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Abstract

This work classifies examples of infrastructure interdependencies found in the food and

agriculture critical infrastructure sector. Interdependencies are identified through an exam-

ination of rice and poultry agriculture throughout the state of Arkansas. The subtleties

of interdependence examples in the food and agriculture sector are inadequately captured

by the well-studied interdependence classification taxonomies. Through 39 interviews, we

develop an understanding of the subtle temporal, geographic, and productivity scales of

interdependence in over 100 examples and present five new, distinct classifications of in-

terdependence: (1) dynamic physical, (2) dynamic geographic, (3) deadline, (4) delay, and

(5) human, economic, and natural resource interdependencies. An analysis of these inter-

dependencies and their intricacies provides the opportunity to generalize these ideas across

other critical infrastructure sectors and model infrastructure restoration and resilience with

greater concern for seasonality, resource scarcity, and punctuality.
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Chapter 1

Introduction

Simulation and modeling of critical infrastructure systems (CIS) build upon an under-

standing of infrastructure interdependence. The study of critical infrastructure systems

systematically characterizes an infrastructure’s operational requirements, capabilities, and

environmental factors as interdependencies. From this characterization, critical infrastruc-

ture systems are modeled and disruption scenarios are simulated to further study infrastruc-

ture restoration, resilience, and reliability. The transportation, energy, telecommunications,

and water and wastewater (water) lifeline infrastructure systems described in Lee et al. [1]

are studied throughout CIS literature (see Amin [2], Bao-Hua et al. [3], Reed et al. [4], Islam

and Moselhi [5], Portante et al. [6]). However, this work aims to develop understanding

of the food and agriculture sector via study of rice and poultry production in the state of

Arkansas. This study is a means to classify operational interdependencies in the food and

agriculture sector and introduce five new, distinct classifications of interdependence.

Societal reliance on critical infrastructure systems may be most evident in the after-

math of an extreme event (e.g., terrorist attack, weather phenomena). The extreme event

responsible for exposing critical infrastructure system vulnerabilities and establishing CIS

protection programs was the 1995 terrorist bombing of the Alfred P. Murrah Federal Building

in Oklahoma City, Oklahoma. In the months following the bombing, President Bill Clinton

established the President’s Commission on Critical Infrastructure Protection (the Commis-

sion) to identify infrastructure systems vital to national security, determine infrastructure

vulnerabilities, and propose infrastructure protection strategies. The Commission’s Report

was published in 1997, formally defining critical infrastructure as a “network of independent,

mostly privately-owned, man-made systems and processes that function collaboratively and

synergistically to produce and distribute a continuous flow of essential goods and services

. . . so vital that their incapacity or destruction would have a debilitating impact on our
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defense and national security” [7].

Similar to the Commission’s Report, opportunities to study CIS and infrastructure in-

terdependencies materialize in the aftermath of extreme events. Observable infrastructure

interdependencies and CIS disruption propagation patterns have been studied following ex-

treme event occurrences. Earthquake engineers mapped and analyzed damage propagation

patterns throughout lifeline infrastructures following the 1995 Kobe earthquake [8]. In turn,

the Kobe earthquake study facilitated the formalization of infrastructure failure interdepen-

dencies (IFIs) in the work [9]. Additionally, the study of New Jersey, New York City, and

Long Island’s recovery after Hurricane Sandy made landfall in 2012 prompted the formal-

ization of infrastructure restoration interdependencies [10]. Moreover, mathematical infras-

tructure restoration models were developed in an extreme event response framework [1, 11].

Alternatively, some CIS studies examine infrastructure interdependencies in the absence of

disruptions and extreme events (see Haimes [12], Laugé et al. [13]). The focus of this study

is an examination of Arkansas’s food and agriculture sector at large.

Contextualizing Arkansas’s rice and poultry productions as a critical infrastructure sys-

tem and classifying operational interdependencies is the basis for modeling and simulation

in the food and agriculture sector. The food and agriculture sector was not recognized to be

vital for domestic well-being or national security until 2013 when President Barack Obama

directed the United States Department of Homeland Security (DHS) to oversee the protec-

tion and strengthening of 16 infrastructure sectors critical to national security [14]. Food

and agriculture was designated as critical and defined to be “composed of complex produc-

tion, processing, and delivery systems and has the capacity to feed people and animals both

within and beyond the boundaries of the United States” [15].

