑟𝑟 =

1, … ,𝑅𝑅. The set of arcs, 𝐴𝐴, is defined as follows: 

𝐴𝐴 = {(𝑡𝑡𝑡𝑡 + 𝑞𝑞, (𝑡𝑡 + 1)𝑅𝑅 + 𝑟𝑟)|𝑡𝑡 = 0, … ,𝑇𝑇 − 1,   𝑞𝑞 = 1, … ,𝑅𝑅,   𝑟𝑟 = 1, … ,𝑅𝑅} 

 ⋃{(𝑠𝑠, 𝑟𝑟)|𝑟𝑟 = 1, … ,𝑅𝑅}⋃{(𝑇𝑇𝑇𝑇 + 𝑟𝑟, 𝑒𝑒)|𝑟𝑟 = 1, … ,𝑅𝑅} ∪ {(𝑒𝑒, 𝑠𝑠)}.         
(2.5) 

The number of elements in 𝐴𝐴 is calculated by 𝑂𝑂(𝑇𝑇𝑅𝑅2).  

For each node 𝑖𝑖 ∈ 𝑁𝑁, let RN(𝑖𝑖) = {𝑗𝑗 ∈ 𝑁𝑁|(𝑗𝑗, 𝑖𝑖) ∈ 𝐴𝐴} denote the set of nodes that have an 

outgoing arc to node 𝑖𝑖, and let FN(𝑖𝑖) = {𝑗𝑗 ∈ 𝑁𝑁|(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴} denote the set of nodes to which node 𝑖𝑖 

has an outgoing arc. 

Figure 2.2 shows a directed network of BSMPwRuDD in which 𝑅𝑅 = 𝑇𝑇 = 2. Node 1 represents the 

𝑑𝑑1-deep storage area on day 0 and Node 4 indicates the 𝑑𝑑2-deep storage area on day 1. Arc (3, 6) 

expresses the decision of selecting the 𝑑𝑑2-deep storage area on day 2 when the 𝑑𝑑1-deep storage 

area is chosen on day 1. At node 4, RN(4) is {1,2} and FN(4) is {5,6}. 
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Figure 2.2: Instance of directed network of BSMPwRuDD where 𝑅𝑅=2 and 𝑇𝑇=2 

Table 2.3: Notation for the BSMPwRuDD optimization problem 

Notation Description 
Parameters: 
𝑐𝑐𝑖𝑖,𝑗𝑗𝑙𝑙  cost of arc (𝑖𝑖, 𝑗𝑗) for lot 𝑙𝑙 
𝑛𝑛𝑗𝑗𝑙𝑙 usage of node capacity when lot 𝑙𝑙 goes through node 𝑗𝑗 
𝒞𝒞𝑗𝑗 capacity of node 𝑗𝑗 
Decision variable: 
𝑥𝑥𝑖𝑖,𝑗𝑗𝑙𝑙  1 if arc (𝑖𝑖, 𝑗𝑗) is selected for lot 𝑙𝑙, 0 otherwise 

 

The notation in Table 2.3 is used in formulating the optimization problem. The value of 𝑐𝑐𝑖𝑖,𝑗𝑗𝑙𝑙  

for arc (𝑖𝑖, 𝑗𝑗)=�(𝑡𝑡-1)*𝑅𝑅+𝑞𝑞, 𝑡𝑡*𝑅𝑅+𝑟𝑟 � denotes lot 𝑙𝑙’s daily operating cost for day 𝑡𝑡 when lot 𝑙𝑙 is 

stored in a 𝑑𝑑𝑞𝑞-deep storage area for day 𝑡𝑡-1 and a 𝑑𝑑𝑟𝑟-deep storage area for day 𝑡𝑡. APPENDIX A 

develops the daily operating cost model of a single product lot, given by 

𝑂𝑂𝑂𝑂 = 𝐹𝐹𝐹𝐹 + 𝑆𝑆𝑆𝑆 + 𝑅𝑅𝑅𝑅 + 𝐵𝐵𝐵𝐵, (2.6) 

where 

𝑂𝑂𝑂𝑂 =  daily operating cost of a single product lot, 

𝐹𝐹𝐹𝐹 =  floor space cost of a single product lot, 

𝑆𝑆𝑆𝑆 =  replenishment cost of a single product lot, 
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𝑅𝑅𝑅𝑅 =  retrieval cost of a single product lot, and 

𝐵𝐵𝐵𝐵 =  relocation cost of a single product lot. 

Given daily demand 𝐷𝐷𝑙𝑙, present storage area 𝑞𝑞, and assigned storage area 𝑟𝑟, the costs are easily 

redefined as a function of inventory level 𝐼𝐼𝑡𝑡𝑙𝑙 as follows: 

𝑂𝑂𝑂𝑂�𝐼𝐼𝑡𝑡𝑙𝑙� = 𝐹𝐹𝐹𝐹�𝐼𝐼𝑡𝑡𝑙𝑙 , 𝑟𝑟� + 𝑆𝑆𝑆𝑆�𝐼𝐼𝑡𝑡𝑙𝑙, 𝑟𝑟� + 𝑅𝑅𝑅𝑅�𝐼𝐼𝑡𝑡𝑙𝑙,𝐷𝐷𝑙𝑙 , 𝑟𝑟� + 𝐵𝐵𝐵𝐵�𝐼𝐼𝑡𝑡𝑙𝑙 , 𝑞𝑞, 𝑟𝑟� (2.7) 

Using the daily operating cost function of 𝐼𝐼𝑡𝑡𝑙𝑙, 𝑐𝑐(𝑡𝑡−1)∗𝑅𝑅+𝑞𝑞,𝑡𝑡∗𝑅𝑅+𝑟𝑟 
𝑙𝑙  is defined as according to 

𝑐𝑐(𝑡𝑡−1)∗𝑅𝑅+𝑞𝑞,𝑡𝑡∗𝑅𝑅+𝑟𝑟 
𝑙𝑙 = 𝑂𝑂𝑂𝑂�𝐼𝐼𝑡𝑡𝑙𝑙�,   𝑡𝑡 = 1, … ,𝑇𝑇,   𝑞𝑞 = 1, … ,𝑅𝑅,   𝑟𝑟 = 1, … ,𝑅𝑅, (2.8) 

𝑐𝑐𝑠𝑠,𝑟𝑟 
𝑙𝑙 = 0 and 𝑐𝑐𝑇𝑇𝑇𝑇+𝑟𝑟,𝑒𝑒 

𝑙𝑙 = 0,     𝑟𝑟 = 1, … ,𝑅𝑅, (2.9) 

and  
𝑐𝑐𝑒𝑒,s 
𝑙𝑙 = 0. (2.10) 

The value of 𝑛𝑛𝑗𝑗𝑙𝑙 at node 𝑗𝑗=𝑡𝑡*𝑅𝑅+𝑟𝑟 corresponds to the required number of row positions if lot 𝑙𝑙 is 

stored in the 𝑑𝑑𝑟𝑟-deep storage area for day 𝑡𝑡. It is computed by 

𝑛𝑛𝑡𝑡∗𝑅𝑅+𝑟𝑟𝑙𝑙 = �
𝐼𝐼𝑡𝑡𝑙𝑙

𝑑𝑑𝑟𝑟𝑧𝑧𝑙𝑙
�. (2.11) 

The value of 𝒞𝒞𝑗𝑗 at node 𝑗𝑗=𝑡𝑡*𝑅𝑅+𝑟𝑟 expresses the number of row positions in the 𝑑𝑑𝑟𝑟-deep storage 

area. Specifically, 

𝒞𝒞𝑡𝑡∗𝑅𝑅+𝑟𝑟 = 𝑃𝑃𝑟𝑟 (2.12) 

Let 𝑥𝑥(𝑡𝑡−1)∗𝑅𝑅+𝑞𝑞,𝑡𝑡∗𝑅𝑅+𝑟𝑟
𝑙𝑙  equal one if product lot 𝑙𝑙 is stored in the 𝑑𝑑𝑞𝑞-deep storage area for day 𝑡𝑡-1 

and in the 𝑑𝑑𝑟𝑟-deep storage area for day 𝑡𝑡; otherwise, let 𝑥𝑥(𝑡𝑡−1)∗𝑅𝑅+𝑞𝑞,𝑡𝑡∗𝑅𝑅+𝑟𝑟
𝑙𝑙  equal zero. 

The BSMPwRuDD optimization problem, hereafter referred to as IP-BSMPwRuDD, is 

formulated as a multi-commodity flow problem as follows:    
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IP-BSMPwRuDD: 

min� � 𝑐𝑐𝑖𝑖𝑖𝑖𝑙𝑙
(𝑖𝑖,𝑗𝑗)∈𝐴𝐴

𝐿𝐿

𝑙𝑙=1

𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙  (2.13) 

subject to  

� � 𝑛𝑛𝑗𝑗𝑙𝑙𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙

𝑖𝑖∈RN(𝑗𝑗)

𝐿𝐿

𝑙𝑙=1

≤ 𝒞𝒞𝑗𝑗 ,     ∀𝑗𝑗 ∈ 𝑁𝑁 ∖ {𝑠𝑠, 𝑒𝑒} (2.14) 

� 𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙

𝑖𝑖∈RN(𝑗𝑗)

− � 𝑥𝑥𝑗𝑗𝑗𝑗𝑙𝑙

𝑘𝑘∈FN(𝑗𝑗)

= 0,   𝑗𝑗 ∈ 𝑁𝑁 and 𝑙𝑙 = 1, … , 𝐿𝐿 (2.15) 

𝑥𝑥𝑒𝑒𝑒𝑒𝑙𝑙 = 1,   𝑙𝑙 = 1, … , 𝐿𝐿 (2.16) 

𝑥𝑥𝑠𝑠,𝑖𝑖
𝑙𝑙 = 𝑥𝑥𝑇𝑇∗𝑅𝑅+𝑖𝑖,𝑒𝑒𝑙𝑙 ,     𝑖𝑖 = 1, … ,𝑅𝑅 and 𝑙𝑙 = 1, … , 𝐿𝐿 (2.17) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙 ∈ {0,1},     ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 and 𝑙𝑙 = 1, … , 𝐿𝐿 (2.18) 

Objective function (2.13) minimizes the sum of the product of the decision variable and the 

arc cost over all product lots and all arcs. The value of the objective function represents the total 

cost incurred by all product lots over 𝑇𝑇 days. Constraint (2.14) is a node capacity constraint; it 

forces the sum of the flows on arcs incident to node 𝑗𝑗 to be less than or equal to node capacity 𝒞𝒞𝑗𝑗 

and guarantees a dynamic block stacking plan defined by the solution satisfies the storage 

capacity constraint. Constraint (2.15) is a general flow balance constraint making a single 

product lot’s supply and demand identical at each node; it ensures, in the dynamic block stacking 

plan, only one storage area is chosen for a single product lot at each day. Constraint (2.16) 

generates a flow of one unit for all product lots. Constraint (2.17) forces the chosen storage area 

for product lot 𝑙𝑙 to be identical on days 𝑡𝑡 = 0 and 𝑡𝑡 = 𝑇𝑇. Constraint (2.18) prohibits lot splitting 

by requiring the 𝑥𝑥-variables to take on binary values. 
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4. Solution Procedure 

In Section 3, BSMPwRuDD is modeled as a variation of the multi-commodity flow problem 

assuming unsplittable flow. Unlike the fractional multi-commodity flow problem solvable in 

polynomial time, the integral multi-commodity flow problem is NP-hard (Peinhardt, 2003). 

Thus, an efficient solution procedure is required to solve a practical-sized instance of 

BSMPwRuDD. 

In this section, we develop a solution procedure adopting the strategy of decomposing the 

original problem into smaller and easier-to-solve sub-problems. We refer to the solution 

procedure as Decomposition Heuristics (DH). Figure 2.3 illustrates DH consisting of two parts: 

an upper bound procedure and a lower bound procedure. 

 

Figure 2.3: Summary of the solution procedure of Decomposition Heuristics 

In the upper bound procedure, IP-BSMPwRuDD is decomposed into a series of single-day 

subproblems using a procedure we refer to as the Time Horizon Decomposition (THD) scheme. 
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With a given feasible solution of the previous day, the single-day subproblem reduces to a 

Generalized Assignment Problem (GAP). By sequentially combining solutions of single-day 

GAPs, we can establish a feasible solution and, consequently, compute the upper bound on the 

optimal objective function value of BSMPwRuDD. 

In the lower bound procedure, IP-BSMPwRuDD decomposes, for a fixed assignment of 

values to dual variables, into a set of shortest path problems and a set of 0-1 knapsack problems 

by the Lagrangean Decomposition (LD) scheme. By applying a sub-gradient method to search 

the dual variable space, the LD heuristic iteratively improves the lower bound on an optimal 

objective function value of IP-BSMPwRuDD.  

 
4.1. UB procedure: Time horizon decomposition heuristic 

The THD heuristic disaggregates IP-BSMPwRuDD into subproblems in which product lots are 

assigned to storage areas for a single day. At first, THD solves the subproblems over an extended 

time horizon of 𝜔𝜔𝜔𝜔 days (where 𝜔𝜔 ≥ 1 is an integer-valued parameter), gathering their solutions. 

Then, it builds feasible solutions of the original problem by combining the sub-problems’ 

solutions. In other words, THD first determines daily DBS plans over an extended time horizon 

and then, develops a united DBS plan for the original time horizon by aggregating the daily DBS 

plans. By searching over an extended time horizon beyond the original time horizon, the THD 

heuristic establishes more candidates for the solution and increases the likelihood of finding a 

better solution. 

In THD, three kinds of sub-problems are developed with different objectives. The first 

subproblem corresponding to day 𝑡̂𝑡 is developed with the assumption the daily DBS plan of day 

𝑡̂𝑡-1 is defined in advance and determines a daily DBS plan of day 𝑡̂𝑡. The second subproblem 

corresponding to day 𝑡̂𝑡 is formulated with the supposition of the daily DBS plan of day 𝑡̂𝑡-1 and 
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day 𝑡̂𝑡+1 are decided beforehand and determines a daily DBS plan of day 𝑡̂𝑡 guaranteeing a 

feasible united DBS plan. The third subproblem corresponding to day 𝑡̂𝑡 is defined with the 

assumption of the predetermined daily DBS plan of day 𝑡̂𝑡-1 and day 𝑡̂𝑡+1. If possible, it updates a 

daily DBS plan of day 𝑡̂𝑡 so that the operating cost of a united DBS plan decreases.  

We first provide details of the first, second, and third subproblems in Section 4.1.1, Section 

4.1.2, and Section 4.1.3. Then, in Section 4.1.4, we explain how THD works with the three sub-

problems. In the following sections, we use the notation in Table 2.4. The attachment “(𝑡𝑡)” 

specifies the set of elements of the notation corresponding to arcs from nodes in 𝑁𝑁𝑡𝑡−1 to nodes in 

𝑁𝑁𝑡𝑡.  For example, 𝐱𝐱(𝑡𝑡) represent the set of elements of 𝐱𝐱 corresponding to arcs joined to nodes in 𝑁𝑁𝑡𝑡. 

Table 2.4: Notations of variables of IP-BSMPwRuDD 

Notation Description 
𝐱𝐱 subset of the variables of IP-BSMPwRuDD 
𝐱𝐱� fixed assignment to some 𝐱𝐱 
𝐗𝐗 all variables of IP-BSMPwRuDD 
𝐗𝐗� feasible solution of IP-BSMPwRuDD. 

 
4.1.1. First sub-problem 

The first sub-problem determines a daily DBS plan for day 𝑡̂𝑡 = 0, … ,𝜔𝜔𝜔𝜔, assuming a daily DBS 

plan for day 𝑡̂𝑡-1 is determined in advance. We define 𝑡̂𝑡𝑚𝑚 as follows: 

𝑡̂𝑡𝑚𝑚 = �

𝑡̂𝑡 mod 𝑇𝑇,   if 𝑡̂𝑡 ≥ 0 and 𝑡̂𝑡 mod 𝑇𝑇 > 0

𝑇𝑇,                if 𝑡̂𝑡 ≥ 0 and 𝑡̂𝑡 mod 𝑇𝑇 = 0

𝑡̂𝑡,                if 𝑡̂𝑡 < 0                                 

 (2.19) 

Let 𝐱𝐱(𝑡̂𝑡), 𝑡̂𝑡 = −1,0,1, … ,𝜔𝜔𝜔𝜔, indicate the subset of variables (of IP-BSMPwRuDD) 

corresponding to day 𝑡̂𝑡, i.e., 

𝐱𝐱(−1) = {𝑥𝑥𝑒𝑒𝑒𝑒𝑙𝑙 },  (2.20) 
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𝐱𝐱(0) = �𝑥𝑥𝑠𝑠𝑠𝑠𝑙𝑙 �𝑗𝑗 ∈ 𝑁𝑁0 ; 𝑙𝑙 = 1, … , 𝐿𝐿�, and (2.21) 

𝐱𝐱(𝑡̂𝑡) = �𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙 �𝑗𝑗 ∈ 𝑁𝑁𝑡̂𝑡𝑚𝑚; 𝑖𝑖 ∈ RN(𝑗𝑗); 𝑙𝑙 = 1, … , 𝐿𝐿� for 𝑡̂𝑡 ≥ 1. (2.22) 

For 𝑙𝑙 = 1, … , 𝐿𝐿, let 𝐱𝐱𝑙𝑙(𝑡̂𝑡) represent the subset of variables of 𝐱𝐱(𝑡̂𝑡) corresponding to product lot 𝑙𝑙, 

and let 𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙 (𝑡̂𝑡) denote the variable of 𝒙𝒙𝑙𝑙(𝑡̂𝑡) corresponding to arc (𝑖𝑖, 𝑗𝑗) where 𝑗𝑗 ∈ 𝑁𝑁𝑡̂𝑡𝑚𝑚  and 𝑖𝑖 ∈

RN(𝑗𝑗). 

Let 𝐱𝐱�(𝑡̂𝑡), 𝑡̂𝑡 = -1, 0, 1,…, 𝜔𝜔𝜔𝜔, indicate an assignment of values to 𝐱𝐱(𝑡̂𝑡) and let 𝑥̅𝑥𝑖𝑖𝑖𝑖𝑙𝑙 (𝑡̂𝑡) represent 

the element of 𝐱𝐱�(𝑡̂𝑡) corresponding to arc (𝑖𝑖,𝑗𝑗) and product lot 𝑙𝑙. Due to Constraint (2.16), 

𝑥𝑥𝑒𝑒𝑒𝑒𝑙𝑙 (−1)=1 for any feasible solution to IP-BSMPwRuDD, and we therefore define 𝑥̅𝑥𝑒𝑒𝑒𝑒𝑙𝑙 (−1)=1. 

We define the daily operating cost function at day 𝑡̂𝑡 ∈ {−1,0,1, … ,𝜔𝜔𝜔𝜔}, 𝑓𝑓�𝐱𝐱(𝑡̂𝑡)�, as 

𝑓𝑓�𝐱𝐱(𝑡̂𝑡)� =

⎩
⎪⎪
⎨

⎪⎪
⎧� � � 𝑐𝑐𝑖𝑖𝑖𝑖𝑙𝑙 𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙 (𝑡𝑡�)

𝑖𝑖∈RN(𝑗𝑗)𝑗𝑗∈𝑁𝑁𝑡𝑡�𝑚𝑚

𝐿𝐿

𝑙𝑙=1
,     𝑡̂𝑡 ≥ 1,

� � 𝑐𝑐�𝑠𝑠𝑠𝑠𝑙𝑙 𝑥𝑥𝑠𝑠𝑠𝑠𝑙𝑙 (0)
𝑗𝑗∈𝑁𝑁0

𝐿𝐿

𝑙𝑙=1
,                  𝑡̂𝑡 = 0,

 (2.23) 

where 𝑐𝑐𝑠̅𝑠𝑠𝑠𝑙𝑙  is defined by 

𝑐𝑐𝑠̅𝑠𝑠𝑠𝑙𝑙 = 𝐹𝐹𝐹𝐹�𝐼𝐼𝑡𝑡𝑙𝑙 , 𝑗𝑗� + 𝑆𝑆𝑆𝑆�𝐼𝐼𝑡𝑡𝑙𝑙 , 𝑗𝑗� + 𝑅𝑅𝑅𝑅�𝐼𝐼𝑡𝑡𝑙𝑙 ,𝐷𝐷𝑙𝑙 , 𝑗𝑗�. (2.24) 

The first sub-problem, referred to as THD1(𝑡̂𝑡), optimizes over 𝐱𝐱(𝑡̂𝑡) given fixed 𝐱𝐱�(𝑡̂𝑡-1) and is 

formulated for 𝑡̂𝑡 = 0,1, … ,𝜔𝜔𝜔𝜔 as follows: 

THD1(𝑡̂𝑡): 
min 𝑓𝑓�𝐱𝐱(𝑡̂𝑡)� (2.25) 

subject to 

  � � 𝑛𝑛𝑗𝑗𝑙𝑙𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙 (𝑡̂𝑡)
𝑖𝑖∈RS(𝑗𝑗)

𝐿𝐿

𝑙𝑙=1

≤ 𝒞𝒞𝑗𝑗 ,     ∀𝑗𝑗 ∈ 𝑁𝑁𝑡̂𝑡𝑚𝑚  (2.26) 
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� � 𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙 (𝑡̂𝑡)
𝑖𝑖∈RS(𝑗𝑗)𝑗𝑗∈𝑁𝑁𝑡̂𝑡𝑚𝑚

= 1,     𝑙𝑙 = 1, … , 𝐿𝐿 (2.27) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙 (𝑡̂𝑡) ≤ � � 𝑥̅𝑥ℎ𝑖𝑖𝑙𝑙 (𝑡̂𝑡 − 1)
ℎ∈RS(𝑖𝑖)𝑖𝑖∈𝑁𝑁(𝑡𝑡�−1)𝑚𝑚

,     ∀ 𝑗𝑗 ∈ 𝑁𝑁𝑡̂𝑡𝑚𝑚 ,∀𝑖𝑖 ∈ RS(𝑗𝑗), and 𝑙𝑙 = 1, … , 𝐿𝐿 (2.28) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙 ∈ {0,1},     ∀𝑗𝑗 ∈ 𝑁𝑁𝑡̂𝑡𝑚𝑚 ,∀𝑖𝑖 ∈ RS(𝑗𝑗), and 𝑙𝑙 = 1, … , 𝐿𝐿 (2.29) 

Constraint (2.26) ensures the daily DBS plan for day 𝑡̂𝑡 satisfies each storage area’s capacity. 

Constraint (2.27) limits each lot to be allocated to only one storage area in day 𝑡̂𝑡. Constraint 

(2.28) restricts the domain of feasible solutions when 𝐱𝐱�(𝑡̂𝑡-1) is given. For example, if node 𝑖𝑖 is 

selected for lot 𝑙𝑙 in 𝐱𝐱�(𝑡̂𝑡-1), corresponding RHS of constraint (2.28) is one, otherwise zero. Thus, 

only arcs emanating from the node selected in 𝐱𝐱�(𝑡̂𝑡-1) are considered as feasible candidates for 

lot 𝑙𝑙 among all arcs incident to nodes in 𝑁𝑁𝑡𝑡. Constraint (2.29) prevents lot splitting by having the 

𝑥𝑥-variables take on binary values. 

With these constraints, THD1(𝑡̂𝑡) is formulated as a GAP. Assume 𝐱𝐱�(𝑡̂𝑡-1) indicates product lot 

𝑙𝑙 is assigned to the storage area corresponding to node 𝑖𝑖𝑙𝑙 at day 𝑡̂𝑡-1. By constraint (2.28), 𝐱𝐱𝑙𝑙(𝑡̂𝑡), 

𝑙𝑙=1,..,𝐿𝐿, are respectively reduced to �𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙 �𝑗𝑗 ∈ RN(𝑖𝑖𝑙𝑙)� in which each variable corresponds to a 

node one-to-one. Constraint (2.26) represents the capacity of each node and constraint (2.27) 

limits each lot to be allocated to only one node. Thus, with the variable set reduced by constraint 

(2.28), solving THD1(𝑡̂𝑡) is identical to finding an assignment of 𝐿𝐿 kinds of items (lots) to 𝑅𝑅 bins 

(nodes or storage areas) minimizing cost, satisfying the capacity constraint. 

For 1 ≤ 𝑡̂𝑡 ≤ 𝑇𝑇, consider THD1(𝑡̂𝑡) and THD1(𝑡̂𝑡+𝛼𝛼𝛼𝛼), 𝛼𝛼 = 1,…, 𝜔𝜔-1. Notice (𝑡̂𝑡+𝛼𝛼𝛼𝛼)𝑚𝑚 equals 

𝑡̂𝑡𝑚𝑚 because 

𝑡̂𝑡 mod 𝛼𝛼𝛼𝛼 = [(𝑡̂𝑡 mod 𝑇𝑇) + (𝛼𝛼𝛼𝛼 mod 𝑇𝑇)] mod 𝑇𝑇 

= [(𝑡̂𝑡 mod 𝑇𝑇)] mod 𝑇𝑇 = 𝑡̂𝑡 mod 𝑇𝑇. 
(2.30) 
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Thus, 𝑡̂𝑡 and 𝑡̂𝑡+𝛼𝛼𝛼𝛼 refer to the same day in the horizon of the original problem and THD1(𝑡̂𝑡) and 

THD1(𝑡̂𝑡+𝛼𝛼𝛼𝛼) are the same problem as long as 𝐱𝐱�(𝑡̂𝑡-1) and 𝐱𝐱�(𝑡̂𝑡+𝛼𝛼𝛼𝛼-1) represent the same 

assignment of product lots to storage areas. It is, however, not guaranteed 𝐱𝐱�(𝑡̂𝑡-1) and 𝐱𝐱�(𝑡̂𝑡+𝛼𝛼𝛼𝛼-1) 

indicate the same assignment in sequentially solving THD1(𝑡̂𝑡), 𝑡̂𝑡 = 0, 1, …, 𝜔𝜔𝜔𝜔, and 

consequently, 𝐱𝐱�(𝑡̂𝑡) and 𝐱𝐱�(𝑡̂𝑡+𝛼𝛼𝛼𝛼) may be different even though 𝑡̂𝑡 and 𝑡̂𝑡+𝛼𝛼𝛼𝛼 indicate the same day. 

Consider an example of BSMPwRuDD with ten product lots and three storage areas. Figure 2.4 

depicts THD1(7) on a directed graph. The set of thick arcs represents the domain of feasible 

solutions of product lot 1 defined by constraint (2.28) of THD1(𝑡̂𝑡) when product lot 1 is stored in 

the 𝑑𝑑2-deep storage area at day 6. From the viewpoint of product lot 1, THD1(7) can be interpreted 

as assigning product lot 1 to node 22, 23, or 24. Considering the domain of feasible solutions is 

defined similarly for all product lots, THD1(7) can be interpreted as assigning ten product lots to 

node 22, 23, and 24. Figure 2.4 illustrates the characteristic of THD1(7) as GAP. 

 

Figure 2.4: THD(7)− on a directed graph 

 
4.1.2. Second sub-problem 

For each 𝑡̂𝑡 = 𝑇𝑇 − 1,𝑇𝑇, … ,𝜔𝜔𝜔𝜔, consider the partial solution of IP-BSMPwRuDD built by setting 

𝐱𝐱(𝑡𝑡̅𝑚𝑚) = 𝐱𝐱�(𝑡𝑡̅) for 𝑡𝑡̅ = 𝑡̂𝑡-𝑇𝑇+2, 𝑡̂𝑡-𝑇𝑇+3,…, 𝑡̂𝑡-1. Fixing 𝐱𝐱(𝑡𝑡̅𝑚𝑚) = 𝐱𝐱�(𝑡𝑡̅) for 𝑡𝑡̅ = 𝑡̂𝑡-𝑇𝑇+2, 𝑡̂𝑡-𝑇𝑇+3,…, 𝑡̂𝑡-1 
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establishes each lot’s storage area on both day 𝑡𝑡̅𝑚𝑚-1 and day 𝑡𝑡̅𝑚𝑚; thus, the partial solution assigns 

each lot to a storage area for each day, with the exception that none of the lots are assigned to a 

storage area on day 𝑡̂𝑡𝑚𝑚. 

To establish a (complete) feasible solution of IP-BSMPwRuDD, we define the second sub-

problem, THD2(𝑡̂𝑡), for 𝑡̂𝑡 = 𝑇𝑇-1, 𝑇𝑇,…, 𝜔𝜔𝜔𝜔as the version of IP-BSMPwRuDD that results when 

𝐱𝐱(𝑡𝑡̅𝑚𝑚) = 𝐱𝐱�(𝑡𝑡)̅ is fixed for all 𝑡𝑡̅ = 𝑡̂𝑡-𝑇𝑇+2, 𝑡̂𝑡-𝑇𝑇+3,…, 𝑡̂𝑡-1. In this case, the variable set of IP-

BSMPwRuDD is reduced to 𝐱𝐱(𝑡̂𝑡𝑚𝑚) and 𝐱𝐱((𝑡̂𝑡+1)𝑚𝑚). After solving THD2(𝑡̂𝑡), let  𝒙𝒙�(𝑡̂𝑡) and 

𝒙𝒙�(𝑡̂𝑡+1) denote the optimal values of 𝐱𝐱(𝑡̂𝑡) and 𝐱𝐱(𝑡̂𝑡 + 1). 

Consider an example of BSMPwRuDD with two product lots and two storage areas. Figure 

2.5 illustrates the set of decision variables for product lot 1 of THD2(𝑡̂𝑡) for 𝑡̂𝑡 = 11 and 𝑇𝑇 = 4. 

Assume 𝐱𝐱�1(𝑡̂𝑡-𝑇𝑇+2) = 𝐱𝐱�1(9) is given as [𝑥̅𝑥1,3
1 (9), 𝑥̅𝑥1,4

1 (9), 𝑥̅𝑥2,3
1 (9), 𝑥̅𝑥2,4

1 (9)] = [0, 1, 0, 0] and 

𝐱𝐱�1(𝑡̂𝑡-1) = 𝐱𝐱�1(10) is given as �𝑥̅𝑥3,5
1 (10), 𝑥̅𝑥3,6

1 (10), 𝑥̅𝑥4,5
1 (10), 𝑥̅𝑥4,6

1 (10)� = [0, 0, 1, 0]. 

 

Figure 2.5: THD2(11) on a directed graph in which for product lot 1, the solid arcs represent 
fixed variables, dashed arcs indicate the feasible domain of variables, and the shaded nodes 
express the assigned storage area on day t. 

Fixing 𝑥𝑥1,4
1 (1) = 𝑥̅𝑥1,4

1 (9) = 1 assigns product lot 1 to storage area 1 on day 0 and (by constraint 

(2.14)) day 4 and to storage area 2 on day 1. Fixing 𝑥𝑥4,5
1 (2) = 𝑥̅𝑥4,5

1 (10) = 1  assigns product lot 
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1 to storage area 1 on day 2. Consequently, the variable set of product lot 1 of IP-BSMPwRuDD 

is reduced to 𝐱𝐱1(3) and 𝐱𝐱1(4). The set of dotted arcs emanating from node 5 represents the 

feasible domain of 𝐱𝐱1(3) and the set of dashed arcs incident to node 9 indicates the feasible 

domain of 𝐱𝐱1(4). 

For 𝑡̂𝑡 = 𝑇𝑇 − 1,𝑇𝑇, … ,𝜔𝜔𝜔𝜔, let 𝐗𝐗�𝑡̂𝑡 represent the solution of IP-BSMPwRuDD built by combining 

𝐱𝐱�(𝑡̂𝑡-𝑇𝑇+2), 𝐱𝐱�(𝑡̂𝑡-𝑇𝑇+2),…,𝐱𝐱�(𝑡̂𝑡-1), 𝐱𝐱�(𝑡̂𝑡), and 𝐱𝐱�(𝑡̂𝑡+1). Let 𝐗𝐗�𝑡̂𝑡(𝑡𝑡), representing the elements of 𝐗𝐗�𝑡̂𝑡 

corresponding to day 𝑡𝑡, be defined as 

𝐗𝐗�𝑡̂𝑡(𝑡𝑡̅𝑚𝑚) = �𝐱𝐱�(𝑡𝑡)̅, for 𝑡𝑡̅ = 𝑡̂𝑡 − 𝑇𝑇 + 2, 𝑡̂𝑡 − 𝑇𝑇 + 3, … , 𝑡̂𝑡 − 1,
𝐱𝐱�(𝑡𝑡)̅, for 𝑡𝑡̅ = 𝑡̂𝑡, 𝑡̂𝑡 + 1.                                         

 (2.31) 

Let �𝑋𝑋�𝑖𝑖𝑖𝑖𝑙𝑙 �𝑡̂𝑡(𝑡𝑡) represent the element of 𝐗𝐗�𝑡̂𝑡(𝑡𝑡) corresponding to arc (𝑖𝑖,𝑗𝑗) and product lot 𝑙𝑙. Given 

𝐗𝐗�𝑡̂𝑡, 𝑥𝑥𝑠𝑠𝑠𝑠𝑙𝑙  and 𝑥𝑥𝑗𝑗𝑗𝑗𝑙𝑙  are defined as follows: 

𝑥𝑥𝑠𝑠𝑠𝑠𝑙𝑙 = � � �𝑋𝑋�𝑖𝑖𝑖𝑖𝑙𝑙 �𝑡̂𝑡(𝑡𝑡)
𝑗𝑗∈FS(𝑖𝑖)𝑖𝑖

   for 𝑖𝑖 ∈ 𝑁𝑁0, (2.32) 

and  
𝑥𝑥𝑗𝑗𝑗𝑗𝑙𝑙 = � � �𝑋𝑋�𝑖𝑖𝑖𝑖𝑙𝑙 �𝑡̂𝑡(𝑡𝑡)

𝑖𝑖∈RS(𝑗𝑗)𝑗𝑗

   for 𝑗𝑗 ∈ 𝑁𝑁𝑇𝑇 . (2.33) 

Let 𝐹𝐹[𝐗𝐗�𝑡̂𝑡] be the objective function value of IP-BSMPwRuDD, given a solution represented 

by 𝐗𝐗�𝑡̂𝑡. It is computed by 

𝐹𝐹[𝐗𝐗�𝑡̂𝑡] = �𝑓𝑓�𝐗𝐗�𝑡̂𝑡(𝑡𝑡)�
𝑇𝑇

𝑡𝑡=1

 (2.34) 

 
4.1.3. Third sub-problem 

In Section 4.1.1 and Section 4.1.2, we show how to build (𝜔𝜔 − 1)𝑇𝑇+2 feasible solutions 𝐗𝐗�𝑡̂𝑡, 𝑡̂𝑡 =

𝑇𝑇 − 1,𝑇𝑇 − 2, … ,𝜔𝜔𝜔𝜔, to IP-BSMPwRuDD. Even though 𝐗𝐗�𝑡̂𝑡 is a combination of optimal solutions 
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of THD1(𝑡𝑡̅), 𝑡𝑡̅ = 𝑡̂𝑡-𝑇𝑇+2, 𝑡̂𝑡-𝑇𝑇+3,…, 𝑡̂𝑡-1 and THD2(𝑡̂𝑡), 𝐗𝐗�𝑡̂𝑡 might be sub-optimal for the original 

problem. 

Given a feasible solution 𝐗𝐗 = 𝐗𝐗� to IP-BSMPwRuDD, the third subproblem (denoted as 

“THD3(𝐗𝐗�, 𝑡̂𝑡)”) aims to identify an improved solution by modifying the lot-to-storage-area 

assignments on a single day, 𝑡̂𝑡 = 1, … ,𝑇𝑇. For a feasible solution 𝐗𝐗� to IP-BSMPwRuDD and 𝑡̂𝑡 =

1, … ,𝑇𝑇, let THD3(𝐗𝐗�, 𝑡̂𝑡) refer to the version of IP-BSMPwRuDD that results when 𝐗𝐗(𝑡𝑡̅) = 𝐗𝐗�(𝑡𝑡̅) is 

fixed for all 𝑡𝑡̅ ∈ {1, … ,𝑇𝑇} ∖ {𝑡̂𝑡, (𝑡̂𝑡 + 1)𝑚𝑚}.  Noting that 𝐗𝐗(𝑡̂𝑡) and 𝐗𝐗((𝑡̂𝑡 + 1)𝑚𝑚) are the only 

variables of IP-BSMPwRuDD that have not yet been fixed, solving THD3(𝐗𝐗�, 𝑡̂𝑡) yields a solution 

𝐗𝐗�(𝑡̂𝑡) and 𝐗𝐗�((𝑡̂𝑡 + 1)𝑚𝑚). If  

𝑓𝑓 �𝐗𝐗�(𝑡̂𝑡)� + 𝑓𝑓 �𝐗𝐗�((𝑡̂𝑡 + 1)𝑚𝑚)� < 𝑓𝑓�𝐗𝐗�(𝑡̂𝑡)� + 𝑓𝑓�𝐗𝐗�((𝑡̂𝑡 + 1)𝑚𝑚)�, (2.35) 

an improved feasible solution 𝐗𝐗� to IP-BSMPwRuDD is obtained as 

𝐗𝐗�(𝑡𝑡)̅ = �
𝐗𝐗�(𝑡𝑡)̅, 𝑡𝑡̅ ∈ {1, … ,𝑇𝑇} ∖ {𝑡̂𝑡, (𝑡̂𝑡 + 1)𝑚𝑚},

𝐗𝐗�(𝑡𝑡)̅, 𝑡𝑡̅ ∈ {𝑡̂𝑡, (𝑡̂𝑡 + 1)𝑚𝑚}.                     
 (2.36) 

 
4.1.4. Procedure of THD heuristic 

The THD heuristic consists of two stages. In the first stage, THD1(𝑡̂𝑡), 𝑡̂𝑡 = 0,1,…,𝜔𝜔𝜔𝜔, are solved 

sequentially, determining daily DBS plan 𝐱𝐱�(𝑡̂𝑡). In the second stage, THD2(𝑡̂𝑡), 𝑡̂𝑡 = 𝑇𝑇-1, 𝑇𝑇,…, 𝜔𝜔𝜔𝜔, 

are solved, building united DBS plan 𝐗𝐗�𝑡̂𝑡. Once 𝐗𝐗�𝑡̂𝑡 is ready, by solving THD3(𝐗𝐗�𝑡̂𝑡, 𝑡𝑡)̅, 𝑡𝑡̅ = 1, 2, …, 

𝑇𝑇, 𝐗𝐗�𝑡̂𝑡 is updated such that 𝐹𝐹[𝐗𝐗�𝑡̂𝑡] is decreased. Define 𝐹𝐹∗ and 𝐗𝐗�∗ as follows: 

 
𝐹𝐹∗ = min

𝐗𝐗�𝑡𝑡� ,𝑡̂𝑡 = 𝑇𝑇-1,𝑇𝑇,…,𝜔𝜔𝜔𝜔
𝐹𝐹[𝐗𝐗�𝑡̂𝑡] (2.37) 

and  
𝐗𝐗�∗ ∈ argmin

𝐗𝐗�𝑡𝑡� ,𝑡̂𝑡 = 𝑇𝑇-1,𝑇𝑇,…,𝜔𝜔𝜔𝜔
𝐹𝐹[𝐗𝐗�𝑡̂𝑡] (2.38) 
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Figure 2.6 describes the pseudo-code of the THD algorithm. Line (1), (2), and (3) are the first 

stage where THD1(𝑡̂𝑡), 𝑡̂𝑡 = 0,1,…,𝜔𝜔𝜔𝜔, are solved sequentially, determining daily DBS plan 𝐱𝐱�(𝑡̂𝑡). 

Lines from (4) to (31) are the second stage where THD2(𝑡̂𝑡), 𝑡̂𝑡 = 𝑇𝑇-1, 𝑇𝑇,…, 𝜔𝜔𝜔𝜔, are solved, 

building united DBS plan 𝐗𝐗�𝑡̂𝑡. Once 𝐗𝐗�𝑡̂𝑡 is ready by line (6) and (7), through from line (8) to (29), 

𝐗𝐗�𝑡̂𝑡 is updated such that 𝐹𝐹[𝐗𝐗�𝑡̂𝑡] is decreased by solving THD3(𝐗𝐗�𝑡̂𝑡, 𝑡𝑡̅), 𝑡𝑡̅ = 1, 2, …, 𝑇𝑇. In line (30), 

the notation 𝐗𝐗�Cur and 𝐹𝐹Cur indicates an incumbent solution and its objective function value. 

Consequently, line (30) finds 𝐹𝐹∗and 𝐗𝐗�∗. At the termination of the algorithm, the THD returns 

𝐗𝐗�Cur and 𝐹𝐹Cur corresponding to 𝐗𝐗�∗ and 𝐹𝐹∗, respectively. 

Notice lines from (8) to (29) representing the procedure of updating 𝐗𝐗�𝑡̂𝑡. Given 𝐗𝐗�𝑡̂𝑡 at 𝑡̂𝑡 = 𝑇𝑇-1, 

𝑇𝑇, …, 𝜔𝜔𝜔𝜔, the algorithm sequentially solves THD3(𝐗𝐗�𝑡̂𝑡, 𝑡𝑡̅) according to a systematic order of 𝑡𝑡̅. 

The algorithm dynamically changes 𝑡𝑡̅ back and forth according to a predetermined rule of 

guaranteeing all of each THD3(𝐗𝐗�𝑡̂𝑡, 𝑡𝑡̅) for given 𝐗𝐗�𝑡̂𝑡 is solved to check if their solution improves 

𝐗𝐗�𝑡̂𝑡. The algorithm sequentially solves THD3(𝐗𝐗�𝑡̂𝑡, 𝑡𝑡)̅ increasing 𝑡𝑡̅ by one as long as the solution of 

THD3(𝐗𝐗�𝑡̂𝑡, (𝑡𝑡̅ − 1)𝑚𝑚) improves 𝐗𝐗�𝑡̂𝑡. It is referred to as the forward-search. In addition, the 

algorithm consecutively solves THD3(𝐗𝐗�𝑡̂𝑡, 𝑡𝑡̅) decreasing 𝑡𝑡̅ by one as long as the solution of 

THD3(𝐗𝐗�𝑡̂𝑡, (𝑡𝑡̅ + 1)𝑚𝑚) cannot improve 𝐗𝐗�𝑡̂𝑡. It is referred to as the backward-search. We use the 

notation 𝜙𝜙(𝑡𝑡̅) to indicate the problem status of THD3(𝐗𝐗�𝑡̂𝑡, 𝑡𝑡̅). For 𝑡𝑡̅ = 1,2,…,𝑇𝑇, 𝜙𝜙(𝑡𝑡)̅ is 1 if 

THD3(𝐗𝐗�𝑡̂𝑡, 𝑡𝑡̅) needs to be revisited; 0 if THD3(𝐗𝐗�𝑡̂𝑡, 𝑡𝑡)̅ is not visited or not concluded; and -1 if 

THD3(𝐗𝐗�𝑡̂𝑡, 𝑡𝑡̅) concludes its solution cannot improve 𝐗𝐗�𝑡̂𝑡. Initially, 𝜙𝜙(𝑡𝑡)̅, 𝑡𝑡̅ = 1,2,…,𝑇𝑇 are set as 0 in 

line (8). Based on predetermined conditions, 𝜙𝜙(𝑡𝑡̅) is set as 1 in line (14) and (16) and -1 in line 

(21) and (23). When each 𝜙𝜙(𝑡𝑡)̅ is set as -1, the loop of updating 𝐗𝐗�𝑡̂𝑡 is terminated. Appendix A 

provides examples of the procedure of updating 𝐗𝐗�𝑡̂𝑡 to clarify the rule of changing 𝑡𝑡̅ and the 

condition of setting the value of 𝜙𝜙(𝑡𝑡̅). 
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THD Algorithm:  
   

 FOR 𝑡̂𝑡  = 0 to 𝜔𝜔𝜔𝜔 (1) 
  Solve THD1(𝑡̂𝑡) with 𝐱𝐱�(𝑡̂𝑡-1) and determine 𝐱𝐱�(𝑡̂𝑡)  (2) 
 END FOR (3) 
   

 Set 𝐹𝐹Cur as a very big number. (4) 
 FOR 𝑡̂𝑡  = 𝑇𝑇-1 to 𝜔𝜔𝜔𝜔 (5) 
  Solve THD2(𝑡̂𝑡) with 𝐱𝐱�(𝑡𝑡), 𝑡𝑡 = 𝑡̂𝑡-𝑇𝑇+2, 𝑡̂𝑡-𝑇𝑇+3,…, 𝑡̂𝑡-1 and determine 𝐱𝐱�(𝑡̂𝑡) and 𝐱𝐱�(𝑡̂𝑡+1) (6) 
  Define 𝐗𝐗�𝑡̂𝑡 with 𝐱𝐱�(𝑡𝑡), 𝑡𝑡 = 𝑡̂𝑡-𝑇𝑇+2, 𝑡̂𝑡-𝑇𝑇+3,…, 𝑡̂𝑡-1 and 𝐱𝐱�(𝑡̂𝑡) and 𝐱𝐱�(𝑡̂𝑡+1) (7) 
    

  Do 𝑡𝑡̅ ← 1, SD ← Forward, and 𝜙𝜙(𝑡𝑡) ← 0 for 𝑡𝑡 = 1,2,…,𝑇𝑇 (8) 
    

  WHILE 𝜙𝜙(𝑡𝑡) is not −1  for 𝑡𝑡 = 1,2,…,𝑇𝑇  (9) 
   Solve THD3(𝐗𝐗�𝑡̂𝑡, 𝑡𝑡̅) and determine 𝐗𝐗�(𝑡𝑡̅) and 𝐗𝐗�((𝑡𝑡̅ + 1)𝑚𝑚) (10) 
     

   IF 𝑓𝑓 �𝐗𝐗�(𝑡𝑡̅)� + 𝑓𝑓 �𝐗𝐗�((𝑡𝑡̅ + 1)𝑚𝑚)� < 𝑓𝑓�𝐗𝐗�𝑡̂𝑡(𝑡𝑡̅)� + 𝑓𝑓�𝐗𝐗�𝑡̂𝑡((𝑡𝑡̅+ 1)𝑚𝑚)� (11) 
    Do 𝐗𝐗�𝑡̂𝑡(𝑡𝑡̅) ← 𝐗𝐗�(𝑡𝑡̅) and 𝐗𝐗�𝑡̂𝑡((𝑡𝑡̅ + 1)𝑚𝑚) ← 𝐗𝐗�((𝑡𝑡̅ + 1)𝑚𝑚) (12) 
    IF SD is Forward (13) 
     Do 𝜙𝜙((𝑡𝑡̅ − 1)𝑚𝑚) ← 1, 𝜙𝜙((𝑡𝑡̅ + 1)𝑚𝑚) ← 1, and 𝑡𝑡̅ ← (𝑡𝑡 + 1)𝑚𝑚 (14) 
    ELSE IF SD is Backward (15) 
     Do 𝜙𝜙((𝑡𝑡̅ − 1)𝑚𝑚) ← 1, 𝜙𝜙((𝑡𝑡̅ + 1)𝑚𝑚) ← 1, SD ← Forward, and 𝑡𝑡̅ ← (𝑡𝑡 + 1)𝑚𝑚 (16) 
    END IF (17) 
   ELSE (18) 
    IF SD is Forward (19) 
     IF 𝜙𝜙(𝑡𝑡̅) is not zero (20) 
      Do 𝜙𝜙((𝑡𝑡̅ − 1)𝑚𝑚) ← −1, 𝜙𝜙(𝑡𝑡̅) ← −1, SD ← Backward, and 𝑡𝑡̅ ← (𝑡𝑡̅ − 2)𝑚𝑚 (21) 
     ELSE IF 𝜙𝜙(𝑡𝑡̅) is zero (22) 
      Do 𝜙𝜙(𝑡𝑡̅) ← −1 and 𝑡𝑡̅ ← (𝑡𝑡̅ + 1)𝑚𝑚 (23) 
     END IF (24) 
    ELSE IF SD is Backward (25) 
     Do 𝜙𝜙(𝑡𝑡̅) ← −1 and 𝑡𝑡̅ ← (𝑡𝑡̅ − 1)𝑚𝑚 (26) 
    END IF (27) 
   END IF (28) 
    

  END WHILE (29) 
   

  IF 𝐹𝐹[𝐗𝐗�𝑡̂𝑡] < 𝐹𝐹Cur, Do 𝐹𝐹Cur ← 𝐹𝐹[𝐗𝐗�𝑡̂𝑡] and 𝐗𝐗�Cur ← 𝐗𝐗�𝑡̂𝑡 (30) 
   

 END FOR (31) 
   

 Return 𝐗𝐗�Cur and 𝐹𝐹Cur as the solution of BSMPwRuDD (32) 

Figure 2.6: Pseudo-code of THD algorithm 
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4.2. LB procedure: LD heuristics 

The lower-bounding procedure is motivated by the structure of IP-BSMPwRuDD, in which 

removal of the constraints (2.14) yields separable shortest path models.  Based upon this 

structure, we develop a Lagrangean-decomposition-based lower-bounding procedure in which 

we decouple constraints (2.14) from the remaining constraints. 

Lagrangean relaxation is a technique taking a set of complicating constraints into the 

objective function with Lagrangean multipliers (Geoffrion, 1974).  The resulting Lagrangean 

problem is easier-to-solve compared to the original problem and its objective function value 

works as a lower bound on the original problem in case of the minimization problem (an upper 

bound in case of the maximization problem) (Fisher, 2004). Theoretically, the bound given by 

Lagrangean relaxation is at least as tight as the one given by linear programming relaxation. 

Applications of Lagrangean relaxation include solving the traveling salesman problem, the 

scheduling problem, the general IP problem, the location problem, the generalized assignment 

problem, the set covering-partitioning problem, and so on (Fisher, 2004).  

The Lagrangean decomposition method is a special case of Lagrangean relaxation. 

Lagrangean decomposition is a technique relaxing linking constraints by introducing identical 

copies of the original decision variables. The constraints equating the copies and the original 

decision variables are added as new complicating constraints, making it possible to decompose 

the original problem into two or more sub-problems. The equating constraints are taken into the 

objective function with Lagrangean multipliers (Guignard and Rosenwein, 1990). Lagrangean 

decomposition keeps all the original constraints in the decomposed sub-problems; it yields 

bounds substantially better than or at least as tight as standard Lagrangean relaxation bounds 

(Guignard and Kim, 1987). 
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Because of the problem structure consisting of ease-to-solve problems complicated by a 

relatively small set of side constraints, it has been highly motivated for solving the multi-

commodity flow problem to relax the complicating constraints and then decompose the original 

problem. When the complicating constraints are relaxed, the multi-commodity flow problem is 

reduced to smaller and easier-to-solve sub-problems such as linear or convex minimum cost flow 

problems or shortest path problems (Ouorou et al, 2000). The unsplittable multi-commodity flow 

problem can be decomposed into shortest path problems by relaxing the capacity constraint using 

Lagrangean relaxation. (Frangioni, 2005). See Ahuja et al. (1993) for an exemplary application 

of Largrangean relaxation in solving the multi-commodity flow problem. 

Considering the proven result of applying Lagrangean relaxation in solving the multi-

commodity flow problem in the literature and a possibility of better performance compared to 

Lagrangean relaxation, we adopt the Lagrangean decomposition method to solve IP-

BSMPwRuDD and, at least, to produce a good lower bound. 

To relax IP-BSMPwRuDD using the Lagrangean decomposition technique, we define new 

variables 𝑦𝑦𝑖𝑖𝑖𝑖𝑙𝑙 , 𝑙𝑙=1,..,𝐿𝐿 and (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, let 𝑦𝑦𝑖𝑖𝑖𝑖𝑙𝑙  replace 𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙  in constraints (2.14) of IP-BSMPwRuDD, 

and insert constraints equating 𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙  and 𝑦𝑦𝑖𝑖𝑖𝑖𝑙𝑙 . The resulting model is referred to as PreMP and 

defined as in the next page. 

