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Abstract

The inland waterway transportation system of the United States (U.S.) handles 11.7 billion tons
of freight annually and connects the heartland of the U.S. with the rest of the world by providing
a fuel-efficient and environmentally friendly mode of transportation. This dissertation aims to
create decision support tools for maritime stakeholders to measure the economic impacts of the
inland waterway transportation systems under real world scenarios including disruptions,
demand changes, port expansion decisions, and channel deepening investments. Monte Carlo
simulation, system dynamics, discrete-event simulation, agent-based modeling, and
multiregional input-output modeling techniques are utilized to analyze the complex relationships
between inland waterway transportation system components and regional economic impact
factors. The first research contribution illustrates that the expected duration of a disruption
determines whether decision makers are better off waiting for the waterway system to reopen or
switching to an alternative mode of transportation. Moreover, total disruption cost can be
reduced by increasing estimation accuracy of disruption duration. The second research
contribution shows that without future investment in inland waterway infrastructure, a
sustainable system and associate economic impacts cannot be generated in the long-term. The
third research contribution illustrates that investing in bottleneck system components results in
higher economic impact than investing in non-bottleneck components. The developed models
can be adapted to any inland waterway transportation system in the U.S. by utilizing data
obtained by publically available sources to measure the economic impacts under various
scenarios to inform capital investment decisions and support an economically sustainable inland

waterway transportation system.
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1. INTRODUCTION

This dissertation investigates the economic impacts of inland waterway transportation
systems under real world scenarios including disruptions, demand changes, port expansion
decisions, and channel deepening investments. The decision support tools presented in this
dissertation can assist maritime transportation decision makers such as the United States (U.S.)
and State departments of transportation (DOTs), U.S. Army Corps of Engineers (USACE), U.S.
Coast Guard (USCG), other maritime agencies, and private investors in making well-informed
investment decisions related to inland waterway transportation infrastructure to maximize

economic benefits of these systems.

1.1 Research Motivation

The maritime transportation system is critical to global trade. More than ninety-nine
percent of the U.S. overseas trade in terms of volume and sixty-two percent in terms of value is
carried by maritime vessels (MARAD, 2012). Maritime transportation adds more than $649
billion to the U.S. gross domestic product (GDP) each year (MARAD, 2012). Additionally, more
than $212 billion in taxes are collected from maritime transportation-related activities, and over
13 million people are employed as a result of maritime activities (MARAD, 2012). Another
benefit of maritime transportation is an annual transportation savings of $7 billion in the U.S.
from the usage of the maritime mode in place of more costly modes such as rail and highway
(USACE, 2009). Other benefits of maritime transportation are emitting less air and noise
pollution and operating as a safer mode of transportation compared to other modes (Michigan

Technological University, 2006).
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Figure 1 Navigable Waterway Transportation Systems (USACE, 2010)

A vital part of the maritime transportation system is the navigable inland waterways.
Figure 1 shows a mapping of the inland waterway transportation system of the United States.
The U.S. inland waterway transportation system consists of more than 12,000 miles of navigable
inland waterways and connects thirty-eight states (USACE, 2005). In 2009, the primary
commaodities that were shipped on the inland waterways were coal and petroleum and petroleum
products, thirty percent and twenty-seven percent tonnage transported respectively (USACE,
2012). Other commodities commonly transported via the inland waterways include crude
materials, food and farm products, and chemicals (USACE, 2012). Furthermore, as illustrated in
Figure 2, inland waterway transportation is recognized as the transportation mode with the
cheapest bulk rate but is also the slowest mode and the mode with most limited connections
given the predetermined natural flow of the waterways. In contrast, airway and highway provides

the best delivery speed and best connections respectively.
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Figure 2 Comparison of Different Modes of Transportation (MoDOT, 2006)

Shipping on the inland waterway transportation system leads to an annual transportation
savings of $7 billion in the U.S. (USACE, 2009) because transportation cost by barge is lower
than transporting by rail or truck. The cost of one ton-mile (moving one ton of freight for a mile)
is 0.72 cents with a barge, 2.24 cents with rail, and 26.62 cents with a large semi truck.

In addition, inland waterway transportation is more fuel efficient than other modes of
transportation and has lower air emissions (USACE, 2009). Texas Transportation Institute (TTI)
stated that one gallon of fuel can move one ton of freight 155 miles by truck, 436 miles by rail,
and 576 miles by barge (2007).

In terms of cargo capacity, lowa Department of Transportation (IDOT) reported that one
barge can carry 1,500 tons, which is equivalent to the capacity of 15 railcars or 58 large semi-

trucks, as shown in Figure 3 (2008).
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Furthermore, shipping freight via the inland waterway transportation system results in
fewer fatalities than shipping via railroads or trucks. One fatality occurring on navigable inland
waterways is equivalent to 22.7 fatalities on railroads and as many as 155 fatalities on roadways
(MARAD, 2008). One injury occurring in navigable inland waterways is equivalent to 125
injuries occurring on railroads and as many as 2,171 injuries occurring on truck freight
(MARAD, 2008).

Another advantage of inland waterway transportation is that it relieves congested roads
and railroads. For example, the usage of waterways avoids over fifty-one million truck trips per
year (ASCE, 2013). Disruptive events on the inland waterway transportation system can cause
significant economic losses, not only for individual companies but also for the total economy of
a region or country. If the inland waterway transportation system is disrupted due to a temporary

port closure or low water level, commodities cannot be transported as planned. In 2012, USA



Today reported that, due to low water levels on the Mississippi River, commodities of over $7
billion were delayed (Keen, 2012). Therefore, it is important for inland waterway transportation
stakeholders to understand the economic impacts of normal operations and potential economic

impacts due to disruptive events.

1.2 Research Objectives

The primary goal of this research is to develop decision support tools for maritime
stakeholders to understand the relationships among inland waterway transportation system
components and to measure the economic impacts of real world scenarios including disruptions,
demand changes, port expansion decisions, and channel deepening investments.

The research objectives are as follows:

Research Objective 1: Our research objective is to better understand the impacts of
disruption duration, estimation, and commodity type on economic impact factors related to the
inland waterway transportation system. Predicting economic impacts of inland waterway
disruption decisions enables system stakeholders to increase their preparedness and potentially
reduce economic losses. Our approach is implemented on an illustrative case study of the
McClellan-Kerr Arkansas River Navigation System (MKARNS). The approach is generalizable
to any navigable inland waterways to support economic resilience of these systems. This study
has been published on The Engineering Economist journal and presented in Chapter 3 of this
dissertation.

Research Objective 2: We developed a maritime transportation simulator (MarTranS) to
better understand the relationships among the inland waterway transportation system components
such as ports, locks/dams, navigation channels, commodities, alternative modes of

transportation, supply and demand nodes and regional economic impact factors, which is



discussed in Chapter 4. This model will enhance investment decision making capabilities for

maritime transportation stakeholders.

Research Objective 3: In Chapter 5, we used MarTranS developed in Chapter 4 to study

multiple real world scenarios such as economic impacts from the Panama Canal Expansion,

channel deepening investments, port expansions, lock/dam rehabilitation investments, and

lock/dam scheduled and unscheduled unavailability disruptions.

1.3 Research Methodology

The methodology is organized around the three research objectives:

Literature Review: A comprehensive literature review is conducted in the field of
economic analysis of the maritime transportation system. The completed literature review
indicates that there is a need for a decision support tool to estimate the economic impacts
of the inland waterway transportation system operations and disruptions to support
positive economic outcomes. Our literature review also provides a concrete foundation
for the developed methodologies.

Methodology for Research Objective 1: To assess the economic impacts of navigable
inland waterway operations and disruptions, we developed a Monte-Carlo simulation
model to assess economic impacts under various disruption scenarios including multiple
disruption durations, estimation accuracy levels, and commaodity types. We defined
disruption durations based on real disruptions discussed in Chapter 3 as short-term (10
days), medium-term (60 days), and long-term (180 days) durations. For each scenario,
there are two decision alternatives, the waterway reopens or the cargo remains on the

waterway or move to an alternative mode of transportation. Each scenario considers three



possible disruption duration estimation outcomes; accurate estimation (A.E.),
overestimation (O.E.), and underestimation (U.E.).

e Methodology for Research Objective 2: MarTranS which integrates agent-based
modeling, discrete-event simulation, and system dynamics is developed to better
understand the relationship between inland waterway transportation system components
and regional economic impact factors. The key components are defined in MarTranS
include ports, locks/dams, navigation channel, commaodities, alternative modes of
transportation, and economic impact factors. In order to estimate long-term economic
impacts, a fifty year time frame is considered to study long-term relationships and
impacts.

e Research Objective 3: The MarTranS developed in Research Objective 2 is extended to
measure the economic impacts of potential scenarios. The scenarios are: 1) base run, 2)
Panama Canal Expansion, 3) channel deepening investment, 4) port investment, 5)
lock/dam investment, 6) system-wide investment, 7) lock/dam scheduled unavailability

disruptions, and 8) lock/dam unscheduled unavailability disruptions.

1.4 Research Contributions

The outcome of this dissertation research contributes to the current literature as well as
provide practical decision support tools to maritime stakeholders to inform better inland
waterway transportation system investment decisions.

In Research Objective 1, we developed a simulation-based modeling approach to measure
the economic impacts of disruption decisions in the inland waterway transportation system. By
changing the model parameters, our methodology can be adapted to different study regions,

disruption durations, and disruption scenarios. The model parameters can be gathered from



publicly available sources or researchers can integrate primary data sources into our model. To
our knowledge, this research is the only work that comprehensively investigates the importance
of disruption duration estimation on the total disruption costs, transportation, penalty, and
holding costs related to navigable waterways. Furthermore, our system-wide holistic approach
will help to better inform the true value of an inland waterway transportation system instead of
valuing discrete waterway infrastructure, which can assist transportation authorities to allocate
available capital funds among investment alternatives.

In Research Objective 2, our MarTranS can help maritime transportation stakeholders to
better understand the relationships between inland waterway transportation system components
and regional economic impact factors. Understanding these relationships can help stakeholders
make better inland waterway infrastructure investment decisions to maximize economic benefits
related to economic impact factors.

In Research Objective 3, MarTranS is used to conduct real world scenario analysis to
help inland waterway stakeholders to understand the economic impacts of these potential

scenarios and better inform future investment decisions.

1.5 Organization of Dissertation

Chapter 1 introduces the inland waterway transportation system and presents the
motivation and research objectives of this dissertation. Chapter 2 illustrates our comprehensive
literature review which includes two published conference proceedings entitled “A Review of
Economic Impact Analysis in Maritime Transportation” published in the Proceedings of
American Society for Engineering Management 2013 International Annual Conference
(Oztanriseven & Nachtmann, 2013) and “A Review of System Dynamics in Maritime

Transportation” published in the Proceedings of the 2014 Industrial and Systems Engineering



Research Conference (Oztanriseven et al., 2014). Chapter 3 is published in The Engineering
Economist journal and entitled “Economic Impact Analysis of Inland Waterway Disruption
Decisions” (Oztanriseven & Nachtmann, 2016). MarTranS is discussed in Chapter 4, and the
navigable inland waterways scenario analysis is presented in Chapter 5. The overall conclusions
and future work of this dissertation are discussed in Chapter 6. Transportation Research Part B:
Methodological and Maritime Policy are two journals being considered to publish the studies

discussed in Chapter 4 and Chapter 5 respectively.
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2. LITERATURE REVIEW

2.1 A Review of Economic Impact Analysis in Maritime Transportation Disruption !

2.1.1 Introduction

Our literature review consists of twenty-eight research papers that were written by
academic institutions and consulting firms. These studies are then categorized into different
classes described as economic analysis methodology used, affected region, source of economic
impact, economic indicators used, disruption case scenario, types of disruption studied, and
alternative mode of transportation and rerouting considerations. Therefore, our review will assist
current and future scholars in the field of analysis of maritime transportation. Our review focuses
on maritime transportation, economic analysis, input-output models, and associated disruptive

events.

2.1.2 Economic Analysis Methodology Used

An important extension of economic impact studies is the research field of disruptive
events in transportation and their economic impacts. Disruptive events can be “natural disasters,
accidents, terrorism, war, political and economic instability, supply unavailability, transportation
delays, and labor strikes or conflicts” (Figliozzi & Zhang, 2009, p.3). It also includes research
about economic impacts of disruptive events in the field of transportation.
As shown in Table 1, the most commonly used economic models are Impact Analysis for
Planning (IMPLAN), Inoperability Input-output Models, and the Regional Input-output

Modeling System (RIMS I11). Our review of the relevant literature reveals that there is little

! Published in Proceedings of the2013 ASEM International Annual Conference (Oztanriseven &
Nachtmann, 2013)
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agreement among scholars regarding which method to use for economic analysis of maritime
transportation and associated disruptions.

To measure the economic impact, Leontief developed an input-output model in 1941
(Leontief, 1986). His approach was and is today still widely used (A. Strauss-Wieder, Inc.,
2011). The main idea of Leontief’s model is that there exists a strong relationship between one
industry’s input and its output (Jung et al., 2009). In addition, the input-output model is a “static
equilibrium model” (U.S. Department of Commerce, 1997) and provides only a “snapshot” of
“technical requirements and industry relationships” at a specific point in time (A. Strauss-
Wieder, Inc., 2011). Leontief’s economic impact matrix is the foundation of several new models
developed by different researchers. Over time, researchers developed and extended the original
idea of Leontief’s input-output model. Thus, today a broad variety of economic input-output
models exists and is implemented in studying economic impacts in maritime transportation as

shown in Table 1.
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Table 1 Economic Analysis Methodology Used

Model Description Author(s)
Impact Analysis for Planning Folga et al. (2009)
. ) Gordon et al. (2005)
IMPLAN National Interstate Economic

Based Models

Model (NIEMO)

Gordon et al. (2008)

Park et al. (2008)

TransNIEMO

Gordon et al. (2008)

DMIOM

MacKenzie et al. (2011)

Inoperability Inoperability 10 Model Jung et al. (2009)
10 Models Risk-based Multi-Regional
Inoperability 10 Model Pantetal. (2011)
RECON The Rutgers Economic A. Strauss-Wieder, Inc.
Advisory Service 10 Model (2011)
Multi-Regional Commodity
REIMs Elow Model Okuyama et al. (1999)
Input- | REMI Regional Economic Models Economic Res. Assoc. (2007)
oatgl;t Scott & Associates (2008)
. . Martin Associates (2006)
Model
odels | RIMS 1I Regional 10 Modeling System Nachtmann (2001)
Richardson & Scott (2004)
Rural Inland The extension of MARAD .
Waterways Kit | Model Hamilton et al. (2000)
e : Gordon et al. (2005)
SCPM i/?géglern California Planning Gordon et al. (2008)
Rosoff & Winterfeldt (2007)
Canada 10 Tables InterVIDTAS Inc. (2008)
10 Multipliers Colegrave et al. (2008)
Other 10 Singapore 10 Tables Toh et al. (1995)
Models Taiwan 10 and Linear :
Programming Model Wang & Miller (1995)
Welsh 10 Tables Bryan et al. (2006)
DEA Date Envelopment Analysis Xuemei (2011)
Discrete Decision Tree Model
Choice Model | Combining Discrete Choices Qu & Meng (n.d )
Logit Model ?ﬁzz(:yon Consumer Behavior Figliozzi & Zhang (2009)
Other - -
MOBILE By United States Environmental .
Models Model Protection Agency Chatterjee et al. (2001)
System for Import/Export
SIERRA Routing and Recovery Analysis Jones et al. (2011)
Spatial Equil. | Integrated Grain Transportation
Model Model (IGTM) Kruse etal. (2011)
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2.1.3 Affected Region Studied

When conducting an economic impact analysis, the affected region must be clearly
defined (U.S. Department of Commerce, 1997). Based on the purpose of the study, scholars may
define the affected region from regional to global. A listing of study regions found in our
literature review is presented in Table 2. As shown in Table 2, the regional studies can be
conducted at the city, county, economic region, state, or multi-state levels (MacKenzie et al.,
2011). Some scholars conduct economic analyses at the national level. Other scholars define
their affected region on an international level or as combination of regional, national, and global

levels.
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Table 2 Affected Region Studied

Level Affected Region Detail Author(s)
2 cities and 5 counties in California Gordon et al. (2005)
27 highway sections Chatterjee et al. (2001)
31 counties in New York, New Jersey, and | A. Strauss-Wieder, Inc.
Pennsylvania (2011)
Auckland Colegrave et al. (2008)
Congressional districts Kruse et al. (2011)
Arkansas Nachtmann (2001)
Regional Los Angeles Metropolitan Area Rosoff & Winterfeldt (2007)
Multiple states MacKenzie (2011), Pant et
al. (2011)
San Diego county and California E\(;gggir:tgzzegg%m
Shanghai Xuemei (2011)
South Wales Bryan et al. (2006)
Illinois Folga et al. (2009)
Vancouver, Oregon and Washington Martin Associates (2006)
i Republic of Singapore Toh et al. (1995)
National United States Park et al. (2008)
International Supply Chain Lewis et al. (2006)
International | International Trade in the United States Jung et al. (2009)
United States and 46 other countries Jones et al. (2011)
British Columbia and Canada InterVIDTAS Inc. (2008)
Houma Metropolitan Statistical Area and Loren C. Scott & Associates
Combination | United States (2008)
Regional, National, and Global Gordon et al. (2008)
Louisiana and the United States Richardson & Scott (2004)

2.1.4 Source of Economic Impact

The sources of the economic impact analysis studied in the maritime transportation

literature are shown in Table 3. A single port, multiple ports, a single lock, multiple straits, and

inland waterway infrastructure are the classification levels for the source of economic impact for

maritime transportation in the reviewed literature.
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Table 3 Source of Economic Impact

Source of Economic Impact Author(s)

A. Strauss-Wieder, Inc. (2011)
Economic Research Associates (2007)
Gordon et al. (2008)

Lewis et al. (2006)

Loren C. Scott & Associates (2008)
MacKenzie (2011)

Martin Associates (2006)

Pant et al. (2011)

Toh et al. (1995)

Xuemei (2011)

Bryan et al. (2006)

Colegrave et al. (2008)

Gordon et al. (2005)

Multiple Ports Gordon et al. (2008)

InterVIDTAS Consulting Inc. (2008)
Park et al. (2008)

Rosoff & Winterfeldt (2007)

Single Port

Single Lock Chatterjee et al. (2001)
Kruse et al. (2011)

Multiple Straits Qu & Meng (n.d.)

Inland Waterway Infrastructure Folga et al. (2009)

2.1.5 Economic Indicators Used
According to the reviewed literature, five major economic indicators (Gross Domestic
Product (by State), Gross Output, Employee Earnings, Employment, and Tax Revenue) are

found and identified in Table 4.
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Table 4 Economic Indicators Used

Economic
Indicator

Synonyms/ Components

Author(s)

Gross Domestic

GDP ($)

Colegrave et al. (2008)

Gordon et al. (2008)

Xuemei (2011)

GDP ($)/Value-added ($)

InterVIDTAS Cons. Inc.
(2008)

GDP ($)/Value-added ($)/National

Product (by State) Income () Wang & Miller (1995)
Gross Regional Product ($)/Output ($) | Gordon et al. (2005)
Gross State Product (GSP) ($) Nachtmann (2001)
ggs)?g)decj Gross Regional Product Economic Res. Assoc. (2007)
(E$C)7E$L“SLCROE ‘\*/tepn”lfe%/)oumm InterVIDTAS Consult.. (2008)
Economic Value ($) Martin Associates (2006)
Gross Output (%) Wang & Miller (1995)
Industry Output ($) Pant et al. (2011)
Colegrave et al. (2008)
Economic Res. Assoc. (2007)
Gross Output Output ($) Gordon et al. (2008)
Hamilton et al. (2000)
Toh et al. (1995)
Loren C. Scott & Assoc. (2008)
Sales (%) Richardson & Scott, 2004
Spending ($)/Output ($) Bryan et al. (2006)
Total Business Income/Revenue A. Strauss-Wieder, Inc. (2011)
Earnings ($) Richardson & Scott (2004)
. Nachtmann (2001)
Employee Eamings ($) Loren C. Scott & Assoc. (2008)
Household Incomes ($) Colegrave et al. (2008)
Hamilton et al. (2000)
Employee Income ($) Toh et al. (1995) |
Earnings Economic Research Associates
Personal Income ($) (2007)
Martin Associates (2006)

Total Earnings/Personal Income

A. Strauss-Wieder, Inc. (2011)

Wage ($)

Wang & Miller (1995)

Wages ($)/Payroll ($)

InterVIDTAS Consulting
(2008)
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Table 4. Economic Indicators Used (Cont’d)

Economic
Indicator

Synonyms/ Components

Author(s)

Employment

Employment

A. Strauss-Wieder, Inc. (2011)

Economic Res. Assoc.(2007)

Hamilton et al. (2000)

Loren C. Scott & Assoc. (2008)

Nachtmann (2001)

Richardson & Scott (2004)

Toh et al. (1995)

Employment (Full-time-equivalents
jobs)

Colegrave et al. (2008)

Bryan et al. (2006)

Jobs

Gordon et al. (2008)

Martin Associates (2006)

Jobs (person-years)

Gordon et al. (2005)

InterVIDTAS Consulting
(2008)

Tax Revenues

Indirect Business Taxes ($)

Hamilton et al. (2000)

Payroll Tax, Property Tax, Sales Tax,
Transient Occupancy Tax, and
Business License Tax

Economic Res. Assoc. (2007)

Sales Taxes ($)

Loren C. Scott & Assoc. (2008)

State and Local Taxes ($), Federal
Taxes ($)

Martin Associates (2006)

Taxes Paid by Employers and
Employees, Taxes Paid by the Port
Authority, Taxes Paid by Cruise
Passengers, Crew, and Cruise Lines

InterVIDTAS Consulting
(2008)

Total Local Tax ($), Total State
Tax($), Total Federal Tax ($)

A. Strauss-Wieder, Inc. (2011)

2.1.6 Disruption Case Scenario

Because of the uncertain nature of disruptions, it is necessary to make assumptions to

conduct an economic assessment of future disruptions. Thus, many scholars study hypothetical

case scenarios. Table 5 indicates which scholars conduct a hypothetical scenario analysis and

which scholars conduct a disruption analysis on a real world incident.
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Table 5 Economic Analysis of Disruptions

Disruption Case Scenario Author(s)
Chatterjee et al. (2001)
Figliozzi & Zhang (2009)
Folga et al. (2009)

Gordon et al. (2005)
Gordon et al. (2008)

Jones et al. (2011)

) Kruse et al. (2011)
Hypothetical Lewis et al. (2006)
MacKenzie et al. (2011)
Okuyama et al. (1999)

Pant et al. (2011)

Park et al. (2008)

Qu & Meng (n.d.)
Richardson & Scott (2004)
Rosoff & Winterfeldt (2007)
Wang & Miller (1995)

Jung et al. (2009)

Real Loren C. Scott & Associates
(2008)

2.1.7 Type of Disruption Studied

Based on the scope, scholars conducted a disruption economic impact analysis for either
a specific type of disruptive event or for a disruption in general. Specific types of disruption
analysis can focus on natural or man-made disruptions. These classifications are presented in

Table 6.
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Table 6 Types of Disruption Studied

Type of Disruption

Studied Detail (if any)

Author(s)

Natural Disaster Earthquake

Okuyama (1999)

Erosion

Richardson & Scott (2004)

Labor Strike

Jung et al. (2009)

Lockout

Park et al. (2008)

Man-made

Gordon et al. (2005)

Terrorist Attacks

Gordon et al. (2008)

Rosoff & Winterfeldt (2007)

Chatterjee et al. (2011)

Figliozzi & Zhang, (2009)

Folga et al. (2009)

Jones, et al. (2011)

General

Kruse et al. (2011)

Lewis et al. (2006)

Loren C. Scott & Associates
(2008)

Qu & Meng (n.d.)