Indeed, the food and agriculture critical infrastructure is a complex system whose pro-

tection is paramount to national security. The food and agriculture critical infrastructure

sector is a diverse composition of animal production, crop production, food and beverage

manufacturing, food product warehousing, grocery stores, and restaurants. The operational
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diversity among components of the food and agriculture sector is responsible for producing

nutrients for biological subsistence. Operational diversity underpinned by ubiquitous depen-

dence on the sector promotes multidisciplinary interest in the food and agriculture sector -

e.g, food science, agronomy, animal science, plant science, operations research, biological and

agricultural engineering, agricultural economics, and agricultural science. Interdependencies

existing among the food and agriculture, water, and energy infrastructure sectors have been

examined through studies of the food-energy-water nexus and critical infrastructure systems

[16, 17].

This study of the food and agriculture sector in Arkansas primarily focuses on classifying

operational interdependencies that exist among the 16 DHS critical infrastructure sectors

and Arkansas’s food and agriculture infrastructures. Arkansas is well-suited for this study;

approximately one-third of the state’s land, 13,600,000 acres, is used for agricultural pro-

duction. In 2012, Arkansas produced more rice than other state and produced the third

most cotton, broiler chickens, and turkeys [18]. Moreover, 2012 sales of commodity grain

in Arkansas reached $4.2 billion, while poultry and cotton sales exceeded $4 billion and

$445 million, respectively [18]. Maintaining high crop and animal production levels requires

a robust supply chain of power plants, chemical manufacturing plants, water supplies and

distribution, transportation networks, and agricultural production facilities.

The prevalence of food and agriculture operations throughout the state form a rich envi-

ronment to study operational interdependencies. Furthermore, diversity of the state’s agri-

cultural operations present interdependency characteristics ranging from generic resource

requirements between distinct infrastructure sectors to time-sensitive resource requirements

between components of the same infrastructure. The rice production lifecycle analysis pre-

sented in Pagani et al. [19] investigates energy and input requirements necessary to grow

rice Missouri’s Mississippi river delta region which is visualized in Figure 1.1. Similarly, the

poultry lifecycle analysis in Pelletier [20] examined direct inputs and emissions associated

with producing one live-weight ton of broiler poultry which is visualized in Figure 1.2.
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Figure 1.1: Flowchart of energy inputs from the rice lifecycle assessment of Pagani et al.
[19] which illustrates primary resource requirements of the rice production infrastructure.
Primary energy inputs denoted with (*) indicate the authors’ directly determined the mix of
fossil fuels and renewable resources used in power generation whereas primary energy inputs
denoted with (**) indicate the authors determined the source of power generation based on
regional operations.
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Figure 1.2: The lifecycle analysis visualized in Pelletier [20] represents direct energy inputs
necessary to feed and grow one ton of live-weight broiler chickens as single arrows from
resource to production process, and emissions are represented using three arrows originating
from a production process.
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This study classified approximately 115 observed infrastructure interdependencies; 65

interdependencies were adequately characterized by the existing taxonomy and 50 interde-

pendencies were classified using a new, expanded taxonomy we propose. The expanded

taxonomy consists of five new, distinct interdependence classifications to account for varia-

tions in resource requirements, temporal scales, geographic scales, and productivity scales.

Classified interdependencies span 13 critical infrastructure sectors. The food and agriculture

sector appears most frequently in 107 classified interdependencies. The transportation and

water sectors appear second and third most frequently, in 26 and 18 classified examples,

respectively.

This work’s contributions are as follows. First, we contribute a qualitative examination

of empirical evidence to classify interdependencies observed in Arkansas’s food and agri-

culture infrastructures in accordance with the existing taxonomy. Next, we expand the

existing taxonomy with five new, distinct interdependence classes adequately characteriz-

ing the remaining interdependence examples. Finally, we discuss and analyze the defining

characteristics for each class of the expanded taxonomy.

This work proceeds as follows. Chapter 2 presents a review of literature relevant to critical

infrastructure systems and the food and agriculture sector. Chapter 3 describes the methods

used to examine the food and agriculture sector and classify interdependence examples.

Chapter 4 introduces our classification scheme, Chapter 5 classifies interdependence examples

using the existing taxonomy, and the formalization and classification of examples using the

expanded taxonomy follows in Chapter 6. An analysis of the characteristics of the examples

is presented in Chapter 7, and Chapter 8 explores future directions of this work and its

implications.
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Chapter 2

Review of Critical Infrastructure Systems and Interdependence Literature

It is necessary to formalize the terminology used throughout this work before surveying

relevant literature. This work generalizes the formal definition of infrastructure given in

Chapter 1. Infrastructure broadly refers to a collection of systems responsible for the pro-

duction of an output or completion of a task. An infrastructure sector (sector) references

the population of infrastructures engaged in the production and distribution of goods and

services to society. This distinction between infrastructure and infrastructure sector allows

us to compare classified interdependencies in Chapters 5 and 6 at the infrastructure and

infrastructure sector levels. An interdependence is the relationship among infrastructures

with correlated operational states.