Finally, constraint (2.44) of PreMP is relaxed by introducing the unsigned Lagrangean 

multiplier, 𝑢𝑢𝑖𝑖𝑖𝑖𝑙𝑙  and adding the terms of 𝑢𝑢𝑖𝑖𝑖𝑖𝑙𝑙 �𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙 − 𝑦𝑦𝑖𝑖𝑖𝑖𝑙𝑙 � to the objective function. The resulting 

objective function is referred to as the Lagrangean function, 𝐿𝐿(𝐱𝐱, 𝐲𝐲,𝐮𝐮). Notice, 𝐱𝐱, 𝐲𝐲, and 𝐮𝐮 

represent the vectors of 𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙 , 𝑦𝑦𝑖𝑖𝑖𝑖𝑙𝑙 , and 𝑢𝑢𝑖𝑖𝑖𝑖𝑙𝑙 , respectively. The resulting relaxed problem of PreMP is 

referred to as MP and defined as in the next page. 
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PreMP: 

min  � � 𝑐𝑐𝑖𝑖𝑖𝑖𝑙𝑙
(𝑖𝑖,𝑗𝑗)∈𝐴𝐴

𝐿𝐿

𝑙𝑙=1

𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙  (2.39) 

 

subject to  

� � 𝑛𝑛𝑗𝑗𝑙𝑙𝑦𝑦𝑖𝑖𝑖𝑖𝑙𝑙

(𝑖𝑖,𝑗𝑗)∈𝐴̅𝐴𝑗𝑗

𝐿𝐿

𝑙𝑙=1

≤ 𝑁𝑁𝑗𝑗 ,     for ∀𝑗𝑗 ∈ 𝑁𝑁 ∖ {𝑠𝑠, 𝑒𝑒} (2.40) 

� 𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙

(𝑖𝑖,𝑗𝑗)∈𝐴𝐴𝑗𝑗

− � 𝑥𝑥𝑗𝑗𝑗𝑗𝑙𝑙
(𝑗𝑗,𝑘𝑘)∈𝐴𝐴𝑗𝑗

= 0,   𝑗𝑗 ∈ 𝑁𝑁 and 𝑙𝑙 = 1, … , 𝐿𝐿 (2.41) 

𝑥𝑥𝑒𝑒𝑒𝑒𝑙𝑙 = 1,   𝑙𝑙 = 1, … , 𝐿𝐿 (2.42) 

𝑥𝑥𝑠𝑠,𝑖𝑖
𝑙𝑙 = 𝑥𝑥𝑖𝑖+𝑇𝑇∗𝑅𝑅,𝑒𝑒

𝑙𝑙 ,     𝑖𝑖 = 1, … ,𝑅𝑅 and 𝑙𝑙 = 1, … ,𝐿𝐿 (2.43) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙 = 𝑦𝑦𝑖𝑖𝑖𝑖𝑙𝑙 ,     for ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 and 𝑙𝑙 = 1, … , 𝐿𝐿 (2.44) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙 ∈ {0,1},   for ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 and 𝑙𝑙 = 1, … , 𝐿𝐿 (2.45) 

 𝑦𝑦𝑖𝑖𝑖𝑖𝑙𝑙 ∈ {0,1},   for ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 and 𝑙𝑙 = 1, … 𝐿𝐿 (2.46) 

 

MP: 

min
𝐱𝐱,𝐲𝐲

𝐿𝐿(𝐱𝐱,𝐲𝐲,𝐮𝐮)  = � � 𝑐𝑐𝑖𝑖𝑖𝑖𝑙𝑙
(𝑖𝑖,𝑗𝑗)∈𝐴𝐴

𝐿𝐿

𝑙𝑙=1

𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙 + � � 𝑢𝑢𝑖𝑖𝑖𝑖𝑙𝑙 �𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙 − 𝑦𝑦𝑖𝑖𝑖𝑖𝑙𝑙 �
(𝑖𝑖,𝑗𝑗)∈𝐴𝐴

𝐿𝐿

𝑖𝑖=1

 (2.47) 

subject to 

(2.40), (2.41), (2.43), (2.45), and (2.46) of Pre-MP 

and 

𝑢𝑢𝑖𝑖𝑖𝑖 ∈ ℝ,   for ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 (2.48) 
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Set ZLD1(x, u) and ZLD2(y, u) as follows: 

𝑍𝑍𝐿𝐿𝐿𝐿1(𝐱𝐱,𝐮𝐮) = � � �𝑐𝑐𝑖𝑖𝑖𝑖𝑙𝑙 + 𝑢𝑢𝑖𝑖𝑖𝑖𝑙𝑙 �𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙
(𝑖𝑖,𝑗𝑗)∈𝐴𝐴

𝐿𝐿

𝑙𝑙=1

 (2.49) 

𝑍𝑍𝐿𝐿𝐿𝐿2(𝐲𝐲,𝐮𝐮) = � � 𝑢𝑢𝑖𝑖𝑖𝑖𝑙𝑙 𝑦𝑦𝑖𝑖𝑖𝑖𝑙𝑙
(𝑖𝑖,𝑗𝑗)∈𝐴𝐴

𝐿𝐿

𝑖𝑖=1

. (2.50) 

Then, the objective function of MP can be stated using ZLD1(𝐱𝐱,𝐮𝐮) and ZLD2(𝐲𝐲,𝐮𝐮) as follows: 

min
𝐱𝐱,𝐲𝐲

𝐿𝐿(𝐱𝐱,𝐲𝐲,𝐮𝐮) = min
𝐱𝐱,𝐲𝐲

�𝑍𝑍𝐿𝐿𝐿𝐿1(𝐱𝐱,𝐮𝐮) − 𝑍𝑍𝐿𝐿𝐿𝐿2(𝐲𝐲,𝐮𝐮)� = min
𝐱𝐱
𝑍𝑍𝐿𝐿𝐿𝐿1(𝐱𝐱,𝐮𝐮) − max

𝐲𝐲
𝑍𝑍𝐿𝐿𝐿𝐿2(𝐲𝐲,𝐮𝐮). (2.51) 

Consequently, the MP can be decomposed into two sub-problems, referred to as LD-Sub1 and 

LD-Sub2, as follows: 

LD-Sub1: 

min
𝐱𝐱
𝑍𝑍𝐿𝐿𝐿𝐿1(𝐱𝐱,𝐮𝐮) = � � �𝑐𝑐𝑖𝑖𝑖𝑖𝑙𝑙 + 𝑢𝑢𝑖𝑖𝑖𝑖𝑙𝑙 �𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙

(𝑖𝑖,𝑗𝑗)∈𝐴𝐴

𝐿𝐿

𝑙𝑙=1

 (2.52) 

subject to 

 (2.41), (2.43), and (2.45)of Pre-MP and (2.48) of MP 

 

LD-Sub2: 

max
𝐲𝐲

𝑍𝑍𝐿𝐿𝐿𝐿2(𝐲𝐲,𝐮𝐮) = � � 𝑢𝑢𝑖𝑖𝑖𝑖𝑙𝑙 𝑦𝑦𝑖𝑖𝑖𝑖𝑙𝑙
(𝑖𝑖,𝑗𝑗)∈𝐴𝐴

𝐿𝐿

𝑖𝑖=1

 (2.53) 

subject to 
(2.40) and (2.46) of Pre-MP and (2.48) of MP 

LD-Sub1 separates into 𝐿𝐿*𝑅𝑅 shortest path problems. For each product lot, we need to solve 

one shortest path problem for each possible value of the first storage area. We can easily obtain 

an optimal solution of LD-Sub1 by simply aggregating an optimal shortest path of each product 

lot. LD-Sub2 is a set of knapsack problems corresponding to each day over the time horizon. It is 
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known as a weakly NP-hard problem and can be solved efficiently using dynamic programming. 

See Martello and Toth (1990) for more details of a dynamic programming-based algorithm to 

solve the knapsack problem. 

Let 𝑋𝑋 and 𝑌𝑌 indicate feasible regions of 𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙  and 𝑦𝑦𝑖𝑖𝑖𝑖𝑙𝑙 , respectively. Then, the dual function of 

MP, 𝑍𝑍𝐷𝐷𝐷𝐷𝐷𝐷(𝐮𝐮), is defined as follows: 

𝑍𝑍𝐷𝐷𝐷𝐷𝐷𝐷(𝐮𝐮) = min
𝑥𝑥∈𝑋𝑋,𝑦𝑦∈𝑌𝑌

𝐿𝐿(𝐱𝐱,𝐲𝐲,𝐮𝐮) = min
𝑥𝑥∈𝑋𝑋

𝑍𝑍𝐿𝐿𝐿𝐿1(𝐱𝐱,𝐮𝐮) − max
𝑦𝑦∈𝑌𝑌

𝑍𝑍𝐿𝐿𝐿𝐿2(𝐲𝐲,𝐮𝐮). (2.54) 

The resulting dual problem of MP is referred to as LD-Dual and defined as follows: 

LD-Dual: 

max
𝐮𝐮

   𝑍𝑍𝐷𝐷𝐷𝐷𝐷𝐷(𝐮𝐮) (2.55) 

𝐮𝐮 is unsigned (2.56) 

By the weak duality theorem, the value of 𝑍𝑍𝐷𝐷𝐷𝐷𝐷𝐷(𝐮𝐮) provides a lower bound on the objective 

function value of an optimal solution of MP. Solving the Lagrangean dual problem, even 

approximately, produces a lower bound on the optimum objective function value of the original 

problem (Bertsekas, 2003). Because fortunately, LD-Sub1 and LD-Sub2 are not too hard to 

solve, the sub-problems of MP are solved exactly in the procedure of solving the LD-Dual to 

obtain a lower bound. 

To solve LD-Dual, we use the hybrid sub-gradient algorithm of Guta (2003) with minor 

modifications. The initial upper bound is set as the upper bound established by THD heuristics 

and the initial lower bound is set as the optimal objective function value of linearly relaxed 

PreMP (LP-PreMP). The initial Lagrangean multiplier is set as the value of the dual variables 

corresponding to constraint (2.44) of PreMP when the problem is solved optimally with linearly 

relaxed primal variables. Consequently, the procedure of solving LP-PreMP is embedded in the 
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lower bound procedure as a preliminary step before starting the sub-gradient method. The idea of 

this algorithm is to repeatedly solve LD with fixed Lagrangean multipliers, 𝐮𝐮�, and then to 

iteratively search for the multipliers 𝐮𝐮� yielding the tightest bound. The notation of Table 2.5 is 

used in introducing the pseudo-code of the hybrid sub-gradient algorithm. Tuning parameters, 

𝑁𝑁MaxUI, DecRate, and MaxIter, are set based on the preliminary experiment and the value of 

deflection angle regulator 𝜏𝜏 is set as 1.5, following Guta (2003). 

Table 2.5: Notations of the Hybrid sub-gradient algorithm  

Notation Description 
BKLB acronym of Best Known Lower Bound 
BKUB acronym of Best Known Upper Bound 
OFV acronym of Objective Function Value 
MaxIter maximum number of iterations 
DecRate step length decreasing rate 
𝑁𝑁UI number of un-improvements at given step length 
𝑁𝑁MaxUI value of 𝑁𝑁UI forcing step length reduction 
𝛾𝛾 step length regulator 
𝜏𝜏 deflection angle regulator 
𝐮𝐮�𝑘𝑘 Lagrangean multiplier fixed at stage 𝑘𝑘 
𝐱𝐱𝑘𝑘 optimal solution of LD-Sub1 given 𝐮𝐮�𝑘𝑘 
𝐲𝐲𝑘𝑘 optimal solution of LD-Sub2 given 𝐮𝐮�𝑘𝑘 
𝐬𝐬𝑘𝑘 sub-gradient at stage 𝑘𝑘 
𝜆𝜆𝑘𝑘 step length at stage 𝑘𝑘 
𝛿𝛿𝑘𝑘 deflection indicator at stage 𝑘𝑘 
𝚫𝚫𝑘𝑘 hybrid step direction at stage 𝑘𝑘 

 
Figure 2.7 is the pseudo-code of the hybrid sub-gradient algorithm. For more details of the 

algorithm, refer to Guta (2003). See Fisher (1985) and Mao et al. (2015) for more details on the 

application of the sub-gradient method in solving the Lagrangean dual problem.  
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Hybrid sub-gradient Algorithm:  
   

 Solve LP-PreMP and set initial Lagrangean multiplier  𝐮𝐮�1 (1) 
   

 Do BKLB ← OFV of LP-PreMP and BKUB ← 𝐹𝐹∗ (2) 
   

 Do 𝑁𝑁UI ← 0, 𝑁𝑁MaxUI ← 0, DecRate ← 0.9, and MaxIter ← 1000 (3) 
   

 Do 𝛾𝛾 ← 1 and 𝑘𝑘 ← 1 (4) 
   

 FOR  𝑘𝑘 = 1 to MaxIter  (5) 
  Solve LD-Sub1 and LD-Sub2 with 𝐮𝐮�𝑘𝑘 (6) 
  Do OFV𝑘𝑘 ← 𝑍𝑍𝐿𝐿𝐿𝐿1(𝐱𝐱𝑘𝑘,𝐮𝐮�𝑘𝑘) − 𝑍𝑍𝐿𝐿𝐿𝐿2(𝐲𝐲𝑘𝑘 ,𝐮𝐮�𝑘𝑘) (7) 
    

  IF OFV𝑘𝑘 > BKLB (8) 
   Do BKLB ← OFV𝑘𝑘 and 𝑁𝑁UI ← 0 (9) 
  ELSE (10) 
   Do 𝑁𝑁UI ← 𝑁𝑁UI + 1  (11) 
  END IF (12) 
     

  
Do 

𝐬𝐬𝑘𝑘 ← 𝐱𝐱𝑘𝑘 − 𝐲𝐲𝑘𝑘 
(13) 

    

  

Do 

𝛿𝛿𝑘𝑘 ← �  −𝜏𝜏
𝐬𝐬𝑘𝑘𝚫𝚫𝑘𝑘−1

‖𝐬𝐬𝑘𝑘‖2
,     if 𝐬𝐬𝑘𝑘𝚫𝚫𝑘𝑘−1 < 0 

 0,                          otherwise         
 (14) 

    

  
Do 

𝚫𝚫𝑘𝑘 ← 𝐬𝐬𝑘𝑘 + 𝛿𝛿𝑘𝑘𝚫𝚫𝑘𝑘−1 
(15) 

    

  
Do 

𝜆𝜆𝑘𝑘 = 𝛾𝛾
BestUB-OFV𝑘𝑘

‖𝐬𝐬𝑘𝑘‖2
 

(16) 

  IF 𝑁𝑁UI = 𝑁𝑁MaxUI Do 𝛾𝛾 ← 𝛾𝛾 ∗DecRate and 𝑁𝑁UI = 0 (17) 
     

  IF 𝐱𝐱𝑘𝑘 = 𝐲𝐲𝑘𝑘 (18) 
   Break FOR with optimal solution 𝐱𝐱𝑘𝑘 (19) 
  ELSE IF �OFV𝑘𝑘 − OFV𝑘𝑘−1� < 0.0001  (20) 
   Break FOR (21) 
  ELSE IF (BKUB-BKLB) BKLB⁄ < 0.001 (22) 
   Break FOR (23) 
  ELSE IF 𝛾𝛾 < 0.00001 (24) 
   Break FOR (25) 
  END IF (26) 
     

  Do 𝑘𝑘 ← 𝑘𝑘 + 1 (27) 
     

 END FOR (28) 

Figure 2.7: Pseudo-code of the hybrid sub-gradient algorithm 
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5. Numerical Experiments 

In studying the BSMPwRuDD, we wanted to answer several questions. First, can assigning a lot 

to different row depths be justified economically and, if so, under what conditions should 

relocation be pursued? Second, if relocation should be performed, is the solution procedure 

developed for DBSP efficient and reliable? To answer these questions, we performed a number 

of numerical experiments. All experiments were conducted on Intel Xeon Processor X5670 

(hexa-core, 12M cache, 2.93 GHz) with 24 GB RAM and execution files run UNIX platform.   

For numerical experiments, we randomly generate instances of three groups, as defined in 

Table 2.6. For details of the random generation, refer to Appendix B of this paper. Each group is 

characterized by the set of the number of lots, the set of the number of row depth types, and the 

set of the time horizons. Based on the number of variables, we refer to the instances in Group 1, 

Group 2, and Group 3 as small-sized, medium-sized, and large-sized problems. We consider a 

medium-sized problem to be a practical-sized problem. However, we are aware that large-sized 

problems exist, but not as commonly as medium-sized problems. 

Table 2.6: Summary of instances randomly generated 

 Group 1 Group 2 Group 3 
Set of the number of lots {10, 15, 20} {30, 40, 50} {100, 150, 200} 
Set of the number of row depth types {4, 5, 6} {6, 7, 8} {8} 
Set of the time horizon {20, 30, 40} {30, 60, 90} {180} 
Number of instance types 27 27 3 
Number of instances 135 135 15 

Number of row 
positions in storage 
area  

Average 16.33 32.32 35.07 
Min 6 22 31 
Max 30 43 41 

Number of decision 
variables 

Average 11,560 119,212 1,728,016 
Min 3,208 32,412 1,152,016 
Max 28,812 288,016 2,304,016 
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A single instance type is defined by mixing elements of three sets. To specify the instance 

type, we use the three-tuple (𝐿𝐿|𝑅𝑅|𝑇𝑇) where L, R, and T respectively indicate the number of lots, 

the number of row depth types, and the time horizon. Taking all combinations of the possible 

values of each element, 27, 27, and 3 instance types are defined in Group 1, 2, and 3 

respectively. Then, we create five cases per instance type, yielding a total of 135, 135, and 15 

instances for Group 1, 2 and 3. For each instance type, the number of decision variables of the 

corresponding IP-BSMPwRuDD is computed by 𝐿𝐿𝑅𝑅2𝑇𝑇 + 2𝑅𝑅. 

Based on the number of decision variables, we determine the size factor of each instance type. 

It is computed by dividing the number of decision variables of each instance type by the number 

of decision variable of the (𝐿𝐿|R|T)-instance type, which has the minimum number of decision 

variables among the instance types considered. For example, the number of decision variables of 

(10|4|20)-instance type is 3,208 and its size factor is 1. The number of decision variables of 

(2|6|40)-instance type is 28,812 and its size factor is 8.98. The number of decision variables of 

(200|8|90)-instance type, the largest instance type, is 1,152,016 and its size factor is 359.11. 

Group 1 is designed to generate instances optimally solvable by CPLEX within the 

computation time limit. Therefore, the optimization problems of Group 1’s instances have 

relatively few decision variables. According to the outcome of the CPLEX algorithm, we 

categorize instances into three classes: optimal instances, feasible instances, and unsolved 

instances. These classes respectively include the instances in which CPLEX finds an optimal 

solution within the computation time limit, CPLEX finds a feasible solution but is unable to 

conclude its optimality, and CPLEX fails to identify a feasible solution. When the given 

computation time limit is 𝑐𝑐𝑡𝑡, we refer to them as OI(𝑐𝑐𝑐𝑐), FI(𝑐𝑐𝑐𝑐), and UI(𝑐𝑐𝑐𝑐). 
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Table 2.7: CPLEX outcome of Group 1 instances after three hours 

# of lots 10 15 20 Total Horizon 20 30 40 20 30 40 20 30 40 
# of 

depth 
type 

4 5|0|0 5|0|0 5|0|0 5|0|0 5|0|0 5|0|0 5|0|0 5|0|0 5|0|0 45|0|0 
5 5|0|0 5|0|0 2|3|0 2|3|0 1|4|0 0|5|0 0|5|0 0|4|1 0|5|0 15|29|1 
6 5|0|0 5|0|0 5|0|0 0|3|2 0|5|0 0|5|0 0|3|2 0|3|2 0|4|1 15|23|7 

Total 15|0|0 15|0|0 12|3|0 7|6|2 6|9|0 5|10|0 5|8|2 5|7|3 5|9|1 75|52|8 42|3|0 18|25|2 15|24|6 
 

Table 2.7 provides the CPLEX outcome of Group 1’s 135 instances as three-tuples in which 

the first, second, and third elements indicate the number of OI(3), FI(3), and UI(3). Within the 

three-hour computation time limit, 75 instances reach optimality, 52 additional instances are 

concluded feasible, and no feasible solution is identified for the remaining 8 instances. As the 

number of product lots, the number of row depth types, and the time horizon increases, the 

number of OI(3) tends to decrease; the number of FI(3) and UI(3) tends to increase. 

Group 2 generates instances of sufficiently large-size to provide meaningful data for analysis of 

changeable row depth and relocation behavior. Within three hours of computation time, CPLEX 

identifies a feasible solution (but fails to conclude optimality) for 14 instances and fails to identify 

a feasible solution for the remaining 121 instances.  

Group 3 is designed to generate instances of unusual size. Thus, the optimization problem 

corresponding to the instances has a very large number of decision variables, over one million. 

With the computation time limit of six hours, all 15 instances of Group 3 are UI(6). 

In this section, we analyze the results of numerical experiments, providing insight into block 

stacking multiple products with relocation under deterministic demand. At first, we validate DH 

in Section 5.1 by benchmarking it against solving IP-BSMPwRuDD using the CPLEX 12.6.3 

branch and cut algorithm. Section 5.2 verifies the benefit of changing row depths in block 
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stacking operations and Section 5.3 investigates the relocation behavior of the block stacking 

storage system, in the day, and of the product lot under different space utilization levels. 

 
5.1. Validation of DH 

In this section, we benchmark DH against CPLEX 12.6.3. At first, we compare the Objective 

Function Value (OFV) of the feasible solutions obtained by DH and CPLEX to check the 

reliability of DH. Next, we analyze lower bounds obtained by CPELX and DH. It shows the 

performance of the CPLEX and LD in generating the lower bound by benchmarking them 

against the linear relaxation of PreMP (LR). At the end, we study the optimality gap and the 

computation time of DH. We evaluate the applicability of DH in solving practical-sized instances 

and its resistance to the problem size. For convenience, let 𝑓𝑓∗,𝑓𝑓,̅  and 𝑓𝑓 be an optimal OFV, an 

upper bound on 𝑓𝑓∗, and a lower bound on 𝑓𝑓∗. We use the superscription of C, D, and L to indicate 

solution procedure of CPLEX, DH, and LR-PreMP. A control parameter of the THD heuristics 𝜔𝜔 

is set as three based on the results of preliminary experiments. 

 
5.1.1. Reliability of feasible solutions 

In this section, the results of solving instances using CPLEX and DH are compared. For the 

analysis, we consider the instances of Group 1. Table 2.8 summarizes the results of the 

comparison between CPLEX and DH. The third column represents the gap between the OFVs of 

the solutions obtained by CPLEX and DH. It is computed by �𝑓𝑓̅𝐷𝐷-𝑓𝑓∗� 𝑓𝑓∗⁄  for OI(3)s and 

�𝑓𝑓̅𝐷𝐷-𝑓𝑓̅𝐶𝐶� 𝑓𝑓̅𝐶𝐶⁄  for FI(3)s. The fourth and fifth column show the average computation time of 

CPLEX and DH. For FI(3)s, we consider the computation time limit of three hours as CPLEX’s 

computation time. 
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Table 2.8: Comparison of CPLEX and DH using data collected from instances of Group1 

 Number of 
instances 

Ave size 
factor 

Gap between 
OFVs(%) 

Ave. Computation Time (Sec) 
CPLEX DH 

OI(3) 75 2.47 1.07 734.43 12.01 
FI(3) 52 4.96 0.61 10800 26.64 
UI(3) 8 5.36 - 10800 31.11 

 

 

Figure 2.8: Comparison of OFVs of solutions obtained by CPLEX and DH 

Figure 2.8 compares the OFVs obtained by CPLEX and DH by combining a box-and-whisker 

plot and a jittering-scatter plot. Concerning the box-and-whisker plot, the line in the box 

represents the median; the lower and the upper boundary of the box indicate the first quartile and 

the third quartile. The lower and the upper end of the vertical line emanating from the box 

correspond to the minimum and the maximum excluding outliers. The solid dots on the extension 

of the vertical line express the outliers. The “*” point represents the average. The jittering-scatter 

plot is a scatter plot where the random noise is added to data points to alleviate overlapping 

among them in the graph. In Figure 2.10, a jittering-scatter plot is represented by the set of 
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transparent dots. Each transparent dot corresponds to a single data point (a gap computed from 

an instance) and the random noise is added to its x-axis value (instance type), maintaining the 

original y-axis value (gap). The scattering shape of data points expresses a distribution along the 

vertical axis in the group of OI(3)s and FI(3)s. 

Summarizing Table 2.8 and Figure 2.8, the average gap is 1.0%; the range is from 0% to 

2.4%, including outliers in the case of OI(3)s; the average gap is 0.61% and the range is from -

3.0% to 1.8%, including outliers in the case of FI(3)s. The graph of FI(3)s in Figure 2.8, includes 

11 transparent dots located in the area of the negative gap; therefore, for 11 FI(3)s among 52 

FI(3)s, or 21.15% of FI(3)s, DH determines a better feasible solution compared to solutions 

obtained by CPLEX. 

Noting the small average and narrow range of the optimality gaps, we concluded the quality 

of the solution obtained by DH is acceptable compared to CPLEX for small-sized instances.  

For the optimal instances, CPLEX’s average computation time is 734.43 seconds, and the 

standard deviation is 1,903.25 second; DH’s corresponding average and standard deviation are 

12.01 seconds and 4.43 seconds. Among 75 OI(3)s, CPLEX is faster for 38 instances and DH is 

faster for 37 instances; however, whereas CPLEX is faster by 8.41 seconds on average (in the 38 

instances), DH is on average faster by 1,473.00 seconds (in the 37 instances).  

 
5.1.2. Quality of lower bound 

In this section the lower bound of CPLEX, DH, and LR are compared. Because CPLEX provides 

a lower bound even for UI(3), we consider the results of all instances for the analysis. Table 2.9 

summarizes the comparison of the lower bounds. 

The average gap column represents how far the lower bound obtained by CPLEX, DH, and 

LR is from the best-known upper bound. Let 𝑓𝑓̅best be the best-known upper bound determined 
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by min(𝑓𝑓̅𝐶𝐶, 𝑓𝑓̅𝐷𝐷). Let gap𝐶𝐶, gap𝐷𝐷, and gap𝐿𝐿 be the gap of CPLEX, DH, and LR, computed by 

�𝑓𝑓̅best − 𝑓𝑓𝐶𝐶� 𝑓𝑓𝐶𝐶� , �𝑓𝑓̅best − 𝑓𝑓𝐷𝐷� 𝑓𝑓𝐷𝐷� , and �𝑓𝑓̅best − 𝑓𝑓𝐿𝐿� 𝑓𝑓𝐿𝐿� , respectively.  

The average difference column represents the difference between gap𝐶𝐶 and gap𝐿𝐿 computed by 

gap𝐿𝐿-gap𝐶𝐶 and between gap𝐷𝐷 and gap𝐿𝐿 calculated by gap𝐿𝐿-gap𝐷𝐷. The average difference 

decreases as the instance size factor increases and is negligible in for medium-sized and large-sized 

instances. Based on this observation and computation time, LR is an attractive alternative for 

establishing a good lower bound quickly for medium-sized and large-sized instances. Notice, the 

lower-bounding procedure of DH consists of LD heuristics and LR. If LD heuristics are omitted 

in solving large-sized instances, on average, the total computation time of DH is reduced by 

1,499.64 seconds or 21.76%. 

It is known Lagrangean decomposition generally provides a better lower bound compared to 

the linear relaxation (Guignard and Kim, 1987). The average difference column in Table 2.9 

shows the difference between the lower bounds established by LD heuristics and LR is not 

significant. Two possible reasons for the deterioration of the performance of LD heuristics are 

the  number of decision variables and the excellence of the lower bound obtained by LR. The 

first reason is supported by a logical assumption: if the original problem has so many decision 

variables, finding an optimal Lagrangean multiplier is as difficult as finding an optimal solution 

of the original problem. The second reason is based on an observation from Table 2.9: in the case 

of OI(3)s of Group 1, the average gap is 2.70%, meaning the lower bound obtained by LR is very 

close to an optimal solution. 
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Table 2.9: Comparison of the lower bounds obtained by CPLEX, LD, and LP relaxation 

# of 
lots 

# of 
instances 

Ave 
size 

factor 
(ASF) 

Ave gap 
(%) 

Ave difference 
( % points) 

Ave computation 
time (sec) 

C D L C D C D L 

Group 
1 

10 45 2.40 0.06 3.18 4.38 4.32 1.20 1732.50 11.42 0.19 
15 45 3.60 1.51 2.47 2.89 1.39 0.43 6212.65 18.74 0.29 
20 45 4.80 1.68 2.16 2.36 0.68 0.20 5762.14 26.18 0.38 

Group 
2 

30 45 27.87 4.20 4.36 4.48 0.28 0.12 10800.00 175.84 3.61 
40 45 37.16 3.60 3.69 3.75 0.15 0.06 10800.00 246.13 5.72 
50 45 46.45 3.49 3.55 3.59 0.10 0.04 10800.00 315.80 6.88 

Group 
3 

100 5 179.56 4.40 4.42 4.44 0.03 0.01 43200.00 4304.01 638.22 
150 5 269.33 4.27 4.29 4.29 0.02 0.00 43200.00 7711.91 1050.59 
200 5 359.11 2.72 2.73 2.73 0.01 0.00 43200.00 11868.91 1472.65 

 
5.1.3. Duality gap and computation time of DH 

This section addresses the change in the optimality gap and the computation time of DH as 

instance size increases. The optimality gap is computed by �𝑓𝑓̅𝐷𝐷 − 𝑓𝑓𝐷𝐷� 𝑓𝑓𝐷𝐷� . Thus, the gap 

between 𝑓𝑓̅𝐷𝐷 and unknown 𝑓𝑓∗ is less than the reported optimality gap. Table 2.10 summarizes the 

average optimality gap and average computation time, showing the optimality gap remains at a 

specific range around 3.5% regardless of the instance size. The computation time naturally 

increases as the instance size increases. 

Table 2.10: Performance of the DH 

Number of lots Number of 
instances 

Ave size factor 
(ASF) 

Ave duality gap 
(%) 

Ave computation 
time (sec) 

Group 
1 

10 45 2.40 4.27 11.42 
15 45 3.60 3.45 18.74 
20 45 4.80 2.85 26.18 

Group 
2 

30 45 27.87 4.36 175.84 
40 45 37.16 3.72 246.13 
50 45 46.45 3.58 315.80 

Group 
3 

100 5 179.56 4.42 4304.01 
150 5 269.33 4.29 7711.91 
200 5 359.11 2.73 11868.91 
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Figure 2.9: The change in the optimality gap as instance size increases 

Using a combined box-and-whisker plot and jittering-scatter plot, Figure 2.9 illustrates the 

distribution of the instance’s duality gap in the group of instances specified by the number of 

product lots. The “*” points represent the average gap within each group; the horizontal bar 

traversing the graph indicates the average gap (3.71%) across all 285 instances. In cases where 

the number of product lots is greater than 20, all observations are positioned in ±3% area from 

the average line, excluding some outliers. The optimality gap does not seem to increase as a 

result of increasing the number of lots or average size factor. 

To summarize the performance of DH based on the result of the experiment, it can determine 

a good feasible solution in a reasonable time regardless of instance size. Compared to CPLEX, 

this merit is highlighted when solving practical-sized instances. 

  



48 
 

5.2. Changeable row depth 

This section investigates the benefit of dynamic block stacking compared to static block stacking. 

Additionally, we consider semi-dynamic block stacking in the comparison. From the viewpoint of 

changeable row depths, operational strategies can be defined as follows: 

 Dynamic Block Stacking (DBS) allows changing the row depth designated for the 

product lot at any time during its storage life. 

 Semi-Dynamic Block Stacking (SDBS) allows changing the row depth designated for the 

product lot only at the replenishment point. 

 Static Block Stacking (SBS): The row depth designated for the product lot is permanent 

and changing row depth is not allowed. 

SDBS is an interesting strategy of block stacking operation. Like DBS, SDBS is also not 

considered in the conventional literature of block stacking. It restricts changing row depths to 

replenishment points and doesn’t allow relocation to change row depths. Compared to DBS, like 

SBS, it causes no additional material handling.  

In the numerical experiments adopting DBS strategy in a block stacking operation, we 

observed cases where a product lot changes row depth. Table 2.11 shows the percentage of the 

cases where a product lot changes row depth with relocation and the percentage of the cases 

where a product lot changes row depth at the replenishment point with no relocation among all 

the cases. The fourth column and the fifth column represent on average over instances of all 

groups, the first one is 65.85% and the second one is 34.15%, respectively. It represents the 

percentage of the cases where a product lot changes row depth at the replenishment point is not 

low. Based on this observation, SDBS has a potential to be an attractive alternative of taking 

both DBS’s advantage of reducing honeycomb loss and SBS’s advantage of no additional 

material handling. 
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Table 2.11: Percentage of changing row depth by relocation and at replenishment point 

 Number of 
instances 

Ave size 
factor 

Percentage of changing 
row depth with relocation 

Percentage of changing 
row depth at replenishment  

Group 1 135 3.60 65.87 34.13 
Group 2 135 37.16 64.49 35.51 
Group 3 15 538.66 77.98 22.02 

Total 285 47.66 65.85 34.15 
 

For the comparison, the optimization problems of SDBS and SBS are developed by 

modifying IP-BSMPwRuDD. In developing the optimization problem of SBS, the following 

constraint (2.57) is added to IP-BSMPwRuDD. It guarantees only one storage area is assigned 

for a product lot over a planning horizon and it cannot be changed. 

� 𝑥𝑥𝑖𝑖,𝑡𝑡𝑡𝑡+𝑟𝑟
𝑙𝑙

(𝑖𝑖,𝑡𝑡𝑡𝑡+𝑟𝑟)∈𝐴𝐴𝑡𝑡𝑡𝑡+𝑟𝑟

= � 𝑥𝑥𝑘𝑘,(𝑡𝑡+1)𝑅𝑅+𝑟𝑟
𝑙𝑙

(𝑘𝑘,(𝑡𝑡+1)𝑅𝑅+𝑟𝑟)∈𝐴𝐴(𝑡𝑡+1)𝑅𝑅+𝑟𝑟

,    𝑡𝑡=1, … ,𝑇𝑇 and 𝑟𝑟=1, … ,𝑅𝑅 (2.57) 

In the optimization problem of SDBS, the following constraint (2.58) is added to IP-

BSMPwRuDD. It requires only one storage area is assigned for a product lot during its inventory 

cycle and it can be changed at the replenishment point. 

� 𝑥𝑥𝑖𝑖,𝑡𝑡𝑡𝑡+𝑟𝑟
𝑙𝑙

(𝑖𝑖,𝑡𝑡𝑡𝑡+𝑟𝑟)∈𝐴𝐴𝑡𝑡𝑡𝑡+𝑟𝑟

= � 𝑥𝑥𝑘𝑘,(𝑡𝑡+1)𝑅𝑅+𝑟𝑟
𝑙𝑙

(𝑘𝑘,(𝑡𝑡+1)𝑅𝑅+𝑟𝑟)∈𝐴𝐴(𝑡𝑡+1)𝑅𝑅+𝑟𝑟

, 𝑡𝑡=1, … ,𝑇𝑇 and 𝑡𝑡 is not a 
replenishment point and 𝑟𝑟=1, … ,𝑅𝑅 

(2.58) 

In this section, we refer to the optimization problem of DBS, SDBS, and SBS as OP-DBS, OP-

SDBS, and OP-SBS, respectively. 

In the comparison, we use the results of OI(3)s and FI(3)s of Group 1 considering the 

following issue. Let 𝑓𝑓(∙)
∗  and 𝑓𝑓(̅∙) be an optimal objective function value of the optimization 

problem assuming the strategy (∙) and the upper bound on 𝑓𝑓(∙)
∗  computed by the best known 

feasible solution of the strategy (∙). Theoretically, among the strategies, the relation of 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷∗ ≤

𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆∗ ≤ 𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆∗  is satisfied. When the analysis is based on the results of Group 2’s instances, 𝑓𝑓𝐷̅𝐷𝐷𝐷𝐷𝐷 
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is considered in the comparison instead of 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷∗  because all instances of Group 2 are not the 

optimal instance for DBS. In the comparison using the instances of Group 2, many cases of 

𝑓𝑓𝐷̅𝐷𝐷𝐷𝐷𝐷 > 𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆∗  and 𝑓𝑓𝐷̅𝐷𝐷𝐷𝐷𝐷 > 𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆∗  were observed. It means if the comparison is based on the results 

of Group 2’s instances, there is a strong possibility the relation of 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷∗ ≤ 𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆∗ ≤ 𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆∗  is 

distorted and consequently, the benefit of DBS is underestimated. Therefore, we used OI(3)s and 

FI(3)s of Group 1 for the comparison. The results of these instances satisfy the relation of 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷∗ ≤

𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆∗ ≤ 𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆∗   or 𝑓𝑓𝐷̅𝐷𝐷𝐷𝐷𝐷 ≤ 𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆∗ ≤ 𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆∗ . 

In the remaining part of this section, we investigate each strategy’s minimum storage capacity 

requirement and operating cost and compare the strategies under different size of storage spaces 

and different unit costs. 

 
Comparison of the minimum storage space requirements 

The Minimum Storage Space Requirement, or MSSR, represents the minimum storage space 

required to operate a block stacking system without using external storage space over a planning 

horizon, following general operational rules and the strategy about changing row depth. In the 

experiment, it is measured as the number of row positions in the storage area. We suppose all 

storage areas have the same number of row positions and consequently, it can reasonably 

quantify the storage space. We refer to a MSSR of each strategy as MSSR-DBS, MSSR-SDBS, 

and MSSR-SBS, respectively. 

Table 2.12 summarizes the result of the experiment. On average, DBS, SDBS, and SBS require 

at least 16.39 row positions, 19.67 row positions, and 20.33 row positions, respectively. Compared 

to DBS, 20.02% and 24.04% more storage space is necessary for SDBS and SBS, respectively. 

Thus, DBS requires less storage space than SBDS and SBDS requires less storage space than SBS. 
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Table 2.12: The minimum storage space requirements for different operational strategies 

 DBS SDBS SBS 
Average minimum storage space requirement (MSSR) 
measured in the number of row positions  16.39 19.67 20.33 

Ratio of each strategy’s average MSSR to the DBS’s average MSSR 1 1.2002 1.2404 
 

Table 2.13: The daily operating costs of the different operational strategies when the storage 
space is set equal to the SBS’s minimum storage capacity requirement 

 DBS SDBS SBS 

At the 
minimum 
storage 
space 
requirement 
of SBS 

Average of the daily 
operating cost ($) 

Total cost 3,497.25 3,528.37 3,559.64 
Space cost 2,732.90 2,782.14 2,818.29 
Material handling cost 764.35 746.22 741.35 

Average of the 
difference to the cost 
of DBS ($) 

Total cost - 31.11 62.38 
Space cost - 49.24 85.39 
Material handling cost - -18.13 -23.00 

Average of the ratio 
to the cost of DBS 

Total cost - 1.0318 1.0409 
Space cost - 1.0532 1.0654 
Material handling cost - 0.9016 0.8970 

 
Comparison of operating costs 

In the experiment, when comparing the operating costs of DBS, SDBS, and SBS, the number of 

row positions in the storage area of OP-DBS, OP-SDBS, and OP-SBS are set equal to MSSR-

SBS. Let OP-X(Y) be the optimization problem of the strategy X when there are Y row positions 

in each storage area. For example, if MSSR-SBS is 20 for an instance, we solve OP-DBS(20), 

OP-SDBS(20), and OP-SBS(20) and then compare their objective function values. Notice, 

MSSR-DBS is less than MSSR-SDBS and MSSR-SBS and, thus, in many cases, OP-

SDBS(MSSR-DBS) and OP-SBS(MSSR-DBS) are infeasible and have no feasible solution.  

Table 2.13 provides the results of the experiment. According to the second row, on average, 

the daily operating cost of DBS, SDBS, and SBS is about $3,497, $3,528, and $3,559. The fifth 

row shows the average of the difference between 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷∗ (or 𝑓𝑓𝐷̅𝐷𝐷𝐷𝐷𝐷) and 𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆∗  and 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷∗ (or 𝑓𝑓𝐷̅𝐷𝐷𝐷𝐷𝐷) and 

𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆∗ . On average, DBS saves about $31 per day and $62 per day compared to SDBS and SBS, 
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respectively. The eighth row represents the average of the ratio of 𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆∗  and 𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆∗  to 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷∗ (or 

𝑓𝑓𝐷̅𝐷𝐷𝐷𝐷𝐷). On average, SDBS and SBS result in 3.18% and 4.09% more operating cost than DBS. 

The rows of total cost, space cost, and material handling cost show DBS incurs lower space 

cost and higher material handling cost compared to SDBS and SBS. The result implies the 

savings in space cost by changing row depth is greater than the increase in material handling cost 

by changing row depths; consequently, DBS decrease overall operating cost. 

 
Comparison of the operating costs as storage space changes 

Next, we investigate how the differences among the operating costs of DBS, SDBS, and SBS change 

as storage space increases. In the experiment for each instance, initially, OP-DBS(MSSR-DBS), OP-

SDBS(MSSR-DBS), and OP-SBS(MSSR-DBS) are solved and their objective function values are 

compared. Then, we solve OP-DBS(MSSR-DBS+1), OP-SDBS(MSSR-DBS+1), and OP-

SBS(MSSR-DBS+1) and compare their objective function values. Next, we solve OP-DBS(MSSR-

DBS+2), OP-SDBS(MSSR-DBS+2), and OP-SBS(MSSR-DBS+2). This procedure is repeated, 

increasing the storage space parameter by 1 and stopping after solving OP-DBS(2*MSSR-DBS), 

OP-SDBS(2*MSSR-DBS), and OP-SBS(2*MSSR-DBS). 

Figure 2.10 illustrates the change in the differences among the operating costs of DBS, SDBS, 

and SBS. Each graph depicts the change in the instances of 4 row depths, 5 row depths, and 6 

row depths. In the graphs, storage space is represented by the ratio to MSSR-DBS. For example, 

if MSSR-DBS is 10 row positions, the space of 12 row positions is expressed as 1.2. Because we 

increase storage space by twice the value of MSSR-DBS, it ranges from one to two. The 

differences among the operating costs are measured as the ratio of 𝑓𝑓OP-SDBS(∙)
∗  and 𝑓𝑓OP-SBS(∙)

∗  to 

𝑓𝑓OP-DBS(∙)
∗ �or 𝑓𝑓O̅P-DBS(∙)�. For example, if the ratio of SDBS is 1.0425, it means SDBS requires 

4.25% more operating cost compared to DBS for a given amount of storage space. 
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Figure 2.10: The ratio among the daily operating costs of the different operational strategies as 
storage capacity changes 

To smooth the graph, the observations are classified into 10 groups of the storage space ratio 

and then, represented by the average of each group. The groups are defined by dividing the space 

ratio’s range into ten groups equally. For example, the first group and the eighth group 

correspond to the ratio range from 1 to 1.1 and from 1.7 to 1.8, respectively.  Notice, OP-SDBSs 

and OP-SBSs with the storage space parameters corresponding to the first group are infeasible 

problems and, thus, no observations about SDBS and SBS are in the first group. 
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In Figure 2.10, solid dots indicate the average ratio of observations of SDBS and SBS in each 

group; the lines pass through these points. All graphs show the lines of SDBS and SBS converge 

to the thick line representing the ratio of one as the space ratio increases. Thus, the gaps among 

the operating costs of DBS, SDBS, and SBS decrease as storage space increases. Considering 

inventory level is fixed as storage space increases, the result implies, compared to SDBS and 

SBS, DBS performs well when the ratio of inventory level to storage space is low. 

 
Comparison of operating costs under different unit costs 

In this subsection, we analyze the differences among the operating costs of DBS, SDBS, and 

SBS with different floor space and material handling unit costs. Table 2.14 summarized the 

results. 

Figure 2.11 shows the ratio of SDBS-to-DBS and SBS-to-DBS decreases as material handling 

unit cost increases. In addition, it illustrates the ratio of SDBS-to-DBS and SBS-to-DBS increases 

as floor space unit cost increases. 

Table 2.14 and Figure 2.11 indicate within the range of floor space unit cost of $0.20/sqtf/day 

to $0.24/sqft/day and material handling unit cost of $0.40/min to $0.48/min, DBS incurs less 

operating cost compared to SDBS and SBS.  

Table 2.14: Comparison of the daily operating costs of the different operational strategies when 
different unit costs are assumed and storage capacity is set as the SBS’s minimum storage 
capacity requirement 

Unit cost 
of FS 

Unit cost 
of MH 

Average daily operating cost at the 
minimum required storage space of SBS ($) 

Ave ratio to the DBS’s 
operating cost 

DBS SDBS SBS DBS SDBS SBS 
0.20 0.40 3,179.32 3,207.55 3,236.05 1 1.0318 1.0409 
0.20 0.48 3,317.45 3,342.86 3,370.69 1 1.0286 1.0372 
0.22 0.44 3,497.25 3,528.37 3,559.64 1 1.0318 1.0409 
0.24 0.40 3,675.42 3,713.17 3,748.29 1 1.0352 1.0448 
0.24 0.48 3,815.12 3,849.02 3,883.21 1 1.0318 1.0409 
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Figure 2.11: The ratio of the operating cost of SDBS and SBS to the cost of DBS as unit cost of 
material handling changes 

An interesting observation in Table 2.14 is the average ratio of SDBS’s cost and SBS’s cost to 

DBS’s cost are almost the same when material handling unit cost is twice the floor space unit 

cost: $0.20/sqft/day and $0.40/min; $0.22/sqft/day and $0.44/m; $0.24/sqft/day and $0.48/min. 

Although it appears a linear relationship exists among floor space unit cost, material handling unit 

cost, and the ratio of the operating cost, the result of a linear regression analysis indicates there is 

no stochastically significant linear relationship among them. 

To summarize, DBS outperforms SDBS and SBS based on the experiments’ results of Section 

5.2.  Especially, DBS’s minimum storage space requirement is 15.38% less than compared to 

SDBS and 15.97% compared to SBS. It implies given the same size of the storage space, DBS 

can provide more storage capacity compared to SDBS and SBS. Thus, if storage space is 

insufficient in operating a block stacking storage system adopting conventional SBS, applying 

DBS instead of SBS should be considered expanding storage space. 
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In addition, DBS incurs less operating cost compared to SDBS and SBS when storage space is 

not sufficient considering the inventory level. When the size of the storage space equals to the 

SBS’s minimum storage space requirement, SBS incurs 4.09% more operating cost compared to 

DBS. However, difference between operating cost of DBS and SBS is insignificant when the 

space utilization is low. Thus, when space utilization is high, adopting DBS instead of SBS 

should be considered in order to reduce operating cost.  

Notice, given a feasible instance of DBS, an optimal solution of SBS outperforms the feasible 

solution of DBS in many cases. Thus, a manager should be careful in making decisions between 

DBS and SBS. If an optimal solution of SDBS is possible, SDBS would be the best alternative 

compared to a feasible solution of DBS and an optimal solution of SBS. 

 
5.3. Relocation behavior 

In this section, we investigate relocation behavior at the storage system level and at the product 

lot level. Based on an analysis of the results from the experiments, Section 5.3 provides insights 

regarding block stacking with relocation. 

 
5.3.1. Relocation behavior of the storage system 

In this section, we quantify relocation behavior using the following three value measurements: 

average number of relocated product lots per day, average number of relocated unit loads per 

day, and average relocation cost per day. Additionally, to standardize these value measurements 

over different-sized instances, we use the following three ratios: the ratio of the average number 

of relocated product lots per day to the total number of product lots, the ratio of the average 

number of relocated unit loads per day to the average inventory level per day, and the ratio of the 

average relocation cost per day to the average total operating cost per day. 
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Table 2.15: Summary of relocation behavior of the storage system 

Number 
of 

lots 

Number of 
row depth 

types 

Number 
of 

instances 

Relocated lots 
per day 

Relocated unit loads  
per day 

Relocation cost 
per day 

Lots Ratio (%)  Unit loads Ratio (%)  $ Ratio (%)  

30 
6 15 3.72 12.41 183.44 5.18 231.17 3.03 
7 15 3.97 13.22 370.61 6.48 515.52 4.22 
8 15 4.11 13.71 455.01 6.45 608.75 4.13 

40 
6 15 5.02 12.55 160.97 4.85 204.29 2.76 
7 15 4.86 12.15 303.21 5.35 421.69 3.40 
8 15 5.87 14.67 497.61 6.86 672.77 4.20 

50 
6 15 8.21 16.42 247.95 7.74 324.82 4.46 
7 15 7.45 14.91 382.26 6.99 540.39 4.39 
8 15 6.86 13.72 465.39 6.13 650.32 3.94 

 
Table 2.15 summarizes the value measurements and the ratios. The results are organized 

according to the number of lots and the number of row depths considered in instances. 

 
Relocation behavior of storage system as daily space utilization changes 

To reorganize data, we use the concept of Stack Position Utilization, or SPU. It represents a kind 

of space utilization based on the number occupied stack positions and the number of total stack 

positions. The storage system’s SPU at day 𝑡𝑡 is computed by  

( # of stack positions occupied at day 𝑡𝑡) (total # of stack positions)⁄ . (2.59) 

Considering the number of occupied stack positions is computed based on the inventory level, 

SPU represents the relative inventory level. For example, consider the inventory level of 1,000 

unit loads or 450 stacks at day 𝑡𝑡. When given a storage space of 500 stack positions, the storage 

system’s SPU is 0.9 and y the inventory level is relatively high at day 𝑡𝑡. When given a storage 

space of 900 stack positions, the storage system’s SPU is 0.5 and the inventory level is relatively 

low at day 𝑡𝑡. Thus, SPU-values closer to one indicate relatively higher inventory levels. 
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Table 2.16: The percentage measurements of the number of relocated lots and the number of 
relocated unit loads at each day. 

Range of 
SPU 

Number 
of days 

The average ratio of the number 
of relocated lots to the total 

number of product lots at the day 
(%)  

The average ratio of the number 
of relocated unit loads to the 
inventory level at the day (%)  

< 0.82 340 7.81 2.35 
0.82 - 0.86 1465 8.92 3.19 
0.86 - 0.90 2799 11.46 4.73 
0.90 - 0.94 2759 15.08 6.91 
≥ 0.94 737 25.27 14.17 

 
Table 2.16 organizes the observations into five categories defined by the range of SPU. 

Totally, observations of 7,100 days are used in the analysis. The third column of the average 

ratio of the number of relocated lots to the total number of product lots at the day and the fourth 

column of the average ratio of the number of relocated unit loads to the inventory level at the day 

shows the ratios increase as SPU increases. 

 

Figure 2.12: The average ratio of the number of relocated lots to the total number of product lots 
at the day as SPU changes 
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Figure 2.13: The average ratio of the number of relocated unit loads to the inventory level at the 
day as SPU changes 

Figure 2.12 and Figure 2.13 illustrate the dispersion of the observations of the ratio of the 

number of relocated lots to the total number of product lots at the day and the ratio of the number 

of relocated unit loads to the inventory level at the day. Figure 2.12 and Figure 2.13 combine the 

box plot and the Jitter graph. The “*” point indicates the average value of the categories defined 

by the range of SPU; the solid line passes through these average points. These graphs show the 

increasing tendency of the ratios of the relocation behavior as the day’s SPU increases. 

To summarize, if the day’s SPU is high, more relocations are expected. 

 
Relocation behavior of the storage system as storage capacity changes 

Figure 2.14 addresses how relocation behavior changes as storage capacity changes. For each 

instance, we conducted an experiment by comparing the relocation behavior measurements of 

OP-DBS(MSSR-DBS), OP-DBS(MSSR-DBS+1) , …, OP-DBS(2*MSSR-DBS).  
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Figure 2.14: The percentage measurements of the relocation behavior as the storage capacity 
changes 

In Figure 2.14, the relocation behavior change is quantified as the ratio of the percentage 

measurements at a given storage space to the percentage measurements at MSSP-DBS. Because 

relocation is most active at MSSP-DBS, the factors are ranged from one to zero. Storage space is 

expressed as the ratio to MSSP-DBS and, thus, the storage space factors are ranged from one to 

two. The closer to one on the x-axis, the higher storage system’s SPU; the closer to two, the 

lower storage system’s SPU. 

The graph shows the ratio of the percentage measurements of relocation behavior decreases as 

the ratio of storage space increases. It infers a block stacking storage system of sufficient storage 

space (or the lower SPU) can anticipate fewer relocations compared to a block stacking storage 

system with insufficient storage space or higher SPU. Relocations tend to occur more frequently 

when the storage system’s average space utilization or inventory level is relatively high. 
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Table 2.17: Comparison of relocation behaviors of the storage system under different cost 
parameters 

Unit cost 
of FS 

Unit cost 
of MH 

Relocated lots 
per day 

Relocated unit loads  
per day 

Relocation cost 
per day 

Lots Ratio (%) Unit loads Ratio (%) $ Ratio (%)  
0.20 0.40 5.56 13.75 340.13 6.21 420.49 3.83 
0.20 0.48 5.43 13.4 334.19 6.09 494.49 4.3 
0.22 0.44 5.56 13.75 340.72 6.23 463.3 3.84 
0.24 0.40 5.76 14.25 348.68 6.4 432.54 3.42 
0.24 0.48 5.55 13.71 340.36 6.21 505.18 3.83 

 
One interesting feature of Figure 2.14 is the similarity with regard to relocated unit loads and 

relocation cost. Considering relocation cost is proportional to the number of relocated unit loads, 

this is an expected result. 