Wang & Miller (1995)

Sudden Port Closures

Other

MacKenzie et al. (2011)

Process Disruptions of Ports

Pant et al. (2011)

2.1.8 Alternative Modes of Transportation and Rerouting

During a maritime transportation disruption, decision makers have the option of rerouting
to an alternative mode of transportation. Some of the papers consider an alternative mode of

transportation and/or rerouting opportunities, while others do not as shown in Table 7.
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Table 7 Alternative Mode of Transportation and Rerouting

Alternative Mode of Transportation and Author(s)
Chatterjee et al. (2001)
Figliozzi & Zhang, (2009)
Folga et al. (2009)
Gordon et al. (2008)
Jones et al. (2011)

Kruse et al. (2011)
MacKenzie et al. (2011)
Okuyama et al. (1999)
Park et al. (2008)

Qu & Meng (n.d.)

Gordon et al. (2005)

Jung et al. (2009)

Lewis et al. (2006)

Loren C. Scott &

Pant et al. (2011)
Richardson & Scott (2004)

Yes

No

2.1.9 Conclusions and Future Work

This research presents the current body of knowledge regarding economic impact
analysis within the maritime transportation field and associated disruption impacts. The maritime
transportation system is important to decreasing total transportation cost, decreasing risk by
diversification of transportation modes, mitigating fatalities and injuries, reducing carbon
emission, increasing public recreational area access and expanding total capacity of the Nation’s
transportation system. Supporting future research to facilitate usage of the U.S. maritime
transportation system is important. In addition to describing the motivation of our ongoing
research, this literature review can assist other scholars in their current and future research in this
field. In particular, engineering managers working in the maritime transportation field can
utilized the knowledge base provided here as a starting point for developing their economic
analyses. The guidance and lessons learned from these earlier studies provides a sound starting

point for developing a new framework to analyze the economics of maritime transportation
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systems. The literature review presented here has provided a foundation for an economic impact

analysis of inland waterway transportation conducted for the State of Arkansas.
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2.2 A Review of System Dynamics in Maritime Transportation?

2.2.1 Introduction

The United States’ “marine highways” are an important component of the nation’s
transportation system, which carry one-twelfth of the total national freight volume (Stern, 2013).
The ability of North American ports to efficiently handle growing cargo volumes has a major
impact on the trading capabilities and economies of the region as a whole. U.S. ports handle $5.5
million worth of goods every day and 2.5 billion tons of cargo every year. This volume is
expected to double in the next fifteen years (American Association of Port Authorities, 2007).
Therefore, an efficient and effective maritime transportation system can have widespread
economic and societal impacts. Thus, the aim of this research is to explore the feasibility of using
SD to study and support an efficient MTS.

Developed by Jay Forrester in the late 1950s, SD is “a methodology for studying and
managing complex feedback systems.” Forrester (Forrester, 1961) describes an information
feedback system existing whenever “...the environment leads to a decision that results in action
which affects the environment and thereby influences future decisions” (p. 14). Moving away
from the conventional approach of viewing system performance and behavior as merely the
result of events and their causes, SD emphasizes the interactions between components of a
system (Kirkwood, 1998). As an application of systems thinking, SD seeks to identify the
underlying structure of a system to gain insight into patterns of behavior, focusing on how
components of a system interact and understanding the roles each component plays rather than

concentrating on specific events. This allows stakeholders to design policies that seek to

2Published in Proceedings of the2014 ISERC Annual Conference (Oztanriseven & Nachtmann,
2014)
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eliminate unwanted patterns of behavior through modifying the underlying system structure,
rather attempting to mitigate the events themselves, which can lead to a host of other unintended
consequences (Kirkwood, 1998). We anticipate that this system structure exists in the maritime
logistics system. This literature review is the result of a pilot study designed to evaluate
methodologies and mechanisms for creating a long-term, sustainable MTS (Long et al., 2014).
This work seeks to advance the SD body of knowledge in logistics infrastructure design and
implementation. Existing models have been criticized for maintaining the status quo; new
approaches to infrastructure development are considered essential in order for the U.S. to remain

competitive in the global economy (Urban Land Institute, 2008).

2.2.2 Literature Review

Evidence that SD can be used to study and improve the MTS is found in the literature.
Our literature review focuses on the applicability of SD in the field of maritime transportation
and indicates that SD is applied to many components of the MTS including maritime disruption

studies, port-related studies, and vessel-related studies among others.

2.2.2.1 Maritime Disruption System Dynamics Studies

Disruptive events such as the 9/11 terrorist attacks, 2002 Los Angeles/Long Beach
lockout, and Hurricane Katrina increased the awareness of policy makers and researchers about
the importance of maritime security. Lattila and Saranen (Lattila & Saranen, 2011) showed that
SD could be used to study the impact of general disruptive events in the MTS. More specifically,
the authors used SD to investigate potential risk scenarios on the Gulf of Finland and illustrated
that a disruption results in export loss (in tons) (Lattila & Saranen, 2011). When a disruption
occurs in the MTS, the system needs to recover to the pre-disruption throughput level. This

process is described as the resiliency of a system. In general, resiliency has two dimensions,
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vulnerability and adaptive capacity (Dalziell & McManus, 2004). Omer et al. (2012) and Croope
and McNeil (2011) used SD to study the resiliency of the MTS. Constructing a resilient MTS can
minimize potential losses. Research shows that maritime ports are vulnerable against disruptions
due to their strategic geographic locations, and a disruption will result in negative local and
global impacts (Omer et al., 2012). In a similar vein, Croope and McNeil (2011) used SD to
study the resiliency of critical infrastructures and disruption-related costs. Transportation
systems in general and specifically the MTS are comprised of critical infrastructure (Clinton,
1998). Critical infrastructures are the core elements of the Nations” economic and societal assets
(Croope & McNeil, 2011).

To decrease vulnerability and increase resiliency, security policies are established by
governments and private entities. Yeo et al. (2013) investigated the impacts of security policy
changes. Their research illustrated that new security measures can have both positive and
negative impacts on cost and port efficiency (Yeo et al., 2013). To summarize, disruptions
negatively impact the MTS. The literature shows that SD has been used to model disruption
complexities and uncertainties in the MTS.
2.2.2.2 Port-Related System Dynamics Studies

A portion of the maritime transportation system dynamics (MTSSD) literature focuses on
the implementation of SD to conduct port-related studies. Dundovic et al. (2009), Dvornik et al.
(2006), and Munitic et al. (2003) applied a SD model to study port-handling processes. These
studies considered loading and unloading operations from ship to shore, transfer operations from
shore to wagons and trucks, and warehouses. Similarly, Cheng et al. (2010) focused on the berth
and yard operations, which are complex, and handled separately in terms of planning and

decision-making. Their research used SD to analyze these two interdependent subsystems and
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their respective impacts on the overall port performance. Overall, SD simulation is a powerful
tool to handle the complex port transshipment processes, but only a limited number of SD studies
have been conducted for ports (Cheng et al., 2010).

Another extension of port-related SD studies is the investigation of the port economics.
For instance, Ho et al. (2008) studied port expansion decision and its economic outcomes. Their
study showed that if the expected revenue and throughput cannot be generated, the expansion
decision will lead to a financial dilemma. In addition, their study showed that simply increasing
the number of ports in a specific region may not result in a positive economic impact because
ports need to be supported by other infrastructures such as warehouses and shipping connectivity
(Ho et al., 2008). Mingming (2011) illustrated the relationships between port investments, port
capacity, economic contribution of ports, and aggregate economy relationship through SD
modeling. Li and Wang (2013) analyzed the economic contribution of ports to the regional
economy. The authors also integrated an input-output analysis and an econometrics model with
their SD simulation. Their integrated methodology is shown to be a powerful tool to analyze port

economics (Li & Wang, 2013).

2.2.2.3 Vessel-Related System Dynamics Studies

System dynamics has been used to study the global shipping market in the MTS to
understand the behavior of shipping freight rates (Randers & Goéluke, 2007). Their model
successfully explained the behavior of the tanker market since 1950 by only considering fleet
size and fleet utilization data (Randers & Goluke, 2007). Engelen et al. (2009) researched the
arbitrage between different vessel types, such as handy, Panamax, and capsize, and explained the
correlation of freight rates for different ship segments. Dikos et al. (2006) developed a SD model

to use as a decision support tool for freight rates and risk management for the tanker industry.
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Wijnolst (1975) focused on the relations between national fleet development and national
objectives in developing countries. Wijnolst (1975) considered productivity of ships and

investment in new ships.

2.2.2.4 Other MTSSD Studies

Other studies have utilized SD to study the MTS. Schade and Schade (2005) and Fiorello
et al. (2010) developed a holistic SD approach. Schade and Schade (2005) integrated five models
(transportation, macroeconomic, regional economic, policy, and environmental) into one
aggregated model titled ESCOT. The authors developed a sub-model for transportation including
water, rail, road, and air that aims to reach a sustainable transportation system and estimates the
economic impacts of the German transportation system. Fiorello et al. (2010) built their SD
model upon the ESCOT model (Schade & Schade, 2005). Fiorello et al. (2010) considered road,
rail, and maritime transportation in their model and measured investments, capacities, and their
respective economic outcomes. Videira et al. (2012) also used a qualitative SD approach for
maritime policy development which indicates that cooperation between policy-makers and

stakeholders is crucial to selecting the best policy.

2.2.2.5 Summary

Our review of the MTSSD literature shows that SD is applicable to studying MTS.
Engelen et al. (2009) claimed that SD has a potential of applications in a variety areas of
maritime transportation research. In addition, SD has the ability of overcoming the drawbacks of
time-series and statistical models (Dikos et al., 2006). SD modeling also takes causality into
account, allows what-if scenario analysis, and can be adapted to study fundamental changes in

the system. Furthermore, sensitivity analysis can be conducted within the model, which can help
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maritime stakeholders to better analyze the outcomes of MTS policy changes (Dikos et al.,
2006).

2.2.3 Classification of the MTSSD Literature

In this section, we classify the literature review findings to clarify the current body of
knowledge and identify future research questions. We classify the literature into study region,
types of ports studied, intermodal transportation considered, types of causal relations considered,
variable classifications, stock and flow diagram elements, and sensitivity and scenario analysis

considerations.

2.2.3.1 Study Region

Table 8 describes the study regions covered in the MTSSD literature. The majority of
studies focused on the major ports in Asia. With the exception of two hypothetical studies, the

papers investigate real-world components of the MTS.
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Table 8 Study Region Classification

Study

) Explanation Source
Region
Most Important Asian Ports: Busan (Korea), Hong
Kong (China), Kaohsiung (Taiwan), Shanghai (China), (Omer et al., 2012)
Yokohoma (Japan)
Korean Ports (Yeoetal., 2013)
Asia Port of Hong Kong China’s Pearl River Delta Region (Ho et al., 2008)
One of the Container Terminals in Malaysia (Cheng s(t)il))
Port located in Southeastern China (Mingming, 2011)
Zhuhai Port (China) (Li & Wang, 2013)
Port of Busan (South Korea) (Park et al., 2005)
North Most Important American Ports: Seattle/Tacoma (US),
America Oakland (US), and Port of Los Angeles/Long Beach (Omer et al., 2012)
(US)
Port of Sibenik (Croatia) (Dundovic et al., 2009)
Europe Gulf of Finland Region (Lattila & Saranen, 2011)
Maritime Sustainability Issues in Portugal (Videira et al., 2012)
Finnish Ports (Lattila O. L., 2008)
World's Shipping Market (Randers & Goluke, 2007)
International  Atlantic and Pacific Basin (Engelen et al., 2009)
Tanker Market for Niver Lines (Dikos et al., 2006)
. Hypothetical Developing Country (Wijnolst, 1975)
Hypothetical Three Harbors named as A, Band C (Koseler, 2008)

2.2.3.2 Port Type

To further classify the type of MTS studied, we considered the type of port studied in the
MTSSD literature. The vast majority of port-related studies focus on seaports (Lattila & Saranen,
2011; Omer et al., 2012; Yeo et al., 2013; Ho et al., 2008; Li & Wang, 2013; Wijnolst, 1975;

Park et al., 2005; Lattila O. L., 2008). None of the studies focused on inland waterway ports.

2.2.3.3 Intermodal Transportation Consideration
The third literature classification considers whether or not intermodal transportation is
studied. Intermodal transportation studies generally investigate the advantages and disadvantages

of the various transportation modes. For instance, bulk freight can be first transported by vessel
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or barge and then transferred directly to rail car and delivered to the customer. Based on our
review, there is limited work that utilizes SD in maritime transportation within an intermodal

context (Lattila & Saranen, 2011; Dvornik et al., 2006; Koseler, 2008).

2.2.3.4 Causal Relation Variables

To describe the SD methodological approaches taken, we identify the types of causal
relations that are considered in the literature. The variables classified in Table 9 are grouped into
seven categories. The most frequently considered causal relation variables are Resource

Capacity, Investment, Throughput Generated, and Resource Availability.
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Table 9 Causal Relation Variables

Causal Relation

Explanation

Source

Port/Terminal

Security Level

(Yeoetal., 2013)

(Yeoetal., 2013;Cheng et al.,

Attractiveness 2010)
Competition (Li & Wang, 2013)
Reliability (Yeoetal., 2013)
Expansion (Ho et al., 2008)
Efficiency (Cheng et al., 2010)
Burden (Mingming, 2011)

Ship Service Time

(Koseler, 2008)

Loading/Unloading Time (Container)

(Cheng et al., 2010)

Vessel Turnaround Time

(Cheng et al., 2010)

Time Vessel Waiting Time (Cheng et al., 2010)
Transportation Time (Koseler, 2008)

Conjunction Time for Berthing (Koseler, 2008)

. (Yeoetal., 2013;Cheng et al.,

E‘;";%‘p“t Generated (Container, 2010:Ho et al., 2008:Li & Wang,

Freight Flow g 2013)
(Lattila O. L., 2008;Silva et al.,

Exported Volume 2011)

Transshipment
Process

Resource Movements (Crane)

(Cheng et al., 2010)

Vessel/Ship Arrival

(Dvornik et al., 2006; Munitic et
al., 2003; Cheng et al., 2010)

Occupancy (Berth)

(Dvornik et al., 2006; Munitic et
al., 2003; Cheng et al., 2010)

Speed (Loading/Unloading,
Transportation, Forwarding
Truck/Wagons)

(Dvornik et al., 2006; Li & Wang,
2013)

Capacity and
Capacity
Utilization

Resource Capacity (Port/Terminal,
Crane, Berth, Seaman, Ship)

(Cheng et al., 2010;Li & Wang,
2013;Wijnolst, 1975;Mingming,
2011;Koseler, 2008)

Resource Availability (Berth, Warehouse
Space, Seaman, Terminal, Technology,

Crane, Truck)

(Dvornik et al., 2006;
Munitic et al., 2003;
Wijnolst, 1975; Koseler,
2008)

Utilization (Fleet)

(Randers & Goluke,
2007)

Desired Utilization (Fleet)

(Randers & Goluke, 2007

Desired Capacity (Ship Building)

(Wijnolst, 1975)
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Table 9 Causal Relation Variables (Cont’d)

Causal Relation Explanation Source
Cargo Processing Cost (Yeoetal., 2013)
Operating Cost (Cheng et al., 2010)
Export Industries' Logistics Costs (Silva et al., 2011)
Time Charter Rate (Randers & Goluke, 2007)

(Cheng et al., 2010;Li &

Investment (Port/Terminal, Ship Building Wang, 2013:Wijnolst

Capacity) 1975;Mingming, 2011)

Monetary/Economic (Wijnolst, 1975;
Foreign Trade (Export, Import) Mingming, 2011;Lattila O.

L., 2008)

Maritime Carrier Profit (Silva et al., 2011)

Port Economic Contribution (Port-led (Li & Wang,

GDP, Employment) 2013;Mingming, 2011)

Exchange Rates (Lattila O. L., 2008)

Inflation (Lattila O. L., 2008)

Possibility of Security Incident (Yeoetal., 2013)

Disruption

(Cheng et al., 2010; Ho et

Congestion (Port, Yard, Berth) al., 2008)

2.2.3.5 Variable Type

We classify the variable types employed grouped into endogenous, exogenous, and

excluded variables as shown in Table 10. In SD modeling, the researcher develops a hypothesis

which can explain the phenomena endogenously (Sterman, 2000). The exogenous variables are

the ones that are out of the boundaries of the model. Exogenous variables in a SD model are not

part of the feedback structure but do impact the system behavior. There are also excluded

variables that are not considered in the model. In Table 10, we also illustrate the types of stock,

flow rate, and delay variables that are utilized in the MTSSD literature.
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Table 10 Variable Classification

Variable Type

Explanation

Source

Endogenous Variables
Considered

Domestically Generated Throughput

(Ho et al., 2008)

Travel Cost and Time

(Fiorello et al., 2010)

Supply Function

(Dikos et al., 2006;
Engelen , 2006)

Container Inventories

(Koseler, 2008)

Capacity (Crane, Ocean Carrier)

(Koseler, 2008)

Empty Container Flows

(Koseler, 2008)

Loading/Unloading Crane Capacity

(Koseler, 2008)

Harbor Productivity

(Koseler, 2008)

Exogenous Variables
Considered

Container Capacity

(Lattila & Saranen,
2011)

Throughput that originate from
Mainland China and from Taiwan

(Ho et al., 2008)

Ship Arrival

(Dvornik et al., 2006)

Demand

(Dikos et al., 2006;
Koseler, 2008)

Export of the Bulk Commodity

(Wijnolst, 1975)

Price of the Commodity

(Wijnolst, 1975)

Freight Rate

(Wijnolst, 1975)

Excluded Variables

Urban Public Expenditure Policies
on Roads and Rail

(Ho et al., 2008)

Berthing Conjunction Time

(Koseler, 2008)

Total Number of Ocean Carriers

(Koseler, 2008)

. Profit (Koseler, 2008)
Considered Labor (Koseler, 2008)
Transportation Costs (Koseler, 2008)
Investment in Technology (Koseler, 2008)
Ship Service Time (Koseler, 2008)
Empty Container Inventories (Koseler, 2008)
Container VVolume (Yeoetal., 2013)
(Li & Wang, 2013;
GDP Aggregate Mingming, 2011)
. (Lattila & Saranen,
Hinterland Backlog 2011)
Stock/Level/State . (Ho et al., 2008; Park et
Variables Port Throughput/Transshipment al., 2005)

Cargo on Board and Cargo Delivered (Engelen , 2006)

Capacity moved from Another Port (Lattila & Saranen,2011)

(Li & Wang,

Port Capacity 2013;Mingming, 2011)

Ships, Lay-up, Scrap (Dikos et al., 2006)

Ships at Ports (Omer et al., 2012)
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Table 10 Variable Classification (Cont’d)

(Omer et al., 2012;

Ships/Vessels Cheng et al., 2010;
Engelen , 2006)

Containers (Yeoetal., 2013)

Empty Containers (Koseler, 2008)

(Lattila & Saranen,

Capacity (Cranes, Port) 2011; Mingming, 2011)

Flow/Rate/Derivative (Lattila & Saranen,
Variables Freight 2011; Ho et al., 2008; Li
& Wang, 2013; Park et
al., 2005)
(Li & Wang,
Money 2013;Mingming, 2011)
New Ship Rate (Dikos et al., 2006)
Lay-up Rate (Dikos et al., 2006)
Scraping Rate (Dikos et al., 2006)
Demand Lag to Capacity Expansion (Ho et al., 2008)
Between the Ordering and the (Dikos et al., 2006;
Delay/Lag Variables Delivery of the Vessel Engelen , 2006)

Between Port Investment and Port

Capacity Increase (Mingming, 2011)

2.2.3.6 Sensitivity and Scenario Analysis
The MTSSD literature is classified in terms of the employment of sensitivity and scenario

analysis grouped into disruption-related, capacity-related, and other analyses in Table 11.
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Table 11 Sensitivity and Scenario Analysis

Sensitivity and Scenario

. Explanation Source
Analysis
Security Level (Yeoetal., 2013)
Disaster Response Time (Croope & McNeil, 2011)

Probability of Disruption

Disruption-related
Occurrence

(Croope & McNeil, 2011)

Different Port Closures due .
to Oil Spillage (Lattila & Saranen, 2011)

Warehouse Capacity (Dundovic et al., 2009)

(Dundovic et al.,

Ship Capacity 2009;Koseler, 2008)

Capacity-related

Hinterland Capacity (Lattila & Saranen, 2011)
D|fferer_1t Level of Port (Ho et al., 2008)
Expansions
(Randers & Goluke, 2007,
Demand Change Dikos et al., 2006; Lattila O.
Other L., 2008)
ag?r' Crane Moves per (Cheng et al., 2010)

2.2.4 MTSSD Methodology Classification

Since we are investigating SD as a methodological approach to studying the MTS, we
also classify the MTSSD literature in the context of methodology descriptors. We grouped the
relevant literature into six methodology descriptors including sub-model consideration, model
integration, simulation period, software selection, modelling challenges and difficulties, and

validation and verification techniques.