Works motivating the study of critical infrastructure systems and specifically infras-

tructure interdependencies underscore the complexity of infrastructure interactions and the

integral roles of infrastructures in society. The analysis of Amin [2] on the operational ca-

pabilities of the energy, telecommunications, and transportation infrastructures quantifies

societal dependence on these infrastructure sectors. The work of Little [21] highlights the

interconnected nature of infrastructure systems necessitating infrastructures be studied as

complex adaptive systems (CAS). The infrastructure interdependency assessment process

presented in Brown et al. [22] aims to mitigate risks of disruption arising the complex, inter-

connected nature of infrastructure systems. These works highlight the necessity of identifying

infrastructure interdependencies to protect critical infrastructures.

Multiple operational interdependence taxonomies have been defined and proposed to ad-

dress specific characteristics not adequately captured in the previous formalizations. The

works of Zimmerman [23] and Rinaldi et al. [24] developed general classifications of op-

erational interdependencies. An interdependence classification taxonomy was proposed in

Wallace et al. [25] to formalize shared and exclusive-or interdependencies not adequately
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characterized by previous classes. Mathematical formalization was developed for defining

operational interdependencies in Dudenhoeffer et al. [26] with consideration of interdepen-

dence induced by policy and regulation. The framework of Zhang and Peeta [27] formalized

budgetary and economic interdependencies applied to economic input/output models. The

concept of operational interdependence is well-studied, and this work refers to the collection

of classes proposed in Zimmerman [23], Rinaldi et al. [24], Wallace et al. [25], Dudenhoeffer

et al. [26], Zhang and Peeta [27] as the “well-studied interdependencies.” Additionally, the

taxonomies presented to characterize infrastructure failure interdependencies and restoration

interdependencies in Chang et al. [9] and Sharkey et al. [10] respectively, are also considered

integral to the well-studied interdependencies. For reference, a tabular presentation of each

taxonomy of the well-studied interdependencies with formal descriptions for each associated

interdependence class may be found in Appendix A. The formalization of interdependen-

cies and infrastructure interactions in these two studies have facilitated the further study

and comprehension of infrastructure interdependence. We consider our formalizations to be

most similar to operational interdependencies with specific application to food and agricul-

ture infrastructures. Our work focuses on developing interdependence classes that capture

prevalent complicating factors or confounding attributes whose true nature is inadequately

captured by existing interdependence classes. We also throughly investigate instances of re-

source consumption varying over time, productivity varying over time, along with the spatial

and temporal characteristics affecting an infrastructure’s operability. The work of Sharkey

et al. [10] formalizes the concept of time-sensitive options, a restoration interdependence

characterizing the difficulty of completing a restoration task increasing at a certain unknown

time during the restoration process because restoration of an independent infrastructure

has not been completed. The Pederson et al. [28], Xiao et al. [29], Ouyang [30] and Saidi

et al. [31] literature reviews further discuss the well-studied interdependencies. The widely-

cited analysis of Ouyang [30] compared the operational interdependence taxonomies of the

well-studied interdependencies to determine which taxonomy most effectively and efficiently
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classified ten arbitrary examples of interdependence. The widely understood Rinaldi et al.

[24] taxonomy was the only taxonomy that appropriately classified all ten examples of inter-

dependence, and is well suited for classifying general examples of interdependence compared

to other taxonomies. Therefore, this work refers to the interdependence classifications and

classification framework of Rinaldi et al. [24] as the “existing taxonomy” used in Chapter 5.

Operational interdependence refers to relationships among infrastructures such that the

operational state of an infrastructure depends on an independent infrastructure’s produc-

tivity. These interdependencies are subject to cascading failures propagating from a single

disruption throughout a complex network of interdependent infrastructures [9, 24, 32]. In

general, interdependencies are identified through empirical examinations of infrastructures

and examining disruption propagation patterns following extreme events. Interdependen-

cies are identified and discussed in CIS studies aiming to build conceptual understanding of

interdependencies and parameterize infrastructure models and simulations.

Each of the works composing the well-studied interdependencies created further con-

ceptual understanding of operational interdependencies. The operational interdependencies

identified in New York City presented in Wallace et al. [25] identified mechanisms inducing

operational interdependence not yet formalized. The study of infrastructure interdependence

has evolved beyond operational interdependencies. The concept of IFIs presented in Chang

et al. [9] was formulated through the study of infrastructure disruption patterns observed

after the 1995 Kobe earthquake. Pragmatic examples of IFIs were studied in the aftermath

of power blackouts, hurricanes, and ice storms were documented in McDaniels et al. [32],

Chang et al. [33], McDaniels et al. [34], and McDaniels et al. [35] and then aggregated into

an IFI database presented in Chang et al. [36] to inform risk mitigation strategies. Simi-

larly, Sharkey et al. [10] presented the concept of infrastructure restoration interdependencies

formulated from observation of restoration activities in the wake of Hurricane Sandy.