 
Relocation behavior of the storage system under different cost parameters 

In this section, we analyze the relocation behavior under different floor space cost and material 

handling cost. In the experiment, for each instance, we solve OP-DBS(MSSR-DBS) with 

different unit cost factors and compare their OFVs. 

Table 2.17 summarizes the result according the unit cost factors considered. Like Table 2.14, 

the percentage measurements are the almost same when the ratio of the unit floor space cost to the 

unit material handling cost is two. Likewise, the result of the linear regression analysis indicates 

there is no stochastically significant linear relationship among floor space unit cost, material 

handling unit cost, and the ratio of the operating cost. 

Figure 2.15 illustrates the ratio of the average number of relocated product lots per day to the 

total number of product lots and the ratio of the average number of relocated unit loads per day 

to the average inventory level per day decreases and the ratio of the average relocation cost per 

day to the average total operating cost per day increases. Thus, when unit material handling cost 

is relatively high compared to unit floor space cost, relocation occurs less frequently because the 
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savings in the floor space cost by the changing row depth is relatively small compared to the 

increase in material handling cost resulting from relocation. The higher percentage of the 

relocation cost means lower percentage of the floor space cost in the total operating cost. 

In addition, Figure 2.15 shows the percentage or the number of relocated lots and the 

percentage of the number of relocated unit loads increases and the percentage of the relocation 

cost decreases as unit floor space cost increases. Thus, when unit floor space cost is relatively 

high compared to unit material handling cost, the relocation occurs more frequently because the 

savings in the floor space cost by changing row depth is relatively large compared to the increase 

in material handling cost due to relocation. The lower percentage of the relocation cost means 

higher percentage of the floor space cost in the total operating cost. 

 

Figure 2.15: The ratio measurements of the relocation behavior as unit material handing cost 
changes 
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To summarize, based on the results of this subsection, relocation behavior is controlled by the 

relationship between floor space unit cost and material handling unit cost. Relocation behavior 

increases when floor space unit cost is relatively high, whereas it decreases when material 

handling unit cost is relatively high. Thus, relocation behavior is a function of unit costs and a 

well-designed DBS functions as a self-regulating strategy. 

 
5.3.2. Relocation behavior of the product lot 

In this section, we investigate the relocation behavior of the product lot. The data are grouped 

according to the ratio of the average stack level of the product lot to average stack level of the 

storage system: the Ratio of the Average Stack Level or RASL. RASL greater than one means a 

product lot’s average inventory level is relatively high compared to other product lots. RASL 

less than one means the product lot’s average inventory level is relatively low compared to other 

product lots. Totally, observations of 5,400 product lots are used in the analysis. 

Relocation behavior of a product lot is quantified using two value measurements: the expected 

number of relocations of the product lot per day and the expected number of relocated unit loads 

of the product lot per day. Additionally, to standardize these value measurements over different-

sized instances, we use the following two ratio measurements: the ratio of the expected number of 

relocations of the product lot per day to the expected number of relocations per day and the ratio 

of the expected number of relocated unit loads of the product lot per day to the expected number 

of relocated unit loads per day. 

Table 2.18 organizes the observations of the value measurements and the ratio measurements 

of the relocation behavior of the product lot into eight categories defined by the range of RASL. 
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Table 2.18: Relocation summary based on lots inventory level 

Range of 
RASL 

Number 
of lots 

Expected number of relocations 
of the product lot per day 

Expected number of relocated unit 
loads of the product lot per day 

Per day Ratio (%) Per day Ratio (%) 
< 0.4 616 0.1930 3.34 5.5933 0.47 

0.4 - 0.6 801 0.1672 3.06 8.6405 0.84 
0.6 - 0.8 854 0.1598 2.95 9.7706 1.13 
0.8 - 1.0 780 0.1420 2.60 9.6656 1.47 
1.0 - 1.2 670 0.1220 2.20 8.7039 1.72 
1.2 - 1.4 554 0.1146 2.01 8.8016 1.80 
1.4 - 1.6 377 0.1050 1.82 8.6208 1.85 
≥ 1.6 748 0.0884 1.58 7.7395 2.16 

 
Figure 2.16 and Figure 2.17 combine a box plot and a Jitter graph to illustrate the dispersion 

of the observations of the ratio of the expected number of relocations of the product lot per day 

and the ratio of the expected number of relocated unit loads of the product lot per day. The “*” 

point indicates the average value of the categories defined by the range of RASL; the solid line 

passes through these average points. 

As shown in the fourth column of Table 2.18, Figure 2.16 indicates the ratio of the expected 

number of relocation of the product lot per day decreases as RASL increases. Like the sixth 

column of Table 2.18, Figure 2.17 shows the percentage of expected number of relocated unit 

loads of the product lot per day increases as RASL increases. 

To summarize Table 2.18, Figure 2.16, and Figure 2.17, the product lot with the lower RASL 

is relocated more frequently with smaller number of unit loads whereas the product lot with the 

higher RASL is relocated less frequently with larger number of unit loads. Notice, the product 

lot’s operating cost is reduced by relocation when the saving in the floor’s space cost by reduced 

honeycomb loss is higher than the increase in the material handing cost due to relocation. The 

lower inventory level guarantees the lower relocation cost and, consequently, provides a greater 

chance the savings is greater than the relocation cost, compared to a higher inventory level.  
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Figure 2.16: The ratio of the expected number of relocations of the product lot per day to the 
expected number of relocations per day as RASL changes 

 

Figure 2.17: The ratio of the expected number of relocated unit loads of the product lot per day to 
the expected number of relocated unit loads per day as RASL changes 
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A possible hypothesis concerning the changing row depth is the designated row depth for the 

product lot only changes to a shallower row depth. It is not true. For example, consider the 

product lot of 6 stacks. If it is stored in the 5-deep storage area, the product lot incurs the 

honeycomb loss of 4 stack positions. If 6-deep and 4-deep storage areas are available, it is better 

to relocate it into a 6-deep storage area and save the floor space cost by reducing honeycomb 

loss. Notice 6-deep and 4-deep storage areas incur honeycomb loss of 0 stack position and 2 

stack positions, respectively. In the experiment, 43,863 relocations are observed. Among them, 

30,761 relocations (70.13%) occur from a deeper storage area to a shallower storage area and 

13,102 relocations (29.87%) occur from a shallower storage area to a deeper storage area. 

Another hypothesis is relocation only occurs when operating cost is reduced. It is true in the 

case of block stacking a single product lot. However, it is not true in the case of block stacking 

multiple product lots. Sometimes, a product lot is relocated without reducing floor space cost. In 

the experiment, 2,904 relocations (6.62%) increased honeycomb loss by 3.34 stack positions. 

The objective of relocation is to yield storage space to the product lot with a higher priority in 

order to achieve global optimization. 

 
6. Conclusions  

The first contribution of this paper is IP-BSMPwRuDD, the first optimization model for block 

stacking multiple products with changeable row depth under deterministic demand. Solving the 

model results in a DBS plan determining an assignment of product lots to storage areas each day 

given known inventory levels and daily demands over a planning horizon to minimize total 

operating cost. A DBS plan is distinguished from a conventional SBS plan determining an 

assignment of product lots to storage areas permanent over a time horizon. Compared to SBS, 

DBS requires less storage capacity and incurs less operating cost. DBS uses floor space 



67 
 

efficiently by timely relocation of product lots. It not only alleviates honeycomb loss and enables 

the product lot to yield occupied storage locations to another product lot if required. The savings 

in space cost by changing row depth is greater than the increase in material handling cost due to 

relocation; consequently, DBS decreases operating cost. The merit of DBS is magnified when 

storage capacity is relatively insufficient based on the inventory level. 

The second contribution this paper is DH, the solution method based on a strategy of 

decomposing the original problem into smaller and easier-to-solve sub-problems. It consists of 

an upper-bounding procedure based on THD heuristics and a lower-bounding procedure based 

on LD heuristics. For practical-sized instances, DH solves corresponding optimization problems 

in a reasonable time and guarantees a feasible DBS plan. The small average and narrow range of 

the optimality gaps vouches for the quality of the solution. Notice, compared to DH, in solving 

practical-sized instances, the CPLEX branch-and-cut algorithm requires longer computation time 

and rarely provides a feasible solution.  

The third contribution of this paper is the quantitative analysis of relocation behavior in a 

block stacking system. When the system has relatively lower storage capacity and higher average 

space utilization, relocation occurs more frequently. Relatively higher floor space unit cost 

and/or lower material handling unit cost support product lots being actively relocated. We can 

expect more unit loads to be relocated the higher space utilization. A product lot with a lower 

average inventory level is more likely to be relocated more frequently than a product lot with a 

higher average inventory level. 

For future research, SDBS can be considered, first. It has a potential to be an alternative 

against DBS but requires more study. BSMPwRuDD with lot splitting is a very interesting but 

very challenging research problem. The solution of the problem would provide a more practical 
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DBS plan under a deterministic demand setting. Aggregating the problems of DBS optimization 

and replenishment scheduling and integrating the problems of DBS optimization and facility 

design are other interesting issues for future research. 
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8. Appendices 

8.1. Examples of the procedure updating 𝐗𝐗� in the THD heuristic 

In this section, we assume the instance where 𝑇𝑇 is five and use the following notations: 

𝑘𝑘 stage of the procedure updating 𝐗𝐗� 𝐗𝐗�𝑘𝑘(𝑡𝑡)̅ updated 𝐗𝐗�(𝑡𝑡̅) by the solution of THD3(𝐗𝐗�, 𝑡𝑡̅) solved at state 𝑘𝑘 

𝐀𝐀� lot-to-storage-area assignment defined by 𝐗𝐗� 𝐀𝐀�𝑘𝑘(𝑡𝑡)̅ updated 𝐀𝐀�(𝑡𝑡̅) by 𝐗𝐗�𝑘𝑘(𝑡𝑡̅) 

𝐹𝐹, 𝐵𝐵 forward search, backward search   

 
Example 1 where backward search starts at day T 

The following table show how 𝐗𝐗� and 𝐀𝐀� are updated and 𝜙𝜙(𝑡𝑡) changes by THD algorithm. 

𝑘𝑘 𝑡̂𝑡 𝐗𝐗� 𝐀𝐀� 𝜙𝜙(𝑡𝑡) THD3(𝐗𝐗�, 𝑡𝑡̅) Improve Search THD 
algorithm Related 𝐀𝐀� 

1 1 {𝐗𝐗�(1),𝐗𝐗�(2),𝐗𝐗�(3),𝐗𝐗�(4),𝐗𝐗�(5)} {𝐀𝐀�(1),𝐀𝐀�(2),𝐀𝐀�(3),𝐀𝐀�(4),𝐀𝐀�(5)} {0,0,0,0,0} THD3(𝐗𝐗�, 1) o F Line (14) 𝐀𝐀�(5),𝐀𝐀�(2) 
2 2 �𝐗𝐗�1(1) ,𝐗𝐗�1(2),𝐗𝐗�(3),𝐗𝐗�(4),𝐗𝐗�(5)� �𝐀𝐀�1(1),𝐀𝐀�(2),𝐀𝐀�(3),𝐀𝐀�(4),𝐀𝐀�(5)� {0,1,0,0,1} THD3(𝐗𝐗�, 2) o F Line (14) 𝐀𝐀�1(1),𝐀𝐀�(3) 
3 3 �𝐗𝐗�1(1) ,𝐗𝐗�2(2) ,𝐗𝐗�2(3),𝐗𝐗�(4),𝐗𝐗�(5)� �𝐀𝐀�1(1),𝐀𝐀�2(2),𝐀𝐀�(3),𝐀𝐀�(4),𝐀𝐀�(5)� {1,1,1,0,1} THD3(𝐗𝐗�, 3) o F Line (14) 𝐀𝐀�2(2),𝐀𝐀�(4) 
4 4 �𝐗𝐗�1(1) ,𝐗𝐗�2(2) ,𝐗𝐗�3(3),𝐗𝐗�3(4),𝐗𝐗�(5)� �𝐀𝐀�1(1),𝐀𝐀�2(2),𝐀𝐀�3(3),𝐀𝐀�(4),𝐀𝐀�(5)� {1,1,1,1,1} THD3(𝐗𝐗�, 4) o F Line (14) 𝐀𝐀�3(3),𝐀𝐀�(5) 
5 5 �𝐗𝐗�1(1) ,𝐗𝐗�2(2) ,𝐗𝐗�2(3),𝐗𝐗�4(4),𝐗𝐗�4(5)� �𝐀𝐀�1(1),𝐀𝐀�2(2),𝐀𝐀�3(3),𝐀𝐀�4(4),𝐀𝐀�(5)� {1,1,1,1,1} THD3(𝐗𝐗�, 5) x F Line (21) 𝐀𝐀�4(4),𝐀𝐀�1(1) 
6 3 �𝐗𝐗�1(1) ,𝐗𝐗�2(2) ,𝐗𝐗�2(3),𝐗𝐗�4(4),𝐗𝐗�4(5)� �𝐀𝐀�1(1),𝐀𝐀�2(2),𝐀𝐀�3(3),𝐀𝐀�4(4),𝐀𝐀�(5)� {1,1,1,-1,-1} THD3(𝐗𝐗�, 3) x B Line (26) 𝐀𝐀�2(2),𝐀𝐀�4(4) 
7 2 �𝐗𝐗�1(1) ,𝐗𝐗�2(2) ,𝐗𝐗�2(3),𝐗𝐗�4(4),𝐗𝐗�4(5)� �𝐀𝐀�1(1),𝐀𝐀�2(2),𝐀𝐀�3(3),𝐀𝐀�4(4),𝐀𝐀�(5)� {1,-1,-1,-1,-1} THD3(𝐗𝐗�, 2) x B Line (26) 𝐀𝐀�1(1),𝐀𝐀�3(3) 
8 1 �𝐗𝐗�1(1) ,𝐗𝐗�2(2) ,𝐗𝐗�2(3),𝐗𝐗�4(4),𝐗𝐗�4(5)� �𝐀𝐀�1(1),𝐀𝐀�2(2),𝐀𝐀�3(3),𝐀𝐀�4(4),𝐀𝐀�(5)� {1,-1,-1,-1,-1} THD3(𝐗𝐗�, 1) x B Line (26) 𝐀𝐀�(5),𝐀𝐀�2(2) 
9    {-1,-1,-1,-1,-1}    Line (9)   
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Given 𝐗𝐗� and 𝐀𝐀� at the termination, each THD3(𝐗𝐗�𝑡̂𝑡, 𝑡𝑡̅) is visited as follows:  

THD3(𝐗𝐗�, 𝑡𝑡̅) THD3(𝐗𝐗�, 1) THD3(𝐗𝐗�, 2) THD3(𝐗𝐗�, 3) THD3(𝐗𝐗�, 4) THD3(𝐗𝐗�, 5) 
Related 𝐀𝐀� 𝐀𝐀�(5),𝐀𝐀�2(2) 𝐀𝐀�1(1),𝐀𝐀�3(3) 𝐀𝐀�2(2),𝐀𝐀�4(4) 𝐀𝐀�3(3),𝐀𝐀�(5) 𝐀𝐀�4(4),𝐀𝐀�1(1) 

Visited at state 8 at state 7 at state 6 at state 4 at state 5 

 
Example 2 where backward search starts after passing day T 

The following table show how 𝐗𝐗� and 𝐀𝐀� are updated and 𝜙𝜙(𝑡𝑡) changes by THD algorithm. 

𝑘𝑘 𝑡̂𝑡 𝐗𝐗� 𝐀𝐀� 𝜙𝜙(𝑡𝑡) THD3(𝐗𝐗�, 𝑡𝑡̅) Improve Search THD 
algorithm Related 𝐀𝐀� 

1 1 {𝐗𝐗�(1),𝐗𝐗�(2),𝐗𝐗�(3),𝐗𝐗�(4),𝐗𝐗�(5)} {𝐀𝐀�(1),𝐀𝐀�(2),𝐀𝐀�(3),𝐀𝐀�(4),𝐀𝐀�(5)} {0,0,0,0,0} THD3(𝐗𝐗�, 1) o F Line (14) 𝐀𝐀�(5),𝐀𝐀�(2) 
2 2 �𝐗𝐗�1(1) ,𝐗𝐗�1(2),𝐗𝐗�(3),𝐗𝐗�(4),𝐗𝐗�(5)� �𝐀𝐀�1(1),𝐀𝐀�(2),𝐀𝐀�(3),𝐀𝐀�(4),𝐀𝐀�(5)� {0,1,0,0,1} THD3(𝐗𝐗�, 2) o F Line (14) 𝐀𝐀�1(1),𝐀𝐀�(3) 
3 3 �𝐗𝐗�1(1) ,𝐗𝐗�2(2) ,𝐗𝐗�2(3),𝐗𝐗�(4),𝐗𝐗�(5)� �𝐀𝐀�1(1),𝐀𝐀�2(2),𝐀𝐀�(3),𝐀𝐀�(4),𝐀𝐀�(5)� {1,1,1,0,1} THD3(𝐗𝐗�, 3) o F Line (14) 𝐀𝐀�2(2),𝐀𝐀�(4) 
4 4 �𝐗𝐗�1(1) ,𝐗𝐗�2(2) ,𝐗𝐗�3(3),𝐗𝐗�3(4),𝐗𝐗�(5)� �𝐀𝐀�1(1),𝐀𝐀�2(2),𝐀𝐀�3(3),𝐀𝐀�(4),𝐀𝐀�(5)� {1,1,1,1,1} THD3(𝐗𝐗�, 4) o F Line (14) 𝐀𝐀�3(3),𝐀𝐀�(5) 
5 5 �𝐗𝐗�1(1) ,𝐗𝐗�2(2) ,𝐗𝐗�2(3),𝐗𝐗�4(4),𝐗𝐗�4(5)� �𝐀𝐀�1(1),𝐀𝐀�2(2),𝐀𝐀�3(3),𝐀𝐀�4(4),𝐀𝐀�(5)� {1,1,1,1,1} THD3(𝐗𝐗�, 5) o F Line (14) 𝐀𝐀�4(4),𝐀𝐀�1(1) 
6 1 �𝐗𝐗�5(1) ,𝐗𝐗�2(2) ,𝐗𝐗�2(3),𝐗𝐗�4(4),𝐗𝐗�5(5)� �𝐀𝐀�1(1),𝐀𝐀�2(2),𝐀𝐀�3(3),𝐀𝐀�4(4),𝐀𝐀�5(5)� {1,1,1,1,1} THD3(𝐗𝐗�, 1) o F Line (14) 𝐀𝐀�5(5),𝐀𝐀�2(2) 
7 2 �𝐗𝐗�6(1) ,𝐗𝐗�6(2) ,𝐗𝐗�2(3),𝐗𝐗�4(4),𝐗𝐗�5(5)� �𝐀𝐀�6(1),𝐀𝐀�2(2),𝐀𝐀�3(3),𝐀𝐀�4(4),𝐀𝐀�5(5)� {1,1,1,1,1} THD3(𝐗𝐗�, 2) x F Line (21) 𝐀𝐀�6(1),𝐀𝐀�3(3) 
8 5 �𝐗𝐗�6(1) ,𝐗𝐗�6(2) ,𝐗𝐗�2(3),𝐗𝐗�4(4),𝐗𝐗�5(5)� �𝐀𝐀�6(1),𝐀𝐀�2(2),𝐀𝐀�3(3),𝐀𝐀�4(4),𝐀𝐀�5(5)� {-1,-1,1,1,1} THD3(𝐗𝐗�, 5) x B Line (26) 𝐀𝐀�4(4),𝐀𝐀�6(1) 
9 4 �𝐗𝐗�6(1) ,𝐗𝐗�6(2) ,𝐗𝐗�2(3),𝐗𝐗�4(4),𝐗𝐗�5(5)� �𝐀𝐀�6(1),𝐀𝐀�2(2),𝐀𝐀�3(3),𝐀𝐀�4(4),𝐀𝐀�5(5)� {-1,-1,1,1,-1} THD3(𝐗𝐗�, 4) x B Line (26) 𝐀𝐀�3(3),𝐀𝐀�5(5) 
10 3 �𝐗𝐗�6(1) ,𝐗𝐗�6(2) ,𝐗𝐗�2(3),𝐗𝐗�4(4),𝐗𝐗�5(5)� �𝐀𝐀�6(1),𝐀𝐀�2(2),𝐀𝐀�3(3),𝐀𝐀�4(4),𝐀𝐀�5(5)� {-1,-1,1,-1,-1} THD3(𝐗𝐗�, 3) x B Line (26) 𝐀𝐀�2(2),𝐀𝐀�4(4) 
11    {-1,-1,-1,-1,-1}    Line (9)   

 
Given 𝐗𝐗� and 𝐀𝐀� at the termination, each THD3(𝐗𝐗�𝑡̂𝑡, 𝑡𝑡̅) is visited as follows:  

THD3(𝐗𝐗�, 𝑡𝑡̅) THD3(𝐗𝐗�, 1) THD3(𝐗𝐗�, 2) THD3(𝐗𝐗�, 3) THD3(𝐗𝐗�, 4) THD3(𝐗𝐗�, 5) 
Related 𝐀𝐀� 𝐀𝐀�5(5),𝐀𝐀�2(2) 𝐀𝐀�6(1),𝐀𝐀�3(3) 𝐀𝐀�2(2),𝐀𝐀�4(4) 𝐀𝐀�3(3),𝐀𝐀�5(5) 𝐀𝐀�4(4),𝐀𝐀�6(1) 

Visited at stage 6 at stage 7 at stage 10 at stage 9 at stage 9 
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Example 3 where backward search starts before passing day T 

The following table show how 𝐗𝐗� and 𝐀𝐀� are updated and 𝜙𝜙(𝑡𝑡) changes by THD algorithm. 

𝑘𝑘 𝑡̂𝑡 𝐗𝐗� 𝐀𝐀� 𝜙𝜙(𝑡𝑡) THD3(𝐗𝐗�, 𝑡𝑡̅) Improve Search THD 
algorithm Related 𝐀𝐀� 

1 1 {𝐗𝐗�(1),𝐗𝐗�(2),𝐗𝐗�(3),𝐗𝐗�(4),𝐗𝐗�(5)} {𝐀𝐀�(1),𝐀𝐀�(2),𝐀𝐀�(3),𝐀𝐀�(4),𝐀𝐀�(5)} {0,0,0,0,0} THD3(𝐗𝐗�, 1) o F Line (14) 𝐀𝐀�(5),𝐀𝐀�(2) 
2 2 �𝐗𝐗�1(1) ,𝐗𝐗�1(2),𝐗𝐗�(3),𝐗𝐗�(4),𝐗𝐗�(5)� �𝐀𝐀�1(1),𝐀𝐀�(2),𝐀𝐀�(3),𝐀𝐀�(4),𝐀𝐀�(5)� {0,1,0,0,1} THD3(𝐗𝐗�, 2) x F Line (21) 𝐀𝐀�1(1),𝐀𝐀�(3) 
3 5 �𝐗𝐗�1(1) ,𝐗𝐗�1(2),𝐗𝐗�(3),𝐗𝐗�(4),𝐗𝐗�(5)� �𝐀𝐀�1(1),𝐀𝐀�(2),𝐀𝐀�(3),𝐀𝐀�(4),𝐀𝐀�(5)� {-1,-1,0,0,1} THD3(𝐗𝐗�, 5) x B Line (26) 𝐀𝐀�(4),𝐀𝐀�1(1) 
4 4 �𝐗𝐗�1(1) ,𝐗𝐗�1(2),𝐗𝐗�(3),𝐗𝐗�(4),𝐗𝐗�(5)� �𝐀𝐀�1(1),𝐀𝐀�(2),𝐀𝐀�(3),𝐀𝐀�(4),𝐀𝐀�(5)� {-1,-1,0,0,-1} THD3(𝐗𝐗�, 4) x B Line (26) 𝐀𝐀�(3),𝐀𝐀�(5) 
5 3 �𝐗𝐗�1(1) ,𝐗𝐗�1(2),𝐗𝐗�(3),𝐗𝐗�(4),𝐗𝐗�(5)� �𝐀𝐀�1(1),𝐀𝐀�(2),𝐀𝐀�(3),𝐀𝐀�(4),𝐀𝐀�(5)� {-1,-1,0,-1,-1} THD3(𝐗𝐗�, 3) x B Line (26)  𝐀𝐀�(2),𝐀𝐀�(4) 
    {-1,-1,-1,-1,-1}    Line (9)   

 
Given 𝐗𝐗� and 𝐀𝐀� at the termination, each THD3(𝐗𝐗�𝑡̂𝑡, 𝑡𝑡̅) is visited as follows:  

THD3(𝐗𝐗�, 𝑡𝑡̅) THD3(𝐗𝐗�, 1) THD3(𝐗𝐗�, 2) THD3(𝐗𝐗�, 3) THD3(𝐗𝐗�, 4) THD3(𝐗𝐗�, 5) 
Related 𝐀𝐀� 𝐀𝐀�(5),𝐀𝐀�(2) 𝐀𝐀�1(1),𝐀𝐀�(3) 𝐀𝐀�(2),𝐀𝐀�(4) 𝐀𝐀�(3),𝐀𝐀�(5) 𝐀𝐀�(4),𝐀𝐀�1(1) 

Visited at stage 1 at stage 2 at stage 5 at stage 4 at stage 3 

 
Example 4 where the solution of THD𝟑𝟑(𝑿𝑿� , 𝒕̅𝒕) at 𝝓𝝓(𝒕̅𝒕) = 0 cannot improve 𝑿𝑿� 

The following table show how 𝐗𝐗� and 𝐀𝐀� are updated and 𝜙𝜙(𝑡𝑡) changes by THD algorithm. 

𝑘𝑘 𝑡̂𝑡 𝐗𝐗� 𝐀𝐀� 𝜙𝜙(𝑡𝑡) THD3(𝐗𝐗�, 𝑡𝑡̅) Improve Search THD 
algorithm Related 𝐀𝐀� 

1 1 {𝐗𝐗�(1),𝐗𝐗�(2),𝐗𝐗�(3),𝐗𝐗�(4),𝐗𝐗�(5)} {𝐀𝐀�(1),𝐀𝐀�(2),𝐀𝐀�(3),𝐀𝐀�(4),𝐀𝐀�(5)} {0,0,0,0,0} THD3(𝐗𝐗�, 1) x F Line (23) 𝐀𝐀�(5),𝐀𝐀�(2) 
2 2 {𝐗𝐗�(1),𝐗𝐗�(2),𝐗𝐗�(3),𝐗𝐗�(4),𝐗𝐗�(5)} {𝐀𝐀�(1),𝐀𝐀�(2),𝐀𝐀�(3),𝐀𝐀�(4),𝐀𝐀�(5)} {-1,0,0,0,0} THD3(𝐗𝐗�, 2) x F Line (23) 𝐀𝐀�(1),𝐀𝐀�(3) 
3 3 {𝐗𝐗�(1),𝐗𝐗�(2),𝐗𝐗�(3),𝐗𝐗�(4),𝐗𝐗�(5)} {𝐀𝐀�(1),𝐀𝐀�(2),𝐀𝐀�(3),𝐀𝐀�(4),𝐀𝐀�(5)} {-1,-1,0,0,0} THD3(𝐗𝐗�, 3) x F Line (23) 𝐀𝐀�(2),𝐀𝐀�(4) 
4 4 {𝐗𝐗�(1),𝐗𝐗�(2),𝐗𝐗�(3),𝐗𝐗�(4),𝐗𝐗�(5)} {𝐀𝐀�(1),𝐀𝐀�(2),𝐀𝐀�(3),𝐀𝐀�(4),𝐀𝐀�(5)} {-1,-1,-1,0,0} THD3(𝐗𝐗�, 4) o F Line (14) 𝐀𝐀�(3),𝐀𝐀�(5) 
5 5 �𝐗𝐗�(1),𝐗𝐗�(2),𝐗𝐗�(3),𝐗𝐗�4(4),𝐗𝐗�4(5)� �𝐀𝐀�(1),𝐀𝐀�(2),𝐀𝐀�(3),𝐀𝐀�4(4),𝐀𝐀�(5)� {-1,-1,1,0,1} THD3(𝐗𝐗�, 5) x F Line (21) 𝐀𝐀�4(4),𝐀𝐀�(1) 
6 3 �𝐗𝐗�(1),𝐗𝐗�(2),𝐗𝐗�(3),𝐗𝐗�4(4),𝐗𝐗�4(5)� �𝐀𝐀�(1),𝐀𝐀�(2),𝐀𝐀�(3),𝐀𝐀�4(4),𝐀𝐀�(5)� {-1,-1,1,-1,-1} THD3(𝐗𝐗�, 3) x B Line (26) 𝐀𝐀�(2),𝐀𝐀�4(4) 
7    {-1,-1,-1,-1,-1}       
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Given 𝐗𝐗� and 𝐀𝐀� at the termination, each THD3(𝐗𝐗�𝑡̂𝑡, 𝑡𝑡̅) is visited as follows:  

THD3(𝐗𝐗�, 𝑡𝑡̅) THD3(𝐗𝐗�, 1) THD3(𝐗𝐗�, 2) THD3(𝐗𝐗�, 3) THD3(𝐗𝐗�, 4) THD3(𝐗𝐗�, 5) 
Related 𝐀𝐀� 𝐀𝐀�(5),𝐀𝐀�(2) 𝐀𝐀�(1),𝐀𝐀�(3) 𝐀𝐀�(2),𝐀𝐀�4(4) 𝐀𝐀�(3),𝐀𝐀�(5) 𝐀𝐀�4(4),𝐀𝐀�(1) 

Visited at stage 1 at stage 2 at stage 6 at stage 4 at stage 5 

 
Example 5 where forward search restarts after backward search 

The following table show how 𝐗𝐗� and 𝐀𝐀� are updated and 𝜙𝜙(𝑡𝑡) changes by THD algorithm. 

𝑘𝑘 𝑡̂𝑡 𝐗𝐗� 𝐀𝐀� 𝜙𝜙(𝑡𝑡) THD3(𝐗𝐗�, 𝑡𝑡̅) Improve Search THD 
algorithm Related 𝐀𝐀� 

1 1 {𝐗𝐗�(1),𝐗𝐗�(2),𝐗𝐗�(3),𝐗𝐗�(4),𝐗𝐗�(5)} {𝐀𝐀�(1),𝐀𝐀�(2),𝐀𝐀�(3),𝐀𝐀�(4),𝐀𝐀�(5)} {0,0,0,0,0} THD3(𝐗𝐗�, 1) o F Line (14) 𝐀𝐀�(5),𝐀𝐀�(2) 
2 2 �𝐗𝐗�1(1),𝐗𝐗�1(2),𝐗𝐗�(3),𝐗𝐗�(4),𝐗𝐗�(5)� �𝐀𝐀�1(1),𝐀𝐀�(2),𝐀𝐀�(3),𝐀𝐀�(4),𝐀𝐀�(5)� {0,1,0,0,1} THD3(𝐗𝐗�, 2) x F Line (21) 𝐀𝐀�1(1),𝐀𝐀�(3) 
3 5 �𝐗𝐗�1(1),𝐗𝐗�1(2),𝐗𝐗�(3),𝐗𝐗�(4),𝐗𝐗�(5)� �𝐀𝐀�1(1),𝐀𝐀�(2),𝐀𝐀�(3),𝐀𝐀�(4),𝐀𝐀�(5)� {-1,-1,0,0,1} THD3(𝐗𝐗�, 5) x B Line (26) 𝐀𝐀�(4),𝐀𝐀�1(1)  
4 4 �𝐗𝐗�1(1),𝐗𝐗�1(2),𝐗𝐗�(3),𝐗𝐗�(4),𝐗𝐗�(5)� �𝐀𝐀�1(1),𝐀𝐀�(2),𝐀𝐀�(3),𝐀𝐀�(4),𝐀𝐀�(5)� {-1,-1,0,0,-1} THD3(𝐗𝐗�, 4) x B Line (26) 𝐀𝐀�(3),𝐀𝐀�(5) 
5 3 �𝐗𝐗�1(1),𝐗𝐗�1(2),𝐗𝐗�(3),𝐗𝐗�(4),𝐗𝐗�(5)� �𝐀𝐀�1(1),𝐀𝐀�(2),𝐀𝐀�(3),𝐀𝐀�(4),𝐀𝐀�(5)� {-1,-1,0,-1,-1} THD3(𝐗𝐗�, 3) o B Line (16) 𝐀𝐀�(2),𝐀𝐀�(4) 
6 4 �𝐗𝐗�1(1),𝐗𝐗�1(2),𝐗𝐗�5(3),𝐗𝐗�5(4),𝐗𝐗�(5)� �𝐀𝐀�1(1),𝐀𝐀�(2),𝐀𝐀�5(3),𝐀𝐀�(4),𝐀𝐀�(5)� {-1,1,0,1,-1} THD3(𝐗𝐗�, 4) x F Line (21) 𝐀𝐀�5(3),𝐀𝐀�(5) 
7 2 �𝐗𝐗�1(1),𝐗𝐗�1(2),𝐗𝐗�5(3),𝐗𝐗�5(4),𝐗𝐗�(5)� �𝐀𝐀�1(1),𝐀𝐀�(2),𝐀𝐀�5(3),𝐀𝐀�(4),𝐀𝐀�(5)� {-1,1,-1,-1,-1} THD3(𝐗𝐗�, 2) x B Line (26) 𝐀𝐀�1(1),𝐀𝐀�5(3) 
8    {-1,-1,-1,-1,-1}       

 
Given 𝐗𝐗� and 𝐀𝐀� at the termination, each THD3(𝐗𝐗�𝑡̂𝑡, 𝑡𝑡̅) is visited as follows:  

THD3(𝐗𝐗�, 𝑡𝑡̅) THD3(𝐗𝐗�, 1) THD3(𝐗𝐗�, 2) THD3(𝐗𝐗�, 3) THD3(𝐗𝐗�, 4) THD3(𝐗𝐗�, 5) 
Related 𝐀𝐀� 𝐀𝐀�(5),𝐀𝐀�(2) 𝐀𝐀�1(1),𝐀𝐀�5(3) 𝐀𝐀�(2),𝐀𝐀�(4) 𝐀𝐀�5(3),𝐀𝐀�(5) 𝐀𝐀�(4),𝐀𝐀�1(1) 

Visited at stage 1 at stage 7 at stage 5 at stage 6 at stage 3 
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8.2. Procedure of generating an instance randomly 

In generating instances, details of cases are set randomly once an instance type is specified by 

the number of product lots, the number of row depth types, and the time horizon. 

At first, according to the number of row depth types, the set of row depth types are defined as 

shown in Table 2.19. We assume a storage area having the unique depth and, thus, the number of 

storage areas equals the number of row depth types. The layout of storage areas is such that 

shallower storage areas are located inside and deeper storage areas outside. We suppose all 

storage areas have the same number of row positions. In determining the number of row 

positions, we determine the minimum number of required row positions to accommodate unit 

loads of product lots over the time horizon without violating dynamic block stacking rules. Thus, 

the number of row positions of the layout of each instance is set as the objective function value 

of the following problem. 

min𝑃𝑃 

subject to 

��𝑛𝑛𝑟𝑟,𝑡𝑡
𝑙𝑙 𝑥𝑥𝑟𝑟,𝑡𝑡

𝑙𝑙
𝑅𝑅

𝑟𝑟=1

𝐿𝐿

𝑙𝑙=1

≤ 𝑃𝑃,          𝑟𝑟 = 1, … ,𝑅𝑅 and 𝑡𝑡 = 1, … ,𝑇𝑇 

𝑥𝑥𝑟𝑟,𝑡𝑡
𝑙𝑙 ∈ {0,1},     𝑟𝑟 = 1, … ,𝑅𝑅 and 𝑡𝑡 = 1, … ,𝑇𝑇 

where 𝑥𝑥𝑟𝑟,𝑡𝑡
𝑙𝑙 =1 if lot 𝑙𝑙 is stored in 𝑑𝑑𝑟𝑟-deep storage area for day 𝑡𝑡, 0 otherwise. 

Table 2.19: Set of row depth types according the number of row depth types 

Number of row depth types Set of row depth types 
4 {2, 3, 5, 10} 
5 {2, 3, 5, 10, 15} 
6 {2, 3, 5, 10, 15, 20} 
7 {2, 3, 5, 10, 12, 15, 20} 
8 {2, 3, 5, 8, 10, 12, 15, 20} 
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Next, we randomly set each product lot’s inventory cycle length. It is selected equally likely 

from a designated set of values. Table 2.20 shows which set of inventory cycle lengths is 

considered according to the time horizon. For instance, when the time horizon is 20, a lot's 

inventory cycle length is equally likely to be 5, 10, or 20. 

Table 2.20: Set of inventory cycle length according to the time horizon 

Time horizon Inventory cycle Length 
20 {5, 10, 20} 
30 {5, 6, 10, 15, 30} 
40 {5, 8, 10, 20, 40} 
60 {5, 6, 10, 12, 15, 20, 30, 60} 
90 {5, 6, 9, 10, 15, 18, 30, 45, 90} 
180 {5, 6, 9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 180} 

 
Once the inventory cycle length is randomly set for product lots, we randomly select stack 

height and daily demand for each product lot from a given set of equally likely values. For the 

stack height, we consider the set of {2,3,4}, regardless of other features of the product lot. The 

set of daily demands is established, based on cycle length, daily inventory level, and reasonable 

capacity of storage areas; values range from 1 to 200. 

Figure 2.18 shows how a product lot’s daily inventory level can be computed over a time 

horizon under deterministic demand and a fixed order quantity. Notice the two tables at the left 

in Figure 2.18. The upper table shows 𝑄𝑄1 = 12, 𝐷𝐷1 = 4, and 𝑇𝑇1 = 3 and the lower table shows 𝑄𝑄2 

= 30, 𝐷𝐷2 = 5, and 𝑇𝑇2 = 6. Thus, the inventory level of product lots 1 and 2 repeat on 3-day cycle 

and 6-day cycle, respectively. Based on 𝑇𝑇1 = 3 and 𝑇𝑇2 = 6, 𝑇𝑇 = 6 and 𝜎𝜎1 = 2 and 𝜎𝜎2 = 1. The 

three tables at the right in Figure 2.18 show how the collection {𝐼𝐼𝑡𝑡1, 𝐼𝐼𝑡𝑡2} repeats on a 6-day cycle. 

The first, second, and third tables are developed based on {𝐼𝐼11 = 12, 𝐼𝐼12 = 30}, {𝐼𝐼11 = 4, 𝐼𝐼12 = 30}, 

and {𝐼𝐼11 = 8, 𝐼𝐼12 = 30}.   
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Figure 2.18: Inventory flow of multiple lots 

In this research, we assume {𝐼𝐼1𝑙𝑙 : 𝑙𝑙 = 1, … , 𝐿𝐿} is set to minimize the maximum aggregate 

inventory level of the product lots. In the example of Figure 2.18, the maximum aggregate inventory 

level in each table is 42, 37, and 38, respectively. Therefore, {𝐼𝐼11 = 4, 𝐼𝐼12 = 30} is considered in 

planning dynamic block stacking. For more details about the significance of the replenishment schedule 

in planning a block stacking storage system for multiple lots, see Matson (1982).  To determine 

{𝐼𝐼1𝑙𝑙 : 𝑙𝑙 = 1, … , 𝐿𝐿} of an instance, we solve the optimization problem of offsetting inventory cycles. 

For more details of the problem, refer to Moon et al. (2008) and Boctor (2010).  

Table 2.21 shows values of parameters concerning unit load dimensions, vehicle velocities, 

working time to pick up and put down a unit load. Most are from White et al. (2013). 

Table 2.21: Parameters of the instances 

Parameter Value Parameter Value Parameter Value 
𝐿𝐿 4 ft 𝐴𝐴 13 ft 𝑣𝑣ℎ𝑎𝑎 240 fpm 
𝑊𝑊 3.5 ft 𝐻𝐻 4.5 ft 𝑣𝑣ℎ𝑟𝑟 80 fpm 
𝑐𝑐 0.75 ft 𝑀𝑀 0.5 min 𝑣𝑣𝑣𝑣 50 fpm 
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In the numerical experiment, we consider different combinations of cost parameters. From an 

expert, in January 2019, the floor space unit cost and the material handling unit cost are given as 

follows: 

Floor space unit cost: $50/ft2 /year ~ $60/ft2/year 

Material handling unit cost: $24/hr  ~ $29/hr 

Material handling unit cost includes labor cost and material handling equipment cost. Floor space 

unit cost is converted to the cost per day by dividing annual lease cost per square foot by 260 

working days and material handling unit cost is converted to the cost per minute by dividing the 

hourly cost of labor and rental cost of material handling equipment by 60 minutes per hour as 

follows: 

Floor space cost: $0.1923/ft2 /day ~ $0.2307/ft2/day 

Material handling cost: $0.4/min ~ $0.4833/min 

Based on the ranges of costs, we considered five combinations of costs given in Table 2.22. . The 

combinations of the medium floor space cost and the medium material handling cost, ($0.22/ft2 

/day, $0.44/min), are used in all experiments excluding experiments comparing the results under 

different cost parameters. 

Table 2.22: Combination of costs parameters 

Feature FSC MHC 
Low floor space cost Low material handling cost $0.20/ft2 /day  $0.40/min  
Low floor space cost High material handling cost $0.20/ft2 /day  $0.48/min  
Medium floor space cost Medium material handling cost $0.22/ft2 /day  $0.44/min  
High floor space cost Low material handling cost $0.24/ft2 /day  $0.40/min  
High floor space cost High material handling cost $0.24/ft2 /day  $0.48/min  
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CHAPTER 3. Block Stacking Multiple Products with Relocation under Stochastic Demand 

Abstract 

This research investigates the problem of optimizing block stacking multiple products with 

relocation under stochastic demand to minimize total operating cost over a time horizon. 

Assuming changeable row depth instead of permanent row depth, this paper is distinguished 

from conventional block stacking studies. The problem is formulated as a discrete time finite 

horizon Markov decision process model, supposing the recursive daily situation of determining 

the assignment of product lots to storage areas for a day based on uncertain daily demand and 

observed system information. To tackle computational intractability in solving practical-sized 

instances, we develop a heuristic solution approach taking an on-line manner by instantly 

determining an action for a single observed state rather than an off-line manner by 

predetermining an action for every state. In the heuristic, we apply a simulation-based sampling 

technique to avoid searching all reachable future states from the observed state. Additionally, the 

action determination problem is formulated as a generalized assignment problem and solved by a 

branch-and-cut algorithm, enabling avoiding enumeration of all possible actions. The results of 

numerical experiments verify the reliability and efficiency of the heuristic in solving practical-

sized instances. 

 
Keyword 

Block stacking, stochastic demand, changeable row depth, Markov decision process, on-line 
manner, sampling 
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1. Introduction 

A block stacking system is a commonly used storage method in which unit loads are stacked on 

top of each other and the stacks are aligned in storage rows. A block stacking system consists of 

storage areas having the same or different depths and lengths; stack positions and row positions 

are explicitly designated in each storage area. Figure 3.1 illustrates a block stacking storage 

system consisting of four storage areas of the same length but different depths. The depth and 

length of a storage area specify the number of stack positions in a single row and the number of 

rows, respectively. Because the configuration of storage areas can be specified simply by 

painting lines on the floor, the design and layout of a block stacking storage system can be 

modified relatively easily (Ross, 1993). 

 

Figure 3.1: An example of the block stacking system 

Block stacking uses limited or no supporting equipment; consequently, a block stacking 

system benefits from low investment cost but suffers from inconvenience in handling unit loads. 

Generally, block stacking is effective when a warehouse handles a small number of large-volume 
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product lots. Thus, it is usually adopted in facilities storing appliances, food and beverages, 

household products, tires, bags of potting mix and fertilizer, construction materials, and so on 

(Matson and White, 1982, Sonnentag et al, 2014). 

In order to avoid possible blockage among unit loads during their retrieval, it is not allowed to 

consolidate unit loads of different products or different lots of the same product. Thus, once a 

row position is occupied by a product lot, openings in a partially filled row position cannot be 

used until the entire row becomes vacated. Space losses due to underutilized row positions are 

referred to as honeycombing. For more details of block stacking, refer to Bartholdi and Hackman 

(2014) and Tompkins et al. (2010). 

In operating a block stacking system, it is important to increase space utilization by reducing 

honeycomb loss. The extent of honeycombing incurred by a product lot is decided by the 

inventory level, the row depth (i.e., the maximum number of stacks in a row), and the stack 

height (i.e., the maximum number of unit loads in a stack). For example, consider a product lot 

having inventory of 9 unit loads and being stored in a 10-deep row. Assuming a stack height of 2 

unit loads, honeycombing of 11 storage slots (11 = 2*10 – 9) or 5 stack positions (5 = 10 – 

⌈9 2⁄ ⌉) is incurred. Among the three elements, the inventory level is not fully controllable and the 

stack height is predetermined considering the ceiling height, choice of storage/retrieval 

equipment, and load crushing. On the other hands, the row depth can be adjusted during a 

product lot’s storage life by relocating its remaining unit loads. Consequently, given the 

inventory level and the stack height, we can reduce the honeycomb loss by positioning a product 

lot in a storage area having an appropriate depth. 

Existing studies on block stacking developed mathematical models to determine the 

permanent row depth for the product lot with the objective of minimizing operating cost. Their 
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findings provided significant insight regarding the design of a block stacking system. However, 

by incorporating an assumption of permanent row depth, they did not address operational 

decision making issues and ignored the flexibility of block stacking. 

In this research, we deal with dynamic block stocking (DBS) problem where a product lot can 

be relocated to change an assigned row depth. Changing row depth can reduce honeycomb loss 

and floor space cost, but relocating product lots incurs additional material handing cost. This 

motivated us to solve an optimization problem by determining an assignment of product lots to 

storage areas to minimize operating cost, including floor space cost and material handling cost. 

Extending our previous work on the single product lot DBS problem (Lee et al. 2016), this 

research focuses on block stacking multiple products with relocation under stochastic demand 

(referred to as BSMPwRuSD). A solution of BSMPwRuSD, referred to as the DBS plan, 

determines which storage area should be chosen for each product lot to minimize the expected 

operating cost under a given configuration for the block stacking system. The BSMPwRuSD 

problem is framed as an infinite-horizon discrete-time Markov decision process (MDP) model. 

In order to solve practical-sized instances, we develop a solution procedure taking an on-line 

manner by instantly determining an action for a single observed state rather than an off-line 

manner by predetermining an action for every state. 

Our main contributions are two-fold.  First, we believe this is the first study to reflect the 

flexibility of block stacking in real-world operations by exploring block stacking of multiple 

products with changeable row depths under stochastic demand. Second, a solution method is 

proposed, which guarantees reliability and efficiency in solving practical-sized instances of the 

BSMPwRuSD problem. 
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The remainder of this chapter is organized as follows. In Section 2, the relevant block 

stacking literature is reviewed. Section 3 clarifies the assumption of BSMPwRuSD and presents 

the MDP model. In Section 4, we introduce a solution procedure based on the on-line manner 

and different ways of estimating future operating cost. Section 5 provides the results of 

numerical experiments and validates the reliability and efficiency of the solution procedure 

developed. We conclude in Section 6, summarizing research findings and suggesting research 

topics for future studies. 

 
2. Literature Review 

The applications of block stacking storage can be found in the field of warehouse design and 

control and in the management of container terminals (Accorsi et al. 2017). Because their 

operating principles are fundamentally different, research issues arising in the domain of block 

stacking in a warehouse and in a container terminal are distinct from each other. Interestingly, 

some papers (Yang and Kim, 2006; Kim and Hong, 2006; Petering and Hussein, 2013; and Jang 

et al. 2013) studied the problem of relocating containers in a block stacking system of the 

container terminal but they did not overlap with our research. Therefore, the review is limited to 

literature on block stacking in a warehouse. For those interested in research issues concerning 

block stacking in a container terminal, refer to Carlo et al. (2014). Hereafter, unless otherwise 

noted, block stacking indicates block stacking in a warehouse. 

Within the warehouse research domain, previous block stacking studies can be categorized 

into either block stacking design or block stacking operations. Figure 3.2 illustrates this 

classification. Most previous papers are classified as the study of block stacking design. 

Comprehensive literature review on block stacking can be found in Ashayeri et al (1985) and Gu 

et al. (2010). 
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Figure 3.2: A graphical representation of research domains of warehouse literature related to 
block stacking multiple products with relocation under stochastic demand 

Block stacking design research has attempted to determine a single or multiple row depth(s) 

for a single or multiple product lot(s) to achieve the objective of optimizing space utilization and 

reducing material handling. Their findings provided significant insight into designing a block 

stacking system. Table 3.1 categorizes published academic literature on block stacking design 

based on the output of each paper’s optimization problem. The abbreviations in the “solution” 

column are defined as follows: 

 SL 

 SS 

 SM 

 MS 

 MM 

 CS 

 CM 

single row depth for layout satisfying a given storage population 

single row depth for a single product lot 

single row depth for multiple product lots 

multiple row depths for a single product lot 

multiple row depths for multiple product lots 

changeable row depth for a single product lot 

changeable row depths for multiple product lots 
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Table 3.1: Categorization of published academic literature on block stacking design 

Solution Paper 
SL Thorton (1961) Hemmi (1963) Moder and Thornton(1965) 
 Berry (1968) Rickles and Elliott (1985)  
SS Kind (1965, 1975) Matson (1982) White et al. (2013) 
SM Matson (1982) Koster (2010) Bartholdi and Hackman (2014) 
 Sonnentag et al. (2014) Kay (2015) Derhami et al. (2017) 
MS Kooy (1981) Matson (1982) Goetschalckx and Ratliff (1991) 
 White et al. (2013) Matson et al. (2014)  
MM Roberts (1968) Matson (1982) Goetschalckx and Ratliff (1991) 
 Larson et al. (1997) Sonnentag et al. (2014)  
CS Lee et al. (2016)   
CM This paper   

 
Only a few papers investigated block stacking from an operational viewpoint. Marsh (1979) 

developed a simulation model to analyze the operational problem of block stacking under 

stochastic demand. Derhami, Smith, and Gue (2016) constructed a discrete-event simulation 

model to evaluate space utilization and travel cost of a given layout of a block stacking system. 

They assumed inbound events of unit loads following a non-stationary replenishment rate 

defined by stochastic production time and outbound events following a deterministic schedule. 

All aforementioned studies of block stacking design and operations assumed the assigned row 

depth(s) for a product lot is permanent and did not consider changeable row depth by relocation. 

Many papers recognized the requirement of relocation in operating a block stacking system but 

we were unable to locate any published papers on the topic, excluding Lee et al. (2016). We 

found four papers addressing the issue of relocating unit loads in other storage systems 

(Christofides and Colloff, 1972; Jaikumar and Solomon, 1990; Muralidharan et al. 1995; Sadiq 

et al. 1996); they investigated problems where items of increasing-demand are relocated closer to 

the I/O point and showed the relocation’s benefit of reduced retrieval travel time. 
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Inventory replenishment is a research area closely related to block stacking planning and 

operations. Matson (1982) noted the significance of the replenishment schedule in planning a 

block stacking storage system for multiple product lots. Moon et al. (2008) and Boctor (2010) 

provided efficient solution procedures for mathematical models to minimize the maximum 

inventory level over a time horizon. 

To deal with BSMPwRuSD, we adopt MDP’s systematic framework and scheme for solving 

sequential decision making problem with uncertain outcomes. Gong and De Koster (2011) 

conducted a comprehensive review of stochastic research in warehouse operations. They 

concluded no study has occurred adopting a MDP model with regard to warehouse operations. 

Among active research domains of MDP applications, inventory management is relatively close to 

this research. Assuming uncertain demand, a basic MDP model of inventory management 

determines whether and how much to order in a given inventory level state. Fianu and Davis 

(2018) and Ouaret, Kenne, and Gharbi (2018) recently studied inventory management with MDP. 

To summarize, our research is unique, compared to previous studies of block stacking. Our 

study is distinct from conventional research on block stacking by introducing changeable row 

depth; by assuming stochastic demand, it is distinct from CHAPTER 2’s research on 

BSMPwRuDD; and it is distinct from Lee et al. (2016) by considering multiple product lots. 

Additionally, to the best of our knowledge, this is the first work applying MDP in addressing 

storage system operations. 

 
3. MDP Model of DBS under Stochastic Demand 

In this study, DBS under stochastic demand is framed as a discrete-time and finite-horizon MDP 

model that represents the recursive daily decision of assigning product lots to storage areas based 

on uncertain daily demand and observed system information, product lots’ inventory levels and 
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present storage areas. We refer to the model as MDP-DBS. We address the assumptions made in 

developing MDP-DBS in Section 3.1 and define key elements of MDP-DBS in Section 3.2. The 

notation of Table 3.2 is considered in this section. 

