
University of Arkansas, Fayetteville
ScholarWorks@UARK

Theses and Dissertations

12-2017

Methodologies for Solving Integrated
Transportation and Scheduling Problems
Fereydoun Adbesh
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/etd

Part of the Industrial Engineering Commons, and the Transportation Engineering Commons

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by
an authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.

Recommended Citation
Adbesh, Fereydoun, "Methodologies for Solving Integrated Transportation and Scheduling Problems" (2017). Theses and Dissertations.
2620.
http://scholarworks.uark.edu/etd/2620

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fetd%2F2620&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F2620&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F2620&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=scholarworks.uark.edu%2Fetd%2F2620&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1329?utm_source=scholarworks.uark.edu%2Fetd%2F2620&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd/2620?utm_source=scholarworks.uark.edu%2Fetd%2F2620&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20ccmiddle@uark.edu

Methodologies for Solving Integrated Transportation and Scheduling Problems

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in Engineering with a concentration in Industrial Engineering

by

Fereydoun Adbesh
Iran University of Science and Technology

Bachelor of Science inIndustrial Engineering, 2004
Mazandaran University of Science and Technology
Master of Science in Industrial Engineering, 2008

December 2017
University of Arkansas

This dissertation is approved for recommendation to the Graduate Council.

Dr. Chase Rainwater
Dissertation Director

Dr. Edward Pohl Dr. Heather Nachtmann
Committee Member Committee Member

Dr. John Kent
Committee Member

Abstract

This research proposes novel solution techniques to optimize two real-world problems in the

area of scheduling and transportation. We first consider a model for optimizing the operations

of dredges. In this problem, scheduling and assignment decisions are integrated across a finite

planning horizon. Additional constraints and problem elements explicitly considered include, but

are not limited, to environmental work window restrictions, budget limitations, dredge operation

rates and schedule-dependent dredge availability. Our approach makes use of Constraint Pro-

gramming (CP) to obtain quality and robust solutions within an amount of time small enough to

be useful to practitioners. The expanded feature set of the methodology presented makes our so-

lution tool the most comprehensive and flexible decision-making framework for dredge schedul-

ing in existence.

The second transportation and logistics problem considered in this dissertation considers a

unified variation of the Vehicle Routing Problem (VRP). This work offers a powerful yet flexible

tool to model and solve real-world problems, each with their specifications, constraints, and re-

quirements. We review existing VRP problems from the literature and propose new VRP variants

that differ from the existing ones by the consideration of hours of service regulation on the active

and drive hours of drivers in a single or multiple shifts. Real-world instances of these problems

consist of thousands of customer locations and hundreds of vehicles. To ensure the quality of the

solutions, we compare the performance of our approach with CPLEX on several benchmark in-

stances from the literature.

Finally, the third chapter of this work focuses on a comprehensive analysis of the method-

ology presented in Chapter 4. Specifically, sensitivity analysis regarding the parameters driving

the performance of the heuristics is performed. Also, we propose a Genetic Algorithm (GA) to

solve the VRP variants in Chapter 3 and provide a computational study of its performance against

CPLEX and the approaches in Chapter 3.

c©2017 by Fereydoun Adbesh
All Rights Reserved

Acknowledgments

I would like to thank my advisor, Dr. Chase Rainwater, for all his guidance and support. The

chance to work and study with him is truly a great privilege. I have been incredibly fortunate to

have him as an advisor who challenged me, kept me enthusiastic and gave me just the right level

of freedom and guidance I needed to explore on my own. I am forever grateful for his great men-

torship, endless personal and professional support.

I also would like to thank my committee members, Drs. Heather Nachtmann, Edward Pohl

and John Kent for their guidance, encouragements and invaluable advices throughout my doctoral

studies. Their feedbacks have taught me great lessons and made this dissertation more solid. I am

also grateful to all my professors for consistently sharing their knowledge without any hesitation

to enable me succeed in my studies. I specifically thank Dr. Justin Chimka, our graduate program

coordinator, for his great first impression.

I am thankful to my colleagues in ETP team of J.B. Hunt, Andy Edwardes, Becca Luetjen,

Eric Schauer, Michael Herm and Ashly Artis, for the support and friendship provided by each

one them. The few, the proud! I cannot thank enough my boss at J.B. Hunt, Douglas Mettenburg,

for being such a great manager, mentor, leader and role model.

Finally, I am very grateful of my parents, the very first support of my life and my broth-

ers and sister. My last appreciation goes to my true friend and wife, Sahar, for her immeasurable

sacrifices and unfailing love in absence of my family while I pursued this final degree.

Dedication

To my loving wife, Sahar, without her endless patience and support, pursuing PhD would have

stayed a dream for me.

 تا در هوس لقمهٔ نانی نانی تا در طلب گوهر کانی کانی
 که در جستن آنی آنی هر چیز گر بدانی دانیاین نکتهٔ رمز

 مولانا

You are the treasure, if the gems are your aim,

No more than a grain, if a loaf is your claim,

Recall this secret, when you play this game,

Whatever you pursued, is what you became.

Rumi (1207 1273),

A great Persian poet

Translation to English:

Maryam Dilmaghani

Contents

1 Introduction 1

Bibliography . 5

2 Improvements and Enhancements to the Dredge Fleet Scheduling Problem 6

2.1 Introduction . 6

2.1.1 Problem Description . 7

2.1.2 Problem Illustration . 9

2.2 Literature Review . 10

2.3 Foundational Work on Dredge Scheduling . 11

2.4 Dredge Scheduling Requirements . 13

2.5 Optimization Methodology . 16

2.5.1 Why Constraint Programming . 16

2.5.2 Constraint Programming Formulation . 18

2.6 Implementations and Results . 20

2.6.1 Partial Dredging . 22

2.6.2 Variable Job Sizes . 28

2.6.3 Multiple Trips to the Same Job . 31

2.6.4 Multiple Dredges on the Same Job . 35

2.6.5 Different Operation Rates and Unit Cost of Dredging 40

2.6.6 Stimulating Downtime for Dredges . 41

2.6.7 Mob/Demob Cost . 42

2.6.7.1 Mob/demob cost based on cubic yards of dredging 42

2.6.7.2 Mob/demob cost based on travel time/distance 43

2.6.8 Dredge Capabilities to Perform Jobs . 43

2.6.9 Comprehensive Model . 44

2.7 Impacts of Implementation . 46

2.8 Conclusion . 46

Bibliography . 48

Appendices 50

Appendix 2.A Dredging Projects and Vessels Characteristics 50

Appendix 2.B Certification of Student Work . 53

3 Vehicle Routing Problems with Hours of Service Regulations for Trucking Industry 54

3.1 Introduction . 54

3.2 Literature Review . 57

3.3 VRP with Drive Service Regulations . 59

3.3.1 Overview of DOT Regulations . 62

3.3.2 PHTD with Infinite Time Horizon . 65

3.3.3 PHD with Backhauls in a Single Shift Time Horizon 70

3.4 ETP Optimization Methodology . 74

3.4.1 Grouping Algorithms . 76

3.4.2 Merging Algorithms . 79

3.4.2.1 The Modified Nearest Neighbor Algorithm 79

3.4.2.2 The Modified Clarke-Wright Algorithm 81

3.4.3 Improvement Algorithms . 83

3.4.3.1 1-Move Algorithm . 84

3.4.3.2 1-Exchange Algorithm . 86

3.4.3.3 1-Reinsert Algorithm . 87

3.4.3.4 Minimize Cost . 89

3.4.3.5 The Break Cross Algorithm . 91

3.4.3.6 1-in-Move . 92

3.4.4 Filtering . 93

3.4.5 Forcing . 93

3.5 Solutions and Results . 93

3.5.1 A Case Study . 99

3.6 Conclusion . 102

Bibliography . 104

Appendices 109

Appendix 3.A Modified Breedam’s Benchmark Instances 109

Appendix 3.B The PHTD Variant with One Week Time Horizon 110

Appendix 3.C The PHTD Variant with a Single Shift Time Horizon 111

Appendix 3.D Certification of Student Work . 112

4 A Genetic Algorithm for Unified Vehicle Routing Problems 113

4.1 Introduction . 113

4.2 Literature Review . 116

4.3 ETP Structure . 116

4.3.1 The Input Datasets . 117

4.3.1.1 Points . 118

4.3.1.2 Lines . 119

4.3.1.3 Parameters . 119

4.3.1.4 Routes . 119

4.4 Optimization in ETP . 120

4.4.1 The Constructive Algorithms in ETP . 120

4.4.1.1 The Modified Nearest Neighbor Algorithm 120

4.4.1.2 The Modified Clarke-Wright Algorithm 120

4.4.2 Improvement . 121

4.4.2.1 Inter-Route Improvement Algorithms 121

4.4.2.1.1 1-Move . 122

4.4.2.1.2 1-Exchange . 122

4.4.2.1.3 1-Reinsert . 122

4.4.2.2 Intra-Route Improvement Algorithms 123

4.4.2.2.1 Minimize Cost . 123

4.4.2.2.2 Break Cross . 123

4.4.2.2.3 1-in-Move . 123

4.5 Heuristic Algorithms Analysis . 124

4.6 A Genetic Algorithm . 128

4.6.1 Chromosome Representation . 129

4.6.2 The Initial Population . 130

4.6.3 Selection Strategy . 130

4.6.3.1 Selecting Parent(s) . 130

4.6.3.2 Selecting The Surviving Chromosomes 131

4.6.4 Crossover . 131

4.6.5 Mutation . 132

4.6.6 The Termination Criteria . 133

4.7 The GA Experimental Results . 133

4.7.1 GA Parameter Settings Analysis . 136

4.8 Conclusion . 142

Bibliography . 144

Appendices 146

Appendix 4.A Certification of Student Work . 146

5 Conclusions and Future Work 147

5.1 Future Work . 148

List of Figures

2.1 dredge fleet Scheduling Problem Illustration . 9

2.2 3-D Representation of 116 Dredge Projects Locations with Associated Size and

Cost . 14

2.3 Binary Variables vs. Interval Variable . 17

2.4 Interval Variables with the Same Sizes and Different Lengths 23

2.5 All RPs Relaxation Impacts on Amount of Dredging 27

2.6 All RPs Relaxation Impacts on Time . 27

2.7 Impact of Allowing Variable Job Sizes with and without Starting Point 30

2.8 Impact of Increasing Run Time on Dredging in Multiple Trips to the Same Jobs

Model . 35

2.9 Impact of Having Multiple Dredge on the Same Job Model 40

3.1 An example of the PDVRP (Toth and Vigo, 2014) 65

3.2 VRP with backhauls (a feasible solution example) (Toth and Vigo, 1997) 71

3.3 The ETP Routing Process . 75

3.4 The Group Direct Algorithm . 77

3.5 The Modified Nearest Neighbor Algorithm . 80

3.6 The Grenade Merge Method . 81

3.7 The Modified Clarke-Wright Algorithm . 82

3.8 The 1-Move Algorithm . 84

3.9 Adding a Line . 85

3.10 The 1-Exchange Algorithm . 86

3.11 The 1-Reinsert Algorithm . 88

3.12 The K-means Cluster Algorithm . 90

3.13 The Break Cross Algorithm . 91

3.14 Performance on PHBD1, NNS vs. CPLEX vs. CLK 98

3.15 Performance on PHBD1, CPLEX vs. ETP . 99

3.16 The graphical representation of the shipment network of the case study 101

4.1 The Correlation Between Datasets in ETP . 118

4.2 Breaking Line Cross . 123

4.3 The Chromosome Representation . 129

4.4 Performance (obj. function) of ETP vs. CPLEX vs. GA (default settings) 136

List of Tables

2.1 Summary of Restricted Periods . 15

2.2 Number of Variables and Constraints in MIP and CP Formulation 16

2.3 Notation of CPDFS base model Formulation . 19

2.4 Base Model Results . 21

2.5 Individual Impacts of RPs Relaxation . 24

2.6 Individual Impacts of RPs Relaxation to 50% with Starting Point 25

2.7 All RPs Relaxation Impacts . 26

2.8 Variable Jobs Size . 29

2.9 Multiple Trips to the Same Job . 33

2.10 Multiple Trips to the Same Job . 34

2.11 Multiple Trips to the Same Job . 34

2.12 Multiple Dredges on the Same Jobs . 39

2.13 Different Operation Rates and Cost of Dredging for each Job 41

2.14 Notation of MCPDFS Formulation in Addition to CPDFS in Table 2.3 44

2.15 116 Project Properties . 50

2.16 Production Rates of Dredge Vessels . 52

3.1 Existing VRP Variants in ETP . 56

3.2 Distance to Time Conversion . 64

3.3 Sets of PHTD with Infinite Time Horizon . 66

3.4 Parameters of PHTD with Infinite Time Horizon 66

3.5 Decision Variables of PHTD with Infinite Time Horizon 67

3.6 Modifications on the Sets and Decision Variables of the PHBD1 72

3.7 Performance Comparison, ETP vs. CPLEX (Instances from Appendix 3.A) . . . 95

3.8 The Case Study Characteristics . 100

3.9 The Optimization summary of the case study network by ETP 102

3.10 The Modified Set of Table 3.3 for the PHTD7 Formulation 110

3.11 The Modified Decision Variable of Table 3.3 for the PHTD1 Formulation 111

4.1 The Impact of the Nearest Neighbor and Heuristics Algorithms on the Modified

Breedam’s Instances . 124

4.2 The Impact of the Clarke-Wright and Improvement Heuristics on the Modified

Breedam’s Instances . 126

4.3 Performance Comparison, ETP vs. CPLEX vs. GA (default settings as in Table

4.4) . 134

4.4 Default Parameter Setting of the GA . 137

4.5 The Performance of the Components of GA (default settings as in Table 4.4) . . . 137

4.6 The Impact of the Population Size on the Performance of GA (with default val-

ues for other parameters as in Table 4.4) . 139

4.7 The Impact of the Default (50) and the Smallest (3) Population Size on the Per-

formance of GA (with default values for other parameters as in Table 4.4) 141

Disclaimer

The views expressed in this dissertation are those of the author and do not reflect the official pol-

icy or position of the United States Army Corps of Engineers.

1. Introduction

This research considers two classes of optimization problem that contribute to the scheduling and

routing literature. Both problems seek to expand the abilities of practitioners in the transporta-

tion logistics field to more easily integrate operations research into their decision-making process.

This integration is done by developing flexible, comprehensive and efficient approaches that bet-

ter represent real-world transportation challenges. Both scheduling and routing problems have

been widely studied over the last five decades. In this research, we contribute to these fields by

considering new methods for determining the best utilization of available resources for realistic

large-scaled problems, as well as introducing new models for the well-known Vehicle Routing

Problem (VRP) with hours of service regulations.

Dredging is an excavation activity that usually happens at the bottom of shallow seas or

waterways to remove the sediments, mud, and even soil. The primary purpose of dredging is to

make the waterways navigable and creates an anti-sludge pathway for ships, boats and other sail-

ing vessels. It also is used in eroded coastal beaches to replenish sand by scooping out the sand

from water to shore. In the U.S. hundreds of maintenance dredging projects operate each year to

provide safe, reliable and cost-efficient waterborne transportation systems with minimal impact

on the environment. The transportation system mainly consists of the movement of commerce,

national security needs, and recreation. The U.S. Army Corps of Engineers (USACE) is respon-

sible for maintaining the channel depths at U.S. harbors and on inland waterways to keep them

navigable. This mission includes nearly 12,000 miles of inland and intra-coastal waterways. The

dredging operations remove over 250 million cubic yards of material each year at an average an-

nual cost of over $1.3 billion (see Water Resources). Each year, the decision of assigning individ-

ual dredging vessels (whether government or private industry) to navigation projects is made by

the USACE to maximize the total cubic yards of dredging while not exceeding the total budget.

The dredging projects must adhere to natural environmental windows to mitigate damage to the

local environmental species which brings consequential limitations on how and when dredging

1

can occur. These limitations put temporal constraints on the conduct of dredging in order to pro-

tect biological resources or their habitats from potentially detrimental effects (Dickerson et al.,

1998). In a part of Chapter 2, we used partial dredging during restricted periods as the relax-

ation and studied the impact of relaxing each window individually, as well as collectively. Partial

dredging during a restricted period means a dredge vessel can work during the restricted periods,

but with a slower operation rate. Having encountered a group of aquatic animals like turtles, fish

and other wildlife during the restricted periods, dredging vessels might have to stop dredging to

prevent causing harm. Restricted period relaxations can only be implemented in localized areas

after extensive research has been conducted to pinpoint species migratory patterns and sensitivi-

ties to dredging activities.

In Chapter 2, we study the allocation and scheduling of available dredge vessels to dredg-

ing jobs under a heavily constrained environment. The constraints include environmental con-

siderations, budget limitations, and resource availability. We build upon an existing Constraint

Programming (CP) method to offer a robust and flexible decision tool that can be used by US-

ACE to optimally utilize the available resources. This tool can handle different variations of the

problem based on their needs that the previous work failed to address. The following capabilities

are added to the tool based on the needs of the USACE in facing the real-world dredge operation.

1. Allow partial dredging during environmental windows.

2. Have variable job sizes.

3. Operate multiple dredges on the same job.

4. Make multiple trips to the same jobs.

5. Consider different operation rates for each job.

6. Set different unit costs of dredging for each job.

7. Simulate downtime for dredges.

2

8. Include Mob/Demob cost in the budget.

9. Check dredge capability to perform assigned projects.

The second problem of interest is one of the well-known problems in the area of trans-

portation and logistics, the Vehicle Routing Problem (VRP). The goal of VRP is to obtain the

best routes for a fleet of vehicles in which all locations are served and all vehicles return to the

origin depot. The objective is to minimize the total cost of traveling between locations while ad-

hering to each vehicle’s capacity constraint. Over the past five decades, after Dantzig and Ramser

(1959) introduced VRP as the truck dispatching problem to transport gas between stations using

trucks, many researchers have studied several variations of this problem to model real-world rout-

ing scenarios. The appearance of different VRP variants is the reflection of the challenges faced

by researchers as well as companies to model their transportation network.

In Chapter 3, we assume the role of a logistics professional in an attempt to consolidate and

satisfy customer demand using a unified variant of the Vehicle Routing Problem (VRP) to reduce

operation cost while maintaining system performance levels. We propose a comprehensive tool

that integrates multiple algorithmic techniques into a platform to provide a high performance so-

lution approach that addresses a wide range of VRP variants such as capacitated VRP (CVRP),

VRP with time windows (VRPTW), heterogeneous fleet VRP (HVRP), open VRP (OVRP),

multi-depot VRP (MDVRP), pickup and delivery VRP (PDVRP), simultaneous pick-drops VRP

(SVRP) and VRP with backhauls (VRPB). This optimization tool is practical and appealing to

industry tool that uses approaches which yield quality solutions in a short time and is flexible to a

wide range of problems.

Moreover, a family of new variants of VRP is introduced which considers the hours of ser-

vice regulations imposed by the U.S. Department of Transportation (DOT) to limit the daily and

weekly driving and working hours of the truck drivers. Due to the huge additional complexity

brought by imposing these regulations on the VRP models, these new variants are formulated in

three different plan time horizons: i) daily, ii) weekly and iii) infinite time. Based on these gov-

ernmental regulations, the drive, work, and rest hours of each driver must follow the rules on the

3

daily and weekly total hours of driving and the required amount of rest between them. These reg-

ulations usually reduces the drivers’ working hours and ultimately the total number of shipments.

Despite the fact that the routing and scheduling of trucks is currently being impacted by these

regulations, to the best of our knowledge, there are no optimization solutions in the literature or

practice that address this complication. In this research, we introduce a multi-phase heuristic so-

lution approach to solve this class of problems and compare its performance with a black box

solver. We also offer a realistic case study to illustrate the benefit of our model and tool on real-

world logistics scenarios.

The final effort in this dissertation offers a comprehensive analysis of the heuristic method

proposed in Chapter 4 and additional performance enhancements. In addition, a genetic algo-

rithm is proposed which utilizes sub-procedures from Chapter 3. This approach is compared

against the approach in Chapter 3 and CPLEX. The genetic algorithm offers improved solutions.

Additional exploration of the algorithm parameters provide opportunities to retain these quality

solutions with decreased computational effort.

4

Bibliography

Dantzig, G. B. and Ramser, J. H. (1959). The truck dispatching problem. Management science,
6(1):80–91.

Dickerson, D. D., Reine, K. J., and Clarke, D. G. (1998). Economic impacts of environmental
windows associated with dredging operations. Technical report, ARMY ENGINEER WATER-
WAYS EXPERIMENT STATION VICKSBURG MS.

Water Resources. Inland waterway navigation: Value to the nation. http://www.corpsresults.us/.
Accessed: July 2015.

5

2. Improvements and Enhancements to the Dredge Fleet Scheduling Problem

Abstract: The U.S. Army Corps of Engineers (USACE) annually spends more than 100 million

dollars on dredging hundreds of navigation projects across more than 12,000 miles of inland and

intra-coastal waterways. In this study, we expand the logic-based mathematical programming so-

lution approaches to address the real-sized dredge scheduling challenges faced by USACE. Each

year USACE must determine how to allocate dredging resources to required jobs while adhering

to various limitations such as budget, resource availability and so-called environmental restric-

tions that define when dredging cannot take place due to protecting wildlife.

In this study, we utilize constraint programming optimization capabilities to model and

solve the dredge fleet scheduling problem (DFSP) to address USACE needs for each job. These

requirements include having different equipment productivity rates on each dredging job, partial

dredging during restricted periods, variable job sizes, multiple trips of dredges to the same jobs

and multiple dredges working on the same jobs. The result of our research is to offer a robust

decision tool that can be used by USACE to determine the appropriate dredge fleet and the opera-

tions and sequences associated with that fleet for a given set of jobs and their characteristics.

2.1 Introduction

In this chapter, we study the allocation and scheduling of an available fleet of dredge under a

heavily constrained environment. Some constraints are the regulations imposed by the govern-

ment to protect the wildlife in dredging locations and others are system constraints such as bud-

get, availability and production rates of the resources. In general, CP captures the feasible so-

lution space search with more constraints in the model with the ability to apply global (logical)

constraints when the actual interest is to provide good feasible solutions (Jain and Grossmann,

2001). Also, so-called interval variables provide CP a competitive advantage when modeling a

scheduling problem. We provide a powerful, yet flexible, tool to find robust solution to handle

6

different variations of the problem based on our client needs. We could maximize the total cubic

yards of dredging by varying our CP model to use multiple resources and trips to the dredging

location. Finally, performing a sensitivity analysis on partial operations during the environmen-

tal work windows provides useful insights into how these restricted periods affect the efficiency

of dredges. Partial operations of dredges occur when we dredge at a slower rate during restricted

periods.

2.1.1 Problem Description

The U.S. Army Corps of Engineers (USACE) conducts maintenance dredging at hundreds of

navigation projects each year to provide safe, reliable and cost-efficient waterborne transporta-

tion systems with minimal impact on the environment to ensure movement of commerce, national

security needs, and recreation. The primary purpose of dredging is to maintain navigable channel

depths at U.S. harbors and on inland waterways across nearly 12,000 miles of inland and intra-

coastal waterways and navigable channels in 192 commercial locks and dam sites in 41 states.

The USACE dredges over 250 million cubic yards of material each year at an average annual cost

of over $1.3 billion to keep the nation’s waterways navigable (see Resources). Each year, the de-

cision of assigning individual dredging vessels (whether government or private industry) to nav-

igation projects is made by the USACE to maximize the total cubic yards of dredging while not

exceeding the total budget.

To mitigate damage to the local environmental species, dredging jobs must adhere to nat-

ural environmental windows which brings consequential limitations on how and when dredging

can occur. For example, west coast Ventura Harbor is not dredgable from mid-April to the end

of August to avoid harming the California Grunion living in the area. It is worth mentioning that

there is interest in studying how any future placement of new environmental windows as well as

tightening of existing environmental windows could impact system cost efficiency.

In dredge fleet scheduling problem (DFSP) optimization, we offer a robust tool for the US-

ACE to allocate one or more dredging jobs to each available dredging vessel and schedule the

7

dredging jobs about their environmental work windows. The tool must be powerful enough to

find good quality solutions and at the same time flexible enough to deal with different operational

needs of the Corps which will be explained in Sections 2.6.1 to 2.6.8.

In the DFSP, the following base assumptions are made according to how the jobs are as-

signed to the fleet of dredges in USACE. We refer to the environmental time windows which

dredging is prohibited during their time interval the restricted periods (RPs). On the other hand,

the work window in the time that dredging is allowed.

1. A dredge can work on at most one job at a time.

2. A job can be assigned to at most one dredge.

3. The travel time between the depot and the first dredging job and from the last job to the

depot in each dredge schedule are not considered in the solutions.

4. A dredge must finish each assigned job in one visit.

5. Partial dredging is not allowed. On the other hand, dredging is completely prohibited in the

restricted period(s) of each job.

6. The size of each job (cubic yards of material that needs to be removed from the bed of the

waterway) is deterministic and constant.

7. The travel speed of each dredge is deterministic, constant, and is the same for all dredges.

Thus, the travel time between each pair of job locations is the same for all dredges. For

more information refer to Section 2.4.

8. The production rate (cubic yard of dredging per day) of each dredge is the same for all the

jobs in any location add space. For more information refer to Section 2.4.

We refer to the model with all above assumption as our base model and relax some of these

assumptions to make the tool more useful to USACE. These improvements will be discussed in

detail in Section 2.6.

8

2.1.2 Problem Illustration

To illustrate the DFSP, we have shown the schedule of only one dredge among all available dredges

in our fleet in Figure 2.1. All other dredges will have a similar set of choices for scheduling if

they exist in the solution. In this example we have three jobs in three different locations and the

time horizon is from t1 to t7. We assume that dredges are in their first job’s locations at the begin-

ning of the time horizon and they can perform dredging until the end of the time horizon. On the

other hand, we do not consider the travel time of dredges from depot to their first job and from

their last job to the depot.

(a) (b)

Figure 2.1: dredge fleet Scheduling Problem Illustration

In Figure 2.1 (a), the dredge starts its operation on job 1 at location 1 at time t1 and finishes

it at t2. The dredging time is shown with a thick horizontal black line in the figure. After finishing

job 1, the dredge travels from job location 1 to 2 in t3− t2 units of time (shown with a thick blue

inclined line) and starts working on job 2 at time t3 and finishes it in t4. At the end of each job,

each dredge has two choices: i) it may terminate its operation by going back to the depot and ii)

it can travel to another job and continue its dredging operations on another job. The latter choice

is shown in Figure 2.1 (b) in which the dredge travels to location 3, but cannot start the dredging

process immediately at time t5 because job 3 has a restricted period (RP) that ends in t6 (shown

by a thick red line in the figure). Thus, the dredge remains idle at location 3 from time t5 until

time t6 and starts working on jobs 3 at time t6. As we mentioned before, after finishing job 3 at

9

time t7, the dredge can go back to the depot or travel to another job’s location to dredge another

job.

In this illustration, we emphasized the scheduling part of the DFSP and the roll of restricted

periods that might play in any solution. As mentioned in Section 2.1.1 there are other constraints

and assumptions associated with the problem that needs to be fulfilled in any feasible solution.

2.2 Literature Review

Perhaps the closest problem to dredge scheduling problem in the literature is the machine schedul-

ing problem and its variations. Gedik et al. (2016) represented the dredge scheduling problem as

a case study for their study on the parallel machine scheduling problem with sequence dependent

set-up times and job availability problem. They proposed a constraint programming (CP) model

and logic-based Benders algorithms to find the best solutions for the scheduling of non-identical

jobs on unrelated parallel machine with sequence dependent setup times and job availability in-

tervals in a fixed planning horizon. The two logic-based benders decomposition algorithms used

in their study can obtain near-optimal solutions compare with pure CP which yields good quality

feasible solutions but not optimal.

A parallel scheduling problem was first described by Arkin and Silverberg (1987) and

proven to be NP-complete. They tried to maximize the total value of a subset of processing jobs

of interest each with a fixed start time, end time and an associated value. Rojanasoonthon and

Bard (2005) studied a parallel machine scheduling problem with time windows on prioritized

jobs. Their objective function maximized the total number of jobs scheduled. They proposed a

greedy adaptive search to find quality solutions for large problem instances due to incapabilities

of their ILP to find any feasible solution. In other research, Eliiyi and Azizoğlu (2009) devel-

oped a branch and bound algorithm for a fixed job scheduling problem with machine dependent

job values to obtain near-optimal solutions for the problem instances up to 100 jobs. A compre-

hensive review is provided by Allahverdi et al. (2008) on the machine scheduling problems with

different constraints and performance measures.

10

The machine scheduling problem has found interests in other industries aside from the pro-

duction machine scheduling problems. Pearn et al. (2002) used a parallel machine scheduling

problem with sequence dependent setup times to model the jobs in a water probing factory and

transform it to the vehicle routing problem with time windows (VRPTW) due to the complexity

of their ILP formulation. They applied three heuristic methods for VRPTW to find near-optimal

solutions for a real-world instance. Many researchers used the parallel machine scheduling prob-

lem to semiconductor manufacturing operations. A comprehensive survey is presented in Mönch

et al. (2011). For example, Cakici and Mason (2007) proposed a heuristic method which can help

obtain near-optimal solutions with small optimality gap.

2.3 Foundational Work on Dredge Scheduling

In 2012, Nachtmann et al. (2014) began work on an optimization tool to improve dredge schedul-

ing decision-making process. They introduced a mixed integer programming (MIP) formulation

and developed a customized constraint programming (CP) approach that was shown to provide

good quality solutions to the problem instances with 100+ jobs in reasonable time for the base

model as defined in Section 2.1.1. Gedik et al. (2016) also modeled the base model of DFSP as

a parallel machine scheduling problem with sequence dependent set-up times and job availabil-

ity intervals and used CPO and logic-based benders decomposition algorithms to solve it. Their

model had a better performance and could find near-optimal solutions comparing with pure CP

used by Nachtmann et al. (2014) which yields good quality feasible solutions but not optimal.

However, there are significant opportunities for expansion and improvement of the devel-

oped optimization tool for the base model problem to be more robust and practicable. This tool

can provide applicable solutions to various needs of USACE in different locations using several

types of dredges in the dredging jobs. The limitations of the current tool do not address the fol-

lowing issues:

1. Partial dredging during environmental windows: Environmental restricted periods prevent

any dredging from occurring over a specified horizon. That means partial dredging is not

11

allowed during the environmental windows. This restriction limits the capability of avail-

able resources to conduct their dredging jobs dramatically. For example according to a real

problem instance in Section 2.4, 6 jobs out of 116 jobs cannot be dredged at all because

their environmental restricted periods span the whole year.

2. Variable job sizes: Jobs must be fully completed by a dredge vessel before moving on to

other jobs. This means partial jobs are not allowed, and the size of jobs cannot be varied.

In practice, there is often a “minimum requirement” that really should attempt to be met as

well as a “target requirement” that would be ideal to get if time/money allows.

3. Multiple dredges on the same job: Jobs must be satisfied by a single dredge vessel. Some

jobs need to be done by different types of dredge vessels. For example, some dredging jobs

(e.g., Cayuga Lake Watershed, NY) needs Yaquina, Essayons, and contract dredges typi-

cally.

4. Multiple trips to the same jobs: Jobs must be satisfied by a single dredge vessel trip. It

means a job cannot start by a dredge vessel if it cannot be finished before the beginning

of its environmental window(s) or the end of the overall time horizon. This restriction pre-

vents us from dredging a job in multiple trips (e.g., some before the beginning time of the

environmental window(s) of a particular job and after the end time of its environmental

window(s)).

5. Different operation rates for each job: The operation rates of dredge vessels are currently

constant in all dredging jobs. The cubic yards of dredging per hour for each dredge vessel

can vary greatly from one job to the next due to wave conditions, weather, sediment types,

etc. By allowing different operation rates of dredging for each job we make the model

more realistic.

6. Different unit costs of dredging for each job: The dredging cost per cubic yard is constant

in all jobs. Practically, the cost rate of dredging is different for each job-vessel combination

12

due to specifications of each job (e.g., the width and depth), type of sediments, and fuel

cost.

7. Stimulating downtime for dredges: Dredge vessels typically have fixed amounts of time in

the yards for repairs and consequently are not available.

8. Mob/Demob cost: The mobilization cost is usually proposed to be split based on the cubic

yardage dredged at each job or the travel time of each dredge vessel.

9. Dredge Capability check on Jobs: Some dredges cannot perform some of the jobs. Some

dredges cannot physically perform the dredging job in some locations. Some of the dredges

in the fleet is too big to maneuver for some small ports, and some of them do not have deep

enough dragheads for some jobs.

In Section 2.6, we address these weaknesses in details and show how to utilize the abilities

of constraint programming optimization (CPO) to solve these issues and report the improvement

by comparing with the base model.

2.4 Dredge Scheduling Requirements

In this section, the details of the requirements of the dredge scheduling problem are presented.