2.2.4.1 Model Integration

First, we identify the literature that considered subsystems. Several papers (Croope &
McNeil, 2011; Yeo et al., 2013; Dvornik et al., 2006; Munitic et al., 2003; Cheng et al., 2010;
Dikos et al., 2006; Fiorello et al., 2010; Videira et al., 2012; Park et al., 2005;Koseler, 2008)

considered MTS subsystems that are interconnected with each other. Some scholars considered
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another type of model integrated with their SD model to analyze their problem of interest. The

list of integrated models and corresponding studies are listed in Table 12.

Table 12 Integration of SD with Other Models

Integration with Other Model

Source

Network Optimization

(Omer et al., 2012)

Input-Output

(Li & Wang, 2013)

Econometrics

(Li & Wang, 2013)

Regression

(Park et al., 2005;Lattila O. L., 2008)

2.2.4.2 Simulation Period Employed

The MTSSD literature in Table 13 is classified according to the simulation period employed.

Table 13 Simulation Period Employed

Simulation

. Explanation Source
Period

Hours 720 and 1500 Hours (Lattila & Saranen, 2011)
2 and 4 Days (Croope & McNeil, 2011)

Days gffp’,ﬁ%’a{;nd 1500 Days, Time (Koseler, 2008)
250 and 730 Days (Lattila & Saranen, 2011)
170 Months, Time Step=1 Month (Engelen , 2006)

Months 72 Time Periods (i.e. Months), Time
Step=0.25 (i.c. Wgeks) ) (Engelen et al., 2009)
1970 - 2020, Time Step=1 Year (Yeoetal., 2013)
10 Years (Ho et al., 2008)
1990-2050 (Fiorello et al., 2010)
2007-2009, Time Step=1 Year (Mingming, 2011)

vears 2007-2025 (Li & Wang, 2013)

1950-2010, Time Step=1 Year

(Randers & Goluke, 2007)

1980-2002, Time Step=1 Quarter

(Dikos et al., 2006)

1970-2010, Time Step=1 Year

(Wijnolst, 1975)

1998-2007

(Park et al., 2005)

2010-2030

(Lattila O. L., 2008)
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2.2.4.3 Software Utilized
The list of software products utilized in the reviewed MTSSD literature is shown in Table 14.

Table 14 Software Utilized

Software Source
(Omer et al., 2012; Yeo et al., 2013;Li & Wang,
Vensim 2013;Fiorello et al., 2010;Lattila O. L., 2008;Engelen,

2006;Santella & Steinberg, 2009)
(Dundovic et al., 2009;Dvornik et al., 2006; Munitic et al.,

POWersim  5003;Dikos et al., 2006;Park et al., 2005)
Stella (Croope & McNeil, 2011)
iThink (Cheng et al., 2010)

DYNAMO (Wijnolst, 1975)

2.2.4.4 Modeling Challenges

We identified two major classifications of modelling challenges found in the literature as

data-related and complexity-related challenges shown in Table 15.

Table 15 Modeling Challenges

Challenge Explanation Source
(Engelen et al., 2009;Dikos et al.,2006;

Availability Videira et al., 2012; Lattila O. L.,

Data-related 2008;Santella & Steinberg, 2009)
Accuracy/Reliability (Ho et al., 2008; Dikos et al., 2006)
Transformations (Lattila O. L., 2008)
Keep the Model Size (Randers & Goluke, 2007; Fiorello et al.,
Manageable 2010)
Define Metric(s) to Capture (Omer et al., 2012; (Croope & McNeil,
System Performance 2011)

(Lattila & Saranen, 2011;Croope &
McNeil, 2011;Li & Wang, 2013; Santella
& Steinberg, 2009)

Identify Various Types of
Interdependencies/Feedbacks

Complexity-  Quantify the Dependencies (Ho et al., 2008; Engelen , 2006;Santella
related between the Variables & Steinberg, 2009)

Many Assumption Requirements (Croope & McNeil, 2011)

Capturg Changes in the System (Croope & McNeil, 2011)
Over Time

Entities Possess Characteristic of

Heterogeneity (Silva et al., 2011)

Involve Broad Stakeholder

Groups and Lack of Information ¢V deira etal., 2012)
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2.2.4.5 Validation/Verification Techniques
Table 16 classifies the validation/verification techniques that are utilized in the MTSSD
literature. The most common validation/verification technique is comparing model outputs with

historical data and implementing a case study.

Table 16 Validation/Verification Techniques

Validation/Verification Source

(Croope & McNeil, 2011; Yeo et al., 2013; Dundovic et
al., 2009; Cheng et al., 2010;Li & Wang, 2013;Randers
& Goluke, 2007; Engelen et al., 2009; Dikos et al.,
2006;Mingming, 2011;Lattila O. L., 2008;Santella &
Steinberg, 2009)

(Ho et al., 2008;Park et al., 2005;Koseler, 2008;Santella
& Steinberg, 2009)

Expert Reviews (Santella & Steinberg, 2009)

Compare with Historical Data
and Implement a Case Study

Sensitivity Analysis

2.2.5 Conclusion and Future Work

This paper presents a review of the MTSSD literature and illustrated the wide variety of
SD applications in MTSSD. The literature shows that SD models are successfully utilized to
describe the complexity of MTS. Our classification of the MTSSD literature indicates that the
existing body of knowledge primarily consists of port studies but there are a few papers that
study vessels. Several researchers integrated their SD model with other models and conducted
sensitivity analysis and scenario analysis to confirm the validity of their SD modeling, Moreover,
the literature review shows that the MTSSD literature primarily face data-related and
complexity-related modeling challenges.

This literature review is an initial step in understanding and demonstrating the causal
relations between the different components of the MTS. In the future, a SD model will be built in

order to further study the behavior of the MTS and understand the impacts on the major elements
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of MTS performance. This will help with decision-making strategies that will be beneficial for
MTS stakeholders and can result in a competitive advantage for policy makers.
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3. ECONOMIC IMPACT ANALYSIS OF INLAND WATERWAY DISRUPTION
RESPONSE 3

Abstract

Navigable inland waterways connect inland ports with the global supply chain by
providing a low-cost, reliable, and environmentally friendly freight transportation mode. In
this paper, we present the results from a simulation-based approach that estimates the
potential economic impacts of inland waterway disruption response. Predicting economic
impacts of inland waterway disruption response enables system stakeholders to increase
their preparedness and potentially reduce economic losses. Our approach is implemented
on an illustrative case study of the McClellan-Kerr Arkansas River Navigation System.
The approach is generalizable to navigable inland waterways throughout the United States

to support economic resilience of these systems.

Keywords: Economic impact analysis, disruption analysis, freight transportation, maritime

transportation, inland waterways, Monte Carlo simulation

3.1 Introduction

Navigable inland waterways connect 38 states in the United States. In 2011, a total of
$1.7 trillion worth of freight was exported from and imported to U.S. ports (Chambers and Liu,
2012). Navigable inland waterways not only empower economic activities but also provide other
benefits such as lower emissions, navigation, water supply, fish and wildlife habitats, recreation,
hydropower generation, and flood control (ODOT, 2012).

In terms of transportation benefits, using navigable inland waterways to transport freight

is less expensive than transporting by rail or truck. The cost of one ton-mile (moving one ton of

3 Published in the Engineering Economist Journal (Oztanriseven & Nachtmann, 2016)
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freight one mile) is 0.72 cents by barge, 2.24 cents by rail, and 26.62 cents by truck (Guler, et al.,
2012). Navigable inland waterways are also more fuel efficient than other modes of
transportation (USACE, 2009). One gallon of fuel can move one ton of freight 616 miles by
barge, 478 miles by rail, and 150 miles by truck (American Waterways Operators, 2013).
Another key advantage of navigable inland waterways is cargo capacity; one barge generally
carries 1,750 tons, which is equivalent to the capacity of 16 railcars or 70 tractor trailers (Kruse,
et al., 2012). One barge towing vessel typically pushes nine to fifteen barges at a time.

Transporting freight via inland waterways results in fewer fatalities than shipping via
railroads or highways. One freight transportation injury occurring on the inland waterways is
equivalent to 95 injuries occurring on railroads and as many as 1,610 injuries occurring in truck
accidents (Kruse, et al., 2012). In addition, using navigable inland waterways to transport freight
relieves already congested roads and railroads. The current usage of inland waterways avoids
over 51 million truck trips per year (ASCE, 2013).

We developed a simulation-based approach to investigate the economic impacts of
navigable inland waterways disruption response. Our research objective is to better understand
the impacts of disruption duration, estimation, and commodity type on economic impact factors.
Our approach measures the total economic loss due to a disruption response based on shippers’
decisions whether to wait for the inland waterway to reopen or to transfer cargo to an alternative
mode of transportation. This decision is evaluated on the expected total cost comprised of
transportation cost, holding cost, and penalty cost for both decision alternatives (wait or
alternative mode transfer). Based on the shippers’ decisions, our model measures the total

economic loss for the given disruption scenario. Our approach is implemented on a case study of
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the McClellan-Kerr Arkansas River Navigation System (MKARNYS) to illustrate the economic

impacts of disruption response related to this waterway.

3.2 Literature Review

Economic impacts of maritime transportation disruptions and specifically navigable
inland waterways have received limited attention in the literature. This literature is summarized
in Table 1 and detailed in Oztanriseven and Nachtmann (2013). Prior research has focused
primarily on specific types of disruptions, such as natural disasters and man-made failures. For
example, the impacts of an earthquake in the New Madrid Seismic Zone on nine Midwestern
states and the rest of the United States was studied by Okuyama, et al. (1999). Another example
is Olsen, et al. (2005) who measured the benefits of barge services based on commodity price
differences in different geographical regions and considered hydrologic variability, such as low
flow, flood, and ice, as disruption types. Terrorist attacks and low, medium, and high
radioactivity scenarios were studied for the Los Angeles and Long Beach ports by Rosoff and
Winterfeldt (2007) who utilized different risk analysis tools including scenario generation and
project risk analysis. Lewis, et al. (2006) studied sea port closure and reopening probabilities to
measure the productivity impacts of a seaport through a Markov decision model aims to find the
optimal inventory management policy.

MacKenzie, et al. (2012) developed a simulation and multiregional input-output
framework to measure the economic impact of suddenly closing the inland waterway Port of
Catoosa. The primary differences between our work and theirs are: 1) we examine the economic
impacts of disruption duration estimation accuracy, 2) we study disruption response strategy by
commodity type under various disruption duration scenarios, and 3) we assume that an

alternative mode transfer may result in an adverse economic impact. Pant, et al. (2015) also
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proposed a framework to measure the economic impacts of waterway network disruptions on the

Port of Catoosa through the application of dynamic multi-regional interdependency model

indicating a total loss over $180 million. Recently, Thekdi and Santos (2015) studied sudden-

onset disruptions by implementing interdependency modeling and scenario analysis on the Port

of Virginia at Hampton Roads for various disruption scenarios.

Table 1 Types of disruption studied. (Oztanriseven and Nachtmann, 2013)

Type of Disruption Detail Author(s)
Natural Disaster Earthquake Okuyama (1999)
Erosion Richardson and Scott (2004)
Labor Strike Jung, et al. (2009)
Lockout Park, et al. (2008)
Man-made

Terrorist Attacks

General

Other Sudden Port Closures

Gordon, et al. (2005)

Gordon, et al. (2008)

Rosoff and Winterfeldt

Chatterjee, et al. (2001)

Figliozzi and Zhang (2009)

Folga, et al. (2009)

Jones, et al. (2011)

Kruse, et al. (2011)

Lewis, et al. (2006)

Loren C. Scott & Associates

Pant, et al. (2015)

Qu and Meng (2012)

Wang and Miller (1995)

MacKenzie, et al. (2012)

Thekdi and Santos (2015)

Process Disruptions of Ports

Pant, et al. (2011)

Economic impact of maritime transportation disruption research is based on different

disruption durations, defined in this study as short-term (10 days), medium-term (60 days), and

long-term (180 days). Recent real world examples of short-term disruptions are ten day lockout

of Los Angeles/Long Beach ports (Khouri, 2015), ten day closure due to Montgomery Lock and

Dam failure (Guler, et al., 2012), eleven day of disruption due to McAlpine Lock repair (Harris,
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2004), twelve day port network shutdown (Gerencser, et al., 2003), and ten day port closure of
West Coast ports (Martin Associates, 2001). Medium-term real world disruption examples
include fifty-two day of closure in 2003 due to Greenup Lock and Dam failure and maintenance
(Guler, et al., 2012), two months of disruption due to Interstate 40 bridge collapse across the
Arkansas River (Volpe, 2008), and one month disruption of Los Angeles/Long Beach Ports
(Park, et al., 2005; Rosoff and Winterfeldt, 2007). Example of related long-term disruptions
studied in the literature are 120 day to 365 day shutdown of Los Angeles/Long Beach Ports due
to a terrorist attack (Rosoff & Winterfeldt, 2007) and 120 day of disruption due to a dirty bomb
attack to Los Angeles/Long Beach Ports (Gordon, et al., 2005). Although each disruption has
unique characteristics, research shows the severity in terms of economic impacts due to
disruptions. For example, a one-month closure of the Ports of Los Angeles/Long Beach, New
York-New Jersey and Houston may lead to negative economic impacts of approximately $21
billion, $14.4 billion and $8.4 billion respectively (Park, et al., 2005).

Our review of the relevant literature indicates that there is lack of decision support tools
that do not require primary data collection for water transportation authorities to develop
disruption mitigation policies for potential navigable inland waterway disruptions. This primary
data collection is very costly in terms of time and resources. In addition, our review indicates that
there is no published research that examines the economic importance of disruption duration
estimation accuracy related to maritime disruption response. The simulation-based approach
presented in this paper examines the economic impacts of disruption duration, estimation, and

commaodity type on inland waterway disruption response.
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3.3 Methodology

3.3.1 Disruption Scenarios
To assess the economic impacts of navigable inland waterway disruptions, we developed
a Monte-Carlo simulation model to assess economic impacts under various disruption scenarios

including multiple disruption durations, estimation accuracy levels, commodity types.

We define disruption durations as short-term (10 days), medium-term (60 days), and
long-term (180 days) durations based on disruption durations studied in the literature and real
disruption cases as discussed in the literature review. For each scenario, there are two decision
alternatives: 1) wait for the waterway to reopen and remain on the waterway or 2) transfer cargo
to an alternative mode of transportation. Each scenario considers three possible disruption
duration estimation outcomes; accurate estimation (A.E.), overestimation (O.E.), and
underestimation (U.E.). In accurate estimation, the duration of disruption is accurately estimated.
In the overestimation and underestimation cases, the estimated disruption duration is not
accurately under three possible estimation error levels (10%, 20%, and 30%). The model
considers commodities typically transported on the inland waterways including iron and steel,
chemical fertilizer, petroleum products, coal and coke, sand, gravel, and rock, soybeans, wheat,
other grains, forest products/minerals, and manufactured equipment and machinery.

Results of our study provide information to support strategic investment in future
navigable inland waterway infrastructure development. This can increase the competitive
advantage of the associated region, while benefiting from the environmental and societal

advantages associated with the maritime transportation mode.
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3.3.2 Model Assumptions
Model assumptions related to the behavior of the system are summarized in Table 2.

Table 2 Assumptions

Assumptions Reference

No capacity constraint on alternative modes of

transportation MacKenzie, et al. (2011)

The market behaves monopolistically, so there are no

substitutes for commodities Thissen (2004)

Annual holding cost rate of 24.33% Lewis, et al. (2006)

Penalty cost rate of 3% for the first week of delay and

10% for the other weeks Kwon, et al. (1398)

Transportation cost is 0.72 cents for barge, 2.24 cents

for rail, and 26.61 cents for truck per ton mile Guler, etal. (2012)

As soon as the disruption is over, all barges that

queued up will be able to move immediately Pant, etal. (2011)

After formulating the underlying assumptions and parameter estimates, the total
disruption cost is calculated as the sum of three cost components - holding cost, penalty cost, and

transportation cost.

3.3.3 Model Formulation

In this section, the model formulation of our simulation-based approach is presented,
including the sets, parameters, and equations. The purpose of our model is to measure total
economic loss due to inland waterway disruption response. Total economic loss is defined as the
sum of holding cost, penalty cost, and transportation cost. To compute these costs, we calculate
the number of commodity shipments per day, average travel distance, and average value of
commodity. The notation and formulation of our economic impacts of inland waterway

disruption decision model are as follows:
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Sets

el Set of commodities

teT Set of years

keK Set of flow types k = {1: inbound, 2: outbound, 3: internal, 4: through}

ILmnel Set of regions located in the study region

€S Set of port locations (river mile) in state |

qgeQ Set of transportation modes q = {1: water, 2: rail, 3: truck, 4: other}

Parameters

IAG) Flow of commodity i by mode of transportation g in year t

B; Capacity of a barge carrying commodity i

N; Number of barges per shipment of commodity i

o(t) Number of working days without a disruption in year t

A;(t) Average number of commodity i shipments per day in year t

w; () Flow weight of port that is located at j in year t

d;;. Distance (river mile) between ports j and j’

gr Commodity flow from state | by type k

d(t) Average travel distance for flow type k in year t

d(t) Average travel distance in the study region in year t

ugq(t) Normalized usage rate of g mode of transportation in year t

a,(t) Average value of commodity i per ton in year t

7,(t) Average value of commodity i per shipment in year t

@q(t) Transportation cost rate of transportation mode g per ton mile in year t

At Commodity i transportation mode g number of delivery days delay due to a
disruption

E(At]) Expected number of delivery days delay for commodity i transportation mode g at

the beginning of a disruption
pi(t, At]) Commodity i penalty cost rate per day due to At/ days of delay in year t
hi(t, At]) Commodity i holding cost rate per day due to A¢; days of delay in year t

o (t) Commodity i transportation cost rate per shipment for transportation mode q in year
t

P;(t, At) Commodity i penalty cost rate per shipment per day due to At/ days of delay in
year t

H;(t, At]) Commodity i holding cost rate per shipment per day due to At days of delay in
year t

AC;(t, Atf, E[At]])
Commodity i economic loss per shipment due to a disruption that cause At;! days of
delivery delay when the expected delivery delay is E[Atﬁ] in yeart

C(t, At} E[At]])
Total economic loss per shipment due to a disruption that cause Atﬁ days of delivery
delay when the expected delivery delay is E[Atf ]inyeart
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The model formulation represents navigable inland waterways in a given study region
during year t. Equation (1) calculates the average number of shipments per day needed to
accommodate the commodity i by dividing the flow of commodity by shipment capacity by the
number of working days without disruption. Equation (2) calculates the expected travel distance
for inbound and outbound freight flow by multiplying the distance between the ports in the
region | with the ports that are not located in the study region by a port weight factor. A port
weight is calculated to estimate the commodity flows between different ports to estimate the
average travel distance d(t). The reason for this estimation is the unavailability of data for the
commodity flow values between individual ports. Therefore, port flow weights are obtained from
water transportation authorities to calculate these port weight factors. Similarly, port weight
factors are utilized for internal and through traffic flows in Equations (3) and (4) respectively.
The average travel distance in the study region is calculated in Equation (5) by the weighted sum
of the average flow distances calculated in Equations (2)-(4). The weights in Equation (5) are
calculated by dividing commaodity flow by flow type by total commodity flow of all flow types.
Equation (6) calculates the average value of commaodity i per shipment by multiplying the
average value of commaodity per ton by shipment capacity. Equations (7)-(9) calculate
transportation, penalty, and holding costs respectively. However, it is important to note that the
penalty cost rate, p;(t, At'), and holding cost rate, h;(t, 4t), are functions of commodity type,
time, deliver days delay of commodity i for transportation mode q due to a disruption whereas
transportation cost rate, ¢,, (t), is a function of ton mile in year t for transportation mode q.
Equation (10) calculates how much additional cost is incurred per shipment for each commodity
type due to a disruption scenario. Finally, Equation (11) calculates the total economic loss due to

a potential disruption for all commodities in the study region in a given year.
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3.4 Case Study: McClellan-Kerr Arkansas River Navigation System Overview
To demonstrate our approach, we implement our methodology on the MKARNS. The
MKARNS, as shown in Figure 1, connects the heartland of the United States with the rest of the

world via Mississippi River and the Port of New Orleans.
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Figure 1 MKARNS Map (USACE, n.d.).
The MKARNS consists of the Verdigris River, Arkansas River, and White River (ODOT,

2012). Thirteen of its eighteen locks are located in Arkansas, and five of its locks are located in
Oklahoma (AOPOA, 2010). The locks on the MKARNS are 600-feet long and 110-feet wide
allowing for eight barges and one towboat to be contained within each lockage (ODOT, 2015).
In 2014, 11.7 million tons of freight was transported via the MKARNS (ODOT, 2015). These
goods include iron and steel, chemical fertilizer, petroleum products, coal and coke, sand, gravel,
and rock, soybeans, wheat, other grains, forest products/minerals, and manufactured equipment

and machinery (ODOT, 2015). Another important fact about the MKARNS is that it offers year-
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round accessible inland waterways through five public ports and approximately fifty private

terminals (AOPOA, 2013).