Table 3.2: Notation for developing MDP-DBS 

Notation Description 
𝐿𝐿, 𝑙𝑙 number of lots considered, index of lot 
𝐵𝐵 number of storage areas considered including permanent and temporary storage 

area 
𝑏𝑏 index of storage area, 1≤ 𝑏𝑏 < 𝐵𝐵 indicates a permanent storage area inside block  
 stacking system and 𝑏𝑏 = 𝐵𝐵 indicates the leased temporary storage area outside block  
 stacking system  
𝑑𝑑𝑏𝑏 depth of storage area 𝑏𝑏, measured in the number of unit loads, such as 

 �  0 < 𝑑𝑑𝑏𝑏 < ∞,   𝑏𝑏 = 1,2, … ,𝐵𝐵 − 1
 𝑑𝑑𝑏𝑏 = ∞,            𝑏𝑏 = 𝐵𝐵                      . 

𝑁𝑁𝑏𝑏 capacity of storage area 𝑏𝑏, measured in the number of row positions, such as 

 �  0 < 𝑁𝑁𝑏𝑏 < ∞,   𝑏𝑏 = 1,2, … ,𝐵𝐵 − 1
 𝑁𝑁𝑏𝑏 = ∞,            𝑏𝑏 = 𝐵𝐵                      . 

𝑧𝑧𝑙𝑙  height of the stack of lot 𝑙𝑙, measured in the number of unit loads 
𝑄𝑄𝑙𝑙  order quantity of lot 𝑙𝑙, measured in the number of unit loads 
𝐷𝐷𝑙𝑙  daily demand of product lot 𝑙𝑙, discrete random variable 
𝐷𝐷max𝑙𝑙  maximum daily demand of lot 𝑙𝑙 

 
3.1. Assumption of MDP-DBS 

A fundamental assumption of BSMPwRuSD is stochastic demand. We assume probability 

distributions of 𝐷𝐷𝑙𝑙, 𝑙𝑙=1,…,𝐿𝐿 are known and they are independent and identically distributed. 

Consequently, the joint probability mass function of 𝐷𝐷𝑙𝑙, 𝑙𝑙=1,…,𝐿𝐿 is defined as follows: 

Pr(𝐷𝐷1=𝑘𝑘1, … ,𝐷𝐷𝐿𝐿=𝑘𝑘𝐿𝐿) = Pr(𝐷𝐷1 = 𝑘𝑘1) … Pr(𝐷𝐷𝐿𝐿 = 𝑘𝑘𝐿𝐿) = � Pr(𝐷𝐷𝑙𝑙 = 𝑘𝑘𝑙𝑙)
1≤𝑙𝑙≤𝐿𝐿

 (3.1) 

Because the exact inventory levels and daily demands are unknown in advance, in solving 

BSMPwRuSD, we find a daily DBS plan minimizing the total expected operating cost computed 

based on possible inventory levels of all product lots and their probabilities over a planning 
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horizon. In developing the MDP-DBS, we assume the following sequential decision making 

model. At the end of a business day, a manager monitors the situation of a block stacking system, 

including inventory levels and storage areas of all product lots. Based on the observed 

information, the manager determines a DBS plan for the following business day. If required, a 

product lot is immediately replenished and relocated within non-business hours during the 

present day, incurring an operating cost. The system then evolves into a new state at the end of 

the next business day when the manager, again, determines a DBS plan based on the state. This 

procedure is repeated daily. 

We assume a block stacking system with finite storage capacity. If required storage space 

exceeds the capacity, a temporary storage area is leased. The temporary storage area has infinite 

storage capacity and is more expensive compared to the permanent storage area within the 

system. 

 
3.2. Elements of MDP-DBS 

In this section, we define five key elements: decision epoch, state, action, transition probability, 

and rewards of the MDP-DBS model (Puterman, 2005).  

 
3.2.1. Decision epoch and period 

Decision epochs are points of time where decisions are made. When modeling the discrete time 

problem, time is partitioned into regular intervals called periods; decision epochs exist between 

consecutive periods. 

𝑇𝑇 indicates the set of decision epochs and 𝑡𝑡 denotes an element of 𝑇𝑇. We assume an infinite 

time horizon; thus, 𝑇𝑇 = {1,2,3, … }. Figure 3.3 illustrates decision epochs and periods of the 

MDP model of BSMPwRuSD. 
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Figure 3.3: Decision epochs and periods of the MDP-DBS 

3.2.2. Set of states 

State is a concise description of the system at a decision epoch, providing information critical in 

decision making. In MDP-DBS, state represents inventory levels and storage areas of all product 

lots at the decision epoch. We use the notation of Table 3.3 to express hierarchical states of 

MDP-DBS. 

Table 3.3: Notation of states of MDP-DBS 

Notation Description 
𝑖𝑖𝑙𝑙 inventory level of product lot 𝑙𝑙, 0 ≤ 𝑖𝑖𝑙𝑙 ≤ 𝑄𝑄𝑙𝑙 
 (value of 𝑖𝑖𝑙𝑙 indicates number of unit loads of product lot 𝑙𝑙 at the decision epoch.) 
𝑟𝑟𝑙𝑙 storage area of product lot 𝑙𝑙, 1 ≤ 𝑟𝑟𝑙𝑙 ≤ 𝐵𝐵 

(value of 𝑟𝑟𝑙𝑙 indicates index of the storage area where unit loads of product lot 𝑙𝑙 are 
 stored at the decision epoch.) 

𝑠𝑠𝑙𝑙 aggregate state of product lot 𝑙𝑙, 𝑠𝑠𝑙𝑙 = (𝑖𝑖𝑙𝑙, 𝑟𝑟𝑙𝑙) 
𝐢𝐢 inventory state of the block stacking system, 𝐢𝐢 = (𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖𝐿𝐿) 
𝐫𝐫 storage area state of the block stacking system, 𝐫𝐫 = (𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝐿𝐿) 
𝐬𝐬 aggregate state of the block stacking system, 𝐬𝐬 = (𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝐿𝐿) 
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Let 𝐼𝐼𝑙𝑙 be the set of possible inventory level states of product lot 𝑙𝑙 and 𝐈𝐈 be the set of possible 

inventory level states of the system. When 𝑖𝑖𝑙𝑙 indicates the element of 𝐢𝐢 corresponding to product 

lot 𝑙𝑙, 𝐈𝐈 is defined as follows: 

𝐈𝐈 = {𝐢𝐢|𝑖𝑖𝑙𝑙 ∈ 𝐼𝐼𝑙𝑙  where 1 ≤ 𝑙𝑙 ≤ 𝐿𝐿} (3.2) 

The cardinality of 𝐈𝐈 is computed by 

|𝐈𝐈| = � |𝐼𝐼𝑙𝑙|
1≤𝑙𝑙≤𝐿𝐿

= � (1 + 𝑄𝑄𝑙𝑙)
1≤𝑙𝑙≤𝐿𝐿

 (3.3) 

Let 𝑅𝑅𝑖𝑖𝑙𝑙
𝑙𝑙  represent the set of feasible storage areas of product lot 𝑙𝑙 given 𝑖𝑖𝑙𝑙 and 𝐑𝐑𝐢𝐢 indicate the 

set of feasible storage area states of the system given 𝐢𝐢. When 𝑟𝑟𝑙𝑙 indicates the element of 𝐫𝐫 

corresponding to product lot 𝑙𝑙, 𝐑𝐑𝐢𝐢 is defined as follows: 

𝐑𝐑𝐢𝐢 = �𝐫𝐫�𝑟𝑟𝑙𝑙 ∈ 𝑅𝑅𝑖𝑖𝑙𝑙
𝑙𝑙  where 1 ≤ 𝑙𝑙 ≤ 𝐿𝐿 and ∑ 𝑛𝑛�𝑖𝑖𝑙𝑙,𝑏𝑏

𝑙𝑙
1≤𝑙𝑙≤𝐿𝐿
𝑟𝑟𝑙𝑙=𝑏𝑏

≤ 𝑁𝑁𝑏𝑏 for 1 ≤ 𝑏𝑏 ≤ 𝐵𝐵� (3.4) 

where  

𝑛𝑛�𝑖𝑖𝑙𝑙,𝑏𝑏
𝑙𝑙 = �

𝑖𝑖𝑙𝑙

𝑑𝑑𝑏𝑏𝑧𝑧𝑙𝑙
�. 

(3.5) 

Note the value of 𝑛𝑛�𝑖𝑖𝑙𝑙,𝑏𝑏
𝑙𝑙  represents the required number of row positions to store 𝑖𝑖𝑙𝑙 unit loads in 

storage area 𝑏𝑏 (or 𝑑𝑑𝑏𝑏-deep storage area) and 𝑁𝑁𝑏𝑏 is the capacity of storage area 𝑏𝑏 measured in row 

positions. Thus, the inequality condition in (3.4) represents the capacity constraint of each 

storage area. Because the temporary storage area has infinite storage capacity (𝑁𝑁𝐵𝐵 = ∞), there 

exists at least one 𝐫𝐫 satisfying the inequality condition in (3.4). Thus, the range of 𝐑𝐑𝐢𝐢 is defined 

as follows: 

1 ≤ |𝐑𝐑𝐢𝐢| ≤ 𝐵𝐵𝐿𝐿 . (3.6) 
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Let 𝐒𝐒 be the set of possible aggregate states of the system defined as follows: 

𝐒𝐒 = {𝐬𝐬|𝐢𝐢 ∈ 𝐈𝐈 and 𝐫𝐫 ∈ 𝐑𝐑𝐢𝐢}. (3.7) 

Note 𝐬𝐬 can be expressed as the Cartesian product of 𝐢𝐢 and 𝐫𝐫 such as 𝐬𝐬 = 𝐢𝐢 × 𝐫𝐫. From |𝐈𝐈| and |𝐑𝐑𝐢𝐢|, 

the range of |𝐒𝐒| is defined as follows: 

� (1 + 𝑄𝑄𝑙𝑙)
1≤𝑙𝑙≤𝐿𝐿

≤ |𝐒𝐒| ≤ 𝐵𝐵𝐿𝐿 � (1 + 𝑄𝑄𝑙𝑙)
1≤𝑙𝑙≤𝐿𝐿

 (3.8) 

We assume 𝐒𝐒 is stationary over a time horizon. 

By introducing the concept of the feasible storage area state of the system in defining the set 

of the aggregate states of the system, we can reduce the number of elements in 𝐒𝐒. Let 𝐒𝐒� be the set 

of the aggregate states of the system defined regardless of the feasibility of storage area state. 

The number of elements in 𝐒𝐒� is 𝐵𝐵𝐿𝐿 ∏ (1 + 𝑄𝑄𝑙𝑙)1≤𝑙𝑙≤𝐿𝐿  and equals the maximum value of |𝐒𝐒|. Thus, 

the inequality of |𝐒𝐒| ≤ �𝐒𝐒�� is valid. When the capacity constraints of the storage areas are 

relatively tight considering product lots’ inventory levels, there exist a small number of 𝐫𝐫 ∈ 𝐑𝐑𝐢𝐢. 

Thus, in this case, |𝐒𝐒| is significantly smaller than �𝐒𝐒�� and we can expect a shorter computation 

time with 𝐒𝐒 compared to 𝐒𝐒�. 

 
3.2.3. Set of actions 

Action represents a decision maker selecting an alternative, based on the observed system state at 

the decision epoch. MDP-DBS expresses the action as the assignment of product lots to storage 

areas. 

Let 𝐚𝐚 indicate an action of a block stacking system representing assignment of product lots to 

storage areas and 𝑎𝑎𝑙𝑙 be an element of 𝐚𝐚 corresponding to product lot 𝑙𝑙. The system action 𝐚𝐚 is 

defined as 𝐚𝐚 = (𝑎𝑎1, 𝑎𝑎2,…, 𝑎𝑎𝐿𝐿) and the value of 𝑎𝑎𝑙𝑙 indicates the index of a storage area. Let 𝐴𝐴𝑖𝑖𝑙𝑙
𝑙𝑙  be 
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the set of feasible actions of product lot 𝑙𝑙 given 𝑖𝑖𝑙𝑙 and 𝐀𝐀𝐢𝐢 be the set of feasible actions of the 

block stacking system, given 𝐢𝐢. Then, 𝐀𝐀𝐢𝐢 is defined as follows: 

𝐀𝐀𝐢𝐢 = �𝐚𝐚� 𝑎𝑎𝑙𝑙 ∈ 𝐴𝐴𝑖𝑖𝑙𝑙
𝑙𝑙  where 1 ≤ 𝑙𝑙 ≤ 𝐿𝐿 and ∑ 𝑛𝑛𝑖𝑖𝑙𝑙,𝑏𝑏

𝑙𝑙
1≤𝑙𝑙≤𝐿𝐿
𝑎𝑎𝑙𝑙=𝑏𝑏

≤ 𝑁𝑁𝑏𝑏 for 𝑏𝑏 = 1, … ,𝐵𝐵�. (3.9) 

where  

𝑛𝑛𝑖𝑖𝑙𝑙,𝑏𝑏
𝑙𝑙 = �

⌈𝑖𝑖𝑙𝑙 (𝑑𝑑𝑏𝑏𝑧𝑧𝑙𝑙)⁄ ⌉,       if 𝑖𝑖𝑙𝑙 > 0
⌈𝑄𝑄𝑙𝑙 (𝑑𝑑𝑏𝑏𝑧𝑧𝑙𝑙)⁄ ⌉,     if 𝑖𝑖𝑙𝑙 = 0

. 
(3.10) 

The inequality condition in (3.9) represents the capacity constraint of each storage area. Because 

the temporary storage area has infinite storage capacity (𝑁𝑁𝐵𝐵 = ∞), there exists at least one 𝐚𝐚 

satisfying the inequality condition in (3.9). Thus, the range of 𝐀𝐀𝐢𝐢 is defined as follows: 

1 ≤ |𝐀𝐀𝐢𝐢| ≤ 𝐵𝐵𝐿𝐿 . (3.11) 

The set of feasible actions of the system 𝐀𝐀𝐢𝐢 depends on 𝐢𝐢 ∈ 𝐈𝐈 and 𝐈𝐈 is stationary over a time 

horizon. Consequently, we assume 𝐀𝐀𝐢𝐢 is stationary over a time horizon without loss of 

generality. 

Observe the relationship between the state and the action of MDP-DBS. Let 𝐫̅𝐫𝑡𝑡 be the 

observed storage area state of the system at decision epoch 𝑡𝑡 and let 𝑎𝑎�𝑡𝑡 indicate the selected 

action of the system at decision epoch 𝑡𝑡. The equation of 𝑎𝑎�𝑡𝑡 = 𝑟̅𝑟𝑡𝑡+1 is valid for all 𝑡𝑡 ∈ 𝑇𝑇 because 

we assume no relocation for period 𝑡𝑡. Based on this observation, the possible state implies a 

feasible action is selected at the previous decision epoch.  

 
3.2.4. State transition probability 

In MDP-DBS, a probability mass function (PMF) of the system state at the next decision epoch 

can be derived from the observed system state and selected system action at the present decision 

epoch and the demand distribution of each product lot. When 𝐬𝐬 and 𝐚𝐚 indicate system state and 
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action at a decision epoch, respectively, let 𝐬𝐬+ be the system state at the next decision epoch, 𝐢𝐢+ 

be the inventory state of the system at the next decision epoch, and 𝐫𝐫+ be the storage area state of 

the system at the next decision epoch. Let 𝑖𝑖+𝑙𝑙  be the element of 𝐢𝐢+ corresponding to product lot 𝑙𝑙 

and 𝑟𝑟+𝑙𝑙  indicate the element 𝐫𝐫+ corresponding to product lot 𝑙𝑙. 

We first derive the discrete probability distribution of 𝑟𝑟+𝑙𝑙  given 𝑎𝑎𝑙𝑙. Let 𝑎𝑎�𝑙𝑙 and 𝑟̅𝑟+𝑙𝑙  be the 

selected action of product lot 𝑙𝑙 at a decision epoch and the observed storage area state of product 

lot 𝑙𝑙 at the next decision epoch. As shown in Section 3.2.3, 𝑟̅𝑟+𝑙𝑙  is deterministically determined by 

𝑎𝑎�𝑙𝑙 and the equation of 𝑟̅𝑟+𝑙𝑙  = 𝑎𝑎�𝑙𝑙 is valid for given 𝑎𝑎�𝑙𝑙 . Based on the observation, a PMF of 𝑟𝑟+𝑙𝑙  given 

𝑎𝑎𝑙𝑙, Pr(𝑟𝑟+𝑙𝑙|𝑎𝑎𝑙𝑙), is defined as follows: 

Pr(𝑟𝑟+𝑙𝑙|𝑎𝑎𝑙𝑙) = �
1,    if 𝑟𝑟+𝑙𝑙 = 𝑎𝑎𝑙𝑙  

0,   otherwise
 (3.12) 

Next, consider a PMF of 𝑖𝑖+𝑙𝑙  given 𝑖𝑖𝑙𝑙. We define it using the fact 𝐷𝐷𝑙𝑙 can be derived from 𝑖𝑖𝑙𝑙 and 

𝑖𝑖+𝑙𝑙 . Let 𝚤𝚤𝑙̅𝑙, 𝐷𝐷�𝑙𝑙, and 𝚤𝚤+̅𝑙𝑙  be the observed inventory level state of product lot 𝑙𝑙 at a decision epoch, the 

requested demand of product lot 𝑙𝑙 during the following period, and the observed inventory level 

state of product lot 𝑙𝑙 at the next decision epoch, respectively. As long as 𝚤𝚤𝑙̅𝑙 ≥ 𝚤𝚤+̅𝑙𝑙 > 0, 𝐷𝐷�𝑙𝑙 is 

simply computed by 𝚤𝚤𝑙̅𝑙 - 𝚤𝚤+̅𝑙𝑙 . When 𝚤𝚤𝑙̅𝑙 is zero, 𝐷𝐷�𝑙𝑙 is calculated by 𝑄𝑄𝑙𝑙 - 𝚤𝚤+̅𝑙𝑙  because 𝑄𝑄𝑙𝑙 unit loads of 

product lot 𝑙𝑙 is immediately replenished if 𝚤𝚤𝑙̅𝑙 is zero. A zero inventory level at a decision epoch 

means the daily demand for the previous period is greater than or equal to the inventory level at 

the previous decision epoch. Thus, when 𝚤𝚤+̅𝑙𝑙  is zero, the range of 𝐷𝐷�𝑙𝑙 is defined as follows 𝚤𝚤𝑙̅𝑙 ≤

𝐷𝐷�𝑙𝑙 ≤ 𝐷𝐷max𝑙𝑙 . Based on these observations, a PMF of 𝑖𝑖+𝑙𝑙  given 𝑖𝑖𝑙𝑙, Pr(𝑖𝑖+𝑙𝑙 |𝑖𝑖𝑙𝑙), is defined as follows 

when 𝑖𝑖𝑙𝑙 is greater than zero: 
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Pr(𝑖𝑖+𝑙𝑙 |𝑖𝑖𝑙𝑙) =

⎩
⎪
⎨

⎪
⎧  Pr(𝐷𝐷𝑙𝑙=𝑖𝑖𝑙𝑙 − 𝑖𝑖+𝑙𝑙 ) ,       if 𝑖𝑖𝑙𝑙 ≥ 𝑖𝑖+𝑙𝑙 > 0 

 � Pr(𝐷𝐷𝑙𝑙=𝑘𝑘)
𝐷𝐷max
𝑙𝑙

𝑘𝑘=𝑖𝑖𝑙𝑙
,        if 𝑖𝑖+𝑙𝑙 = 0           

 0,                                 otherwise       

 (3.13) 

and when 𝑖𝑖𝑙𝑙 is zero: 

Pr(𝑖𝑖+𝑙𝑙 |𝑖𝑖𝑙𝑙) =

⎩
⎪
⎨

⎪
⎧ Pr(𝐷𝐷𝑙𝑙=𝑄𝑄𝑙𝑙 − 𝑖𝑖+𝑙𝑙 ) ,       if 𝑄𝑄𝑙𝑙 ≥ 𝑖𝑖+𝑙𝑙 > 0    

 � Pr(𝐷𝐷𝑙𝑙=𝑘𝑘)
𝐷𝐷max
𝑙𝑙

𝑘𝑘=𝑄𝑄𝑙𝑙
,         if 𝑖𝑖+𝑙𝑙 = 0               

 0,                                  otherwise           

 . (3.14) 

Let 𝑝𝑝𝑙𝑙(𝑠𝑠+𝑙𝑙 |𝑠𝑠𝑙𝑙 ,𝑎𝑎𝑙𝑙) be the PMF of 𝑠𝑠+𝑙𝑙  given 𝑠𝑠𝑙𝑙 and 𝑎𝑎𝑙𝑙. It represents a probability of state 

transition from 𝑠𝑠𝑙𝑙 to 𝑠𝑠+𝑙𝑙  for product lot 𝑙𝑙 when taking action 𝑎𝑎𝑙𝑙 and is defined as follows: 

𝑝𝑝𝑙𝑙(𝑠𝑠+𝑙𝑙 |𝑠𝑠𝑙𝑙 ,𝑎𝑎𝑙𝑙) = Pr(𝑖𝑖+𝑙𝑙 |𝑖𝑖𝑙𝑙) ∗ Pr(𝑟𝑟+𝑙𝑙|𝑎𝑎𝑙𝑙). (3.15) 

Note 𝑠𝑠𝑙𝑙=(𝑖𝑖𝑙𝑙, 𝑟𝑟𝑙𝑙) and 𝑠𝑠+𝑙𝑙 =(𝑖𝑖+𝑙𝑙 , 𝑟𝑟+𝑙𝑙). Thus, 𝑝𝑝𝑙𝑙(𝑠𝑠+𝑙𝑙 |𝑠𝑠𝑙𝑙 ,𝑎𝑎𝑙𝑙) can be expressed as follows: 

𝑝𝑝𝑙𝑙(𝑠𝑠+𝑙𝑙 |𝑠𝑠𝑙𝑙 ,𝑎𝑎𝑙𝑙) = 𝑝𝑝𝑙𝑙�(𝑖𝑖+𝑙𝑙 , 𝑟𝑟+𝑙𝑙)�(𝑖𝑖𝑙𝑙, 𝑟𝑟𝑙𝑙),𝑎𝑎𝑙𝑙� = �Pr(𝑖𝑖+𝑙𝑙 |𝑖𝑖𝑙𝑙) ,   if 𝑟𝑟+𝑙𝑙=𝑎𝑎𝑙𝑙

0,                  if 𝑟𝑟+𝑙𝑙≠𝑎𝑎𝑙𝑙
. (3.16) 

The sum of 𝑝𝑝𝑙𝑙(𝑠𝑠+𝑙𝑙 |𝑠𝑠𝑙𝑙,𝑎𝑎𝑙𝑙) over all 𝑠𝑠+𝑙𝑙  of 𝐬𝐬+ ∈ 𝐒𝐒 equals one.  

Let 𝑃𝑃(𝐬𝐬+|𝐬𝐬,𝐚𝐚) be the PMF of 𝐬𝐬+ given 𝐬𝐬 and 𝐚𝐚. It expresses a probability of the system state 

transition from 𝐬𝐬 to 𝐬𝐬+ when taking action 𝐚𝐚. By the assumption of independent demand among 

product lots, Pr(𝑖𝑖+𝑙𝑙 |𝑖𝑖𝑙𝑙)s of each product lot are statistically independent . Thus, 𝑃𝑃(𝐬𝐬+|𝐬𝐬,𝐚𝐚) can be 

defined as a joint PMF of 𝑝𝑝𝑙𝑙(𝑠𝑠+𝑙𝑙 |𝑠𝑠𝑙𝑙 ,𝑎𝑎𝑙𝑙)s where 1 ≤ 𝑙𝑙 ≤ 𝐿𝐿 as follows: 

𝑃𝑃(𝐬𝐬+|𝐬𝐬,𝐚𝐚) = � 𝑝𝑝𝑙𝑙(𝑠𝑠+𝑙𝑙 |𝑠𝑠𝑙𝑙,𝑎𝑎𝑙𝑙)
1≤𝑙𝑙≤𝐿𝐿

 (3.17) 
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The sum of 𝑃𝑃(𝐬𝐬+|𝐬𝐬, 𝐚𝐚) over all 𝐬𝐬+ ∈ 𝐒𝐒 is one as follows: 

� 𝑃𝑃(𝐬𝐬+|𝐬𝐬,𝐚𝐚)
𝐬𝐬+∈𝐒𝐒

 = � � Pr(𝐢𝐢+|𝐢𝐢) ∗ Pr(𝐫𝐫+|𝐚𝐚)
𝐫𝐫+∈𝐑𝐑𝐢𝐢𝐢𝐢+∈𝐈𝐈

 

= ��Pr(𝐢𝐢+|𝐢𝐢)�� Pr(𝐫𝐫+|𝐚𝐚)
𝐫𝐫+∈𝐑𝐑𝐢𝐢

��
𝐢𝐢+∈𝐈𝐈

= � Pr(𝐢𝐢+|𝐢𝐢)
𝐢𝐢+∈𝐈𝐈

 

= ��� Pr(𝑖𝑖+𝑙𝑙 |𝑖𝑖𝑙𝑙)
1≤𝑙𝑙≤𝐿𝐿

�
𝐢𝐢+∈𝐈𝐈

 

= � � ⋯ � (Pr(𝑖𝑖+1 |𝑖𝑖1) Pr(𝑖𝑖+2|𝑖𝑖2)⋯Pr(𝑖𝑖+𝐿𝐿 |𝑖𝑖𝐿𝐿))
𝑄𝑄𝐿𝐿

𝑖𝑖+𝐿𝐿=0

𝑄𝑄2

𝑖𝑖+2=0

𝑄𝑄1

𝑖𝑖+1=0

 

= � � ⋯ � Pr(𝐷𝐷1=𝑘𝑘1, … ,𝐷𝐷𝐿𝐿=𝑘𝑘𝐿𝐿)
𝐷𝐷max
𝐿𝐿

𝑘𝑘𝐿𝐿=0

𝐷𝐷max
2

𝑘𝑘2=0

𝐷𝐷max
1

𝑘𝑘1=0

= 1 

(3.18) 

 
3.2.5. Reward 

As a result of taking an action in the given state at the decision epoch, reward is given to the 

decision maker. In MDP-DBS, reward represents the operating cost incurred by selecting a daily 

DBS plan under the observed inventory levels and storage area of all product lots at the decision 

epoch. To avoid confusion, we have cost replace reward in MDP-DBS hereafter. In our research, 

the cost includes floor space cost, replenishment cost, retrieval cost, relocation cost. See 

APPENDIX A of the dissertation for details of the mathematical model of these costs. 

In computing daily operating cost of the product lots, we assume the following scenario. At 

the decision epoch, a controller determines a DBS plan for the following period. If its inventory 

level is zero, the product lot is reordered and immediately replenished. If assigned storage area is 

different with the present storage area, the product lot is relocated instantly. During the next 
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period, unit loads of the product lots are retrieved by demand. APPENDIX A of the dissertation 

provides the daily operating cost model of a single product lot formulated as follows: 

𝑂𝑂𝑂𝑂 = 𝐹𝐹𝐹𝐹 + 𝑆𝑆𝑆𝑆 + 𝑅𝑅𝑅𝑅 + 𝐵𝐵𝐵𝐵, (3.19) 

where 

𝑂𝑂𝑂𝑂  daily operating cost of a single product lot 

𝐹𝐹𝐹𝐹   floor space cost of a single product lot 

𝑆𝑆𝑆𝑆  replenishment cost of a single product lot 

𝑅𝑅𝑅𝑅  retrieval cost of a single product lot 

𝐵𝐵𝐵𝐵  relocation cost of a single product lot. 

Costs can be easily redefined as a function of the product lot’s state and action. We represent the 

cost functions using the following notations: 

𝐹𝐹𝐹𝐹(𝑖𝑖𝑙𝑙,𝑎𝑎𝑙𝑙) floor space cost function of inventory level state 𝑖𝑖𝑙𝑙 and action 𝑎𝑎𝑙𝑙 of product lot 𝑙𝑙 

𝑆𝑆𝑆𝑆(𝑖𝑖𝑙𝑙,𝑎𝑎𝑙𝑙) replenishment cost function of inventory level state 𝑖𝑖𝑙𝑙 and action 𝑎𝑎𝑙𝑙 or product lot 𝑙𝑙 

𝑅𝑅𝑅𝑅(𝑖𝑖𝑙𝑙,𝑎𝑎𝑙𝑙,𝐷𝐷𝑙𝑙) retrieval cost function of inventory level state 𝑖𝑖𝑙𝑙, action 𝑎𝑎𝑙𝑙, and daily demand 

𝐷𝐷𝑙𝑙 of product lot 𝑙𝑙 

𝐵𝐵𝐵𝐵(𝑖𝑖𝑙𝑙, 𝑟𝑟𝑙𝑙, 𝑎𝑎𝑙𝑙) relocation cost function of inventory level state 𝑖𝑖𝑙𝑙, storage area state 𝑟𝑟𝑙𝑙, and 

action 𝑎𝑎𝑙𝑙 of product lot 𝑙𝑙. 

Note 𝑖𝑖𝑙𝑙 equaling zero means replenishment of production lot 𝑙𝑙; thus, when 𝑖𝑖𝑙𝑙 is zero, it is 

assumed 𝑖𝑖𝑙𝑙=𝑄𝑄𝑙𝑙 in computing costs. 

Retrieval cost is incurred to withdraw unit loads of product lot 𝑙𝑙 for business hours the next 

day; thus, its calculation is based on the number of unit loads retrieved. Because we assume 

stochastic demand, exact daily demand of the product lot is unknown at the decision epoch. 
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Consequently, the retrieval cost is estimated as the expected value based on possible daily 

demands and their probabilities. The expected retrieval travel cost, 𝐸𝐸[𝑅𝑅𝑙𝑙(𝑖𝑖𝑙𝑙,𝑎𝑎𝑙𝑙)], is computed by  

𝐸𝐸[𝑅𝑅𝑙𝑙(𝑖𝑖𝑙𝑙,𝑎𝑎𝑙𝑙)] = � Pr(𝐷𝐷𝑙𝑙=𝑘𝑘) ∗ 𝑅𝑅𝑙𝑙(𝑖𝑖𝑙𝑙,𝑎𝑎𝑙𝑙, min(𝑖𝑖𝑙𝑙,𝑘𝑘))
𝐷𝐷max 
𝑙𝑙

𝑘𝑘=0

. (3.20) 

Consider the temporary storage area. It must be guaranteed that only when all unit loads of 

product lots cannot be stored within regular storage area, the smallest number of unit loads are 

stored in the temporary storage area. In the MDP model, we avoid assigning a product lot to the 

temporary storage area unnecessarily and encourage relocating a product lot stored in the 

temporary storage area to the permanent storage area. Therefore, a penalty cost is imposed when 

a product lot is stored in the temporary storage area; a zero relocation cost is charged when a 

product lot is relocated from the temporary storage area to the regular storage area. 

Let 𝑐𝑐𝑙𝑙(𝑠𝑠𝑙𝑙,𝑎𝑎𝑙𝑙) be the cost incurred by product lot 𝑙𝑙 over a single period as the result of taking 

action 𝑎𝑎𝑙𝑙 in state 𝑠𝑠𝑙𝑙. It is computed as follows: 

𝑐𝑐𝑙𝑙�𝑠𝑠𝑙𝑙,𝑎𝑎𝑙𝑙� 

=

⎩
⎨

⎧
 

 𝐹𝐹𝐹𝐹𝑙𝑙�𝑖𝑖𝑙𝑙,𝑎𝑎𝑙𝑙� + 𝑆𝑆𝑆𝑆𝑙𝑙�𝑖𝑖𝑙𝑙 ,𝑎𝑎𝑙𝑙� + 𝐸𝐸�𝑅𝑅𝑙𝑙�𝑖𝑖𝑙𝑙,𝑎𝑎𝑙𝑙�� + 𝐵𝐵𝐵𝐵𝑙𝑙�𝑖𝑖𝑙𝑙 , 𝑟𝑟𝑙𝑙 ,𝑎𝑎𝑙𝑙�,                    𝑟𝑟𝑙𝑙 ≠ 𝑏𝑏T and 𝑎𝑎𝑙𝑙 = 𝑏𝑏T 
 𝐹𝐹𝐹𝐹𝑙𝑙�𝑖𝑖𝑙𝑙 ,𝑎𝑎𝑙𝑙� + 𝑆𝑆𝑆𝑆𝑙𝑙�𝑖𝑖𝑙𝑙 ,𝑎𝑎𝑙𝑙� + 𝐸𝐸�𝑅𝑅𝑙𝑙�𝑖𝑖𝑙𝑙 ,𝑎𝑎𝑙𝑙��,                                                    𝑟𝑟𝑙𝑙 = 𝑏𝑏T                         
 𝜓𝜓max

𝑎𝑎𝑙𝑙
�𝐹𝐹𝐹𝐹𝑙𝑙�𝑖𝑖𝑙𝑙 ,𝑎𝑎𝑙𝑙� + 𝑆𝑆𝑆𝑆𝑙𝑙�𝑖𝑖𝑙𝑙 ,𝑎𝑎𝑙𝑙� + 𝐸𝐸�𝑅𝑅𝑙𝑙�𝑖𝑖𝑙𝑙 ,𝑎𝑎𝑙𝑙�� + 𝐵𝐵𝐵𝐵𝑙𝑙�𝑖𝑖𝑙𝑙 , 𝑟𝑟𝑙𝑙 ,𝑎𝑎𝑙𝑙�� ,   𝑎𝑎𝑙𝑙 = 𝑏𝑏T                         

 
(3.21) 

where 𝜓𝜓 is the penalty factor greater than one. Penalty cost when 𝑎𝑎𝑙𝑙 is 𝑏𝑏T is computed by 

multiplying 𝜓𝜓 and the maximum expected operating cost if product lot 𝑙𝑙 is stored in one of the 

permanent storage areas. 

Let 𝐶𝐶(𝐬𝐬,𝐚𝐚) be the daily operating cost incurred by all product lots when taking system action 

𝐚𝐚 ∈ 𝐀𝐀𝐢𝐢 in system state 𝐬𝐬. It is computed by 

𝐶𝐶(𝐬𝐬,𝐚𝐚) = �𝑐𝑐𝑙𝑙(s𝑙𝑙 ,𝑎𝑎𝑙𝑙)
𝑙𝑙∈𝐿𝐿

. (3.22) 
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4. Solution Procedure 

In this section, we develop heuristics to solve practical-sized instances of MDP-DBS. Generally, 

MDP determines a policy which is a collection of decision rules prescribing which action should 

be selected in each state. An infinite-horizon MDP finds a stationary policy independent of time 

and a finite-horizon MDP generates a non-stationary policy dependent on time. When a MDP 

model involves a large state space and/or action space, phenomenon of the curse of 

dimensionality arises and consequently it should be difficult to establish a policy. Inequality 

(3.8) and (3.11) indicate, in MDP-DBS, the size of the state space and action space increases 

exponentially as the number of product lots increases. Therefore, MDP-DBS also suffers from 

the curse of dimensionality and requires heuristics to solve practical-sized instances. 

In Section 4.1, we introduce a value iteration algorithm. It is a widely-known solution 

method, establishing a policy for the infinite-horizon MDP. In Section 4.2, we develop a solution 

procedure based on an on-line approach for solving practical-sized instances of BSMPwRuSD. 

Instead of establishing a policy of MDP-DBS in advance, it instantly determines a good action 

for the observed state using a sampling technique. 

 
4.1. Value iteration 

Value iteration is a common algorithm for solving infinite-horizon MDP problem (Puterman, 

2005). Basically, it recursively computes the optimality equation, also known as Bellman 

equation, until a termination condition is satisfied. 

Figure 3.4 describes a procedure of the value iteration algorithm properly modified for MDP-

DBS. In Steps 1 and 2, Equations (3.25) and (3.26) represent the optimality equation. The 

equation’s first term indicates the immediate cost and second term represents the expected future 
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cost discounted to the present value. In the second term, 𝜆𝜆 is the discount factor such that 0 <

𝜆𝜆 ≤ 1. In Step 3 of the algorithm, 𝑠𝑠𝑠𝑠(𝜐𝜐𝑛𝑛 − 𝜐𝜐𝑛𝑛−1) is computed as follows: 

𝑠𝑠𝑠𝑠(𝜐𝜐𝑛𝑛 − 𝜐𝜐𝑛𝑛−1) = max
𝐬𝐬∈𝐒𝐒

[𝜐𝜐𝑛𝑛(𝐬𝐬) − 𝜐𝜐𝑛𝑛−1(𝐬𝐬)]− min
𝐬𝐬∈𝐒𝐒

[𝜐𝜐𝑛𝑛(𝐬𝐬) − 𝜐𝜐𝑛𝑛−1(𝐬𝐬)]. (3.23) 

In Step 4, letting 𝜋𝜋 be a stationary policy of MDP-DBS, 𝜋𝜋(𝐬𝐬) represents the selected action given 

state 𝐬𝐬. A stationary policy 𝜋𝜋 established by the algorithm is referred to as 𝜀𝜀-optimal policy. 

 

Value iteration algorithm:  
   

Step 1 Set 𝑛𝑛 = 1 and specify convergence estimator 𝜀𝜀 > 0  
 Define 𝜐𝜐0(𝐬𝐬) and 𝜐𝜐1(𝐬𝐬) for each 𝐬𝐬 ∈ 𝐒𝐒 as follows:  

  𝜐𝜐0 = inf
𝐚𝐚∈𝐀𝐀i

𝐶𝐶(𝐬𝐬,𝐚𝐚) (3.24) 

  𝜐𝜐1(𝐬𝐬) = min
𝐚𝐚∈𝐀𝐀i

�𝐶𝐶(𝐬𝐬,𝐚𝐚) + � 𝜆𝜆𝜆𝜆(𝐬𝐬+|𝐬𝐬,𝐚𝐚)𝜐𝜐0(𝐬𝐬+)
𝐬𝐬+∈𝐒𝐒

� (3.25) 

   

Step 2 For each 𝐬𝐬 ∈ 𝐒𝐒, compute 𝜐𝜐𝑛𝑛+1(𝐬𝐬) by  

  𝜐𝜐𝑛𝑛+1(𝐬𝐬) = min
𝐚𝐚∈𝐀𝐀i

�𝐶𝐶(𝐬𝐬,𝐚𝐚) + � 𝜆𝜆𝜆𝜆(𝐬𝐬+|𝐬𝐬,𝐚𝐚)𝜐𝜐𝑛𝑛(𝐬𝐬+)
𝐬𝐬+∈𝐒𝐒

� (3.26) 

   

Step 3 If 𝑠𝑠𝑠𝑠(𝜐𝜐𝑛𝑛 − 𝜐𝜐𝑛𝑛−1)− 𝑠𝑠𝑠𝑠(𝜐𝜐𝑛𝑛+1 − 𝜐𝜐𝑛𝑛) < 𝜀𝜀, go to Step 4.  
 Otherwise, increase 𝑛𝑛 by 1 and return to Step 2.  
   

Step 4 For each 𝐬𝐬 ∈ 𝐒𝐒, choose  

  𝜋𝜋(𝐬𝐬) ∈ argmin
𝐚𝐚∈Ai

�𝐶𝐶(𝐬𝐬,𝐚𝐚) + � 𝜆𝜆𝜆𝜆(𝐬𝐬+|𝐬𝐬,𝐚𝐚)𝜐𝜐𝑛𝑛(𝐬𝐬+)
𝐬𝐬+∈𝐒𝐒

� (3.27) 

 and stop.  

Figure 3.4: Value iteration algorithm for MDP-DBS 

4.2. Instant determination heuristics 

In theory, the value iteration algorithm of Section 4.1 can establish an optimal stationary policy 

of MDP-DBS but we face computational difficulties caused by a large state space and action 

space when solving practical-sized instances.  
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An approach to address the large state space is to simplify the MDP model via some 

approximation techniques such as state aggregation (Boutilier et al. 1999), value function 

approximation (Powell, 2011), randomization (Rust, 1997), and so on. To tackle the MDP 

problem with large state space, instead of constructing an optimal policy, Peret and Garcia 

(2004) and Nicol and Chades (2011) introduced the strategy of finding an optimal action for a 

single current state based on future states sampled by simulating the system. Their method can be 

considered an on-line approach compared to the methods predetermining an action for every 

state in an off-line manner. 

To solve practical-sized instances of BSMPwRuSD, we develop a solution procedure referred to 

as Instant Determination Heuristic (IDH). To address a large state space of MDP-DBS, IDH adopts 

an on-line approach of instantly determining an action for the observed state at a decision epoch. 

Therefore, IDH avoids searching every state to determine an optimal policy. Additionally, to 

alleviate the computational difficulty caused by a large action space, IDH formulates the instant 

action determination problem as a General Assignment Problem (GAP). Using an advanced solution 

procedure like branch-and-bound, IDH avoids enumerating all possible actions in finding a solution.  

Figure 3.5 depicts the flow of IDH. At first, at a decision epoch, product lots’ inventory levels 

and current storage areas are observed. Then, IDH samples product lots’ daily demands over a 

specified horizon using stochastic simulation and computes product lots’ expected inventory 

levels from the sampled daily demand. Next, IDH calculates product lots’ approximate minimum 

future costs using sampled daily demands and computed inventory levels. Given product lots’ 

approximate minimum future costs, IDH formulates and solves the GAP of the instant action 

determination problem. Finally, IDH obtains the assignment of product lots to a storage area for 

the decision epoch from the solution of the GAP. 
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Figure 3.5: Flow of Instant Determination Heuristic (IDH) 

In Section 4.2.1, we look at the GAP of the instance action determination problem. Section 

4.2.2 describes a procedure of sampling expected daily demands and computing expected 

inventory levels over a specified horizon. Section 4.2.3 introduces different ways of calculating 

an approximate minimum future cost of a product lot. We develop an algorithmic expression of 

IDH in Section 4.2.4 and investigate the performance of IDH in Section 4.2.5. 

 
4.2.1. Instant action determination problem 

Let 𝐬̅𝐬𝑡̂𝑡 be the system state observed at decision epoch 𝑡̂𝑡 and 𝐢𝐢𝑡̂̅𝑡 and 𝐫̅𝐫𝑡̂𝑡 be the element of 𝐬̅𝐬𝑡̂𝑡. The 

element of 𝐢𝐢𝑡̂̅𝑡 corresponding to product lot 𝑙𝑙 is referred to as 𝚤𝚤𝑡̂̅𝑡
𝑙𝑙  and the element of 𝐫̅𝐫𝑡̂𝑡 

corresponding to product lot 𝑙𝑙 is referred to as 𝑟̅𝑟𝑡̂𝑡
𝑙𝑙. In IDH, given state 𝐬̅𝐬𝑡̂𝑡, the instant action 

determination problem is formulated as a GAP as follows: 

IDH-GAP: 

min���𝑐𝑐𝑙𝑙�𝑠̅𝑠𝑡̂𝑡
𝑙𝑙 , 𝑏𝑏� + 𝑓𝑓𝑙𝑙�𝑠̅𝑠𝑡̂𝑡

𝑙𝑙, 𝑏𝑏��
𝐵𝐵

𝑏𝑏=1

𝐿𝐿

𝑙𝑙=1

𝑥𝑥𝑏𝑏𝑙𝑙  (3.28) 

subject to  

�𝑛𝑛𝚤𝚤̅𝑡𝑡�𝑙𝑙 ,𝑏𝑏
𝑙𝑙 𝑥𝑥𝑏𝑏𝑙𝑙

𝐿𝐿

𝑙𝑙=1

≤ 𝑁𝑁𝑏𝑏 , 𝑏𝑏 = 1, … ,𝐵𝐵 (3.29) 
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�𝑥𝑥𝑏𝑏𝑙𝑙
𝐵𝐵

𝑏𝑏=1

= 1, 𝑙𝑙 = 1, … , 𝐿𝐿 (3.30) 

𝑥𝑥𝑏𝑏𝑙𝑙 ∈ {0,1}, 𝑏𝑏 = 1, … ,𝐵𝐵, 𝑙𝑙 = 1, … , 𝐿𝐿 (3.31) 

Decision variable 𝑥𝑥𝑏𝑏𝑙𝑙  indicates product lot 𝑙𝑙 is assigned to a storage area 𝑏𝑏 if 𝑥𝑥𝑏𝑏𝑙𝑙  is one or not 

assigned if 𝑥𝑥𝑏𝑏𝑙𝑙  is zero. Constraints (3.29) force the number of required row positions for the 

product lots assigned to storage area 𝑏𝑏 to be less than or equal to the capacity of storage area 𝑏𝑏. 

Constraints (3.30) guarantee a product lot is assigned to only one storage area. Constraints (3.31) 

prohibit lot splitting by requiring the 𝑥𝑥-variables to take on binary values. 

The first term in the objective function, 𝑐𝑐𝑙𝑙�𝑠̅𝑠𝑡̂𝑡
𝑙𝑙, 𝑏𝑏� as introduced in Section 3.2.5, indicates the 

expected daily operating cost at decision epoch 𝑡̂𝑡 when product lot 𝑙𝑙 is assigned to storage area 𝑏𝑏 

given system state 𝑠̅𝑠𝑡̂𝑡
𝑙𝑙. When assigning product lot 𝑙𝑙 to storage area 𝑏𝑏 given 𝑠̅𝑠𝑡̂𝑡

𝑙𝑙 is infeasible 

because of the capacity constraint of storage area 𝑏𝑏, 𝑐𝑐𝑙𝑙�𝑠̅𝑠𝑡̂𝑡
𝑙𝑙, 𝑏𝑏� is set equal to a very large value 

compared to the general daily operating cost. The second term 𝑓𝑓𝑙𝑙�𝑠̅𝑠𝑡̂𝑡
𝑙𝑙 , 𝑏𝑏� represents the expected 

future operating cost over a time horizon resulting from the assignment of product lot 𝑙𝑙 to a 

storage area 𝑏𝑏 given state 𝑠̅𝑠𝑡̂𝑡
𝑙𝑙. By including the future cost element in the objective function, we 

pursue the global optimization over a time horizon rather than the local optimization at a given 

day. We introduce three different computational strategies for estimating 𝑓𝑓𝑙𝑙�𝑠̅𝑠𝑡̂𝑡
𝑙𝑙, 𝑏𝑏� in the 

following sections; two are based on a stochastic simulation. 

 
4.2.2. Sampling daily demand and inventory level 

At decision epoch 𝑡̂𝑡, in estimating 𝑓𝑓𝑙𝑙(𝑠𝑠𝑙𝑙, 𝑏𝑏) over SL days (i.e., sample length), we use randomly 

generated sample paths of 𝐷𝐷𝑙𝑙 and 𝑖𝑖𝑙𝑙 instead of all possible sample paths. Note sample path indicates 

the sequence of realized random variables in this research. A sample path of 𝐷𝐷𝑙𝑙 is generated from 

a stochastic simulation and a sample path of 𝑖𝑖𝑙𝑙 is computed from a sample path of 𝐷𝐷𝑙𝑙. 
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Let 𝐷𝐷𝑙𝑙 be the random daily demand of product lot 𝑙𝑙 and 𝐷𝐷�𝑡𝑡𝑙𝑙 be a realized 𝐷𝐷𝑙𝑙 at day 𝑡𝑡 in a 

stochastic simulation. The sample path of 𝐷𝐷𝑙𝑙 from day 𝑡̂𝑡 to day 𝑡̂𝑡+SL is referred to as 𝔻𝔻𝑡̂𝑡
𝑙𝑙  and 

defined as follows: 

𝔻𝔻𝑡̂𝑡
𝑙𝑙 = �𝐷𝐷�𝑡̂𝑡

𝑙𝑙 ,𝐷𝐷�𝑡̂𝑡+1
𝑙𝑙 , … ,𝐷𝐷�𝑡̂𝑡+𝑆𝑆𝑆𝑆

𝑙𝑙 �. (3.32) 

Let 𝔻𝔻𝑡̂𝑡
𝑙𝑙 (𝑗𝑗) indicate the element of 𝔻𝔻𝑡̂𝑡

𝑙𝑙  corresponding to day 𝑡̂𝑡+𝑗𝑗 for 𝑗𝑗=0,1,…,SL. Note the length 

of  𝔻𝔻𝑡̂𝑡
𝑙𝑙  is SL+1. Particularly, the sample path 𝔻𝔻𝑡̂𝑡

𝑙𝑙  generated with a fixed 𝐷𝐷�𝑡̂𝑡
𝑙𝑙 = 𝑘𝑘 is referred to as 

𝔻𝔻𝑡̂𝑡|𝑘𝑘
𝑙𝑙  and defined as follows: 

𝔻𝔻𝑡̂𝑡|𝑘𝑘
𝑙𝑙 = �𝑘𝑘,𝐷𝐷�𝑡̂𝑡+1

𝑙𝑙 , … ,𝐷𝐷�𝑡̂𝑡+𝑆𝑆𝑆𝑆
𝑙𝑙 �,     𝑘𝑘=0,1, … ,𝐷𝐷max𝑙𝑙  (3.33) 

Because we generate multiple 𝔻𝔻𝑡̂𝑡|𝑘𝑘
𝑙𝑙 s for each 𝑘𝑘 in the sampling procedure, 𝔻𝔻𝑡̂𝑡|𝑘𝑘

𝑙𝑙  is indexed with 𝜎𝜎 

as 𝔻𝔻𝑡̂𝑡|𝑘𝑘|𝜎𝜎
𝑙𝑙 . When SN (i.e., sample number) indicates the number of 𝔻𝔻𝑡̂𝑡|𝑘𝑘

𝑙𝑙  for each 𝑘𝑘, the number of 

sample paths generated for 𝐷𝐷𝑙𝑙 is computed by SN ∗ (𝐷𝐷max𝑙𝑙 +1). 

Let 𝑖𝑖𝑙𝑙 be the random inventory level of product lot 𝑙𝑙 and 𝚤𝚤̃𝑡𝑡𝑙𝑙  be a computed 𝑖𝑖𝑙𝑙 based on 𝐷𝐷�𝑡̂𝑡
𝑙𝑙. The 

sample path of 𝑖𝑖𝑙𝑙 from day 𝑡̂𝑡 to day 𝑡̂𝑡+SL is referred to as 𝕚𝕚𝑡̂𝑡
𝑙𝑙  and defined as follows: 

𝕚𝕚𝑡̂𝑡
𝑙𝑙 = � 𝚤𝚤𝑡̂̅𝑡

𝑙𝑙 , 𝚤𝚤̃𝑡̂𝑡+1
𝑙𝑙 , … , 𝚤𝚤̃𝑡̂𝑡+𝑆𝑆𝑆𝑆

𝑙𝑙 � (3.34)  

Note 𝚤𝚤𝑡̂̅𝑡
𝑙𝑙  is the inventory level of product lot 𝑙𝑙 observed at decision epoch 𝑡̂𝑡. Let 𝕚𝕚𝑡̂𝑡

𝑙𝑙 (𝑗𝑗) indicate the 

element of 𝕚𝕚𝑡̂𝑡
𝑙𝑙  corresponding to day 𝑡̂𝑡+𝑗𝑗 for 𝑗𝑗=0,1,…,SL. Note the length of  𝕚𝕚𝑡̂𝑡

𝑙𝑙  is SL+1. 

Specifically, the sample path 𝕚𝕚𝑡̂𝑡
𝑙𝑙  derived from 𝔻𝔻𝑡̂𝑡|𝑘𝑘|𝜎𝜎

𝑙𝑙  is referred to as 𝕚𝕚𝑡̂𝑡|𝑘𝑘|𝜎𝜎
𝑙𝑙 . Given 𝔻𝔻𝑡̂𝑡|𝑘𝑘|𝜎𝜎

𝑙𝑙 , with 

𝕚𝕚𝑡̂𝑡|𝑘𝑘|𝜎𝜎
𝑙𝑙 (0) = 𝚤𝚤𝑡̂̅𝑡

𝑙𝑙 , 𝕚𝕚𝑡̂𝑡|𝑘𝑘|𝜎𝜎
𝑙𝑙  is computed as follows: 

𝕚𝕚𝑡̂𝑡|𝑘𝑘|𝜎𝜎
𝑙𝑙 (𝑗𝑗) = �

max �0, 𝕚𝕚𝑡̂𝑡|𝑘𝑘|𝜎𝜎
𝑙𝑙 (𝑗𝑗 − 1) −𝔻𝔻𝑡̂𝑡|𝑘𝑘|𝜎𝜎

𝑙𝑙 (𝑗𝑗 − 1)� ,    if 𝕚𝕚𝑡̂𝑡|𝑘𝑘|𝜎𝜎
𝑙𝑙 (𝑗𝑗 − 1) > 0

max �0,𝑄𝑄𝑙𝑙 − 𝔻𝔻𝑡̂𝑡|𝑘𝑘|𝜎𝜎
𝑙𝑙 (𝑗𝑗 − 1)� ,                       if 𝕚𝕚𝑡̂𝑡|𝑘𝑘|𝜎𝜎

𝑙𝑙 (𝑗𝑗 − 1) = 0
,   for 𝑗𝑗 = 1, … , 𝑆𝑆𝑆𝑆. (3.35) 
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For example, consider a product lot 𝑙𝑙 with 𝑄𝑄𝑙𝑙 equal to five and 𝐷𝐷max𝑙𝑙  equal to two and assume SL 

is equal to five and SN is equal to three. At decision epoch 3, 𝔻𝔻𝑡̂𝑡|𝑘𝑘|𝜎𝜎
𝑙𝑙  and 𝕚𝕚𝑡̂𝑡|𝑘𝑘|𝜎𝜎

𝑙𝑙  are defined as 

shown in Table 3.4 when the observed inventory level of product lot 𝑙𝑙, 𝚤𝚤𝑡̂̅𝑡=3
𝑙𝑙 , is equal to three. 