The data used to establish the problem was provided by the USACE Dredging Information Sys-

tem (navigationdatacenter.us). A total of 116 unique navigation channel maintenance dredging

jobs across the USA from east to west coast and Alaska with associated size and cost were identi-

fied and are shown in Figure 2.2 (a) and (b), respectively.

13

(a) i) Dredging Job Sizes (cubic yards) ii) Dredging Job Costs (US dollar)

(b) Dredging Job Sizes and Costs

Figure 2.2: 3-D Representation of 116 Dredge Projects Locations with Associated Size and Cost

The dredging jobs volumes and costs were calculated by averaging over the range of years

for which DIS data was available for each job (Nachtmann et al., 2014). The information about

the size and cost of each 116 dredging jobs are listed in the in Table 2.15 in the Appendix. The

total size of the 116 jobs is 48,305,584 cubic yards of dredging with the total cost of $223,012,020.

All type of costs associated with dredging jobs from start to finish, including the mob/demob,

14

fuel, labor, maintenance, etc., are considered in the calculation of each job cost. The size and cost

of each dredging job are shown in Figure 2.2 (a). According to Figure 2.2 (b), the jobs in the east

coast historically have more cost per cubic yards of dredging comparing with the dredging jobs in

the west cost because of the different sediment type of the dredged waterways and weather condi-

tions.

The DIS historical data was also used by Nachtmann et al. (2014) to gather information on

the performance of the individual Corps-owned dredge vessels, as well as the contract dredges

work for the USACE. They identified 30 different dredges with associated daily production rates

as listed in Table 2.16 in the Appendix. The production rate of each dredge is the actual rate of

the dredge and calculated by the total cubic yards dredged for each job by the dredge divided by

the total number of days that the dredge worked on the job including the delays. The delays can

be due to inclement weather, downtime of the dredge for maintenance and repair and any other

problems delaying the finish time of the job. The range of production rate for dredge fleet is from

1,238 to 19,245 cubic yards per day.

The total number of 130 restricted periods are imposed to the 116 jobs and used as the pa-

rameter within the DFS optimization models. According to dredging job locations, each job can

have more than one restricted period, which is identified using the Threatened, Endangered and

Sensitive (TES) species program (fs.usda.gov). The summary of the restricted periods based on

the type of endangered species is shown in Table 2.1.

Table 2.1: Summary of Restricted Periods (RPs) (duration: days)

Species Type Total
Duration

Avg.
Duration

No. of Jobs
with RP

Fishes 12,541 187 67
Marine Turtles 5,773 222 26
Birds 3,221 179 18
Marine Mammals 3,006 137 22
Crustaceans 1,496 150 10
Marine Mussels 832 104 8

TOTAL: 26,869 178 151

15

The final input parameter for our DFS optimization models is the travel time between each

pair of job locations. A GIS layer is used to compute the distance on the waterways as the roads

connecting all the locations. Ignoring the size and type of the dredges for simplicity, the average

speed of 50 miles per day is assumed for all dredges.

2.5 Optimization Methodology

In this study, we used constraint programming optimization (CPO) to solve the DFSP and pro-

vide a powerful tool for USACE to find a good quality solution for their various needs. In the

following two sections, first, we will discuss why we used CPO, and then we state the CP formu-

lation of the base model which is the basis of our extensions and improvement of the model to

address the USACE requirements.

2.5.1 Why Constraint Programming

The primary motivation for constraint programming instead of solving the MIP formulation op-

timally is the size of the problems to be solved. The real data problem instance in Section 2.1.1

has 116 jobs with 30 dredges in the time horizon of 365 days with total 138 restricted periods as-

sociated with dredging jobs. DFSP with time windows can be converted to the parallel machine

scheduling problem with sequence dependent setup times and job availability intervals (Gedik

et al., 2016), which is known to be an NP-Complete problem. Table 2.2 shows the number of

variables and constraints of the base model instance in both mathematical formulations of MIP

and CP derived from ILOG CPLEX and ILOG CP solvers.

Table 2.2: Number of Variables and Constraints in MIP and CP Formulation

Model # of Var. # of Con.

MIP 1,273,680 1,741,276
CP 3,626 380

As shown in Table 2.2, the number of variables and constraints in MIP formulation are dra-

matically more than CP formulation which prevents CPLEX loading the data into its memory.

16

In contrast, CP solver can find a quality solution for the base model in the reasonable amount of

time. The main reason for the difference between the number of variables and constraints is us-

ing binary variables in MIP formulation versus interval variables in CP. In the MIP formulation

(Nachtmann et al., 2014) the binary variables zd jt with value 1 if dredging vessel d begins work

on job j in period t, ∀d ∈ {1,2, . . . ,30}, j ∈ {1,2, . . . ,116}, and t ∈ {1,2, . . . ,365} is used. As a

small example, consider a feasible solution with the binary variables zd jt with 3 jobs, 4 dredges

and 3 periods of time in Figure 2.3 (a). In this solution, dredge 2 starts working on job 2 in t1 (pe-

riod 1) and then travels to job 3 and start working on it in t3. Also, dredge 1 starts working on job

1 at t2. The finish time of the jobs can be calculated by adding the required time to finish each job

to the start time of each job. The required time for each dredge-job pair is calculated by dividing

the size of the job to the production rate of the dredge.

(a) Binary Variables zd jt (b) Interval Variables z j (Source: 2014 IBM Corpora-
tion)

Figure 2.3: Binary Variable vs. Interval Variables

As shown in this small example, 36 (3 jobs× 4 dredges× 3 periods) binary variables ex-

ist in the MIP formulation, and just three of them will become equal to 1 in the final solution.

Thus, we are considering variables with the value of 0 that consume computational memory. In

contrast, in CP formulation of the problem contains only 3 interval variable, one for each job.

An interval variable represents an interval of time during which something happens (ibm.com).

More details on interval variables will be discussed in Section 2.6.1. A typical interval variable

is shown in Figure 2.3 (b). Each interval variable includes a possible range, start and finish time

17

value and size of the variable. Moreover, interval variables can be set in any sequence for schedul-

ing purposes.

2.5.2 Constraint Programming Formulation

In this section, we present the CP formulation studied by Gedik et al. (2016) for the base model

of DFSP. In general, in CP scheduling the most complex and computationally expensive parts of

the MIP model are handled by using global constraints and interval variables. The speed and ef-

fectiveness of a CP model are highly dependent on the variables domains and global constraints.

CP Optimizer tool, a constraint programming solver engine developed by ILOG, solves a model

using constraint propagation and constructive search with search strategies (ibm.com).

The notation of sets, parameters and decision variables used in developing the CP dredge

fleet scheduling (CPDFS) formulation are shown in Table 2.3.

18

Table 2.3: Notation of CPDFS base model Formulation

Notation Description

Sets:

D Set of dredging equipment resources available in each period.
T Set of consecutive periods comprising the planning horizon.
J Set of dredge jobs that need to be completed over the planning horizon.
Wj Set of RPs applicable to dredging job j.

Parameters:

bw The beginning of RP w, w ∈Wj, j ∈ J.
ew The end of RP w, w ∈Wj, j ∈ J.
rd The operation rate (cubic yards/day) of dredge equipment d ∈ D.
q j The dredging amount of job j ∈ J (in cubic yards).

t jd = dq j/rde
The time (days) that it takes for dredge equipment piece d ∈ D to

complete job j ∈ J.

t j j′
The time (days) that it takes to move a dredging equipment piece d ∈ D

from job site j ∈ J to job site j′ ∈ J, j 6= j′.
c j The cost for completing job j ∈ J.
B The available budget for the planning horizon.

I(j)
The Intensity Function (pic.dhe.ibm.com) of job j ∈ J. That is I(j) = 0%,

if the job j is not allowed to be processed at time t such that
bw ≤ t ≤ ew, and I(j) = 100% otherwise.

T Dtype jtype j′

The Transition Distance between job type j ∈ J and j′ ∈ J. It is used to
inform other global constraints that the travel time between job pair
j and j′ should be at least t j j′ . Two jobs with the same location have
the same type.

Decision Variables:

y jd
Optional interval variable when job j ∈ J (with size q j) is assigned to

dredge vessel d ∈ D.

Yj = {y j1,y j2, . . . ,y jD}
Array of interval variables representing possible dredge equipment d ∈ D

that can be assigned to job j ∈ J.

Vd = {y1d ,y2d , . . . ,yJd}
Array of interval variables representing possible jobs j ∈ J that can be

assigned to dredge vessel d ∈ D (the interval sequence variable for d).
z j Optional interval variable associated with job j ∈ J.

The CPDFS formulation using the notation in Table 2.3 is presented as follows. Constraint

programming formulations are more descriptive comparing with the mathematical formulation

we usually see in the linear or mixed-integer programming:

19

max ∑
j∈J

q j×PresenceOf(z j)× z j

Alternative
(
z j,Yj

)
j ∈ J (2.1)

Cumulative
(
z j,c j,B

)
(2.2)

Cumulative
(
z j,1, |D|

)
(2.3)

z j.StartMin = 1 j ∈ J (2.4)

z j.EndMax = |T | j ∈ J (2.5)

ForbidExtend
(
z j, I(j)

)
j ∈ J (2.6)

NoOverlap
(

Vd,T Dtype jtype j′

)
d ∈ D (2.7)

The objective function of CPDFS maximizes the total amount of dredging by all the re-

sources. Constraints (2.1) ensure that each job can only be assigned to at most one dredge vessel.

Constraint (2.2) imposes that the total cost of dredging operations cannot exceed the total budget

B. Constraints (2.3) to ensure that the total number of occupied dredge vessels at any time can

not exceed the fleet size |D|. Constraints (2.4) and (2.5) set the minimum start time and maxi-

mum end time of each job to the first and last day of the planning horizon, receptively. The For-

bidExtend Constraint (2.6) prevents job j to be performed at its restricted period(s) I(j). Finally,

the NoOverlap Constraints (2.7) ensure that if both jobs j and j′ are operated by dredge vessel d

then a minimum time t j j′ (the travel time between jobs j and j′) must be maintained between the

end of interval variable y jd and the start of the interval variable y j′d .

2.6 Implementations and Results

In the following eight sections, the expansion and improvements to the base model of DFSP

are discussed individually. In Section 2.6.9 a comprehensive model which incorporates all the

modifications is presented. All computational experiments are conducted on real data test in-

stances with the largest one containing 116 dredging jobs, 30 available dredge vessels, and 138

restricted periods over a one year (365 days) time horizon. All problems are modeled in IBM

20

ILOG CPLEX Optimization Studio 12.3 (pic.dhe.ibm.com) which uses IBM ILOG CPLEX 12.3

to solve MIP and IBM ILOG CP Optimizer 12.3 to solve CP models. All test problems are run on

a Core(TM) i7 CPU @ 2.93 GHz, 8 GB RAM computer.

In this Section, in all the results reported in the tables, we have the following common fea-

tures:

• The base model results are shown in gray highlighted color.

• The solution time is reported in seconds and the dredge, travel, and idle times are in days.

• The dredge time is the total time that dredging vessels spend on operating the jobs.

• Travel time is the sum of the time that each dredging vessel spend traveling between two

consecutive jobs for all dredging vessels. The travel time between the origin location and

each job’s location is not considered in total travel time.

• Idle time is the total time of all dredging vessels being idle. A dredging vessel becomes

idle when it finishes a job and travels to another job but cannot start dredging the job be-

cause the restricted period(s) of that job will not allow. Therefore, it will stay idle until the

restricted period(s) has passed.

The result of implementing the base model for three different sizes of problem instances

with real data as described in Section 2.4, are shown in Table 2.4. The small, medium, and large

size problem instances have 32 jobs with 30 dredges, 57 jobs with 30 dredges, and 116 jobs and

30 dredges, respectively. These are the basis for comparing the improvement and extensions to

the base models in the following sections.

Table 2.4: The Results of the Base Model for the Problem Instances with Real Data

Problem
Size

Instance
Obj.

Function
Sol.

Time
Dredge
Time

Travel
Time

Idle
Time

Small |J|= 32, |D|= 30 8,413,704 601.1 1,229 335 93
Medium |J|= 57, |D|= 30 17,090,811 602.2 2,565 961 513

Large |J|= 116, |D|= 30 30,764,006 609.5 4,759 2,301 571

21

2.6.1 Partial Dredging

The Corps describes environmental windows as “temporal constraints placed upon the conduct

dredging or dredged material disposal operations to protect biological resources or their habitats

from potentially detrimental effect” (Dickerson et al., 1998). The scheduling of environmental

work windows is intended to minimize environmental impacts by limiting the conduct of dredg-

ing activities to the periods when biological resources are not present or are least sensitive to dis-

turbance. Surveys conducted by the Corps indicate that approximately 80% of all O&M dredging

jobs are subject to some form of environmental work window constraint, with wide variations

across Districts with the Atlantic and Pacific Coast Districts reporting the highest percent of jobs

with restrictions (up to 100%) and the Districts in the Gulf of Mexico and Mississippi Valley re-

gions reporting the lowest percentage (less than 20%) (Dickerson et al., 1998). Our data analysis

on the restricted periods, summarized in Table 2.1, supports the results of this survey and further

analysis shows that 6 dredging jobs out of 116 jobs cannot be conducted in any time of year be-

cause of the restricted periods associated with these jobs. For this reason, it is important to be

able to consider so-called partial dredging. That is, only dredging a certain percentage of capacity

during a restricted period.

In this research, we used partial dredging during restricted periods as the relaxation and

studied the impact of relaxing each window individually, as well as collectively. Partial dredging

during a restricted period means a dredge vessel can work during the restricted periods, but with a

slower operation rate. Because of the possibility of encountering a group of aquatic animals like

turtles, fish and other wildlife during the restricted periods, dredging vessels might have to stop

dredging to prevent harming them.

To modify the model to allow partial dredging during the restricted periods, the intensity

function of the interval variable z j in Section 2.5.2 is changed and set in the range of (0%,100%)

exclusive.

As mentioned in Section 2.5.1, an interval variable represents an interval of time during

which something happens. An important feature of interval variables is the fact that they can

22

be optional, which means they can be present in the solution or absent. An interval is charac-

terized by a possible start and end value and a size. The length of an interval variable is defined

as its end value minus its start value (ibm.com) which is equal to the size of the interval variable

if the intensity function associated with that variable is 100% between its start and end time. The

size of an interval variable can be interpreted as the work requirements of the variable. For ex-

ample, suppose an employee works for 5 days a week full time and does not work on weekends.

As shown in Figure 2.4 (a) the intensity function of worker 1 is 100% for the first 5 days of the

week and 0% for the weekends. The length of his work (6− 1 = 5) is equal to the size of his

work which is 5 man-days in one-week time horizon. On the other hand, worker 2 (Figure 2.4

(b)) works full time in first four days of a week and then take one day off and works half-time

on the weekends. His work length is 7 (8− 1 = 7) days, but he delivers 5 man-days as same as

worker 1. Likewise, the intensity function of each dredging job can be manipulated to allow for

the appropriate amount of partial dredging during the restricted periods for the interval variables

z j.

(a) Worker 1 (b) Worker 2

Figure 2.4: Two Interval Variables with the Same Sizes and Different Lengths

To study the impact of each restricted period on the total amount of dredging (the objective

function of CP formulation), the intensity function of all interval variables associated with each

restricted period is set to 50% functional. This means the interval variables can be dredged by

any vessel at 50% operation rate instead of 100% during the normal working days.

The result of this relaxation is shown in Table 2.5. By allowing dredging in restricted pe-

23

riods, we should be able to improve the quality of our solution and increase the total cubic yards

of dredging with the same available resources and budget restriction. However, this relaxation

expands the solution space of the model and consequently might have a negative impact on the

results, especially when we relax the restricted periods associated with the jobs that we already

dredged in our base model. In Table 2.5, the percentage change from relaxing an individual re-

stricted period versus the full restriction implemented in the base model is provided. As shown in

Table 2.5, the largest improvement in objective function (8.7%) is obtained by allowing 50% of

dredging during the restricted period number 17 with the range [91,334] (in the time horizon of a

year [1,365]), which is associated with the marine turtle restriction on the dredging job in the LA

Calcasieu River Bar Channel.

Table 2.5: Individual Impacts of Restricted Periods Relaxation to 50% Dredging

Relaxed
RP

Obj.
Function

Sol.
Time

Dredge
Time

Travel
Time

Idle
Time Improv.

5 30,632,870 609 3,217 2,257 934 −0.4%
23 30,632,870 609 3,717 2,213 765 −0.4%
50 30,632,870 609 4,728 1,859 790 −0.4%
32 30,745,673 608 3,807 2,217 767 −0.1%
71 30,760,420 608 3,988 3,210 982 0.0%
...

...
...

...
...

...
...

none 30,764,006 610 4,759 2,301 571 0.0%
36 31,325,902 607 5,031 1,738 1,258 1.8%

106 31,402,795 608 4,857 2,270 610 2.1%
58 31,662,392 608 4,977 2,234 961 2.9%
6 32,570,619 608 3,332 2,021 548 5.9%
17 33,433,044 607 5,162 2,464 987 8.7%

Notice, in some cases this additional flexibility improved the objective. In other cases (the

first four cases), the flexibility resulted in a search space so large that an inferior solution is ob-

tained in the amount of time allotted. As mentioned, the best solution of the base model with no

relaxation is shown in highlighted gray in the table.

We know that the solution of the model with no dredging allowed during the restricted pe-

riods (the base model solution) is feasible to the relaxed models with restricted periods that can

24

be dredged. To overcome the negative impact of expanding our solution space on the objective

functions of our relaxed model, we set the base solution as the starting point to the CPDFS with

partial dredging model as follows:

Step 1. Solve the base model of CPDFS and store the solution in CP using the CPO built-in

“Store” method.

Step 2. Set the stating point to the CPDFS with partial dredging during the RPs using the CPO

built-in “setStartingPoint” method.

The results of setting the base model solution to the relaxed models as the starting point

to search in CP is shown in Table 2.6. As we see in the table, there is no negative improvement

(last column of Table 2.6) in any of the solutions and all of them are at least as good as the base

solution.

Table 2.6: Individual Impacts of RPs Relaxation to 50% with Starting Point

Relaxed
RP

Obj.
Function

Sol.
Time

Dredge
Time

Travel
Time

Idle
Time Improv.

5 30,764,006 606 4,759 2,118 948 0.0%
23 30,764,006 608 4,759 2,234 706 0.0%
50 30,764,006 609 4,757 2,292 701 0.0%
32 30,764,006 609 4,757 2,292 701 0.0%
...

...
...

...
...

...
...

none 30,764,006 610 4,759 2,301 571 0.0%
18 30,779,710 609 4,836 2,526 980 0.1%
71 30,779,710 610 5,184 2,256 685 0.1%

110 30,779,710 611 4,163 2,895 1,046 0.1%
35 30,883,336 608 4,256 2,691 1,089 0.4%
33 30,911,249 608 4,926 2,485 849 0.5%
36 31,255,264 610 4,445 2,462 978 1.6%
40 31,269,833 608 3,755 2,514 1,029 1.6%
37 31,346,116 609 4,028 2,944 765 1.9%

106 31,490,782 611 4,928 2,606 896 2.4%
58 31,550,350 609 4,191 2,606 835 2.6%
6 32,658,606 607 4,318 2,507 1,727 6.2%
17 33,433,044 609 3,935 2,536 690 8.7%

25

Similar to Table 2.5, the largest improvement in objective function in Table 2.6 is obtained

by allowing 50% of dredging during restricted period number 17 by the same amount of 8.7%.

Also, setting the base model result as the starting point to the model with relaxing the RP number

71, the objective function is improved by 0.1% which is 15,704 cubic yards.

Another interesting question in studying the impact of restricted periods on the solutions

is what happens when we allow partial dredging during all restricted periods. The impacts of all

RPs of dredging jobs by allowing to dredge at a different percent of relaxation from 0% to 50%

with 5% increment is shown in Table 2.7. In implementing the problem instances, the budget

limitation has been removed from the model to focus on the impacts of restricted periods. The

total cubic yards of dredging jobs is 48,305,584 cubic yards, which can be obtained by allowing

51% of dredging in all RPs as shown in the last row of Table 2.7 in highlighted green color by

removing the budget constraint from the model.

Table 2.7: All RPs Relaxation Impacts on the Objective Function without Budget Limits

Relax. Obj.
Function

Sol.
Time

Dredge
Time

Travel
Time

Idle
Time Improv.

0% 31,145,977 606.5 4,143 1,319 1,233 0.0%
5% 34,504,954 607.2 7,605 2,104 148 10.8%
10% 35,173,379 608.8 8,137 1,848 6 12.9%
15% 39,008,287 608.8 8,195 2,094 0 25.2%
20% 39,585,711 608.0 8,976 1,442 0 27.1%
25% 40,419,016 608.2 9,534 886 11 29.8%
30% 40,419,016 608.4 8,440 962 0 29.8%
35% 40,419,016 610.2 9,170 839 0 29.8%
40% 42,891,619 609.2 9,290 676 161 37.7%
45% 42,891,619 609.3 9,649 642 0 37.7%
50% 42,891,619 608.9 7,748 722 0 37.7%
51% 48,305,584 610.2 9,276 1,075 25 55.1%

Similar to the results in Table 2.6, we set the base model solution as the starting point for

the solutions obtained in Table 2.7. However, the results were almost the same as the problem

without starting solutions.

Figure 2.5 demonstrates the increment in total cubic yards of dredging from the base model

with no dredging to partial dredging of restricted periods at 51%. The improvement in objective

26

function of total cubic yards of dredging in comparison with the base model (first row of the ta-

ble) is shown in the last column of the previous table.

Figure 2.5: All Restricted Periods Relaxation Impacts on Total Cubic Yards of Dredging

Figure 2.6 shows the increment in total dredging time and decrement in total travel time

and idle time by increasing the relaxation of dredging in restricted periods from 0% (base model)

to 51%.

Figure 2.6: All Restricted Periods Relaxation Impacts on Total Dredge, Travel, and Idle Time

As shown in Figure 2.6, by allowing more dredging in the restricted periods the total amount

of travel and idle time will decrease and the vessels spend more time on dredging their assigned

jobs.

27

2.6.2 Variable Job Sizes

The CPDFS model algorithm attempts to complete a job before moving on. However, in reality,

there is often a “minimum requirement” of dredging that must be met as well as a “target require-

ment” that would be ideal to achieve if time/money allows. In this context, the size of the jobs is

now variable and may be chosen from the range [minimum requirement, target requirement] in-

clusive. To modify the CPDFS model to have the variable job sizes we add these two parameters

and constraints to the model in Section 2.5.2:

Additional parameters:

• h jd , the target requirement of dredging job j ∈ J using vessel d ∈ D,

• m jd , the minimum requirement of dredging job j ∈ J using vessel d ∈ D.

Additional constraints:

SizeOf(y jd)≤ h jd j ∈ J,d ∈ D (2.8)

SizeOf(y jd)≥ m jd×PresenceOf(y jd) j ∈ J,d ∈ D (2.9)

Alternative additional constraints:

y jd.setSizeMax = h jd j ∈ J,d ∈ D (2.10)

y jd.setSizeMin = m jd j ∈ J,d ∈ D (2.11)

Constraints (2.8) ensure that the size of all dredging job j ∈ J conducted by dredge vessel

d ∈ D remains less than or equal to the target size of the jobs. Similarly, Constraints 2.9 make

sure that the size of each dredging job j ∈ J is greater than or equal to the minimum job size for

all available dredge vessels d ∈ D if the variable y jd is present in our solution. The Constraints

(2.10) and (2.10) are alternatives to Constraints (2.10) and (2.10), respectively and impose the

same limitations on the size of the jobs in the model. However, the model converges faster with

the Constraints (2.8) and (2.9) comparing with (2.10) and (2.11).

28

As we discussed in Section 2.5.1, an interval variable can be optional. Being optional means

these variables can be present in the solution or absent. If we do not include the PresenceOf(y jd)

term in Constraints 2.9, the optional interval variables y jd for all j∈ J,d ∈D will assign a positive

size. If all of the interval variables be presented in the solution, each job j ∈ J will be conducted

by all available dredge vessel d ∈ D which makes the problem infeasible.

Table 2.8 shows the total amount of dredging and total dredge, travel, and idle time for our

base model (gray highlighted row) with the original size of jobs equal to the target requirements

and compares it with four other test instances with different ranges of [minimum requirement,

target requirement] for all jobs. In the first column of Table 2.8, h is the original size of the jobs

in our base model with constant job sizes. In all four test instances, we set the target size of jobs

equal to their original size and a fraction of the target size as the minimum requirements of the

jobs. For example, the job size range [0,h] means the minimum requirements of all jobs are equal

to 0 and their target requirements are equal to the original size of the jobs. The range [0.25h,h]

means the minimum requirements of all jobs and their target requirements are equal to 25% of

the original sizes (h) and the original size of the jobs, respectively.

Table 2.8: Impact of Having Variable Job Sizes within the Range [min. req., target req.]

Job Size
Range

Obj.
Function

Sol.
Time

Dredge
Time

Travel
Time

Idle
Time Gap%

h 30,764,006 609.5 4,759 2,301 571 0%
[0,h] 12,628,669 611.5 1,376 2,954 2,364 −59%
[0.25h,h] 19,188,239 612.4 1,768 1,994 910 −38%
[0.50h,h] 22,562,323 610.6 2,734 3,209 1,130 −27%
[0.75h,h] 28,508,171 611.6 2,934 2,846 1,096 −7%

As we can see in the Table 2.8, allowing variable job sizes has a negative impact on the

objective function of total cubic yards of dredging. This is because the solution space grows sig-

nificantly. According to the “Gap%” column in the table, the tighter the range of job requirement,

the better the solution that can be found by CP Optimizer. As shown in Table 2.8, the gap be-

tween the objective function of our base model and the variable job size model decreases from

−59% to −7% if we can assess the dredging jobs requirement more precisely. This result sug-

29

gests that (i) decision-makers should be precise in determining the range of job production and

(ii) the optimizer should establish a baseline solution (using the base model) from which CP can

begin its search with the constraints added in this section.

To apply the above suggestion (ii) to the CPDFS with variable size model, we can set the

best solution of the base model as an initial solution to the model to start the optimization. As

we mentioned in Section 2.6.1, first we solve the CPDFS base model and then set it as a starting

point to the CPDFS with variable size model to neutralize the negative impact of having variable

job size on the objective function as the feasible region expands.

The percentage of the gap between the objective function (total cubic yards of dredging)

of the base model and the CPDFS with variable job size and starting point model is compared

with the CPDFS with and without this starting point is shown in Figure 2.7. The same problem

instances as in Table 2.8 are used in this comparison.

Figure 2.7: Impact of Allowing Variable Job Sizes with and without Starting Point

According to Figure 2.7, setting the base model as the starting point of CP search com-

pensates the negative impact of the feasible region expansion. According to Figure 2.7, a slight

improvement in the objective function of the model with start point from the base model is seen

(0.02% improvement in job size range [0,h]).

30

2.6.3 Multiple Trips to the Same Job

In the base model, each job must be finished in one visit before encountering its restricted pe-

riod(s). In practice, some jobs cannot be done within one environmental work window and must

be visited again to finish. To modify the base model to allow for multiple trips to the same jobs

with the same or different dredge vessels, each job is split into sub-jobs according to the restricted

periods of the job and the sub-jobs will be added to the model instead. For example, if job1 has

the restricted period of I(1) = [152,274], it will be split to two sub-jobs in such a way that sub-

job1 can only take place in the range [1,151] and sub-job2 in the range [275,365], which are the

allowable ranges of dredging for job1. To modify the CPDFS base model in Section 2.5.2, addi-

tional sets, variables and constraints are used. Note that similar to Section 2.6.2, the job sizes are

also variable in CPDFS with multiple trips model and the CP optimization tool will decide the

amount of dredging for each sub-job. We use the following additional sets, variables, and con-

straints for the CPDFS with multiple trips model.

Additional sets:

• i ∈ Ic
j , set of possible sub-jobs of each dredge job j ∈ J. These sub-jobs can start and finish

outside of job j ∈ J restricted periods, Wj, wherever I(j) 6= 0.

Modified variables:

• y jid , optional interval variable when sub-job i of job j ∈ J is assigned to dredge vessel d ∈

D.

• Y ′ji = {y ji1,y ji2, . . . ,y jiD}, array of interval variables representing possible dredge vessel d

that can be assigned to sub-job i of job j ∈ J.

• V ′d = {y11d,y12d, . . . ,y21d,y22d, . . . ,yJ1d,yJ2d, . . .}, array of interval variables representing

possible sub-job i of job j ∈ J that can be assigned to dredge vessel d ∈ D.

• x ji, optional interval variable associated with sub-job i of job j ∈ J.

31

After we split each job into sub-jobs in the allowed range of dredging for the job, we do

not need the ForbidExtend(z j, I(j)),∀ j ∈ J constraints because we already set the start and end

time of each sub-job to a period of time in which dredging is allowed.

Removed constraints:

ForbidExtend
(
z j, I(j)

)
j ∈ J (2.12)

In addition to the Constraints (2.8) and (2.9) in the CPDFS with variable job size model,

Constraints (2.13), (2.14) and (2.15) are added to this model.

Modified constraints:

Span(z j,x ji) j ∈ J (2.13)

Alternative(x ji,Y ′ji) j ∈ J, i ∈ Ic
j (2.14)

NoOverlap
(

V ′d,T Dtype jtype j′

)
d ∈ D (2.15)

Constraints (2.13) state that each interval variable z j, j ∈ J spans over all present inter-

val variables from the set {x j1,x j2, . . .}. The interval variable z j starts with the first present in-

terval variable from {x j1,x j2, . . .} and ends with the last in the time horizon. Note that, similar

to Section 2.6.2, we still have the constraints for target requirement and minimum requirement

of all jobs. The sum of all sub-jobs of job j ∈ J is still between the range of [m j,h j]. Similar to

Constraints (2.1) and (2.7) of CPDFS base model in Section 2.5.2, Constraints (2.14) and (2.15)

are for the assignment of available dredge vessels and the travel time between jobs, respectively.

Constraints (2.14) make the CP choose exactly one possible assignment for x ji from all possible

assignments. In the scheduling of the dredge fleet, we need to consider the time to travel between

two consecutive jobs locations operated by the same dredge, which is handled by Constraints

(2.15).

Table 2.9 shows the computational results from allowing multiple trips to the same job

model in comparison with the variable job sizes model in Section 2.6.2 for four problem instances

with a different size range.

32

Table 2.9: Impact of Allowing Multi Trips to the Same Job vs. the Base and Var. Job Size Model

Model
Job Size
Range

Obj.
Function

Sol.
Time

Dredge
Time

Travel
Time

Idle
Time

Improv. from
Base Model

Improv. from
Var. Jobs

Base Model h 30,764,006 609.5 4,759 2,301 571 0% -
Multi. Trips [0,h] 25,849,481 624.8 2,842 2,407 2,797 -16% 105%
Multi. Trips [0.25h,h] 29,915,071 622.9 4,124 3,414 2,378 -3% 56%
Multi. Trips [0.50h,h] 27,316,269 615.7 3,631 2,043 2,624 -11% 21%
Multi. Trips [0.75h,h] 29,594,587 618.5 3,725 2,591 2,035 -4% 4%

In in the last two columns of Table 2.9, the results of the CPDFS with multiple trips model

are compared with both the base model and the CPDFS with variable job sizes model. As we can

see in Table 2.9, the total cubic yards of dredging by allowing multiple trips to the same jobs is

about 16% less than our base model in which a dredge vessel could not start a job without fin-

ishing it in one visit in its allowed working time windows. The reason of this increment in total

cubic yards of dredging is that in the multiple trips model, the size of each job is variable which

causes expansion in the solution space. However, we could improve the objective function from

4% up to 105% compared with the variable job sizes model utilizing the job sizes.

Table 2.10 shows the result of the CPDFS with multiple trips model for our three differ-

ent size problem comparing with the base model by increasing the run time CPO to 30 minutes.

In all three sizes of the problem instance, we used the [0.25h,h] for the range of the size of the

dredging jobs because it has the best performance for multiple trips among other ranges in Table

2.9. As we can see in the Table 2.10, increasing the CPO run time from 10 minutes to 30 not only

overcomes the downside of expanding the feasible solution space, but also gives us better solu-

tions than the base model in small and medium-size problem, with the improvement of 83% and

41%, respectively. In the large size problem with 116 jobs, the results are very close to the base

model, and the improvement is noticeable.

33

Table 2.10: Impact of Allowing Multiple Trips to the Same Job Comparing with the Base Model
in 30 minutes Run Time

Model Instance
Obj.

Function
Sol.

Time
Dredge
Time

Travel
Time

Idle
Time

Improv.