3.4.1 Data Used

We limited our case study to publically available data which was validated by three
subject matter experts including a waterways manager of a State Department of Transportation, a
United States Army Corps of Engineers (USACE) regional economist, and an executive director
of a State Waterways Organization.

The parameter values and the corresponding sources are illustrated in Table 3. Also, the

consumer price index is utilized to adjust the data to 2013 dollars.
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Table 3 Data Sources

Description Parameter Source
Commodity flow P, gk USACE (2014)
Barge capacity B; ~ Tri(1400,1450,1500) IDOT (2008)

# of barges per Arkansas Waterways
_ N; ~ Tri(6,8,17) o
shipment Commission (2011)
# of working days _
) O(t)=365 days in a year AOPOA (2012)
in a year
) Arkansas Waterways
Port weight factor w;(t) o
Commission (2011)
Mode q usage rate ugq(t) USDOT (2010)
Commodity value a,(t) AOPOA (2012)
Transportation cost
P (t) Guler, et al. (2012)
rate
(t, At
benalty cost rat i ;) Painter and Whalen
enalty cost rate T, :
y _ 0.006 a,(t) ,At; <1week (2010)
0.014 * &, (t) , At > 1 week
Holding cost rate h;(t, At)=0.0007 &, (t) Lewis, et al. (2006)
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3.4.2 Analysis
We ran our simulation model for three different disruption durations: short-term,
medium-term, and long-term. We utilized @RISK 6 software to run our Monte Carlo simulation

for 5,000 iterations for each disruption scenario.

3.4.3 Results

Some general findings were observed from our case study. As expected, providing an
accurate estimation of the disruption duration leads to the lowest total disruption cost.
Underestimating the disruption duration by 30% results in the highest total disruption cost for all
three disruption duration scenarios. Furthermore, the iron and steel (Iron & Steel) and chemical
fertilizer (Cheml Fert) commodities always cause the majority of the total disruption cost. In the
short-term, medium-term, and long-term scenarios, these two commaodities account for 62%,
50%, and 46% of the total disruption cost respectively. However, each disruption duration

scenario has also its own distinct findings which are discussed next.
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10 Day Disruption Total Cost by Commodity ($M)
Estimation Accuracy Cheml Fert Iron & Steel Petrol Wheat Manuf Minerals Soybeans Food Coal Other Cheml Sand Total
-30% $ 108 $ 1.04 $0.35 $0.25 $022 $ 014 $ 0.11 $0.10 $0.06 $ 0.04 $0.03 $3.41
Under Estimation -20% $ 108 $ 1.04 $0.35 $0.25 $0.22 $ 0.14 $ 0.11 $0.10 $0.06 $ 0.04 $0.03 $3.41
-10% $ 108 $ 1.04 $0.35 $0.25 $020 $ 014 $ 0.11 $0.10 $0.06 $ 0.04 $0.03 $3.39
Accurate Estimation 100% $ 1.08 $ 1.04 $0.35 $0.25 $0.19 $ 014 $ 0.11 $0.10 $0.06 $ 0.04 $0.03 $3.38
10% $ 1.08 $ 1.04 $0.35 $0.25 $0.19 $ 014 $ 0.11 $0.10 $0.06 $ 0.04 $0.03 $3.38
Over Estimation 20% $ 108 $ 1.04 $0.35 $0.25 $020 $ 014 $ 0.11 $0.10 $0.06 $ 0.04 $0.03 $3.39
30% $ 1.08 $ 1.04 $0.35 $0.25 $021 $ 0.14 $ 0.11 $0.10 $0.06 $ 0.04 $0.03 $3.40

Figure 2 Total Disruption Cost Results for Short-term Disruption Scenario by Commodity

and Estimation Accuracy

Figure 2 summarizes the expected values of the total disruption cost for the short-term

disruption scenario by commodity and estimation accuracy. Overall, the results of the short-term

disruption scenario indicate that underestimating the disruption duration leads to slightly higher
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total disruption cost (due to manufactured equipment and machinery) than the corresponding
overestimations. For example, 30% underestimation results in a total disruption cost of $3.41
million where 30% overestimation leads to $3.40 million in total disruption cost. The main cost
component (88%) contributing to the total disruption cost is penalty cost. Additionally, the total
cost graph in Figure 2 appears to be relatively flat. In general, all commodities, except
manufactured equipment and machinery, incur the same total disruption cost across all
estimation accuracy levels. Manufactured equipment and machinery ($5,000 per ton) is a highly
valuable commodity in comparison to the other commodity types, for example, sand/gravel and
rock (Sand) is valued at $10 per ton. Thus, for companies transporting manufactured equipment
and machinery, their penalty cost and holding cost will be greater since these two cost types are
assessed based on a percentage of commodity value. The results show that, even for short-term
disruptions, the manufactured equipment and machinery commodity should be transported by an
alternative mode instead of waiting for the inland waterway to reopen in order to minimize the

total disruption cost incurred.
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60 Day Disruption Total Cost by Commodity ($M)
Estimation Accuracy Cheml Fert Iron & Steel Wheat Petrol Soybeans Food Minerals Coal Manuf Other Cheml Sand  Total

30% $ 3842 $ 2894 $1514 $1452 $ 750 $7.02 $ 6.07 $456 $350 $ 191 $1.77 $129.36
Under Estimation  -20% $ 3395 $ 2471 $14.10 $1312 $ 7.23 $6.71 $ 540 $4.46 $259 $ 173 $1.77 $115.76
-10%$ 3123 $ 2217 $1357 $1228 $ 7.13 $659 $ 507 $456 $2.49 $ 162 $1.77 $108.46
Accurate Estimation 100% $ 3025 $ 2131 $1338 $12.00 $ 7.06 $6.49 | $ 496 $4.56 $1.83 $ 158 $1.77 $105.18
10% '$ 38102 $ 2213 $1359 $1229 $ 7.16 $657 $ 507 $4.62 $191 $ 161 $1.77 $107.72
Over Estimation 20% $ 3350 $ 2417 $1450 $1314 $ 7.81 $731 $ 549 $524 $196 $ 171 $1.77 $116.60
30% $ 3629 $ 2456 $1522 $1445 $ 787 $7.19 $ 593 $5.03 $1.96 $ 187 $1.77 $122.15

Figure 3 Total Disruption Cost Results for Medium-term Disruption Scenario by

Commodity and Estimation Accuracy

Achieving higher estimation accuracy gains more importance as the disruption duration

increases. Whereas the total disruption cost impact was relatively flat in the short-term disruption
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scenario, Figure 3 illustrates that underestimating or overestimating the disruption duration for
medium-term disruption scenario leads to a relatively greater increase in total disruption cost.

For the medium-term disruption duration, it cannot be clearly identified whether over- or
under-estimating the disruption duration leads to lower total disruption cost. However, looking at
the individual commaodities provides further insights. For instance with the coal and coke,
wheat, and soybeans commodities, underestimating the disruption duration leads to lower total
disruption cost than overestimating the disruption duration. However, for the iron and steel,
chemical fertilizer, and other chemicals (Other Cheml) commodities, the opposite is observed
where overestimating the disruption duration leads to lower total disruption cost in comparison
to underestimating it. For the medium-term disruption scenario, penalty cost and transportation
cost are the major disruption cost components. As outlined in Figure 3, when the disruption
duration is overestimated, more commodities are transported via alternatives modes and
therefore lead to increased transportation cost. Figure 3 highlights in grey the scenarios where
transportation cost is the largest cost component. Similarly, non-highlighted cells in Figure 3
represent scenarios in which penalty cost is the largest cost component.

Furthermore, Figure 3 illustrates how the total disruption cost of commodities is impacted
differently by estimation accuracy. For sand/gravel and rock, there is no change in total
disruption cost based on the estimation accuracy. Manufactured equipment and machinery
experiences a 92% increase in disruption cost from accurate estimation to the 30%
underestimation scenario. Other commodities experience an increase up to 36% with an average

increase of 20%.
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-30% $ 1745 $ 138.8 $68.2 $64.7 $ 383 $350 $284 $ 264 $203 $175 $ 8.5 $620.4
Under Estimation 20 $ 1349 $ 100.9 $59.2 $52.0 $ 344 $313 $260 $ 214 $123 $175 $ 6.9 $496.7
-10% $ 1110 $ 781 $538 $444 $ 321 $29.1 $246 $ 184 $ 74 $175 $ 59 $4223
Accurate Estimation 100% $ 1028 $ 704 $52.1 $419 $ 314 $283 $241 $ 174 $ 58 $175 $ 5.6 $397.2
10% $ 1089 $ 737 $539 $443 $ 321 $289 $246 $ 184 $ 59 $175 $ 59 $414.0
Over Estimation 20% '$ 1089 $ 737 $580 $448 $ 346 $31.2 $26.0 $ 187 $ 59 $175 $ 6.0 $425.1
30% $ 1089 $ 737 $580 $448 $ 365 $32.7 $283 $ 187 $ 59 $175 $ 6.0 $431.0

Figure 4 Total Disruption Cost Results for Long-term Disruption Scenario by Commodity
and Estimation Accuracy
The results of the long-term disruption scenario indicate that overestimating the

disruption duration always leads to lower total disruption cost than underestimating the

disruption duration. In comparison to overestimating the duration by 30% scenario,
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underestimating the disruption duration by 30% scenario leads to an increase in total disruption
cost of $189.4 million.

Similar to the findings for the medium-term disruption scenario, estimation accuracy has
no impact on the sand/gravel and rock commodity. The results in Figure 4 illustrate that
overestimating the disruption duration leads to lower total disruption cost than the corresponding
underestimation scenarios for chemical fertilizer, iron and steel, petroleum products (Petrol),
food products (Food), coal and coke (Coal), minerals, manufactured equipment and machinery
(Manuf), and other chemicals. Similar to the medium-term disruption scenario, the long-term
disruption scenario penalty cost and transportation cost are the major cost components. However,
transportation cost gains even more importance and constitutes a larger component of the total
disruption cost in comparison to the medium-term disruption scenario.

Furthermore, Figure 4 illustrates how the total disruption cost of commodities is impacted
differently by estimation accuracy. Similar to the medium-term scenario, there is no change in
total disruption cost based on the estimation accuracy level for the sand/gravel and rock
commodity. Manufactured equipment and machinery experiences the highest increase with a
253% disruption cost increase from accurate estimation to the 30% underestimation scenario. All

other commodities may only experience an increase up to 96% with an average increase of 47%.
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Figure 5 Total Disruption Cost Results per Day by Disruption Accuracy and Duration

Figure 5 illustrates the total disruption cost per day for each of the three scenarios. These
results indicate that the total disruption cost per day increases as the disruption duration also
increases. However, this relationship does not appear to be linear. For the short-term disruption
scenario, transportation cost is almost zero since most commodities will wait for the inland
waterway to reopen. When the disruption duration is medium term (60 days) or long-term (180
days), transportation cost is a significant component of the total disruption cost. Furthermore,
there is a cost trade-off between penalty and transportation cost. In the medium-term and long-
term scenarios, the results show that when underestimation occurs, penalty cost exceeds
transportation cost since commaodities will wait for the inland waterway to reopen; whereas when
overestimation occurs, more commaodities will be transported via alternative modes and lead to a

higher transportation cost than penalty cost.
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Figure 6 Total Disruption Cost versus Commaodity Value for A.E.

Figure 6 summarizes the total disruption cost versus the commodity value for each of the

three disruption duration scenarios. These charts illustrate that, depending on the disruption

duration, the proportion of total disruption cost caused by a commodity may vary. Therefore,

different disruption mitigation policies should be developed by the water transportation

authorities. Observing similar distribution charts that show the impact that estimation accuracy

level has on the total disruption cost by commodity indicate similar results regardless of the

disruption duration. Therefore, we chose the accurate estimation scenarios to represent all other

scenarios in Figure 6. The results in Figure 6 show that the relationship between the commodity

value and the total disruption cost incurred by a specific commaodity are not the same in all three

scenarios. For example, while iron and steel constitute more than 30% of the total disruption cost

in the short-term disruption scenario; in the long-term disruption scenario, this commodity
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constitutes less than 18% of the total disruption cost. Similarly, the total disruption cost
proportions for chemical fertilizer and manufactured equipment and machinery also decrease for
longer disruption durations. On the contrary, the total disruption cost percentage for some other
commodities, coal and coke, wheat, soybeans, and food products, increase with an increase in
disruption duration. For example, the total disruption cost for coal and coke increases from 2%
in the short-term disruption scenario to 6% in the long-term disruption scenario. Thus, some
commodities, coal and coke, sand, gravel, and rock, soybeans, food, and manufactured
equipment and machinery seem to be more sensitive to disruption duration than others and

warrant managerial attention.

3.4.4 Case Discussion

Our results suggest that estimation of disruption duration plays an important role in
transportation decisions, particularly for long-term disruptions. As shown by our case study,
increasing disruption duration estimation accuracy may reduce the total disruption cost
significantly (25% for medium-term and 61% for long-term disruptions on average). However, it
is difficult to predict the length of disruption duration because of the unpredictable nature of
disruptions. For instance, while the length of a disruption stemming from a natural disaster or a
man-made attack might be difficult to estimate, the length of a planned maintenance activity
might be easier to predict based on prior experience. Thus, inland waterways transportation
managers may want to carefully consider and analyze historical data from prior disruptions to
improve their disruption duration estimation. Additionally, these managers could utilize our
model to conduct scenario analysis for highly unpredictable disruptions to develop contingency

plans for potential future disruptions.
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Primary findings of our MKARNS case study include:

To reduce the economic impact of a disruption, managers should not only consider the
total value of commaodity flow in their system but also how each commaodity is sensitive
to disruption duration and accuracy of estimation. Therefore, when governmental
agencies make investment decisions to improve the infrastructure of the navigable inland
waterways system (e.g. port handling and access to alternative modes of transportation),
it is important to also consider the characteristics of potential future disruptions (e.g.
anticipated disruption duration and uncertainty) for more sensitive types of commaodities.
Companies that are expecting more short-term disruptions have several options to
mitigate their potential financial loss. For example, companies might be able to negotiate
with their customers to lower their penalty cost rates since penalty cost is the main
disruption cost component for short-term disruptions. Also, companies might want to
diversify the locations of their storage facilities into different regions so that, if a
disruption occurs in one region, companies would be able to satisfy customers’ demand
from a different region.

For medium-term disruptions, our study shows that, for different commaodities, either
underestimation or overestimation leads to the lowest total disruption cost. Therefore,
governmental agencies should analyze their navigable inland waterway transportation
system to determine which commodities are most predominant. Based on these analyses,
agencies would then be able to adjust their estimation strategies to minimize potential
economic losses. For example, if a navigable waterway system is highly utilized to
transport coal and coke and wheat, total disruption cost will be lower in the case of

duration overestimation.
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¢ Inalong-term disruption scenario, it is better overestimate rather than underestimate the
disruption duration to minimize total cost. However, repeated overestimation of
disruption durations may prompt companies to realize the pattern of overestimation and
adjust their behavior accordingly which may be counterproductive to the original

objective of minimizing total disruption cost.

3.5 Conclusions

Conducting an economic impact study can be costly in terms of money and time if the
study depends on primary data gathered from surveys and interviews. Although a primary data
collection approach may lead to more accurate results, the accuracy of a survey-based approach
depends on the response rate and response quality of the participants. In this study, a simulation-
based economic impact disruption decision model based on publicly available data is introduced.
The economic impact of potential disruptive events on the MKARNS is investigated by
implementing our model as an illustrative case study. In the case study, a scenario analysis is
conducted where the MKARNS is closed down due to a disruptive event for short-term,
medium-term, and long-term disruption scenarios. Scenario analysis and our model are utilized
to predict the economic losses due to a potential disruption. The model proposed in this study
could be applied to different study regions to measure the economic importance of other
navigable water systems which can enhance efficiency of federal and state capital allocations.

The findings of the case study show that the expected duration of a disruption determines
whether decision makers are better off waiting for the waterway system to reopen or switching to
an alternative mode of transportation. Furthermore, estimation accuracy of disruption duration

can help the involved stakeholders to reduce total cost caused by the disruptive event. In

75



addition, the relationship between estimated disruption duration and economic loss is found to be
non-linear.

In this research, we contributed to the published research pertaining to measuring the
economic impacts of disruption response in the navigable inland waterways system. By changing
the model parameters, our methodology can be adapted to different study regions, disruption
durations, and disruption scenarios. These model parameters can be gathered from publicly
available sources, but also researchers can integrate primary data sources into our model. To our
knowledge, this research is the only work that comprehensively investigates the importance of
disruption duration estimation on the total disruption costs, transportation, penalty, and holding
costs related to navigable waterways. Moreover, our system-wide holistic approach will help to
better inform the true value of a navigable inland waterway transportation system instead of
valuing discrete waterway infrastructure, which can assist transportation authorities to allocate
available capital among investment alternatives.

Our methodology is open to new improvements in the future, for example capacity
constraints could be introduced to the alternative modes of transportation and port handling
resources. Vulnerability of system components could also be considered because a disruption
may not impact each system component equally. Some components may be dysfunctional,
whereas others may be partially or fully functional. Another extension to consider would be
system resiliency. An inland waterway system may not become fully functional at once and
instead may gradually gain functionality over a period of time. Another future research direction
is to convert total disruption costs to commodity price changes per ton which can be used as an
input to multiregional variable input-output (MRV10) models (Liew and Liew, 1985) to estimate

total direct, indirect, and induced impacts in terms of different economic indicators such as
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output, value-added, employment, employee earnings, and tax collections. Lastly, decision
processes corresponding to waiting for the water transportation system to reopen or moving to an
alternative mode of transportation is deterministic in our model. However, a more realistic
approach may be to incorporate with stochastic parameters such as queue length, decision
makers’ opinions and experiences, and disruption duration estimation updates during the

disruption time frame.
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4. MODELING DYNAMIC BEHAVIOR OF NAVIGABLE INLAND WATERWAYS
Abstract

Navigable inland waterways link ports located in the heartland of the United States with
the rest of the world by providing a fuel efficient and an environmentally friendly mode of
transportation. In this research, a maritime transportation simulator (MarTranS) that integrates
agent-based modeling, discrete-event simulation, and system dynamics along with a
multiregional input-output model is developed to better understand the relationships between
inland waterway transportation system components and economic impact factors. To
demonstrate these relationships through our model, the McClellan-Kerr Arkansas River
Navigation System is used as the case study region. MarTranS is generalizable to any inland
waterway transportation system to enable maritime transportation stakeholders to better allocate

investment budgets and increase economic benefits.

Keywords: Maritime transportation, inland waterways, agent-based modeling, discrete-event

simulation, system dynamics, multiregional input-output model, economic impact
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4.1 Introduction

More than ninety percent of global freight is handled by the world’s maritime
transportation system (IMO, 2013). In the United States (U.S.), approximately one-twelfth of
national commaodity flow is transported via the inland waterway transportation system (Stern,
2013). Moreover, the inland waterway transportation system, an integrated part of society,
economy, and the environment, provides a variety of ancillary benefits including flood
protection, power generation, recreation, water supply, and habitats for fish and wildlife
(Shepherd, 2014). However, inland waterway transportation is vulnerable to natural disruptions,
system component failures, and man-made attacks. Consequently, it is important to understand
inland waterway transportation system behaviors to reduce associated risks and mitigate
economic losses. It is challenging to study the behavior and economic impacts of the inland
waterway transportation system due to high degrees of complexity and uncertainty. As explained
by Sterman (2000), inland waterway transportation system complexity exists because: 1) the
system is dynamic (Dundovic et al., 2009), 2) its components are tightly coupled (Li & Wang,
2013), 3) system decisions and outcomes are caused by feedback relationships between system
components, locks/dams, ports, navigation channels, economy, and the environment (Schade &
Schade, 2005), and 4) the effects are not proportional to the causes (nonlinear) due to capacity
and budget constraints, system delays, and the subjective nature of decision making processes
(Li & Wang, 2013; Koseler, 2008). Therefore, comprehensive modeling techniques are required
to accurately represent the complex relationships among system components and how these
relationships influence economic impacts. We developed a Maritime Transportation Simulator
(MarTranS) that integrates agent-based modeling, discrete-event simulation, and system
dynamics along with a multiregional input-output model to model the relationships between the

inland waterway transportation system components and economic impact factors.
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4.2 Literature Review

Researchers implement a variety of approaches to model complex, dynamic systems,
such as time-series models including neural network models (Lyrides et al., 2004) and statistical
models (Kavussanos, 2002; Dikos et al., 2006) and static and linear modeling techniques such as
cost benefit analysis (Schade & Rothengatter, 2014). However, these approaches have
weaknesses that can be overcome by implementing a multimethod simulation approach. In
particular, time-series models do not have the capability to consider the causal relationships
between the system components (Schade & Rothengatter, 2014) and do not support scenario
analysis or reflect the impact of exogenous variables (Schade & Rothengatter, 2014). Static and
linear models cannot measure long-term impacts of dynamic complex systems because they do
not consider secondary impacts of endogenous variables, and these approaches are heavily data-
dependent. Therefore, their output becomes less meaningful for longer study time frames
(Schade & Rothengatter, 2014).