In the rows of Table 3.4 corresponding to 𝑘𝑘 = 0 and 𝜎𝜎 = 3, 𝕚𝕚3|0|3
𝑙𝑙  = (3, 3, 1, 0, 3, 3) and 𝔻𝔻3|0|3

𝑙𝑙 = 

(0, 2, 2, 2, 0, 1). The value of 𝕚𝕚3|0|3
𝑙𝑙 (0) is set equal to three because 𝚤𝚤3̅𝑙𝑙  is equal to three. The value 

of 𝕚𝕚3|0|3
𝑙𝑙 (1) equal to three is computed as follows: 𝕚𝕚3|0|3

𝑙𝑙 (0) minus 𝔻𝔻3|0|3
𝑙𝑙 (0) or 3 – 0 = 3. The 

value of 𝕚𝕚3|0|3
𝑙𝑙 (3) is set equal to zero by max(0, -1) because 𝕚𝕚3|0|3

𝑙𝑙 (2) minus 𝔻𝔻3|0|3
𝑙𝑙 (2) is negative 

as follows 1 – 2 = –1. The value of 𝕚𝕚3|0|3
𝑙𝑙 (4) equal to three is computed as follows: Q𝑙𝑙 minus 

𝔻𝔻3|0|3
𝑙𝑙 (3) or 5 – 2 = 3 because 𝕚𝕚3|0|3

𝑙𝑙 (3) is zero. 

Table 3.4: Example of sample paths of inventory level and daily demand 

Parameters: 𝑄𝑄𝑙𝑙: 5 𝐷𝐷max𝑙𝑙 : 2 𝚤𝚤3̅𝑙𝑙 : 3 SL: 5 SN: 3 

Demand at day 3 (𝑘𝑘) 𝜎𝜎 Sample path 𝑗𝑗 
0 1 2 3 4 5 

0 

1 
𝕚𝕚3|0|1
𝑙𝑙  3 3 2 0 4 3 
𝔻𝔻3|0|1
𝑙𝑙  0 1 2 1 1 0 

2 
𝕚𝕚3|0|2
𝑙𝑙  3 3 3 2 1 0 
𝔻𝔻3|0|2
𝑙𝑙  0 0 1 1 2 0 

3 
𝕚𝕚3|0|3
𝑙𝑙  3 3 1 0 3 3 
𝔻𝔻3|0|3
𝑙𝑙  0 2 2 2 0 1 

1 

1 
𝕚𝕚3|1|1
𝑙𝑙  3 2 2 0 4 4 
𝔻𝔻3|1|1
𝑙𝑙  1 0 2 1 0 2 

2 
𝕚𝕚3|1|2
𝑙𝑙  3 2 1 0 4 2 
𝔻𝔻3|1|2
𝑙𝑙  1 1 1 1 2 0 

3 
𝕚𝕚3|1|3
𝑙𝑙  3 2 0 4 3 2 
𝔻𝔻3|1|3
𝑙𝑙  1 2 1 1 1 1 

2 

1 
𝕚𝕚3|2|1
𝑙𝑙  3 1 1 1 1 1 
𝔻𝔻3|2|1
𝑙𝑙  2 0 0 0 0 1 

2 
𝕚𝕚3|2|2
𝑙𝑙  3 1 0 5 3 1 
𝔻𝔻3|2|2
𝑙𝑙  2 1 0 2 2 0 

3 
𝕚𝕚3|2|3
𝑙𝑙  3 1 0 5 3 2 
𝔻𝔻3|2|3
𝑙𝑙  2 1 0 2 1 2 
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Let [𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎
𝑙𝑙  be the aggregate sample path of 𝕚𝕚𝑡̂𝑡|𝑘𝑘|𝜎𝜎

𝑙𝑙  and 𝔻𝔻𝑡̂𝑡|𝑘𝑘|𝜎𝜎
𝑙𝑙  over the SL-days-horizon 

from day 𝑡̂𝑡+1 to day 𝑡̂𝑡+SL. It unites 𝕚𝕚𝑡̂𝑡|𝑘𝑘|𝜎𝜎
𝑙𝑙 (𝑗𝑗) and 𝔻𝔻𝑡̂𝑡|𝑘𝑘|𝜎𝜎

𝑙𝑙 (𝑗𝑗), 𝑗𝑗=1,…, SL and does not include 

𝕚𝕚𝑡̂𝑡|𝑘𝑘|𝜎𝜎
𝑙𝑙 (0) and 𝔻𝔻𝑡̂𝑡|𝑘𝑘|𝜎𝜎

𝑙𝑙 (0). Note that 𝕚𝕚𝑡̂𝑡|𝑘𝑘|𝜎𝜎
𝑙𝑙 (0) and 𝔻𝔻𝑡̂𝑡|𝑘𝑘|𝜎𝜎

𝑙𝑙 (0) represent a possible scenario of the 

system at decision epoch 𝑡̂𝑡 and are not related to the expected future operating cost. 

Let 𝑐𝑐�[𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎
𝑙𝑙 � indicate the operating cost on [𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎

𝑙𝑙 . Then, 𝑓𝑓𝑙𝑙�𝑠̅𝑠𝑡̂𝑡
𝑙𝑙, 𝑏𝑏� is estimated as 

a weighted average of 𝑐𝑐�[𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎
𝑙𝑙 � as follows: 

𝑓𝑓𝑙𝑙�𝑠̅𝑠𝑡̂𝑡
𝑙𝑙 , 𝑏𝑏� = � ��

Pr(𝐷𝐷𝑙𝑙=𝑘𝑘)
𝑆𝑆𝑆𝑆

𝑐𝑐�[𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎
𝑙𝑙 ��

𝑆𝑆𝑆𝑆

𝜎𝜎=1

𝐷𝐷max
𝑙𝑙

𝑘𝑘=0

, (3.36) 

where Pr(𝐷𝐷𝑙𝑙=𝑘𝑘) 𝑆𝑆𝑆𝑆⁄  works as the weight. Note the sum of the weights is one as follows: 

� �
Pr(𝐷𝐷𝑙𝑙=𝑘𝑘)

𝑆𝑆𝑆𝑆

𝑆𝑆𝑆𝑆

𝜎𝜎=1

𝐷𝐷max
𝑙𝑙

𝑘𝑘=0

= � �Pr(𝐷𝐷𝑙𝑙=𝑘𝑘)�
1
𝑆𝑆𝑆𝑆

𝑆𝑆𝑆𝑆

𝜎𝜎=1

�
𝐷𝐷max
𝑙𝑙

𝑘𝑘=0

= � Pr(𝐷𝐷𝑙𝑙=𝑘𝑘)
𝐷𝐷max
𝑙𝑙

𝑘𝑘=0

= 1. (3.37) 

 
4.2.3. Approximate minimum future cost 

In computing 𝑐𝑐�[𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎
𝑙𝑙 �, we employ three different strategies: Myopic Policy (MP) 

strategy, Block Stacking Single Product with Relocation under Stochastic Demand 

(BSSPwRuSD) strategy, and Block Stacking Single Product with Relocation under Deterministic 

Demand (BSSPwRuSD) strategy. 

 
MP strategy 

Unlike other strategies, the MP strategy only considers the immediate cost in finding an optimal 

solution of IDH-GAP. Let 𝑓𝑓𝑙𝑙�𝑠̅𝑠𝑡̂𝑡
𝑙𝑙, 𝑏𝑏�

M
 be the expected future cost estimated by the MP strategy. 

The value of 𝑓𝑓𝑙𝑙�𝑠̅𝑠𝑡̂𝑡
𝑙𝑙, 𝑏𝑏�

M
 is zero, i.e., 
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𝑓𝑓𝑙𝑙�𝑠̅𝑠𝑡̂𝑡
𝑙𝑙, 𝑏𝑏�

M
= 0 (3.38) 

We refer to IDH-GAP with 𝑓𝑓𝑙𝑙�𝑠̅𝑠𝑡̂𝑡
𝑙𝑙, 𝑏𝑏�

M
 as IDH-GAPM. 

 
BSSPwRuSD strategy  

The BSSPwRuSD strategy uses the solution obtained by optimizing DBS of a single product lot 

under stochastic demand, called the BSSPwRuDD problem. An MDP-DBS of a single product 

lot 𝑙𝑙 is framed using a MDP quintuple as �𝑇𝑇, 𝑆𝑆𝑙𝑙,𝐴𝐴𝑖𝑖𝑙𝑙
𝑙𝑙 ,𝑝𝑝(∙ |𝑠𝑠𝑙𝑙, 𝑎𝑎𝑙𝑙), 𝑐𝑐(𝑠𝑠𝑙𝑙,𝑎𝑎𝑙𝑙)�; an optimal policy for 

product lot 𝑙𝑙 can be easily established by value iteration or policy iteration. For more details of 

the MDP-DBS of a single product lot and the BSSPwRuSD problem, see Lee et al. (2016) or 

APENDDIX B of the dissertation. 

In computing 𝑐𝑐�[𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎
𝑙𝑙 � at decision epoch 𝑡̂𝑡, the BSSPwRuSD strategy defines a 

sequence of 𝑎𝑎𝑙𝑙s over the 𝑆𝑆𝑆𝑆-days-horizon from day 𝑡̂𝑡+1 to day 𝑡̂𝑡+𝑆𝑆𝑆𝑆 using the policy of product 

lot 𝑙𝑙 determined by solving MDP-DBS of product lot 𝑙𝑙. Let 𝜋𝜋𝑙𝑙 be the policy of product lot 𝑙𝑙 and 

𝜋𝜋𝑙𝑙(𝑖𝑖𝑙𝑙, 𝑟𝑟𝑙𝑙) represent the predetermined action in state (𝑖𝑖𝑙𝑙, 𝑟𝑟𝑙𝑙). The BSSPwRuSD strategy 

computes 𝑐𝑐�[𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎
𝑙𝑙 � as follows: 

𝑐𝑐�[𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎
𝑙𝑙 � = � 𝜆𝜆𝑗𝑗−𝑡̂𝑡𝑐̃𝑐𝑙𝑙 �𝕚𝕚𝑡̂𝑡|𝑘𝑘|𝜎𝜎

𝑙𝑙 (𝑗𝑗), 𝑟̅𝑟𝑗𝑗𝑙𝑙,𝜋𝜋𝑙𝑙�𝕚𝕚𝑡̂𝑡|𝑘𝑘|𝜎𝜎
𝑙𝑙 (𝑗𝑗), 𝑟̅𝑟𝑗𝑗𝑙𝑙�,𝔻𝔻𝑡̂𝑡|𝑘𝑘|𝜎𝜎

𝑙𝑙 (𝑗𝑗)�
𝑡̂𝑡+𝑆𝑆𝑆𝑆

𝑗𝑗=𝑡̂𝑡+1

, (3.39) 

where 

𝑟̅𝑟𝑗𝑗𝑙𝑙 = � 
𝑏𝑏,                                           for 𝑗𝑗=𝑡𝑡+1                  
𝜋𝜋𝑙𝑙�𝕚𝕚𝑡̂𝑡|𝑘𝑘|𝜎𝜎

𝑙𝑙 (𝑗𝑗 − 1), 𝑟̅𝑟𝑗𝑗−1𝑙𝑙 �,     for 𝑗𝑗=𝑡𝑡+2, … , 𝑡𝑡+𝑆𝑆𝑆𝑆 . 
(3.40) 

 

As a variant of (3.21), cost function 𝑐̃𝑐𝑙𝑙(𝑖𝑖𝑙𝑙, 𝑟𝑟𝑙𝑙,𝑎𝑎𝑙𝑙 ,𝐷𝐷𝑙𝑙) of (3.39) is defined as follows: 
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𝑐̃𝑐𝑙𝑙(𝑖𝑖𝑙𝑙, 𝑟𝑟𝑙𝑙,𝑎𝑎𝑙𝑙,𝐷𝐷𝑙𝑙)

=

⎩
⎨

⎧
 

𝐹𝐹𝐹𝐹𝑙𝑙(𝑖𝑖𝑙𝑙, 𝑎𝑎𝑙𝑙) + 𝑆𝑆𝑆𝑆𝑙𝑙(𝑖𝑖𝑙𝑙, 𝑎𝑎𝑙𝑙) + 𝑅𝑅𝑅𝑅�𝑖𝑖𝑙𝑙, 𝑎𝑎𝑙𝑙,𝐷𝐷𝑙𝑙� + 𝐵𝐵𝐵𝐵𝑙𝑙(𝑖𝑖𝑙𝑙, 𝑟𝑟𝑙𝑙, 𝑎𝑎𝑙𝑙),                     𝑟𝑟𝑙𝑙 ≠ 𝑏𝑏T and 𝑎𝑎𝑙𝑙 = 𝑏𝑏T

𝐹𝐹𝐹𝐹𝑙𝑙(𝑖𝑖𝑙𝑙, 𝑎𝑎𝑙𝑙) + 𝑆𝑆𝑆𝑆𝑙𝑙(𝑖𝑖𝑙𝑙, 𝑎𝑎𝑙𝑙) + 𝑅𝑅𝑅𝑅�𝑖𝑖𝑙𝑙,𝑎𝑎𝑙𝑙,𝐷𝐷𝑙𝑙�,                                                   𝑟𝑟𝑙𝑙 = 𝑏𝑏T                        
𝜓𝜓max

𝑎𝑎𝑙𝑙
�𝐹𝐹𝐹𝐹𝑙𝑙(𝑖𝑖𝑙𝑙,𝑎𝑎𝑙𝑙) + 𝑆𝑆𝑆𝑆𝑙𝑙(𝑖𝑖𝑙𝑙, 𝑎𝑎𝑙𝑙) + 𝑅𝑅𝑅𝑅�𝑖𝑖𝑙𝑙, 𝑎𝑎𝑙𝑙,𝐷𝐷𝑙𝑙� + 𝐵𝐵𝐵𝐵𝑙𝑙(𝑖𝑖𝑙𝑙, 𝑟𝑟𝑙𝑙, 𝑎𝑎𝑙𝑙)� ,   𝑎𝑎𝑙𝑙 = 𝑏𝑏T                       

. 
(3.41) 

 

Note in computing 𝑐𝑐�[𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎
𝑙𝑙 � to estimate 𝑓𝑓𝑙𝑙�𝑠̅𝑠𝑡̂𝑡

𝑙𝑙, 𝑏𝑏�, we assume product lot 𝑙𝑙 is assigned to 

storage area 𝑏𝑏 at decision epoch 𝑡̂𝑡. Thus, in (3.40), 𝑟̅𝑟𝑡̂𝑡+1
𝑙𝑙  is set as 𝑏𝑏. 

Let 𝑐𝑐�[𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎
𝑙𝑙 �

S
 be the operating cost computed on sample [𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎

𝑙𝑙  by the 

BSSPwRuSD strategy. Let 𝑓𝑓𝑙𝑙(𝑠𝑠𝑙𝑙, 𝑏𝑏)S indicate the expected future cost estimated using 

𝑐𝑐�[𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎
𝑙𝑙 �

S
 and IDH-GAPS represent IDH-GAP with 𝑓𝑓𝑙𝑙(𝑠𝑠𝑙𝑙, 𝑏𝑏)S. When the BSSPwRuSD 

strategy is chosen, the BSSPwRuSD problem is solved for all product lots to establish their 

policies before implementing IDH. 

 
BSSPwRuDD strategy  

The BSSPwRuDD strategy includes solving the problem of optimizing DBS of a single product lot 

under deterministic demand, called the BSSPwRuDD problem. The problem assumes product lot’s 

exact inventory level and daily demand each day are known over a time horizon; a solution of the 

problem determines a product lot’s DBS plan over a time horizon minimizing the total operating 

cost. CHAPTER 2 of the dissertation provides details of DBS under deterministic demand. 

In the domain of [𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎
𝑙𝑙 , daily demand of product lot 𝑙𝑙 is deterministic and consequently, 

the exact inventory levels of product lot 𝑙𝑙 over the 𝑆𝑆𝑆𝑆-days-horizon from day 𝑡̂𝑡+1 to day 𝑡̂𝑡+𝑆𝑆𝑆𝑆 is 

known in advance. Hence, for given sample path [𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎
𝑙𝑙 , we can formulate the BSSPwRuDD 

problem, referred to as BSSPwRuDD-[𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎
𝑙𝑙 . Solving BSSPwRuDD-[𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎

𝑙𝑙  
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determines a sequence of 𝑎𝑎𝑙𝑙 over the 𝑆𝑆𝑆𝑆-days-horizon minimizing total operating cost on sample 

path [𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎
𝑙𝑙 . 

At decision epoch 𝑡̂𝑡, BSSPwRuDD-[𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎
𝑙𝑙  is formulated as a shortest path problem on a 

directed graph illustrated in Figure 3.6. It represents DBS of product lot 𝑙𝑙 in the domain of 

[𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎
𝑙𝑙 . 

In the graph of Figure 3.6, the nodes represent storage areas at each day over the 𝑆𝑆𝑆𝑆-days-

horizon. Storage area 𝛿𝛿 at day 𝑡̂𝑡+𝑗𝑗 is represented as node 𝑗𝑗𝑗𝑗+𝛿𝛿 where 𝑗𝑗 = 0,…,SL and 𝛿𝛿 = 

1,…,𝐵𝐵. The node set, 𝑁𝑁, is defined as follows: 

𝑁𝑁 = {𝑗𝑗𝑗𝑗 + 𝛿𝛿|𝑗𝑗 = 0, … , 𝑆𝑆𝑆𝑆, 𝛿𝛿 = 1, … ,𝐵𝐵} ∪ {𝑠𝑠, 𝑒𝑒}. 

where nodes 𝑠𝑠 and 𝑒𝑒 indicate the start node and end node, respectively. We refer to the set of 

nodes corresponding to day 𝑡̂𝑡+𝑗𝑗 as 𝑁𝑁𝑡̂𝑡+𝑗𝑗 and define it as follows: 

𝑁𝑁𝑡̂𝑡+𝑗𝑗 = {𝑗𝑗𝑗𝑗 + 𝛿𝛿|𝛿𝛿 = 1, … ,𝐵𝐵}. 

 

Figure 3.6: Directed graph of the aggregate sample path from day 𝑡̂𝑡 to day 𝑡̂𝑡+SL 
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A directed arc indicates an action in a given state of the storage area. The arc originating from 

node (𝑗𝑗-1)𝐵𝐵+𝛾𝛾 to node 𝑗𝑗𝑗𝑗+𝛿𝛿 denotes an action 𝑎𝑎𝑙𝑙=𝛿𝛿 in given 𝑟𝑟𝑙𝑙=𝛾𝛾. From a node 𝑗𝑗𝑗𝑗+𝛿𝛿, 𝐵𝐵 arcs 

emanate to all nodes in 𝑁𝑁𝑡̂𝑡+𝑗𝑗+1 where 𝑗𝑗=0, … , 𝑆𝑆𝑆𝑆-1 and 𝛿𝛿=1, … ,𝐵𝐵. The set of arcs, 𝐴𝐴, is defined 

as follows: 

𝐴𝐴 = {(𝑗𝑗𝑗𝑗 + 𝛾𝛾, (𝑗𝑗 + 1)𝑅𝑅 + 𝛿𝛿)|𝑗𝑗 = 0, … , 𝑆𝑆𝑆𝑆 − 1, 𝛾𝛾 = 1, … ,𝐵𝐵, 𝛿𝛿 = 1, … ,𝐵𝐵} 

    ⋃{(𝑠𝑠, 𝛿𝛿)|𝛿𝛿 = 1, … ,𝐵𝐵}⋃{(𝑆𝑆𝑆𝑆 ∗ 𝐵𝐵 + 𝛿𝛿, 𝑒𝑒)|𝛿𝛿 = 1, … ,𝐵𝐵}.                    

Let 𝐴̅𝐴𝑖𝑖 and 𝐴𝐴𝑖𝑖 respectively indicate the set of arcs incident to node 𝑖𝑖 and the set of arcs emanating 

from node 𝑖𝑖. 

The cost of the arc �(𝑗𝑗-1)𝐵𝐵+𝛾𝛾, 𝑗𝑗𝑗𝑗+𝛿𝛿� for product lot 𝑙𝑙 is referred to as 𝑐𝑐(𝑗𝑗-1)𝐵𝐵+𝛾𝛾,𝑗𝑗𝑗𝑗+𝛿𝛿
𝑙𝑙  and 

denotes the operating cost incurred by product lot 𝑙𝑙 at day 𝑡̂𝑡+𝑗𝑗 when action 𝑎𝑎𝑙𝑙 is 𝛿𝛿, inventory 

level state 𝑖𝑖𝑙𝑙 is 𝕚𝕚𝑡̂𝑡|𝑘𝑘|𝜎𝜎
𝑙𝑙 (𝑗𝑗), storage area state 𝑟𝑟𝑙𝑙 is 𝛾𝛾, and daily demand 𝐷𝐷𝑙𝑙 is 𝔻𝔻𝑡̂𝑡|𝑘𝑘|𝜎𝜎

𝑙𝑙 (𝑗𝑗). Using the 

cost function 𝑐̃𝑐𝑙𝑙(𝑖𝑖𝑙𝑙, 𝑟𝑟𝑙𝑙,𝑎𝑎𝑙𝑙 ,𝐷𝐷𝑙𝑙) of (3.41), 𝑐𝑐(𝑗𝑗-1)𝐵𝐵+𝛾𝛾,𝑗𝑗𝑗𝑗+𝛿𝛿
𝑙𝑙  is defined as follows: 

𝑐𝑐(𝑗𝑗-1)𝐵𝐵+𝛾𝛾,𝑗𝑗𝑗𝑗+𝛿𝛿
𝑙𝑙 = � 

𝜆𝜆𝑗𝑗𝑐̃𝑐𝑙𝑙 �𝕚𝕚𝑡̂𝑡|𝑘𝑘|𝜎𝜎
𝑙𝑙 (𝑗𝑗), 𝛾𝛾, 𝛿𝛿,𝔻𝔻𝑡̂𝑡|𝑘𝑘|𝜎𝜎

𝑙𝑙 (𝑗𝑗)� ,     if 𝑛𝑛𝕚𝕚𝑡𝑡�|𝑘𝑘|𝜎𝜎
𝑙𝑙 (𝑗𝑗),𝛿𝛿
𝑙𝑙 ≤ 𝑁𝑁𝛿𝛿

𝑀𝑀,                                                     otherwise              
, (3.42) 

where 𝑗𝑗 = 1, … , 𝑆𝑆𝑆𝑆,   𝛾𝛾 = 1, … ,𝐵𝐵,   𝛿𝛿 = ,1 … ,𝐵𝐵 and 𝑀𝑀 represents a very large value compared to 

the common daily operating cost of a single product lot. Note 𝑛𝑛𝕚𝕚𝑡𝑡�|𝑘𝑘|𝜎𝜎
𝑙𝑙 (𝑗𝑗),𝛿𝛿
𝑙𝑙  indicates the required 

number of row positions for storing 𝕚𝕚𝑡̂𝑡|𝑘𝑘|𝜎𝜎
𝑙𝑙 (𝑗𝑗) unit loads of product lot 𝑙𝑙 in storage area 𝛿𝛿 (or 𝑑𝑑𝛿𝛿-

deep storage area). Cost of an arc is set as 𝑀𝑀 if the arc indicates the infeasible action and 

consequently, the arc is excluded from the optimal solution of BSSPwRuDD-[𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎
𝑙𝑙 . Costs 

of arcs connected with node 𝑠𝑠 and 𝑒𝑒 are set as zero. 

On the developed directed graph, BSSPwRuDD-[𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎
𝑙𝑙  is formulated as a shortest path 

problem as follows:  
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BSSPwRuDD�[𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎
𝑙𝑙 �: 

min � 𝑐𝑐𝑖𝑖𝑖𝑖𝑙𝑙 𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙
(𝑖𝑖,𝑗𝑗)∈𝐴𝐴

 (3.43) 

subject to  

� 𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙

(𝑖𝑖,𝑗𝑗)∈𝑨𝑨𝑗𝑗

− � 𝑥𝑥𝑗𝑗𝑗𝑗𝑙𝑙
(𝑗𝑗,𝑘𝑘)∈𝑨𝑨𝑗𝑗

= �
−1,       𝑗𝑗 = 𝑠𝑠               
0,          𝑗𝑗 ∈ 𝑁𝑁 ∖ {𝑠𝑠, 𝑒𝑒}
1,          𝑗𝑗 = 𝑒𝑒               

 (3.44) 

𝑥𝑥𝑠𝑠,𝑏𝑏
𝑙𝑙 = 1 (3.45) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙 ∈ {0,1},     ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 (3.46) 

Decision variable 𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙  is equal to one if arc (𝑖𝑖,𝑗𝑗) is selected in the solution, or zero otherwise. 

Constraint (3.44) is a general flow balance constraint making product lot 𝑙𝑙’s supply and demand 

identical at each node. It guarantees, in a DBS plan for product lot 𝑙𝑙, only one storage area is 

chosen for product lot 𝑙𝑙 each day. Constraint (3.45) forces arc (𝑠𝑠,𝑏𝑏) be chosen in the solution of 

BSSPwRuDD-[𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎
𝑙𝑙 . Note in computing 𝑐𝑐�[𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎

𝑙𝑙 � to estimate 𝑓𝑓𝑙𝑙�𝑠̅𝑠𝑡̂𝑡
𝑙𝑙, 𝑏𝑏�, we assume 

product lot 𝑙𝑙 is assigned to storage area 𝑏𝑏 at decision epoch 𝑡̂𝑡. Constraint (3.46) prohibits lot 

splitting by requiring the 𝑥𝑥-variables to take on binary values.  

In estimating 𝑓𝑓𝑙𝑙�𝑠̅𝑠𝑡̂𝑡
𝑙𝑙, 𝑏𝑏� at decision epoch 𝑡̂𝑡, the BSSPwRuDD strategy sets 𝑐𝑐�[𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎

𝑙𝑙 � as 

the optimal objective function value of BSSPwRuDD-[𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎
𝑙𝑙 . Let 𝑐𝑐�[𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎

𝑙𝑙 �
D

 be the 

operating cost computed on sample [𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎
𝑙𝑙  by the BSSPwRuDD strategy. Let 𝑓𝑓𝑙𝑙�𝑠̅𝑠𝑡̂𝑡

𝑙𝑙, 𝑏𝑏�
D

 be 

the expected future cost estimated using 𝑐𝑐�[𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎
𝑙𝑙 �

D
 and IDH-GAPD represent IDH-GAP 

with 𝑓𝑓𝑙𝑙(𝑠𝑠𝑙𝑙, 𝑏𝑏)D. In implementing IDH with the BSSPwRuDD strategy, BSSPwRuDD-

[𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎
𝑙𝑙  is solved (1 + 𝐷𝐷max𝑙𝑙 ) ∗ 𝑆𝑆𝑆𝑆 times in estimating each 𝑓𝑓𝑙𝑙�𝑠̅𝑠𝑡̂𝑡

𝑙𝑙, 𝑏𝑏�
D

 and consequently, 

𝐿𝐿 ∗ 𝐵𝐵 ∗ (1 + 𝐷𝐷max𝑙𝑙 ) ∗ 𝑆𝑆𝑆𝑆 times in total. 
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4.2.4. Algorithmic expression of IDH 

In this section, we look at an pseudo-code of IDH implemented at decision epoch 𝑡̂𝑡. The notation 

of Table 3.5 is used to simplify the pseudo-code. 

Table 3.5: Notations of the pseudo-code of the IDH algorithm 

Notation Description 
CS acronym of Computational Strategy 
M, S, D index of the Myopic strategy (M), the BSSPwRuSD strategy (S),  
 and the BSSPwRuDD strategy (D) 
𝐷𝐷ave𝑙𝑙  average daily demand of product lot 𝑙𝑙 
Rand�𝐷𝐷ave𝑙𝑙 � random number generated according to the probability distribution of daily demand  
 of product lot 𝑙𝑙 whose average daily demand is 𝐷𝐷ave𝑙𝑙 , 0≤Rand�𝐷𝐷ave𝑙𝑙 �≤𝐷𝐷max𝑙𝑙  
𝐚𝐚�𝑡̂𝑡 selected system action at decision epoch 𝑡̂𝑡 
𝑎𝑎�𝑡̂𝑡
𝑙𝑙  elements of 𝐚𝐚�𝑡̂𝑡 corresponding to 𝑡̂𝑡 

 

Figure 3.7 describes the pseudo-code of IDH. Line (1) sets 𝐬̅𝐬𝑡̂𝑡, 𝐢𝐢𝑡̂̅𝑡, and 𝐫̅𝐫𝑡̂𝑡 based on the 

observed system state at decision epoch 𝑡̂𝑡 and Line (2) computes immediate operating costs for 

product lot 𝑙𝑙, 𝑙𝑙 = 1,…,𝐿𝐿 and alternative storage area 𝑏𝑏, 𝑏𝑏=1,…,𝐵𝐵. Lines from (3) and (5) are the 

procedure when the Myopic strategy is selected. Line (4) sets the expected future costs of all 

combinations of product lot 𝑙𝑙 and the alternative storage area 𝑏𝑏 as zero and Line (5) solves IDH-

GAP with the expected costs set by Line (4). Lines from (6) to (27) are the procedure when 

either the BSSPwRuSD strategy or the BSSPwRuDD strategy is selected. For a single 

combination of product lot 𝑙𝑙 and alternative storage area 𝑏𝑏, Lines from (11) to (20) generate a 

single sample path and Line (21) computes operating cost on the single sample path. Line (24) 

computes expected future cost based on operating costs of sample paths computed by Lines from 

(9) to (23). Line (27) solves IDH-GAP with the expected future costs computed for all 

combinations of product lot 𝑙𝑙 and alternative storage area 𝑏𝑏 by Lines from (7) to (26). Line (29)  
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IDH Algorithm:  
   

 Set 𝑡̂𝑡 as the present decision epoch and define 𝐬̅𝐬𝑡̂𝑡, 𝐢𝐢𝑡̂̅𝑡, and 𝐫̅𝐫𝑡̂𝑡 (1) 
 Compute 𝑐𝑐𝑙𝑙�𝑠̅𝑠𝑡̂𝑡

𝑙𝑙 ,𝑏𝑏� for 𝑙𝑙 = 1, … , 𝐿𝐿 and 𝑏𝑏 = 1, … ,𝐵𝐵  (2) 
   

 IF CS is M (3) 
  Set 𝑓𝑓𝑙𝑙�𝑠̅𝑠𝑡̂𝑡

𝑙𝑙 ,𝑏𝑏�
M

= 0 for 𝑙𝑙 = 1, … , 𝐿𝐿 and 𝑏𝑏 = 1, … ,𝐵𝐵  (4) 
  Solve IDH-GAPM (5) 
 ELSE IF CS is S or D (6) 
  FOR 𝑙𝑙 = 1 to 𝐿𝐿 (7) 
   FOR 𝑏𝑏 = 1 to 𝐵𝐵 (8) 
    FOR 𝑘𝑘 = 0 to 𝐷𝐷max𝑙𝑙  (9) 
     FOR 𝜎𝜎 = 0 to SN (10) 
      Do 𝕚𝕚𝑡̂𝑡|𝑘𝑘|𝜎𝜎

𝑙𝑙 (0) ← 𝚤𝚤𝑡̂̅𝑡
𝑙𝑙  (11) 

      FOR 𝑗𝑗 = 0 to SL-1 (12) 
       Do 𝔻𝔻𝑡̂𝑡|𝑘𝑘|𝜎𝜎

𝑙𝑙 (𝑗𝑗) ← Rand(𝐷𝐷average𝑙𝑙 ) (13) 
       IF 𝕚𝕚𝑡̂𝑡|𝑘𝑘|𝜎𝜎

𝑙𝑙 (𝑗𝑗) > 0 (14) 
        Do 𝕚𝕚𝑡̂𝑡|𝑘𝑘|𝜎𝜎

𝑙𝑙 (𝑗𝑗+1) ← max�0, 𝕚𝕚𝑡̂𝑡|𝑘𝑘|𝜎𝜎
𝑙𝑙 (𝑗𝑗) −𝔻𝔻𝑡̂𝑡|𝑘𝑘|𝜎𝜎

𝑙𝑙 (𝑗𝑗)� (15) 
       ELSE IF 𝕚𝕚𝑡̂𝑡|𝑘𝑘|𝜎𝜎

𝑙𝑙 (𝑗𝑗) = 0 (16) 
        Do 𝕚𝕚𝑡̂𝑡|𝑘𝑘|𝜎𝜎

𝑙𝑙 (𝑗𝑗+1) ← max�0,𝑄𝑄𝑙𝑙 − 𝔻𝔻𝑡̂𝑡|𝑘𝑘|𝜎𝜎
𝑙𝑙 (𝑗𝑗)� (17) 

       END IF (18) 
      NEXT FOR (19) 
      𝔻𝔻𝑡̂𝑡|𝑘𝑘|𝜎𝜎

𝑙𝑙 (SL) ← Rand(𝐷𝐷average𝑙𝑙 ) (20) 

      Compute 𝑐𝑐�[𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎
𝑙𝑙 �

CS
 (21) 

     NEXT FOR (22) 
    NEXT FOR (23) 

    

Do 

𝑓𝑓𝑙𝑙�𝑠̅𝑠𝑡̂𝑡
𝑙𝑙 ,𝑏𝑏�

CS
← � ��

Pr(𝐷𝐷𝑙𝑙=𝑘𝑘)
𝑆𝑆𝑆𝑆

𝑐𝑐�[𝕚𝕚,𝔻𝔻]𝑡̂𝑡+1|𝑘𝑘|𝜎𝜎
𝑙𝑙 �

CS
�

𝑆𝑆𝑆𝑆

𝜎𝜎=1

𝐷𝐷max
𝑙𝑙

𝑘𝑘=0

 
(24) 

   NEXT FOR (25) 
  NEXT FOR (26) 
  Solve IDH-GAPCS (27) 
 END IF (28) 
   

 
Do 

𝑎𝑎�𝑡̂𝑡
𝑙𝑙 = argmax

𝑏𝑏
�𝑥𝑥𝑏𝑏𝑙𝑙 �𝑏𝑏 = 1, … ,𝐵𝐵�  for 𝑙𝑙 = 1, … , 𝐿𝐿 (29) 

 Return 𝐚𝐚�𝑡̂𝑡 = �𝑎𝑎�𝑡̂𝑡
1,𝑎𝑎�𝑡̂𝑡

2, . . .𝑎𝑎�𝑡̂𝑡
𝐿𝐿�  (30) 

   

Figure 3.7: Pseudo-code of IDH algorithm 
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defines the selected action for each product lot based on the solution of IDH-GAP. Note in the 

solution of IDH-GAP, 𝑥𝑥𝑏𝑏𝑙𝑙  = 1 indicates product lot 𝑙𝑙 is assigned to storage area 𝑏𝑏; by Constraints 

(3.30) of IDH-GAP, for product lot 𝑙𝑙, only one decision variable is equal to one and the others 

are equal to zero. Therefore, the right hand side of the equation in Line (29) returns the index of 

the selected storage area for product lot 𝑙𝑙. 

 
4.2.5. Performance of IDH 

In this section, benchmarking the performance of the optimal policy of MDP-DBS, we define 

IDH’s performance mathematically referring to Chang et al. (2013)’s theorem about the 

approximate rolling horizon control’s performance. The approximate rolling horizon control 

estimates the minimum future cost of a product lot using a sampling technique like IDH but, 

unlike IDH, predetermines an action for every state in the off-line fashion. To facilitate defining 

IDH’s performance mathematically, consider the notation of Table 3.6. 

Table 3.6: Notations for defining performance of IDH 

Notation Description 
MDP-DBS∞ infinite horizon MDP-DBS 
MDP-DBS𝑆𝑆𝑆𝑆 finite horizon MDP-DBS over period from day 0 to 𝑆𝑆𝑆𝑆 
𝜋𝜋∗,𝜋𝜋∗(𝐬𝐬) stationary optimal policy of MDP-DBS∞, predetermined action for state 𝐬𝐬 in 𝜋𝜋∗ 
𝜋𝜋fh,𝜋𝜋𝑡𝑡fh(𝐬𝐬) non stationary optimal policy of MDP-DBS𝑆𝑆𝑆𝑆 such that 𝜋𝜋fh = �𝜋𝜋𝑡𝑡fh, 𝑡𝑡 =

0, . . , 𝑆𝑆𝑆𝑆�, predetermined action for state 𝐬𝐬 observed at day 𝑡𝑡 in 𝜋𝜋𝑡𝑡fh 
𝜋𝜋IDH,𝜋𝜋IDH(𝐬𝐬) stationary policy established by IDH, predetermined action for state 𝐬𝐬 by 𝜋𝜋IDH 
𝐶𝐶max upper bound on daily cost 
 

Consider 𝜋𝜋fh. Basically, IDH is designed to determine an action for the observed state in on-

line manner. However, using IDH, we can established a policy by solving IDH-GAP for all 𝐬𝐬 ∈ 𝐒𝐒 

and then, properly transforming their solutions into the form of the policy. 
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Letting 𝑉𝑉∗(𝐬𝐬) be the optimal reward-to-go value for state 𝐬𝐬 ∈ 𝐒𝐒, 𝑉𝑉∗(𝐬𝐬) is defined for all 𝐬𝐬 ∈ 𝐒𝐒  

as follows: 

𝑉𝑉∗(𝐬𝐬) = 𝐶𝐶�𝐬𝐬,𝜋𝜋∗(𝐬𝐬)� + 𝜆𝜆 � 𝑃𝑃�𝐬𝐬+|𝐬𝐬,𝜋𝜋∗(𝐬𝐬)�
𝐬𝐬+∈𝐒𝐒

𝑉𝑉∗(𝐬𝐬+). (3.47) 

Letting 𝑉𝑉IDH(𝐬𝐬) be the IDH-reward-to-go value for state 𝐬𝐬 ∈ 𝐒𝐒, 𝑉𝑉IDH(𝐬𝐬) is defined for all 𝐬𝐬 ∈

𝐒𝐒  as follows: 

𝑉𝑉IDH(𝐬𝐬) = 𝐶𝐶�𝐬𝐬,𝜋𝜋IDH(𝐬𝐬)�+ 𝜆𝜆 � 𝑃𝑃�𝐬𝐬+|𝐬𝐬,𝜋𝜋IDH(𝐬𝐬)�
𝐬𝐬+∈𝐒𝐒

𝑉𝑉IDH(𝐬𝐬+). (3.48) 

Letting 𝒱𝒱𝑡𝑡∗(𝐬𝐬) be the optimal reward-to-go value for state 𝐬𝐬 ∈ 𝐒𝐒 over period from day 𝑡𝑡 to 𝑆𝑆𝑆𝑆, 

𝒱𝒱𝑡𝑡∗(𝐬𝐬) is defined for all 𝐬𝐬 ∈ 𝐒𝐒 as follows: 

𝒱𝒱𝑡𝑡∗(𝐬𝐬) = 𝐶𝐶�𝐬𝐬,𝜋𝜋𝑡𝑡fh(𝐬𝐬)� + 𝜆𝜆 � 𝑃𝑃�𝐬𝐬+|𝐬𝐬,𝜋𝜋𝑡𝑡fh(𝐬𝐬)�
𝐬𝐬+∈𝐒𝐒

𝒱𝒱𝑡𝑡+1∗ (𝐬𝐬+) (3.49) 

where  
𝒱𝒱𝑆𝑆𝑆𝑆∗ (𝐬𝐬) = 𝐶𝐶�𝐬𝐬,𝜋𝜋𝑆𝑆𝑆𝑆fh (𝐬𝐬)�. (3.50) 

Notice 𝒱𝒱1∗(𝐬𝐬) represents the expected future cost over period from day 1 to 𝑆𝑆𝑆𝑆 when following 

the policy 𝜋𝜋fh in selecting an action for the observed state. 

Letting 𝒱𝒱IDH(𝐬𝐬) be the IDH-reward-to-go value for state 𝐬𝐬 ∈ 𝐒𝐒 over period from day 1 to 𝑆𝑆𝑆𝑆, 

𝒱𝒱IDH(𝐬𝐬) is defined as follows: 

𝒱𝒱IDH(𝐬𝐬) = �𝑓𝑓𝑙𝑙 �𝑠𝑠𝑙𝑙 ,𝜋𝜋IDH|𝑙𝑙�𝑠𝑠𝑙𝑙��
𝐿𝐿

𝑖𝑖=1

 (3.51) 

where 𝜋𝜋IDH|𝑙𝑙 is a collection of decision rules of product lot 𝑙𝑙 for every state which are 

predetermined in 𝜋𝜋IDH. It produces product lot 𝑙𝑙’s action given its state 𝑠𝑠𝑙𝑙. Notice 𝒱𝒱IDH(𝐬𝐬) 

represents the expected future cost over period from day 1 to 𝑆𝑆𝑆𝑆 IDH computes. 
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Compared to the optimal policy of MDP-DBS, IDH’s performance is mathematically defined 

as follows: 

0 ≤ 𝑉𝑉∗(𝐬𝐬) − 𝑉𝑉IDH(𝐬𝐬) ≤
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚  
1 − 𝜆𝜆

𝜆𝜆𝑆𝑆𝑆𝑆+1 +
2𝜆𝜆𝜆𝜆

1 − 𝜆𝜆
 (3.52) 

where  
𝜖𝜖 ≥ �𝒱𝒱1

∗(𝐬𝐬) − 𝒱𝒱IDH(𝐬𝐬)� (3.53) 

For details of proving IDH’s performance, refer to Chang et al. (2013). 

 
5. Numerical Experiment 

In this section, we validate IDH and analyze relocation behaviors of product lots using simulation 

experiments. Section 5.1 investigates performance of IDH in terms of the optimality gap and the 

computation time. It compares performance indicators of IDHs based on different ways of 

estimating future cost: the MP strategy, the BSSPwRuSD strategy, and the BSSPwRuDD strategy. 

Section 5.2 explores the tuning parameters of IDH, the number of samples and the length of the 

sample. It shows how IDH’s performance changes by different settings of the tuning parameters. 

Section 5.3 scrutinizes relocation-behaviors of product lots in a dynamic block stacking system and 

characterizes them based on the inventory level and the row depth. 

For numerical experiments, we developed a discrete-event simulation where a block stacking 

system’s operations are represented as a sequence of discrete events. The simulation model 

assumes at a decision epoch, a series of events occurs in an instant and the system state changes 

immediately. The series of events refers to sequential operations: observing on the system state 

𝐬𝐬; determining system action 𝐚𝐚 ∈ 𝐀𝐀𝐢𝐢; replenishing and relocating product lots; and then, 

retrieving unit loads by demand. No event is assumed between two consecutive decision epochs; 

thus, the simulation time jumps directly from the present decision epoch to the next decision 

epoch. At a decision epoch under a simulation time frame, the simulation model gives a system 
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state 𝐬̅𝐬 and requests a controller determine a system action 𝐚𝐚. A controller solves IDH-GAP using 

CPLEX 12.6.3 and returns 𝐚𝐚� to the simulation model. Once 𝐬̅𝐬 and 𝐚𝐚� are given at a decision 

epoch, the simulation model randomly defines the system state at the next decision epoch 𝐬̅𝐬+ 

according to the probability distribution of system-state-transition, 𝑃𝑃(𝐬𝐬+|𝐬̅𝐬,𝐚𝐚�). Each product lot’s 

daily demand follows a Poisson distribution and average daily demand is defined by the 

instance-generating-procedure introduced in Appendix B of CHAPTER 2. 

In the experiments, we used randomly generated instances of three groups, as defined in Table 

3.7. For details of the random generation, refer to Appendix B of CHAPTER 2. Each group is 

distinguished from others in the set of the number of lots and the set of the number of row depth 

types. Based on the number of variables in IDH-GAP, the instances in Group 1, Group 2, and 

Group 3 are referred to as small-sized, medium-sized, and large-sized problems. We consider a 

medium-sized problem to be a practical-sized problem. However, we recognize that large-sized 

problems exist, but not as widely as medium-sized problems.  

Table 3.7: Summary of instances randomly generate for the simulation experiment 

 Group 1 Group 2 Group 3 
Set of the number of lots {10, 15, 20} {30, 40, 50} {100, 150, 200} 
Set of the number of row depth types {4, 5, 6} {6, 7, 8} {8} 
Number of instance types 9 9 3 

Number of row 
positions in storage area  

Average 14.33 30.88 35.67 
Min 6 38 37 
Max 23 25 34 

Number of decision 
variables in IDH-GAP 

Average 75 280 1200 
Min 40 180 800 
Max 120 400 1600 

 
A single instance type is defined by mixing elements of two sets. Taking all combinations of 

the possible values of the each element, 9, 9, and 3 instance types are defined in Group 1, 2, and 

3 respectively. We specify each instance type using the two-tuple (𝐿𝐿|𝐵𝐵) where L and B 
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respectively indicate the number of lots and the number of storage areas considered. We created 

one case per a single instance type and replicated five times the simulation experiment of a single 

case. Thus, a total of 45, 45, and 15 simulation experiments of Group 1, 2 and 3 were performed. 

For each instance, the number of decision variables of IDH-GAP is computed by L*B. 

The experiment runs a single simulation model over 260 days of the simulation-time horizon, 

assuming there are 260 business days in a year. Daily discount factor 𝜆𝜆 is set as 0.99980274 

derived from an annual discount factor of 0.95. All experiments were conducted on an Intel 

Xeon Processor X5670 (hexa-core, 12M cache, 2.93 GHz) with 24 GB RAM and execution files 

were run on a UNIX platform.  

 
5.1. Validation of IDH 

After simulating, product lots’ daily demands and daily inventory levels are known; 

consequently, we have an instance of Block Stacking Multiple Products with Relocation under 

Deterministic Demand (BSMPwRuDD), which is deeply investigated in CHAPTER 2. The 

problem of optimizing BSMPwRuDD is formulated as an integer program and referred to as IP-

BSMPwRuDD. For more details of IP-BSMPwRuDD and its solution procedure, refer to 

CHAPTER 2. Comparing the operating cost of the solution obtained by IDH and by solving IP-

BSMPwRuDD, the former is greater than or equal to the latter. This is a natural consequence, 

because IDH’s solution is based on uncertain daily inventory levels and daily demands; whereas, 

IP-BSMPwRuDD’s solution is based on known inventory levels and daily demands over a time 

horizon. Therefore, in validating IDH, we adopted the objective function value of IP-

BSMPwRuDD as a lower bound to the objective function value of IDH’s solution. 

In this section, we compare the results of solving instances of BSMPwRuSD using IDH based 

on the MP strategy, the BSSPwRuSD strategy, and the BSSPwRuDD strategy. Hereafter, to 
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simplify the expression, let M, S, and D indicate the MP strategy, the BSSPwRuSD strategy, and 

the BSSPwRuDD strategy and be used as a superscript in notations if required. For example, 

IDH𝑀𝑀 represents IDH based on the MP strategy. 

Let OFV𝑖𝑖, 𝑖𝑖 ∈ {M, S, D} be the objective function value of IDH-GAP𝑖𝑖, 𝑖𝑖 ∈ {M, S, D}. 

Additionally, OFV∗ represents the optimal objective function value of IP-BSMPwRuDD and 

OFV𝐿𝐿𝐿𝐿 indicates the optimal objective function value of the linearly-relaxed IP-BSMPwRuDD. 

IP-BSMPwRuDD; linearly-relaxed IP-BSMPwRuDD were solved by CPLEX 12.6.3. Notice the 

following inequality is valid among OFV𝑀𝑀, OFV𝑆𝑆, OFV𝐷𝐷, OFV∗, and OFV𝐿𝐿𝐿𝐿: 

OFV𝐿𝐿𝐿𝐿 ≤ OFV∗ ≤ OFV𝑀𝑀 , OFV𝑆𝑆, OFV𝐷𝐷 (3.54) 

 
5.1.1. Optimality gap analysis 

In this section, we compare the performance of IDH𝑀𝑀 , IDH𝑆𝑆  and IDH𝐷𝐷 based on the optimality 

gap and the computation time. For 𝑖𝑖 ∈ {M, S, D}, let Gap∗𝑖𝑖  and Gap𝐿𝐿𝐿𝐿𝑖𝑖  be the optimality gap 

computed as follows: 

Gap∗𝑖𝑖 = �OFV𝑖𝑖 − OFV∗� OFV∗⁄  (3.55) 

Gap𝐿𝐿𝐿𝐿𝑖𝑖 = �OFV𝑖𝑖 − OFV𝐿𝐿𝐿𝐿� OFV𝐿𝐿𝐿𝐿⁄  (3.56) 

For optimality gap analysis, we consider the results of simulation experiments of instances 

where CPLEX obtains the optimal solution of the corresponding IP-BSMPwRuDD within 24 

hours. In the experiment, the following six instances of Group 1 satisfied this criterion: (10|4)-, 

(15|4)-, (15|5)-, (20|4)-, (10|5)-, and (10|6)-instance. Unlike the first four instances, the last two 

instances resulted in extremely low OFV𝐿𝐿𝐿𝐿. Thus, we conducted separate analysis for the first 

four instances and for the last two instances. 
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Table 3.8: Comparison of computation times, Gap∗
𝑖𝑖 s, 𝑖𝑖 ∈ {M, S, D}, and Gap𝐿𝐿𝐿𝐿

𝑖𝑖 s, 𝑖𝑖 ∈ {M, S, D} 
based on experiment results of simulating (10|4)-, (15|4)-, (15|5)-, and (20|4)-instance 

 IDH𝑀𝑀 IDH𝑆𝑆 IDH𝐷𝐷 

Average computation Time (sec) 
Total time 0.13 0.24 28.28 
Sampling time 0.00 0.11 0.11 
Decision making time 0.13 0.13 28.17 

Optimality gap based on OFV∗ (%) 
(Gap∗

∙ ) 

Average 1.43 0.75 0.73 
Max 2.05 1.14 1.14 
Min 0.76 0.42 0.42 

Optimality gap based on OFV𝐿𝐿𝐿𝐿 (%) 
(Gap𝐿𝐿𝐿𝐿

∙ ) 

Average 3.73 3.03 3.01 
Max 6.67 6.35 6.29 
Min 1.49 0.69 0.68 

 

Table 3.9: Comparison of computation times, Gap∗
𝑖𝑖 s, 𝑖𝑖 ∈ {M, S, D}, and Gap𝐿𝐿𝐿𝐿

𝑖𝑖 s, 𝑖𝑖 ∈ {M, S, D} 
based on experiment results of simulating (10|5)- and (10|6)-instance 

 IDH𝑀𝑀 IDH𝑆𝑆 IDH𝐷𝐷 

Average computation Time (sec) 
Total time 0.15 0.38 52.27 
Sampling time 0.00 0.22 0.22 
Decision making time 0.15 0.15 52.04 

Optimality gap based on OFV∗ (%) 
Average 1.21 1.20 1.20 
Max 1.46 1.56 1.56 
Min 1.05 1.00 0.94 

Optimality gap based on OFV𝐿𝐿𝐿𝐿 (%) 
Average 25.31 25.32 25.31 
Max 43.82 43.99 43.99 
Min 10.46 10.35 10.25 

 
Table 3.8 and Table 3.9 summarizes the experimental results of simulating (10|4)-, (15|4)-, 

(15|5)-, and (20|4)-instances and simulating (10|5)- and (10|6)-instances. In both tables, the 

second row contains the computation time of IDH𝑀𝑀 , IDH𝑆𝑆 and IDH𝐷𝐷required to solve a single 

instant-action-determination problem in the simulation experiment. The fifth row represents the 

average of Gap∗𝑀𝑀, Gap∗𝑆𝑆, and Gap∗𝐷𝐷 and the eighth row shows the average of Gap𝐿𝐿𝐿𝐿𝑀𝑀 , Gap𝐿𝐿𝐿𝐿𝑆𝑆 , and 

Gap𝐿𝐿𝐿𝐿𝐷𝐷 . 