Base Model |J|= 32, |D|= 30 8,413,704 1801 1,229 335 93 0%
Multi. Trips |J|= 32, |D|= 30 15,427,550 1,803 1,577 537 1,307 83%

Base Model |J|= 57, |D|= 30 17,090,811 1802 2,565 961 513 0%
Multi. Trips |J|= 57, |D|= 30 24,067,043 1,807 2,377 1,440 1,091 41%

Base Model |J|= 116, |D|= 30 30,764,006 1809 4,759 2,301 571 0%
Multi. Trips |J|= 116, |D|= 30 30,380,849 1,821 4,189 3,427 2,242 -1%

The improvement in objective function from Table 2.9 to Table 2.10 by increasing the run

time from 10 minutes to 30 minutes motivated us to increase the CPO run to 4 hours. The result

is reported in Table 2.11 in which we can see the improvement in all of the problem instances

from 7% up to 86% comparing to the base model.

Table 2.11: Impact of Allowing Multiple Trips to the Same Job Comparing with the Base Model
by increasing the Run Time to 4 Hours

Model Instance
Obj.

Function
Sol.

Time
Dredge
Time

Travel
Time

Idle
Time

Improv.

Base Model |J|= 32, |D|= 30 8,413,704 1801 1,229 335 93 0%
Multi. Trips |J|= 32, |D|= 30 15,648,372 14,402 1,888 486 1,216 86%

Base Model |J|= 57, |D|= 30 17,090,811 1802 2,565 961 513 0%
Multi. Trips |J|= 57, |D|= 30 24,375,873 14,406 2,646 1,247 1,832 43%

Base Model |J|= 116, |D|= 30 30,764,006 1809 4,759 2,301 571 0%
Multi. Trips |J|= 116, |D|= 30 32,866,861 14,425 4,171 3,091 2,218 7%

The results of increasing the run time from 10 to 30 minutes and up to 4 hours on the total

cubic yards of dredging in CPDFS with multiple trips model from Table 2.10 and Table 2.11 are

summarized in Figure 2.8.

34

Figure 2.8: Impact of Increasing Run Time on Dredging in Multiple Trips to the Same Jobs
Model

As we can see in Figure 2.8, by running the model for 10 minutes the amount of dredging

for all problem instances are below the base model. Increasing the run time to 30 minutes allows

more dredging than the base model in the small and medium size instances with 32 jobs and 30

dredges and 57 jobs and 30 dredges respectively, but not in the large instance with 116 jobs and

30 dredges. Put simply, the ability to visit sites multiple times yields extensive benefit to the US-

ACE especially when variable job size is not included.

2.6.4 Multiple Dredges on the Same Job

The ability to dredge a job with multiple dredges in the model can speed up the dredging process

of jobs and maximize the utilization of available dredge vessels. Moreover, in practice, some jobs

need to be dredged by multiple dredge vessels depending on the geographic characteristics of the

job’s location, depth, and wideness of the waterways. For example, Clearwater Harbor, Florida

typically needs Yaquina, Essayons, and contract dredges.

To model the multiple dredge extension, we consider three scenarios. In all three the size

of the problem will increase comparing to the base model and accordingly solving the problem

become harder and more time-consuming. In the first scenario, the dredges can work separately

on the job. This scenario would be easy to handle. Such dredging jobs can be split into additional

35

jobs with the associated location, size, and compatible dredge vessel type. Second scenario hap-

pens if all different types of dredge vessels can work together simultaneously i.e., start and end

the dredging job at the same time. In this situation, we can modify the Constraints (2.1) in the

CPDFS base model (Section 2.5.2) to make them compatible. The modified constraints are as

follows:

Modified constraints:

Alternative(z j,Yj,c) j ∈ J (2.16)

Constraints (2.16) enforce each job j ∈ J be assigned to exactly c dredge vessels from all

dredge vessels compatible with the job. The additional parameter c in Alternative global con-

straints is needed to be sure that, if an interval decision variable z j is present in the solution, then

exactly c elements of Yj must be presented in the solution and all of them start and end together.

The third scenario and the most challenging form of multiple dredges working on the same

job is when dredging can happen by different type of dredges with different start and finish times.

To address this case in our model, similar to Section 2.6.3, each job is divided into some sub-jobs

with variable job sizes. In the most flexible and computationally expensive case when any type of

dredge can work on any dredging jobs, each job is divided to the number of available dredge ves-

sels (|D|) to maintain the possibility of working all dredge vessels on each job. After solving the

problem with the CP optimization tool, the start and end time, size of each sub-job and the dredge

vessel assigned to each sub-job will be determined. Similar to our base model (with one dredge

vessel on each job), there is a travel distance between each sub-job and it is equal to 0 if two con-

secutive sub-jobs are dredged by the same dredge vessel. The total size of each job, which is the

summation of all its sub-jobs, must be between the minimum and the target requirement size of

each job. As we divide each job into the number of available dredge vessels sub-jobs, the follow-

ing modifications to the sets, variables, and constraints need to be made (similar to Section 2.6.3):

Additional Set:

• k ∈ D, set of dredging sub-jobs that need to be completed over the planning horizon (each

36

job is divided to |D| sub-jobs).

Modified and Additional Variables:

• y jkd , optional interval variable when sub-job k ∈ D of job j ∈ J is assigned to dredge vessel

d ∈ D.

• Y ′jk = {y jk1,y jk2, . . . ,y jkD}, the array of interval variables representing possible dredge ves-

sel d that can be assigned to sub-job k ∈ D of job j ∈ J.

• V ′d = {y11d,y12d, . . . ,y1kd, . . . ,y1Dd,y21d,y22d, . . . ,y2kd, . . . ,y2Dd, . . . ,yJ1d,yJ2d, . . . ,yJkd, . . . ,yJDd},

the array of interval variables representing possible sub-job k ∈ D of job j ∈ J that can be

assigned to dredge vessel d ∈ D.

• x jk, optional interval variable associated with sub-job k ∈ D of job j ∈ J.

In addition to the Constraints (2.8) and (2.9) in Section 2.6.2, the following constraints are

added to this model.

Modified and Additional Constraints:

Span(z j,x jk) j ∈ J,k ∈ D (2.17)

Alternative(x jk,Y ′jk) j ∈ J,k ∈ D (2.18)

NoOverlap
(

V ′d,T Dtype jtype j′

)
d ∈ D (2.19)

∑
k∈D

SizeOf(x jk)≤ h j j ∈ J (2.20)

∑
k∈D

SizeOf(x jk)×PresenceOf(x jk)≥ m j j ∈ J (2.21)

Constraints (2.17) state that each interval variable z j, j ∈ J spans over all present intervals

variables from the set {x j1,x j2, . . . ,x jD}. As mentioned in Section 2.6.3, the interval variable z j

starts with the first present interval from {x j1,x j2, . . . ,x jD} and ends with the last one. Similar

to Constraints (2.14) and (2.15), Constraints (2.18) and (2.19) are for the available dredge ves-

sels assignment to the jobs and travel time between jobs enforcement, respectively. Constraints

37

(2.20) impose a limitation on the total size of each job, which is the summation of the sizes of its

sub-jobs. Note that, similar to Section 2.6.2, the size of each sub-job is variable and between the

minimum and target requirements.

The ability of multiple dredges to work on the same job in our model is the most flexible

yet complex improvement in our base model. In this model, the dredge vessels can have multiple

trips to the same jobs and dredge any portion of the total size of each job during each visit. By

splitting each job into the number of available dredge vessels, the number of variables and con-

straints increases enormously and accordingly the solution space will expand dramatically. To

help the CP optimization tool to find feasible solutions, we removed the budget constraint and

set the range of [0.25h,h] for the job sizes. Without this, CP could not find any feasible solution

even for the problem instance with 10 jobs and 5 dredge vessels after 4 hours time limit. An in-

stance with the largest number of jobs and dredges that could be solved by CP on a Core(TM) i7

CPU @ 2.93 GHz, 8 GB RAM desktop computer was with 57 jobs and 15 dredges. A problem

instance with 57 jobs and 20 dredges ran for 4 hours on the same computer without finding any

feasible solutions.

Table 2.12 shows the computational result of allowing multiple dredge vessels working on

the same job in comparison with our base model (with at most one dredge assigned to each job).

The test problems have 10, 32, and 57 jobs and 5, 10 and 15 dredge vessels with associated RPs.

All problem instances ran for 4 hours or 14,400 seconds.

38

Table 2.12: Impact of Allowing Multiple Dredges Working on the Same Jobs.

Model Instance
Obj.

Function
Sol.

Time
Dredge
Time

Travel
Time

Idle
Time

Improv.

Base Model |J|= 10, |D|= 5 2,487,676 0.2 347 137 82 0%
Multi. Dredges |J|= 10, |D|= 5 6,743,828 61 735 543 313 171%

Base Model |J|= 32, |D|= 10 8,413,704 3,819 864 780 595 0%
Multi. Dredges |J|= 32, |D|= 10 18,922,824 14,409 1,873 1,356 398 125%

Base Model |J|= 32, |D|= 15 8,413,704 3,672 909 588 369 0%
Multi. Dredges |J|= 32, |D|= 15 18,150,677 14,451 1,667 2,134 1,119 116%

Base Model |J|= 32, |D|= 20 8,413,704 3,645 482 836 336 0%
Multi. Dredges |J|= 32, |D|= 20 10,890,124 14,535 1,114 2,832 1,625 29%

Base Model |J|= 32, |D|= 30 8,413,704 3,621 1,101 399 156 0%
Multi. Dredges |J|= 32, |D|= 30 9,469,173 16,401 1,004 2,467 1,251 13%

Base Model |J|= 57, |D|= 10 13,044,882 3,647 1,176 1,026 351 0%
Multi. Dredges |J|= 57, |D|= 10 21,371,547 14,439 2,191 1,086 257 64%

Base Model |J|= 57, |D|= 15 18,093,069 3,621 1,834 717 978 0%
Multi. Dredges |J|= 57, |D|= 15 12,536,703 14,599 1,327 2,204 1,499 -31%

Base Model |J|= 57, |D|= 20 18,093,069 3,611 1,932 1,066 989 0%
Multi. Dredges |J|= 57, |D|= 20 no solution 14,400 - - - -%

In this model, by having variable job sizes and multiple dredges working on same jobs,

there is a trade-off between having more flexibility in assigning dredge vessels to dredging jobs

and expanding the solution space enormously. Flexibility gives us more opportunity to dredge

more jobs and for each job more cubic yards.

As we can see in the Table 2.12, allowing multiple dredges to work on the same jobs has

positive impacts (up to 171%) on the objective function (total cubic yards of dredging) for small

instances and negative impacts (−31%) on the large instances (unlike the base model, in the ex-

panded model the instance with 57 jobs and 15 dredges is considered to be a large instance in-

stead of a medium size instance because the number of jobs that need to be scheduled is 57×

15 = 855 using 15 dredges). In Figure 2.9, the impact of having multiple dredges on the same job

model on the total cubic yards of dredging as reported in Table 2.12 is shown.

39

Figure 2.9: Impact of Having Multiple Dredge on the Same Job Model

As shown in Figure 2.9, having multiple dredges working on the same job increases the

total cubic yards of dredging in the small and medium size instances from the problems with 10

jobs and 5 dredges to the problem with 57 jobs and 10 dredges.

2.6.5 Different Operation Rates and Unit Cost of Dredging

The operation rate of each dredge vessel can vary greatly from one job to another due to wave

conditions, weather and sediment types. To modify the base model to work with different oper-

ation rates for each vessels in each job, the parameter rd in Section 2.5.2 is changed to r jd,∀ j ∈

J,d ∈ d and accordingly the parameter t jd , the time (days) required for dredge vessel d to com-

plete job j, will be changed to t jd = dq j/r jde,∀ j ∈ J,d ∈ D. The variables and constraints of the

base model will remain unchanged.

Separately, the cost of dredging per cubic yard can vary from one dredge vessel to another

due to the size of dredge vessels, different types of equipment they use and the crew size of each

dredge vessel. Similar to having different operation rates for each job, we can change the parame-

ter c j, the cost for completing job j, in Section 2.5.2 to c jd,∀ j ∈ J,d ∈ D, the cost for completing

job j by dredge vessel d.

Finally, in addition to the overall budget constraint on the total cost of all jobs in the base

model, we impose a limitation on the cost of each job to not exceed the available budget for each

40

job. The budget parameters and constraints for each job are as follows:

Additional parameters:

• b j, the available budget for the job j ∈ J.

Additional constraints (individual job budget constraints):

PresenceOf(y jd)×q j× ci j ≤ b j j ∈ J,d ∈ D (2.22)

Constraints (2.22) ensure that if job j is performed by dredge vessel d, the cost of dredging

(q j× ci j) will not exceed the available budget for job j. The result of having different operation

rates and cost of dredging for each job-dredge combination is shown in Table 2.13.

Table 2.13: Impact of Having Different Operation Rates and Cost of Dredging for each Job

Model Instance
Obj.

Function
Sol.

Time
Dredge
Time

Travel
Time

Idle
Time

Different Rates |J|= 32, |D|= 30 8,413,704 601.7 1,101 399 156
Different Rates |J|= 57, |D|= 30 14,907,474 603.0 2,334 810 812
Different Rates |J|= 116, |D|= 30 25,141,975 605.8 4,498 1,104 1,520

In Table 2.13, the result of running the base model and the model with different rates of

operation is reported. In Table 2.13, we are not comparing the base model with the model with

different rates because the data structure has been changed and operation rates of each dredge

vessel are different from one job to another.

2.6.6 Stimulating Downtime for Dredges

To stimulate the downtime in the model for each dredge on the assigned job(s), as mentioned in

Section 2.6.1, the intensity function of the interval variable associated with the specified dredge

and all the jobs is changed and set equal to 0%. The interval variables associated with each job-

dredge pair exist in the set of variables Yj in the CP formulation presented in Section 2.5.2. By

setting the intensity function of these variables equal to 0%, we tell the CP model that during the

41

downtime period the dredge cannot work at all. We add the following parameters to the model to

specify the begin and end of the downtime for each dredge.

Additional parameters:

• ad , the begin of downtime of dredge d.

• bd , the end of downtime of dredge d.

All that remains is to set the intensity function of the interval variable y jd between the pe-

riod [ad,bd] equal to 0%, ∀ j ∈ J using the CPO build-in “setIntensity” method.

2.6.7 Mob/Demob Cost

The two standard ways of calculating the mobilization and demobilization costs that actually

used in the Corps is to split the cost among all jobs who use the contracted dredge. They prorate

the costs according to the respective cubic yard of dredging at each job or the amount of travel

time/distance for each dredge. Each approach is explained in the following sections.

2.6.7.1 Mob/demob cost based on cubic yards of dredging

In this case we must track the size of all jobs that are performed by a dredge d during the opti-

mization process of CPO. This is done by using SizeOf(y jd) as discussed in Section 2.6.2. We

can add the following constraint to the model to record the total amount of dredging performed

by dredge d on all the jobs.

Additional Constraints:

Cumulate j∈J(SizeOf(y jd)) d ∈ D (2.23)

After calculating the total amount of dredging for each dredge, note as CYd , we can eas-

ily specify the proportion of the mob/demob cost for each dredge d, mobd , using the following

equation:

42

mobd = mobtotal×
CYd

CYtotal
d ∈ D (2.24)

2.6.7.2 Mob/demob cost based on travel time/distance

In the second case, in which we are splitting the mob/demob cost among contract dredges, we

need to know how much each dredge travels between jobs. This is possible by taking advantage

of the CP optimizer’s ability to formulate a sequence depending setup cost using the TypeOfNext()

built-in function. We must add Constraint 2.25 to get the total travel time/distance of each dredge

d.

Additional Constraints:

Cumulate j∈J(T D [Type(j),TypeOfNext(Yd, j)]) d ∈ D (2.25)

Similar to the first case, after calculating the total travel time/distance for each dredge,

T Rd , we use the following formula to get the proportion of the mob/demob cost for each dredge

d, mobd .

mobd = mobtotal×
T Rd

T Rtotal
d ∈ D (2.26)

2.6.8 Dredge Capabilities to Perform Jobs

In some cases, a particular dredge may not be able to operate on some jobs. To prevent assign-

ing dredge d to job j, we can use two different methods. The first method is to set the intensity

function associated with interval variable y jd equal to 0% as we mentioned in Sections 2.6.1 and

2.6.6. In the second method, we set the operation rate r jd = 0 as shown in Section 2.6.5. This

means that there is not any increase in objective function, so the CP optimizer will not consider

43

such an assignment.

2.6.9 Comprehensive Model

In this section, the modified CPDFS comprehensive model, MCPDFS, in which all the modifica-

tions that we discussed in Section 2.6 are presented in a comprehensive formulation. In addition

to the notation in Table 2.3 in Section 2.5.2, the following parameters and variables shown in Ta-

ble 2.14 are used in the MCPDFS formulation. The modified comprehensive model referred to as

MCPDFS is formulated using the notation in Table 2.14.

Table 2.14: Notation of MCPDFS Formulation in Addition to CPDFS in Table 2.3

Notation Description

Sets:

k ∈ K
Set of dredging sub-jobs that need to be completed over the

planning horizon (each job is divided into |K| sub-jobs).

Parameters:

h j The target requirement of dredging job j ∈ J.
m j The minimum requirement of dredging job j ∈ J.
h jd The target requirement of dredging job j using vessel d.
m jd The minimum requirement of dredging job j using vessel d.

r jd
The operation rate (cubic yards/day) of dredge equipment d ∈ D

conducting job j ∈ J.
t jd The time (days) required for dredge vessel d to complete job j.
c jd The cost for completing job j ∈ J by dredge vessel d ∈ D.

Decision Variables:

y jkd
Optional interval variable when sub-job k ∈ D of job j ∈ J is

assigned to dredge vessel d ∈ D.

Y ′ji = {y ji1,y ji2, . . . ,y jiD}
The array of interval variables representing possible dredge vessel

d ∈ D that can be assigned to sub-job i of job j ∈ J.
V ′d = {y11d ,y12d , . . . ,

y21d ,y22d , . . . ,
...
yJ1d ,yJ2d , . . . ,yJKD}

The array of interval variables representing possible sub-job i of job
j ∈ J that can be assigned to dredge vessel d ∈ D.

x jk Optional interval variable associated with sub-job k ∈ D of job j ∈ J.

44

max ∑
j∈J

q j×PresenceOf(z j)× z j

Span(z j,x jk) j ∈ J,k ∈ D (2.27)

Alternative(x jk,Y ′ji) j ∈ J (2.28)

NoOverlap
(

V ′d,T Dtype jtype j′

)
d ∈ D (2.29)

Cumulative
(
z j,c jd,B

)
(2.30)

Cumulative
(
z j,1, |D|

)
(2.31)

z j.StartMin = 1 j ∈ J (2.32)

z j.EndMax = |T | j ∈ J (2.33)

∑
i∈D

SizeOf(x ji)≤ h j j ∈ J (2.34)

SizeOf(y jd)≤ h jd j ∈ J,d ∈ D (2.35)

SizeOf(y jd)≥ PresenceOf(y jd)×m jd j ∈ J,d ∈ D (2.36)

Constraints (2.27) state that each variable z j, j ∈ J spans over all present intervals variables

from the set {x j1,x j2, . . . ,x jK}. The interval variable z j starts with the first present interval from

{x j1,x j2, . . . ,x jK} and ends with the last one. Constraints (2.28) are included for the assignment

of jobs to available dredge vessels. Constraints (2.29) are in the model for setting the travel time,

T Dtype jtype j′ , between two consecutive sub-jobs j and j′ that are conducted by the same dredge

vessel d. Constraint (2.30) imposes that the total cost of dredging job j ∈ J by dredge vessel

d ∈ D with the cost of c jd cannot exceed the total budget B. Also, Constraint (2.31) makes sure

that the total number of occupied dredge vessels at any time does not exceed the fleet size |D|.

Constraints (2.32) and (2.33) set the minimum start time and maximum end time of each job to

the first and last day of the planning horizon, respectively. Constraints (2.34) impose a limitation

on the total size of each job, which is the summation of the sizes of its sub-jobs. Note that the

45

size of each sub-job is variable and is less than or equal to the target size (cubic yards of dredg-

ing) and greater than or equal to the minimum size of each job. Constraints (2.35) and (2.36) en-

sure that the size of all dredging job j ∈ J conducted by dredge vessel d ∈ D remain between the

minimum and the target size of the job jm if the variable y jd is present in the solution.

2.7 Impacts of Implementation

The impact of the implementations in this work can be measured quantitatively, as was shown

in the chapter. However, of equal importance is the impact of this work on the future of decision

analysis within USACE. After initial success with the base model presented at the beginning of

this report (see Nachtmann et al. (2014)), maritime professionals were intrigued by the use of op-

erations research to aid in their decision process. However, the potential of the initial tool was

met with concern over the fact that many realistic components were not considered. For example,

in the newly developed tool in this chapter we can now model different operation rates and unit

costs for each project and dredging vessel pair, simulation of downtime for dredges, inclusion

of Mob/Demob cost in the budget, dredge capability to perform assigned projects and multiple

dredges/trips on/to the same job. The main contribution of this chapter is that several concerns

presented by USACE have now been addressed from a modeling perspective. The decision mak-

ers now understand that optimization tools can be flexible and with the appropriate amount of

attention, complex challenges can be modeled.

2.8 Conclusion

This work has offered a highly generalized dredge scheduling optimization framework for use

by dredge planners. The work has already been transferred to USACE computing systems and

various versions of the developed model have been utilized in support of planning efforts on the

West and East coast. The results of the job show that partial dredging, dredge maintenance, mod-

ified mob/demob costs/budgets, operations rates, multiple dredges per job and multiple visits to

jobs can all be allowed for in a constraint programming platform. Using this platform, feasible

46

solutions can be obtained to this complex model in a matter of minutes or hours. Evaluating the

potential benefit on cubic yards dredged by considering each model enhancement suggests that

these new flexibilities are significant for guiding practitioners to solutions. That is, adding the

discussed flexibilities to the models makes a significant difference in the solutions obtained.

With a more flexible model and the increased potential for significant cubic yards dredged

gains comes a new set of computational challenges. In addition to revealing how to model ad-

ditional problem features, this chapter has revealed a number of new methodological challenges

that need to be explored. That is, with increased flexibility comes a much larger solution space

for any optimization methodology to explore. While one solution to this problem is to use the

solution from a simplified model as a seed solution to the more complex model, more sophisti-

cated approaches are certainly worthy of exploration. In the course of studying these issues, the

investigators note that many aspects of the expanded problem formulation (e.g., schedule of an

individual dredge) decompose nicely. That is, there are components of the scheduling problem

that can be thought of in separate pieces. The acknowledgment of this fact leads the investiga-

tors to believe that opportunities to implement the existing constraint programming approach in

a parallel computing system could yield immediate solution improvements. Moreover, the com-

plexities of the new problem suggest that it is now appropriate to formally study the parameters

utilized in the constraint programming search.

47

Bibliography

Allahverdi, A., Ng, C., Cheng, T. E., and Kovalyov, M. Y. (2008). A survey of scheduling prob-
lems with setup times or costs. European journal of operational research, 187(3):985–1032.

Arkin, E. M. and Silverberg, E. B. (1987). Scheduling jobs with fixed start and end times.
Discrete Applied Mathematics, 18(1):1–8.

Cakici, E. and Mason, S. (2007). Parallel machine scheduling subject to auxiliary resource con-
straints. Production Planning and Control, 18(3):217–225.

Dickerson, D. D., Reine, K. J., and Clarke, D. G. (1998). Economic impacts of environmental
windows associated with dredging operations. Technical report, DTIC Document.

Eliiyi, D. T. and Azizoğlu, M. (2009). A fixed job scheduling problem with machine-dependent
job weights. International Journal of Production Research, 47(9):2231–2256.

fs.usda.gov. The threatened, endangered and sensitive (tes) species program.
http://www.fs.usda.gov/detail/r1/plants-animals/?cid=stelprdb5130525. Accessed: October
2015.

Gedik, R., Rainwater, C., Nachtmann, H., and Pohl, E. A. (2016). Analysis of a parallel ma-
chine scheduling problem with sequence dependent setup times and job availability intervals.
European Journal of Operational Research, 251(2):640–650.

Jain, V. and Grossmann, I. E. (2001). Algorithms for hybrid milp/cp models for a class of opti-
mization problems. INFORMS Journal on computing, 13(4):258–276.

Mönch, L., Fowler, J. W., Dauzère-Pérès, S., Mason, S. J., and Rose, O. (2011). A survey of
problems, solution techniques, and future challenges in scheduling semiconductor manufactur-
ing operations. Journal of Scheduling, 14(6):583–599.

Nachtmann, H., Mitchell, K., Rainwater, C., Gedik, R., and Pohl, E. (2014). Optimal dredge fleet
scheduling within environmental work windows. Transportation Research Record: Journal of
the Transportation Research Board, (2426):11–19.

navigationdatacenter.us. Usace dredging information system.
http://www.navigationdatacenter.us/dredge/dredge.htm. Accessed: July 2015.

Pearn, W., Chung, S., Yang, M., et al. (2002). The wafer probing scheduling problem (wpsp).
Journal of the Operational Research Society, 53(8):864–874.

pic.dhe.ibm.com. Ibm ilog cplex optimization studio v12.3, 2011.
http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r3/index.jsp. Accessed: October 2013.

Resources, W. Inland waterway navigation: Value to the nation. http://www.corpsresults.us/.
Accessed: July 2015.

Rojanasoonthon, S. and Bard, J. (2005). A grasp for parallel machine scheduling with time win-
dows. INFORMS Journal on Computing, 17(1):32–51.

48

ibm.com. Ibm ilog cplex optimization studio cp opti-
mizer user manual version 12 release 6. http://www-
01.ibm.com/support/knowledgecenter/SSSA5P 12.6.1/ilog.odms.studio.help/pdf/usrcpoptimizer.pdf.
Accessed: January 2015.

49

Appendix

Appendix 2.A Dredging Projects and Vessels Characteristics

Table 2.15: 116 Project Properties (volumes: CY, costs: USD)

Job ID Volume Cost Job ID Volume Cost

000030 439,726 3,201,839 011810 577,711 2,972,600
000360 900,709 5,533,068 011860 156,607 1,104,938
046063 4,376 46,441 011880 30,523 420,827
074955 2,267,192 14,477,345 012030 544,338 2,338,424
000950 466,950 2,989,574 012550 123,064 9,739,760
001120 2,001,129 2,523,736 008190 174,603 998,309
088910 39,308 1,016,772 072742 26,937 644,784
010222 178,088 791,822 012801 67,578 318,000
076060 451,796 1,261,920 012990 217,888 967,081
080546 6,723 275,719 073567 34,637 302,055
002080 2,472,603 6,685,844 013080 723,937 2,628,970
002250 102,032 1,242,273 013330 44,401 334,654
041015 85,093 2,409,673 013590 119,668 1,891,959
003630 277,836 786,758 013680 1,193,406 2,009,923
002440 2,890,491 3,793,482 013880 252,670 251,296
002410 179,782 1,612,871 013940 192,277 980,108
002620 116,357 2,307,509 014310 82,949 748,816
002640 396,079 909,977 076031 46,686 481,990
014360 5,413,965 5,452,500 014370 4,510 102,371
008160 67,221 1,231,600 021530 26,009 144,042
003130 13,252 226,709 014760 59,003 690,963
076106 35,672 321,356 015100 572,395 2,405,442
022140 45,533 142,900 015280 95,491 723,544
003600 808,778 1,502,833 015600 21,003 178,236
003840 397,516 1,745,287 087072 83,378 146,508
004550 243,898 1,489,330 087455 32,688 453,483
004610 38,598 306,499 015870 295,967 1,881,768
004710 201,116 1,122,792 057420 231,639 1,709,816
004800 117,090 719,437 016130 833,305 2,509,084
005050 80,528 733,469 076063 120,808 900,546
005220 191,015 1,708,370 074709 145,537 942,239
005700 261,440 1,058,165 016550 261,985 1,363,696
005880 1,117,205 9,124,564 067318 127,064 310,965
041016 63,380 2,260,932 073644 572,249 4,008,166
006260 186,551 1,183,650 016800 216,709 864,890
006480 668,425 2,073,745 016860 47,674 284,901
006670 41,563 311,454 017180 22,153 159,881
006770 577,424 1,543,516 017370 306,546 5,944,930

Continued on the next page

50

Table 2.15 – continued from previous page
Job ID Volume Cost Job ID Volume Cost

006910 147,811 2,153,095 074390 633,833 8,574,738
007150 1,038,304 1,534,705 017300 64,118 1,162,671
007610 42,408 283,559 017350 42,577 389,861
007810 167,704 1,416,099 017380 49,558 2,497,492
007860 1,494,596 4,048,374 017760 64,262 950,325
008410 1,189,684 12,991,774 017720 212,214 1,588,367
054000 225,664 1,427,334 017960 1,037,987 4,895,841
008430 283,367 1,151,256 073598 229,090 456,000
010020 67,571 380,810 018710 55,762 326,262
010040 80,000 1,579,250 018750 105,955 443,959
074719 122,930 864,000 024190 1,086,812 1,486,174
010310 102,424 751,304 019550 97,935 442,630
010490 74,288 519,202 019560 50,777 331,749
010580 261,769 1,845,812 039023 9,868 66,150
011060 59,190 419,900 019990 53,971 258,289
011270 40,729 530,127 020040 323,758 1,262,279
000068 681,961 1,419,778 020030 1,171,297 6,527,537
011410 944,417 1,496,737 072852 33,939 4,687,087
000063 1,505,100 5,388,149 020290 75,373 468,695
011670 1,282,956 2,509,501 073803 561,192 2,499,452

Total: 48,305,584 223,012,020

51

Table 2.16: Production Rates of Dredge Vessels (cubic yards/day)

Dredge ID Rate

01 1,238
02 1,301
03 1,637
04 1,962
05 1,989
06 2,296
07 2,375
08 2,709
09 2,855
10 3,311
11 3,481
12 3,728
13 3,941
14 4,532
15 5,941
16 6,837
17 6,965
18 8,332
19 8,443
20 9,007
21 10,436
22 10,478
23 10,959
24 12,347
25 12,882
26 15,556
27 17,080
28 17,282
29 17,537
30 19,245

52

Appendix 2.B Certification of Student Work

College of Engineering

Department of Industrial Engineering

4207 Bell Engineering Center • Fayetteville, Arkansas 72701 • 479-575-2687
The University of Arkansas is an equal opportunity/affirmative action institution.

Date: December 5, 2017

Graduate School

University of Arkansas

Dear Dr. Needy:

I am writing to verify that Fereydoun Adbesh completed more than 51% of the work for the chapter

titled “Improvements and Enhancements to the Dredge Fleet Scheduling Problem” in his dissertation.

Sincerely,

Chase Rainwater

cer@uark.edu

479-575-2687

Associate Professor

Department of Industrial Engineering

University of Arkansas

53

3. Vehicle Routing Problems with Hours of Service Regulations for Trucking Industry

Abstract: In this research, we study variants of the Vehicle Routing Problem (VRP) facing

trucking providers that serve the transportation logistics industry. We formulate a new VRP vari-

ant that adheres to working hour regulations for truck drivers in both single and multiple work

shift settings. Solution techniques are proposed that are presented as a single-point decision tool

called the Enterprise Transportation Planning (ETP). We perform computational experiments

on the pickup and delivery capacitated VRP with backhauls, time windows, and working hour

regulations. The results confirm the strength of ETP in finding quality solutions in a very short

amount of time in comparison with those obtained via a black box solver.

3.1 Introduction

Each day transportation logistics providers seek to deliver thousands of shipments to their desti-

nations using hundreds of trucks. This problem is complicated by the facts that trucks have differ-

ent capacities and each destination can be bound by differing delivery time windows restrictions.

Also, truck drivers needed to fulfill these deliveries must be scheduled in accordance with work

hour restrictions imposed through government regulations. Companies, like J.B. Hunt, have pro-

vided services under constraints similar to these for thousands of customers over the last decades.

However, the decisions made to satisfy customer demand have either utilized disaggregated quan-

titative models or qualitative approaches guided by experiential expertise. This chapter seeks to

answer delivery decision to this complicated problem via the study of a generalized variant of the

so-called Vehicle Routing Problem (VRP).

The goal of VRP is to obtain the best routes for a fleet of vehicles in which all locations are

visited and all vehicles return to the origin depot. The objective is to minimize the total cost of

traveling between locations while adhering to the vehicles’ capacity constraints. VRP was first

introduced by Dantzig and Ramser (1959). Over the past five decades, many researchers have

54

studied several variations of this problem to model real-world routing scenarios. Several variants

and families of this problem have been defined in the literature (please see the review articles of

Braekers et al. (2016); Kumar and Panneerselvam (2012); Montoya-Torres et al. (2015)). The

appearance of different VRP variants is the reflection of the challenges that researchers and com-

panies have to face when they model their transportation network, find practical high-quality so-

lutions and ultimately reduce the cost of their logistic systems. The difficulties in solving these

combinatorial optimization problems and their practical relevance in the real-world have attracted

many researchers in both academia and industry (Toth and Vigo, 2014).