Relevant literature related to the use of systems dynamics in maritime transportation is
classified and discussed in more detail by Oztanriseven et al. (2014). They classify the reviewed
papers as port-related, vessel-related, or other studies. The port-related studies are further
grouped into operational or economics focus. The operational studies investigate loading and
unloading operations from ship to shore (Dundovic et al., 2009; Dvornik et al., 2006) and berth
and yard operations (Cheng, et al., 2010). The remaining port-related studies explore port
economics (Ho, et al. 2008; Mingming, 2011; Li & Wang, 2013; Islam & Olsen, 2013). The
vessel-related studies investigate shipping freight rates (Randers & Goéluke, 2007; Engelen et al.,
2009; Dikos et al., 2006) and national fleet development strategies (Wijnolst, 1975). Other

studies developed a holistic approach integrating transportation, economy, policies and
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environment (Schade & Schade, 2005; Fiorello et al., 2010), and qualitative system dynamics
approach to investigate the impacts of policy selection decisions (Videira et al., 2012).

Another area of relevant literature is the study of disruptive events and resilience in
maritime transportation systems (Perez Lespier et al., 2015). The 9/11 attacks, Los Angeles/Long
Beach lockout, and Hurricane Katrina resulted in higher cognizance of public, policy makers,
and researchers (Santella & Steinberg, 2009). Scholars conducted research in potential risk
scenarios (Lattila & Saranen, 2011), system resiliency (Omer et al., 2012; Croope & McNeil,
2011), and security policy impacts (Yeo et al., 2013). In a recent paper, the current body of
knowledge was classified into study regions (Asia, North America, Europe, International, and
hypothetical), types of ports studied, intermodal transportation considered, types of causal
relations considered (disruption-related, capacity-related, and other), variable classifications, and
sensitivity and scenario analysis considerations (Oztanriseven et al., 2014). Moreover,
Oztanriseven et al. (2014) classified the relevant literature by simulation period employed (hours,
days, months, and years), software utilized (Vensim, Powersim, Stella, iThink, and DYNAMO),
modeling challenges (data-related and complexity-related), validation/verification techniques
(comparing with historical data, sensitivity analysis, and expert reviews), and the system
dynamics methodology as model integration (network optimization, input-output, econometrics,
and regression).

Oztanriseven et al. (2014) identify two studies that employed multimethod simulation
approaches in maritime transportation. Silva et al. (2011) integrate system dynamics and agent-
based modeling to specifically examine manufacturing industries and maritime carriers. Studied
agents include industry, third-party logistics, maritime carrier, land carrier and customers (Silva

etal., 2011). Furthermore, Silva et al. (2011) develop a causal loop diagram which captures the
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actions and reactions of the agents’ behaviors. Darabi, et al. (2012) use an agent-based
simulation to model ships, carriers, and ports and integrate system dynamics to model the
interrelationships of other transportation modes including airport, railroad, waterways, pipeline,
and highway. The main objective of their work is to illustrate the applicability of multimethod
simulation modeling in maritime transportation system. However, model parameters, application,
and results are not discussed in their paper.

The literature review presented here indicates that multimethod simulation is a well-
suited approach to model the complexities in the inland waterway transportation system. The
limited work verifies that there is an opportunity to expand the current body of knowledge in this

research area (Potter & Lalwani, 2008; Cheng, et al., 2010).

4.3 Methodology

A better understanding of the relationships between inland waterway transportation
system components and economic impacts can lead to improved investment decisions.
Therefore, in this research, MarTranS is developed and employed to support more informed
inland waterway investment decisions in order to increase economic benefits. Our research
objective is to comprehensively describe the economic impacts of inland waterway
transportation system under normal operations over a fifty year study time frame to account for

long-term impacts. The software utilized to conduct the study is AnyLogic 7.3.

4.3.1 Simulation Model Selection
4.3.1.1 System Dynamics

System dynamics is a computer-based simulation technique that consists of two major
elements, the system and its dynamics (Yeo et al., 2013). System dynamics focuses on the

interactive relationships between system components (Kirkwood, 1998) based on four theories;
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mental problem-solving process, information feedback theory, decision theory, and computer
simulation (Schade & Schade, 2005). Causal loop and stock and flow diagrams explain the
casual relationships and quantify these complex relationships as the basis of the model (Yeo et
al., 2013; Cheng et al., 2010).

System dynamics provides the following modeling advantages: 1) direct impact of
system changes can be modeled (Dikos et al., 2006); 2) impacts of structural changes,
regulations, and disruptions can be modeled (Dikos et al., 2006); 3) sensitivity and scenario
analysis can be conducted (Dikos et al., 2006; Yeo et al., 2013); 4) qualitative knowledge can be
integrated into the model (Dikos et al., 2006); 5) simulation can function under insufficient data
conditions (Dikos et al., 2006); and 6) model can explain system behavior that continuously
changes over a long period of time with time lags (Schade & Schade, 2005; Liu et al., 2010).

North (2005) states that system dynamics might not be an appropriate model approach
when the problem studied considers fixed processes, system processes are not well understood or
are difficult to aggregate at a high level, system learning and adaption, and/or discrete events
exist. In addition, system dynamics does not model geographical impacts on discrete decision
variables. Integrating system dynamics with discrete-event simulation and agent-based models

can overcome these limitations (North, 2007).

4.3.1.2 Discrete-Event Simulation

Discrete-event simulation utilizes entities, resources, and block charts to illustrate the
flow of passive objects such as people or tasks (Borshchev & Filippov, 2004). Discrete-event
simulation builds upon Monte Carlo simulation and overcomes the limitations of system
dynamics and agent-based models by considering dynamic processes and uncertainty (North,

2007). According to North (2007), discrete-event simulation is an appropriate tool to use when
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complex processes are examined, the modeler is interested in progress over a specific time
period, the process itself is static, and investigated variables contain uncertainty and follow an
established probability distribution. Discrete-event simulation can provide operational level
insights into the modeled system (Darabi et al., 2012). Limitations of discrete-event simulation
are that it cannot explain relationships at a high aggregation level or model adaptive behavior of
system components.
4.3.1.3 Agent-Based Modeling

As the world becomes more interconnected, more sophisticated modeling tools, such as
agent-based modeling, are required to model a system as individuals and their related behaviors,
which are represented as agents (Parunak et al., 1998). Agents can be cars, pedestrians,
customers, or even companies (Borshchev & Filippov, 2004), and as individuals that interact
with each other, researchers can observe their outcome variables at the system, individual and
aggregate levels (Parunak et al., 1998). Agent-based models have been applied to a variety of
research fields including organizational behavior, supply chain optimization and logistics,
financial markets, and transportation (Macal & North, 2013; Baindur & Viegas, 2011; Douma et
al., 2012; Flotterdd et al., 2010; Silva et al., 2011; Darabi et al., 2012). Agent-based modeling is
useful for modeling complex and dynamic system structures and when the modeler would like to
examine system-wide interrelationships but only has knowledge about individual agent behaviors
(Borshchev & Filippov, 2004). Agent-based modeling enables “what if” scenario analysis
through changing agent behavior (Parunak et al., 1998). Computational requirements are the

biggest challenge in agent-based modeling (Castle & Crooks, 2006).
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4.3.2 Model Development

The developed MarTranS supports our research objective by modeling relationships
between inland waterway transportation system components (ports, locks/dams, navigation
channels, commodities, alternative modes of transportation, and supply and demand nodes) and
regional economic impact factors. Our research hypothesis is that a lack of future investment in
inland waterway transportation system infrastructure will result in a significant decline of
economic impacts in the long-term. The key model components in MarTranS are ports,
locks/dams, navigation channel, commodities, alternative modes of transportation, and economic
impact factors. In order to estimate long-term economic impacts, a fifty year time frame is

considered to study these relationships and economic impacts.

4.3.2.1 MarTranS Structure

The MarTranS structure is illustrated in Figure 1. The sub-models integrated in
MarTranS are color coded in Figure 1 as system dynamics (orange), agent-based (yellow), and
discrete-event (blue). The input parameters are investments ($), demand changes (tonnage), and
the inland waterway transportation system disruptions (days). In our model, available budget
funds can be invested in port, lock/dam, and/or navigation channel infrastructure. Since
investment amounts can be set by decision makers, investments are defined to be endogenous
variables. However, demand changes and system disruptions are exogenous variables since there
is little or no control over these variables by model users. These endogenous and exogenous
variables impact the discrete event simulation model parameters including port processing times,
lockage times, lock unscheduled unavailabilities, lock scheduled unavailabilities, and

transportation times.
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Figure 1 MarTranS Structure

As illustrated in Appendix Figure A3, the discrete-event simulation sub-model starts with
commaodity arrivals. At this stage, different types of commodities arrive to the ports in the study
region. These commaodities are grouped into four categories including dry cargo, dry bulk, liquid
bulk, and grain. Dry cargo commaodities are iron and steel and manufacturing
equipment/machinery. Chemical fertilizer, coal and coke, sand/gravel and rock, and minerals and
building materials are categorized as dry bulk commodities. Liquid bulk commaodities include
other chemicals and petroleum products. Finally, grain commodities are wheat, soybeans, and
food/farm products. Following commodity cargo arrivals, these commodities spend time in their
ports of origin due to port handling activities. Then, the commaodities will go through the
necessary lock(s)/dam(s), as shown in Appendix Figure A5, which are located between their
origin and destination ports. Each lock/dam has its own cargo processing time, number of
scheduled unavailabilities, number of unscheduled unavailabilities, time per scheduled
unavailability, and time per unscheduled unavailability values (USACE, 2015). We conducted a
regression analysis and probability distribution fitting to these lock/dam values in the MarTranS

model to account for individual characteristics of each lock/dam. Once these commodities reach
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their destination ports, they wait in their designated port’s offloading queue for the destination
port’s process to be over, as shown in Appendix Figure A4. After the destination port’s
operations are completed, these commodities leave the system, with their time spent in the
system and distance traveled recorded. These records are collected for one simulation year and
are utilized to measure costs: transportation cost, holding cost, and penalty cost in the system
dynamics sub-model, as presented in Appendix Figure A6. As illustrated in rectangle 1 in
Appendix Figure A6, the number of shipments and average distance traveled values for each
type of commodity transported via each mode of transportation are the cost drivers for
transportation cost. Similarly, the number of shipments and average time spent in the system are
utilized as the cost drivers for holding and penalty costs as shown in rectangles 2 and 3 in
Appendix Figure A6. Rectangle 4 in Appendix Figure A6 shows total cost per ton values which
is a summation of transportation, holding, and penalty costs. In rectangle 5, the commodity price
calculation is illustrated for each commodity type. Commodity price values decrease/increase if
the current total cost per ton is less/more than the previous year’s total cost per ton. Based on
current year’s commodity prices, demands for next year and the economic impacts for a given
year are calculated in rectangles 6 and 7. These economic impacts are sales, gross domestic
product (GDP), tax, and employment. Then, a multiregional input-output sub-model is used to
compute the indirect and induced economic impacts.

The agent-based sub-model is utilized to define the behavior and characteristics of
agents, which are commaodity shipments in our model. Appendix Figure A2 illustrates that each
agent has a capacity, origin port, destination port, system entry time, system exit time, type of
commaodity, current location parameter, and navigation route function. These parameters and

function enable the collection of critical information, including number of shipments, agent time
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spent in the system, and distance traveled in the system, for each commodity in a given year.
Therefore, the agent-based sub-model links our discrete-event simulation sub-model with the

system dynamics sub-model and routes the sequence of processes for each agent to visit.

4.3.2.2 Model Formulation

In this section, the formulation of MarTranS is explained. The model formulation
contains sets, parameters and mathematical equations. The purpose of the model is to
comprehensively describe the economic impacts of inland waterway transportation system under
normal operations over a fifty year study period. Economic impact is measured with four
economic indicators (sales, GDP, tax, and employment) which depend on the quantity of
commodity demanded and its respective price in a given year. The quantity demanded and
commaodity prices depend on the costs associated with moving commodities from their origin to

destination nodes. The model formulation is as follows:

Sets
el Set of commodities
teT Set of years
lelLD Set of lock/dam locations (river mile)
I'eS Set of port locations (river mile)
y € R5 Set of time values
reR Set of regions
geQ Set of transportation modes q = {1: water, 2: rail, 3: truck, 4: other}
zeZ Set of economic indicators z = {1: Sales, 2: GDP, 3: Tax, 4. Compensation, 5:
Employment}
Parameters
YHG Average number of commodity i shipments by mode of transportation g per day in
year t
fl.q ) Flow of commodity i by mode of transportation g in tons in year t
I“iq(t) Capacity of mode of transportation g in tons for commodity i in year t
B;(t) Capacity of barge carrying commodity i by in year t
N;(t) Number of barges per shipment in year t
o (1) Number of navigable inland waterway (NIW) working days in year t
D () Demand for mode of transportation q in tons for commaodity i in year t
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@ (1) Transportation cost rate of transportation mode g per ton mile in year t

1 (t) Transportation cost rate of transportation mode g per ton in year t

dl(t) Average travel distance for commodity i shipments by mode of transportation g in
year t

r;(LD, t) Commodity i shipments lock/dam processing time in year t

1;(S,t) Commodity i shipments port processing time in year t

At] (r;(LD, t), 1(S, 1))
Transportation delay in days for commodity i shipments by mode of transportation
ginyeart

pi(t, At]) Commodity i shipments by mode of transportation q penalty cost rate per day due
to At days of delay in year t

P;(t, Atf) Commodity i shipments by mode of transportation g penalty cost rate per ton due
to At days of delay in year t

1/7{’ ® Transportation duration in days of commodity i shipments by mode of
transportation g in year t
v;(t) Average price of commodity i in year t
h;(t) Commodity i holding cost rate per day in year t
H;(t) Commodity i holding cost rate per ton in year t
C;(t) Commodity i total cost rate per ton in year t
w;(t) Commodity i inflation rate in year t
AY;(t) Commodity i NIW final demand change in year t
(I-Aat Table of direct and indirect requirements to meet industrial demand levels (Y)
AX;(t) Industry output changes due to the change in commodity i in year t
n; (t) Commodity i demand growth rate in year t
7;(t) Commodity i price elasticity of demand in year t
Bi(t) Commodity i NIW demand growth rate due to the impact of Panama Canal
expansion in year t
w; () Flow weight of port that is located at j in year t
a,(t) Average value of commodity i per ton in year t
Model
q
A = <I;"](1T(t@)(t)> Viel; VqeQ; VteT )
I*(t) = Bi(t) Nj(t)  Viel; VteT )
Di(t) = () 2] (t) @(t) Viel;;q # 1;VteT (3)

Yqeq 0 (1) d] () DI (1)
quQ Diq (t)

P;(t) = Viel; VteT 4
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YqeqPi(t, At (r;(LD, £),7:(S, £))) D () 7 (t)

Pi(t, At]) = Yoa DI (O Viel; VteT (5)
. 908) 7. (1) Y
(o) = 212 hl(gql:; (12‘*2)(0 D i ®)
C;(t) = @,(t) + P(t, At} (r;(LD, ), 1(S, 1)) + Hi(t)  Viel; VteT )
v (y) = t (Inflow;(y) — Outflow;(y)) dy + v;(0)  Viel; VteT; VyeY (8)
t-1
)= (0 OG0T HONED 07 B0
Outflow;(y) = {0 C,(6) = C;(t — 1); Viel; VyeY (10)
AY;(t) = v;(t) AD}(t)  Viel; VteT (11)
AX;(t) = (I — A)"LAY;(t)  Viel; VteT (12)
i) = 1 i ZlEg D @fe- 1D+l -1) %n(t)) Viel; VteT (13)
L qu L
G- flt-1 .
1) = XO) quinq(t D fi(®) (1 + ,Bi(t)) Viel; VteT (14)
1 A p
fiq(t) = (f;(t) — ff® G Viel;; q # 1; VteT (15)

T+5.0 3,77~ 1)

Equation 1 calculates the average number of shipments for each commodity,
transportation mode, and year based on the shipment capacity of mode of transportation g. The
shipment capacity calculation of inland waterway system is illustrated in Equation 2 as a
function of barge capacity and number of barges per shipment. Next, average number of
shipment values calculated in Equation 1 are used in the discrete-event simulation sub-model to
generate the shipments’ arrivals in the origin nodes based on a Poisson distribution. Equation 3

calculates the demand of each commodity and transportation mode in order to measure

97



transportation cost, holding cost, and penalty cost, as shown in Equations 4-6. The total cost rate
per ton is then calculated in Equation 7 by summing the costs calculated in Equations 4-6.
Commodity prices are represented as stock variables in the model and their values depend on
commaodity price inflows and outflows which are calculated in Equation 9 and Equation 10
respectively. The inflow increases with the inflation rate only if the inflation adjusted total cost
in the current year is lower than the previous year. However, if the current year inflation adjusted
total cost is higher than the previous year, then the inflow has a value equal to the sum of the
difference between cost of the current and previous year along with price increase due to
inflation. The outflow has a value equal to the cost difference between the current and previous
year when the total cost per ton for a given commodity in the current year is lower than that of
the previous year. To measure the indirect and induced economic impact for each commodity in
a given year, the direct impact (also known as final demand change) is calculated for each
commodity as showed in Equation 11. Based on the calculated direct economic impact for each
commodity, the economic impacts are calculated by utilizing the IMPLAN multipliers
(IMPLAN, 2013). Finally, in Equations 13-15, the commodity flows for each mode of

transportation are calculated to generate the shipment arrivals for the following year.

4.3.3 Case Study Analysis

To demonstrate the applicability of MarTranS, a case study of the McClellan-Kerr
Arkansas River Navigation System (MKARNS) was conducted. The MKARNS, Figure 2 and
Table 1, is a 440-mile navigation system (Tulsa Port of Catoosa, 2016) that enables the States of
Arkansas and Oklahoma to trade with forty-two countries (ODOT, 2015). The MKARNS
provides ancillary benefits in addition to its economic benefits including providing clean water,

habitats for fish and wildlife, recreation, hydropower energy, and reducing flood damage
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(ODOT, 2015). Furthermore, if transported MKARNS cargo was transferred to the rail or
highway transportation systems, the fuel consumption and CO2 emissions would increase by 40
percent and 270 percent respectively (ODOT, 2015). There are currently eighteen locks/dams,
thirteen in Arkansas and five in Oklahoma. Each lock is 110 feet by 600 feet with capacity for
eight barges to be served at a time (AOPOA, 2012). The MKARNS system is 45 years old, and
the aging infrastructure has become an issue and constraint due to the insufficient funding
(AOPOA, 2012). Recently, the MKARNS infrastructure received a condition indicator of D+
and a maintenance indicator of F (AWI, 2015). Understanding the economic impacts of the
current MKARNS operations can help maritime stakeholders to make better capital investment

decisions related to the system infrastructure.
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Figure 2 MKARNS Map (USACE, 2015)
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Table 1 MKARNS Port Information

Port Name Code River Mile
Tulsa Port of Catoosa CAT 445
Johnston's Port 33 (Oakley) JOHN 432
Port of Muskogee MUS 393
Port of Keota KEO 342
Port of Fort Smith and Five Rivers Dist. FS 308
Port of Dardanelle (Oakley) DAR 202
Port of North Little Rock (Oakley) OAK 116
Port of Little Rock LR 113
Port of Pine Bluff PB 72
Port of Pendleton (Oakley) and Riceland PEN 22

The data sources for each model parameter are presented in Table 2. To facilitate ease of
implementation of the model to other inland waterway transportation systems, the primary data

collection effort was minimized.
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Table 2 Data Sources

Description Parameter Source
Commodity flow fP(t) ~ Poisson(4](t)) USACE (2014)
Barge capacity B;(t) ~ Tri(1400,1450,1500) IDOT (2008)

# of barges per Arkansas Waterways

) N;(t) ~ Tri(6,8,17) o
shipment Commission (2011)

Train capacity I;2(t) = 11,200 tons ODOT (2015)
Truck capacity I;*(t) = 26 tons ODOT (2015)
Lockage time r;(LD, t) USACE (2015)

Port processing )
_ (S, t) Port Websites
time

# of working days

] O(t)=365 days in a year AOPOA (2012)
in a year
Port weight factor w; (t) Higginbotham (2014)
Mode q usage rate uq(t) USDOT (2010)
Commodity value v; (t) AOPOA (2012)
Transportation cost

@ (1) Guler, et al. (2012)

rate

pi(t, 4t1) = .014 = 5;(¢), At] Painter and Whalen

Penalty cost rate
> 1 week (2010)

Holding cost rate h;(t)=0.0007 v;(t) Lewis, et al. (2006)

Inflation rate w;(t) (BLS, 2015)
IMPLAN
o (-4 (IMPLAN, 2013)

multipliers
Demand growth

1i(t) USACE (2014)
rate
Price elasticity of

7; () (Zhu, 2012)

demand
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4.4 Results

In this section, the results of the MKARNS case study is discussed. The results are
illustrated in terms of four economic indicators (sales, GDP, tax, and employment) in addition to
other performance measures, such as commodity flow and port utilization. As illustrated in
Figure 3, the total GDP impact increases from $7 billion in year 2016 to $8.7 billion in year
2022. This gradual increase is caused by the higher demand of the MKARNS due to the inland
waterway transportation system efficiency. However, after year 2022, it is observed that the
MKARNS GDP impact begins to decline due to increased lock/dam disruptions. This decline in
the GDP impact lasts until year 2034 when the MKARNS reaches an equilibrium of
approximately $1 billion. The results validate our research hypothesis that a lack of future
investment in the inland waterway infrastructure will result in a significant decline of economic
impact in the long-term. The largest components of the total GDP impact are generated by the
transport of dry cargo and dry bulk commaodities.