Based on the small values of average Gap∗𝑀𝑀, Gap∗𝑆𝑆, and Gap∗𝐷𝐷 shown in the fifth row of Table 

3.8 and Table 3.9, we concluded IDH𝑀𝑀 , IDH𝑆𝑆, and IDH𝐷𝐷 work well for small-sized instances. 
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In both tables, IDH𝑀𝑀 provides the worst solution with the shortest computation time and 

IDH𝐷𝐷 gives the best solution with the longest computation time. The computation time of IDH𝐷𝐷 

is not too long for small-sized instances but increases as the number of product lots and the 

number of storage areas increase. Thus, IDH𝐷𝐷 may be an impractical solution procedure for 

large-sized instances. Gap∗𝑆𝑆 is very close to Gap∗𝐷𝐷 and computation time of IDH𝑆𝑆 is significantly 

shorter than one of IDH𝐷𝐷. Thus, IDH𝑆𝑆 may be a good alternative to IDH𝐷𝐷 in solving a large-

sized instance. 

Comparison of the fifth row and the eighth row in Table 3.8 and in Table 3.9 show OFV∗ is 

closer to OFV𝑖𝑖s, 𝑖𝑖 ∈ {M, S, D} rather than OFV𝐿𝐿𝐿𝐿. 

Consider the rows concerning Gap𝐿𝐿𝐿𝐿𝑀𝑀 , Gap𝐿𝐿𝐿𝐿𝑆𝑆 , and Gap𝐿𝐿𝐿𝐿𝐷𝐷  in both tables. Interestingly, the 

values are very large in Table 3.9. This observation can be explained by two keywords, lot 

splitting and space utilization. Naturally, linearly-relaxed IP-BSMPwRuDD allows lot splitting 

of a product lot into different storage areas. Therefore, the solution of linearly-relaxed IP-

BSMPwRuDD stores no unit load in the extra storage area as long as the inventory level remains 

less than the capacity of the regular storage area. On the other hand, IDH𝑖𝑖s, 𝑖𝑖 ∈ {M, S, D} and IP-

BSMPwRuDD assume no lot splitting; thus, their solutions sometimes store unit loads in the 

extra storage area even though the inventory level is less than the capacity of the regular storage 

area. In other words, because of the different assumptions concerning lot splitting, the number of 

unit loads stored in the extra storage area in the solution of linearly-relaxed IP-BSMPwRuDD is 

resistant to increasing space utilization and the number of unit loads stored in the extra storage 

area in the solutions of IDH𝑖𝑖s, 𝑖𝑖 ∈ {M, S, D} and IP-BSMPwRuDD increases as space utilization 

increases. Because storing unit loads in the extra storage area incurs penalty cost, for IDH𝑖𝑖s, 𝑖𝑖 ∈

{M, S, D} and IP-BSMPwRuDD, increased space utilization results in a solution with larger 
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penalty costs. Consequently, the greater space utilization, the greater the gap between OFV𝐿𝐿𝐿𝐿 

and OFV∗, OFV𝑀𝑀, OFV𝑆𝑆, and OFV𝐷𝐷. 

For example, Table 3.10 compares the experiment results of simulatinga  (10|4)-instance and 

a (10|5)-instance. In the first row of the table, Gap𝐿𝐿𝐿𝐿∗  represents the gap between OFV𝐿𝐿𝐿𝐿 and 

OFV∗ computed by �OFV∗-OFV𝐿𝐿𝐿𝐿� OFV𝐿𝐿𝐿𝐿⁄ . Table 3.10 shows, when space utilization is higher, 

the gaps between OFV𝐿𝐿𝐿𝐿 and OFV∗, OFV𝑀𝑀, OFV𝑆𝑆, and OFV𝐷𝐷 are larger. In the second row 

corresponding to the instance of lower space utilization, all indicators of the gap are less than 5% 

and in the third row corresponding to the instance of higher space utilization, greater than 16%. 

Table 3.10: Impact of space utilization on Gap𝐿𝐿𝐿𝐿∗  and Gap𝐿𝐿𝐿𝐿𝑖𝑖 s, 𝑖𝑖 ∈ {M, S, D} in simulation 
experiments of (10|4)- and (10|5)-instance 

Instance # of days when space 
utilization is over 80% 

Gap𝐿𝐿𝐿𝐿∗  
(%) 

Gap𝐿𝐿𝐿𝐿𝑀𝑀  
(%) 

Gap𝐿𝐿𝐿𝐿𝑆𝑆  
(%) 

Gap𝐿𝐿𝐿𝐿𝐷𝐷  
(%) 

(10|4) 30.4 2.89 4.51 3.71 3.66 
(10|5) 71.2 16.53 18.03 17.90 17.90 

 
5.1.2. Reliability of feasible solution 

In this section, we show IDH𝑀𝑀and IDH𝑆𝑆 also work well for practical-sized instances of Group 2 

and Group 3 and we compare their performances based on the associated computation time and 

Gap𝐿𝐿𝐿𝐿𝑀𝑀  and Gap𝐿𝐿𝐿𝐿𝑆𝑆 . Notice CPLEX cannot obtain an optimal solution of any IP-BSMPwRuDD 

corresponding to each instance of Group 2 and Group 3 within 24 hours; consequently, OFV∗ 

and Gap∗𝑀𝑀 and Gap∗𝑆𝑆 are unavailable. For the analysis, we consider the results of 60 simulation 

experiments of Group 2 and Group 3 instances. 

Table 3.11 summarizes the comparison of Gap𝐿𝐿𝐿𝐿𝑀𝑀  and Gap𝐿𝐿𝐿𝐿𝑆𝑆 . Considering the observation 

that OFV∗ is closer to OFV𝑀𝑀 and OFV𝑆𝑆 rather than OFV𝐿𝐿𝐿𝐿, Gap∗𝑀𝑀 and Gap∗𝑆𝑆 would be less than 
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the corresponding Gap𝐿𝐿𝐿𝐿𝑀𝑀  and Gap𝐿𝐿𝐿𝐿𝑆𝑆  given in Table 3.11. Thus, IDH𝑀𝑀and IDH𝑆𝑆 work well for 

practical-sized instances. 

Table 3.11: Comparison of Gap𝐿𝐿𝐿𝐿𝑀𝑀  and Gap𝐿𝐿𝐿𝐿𝑆𝑆  based on the experiments results of simulating 
Group 2 instances and Group 3 instances 

 

Table 3.12 provides computation times of IDH𝑀𝑀 and IDH𝑆𝑆 to solve a single instant-action-

determination problem in the simulation experiment. Even though the computation time of IDH𝑀𝑀 

and IDH𝑆𝑆 increases as the number of product lots increases, it is still very small for practical-

sized instances. 

Table 3.12: Comparison of computation time of IDH𝑀𝑀  and IDH𝑆𝑆 spent to solve a single instant-
action-determination problem in experiment of simulating Group 2 instances and Group 3 
instances 

Instances 
Number of 
simulation 
experiment 

Average time (sec) 
IDH𝑀𝑀 IDH𝑆𝑆 

Total Sampling Decision 
making Total Sampling Decision 

making 
(30|∙) 15 0.58 0.00 0.58 1.28 0.66 0.62 
(40|∙) 15 0.70 0.00 0.70 1.51 0.71 0.81 
(50|∙) 15 0.84 0.00 0.84 1.71 0.76 0.94 

(100|8) 5 0.96 0.00 0.96 1.68 0.85 0.83 
(150|8) 5 0.92 0.00 0.92 2.02 0.96 1.06 
(200|8) 5 0.44 0.00 0.44 1.56 0.95 0.62 

 

Instances Number of simulation 
experiment 

Gap𝐿𝐿𝐿𝐿𝑀𝑀  Gap𝐿𝐿𝐿𝐿𝑆𝑆  
Average Max Min Average Max Min 

Group 
2 

(30|∙) 15 5.63 7.12 4.13 5.50 6.94 3.73 
(40|∙) 15 4.31 5.28 2.87 4.03 5.01 2.55 
(50|∙) 15 4.49 5.26 3.35 4.09 4.89 3.11 

Group 
3 

(100|8) 5 4.79 5.07 4.53 3.04 3.18 2.93 
(150|8) 5 4.92 5.15 4.63 2.27 2.41 2.04 
(200|8) 5 4.43 4.67 4.33 1.43 1.53 1.35 
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Comparing IDH𝑀𝑀 and IDH𝑆𝑆, IDH𝑀𝑀 is yields the smallest computation times and IDH𝑆𝑆 yields 

the smallest optimality gaps. To solve practical-sized instances of BSMPwRuSD, we recommend 

using IDH𝑆𝑆 based on a smaller optimality gap and short computation time even though it is 

longer than the computation time with IDH𝑀𝑀. 

 
5.2. Analysis of tuning parameters of IDH 

In this section, we investigate the tuning parameters of IDH, i.e., the number of samples, SN and 

the length of the sample, SL. More specifically, a two-way ANOVA analysis was performed to 

check whether SN and SL and their interaction have a statistically significant effect on the 

performance of IDH𝑆𝑆. For the results of preliminary analysis regarding the normality assumption 

of residuals and the homogeneity assumption of variance, refer to Appendix A of this chapter. 

A possible hypothesis concerning IDH is a larger number of samples of longer time horizon in 

solving an instance of BSMPwRuSD results in a better solution by incurring lower operating 

cost. In other words, IDH with SN = 50 and SL = 50 may guarantee a better solution compared to 

IDH with SN = 10 and SL = 10. In this section, we verify this hypothesis with the results of the 

ANOVA analysis. 

Table 3.13 summarizes the design factors of the two-way ANOVA analysis. We conducted 

the two-way ANOVA analysis with 9 practical-sized instances of Group 2. The dependent 

variable is the ratio of Gap𝐿𝐿𝐿𝐿𝑆𝑆  to Gap𝐿𝐿𝐿𝐿𝑀𝑀 , in order to normalize Gap𝐿𝐿𝐿𝐿𝑆𝑆  over different instances of 

OFV𝐿𝐿𝐿𝐿. Independent variables are SN and SL; the set of their levels is {10, 20, 30, 40, 50}. For 

each instance, we performed experiments for all of each combination of SN and SL; the 

experiment with the same combination is replicated three times. 
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Table 3.13: Design factors of the two-way ANOVA  

Design factor Specifics 
Instances (L|B)-instance, L = 30, 40, 50 and B = 6, 7, 8 
Dependent variable Gap𝐿𝐿𝐿𝐿𝑆𝑆 Gap𝐿𝐿𝐿𝐿𝑀𝑀⁄  
Independent variables SN and SL 

Level of independent variables SN {10, 20, 30, 40, 50} 
SL {10, 20, 30, 40, 50} 

Experiment plan Factorial design 
Replication  3 times 

 
Table 3.14Table 3.14 summarizes the results of two-way ANOVA carried out on Gap𝐿𝐿𝐿𝐿𝑆𝑆 Gap𝐿𝐿𝐿𝐿𝑀𝑀⁄  

by SN level and SL level for instances of Group 2. From Table 3.14, for the (30|6) instance, there 

was a statistically significant effect of SN on Gap𝐿𝐿𝐿𝐿𝑆𝑆 Gap𝐿𝐿𝐿𝐿𝑀𝑀⁄  (p = 0.023) and SL on Gap𝐿𝐿𝐿𝐿𝑆𝑆 Gap𝐿𝐿𝐿𝐿𝑀𝑀⁄  

(p = 0.014). The result of Tukey’s HSD post hoc test indicates SL = 20 was significantly different 

from SL = 30 (p = 0.010); there is no significant difference between any other pairs of SN levels. 

For the (30|7) instance, there was no statistically significant effect of SN and SL on Gap𝐿𝐿𝐿𝐿𝑆𝑆 Gap𝐿𝐿𝐿𝐿𝑀𝑀⁄ . 

For the (30|8) instance, there was a statistically significant interaction between the effects of SN 

and SL on Gap𝐿𝐿𝐿𝐿𝑆𝑆 Gap𝐿𝐿𝐿𝐿𝑀𝑀⁄  (p = 0.039). The result of Tukey’s HSD post hoc test indicates the pair of 

SN=10 and SL=40 and SN=20 and SL=10 were significantly different from each other (𝑝𝑝 = 0.045) 

and, for SN=20, SL=10 was significantly different from SL=40 (𝑝𝑝 = 0.032).  

The results of the two-way ANOVAs for the (30|6)-, (30|7)-, and (30|8)-instances show 

different SN levels and SL levels led to statistically different Gap𝐿𝐿𝐿𝐿𝑆𝑆 Gap𝐿𝐿𝐿𝐿𝑀𝑀⁄ s. The difference is, 

however, observed only in few pairs of SN levels and SL levels; most pairs of SN levels and SL 

levels resulted in statistically the same Gap𝐿𝐿𝐿𝐿𝑆𝑆 Gap𝐿𝐿𝐿𝐿𝑀𝑀⁄ s. Thus, SN level and SL level determine 

the performance of IDH𝑆𝑆. Figure 3.8 displays boxplots of Gap𝐿𝐿𝐿𝐿𝑆𝑆 Gap𝐿𝐿𝐿𝐿𝑀𝑀⁄  and SN and 

Gap𝐿𝐿𝐿𝐿𝑆𝑆 Gap𝐿𝐿𝐿𝐿𝑀𝑀⁄  and SL for (30|6)-, (30|7)-, and (30|8)-instances. No clear pattern is revealed in 

the boxplots. 
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Table 3.14: Results of two-way ANOVA carried out on the ratio of Gap𝐿𝐿𝐿𝐿𝑆𝑆  to Gap𝐿𝐿𝐿𝐿𝑀𝑀  by SN level 
and SL level  

  Df Sum Sq Mean Sq F-value Pr (> F) 

(30|6)- 
instance 

SN 4 .0112 .0028 3.1144 .0230* 
SL 4 .0126 .0031 3.4898 .0137* 
SL:SL 16 .0122 .0008 .8495 .0623 
Residuals 50 .0450 .0009  

(30|7)- 
instance 

SN 4 .0020 .0005 .4028 .8057 
SL 4 .0007 .0002 .1296 .9709 
SL:SL 16 .0143 .0009 .7122 .7684 
Residuals 50 .0629 .0013  

(30|8)- 
instance 

SN 4 .0112 .0028 4.6542 .0028* 
SL 4 .0052 .0013 2.1525 .0880 
SL:SL 16 .0186 .0012 1.9349 .0388* 
Residuals 50 .0301 .0006  

(40|6) 
instance 

SN 4 .0092 .0023 1.6233 .1830 
SL 4 .0187 .0047 3.2934 .0180* 
SL:SL 16 .0210 .0013 .9223 .5501 
Residuals 50 .0710 .0014  

(40|7) 
instance 

SN 4 .0015 .0004 .3067 .8722 
SL 4 .0063 .0016 1.2743 .2925 
SL:SL 16 .0258 .0016 1.3009 .2339 
Residuals 50 .0619 .0012  

(40|8) 
instance 

SN 4 .0078 .0019 1.1612 .3391 
SL 4 .0012 .0003 .1776 .9489 
SL:SL 16 .0161 .0010 .6032 .8661 
Residuals 50 .0836 .0017  

(50|6) 
instance 

SN 4 .0065 .0016 1.0312 .4005 
SL 4 .0127 .0032 2.0208 .1057 
SL:SL 16 .0204 .0013 .8138 .6641 
Residuals 50 .0784 .0016  

(50|7) 
instance 

SN 4 .0023 .0006 .4480 .7733 
SL 4 .0266 .0066 5.1986 .0014* 
SL:SL 16 .0152 .0010 .7434 .7372 
Residuals 50 .0639 .0013  

(50|8) 
instance 

SN 4 .0043 .0011 .6996 .5959 
SL 4 .0148 .0037 2.4066 .0617 
SL:SL 16 .0146 .0009 .5954 .8723 
Residuals 50 .0768 .0015  

Note: * p < .05 



 

127 
 

 

Figure 3.8: Boxplots of the ratio of Gap𝐿𝐿𝐿𝐿𝑆𝑆  to Gap𝐿𝐿𝐿𝐿𝑀𝑀  and SN and the ratio of Gap𝐿𝐿𝐿𝐿𝑆𝑆  to Gap𝐿𝐿𝐿𝐿𝑀𝑀  and 
SL for (30|6)-, (30|7)-, and (30|8)-instance  

Likewise, based on the results of the two-way ANOVAs for (40|6)-, (40|7)-, and (40|8)-

instance and (50|6)-, (50|7)-, and (50|8)-instance, we cannot conclude SN level and SL level 

controls the performance of IDH𝑆𝑆. In addition, all boxplots of Gap𝐿𝐿𝐿𝐿𝑆𝑆 Gap𝐿𝐿𝑃𝑃𝑀𝑀⁄  and SN and 
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Gap𝐿𝐿𝐿𝐿𝑆𝑆 Gap𝐿𝐿𝐿𝐿𝑀𝑀⁄  and SL for these instances show no clear pattern (the boxplots for (40|6)-, (40|7)-, 

and (40|8)-instances and (50|6)-, (50|7)-, and (50|8)-instances are given in Appendix A of this 

chapter). 

The results of the two-way ANOVAs indicate in most of cases, different pairs of SN level and 

SL level produced statistically the same Gap𝐿𝐿𝐿𝐿𝑆𝑆 Gap𝐿𝐿𝐿𝐿𝑀𝑀⁄ s. This observation was common over all 

instances regardless of the number of product lots and storage areas considered. It suggests the 

quality of OFV𝑆𝑆 is hardly affected by SN level and SL level and indicates there is no benefit of 

setting SN and SL as a larger number. Note the computation time of IDH increases as the value 

of SN and SL increases. Based on these findings, we suggest setting SN as 10 and SL as 10 when 

using IDH to solve practical-sized instances of BSMPwRuSD. 

 
5.3. Analysis of relocation behavior 

In this section, we analyze relocation-behaviors of product lots in a dynamic block stacking 

system and characterize them based on the inventory level and the row depth. The relocation-

behavior indicates whether a product lot is relocated at a decision epoch and, if so, from which 

deep storage area to which deep storage area. Therefore, in the analysis, the case of changing 

row depth at replenishment point is not considered. In this section, the analysis is based on data 

collected from the experiments of simulating (30|6)-, (40|6)-, and (50|6)-instances. Summaries of 

product lots’ relocation-behaviors of every instance are provided in Appendix B of this chapter. 

Table 3.15 summarizes the percentage of every scenario of relocation-behavior of a product 

lot in the experiment of simulating (30|6)-, (40|6)-, and (50|6)-instances. On average, about 75% 

of product lots remain in their current storage area and about 25% of product lots are relocated at 

decision epoch. Relocation to a shallower-deep storage area is more frequent than to a deeper-

deep storage area. 
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Table 3.15: Percentage of every scenarios of relocation-behavior of a product lot in the 
experiment of simulating (30|6)-, (40|6)-, and (50|6)-instance 

Scenario of relocation-behavior of a product lot Percentage (%) 
Product lot remains in current storage area 75.05 
Product lot relocated into shallower-deep storage area  17.23 
Product lot relocated into deeper-deep storage area  5.75 
Product lot relocated to extra storage area  1.15 
Product lot relocated from extra storage area 0.71 
Product lot remains in extra storage area 0.12 

 
Table 3.16 organizes the percentage of cases of relocating a product lot in the experiment of 

simulating (30|6)-, (40|6)-, and (50|6)-instances. The tenth column of the percentage of relocation 

from each storage area shows relocation from a deeper storage area is more frequent than from a 

shallower storage area. For example, the relocation from 20-deep storage area is most frequent. 

The tenth row of the percentage of relocation to each storage area shows relocation to a very 

shallow storage area is more frequent than to a less shallow storage area. For example, the 

relocation to 2-deep storage area is most frequent. The fifth and sixth row show when a current 

storage area is 5-deep or 10-deep, relocation to a shallower storage area is more frequent than to 

a less shallow storage area. For example, relocation from a 5-deep storage area to a 2-deep 

storage area is more frequent than to a 3-deep storage area. 

Table 3.16: Percentage of cases of relocating a product lot in the experiment of simulating 
(30|6)-, (40|6)-, and (50|6)-instance 

  Assigned storage area  
  2 3 5 10 15 20 Ex Sum 

Current 
storage 

area 

2 - 4.28 1.28 0.39 0.31 0.25 1.39 7.9 
3 11.5 - 2.08 0.87 0.53 0.74 0.69 16.41 
5 6.47 4.98 - 0.57 0.94 2.21 0.48 15.65 
10 5.13 4.56 2.04 - 3.89 1.6 0.66 17.88 
15 4.02 3.78 2.03 5.7 - 3.21 0.66 19.4 
20 3.84 3.18 6.24 2.18 3.66 - 0.79 19.89 
Ex 0.89 0.50 0.42 0.29 0.35 0.42 - 2.87 

 Sum 31.85 21.28 14.09 10.00 9.68 8.43 4.67 100 
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Interestingly, among cases of relocation to extra storage area and from extra storage area, the 

relocation from 2-deep storage area and to 2-deep storage area is most frequent. Considering 

inventory level of a product lot stored in a 2-deep storage area is low, it implies the IDH makes 

the assignment of product lots to a storage area where less number of unit loads are relocated 

from or to extra storage area. 

Table 3.17 summarize ratio of average inventory level at cases of relocating to average 

inventory level at cases of remaining in the experiment of simulating (30|6)-, (40|6)-, and (50|6)-

instance Rows corresponding to relocation from each storage area shows when current inventory 

level is more less than the average inventory level at cases of remaining, a product lot tends to be 

relocated to more shallower-deep storage area. For example, the ratio corresponding to relocation 

from 10-deep storage area to 2-deep storage area is less than to 3-deep storage area. In addition, 

when current inventory level is more greater than the average inventory level at cases of 

remaining, a product lot is likely to be relocated to more deeper storage area. For example, the 

ratio corresponding to relocation from 2-deep storage area to 5-deep storage area is greater than 

to 3-deep storage area 

Table 3.17: Ratio of average inventory level at cases of relocating to at cases of remaining in the 
experiment of simulating (30|6)-, (40|6)-, and (50|6)-instance 

  Assigned storage area 
  2 3 5 10 15 20 Ex 

Current 
storage 

area 

2 1 1.03 1.63 2.85 4.03 4.43 0.36 
3 0.29 1 0.67 1.15 1.53 1.91 0.22 
5 0.27 0.43 1 1.18 1.16 1.18 0.34 
10 0.24 0.38 0.55 1 0.93 1.03 0.42 
15 0.24 0.37 0.6 0.67 1 1.01 0.52 
20 0.22 0.3 0.46 0.9 0.83 1 0.51 
Ex 0.51 1.13 1.69 2.61 3.83 4.16 1 
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Table 3.18: Average inventory level of a product lot when it is relocated to each storage area in 
the experiment of simulating (30|6)-, (40|6)-, and (50|6)-instance 

 Assigned storage area 
Instance 2 3 5 10 15 20 Ex 
(30|6) 25.97 37.92 61.82 85.99 103.71 107.77 59.31 
(40|6) 16.16 27.35 42.15 71.26 82.87 94.82 24.01 
(50|6) 14.46 23.80 37.17 61.31 70.76 75.91 16.66 
Ave 17.14 28.12 45.03 70.43 82.77 87.45 27.08 

 
Table 3.18 organizes average inventory level of a product lot when it is relocated to each 

storage area in the experiment of simulating (30|6)-, (40|6)-, and (50|6)-instances. A product lot 

with lower (greater) inventory level is relocated to a shallower-deep (deeper-deep) storage area. 

The findings of this section provide an insight into the product lot’s relocation-behavior. Even 

though the analysis is only based on data collected from the experiment of simulating (30|6)-, 

(40|6)-, and (50|6)-instances, most findings are very common over all instances. The existence of 

patterns in product lots’ relocation-behaviors motivates developing a heuristic algorithm for 

solving practical-sized instances of BSMPwRuSD. For example, based on the observations in 

Table 3.17, when a product lot is stored in a 10-deep storage area and the ratio of its inventory 

level to the average inventory level at cases of remaining 10-deep storage area is 0.40, we can 

make a decision to relocate the product lot to a 3-deep storage area. 

 
6. Conclusions 

The first contribution of this research is formulating MDP-DBS, the first optimization model for 

block stacking multiple products with changeable row depth under stochastic demand. It 

provides a systematic framework of sequentially establishing a daily DBS plan of determining an 

assignment of product lots to storage areas for a period over a time horizon when product lots’ 

daily demands are uncertain. In defining a daily DBS plan, by taking account of immediate cost 

as well as expected future cost, MDP-DBS pursues the global optimum over a planning horizon 
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rather than the local optimum for a day. Theoretically, MDP-DBS can build an optimal policy by 

predetermining an optimal action in all states minimizing total expected cost over a planning 

horizon. In managing a block stacking system operation, an optimal policy of MDP-DBS may 

work as a guide or propose a good alternative to the controller of the system. 

The second contribution of this study is IDH, the solution procedure taking the strategy of the 

on-line manner by instantly determining an action in the observed single state at a decision 

epoch. It tackles the computational intractability of solving practical-sized instances of 

BSMPwRuSD by avoiding searching all reachable future states from the observed single state 

and enumerating all feasible actions in finding a solution of the problem. In simulation 

experiments emulating block stacking system operations under stochastic demand, IDH based on 

the MP manner or the BSSPwRuSD manner, quickly determines a feasible action in the observed 

system state at every decision epoch. The quality of the solution is guaranteed by the small 

average and narrow range of the optimality gap. 

For future research, finding an optimal value of tuning factors of IDH, length of sample path 

and the number of the sample path appear to be promising areas for investigation. To achieve the 

best result in the application of IDH in a real situation, a guide for tailoring IDH is required. 

Allowing lot splitting in BSMPwRuSD promises to be a very interesting but very challenging 

research problem; the solution to the problem would establish a more practical DBS plan under 

stochastic demand setting. The problem of optimizing block stacking multiple products with 

changeable row depths where some product lots’ daily demands are deterministic and demands 

for other product lots are stochastic is another interesting research problem. We also recommend 

the problem of aggregating DBS optimization and replenishment scheduling. 
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8. Appendices 

8.1. Supplement of the ANOVA analysis in Section 5.2 

Table 3.19 summarizes the results of Levene’s test. Because the p value is greater than 0.05 for 

all instances, the homogeneity assumption of variance is satisfied for all instances. 

Table 3.19: Results of Levene’s test for each instance of Group 2 

Instance Df F-value Pr (> F) 
(30|6)-instance 24 .5903 .9189 
(30|7)-instance 24 .5532 .9415 
(30|8)-instance 24 .2375 .9998 
(40|6)-instance 24 .4443 .9833 
(40|7)-instance 24 .3783 .9942 
(40|8)-instance 24 .5668 .9337 
(50|6)-instance 24 .7055 .8221 
(50|7)-instance 24 .5673 .9334 
(50|8)-instance 24 .6666 .8595 

 
Figure 3.9 shows the normality plot of the residuals for each instance, in which the quantiles of 

the residuals are plotted against the quantiles of the normal distribution. In all graphs of Figure 

3.9, all the points fall approximately along the straight reference line and, thus, the assumption of 

normal distribution of residuals is satisfied for each instance. 
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Figure 3.9: Normal Q-Q graph of each instance of Group 2 
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Figure 3.10: Boxplots of the ratio of Gap𝐿𝐿𝐿𝐿𝑆𝑆  to Gap𝐿𝐿𝐿𝐿𝑀𝑀  and SN and the ratio of Gap𝐿𝐿𝐿𝐿𝑆𝑆  to Gap𝐿𝐿𝐿𝐿𝑀𝑀  
and SL for (40|6)-, (40|7)-, and (40|8)-instance 
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Figure 3.11: Boxplots of the ratio of Gap𝐿𝐿𝐿𝐿𝑆𝑆  to Gap𝐿𝐿𝐿𝐿𝑀𝑀  and SN and the ratio of Gap𝐿𝐿𝐿𝐿𝑆𝑆  to Gap𝐿𝐿𝐿𝐿𝑀𝑀  
and SL for (50|6)-, (50|7)-, and (50|8)-instance 
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8.2. Summary of product lots’ behaviors in dynamic block stacking system 

Table 3.20: Number of every case of assigning a storage area to a product lot given its current 
storage area in the experiments of simulating (10|4)-, (15|4)-, and (20|4)-instance 

  Assigned storage area  
  2 3 5 10 Ex Sum 

Current 
storage 

area 

2 11403 375 103 17 44 11942 
3 3209 8682 756 66 9 12722 
5 1314 2828 11054 119 11 15326 
10 608 899 1176 9416 6 12105 
Ex 26 13 8 4 3 54 

 Sum 16560 12797 13097 9622 73 52149 
 

Table 3.21: Average of inventory levels at every case of assigning a storage area to a product lot 
given its current storage area in the experiments of simulating (10|4)-, (15|4)-, and (20|4)-instance 

  Assigned storage area  
  2 3 5 10 Ex Ave 

Current 
storage 

area 

2 3.60 7.54 12.80 24.06 3.02 3.83 
3 4.86 10.81 14.46 25.39 9.22 9.60 
5 5.62 9.70 15.86 23.10 13.55 13.90 
10 8.91 12.80 13.24 23.58 24.67 21.04 
Ex 4.19 8.77 19.88 20.00 4.33 8.80 

 Ave 4.20 10.61 15.52 23.58 7.21 12.20 
 

Table 3.22: Number of every case of assigning a storage area to a product lot given its current 
storage area in the experiments of simulating (10|5)-, (15|5)-, and (20|5)-instance 

  Assigned storage area  
  2 3 5 10 15 Ex Sum 

Current 
storage 

area 

2 2813 389 268 253 74 102 3899 
3 1275 5074 843 211 135 129 7667 
5 1016 1495 7805 288 249 95 10948 
10 823 862 653 11103 525 114 14080 
15 457 776 840 736 12821 128 15758 
Ex 108 98 122 90 96 83 597 

 Sum 6492 8694 10531 12681 13900 651 52949 
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Table 3.23: Average of inventory levels at every case of assigning a storage area to a product lot 
given its current storage area in the experiments of simulating (10|5)-, (15|5)-, and (20|5)-instance 

  Assigned storage area  
  2 3 5 10 15 Ex Ave 

Current 
storage 

area 

2 15.63 15.05 24.64 41.52 39.70 10.34 18.19 
3 9.63 34.74 25.73 46.64 55.29 17.44 29.97 
5 16.03 29.84 59.93 65.42 71.93 30.20 51.91 
10 28.24 35.76 51.58 84.02 93.62 50.70 76.39 
15 22.13 40.30 57.11 83.35 106.71 67.26 96.93 
Ex 13.69 24.02 43.31 55.96 69.40 42.45 40.77 

 Ave 16.54 33.49 55.36 81.89 104.48 37.00 66.03 
 

Table 3.24: Number of every case of assigning a storage area to a product lot given its current 
storage area in the experiments of simulating (10|6)-, (15|6)-, and (20|6)-instance 

  Assigned storage area  
  2 3 5 10 15 20 Ex Sum 

Current 
storage 

area 

2 1496 290 146 73 49 34 52 2140 
3 698 3415 210 145 90 74 45 4677 
5 509 602 5583 188 177 264 94 7417 
10 449 663 418 8146 659 256 114 10705 
15 354 553 383 1005 9945 410 134 12784 
20 279 467 1125 431 481 11398 225 14406 
Ex 52 91 102 103 145 177 132 802 

 Sum 3837 6081 7967 10091 11546 12613 796 52931 
 

Table 3.25: Average of inventory levels at every case of assigning a storage area to a product lot 
given its current storage area in the experiments of simulating (10|6)-, (15|6)-, and (20|6)-instance 

  Assigned storage area  
  2 3 5 10 15 20 Ex Ave 

Current 
storage 

area 

2 37.96 40.99 68.60 76.52 76.96 87.26 38.54 43.46 
3 40.50 71.95 69.12 103.92 125.80 140.00 61.07 70.13 
5 42.91 84.85 122.53 133.58 144.51 170.22 95.63 116.17 
10 54.93 95.64 137.90 206.01 213.97 270.39 149.65 191.60 
15 58.10 102.96 159.28 189.01 257.11 293.53 173.10 236.93 
20 64.90 119.22 134.54 290.82 273.56 287.71 175.84 263.85 
Ex 35.90 66.81 114.04 139.75 171.94 198.29 178.94 146.66 

 Ave 44.85 80.71 124.29 203.51 250.75 282.43 147.21 194.24 
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Table 3.26: Number of every case of assigning a storage area to a product lot given its current 
storage area in the experiments of simulating (30|6)-, (40|6)-, and (50|6)-instance 

  Assigned storage area  
  2 3 5 10 15 20 Ex Sum 

Current 
storage 

area 

2 9978 1484 442 134 108 86 481 12713 
3 3985 11447 720 303 183 258 239 17135 
5 2243 1727 14445 196 324 767 167 19869 
10 1778 1581 706 19786 1346 553 228 25978 
15 1393 1310 705 1975 23507 1111 230 30231 
20 1332 1101 2162 754 1267 25540 275 32431 
Ex 307 172 147 99 121 145 163 1154 

 Sum 21016 18822 19327 23247 26856 28460 1783 139511 
 

Table 3.27: Average of inventory levels at every case of assigning a storage area to a product lot 
given its current storage area in the experiments of simulating (30|6)-, (40|6)-, and (50|6)-instance 

  Assigned storage area  
  2 3 5 10 15 20 Ex Ave 

Current 
storage 

area 

2 12.95 13.32 21.14 36.91 52.19 57.43 4.72 13.86 
3 11.69 40.57 27.23 46.80 61.95 77.34 9.07 33.74 
5 16.35 26.06 61.01 72.28 71.07 71.73 20.46 53.28 
10 21.68 34.49 50.44 91.54 85.48 94.05 38.86 81.44 
15 23.93 37.56 60.28 67.30 100.77 101.97 52.12 91.04 
20 23.64 32.34 50.24 97.07 90.25 108.24 55.15 96.91 
Ex 8.53 18.97 28.40 43.90 64.50 69.95 16.82 30.41 

 Ave 15.15 35.69 56.98 88.39 98.53 106.10 26.14 70.67 
 

Table 3.28: Number of every case of assigning a storage area to a product lot given its current 
storage area in the experiments of simulating (30|7)-, (40|7)-, and (50|7)-instance 

  Assigned storage area  
  2 3 5 10 12 15 20 Ex Sum 

Current 
storage 

area 

2 5814 1024 361 169 178 150 49 314 8059 
3 2463 9582 550 242 232 201 149 224 13643 
5 1587 1229 13884 186 396 540 237 217 18276 
10 1207 1656 756 18060 1375 478 406 133 24071 
12 1085 1434 741 1879 17746 579 816 215 24495 
15 571 677 1983 403 775 19432 745 249 24835 
20 674 836 524 828 939 742 22071 288 26902 
Ex 240 148 117 112 171 203 171 226 1388 

 Sum 13641 16586 18916 21879 21812 22325 24644 1866 141669 
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Table 3.29: Average of inventory levels at every case of assigning a storage area to a product lot 
given its current storage area in the experiments of simulating (30|7)-, (40|7)-, and (50|7)-instance 

  Assigned storage area  
  2 3 5 10 12 15 20 Ex Ave 

Current 
storage 

area 

2 20.54 21.88 36.33 58.08 59.22 57.55 67.96 7.70 23.54 
3 15.56 43.69 36.27 66.50 73.63 79.00 75.45 21.36 39.73 
5 22.02 33.09 67.81 81.65 81.51 99.14 99.79 39.28 62.94 
10 39.51 54.33 78.57 128.07 110.41 132.38 137.64 64.14 115.89 
12 35.71 57.18 83.11 104.63 152.29 142.65 149.80 64.22 134.73 
15 37.40 54.04 79.11 130.97 126.15 155.75 184.95 93.08 143.05 
20 37.31 52.15 83.38 128.02 136.85 150.11 180.00 97.11 165.75 
Ex 16.54 35.90 50.32 65.55 79.36 93.98 99.35 38.62 58.27 

 Ave 24.16 44.57 68.83 124.17 144.61 151.44 176.27 52.48 113.39 
 

Table 3.30: Number of every case of assigning a storage area to a product lot given its current 
storage area in the experiments of simulating (30|8)-, (40|8)-, and (50|8)-instance 

  Assigned storage area  
  2 3 5 8 10 12 15 20 Ex Sum 

Current 
storage 

area 

2 4684 474 295 540 104 146 107 93 211 6654 
3 1273 7529 972 349 154 193 130 117 237 10954 
5 1050 2094 12773 523 175 288 214 144 183 17444 
8 1788 1028 1165 14410 392 294 378 282 140 19877 

10 742 742 564 672 16035 337 278 607 213 20190 
12 503 773 656 469 298 17494 1202 356 264 22015 
15 361 610 626 372 209 1577 17768 366 240 22129 
20 336 403 337 550 1506 388 405 19284 265 23474 
Ex 175 168 139 153 149 180 185 212 294 1655 

 Sum 10912 13821 17527 18038 19022 20897 20667 21461 2047 144392 
 

Table 3.31: Average of inventory levels at every case of assigning a storage area to a product lot 
given its current storage area in the experiments of simulating (30|8)-, (40|8)-, and (50|8)-instance 

  Assigned storage area  
  2 3 5 8 10 12 15 20 Ex Ave 

Current 
storage 

area 

2 39.77 35.14 59.04 75.61 79.39 78.66 77.05 84.11 19.30 45.25 
3 19.15 52.23 52.59 66.48 82.90 83.35 82.70 95.07 29.85 50.19 
5 26.65 53.46 104.05 90.05 98.05 107.50 114.63 131.86 47.83 92.66 
8 64.48 70.81 97.61 172.45 143.42 159.79 155.17 186.44 67.27 151.46 
10 48.42 62.93 90.09 134.14 175.65 176.51 175.97 213.18 101.40 163.42 
12 41.74 65.45 89.42 112.78 146.51 185.05 186.93 212.66 111.76 172.33 
15 44.82 66.86 94.42 125.61 184.59 185.52 230.09 244.99 132.07 212.55 
20 52.00 78.28 119.51 152.26 191.68 224.12 263.16 283.98 169.05 263.11 
Ex 26.78 51.24 66.39 91.28 113.72 124.59 133.76 181.70 55.50 93.92 

 Ave 41.17 55.92 98.66 159.86 173.42 182.04 222.36 274.92 84.63 163.49 
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Table 3.32: Number of every case of assigning a storage area to a product lot given its current 
storage area in the experiments of simulating (100|8)-, (150|8)-, and (200|8)-instance 

  Assigned storage area  
  2 3 5 8 10 12 15 20 Ex Sum 

Current 
storage 

area 

2 50134 3439 1013 288 59 110 51 77 2592 57763 
3 17195 37101 6148 1308 120 162 160 367 951 63512 
5 6809 13449 46452 1462 169 1243 206 337 460 70587 
8 4635 5099 6435 48750 996 978 1377 1388 329 69987 
10 1689 1836 2285 4781 46264 1054 739 690 152 59490 
12 651 2148 1305 4035 3296 59257 1882 3207 195 75976 
15 432 772 962 812 805 8140 57638 1336 175 71072 
20 475 402 619 1616 2891 1383 3462 65132 127 76107 
Ex 1015 343 207 175 85 125 75 68 1501 3594 

 Sum 83035 64589 65426 63227 54685 72452 65590 72602 6482 548088 
 

Table 3.33: Average of inventory levels at every case of assigning a storage area to a product lot 
given its current storage area in the experiments of simulating (100|8)-, (150|8)-, and (200|8)-instance 

  Assigned storage area  
  2 3 5 8 10 12 15 20 Ex Ave 

Current 
storage 

area 

2 5.55 9.21 19.02 48.54 45.20 53.01 41.04 63.92 2.27 6.31 
3 5.22 15.90 16.84 27.87 50.97 48.38 45.33 57.38 4.62 13.64 
5 8.08 12.52 26.58 37.90 54.35 49.26 55.14 57.21 7.94 22.92 
8 20.55 19.75 18.80 41.43 62.13 43.93 54.52 63.55 16.64 37.30 
10 15.62 18.79 26.83 29.03 54.86 67.69 79.14 72.30 22.44 50.13 
12 17.69 26.72 27.67 28.73 29.98 52.41 68.07 55.89 28.75 49.20 
15 20.38 23.84 45.40 32.56 42.77 43.64 67.82 96.51 32.91 63.75 
20 24.99 33.35 53.38 50.13 66.04 55.84 42.75 78.27 44.58 74.35 
Ex 3.46 10.39 15.01 21.71 36.04 30.26 42.55 48.81 4.61 9.53 

 Ave 6.99 15.76 25.30 39.41 53.86 51.50 66.21 77.03 7.21 40.88 
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CHAPTER 4. Conclusions and Future Research 

In this research, we investigate block-stacking operations. Specifically, optimization models are 

developed for block-stacking operations when the relocation of unit loads is allowed. Assuming 

changeable row depth instead of permanent row depth, this paper is distinguished from 

conventional block stacking studies. Optimization models are mathematically formulated and 

solution procedures are developed to solve practical-sized instances of block-stacking operations.  

 
1. Conclusions 

In CHAPTER 2, under the assumption of deterministic demand, the optimization problem of 

finding the minimum-cost DBS plan was formulated. The problem was modeled using integer 

programming as a variation of the unsplittable multi-commodity flow problem. The solution of 

the problem built a DBS plan of defining the assignment of product lots to storage areas each day 

over a planning horizon. Compared to SBS, we found DBS requires less storage capacity and 

incurs less operating cost. DBS uses floor space efficiently by timely relocation of product lots. 

It not only alleviates honeycomb loss and enables the product lot to yield occupied storage 

locations to another product lot if required. The merit of DBS is magnified when storage capacity 

is relatively insufficient based on the inventory level. For practical-sized instances, DH solves 

their corresponding optimization problems in a reasonable time and guarantees a feasible DBS 

plan. The small average and narrow range of the optimality gaps vouches for the quality of the 

solution. 

In CHAPTER 3, under the assumption of stochastic demand, the optimization problem of 

determining the minimum-cost DBS plan was formulated. The problem was formulated as a 

discrete time, finite horizon, discrete event MDP model. MDP-DBS provides a systematic 
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framework of sequentially establishing a daily DBS plan of defining an assignment of product 

lots to storage area for a period under the setting of uncertain daily demand. By taking into 

account immediate cost as well as expected future cost in determining a daily DBS plan; MDP-

DBS pursues the global optimum over a planning horizon rather than the local optimum for a 

day. In simulation experiments emulating block stacking system operations under stochastic 

demand, IDH based on the MP manner or the BSSPwRuSD manner quickly determines a 

feasible action in the observed system state at every decision epoch. The quality of the solution is 

guaranteed by the small average and narrow range of the optimality gap. 

 
2. Practical Application of the Research 

Generally, in block stacking system operations, relocating unit loads is rarely considered. Its 

drawback such as additional material handling and difficulty in inventory tracking easily stands 

out whereas its benefit like storage space saving and reduced honeycombing is inconspicuous. 

The findings of CHAPTER 2 show the timely relocation of the proper number of unit loads 

returns considerable benefit in block stacking system operations. 

Based on our research, we recommend adopting a proper operational policy according to the 

storage capacity and the inventory level of a block stacking system. When the storage capacity is 

relatively sufficient based on the inventory level, we suggest taking SBS as the operational 

policy. Compared to DBS, SBS has no significant demerits in this case and is easier to 

implement. When storage capacity is relatively insufficient, considering the inventory level, we 

suggest taking DBS as the operational policy. Compared to SBS, even though DBS is harder to 

implement, DBS can use storage space more efficiently and save operating cost. If the manager 

is reluctant to adopt DBS, we suggest use SDBS instead. As a kind of hybrid policy of DBS and 

SBS, compared to SBS, SDBS uses storage space more efficiently but is more difficult to 
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implement; compared to DBS, SDBS is easier to implement but uses storage space less 

efficiently. 

In our research, operating cost is computed based on the expected row position of the unit 

loads. In practice, present row position and assigned row position of each unit load may be 

known and thus, operating cost have to be computed based on not expected row position but 

exact row position of the unit load. 

 
3. Future Research 

In developing BSMPwRuDD and BSMPwRuSD, we assume no lot splitting. Therefore, 

consideration of lot splitting in BSMPwRuDD and BSMPwRuSD would be welcome as a topic 

of future research. Another interesting research topic is optimizing block stacking multiple 

products with changeable row depth where some product lots’ daily demand is deterministic and 

the others are stochastic. Aggregating the problems of DBS optimization and replenishment 

scheduling and integrating the problems of DBS optimization and block stacking facility design 

are other interesting issues for future research. 
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APPENDIX A. Daily Operating Cost Model of Block Stacking 

1. Operating Cost of Block Stacking 

Block stacking is a storage method used for unitized products. Unlike rack storage, block 

stacking consists of stacking loads on top of each other. Stacks of unit loads are arranged back-

to-back in a row and the rows of the stacks are positioned next to each other in a storage area. 

Figure A.1 illustrates how stacks and rows are aligned. See Tompkins et al. (2010) for a brief 

description of the block stacking storage method. 

 

Figure A.1: Arrangement of stacks and rows 

The objective of most block-stacking studies is to determine the arrangement of stacks and 

rows that minimizes the cost of space and/or material handling. Space cost is based on a given 

layout and/or the average or total dedicated space for storing lots over a time horizon. Material 

handling cost is based on distance traveled with a given layout or arrangement of unit loads. 

An objective function based only on space is more popular than one including space and 

material handling. No studies employed an objective function based solely on material handling. 

Table A. categorizes existing papers according to the type of objective function characterized by 
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cost elements considered. The entries of the “objective function” column indicate which cost 

elements are included in the objective function: 

 FM 

 FN 

 VM 

 VN 

floor space and material handling 

only floor space 

volume space and material handling 

only volume space 

Table A.1: Categorized papers of the block stacking according the feature of the objective 
function 

Objective function Papers 

FN 

Thorton (1961) Hemmi (1963) Kind (1965, 1975) 
Moder et al. (1965) Roberts (1968) Kooy (1981) 
Matson (1982) Rickles et al. (1985) Goetschalckx et al. (1991) 
Koster (2010) Bartholdi et al. (2014) Kay (2015) 

FM 
Roberts (1968) Matson (1982) Larson et al. (1997) 
White et al. (2013) Matson et al. (2014) Sonnentag et al. (2014) 

VN Roberts (1968) Kay (2015) Derhami et al. (2017) 
VM Berry (1968)   

 
This study develops a daily operating cost model for a single product lot and includes both 

space and material handling cost. It differs from existing objective function models because it 

includes the cost of relocating unit loads. Given information such as storage location and 

inventory level, the daily operating cost of a single product lot is computed based on the 

following daily operations: storage, replenishment, retrieval, and relocation. The model provides 

daily costs of the product lot’s operating alternatives and is suitable for day-to-day decision 

making. The daily operating cost of block stacking with multiple products can be computed by 

summing each product lot’s daily operating cost over the set of product lots. 
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The following sections are organized as follows. Section 2 introduces a typical layout of a 

block-stacking storage system. Section 3 describes operations of block stacking.  In Section 4, 

the cost model is developed based on the delineated layout and operations in Section 2 and 3. 

Section 5 evaluates the developed cost model in Section 4. 

 
2. Typical Layout of a Block-Stacking System 

A block stacking storage system consists of storage areas having the same or different depths and 

lengths. Figure A.2 illustrates a typical layout of a block stacking storage system. It consists of 

six storage areas of the same length and different depths. When the length and depth are 

measured by the number of unit loads, the storage areas can be referred to as 15-length and 10-

deep, 8-deep, 2-deep, 3-deep, 5-deep, and 12-deep storage areas, respectively. The depth and 

length of the storage area determine the maximum number of stacks in a row in the storage area 

and the maximum number of rows in the storage area, respectively. For the example, in the 12-

deep and 15-length storage area of Figure A.2, 12 stacks are positioned in a row and a maximum 

of 15 rows are accommodated in the storage area. 

 

Figure A.2: A typical layout of a block-stacking storage area 
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In Figure A.2, a single input/output point is located at the center of the lower boundary. Two 

cross aisles run along the upper and the lower side of the system and storage aisles are 

perpendicularly connected to the cross aisles. Two-way travel is supposed in these aisles. We 

assume each storage aisle is designated to serve storage areas on either side of the storage aisle; 

access to a storage area is only possible from the designated storage aisle. For example, in Figure 

A.2, storage aisle A serves 5-deep and 12-deep storage area.  

In the block stacking storage system, it is explicitly designated where a stack and a row are 

located. We refer to the location reserved for storing the stack and the row as the stack position 

and the row position. We define a full stack as a stack fully occupying the volume of space 

reserved for the stack position and a partial stack as a stack partially occupying the space. 

Similarly, a full row and a partial row are defined. Stack positions in a row are numbered in 

increasing order from the closest position to the storage aisle reserved for the row; row positions 

in a storage area are numbered in increasing order from the closest position to the input/output 

point. Figure A.2 illustrates the numbering of stack positions of the 3-deep row and row 

positions of 12-deep storage areas. 

 
3. Assumed Block-Stacking Operations 

In developing a daily operating cost model of a single product lot, we consider four daily 

operations: storage, replenishment, retrieval, and relocation. When the day is divided into 

business hours and non-business hours, retrieval occurs during business hours; replenishment 

and relocation occur during non-business hours.  

Unit loads of the product lot are stored in an assigned storage area during a day, occupying 

space and consuming storage capacity. A product lot’s storage area for a day is determined at the 

end of business hours the previous day. A random storage policy is assumed in assigning row 
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positions to the product lot. Lot splitting, by placing unit loads of single lot in different storage 

areas, is not allowed. To avoid unnecessarily moving unit loads during retrieval, unit loads of 

different products and even unit loads of different lots of the same product are not stored in the 

same row. Consider the row with numbered unit loads in Figure A.1; if unit loads of different 

lots are consolidated in the row and unit load 4 is to be retrieved, a worker must remove unit 

loads 1, 2, and 3 blocking unit load 4 before retrieving unit load 4. Then, unit loads 1, 2, and 3 

must be returned to the row. However, by prohibiting consolidating unit loads of different lots in 

a row, unusable space exists in the partial row until it is completely emptied; the space loss is 

called honeycombing loss. To summarize, this operational rule achieves efficient operations at 

the cost of honeycombing loss. 

A replenishment order for a product is placed at the end of business hours if its inventory 

level reaches zero. Instantaneous replenishment is assumed, resulting in unit loads of the product 

arriving at the input point and placement in the storage area assigned. In Figure A.2, 

replenishment travel from the input point to 5-deep storage area is illustrated. Unit loads are 

located from the deepest stack position in a row and from the row position closest to the 

input/output point among the assigned row positions. Assuming a product lot is stored in 5-deep 

storage area and row positions 2 and 8 are assigned to the lot, unit loads fill from stack position 5 

in row position 2. The stack position and row position are filled completely, if possible; thus, 

each replenishment lot forms at most one partial stack and/or one partial row. We assume 

replenishment is completed before the beginning of business hours of the next day. 

Unit loads are withdrawn by demand during business hours. Unit loads travel from the storage 

area to the output point and exit the block stacking storage system. In Figure A.2, the retrieval 

travel from the 10-deep storage area to the output point is depicted. Unit loads are retrieved from 
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the partial row, when one exists, or from the full row closest to the output point. This operational 

rule ensures at most one partial row exists for the product lot and increases the likelihood 

preferred row positions close to the output point are empty. 

At the end of business hours, storage locations of product lots are adjusted as necessary. A lot 

is either relocated, if the assigned storage area for the next day is different, or continues in its 

present storage area. In Figure A.2, relocation travel from the 8-deep storage area to the 3-deep 

storage area is illustrated. The possibility of physical conflict between product lots exchanging 

storage areas is ignored. The relocations are completed before the beginning of the next day. 

 
4. Operating Cost model 

In this section, we develop a daily operating cost model of a single product lot. In Section 4.1, 

we show how to develop the daily space cost model. Space cost is based on the space dedicated 

for the storage of a single product lot for a day. In Section 4.2, we develop the daily material 

handling cost model. Material handling cost results from replenishment, retrieval, and relocation; 

cost calculations are based on the expected travel distance required to move unit loads. 

In developing the daily operating cost model, we use the notation in Table A.2. Generally, the 

inventory level 𝐼𝐼𝑡𝑡 at the end of business hours of day 𝑡𝑡 is equal to the inventory at the beginning 

of business hours of day 𝑡𝑡+1; however, when 𝐼𝐼𝑡𝑡 = 0, the inventory level at the beginning of 

business hours of day 𝑡𝑡+1 is 𝑄𝑄 by the assumption of instantaneous replenishment. 