The most practical and appealing optimization tools in industry are those that use approaches

which yield quality solutions in a short time, are flexible to a wide range of problems and are

easy to make a use of. Academic researchers continue to develop sophisticated optimization tech-

niques as alternatives to more simple, but widely utilized, techniques (Reimann et al., 2003). A

resolution as to which approaches are most beneficial was considered formally by Cordeau et al.

(2002) who argued that the performance of an algorithm must be measured by four characteris-

tics: i) quality, ii) speed, iii) flexibility and iv) simplicity. Quality is judged by the best optimal

solution obtained, while speed is determined by the computational time of an algorithm. Flexi-

bility of an algorithm is measured by its ability to solve a broad and diverse family of problems.

Finally, simplicity is determined by the level of automation incorporated into the algorithm.

In this chapter we propose a comprehensive tool that integrates multiple algorithmic tech-

niques into a platform that we refer to as Enterprise Transportation Planning (ETP). The under-

lying motivation behind ETP is to provide a high-performance solution approach that addresses

the interests of both academic and industry parties. ETP offers an optimization framework for the

family of VRP and its variants. Early implementations of ETP proposed by J.B. Hunt operations

researchers offered solutions for the VRP variants listed in Table 3.1. The work in this chapter

expands on these efforts and considers an integration of the problems shown in the table and with

the newly introduced variants.

55

Table 3.1: Existing VRP Variants in ETP

VRP Variant Brief Explanation

Capacitated (CVRP) The vehicles have limited capacity.

Time windows (VRPTW) In each location, the pickup/delivery time is
restricted.

Heterogeneous (HVRP) The vehicles are different.

Open (OVRP) The vehicles do not need to back to a depot.

Multi-depot (MDVRP) There is more than one depot in the network.

Pickup and delivery (PDVRP) Each shipment has a pickup and delivery location.

Simultaneous pick-drops (SVRP) Each customer location can have both pickup and
delivery.

Backhauls (VRPB)
The customers are divided into two linehaul and
backhaul sets which one of them must be visited
first.

Several solution techniques, primarily based on customized heuristic methods, are incor-

porated into the optimization engine of ETP. The optimization procedure in ETP has five phases:

i) grouping, ii) merging, iii) improving, iv) filtering, and v) forcing (see Section 3.4 for more de-

tails).

One of the modeling contributions of this chapter is the consideration of a new variant of

VRP with respect to driver working hours regulations imposed by the United States Department

of Transportation (DOT) over single and multiple shifts of work. We formulate a general variant

of VRP by combining these regulatory restrictions with problem components common to VRP.

Specifically, we propose the pickup delivery, heterogeneous fleet VRP with time windows and

DOT regulations in an infinite planning time horizon (PHTD). We focus our computational test-

ing on a specific scenario modeled by PHTD that considers the single shift pickup and delivery,

heterogeneous fleet vehicle routing problem with backhauls, and DOT regulations (PHBD1) for

the computational experiments. The PHBD1 is a special case of PTWDOT with the following ex-

tra restrictions: i) the pickup points needs to be visited first before the delivery points by the vehi-

cle(s), ii) the time horizon is limited to a single shift and iii) the pickup/delivery time windows is

56

relaxed. We restricted the PTDOT general model to PBTDOT1 because the CPLEX solver could

not find feasible solutions of the general model for the modified benchmark instances. Also, the

PBTDOT1 model is the most frequent VRP variant that is considered in practice.

The performance of ETP is compared with CPLEX 12.6 regarding the objective function

and running time on a several benchmark instances which each include a network of 100 nodes.

We modified the benchmark instances by cutting the number of nodes to half to help the CPLEX

solver find feasible solutions. The results show ETP can provide quality solutions in a very short

amount of times (seconds). At the end of this chapter, to further emphasize the strength of ETP in

solving real-world problems, a case study with realistic datasets from the transportation logistics

industry is presented.

The remainder of the chapter is organized as follows. Section 3.2 discusses the relevant

literature. In Section 3.3, the new variants of VRP are presented. In Section 3.4, heuristic meth-

ods used in ETP to optimize the proposed class of VRP models are described. In Section 3.5, the

computational experiments of the proposed approaches are discussed with respect to VRP bench-

mark instances in the literature. This section also includes a case study illustrating the usage of

the models introduced and the ETP framework. Finally, conclusions are offered in Section 3.6.

3.2 Literature Review

In this section, we provide a concise literature review on the different variants of VRP that are

studied in this research. These variants are Capacitated VRP, VRP with time windows, heteroge-

neous fleet VRP, pickup delivery VRP, open VRP and VRP with Backhauls.

The most studied version of VRP is the Capacitated Vehicle Routing Problem (CVRP),

which is the basis of all other variants of VRP (Toth and Vigo, 1997). Different exact algorithms,

mostly focused on efficient enumeration (branch and bound, branch and price, and branch and

cut) and relaxation (Lagrangian relaxation) methods (Fisher, 1994; Miller, 1995), have been pro-

posed. Also, Set Partitioning (Balinski and Quandt, 1964), Spanning Tree and the Shortest Path

(Christofides et al., 1981) representations of the problem have been developed to solve the prob-

57

lem to optimality. For more additional information, please see the study of Toth and Vigo (2014).

Also, several types of heuristic algorithms have been used to solve the problem to near

optimality. These algorithms range from matching-based heuristics (Desrochers and Verhoog,

1989; Wark and Holt, 1994) to constructive and saving approaches such as Clarke-Wright (Clarke

and Wright, 1964) and Petal algorithms (Renaud et al., 1996; Ryan et al., 1993). Also, many im-

provement algorithms such as several λ-opt exchange-based methods introduced by Lin (1965),

granular searches (Johnson and McGeoch, 1997; Toth and Vigo, 2003), and large neighborhood

searches (Pisinger and Ropke, 2007) for the large size VRPs have been developed to increase the

quality of the solutions. The contemporary meta heuristic algorithms, such as Simulated Anneal-

ing (Osman, 1993), Tabu Search (Cordeau et al., 2001; Zachariadis and Kiranoudis, 2010) and

Genetic Algorithms (Nagata and Bräysy, 2009; Prins, 2004), have been found to be very bene-

ficial in finding high-quality solutions. Finally, hybrid algorithms that combine various types of

mentioned algorithms have proposed (Rochat and Taillard, 1995; Tarantilis, 2005; Vidal et al.,

2012, 2013).

A wide variety of extensions and variations of the VRP have been introduced by researchers

during the last five decades. The VRP with time windows (VRPTW) is an extension to CVRP

in which there is an allowable interval of time associated with each pickup/delivery location

(see Golden et al. (2008), chapter 5). Several exact and heuristic methods have been developed

and applied to solve VRPTW (Bräysy and Gendreau, 2005a,b; Nagata et al., 2010; Potvin and

Bengio, 1996; Spoorendonk and Desaulniers, 2010). The heterogeneous fleet VRP (HVRP) is a

CVRP variant with a fleet of vehicles of the different type, cost, and capacity. This extension of

VRP has gotten many researchers and small logistic companies attention during the past decades.

For more details on the HVRP, please see the work of Baldacci et al. (2008).

Pickup and delivery VRP (PDVRP) is an extension of the CVRP in which there is a set of

pickup and delivery customer requests that must be satisfied by a fleet of vehicles. The PDVRP

was first introduced by Hernández-Pérez and Salazar-González (2004a) for the TSP and extended

to the VRP afterward. The PDVRP itself is categorized into three different categories based on

58

the type of demand and route structures: i) many-to-many (M-M) PDVRP, ii) one-to-many-to-

one (1-M-1) PDVRP, and iii) one-to-one (1-1) PDVRP according to the study of Golden et al.

(2008). The 1-1 PDVRP is the most comprehensive model and serves as a generalization to the

M-M and 1-M-1 models. Several methods and algorithms are presented in the studies of the

Hernández-Pérez and Salazar-González (2004b), Hernández-Pérez and Salazar-González (2007),

and Hernández-Pérez and Salazar-González (2009) for M-M PDVRP, Berbeglia et al. (2007)

and Min (1989) for 1-M-1 PDVRP, and Psaraftis (1983), Ascheuer et al. (2000), Ropke et al.

(2007), and Ruland and Rodin (1997), Nanry and Barnes (2000), Lau and Liang (2002), Bent

and Van Hentenryck (2006), and Cordeau et al. (2008) for 1-1 PDVRP.

Open VRP is another variant of CVRP in which the vehicles are not required to return to

the depot after visiting the customers. The application of this problem is observed in the home

delivery of packages and newspapers, as well as hiring third-party contractors with their own

vehicles. Effective methods for solving this problem can be found in Brandão (2004), Li et al.

(2007), Sariklis and Powell (2000) and Fleszar et al. (2009).

VRP with backhauls is an extension of CVRP in which the delivery customers (linehaul)

must be visited before the pickup customers (backhaul) by each vehicle. Several exact and heuris-

tic methods have been developed in the past decades. Notable amongst these are Toth and Vigo

(1997), Goetschalckx and Jacobs-Blecha (1989), Duhamel et al. (1997) and Zhong and Cole

(2005).

3.3 VRP with Drive Service Regulations

In this section, a new variant of VRP that has not been addressed in the literature is presented,

VRP with DOT regulations (VRPDOT). In this variant, the hours of service (HOS) by commer-

cial motor vehicle (CMV) drivers are restricted according to the regulations imposed by the Fed-

eral Motor Carrier Safety Administration (FMCSA) of the U.S. Department of Transportation

(DOT). These regulations restrict the hours of work and drive of truck drivers on their daily and

weekly shifts as well as the amount of rest between them (please see Section 3.3.1 for more de-

59

tails). Transportation companies, such as J.B. Hunt, are responsible for implementing these reg-

ulations. In J.B. Hunt, drivers utilize the electronic hour logging system to record hours driven.

In this system, the drive, work, and rest hours of each driver are precisely recorded so the drivers

cannot exceed their hours of service. Exceeding the hours of service has historically been the

practice to increase their daily working hours and compensation. In short terms, reducing the

working hours of drivers can reduce the profit margins of transportation companies. On the other

hand, in the long terms, it can prevent the surcharges of involvement in critical events such as

crashes or crash-relevant conflicts resulting from drivers fatigue.

The Regulatory Impact Analysis (RIA) by Analysis Division, Federal Motor Carrier Safety

Administration (2011) provides an assessment of the costs of operational changes and safety ben-

efits of final rule changes DOT HOS regulations. In this RIA, the costs of operational changes are

estimated by following the chain of consequences caused by changes in HOS on existing work

patterns in terms of work and driving hours per week. These costs are estimated using impacts

on industry productivity. However, they would most likely be passed along as increases in freight

transportation rates of goods that are transported by truck for consumers. Safety benefits are es-

timated by counting the changes in hours worked that results in a reduction in expected fatigue-

related crashes. The changes in crash risks were monetized by measuring the losses of life, med-

ical costs for injuries, lost time due to the congestion effects of crashes and property damage

caused by the crashes themselves. According to the results of this analysis, net benefits (i.e., ben-

efits minus costs) are likely to be positive. It could range from a negative $250 million to more

than a positive $550 million depending on the baseline level of fatigue involvements in crashes

(7%, 13% and 18%) and the percentage of discount in future health benefits (7% and 3%).

The quantitative analysis of the impact of the DOT HOS rules is followed by the two stud-

ies of the American Transportation Research Institute (ATRI) in 2013. In ATRIs first study (Short,

2013a), the assessment of the direct and indirect impacts of HOS rules is surveyed from more

than 500 motor carriers and 2,000 commercial drivers prior to the implementation of the rules

changes. ATRIs analysis resulted in the net industry cost from the new restart provisions (one of

60

the DOT rule changes) that ranged from $95 million to $376 million. This result differs signifi-

cantly from FMCSA’s RIA identifying $133 million net benefits, annually. The second study of

ATRI (Short, 2013b) discusses actual industry operational impacts post-rules change. The results

show the increment in fatigue levels, decrement in quality of life and negative impacts on pay-

ment of commercial drivers. In 2015, ATRI conducted another study (Murray and Short, 2015) of

post driver data analysis which shows overall crashes increased from 2013.

An internal study in J.B. Hunt showed that imposing these regulations reduced the profit

margins up to 3.5%, as it reduces the working hours of drivers. Young (2013) studied a simu-

lation modeling approach on the preliminary impacts of the 2013 HOS regulation changes on a

large random over-the-road (OTR) trucking fleet. This model quantifies the impact of the regu-

lation changes to guide the company to minimize the impact to high-risk customers and provide

a foundation for proactive customer communications. The differences between the models with

and without the changes in DOT regulations are compared using Single-Factor ANOVA. Re-

sults show a driver can expect to lose 22 miles and available work hours of 0.68 or 41 minutes

per week, on average.

In contrary to these analytical approaches to analyze the impact of changes in HOS by

DOT regulations, this research provides an Operation Research (OR) framework for modeling

and optimizing the fleet of vehicles considering these regulations. From the modeling point of

view, each of these regulations (five regulations that are explained in details in the following sec-

tion) forces a series of constraints to any VRP variant of interest. Despite the fact that the rout-

ing and scheduling of trucks are currently being impacted by these regulations, to the best of our

knowledge, there are no optimization solutions in the literature or practice that address this com-

plication.

In the following sections, we state the DOT regulations and then introduce a model that

accounts for these restrictions. Based on this model, we define and formulate a new variant of

VRP that we solve with ETP.

61

3.3.1 Overview of DOT Regulations

In this study, we refer to the regulations on the HOS for CMV drivers by FMCSA within the U.S.

DOT, as the “DOT” regulations. The newest version of DOT regulations released in 2014 (Please

see fmcsa.dot.gov), consist of the following five items:

1. Active Hours in a Work Shift (DOT ACTIVE): The number of total consecutive active

hours allowed for a driver. As of 2014, a driver can be active for 14 hours before he has to

take a DOT REST. Active hours of a driver is the total time of his work shift including the

drive, load and unload, and refueling time.

2. Drive Hours in a Work Shift (DOT DRIVE): The number of drive hours allowed for a

driver during a shift. As of 2014, a driver can drive 11 hours during DOT active hours.

3. Rest Hours Between Consecutive Drives (DOT REST): The number of hours required

between two consecutive shifts. As of 2014, a driver has to wait for 10 hours before DOT

active hours resets.

4. Weekly Drive Hours (DOT WEEKLY DRIVE): The number of total driving hours in

a 7/8 day period. As of 2014, a driver can drive up to 60 hours in a 7 consecutive day pe-

riod and up to 70 hours in an 8 consecutive day period. After that, a DOT weekly rest is

required.

5. Weekly Reset Hours (DOT WEEKLY REST): Total break time required between two

consecutive weekly limits. As of 2014, a driver has to take a 34-hour break before DOT

Weekly Drive Hours resets.

To consider these regulations in the VRP variants, we start from less complicated models

to the most ones by limiting the planning time horizon. The first two regulations are associated

with the daily driving restrictions. That means, if we limit our planning time horizon to only one

day, the last three regulations become irrelevant as they affect the hours of service of the drivers

62

in more than one day working shifts. This model is suitable for short-haul transportation prob-

lems (see Federal Highway Administration (2012)). Note that the modeling of any VRP variant’s

actions taken with respect to drivers and trucks has direct implications on routes. As we limit the

working hours of each truck, we are actually limiting the duration of the associated route. Thus,

the first regulation (DOT ACTIVE) restricts the total duration of each route to 14 hours in the

VRP. The second item (DOT DRIVE) places an 11 hour limitation on the traveling (driving)

time of each truck between the nodes in the associated route. The service time at each node, if

there is any, is not included in this 11 hours of driving. Note that if the service time is zero for all

the nodes in the network the two constraints associated with DOT ACTIVE and DOT DRIVE

are the same. These two regulations impact the daily planning in the VRP variant. A shift is often

represented by a day. However, the start and end date of a shift may vary between drivers. It does

not matter what time of a day we start a shift as long as we limit the total duration of the shift.

We can start a shift at 8 AM and end it at 10 PM (14 hours of working) in the same day, or we

can start the shift at 2 PM and end it at 4 AM on the next day.

If we expand our planning time horizon from a single day to a week, we make the prob-

lem more complicated regarding the number of constraints and variables in the mathematical

formulation. In the weekly model, regulations 3 and 4 are included, in addition to the first two

regulations. Regulation 3 (DOT REST) necessitates that drivers take a 10-hour rest between two

consecutive shifts. Regulation 4 (DOT WEEKLY DRIVE) limits the total weekly driving hours

of each driver to 60 and 70 hours in a 7 and 8 days period, respectively.

The most general and complicated model of the VRP with DOT is for any planning hori-

zon beyond one week. In this model, all the DOT regulations become relative and turn into active

constraints in the associated mathematical formulations. Regulation 5 ensures that appropriate

extended breaks are taken between weeks of work. A driver must take a 34-hour break before the

start of the next week. The most general VRP variant with DOT regulations includes all the five

regulations. If we limit the time horizon to one week, the fifth regulation (DOT WEEKLY REST)

become irrelevant. Similarly, the single shift (day) time horizon model only includes the first two

63

regulations. Shrinking the planning time horizon makes the associated variant simpler, with fewer

constraints and variables. The single shift VRP variant with DOT regulations is the only model

that CPLEX solver can find feasible solutions for, even if we reduce the number of customer

points in the benchmark instances. More details on the benchmark instances are presented in Sec-

tion 3.5.

It is a common practice in the VRP literature to use the distance and the time between lo-

cations, interchangeably. As the DOT regulations limit the hour of service of drivers, not the trav-

eling distance, we must convert the distance to travel hours. We used a function derived from an

internal study in J.B. Hunt on the average speed of dedicated fleet of trucks to several customers

over a ten year period (see Table 3.2).

Table 3.2: Distance to Time Conversion

Distance Range (miles) Calculated Time (hours)

0 0.00

(0,5] 0.23

(5,10] (miles − 5.0) / 30.0 + 0.23

(10,15] (miles − 10.0) / 33.33 + 0.4

(15,20] (miles − 15.0) / 37.5 + 0.55

(20,40] (miles − 20.0) / 48.0 + 0.68

(40,60] (miles − 40.0) / 54.54 + 1.1

(60,∞) (miles − 60.0) / 60.0 + 1.47

In the above table, the travel distance is divided into seven disjoint ranges with different

average speeds for trucks to calculate the hours of travel. According to this calculation, if the dis-

tance is less than 5 miles, it takes 15 minutes to travel. This function returns 16 minutes of travel

between two points with the distance of 6 miles. It takes 14 minutes for traveling 5 miles and 2

minutes to travel the remaining 1 mile.

In the following section, we formulate a general VRP variant with the DOT regulations

for an infinite time horizon. This variant is the pickup delivery, heterogeneous fleet VRP with

time windows and DOT regulations (PHTD). Following the general model, we discuss how the

64

inclusion of different subsets of the regulatory constraints can affect various real-world scenarios.

3.3.2 PHTD with Infinite Time Horizon

As mentioned in Section 3.2, in the one-to-one pickup delivery VRP each shipment has an ori-

gin and a destination. This model is the most flexible and general PDVRP. In this work, all the

pickup delivery problems are modeled as the 1-1 PDVRP. However, for brevity, we refer to the

1-1 PDVRP as simply PDVRP through the remainder of the chapter. An example of the PDVRP

is illustrated in Figure 3.1.

Figure 3.1: An example of the PDVRP (Toth and Vigo, 2014)

In Figure 3.1, three shipments, 1, 2, and 3, must be transported between their pickup and

delivery points. The “+” sign indicates the pickup point and the “−” sign the delivery point. In

each route, the associated vehicle must pickup each shipment before it is delivered.

To formulate PHTD with infinite time horizon, all DOT regulations that are mentioned in

Section 3.3.1, are imposed to the model. The notations of the mathematical formulation for the

sets, parameters, and decision variable are stated in Tables 3.3 to 3.5.

65

Table 3.3: Sets of PHTD with Infinite Time Horizon

Notation Description

• V = {0,1, . . . ,n,n+1, . . . ,2n,2n+1} The depot and customer locations (points).

◦ {0} The start depot.

◦ P = {1, . . . ,n} The pickup points.

◦ D = {n+1, . . . ,2n} The delivery points.

◦ {2n+1} The end depot.

• K = {1, . . . , l} The vehicles.

•W = {1,2, . . . , f} The weeks of the planning time horizon. The
time horizon is f weeks.

• S = {1,2, . . . ,d,d +1, . . . ,2d,

. . . ,(f −1)d, . . . , f d},
d = 7 or 8

The shifts (days) of the planning time
horizon. If d = 7 then DWD = 60, otherwise
DWD = 70.

◦ Sw = {(w−1)d, . . . ,wd}; ∀w ∈W The shifts of the week w.

Table 3.4: Parameters of PHTD with Infinite Time Horizon

Notation Description

• si; ∀i ∈V, s0 = s2n+1 = 0 The service time in location i. s0 = s2n+1 = 0.

• [bi,ei]; ∀i ∈V The time windows of node i.

• ci j; ∀i, j ∈V The cost of traveling between nodes i and j.

• hi j
The approximate hours of travel between node i
and j.

• qi; ∀i ∈V,

q0 = q2n+1 = 0, qn+i =−qi

The demand of each customer. qi > 0 means
pickup and qi < 0 means delivery.

•Ck; ∀k ∈ K The capacity of vehicle k.

• DA = 14 DOT ACTIVE, see Section 3.3.1.

• DD = 11 DOT DRIVE, see Section 3.3.1.

• DR = 10 DOT REST, see Section 3.3.1.

• DWD = 60 or 70 DOT WEEKLY DRIVE, see Section 3.3.1. If
d = 7, then DWD = 60. Otherwise, DWD = 70

• DWR = 34 DOT WEEKLY REST, see Section 3.3.1.

66

Table 3.5: Decision Variables of PHTD with Infinite Time Horizon

Notation Description

• Tik; ∀i ∈V,k ∈ K The beginning of service time at location i
by vehicle k.

• Qik; ∀i ∈V,k ∈ K The load of vehicle k after visiting node i.

• xt
i jk ∈ {0,1}; ∀i, j ∈V,k ∈ K, t ∈ S Equals 1 if vehicle k moves between location

i and j in shift (day) t; 0, otherwise.

67

min ∑
t∈S

∑
k∈K

∑
i∈V

∑
j∈V

ci jxt
i jk (PHTD)

∑
t∈S

∑
k∈K

∑
j∈V

xt
i jk = 1 ∀i ∈ P (3.1)

∑
t∈Sw

∑
j∈V

xt
i jk−∑

t∈S
∑
j∈V

xt
n+i, j,k = 0 ∀i ∈ P,k ∈ K,w ∈W (3.2)

∑
t∈Sw

∑
j∈V

xt
jik−∑

t∈S
∑
j∈V

xt
i jk = 0 ∀i ∈ P∪D,k ∈ K,w ∈W (3.3)

∑
t∈S

∑
j∈P

xt
0 jk = 1 ∀k ∈ K (3.4)

∑
t∈S

∑
i∈V

xt
i,2n+1,k = 1 ∀k ∈ K (3.5)

Qik−Q jk +q j ≤M(1− xt
i jk) ∀i, j ∈V,k ∈ K, t ∈ S (3.6)

max{0,qi} ≤ Qik ≤min{Ck, Ck +qi} ∀i ∈V,k ∈ K (3.7)

∑
i∈V

∑
j∈V

(hi jxt
i jk + s jxt

i jk)≤ DA ∀k ∈ K, t ∈ S (3.8)

∑
i∈V

∑
j∈V

hi jxt
i jk ≤ DD ∀k ∈ K, t ∈ S (3.9)

∑
t∈Sw

∑
i∈V

∑
j∈V

hi jxt
i jk ≤ DWD ∀k ∈ K,w ∈W (3.10)

Tik−Tjk + si +hi j ≤ DR
(

1−
∣∣∣xt

i jk−∑v∈V xt+1
jvk

∣∣∣) ∀i ∈V ; j ∈ P∪D∪{2n+1}; k ∈ K; t ∈ S (3.11)

Tik−Tjk + si +hi j ≤ DWR
(

1−
∣∣∣xt

i jk−∑v∈V xt ′
jvk

∣∣∣)
∀ j ∈ P∪D∪{2n+1}; i ∈V ; k ∈ K; t ∈ Sw; t ′ ∈ Sw+1; w ∈W (3.12)

Tik−Tjk + si +hi j ≤M(1− xt
i jk) ∀i ∈V ; j ∈ P∪D∪{2n+1}; k ∈ K; t ∈ S (3.13)

Tn+i,k−Tik− si−hi,n+i ≥ 0 ∀i ∈ P; k ∈ K (3.14)

bi ≤ Tik ≤ ei ∀i ∈V,k ∈ K (3.15)

xt
i jk ∈ {0,1} ∀i, j ∈V,k ∈ K, t ∈ S (3.16)

The objective function seeks to minimize the total traveling cost. M is a very large num-

68

ber. Constraints (3.1) are the degree constraints and make sure that each pickup point is visited

exactly once in the time horizon. Constraints (3.2) and (3.3) are the transition constraints that re-

strict the number of the ingoing vehicle(s) to each point equal to the outgoing. Constraints (3.4)

and (3.5) impose the departure and return of the set of available vehicles from the start to the end

depot. Constraints (3.6) and (3.7) are the capacity constraints which limit the cumulative orders

of customers and load of each vehicle to the capacity of each vehicle, respectively. Constraints

(3.8) limits the summation of drive time and service time of each vehicle to DA = 14 hours ac-

cording to the DOT ACTIVE regulation. Similarly, constraints (3.9) and (3.10) restrict the daily

and weekly driving hours of each vehicle to DD = 11 and DWD = 60 or 70 hours according to the

DOT DRIVE and DOT WEEKLY DRIVE regulations, respectively. Constraints (3.11) force a

DR = 10 hour gap to the travel and service time between the visit time of two points in two con-

secutive shifts served by the same vehicle according to the DOT REST regulation. Similarly,

Constraints (3.12) impose a DWR = 34 gap between the two points in two consecutive weeks ac-

cording to the DOT WEEKLY REST. Finally, Constraints (3.13 - 3.15) are the time window

constraints which make sure each customer be visited within its allowed time windows.

The PHTD with infinite time horizon is a general variant of VRP which can be converted

to some interesting special cases of VRP by relaxing specific constraints. For example, if we re-

move the constraints (3.13 - 3.15) in (PHTD) formulation we are left with the pickup delivery,

heterogeneous fleet VRP with the DOT regulations in an infinite time horizon. This variant is the

same as the PHTD except that the pickup and delivery points can be visited any time without any

restrictions. Two additional special cases of the PHTD that are more important for us in this re-

search are the followings: i) the PHTD with one week time horizon (PHTD7) and ii) the PHTD

with a single shift time horizon (PHTD1). The PHTD7 variant with weekly planning time hori-

zon is appealing for both transportation companies and drivers. On one hand, companies can have

a limited time horizon to plan and manage their resources easier. On the other hand, the drivers

can have their weekly work schedule. The mathematical formulation of PHTD7 is derived by re-

moving the Constraints (3.12) in (PHTD). The PHTD7 mathematical formulation is presented

69

in Appendix 3.B. The PHTD1 variant with the daily planning time horizon (without Constraints

(3.10-3.12) in (PHTD)) is the least complicated model. The mathematical formulation of PHTD1

is presented in Appendix 3.C.

In the following section, we define and formulate another VRP variant with DOT regu-

lation referred as the single shift pickup delivery, heterogeneous fleet VRP with backhauls and

DOT regulations (PHBD1). The PHBD1 is a variation of PHTD1 in which the pickup points

must be visited before the delivery points without any time windows restrictions on visited points.

In Section 3.3.3, the ILP formulation of this variant is presented. This mathematical formulation

is used later in Section 3.5 to solve a set of benchmark problems to compare the performance of

ETP with the CPLEX solver. We choose the PHBD1 to compare the performance of ETP with

the CPLEX solver for two reasons. First, the pickup delivery and backhauls VRP variants are

the most popular models used to optimize the customers’ network in J.B. Hunt. Second, CPLEX

has shown the best performance on this variant. As a matter of fact, the single shift VRP vari-

ants with DOT regulations are the only variants that the CPLEX can find a feasible solution (even

when we modified the benchmark instances by reducing the number of customer points to half, as

explained in Appendix 3.A).

3.3.3 PHD with Backhauls in a Single Shift Time Horizon

The single shift pickup delivery, heterogeneous fleet VRP with backhauls and DOT regulations

(PHBD1) is a variant of the pickup delivery heterogeneous fleet VRP with DOT regulations (PHD)

in a single shift time horizon which follows the VRP with backhaul variants restrictions. The

VRP with backhaul (VRPB) is a VRP variant where the vehicles must visit linehaul customers

before considering backhauls. The customers are partitioned into two sets: i) linehaul customers,

where to which shipments are received and ii) backhaul customers, from which shipments are

picked up (Toth and Vigo, 2014). In the VRPB, each vehicle completes a route by starting from

the depot and visiting a subset of linehaul customers before visiting any backhaul customers and

returning to the depot while not exceeding the capacity of the vehicle (the vehicle can return to

70

the depot without visiting any backhaul customers). An example of a feasible solution for the

VRPB is shown in Figure 3.2.

Figure 3.2: VRP with backhauls (a feasible solution example) (Toth and Vigo, 1997)

In Figure 3.2, the linehaul customer set is shown with “L” and backhauls (triangle shaped)

with “B”. Routes 1 and 2 include both linehaul customers (square shaped) and backhauls (trian-

gle shaped) where linehauls are visited first. Route 3 consists of only linehaul customers without

any backhauls.

Although VRPB is a realistic model for the movement of bulk and heavy shipments, there

are fewer studies on this variant of VRP in the literature. The main reason in using backhaul vari-

ants is because the arrangement of loads in the trucks is mostly LIFO (last in, first out) and in

some other cases, the linehaul customers have a higher priority compared to backhauls.

VRPB can be considered as a variant of the pickup delivery VRP (PDVRP). As shown in

Figure 3.1, in PDVRP, each shipment has an origin and a destination where the origin must be

visited first. If we restrict the PDVRP model by adding the constraint that all the pickup points

must be visited before the delivery points, we will have the VRPB model. That means to convert

the PDVRP to VRPB, we just need to set all the pickup points as the linehauls and the delivery

points as the backhaul customers.

The notation of the PHBD1 is defined in Table 3.6. which are mostly the same as in 3.3

to 3.5 with some modified sets and decision variables. In this table, the customer locations are

71

partitioned into two sets of linehaul and backhaul customers, instead of pickup and delivery sets

in Table 3.5.

Table 3.6: Modifications on the Sets and Decision Variables of the PHBD1

Notation Description

Sets:

• V = {0,1, . . . ,n,n+1, . . . ,2n,2n+1} The depot and customer locations (nodes).

◦ {0} The start depot (source).

◦ L = {1, . . . ,n} The linehaul customers.

◦ B = {n+1, . . . ,2n} The backhaul customers.

◦ {2n+1} The end depot (sink).

Decision Variables:

• xi jk ∈ {0,1}; ∀i, j ∈V,k ∈ K Equals 1 if vehicle k moves between location i
and j; 0, otherwise.

• uik, i ∈V,k ∈ K The order of visiting customer i in the route k.

The mathematical formulation of the single shift PHBD1 is presented as follows. As men-

tioned before in this formulation, only the constraints related to the single shift of time horizon,

DOT ACTIVE, and DOT DRIVE, are imposed.

72

min ∑
k∈K

∑
i∈V

∑
j∈V

ci jxi jk (PHBD1)

∑
j∈V

∑
k∈K

xi jk = 1 ∀i ∈ L∪B (3.17)

∑
j∈L

x0 jk = 1 ∀k ∈ K (3.18)

∑
i∈V

xi jk−∑
i∈V

x jik = 0 ∀ j ∈V,k ∈ K (3.19)

Qik−Q jk +q j ≤M(1− xi jk) ∀i, j ∈V,k ∈ K (3.20)

max{0,qi} ≤ Qik ≤min{Ck, Ck +qi} ∀i ∈V,k ∈ K (3.21)

uik−u jk +nxi jk ≤ n−1 ∀i, j ∈ L∪B,k ∈ K (3.22)

u0k = 0 ∀k ∈ K (3.23)

uik ≥ 1 ∀i ∈V,k ∈ K (3.24)

uik−u jk ≤M(1− xi jk) ∀i ∈ L, j ∈ B,k ∈ K (3.25)

∑
i∈V

∑
j∈V

(hi jxi jk + s jxi jk)≤ DA ∀k ∈ K (3.26)

∑
i∈V

∑
j∈V

hi jxi jk ≤ DD ∀k ∈ K (3.27)

xi jk ∈ {0,1} ∀i, j ∈V,k ∈ K (3.28)

Similar to previous formulations, the objective function seeks to minimize the total cost

of travel and M is a very large number. Constraints (3.17) are the degree constraints. Constraints

(3.18) enforce the departure of each vehicle to one of the linehaul customers. Constraints (3.19)

are the transition constraints for all the customers in both L and B. Constraints (3.20) and (3.21)

limit the cumulative load of each vehicle to the capacity of the vehicle, while satisfying the de-

mand/supply of each customer in L/B sets. Constraints (3.22-3.24) are the MTZ (Miller-Tucker-

73

Zemlin) inequalities (Miller et al., 1960) for each route which work as the sub-tour elimination

constraints (SEC). Constraints (3.25) are the precedence constraints, which prevent visiting any

backhaul customers, if there is any, before visiting all the linehaul customers in each route using

the MTZ inequalities. The DOT regulations on the total active time (DOT ACTIVE) and total

drive time (DOT DRIVE) in a single shift are imposed by Constraints (3.26) and (3.27), respec-

tively.