MKARNS GDP Impact by Commodity Type ($ Million)
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Figure 3 MKARNS GDP Impact by Commodity Type
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Figure 4 shows the MKARNS commodity flows over the fifty year time frame.
Commodity flows behave similarly to the behavior of the GDP impacts illustrated in Figure 3.
The total MKARNS commodity flow in year 2016 is estimated to be 13 million tons, and the
total flow increases to 18 million tons by year 2019. This increasing trend in the flow cannot be
sustained after year 2019 due to increased lock/dam disruptions. Hence, the total commodity
flow then declines rapidly after year 2024 and continues to oscillate around 1.5 million tons
(approximately ten percent of the initial flow) for the remainder of the study period. The biggest

component of the tonnage flow is dry bulk followed by grain.

MKARNS Demand by Commaodity Type (Million Tons)
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Figure 4 MKARNS Demand by Commodity Type

Another performance measure examined in the model is port utilization which is
measured as the average percentage of time that ports are operating in a given year. The port
utilization values for all commaodities are illustrated in Figure 5. Based on our model results,
liquid bulk ports have the highest utilization rates. Analyzing Figure 5, it is observed that most
ports follow a similar pattern irrespective to the commodity type; that is, an increase in

utilization initially while the commaodity flows increase followed by a decrease in the utilization
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due to the decrease in the MKARNS commodity flows. As illustrated in Figure 5, some port
experience a higher rate of utilization. For instance, five dry cargo ports, six liquid bulk ports,
and six grain ports exceeded the port utilization rate of eighty percent. These dry cargo ports are:
1) Tulsa Port of Catoosa, 2) Johnston’s Port 33 (Oakley), 3) Port of Muskogee, 4) Port of Fort
Smith and Five Rivers Distribution, and 5) Port of Pine Bluff. The liquid ports are: 1) Tulsa Port
of Catoosa, 2) Johnston’s Port 33, 3) Port of Muskogee, 4) Port of Dardanelle (Oakley), 5) Port
of Little Rock, and 6) Port of Pine Bluff. The grain ports are: 1) Tulsa Port of Catoosa, 2)
Johnston’s Port 33, 3) Port of Muskogee, 4) Port of Keota, 5) Port of Dardanelle (Oakley), 6)
Port of Pine Bluff. However, the dry bulk ports do not even reach seventy percent utilization rate

due to their excess capacities.
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Figure 5 MKARNS Port Utilizations by Commodity Type

Figure 6 demonstrates utilization for all eighteen locks/dams located in the MKARNS. In
the year 2016, all locks have a utilization rate of less than sixty percent. Due to the scheduled
unavailability and unscheduled unavailability disruptions utilization rates increase over the fifty
year study time frame. It can be observed that Lock 5, Lock 2, and Lock 10 reach utilization rates

above ninety percent, and Lock 13 and Lock 15 reach utilization rates above eighty percent.
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These high utilization rates indicated higher priority for rehabilitation investments to decrease

associated lock delays.

MKARNS Lock Utilization (%0)
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Figure 6 Lock Utilization Performance

The overall performance measurement of sales, GDP, tax, and employment economic
indicators are presented in Table 3. Net present value (NPV), based on an assumed 2.4 percent
flat inflation rate (BLS, 2015), sales, GDP, and tax economic impacts are $232.5 billion, $111.3
billion, and $7.8 billion for the fifty year study period respectively. On average, sales, GDP, and
tax economic impacts are $4.7 billion, $2.2 billion, and $156 million annually respectively. An
average of 36,012 jobs are generated every year directly or indirectly due to the MKARNS
navigation activities. The coefficients of variation values near one hundred percent indicate the
importance of predictive modeling techniques like MarTranS. The main reason for the high
variation is the increasing number of disruptive events on the locks/dams. The flow values,
tonnage traveled via the MKARNS, are also summarized in Table 3 with an average annual flow
of 4.7 million tons which is approximately one third of the flow in the year 2016. Dry cargo and

dry bulk account for seventy-seven percent of total flow. Average port utilization is highest for
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the liquid bulk and lowest for the dry bulk with eighty-one percent and forty-five percent
respectively. Lastly, it can be observed that the total cost of transportation per ton ranges
between $55.05 and $59.01, and this cost results in a five to twenty-seven percent of commodity
price per ton in the MKARNS study region.

Table 3 MKARNS Performance Measures

NPV Sales NPV GDP NPV Tax Emp. Flow Port

($M) ($M) ($M) (#Jabs) (ton/year)  Util.

Dry Mean $86,846  $44,722  $2,922 14,412 559,352  68%
Cargo ¢y 100% 100% 100% 100% 117% 5%
Dry Mean  $89,963  $41,999  $3,505 13,666 2,587,032  45%
Bulk  cv 96% 96% 96% 96% 113% 8%
Liquid Mean $26820  $11854 $600 3,794 497,872  81%
Bulk ¢y 102% 102% 102% 102% 114% 3%
~ Mean $28895  $12,738 $776 4,140 1,046,320 72%
erain CV 95% 95% 95% 95% 107% 4%
N Mean $232,525  $111,313  $7,803 36,012 4,690,576 53%

CcVv 97% 97% 97% 97% 112% 6%

4.5 Conclusions and Future Work

This paper presents the development and implementation of a maritime transportation
simulator (MarTranS) to study the interactions between inland waterway transportation system
components and economic impact factors. Successful implementation of our model can help
stakeholders make informed inland waterway infrastructure investment decisions to improve
economic performance. By utilizing publicly available data, MarTranS parameters can be
changed, and the model can be applied to any inland waterway transportation system. To the best

of our knowledge, this is the sole study that measures the economic impacts of navigable inland
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waterways transportation system dynamically throughout the time-span with the use of
multimethod simulation model.

To demonstrate the value of MarTranS, we conducted a case study of the MKARNS. Our
case study illustrates that the economic performance of the MKARNS is not sustainable in the
long-term without future investment in MKARNS infrastructure. Model results show that in
approximately two decades, the economic impacts and commodity flow will drop to only ten
percent of their current values. Moreover, seventeen ports and five locks/dams reach utilization
rates over eighty percent. These high utilization rates create increased transportation delays and
costs.

System dynamics based models are criticized for their lack of available formal validation
techniques (Barlas, 1994). To ensure that MarTranS generates accurate and reliable results, five
validation tests discussed in the relevant literature are conducted in this study. The five
validation tests utilized are boundary adequacy, structure assessment, dimensional consistency,
parameter assessment, and extreme condition (Sterman, 2000). First, in the boundary adequacy
test, the defined model boundaries in the MKARNS case study are based on the literature review
and viewpoints of the Arkansas Waterways Commission and Oklahoma Department of
Transportation subject matter experts. Model boundaries must match the purpose for which the
model is designed to ensure MarTranS can be used with confidence and must include all of the
important factors affecting the behaviors of interest. Moreover, several causal loop and stock and
flow diagrams were developed and discussed with the two public waterway transportation
agency subject matter experts to confirm that important system feedback relationships were not
omitted and exogenous and excluded variables were well defined in the MarTranS. Secondly, the

structure assessment test helped us to understand if basic real-world behaviors are violated. For
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instance, commodity price and quantity demanded results cannot be negative during a MarTranS
simulation experiment. This ensures that the structure of the MarTranS matches the structure of
the real world inland waterway transportation system being modeled. Third, a dimensional
consistency test was conducted to ensure unit consistency between the MarTranS components.
Fourth, a parameter assessment test was conducted empirically by comparing the model
equations with generalized knowledge and theoretically by comparing model equations with the
current literature (Barlas, 1994). For example regression analysis and distribution fitting are
conducted to estimate processing time, number of scheduled unavailabilities, number of
unscheduled unavailabilities, time per scheduled unavailability, time per unscheduled
unavailability values for each lock/dam to account for historical data trends and the cost
parameters are defined based on current literature. Lastly, extreme condition tests were
conducted by eliminating the scheduled and unscheduled lock/dam unavailabilities from the
model and conducting a direct review of each model equation to examine the robustness of the
MarTranS.

Ongoing research is expanding this work. Scenario analysis being conducted to study the
effect of the Panama Canal Expansion on the inland waterway transportation. Different types of
disruptions are being examined to estimate their potential economic impacts. The economic
impacts of investing in ports, locks/dams, and navigation channel are also being studied. Long-
term extensions of this research include: 1) an optimization model can be integrated into
MarTranS to find the best simulation parameters, 2) the tax generated in the model can be
considered for reinvestment into the system, 3) MarTranS can be applied to model the entire
inland waterway transportation system in the United States, 4) alternative modes of

transportation can be modeled in more detail to expand the capabilities of MarTranS, and 5)
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more detailed analysis could be conducted to further explore the relationship between capital
investments and inland waterway transportation system infrastructure reliability. Future
extensions will further assist decision making in inland waterway transportation system and can

result in a competitive advantage for the U.S. and regional economies.
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5. STUDYING THE ECONOMIC BEHAVIOR OF THE INLAND WATERWAY
TRANSPORTATION SYSTEM

Abstract

The United States inland waterway transportation system (IWTS) connect the Nation’s
heartland with the global supply chain. The IWTS is challenged with aging infrastructure and
limited operations and maintenance budgets which can cause transportation delays and economic
losses. The IWTS experienced losses of $33 billion in 2010 due to transportation delays, and
American Society of Civil Engineers (ASCE) estimated that these losses will increase to $49
billion by 2020. In this study, real world scenario analyses are conducted to examine the
economic impacts of inland waterway transportation system. These scenarios include a base
scenario where the system infrastructure remains unchanged and no future investments are made,
four investment scenarios (deepening of navigation channel, port expansion, lock/dam
rehabilitation, and system-wide investment), two disruption scenarios (lock/dam scheduled and
unscheduled unavailabilities), and a demand change scenario focused on impacts of the Panama
Canal expansion. The scenario analyses are performed for the McClellan-Kerr Arkansas River
Navigation System (MKARNS) utilizing the Maritime Transportation Simulator (MarTranS).
The results of our study show that MKARNS locks/dams are the primary source of system

delays to future performance.

Keywords: Maritime transportation, navigable inland waterways, agent-based modeling,

discrete-event simulation, system dynamics, multiregional input-output model
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5.1 Introduction

The United States maritime transportation system is an important component of the
global supply chain, and the system generates more than 13 million jobs and $649 billion of
gross domestic product (GDP) annually (MARAD, 2013). Navigable inland waterway (NIW)
systems are responsible for the efficient flow of goods within the U.S.. The nearly 12,000 miles
of the navigable inland waterway (NIW) system in the U.S. handles fifteen percent of the
Nation’s transported freight by weight (USACE, 2012). This flow accounts for approximately
twenty percent of coal and twenty-two percent of petroleum transportation in the U.S. (USACE,
2009). If the U.S. inland waterway commodity flow was diverted to rail or highway
transportation, there would be 6.3 million additional rail cars or 25.2 million additional trucks
traveling on the railroads or highways respectively (USACE, 2012). In addition to economic
benefits, the inland waterways has ancillary benefits including fish and wildlife habitats, flood
protection, clean water supply, hydropower energy, and recreation (IMTS, 2010). Impacting
future benefits, the aging inland waterway infrastructure is causing an increase in system delays
(USACE, 2012). The majority of these delays are caused by scheduled unavailability and
unscheduled unavailability lock/dam disruptions which have continuously increased over the last
two decades (USACE, 2012). Therefore, in order to maintain and preferably increase the
economic and ancillary benefits, it is necessary to understand the vital elements that comprise the
NIW transportation system and how these elements interact to create economic benefits
(MARAD, 2013).

In order to improve future inland waterway operations and to better inform future
investment decisions, it is necessary to predict and interpret future performance of the NIW

transportation system. We utilize the Maritime Transportation Simulator (MarTranS) developed
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by Oztanriseven and Nachtmann (2016) to study a variety of real world scenarios impacting
inland waterway transportation. As shown in Figure 1, these scenarios include a base scenario
where the system infrastructure remains unchanged and no future investments are made, four
investment scenarios (deepening of navigation channel, port expansion, lock/dam rehabilitation,
and system-wide investment), two disruption scenarios (lock/dam scheduled and unscheduled
unavailabilities), and a demand change scenario focused on impacts of the Panama Canal
expansion.

MarTranS (Oztanriseven & Nachtmann, 2016) integrates agent-based modeling, discrete-
event simulation, and system dynamics along with a multiregional input-output model to model
and predict future inland waterway transportation system behavior. By predicting the economic
impacts of the different real world scenarios, we will evaluate and comprehend how each or a
combination of some of the scenarios affect the inland waterway transportation system’s
behavior from an economic perspective. The results of this analysis improve future infrastructure
investment decisions and contribute an increase of jobs generated and an increase in GDP. In
consequence, our research hypotheses are: 1) Investments in the current bottlenecks (primary
sources of system delays) in the NIW system will increase the system’s economic impacts. 2)
Investment in non-bottleneck components will not result in the same level of increase as
investment in bottleneck infrastructure, 3) Investing in a combination of system components will
generate a greater economic impact than investing in each individual component due to the
nonlinear relationships between the system components, 4) Increasing number of system
disruptions will cause decrease the demand for the NIW system which will result in the greater
economic losses, and 5) Increase in demand of the NIW system due to exogenous factors such as

the impact of the Panama Canal Expansion will create a limited economic impact improvement
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due to system congestion. To demonstrate the applicability of MarTranS, the McClellan-Kerr

Arkansas River Navigation System (MKARNS) is utilized as the case study region for this

research.

Scenarios of the Inland Waterway Transportation System

5.5.1 Base Scenario

|
5.5.2 Investment
Scenarios

|
5.5.3 Disruption
Scenarios

|
5.5.4 Demand
Change Scenario

5.2 Literature Review

5.5.2.1 Channel

5.5.3.1 Lock/Dam

Panama Canal

5.5.2.3 Lock/Dam
Rehabilitation

5.5.2.4 System-wide
Investment

Figure 1 Breakdown of Scenario Analysis

Deepening Maintenance Expansion
| 5.5.2.2 Port 5.5.3.2 Lock/Dam
Expansion Failures

A comprehensive literature review is conducted in the research areas of maritime

transportation system potential disruption impacts, system dynamics in maritime transportation

systems, and studies on coastal container ports. Furthermore, a review of navigable inland

waterway transportation literature including studies related to lock/dam and channel deepening is

conducted. This broad literature review identified the limited amount of work that dedicated to

the modeling and measurement of the economic impacts that navigable inland waterway systems

can have under real world analyses.
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The motivation of this research emerged from interdependent relationships between
economic impacts and transportation infrastructure. Santos (2006) stated that many industries
depend on transportation, and therefore the economic impacts of transportation infrastructure can
exceed beyond the transportation industry itself. Transportation is essential for the effective flow
of goods and for many industries to continue with their normal day to day operations. Therefore,
navigable inland waterway transportation systems can be beneficial to other modes of
transportation along with other influential economic impacts. Moreover, highway and railway
congestion in the United States are reaching critical levels. Hence, to reduce the congestion and
negative economic impacts, studying the operations and economic importance of NIW is crucial
at a regional and national level (Pant et al. , 2015).

To study the economic impacts of navigable inland waterway transportation systems,
simulation models are suggested and used by scholars to handle the complexity of the system
(Oztanriseven & Nachtmann, 2016; Oztanriseven et al., 2014; Luo & Grigalunas, 2003; Thiers &
Janssens, 1998; Almaz & Altiok, 2012). Inland waterway transportation systems include a high
degree of interdependencies in ports and locks/dams which make them a suitable candidate for
the application of simulation models (Carroll & Bronzini, 1973).

One area of the related literature studies disruption impacts of maritime transportation
system. For example, Pant et al. (2015) studied disruption impacts on inland waterway
components, such as ports and channels. Similarly, Pant et al., (2011) simulated inland waterway
port operations including commodity arrival, unloading, sorting, and distributing. The former
studied dock closures, and the latter studied two week closure due to terminal closure, crane
outage, departure stoppage. These studies used a multiregional input-output model to measure

the total economic impact. Pant et al. (2011) stated that very limited attention is given to the
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application of dynamic multiregional interdependency models in inland waterway transportation
system. The results of these studies indicated that the economic impact of the closures at the Port
of Catoosa, located in Tulsa Oklahoma, would be more than $180 million. Another disruption
research is conducted by (Kajitani, et al., 2013), where the economic impact of an explosion case
study in the Singapore Strait due to transportation cost increases is studied. A more detailed
study conducted by Oztanriseven and Nachtmann (2013) discusses disruption research in the
maritime transportation sector.

Another area of the relevant literature focuses on the application of system dynamics
methodology in maritime transportation settings, which is presented comprehensively by
Oztanriseven et al. (2014). The system dynamics literature is classified by Oztanrieseven et al.
(2014) into study region, types of ports studied, intermodal transportation considered, types of
causal relations considered, variable classifications, stock and flow diagram elements, and
sensitivity and scenario analysis considerations.

Most relevant literature on maritime transportation focuses on coastal container ports
studies. For example, Luo and Grigalunas (2003) developed a simulation model to study fourteen
large-scale, multimodal container ports in the United States in order to estimate port demands
based on price elasticity of demand and port fees. Luo and Grigalunas (2003) emphasized on the
importance of tradeoff between the transportation cost and costs associated with transportation
duration. De and Ghoshb (2003) studied the relationship between port traffic and port
performance for ports in India. The authors utilized unit root and causality tests and found that
better port performance leads to higher port traffic. Fagerholt et al. (2010) combined a Monte

Carlo simulation with an optimization model to develop a decision support tool for a Norwegian

127



shipping company. More detailed literature review of operations research studies for the
container terminals are discussed by Stahlbock and Vol (2008) and Steenken et al. (2004).
One focus of the NIW relevant literature concentrates on lock/dam performance (Melody
& Schonfeld, 1993; Kim & Schonfeld, 1995; Ramanathan & Schonfeld, 1994; Melody &
Schonfeld, 1998). For example, discrete-event simulation is applied to deduce the impacts of
infrastructure improvements on inland waterway traffic congestion (Smith et al., 2009). A five
lock section of the Upper Mississippi River is presented by Smith et al. (2009) as a case study.
Grigalunas et al. (2001) used a simulation model and genetic algorithm to schedule lock/dam
investment projects over a multi-year study time horizon. By using a Monte Carlo simulation
model, a 10-lock segment of the Illinois and Upper Mississippi River is studied by Carroll and
Bronzini (1973) to examine shipments move through ports and locks/dams and calculate costs
due to time spent in the system. Another related area of NIW literature focusing on channel
deepening projects. For instance, Almaz and Altiok (2012) studied the impact of channel
deepening on port utilization and port processing time. An illustrative case study on Delaware
River was presented in this study. The result of Carroll and Bronzini (1973) illustrated that
limited benefits can be obtained from channel deepening projects, and dry bulk and general
cargo commodities do not benefit from deepening projects significantly. Grigalunas et al. (2005)
study channel deepening projects and who benefits most from these projects. The economic
measures considered by Grigalunas et al. (2005) are transportation costs, gains to suppliers of
port-related services, and environmental costs, and they study the deepening of the Delaware
River. Based on a fifty year study, they measure a 5.875 percent net benefit as a result of

deepening the Delaware River.
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In summary, the literature review indicates that limited attention has been given to the
measurement of the economic impacts that inland waterway transportation systems under the real
world scenarios such as investment, potential disruption, and demand change scenarios.
Likewise, most scholars did not account for indirect and induced impacts and strictly focused on

initial cost-benefit benefits.

5.3 Methodology

To measure the economic impacts of the navigable inland waterway transportation
system, eight scenarios are studied in this research. These real world scenarios are a base
scenario of normal operations, channel deepening, port expansion, lock/dam rehabilitation,
system-wide investment, lock/dam scheduled and unscheduled unavailabilities, and demand
change due to the Panama Canal Expansion scenarios. The MarTranS developed by
Oztanriseven and Nachtmann (2016) is utilized to model and measure these economic impacts.

A primary strength of MarTranS is that it enables users to model an inland waterway
transportation system at the operational and system level. Moreover, the modular structure of
MarTranS provides flexibility to change model parameters and allow users to conduct scenario
analyses without any difficulty. By utilizing MarTranS, our study fills a gap in evaluating and
understanding the economic impacts of potential real world inland waterway transportation
scenarios and allows the study of interdependent relationships between NIW transportation
infrastructures and associated economic impacts. Understanding these real world impacts will
allow maritime stakeholders to allocate available funding more effectively within the decision

alternatives.
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5.3.1 MarTranS Structure

MarTranS structure (Oztanriseven & Nachtmann, 2016) is presented in Figure 2. There
are three main components of MarTranS, namely agent-based modeling, discrete-event
simulation, and system dynamics. Moreover, MarTranS is integrated with a multiregional input-
output model to measure the total economic impact as the summation of direct, indirect, and
induced economic impacts. Each simulation sub-model is used for a specific purpose to benefit
from its strengths. First, the MarTranS discrete-event simulation sub-model is utilized to model
operational level activities, such as commodity arrivals, navigation on the inland waterway, port
handling processes, and lock/dam operations. Second, the MarTranS agent-based sub-model
stores important information about each agent. Each shipment of the four types of commodities
(dry cargo, dry bulk, liquid bulk, and grain) and the three modes of transportation (NIW, rail, and
highway) is defined as an agent. The information collected with respect to these agents are
shipment capacity, system entry and exit times, type of commodity, current stage of shipment,
and number of shipments. In addition, a function is defined for each type of agent to route the
agent between the assigned ports and locks/dams based on historical probabilities. Furthermore,
the stored information with respect to the agents by the agent-based modeling is used to link the
discrete-event simulation and the system dynamics sub-models.