The number of rows or the number of required row positions when 𝐼𝐼𝑡𝑡 unit loads of product lot 

𝑙𝑙 are stored in 𝑑𝑑𝑟𝑟-deep storage area, 𝑦𝑦𝐼𝐼𝑡𝑡,𝑟𝑟, is computed by 

𝑦𝑦𝐼𝐼𝑡𝑡,𝑟𝑟 = �
𝐼𝐼𝑡𝑡
𝑑𝑑𝑟𝑟𝑧𝑧

�. (A.1) 
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Table A.2: Notation for developing DBS cost model 

Notation Description 
𝑅𝑅 set of storage areas considered 
𝑞𝑞, 𝑟𝑟 index of storage area at the end of business hours and selected for the next day 
𝑑𝑑𝑟𝑟 depth of storage area 𝑟𝑟, measured in unit loads 
𝑃𝑃𝑟𝑟 number of row positions in a 𝑑𝑑𝑟𝑟-deep storage area 
𝑄𝑄  order quantity of lot, measured in unit loads 
𝐼𝐼𝑡𝑡 inventory level of lot at the end of business hours of day 𝑡𝑡, measured in unit loads 
𝐼𝐼 inventory level of lot at the latest positioning 
𝐷𝐷 daily demand of lot, measured in unit loads 
𝑧𝑧 height of the stack of lot, measured in unit loads 
𝑦𝑦𝐼𝐼𝑡𝑡,𝑟𝑟 number of rows when 𝐼𝐼𝑡𝑡 unit loads of lot are stored in a 𝑑𝑑𝑟𝑟-deep storage area 
𝐿𝐿 length of unit load, measured in feet 
𝑊𝑊 width of unit load, measured in feet 
𝑐𝑐 side-to-side clearance between storage rows, measured in feet 
𝐻𝐻 height of a unit load, including pallet height (if used), measured in feet 
𝐴𝐴 width of a storage aisle and a cross aisle, measured in feet 
𝑣𝑣ℎ𝑟𝑟 horizontal velocity of a lift truck in a storage row, feet per minute 
𝑣𝑣ℎ𝑎𝑎 horizontal velocity of a lift truck in an aisle, feet per minute 
𝑣𝑣𝑣𝑣  vertical velocity of a lift truck, feet per minute 
𝑐𝑐𝑆𝑆 unit floor space cost per square foot per day 
𝑐𝑐𝑇𝑇 unit material handling cost per minute 
𝑀𝑀 material handling time of unit load for pick up and put on, measured in minute 

 
We assume all unit loads have the same dimensions and all aisles have the same widths. In 

addition, we consider clearance between two adjacent rows and no back-to-back clearance 

between stacks in a row. Figure A.3 depicts unit load, aisle width, and clearance dimensions.  

 

Figure A.3: Dimensions of unit load, width of aisle, and clearance 
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4.1. Floor space cost 

Storage cost is based on floor space. In developing the floor space cost model for a single 

product lot, we consider the floor space occupied by unit loads, the space loss due to 

honeycombing, and the aisle space reserved for the row positions assigned. Floor space cost is 

computed assuming the inventory level at the beginning of business hours; we ignore space 

savings resulting from decreasing inventory levels during a day. 

The occupied floor space can be computed by the number of occupied stack positions or the 

number of stacks as follows: 

(𝑊𝑊 + 𝑐𝑐)𝐿𝐿 �
𝐼𝐼𝑡𝑡
𝑧𝑧
� (A.2) 

where (𝑊𝑊 + 𝑐𝑐)𝐿𝐿 is the planer dimension of the stack position and ⌈𝐼𝐼𝑡𝑡 𝑧𝑧⁄ ⌉ is the number of the 

stacks or the number of occupied stack positions. The dimension of the stack position is 

illustrated in Figure A.4. Because we assume storage occurs on both sides of the storage aisle, 

only one-half of the aisle width is “charged” to an occupied storage row. 

 

Figure A.4: Dimensions of the row position, the stack position, and the aisle space reserved for 
the row position 
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The honeycomb loss can be calculated by the number of unoccupied stack positions in the 

partial row as follows: 

(𝑊𝑊 + 𝑐𝑐)𝐿𝐿 �𝑑𝑑𝑟𝑟 − ��
𝐼𝐼𝑡𝑡
𝑧𝑧
�  mod 𝑑𝑑𝑟𝑟�� (A.3) 

where 𝑑𝑑𝑟𝑟 − (⌈𝐼𝐼𝑡𝑡 𝑧𝑧⁄ ⌉ mod 𝑑𝑑𝑟𝑟) indicates the number of unoccupied stack position in the partial row. 

Considering the sum of the number of occupied stack positions and the number of unoccupied 

stack positions in the partial row can be represented as the product of the row depth and the 

number of required row positions, the sum of the occupied floor space and the honeycomb loss 

can be computed by the required number of row position or the number of the rows as follows: 

(𝑊𝑊 + 𝑐𝑐)(𝑑𝑑𝑟𝑟𝐿𝐿)𝑦𝑦𝐼𝐼𝑡𝑡,𝑟𝑟 (A.4) 

where (𝑊𝑊 + 𝑐𝑐)(𝑑𝑑𝑟𝑟𝐿𝐿) is the dimension of the row position. Dimension of the row position is 

depicted in Figure A.4. For example, assume a product lot of 30 unit loads is stored in 3-deep storage 

area and its stack height is 3. In this case, the sum of the occupied floor space and the honeycomb loss 

is 4(𝑊𝑊 + 𝑐𝑐)(3𝐿𝐿). The occupied floor space and the honeycomb loss is 10(𝑊𝑊 + 𝑐𝑐)𝐿𝐿 and 2(𝑊𝑊 + 𝑐𝑐)𝐿𝐿, 

respectively. 

The aisle space reserved for the row positions assigned is computed by 

(𝑊𝑊 + 𝑐𝑐)(0.5𝐴𝐴)𝑦𝑦𝐼𝐼𝑡𝑡,𝑟𝑟 (A.5) 

where (𝑊𝑊 + 𝑐𝑐)(0.5𝐴𝐴) is the dimension of the aisle space reserved for a row position. We assume 

only one-half of the aisle width is charged to an occupied storage row because the storage aisle 

serves both sides of row positions. Therefore, it is defined as the half of the aisle space in front of 

the row position. The dimension of the aisle space reserved for the row position is illustrated in 

Figure A.4. 
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Finally, the dedicated floor space for the lot during a day is computed by combining Equation 

(A.4) and (A.5) as follows: 

(𝑊𝑊 + 𝑐𝑐)(𝑑𝑑𝑟𝑟𝐿𝐿 + 0.5𝐴𝐴)𝑦𝑦𝐼𝐼𝑡𝑡,𝑟𝑟 . (A.6) 

Let 𝐹𝐹𝐹𝐹 indicates the daily space cost when 𝐼𝐼𝑡𝑡 unit loads of the product lot is stored in 𝑑𝑑𝑟𝑟-deep 

storage area. 𝐹𝐹𝐹𝐹 is computed by multiplying 𝑐𝑐𝑆𝑆 and the dedicated floor space for the product lot 

during a day as follows: 

𝐹𝐹𝐹𝐹 = �
𝑐𝑐𝑆𝑆(𝑊𝑊 + 𝑐𝑐)(𝑑𝑑𝑟𝑟𝐿𝐿 + 0.5𝐴𝐴)𝑦𝑦𝐼𝐼𝑡𝑡,𝑟𝑟 ,     𝐼𝐼𝑡𝑡 > 0
𝑐𝑐𝑆𝑆(𝑊𝑊 + 𝑐𝑐)(𝑑𝑑𝑟𝑟𝐿𝐿 + 0.5𝐴𝐴)𝑦𝑦𝑂𝑂,𝑟𝑟 ,     𝐼𝐼𝑡𝑡 = 0  . (A.7) 

When the inventory level is zero, the calculation of the floor space cost is based on the order 

quantity instead of the inventory level. 

 
4.2. Material handling cost 

Daily material handling cost is incurred by the operations of replenishment, retrieval, and relocation. 

For a single product, replenishment cost, retrieval cost, and relocation cost are based on the required 

working time to handle all unit loads of the product lot in the operation. The developed model in this 

section computes expected working time of a single unit load. The working time of the product lot is 

computed by summing the expected working time of each unit load. 

In this section, we first develop the travel distance model for a single unit load in Section 

4.2.1; in doing so, we measure distance based on the centerlines of the unit load. In Section 4.2.2 

and Section 4.2.3, we show how to specify the storage location of unit loads of the product lot 

and compute the expected working time for the product lot. Section 4.2.4 provides mathematical 

formulations of the material handling costs. 
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4.2.1. Travel distance model of single unit load 

In performing replenishment, retrieval, and relocation, the unit load is picked up, moved, and put 

down. In developing the working time model for a single unit load, we assume the time for 

picking up and putting down a unit load is constant and identical for all unit loads. Thus, the 

moving time is calculated based on the expected travel distance required to replenish, retrieval, 

or relocate the unit load. In estimating the expected travel distance, we decompose a unit load's 

travel into four parts: travel in a stack position, horizontal travel in a row position, horizontal 

travel in a storage aisle, and horizontal travel in a cross aisle. Travel distance is measured based 

on the movement of the center of the unit loads. 

 
Travel in stack position 

In a stack, unit loads move vertically between the center of the ground-floor-storage slot and the 

center of a 𝜀𝜀th-floor-storage slot. Figure A.5 illustrates the travel of a unit loads between the 

center of the ground-floor-storage slot and the center of the fourth-floor-storage slot. Let 𝑡𝑡𝑡𝑡𝑡𝑡𝜀𝜀 

indicate the distance between the center of the ground-floor-storage slot and the center of the 𝜀𝜀th-

floor-storage slot. Then, 𝑡𝑡𝑡𝑡𝑡𝑡𝜀𝜀 is computed by  

𝑡𝑡𝑡𝑡𝑡𝑡𝜀𝜀 = (𝜀𝜀 − 1)𝐻𝐻. (A.8) 

 

Figure A.5: Vertical travel of unit load in a stack position 
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Travel in row position 

In a row position, unit loads travel horizontally between the entrance of the row position and the 

center of a stack position. Figure A.6 depict the travel between the entrance of row position 6 

and the center of the stack position 5 in the 5-deep storage area. Let 𝜂𝜂 be the stack position and 

𝑡𝑡𝑡𝑡𝑡𝑡𝜂𝜂  be the horizontal distance between the entrance of row position and stack position 𝜂𝜂, 

respectively. Then, 𝑡𝑡𝑡𝑡𝑡𝑡𝜂𝜂 is computed by 

𝑡𝑡𝑡𝑡𝑡𝑡𝜂𝜂 = (𝜂𝜂 − 0.5)𝐿𝐿. (A.9) 

 

Figure A.6: Horizontal travel of unit load in a row position 

 
Travel in cross aisle 

In a cross aisle, the unit load moves horizontally from the input point to the entrance of the 

storage aisle to perform replenishment, from the entrance of the storage aisle to the output point 

to perform retrieval, or between the entrances of any two storage aisles.  

Figure A.7 illustrates the travel from the input point to the entrance of the storage aisle 

serving 2-deep and 3-deep storage areas, from the entrance of the storage aisle serving 5-deep 

and 10-deep storage areas to the output point, and between the entrances of the aisle serving 2-

deep and 3-deep storage areas and the aisle serving 5-deep and 10-deep storage areas. 
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Figure A.7: Horizontal travel of unit load in cross aisle 

Let 𝜆𝜆 and 𝜇𝜇 be the storage aisle reserved for the 𝑑𝑑𝜆𝜆-deep storage area and the 𝑑𝑑𝜇𝜇-deep storage 

area. 𝜆𝜆=0 or 𝜇𝜇=0 denotes the input/output point. Let 𝑡𝑡𝑡𝑡𝑡𝑡𝜆𝜆,𝜇𝜇 denotes the horizontal distance in a 

cross aisle between the entrance of the storage aisle serving the 𝑑𝑑𝜆𝜆-deep storage area and the 𝑑𝑑𝜇𝜇-

deep storage area. Given a layout of the storage system, 𝑡𝑡𝑡𝑡𝑡𝑡𝜆𝜆,𝜇𝜇 is computed by 

𝑡𝑡𝑡𝑡𝑡𝑡𝜆𝜆,𝜇𝜇 = ‖𝑐𝑐𝑐𝑐(𝜆𝜆) − 𝑐𝑐𝑐𝑐(𝜇𝜇)‖1 + 𝐴𝐴  (A.10) 

where 𝑐𝑐𝑐𝑐(𝜆𝜆) and 𝑐𝑐𝑐𝑐(𝜇𝜇) are the coordinates of the entrance of the aisle serving the 𝑑𝑑𝜆𝜆-deep 

storage area and the 𝑑𝑑𝜇𝜇-deep storage area, respectively, and ‖𝛼𝛼 − 𝛽𝛽‖1 is the L1 norm 

representing rectilinear distance between two points, 𝛼𝛼 and 𝛽𝛽. 

 
Travel in storage aisle 

In a storage aisle, the unit load travels horizontally between the entrance of a storage aisle and 

the entrance of a row position. Figure A.8 illustrates the travel between the entrance of a storage 

aisle accessing the cross aisle of the lower side of the storage system and the entrance of row 

position 7 in the 3-deep storage area and the travel between the entrance of a storage aisle 
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accessing the cross aisle of the upper side of the storage system and the entrance of row position 

5 in the 5-deep storage area. 

 

Figure A.8: Horizontal travel of unit load in storage aisle 

Let 𝜃𝜃 be a row position and 𝑡𝑡𝑡𝑡𝑡𝑡𝜃𝜃 indicate the horizontal distance in a storage aisle between 

row position 𝜃𝜃 and the entrance of the storage aisle accessing the cross aisle of the lower side of 

the storage system. Then, 𝑡𝑡𝑡𝑡𝑡𝑡𝜃𝜃 is computed by  

𝑡𝑡𝑡𝑡𝑡𝑡𝜃𝜃 = (𝜃𝜃 − 0.5)(𝑊𝑊 + 𝑐𝑐) + 0.5𝐴𝐴 (A.11) 

Let 𝑡𝑡𝑡𝑡𝐴̂𝐴𝜃𝜃 represent the horizontal distance in a storage aisle between row position 𝜃𝜃 and the 

entrance of the storage aisle accessing the cross aisle of the upper side of the storage system. 

Then, 𝑡𝑡𝑡𝑡𝐴̂𝐴𝜃𝜃 is computed by 

𝑡𝑡𝑡𝑡𝐴̂𝐴𝜃𝜃 = (𝑁𝑁 − 𝜃𝜃 + 0.5)(𝑊𝑊 + 𝑐𝑐) + 0.5𝐴𝐴. (A.12) 

 
4.2.2. Storage location of the unit load 

We specify the storage location of the unit load by the storage area, the row position in the storage 

area, the stack position in the row position, and the level in the stack. When initially positioning 

the unit load of the product lot during replenishment or relocation, the storage area is determined 
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first and then row positions are randomly allocated to the lot from among the empty row 

positions in the storage area, with equally likely probability assigned to all subsets of the empty 

row positions that are (minimally) large enough to hold all inventory of the product lot. The unit 

loads are then sequentially located in the row position closest to the input/output point among 

row positions available, in the deepest stack position available in the row position assigned, and 

at the lowest level available in the stack position designated. Unit loads are so numbered that the 

unit load first positioned is referred to as Unit load 1 and the unit load second located is referred 

to as Unit load 2. Similarly, rows and stacks are numbered; the row and the stack first built are 

referred to as Row 1 and Stack 1, respectively. 

The example of Table A.3 is considered consistently through Section 4.2.2. 

Table A.3: Consistent example of Section 4.2.2 

Order quantity 6 unit loads 
Present inventory level of the product lot 4 unit loads 
Stack height of the product lot 2 unit loads 
Number of row positions in a storage area 4 row positions 

 
Level of the unit load 

Letting 𝛾𝛾𝑢𝑢 be the storage slot level of Unit load 𝑢𝑢 of the product lot, 𝛾𝛾𝑢𝑢 is computed by  

𝛾𝛾𝑢𝑢 = 𝑢𝑢 − 𝑧𝑧 ∗ ��
𝑢𝑢
𝑧𝑧
� − 1�. (A.13) 

In the example of Table A.3, Unit load 1 is positioned at level 1 and Unit load 4 is positioned at 

level 2. 

 
Stack position of the unit load 

Letting 𝛽𝛽𝑢𝑢,𝑟𝑟 be the stack position of Unit load 𝑢𝑢 when the product lot is stored in 𝑑𝑑𝑟𝑟-deep storage 

area, 𝛽𝛽𝑢𝑢,𝑟𝑟 can be computed by 
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𝛽𝛽𝑢𝑢,𝑟𝑟 = 𝑑𝑑𝑟𝑟 �
𝑢𝑢
𝑑𝑑𝑟𝑟𝑧𝑧

� − �
𝑢𝑢
𝑧𝑧
� + 1, (A.14) 

In the example Table A.3, assuming the product lot is stored in a 2-deep storage area, Unit load 1 

is located in stack position 2 and Unit load 4 is located in stack position 1. 

 
Row position of the unit load 

The row position of a unit load is determined when a product lot is positioned during 

replenishment or relocation. Because of the randomized rule for positioning a product lot into 

rows of a given storage area, the row position of a unit load is stochastic. 

In this section, we investigate how the expected row position of Unit load 𝑢𝑢 is computed 

given 𝐼𝐼 and 𝐼𝐼𝑡𝑡 at day 𝑡𝑡, assuming the equally likely empty of row positions. We will not directly 

use this expected value in our cost model, but that it serves as a convenient way to present some 

ideas (i.e., expectation over random row subsets) that will be used in our cost model. Notice, 𝐼𝐼 is 

the inventory level of the product lot either (i) immediately after the most recent reorder or (ii) 

when the product lot was relocated to the 𝑑𝑑𝑟𝑟-deep storage area, whichever happened more 

recently. Letting 𝛼𝛼𝑢𝑢,𝑟𝑟 be the row index of Unit load 𝑢𝑢 when the product lot is stored in a 𝑑𝑑𝑟𝑟-deep 

storage area, where 𝛼𝛼𝑢𝑢,𝑟𝑟 is determined by 

𝛼𝛼𝑢𝑢,𝑟𝑟 = �
𝑢𝑢
𝑑𝑑𝑟𝑟𝑧𝑧

�. (A.15) 

When the product lot is positioned in a 𝑑𝑑𝑟𝑟-deep storage area, 𝑦𝑦𝐼𝐼,𝑟𝑟 row positions are randomly 

assigned to the product lot. Row 1, …, 𝑦𝑦𝐼𝐼𝑡𝑡,𝑟𝑟-1 are the full row comprised of 𝑑𝑑𝑟𝑟𝑧𝑧 unit loads and 

Row 𝑦𝑦𝐼𝐼,𝑟𝑟 is the partial row comprised of 𝐼𝐼-𝑑𝑑𝑟𝑟𝑧𝑧(𝑦𝑦𝐼𝐼,𝑟𝑟-1) unit loads. A smaller row index is 

associated with a row position closer to the input/output point. 
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Let {𝑝𝑝1, 𝑝𝑝2, …, 𝑝𝑝𝑦𝑦𝐼𝐼�,𝑟𝑟
} be the set of row positions assigned to the product lot among 𝑃𝑃𝑟𝑟 row 

postions in a 𝑑𝑑𝑟𝑟-deep storage area. The set has 𝑦𝑦𝐼𝐼,𝑟𝑟 elements. Therefore, assuming the 𝑃𝑃𝑟𝑟 row 

positions are equally likely to be assigned, the probability of the assignment is 

1 �
𝑃𝑃𝑟𝑟
𝑦𝑦𝐼𝐼,𝑟𝑟

�� . (A.16) 

Letting 𝑝𝑝 indicate the row position of 𝛼𝛼𝑢𝑢,𝑟𝑟 in 𝑑𝑑𝑟𝑟-deep storage area, the range of 𝑝𝑝 is defined as  

𝛼𝛼𝑢𝑢,𝑟𝑟 ≤ 𝑝𝑝 ≤ 𝑃𝑃𝑟𝑟 − 𝑦𝑦𝐼𝐼,𝑟𝑟 + 𝛼𝛼𝑢𝑢,𝑟𝑟 . (A.17) 

The term in the left side of inequality, 𝛼𝛼𝑢𝑢,𝑟𝑟, represents the index of the closest row position to the 

input/output point available for Row 𝛼𝛼𝑢𝑢,𝑟𝑟 in 𝑑𝑑𝑟𝑟-deep storage area. The term in the right side of 

inequality, 𝑃𝑃𝑟𝑟 − 𝑦𝑦𝐼𝐼,𝑟𝑟 + 𝛼𝛼𝑢𝑢,𝑟𝑟, expresses the index of the farthest row position from the 

input/output point available for Row 𝛼𝛼𝑢𝑢,𝑟𝑟 in 𝑑𝑑𝑟𝑟-deep storage area. 

When Row 𝛼𝛼𝑢𝑢,𝑟𝑟 is positioned in row position 𝑝𝑝, Row 1, 2, ⋯, and 𝛼𝛼𝑢𝑢,𝑟𝑟-1 are stored among 

row positions 1, 2, ⋯, and 𝑝𝑝-1; Row 𝛼𝛼𝑢𝑢,𝑟𝑟+1, 𝛼𝛼𝑢𝑢,𝑟𝑟+2, ⋯, and 𝑦𝑦𝑄𝑄,𝑟𝑟 are accommodated among row 

positions 𝑝𝑝+1, 𝑝𝑝+2, ⋯, and 𝑃𝑃𝑟𝑟. The number of cases Row 1, 2, ⋯, and 𝛼𝛼𝑢𝑢,𝑟𝑟-1 are stored among 

row positions 1, 2, ⋯, and 𝑝𝑝-1 is computed by �
𝑝𝑝 − 1
𝛼𝛼𝑢𝑢,𝑟𝑟 − 1� and the number of cases Row 𝛼𝛼𝑢𝑢,𝑟𝑟+1, 

𝛼𝛼𝑢𝑢,𝑟𝑟+2, ⋯, and 𝑦𝑦𝐼𝐼,𝑟𝑟 are accommodated among row positions 𝑝𝑝+1, 𝑝𝑝+2, ⋯, and 𝑃𝑃𝑟𝑟 is calculated 

by �
𝑃𝑃𝑟𝑟 − 𝑝𝑝

𝑦𝑦𝐼𝐼,𝑟𝑟 − 𝛼𝛼𝑢𝑢,𝑟𝑟
�. Therefore, the number of storage scenarios where Row 𝛼𝛼𝑢𝑢,𝑟𝑟 is accommodated 

in row position 𝑝𝑝 is computed by �
𝑝𝑝 − 1
𝛼𝛼𝑢𝑢,𝑟𝑟 − 1� �

𝑃𝑃𝑟𝑟 − 𝑝𝑝
𝑦𝑦𝐼𝐼,𝑟𝑟 − 𝛼𝛼𝑢𝑢,𝑟𝑟

�. 

Given 𝐼𝐼, 𝐼𝐼𝑡𝑡, and 𝑑𝑑𝑟𝑟 for the product lot, assuming row positions are equally likely to be 

assigned, the expected row position of Unit load 𝑢𝑢 ≤ 𝐼𝐼𝑡𝑡 is estimated by 
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� � �
𝑝𝑝 − 1
𝛼𝛼𝑢𝑢,𝑟𝑟 − 1� �

𝑃𝑃𝑟𝑟 − 𝑝𝑝
𝑦𝑦𝐼𝐼,𝑟𝑟 − 𝛼𝛼𝑢𝑢,𝑟𝑟

� 𝑝𝑝

𝑃𝑃𝑟𝑟−𝑦𝑦𝐼𝐼�,𝑟𝑟+𝛼𝛼𝑢𝑢,𝑟𝑟

𝑝𝑝=𝛼𝛼𝑢𝑢,𝑟𝑟

� �
𝑃𝑃𝑟𝑟
𝑦𝑦𝐼𝐼,𝑟𝑟

��  (A.18) 

In the example of Table A.3 where 𝐼𝐼 = 6, 𝐼𝐼𝑡𝑡 = 4, and 𝑧𝑧 = 2, assume the product lot is stored in 

a 2-deep storage area. Then, 𝑟𝑟 = 2, 𝑑𝑑2 = 2, 𝑦𝑦6,2 = 2, and 𝑃𝑃2 = 4. When the product lot is 

positioned in a 2-deep storage area, two row positions are randomly assigned to the product lot to 

accommodate six unit loads. Row 1 which is a full row comprised of four unit loads, Unit load 1, 

2, 3, and 4 is located in the closer row position among assigned row positions and Row 2 which 

is a partial row comprised of two unit loads, Unit load 5 and 6 in the farther row position. Table 

A.4 summarizes all of possible six storage scenarios. The number of all possible scenarios, six, 

can be computed by �
𝑃𝑃2
𝑦𝑦6,2

� = �4
2�. Occupying row positions 1 and 2 and 2 and 1 represent the 

same situation, assuming assigned row positions are filled from the closet one to the input/output 

point. Possibility of each scenario in the fourth column of the table is computed by Equation 

(A.16). 

Table A.4: Scenario the product lot of Table A.3 occupies two row positions in a 2-deep storage 
area when replenished 

Scenario Row position Possibility Row 1 Row 2 
1 1 2 1/6 
2 1 3 1/6 
3 1 4 1/6 
4 2 3 1/6 
5 2 4 1/6 
6 3 4 1/6 

 
In the assignment scenarios, Row 1 is stored in row position 1 three times, row position 2 two 

times, and row position 3 one time. Thus, Row 1’s expected row position is 1.67 computed by 

{(1*3) + (2*2) + (3*1)}/6. For example, Unit load 3 is a component of Row 1 and thus, its 
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expected row position is 1.67. Using Equation (A.18)Error! Reference source not found., Unit 

load 3’s expected row position can be computed as follows: 

���𝑝𝑝 − 1
0 � �4 − 𝑝𝑝

1 � 𝑝𝑝
3

𝑝𝑝=1

� 6� =
{(1 ∗ 3 ∗ 1) + (1 ∗ 2 ∗ 2) + (1 ∗ 1 ∗ 3)}

6 =
10
6 ≈ 1.67 (A.19) 

 
4.2.3. Material handling costs of operations 

We develop material handling cost models of computing replenishment cost, retrieval cost, and 

relocation cost of the product lot. Each cost model consists of four sub-models of estimating 

material handling cost in the stack, in the row, in the storage aisle, and in the cross aisle. 

In developing a material handling cost model, two issues arise with regard to preciseness of 

estimating the cost.  

The first issue is an approximation to simplify a mathematical decision making model of the 

dynamic block stacking problem. A material handling cost model based on the operational 

assumption of Section 3 and the concept of the expected row position introduced in Section 4.2.2 

requires 𝐼𝐼 and 𝐼𝐼𝑡𝑡 as an argument. Generally, for mathematical decision making model, the more 

arguments, the higher dimension of decision variables and consequently the more complexity. 

Therefore, to reduce the number of arguments, we replace every 𝐼𝐼 with 𝐼𝐼𝑡𝑡 in related formulas, 

approximately estimating material handling cost elements. More details of the approximation are 

given in following sections. 

The second issue is the inconsistency between the assumption that rows are equally likely to 

be assigned among the row positions in a storage area and the supposed retrieval rule that unit 

loads are retrieved from the partial row, when one exists, or from the full row closest to the 

output. The retrieval rule assumption leads to the preference in selecting a row position where a 

unit load is retrieved and consequently would make row positions unequally likely to be empty. 
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In cost models of replenishment, retrieval, and relocation, the travel distance of the unit load in a 

storage aisle is estimated based on the equally likely assumption. Consequently, the material 

handling cost model bears two contradictory assumptions. 

Experimental results of Section 5 demonstrate that the approximation of replacing 𝐼𝐼 with 𝐼𝐼𝑡𝑡 

and the inconsistency between the equally likely assumption and the supposed retrieval rule do 

not have a significant effect on assessed costs. 

 
Replenishment cost 

Assume the product lot is replenished and a 𝑑𝑑𝑟𝑟-deep storage area is assigned for storing its unit 

loads. Letting 𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 be the total travel time in the stack positions to replenish 𝑄𝑄 unit loads of the 

product lot, 𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 is computed by 

𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 = �2 ∗� 𝑡𝑡𝑡𝑡𝑡𝑡𝛾𝛾𝑢𝑢

𝑄𝑄

𝑢𝑢=1

� 𝑣𝑣𝑣𝑣� . (A.20) 

 

Letting 𝑡𝑡𝑡𝑡𝑅𝑅𝑆𝑆𝑆𝑆 be the total travel time in the row positions to replenish 𝑄𝑄 unit loads of the product 

lot, 𝑡𝑡𝑡𝑡𝑅𝑅𝑆𝑆𝑆𝑆 is computed by 

𝑡𝑡𝑡𝑡𝑅𝑅𝑆𝑆𝑆𝑆 = �2 ∗� 𝑡𝑡𝑡𝑡𝑅𝑅𝛽𝛽𝑢𝑢,𝑟𝑟

𝑄𝑄

𝑢𝑢=1

� 𝑣𝑣𝑣𝑣𝑣𝑣� . (A.21) 

 

Letting 𝑡𝑡𝑡𝑡𝐶𝐶𝑆𝑆𝑆𝑆 be the total travel time in the cross aisle to replenish 𝑄𝑄 unit loads of the product 

lot, 𝑡𝑡𝑡𝑡𝐶𝐶𝑆𝑆𝑆𝑆 is computed by 

𝑡𝑡𝑡𝑡𝐶𝐶𝑆𝑆𝑆𝑆 = �2 ∗� 𝑡𝑡𝑡𝑡𝑡𝑡(0,𝑟𝑟)

𝑄𝑄

𝑢𝑢=1

� 𝑣𝑣𝑣𝑣𝑣𝑣� . (A.22) 

 

Let 𝑡𝑡𝑡𝑡𝐴𝐴𝑆𝑆𝑆𝑆 be the expected total travel time in the storage aisle to replenish 𝑄𝑄 unit loads of the 

product lot, assuming row positions are equally likely to be empty. It is computed by 
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𝑡𝑡𝑡𝑡𝐴𝐴𝑆𝑆𝑆𝑆 = �2 ∗� �� � �
𝑝𝑝 − 1
𝛼𝛼𝑢𝑢,𝑟𝑟 − 1� �

𝑃𝑃𝑟𝑟 − 𝑝𝑝
𝑦𝑦𝑄𝑄,𝑟𝑟 − 𝛼𝛼𝑢𝑢,𝑟𝑟

� 𝑡𝑡𝑡𝑡𝐴𝐴𝛼𝛼𝑢𝑢,𝑟𝑟

𝑃𝑃𝑟𝑟−𝑦𝑦𝑄𝑄,𝑟𝑟+𝛼𝛼𝑢𝑢,𝑟𝑟

𝑝𝑝=𝛼𝛼𝑢𝑢,𝑟𝑟

� �
𝑃𝑃𝑟𝑟
𝑦𝑦𝑄𝑄,𝑟𝑟

�� �
𝑄𝑄

𝑢𝑢=1

� 𝑣𝑣𝑣𝑣𝑣𝑣� . (A.23) 

The terms inside the outer summation represent the expected travel distance of Unit load 𝑢𝑢 based 

on the assumption rows are equally likely to be assigned among all row positions in the storage 

area Section 5 shows the effect of the inconsistency between the equally likely assumption and 

the supposed retrieval rule on estimated costs is inconsiderable. 

Letting 𝑆𝑆𝑆𝑆 be the daily replenishment cost of a single product lot when a 𝑑𝑑𝑟𝑟-deep storage area 

is assigned for storing its unit loads, 𝑆𝑆𝑆𝑆 is computed by 

𝑆𝑆𝑆𝑆 = �
0,                                                                                              if 𝐼𝐼𝑡𝑡 > 0
 𝑐𝑐𝑇𝑇 ∗ [𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑡𝑡𝑡𝑡𝑅𝑅𝑆𝑆𝑆𝑆 + 𝑡𝑡𝑡𝑡𝐶𝐶𝑆𝑆𝑆𝑆 + 𝑡𝑡𝑡𝑡𝐴𝐴𝑆𝑆𝑆𝑆 + (𝑀𝑀 ∗ 𝑄𝑄)],    if 𝐼𝐼𝑡𝑡 = 0 (A.24) 

 
Retrieval cost 

In Section 3, we assume unit loads are retrieved from the partial row, when one exists, or from 

the full row closest to the output point. To formalize this procedure mathematically, let 𝑈𝑈(𝑖𝑖) 

denote the index of the unit load retrieved at the 𝑖𝑖th order, i.e., 

𝑈𝑈(𝑖𝑖) = �
𝐼𝐼 − 𝑖𝑖 + 1,                                                                               if 0 < 𝑖𝑖 ≤ 𝐾𝐾

�
𝑖𝑖 − 𝐾𝐾
𝑑𝑑𝑟𝑟 ∗ 𝑧𝑧

� ∗ (𝑑𝑑𝑟𝑟 ∗ 𝑧𝑧) − {(𝑖𝑖 − 𝐾𝐾 − 1) mod (𝑑𝑑𝑟𝑟 ∗ 𝑧𝑧)}       if 𝑖𝑖 > 𝐾𝐾          (A.25) 

 

where 𝐾𝐾 = 𝐼𝐼 mod (𝑑𝑑𝑟𝑟 ∗ 𝑧𝑧) denotes the number of unit loads in the partial row. 

In order to derive an estimate of retrieval cost that does not depend on 𝐼𝐼, we alter the 

originally supposed retrieval rule as that unit loads are retrieved from the partial row, when one 

exists, or from the full row farthest from the output point. This alteration changes Equation 

(A.25) as  

𝑈𝑈(𝑖𝑖) = 𝑖𝑖 (A.26) 
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where 𝐼𝐼 no longer appears. Notice the altered assumption of retrieval rule still contradicts with 

the assumption that row positions are equally likely to be empty. 

For example, consider a product lot of 𝐼𝐼 = 10, 𝑧𝑧 = 2, and 𝑑𝑑𝑟𝑟 = 2. Table A.5 summarizes the 

order based on the original and altered assumption. 

Table A.5: Retrieval order of unit loads under the original assumption and the altered assumption  

  Retrieval order 
  1 2 3 4 5 6 7 8 9 10 

Unit load Original assumption 10 9 4 3 2 1 8 7 6 5 
Altered assumption 10 9 8 7 6 5 4 3 2 1 

 

Assume the product lot is stored in a 𝑑𝑑𝑟𝑟-deep storage area and 𝐷𝐷 unit loads among 𝐼𝐼𝑡𝑡 unit 

loads are retrieved. Letting 𝑡𝑡𝑡𝑡𝑆𝑆𝐼𝐼𝑡𝑡
𝑅𝑅𝑅𝑅 be the total travel time in the stack positions to retrieve 𝐷𝐷 unit 

loads among 𝐼𝐼𝑡𝑡 unit loads, 𝑡𝑡𝑡𝑡𝑆𝑆𝐼𝐼𝑡𝑡
𝑅𝑅𝑅𝑅 is computed by 

𝑡𝑡𝑡𝑡𝑆𝑆𝐼𝐼𝑡𝑡
𝑅𝑅𝑅𝑅 = �2 ∗ � 𝑡𝑡𝑡𝑡𝑡𝑡𝛾𝛾𝑢𝑢

𝐼𝐼𝑡𝑡

𝑢𝑢=𝐼𝐼𝑡𝑡−𝐷𝐷+1

� 𝑣𝑣𝑣𝑣�  (A.27) 

Letting 𝑡𝑡𝑡𝑡𝑅𝑅𝐼𝐼𝑡𝑡
𝑅𝑅𝑅𝑅 be the total travel time in the row positions to retrieve 𝐷𝐷 unit loads among 𝐼𝐼𝑡𝑡 unit 

loads, 𝑡𝑡𝑡𝑡𝑅𝑅𝐼𝐼𝑡𝑡
𝑅𝑅𝑅𝑅 is computed by 

𝑡𝑡𝑡𝑡𝑅𝑅𝐼𝐼𝑡𝑡
𝑅𝑅𝑅𝑅 = �2 ∗ � 𝑡𝑡𝑡𝑡𝑅𝑅𝛽𝛽𝑢𝑢,𝑟𝑟

𝐼𝐼𝑡𝑡

𝑢𝑢=𝐼𝐼𝑡𝑡−𝐷𝐷+1

� 𝑣𝑣𝑣𝑣𝑣𝑣�  (A.28) 

Letting 𝑡𝑡𝑡𝑡𝐶𝐶𝐼𝐼𝑡𝑡
𝑅𝑅𝑅𝑅 be the total travel time in the cross aisle to retrieve 𝐷𝐷 unit loads among 𝐼𝐼𝑡𝑡 unit 

loads, 𝑡𝑡𝑡𝑡𝐶𝐶𝐼𝐼𝑡𝑡
𝑅𝑅𝑅𝑅 is computed by 

𝑡𝑡𝑡𝑡𝐶𝐶𝐼𝐼𝑡𝑡
𝑅𝑅𝑅𝑅  = �2 ∗ � 𝑡𝑡𝑡𝑡𝑡𝑡(𝑟𝑟,0)

𝐼𝐼𝑡𝑡

𝑢𝑢=𝐼𝐼𝑡𝑡−𝐷𝐷+1

� 𝑣𝑣𝑣𝑣𝑣𝑣�  (A.29) 
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Let 𝑡𝑡𝑡𝑡𝐴𝐴𝐼𝐼,𝐼𝐼𝑡𝑡
𝑅𝑅𝑅𝑅  be the expected total travel time in the storage aisle to retrieve 𝐷𝐷 unit loads among 

𝐼𝐼𝑡𝑡 unit loads, assuming row positions are equally likely to be empty. It can be computed by  

𝑡𝑡𝑡𝑡𝐴𝐴𝐼𝐼,𝐼𝐼𝑡𝑡
𝑅𝑅𝑅𝑅 = �2 ∗ � �� � �

𝑝𝑝 − 1
𝛼𝛼𝑢𝑢,𝑟𝑟 − 1� �

𝑃𝑃𝑟𝑟 − 𝑝𝑝
𝑦𝑦𝐼𝐼,𝑟𝑟 − 𝛼𝛼𝑢𝑢,𝑟𝑟

� 𝑡𝑡𝑡𝑡𝐴𝐴𝛼𝛼𝑢𝑢,𝑟𝑟

𝑃𝑃𝑟𝑟−𝑦𝑦𝐼𝐼�,𝑟𝑟+𝛼𝛼𝑢𝑢,𝑟𝑟

𝑝𝑝=𝛼𝛼𝑢𝑢,𝑟𝑟

� �
𝑃𝑃𝑟𝑟
𝑦𝑦𝐼𝐼,𝑟𝑟

�� �
𝐼𝐼𝑡𝑡

𝑢𝑢=𝐼𝐼𝑡𝑡−𝐷𝐷+1

� 𝑣𝑣𝑣𝑣𝑣𝑣� . (A.30) 

The terms in the outer sigma notation represent the expected travel distance of Unit load 𝑢𝑢. 

Once again, we approximate 𝑡𝑡𝑡𝑡𝐴𝐴𝐼𝐼,𝐼𝐼𝑡𝑡
𝑅𝑅𝑅𝑅  by replacing 𝐼𝐼 with 𝐼𝐼𝑡𝑡 in order to simplify the process of 

computing retrieval costs. Let 𝑡𝑡𝑡𝑡𝑡𝑡����𝐼𝐼𝑡𝑡
𝑅𝑅𝑅𝑅 be the approximation of 𝑡𝑡𝑡𝑡𝐴𝐴𝐼𝐼,𝐼𝐼𝑡𝑡

𝑅𝑅𝑅𝑅  computed as follows: 

𝑡𝑡𝑡𝑡𝑡𝑡����𝐼𝐼𝑡𝑡
𝑅𝑅𝑅𝑅 = �2 ∗ � �� � �

𝑝𝑝 − 1
𝛼𝛼𝑢𝑢,𝑟𝑟 − 1� �

𝑃𝑃𝑟𝑟 − 𝑝𝑝
𝑦𝑦𝐼𝐼𝑡𝑡,𝑟𝑟 − 𝛼𝛼𝑢𝑢,𝑟𝑟

� 𝑡𝑡𝑡𝑡𝐴𝐴𝛼𝛼𝑢𝑢,𝑟𝑟

𝑃𝑃𝑟𝑟−𝑦𝑦𝐼𝐼𝑡𝑡,𝑟𝑟+𝛼𝛼𝑢𝑢,𝑟𝑟

𝑝𝑝=𝛼𝛼𝑢𝑢,𝑟𝑟

� �
𝑃𝑃𝑟𝑟
𝑦𝑦𝐼𝐼𝑡𝑡,𝑟𝑟

�� �
𝐼𝐼𝑡𝑡

𝑢𝑢=𝐼𝐼𝑡𝑡−𝐷𝐷+1

� 𝑣𝑣𝑣𝑣𝑣𝑣� . (A.31) 

The terms in the outer summation represent the approximate expected travel distance of Unit 

load 𝑢𝑢 based on the equally likely assumption that rows are equally likely to be assigned among 

the set of all row positions in a storage area. 

Letting 𝑅𝑅𝑅𝑅 be the daily retrieval cost of a single product lot when it is stored in a 𝑑𝑑𝑟𝑟-deep 

storage area and 𝐷𝐷 unit loads are retrieved, 𝑅𝑅𝑅𝑅 is computed by  

𝑅𝑅𝑅𝑅 = �
𝑐𝑐𝑇𝑇 ∗ �𝑡𝑡𝑡𝑡𝑆𝑆𝐼𝐼𝑡𝑡

𝑅𝑅𝑅𝑅 + 𝑡𝑡𝑡𝑡𝑅𝑅𝐼𝐼𝑡𝑡
𝑅𝑅𝑅𝑅 + 𝑡𝑡𝑡𝑡𝐶𝐶𝐼𝐼𝑡𝑡

𝑅𝑅𝑅𝑅 + 𝑡𝑡𝑡𝑡𝑡𝑡����𝐼𝐼𝑡𝑡
𝑅𝑅𝑅𝑅 + (𝑀𝑀 ∗ 𝐼𝐼𝑡𝑡)�,   if 𝐼𝐼𝑡𝑡 > 0

𝑐𝑐𝑇𝑇 ∗ �𝑡𝑡𝑡𝑡𝑆𝑆𝑄𝑄𝑅𝑅𝑅𝑅 + 𝑡𝑡𝑡𝑡𝑅𝑅𝑄𝑄𝑅𝑅𝑅𝑅 + 𝑡𝑡𝑡𝑡𝐶𝐶𝑄𝑄𝑅𝑅𝑅𝑅 + 𝑡𝑡𝑡𝑡𝑡𝑡����𝑄𝑄𝑅𝑅𝑅𝑅 + (𝑀𝑀 ∗ 𝑄𝑄)�,   if 𝐼𝐼𝑡𝑡 = 0
  (A.32) 

 
Relocation cost 

Assume the product lot is stored in a 𝑑𝑑𝑞𝑞-deep storage area and a 𝑑𝑑𝑟𝑟-deep storage area is newly 

assigned for the next day. Letting 𝑡𝑡𝑡𝑡𝑆𝑆𝐵𝐵𝐵𝐵 be the total travel time in the stack positions to relocate 

𝐼𝐼𝑡𝑡 unit loads of the product lot from the 𝑑𝑑𝑞𝑞-deep storage area to the 𝑑𝑑𝑟𝑟-deep storage area, 𝑡𝑡𝑡𝑡𝑆𝑆𝐵𝐵𝐵𝐵 

is computed by 
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𝑡𝑡𝑡𝑡𝑆𝑆𝐵𝐵𝐵𝐵 = �4 ∗� 𝑡𝑡𝑡𝑡𝑡𝑡𝛾𝛾𝑢𝑢

𝐼𝐼𝑡𝑡

𝑢𝑢=1

� 𝑣𝑣𝑣𝑣�  (A.33) 

Letting 𝑡𝑡𝑡𝑡𝑅𝑅𝐵𝐵𝐵𝐵 be the total travel time in the row positions to relocate 𝐼𝐼𝑡𝑡 unit loads of the product 

lot from the 𝑑𝑑𝑞𝑞-deep storage area to the 𝑑𝑑𝑟𝑟-deep storage area, 𝑡𝑡𝑡𝑡𝑅𝑅𝐵𝐵𝐵𝐵 is computed by 

𝑡𝑡𝑡𝑡𝑅𝑅𝐵𝐵𝐵𝐵 = ��2 ∗� 𝑡𝑡𝑡𝑡𝑅𝑅𝛽𝛽𝑢𝑢,𝑞𝑞

𝐼𝐼𝑡𝑡

𝑢𝑢=1

� + �2 ∗� 𝑡𝑡𝑡𝑡𝑅𝑅𝛽𝛽𝑢𝑢,𝑟𝑟

𝐼𝐼𝑡𝑡

𝑢𝑢=1

�� 𝑣𝑣𝑣𝑣𝑣𝑣�  (A.34) 

Letting 𝑡𝑡𝑡𝑡𝐶𝐶𝐵𝐵𝐵𝐵 be the total travel time in the cross aisle to relocate 𝐼𝐼𝑡𝑡 unit loads of the product lot 

from the 𝑑𝑑𝑞𝑞-deep storage area to the 𝑑𝑑𝑟𝑟-deep storage area, 𝑡𝑡𝑡𝑡𝐶𝐶𝐵𝐵𝐵𝐵 is computed by 

𝑡𝑡𝑡𝑡𝐶𝐶𝐵𝐵𝐵𝐵 = �2 ∗� 𝑡𝑡𝑡𝑡𝑡𝑡𝑞𝑞,𝑟𝑟

𝐼𝐼𝑡𝑡

𝑢𝑢=1

� 𝑣𝑣𝑣𝑣𝑣𝑣�  (A.35) 

Let 𝑡𝑡𝑡𝑡𝐴𝐴𝐼𝐼
𝐵𝐵𝐵𝐵 be the expected total travel time in the storage aisle to relocate 𝐼𝐼𝑡𝑡 unit loads of the 

product lot from the 𝑑𝑑𝑞𝑞-deep storage area to the 𝑑𝑑𝑟𝑟-deep storage area, assuming row positions 

are equally likely to be empty. It can be computed by 

𝑡𝑡𝑡𝑡𝐴𝐴𝐼𝐼
𝐵𝐵𝐵𝐵 = �2 ∗� �� � � 𝔸𝔸ℂ

𝑃𝑃𝑟𝑟−𝑦𝑦𝐼𝐼𝑡𝑡,𝑟𝑟+𝛼𝛼𝑢𝑢,𝑟𝑟

𝑝𝑝𝑟𝑟=𝛼𝛼𝑢𝑢,𝑟𝑟

𝑃𝑃𝑞𝑞−𝑦𝑦𝐼𝐼�,𝑞𝑞+𝛼𝛼𝑢𝑢,𝑞𝑞

𝑝𝑝𝑞𝑞=𝛼𝛼𝑢𝑢,𝑞𝑞

� 𝔹𝔹� �
𝐼𝐼𝑡𝑡

𝑢𝑢=1

� 𝑣𝑣𝑣𝑣𝑣𝑣�  (A.36) 

where 𝔸𝔸 is the frequency of cases Unit load 𝑢𝑢 is accommodated in row position 𝑝𝑝1 in a 𝑑𝑑𝑞𝑞-deep 

storage area and in row position 𝑝𝑝2 in a 𝑑𝑑𝑟𝑟-deep storage area computed by 

𝔸𝔸 = �
𝑝𝑝𝑞𝑞 − 1
𝛼𝛼𝑢𝑢,𝑞𝑞 − 1� �

𝑃𝑃𝑞𝑞 − 𝑝𝑝𝑞𝑞
𝑦𝑦𝐼𝐼,𝑞𝑞 − 𝛼𝛼𝑢𝑢,𝑞𝑞

� �
𝑝𝑝𝑟𝑟 − 1
𝛼𝛼𝑢𝑢,𝑟𝑟 − 1� �

𝑃𝑃𝑟𝑟 − 𝑝𝑝𝑟𝑟
𝑦𝑦𝐼𝐼𝑡𝑡,𝑟𝑟 − 𝛼𝛼𝑢𝑢,𝑟𝑟

�, (A.37) 

𝔹𝔹 is the total number of scenarios the product lot occupies 𝑦𝑦𝐼𝐼𝑡𝑡,𝑞𝑞 row positions among 

𝑃𝑃𝑞𝑞 row positions of a 𝑑𝑑𝑞𝑞-deep storage area and 𝑦𝑦𝐼𝐼𝑡𝑡,𝑟𝑟 row positions among 𝑃𝑃𝑟𝑟 row 

positions of a 𝑑𝑑𝑟𝑟-deep storage area calculated by 
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𝔹𝔹 = �
𝑃𝑃𝑞𝑞
𝑦𝑦𝐼𝐼,𝑞𝑞

� �
𝑃𝑃𝑟𝑟
𝑦𝑦𝐼𝐼𝑡𝑡,𝑟𝑟

�, (A.38) 

and, ℂ is the sum of the travel distance in the storage aisle serving the 𝑑𝑑𝑞𝑞-deep storage area and 

the storage aisle serving the 𝑑𝑑𝑟𝑟-deep storage area to relocate the product lot from the 𝑑𝑑𝑞𝑞-deep 

storage area to the 𝑑𝑑𝑟𝑟-deep storage area along the shortest path computed by 

ℂ = �𝑡𝑡𝑡𝑡𝑡𝑡𝛼𝛼𝑢𝑢,𝑞𝑞 − 𝑡𝑡𝑡𝑡𝑡𝑡𝛼𝛼𝑢𝑢,𝑟𝑟� + 𝐴𝐴, (A.39) 

if the 𝑑𝑑𝑞𝑞-deep storage area and the 𝑑𝑑𝑟𝑟-deep storage area are served by the same storage aisle or 

ℂ = min �𝑡𝑡𝑡𝑡𝑡𝑡𝛼𝛼𝑢𝑢,𝑞𝑞 + 𝑡𝑡𝑡𝑡𝑡𝑡𝛼𝛼𝑢𝑢,𝑟𝑟 , 𝑡𝑡𝑡𝑡𝑆̂𝑆𝛼𝛼𝑢𝑢,𝑞𝑞 + 𝑡𝑡𝑡𝑡𝑆̂𝑆𝛼𝛼𝑢𝑢,𝑟𝑟� , (A.40) 

otherwise. In Equation (A.36), the terms in the outer sigma notation represent the expected travel 

distance of Unit load 𝑢𝑢. 

In order to simplify the relocation cost expression, we approximate 𝑡𝑡𝑡𝑡𝐴𝐴𝐼𝐼
𝐵𝐵𝐵𝐵  by replacing 𝐼𝐼 with 

𝐼𝐼𝑡𝑡. Let 𝑡𝑡𝑡𝑡𝑡𝑡����𝐵𝐵𝐵𝐵  be the approximation of 𝑡𝑡𝑡𝑡𝐴𝐴𝐼𝐼
𝐵𝐵𝐵𝐵 computed as follows: 

𝑡𝑡𝑡𝑡𝑡𝑡����𝐵𝐵𝐵𝐵 = �2 ∗� �� � � 𝔸𝔸�ℂ

𝑃𝑃𝑟𝑟−𝑦𝑦𝐼𝐼𝑡𝑡,𝑟𝑟+𝛼𝛼𝑢𝑢,𝑟𝑟

𝑝𝑝𝑟𝑟=𝛼𝛼𝑢𝑢,𝑟𝑟

𝑃𝑃𝑞𝑞−𝑦𝑦𝐼𝐼𝑡𝑡,𝑞𝑞+𝛼𝛼𝑢𝑢,𝑞𝑞

𝑝𝑝𝑞𝑞=𝛼𝛼𝑢𝑢,𝑞𝑞

� 𝔹𝔹�� �
𝐼𝐼𝑡𝑡

𝑢𝑢=1

� 𝑣𝑣𝑣𝑣𝑣𝑣�  (A.41) 

where 

𝔸𝔸� = �
𝑝𝑝𝑞𝑞 − 1
𝛼𝛼𝑢𝑢,𝑞𝑞 − 1� �

𝑃𝑃𝑞𝑞 − 𝑝𝑝𝑞𝑞
𝑦𝑦𝐼𝐼𝑡𝑡,𝑞𝑞 − 𝛼𝛼𝑢𝑢,𝑞𝑞

� �
𝑝𝑝𝑟𝑟 − 1
𝛼𝛼𝑢𝑢,𝑟𝑟 − 1� �

𝑃𝑃𝑟𝑟 − 𝑝𝑝𝑟𝑟
𝑦𝑦𝐼𝐼𝑡𝑡,𝑟𝑟 − 𝛼𝛼𝑢𝑢,𝑟𝑟

�, (A.42) 

and 

𝔹𝔹� = �
𝑃𝑃𝑞𝑞
𝑦𝑦𝐼𝐼𝑡𝑡,𝑞𝑞

� �
𝑃𝑃𝑟𝑟
𝑦𝑦𝐼𝐼𝑡𝑡,𝑟𝑟

�. (A.43) 

In Equation (A.41), the terms in the outer summation represent the approximate expected travel 

distance of Unit load 𝑢𝑢 based on the equally likely assumption that rows are equally likely to be 

assigned among the set of row positions in a storage area. 
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Let 𝐵𝐵𝐵𝐵 indicate the daily relocation cost of a single product lot when 𝐼𝐼 unit loads of the product 

lot are relocated from the 𝑑𝑑𝑞𝑞-deep storage area to the 𝑑𝑑𝑟𝑟-deep storage area. Then, 𝐵𝐵𝐵𝐵 is computed by 

𝐵𝐵𝐵𝐵 =  � 𝑐𝑐𝑇𝑇 ∗ [𝑡𝑡𝑡𝑡𝑆𝑆𝐵𝐵𝐵𝐵 + 𝑡𝑡𝑡𝑡𝑅𝑅𝐵𝐵𝐵𝐵 + 𝑡𝑡𝑡𝑡𝐶𝐶𝐵𝐵𝐵𝐵 + 𝑡𝑡𝑡𝑡𝑡𝑡����𝐵𝐵𝐵𝐵 + (𝑀𝑀 ∗ 𝐼𝐼𝑡𝑡)],   if 𝐼𝐼𝑡𝑡 > 0 and 𝑞𝑞 ≠ 𝑟𝑟
 0,                                                                                             if 𝐼𝐼𝑡𝑡 = 0 or 𝑞𝑞 = 𝑟𝑟     (A.44) 

 
4.3. Daily operating cost model of single product lot 

Let 𝑂𝑂𝑂𝑂 be the daily operating cost of the single product lot. It is computed by 

𝑂𝑂𝑂𝑂 = 𝐹𝐹𝐹𝐹 + 𝑆𝑆𝑆𝑆 + 𝑅𝑅𝑅𝑅 + 𝑆𝑆𝑆𝑆 (A.45) 

In decision making problems, 𝑂𝑂𝑂𝑂 is computed for each product lot in advance and given as a 

parameter. 