3.4 ETP Optimization Methodology

In this section, the methodology for solving the different variants of the VRP is explained. We

utilize customization of existing heuristic methods to generate solutions to large-scale real-world

problems. These problems can include thousands of customer locations and hundreds of trucks.

Only relatively small VRP instances, around 100 locations and 10 vehicles, can be solved opti-

mally using CPLEX.

The evolution of VRP heuristics in the past 15 years emerged according to three major

schemes: (i) combining methods that have been individually developed for VRPs, such as simu-

lated annealing, genetic algorithms, and tabu search, (ii) exotic large neighborhoods, exact math-

ematical methods, and decomposition. (iii) hybridization, which are the methods that have been

designed in a way that have the flexibility of applying to many variants of VRP without any ma-

jor structural changes (Cordeau et al., 2001; Subramanian et al., 2013; Vidal et al., 2013). To op-

timize the VRP variants (Sections 3.3.2 and 3.3.3) proposed in the previous chapter, we pursue

a hybridization approach in ETP. ETP performs two major steps: i) routing and ii) scheduling.

Routing creates the sequence of shipments (locations) visited by a vehicle to find the candidate

routes. The objective is to minimize the total cost of completing shipments. Scheduling deter-

mines the exact time of arrival and departure for each customer location in a given route with re-

spect to feasibility constraints, such as DOT regulations, and pickup/delivery time windows. For

each considered route, the scheduling step calculates the earliest feasible schedule. The routing

process in ETP for any VRP model can be summarized in five steps: Step 0) grouping, Step 1)

74

merging, Step 2) improving, Step 3) filtering and Step 4) forcing as shown in Figure 3.3.

Figure 3.3: The ETP Routing Process

Grouping: The optimization process starts with a grouping algorithm. The main purpose

of grouping is to identify sets of order lines that are most likely be in the same route or are un-

likely to form a route together. Grouping helps to reduce the number of combinations of order

lines in the next step by either putting similar orders in the same route or preventing other orders

to create a route. This process is shown as step 0 in Figure 3.3. We develop and utilize a new al-

gorithm referred to as Group Direct algorithm (Section 3.4.1) to complete this step. After step 0

is complete, all the order lines (shipments) in the dataset will be placed on to a route and passed

to the merging methods of ETP (Section 3.4.2).

Merging: Step 1, merging, can be done by a variety of algorithms available to the user.

The most frequently used algorithms are a modified Nearest Neighbor and a modified Clarke-

Wright savings algorithm. The Nearest Neighbor search (Section 3.4.2.1), is a greedy heuris-

tic in which the next move will be selected based on the largest savings from the last location.

The Clarke-Wright method tries to merge the created routes based on the potential savings. Both

Nearest Neighbor and Clarke-Wright algorithms are shown to perform well each on some bench-

mark instances considered in Section 3.5. Thus, in this chapter, we use both algorithms, sepa-

rately, to merge the routes. As a result of this step, some routes will be combined. Therefore, the

total number of routes is expected to decrease after Step 1.

Improving: Step 2 contains improvement procedures. We consider four improvement al-

75

gorithms: i) line move, ii) stop move, iii) line exchange, and iv) group stop move. These algo-

rithms are based on the well-known λ-opt algorithms (Lin, 1965). The main purpose behind these

algorithms is to alter the lines and stops in each route to obtain better solutions. Again, the route

count is expected to decrease after improvement techniques are complete (see Section 3.4.3).

Filtering: Step 3 involves implementing a variety of user-defined filters on the created

routes to satisfy special interests of customers. These filters do not coincide with optimization

constraints, they are designed as post-optimization restrictions that each route must satisfy. For

example, a customer wants to have an extra limitation on the duration of the routes in a certain

area in the network due to some economic considerations. After the filters are implemented,

some routes could be removed due to low utilization of the weight or volume in the associated

vehicles (Section 3.4.4).

Forcing: In Step 4, all remaining single lines that do not belong to any route (or have been

cut due to filters in Step 3) are either forced to be a part of a route or a single line route made into

their route. Note that after step 0, if a line is not in a route, then it is not placed in any route in

any iteration until Step 4 (Section 3.4.5).

Sections 3.4.1-3.4.5 offer more detailed explanations of the individual algorithms described

above. Then, Section 3.5 discusses the computational performance of the ETP methodology.

3.4.1 Grouping Algorithms

In this study, we defined grouping algorithms as a fast scan of order lines in the network with the

purpose of placing the order lines that share similar properties into the same sets to help acceler-

ate the creating or merging routing process. Groups of orders are created by two sets of actions:

i) cluster and ii) selection. Cluster narrows down the search space based on the location or time

remoteness. It guides the optimization by not allowing some combinations of order lines (ship-

ments) to be attempted in creating the routes. For example, it is unlikely that grouping a point

on the east of the U.S. with a point on the west coast of the U.S. will lead to a feasible route, let

alone an optimal route. It is even worse if the combination is feasible, because the algorithm will

76

explore the solution further. On the other hand, selection identifies the candidate location pairs

for grouping consideration. Unlike the cluster algorithms, which is based on the differences of

the location, the selection works with the similarities between orders. For example, if a pair of

order lines have the same origins and destinations, they are most likely to be placed in the same

route.

In this research, as we are working on the benchmark instances with small size compar-

ing with the real-world problems, we do not need to perform extensive efforts to group the or-

der lines. Our proposed Group Direrct algorithm is a fast and the only grouping algorithm that is

used to optimize the benchmark instances in Section 3.5 and is explained as follows.

The Group Direct algorithm only groups order lines that have the same origin and destina-

tion locations. In other words, the lines that share the same pick and drop points are considered

acceptable combinations. After such orders are identified, the method picks the orders with the

highest volume, one by one, to the group. In the case of ties between the highest volume orders,

it selects the order that has the earliest time of pickup to the grouped orders. Figure 3.4 represents

the Group Direct algorithm, graphically.

Figure 3.4: The Group Direct Algorithm

Figure 3.4, illustrates a group that already contains three lines (lines 1, 2 and 3). These

lines have the same pickup and delivery locations. “P” stands for the beginning of the pickup

time and “D” stands for the beginning of the delivery time. The algorithm wants to add two new

77

lines to this group. These lines have the same order volume and the same origin and destination

as the other three lines in the group. At this point the Group Direct algorithm needs to decide

which line to add to the group first based on the beginning of the pickup time. The algorithm is

going to pick the one in blue because it has a pickup time closer to the earliest pickup time in the

group (pickup time of line 1). At each iteration, the method only adds one line. So after adding

the blue line, it is going to examine the red line to add to the group.

A parameter, which we refer to “Time Gap”, is associated with the Group Direct algo-

rithm . It specifies how much difference we want to allow between the pickup time of orders in

the same group. If the specified value for this parameter is smaller than the difference between

the pickup time of the candidate order and the earliest pickup time of the underlying group, the

line is not going to be added.

To clarify the implementation of Group Direct algorithm, the pseudo-code of this algorithm

is stated as follows.

Group Direct (Shipments)

{

Step 1 Select an ungrouped shipment from Shipments. If no ungrouped shipment
found, go to Step 6.

Step 2 Put the shipment in a new group.

Step 3 Find all ungrouped shipments with the same pickup and delivery locations as
the shipment. If no shipment found, go to Step 1.

Step 4 Add another shipment with the largest size to the current group, if feasible.
Otherwise, create a new group with the shipment and go to Step 3. In case of the
tie between the shipments with the largest seize, pick the one with the earliest
pickup time.

Step 5 Go to Step 1.

Step 6 Return all the created groups.

}

Where an ungrouped shipment is a shipment (order) that does not belong to any group yet.

The feasibility check for grouping is the same as routing (capacity, time windows, etc.) plus the

78

Time Gap restriction.

3.4.2 Merging Algorithms

In Step 1, Merging algorithms combine the previously created groups (routes) to allow for better-

utilized trucks. The order lines in the same group (route) in Step 0 are considered as a combined

single order in this step. There are several types of proposed and modified heuristics included in

ETP, however they are all savings based. In general, saving based algorithms dynamically evalu-

ates combinations of orders and pick those which satisfy some criteria such as the biggest saving

or the smallest cost to create routes. Then, they update the criteria and continue iterating until all

the combinations are exhausted (Toth and Vigo, 2014). In this study, a modified Nearest Neigh-

bor algorithm is proposed and is explained as follows.

3.4.2.1 The Modified Nearest Neighbor Algorithm

The classic Nearest Neighbor search starts from the depot (or a random node) and repeatedly vis-

its the next nearest node until a feasibility constraint is violated. We modify the classic NNS in

three ways to increase the quality of the solutions. First, we add a new shipment with the min-

imum distance not only from the last shipment, but from any other shipments that already have

been added to the route. Second, to add the nearest line to the current route we find the best posi-

tion in between all the shipments that are already in the route. Finally, third, we define a param-

eter, which refer to as max cluster span, that limits the search space to considered for the next

shipment. This positive-valued parameter is used as follows. First, we calculate the average min-

imum distance of each shipment from all other shipments in the network. Then, we multiply that

average by max cluster span to limit the search space radius. The modified Nearest Neighbor

search (NNS) algorithm is illustrated in Figure 3.5.

79

(a) (b) (c)

Figure 3.5: The Modified Nearest Neighbor Algorithm

In Figure 3.5 (a), route starts from depot “D” and the points “a” and “b” are added to the

route, respectively. As shown in Figure 3.5 (b), point “c” is the next point added to the route even

though point “d” is the closest point to “b” (i.e. dist(a,c) < dist(b,d), here dist(i, j) is the dis-

tance between i and j). According to Figure 3.5 (c), point “d” is the last point that we add to the

current route, because point “e” is outside max cluster span from all the points in the current

route. The pseudo-code of this algorithm is presented as follows.

Nearest Neighbor (Shipments)

{

Step 1 Select an unrouted shipment from Shipments. If no shipment found, go to
Step 7.

Step 2 Create a new route with the shipment.

Step 3 Find the nearest shipment to any shipments in the current route from the un-
routed shipments that have not tried before. If no shipment found go to Step 1.

Step 4 Add the shipment to the current route, if feasible. Otherwise, go to Step 3.

Step 5 Go to Step 3.

Step 6 Go to Step 1.

Step 7 Return all the routes.

}

The feasibility check int Step 4, is the regular feasibility check of routing (such as capacity

80

and time windows) plus the max cluster span check. Adding a shipment to the current route in

Step 4 is greedy. It happens by finding the best position with the largest savings.

3.4.2.2 The Modified Clarke-Wright Algorithm

The Clarke-Wright algorithm (Clarke and Wright, 1964) has been used over the last five decades

by researchers to find solutions for different variation of the VRP. The main principle of Clarke-

Wright algorithm is to merge two routes with the biggest saving with respect to the feasibility

constraints. This algorithm needs an initial solution to start the merging process with.

In this study, the initial solution of the modified Clarke-Wright algorithm (CLK) is ob-

tained from the Group Direct algorithm (Section 3.4.1). After an initial feasible solution is ob-

tained, the merging begins. The Clarke-Wright has two phases. The first phase contains a sub al-

gorithm called the “Grenade Merge”, which is only executed if there are more than 500 routes in

the initial solution. This method is designed to combine the cherry pick routes in a greedy logic

steps (Figure 3.6).

Figure 3.6: The Grenade Merge Method

The graphical representation of the Grenade method is shown in Figure 3.6. Depending on

the size of the routing network, several routes are arbitrarily selected as the grenade routes. The

origin and the destination points of these selected routes are used to create the blast radius pairs.

81

All the routes that are in these radius pairs are accepted for evaluation. The example in Figure 3.6

shows a single origin problem where all the routes originate from one origin to multiple destina-

tions.

The second phase begins by arranging the routes based on their pick time begins and drop

time ends. After that, for each route that have similar begin and end date, the code methodically

checks all the possible merge pairs by trying each route with every other, and stores the savings

generated. In the end, it executes the highest savings merge pair and updates all the merge pairs

to reflect the new change. Iteratively this process keeps on going until all the possible combina-

tions are exhausted. The graphical representation of the saving’s methodology is shown in Figure

3.7. In Step 0, all the route pairs are combined to calculate the possible savings.

Figure 3.7: The Modified Clarke-Wright Algorithm

The example in Figure 3.7 contains 100 routes which means 99×99 = 9801 possible route

pairs exist. After trying all, the code executes the best pair. The route 2 - 100 pair is the best in

this example. The total route count drops to 99 since a two route merged into one, the new route

2. In the next step, first, it updates the pair combinations made by the executed pair, route 2 -

100, and then recalculates the new pairs than can be obtained with this new pair (shown with red

lines). The savings list is updated again, and the merged pair that has the highest savings is se-

lected. Step 1 is recursively repeated until there are no more route pairs left. The pseudo-code of

this algorithm is provided as follows.

82

Clarke-Wright (Shipments)

{

Step 1 Execute the Group Direct algorithm on the Shipments to find the initial
routes.

Step 2 If the number of routes in Step 1 is greater than 500, perform the Grenade
Merge.

Step 3 Arrange the routes based on their pick time begins and drop time ends.

Step 4 Find the routes that have similar begin and end date. If no routes found, go to
Step 7.

Step 5 Check all the possible merge pairs by trying each route with every other.
Stores the savings generated. Executes the highest savings merge pair, if feasi-
ble. If not, execute the next highest savings merge pair.

Step 6 Updates all the merge pairs to reflect the new changes and go to Step 3.

Step 7 Repeat Step 5 until no savings is obtained by any of the merged pairs of
routes.

Step 8 Return all the routes.

}

3.4.3 Improvement Algorithms

In Step 2, improvement procedures adjust the given network solution to improve their quality.

The heuristic algorithms in this step are divided into two categories: i) inter-route and ii) intra-

route categories. The first category includes the improvement algorithms that involve two routes.

Improvements are made by moving order lines between the two routes of a solution. In this chap-

ter, three such algorithms are used: i) 1-Move, ii) 1-Exchange and iii) 1-Reinsert. The algorithms

in the second category work on the individual routes of a solution. This category consists three

algorithms: i) Minimize Cost, ii) Break Cross and iii) 1-in-Move. Any time a solution enters to

this step, all of these five algorithms will be implemented on the solution in the same order as

stated above. The improvement procedure continues until no improvement is made by any of

these algorithms (i.e., after making any improvement by any of these algorithms on the solution,

83

the improvement process restarts and all of them will be implemented on the solution again).

Each algorithm is described in the following sections.

3.4.3.1 1-Move Algorithm

This algorithm considers the movement of a line from one route to another. The goal is to im-

prove the overall savings at the iteration of the procedure. This algorithm is similar to the 1-opt

algorithm described first by Lin (1965). An illustration of this algorithm is demonstrated in Fig-

ure 3.8.

Figure 3.8: The 1-Move Algorithm

As shown in Figure 3.8, each line in route 1 is moved to route 2 one by one. After each

line is moved, the algorithm checks whether a feasible combination of lines is found with respect

to cost. If the cost is reduced, then the change will be kept. Otherwise, the next line is consid-

ered. Once all the lines are added or evaluated, another route is selected, and the same process is

repeated until all the route pairs are tried. Selection of routes and the moving line is done exhaus-

tively. That meant, all pair of routes are selected, and every line in the first route is moved to the

second route.

One important aspect of this method is how a new line is placed into a route that already

has some existing lines. It is not necessarily added to the end. Instead, it is placed in a way that

minimizes the out of route miles.

84

Figure 3.9: Adding a Line

An example of placing a line into a route is shown in Figure 3.9. The algorithm tries to

add stop “d” to a route going through stops a−b−c. The algorithm tries to insert stop “d” in four

different places: i) the first stop, ii) after stop “a”, iii) after stop “b” and iv) after stop “c”. It picks

the one that minimizes the total distance, after stop “b”. If this best combination is not feasible, it

does not try any other locations. The pseudo-code of this algorithm is presented as follows.

1-Move (Solution)

{

Step 1 Select a pair of routes from Solution that have not been selected before. If
none, go to Step 5.

Step 2 Select a line in the first route that has not been selected before. If none, go to
Step 1.

Step 3 Add the line to the second route, if possible. Record the saving and remove
the line. Go to Step 2.

Step 4 Add the line with the largest saving to the second route, if feasible. Go to
Step 1.

Step 5 Return Solution.

}

Note that we add the line to a route in Step 3 in the best feasible position with the largest

saving by trying every possible position to add the line.

85

3.4.3.2 1-Exchange Algorithm

This algorithm tries to change every line in a route with every other line in all the other routes

iteratively. The selection of the pair of routes is exhaustive and every combination of two lines

from the two routes are tried. In the other words, the algorithm selects the first and second route

of the solution and exchange the first line of the first route with the first line of the second route.

If this exchange reduces the total cost of the solution, it will be performed. Each time an ex-

change performs, the pair of routes and total cost of the solution is updated. The next exchange

happens between the first line of the first route and the second line of the second route. This con-

tinues until all the combination of lines in these two routes are exhausted. This algorithm termi-

nates when every pair of routes in the solution are tried.

Figure 3.10: The 1-Exchange Algorithm

Figure 3.10 presents a graphical representation of this method. Line a−z on Route 1 and

line y−b on Route 2 are swapped. The pseudo-code of this algorithm is stated as follows.

86

1-Exchange (Solution)

{

Step 1 Select a pair of routes from Solution that has not been selected before. If
none, go to Step 5.

Step 2 Select a pair of lines from the routes that has not been selected before. If
none, go to Step 1.

Step 3 Exchange the line between the routes, if possible. Record the saving and re-
move and move the lines to their original positions. Go to Step 2.

Step 4 Exchange the lines with the largest saving, if feasible. Go to Step 1.

Step 5 Return Solution.

}

Note that we exchange the line between routes by trying every possible position to add the

line and select the one with the largest savings.

3.4.3.3 1-Reinsert Algorithm

The proposed 1-Reinsert algorithm is designed to move shipments between more than two routes.

This newly developed algorithm removes the “worst” stop in each route of the solution and tries

to reinsert them to a route that gives the most saving. The term worst can be defined as the fur-

thest or the most costly. In this study, we remove the furthest stop in each route, say stop i, only if

the sum of the distance to and from stop i in the route (dist(i)) is more than the average distance

between stops multiplied by a user defined factor (INS FACTOR). The average distance between

stops of a route is calculated by the total travel distance of the route divided by the number of

stops in the route. The algorithm is illustrated in Figure 3.11.

87

(a) (b)

Figure 3.11: The 1-Reinsert Algorithm

In Figure 3.11, consider a solution with four routes in the network with the INS FACTOR

equal to 2. In the route “D-b-c-d-D”, stop “d” is the furthest stop in the route. It means dist(d) =

dist(c,d)+ dist(d,D) is more than the travel distances to and from stops “b” and “c” (dist(d) >

dist(b) and dist(c)). Also, dist(d) is greater than the twice of the average distance between stops.

Thus, stop “d” will be removed from the current route and become unrouted.

The same calculations remove stops “a” and “g” from the routes “D-h-i-a-D” and “D-e-

f-g-D”, respectively. Note that none of the stops of the route “D-j-k-l-D” will be removed from

it because all the distances to and from each of these stops are less than the twice of the average

distance between stops.

This improvement algorithm gives us the opportunity to switch stops between more than

two routes. The one and two stop move algorithms switch lines between a pair of selected routes.

This algorithm is implemented on the routes with more than two routes. The pseudo-code of this

algorithm is provided as follows.

88

1-Reinsert (Solution)

{

Step 1 Find the worst line in each route of Solution. If none, go to Step 6.

Step 2 Remove the worst lines from their corresponding routes.

Step 3 Select a line from the worst lines, which has not been selected yet. If none,
go to Step 6.

Step 4 Add the line to every route, if possible. Record the saving and remove the
line.

Step 5 Add the line to the best route with the largest saving. Go to Step 3.

Step 6 Return Solution.

}

The worst line in Step 1 is the line that is furthest from its previous and next line. The min-

imum distance is provided by a user-defined factor multiple by the average of the distance of the

line from each other. Similar to other algorithms, we add the line in Steps 3 and 4 to the best fea-

sible position of a route with the largest saving.

3.4.3.4 Minimize Cost

This algorithm can find the optimal sequence of the lines in a route by trying every possible se-

quence of lines if the user wants to. We usually perform optimal search on a route with 5 lines or

less. This number can be changed by the user. The number of sequence in this optimal search in

a route with 5 lines is 5! = 120. In the case of more than 5 lines, the Minimize Cost algorithm

clusters the lines into subset of lines each with 5 lines using the a proposed K-means Cluster

method and then performs the optimal search in each cluster. The K-means Cluster method is

based on Lloyds algorithm (Lloyd, 1982), which is a very commonly encountered algorithm in

the academia. The main goal of K-means is putting points into clusters such that the squared dis-

tance to the centroid of the cluster is minimized.

These type of methods usually start with random assignments between each point and the

given k clusters. Based on these assignments, the cluster centroids are calculated. Then, it reas-

89

signs each point to the closest cluster, interactively and updates the centroids, respectively. This

process is repeated until no more changes are observed. This iterative method is depicted in Fig-

ure 3.12 where each point is assigned to a cluster based on the distance to centroids. Each point is

compared against the existing cluster centroids. And the closest one is picked (The red one in this

case).

Figure 3.12: The K-means Cluster Algorithm

In ETP, K-means Cluster has used in two main areas: i) stop sequencing and ii) line pair-

ing. The stop sequencing is the problem of reordering the stops in the route. A version of K-

means Cluster is used to identify group pairs that are geographically close to each other. Line

pairing is the general routing process where the optimization engine tries to pair lines to create

routes. The clusters that are created using the K-means Cluster are then translated into 2-way and

3-way adjacency pairs. These pairs identify the line pair combinations that are allowed.

There is a parameter called “Cluster Ratio” which controls the allowed adjacencies. This

parameter is defined as a percentage which determines the maximum normalized distance be-

tween two adjacent cluster pairs. If this value is 0 then there are no adjacencies allowed, if it is

1 then all the clusters are considered adjacent to each other. For any value in between, the code

finds the distances from each cluster to the other. Then, it finds the maximum of these distances

and uses it to normalize all the others. As a result, if the cluster ratio is set to 0.3, then only the

cluster pairs that have less than 0.3 are allowed to create adjacencies. The pseudo-code of this

algorithm is presented as follows.

90

Minimize Cost (Solution)

{

Step 1 Select a rout from Solution that has not been selected before. If none, go to
Step 5.

Step 2 Cluster the lines of the route using K-means Cluster method.

Step 3 For each cluster, find the optimal feasible sequence of line by enumerating all
sequences.

Step 4 Merge the clusters, if feasible. Go to Step 1.

Step 5 Return Solution.

}

In Step 4, all the possible combinations of clusters are tried, and the one with the largest

saving is performed.

3.4.3.5 The Break Cross Algorithm

This new algorithm is designed to break the cross between two lines in a route. To do so, first,

it selects two cut points in the route, and then reverses the order of lines between the two points

while keeps the order of lines from the depot to the first cut point and from the second point to

the depot unchanged. This new proposed algorithm is illustrated in the Figure 3.13.

(a) (b)

Figure 3.13: The Break Cross Algorithm

As shown above, in Figure 3.13 (a) a cross between arcs “b-e” and “d-c” exists in the route.

If we choose the two cut points as “b” and “f” and reverse the order of shipments between these

91

two points and keep the remaining unchanged, the cross will be broken and the total distance of

the route will be reduced.

This algorithm is repeated for every possible pair of cut points in every route of a solution.

The two cut points can be the same which means a single cut point in the route. In this case, the

route is divided into two parts, first one from the depot to the cut point and the second one from

the cut point to the depot. The first part of the route will be kept unchanged and the second part’s

order of shipments reversed. The pseudo-code of this algorithm is presented as follows.

Break Cross (Solution)

{

Step 1 Select a route in Solution that has not been selected yet. If none, Go to Step
6.

Step 2 Select two lines that have not been tried yet. If none, go to Step 1.

Step 3 Reverse the sequence of the lines between these two lines and keep the se-
quence of the other lines.

Step 4 Create a route with the new sequence, if possible. Record the saving. Go to
Step 2.

Step 5 Create a route with the best sequence, if feasible. Go to Step 1.

Step 6 Return Solution.

}

3.4.3.6 1-in-Move

The one in-line move algorithm is similar to the one line move algorithm in Section 3.4.3.1 but in

one route. In this algorithm, one line is removed from its position and inserted to another position

in the route and then checked to be feasible and have a positive saving. In this research every line

of each route of a solution is tried to every possible position in that route. A feasible move with

the biggest saving will be performed.

92

3.4.4 Filtering

The filtering methods are the post-optimization method to satisfy the specific customer-defined

criteria. The criteria restrict a subset of orders or routes in the network. Having these methods

enables the user to have more flexibility to meet special needs of customers. These methods con-

sider all the routes in a solution and try to remove or add lines that fit the criteria.

There are the four filters that each created route has to go through before they can be in-

cluded in the final solution; weight limit, cube limit, count limit, and hours limit. They all indi-

vidually check each created route and make sure that all the routes remain within the given limits.

3.4.5 Forcing

During the optimization and also due to filtering, it is natural to have lines without routes (un-

routed). We use to functions to force unrouted shipments to be a part of a route: i) Unrouted Add

and ii) Unrouted Switch.

The Unrouted Add function takes the unrouted lines and tries to add them back into previ-

ously created routes. The Unrouted Switch method is very similar to Unrouted Add, but instead

of trying to add the unrouted lines it tries to switch them with others if there are more savings.

The switched lines become unrouted, so the total unrouted count is not going to decrease, but the

overall solution value is going to improve.

At the end of this step, if there is any unrouted shipments remain in the network, they will

be considered as the LTL (less than truckload) shipments and will be shipped directly to the cus-

tomer. On the other words, each unrouted shipment will be considered as a single shipment route.

3.5 Solutions and Results

In this section, the performance of ETP is compared with CPLEX Solver 12.6. We evaluate sixty

problem instances of PHBD1 (see Section 3.3.3). We choose this model because the PHBD1 is

one of the most common variants of VRP used to model customer transportation networks at

93

J.B. Hunt. We used a modified version of the famous VRPPD benchmark instances generated

by Van Breedam (1994) to compare the results. The modifications to the benchmark instances are

explained in Appendix 3.A.

The MIP formulation of PHBD1 was coded in C++ using the library of CPLEX. The li-

brary uses the IBM ILOG CPLEX solver 12.6.0 (ibm.com, 2013) to solve the MIP model. All test

problems are run on a Core(TM) i7 CPU @ 2.93 GHz, 16 GB RAM computer.

The results of solving each benchmark instance with CPLEX and ETP, along with the run-

ning times, are reported in Table 3.7. All benchmark instances solved with CPLEX were given an

8-hour time limit, and the best feasible solution is reported.

In optimizing the benchmark instances with ETP, both NNS and CLK algorithms are exe-

cuted, separately, and followed by all the improvement algorithms in Section 3.4.3. After creating

a solution by either NNS or CLK, the improvement algorithms are implemented one after another

in the same order as they appeared in Section 3.4.3. This process continues until no improvement

on the solution obtained by any of the algorithms. No filtering method was applied to the solu-

tion. The reason is that in filtering step we put extra restrictions on the model usually demanded

by customers which none of the benchmark instances have any.

The percentage of gap in objective function of PHBD1 between NNS and CPLEX (GapNC),

CLK and CPLEX (GapCC), and ETP and CPLEX (GapEC) are reported in the last column. The

calculation of the gap is as follows.

GapNC =
ObjNNS−ObjCPLEX

ObjCPLEX
×100% (3.29)

GapCC =
ObjCLK−ObjCPLEX

ObjCPLEX
×100% (3.30)

GapEC =
ObjETP−ObjCPLEX

ObjCPLEX
×100%; where ObjETP = min(ObjNNS,ObjCLK) (3.31)

Where ObjNNS, ObjCLK, ObjCPLEX and ObjETP are the total cost of the best solution ob-

94

tained by NNS, CLK, CPLEX, and ETP, respectively. Note that the objective function of ETP is

the minimum of the objective function of NNS and CLK, as these algorithms are a part of ETP

optimization engine.