Lastly, the MarTranS system dynamics sub-model translates the collected information of
number of shipments, time spent in the system, and distance traveled into transportation, holding,
and penalty costs to calculate the commaodity prices every year. These commaodity prices are then
used to calculate the next year’s demands and last year’s economic impacts. The multiregional
input-output model utilizes economic impact multipliers to calculate the economic impacts in

terms of sales, GDP, tax, and employment.
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Figure 2 MarTranS Structure (Oztanriseven & Nachtmann, 2016)

5.3.2 Model Formulation

A detailed explanation of the design and structure of the model formulation utilized in

MarTranS is presented by Oztanriseven and Nachtmann (2016). To conduct scenario analyses,

certain MarTranS equations are updated depending on the scenario under study and a thorough

explanation of these modifications is discussed in this section. The notations for sets, parameters,

and equations are illustrated as follows.

Sets

iel Set of commodities
teT Set of years
geQ Set of transportation modes q = {1: water, 2: rail, 3: truck, 4: other}

Parameters
A1) Average number of commodity i shipments by mode of transportation ¢ per day in

year t

A0 Flow of commaodity i by mode of transportation g in tons in year t
I“iq(t) Capacity of mode of transportation g in tons for commodity i in year t
B;(t) Capacity of barge carrying commodity i by in year t
N;(t) Number of barges per shipment in year t
o (1) Number of NIW working days in year t
Bi(t) Commodity iINIW demand growth rate due to the impact of Panama Canal

Expansion in year t
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& () Shipment capacity increase rate due to channel deepening in tons for commodity i
in year t

Model (Modified Equations)

q
Ty — fi @) . _
Ai (t) = (1 + ﬁi (t)) W VlEI, VqEQ, VteT (1)
M) = &@B(0) Ni(t)  Viel; VteT )

To measure the economic impacts of the inland waterways transportation system,
MarTranS’s Equation 1 and Equation 2 are updated. Equation 1 is modified by adding,
(1 + B;()) to the 27 (¢) equation to account for the demand change every year. In other words, the
demand of each commaodity via NIW is updated based on the growth rate impact due to the
Panama Canal Expansion. Moreover, Equation 2 is modified by adding &;(t) to update B;(t) to
calculate the new ri(t) to account for the capacity increase due to channel deepening. This
capacity increase occurs because the deepening of the navigation channel can accommodate

barges that can withhold more tonnage.

5.4 Case Study: McClellan-Kerr Arkansas River Navigation System

To demonstrate the applicability of MarTranS, the McClellan-Kerr Arkansas River
Navigation System (MKARNS) is utilized as the case study region for this research. The first
step in this study is to simulate normal operations “base scenario”. The base scenario is used as a
comparison reference for the other seven real world scenarios studied.

The MKARNS consists of 440 miles of navigation channel (Tulsa Port of Catoosa, 2016)
that connects Oklahoma, Arkansas, and the surrounding states with the rest of the world by
providing a fuel-efficient and an environment-friendly mode of transportation (ODOT, 2015).

Furthermore, several ancillary benefits are provided by the MKARNS. These benefits are
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habitats for endangered and threatened species, flood protection, hydropower energy generation,
and recreation (ODOT, 2015). However, similar to many inland waterways in the U.S., due to a
lack of available funding, the MKARNS suffers from limited investment in the aging

infrastructures (AOPOA, 2012). A description of the data sources can be found in Oztanriseven

and Nachtmann (2016).

5.5 Results

The results of the real world scenario analyses conducted via MarTranS to examine
economic impacts of the inland waterway transportation system are discussed in this section. A
study period of fifty years is selected to account for the long-term impacts that the selected real
world scenarios have on the MKARNS performance. In this study, commodities are grouped into
four categories (dry cargo, dry bulk, liquid bulk, and grain) and are considered in each of the
scenarios. The commodity group of dry cargo is comprised of iron and steel and manufacturing
equipment and machinery. The dry bulk commodity group includes chemical fertilizer, coal and
coke, sand/gravel and rock, and minerals and building materials. The liquid bulk commodity
group includes other chemicals and petroleum products. Lastly, the grain commodity group
includes wheat, soybeans, and food/farm products. For the purpose of this study, six performance
measures (sales, GDP, tax, employment, commodity flow, and port utilization) for each scenario
are evaluated against performance of the base scenario. These results are compared to evaluate
the economic impacts of each real world scenario has on future MKARNS performance.
AnyLogic 7.3 software was utilized to obtain these results and to run the simulation model.
5.5.1 Base Scenario

The base scenario conducted by Oztanriseven and Nachtmann (2016) is utilized to

evaluate and compare the economic impacts of the other seven real world scenarios. In the base
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scenario, it is assumed that the lock/dam disruptions, due to scheduled and unscheduled
unavailabilities, will continue throughout the entire time frame of the study. These disruption
behaviors are based on the trends observed in the historical disruption records. Also, it is
assumed that the Panama Canal Expansion will have no impact on the MKARNS, and no
investments will take place in the MKARNS infrastructures such as ports, locks/dams, and the
navigation channel.

As a result of the base scenario, the GDP impacts are illustrated in Figure 3 for the study
period. It is observed that total GDP impact increases from $7 billion to $8.7 billion from 2016
to 2022. However, an interesting observation is that from 2022 forward, the total GDP impact
collapses to $1 billion. This collapse can be attributed to the inland waterway transportation

system’s congestion due to the lack of investment in the MKARNS infrastructures.
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Figure 3 Base Scenario GDP Impact by Commodity

Table 1 presents the results of the six selected performance measures. It can be observed
that the net present value (NPV) of sales, GDP, and tax economic impacts are $232.5 billion,

$111.3 billion, and $7.8 billion respectively for the fifty year study period. Correspondingly, on
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average, 36,012 jobs were generated every year directly or indirectly due to maritime activities
related to the MKARNS. From the simulation results, it can be inferred that approximately
eighty percent of these economic impacts are generated due to dry cargo and dry bulk
commodities. However, the top two commodities in terms of tonnage flow are dry bulk and
liquid bulk commaodities which account for seventy-seven percent of the whole of MKARNS’
traffic. It is also observed that average port utilizations vary between forty-five percent for dry
bulk to eighty-one percent for liquid bulk. The summation of transportation, holding, and penalty
costs per ton is between $55.05 to $59.01. These costs refer to five percent to twenty-seven
percent of the commodity prices per ton. Since commodity flows change dramatically due the
effect of MKARNS’ congestion, a high deviation of coefficients of variation around a hundred
percent exists for all commodities in terms of the four economic indicators (sales, GDP, tax, and
employment) as well as commodity flows in tons. These high deviations result in low

predictability of future forecasts.

Table 1 Base Scenario Performance Measures by Commodity

NPV Sales NPV GDP NPV Tax Emp. Flow Port
($M) ($M) ($M) (#Jobs)  (ton/year) Util.

Dry Cargo Mean  $86,846 $44,722 $2,922  $14,412 559,352 68%

Dry Bulk Mean  $89,963 $41,999 $3,505  $13,666 2,587,032 45%

Liquid Bulk Mean  $26,820 $11,854 $600 $3,794 497,872  81%

Grain Mean  $28,895 $12,738 $776 $4,140 1,046,320 72%

All Mean $232,525  $111,313 $7,803  $36,012 4,690,576 53%
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5.5.2 Investment Scenarios

The base scenario demonstrated that MKARNS’ economic impacts increase during the
first seven years, but this growth cannot be sustained for a longer time frame. This result
motivated our study to investigate possible investment scenarios to analyze and compare the
associated economic outcomes. To better understand these economic outcomes of these four
investment scenarios, three hypotheses were developed. These hypotheses are: 1) Investments in
the current bottlenecks (primary sources of system delays) in the NIW system will increase the
system’s economic impacts. 2) Investment in non-bottleneck components will not result in the
same level of increase as investment in bottleneck infrastructure, 3) Investing in a combination
of system components will generate a greater economic impact than investing in each individual
component due to the nonlinear relationships between the system components,

Four investment scenarios are considered in this section. The first scenario is to invest in
the navigation channel to increase the channel depth from nine feet to twelve feet (9 to 12°).
This investment strategy was approved by Congress in 2004, but it has not been completed
because of a lack of funding (ODOT, 2013). The cost of deepening the MKARNS is estimated to
be $183 million (USACE, 2013). The second investment scenario is to invest in the congested
ports. In this study, a dock in a port is considered congested if it exceeds eighty percent
utilization rate in the base scenario. The third investment scenario is to invest in critical
locks/dams. A lock/dam is defined as critical if its utilization rate exceeds eighty percent. The
fourth and last investment scenario is to invest in all inland waterway transportation system

infrastructure options including the navigation channel, congested ports, and critical locks/dams.
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5.5.2.1 Channel Deepening Investment Scenario

The channel deepening investment scenario differs from the base scenario in terms of the
depth of the navigation channel which increases from nine to twelve feet (9° to 12°). This
increase in the channel depth will allow a barge to carry an extra 600 tons (ODOT, 2015).

It is observed in Figure 4 that the total GDP impact increases from $7 billion in 2016 to
$9.4 billion in 2023. However, the GDP impact decreases drastically from 2023 until 2032 from
$9.4 billion to $2 billion due to the lock/dam congestions. Then, for the next 20 years, the
reduction of the GDP impact gradually slows down. After year 2052, the GDP impact starts to
oscillate around $1 billion. The outcome of the channel deepening investment scenario shows
that the results behave as predicted in our second hypothesis which is investments in non-
bottleneck infrastructures will not yield the same level of economic impact as in investments in
bottleneck system infrastructures. Since the GDP impact did not increase significantly due to the
investment in the MKARNS navigation channel, it can be concluded that the navigation channel

is not the bottleneck in the MKARNS.
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Figure 4 Channel Deepening Scenario GDP Impact by Commodity
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The performance measures for the channel deepening scenario can be found in Table 2.
Net present value of sales, GDP, and tax economic impacts are $247.8 billion, $118.6 billion,
and $8.3 billion respectively for the fifty year time frame. The economic impact of the channel
deepening investment scenario is seven percent higher than the base scenario. Another
noteworthy result is that grain commodities benefit in the channel deepening investment scenario
more than the other commaodities, showing a thirty-six percent improvement on the economic
impact over the base scenario. Another remarkable result of the channel deepening investment
scenario is that dry cargo commaodities have slightly less economic impact over the base scenario
since the MKARNS efficiencies led to higher demands for other commodities which resulted in
system congestion. Therefore, limited improvement in the economic indicators leads to an
argument of whether investments in the bottleneck infrastructures should be the priority.

Table 2 Channel Deepening Scenario Performance Measures

NPV Sales NPV GDP NPV Tax Emp. Flow Port

($M) ($M) ($M) (# Jobs)  (ton/year) Util.

Dry  Mean $80,746  $41581  $2,717  $13400 558,256  64%
Cargo  pitference 7% 7% 7% 7% 0% 4%
Dry  Mean $100,087  $47,145  $3,934  $15340 3,245232 57%
Bulk  pifference  12% 12% 12% 12% 25%  12%
Liquid Mean $28513  $12602  $638  $4,033 581,872  94%
Bulk  pifference 6% 6% 6% 6% 17%  13%
~ Mean $39,268  $17,311  $1,055  $5627 1,516,344 97%
erain Difference  36% 36% 36% 36% 45%  24%
Mean $247,829  $118,639  $8,317  $38,382 5,901,704 66%

Al Difference 7% 7% 7% 7% 26% 13%
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5.5.2.2 Port Investment Scenario

In this scenario, investment in the seventeen docks with a utilization rate of eighty
percent or higher occurs. Five of these docks correspond to dry cargo, six of them to liquid bulk,
and six of them to grain commodities. Since the dry bulk docks in the MKARNS did not exceed
eighty percent utilization rate, investment in these docks did not take place. The invested docks
are dry cargo: 1) Tulsa Port of Catoosa, 2) Johnston’s Port 33, 3) Port of Muskogee, 4) Port of
Fort Smith and Five Rivers Distribution, and 5) Port of Pine Bluff; liquid bulk: 1) Tulsa Port of
Catoosa, 2) Johnston’s Port 33, 3) Port of Muskogee, 4) Port of Dardanelle (Oakley), 5) Port of
Little Rock, and 6) Port of Pine Bluff; and grain: 1) Tulsa Port of Catoosa, 2) Johnston’s Port 33,

3) Port of Muskogee, 4) Port of Keota, 5) Port of Dardanelle (Oakley), 6) Port of Pine Bluff.

The capacity of congested docks was increased by doubling their current capacities. The
costs of these expansion projects for each ton per day of cargo handling capacity were calculated
based on the past port investments and commodity flows. These costs are associated with
expenditures of structure and equipment and calculated as $25.91 for dry cargo, $25.71 for liquid
bulk, and $33.75 for grain dock. Therefore, the annual total cost for these port expansion
investments is calculated to be $569.9 million. The breakdown of this total expenditure is $51.4
million for dry cargo docks, $69 million for liquid bulk docks, and $449.4 million for the grain
docks.

The results of the port investment scenario in Figure 5 showed that the total GDP impact
increases from $7 billion in 2016 to $9.9 billion in 2019. Until 2022, the total GDP impact stayed
right below $10 billion. However, the GDP impact starts to decline and reaches an equilibrium

point of $1 billion in 2036. A slight improvement in the GDP impact of the MKARNS is
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observed, but it can be deduced from the analysis that this improvement could not be sustained

after the year 2022.
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Figure 5 Port Investment Scenario GDP Impact by Commodity

A detailed analysis of all the six performance measures is illustrated in Table 3. Net
present value of sales, GDP, and tax economic impacts are $241.8 billion, $115.8 billion, and
$8.1 billion respectively for the fifty year study period. These economic indicator values resulted
in a four percent improvement over the base scenario as predicted in the second hypothesis. It is
interesting to observe that the expansion on dry cargo, liquid bulk, and grain docks led to a
higher economic impact of these commaodities. However, the increase in flow of these three
commaodities caused a congestion in the MKARNS which then resulted in a decrease in the
economic impact and flow of dry bulk commodities. Another noteworthy remark is that, while
the average flow increased by two percent in this scenario, the average port utilization decreased
by twenty-two percent due to the expanded port capacities. In summary, very limited
improvement of sales impact by $186.6 million every year over the base scenario makes the port
expansion investments of $569.9 million every year, an unfavorable decision.
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Table 3 Port Investment Scenario Performance Measures

NPV Sales NPV GDP NPV Tax  Emp. Flow Port

($M) ($M) ($M) (# Jobs)  (ton/year) Util.

Dry  Mean $95,756  $49,310  $3,222  $15,890 596,240  36%
Cargo  piference 10% 10% 10% 10% 7% -32%
Dry  Mean $84,744  $39,562  $3,301  $12,873 2,544,344 42%
Bulk  pitference 6% 6% 6% -6% 2% 4%
Liquid Mean $28,777  $12,719 $644 $4,070 544,040 55%
Bulk  pifference 7% 7% 7% 7% 9%  -26%
~ Mean $32,186  $14,189 $865 $4,612 1,092,024 46%
eran Difference 11% 11% 11% 11% 4% -27%
Mean $241,857 $115780  $8,116  $37,457 4,776,648 32%

Al Difference 4% 4% 4% 4% 2% -22%

5.5.2.3 Lock/Dam Investment Scenario

The results of the channel deepening investment and port investment scenarios indicate
that only limited improvement in the economic indicators can be attained. Moreover, the lack of
funding on the lock/dam infrastructure is considered the biggest threat for the inland waterway
transportation system (ASCE, 2013). To understand whether the MKARNS locks/dams are the
bottlenecks in the system, a lock/dam investment scenario is conducted. In this scenario, the
critical locks/dams are selected as the investment options. A lock/dam is defined as critical if it
has greater than an eighty percent utilization rate in the base scenario. The congested locks/dams
are: Lock 22, Lock 13, Lock 10, Lock 5, and Lock 2. These congested locks/dams are the only
ones considered for rehabilitation investments costing on average $30 million per lock/dam.

Therefore, the total cost of rehabilitation investment in these five congested locks/dams is

141



approximately $150 million (IMTS, 2010). We did not consider a new lock/dam construction
option due to the high investment costs ranging from $120 million to $240 million (IMTS,
2010). Moreover, studies show that the life of a lock/dam can be extended by twenty-five years
with major rehabilitation (IMTS, 2010). Consequently, it is assumed in our study that by
investing in lock/dam rehabilitation, the lock/dam scheduled and unscheduled unavailabilities
will be reduced by 100 percent in the first year with no reduction at the end of the twenty-fifth
year assuming that the reduction decreases linearly every year.

In the lock/dam investment scenario as illustrated in Figure 6, the total GDP impact
increased from $7 billion in 2016 to $10.6 billion in 2028. It is observed that, from 2028 to 2045,
the GDP impact decreased to an equilibrium value of $600 million. Hence, it is discerned that
investing in these five critical locks/dams increased the life of the MKARNS by more than a
decade. Furthermore, investing in the construction of new locks/dams should be considered in

order to have a sustainable MKARNS system.
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Figure 6 Lock/Dam Investment Scenario GDP Impact by Commodity
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As analyzed, the lock/dam investment scenario generated the highest GDP impact in

comparison with the base scenario along with the channel deepening investment and port

investment scenarios. Table 4 captures the performance measures for the lock/dam investment

scenario. The performance measures of net present value of sales, GDP, and tax economic

impacts are $354.8 billion, $169.8 billion, and $11.9 billion respectively for the fifty year study

period. These results are fifty-three percent higher than the corresponding values in the base

scenario as stated in the first hypothesis. By investing $150 million in the five congested

locks/dams, the MKARNS would directly or indirectly generate $1.1 billion of GDP impact

annually.

Table 4 Lock/Dam Investment Scenario Performance Measures
NPV Sales NPV GDP NPV Tax Emp. Flow Port
($M) ($M) ($M) (# Jobs)  (ton/year) Util.
Dry Mean $126,982 $65,390 $4,272  $21,072 866,984 87%
Cargo  pifference  46% 46% 46% 46% 55%  19%
Dry Mean $145,434 $67,895 $5,666  $22,092 4,152,800 81%
Bulk " pifference  62% 62% 62% 62% 61%  35%
Liquid Mean $39,969 $17,665 $894 $5,653 788,336  90%
Bulk " pifference  49% 49% 49% 49% 58% 9%
_ Mean $42,867 $18,897 $1,152 $6,142 1,570,640 86%
erain Difference 48% 48% 48% 48% 50% 14%
Mean $354,801 $169,848 $11,907 $54,949 7,378,760 80%
Al Difference 53% 53% 53% 53% 57% 26%
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5.5.2.4 System-wide Investment Scenario

The observed increase of the average port utilization by twenty-six percent as a result of
the lock/dam investment scenario suggests a reconsideration of investments in both the
navigation channel and congested ports along with the lock/dam investment. Therefore, it was
determined that running a scenario analysis to measure the economic impact of the MKARNS
based on the investments in all inland waterway infrastructures including the deepening the
navigation channel, the seventeen congested docks, and the five congested locks/dams would be
informative. As explained earlier, these investment scenarios increased the total GDP impact by
seven percent, four percent, and fifty-three percent respectively.

As a result of running the system-wide investment scenario, it was observed in Figure 7
that the total GDP impact increased from $7 billion in 2016 to $13.6 billion in 2024. Although
the GDP impact fluctuated between the years 2024 and 2031, the MKARNS still could sustain
this level of GDP impact over these seven years. However, after 2031, the MKARNS GDP
impact experienced a decline similar to the other investment scenarios up until 2043 and later on

started to oscillate around $1 billion.
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Figure 7 System-wide Investment Scenario GDP Impact by Commodity
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As predicted in the third hypothesis, the system-wide investment scenario resulted in the
highest economic impact in comparison to the other investment scenarios. The system-wide
investment scenario generated ninety-two percent higher value in the four economic indicators,
which is in fact greater than the sum of the individual investment scenarios: channel deepening,
port investments, and lock/dam investments, which interestingly was a sixty-four percent
improvement in comparison to the base scenario. Table 5 summarizes the performance measures
for the system-wide investment scenario. It can also be observed from the analysis that the net
present value of sales, GDP, and tax economic impacts are $445.8 billion, $213.4 billion, and
$15.0 billion respectively for the fifty year study period.

Table 5 System-wide Investment Scenario Performance Measures

NPV Sales NPV GDP NPV Tax Emp. Flow Port

($M) ($M) ($M) (#Jobs)  (ton/year) Util.

Dry Mean $150,069  $77,279  $5,049  $24904 806,432  76%
Cargo  pitference 73% 73% 73% 73% 44% 8%
Dry Mean $163,700  $76,423  $6,377 $24,866 4,214,976 76%
Bulk  pifference ~ 82% 82% 82% 82% 63%  30%
Liquid Mean $65,762 $29,065  $1,472  $9,302 918,488  87%
Bulk  pitference  145% 145% 145%  145% 84% 6%
~ Mean $69,471 $30,625  $1,867  $9,955 1,878,040 95%
erain Difference 140% 140% 140% 140% 79% 22%
Mean $445762  $213,392  $14,959 $69,036 7,817,936 74%

Al Difference 92% 92% 92% 92% 67% 20%
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5.5.3 Disruption Scenarios

The lock delays for the Arkansas and Red River Basin reached a critical level and
received an F grade from America’s Watershed Initiative (AWI) which consists of hundreds of
experts from the thirty-one states containing the Mississippi River Watershed (AWI, 2015).
Furthermore, the lock/dam investment scenario in this study illustrated earlier that without
investing in the critical lock/dam infrastructures, the MKARNS system cannot generate a
sustainable economic impact. Therefore, in this section, we examine the lock/dam disruptions
and their potential economic impacts. The lock/dam scheduled and unscheduled unavailability
disruptions are considered in this study based on the data provided by USACE (2015). We
conducted a regression analysis and probability distribution fitting to scheduled and unscheduled
unavailabilities (USACE, 2015) for each of the eighteen locks/dams located in the MKARNS.
These results are then utilized as input parameters in MarTranS to generate the number of
scheduled and unscheduled unavailabilities and the duration of each of these unavailabilities

every year.