 
5. Evaluation of Daily Operating Cost Model 

In this section, we evaluate the daily operating cost model developed in this chapter by 

comparing the cost estimated by the model against the actual cost computed from the realized 

data in a simulation. The result of the comparison shows how significant the effect of the 

approximation of replacing 𝐼𝐼 with 𝐼𝐼𝑡𝑡 to simplify a mathematical decision making model of the 

dynamic block stacking problem and the inconsistency between the assumption that row 

positions are equally likely to be empty and the supposed retrieval rule is on the estimated cost. 

At first, we solved BSMPwRuDDs of 135 instances of Group 1 and 135 instances of Group 2 

described in Section 5 of CHAPTER 2, establishing their optimal solutions and total costs 

estimated over a time horizon. Notice the expected total cost for each instance was computed by 

the daily operating cost model. Based on the optimal solution, the storage area assignment 

schedule is fixed for each instance. 

Then, we conducted simulation experiment using a discrete-event simulation emulating the 

daily operations of the block stacking system as assumed in Section 3. In the simulation, before 
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starting daily operation: (i.e., immediately after a product lot is reordered or relocated) product 

lots’ inventory levels and current storage areas are given. The storage area is assigned to each 

product lot according to the predetermined storage area assignment schedule. Once storage area 

is determined for each product lot, unit loads’ storage-slot levels and stack positions are 

deterministically specified and row positions are randomly selected among the available row 

positions in the specified storage area. The operating cost of the following day is computed based 

on the unit loads’ storage positions. This procedure is repeated before starting daily operation 

over a time horizon of the simulation. At the termination, we have the total cost computed from 

the realized data in a simulation. 

For the evaluation, we compared the cost estimated by the daily operating cost model (i.e., as 

specified in Section 4) to the cost computed in the simulation experiment (i.e., as assumed in 

Section 3). Table A.6 summarizes features differentiating the computed cost and the estimated 

cost. For the purposes of specifying a cost model that is independent of 𝐼𝐼, the retrieval rule is 

altered and the expected travel distance of the unit load in a storage aisle is approximated by 

replacing 𝐼𝐼 with 𝐼𝐼𝑡𝑡 in the formulas. Notice for the estimated cost, the retrieval rule and the 

assumption that rows of a product lot are equally likely to occupy any subset of rows in a storage 

area are inconsistent. 

Table A.6: Features of total operating cost over a time horizon computed based on data of 
simulation and estimated by the daily operating cost model 

 Computed cost Estimated cost 

Retrieval rule 

 Unit load are retrieved from the 
partial row, when one exists, or 
from the full row closest to the 
output point 

 Unit load are retrieved from the 
partial row, when one exists, or 
from the full row farthest from 
the output point 

Travel distance of 
unit load in storage 
aisle 

 Travel distance computed based 
on specific row position defined 
in simulation 

 Approximately estimated travel 
distance, assuming row positions 
are equally likely to be empty 
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Considering the randomness in assigning row positions to a product lot, a simulation of a single 

instance is replicated ten times with fixed storage area assignment schedule. Consequently, data 

collected from 2700 simulations is used to evaluate the daily operating cost model. 

Table A.7 summarizes the absolute gap between the computed cost and the estimated cost 

calculated by |the computed cost – the estimated cost| / the estimated cost. The third column 

shows the average absolute gap between the computed total cost and the estimated total cost is 

very small even though the average absolute gap between the computed retrieval cost and the 

estimated retrieval cost in sixth column and the computed relocation cost and the estimated 

relocation cost in the seventh column are considerable. 

Table A.8 summarizes the relative gap between the computed cost and the estimated cost 

calculated by (the computed cost – the estimated cost) / the estimated cost. The third column 

shows the estimated total cost tends to be overestimated compared to the computed total cost. 

The fifth and sixth column represent the estimated replenishment cost and retrieval cost are 

likely to be overestimated compared to the computed replenishment cost and retrieval cost, 

respectively. The seventh column indicates the estimated relocate cost tends to be 

underestimated compared to the computed relocation cost. 

Table A.7: Summary of the absolute gap between total operating cost over a time horizon 
computed based on data of simulation and estimated by the daily operating cost model 

Number 
of 

Lots 

Number 
of 

Simulations 

Ave. absolute 
gap of 

total cost 
(%) 

Ave. absolute 
gap of  

floor space cost 
(%) 

Ave. absolute  
gap of 

replenishment cost 
(%) 

Ave. absolute 
gap of  

retrieval cost 
(%) 

Ave. absolute 
gap of 

relocation cost 
(%) 

10 450 0.60 0.00 0.46 8.67 3.76 
15 450 0.56 0.00 0.63 7.65 3.93 
20 450 0.49 0.00 0.50 6.75 3.68 
30 450 1.16 0.00 1.17 13.86 6.66 
40 450 1.04 0.00 1.00 12.78 6.61 
50 450 0.86 0.00 0.80 11.58 5.82 

 2700 0.78 0.00 0.76 10.22 5.08 
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Table A.8: Summary of the relative gap between total operating cost over a time horizon 
computed based on data of simulation and estimated by the daily operating cost model 

Number 
of 

Lots 

Number 
of 

Simulations 

Ave. relative 
gap of 

total cost 
(%) 

Ave. relative 
gap of  

floor space cost 
(%) 

Ave. relative 
gap of 

replenishment cost 
(%) 

Ave. relative 
gap of  

retrieval cost 
(%) 

Ave. relative 
gap of 

relocation cost 
(%) 

10 450 -0.59 0.00 -0.11 -8.67 3.76 
15 450 -0.54 0.00 -0.19 -7.65 3.93 
20 450 -0.45 0.00 -0.09 -6.74 3.68 
30 450 -1.16 0.00 -1.16 -13.86 6.66 
40 450 -1.04 0.00 -0.86 -12.78 6.61 
50 450 -0.86 0.00 -0.43 -11.57 5.82 

 2700 -0.77 0.00 -0.47 -10.21 5.08 
 

 

Figure A.9: Change of the absolute gab between the computed total cost and the estimated total 
cost over increasing number of row positions in the storage area 

Figure A.9 shows the absolute gab between the computed total cost and the estimated total 

cost increases as the number of row position in the storage area increases. However, the 

optimality gap remains under 2% at the most number of row position. In addition, the optimality 

gap increases by only 1.67% points as the number of row position increases by 37. 

To summarize, the daily operating cost model developed in Section 4 provides an acceptable 

estimate of the operating cost of block stacking system. Small absolute and relative gap between 
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the computed cost and the estimated cost in Table A.7 and Error! Reference source not found. 

support this opinion. The observation of Figure A.9 implies the daily operating cost model would 

give an acceptable estimate for an instance with a large-sized layout. 
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APPENDIX B. The Dynamic Block Stacking Problem with Random Demand1 

Hueon Lee, Shengfan Zhang, John A. White 

 
Abstract 

The block stacking problem involves determining the depth of a storage row for unit loads to 

minimize the sum of space and travel costs. A conventional block stacking problem assumes 

static row depths and deterministic demand. We remove these constraints and treat the dynamic 

block stacking problem with random demand where row depths are changed (by relocating 

product). Row depth for a product lot is chosen at periodically designated points in time, based 

on inventory level and occupied row depth. Between successive epochs (points in time), unit 

loads are stored in storage rows at the selected depth. At each decision point, the row depth that 

minimizes total expected discounted cost is chosen. Using a discrete-time infinite-horizon 

Markov decision process model, the optimal row depth is determined for each inventory level 

and each occupied row depth. Our findings regarding the number of row depths and the number 

of relocations of a storage lot during its life provide useful information for warehouse designers. 

 

Keyword 

Block stacking, dynamic row depth, random demand, Markov decision process model 

  

                                                           
1 APPENDIX B is a reprint of “The Dynamic Block Stacking Problem with Random Demand” 
in Proceedings of the 2016 Industrial and System Engineering Research Conference, Institute of 
Industrial and Systems Engineers 
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1. Introduction 

Because block stacking is a commonly used storage system, we forgo describing block stacking and 

reviewing the research literature. For those interested in learning more about block stacking, see 

Bartholdi and Hackman (2011) and Tompkins et al. (2010), among others; likewise, for fairly recent 

reviews of the research literature, see Goetschalckx and Ratliff (1991) and Matson et al. (2014).  

Suppose 500 unit loads of a particular product are received at a warehouse having available 

block stacking storage areas of following depths: 2-deep, 3-deep, 5-deep, 10-deep, 15-deep, and 

20-deep, as depicted in. Using the solution method given in White, Sonnentag, and Matson 

(2013), based on unit load, warehouse, and other parameters, results in the product stored in 15-

deep storage area. However, if demand is not deterministic, might relocating remaining 

inventory to a shorter-row-deep storage area prove advantageous? If so, when and how often 

should relocations occur? We attempt to provide a way to answer these questions in the paper. 

With block stacking, floor space is required for a storage row that is not filled completely. 

Three-dimensional space within a storage row that cannot be used to store another product is 

called honeycomb loss and the deeper the row depth, the greater the amount of honeycomb loss. 

At the same time, aisle space is required for each storage row and the shorter the row depth, the 

greater the percentage of overall space devoted to aisles. Hence, in determining the best row 

depth for block stacking, one is balancing honeycomb loss and aisle space percentage.  

Relocating inventory can increase space utilization, but it increases material handling cost. 

Each unit load must be picked up and put down when moved to a new storage location and it 

must be picked up and put down when satisfying a demand for the product. Extra handling 

means extra cost. However, if relocated closer to the I/O point, it can reduce retrieval travel cost. 

In the end, if the benefit resulting from changing row depths is greater than the relocation cost, 
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the lot should be relocated. Unlike the conventional block stacking problem in which an optimal 

row depth is determined in designing a storage system, the objective of this paper is the 

development of an optimal relocation policy for a given layout of a block stacking storage 

system, such as depicted in Figure B.1. 

 

Figure B.1: Block stacking layout for a warehouse 

To distinguish the relocation problem from the conventional block stacking problem, we call 

it the Dynamic Block Stacking (DBS) problem. We believe we are the first to study DBS 

problem. We develop a cost function for DBS problem including space cost and material 

handling cost and propose a solution procedure for DBS problem of a single product lot. We 

assume the number of units demanded during period 𝑡𝑡 is statistically independent of the number 

of unit loads demanded during period 𝑡𝑡-1. Based on the following operating procedure, a Markov 

Decision Process (MDP) model is employed:  

 Inventory level of a product lot is checked periodically at the end of business hours. 

 Then, the product lot is assigned to a storage area based on the current inventory level. 

 If the current storage area and the assigned storage area are different, the product lot is 

relocated before the beginning of the next business hours. 
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 If the inventory level is zero, the product lot is reordered and replenished before the 

beginning of the next business hours. 

The paper is organized as follows: DBS problem is modeled as a MDP model; next, a cost 

function, called the reward function in the MDP model, is developed; then, we provide a 

numerical example and its optimal relocation policy; and, finally, conclusions are drawn and 

future research topics are recommended. 

 
2. Markov Decision Process Model for DBSP 

A MDP model is a sequential decision making model represented by five key elements: decision 

epochs, system states, actions, rewards, and state transition probabilities, defined as follows: 

 
Decision epoch 

In this research, decision epoch 𝑡𝑡 is a point in time between the end of business hours and the 

beginning of non-business hours. The time between successive decision epoch 𝑡𝑡 and 𝑡𝑡+1 is 

referred to as period 𝑡𝑡. At a decision epoch, the storage area for a product lot is determined and, 

if required, unit loads are replenished or relocated immediately. Unit loads are retrieved during a 

period based on the demand distribution. 

 
System state 

State (𝑖𝑖𝑡𝑡𝑙𝑙 ,𝑟𝑟𝑡𝑡𝑙𝑙) indicates the inventory level and the index of the storage area of product lot 𝑙𝑙 at 

decision epoch 𝑡𝑡. When a given layout of block stack system has 𝑅𝑅 storage areas, 𝑟𝑟𝑡𝑡𝑙𝑙 is a positive 

integer between one and 𝑅𝑅. Let 𝑑𝑑𝑟𝑟𝑡𝑡 represent the depth of the storage area 𝑟𝑟𝑡𝑡 measured in unit 

loads. Assuming a product lot is replenished only when the inventory level is zero, 𝑖𝑖𝑡𝑡𝑙𝑙=0 instantly 

changes into 𝑖𝑖𝑡𝑡𝑙𝑙=𝑄𝑄𝑙𝑙 where 𝑄𝑄𝑙𝑙 is the order quantity of product lot 𝑙𝑙. 
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Action 

Action 𝑎𝑎𝑡𝑡𝑙𝑙  indicates the index of the assigned storage area to product lot 𝑙𝑙 at decision epoch 𝑡𝑡. 

The value of 𝑎𝑎𝑡𝑡𝑙𝑙  is a positive integer between one and 𝑅𝑅. Like 𝑑𝑑𝑟𝑟𝑡𝑡, 𝑑𝑑𝑎𝑎𝑡𝑡  represents the depth of the 

storage area 𝑟𝑟𝑡𝑡 measured in unit loads. If 𝑎𝑎𝑡𝑡𝑙𝑙≠𝑟𝑟𝑡𝑡𝑙𝑙, the product lot is relocated instantly. Note that 

𝑎𝑎𝑡𝑡𝑙𝑙=𝑟𝑟𝑡𝑡+1𝑙𝑙  is always satisfied. 

 
Reward 

Reward, 𝑐𝑐�𝑖𝑖𝑡𝑡𝑙𝑙 , 𝑟𝑟𝑡𝑡𝑙𝑙,𝑎𝑎𝑡𝑡𝑙𝑙� is the expected cost incurred by product lot 𝑙𝑙 as the result of taking action 

𝑎𝑎𝑡𝑡𝑙𝑙  in state �𝑖𝑖𝑡𝑡𝑙𝑙 , 𝑟𝑟𝑡𝑡𝑙𝑙� at decision epoch 𝑡𝑡 and is calculated based on required floor space and 

expected material handing for period 𝑡𝑡. It is dealt with in the following section. 

 
Transition probability 

Transition probability, 𝑝𝑝�𝑖𝑖𝑡𝑡+1𝑙𝑙 , 𝑟𝑟𝑡𝑡+1𝑙𝑙 �𝑖𝑖𝑡𝑡𝑙𝑙 , 𝑟𝑟𝑡𝑡𝑙𝑙, 𝑎𝑎𝑡𝑡𝑙𝑙� is established based on the inventory transition 

probability derived from the demand distribution. If 𝑎𝑎𝑡𝑡𝑙𝑙=𝑟𝑟𝑡𝑡+1𝑙𝑙 , the transition probability equals the 

inventory transition probability from 𝑖𝑖𝑡𝑡𝑙𝑙  to 𝑖𝑖𝑡𝑡+1𝑙𝑙 . If 𝑎𝑎𝑡𝑡𝑙𝑙≠𝑟𝑟𝑡𝑡+1𝑙𝑙 , the transition probability is zero. Due to 

the replenishment assumption, the inventory transition probability at 𝑖𝑖𝑡𝑡𝑙𝑙=0 is based on 𝑖𝑖𝑡𝑡𝑙𝑙=𝑄𝑄𝑙𝑙. 

Solving the sequential decision making problem, we determine the optimal policy prescribing 

which action is to be taken in any possible future state to maximize expected total reward (or 

minimize expected total cost). In this paper, with the assumption the reward and transition 

probabilities do not vary from decision epoch to decision epoch, we model DBSP as an infinite-

horizon MDP and determine a stationary optimal policy independent of the decision epoch. For 

more details regarding MDP, see Puterman (2005). 
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3. Cost Function 

For clarification, a storage row and a stack refer to a measure of unit loads organized in a 

specified manner; a storage row position and a stack position indicate a reserved storage location 

for a storage row in a block and for a stack in a storage row, respectively. For convenience, unit 

loads are numbered sequentially in a lot from the unit load first stored; storage rows of a lot are 

numbered sequentially in the lot from the storage row first built; storage row positions are 

numbered sequentially in a block from the row position closest to the I/O point of the system; 

and, stack positions are numbered sequentially in a storage row from the stack position closest to 

the storage aisle reserved for the row. To facilitate the development of the cost function, we use 

the notation of Table B.1 extended from Tompkins et al. (2010) and Matson et al. (2014). 

Table B.1: Notations of the cost function of MDP 

Notation Description 
𝐿𝐿 length of a unit load 
𝑊𝑊 width of a unit load 
𝐻𝐻 height of a unit load, including the pallet (if used) 
𝑐𝑐 side-to-side clearance between rows 
𝐴𝐴 Storage aisle width 
𝑧𝑧 height of stack, measured in unit load 
𝑥𝑥 depth of row, measured in unit load 
𝑛𝑛 number of remaining unit loads of product lot 
𝑦𝑦𝑛𝑛,𝑥𝑥 number of row positions required to store 𝑛𝑛 unit loads of product lot 

𝑦𝑦𝑛𝑛,𝑥𝑥 = ⌈𝑛𝑛 𝑥𝑥𝑥𝑥⁄ ⌉ 
𝛼𝛼𝑛𝑛,𝑥𝑥 number of full stacks in the last storage row of product lot 

𝛼𝛼𝑛𝑛,𝑥𝑥 = �
𝑛𝑛 − 𝑥𝑥𝑥𝑥�𝑦𝑦𝑛𝑛,𝑥𝑥 − 1�

𝑧𝑧
� 

𝛽𝛽𝑛𝑛,𝑥𝑥 number of unit loads in the partial stack in the last storage row of product lot 
𝛽𝛽𝑛𝑛,𝑥𝑥 = 𝑛𝑛 − 𝑥𝑥𝑥𝑥�𝑦𝑦𝑛𝑛,𝑥𝑥 − 1� − 𝑧𝑧𝛼𝛼𝑛𝑛,𝑥𝑥 

𝛾𝛾𝑛𝑛,𝑥𝑥 stack position of the last unit load of product lot 

𝛾𝛾𝑛𝑛,𝑥𝑥 = �
𝑥𝑥 − 𝛼𝛼𝑛𝑛,𝑥𝑥 + 1,   if 𝛽𝛽𝑛𝑛,𝑥𝑥 = 0
𝑥𝑥 − 𝛼𝛼𝑛𝑛,𝑥𝑥,           if 𝛽𝛽𝑛𝑛,𝑥𝑥 > 0 
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Table B.1: Notations of the cost function of MDP (Continue) 

Notation Description 
𝛿𝛿𝑛𝑛,𝑥𝑥 level of the last unit load of product lot 

𝛿𝛿𝑛𝑛,𝑥𝑥 = �
𝑧𝑧,          if 𝛽𝛽𝑛𝑛,𝑥𝑥 = 0
𝛽𝛽𝑛𝑛,𝑥𝑥 ,     if 𝛽𝛽𝑛𝑛,𝑥𝑥 > 0 

𝑆𝑆 required floor space during a period 
𝑡𝑡𝑡𝑡𝑡𝑡 expected replenishment travel time 
𝐸𝐸[𝑡𝑡𝑡𝑡𝑡𝑡,𝐷𝐷𝑙𝑙] expected retrieval travel time given expected demand 𝐷𝐷𝑙𝑙 
𝑡𝑡𝑡𝑡𝑡𝑡 expected relocation travel time 
𝑀𝑀 material handling time per a unit loads, including pick up time, put down time, 

and so on 
𝑐𝑐𝑆𝑆 floor space cost per square foot per day 
𝑐𝑐𝑇𝑇 material handling cost per minute 
𝐹𝐹𝐹𝐹 expected floor space cost between consecutive decision epochs 
𝑆𝑆𝑆𝑆 expected replenishment travel cost between consecutive decision epochs 
𝑅𝑅𝑅𝑅 expected retrieval travel cost between consecutive decision epochs 
𝐵𝐵𝐵𝐵 expected relocation travel cost between consecutive decision epochs 
𝑣𝑣𝑣𝑣 vertical velocity of the lift truck in a stack 
𝑣𝑣ℎ𝑟𝑟 horizontal velocity of the lift truck in a row 
𝑣𝑣ℎ𝑎𝑎 horizontal velocity of the lift truck in a storage aisle 
𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 travel distance in stack from ground to the bottom of the level 𝑖𝑖, (𝑖𝑖-1)𝐻𝐻 
𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖,𝑗𝑗 travel distance in cross aisle between the entrance of the aisle reserved for the 

storage area 𝑖𝑖 and the entrance of the aisle reserved for storage area 𝑗𝑗, measured in 
a given layout (𝑖𝑖=0 or 𝑗𝑗=0 indicates the I/O point of the system) 

𝑡𝑡𝑡𝑡𝐴𝐴𝑖𝑖 travel distance in storage aisle between the entrance of the aisle and the entrance of 
the 𝑖𝑖th row position, (𝑖𝑖-0.5)(𝑊𝑊+𝑐𝑐)+0.5𝐴𝐴 

𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 travel distance in storage row between the entrance of the row position and the 
centerline of the 𝑖𝑖th stack position, (𝑖𝑖-0.5)𝐿𝐿 

𝑁𝑁 number of rows of block, same for each block 

 
3.1. Floor space cost 

Reserved floor space for a lot at a decision epoch and during the following period is 

𝑆𝑆 = 𝑦𝑦𝑖𝑖𝑡𝑡𝑙𝑙 ,𝑎𝑎𝑡𝑡𝑙𝑙(𝑊𝑊 + 𝑐𝑐)�𝑎𝑎𝑡𝑡𝑙𝑙𝐿𝐿 + 0.5𝐴𝐴�. (B.1) 

Hence, if action 𝑎𝑎𝑡𝑡𝑙𝑙  is chosen at state (𝑖𝑖𝑡𝑡𝑙𝑙 , 𝑟𝑟𝑡𝑡𝑙𝑙), expected floor space cost between consecutive 

decision epochs is 

𝐶𝐶𝐹𝐹𝐹𝐹�𝑖𝑖𝑡𝑡𝑙𝑙 ,𝑎𝑎𝑡𝑡𝑙𝑙� = 𝑐𝑐𝑠𝑠𝑆𝑆. (B.2) 
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3.2. Travel cost 

In DBSP, we include three travel components: storage travel, retrieval travel, and relocation 

travel. To calculate expected travel times, we decompose each trip into vertical travel in a stack, 

horizontal travel in a cross aisle, horizontal travel in a storage aisle, and horizontal travel in a 

storage row. To clarify the calculation, we assume a round trip; a storage row position is filled 

from the farthest stack position (from-the back-to-the front); in a block, each storage row 

position has the same probability to be empty; an a-deep block selected at a decision epoch has 

sufficient empty row positions for replenishment and relocation; unit loads are retrieved from the 

last stored load (last-in-first-out in a lot); for relocation travel, the shortest path is always used; 

and lot splitting is not allowed. 

 
Replenishment travel cost 

Consider expected vertical travel distance in a full stack and in a partial stack. Given the number 

of full stacks of the lot replenished, �𝑦𝑦𝑄𝑄𝑙𝑙,𝑎𝑎𝑡𝑡𝑙𝑙 − 1� 𝑎𝑎𝑡𝑡𝑙𝑙 + 𝛼𝛼𝑄𝑄𝑙𝑙,𝑎𝑎𝑡𝑡𝑙𝑙 , total vertical travel distance in 

stacks, 𝑡𝑡𝑑𝑑𝑠𝑠𝑠𝑠, is 

𝑡𝑡𝑑𝑑𝑠𝑠𝑠𝑠 = 2��𝑑𝑑𝑗𝑗𝑠𝑠𝑠𝑠 ��𝑦𝑦𝑄𝑄𝑙𝑙,𝑎𝑎𝑡𝑡𝑙𝑙 − 1� 𝑎𝑎𝑡𝑡𝑙𝑙 + 𝛼𝛼𝑄𝑄𝑙𝑙,𝑎𝑎𝑡𝑡𝑙𝑙 �
𝑧𝑧

𝑗𝑗=1

+ � 𝑑𝑑𝑗𝑗𝑠𝑠𝑠𝑠

𝛽𝛽
𝑄𝑄𝑙𝑙,𝑎𝑎𝑡𝑡

𝑙𝑙

𝑗𝑗=1

�. (B.3) 

Similarly, consider expected horizontal travel distance in a full storage row of a-depth and in a 

partial row. Given the number of full storage rows of the lot replenished, 𝑦𝑦𝑄𝑄𝑙𝑙,𝑎𝑎𝑡𝑡𝑙𝑙 − 1, total 

horizontal travel distance in storage rows, 𝑡𝑡𝑑𝑑𝑠𝑠𝑠𝑠, is 

𝑡𝑡𝑑𝑑𝑠𝑠𝑠𝑠 = 2�𝑧𝑧�𝑑𝑑𝑗𝑗𝑠𝑠𝑠𝑠 �𝑦𝑦𝑄𝑄𝑙𝑙,𝑎𝑎𝑡𝑡𝑙𝑙 − 1�

𝑎𝑎𝑡𝑡
𝑙𝑙

𝑗𝑗=1

+ �𝑧𝑧 � 𝑑𝑑𝑗𝑗𝑠𝑠𝑠𝑠 −

𝑎𝑎𝑡𝑡
𝑙𝑙

𝑗𝑗=𝛾𝛾
𝑄𝑄𝑙𝑙,𝑎𝑎𝑡𝑡

𝑙𝑙

�𝑧𝑧 − 𝛿𝛿𝑄𝑄𝑙𝑙,𝑎𝑎𝑡𝑡𝑙𝑙� 𝑑𝑑𝛾𝛾𝑄𝑄𝑙𝑙,𝑎𝑎𝑡𝑡
𝑙𝑙

𝑠𝑠𝑠𝑠 ��. (B.4) 
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Total horizontal travel distance in cross aisles, 𝑡𝑡𝑑𝑑𝑐𝑐𝑐𝑐, is 2𝑄𝑄𝑑𝑑0,𝑎𝑎
𝑐𝑐𝑐𝑐 . We cannot specify which storage 

row positions will be occupied by storage rows of a lot. Thus, we consider all possible scenarios 

in which 𝑦𝑦𝑄𝑄𝑙𝑙,𝑎𝑎𝑡𝑡𝑙𝑙  row positions are selected from among 𝑁𝑁 row positions. It gives 𝐶𝐶 �𝑁𝑁, 𝑦𝑦𝑄𝑄𝑙𝑙,𝑎𝑎𝑡𝑡𝑙𝑙� 

cases. Notice, the storage row position occupied by the 𝑗𝑗th storage row is closer than the (𝑗𝑗+1)th 

storage row. Available storage row positions for the 𝑗𝑗th storage row are from the 𝑗𝑗th position to 

the �𝑁𝑁 − 𝑦𝑦𝑄𝑄𝑙𝑙,𝑎𝑎𝑡𝑡𝑙𝑙 + 𝑗𝑗�th position. The number of scenarios where the 𝑗𝑗th storage row occupies the 

𝑘𝑘th position equals 𝐶𝐶(𝑘𝑘-1, 𝑗𝑗-1)𝐶𝐶 �𝑁𝑁-𝑘𝑘, 𝑦𝑦𝑄𝑄𝑙𝑙,𝑎𝑎𝑡𝑡𝑙𝑙 -𝑗𝑗�. Thus, the expected horizontal travel distance in 

a storage aisle for the 𝑗𝑗th storage row is 

2 � �
𝑘𝑘 − 1
𝑗𝑗 − 1

� �
𝑁𝑁 − 𝑘𝑘

𝑦𝑦𝑄𝑄𝑙𝑙,𝑎𝑎𝑡𝑡𝑙𝑙 − 𝑗𝑗
� 𝑑𝑑𝑘𝑘𝑠𝑠𝑠𝑠 �

𝑁𝑁
𝑦𝑦𝑄𝑄𝑙𝑙,𝑎𝑎𝑡𝑡𝑙𝑙

��

𝑁𝑁−𝑦𝑦
𝑄𝑄𝑙𝑙,𝑎𝑎𝑡𝑡

𝑙𝑙+𝑗𝑗

𝑘𝑘=𝑗𝑗

. (B.5) 

Since the 𝑗𝑗th unit load is in the 𝑦𝑦𝑗𝑗,𝑎𝑎𝑡𝑡
𝑙𝑙 th storage row, total horizontal travel distance in a storage 

aisle, 𝑡𝑡𝑑𝑑𝑠𝑠𝑠𝑠, is 

𝑡𝑡𝑑𝑑𝑠𝑠𝑠𝑠 = 2�� � �
𝑘𝑘 − 1
𝑦𝑦𝑗𝑗,𝑎𝑎𝑡𝑡

𝑙𝑙 − 1
��

𝑁𝑁 − 𝑘𝑘
𝑦𝑦𝑄𝑄𝑙𝑙,𝑎𝑎𝑡𝑡𝑙𝑙 − 𝑦𝑦𝑗𝑗,𝑎𝑎𝑡𝑡

𝑙𝑙
�

𝑁𝑁−𝑦𝑦
𝑄𝑄𝑙𝑙,𝑎𝑎𝑡𝑡

𝑙𝑙 +𝑦𝑦𝑗𝑗,𝑎𝑎𝑡𝑡
𝑙𝑙

𝑘𝑘=𝑦𝑦
𝑗𝑗,𝑎𝑎𝑡𝑡

𝑙𝑙

𝑑𝑑𝑘𝑘𝑠𝑠𝑠𝑠 �
𝑁𝑁

𝑦𝑦𝑄𝑄𝑙𝑙,𝑎𝑎𝑡𝑡𝑙𝑙
�� �

𝑄𝑄𝑙𝑙

𝑗𝑗=1

. (B.6) 

Storage travel time, 𝑇𝑇𝑆𝑆𝑆𝑆, and storage travel cost, 𝐶𝐶𝑆𝑆𝑆𝑆�𝑖𝑖𝑡𝑡𝑙𝑙 ,𝑎𝑎𝑡𝑡𝑙𝑙�,  are 

𝑇𝑇𝑆𝑆𝑆𝑆 = �
𝑡𝑡𝑑𝑑𝑠𝑠𝑠𝑠

𝑣𝑣𝑣𝑣
� + �

𝑡𝑡𝑑𝑑𝑠𝑠𝑠𝑠

𝑣𝑣ℎ𝑟𝑟
� + �

𝑡𝑡𝑑𝑑𝑐𝑐𝑐𝑐 + 𝑡𝑡𝑑𝑑𝑠𝑠𝑠𝑠

𝑣𝑣ℎ𝑎𝑎
� (B.7) 

and  

𝐶𝐶𝑆𝑆𝑆𝑆�𝑖𝑖𝑡𝑡𝑙𝑙 ,𝑎𝑎𝑡𝑡𝑙𝑙� = �𝑐𝑐
𝑡𝑡(𝑇𝑇𝑆𝑆𝑆𝑆 + 𝐻𝐻 ∗ 𝑄𝑄),     if 𝑖𝑖𝑡𝑡𝑙𝑙 = 0,    

0,                                  otherwise.
 (B.8) 
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Retrieval travel cost 

In calculating retrieval travel cost, the demand distribution is considered. Assuming demand is D, 

total vertical travel distance in stacks, tdD
st and total horizontal travel distance in storage rows, 

tdD
sr are 

𝑡𝑡𝑑𝑑𝐷𝐷𝑠𝑠𝑠𝑠 = 2 � 𝑑𝑑𝛿𝛿
𝑖𝑖𝑡𝑡
𝑙𝑙 ,𝑎𝑎𝑡𝑡

𝑙𝑙
𝑠𝑠𝑠𝑠

𝑖𝑖𝑡𝑡
𝑙𝑙

𝑗𝑗=𝑖𝑖𝑡𝑡
𝑙𝑙−𝐷𝐷𝑙𝑙+1

, (B.9) 

and  

𝑡𝑡𝑑𝑑𝐷𝐷𝑠𝑠𝑠𝑠 = 2 � 𝑑𝑑𝛾𝛾
𝑖𝑖𝑡𝑡
𝑙𝑙 ,𝑎𝑎𝑡𝑡

𝑙𝑙
𝑠𝑠𝑠𝑠

𝑖𝑖𝑡𝑡
𝑙𝑙

𝑗𝑗=𝑖𝑖𝑡𝑡
𝑙𝑙−𝐷𝐷𝑙𝑙+1

 
(B.10) 

Total horizontal travel distance in cross aisles, tdD
ca, is 2𝐷𝐷𝑙𝑙𝑑𝑑0,𝑎𝑎𝑡𝑡

𝑙𝑙
𝑐𝑐𝑐𝑐 . Total horizontal travel distance 

in a storage aisle, tdDl
sa, is 

𝑡𝑡𝑑𝑑𝐷𝐷𝑙𝑙
𝑠𝑠𝑠𝑠 = 2 � � � �

𝑘𝑘 − 1
𝑦𝑦𝑖𝑖𝑡𝑡𝑙𝑙 ,𝑎𝑎𝑡𝑡𝑙𝑙 − 1

��
𝑁𝑁 − 𝑘𝑘

𝑦𝑦𝑄𝑄𝑙𝑙,𝑎𝑎𝑡𝑡𝑙𝑙 − 𝑦𝑦𝑖𝑖𝑡𝑡𝑙𝑙 ,𝑎𝑎𝑡𝑡𝑙𝑙
�

𝑁𝑁−𝑦𝑦
𝑄𝑄𝑙𝑙,𝑎𝑎𝑡𝑡

𝑙𝑙+𝑦𝑦𝑖𝑖𝑡𝑡𝑙𝑙 ,𝑎𝑎𝑡𝑡
𝑙𝑙

𝑘𝑘=𝑦𝑦
𝑖𝑖𝑡𝑡
𝑙𝑙 ,𝑎𝑎𝑡𝑡

𝑙𝑙

𝑑𝑑𝑘𝑘𝑠𝑠𝑠𝑠 �
𝑁𝑁

𝑦𝑦𝑄𝑄𝑙𝑙,𝑎𝑎𝑡𝑡𝑙𝑙
�� �

𝑖𝑖𝑡𝑡
𝑙𝑙

𝑗𝑗=𝑖𝑖𝑡𝑡
𝑙𝑙−𝐷𝐷𝑙𝑙+1

 

(B.11) 

Given demand Dl, retrieval travel time, TDl
RT, is 

𝑇𝑇𝐷𝐷𝑙𝑙
𝑅𝑅𝑅𝑅 = �

𝑡𝑡𝑑𝑑𝐷𝐷𝑙𝑙
𝑠𝑠𝑠𝑠

𝑣𝑣𝑣𝑣
� + �

𝑡𝑡𝑑𝑑𝐷𝐷𝑙𝑙
𝑠𝑠𝑠𝑠

𝑣𝑣ℎ𝑟𝑟
� + �

𝑡𝑡𝑑𝑑𝐷𝐷𝑙𝑙
𝑐𝑐𝑐𝑐 + 𝑡𝑡𝑑𝑑𝐷𝐷𝑙𝑙

𝑠𝑠𝑠𝑠

𝑣𝑣ℎ𝑎𝑎
� 

(B.12) 

By the relation between the demand distribution, inventory transition probability, and state 

transition probability, the probability of demand D can be represented by the state transition 

probability as follows: 

Pr(Demand=D) = 𝑝𝑝�𝑖𝑖𝑡𝑡𝑙𝑙 − 𝐷𝐷𝑙𝑙, 𝑎𝑎𝑡𝑡𝑙𝑙 �𝑖𝑖𝑡𝑡𝑙𝑙 , 𝑟𝑟𝑡𝑡𝑙𝑙,𝑎𝑎𝑡𝑡𝑙𝑙�. (B.13) 

Hence, retrieval travel cost, CRT�itl,at
l�, is 
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𝐶𝐶𝑅𝑅𝑅𝑅�𝑖𝑖𝑡𝑡𝑙𝑙 ,𝑎𝑎𝑡𝑡𝑙𝑙� = ��𝑐𝑐𝑡𝑡�𝑇𝑇𝐷𝐷𝑙𝑙
𝑅𝑅𝑅𝑅 + 𝑀𝑀𝑀𝑀 ∗ 𝐷𝐷�𝑝𝑝�𝑖𝑖𝑡𝑡𝑙𝑙 − 𝐷𝐷𝑙𝑙 ,𝑎𝑎𝑡𝑡𝑙𝑙 �𝑖𝑖𝑡𝑡𝑙𝑙 , 𝑟𝑟𝑡𝑡𝑙𝑙, 𝑎𝑎𝑡𝑡𝑙𝑙��

𝑖𝑖𝑡𝑡
𝑙𝑙

𝐷𝐷𝑙𝑙=1

. (B.14) 

 
Relocation travel cost 

In the calculation of relocation travel cost, we consider travel in the drt
l-deep storage area and in 

the dat
l-deep storage area, separately. Similar to the calculation of replenishment travel distance, 

total vertical travel distance in stacks, tdst, is 

𝑡𝑡𝑑𝑑𝑠𝑠𝑠𝑠 = 2��𝑑𝑑𝑗𝑗𝑠𝑠𝑠𝑠 ��𝑦𝑦𝑖𝑖𝑡𝑡𝑙𝑙 ,𝑟𝑟𝑡𝑡𝑙𝑙 − 1� 𝑟𝑟𝑡𝑡𝑙𝑙 + 𝛼𝛼𝑖𝑖𝑡𝑡𝑙𝑙 ,𝑟𝑟𝑡𝑡𝑙𝑙�
𝑧𝑧

𝑗𝑗=1

+ � 𝑑𝑑𝑗𝑗𝑠𝑠𝑠𝑠

𝛽𝛽
𝑖𝑖𝑡𝑡
𝑙𝑙 ,𝑟𝑟𝑡𝑡

𝑙𝑙

𝑗𝑗=1

�

+ 2��𝑑𝑑𝑗𝑗𝑠𝑠𝑠𝑠 ��𝑦𝑦𝑖𝑖𝑡𝑡𝑙𝑙 ,𝑎𝑎𝑡𝑡𝑙𝑙 − 1� 𝑟𝑟𝑡𝑡𝑙𝑙 + 𝛼𝛼𝑖𝑖𝑡𝑡𝑙𝑙 ,𝑎𝑎𝑡𝑡𝑙𝑙 �
𝑧𝑧

𝑗𝑗=1

� + � 𝑑𝑑𝑗𝑗𝑠𝑠𝑠𝑠

𝛽𝛽
𝑖𝑖𝑡𝑡
𝑙𝑙 ,𝑎𝑎𝑡𝑡

𝑙𝑙

𝑗𝑗=1

, 

(B.15) 

and total horizontal travel distance in storage rows, tdsr, is 

𝑡𝑡𝑑𝑑𝑠𝑠𝑠𝑠 = 2�𝑧𝑧�𝑑𝑑𝑗𝑗𝑠𝑠𝑠𝑠 �𝑦𝑦𝑖𝑖𝑡𝑡𝑙𝑙 ,𝑟𝑟𝑡𝑡𝑙𝑙 − 1�

𝑟𝑟𝑡𝑡
𝑙𝑙

𝑗𝑗=1

+ �𝑧𝑧 � 𝑑𝑑𝑗𝑗𝑠𝑠𝑠𝑠
𝑟𝑟𝑡𝑡
𝑙𝑙

𝑗𝑗=𝛾𝛾
𝑖𝑖𝑡𝑡
𝑙𝑙 ,𝑟𝑟𝑡𝑡

𝑙𝑙

− �𝑧𝑧 − 𝛿𝛿𝑖𝑖𝑡𝑡𝑙𝑙 ,𝑟𝑟𝑡𝑡𝑙𝑙� 𝑑𝑑𝛾𝛾𝑖𝑖𝑡𝑡𝑙𝑙 ,𝑟𝑟𝑡𝑡
𝑙𝑙

𝑠𝑠𝑠𝑠 ��

+ 2�𝑧𝑧�𝑑𝑑𝑗𝑗𝑠𝑠𝑠𝑠 �𝑦𝑦𝑖𝑖𝑡𝑡𝑙𝑙 ,𝑎𝑎𝑡𝑡𝑙𝑙 − 1� +

𝑎𝑎𝑡𝑡
𝑙𝑙

𝑗𝑗=1

�𝑧𝑧 � 𝑑𝑑𝑗𝑗𝑠𝑠𝑠𝑠
𝑎𝑎𝑡𝑡
𝑙𝑙

𝑗𝑗=𝛾𝛾
𝑖𝑖𝑡𝑡
𝑙𝑙 ,𝑎𝑎𝑡𝑡

𝑙𝑙

− �𝑧𝑧 − 𝛿𝛿𝑖𝑖𝑡𝑡𝑙𝑙 ,𝑎𝑎𝑡𝑡𝑙𝑙� 𝑑𝑑𝛾𝛾𝑖𝑖𝑡𝑡𝑙𝑙 ,𝑎𝑎𝑡𝑡
𝑙𝑙

𝑠𝑠𝑠𝑠 ��. 

(B.16) 

Total horizontal travel distance in cross aisles, tdca, is given by 2itldat
l,rt

l
ca . Total horizontal travel 

distance in storage aisles, tdsa, is calculated as follows: 

𝑡𝑡𝑑𝑑𝑠𝑠𝑠𝑠 = 2�� � �
𝔸𝔸
𝔹𝔹
ℂ

𝑁𝑁−𝑦𝑦
𝑖𝑖𝑡𝑡
𝑙𝑙 ,𝑎𝑎𝑡𝑡

𝑙𝑙+𝑦𝑦𝑗𝑗,𝑎𝑎𝑡𝑡
𝑙𝑙

𝑚𝑚=𝑦𝑦
𝑗𝑗,𝑎𝑎𝑡𝑡

𝑙𝑙

𝑁𝑁−𝑦𝑦
𝑖𝑖𝑡𝑡
𝑙𝑙 ,𝑟𝑟𝑡𝑡

𝑙𝑙+𝑦𝑦𝑗𝑗,𝑟𝑟𝑡𝑡
𝑙𝑙

𝑘𝑘=𝑦𝑦
𝑗𝑗,𝑟𝑟𝑡𝑡

𝑙𝑙

�

𝑖𝑖𝑡𝑡
𝑙𝑙

𝑗𝑗=1

 (B.17) 
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where  

𝔸𝔸 = �
𝑘𝑘 − 1
𝑦𝑦𝑗𝑗,𝑟𝑟𝑡𝑡

𝑙𝑙 − 1
��

𝑁𝑁 − 𝑘𝑘
𝑦𝑦𝑖𝑖𝑡𝑡𝑙𝑙 ,𝑟𝑟𝑡𝑡𝑙𝑙 − 𝑦𝑦𝑗𝑗,𝑟𝑟𝑡𝑡

𝑙𝑙
� �

𝑚𝑚 − 1
𝑦𝑦𝑗𝑗,𝑎𝑎𝑡𝑡

𝑙𝑙 − 1
��

𝑁𝑁 −𝑚𝑚
𝑦𝑦𝑖𝑖𝑡𝑡𝑙𝑙 ,𝑎𝑎𝑡𝑡𝑙𝑙 − 𝑦𝑦𝑗𝑗,𝑎𝑎𝑡𝑡

𝑙𝑙
�, 

(B.18) 

𝔹𝔹 = �
𝑁𝑁
𝑦𝑦𝑖𝑖𝑡𝑡𝑙𝑙 ,𝑟𝑟𝑡𝑡𝑙𝑙

� �
𝑁𝑁

𝑦𝑦𝑖𝑖𝑡𝑡𝑙𝑙 ,𝑎𝑎𝑡𝑡𝑙𝑙
�, 

(B.19) 

and  

ℂ = �
|𝑘𝑘 −𝑚𝑚|(𝑊𝑊 + 𝑐𝑐) + 𝐴𝐴,                                         if storage area 𝑟𝑟𝑡𝑡𝑙𝑙 and 𝑎𝑎𝑡𝑡𝑙𝑙  share the same aisle,
min�𝑘𝑘 + 𝑚𝑚, 2𝑁𝑁 − (𝑘𝑘 + 𝑚𝑚)� (𝑊𝑊 + 𝑐𝑐) + 𝐴𝐴,   otherwise.                                                                   

 
(B.20) 

Relocation travel time, TRL, and storage travel cost, CRL�itl,rt
l,at

l�, are 

𝑇𝑇𝑅𝑅𝑅𝑅 = �
𝑡𝑡𝑑𝑑𝑠𝑠𝑠𝑠

𝑣𝑣𝑣𝑣
� + �

𝑡𝑡𝑑𝑑𝑠𝑠𝑠𝑠

𝑣𝑣ℎ𝑟𝑟
� + �

𝑡𝑡𝑑𝑑𝑐𝑐𝑐𝑐 + 𝑡𝑡𝑑𝑑𝑠𝑠𝑠𝑠

𝑣𝑣ℎ𝑎𝑎
� (B.21) 

and  

𝐶𝐶𝑅𝑅𝑅𝑅�𝑖𝑖𝑡𝑡𝑙𝑙 , 𝑟𝑟𝑡𝑡𝑙𝑙,𝑎𝑎𝑡𝑡𝑙𝑙� = �𝑐𝑐
𝑡𝑡�𝑇𝑇𝑅𝑅𝑅𝑅 + 𝑀𝑀𝑀𝑀 ∗ 𝑖𝑖𝑡𝑡𝑙𝑙�,   if 𝑟𝑟𝑡𝑡𝑙𝑙 ≠ 𝑎𝑎𝑡𝑡𝑙𝑙  and 𝑖𝑖𝑡𝑡𝑙𝑙 ≠ 0,

0,                                   otherwise.                   
 

(B.22) 

 
3.3. Total cost function 

Total cost is the sum of floor space cost, storage travel cost, retrieval travel cost, and relocation 

travel cost, and is calculated as follows: 

𝑇𝑇𝑇𝑇�𝑖𝑖𝑡𝑡𝑙𝑙 , 𝑟𝑟𝑡𝑡𝑙𝑙,𝑎𝑎𝑡𝑡𝑙𝑙� = 𝐶𝐶𝐹𝐹𝐹𝐹�𝑖𝑖𝑡𝑡𝑙𝑙 ,𝑎𝑎𝑡𝑡𝑙𝑙� + 𝐶𝐶𝑆𝑆𝑆𝑆�𝑖𝑖𝑡𝑡𝑙𝑙 ,𝑎𝑎𝑡𝑡𝑙𝑙� + 𝐶𝐶𝑅𝑅𝑅𝑅�𝑖𝑖𝑡𝑡𝑙𝑙 ,𝑎𝑎𝑡𝑡𝑙𝑙� + 𝐶𝐶𝑅𝑅𝑅𝑅�𝑖𝑖𝑡𝑡𝑙𝑙 , 𝑟𝑟𝑡𝑡𝑙𝑙,𝑎𝑎𝑡𝑡𝑙𝑙�. (B.23) 

The DBSP MDP model reward function is the product of minus one and the total cost function: 

𝑟𝑟�𝑖𝑖𝑡𝑡𝑙𝑙 , 𝑟𝑟𝑡𝑡𝑙𝑙,𝑎𝑎𝑡𝑡𝑙𝑙� = −1 ∗ 𝑇𝑇𝑇𝑇�𝑖𝑖𝑡𝑡𝑙𝑙 , 𝑟𝑟𝑡𝑡𝑙𝑙,𝑎𝑎𝑡𝑡𝑙𝑙�. (B.24) 

 
4. Case 

To demonstrate the solution procedure, consider an example having the following design 

parameters: Q = 60; L = 4 ft; W = 3.5 ft; c = 0.75 ft; 𝐻𝐻 = 4.5 ft; A = 13 ft; z = 2; vha = 240 fpm; 

vhr = 80 fpm; vv = 50 fpm; cs= 0.1 $/ft2/day; ct = 0.5 $/min; MH = 0.5 min/unit load. Although 
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any discrete probability mass function can be used, for convenience, we assume demand is 

Poisson distributed with an average demand (λ) of 5 unit loads/day. The storage layout includes 6 

storage blocks, each having 20 storage row positions and storage depths shown in Figure 1. To 

obtain an optimal policy for the DBSP MDP model, we use the value iteration algorithm with the 

expected total discounted reward optimality criterion described in Puterman (2005). Using a 

daily discount rate of 0.97, the optimal policy recommends storing the lot in the 10-deep block at 

replenishment and at inventory levels greater than 8 and storing the remainder of the lot in 2-

deep or 3-deep blocks with inventory levels not greater than 8. The resulting expected daily cost 

is $48.96. If relocations are not allowed and the product is stored in 10-deep storage rows for the 

life of the lot, the expected daily cost is $49.97. Hence, allowing relocation allowed daily cost to 

be reduced by 2.03%. When cs = 0.3 $/ft2/day, ct = 0.3 $/min, and λ = 2 unit loads/day, the 

optimal policy includes frequent relocations over all blocks with an expected daily cost of 

$110.43. Without relocation, using 10-deep storage rows for the life of the lot yields an expected 

daily cost of $121.84. Thus, performing relocation during the life of the lot reduces daily cost by 

9.36%.  

To provide insight regarding the DBSP, we performed a sensitivity analysis by considering 

several values for three parameters in the example: storage cost, space cost, average demand, and 

order quantity. Specifically, we solved the example problem with: cs = 0.1 and 0.5; ct = 0, 0.05, 

0.1, 0.2, …, 1.5; λ = 2, 3, 5, and 10; and Q = 15, 60, 300, and 500. Increased space cost, coupled 

with decreased travel cost led to frequent relocations with larger inventory levels. Also with cs = 

0.1 $/ft2/day and ct = 1.5 $/min for a ratio of 15, no relocation occurred in the optimal policy. 

Changing λ produced changes in the optimal policy, but no discernable pattern was evident. 

Changing Q yielded the following insights: for very large values of Q, a large number of very 
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deep storage rows are required, at most one of which will be partially filled and honeycomb loss 

is a small fraction of the storage space; hence, relocation does not occur until the inventory level 

reaches a point when honeycomb loss becomes a significant fraction of the space occupied by 

the product lot. When the cost of relocation is less than the cost of honeycomb loss, relocation 

occurs. As an example, for Q = 500, no relocation occurred until inventory reached a level of 20. 

 
5. Conclusions 

In the paper, we proposed changing row depths during the life of a storage lot to reduce the cost 

of operating a block stacking storage system. The dynamic block stacking problem was 

formulated and solved using a Markov decision process model. Our computational experience 

yielded unexpected results. In situations where we expected an optimal policy would include 

relocations, none occurred. Likewise, when we anticipated no relocations would occur, they did. 

Based on the computational experience, we gained additional insights regarding combinations of 

parameter values that produce relocations and combinations that do not produce relocations.  

For further research, we believe allowing lot splitting in a multi-product version of the DBSP 

problem is worthy of consideration. Likewise, we anticipate some interesting design issues will 

arise when considering the DBSP with deterministic demand. Finally, we are confident an 

incorporation of relocation considerations in the design of a new block stacking layout will be a 

challenging endeavor. 
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