Table 3.7: Performance Comparison, ETP vs. CPLEX (Instances from Appendix 3.A)

NNS CPLEX CLK ETP

Instance
ID Obj. Time GapNC Obj. Time GapCC Obj. Time Obj. Time GapEC

1P1 1071.2 2 s 1.3% 1057.1 8 h 4.3% 1102.6 2.8 s 1071.2 2 s 1.3%
2P1 1090.3 3.4 s 2.8% 1060.1 8 h 4.6% 1109.3 2.5 s 1090.3 3.4 s 2.8%
3P1 1124.6 2.9 s 0.0% 1124.7 8 h 0.0% 1124.6 5.7 s 1124.6 2.9 s 0.0%
4P1 1110.1 2.1 s 9.6% 1013.0 8 h -1.2% 1000.7 2.1 s 1000.7 2.1 s -1.2%
5P1 1115.9 2.2 s 20.4% 927.1 8 h -5.7% 874 2.2 s 874 2.2 s -5.7%
6P1 1130.7 3.1 s -3.7% 1174.0 8 h -10.8% 1046.8 2.1 s 1046.8 2.1 s -10.8%
7P1 1301.7 2.8 s -9.5% 1438.0 8 h -12.7% 1255.5 2.8 s 1255.5 2.8 s -12.7%
8P1 1376.9 3.7 s -1.3% 1394.7 8 h -3.9% 1340.2 1.9 s 1340.2 1.9 s -3.9%
9P1 1521.6 5.4 s -0.1% 1523.8 8 h -2.6% 1483.6 2.1 s 1483.6 2.1 s -2.6%
10P1 1182.3 5.3 s 1.4% 1165.7 8 h -2.3% 1138.5 4.5 s 1138.5 4.5 s -2.3%
11P1 1204.5 4.1 s -12.2% 1371.3 8 h -7.0% 1275.2 4.3 s 1204.5 4.1 s -12.2%
12P1 1400.3 8.1 s − − 8 h − 1336.8 3.4 s 1336.8 3.4 s −
13P1 1187.0 3.2 s 16.4% 1020.1 8 h 8.3% 1104.3 2.5 s 1104.3 2.5 s 8.3%
14P1 1133.4 2.9 s -5.1% 1194.6 8 h -4.9% 1136 1.7 s 1133.4 2.9 s -5.1%
15P1 1290.6 6.6 s -15.1% 1520.4 8 h -13.2% 1319.8 2.7 s 1290.6 6.6 s -15.1%
16P1 774.7 3.6 s − − 8 h − 856.6 3.2 s 774.7 3.6 s −
17P1 806.5 2.9 s -1.7% 820.6 8 h -1.7% 806.5 2.4 s 806.5 2.9 s -1.7%
18P1 963.6 2.8 s -10.4% 1074.9 8 h -10.4% 963.6 2.3 s 963.6 2.8 s -10.4%
19P1 702.4 2.7 s 5.1% 668.6 8 h 11.4% 745.1 2.8 s 702.4 2.7 s 5.1%
20P1 670.6 4 s -8.8% 735.0 8 h -4.4% 702.6 2 s 670.6 4 s -8.8%
21P1 811.7 2 s -3.2% 838.4 8 h -1.1% 829.3 2.6 s 811.7 2 s -3.2%
22P1 777.0 1.8 s -18.2% 949.7 8 h -12.1% 834.4 2.1 s 777 1.8 s -18.2%
23P1 833.4 3.1 s -14.7% 976.9 8 h -5.1% 926.6 2.1 s 833.4 3.1 s -14.7%
24P1 1039.4 6.6 s -16.9% 1250.8 8 h -19.0% 1013.2 3.3 s 1013.2 3.3 s -19.0%
25P1 669.7 2.3 s -1.7% 681.4 8 h -1.7% 669.7 2.3 s 669.7 2.3 s -1.7%
26P1 721.3 2 s -24.8% 959.5 8 h -24.8% 721.3 2.3 s 721.3 2 s -24.8%
27P1 893.5 3.1 s − − 8 h − 893.5 2.3 s 893.5 3.1 s −
28P1 828.0 4.4 s -1.6% 841.7 8 h -1.6% 828 2.3 s 828 4.4 s -1.6%
29P1 879.0 4.7 s -20.4% 1103.9 8 h -20.4% 879 2.4 s 879 4.7 s -20.4%
30P1 1046.3 4.7 s -21.5% 1333.4 8 h -12.5% 1167.3 3.3 s 1046.3 4.7 s -21.5%
31P1 583.5 4.3 s 7.5% 542.6 8 h 0.0% 542.6 2.1 s 542.6 2.1 s 0.0%
32P1 757.2 2.9 s 10.7% 683.9 8 h -0.8% 678.2 2.2 s 678.2 2.2 s -0.8%
33P1 949.7 3.3 s -10.2% 1057.8 8 h -6.1% 992.8 3.0 s 949.7 3.3 s -10.2%
34P1 679.1 2.1 s 29.8% 523.2 8 h 9.3% 571.9 1.7 s 571.9 1.7 s 9.3%

Continued on the next page

95

Table 3.7 – Continued from the previous page

NNS CPLEX CLK ETP

Instance
ID Obj. Time GapNC Obj. Time GapCC Obj. Time Obj. Time GapNCC

35P1 683.2 4.3 s -4.5% 715.2 8 h -9.6% 646.4 2.9 s 646.4 2.9 s -9.6%
36P1 932.5 4.7 s -1.7% 948.9 8 h -8.3% 869.8 3.0 s 869.8 3 s -8.3%
37P1 798.2 8.1 s 9.6% 728.5 8 h -0.9% 722.3 2.2 s 722.3 2.2 s -0.9%
38P1 879.0 5.3 s 4.7% 839.6 8 h -7.5% 777 4.7 s 777 4.7 s -7.5%
39P1 937.1 3.9 s -13.1% 1078.8 8 h -13.1% 937.1 5.0 s 937.1 3.9 s -13.1%
40P1 851.3 7.0 s -2.7% 875.2 8 h -10.5% 783.5 2.3 s 783.5 2.3 s -10.5%
41P1 968.7 3.2 s 14.4% 846.8 8 h 2.9% 871.1 2.3 s 871.1 2.3 s 2.9%
42P1 1035.7 3.1 s − − 8 h − 1110.6 2.3 s 1035.7 3.1 s −
43P1 827.8 4.9 s -11.4% 933.8 8 h -14.9% 794.4 2.1 s 794.4 2.1 s -14.9%
44P1 897.6 5.4 s − − 8 h − 935.1 2 s 897.6 5.4 s −
45P1 1109.9 4.6 s -10.4% 1238.6 8 h -6.6% 1156.5 2.3 s 1109.9 4.6 s -10.4%
46P1 777.2 2.8 s -0.6% 781.7 8 h 0.3% 784.2 2.1 s 777.2 2.8 s -0.6%
47P1 710.0 1.6 s 0.0% 710.1 8 h 0.0% 710 2.3 s 710 1.6 s 0.0%
48P1 870.9 2.1 s 0.0% 871.0 8 h 0.0% 870.9 2.4 s 870.9 2.1 s 0.0%
49P1 674.8 2.7 s 8.6% 621.1 8 h -1.5% 611.8 1.5 s 611.8 1.5 s -1.5%
50P1 749.8 2.6 s − − 8 h − 686 3.2 s 686 3.2 s −
51P1 924.7 3.3 s -2.9% 952.1 8 h 6.7% 1015.7 2.8 s 924.7 3.3 s -2.9%
52P1 996.6 2.4 s − − 8 h − 984.4 1.5 s 984.4 1.5 s −
53P1 1102.5 2.5 s -17.1% 1329.7 8 h -26.8% 973 1.9 s 973 1.9 s -26.8%
54P1 1443.6 2.8 s -6.2% 1538.5 8 h -17.9% 1262.7 1.8 s 1262.7 1.8 s -17.9%
55P1 1045.5 2.9 s -4.4% 1094.1 8 h -2.5% 1067 3.2 s 1045.5 2.9 s -4.4%
56P1 1151.9 2.7 s -4.4% 1205.3 8 h -11.8% 1062.9 1.5 s 1062.9 1.5 s -11.8%
57P1 1340.5 5.7 s -12.4% 1530.4 8 h -14.2% 1312.5 2.3 s 1312.5 2.3 s -14.2%
58P1 1057.7 1.5 s 3.6% 1021.1 8 h -14.0% 878.6 2.8 s 878.6 2.8 s -14.0%
59P1 1031.9 2.3 s -10.3% 1149.9 8 h -12.6% 1005 1.7 s 1005 1.7 s -12.6%
60P1 1240.6 2.2 s -5.3% 1310.2 8 h -3.7% 1261.6 4.8 s 1240.6 2.2 s -5.3%

In Table 3.7, the objective function and running time of the 60 benchmark instances solved by

NNS, CLK and CPLEX methods are compared to each other. The NNS and CLK are parts of

ETP optimization engine and the best performance of them are considered as the performance

of ETP (last three columns). These two algorithms are used separately to create the feasible so-

lutions (routes). After the solution obtained by each of these algorithms, the same improving al-

gorithms (all improving algorithms in Section 3.4.3) are performed on the solution to reduce the

objective function (total cost). GapNC column (located between NNS and CPLEX columns) com-

96

pares the final solution of NNS and CPLEX regarding objective function. Negative sign shows

that NNS performs better that CPLEX. Similarly, GapCC column compares the performance of

CLK and CPLEX. The minimum of GapNC and GapCC are highlighted in gray in the instances

that either of NNS or CLK has a better smaller objective function that CPLEX. The best objective

function of ETP or CPLEX for each instance is shown in bold.

According to the results of experiments reported in Table 3.7, ETP outperforms CPLEX

regarding solution obtained in 45 out of 60 instances (75%). To better illustrate the strength of

ETP over CLEX the instances with negative GapNNS are shown in bold and the gap of the asso-

ciated method is underlined. In 2 instances (3%), they produced the same results and finally, in

6 instances (10%) CPLEX was better than ETP. All the instances solved with CPLEX were ter-

minated if an optimal solution had not been found within 8 hours. In 7 instances (12%), CPLEX

could not find a feasible solution in the specified time. Regarding solution time, all the instances

solved by ETP required less than 5 seconds. With CPLEX, no instance was solved to optimality

in 8 hours. Both NNS with CLK have positive impacts on the performance of ETP, each in some

instances. The running time of them are almost the same. However, the overall performance of

CLK is better than CLK, specifically in 29 instances (48%). They both obtained the same results

in 11 instances (19%) and in 20 instances (33%) CLK performed better.

In Figure 3.14, the objective function of CPLEX versus NNS and CLK solver are shown.

In this figure, the objective function (total cost) of the problem instances that have been solved by

these three algorithms are reported.

97

Figure 3.14: Performance on PHBD1, NNS vs. CPLEX vs. CLK

As shown in the above figure, in 15 instances NNS performed better, in 35 instances per-

formed worse and in 3 instances performed the same as CPLEX. On the other hand, CLK outper-

formed CPLEX in 43 instances, got the same solution in 8 instances and in only 2 instances did

worse than CPLEX.

Figure 3.15, illustrates the performance of ETP which is the base solution between NNS

and CLK versus CPLEX regarding the objective function.

98

Figure 3.15: Performance on PHBD1, CPLEX vs. ETP

As shown in Figure 3.15, the overall performance of ETP is much better than CPLEX in

terms of both objective function and running time. In the worst case, the performance of ETP is

9.3% worse than the CPLEX solver (in 1P34 instance). In the best case, the solution found by

ETP is 26.8% better than the CPLEX solver (in instance 1P53). More extensive computational

study on individual heuristic algorithms used in optimizing these instances is provided in the next

chapter (Chapter 4).

3.5.1 A Case Study

In this section, to show the strength of ETP in solving instances with customer networks con-

sisting of thousands of locations and hundreds of vehicles, we present and solve a real dataset

provided by J.B. Hunt. The dataset is associated with the food industry with the characteristics

described in Table 3.8.

99

Table 3.8: The Case Study Characteristics

Item Value/Description

Locations:

• Total 292

◦ Origins 8

◦ Destinations 284

Shipments:

• Total 14,356

◦ Fresh 4,009

◦ Frozen 10,347

• Average weight 18,718 lbs

• Average pallet count 17 pallets

• Average length of haul 773 miles

Model:
• Truck capacity

◦Weight 44,000 lbs

◦ Number of pallets 57 pallets

• Fleet of trucks Heterogeneous (fresh & frozen)

This network is modeled as the multiple shifts, pickup delivery, heterogeneous fleet, open

VRP with backhauls, time windows, and DOT regulation (PHOBTD). Before optimizing this

the network, the graphical representation of the nodes and shipments is presented using ETP’s

graphical tools.

Figure 3.16 shows the shipping network before optimizing by ETP. The origin and desti-

nations locations and the shipments between these nodes are depicted in Figure 3.16 (a) and (b),

respectively. In Figure 3.16 (b) the fresh shipments are shown in green and the frozen ones in

blue.

100

(a) The network points: origins (stars) and destinations (dots)

(b) The network shipments: fresh (green) and frozen (blue).

Figure 3.16: The graphical representation of the shipment network of the case study

The result summary of optimizing the network using ETP is reported in Table 3.9. 572

multi-stop routes are created by ETP to transport the shipments.

101

Table 3.9: The Optimization summary of the case study network by ETP

Solution Method Mode Miles Routes Orders Weight (lb)

Direct

LTL 11,097,679 14,356 14,356 323,284,553

ETP Optimization

CTL 27,372 62 202 1,424,916

Run Time: LTL 10,147,321 12,860 12,860 312,628,972

2 : 30′ : 36′′ MSTL 245,347 298 1,294 9,230,665

Total 10,420,039 13,220 14,356 323,284,553

Improv. 6.11% 7.91% − −

In Table 3.9, results of this case study are shown by comparing with and without ETP.

Without ETP, the direct method utilized in industry, which only makes use of LTL (less than

truckload) transportation is used. However, in the ETP modes of CTL (customized truck load),

LTL, and MSTL (multi-stop truckload) are used to transport the shipments. According to the

table, ETP saved more than 6% in total miles of shipments and nearly 8% in the number of the

shipments in only 2 h, 30 m, 36 sec of solution time.

3.6 Conclusion

In this research, variants of the Vehicle Routing Problem (VRP) serving the transportation lo-

gistics industry are studied. New VRP variants that adhere to working hour regulations for truck

drivers are proposed. These variants restrict the hours of service by the truck drivers according to

the regulations imposed by the U.S. Department of Transportation (DOT). The DOT regulations

limit the work and drive hours of drivers in a daily and weekly shifts and impose minimum hours

of rest between them.

A comprehensive decision tool that integrates multiple solution techniques referred to as

Enterprise Transportation Planning (ETP) is developed to address the interests of both academic

and industry parties. ETP yields quality solutions in a short time that are flexible to a wide range

of problems and are easy to make a use of that are desired by industry and can compete with the

102

more sophisticated optimization techniques in academia. Several solution techniques, primarily

based on customized heuristic methods, are incorporated into the optimization engine of ETP.

To test the quality of solutions of ETP we compared the performance of ETP versus the

exact method of finding optimal solution using CPLEX. The results have shown that ETP can

produce a quality solutions in a very short amount of time comparing with CPLEX. Another ad-

vantage of using ETP is the size of the problems that can be optimized. CPLEX can only solve

small problem instances around 50 locations with 5 vehicles while ETP optimizes a transporta-

tion network including thousands of customer locations with hundreds of vehicles.

ETP is a very flexible integrated optimization tool that can solve a variety of VRP instances

all together. ETP can solve the multiple shifts, pickup delivery, heterogeneous fleet, open al-

lowed, multi-depot, split delivery, capacitated VRP with backhauls, time windows, simultaneous

pick-drops and DOT regulations in a resonable time and obtain quality solutions.

In future, we try to add new exact and heuristic methods to ETP while improving the cur-

rent heuristic algorithms. Also we want to automate the selection of best input parameters and

optimization methods in ETP.

103

Bibliography

Ascheuer, N., Jünger, M., and Reinelt, G. (2000). A branch & cut algorithm for the asymmetric
traveling salesman problem with precedence constraints. Computational Optimization and
Applications, 17(1):61–84.

Baldacci, R., Battarra, M., and Vigo, D. (2008). Routing a heterogeneous fleet of vehicles. pages
3–27.

Balinski, M. L. and Quandt, R. E. (1964). On an integer program for a delivery problem.
Operations Research, 12(2):300–304.

Bent, R. and Van Hentenryck, P. (2006). A two-stage hybrid algorithm for pickup and delivery
vehicle routing problems with time windows. Computers & Operations Research, 33(4):875–
893.

Berbeglia, G., Cordeau, J.-F., Gribkovskaia, I., and Laporte, G. (2007). Static pickup and delivery
problems: a classification scheme and survey. Top, 15(1):1–31.

Braekers, K., Ramaekers, K., and Van Nieuwenhuyse, I. (2016). The vehicle routing problem:
State of the art classification and review. Computers & Industrial Engineering, 99:300–313.

Brandão, J. (2004). A tabu search algorithm for the open vehicle routing problem. European
Journal of Operational Research, 157(3):552–564.

Bräysy, O. and Gendreau, M. (2005a). Vehicle routing problem with time windows, part i: Route
construction and local search algorithms. Transportation science, 39(1):104–118.

Bräysy, O. and Gendreau, M. (2005b). Vehicle routing problem with time windows, part ii: Meta-
heuristics. Transportation science, 39(1):119–139.

Christofides, N., Mingozzi, A., and Toth, P. (1981). Exact algorithms for the vehicle routing
problem, based on spanning tree and shortest path relaxations. Mathematical programming,
20(1):255–282.

Clarke, G. and Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of
delivery points. Operations research, 12(4):568–581.

Cordeau, J.-F., Gendreau, M., Laporte, G., Potvin, J.-Y., and Semet, F. (2002). A guide to vehicle
routing heuristics. Journal of the Operational Research society, pages 512–522.

Cordeau, J.-F., Laporte, G., and Mercier, A. (2001). A unified tabu search heuristic for vehicle
routing problems with time windows. Journal of the Operational research society, 52(8):928–
936.

Cordeau, J.-F., Laporte, G., and Ropke, S. (2008). Recent models and algorithms for one-to-one
pickup and delivery problems. pages 327–357.

Dantzig, G. B. and Ramser, J. H. (1959). The truck dispatching problem. Management science,
6(1):80–91.

104

Desrochers, M. and Verhoog, T. (1989). A matching based savings algorithm for the vehicle
routing problem. Cahiers du GERAD.

Duhamel, C., Potvin, J.-Y., and Rousseau, J.-M. (1997). A tabu search heuristic for the vehicle
routing problem with backhauls and time windows. Transportation science, 31(1):49–59.

Fisher, M. L. (1994). Optimal solution of vehicle routing problems using minimum k-trees.
Operations research, 42(4):626–642.

Fleszar, K., Osman, I. H., and Hindi, K. S. (2009). A variable neighbourhood search algorithm
for the open vehicle routing problem. European Journal of Operational Research, 195(3):803–
809.

Goetschalckx, M. and Jacobs-Blecha, C. (1989). The vehicle routing problem with backhauls.
European Journal of Operational Research, 42(1):39–51.

Golden, B. L., Raghavan, S., and Wasil, E. A. (2008). The vehicle routing problem: latest
advances and new challenges, volume 43. Springer Science & Business Media.

Hernández-Pérez, H. and Salazar-González, J.-J. (2004a). A branch-and-cut algorithm for a trav-
eling salesman problem with pickup and delivery. Discrete Applied Mathematics, 145(1):126–
139.

Hernández-Pérez, H. and Salazar-González, J.-J. (2004b). Heuristics for the one-commodity
pickup-and-delivery traveling salesman problem. Transportation Science, 38(2):245–255.

Hernández-Pérez, H. and Salazar-González, J.-J. (2007). The one-commodity pickup-and-
delivery traveling salesman problem: Inequalities and algorithms. Networks, 50(4):258–272.

Hernández-Pérez, H. and Salazar-González, J.-J. (2009). The multi-commodity one-to-one
pickup-and-delivery traveling salesman problem. European Journal of Operational Research,
196(3):987–995.

Johnson, D. S. and McGeoch, L. A. (1997). The traveling salesman problem: A case study in
local optimization. Local search in combinatorial optimization, 1:215–310.

Kumar, S. N. and Panneerselvam, R. (2012). A survey on the vehicle routing problem and its
variants. Intelligent Information Management, 4(03):66.

Lau, H. C. and Liang, Z. (2002). Pickup and delivery with time windows: Algorithms and test
case generation. International Journal on Artificial Intelligence Tools, 11(03):455–472.

Li, F., Golden, B., and Wasil, E. (2007). The open vehicle routing problem: Algorithms,
large-scale test problems, and computational results. Computers & Operations Research,
34(10):2918–2930.

Lin, S. (1965). Computer solutions of the traveling salesman problem. The Bell System
Technical Journal, 44(10):2245–2269.

105

Lloyd, S. (1982). Least squares quantization in pcm. IEEE transactions on information theory,
28(2):129–137.

Miller, C. E., Tucker, A. W., and Zemlin, R. A. (1960). Integer programming formulation of
traveling salesman problems. Journal of the ACM (JACM), 7(4):326–329.

Miller, D. L. (1995). A matching based exact algorithm for capacitated vehicle routing problems.
ORSA Journal on Computing, 7(1):1–9.

Min, H. (1989). The multiple vehicle routing problem with simultaneous delivery and pick-up
points. Transportation Research Part A: General, 23(5):377–386.

Montoya-Torres, J. R., Franco, J. L., Isaza, S. N., Jiménez, H. F., and Herazo-Padilla, N. (2015).
A literature review on the vehicle routing problem with multiple depots. Computers &
Industrial Engineering, 79:115–129.

Murray, D. C. and Short, J. (2015). Quantifying impacts from 34 hr restart provision. http://atri-
online.org/wp-content/uploads/2015/04/Quantifying-Impacts-from-34-hr-Restart-Provision-
FINAL-04-2015.pdf. April 2015.

Nagata, Y. and Bräysy, O. (2009). Edge assembly-based memetic algorithm for the capacitated
vehicle routing problem. Networks, 54(4):205.

Nagata, Y., Bräysy, O., and Dullaert, W. (2010). A penalty-based edge assembly memetic algo-
rithm for the vehicle routing problem with time windows. Computers & operations research,
37(4):724–737.

Nanry, W. P. and Barnes, J. W. (2000). Solving the pickup and delivery problem with time win-
dows using reactive tabu search. Transportation Research Part B: Methodological, 34(2):107–
121.

Analysis Division, Federal Motor Carrier Safety Administration
(2011). 2010-2011 hours of service rule regulatory impact analysis.
https://www.fmcsa.dot.gov/sites/fmcsa.dot.gov/files/docs/2011 HOS Final Rule RIA.pdf. RIN
2126-AB26.

Osman, I. H. (1993). Metastrategy simulated annealing and tabu search algorithms for the vehicle
routing problem. Annals of operations research, 41(4):421–451.

Pisinger, D. and Ropke, S. (2007). A general heuristic for vehicle routing problems. Computers
& operations research, 34(8):2403–2435.

Potvin, J.-Y. and Bengio, S. (1996). The vehicle routing problem with time windows part ii: ge-
netic search. INFORMS journal on Computing, 8(2):165–172.

Prins, C. (2004). A simple and effective evolutionary algorithm for the vehicle routing problem.
Computers & Operations Research, 31(12):1985–2002.

Psaraftis, H. N. (1983). k-interchange procedures for local search in a precedence-constrained
routing problem. European Journal of Operational Research, 13(4):391–402.

106

Reimann, M., Doerner, K., and Hartl, R. F. (2003). Analyzing a unified ant system for the vrp and
some of its variants. pages 300–310.

Renaud, J., Boctor, F. F., and Laporte, G. (1996). An improved petal heuristic for the vehicle
routeing problem. Journal of the operational Research Society, 47(2):329–336.

Rochat, Y. and Taillard, É. D. (1995). Probabilistic diversification and intensification in local
search for vehicle routing. Journal of heuristics, 1(1):147–167.

Ropke, S., Cordeau, J.-F., and Laporte, G. (2007). Models and branch-and-cut algorithms for
pickup and delivery problems with time windows. Networks, 49(4):258–272.

Ruland, K. and Rodin, E. (1997). The pickup and delivery problem: Faces and branch-and-cut
algorithm. Computers & mathematics with applications, 33(12):1–13.

Ryan, D. M., Hjorring, C., and Glover, F. (1993). Extensions of the petal method for vehicle
routeing. Journal of the Operational Research Society, 44(3):289–296.

Sariklis, D. and Powell, S. (2000). A heuristic method for the open vehicle routing problem.
Journal of the Operational Research Society, 51(5):564–573.

Short, J. (2013a). Assessing the impacts of the 34-hour restart provisions. http://atri-
online.org/wp-content/uploads/2015/09/ATRI-HOS-Restart-Impacts-06-13-FINAL.pdf. June
2013.

Short, J. (2013b). Operational and economic impacts of the new hours-of-service.
https://www.protectmycdl.com/wp-content/uploads/2013/11/ATRI-Operational-and-Economic-
Impacts-of-New-HOS.pdf. November 2013.

Spoorendonk, S. and Desaulniers, G. (2010). Clique inequalities applied to the vehicle routing
problem with time windows. Infor, 48(1):53.

Subramanian, A., Uchoa, E., and Ochi, L. S. (2013). A hybrid algorithm for a class of vehicle
routing problems. Computers & Operations Research, 40(10):2519–2531.

Tarantilis, C. D. (2005). Solving the vehicle routing problem with adaptive memory program-
ming methodology. Computers & Operations Research, 32(9):2309–2327.

Federal Highway Administration (2012). Freight management and oper-
ations, federal highway administration, u.s. department of transportation.
https://ops.fhwa.dot.gov/freight/freight analysis/nat freight stats/docs/12factsfigures/table3 10.htm.
Accessed: Oct 2017.

fmcsa.dot.gov. Summary of hours of service regulations. Accessed: 2014-12-16.

ibm.com (2013). ibm ilog cplex optimization studio v12.6.0.
https://www.ibm.com/support/knowledgecenter/SSSA5P 12.6.0/ilog.odms.studio.help/
Optimization Studio/topics/COS home.html.

107

Toth, P. and Vigo, D. (1997). An exact algorithm for the vehicle routing problem with backhauls.
Transportation science, 31(4):372–385.

Toth, P. and Vigo, D. (2003). The granular tabu search and its application to the vehicle-routing
problem. Informs Journal on computing, 15(4):333–346.

Toth, P. and Vigo, D. (2014). Vehicle routing: problems, methods, and applications, volume 18.
Siam.

Van Breedam, A. (1994). An Analysis of the Behavior of Heuristics for the Vehicle Routing
Problem for a Selectrion of Problems with Vehicle-related, Customer-related, and Time-related
Constraints. RUCA.

Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N., and Rei, W. (2012). A hybrid genetic algo-
rithm for multidepot and periodic vehicle routing problems. Operations Research, 60(3):611–
624.

Vidal, T., Crainic, T. G., Gendreau, M., and Prins, C. (2013). A hybrid genetic algorithm
with adaptive diversity management for a large class of vehicle routing problems with time-
windows. Computers & Operations Research, 40(1):475–489.

Wark, P. and Holt, J. (1994). A repeated matching heuristic for the vehicle routeing problem.
Journal of the Operational Research Society, 45(10):1156–1167.

Young, J. (2013). Simulation-based truck fleet analysis to study the impact of federal mo-
tor carrier safety administration’s 2013 hours of service regulation changes. In Simulation
Conference (WSC), 2013 Winter, pages 3395–3405. IEEE.

Zachariadis, E. E. and Kiranoudis, C. T. (2010). A strategy for reducing the computational
complexity of local search-based methods for the vehicle routing problem. Computers &
operations research, 37(12):2089–2105.

Zhong, Y. and Cole, M. H. (2005). A vehicle routing problem with backhauls and time windows:
a guided local search solution. Transportation Research Part E: Logistics and Transportation
Review, 41(2):131–144.

108

Appendix

Appendix 3.A Modified Breedam’s Benchmark Instances

The modifications on the PDVRP benchmark instances are as follows.

• In all of the instances, the number of locations is reduced from 100 to 50 by keeping the
first two current locations and removing the next two consecutive locations. That means in
each instance, the stop numbers are reduced from {0,1,2,3,4,5,6, . . . ,97,98,99,100} to
{0,1,2,5,6, . . . ,99,100}.

• The capacity of each vehicle is reduced from 100 to 50.

The size of instances are reduced, so that they could be solved by CPLEX.

109

Appendix 3.B The PHTD Variant with One Week Time Horizon

Table 3.10: The Modified Set of Table 3.3 for the PHTD7 Formulation

Notation Description

• S = {1, . . . ,d}, d = 7 or 8 The shifts (days) of a week.

min ∑
t∈S

∑
k∈K

∑
i∈V

∑
j∈V

ci jxt
i jk (The PHTD7)

∑
t∈S

∑
k∈K

∑
j∈V

xt
i jk = 1 ∀i ∈ P (3.32)

∑
t∈S

∑
j∈V

xt
i jk−∑

t∈S
∑
j∈V

xt
n+i, j,k = 0 ∀i ∈ P,k ∈ K (3.33)

∑
t∈S

∑
j∈V

xt
jik−∑

t∈S
∑
j∈V

xt
i jk = 0 ∀i ∈ P∪D,k ∈ K (3.34)

∑
t∈S

∑
j∈P

xt
0 jk = 1 ∀k ∈ K (3.35)

∑
t∈S

∑
i∈V

xt
i,2n+1,k = 1 ∀k ∈ K (3.36)

Qik−Q jk +q j ≤M(1− xt
i jk) ∀i, j ∈V,k ∈ K, t ∈ S (3.37)

max{0,qi} ≤ Qik ≤min{Ck, Ck +qi} ∀i ∈V,k ∈ K (3.38)

∑
i∈V

∑
j∈V

(hi jxt
i jk + s jxt

i jk)≤ D A ∀k ∈ K, t ∈ S (3.39)

∑
i∈V

∑
j∈V

hi jxt
i jk ≤ D D ∀k ∈ K, t ∈ S (3.40)

∑
t∈S

∑
i∈V

∑
j∈V

hi jxt
i jk ≤ D WD ∀k ∈ K (3.41)

Tik−Tjk + si +hi j ≤ D R

(
1−

∣∣∣∣∣xt
i jk− ∑

w∈V
xt+1

jwk

∣∣∣∣∣
)

∀i∈V ; j∈P∪D∪{2n+1}; k∈K; t∈S (3.42)

Tik−Tjk + si +hi j ≤M(1− xt
i jk) ∀i∈V ; j∈P∪D∪{2n+1}; k∈K; t∈S (3.43)

Tn+i,k−Tik− si−hi,n+i ≥ 0 ∀i ∈ P; k ∈ K (3.44)
bi ≤ Tik ≤ ei ∀i ∈V,k ∈ K (3.45)

xt
i jk ∈ {0,1} ∀i, j ∈V,k ∈ K, t ∈ S (3.46)

110

Appendix 3.C The PHTD Variant with a Single Shift Time Horizon

Table 3.11: The Modified Decision Variable of Table 3.3 for the PHTD1 Formulation

Notation Description

• xi jk ∈ {0,1}; ∀i, j ∈V,k ∈ K Equals 1 if vehicle k moves between location i and
j; 0, otherwise.

min ∑
k∈K

∑
i∈V

∑
j∈V

ci jxi jk (The PHTD1)

∑
k∈K

∑
j∈V

xi jk = 1 ∀i ∈ P (3.47)

∑
j∈V

xi jk−∑
j∈V

xn+i, j,k = 0 ∀i ∈ P,k ∈ K (3.48)

∑
j∈V

x jik−∑
j∈V

xi jk = 0 ∀i ∈ P∪D,k ∈ K (3.49)

∑
j∈P

x0 jk = 1 ∀k ∈ K (3.50)

∑
i∈V

xi,2n+1,k = 1 ∀k ∈ K (3.51)

Qik−Q jk +q j ≤M(1− xi jk) ∀i, j ∈V,k ∈ K (3.52)
max{0,qi} ≤ Qik ≤min{Ck, Ck +qi} ∀i ∈V,k ∈ K (3.53)

T2n+1,k−T0k ≤ D A ∀k ∈ K (3.54)

∑
i∈V

∑
j∈V

hi jxi jk ≤ D D ∀k ∈ K (3.55)

Tik−Tjk + si +hi j ≤M(1− xi jk) ∀i ∈V ; j ∈ P∪D∪{2n+1}; k ∈ K (3.56)
Tn+i,k−Tik− si−hi,n+i ≥ 0 ∀i ∈ P (3.57)

bi ≤ Tik ≤ ei ∀i ∈V,k ∈ K (3.58)
xi jk ∈ {0,1} ∀i, j ∈V,k ∈ K (3.59)

111

Appendix 3.D Certification of Student Work

College of Engineering

Department of Industrial Engineering

4207 Bell Engineering Center • Fayetteville, Arkansas 72701 • 479-575-2687
The University of Arkansas is an equal opportunity/affirmative action institution.

Date: December 5, 2017

Graduate School

University of Arkansas

Dear Dr. Needy:

I am writing to verify that Fereydoun Adbesh completed more than 51% of the work for the chapter

titled “Vehicle Routing Problems with Hours of Service Regulations for Trucking Industry” in his

dissertation.

Sincerely,

Chase Rainwater

cer@uark.edu

479-575-2687

Associate Professor

Department of Industrial Engineering

University of Arkansas

112

4. A Genetic Algorithm for Unified Vehicle Routing Problems

Abstract: A comprehensive tool to analyze real-world transportation networks, consisting of

thousands of shipments, and solve different variations of the Vehicle Routing Problem (VRP)

on the networks was developed in Chapter 3. The tool consists of several heuristic algorithms

that can be categorized in constructive and improvement algorithms. In this study, we focus on

improving the implementation of this tool via extensive exploration on the impact of these algo-

rithms, individually, on the quality and running time of the solutions. This analysis becomes very

useful in optimizing large real-world networks. To further improve the quality of the solutions

obtained by our optimization tool, a Genetic Algorithm (GA) is added to our solution suite. The

GA is designed in a way that utilizes the both constructive and improvement algorithm to create

and improve its population. Experimental results on the collection of instances (the same bench-

mark instances as in the previous study) shows a trade-off in using GA in the optimization tool.

Specifically, the GA produces better solutions regarding objective function, the total travel cost,

but requires more computational time to run. A sensitivity analysis on the GA parameters is con-

ducted to determine the best parameter setting for the GA.

4.1 Introduction

In Chapter 3, a comprehensive optimization tool (referred to as ETP) to analyze and solve a va-

riety of the VRP models for real-world problem size transportation networks is developed. A

typical real-world problem consists of 1,000s of shipments which need 100s of vehicles to de-

liver. For example, the case study of a real customer data in Chapter 3 includes more than 14,000

of shipments. In general, optimizing large-scale real-world problems requires the consideration

of instances magnitudes larger than the benchmark problems in the VRP literature. The largest

benchmark problem that has been solved by researchers consist of 1,000 shipments (Gehring and

Homberger, 2001). In reality, to provide the best service for customers, each with different net-

113

work specifications, a flexible and fast optimization tool is required that can produce reasonably

good quality solutions such as ETP. To further improve our proposed optimization tool in Chap-

ter 3 regarding both quality and running time, we analyze the existing heuristic methods in this

optimization tool. This analysis helps us to identify which algorithms have the most impact in

obtaining feasible quality solutions and running time. Then, we used the results of this analysis

to design a new Genetic Algorithm (GA) (Holland, 1975) which uses these heuristic algorithms

throughout its optimization process.

In a nutshell, in this chapter, the performance of the implementation of the solution ap-

proach introduced in Chapter 3 is more comprehensively considered. A study as to which indi-

vidual heuristic methods have the largest impact on the quality and running time of solutions is

provided. This analysis plays a very important role when we deal with real-world problems con-

sisting of very large size datasets. This optimization tool consists of several heuristic algorithms

that can be categorized into i) constructive and ii) improvement algorithms. Also, we designed

a more sophisticated meta-heuristic algorithm, a GA, to further improve the quality (regarding

objective function) of solutions.

GA is an evolutionary algorithm designed by Holland (1975) to mimic biological evolution

in solving optimization problems. The algorithm starts with an initial population of chromosomes

and repeatedly modifies them in successive generations. Each chromosome is a feasible solu-

tion to the problem that is being optimized. In each generation, some chromosomes are selected

(randomly or based on some merit-based rules) to breed and some others are extinct. These par-

ents use one of the two operations, crossover and mutation, to produce new chromosomes. The

number of chromosome in each generation which is called the population size remain constant

through the evolution process. Each chromosome (solution) is evaluated based on its fitness (ob-

jective function) and the ones with higher fitness have more chance of survival. The evolution

process terminates after a certain number of generations has passed or other criteria such as the

running time. At the end, the best chromosome in the last generation is reported as the best solu-

tion of the optimization process.