5.5.3.1 Lock/Dam Scheduled Unavailability Disruption Scenario

To measure the economic loss incurred due to the planned unavailabilities, all the
planned unavailabilities from MarTranS were eliminated to measure their corresponding
economic impact. Thus, the difference between the economic impact of the base scenario and the
lock/dam scheduled unavailability disruption scenario will show the economic losses due to
scheduled unavailability disruptions.

In the lock/dam scheduled unavailability disruption scenario, Figure 8, the total GDP
impact increased from $7 billion in 2016 to $10.6 billion in 2026. After 2026, the GDP impact

declined until 2051 and from then on it oscillated around $2 billion. In comparison to the base
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scenario, the increase trend lasted longer, and the system reached an equilibrium in GDP impact

of approximately two times higher than that of the base scenario; $2 billion versus $1 billion.

Lock/Dam Scheduled Unavailability Disruption GDP Impact by
Commodity ($Million)
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Figure 8 Lock/Dam Scheduled Unavailability Disruption GDP Impact by Commodity

The results of the lock/dam scheduled unavailability disruption scenario are given in
Table 6. It can be observed from the results that the net present value of sales, GDP, and tax
economic impacts are $349.2 billion, $167.1 billion, and $11.7 billion respectively. Therefore,
we conclude that annual sales, GDP, tax, and employment economic impacts of the lock/dam
scheduled unavailability disruption scenario are $2.3 billion, $1.1 billion, $78 million, and
18,063 jobs respectively. As predicted in the fourth hypothesis, values of the four economic
indicators increased by fifty percent over the base scenario. Grain commodities benefited the
most with sixty percent improvement, and liquid bulk commodities experienced the least

improvement of twenty-seven percent.
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Table 6 Lock/Dam Scheduled Unavailability Disruption Scenario Performance Measures

NPV Sales NPV GDP NPV Tax Emp. Flow Port

($M) ($M) ($M) (# Jobs)  (ton/year) Util.

Dry  Mean $125,094  $64,418  $4,209  $20,759 824,992  89%
Cargo  pifference  44% 44% 44% 44% 47% 21%
Dry  Mean $144,356  $67,392  $5624  $21,928 3,364,000 72%
Bulk  Ditference  60% 60% 60% 60% 30%  26%
Liquid Mean $33,974  $15,016 $760 $4,805 710,384  96%
Bulk  pifference  27% 27% 27% 27% 43%  15%
~ Mean $46,094  $20,320  $1,238 $6,605 1,755,544 89%
eran Difference  60% 60% 60% 60% 68% 17%
Mean $349,156  $167,146  $11,717  $54,074 6,654,920 76%

Al Difference  50% 50% 50% 50% 42% 23%

5.5.3.2 Lock/Dam Unscheduled Unavailability Disruption Scenario

The unscheduled delays impacting the U.S. inland waterways system has increased
drastically. For example, in 2011, barges experienced the highest delays in the last twenty-five
years, and ninety percent of locks/dams in the United States were disrupted by unscheduled
failures (ASCE, 2013). Therefore, understanding the economic importance of these lock/dam
failures is crucial for our society.

In the lock/dam unscheduled unavailability disruption scenario, Figure 9, it can be
observed that the total GDP impact fluctuates between $7 billion and $8 billion from the years
2016 to 2029. After 2029, the GDP impact falls until 2047 and oscillates around $2 billion,

similar to the lock/dam scheduled unavailability disruption scenario.
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Lock/Dam Unscheduled Unavailability Disruption GDP Impact
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Figure 9 Lock/Dam Unscheduled Unavailability Disruption Scenario GDP Impact

The performance measures of the lock/dam unscheduled unavailabilty disruption scenario
are given in Table 7. Net present value of sales, GDP, and tax economic impacts are $278.6
billion, $133.4 billion, and $9.4 billion respectively. Hence, the annual sales, GDP, tax, and
employment economic impacts of the lock/dam unscheduled unavailability disruptions of the
MKARNS are $923 million, $442 million, $31 million, and 7,144 jobs respectively. These
economic indicator values refer to an improvement of twenty percent in comparison to the base
scenario as predicted in the fourth hypothesis. However, not all commodities benefit from this
improvement. For example, liquid bulk commodities had thirty-one percent economic loss due to
the congestion created by the increased commodity traffic of the other three types of

commodities.
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Table 7 Lock/Dam Unscheduled Unavailability Disruption Scenario Performance Measures

NPV Sales NPV GDP NPV Tax Emp. Flow Port

($M) ($M) (M) (# Jobs)  (ton/year) Util.

Dry  Mean $112,040  $57,696  $3,770  $18593 705048 81%
Cargo  pitference  29% 29% 29% 29% 26% 12%
Dry  Mean $107,149  $50,022  $4,174  $16,276 3,036,184 58%
Bulk  Ditference  19% 19% 19% 19% 17%  12%
Liquid Mean $18,399 $8,132 $412 $2,602 390,920  66%
Bulk  pifference  -31% -31% -31% -31% 21%  -15%
~ Mean $39,801  $17,546  $1,069  $5,703 1,411,720 85%
eran Difference  38% 38% 38% 38% 3v%  13%
Mean $278,654  $133,395  $9,351  $43,156 5543,872 62%

Al Difference  20% 20% 20% 20% 18% 9%

5.5.4 Demand Change Scenario due to the Panama Canal Expansion

The last scenario studied is demand change, specifically related to the Panama Canal
expansion. Since 1914, the Panama Canal has been a crucial element of the world trade, and it
serves 14,000 vessels connecting 1,700 ports annually between over 160 countries (Pant et al.,
2015). The Panama Canal expansion was scheduled to be completed in 2014 and is expected to
double the current capacity of the canal (USACE, 2012). The completion date was then
rescheduled for June 2016, and it is expected to be a game changer for transportation systems
worldwide. The Panama Canal is a cost-effective route option for the trade between Asia and the
United States and increasing the size of the canal may result in a higher usage of the Mississippi
River System (CDM Smith, 2015). The economic impact of the Panama Canal expansion on the
Mississippi River System depends on the preparedness of the system, and the USACE states that
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the cost-benefits gained from the canal expansion may be counteracted by the congestion effect
in the inland waterway transportation system (CDM Smith, 2015).

The Panama Canal expansion scenario in this study differs from the base scenario in that
the demand increases annually at a rate of three percent due to the canal expansion (USACE,
2008). All other variables are assumed to behave similarly to the aforementioned scenarios. After
running the simulation under the Panama Canal expansion scenario, the impact on the GDP can
be observed in Figure 10. The total GDP impact increases from $7 billion to $8.9 billion between
the years 2016 and 2020. After the year 2020, the total GDP impact falls to $1 billion and then

oscillates around $1 billion until the end of the study time frame due to MKARNS’ congestion.

Panama Canal Expansion Scenario GDP Impact by Commaodity
($Million)

$16,000
$14,000
$12,000
$10,000
$8,000
$6,000
$4,000
$2,000
$0

2016 2021 2026 2031 2036 2041 2046 2051 2056 2061

——Dry Cargo —— Dry Bulk Liquid Bulk Grain ——All —=—Base Scenario All

Figure 10 Panama Canal Expansion Scenario GDP Impact by Commaodity

As presented in Figure 3 and Figure 10, the base scenario and the Panama Canal
expansion scenario behave similarly in their economic impacts. This outcome was predicted in
the fifth hypothesis. Table 8 summarizes the performance measures for the Panama Canal
expansion scenario. Net present value of sales, GDP, and tax economic impacts are $241.2

billion, $115.5 billion, and $8.1 billion respectively for the fifty year study period. The economic
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impact of the Panama Canal Expansion is four percent higher than that of the base scenario for

these four economic indicators. All four commodities benefit from the expansion similarly,

between one percent and seven percent. It can be deduced from the comparison between the base

scenario and demand change due to the Panama Canal expansion that the MKARNS generates

slightly greater economic impacts with the expansion of the Panama Canal. Therefore, investing

in the MKARNS infrastructure should be considered by the maritime transportation authorities in

order to benefit more from the Panama Canal expansion.

Table 8 Panama Canal Expansion Scenario Performance Measures

NPV Sales NPV GDP NPV Tax Emp. Flow Port
($M) ($M) ($M) (# Jobs)  (ton/year) Util.
Dry Mean $89,512 $46,095 $3,012 $14,854 603,768 73%
Cargo  pifference 3% 3% 3% 3% 8% 5%
Dry Mean $94,015 $43,890 $3,663 $14,281 3,006,720 57%
Bulk  Difference 5% 5% 5% 5% 16%  11%
Liquid Mean $28622  $12650  $641  $4,048 519808 84%
Bulk  Difference 7% % % % 4% 3%
Mean $29,072 $12,816 $781 $4,166 1,045,568 73%

Grain
Difference 1% 1% 1% 1% 0% 1%
Mean $241,170 $115,451 $8,093 $37,350 5,175,864 59%
Al Difference 4% 4% 4% 4% 10% 6%
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5.6 Case Discussion

Figure 11 illustrates the GDP impact of all eight scenarios conducted in this study. It is
observed that the system-wide scenario generates the highest economic impact, followed by
lock/dam investment, lock/dam scheduled unavailability disruption, and lock/dam unscheduled
unavailability disruption scenarios in descending order. It can be inferred from the analysis that
all scenarios result in a collapse of the GDP impact, but the system could operate longer when
investments are made on the critical locks/dams. Therefore, it is concluded that in order to
benefit from the MKARNS over a long period of time, necessary investments on critical
infrastructure should take place by the MKARNS authorities, specifically aging locks/dams

which are found to be the most critical investment options.

Scenario Analysis: GDP Impact by Commodity ($Million)

$16,000 —&—Base Scenario
$14,000 Panama Canal
Expansion
$12,000 ——— Channel
$10,000 Deepening
Port
$8,000 Investment
Lock/Dam
$6,000 Investment
$4.000 —— System-wide
' Investment
$2,000 ——No Lock/Dam
< = . Maintenance
$0 —— No Lock/Dam
2016 2021 2026 2031 2036 2041 2046 2051 2056 2061 Failure

Figure 11 GDP Impact Scenario Comparisons

The main findings of our study are as follows.
e On average for all scenarios, seventy-seven percent of the economic impact is generated
by dry cargo and dry bulk commaodities, while seventy-eight percent of the flow is dry

bulk and grain commodities. Therefore, the MKARNS authorities may want to invest
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more in the infrastructure involved with dry cargo and dry bulk commaodities to improve
the total economic benefits.

If the MKARNS authorities do not invest in the critical locks/dams, the economic
impacts generated will start to fall sometime between the years 2020-2023, and the
economic impact will collapse by year 2032-2040. We observe that lock/dam
rehabilitation investments can postpone the collapse by more than a decade. However, to
have the MKARNS and its economic impact sustainable, new lock/dam investments may
be considered due to the current age of locks/dams.

Panama Canal expansion, channel deepening, and port investment decisions without
investing in the critical locks/dams resulted in limited (4%-7%) improvement in the
economic gains. The reason for this limited increase is that the system locks/dams are the
bottlenecks. However, investing in the channel deepening, congested ports, and critical
locks/dams together in the system-wide investment scenario generated the highest
economic benefits. The system-wide investment scenario resulted in twenty-eight percent
more than the sum of individual investment scenarios. Therefore, to increase total
economic benefits, maritime authorities should consider investing system-wide if the
available budget is adequate. Otherwise, they should prioritize investing in the critical
locks/dams.

Lastly, annual economic losses due to the lock/dam scheduled and unscheduled
unavailabilities are $1.1 billion and $442 billion in GDP impact respectively. Therefore,
as discussed earlier in the disruption scenarios section, investing in the critical
locks/dams can reduce the negative economic impacts of the potential lock/dam

disruptions.
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5.7 Conclusions and Future Work

In this research, the economic impacts of eight different real world scenarios are studied,
and the MKARNS is used to illustrate the applicability of the MarTranS to model these scenarios
(Oztanriseven & Nachtmann, 2016). MarTranS consists of agent-based, discrete-event, and
system dynamics simulation sub-models, and to measure the economic impacts of the real world
inland waterway transport system scenarios, MarTranS is integrated with a multiregional input-
output model. The results are presented in terms of sales, GDP, tax, and employment economic
indicators. In addition, commodity flows and port utilizations are reported as two operational
performance measures.

To the best of our knowledge, there is no research in relevant literature that discusses
potential economic impacts of inland waterway transportation system under real world scenarios
by utilizing a comprehensive multimethod simulation model. Moreover, understanding the
relationships between the economic impacts of an inland waterway transportation system and the
real world scenarios can increase the economic benefits and lead to a competitive advantage over
other transportation systems. The conducted scenario analysis could be modified and utilized for
any other inland waterway system such as the Mississippi, Rhine, Danube, Yangtze, and Rio de
la Plata River Systems.

The results of the eight scenario analyses showed that dry cargo and dry bulk
commaodities generate the highest economic impact at seventy-seven percent of the total impact.
However, the top two commodities in terms of flow are dry bulk and grain commaodities, at
seventy-eight percent of the total flow. Moreover, the locks/dams in the MKARNS are the most
critical infrastructures to invest in, especially the five locks identified as critical. Investing in

these locks/dams improved the economic impact by fifty-three percent. However, investing in
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deepening the navigation channel or congested ports without investing in the critical locks/dams
resulted in a limited economic impact improvement at seven percent and four percent
respectively. Similarly, the economic impact of the Panama Canal expansion without investing in
MKARNS infrastructure resulted in only a four percent economic improvement over the base
scenario. Another significant result in this study is that investing altogether in channel

deepening, congested ports, and critical locks/dams resulted in a higher economic impact
improvement (ninety-two percent) than the summation of each individual investment scenarios.
Finally, the economic impact of potential lock/dam disruptions is measured, and the results of the
lack/dam scheduled unavailability disruption scenario resulted in economic losses of fifty
percent of the base scenario, which translates into $1.1 billion in GDP annually. Moreover, the
results of the unscheduled unavailabilities of lock/dam disruption scenario showed economic
losses of twenty percent of that of the base scenario, which translates into 442 million in GDP
every year.

To validate MarTranS boundary adequacy, structure assessment, dimensional
consistency, parameter assessment, and extreme condition tests (Sterman, 2000) are conducted.
The model was discussed throughout its development with two subject matter experts from
public waterway transportation agencies. Moreover, related and current literature and
governmental data sources helped assess the validity of the model parameters.

This study raised several research questions to be analyzed in the future. First, the
generated tax during the study time frame could be re-invested in the inland waterway
transportation system infrastructures to further improve the economic impact. Second, only
lock/dam scheduled and unscheduled unavailability scenarios are studied in this paper, but other

types of disruptions such as terrorist attacks, strikes and natural disasters could be considered to
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measure the corresponding economic impacts. Fourth, potential delays during the construction
periods due to the investments in inland waterway transportation system infrastructure can be
considered to account for the additional economic losses due to these delays. Third, a more
detailed modeling effort of the alternate modes and the port operations can help strengthen
MarTranS. Finally, MarTranS can be applied to different inland waterways to have a more

holistic understanding of global inland waterway transportation systems.
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6. CONCLUSIONS AND FUTURE WORK

This chapter reviews the three main research contributions discussed in this dissertation,
overviews the conclusions, and discusses future work. The main objective of this dissertation is
to create decision support tools to assess the economic impacts of inland waterway transportation
systems contingent upon real world scenarios including normal operation, disruption,
infrastructure investment, and demand change to assist in making well-informed investment
decisions. Decision support tools discussed in this dissertation can be employed by maritime
transportation stakeholders such as the United States (U.S.) and State departments of
transportation (DOTSs), U.S. Army Corps of Engineers (USACE), U.S. Coast Guard (USCG),
other maritime agencies, and private investors.

In chapter 2, a comprehensive literature review was conducted in the research area of
economic analysis of the maritime transportation system. Our literature review reveals that there
is a need for decision support tools to measure the economic impacts of the inland waterway
transportation system operations and disruptions to enhance the associated economic impacts.
Moreover, the conducted literature review provides a solid foundation for the developed
methodologies in this dissertation. Our literature review concentrates on maritime transportation,
economic analysis, input-output models, simulation studies, and disruptive events. Relevant
literature is grouped into different classifications to better understand the current body of
knowledge .The guidance and lessons learned from these earlier studies provides a sound starting
point for developing our methodologies to measure the economic impacts of maritime
transportation systems.

In the first research contribution (Chapter 3), the research objective aims to better

understand the impacts of disruption duration, estimation, and commaodity type on economic
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impact factors in the context of inland waterway transportation system. Forecasting economic
impacts of inland waterway disruption decisions can empower system stakeholders to advance
their preparedness and reduce economic losses. In this research, we contributed to the literature
related to measuring the economic impacts of disruption decisions in the inland waterway
transportation system. The simulation-based economic impact disruption decision model
developed in Chapter 2 is generalizable to any inland waterway transportation system. The
outcomes of the case study demonstrated that the expected duration of a disruption imposes
whether decision makers are better off waiting for the waterway system to restore or diverting to
an alternative mode of transportation. Moreover, estimation accuracy of disruption duration can
aid the stakeholders to lessen the total cost induced by the disruptive event. The developed
methodology is flexible for new advancements in the future, for instance capacity constraints for
alternative modes of transportation and ports can be included. Since each element of inland
waterway transportation system may be affected from a disruption differently, vulnerability of
the system elements could be integrated to our model. Moreover, system resiliency could be
considered to account for recovery period and recovery speed of each inland waterway
transportation system component.

In the second research contribution (Chapter 4), a Maritime Transportation Simulator
(MarTranS) is developed to model and better understand the relationships between inland
waterway transportation system components and economic impact factors dynamically.
MarTranS incorporates agent-based, discrete-event simulation, and system dynamics sub-models
with multiregional input-output model and can improve investment decision making capabilities
for maritime transportation stakeholders. By using publicly available data, MarTranS parameters

can be altered and generalized to any inland waterway transportation system. To the best of our
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knowledge, this is the sole study that assesses the economic impacts of navigable inland
waterways transportation system dynamically by using a multimethod simulation model. To
demonstrate the applicability of MarTranS, we conduct a case study on the MKARNS. The case
study illuminates that the economic impact of the MKARNS is not sustainable in the long-term
without future investments in MKARNS infrastructure. Model results indicate that, in
approximately two decades, the economic impact and commodity flow will decline to ten percent
of their current values. Moreover, seventeen port docks and five locks/dams exceeded a
utilization rate of eighty percent. These high utilization rates resulted in higher transportation
delays and costs. Some of the possible future directions for this work are: 1) different kind of
disruptions can be studied to measure their potential economic impacts, 2) to increase the
economic impact, an optimization model can be integrated into MarTranS to identify the best
simulation parameters, 3) the tax generated in the model can be considered for reinvestment into
the system, and 4) alternative modes of transportation can be modeled in more detail to improve
MarTranS.

In the third research contribution (Chapter 5), real world inland waterway transportation
system scenario analyses are conducted utilizing MarTranS to measure the economic impacts of
inland waterway transportation system. These scenarios are a base scenario, investment scenarios
(deepening of navigation channel, port expansion, lock/dam rehabilitation, and system-wide
investment), potential disruption scenarios (lock/dam scheduled and unscheduled
unavailabilities), and the demand change scenario due to the effect of Panama Canal expansion.
The MKARNS is also chosen as the study region to show an application of the developed
MarTranS real world scenario analyses. The results illustrated that dry cargo and dry bulk

commaodities account for the highest economic impact at seventy-seven percent of the total.
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Moreover, the locks/dams in the MKARNS are the most critical infrastructures and investing in
these locks/dams improves economic impacts by fifty-three percent. However, investing solely
in deepening the navigation channel or congested ports generated a limited increase in the
economic impact at seven percent and four percent respectively. In addition, the economic
impact of demand change due to the Panama Canal expansion scenario created only a four
percent higher economic impact over the base scenario. Another significant finding of this study
is that investing altogether in channel deepening, congested ports, and critical locks/dams created
a higher economic impact (ninety-two percent over the base scenario) than the summation of
each individual investment scenario. Finally, the economic impact of potential lock/dam
disruptions is studied, and the lock/dam scheduled unavailability disruption scenario resulted in
economic losses of fifty percent of the base scenario, which translates into $1.1 billion in GDP
every year. Furthermore, the lock/dam unscheduled unavailability disruption scenario showed
economic losses of twenty percent of that of the base scenario, which translates into $442 million
in GDP every year. To the best of our knowledge, there is no research in relevant literature that
studies potential economic impacts of inland waterway transportation system under real world
scenarios including investment, disruption, and demand change by utilizing a multimethod
simulation model. Understanding the relationships between the economic impacts of an inland
waterway transportation system and corresponding real world scenarios can enhance the
economic benefits and lead a competitive advantage over other transportation systems. Several
research directions emerged as a result of this study. First, the generated tax during the study
time frame can be re-invested in the inland waterway transportation system infrastructures to
further improve the economic impact. Second, different types of disruptions can be studied with

MarTranS, such as terrorist attacks, strikes and natural disasters. Third, a more detailed modeling
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effort of the alternate modes and the port operations, can enhance MarTranS. Finally, MarTranS
can be applied to different inland waterways to have a more holistic understanding of global or

the U.S. inland waterway transportation systems.
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