114

The existing constructive algorithms in ETP along with a random sequence generation

method are used to produce the initial population of the GA. To produce the new offspring in

each generation, a crossover and a mutation operators are designed and used. In the mutation

phase, the improvement algorithms that are already a part of ETP optimization engine, are called

to produce a better offspring out of the selected parent. The other components of GA are inde-

pendent from the existing algorithms in our optimization tool (ETP) which are explained in Sec-

tion 4.6. Build upon the results of analysis on the constructive (which are used in generating the

initial population) and improvement algorithms (which are used as the mutation operator), the

GA is tuned and could find quality solutions in a reasonable amount of time.

Note that similar to other heuristic algorithms in ETP, this GA is also part of the optimiza-

tion engine and of course compatible with the structure of ETP. Thus, we can easily use the heuris-

tic algorithms of ETP that are already a part of this software in searching for solutions in the GA.

The sensitivity analysis in the first part of this chapter enables us to effectively choose the best

heuristics to use in each generation.

After designing the mechanic of the GA, a sensitivity analysis on its components is per-

formed to choose the best setting. Then, the performance of the GA is compared with CPLEX

and with the ETP heuristics on the suite of benchmark instances from Chapter 3. Results show

that the GA outperforms CPLEX in almost all the instances regarding both the quality of the

solutions and the running times. In comparing the GA with the ETP heuristics, the GA obtains

more quality solutions but requires an increased amount of computational time.

The rest of this study is organized as follows. Section 4.2 reviews the relevant works in the

literature. In Section 4.3, the structure of ETP is described. The optimization phase of ETP is ex-

plained in Section 4.4 by representing the main constructive and improving heuristic algorithms

used in ETP. Section 4.5 is dedicated to the sensitivity analysis of the heuristic algorithms used

in the optimization engine of ETP. The performance of each of these algorithms is reported after

solving benchmark problems from the literature. In Section 4.6, a GA is proposed to solve variety

of VRP variants. In Section 4.7 the performance of the GA is evaluated by solving the same VRP

115

variant (the single shift (PHBD1) on the same benchmark problems (Breedam’s benchmark) of

Chapter 3. Finally, in Section 4.8 concluding remarks are provided.

4.2 Literature Review

In this section, we review some key prior works on the literature of VRP that utilize Genetic Al-

gorithm (GA) (Holland, 1975) to find quality solutions for the associated variant of VRP which

are the foundation of our proposed GA in this study. The reason that we choose GA to improve

the quality of our solution in this study is that GA is one of the common meta-heuristic approaches

used in the literature to solve variations of the VRP (Baker and Ayechew, 2003; Berger and Barkaoui,

2004; Ho et al., 2008; Tan et al., 2006).

Prins (2004) implemented a simple and an effective GA on the capacitated VRP (CVRP).

In his study, the chromosome structure is a sequence of locations to be visited including all the

nodes (a big tour). Then, another procedure based on the optimal shortest path problem is used to

optimally split the tour into individual routes.

Nagata and Bräysy (2009) proposed another effective GA for CVRP by adapting an Edge

Assembly Crossover (AEC) from their previous study (Nagata, 2007). The AEC merges the

edges from parents and creates several cycles from the merged graphs resulting in new children.

Any infeasible solutions are repaired with a method to reconnect the sub tours.

A hybrid GA is implemented by Vidal et al. (2012), which combines the population-based

evolutionary search of GA to explore solutions and local search improvement with a population

diversity control scheme. The algorithms are based on the chromosome representation in Prins

(2004) and evaluating each solution by both the objective function and the contribution to the

diversity of the population.

4.3 ETP Structure

Studying the system structure is necessary to integrate with existing systems. In our optimiza-

tion tool, without knowing the structure of data and how they are organized, we cannot develop,

116

add, modify, or change any algorithm in its optimization engine. Algorithms in ETP work with

shipment data, points, routes, geographical locations and other customer information. The opti-

mization process in ETP occurs via a chain of algorithms, so the output of one algorithm is the

input of another one (more details on Section 4.4).

In this section, the structure of optimization tool in ETP is described. We show how the

input data needs to be prepared to optimize the network in each problem. First, the characteristics

of the network such as the shipment locations and amounts, the vehicle types and their capacity,

the time windows, costs, etc. are defined and interpreted for ETP. Second, the parameters of the

heuristic algorithms, either constructive or improving, are set to start these algorithms.

To improve the performance of ETP, new optimization algorithms are developed, and exist-

ing ones from the literature are modified and added to the engine. Unlike many existing heuristic

algorithms in the literature of VRP that sequence, move or exchange the points (Lin, 1965; Toth

and Vigo, 2014), several ETP heuristic algorithms work with shipments. A shipment is a line in

the network that connects two points, and includes the information about the origin, the destina-

tion and the amount of shipment. More details about the optimization algorithms are provided in

Section 4.4.

4.3.1 The Input Datasets

In the ETP framework, a database is a network consisting of nodes and arcs. The nodes, in our

context, refer to the points on the map where a pick or drop is supposed to occur. The arcs, on

the other hand, show the direction of the movement by connecting pick and drop points. ETP can

obtain this node/arc information through various sources; Access, Excel, text and SQL tables are

the typical data sources used in ETP.

ETP works with in-memory databases which are replicas of the input databases. The in-

memory database contains all the necessary information for the network optimization. The data

is categorized into four main tables: i) “Points”, ii) “Lines”, iii) “Parameters” and iv) “Routes”

which are explained as follows. The correlation between the ETP datasets and tables are shown

117

in Figure 4.1.

Figure 4.1: The Correlation Between Datasets in ETP

Figure 4.1 shows how the data is organized in ETP. The raw data is obtained from the cus-

tomer databases. It is then modified and sorted in a more meaningful format for ETP. After that,

LINES and POINTS table are created which holds the basic building blocks of the customer data.

Finally, PARAMS, RATES and APPOINTMENT tables are created to define the optimization

parameters, shipping costs, and customer specific constraints, respectively. At this point the prob-

lem is ready to be optimized. The results will be stored in ROUTES tables.

4.3.1.1 Points

The “POINTS” table stores the location information of the origin and the destination of all or-

ders. These information include but not limited to each point’s latitude, longitude, state, city,

country, graphical data such as size, color, and shape on the map.

118

4.3.1.2 Lines

The “LINES” table categorizes all the orders and their details. Each order can be a parcel, box,

pallet, etc. depending on the shipment type of each customer with corresponding characteristics

and details. The orders need to be picked up from their origin and be delivered to the destination.

Each line row corresponds to a unique order and includes the details such as origin, destination,

weight, width, length, service time at the origin and the destination, volume, required vehicle

type, cost rate, pickup time windows in the origin, delivery time window at the destination, dis-

tance (if the distance is not determined, ETP calculates it), etc.

4.3.1.3 Parameters

The “PARAMETER” table contains the parameters that guides creating the VRP model, impos-

ing the constraints, and running the optimization process. The parameters are grouped into four

categories regarding their purpose: i) function, ii) constraint, iii) schedule, and iv) algorithm. The

function parameters are the basic functionality parameters that have a small influence on routing

and scheduling logic. The constraint parameters put restrictions on each route and they have a

significant influence over the routing and scheduling algorithms. The schedule parameters are the

ones that effect the scheduling. Finally, the algorithm parameters are used to alter the optimiza-

tion logic. They have a significant influence on both routing and scheduling.

4.3.1.4 Routes

The “ROUTES” table stores two sets of information, the default and created routes. Default

routes are the blueprint of each route object created routes are the output of optimization process

which includes the assignment of vehicles to a set of order lines and scheduling of the pickups

and deliveries.

119

4.4 Optimization in ETP

In ETP, several heuristic algorithms are developed and included in the optimization engine of

ETP. In Chapter 3, the network optimization of any VRP models in ETP is separated into five

steps process: i) grouping, ii) merging, iii) improving, iv) filtering, v) and forcing. A chain of

heuristic algorithms is implemented for each step to optimize the network. More generally, the

heuristic algorithms in ETP can be categorized into two categories: i) constructive and ii) improv-

ing algorithms. The constructive algorithms create the feasible solutions (routes). Feasible solu-

tions are improved using the improving heuristic algorithms in ETP. In the following two sections

we describe the main constructive and improving algorithms, respectively.

4.4.1 The Constructive Algorithms in ETP

Two main constructive heuristic algorithms of the ETP optimization engine are the two following

algorithms: i) a modified nearest neighbor search algorithm and ii) a modified Clarke-Wright

algorithm.

4.4.1.1 The Modified Nearest Neighbor Algorithm

The well-known nearest neighbor search (NNS) is one of the first and fastest algorithms to find

feasible solutions for the traveling salesman problem (TSP). In VRP, this algorithm creates a

route by starting from a depot or a random shipment. It interactively adds the “nearest” shipment

to the current route until the capacity is exhausted while maintaining the feasibility of the route.

The “nearest” term can be defined differently. It could be defined as the closest point regarding

distance, the point with the minimum cost to travel to, or any other criteria.

4.4.1.2 The Modified Clarke-Wright Algorithm

The Clarke-Wright algorithm (Clarke and Wright, 1964) is one of the most popular saving algo-

rithms over the last five decades in the VRP literature. It merges the routes with a positive saving

120

while keeping the solution feasible. The merging process usually starts with the routes with sin-

gle node. In this research, we develop a new heuristic method to produce the initial solution for

the modified Clarke-Wright (CLK) algorithm referred to as Group Direct algorithm. The idea

behind the Group Direct algorithm is as follows. It groups the shipments that have the same ori-

gins and destinations, and list them with the priority of the bigger shipment size and the earliest

pickup time, respectively. It adds the shipments in the same group to a route one by one from

the list until the capacity of the associated truck is exhausted while keeping the route feasible.

A maximum gap between the start time of the route and the adding shipment is enforced to the

algorithm.

4.4.2 Improvement

The improvement algorithms are the ones that try to improve the existing routes in a solution.

The improvement algorithms are implemented on a single route or a pair of routes by altering the

sequence of order lines in them. The algorithms that alter lines between a pair of routes in a solu-

tion are referred to as Inter-Route improvement algorithms. The ones that work within a route of

a solution are called Intra-Route algorithms. The Inter-Route category include three algorithms:

i) 1-Move, ii) 1-Exchange and iii) 1-Reinsert. The first two algorithms are described in details in

Chapter 3. The third one, 1-Reinsert, is a new algorithm we added to the optimization engine of

ETP in this chapter. The Intra-Route category also includes three algorithms: i) Minimize Cost,

ii) Break Cross and iii) 1-in-Move algorithms. In the following sections, we briefly describe these

algorithms.

4.4.2.1 Inter-Route Improvement Algorithms

Line move algorithms are the improvement algorithms that work with moving shipment lines be-

tween the routes in a solution. In this research, three different line move algorithms are presented

and their impacts on improving solutions are studied. These algorithms are i) one line move, ii)

one line exchange, and iii) one line reinsert. Note that in this research the word line, order line

121

and shipment mean the same and are used interchangeably.

4.4.2.1.1 1-Move

In this algorithm we remove one line from a route and insert to another route. We select a pair

of routes and a line from the first route exhaustively. It means that this algorithm tries every pos-

sible pair of routes in the solution and move every line from the first route and insert it to every

possible position in the second route as long as we improve in the solution.

4.4.2.1.2 1-Exchange

This algorithm works similar to one line move algorithm but instead of moving one line from

a route to another one it switches a line from the first route with another line in the second route.

Similar to one line move, this algorithm search trough the routes to find the best position to switch

lines exhaustively. The combination of lines is exhaustive, too. That means exchanging every

possible pair of lines of the routes are evaluated.

4.4.2.1.3 1-Reinsert

The One-Reinsert algorithm has the potential of moving shipments between more than two

routes. In this algorithm, an “outliner” stop in each route is determined and removed. The out-

liner is the stop that has the furthest distance from its previous and next stop in the current route.

If the summation of the distance from a stop to its previous stop and its distance to the next stop

is greater than a certain value it will be considered as the outliner and be removed from the route.

The value is calculated by multiplying a user-defined factor by the average distance of the stops

in their current route from their previous and next stops. After the outliners are removed from

their routes, the algorithm tries to place each of them into the best position of the best route with

the largest savings.

122

4.4.2.2 Intra-Route Improvement Algorithms

In this research, the route improvement algorithms are the ones that are performed in only one

route a solution by altering the sequence of orders wile maintaining the feasibility of the route.

These algorithms are applied to each route of the solution until no improvement is made by any

of them. Currently, we use three route improvement algorithms in the same order that are de-

scribed as follows.

4.4.2.2.1 Minimize Cost

This algorithm, as described in Chapter 3, Section 3.4.3.4, uses a clustering method referred to as

K-means Cluster to divide the order lines of a route to a user-defined number of subsets (clusters)

of lines with few elements. Then, an extensive search is implemented for each cluster.

4.4.2.2.2 Break Cross

This algorithm is described in details in Chapter 3, Section 3.4.3.5. This algorithm is designed

to break the intersection of two lines in a route. In general, a route will improve regarding total

distance by breaking the intersection between lines. For example, in Figure 4.2 (a) the two lines

a−d and b−c are crossed each other. Breaking this cross, as shown in Figure 4.2 (b), decreases

the total distance of the route.

Figure 4.2: Breaking Line Cross

4.4.2.2.3 1-in-Move

As stated in Chapter 3, Section 3.4.3.6, the 1-in-Move algorithm moves a line in a single route to

find the position with the minimum cost. A line is selected and placed in every possible position

123

in a route. This algorithm selects the lines one by one as their sequence in the route.

4.5 Heuristic Algorithms Analysis

In this section, we analyze the heuristic algorithms that are explained in Section 4.4, regarding

their impact on the quality of the solutions and running time of the ETP optimization process.

This analysis gives us valuable information on how to choose the constructive and improvement

algorithms especially when we want to optimize large datasets of the real-world problems. We

use the VRP variant, the PHBD1, and the benchmark instances, the modified Breedam’s bench-

mark (Van Breedam, 1994) in Chapter 3 (for more detail see Appendix 3.A) to analyze each algo-

rithm’s impacts.

Table 4.1: The Impact of the Nearest Neighbor and Heuristics Algorithms on the Modified
Breedam’s Instances

Improvement Heuristics

Nearest Neighbor Inter-Route Intra-Route

Instance
ID Cost Time

Cost
Improv.

Time
Cost

Improv.
Time

Total
Cost

Total
Time

1P1 1166.1 0.3 s 90.2 0.7 s -4.7 0.1 s 1071.2 2.0 s
2P1 1147.7 0.9 s 57.4 1.8 s 0.0 0.7 s 1090.3 3.4 s
3P1 1144.4 0.9 s 19.8 1.7 s 0.0 0.3 s 1124.7 2.9 s
4P1 1110.1 0.9 s 0.0 1.1 s 0.0 0.1 s 1110.1 2.1 s
5P1 1115.9 0.9 s 0.0 1.2 s 0.0 0.1 s 1115.9 2.2 s
6P1 1167.0 0.9 s 36.3 1.8 s 0.0 0.4 s 1130.7 3.1 s
7P1 1368.2 0.7 s 49.8 1.8 s 16.7 0.3 s 1301.7 2.8 s
8P1 1538.0 0.7 s 133.2 2.6 s 27.9 0.4 s 1376.9 3.7 s
9P1 1692.7 0.8 s 160.0 3.9 s 11.1 0.7 s 1521.6 5.4 s
10P1 1305.7 0.9 s 116.2 3.7 s 7.2 0.7 s 1182.3 5.3 s
11P1 1562.2 0.8 s 357.7 2.9 s 0.0 0.4 s 1204.5 4.1 s
12P1 1694.4 1.0 s 290.3 5.8 s 3.8 1.3 s 1400.3 8.1 s
13P1 1335.8 0.3 s 81.2 2.6 s 67.6 0.3 s 1187.0 3.2 s
14P1 1251 0.3 s 68.1 2.3 s 49.5 0.3 s 1133.4 2.9 s
15P1 1423.3 0.3 s 124.5 5.6 s 8.2 0.7 s 1290.6 6.6 s
16P1 819.9 1.0 s 0.0 2.1 s 45.2 0.5 s 774.7 3.6 s
17P1 815.0 0.9 s 0.0 1.7 s 8.5 0.3 s 806.5 2.9 s
18P1 970.8 0.8 s 0.0 1.8 s 7.2 0.2 s 963.6 2.8 s

Continued on the next page

124

Table 4.1 – Continued from the previous page

Improvement Heuristics

Nearest Neighbor Inter-Route Intra-Route

Instance
ID Cost Time

Cost
Improv.

Time
Cost

Improv.
Time

Total
Cost

Total
Time

19P1 702.4 1.0 s 0.0 1.5 s 0.0 0.2 s 702.4 2.7 s
20P1 675.3 1.1 s 0.0 2.5 s 4.7 0.4 s 670.6 4.0 s
21P1 811.7 0.9 s 0.0 0.9 s 0.0 0.2 s 811.7 2.0 s
22P1 777.0 0.9 s 0.0 0.8 s 0.0 0.1 s 777.0 1.8 s
23P1 849.9 0.9 s 3.5 1.9 s 13.0 0.3 s 833.4 3.1 s
24P1 1119.3 0.9 s 73.7 4.8 s 6.2 0.9 s 1039.4 6.6 s
25P1 669.7 1.1 s 0.0 1.0 s 0.0 0.2 s 669.7 2.3 s
26P1 721.3 0.9 s 0.0 0.9 s 0.0 0.2 s 721.3 2.0 s
27P1 907.1 0.9 s 0.0 1.9 s 13.6 0.3 s 893.5 3.1 s
28P1 910.4 0.9 s 36.0 2.9 s 46.4 0.6 s 828.0 4.4 s
29P1 922.7 0.9 s 34.5 3.2 s 9.2 0.6 s 879.0 4.7 s
30P1 1103.7 0.9 s 34.7 3.3 s 22.7 0.5 s 1046.3 4.7 s
31P1 673.8 0.7 s 89.3 3.1 s 1.0 0.5 s 583.5 4.3 s
32P1 781.5 0.8 s 0.0 1.8 s 24.3 0.3 s 757.2 2.9 s
33P1 957.8 0.9 s 0.0 2.0 s 8.1 0.4 s 949.7 3.3 s
34P1 679.1 0.5 s 0.0 1.5 s 0.0 0.1 s 679.1 2.1 s
35P1 734.9 0.6 s 41.9 3.3 s 9.8 0.4 s 683.2 4.3 s
36P1 976.1 0.9 s 43.6 3.2 s 0.0 0.6 s 932.5 4.7 s
37P1 985.4 0.8 s 187.2 6.2 s 0.0 1.1 s 798.2 8.1 s
38P1 913.2 0.8 s 24.3 3.8 s 9.9 0.7 s 879.0 5.3 s
39P1 1059.3 0.8 s 97.5 2.6 s 24.7 0.5 s 937.1 3.9 s
40P1 1032.2 1.0 s 152.1 5.1 s 28.8 0.9 s 851.3 7.0 s
41P1 996.5 0.9 s 22.1 1.9 s 5.7 0.4 s 968.7 3.2 s
42P1 1036.6 0.9 s 0.0 1.9 s 0.9 0.3 s 1035.7 3.1 s
43P1 922.1 0.3 s 91.9 4.0 s 2.4 0.6 s 827.8 4.9 s
44P1 1022.9 0.7 s 76.4 4.0 s 48.9 0.7 s 897.6 5.4 s
45P1 1214.8 0.7 s 84.8 3.4 s 20.1 0.5 s 1109.9 4.6 s
46P1 785.8 0.9 s 0.1 1.7 s 8.5 0.2 s 777.2 2.8 s
47P1 710.0 0.7 s 0.0 0.8 s 0.0 0.1 s 710.0 1.6 s
48P1 870.9 1.0 s 0.0 0.9 s 0.0 0.2 s 870.9 2.1 s
49P1 770.9 0.6 s 84.0 1.8 s 12.1 0.3 s 674.8 2.7 s
50P1 795.9 0.6 s 46.1 1.8 s 0.0 0.2 s 749.8 2.6 s
51P1 943.5 0.9 s 18.8 2.0 s 0.0 0.4 s 924.7 3.3 s
52P1 1100.7 0.5 s 101.8 1.7 s 2.3 0.2 s 996.6 2.4 s
53P1 1349.8 0.5 s 210.2 1.7 s 37.1 0.3 s 1102.5 2.5 s
54P1 1557.3 0.6 s 100.6 1.9 s 13.1 0.3 s 1443.6 2.8 s
55P1 1234.1 0.7 s 171.0 1.9 s 17.6 0.3 s 1045.5 2.9 s
56P1 1256.7 0.6 s 82.7 1.8 s 22.1 0.3 s 1151.9 2.7 s
57P1 1476.3 0.8 s 122.3 4.1 s 13.5 0.8 s 1340.5 5.7 s

Continued on the next page

125

Table 4.1 – Continued from the previous page

Improvement Heuristics

Nearest Neighbor Inter-Route Intra-Route

Instance
ID Cost Time

Cost
Improv.

Time
Cost

Improv.
Time

Total
Cost

Total
Time

58P1 1057.7 0.3 s 0.0 1.1 s 0.0 0.1 s 1057.7 1.5 s
59P1 1085.0 0.3 s 48.5 1.7 s 4.6 0.3 s 1031.9 2.3 s
60P1 1336.2 0.3 s 72.7 1.7 s 22.9 0.2 s 1240.6 2.2 s

Average: 1051.9 0.8 s 59.3 2.4 s 11.7 0.4 s 977.8 3.6 s

As shown in the above table, the average of improvements made by the Inter-Route im-

provement (Live Move, Line Exchange and Line Reinsert algorithms) is 59.3 or 5.6% of the av-

erage total cost of the constructive NNS algorithm in only average time of 2.4 seconds. On the

other hand, the Intra-Route algorithms (Minimize Cost, 1-in-Move and Break Cross algorithms),

has made an 11.7 improvement (1.1%) in the objective function but in a very short amount of

time. In total the improvement algorithms improved the total cost by 6.7% in average time of 2.8

seconds. As we can see the Inter-Route improvement algorithms take 2.4 seconds versus the con

algorithm that just needs 0.8 seconds in average to create solutions. That means in the improve-

ment step we need three times more time in average to improve the solution.

A similar statistics for the impact of improvement algorithms on the NNS, as presented in

Table 4.1, is provided for the CLK algorithms in Table 4.2.

Table 4.2: The Impact of the Clarke-Wright and Improvement Heuristics on the Modified
Breedam’s Instances

Improvement Heuristics

Clarke-Wright Inter-Route Intra-Route

Instance
ID Cost Time

Cost
Improv.

Time
Cost

Improv.
Time

Total
Cost

Total
Time

1P1 1166.8 1.2 s 64.2 1.3 s 0.0 0.2 s 1102.6 2.7 s
2P1 1158.5 0.7 s 49.2 1.6 s 0.0 0.2 s 1109.3 2.5 s

Continued on the next page

126

Table 4.2 – Continued from the previous page

Improvement Heuristics

Clarke-Wright Inter-Route Intra-Route

Instance
ID Cost Time

Cost
Improv.

Time
Cost

Improv.
Time

Total
Cost

Total
Time

3P1 1186.1 1.3 s 61.5 3.7 s 0.0 0.8 s 1124.6 5.8 s
4P1 1000.7 1.1 s 0.0 0.9 s 0.0 0.1 s 1000.7 2.1 s
5P1 874.0 1.3 s 0.0 0.8 s 0.0 0.1 s 874.0 2.2 s
6P1 1046.8 1.2 s 0.0 0.8 s 0.0 0.1 s 1046.8 2.1 s
7P1 1316.3 0.8 s 53.5 1.8 s 7.3 0.2 s 1255.5 2.8 s
8P1 1340.2 1.1 s 0.0 0.8 s 0.0 0.0 s 1340.2 1.9 s
9P1 1483.6 1.2 s 0.0 0.8 s 0.0 0.1 s 1483.6 2.1 s
10P1 1179.3 1.0 s 40.8 3.1 s 0.0 0.4 s 1138.5 4.5 s
11P1 1314.8 0.6 s 33.9 3.3 s 5.7 0.4 s 1275.2 4.3 s
12P1 1353.9 1.4 s 17.1 1.8 s 0.0 0.2 s 1336.8 3.4 s
13P1 1146.9 0.7 s 42.6 1.6 s 0.0 0.3 s 1104.3 2.6 s
14P1 1136.0 0.7 s 0.0 0.8 s 0.0 0.1 s 1136.0 1.6 s
15P1 1332.8 0.8 s 13.0 1.7 s 0.0 0.2 s 1319.8 2.7 s
16P1 882.0 1.4 s 12.1 1.6 s 13.3 0.2 s 856.6 3.2 s
17P1 806.5 1.4 s 0.0 0.9 s 0.0 0.2 s 806.5 2.5 s
18P1 963.6 1.3 s 0.0 0.8 s 0.0 0.2 s 963.6 2.3 s
19P1 745.1 1.3 s 0.0 1.3 s 0.0 0.1 s 745.1 2.7 s
20P1 702.6 1.3 s 0.0 0.7 s 0.0 0.1 s 702.6 2.1 s
21P1 829.3 1.4 s 0.0 1.0 s 0.0 0.2 s 829.3 2.6 s
22P1 834.4 1.2 s 0.0 0.8 s 0.0 0.0 s 834.4 2.0 s
23P1 926.6 1.3 s 0.0 0.7 s 0.0 0.0 s 926.6 2.0 s
24P1 1023.2 1.3 s 10.0 1.7 s 0.0 0.2 s 1013.2 3.2 s
25P1 669.7 1.3 s 0.0 0.8 s 0.0 0.2 s 669.7 2.3 s
26P1 721.3 1.3 s 0.0 0.8 s 0.0 0.2 s 721.3 2.3 s
27P1 893.5 1.3 s 0.0 0.8 s 0.0 0.2 s 893.5 2.3 s
28P1 828.0 1.2 s 0.0 0.8 s 0.0 0.2 s 828.0 2.2 s
29P1 879.0 1.4 s 0.0 0.8 s 0.0 0.1 s 879.0 2.3 s
30P1 1171.0 1.0 s 3.7 1.9 s 0.0 0.2 s 1167.3 3.1 s
31P1 542.6 1.1 s 0.0 0.9 s 0.0 0.1 s 542.6 2.1 s
32P1 678.2 1.1 s 0.0 0.9 s 0.0 0.2 s 678.2 2.2 s
33P1 997.8 1.1 s 5.0 1.6 s 0.0 0.2 s 992.8 2.9 s
34P1 571.9 0.8 s 0.0 0.8 s 0.0 0.1 s 571.9 1.7 s
35P1 656.6 0.9 s 10.2 1.8 s 0.0 0.2 s 646.4 2.9 s
36P1 883.6 0.9 s 13.8 1.9 s 0.0 0.2 s 869.8 3 s
37P1 722.3 1.1 s 0.0 0.8 s 0.0 0.1 s 722.3 2.0 s
38P1 800.3 1.1 s 21.4 3.2 s 1.9 0.3 s 777.0 4.6 s
39P1 976.2 1.2 s 37.1 3.1 s 2.0 0.7 s 937.1 5 s
40P1 783.5 1.2 s 0.0 1.0 s 0.0 0.1 s 783.5 2.3 s
41P1 871.1 1.3 s 0.0 0.9 s 0.0 0.2 s 871.1 2.4 s

Continued on the next page

127

Table 4.2 – Continued from the previous page

Improvement Heuristics

Clarke-Wright Inter-Route Intra-Route

Instance
ID Cost Time

Cost
Improv.

Time
Cost

Improv.
Time

Total
Cost

Total
Time

42P1 1110.6 1.2 s 0.0 0.8 s 0.0 0.1 s 1110.6 2.1 s
43P1 794.4 1.1 s 0.0 0.9 s 0.0 0.1 s 794.4 2.1 s
44P1 935.1 1.1 s 0.0 0.8 s 0.0 0.1 s 935.1 2.0 s
45P1 1156.5 1.1 s 0.0 1.0 s 0.0 0.1 s 1156.5 2.2 s
46P1 784.2 1.2 s 0.0 0.8 s 0.0 0.1 s 784.2 2.1 s
47P1 710.0 1.1 s 0.0 0.9 s 0.0 0.2 s 710.0 2.2 s
48P1 870.9 1.3 s 0.0 0.9 s 0.0 0.2 s 870.9 2.4 s
49P1 611.8 0.7 s 0.0 0.7 s 0.0 0.1 s 611.8 1.5 s
50P1 710.7 0.9 s 18.6 1.9 s 6.1 0.4 s 686.0 3.2 s
51P1 1019.9 0.9 s 4.2 1.8 s 0.0 0.2 s 1015.7 2.9 s
52P1 984.4 0.6 s 0.0 0.7 s 0.0 0.1 s 984.4 1.4 s
53P1 973.0 0.9 s 0.0 0.9 s 0.0 0.1 s 973.0 1.9 s
54P1 1262.7 0.8 s 0.0 0.9 s 0.0 0.1 s 1262.7 1.8 s
55P1 1082.5 1.1 s 15.5 1.8 s 0.0 0.2 s 1067.0 3.1 s
56P1 1062.9 0.7 s 0.0 0.7 s 0.0 0.1 s 1062.9 1.5 s
57P1 1312.5 1.3 s 0.0 0.8 s 0.0 0.1 s 1312.5 2.2 s
58P1 885.6 0.8 s 1.6 1.8 s 5.4 0.3 s 878.6 2.9 s
59P1 1005.0 0.7 s 0.0 0.9 s 0.0 0.1 s 1005.0 1.7 s
60P1 1306.8 0.7 s 14.9 3.6 s 30.3 0.4 s 1261.6 4.7 s

Average: 966.3 1.1 s 9.1 1.3 s 1.2 0.2 s 956.0 2.6 s

4.6 A Genetic Algorithm

In this section, a Genetic Algorithm is proposed that follows the route first, cluster second pro-

cedure (Beasley, 1983) to create the chromosomes. Most of the initial population are generated

randomly, and the remaining are created by the constructive heuristic algorithms in ETP (the

modified Clarke-Wright and Nearest Neighbors) and another random greedy selection algorithm

within specified time and distance. In each generation, new chromosome are produced using the

crossover and mutation operations. The crossover operation creates two offspring out of two par-

ents which have been used by a tournament selection from the current population. After choosing

the parents, there will be more chance to move the best route from one parent to another by a ruin

128

and recreate procedure or selecting the worst routes in one parent and add its nodes to the other

parent. The mutation is performed by one parent using the previously developed improvement

algorithms in the ETP optimization engine.

This GA is designed in a way that can be applied to a variety of a VRP variants. The pro-

posed GA is based on the work of Ombuki et al. (2006). Each component of the GA is explained

in details in the following sections.

4.6.1 Chromosome Representation

We used a route first cluster second approach to create the solutions. Each solution in a genera-

tion is represented by a chromosome. A chromosome is a sequence of all the nodes in the net-

work which will be divided to some routes later. We begin building up the routes by starting from

the first node in the sequence and adding it to a vehicle. We keep adding the nodes in thew se-

quence one by one to the current route until the capacity of the associated vehicle is exhausted.

Then we start a new route by adding the next node in the sequence to the new route. We continue

this process until add the last node to a route. This process is illustrated in Figure 4.3.

(a) Route Sequence

(b) Route Clusters

Figure 4.3: The Chromosome Representation

In Figure 4.3 (a), the sequence of the potential routes of a solution is presented. We start

from node 1 and add it to route 1 without violating any constraints in the model. Then, nodes

5 and 3 are added to route 1 while maintaining the feasibility of the route. Next, we try to add

node 8 to route 1 but it violates a constraint (could be any constraint such as the capacity of the

129

vehicle). So, we stop adding any more nodes to route 1 and start route 2. Route 2 in created by

adding nodes 8, 2, 6, 10, and 4 to it, respectively. Route 3 is formed the same way as the others

by adding nodes 9 and 7, respectively (Figure 4.3 (b)).

4.6.2 The Initial Population

The most of the chromosomes in the initial population is generated randomly. Two chromosomes

are created using the two constructive algorithms in our optimization tool, the Clarke-Wright and

the Nearest Neighbor algorithms. The rest of the initial population is generated by producing a

random sequence of the nodes in the network and clustering the routes as explained in Section

4.6.1, repeatedly, until we have the desired number of feasible chromosomes.

4.6.3 Selection Strategy

In each generation, the survived chromosomes become the next generation’s population. The evo-

lution stops when a stopping criteria has met. The population in current generation consists of

the chromosomes from previous generation plus the ones we produced in this generation. In each

generation, the new chromosomes are produced by the crossover and mutation operations. In this

study, the crossover operates on two parents and produces two children and the mutation on one

parent and create one child. Two types of selection strategies are used in this GA for: i) selecting

parent(s) and ii) selecting surviving chromosomes which is explained as follows.

4.6.3.1 Selecting Parent(s)

In this GA, we use two selections method to select parent(s) for the crossover and mutation oper-

ations: i) random selection and ii) tournament selection. In random selection, we just randomly

select parent(s) from the current population. In tournament selection, two parameters are in-

volved: i) tournament size and ii) elite cutoff ∈ [0,1]. The default values of the tournament size

and elite cutoff parameters are 4 and 0.8, respectively. First, we select tournament size number

of chromosomes as the parent candidates. Second, we generate a number between 0 and 1 ran-

130

domly. If the generated number is less than the elite cutoff we select the chromosome with the

lowest cost from the candidates. Otherwise, we randomly select a chromosome from the candi-

dates. We repeat these steps until we select as many parents as we need.

4.6.3.2 Selecting The Surviving Chromosomes

To Select the surviving chromosomes to go to the next generation the current population we need

to set a value for two out of the following three parameters: i) elite percent, ii) crossover percent,

and iii) mutation percent because elite percent + crossover percent + mutation percent = 100.

The default values for these parameters are 10, 80 and 10, respectively. The elite percent of the

best chromosomes with the lowest cost from current population go straightly to the next genera-

tion. The crossover and mutation operations produce the crossover percent and mutation percent

of the next generation, respectively.

4.6.4 Crossover

The crossover operation is responsible for the diversity of chromosomes in each generation. With

this operation, the feasible solution area is widely explored not to get trapped in a local optima.

The crossover needs two chromosomes as the parents to breed and produce two new chromo-

somes as the children. The crossover algorithm’s pseudo-code is as follows.

131

Crossover (parent1, parent2)

{

Step 1 Randomly select a route (route2) from parent2.

Step 2 Create a sequence of shipments (sequence1) by removing the route clus-
ters of parent1 (similar to Figure 4.3 (a)).

Step 3 Remove the shipments (lines) of route2 from sequence1.

Step 4 Insert the shipments of route2 into sequence1.

Step 5 Create a child (child1) by clustering the sequence1.

Step 6 Switch parent1 and parent2 and repeat steps 1 to 5 to create offspring2.

Step 7 Return offspring1 and offspring2.

}

In this algorithm, there are three different insert method to find the best position for the

shipments of route2 to sequence1 in step 4. These methods are i) exhaustive, ii) semi-exhaustive,

and iii) random search. In the exhaustive search, every position in sequence1 is tried to add each

shipment of route2 and the best position with the largest saving is selected. In the semi-exhaustive

search, we keep the sequence of shipments in route2 and try to find the best position in sequence1

for all them at once. It means we search for the best position for route2 in sequence1 instead of

each shipment of route2. In random search which is the fastest method, first we set a value for the

crossover random num parameter with the default value of the number of routes in parent1. Sec-

ond, similar to the semi-exhaustive search, we try to find the best position for route2 only for the

“crossover random num” number of randomly selected positions in sequence1. In this GA, the

default insert method for step 4 of the crossover operation is the random search method.

4.6.5 Mutation

In this GA, the mutation operation is used to improve the quality of the chromosomes in each

generation. We first select a parent as explained in Section 4.6.3.1 and then perform the improve-

ment algorithms in our optimization tool as described in Section 4.4.2 on it. If the number of

132

shipments is less than 500 we execute all the line move and stop move improvement algorithms

on the selected parent to reduce the total cost of the child as much as possible. Otherwise, we

use the results of analysis of the improvement algorithms in Section 4.5 to choose the best algo-

rithm(s) to apply on the parent.

4.6.6 The Termination Criteria

Four criteria are considered to terminate the GA. The criteria are considered in the order that fol-

lows. A violation of any criteria terminates the algorithm. These criteria are listed as follows.

1. Maximum run time: After each generation, the GA checks the running time and terminates

the process if the elapsed time is greater than the maximum run time. The default value for

this parameter is 60 minutes.

2. Maximum number of generations: The GA terminates after the maximum number of gen-

eration is exceeded. The default value for this parameter is 50.

3. Maximum number of attempts in producing different offspring: The crossover and mu-

tation operators in the GA are designed to select different parent(s). These operators are

executed until they produce the number of required new solutions different than the other

solutions in the current generation. The default value for this parameter is 10 times the pop-

ulation size.

4. The number of consecutive generations without any improvement in the objective function

of the best solution. The default value for this parameter is 2.

4.7 The GA Experimental Results

In this section, we report the performance of the GA versus CPLEX and the heuristic methods

in ETP. The result of the comparison of the objective function (total cost) and running time on

a subset of the benchmark instances in Chapter 3 (43 out of 60) are reported in Table 4.3. These

133

benchmark instances include those for which heuristic methods in ETP did not outperform CPLEX

(20 instances). More specifically, these instances have a non-negative values in the GapNC or

GapCC columns in Table 3.7. Additional benchmark instances are considered to increase the

validity of the derived results. In Table 4.3, the gap between the objective function of ETP and

CPLEX is shown by GapEC and the gap between the GA and CPLEX is shown by GapGC. Their

expressions are as follows.

GapEC =
ObjETP−ObjCPLEX

ObjCPLEX
×100% (4.1)

GapGC =
ObjGA−ObjCPLEX

ObjCPLEX
×100% (4.2)

Where ObjETP, ObjCPLEX and ObjGA are the total cost of the best solution obtained by ETP,

CPLEX and GA, respectively.

Table 4.3: Performance Comparison, ETP vs. CPLEX vs. GA (default settings as in Table 4.4)

ETP CPLEX GA

Instance ID Obj. Time GapEC Obj. Time GapGC Obj. Time

1P1 1071.2 2.0 s 1.3% 1057.1 8 h 0.0% 1057.1 1116.3 s
2P1 1090.3 3.4 s 2.8% 1060.1 8 h 0.0% 1060.0 1255.6 s
3P1 1124.6 2.9 s 0.0% 1124.7 8 h 0.0% 1124.6 2016.5 s
4P1 1110.1 2.1 s 9.6% 1013.0 8 h -10.5% 906.2 1018.3 s
5P1 1115.9 2.2 s 20.4% 927.1 8 h -6.8% 864.5 1003.2 s
8P1 1376.9 3.7 s -1.3% 1394.7 8 h -9.7% 1259.2 866.5 s
9P1 1521.6 5.4 s -0.1% 1523.8 8 h -9.8% 1374.6 949.9 s
10P1 1182.3 5.3 s 1.4% 1165.7 8 h -3.5% 1125.0 1089.7 s
11P1 1204.5 4.1 s -12.2% 1371.3 8 h -14.6% 1170.9 1185.8 s
13P1 1187.0 3.2 s 16.4% 1020.1 8 h 1.9% 1039.2 1438.0 s
14P1 1133.4 2.9 s -5.1% 1194.6 8 h -5.1% 1133.4 1047.2 s
17P1 806.5 2.9 s -1.7% 820.6 8 h -1.7% 806.5 1338.1 s
19P1 702.4 2.7 s 5.1% 668.6 8 h -0.9% 662.8 1539.2 s
21P1 811.7 2.0 s -3.2% 838.4 8 h -4.1% 803.9 1420.5 s
25P1 669.7 2.3 s -1.7% 681.4 8 h -1.7% 669.7 1487.4 s
28P1 828.0 4.4 s -1.6% 841.7 8 h -1.6% 828.0 1862.0 s
31P1 583.5 4.3 s 7.5% 542.6 8 h 0.0% 542.6 693.3 s
32P1 757.2 2.9 s 10.7% 683.9 8 h -0.8% 678.2 834.6 s

Continued on the next page

134

Table 4.3 – Continued from previous page

ETP CPLEX GA

Instance ID Obj. Time GapEC Obj. Time GapGC Obj. Time

34P1 679.1 2.1 s 29.8% 523.2 8 h 0.0% 523.2 789.7 s
35P1 683.2 4.3 s -4.5% 715.2 8 h -8.2% 656.6 649.1 s
36P1 932.5 4.7 s -1.7% 948.9 8 h -9.4% 860.1 780.0 s
37P1 798.2 8.1 s 9.6% 728.5 8 h -0.9% 722.3 1063.9 s
38P1 879.0 5.3 s 4.7% 839.6 8 h -4.7% 800.3 849.5 s
40P1 851.3 7.0 s -2.7% 875.2 8 h -10.8% 780.9 777.2 s
41P1 968.7 3.2 s 14.4% 846.8 8 h 1.8% 862.0 943.1 s
46P1 777.2 2.8 s -0.6% 781.7 8 h -6.6% 730.4 1110.6 s
47P1 710.0 1.6 s 0.0% 710.1 8 h 0.0% 710.0 2270.9 s
48P1 870.9 2.1 s 0.0% 871.0 8 h 0.0% 870.9 3306.7 s
49P1 674.8 2.7 s 8.6% 621.1 8 h -1.5% 611.8 953.9 s
51P1 924.7 3.3 s -2.9% 952.1 8 h -6.3% 892.2 1021.3 s
54P1 1443.6 2.8 s -6.2% 1538.5 8 h -23.6% 1175.9 706.0 s
55P1 1045.5 2.9 s -4.4% 1094.1 8 h -13.3% 948.3 1102.1 s
58P1 1057.7 1.5 s 3.6% 1021.1 8 h -14.0% 878.6 1422.6 s

Average: 956.8 3.4 s 2.9% 939.3 8 h -5.0% 882.7 1209.4 s

In Table 4.3, the performance of ETP and the GA is compared with CPLEX regarding both ob-

jective function and running time. GapEC and GapGC columns show the percentage of difference

in the objective function of CPLEX compared to ETP and the GA, respectively. Negative signs

indicate improvement. The maximum improvement (or minimum gap%) in the total cost of the

instances are shown in bold.

According to the results in Table 4.3, the GA outperforms CPLEX in almost all the bench-

mark instances (except 13P1 and 41P1, shown in highlighted gray, in which the gap is less than

2%) regarding objective function. The GA is always expected to obtain better or at least not

worse solutions than ETP. To optimize a network ETP either uses the NNS or CLK to construct

a solution and then perform the improvement algorithms on the solution. In this GA, as men-

tioned in Section 4.6.2, two of the initial solutions of are the NNS’s and CLK’s solutions. Also,

the GA uses all the improvement methods in the improvement step of ETP in its mutation process

(Section 4.6.5). Therefore, the GA’s solution is most likely to be at least as good as ETP unless

135

the solutions of NNS and CLK are not selected to mutate in any generation. The performance of

the GA is also graphically represented in Figure 4.4.

Figure 4.4: Performance (obj. function) of ETP vs. CPLEX vs. GA (default settings)

According to Figure 4.4, the GA performs well in finding high-quality solutions for the

benchmark instances. The weak point of the GA is the running time which can make solving

real-world problems impractical. In the following section we consider the components of the GA

in each generation and determine the best parameter settings for reducing the running time.

4.7.1 GA Parameter Settings Analysis

The default parameter settings for all the benchmark instances are stated in Table 4.4. These pa-

rameters are derived from executing the GA on a subset of benchmark instances.

136

Table 4.4: Default Parameter Setting of the GA

Parameter Value

of generations 50

Population size 50

Crossover 80%

Mutation 10%

Max run time 60 min

According to Table 4.4, 80% of the population of the next generation are created by crossover

and 10% by mutation. The remaining 10% are the best chromosomes of the current generation

that move directly to the next. The percentage of the population in each generation that are pro-

duced by mutation is set to only 10% to reduce the total time of the GA. According to the anal-

ysis of the heuristic methods in Tables 4.1 and 4.2, the improvement algorithms take a large pro-

portion of the total running time after both NNS and CLK constructive heuristics (78% and 58%,

respectively). As mentioned in Section 4.6.5, we use the same improvement algorithms to mutate

chromosomes. Therefore, reducing the number of mutant chromosomes will reduce the running

time of the GA significantly.

In Table 4.5, the performance of each component of the GA (initial population, crossover,

and mutation) are reported. In this table, the best objective function of the initial population and

the run time required to create the chromosomes are shown. The same information about the

crossover and mutation process is also provided.

Table 4.5: The Performance of the Components of GA (default settings as in Table 4.4)

Instance Ini. Population Crossover Mutation GA

ID Best Obj. Time Best Obj. Time Best Obj. Time # Gen. Best Obj. Time

1P1 1179.3 1.4 s 1681.5 0.3 s 1057.1 126.9 s 6 1057.1 127.2 s
2P1 1117.0 1.7 s 1534.8 0.3 s 1060.0 14.1 s 1 1060.0 14.5 s
3P1 1144.4 1.4 s 1745.0 0.3 s 1124.6 33.1 s 1 1124.6 33.4 s
4P1 1000.7 1.7 s 911.7 8.0 s 906.2 410.0 s 21 906.2 418.1 s
5P1 874.0 1.9 s 870.4 5.2 s 864.5 264.2 s 15 864.5 269.4 s
8P1 1340.2 1.4 s 1259.2 6.7 s 1274.4 266.9 s 18 1259.2 273.6 s

Continued on the next page

137

Table 4.5 – Continued from previous page

Instance Ini. Population Crossover Mutation GA

ID Best Obj. Time Best Obj. Time Best Obj. Time # Gen. Best Obj. Time

9P1 1483.6 1.6 s 1374.6 5.0 s 1382.4 190.1 s 13 1374.6 215.1 s
10P1 1179.3 1.4 s 1681.5 0.3 s 1125.0 20.4 s 1 1125.0 20.7 s
11P1 1314.8 1.5 s 1794.0 0.3 s 1170.9 19.5 s 1 1170.9 19.8 s
13P1 1146.9 1.3 s 1581.2 0.3 s 1039.2 18.9 s 1 1039.2 19.2 s
14P1 1136.0 1.3 s 1687.2 0.3 s 1133.4 16.2 s 1 1133.4 16.5 s
19P1 702.4 1.5 s 662.8 2.7 s 665.5 109.4 s 8 662.8 112.1 s
21P1 811.7 1.5 s 1365.9 0.3 s 803.9 20.7 s 1 803.9 21.1 s
34P1 571.9 1.2 s 523.2 7.5 s 548.7 283.3 s 21 523.2 290.8 s
36P1 883.6 1.4 s 867.7 3.1 s 860.1 127.6 s 9 860.1 130.7 s
40P1 783.5 1.3 s 780.9 2.6 s 781.1 97.2 s 8 780.9 99.9 s
41P1 871.1 1.4 s 862.0 1.6 s 880.3 75.4 s 5 862.0 77.0 s
46P1 784.2 1.5 s 763.7 1.0 s 730.4 56.3 s 3 730.4 57.3 s
51P1 943.2 1.9 s 892.2 3.4 s 895.5 243.1 s 8 892.2 246.5 s
54P1 1262.7 1.4 s 1176.8 5.2 s 1175.9 76.0 s 15 1175.9 194.6 s
55P1 1053.6 1.9 s 961.1 11.6 s 948.3 445.0 s 21 948.3 456.6 s
58P1 885.6 1.6 s 878.6 1.0 s 884.0 100.4 s 2 878.6 101.4 s

Average: 1021.4 1.5 s 1175.3 3.0 s 968.7 137.0 s 8.2 965.1 146.2 s

The “#Gen.” column in Table 4.5 shows the last generation in which the GA solution im-

proved. For example, in 1P1 instance, we found the best solution of the GA in the first generation

after initialization. In this instance, the crossover time is 0.3 seconds and the mutation time is

20.4 seconds. In instance 15P1 the procedure executed for 15 generations before finding the best

solution. Implementing the crossover and mutation in these generations took 5.2 and 264.2 sec-

onds, respectively. In some benchmark instances, such as instance 31P1, the initial population

contains the best solution of GA and the remaining 50 generations do not improve this solution.

These instances are not reported in Table 4.5 to prevent misleading information on the average

values provided in the last row of the table.

Note that, unlike in the mutation process, the solution after crossover can be worse than the

parents regarding the objective function. In Table 4.5, these instances are shown in highlighted

gray. In the GA, the chromosomes that are produced by crossover are needed for exploring the

138

feasible region and skipping from local optima. In Table 4.5, the best objective function found

by the crossover or mutation process is shown in bold. In 8 out of 22 instances (36%) the best

solution is found by the crossover operator and in the remaining by mutation.

On average, creating the initial population takes only 1.5 seconds. The crossover is much

faster than the mutation process. However, the average total cost of the best solutions found by

mutation is 17.6% less than crossover. The running time of crossover with 80% contribution in

creation of the next generations is 0.4 seconds per generation, on average. The average time of

mutation per generation is 16.7 seconds with the GA parameters stated in Table 4.4. On average,

the best solutions are found after 8.2 generations. The maximum number of generations required

to obtain the best found solution is 21 (in 4P1, 34P1 and 55P1 instances). In instance 34P1, the

21 generations require 290.8 seconds versus 789.7 required to execute all 50 generations (see

Table 4.3). By reducing the number of generations from 50 to 21 (58%), we can save 63% in run-

ning time. This almost linear relationship between the number of generation and the total running

time holds for all other instances. Therefore, to reduce the time required by the GA to solve large

real-world problems, the most sensitive parameters are the number of generations and the muta-

tion percentage.

So far in this section we have provided an analysis on the three parameters of the GA: i)

the number of generations, ii) the crossover and iii) the mutation percentage of the GA. In Table

4.6, we analyze the impact of the last parameter of the GA, the population size, on the quality

and running time of the problem instances in Table 4.5. The population size of each generation is

reduced to 25 (from 50) while the other parameters are set to their default values as Table 4.4.

Table 4.6: The Impact of the Population Size on the Performance of GA (with default values for
other parameters as in Table 4.4)

Instance Pop. Size = 50 Pop. Size = 25 Pop. Size = 10

ID # Gen. Best Obj. Time # Gen. Best Obj. Time # Gen. Best Obj. Time

1P1 6 1057.1 1116.3 s 4 1057.1 496.6 s 25 1057.1 104.2 s
2P1 1 1060.0 1255.6 s 1 1060.0 478.5 s 2 1060.0 215.1 s

Continued on the next page

139

Table 4.6 – Continued from previous page

Instance Pop. Size = 50 Pop. Size = 25 Pop. Size = 10

ID # Gen. Best Obj. Time # Gen. Best Obj. Time # Gen. Best Obj. Time

3P1 1 1124.6 2016.5 s 1 1124.6 464.0 s 2 1124.6 205.0 s
8P1 18 1259.2 866.5 s 5 1259.2 380.0 s 21 1259.2 189.2 s
9P1 13 1374.6 949.9 s 6 1381.9 447.1 s 48 1374.6 198.1 s

10P1 1 1125.0 1089.7 s 12 1125.0 420.9 s 13 1125.0 263.6 s
11P1 1 1170.9 1185.8 s 1 1170.9 489.1 s 6 1170.9 290.7 s
13P1 1 1039.2 1438.0 s 8 1039.2 684.0 s 2 1039.2 188.6 s
14P1 1 1133.4 1047.2 s 1 1133.4 411.1 s 4 1133.4 183.8 s
19P1 8 662.8 1539.2 s 4 662.8 622.7 s 16 662.8 253.3 s
21P1 1 803.9 1420.5 s 1 803.9 737.8 s 1 811.7 212.6 s
34P1 21 523.2 789.7 s 2 523.2 326.8 s 9 523.2 143.2 s
36P1 9 860.1 780.0 s 11 860.1 422.9 s 7 860.1 209.1 s
40P1 8 780.9 777.2 s 19 766.0 371.4 s 34 782.9 148.2 s
41P1 5 862.0 943.1 s 1 862.0 377.2 s 2 862.0 212.1 s
46P1 3 730.4 1110.6 s 11 730.4 442.2 s 20 730.4 195.7 s
51P1 8 892.2 1021.3 s 6 892.2 469.7 s 48 892.2 202.9 s
54P1 15 1175.9 706.0 s 9 1175.9 439.4 s 24 1176.8 199.4 s
55P1 21 948.3 1102.1 s 7 994.1 436.0 s 20 994.1 149.7 s
58P1 2 878.6 1422.6 s 9 878.6 367.8 s 22 878.6 241.4 s

Average: 7.2 973.1 1128.9 s 5.95 975.0 464.3 s 16.3 975.9 200.3 s

As shown in Table 4.6, the population size is reduced from 50 which is the default value

to 25, 10 and 5. On average, we saved 58.9% of running time with the price of 0.2% increment

in the total cost by reducing the population size from 50 to 25. The reduction of population size

from 25 to 10 results in 56.9% decrease in running time and only 0.1% increase in total cost, on

average. Finally, reducing the population size from 10 to 5 decreases the running time by 21.4%

and increases the total cost by only 0.4%, on average.

Based on these results, reducing the population size from 50 down to 5 has a positive im-

pact on the solution obtained by the GA. This reduction makes the running time shorter without

significant increment in the total cost. Thus, we choose the population size equal to 3 and ran the

GA for the benchmark instances, again. This number is the smallest number that the population

size can get without redesigning the GA, one for each reproduction operators (crossover and mu-

140

tation) and one for storing the best solution of the current generation to move it directly to the

next generation (elitism). The result of having the population size of 3 in the GA is compared

with the default number of population of 50 in Table 4.7.

Table 4.7: The Impact of the Default (50) and the Smallest (3) Population Size on the
Performance of GA (with default values for other parameters as in Table 4.4)

Instance Pop. Size = 50 Pop. Size = 3

ID # Gen. Best Obj. Time # Gen. Best Obj. Time

1P1 6 1057.1 1116.3 9 1057.1 105.6
2P1 1 1060.0 1255.6 3 1060.0 29.4
3P1 1 1124.6 2016.5 2 1124.6 115.0
8P1 18 1259.2 866.5 25 1296.3 132.7
9P1 13 1374.6 949.9 26 1374.6 105.1

10P1 1 1125.0 1089.7 15 1125.0 213.1
11P1 1 1170.9 1185.8 5 1170.9 30.0
13P1 1 1039.2 1438.0 4 1039.2 96.5
14P1 1 1133.4 1047.2 2 1133.4 43.5
19P1 8 662.8 1539.2 9 665.5 85.6
21P1 1 803.9 1420.5 1 811.7 21.2
34P1 21 523.2 789.7 29 528.0 140.7
36P1 9 860.1 780.0 48 861.0 142.2
40P1 8 780.9 777.2 1 783.5 18.9
41P1 5 862.0 943.1 15 862.0 81.7
46P1 3 730.4 1110.6 29 730.4 179.1
51P1 8 892.2 1021.3 17 902.4 85.9
54P1 15 1175.9 706.0 20 1175.9 61.3
55P1 21 948.3 1102.1 3 994.1 96.9
58P1 2 878.6 1422.6 20 878.6 116.5

Average: 7.2 973.1 1128.9 s 14.15 978.7 95.0 s

As shown in Table 4.7, by reducing the population size from 50 to 3, we can save up to

91.6% in running time while increasing the total cost by 0.6%, on average. Therefore, the best

population size ofr this GA is the smallest number which is equal to 3.

Interestingly, the number of generations required to find the best solution in GA is de-

creased by 17.4% after reducing the population size from 50 to 25. However, the GA has a 2.7

times increase in the number of generations by reducing the population size from 25 to 10, as ex-

141

pected. Again, the number of generations decreased by 23.9% by reducing the population size

from 10 to 5. Finally, on average, reducing the population size from 50 to 5 almost doubles the

number of generations (96.5%).

4.8 Conclusion

In this chapter, we provided extensive study on the performance of the heuristic algorithms that

are introduced in Chapter 3 to find quality solutions for VRP variants. These heuristic algorithms

are divided into two categories: i) constructive and ii) improvement. The constructive algorithms

are used to create feasible solutions for the VRP problems and then improved by the improve-

ment heuristics. The impact of each algorithm on the quality and running time of the solutions

are studied. This study on both constructive and improvement algorithms provides insightful in-

formation to solve large real-world problems consist of thousands of shipments and hundreds

of vehicles. Two constructive algorithms are used to find feasible solutions for the benchmark

instances: i) modified Nearest Neighbor Search (NNS) and ii) modified Clarke-Wright (CLK)

algorithms. The experimental results show that NNS is faster than CLK but the quality of the

solutions obtained by CLK is higher that NNS. In solving 60 benchmark instances with 50 loca-

tions, the average running time of NNS is 0.8 seconds versus 1.1 seconds for CLK. On the other

hand, the total travel cost of CLK is 8.1% lower than NNS. The 0.3 seconds difference between

the NNS and CLK in the benchmark instances with 50 locations can make a huge difference in

real-world problem size with thousands of shipment locations. The improvement algorithms in

ETP are also categorized in two categories: i) Inter-Route and ii) Intra-Route algorithms. Inter-

route improvements work on two or more routes of a solution and try to move or swap shipments

or locations between them. On the other hand, Intra-Route algorithms improve each route of the

solution by altering the sequence of the visited locations at the route. Note that both types of

algorithms keep the solution feasible. According to the results of the analysis, the Inter-Route

algorithms have a higher impact on improving the solution cost found by both NNS and CLK.

The improvement in the solution of NNS in average (on the 60 benchmark instances) is 5.6% in

142

2.4 seconds and CLK is 0.9% in 1.3 seconds. Note that the running time of the Inter-Route im-

provements on the solutions found by NNS or CLK are more than when creating the solutions

by these constructive algorithms (2.4s vs. 0.8s for NNS and 1.3s vs. 1.1s for CLK). The Intra-

Route improvement algorithms could improve the solutions of NNS and CLK by 1.1% and 0.1%

in 0.4 seconds and 0.2 seconds, respectively. In summary, the results of analyzing the construc-

tive and improvement algorithms in this study on the small benchmark instances in the literature

can guide us to choose the best parameter settings in solving the much larger real-world prob-

lems.

The second part of this study improves the quality of the solutions found by our developed

optimization tool. A Genetic Algorithm (GA) is proposed to increase the quality of the solutions

in the previous chapter. The GA utilizes the constructive and improvement heuristic methods of

our optimization tool to evolve the generations. We used the results of the analysis on the heuris-

tic methods in the first part of this chapter to set the parameters for the GA. The constructive

algorithms are used to create the initial population and the improvement algorithms mutate the

chromosomes in each generation. Computational study of the same benchmark instances as the

previous chapter shows that the GA outperforms other tools regarding the solution quality at the

cost of increased runtime. On average, the quality of the solutions obtained by GA is 7.7% bet-

ter than ETP and 5% better than CPLEX. To reduce the running time of the GA while maintain-

ing the quality an analysis on the components of the GA is conducted. This experimental study

showed a 91.6% reduction in running time while increasing the total cost only by 0.6%.

143

Bibliography

Baker, B. M. and Ayechew, M. (2003). A genetic algorithm for the vehicle routing problem.
Computers & Operations Research, 30(5):787–800.

Beasley, J. E. (1983). Route firstcluster second methods for vehicle routing. Omega, 11(4):403–
408.

Berger, J. and Barkaoui, M. (2004). A parallel hybrid genetic algorithm for the vehicle routing
problem with time windows. Computers & operations research, 31(12):2037–2053.

Clarke, G. and Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of
delivery points. Operations research, 12(4):568–581.

Gehring, H. and Homberger, J. (2001). A parallel two-phase metaheuristic for routing problems
with time windows. Asia-Pacific Journal of Operational Research, 18(1):35.

Ho, W., Ho, G. T., Ji, P., and Lau, H. C. (2008). A hybrid genetic algorithm for the multi-depot
vehicle routing problem. Engineering Applications of Artificial Intelligence, 21(4):548–557.

Holland, J. H. (1975). Adaptation in natural and artificial systems. an introductory analysis
with application to biology, control, and artificial intelligence. Ann Arbor, MI: University of
Michigan Press.

Lin, S. (1965). Computer solutions of the traveling salesman problem. The Bell System
Technical Journal, 44(10):2245–2269.

Nagata, Y. (2007). Edge assembly crossover for the capacitated vehicle routing problem. In
European Conference on Evolutionary Computation in Combinatorial Optimization, pages
142–153. Springer.

Nagata, Y. and Bräysy, O. (2009). Edge assembly-based memetic algorithm for the capacitated
vehicle routing problem. Networks, 54(4):205–215.

Ombuki, B., Ross, B. J., and Hanshar, F. (2006). Multi-objective genetic algorithms for vehicle
routing problem with time windows. Applied Intelligence, 24(1):17–30.

Prins, C. (2004). A simple and effective evolutionary algorithm for the vehicle routing problem.
Computers & Operations Research, 31(12):1985–2002.

Tan, K. C., Chew, Y. H., and Lee, L. (2006). A hybrid multiobjective evolutionary algorithm
for solving vehicle routing problem with time windows. Computational Optimization and
Applications, 34(1):115.

Toth, P. and Vigo, D. (2014). Vehicle routing: problems, methods, and applications, volume 18.
Siam.

Van Breedam, A. (1994). An Analysis of the Behavior of Heuristics for the Vehicle Routing
Problem for a Selectrion of Problems with Vehicle-related, Customer-related, and Time-related
Constraints. RUCA.

144

Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N., and Rei, W. (2012). A hybrid genetic algo-
rithm for multidepot and periodic vehicle routing problems. Operations Research, 60(3):611–
624.

145

Appendix

Appendix 4.A Certification of Student Work

College of Engineering

Department of Industrial Engineering

4207 Bell Engineering Center • Fayetteville, Arkansas 72701 • 479-575-2687
The University of Arkansas is an equal opportunity/affirmative action institution.

Date: December 5, 2017

Graduate School

University of Arkansas

Dear Dr. Needy:

I am writing to verify that Fereydoun Adbesh completed more than 51% of the work for the chapter

titled “A Genetic Algorithm for Unified Vehicle Routing Problems” in his dissertation.

Sincerely,

Chase Rainwater

cer@uark.edu

479-575-2687

Associate Professor

Department of Industrial Engineering

University of Arkansas

146

5. Conclusions and Future Work

In this dissertation, we study on and propose novel approaches for two applied operation research

optimization problems, scheduling, and routing. We first study on the allocation and scheduling

of a fleet of dredges in inland and intra-coastal waterways of the United States under environmen-

tal and resource constraints. Secondly, we focus on the several variants of the Vehicle Routing

Problem (VRP). We investigate applying the different variations of well studied VRP on model-

ing and solving the large scaled real-world problems. We model new variants and develop heuris-

tic and meta-heuristic algorithms to find good feasible solutions for our transportation problems.

Finally, we identify the most efficient algorithms and parameter settings for them.

In Chapter 2, dredge fleet allocation and scheduling under environmental work windows

and resource constraints are studied. Environmental work windows are the only time that dredg-

ing are allowed during the planning time horizon to prevent any harm to the local wild life. The

horizon period is usually a year and the Restricted Periods (RP) are the time dredging is not al-

lowed. We used Constraint Programming (CP) approach to solve this heavily constraints schedul-

ing problem while ILP model fails to solve even very small problem instances. In general, CP

works well in both scheduling problem and in heavily constraints system. In scheduling prob-

lems, CP finds high quality solutions by defining the the decision variables as the interval con-

straints. Complicated constraints in CP can be handled effectively by the aim of the global (log-

ical) constraints. Using this privilege, we developed a CP model for the dredge scheduling prob-

lem with objective of maximizing the total cubic yards of dredging. In this chapter, we further

investigated the different variations of the dredge scheduling by altering some fundamental as-

sumptions of our base model. We successfully model and solve different variations of the prob-

lem such as the partial dredging during RP, the variable dredge job sizes, the multiple trip to the

same job by dredges, the simultaneous work of different dredges on the same job, the sequence

dependent mobilization/demobilization cost and the job dependent production rate of dredges.

Our computational efforts demonstrated that the CP models perform very well on the problems

by finding high-quality feasible solutions very quickly.

147

In Chapter 3, several variations of the well-known VRP is stated and combined to model

the real-world transportation problems. We introduce a new variant of the VRP by considering

the driver time regulations and develop some heuristic algorithms to solve it along with other

variants of the VRP derived from this model. We provide a comprehensive tool to solve the VRP

variants and their combinations in a single software. Computational results on several benchmark

instances show that this software can find quality solutions in a very short amount of time com-

paring with the exact methods of solving the corresponding MIP formulations of the problems in

CPLEX. At the end of this chapter, a case study with real data consist of thousands of customer

locations and hundreds of vehicles is presented and solved.

Finally, in Chapter 4, we prioritize the efficiency of the heuristic methods used to solve and

improve the VRP variants in Chapter 3. The remaining of this chapter belongs to developing a

Genetic Algorithm (GA) to solve our comprehensive model. As some of the heuristic algorithms

in the previous chapter are used in the GA, we used the results of the first part of this chapter to

choose the best algorithm and parameter settings for the GA. Computational results on the same

benchmark instances in Chapter 3 demonstrate the power of the GA to find high quality solutions

with the price of increasing the running times.

5.1 Future Work

Postdoctoral work relating to chapter 2 includes, but is not limited to, development of dredge

scheduling problem in extended periods of time. We seek to find the best plan for operation and

maintenance (O&M) of the waterways concerning how frequent we need to dredge a plant to

keep it navigable over an extended period.

Future work relating to chapters 3 and 4 involves the comprehensive analysis of the impact

of the hours of service regulations on the drivers, trucking companies and transportation industry.

In addition, investigating new variants of VRP with hours of service regulations to provide con-

venient work shifts for drivers in an extended planning time horizon is of our interest to get closer

and closer to the real problems challenged by transportation companies. We also plan to contin-

148

uously develop new heuristic and meta-heuristics algorithms to make our optimization tool more

effective and efficient.

149