Applications of empirical interdependence classification are the development of quan-

titative measures of interdependence, empirical risk analyses, and parameterization of in-
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frastructure interdependence and restoration models. The works of Zimmerman [23, 37],

and Zimmerman et al. [38] analyze cross-sector interdependencies, the effects of cascad-

ing failures on infrastructure sectors, and infrastructure sector resilience, respectively using

quantitative interdependence and resilience metrics. Further quantification of infrastructure

resilience metrics (e.g., robustness, rapidity, performance loss) are presented in Nan and

Sansavini [39]. The work of Chang and Shinozuka [40] quantifies water distribution infras-

tructure resilience to disruptions caused by earthquakes. Quantitative metrics of operational

interdependencies in Kajitani and Sagai [41] are derived from structural engineering data,

system operations plans, and economic data. Statistical significance tests are performed in

Mendonça and Wallace [42] and Dueñas-Osorio and Kwasinski [43] to determine significant

cross-sector interactions following the 2001 World Trade Center terrorist attacks and 2010

Chilean earthquake. Operational interdependencies were quantified to perform a CIS risk

assessment in Kjølle et al. [44] by computing failure probabilities used to predict disruption

frequency and severity in a Norwegian energy infrastructure. Operational interdependencies

presented in Espada et al. [45] are inform network flow parameters in a GIS network model

established to assess flood vulnerabilities.

Infrastructure interdependencies are identified to develop infrastructure modeling and

simulation techniques throughout critical infrastructure sectors. The modeling literature

extensively focuses on the lifeline infrastructure sectors. The work of Zimmerman et al. [17]

explores interdependencies among the food and agriculture, water, and energy infrastruc-

ture sectors with special attention paid to organic farming. Similarly, Scott et al. [46] and

D’Odorico et al. [16] expound on the interdisciplinary food-water-energy nexus field of study.

This work aims to comprehensively characterize the interdependencies found in the food and

agriculture infrastructure sector and present interdependence classes applicable to sectors

beyond food and agriculture.
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Chapter 3

Methods for Classifying Interdependencies

The aim of this study is to document observed examples of interdependencies found

in Arkansas’s food and agriculture critical infrastructure sector. The documented inter-

dependency examples are presented in a classification framework expanding the prevalent

classifications of Rinaldi et al. [24]. The newly defined, distinct classifications are used to

capture frequently appearing subtleties among the observed examples. Interdependencies in

the food and agriculture sector are subject to complicating factors discussed in Rinaldi [47]

like varying time scales, geographic scales, and productivity. Clear exposition and general

application of these complications further motivates our study of the food and agriculture

sector interdependencies.

Studying Arkansas’s food and agriculture sector is facilitated by the sector’s produc-

tivity and geographic footprint. In 2014, the food and agriculture sector’s total economic

contribution to state GDP exceeded 20 billion USD, more than 17% of Arkansas GDP, from

producers spanning the poultry operations in northwestern Arkansas to row crop farming

on the state’s eastern side [48]. The food and agriculture sector’s combined economic and

geographic presence encourages public and commercial enterprises to thoroughly understand

the sector’s operations. This work relies on the knowledge and experience of food and agri-

cultural operators and stakeholders in interdependent infrastructure sectors.

Examples of infrastructure interdependencies were collected, most significantly, through a

series of interviews with stakeholders in the food and agriculture sector throughout Arkansas.

Interviews were conducted with 39 individuals representing food and agriculture operations,

public utilities, emergency services, financial institutions, and higher education. Of the 39

individuals, 12 are academic experts in food science, poultry science, agriculture, engineer-

ing, or agricultural economics. The remaining 27 interviewees operated or managed food and

agriculture production, food milling and processing plants, public enterprises, financial insti-

11



tutions, government organizations, and agriculturally focused policy initiatives. We recognize

there is a discrepancy in responses from poultry professionals in comparison to experts in rice

production interviewed throughout the study. The amount of time we spent interviewing re-

spondents that are knowledgeable about rice production is substantially longer than those in

the poultry field, which introduces bias into our study. Throughout the planning and inter-

viewing stages, we attempted to interview professionals in both fields earnestly. Recognizing

bias resulting from studying interdependencies existing in the rice production infrastructures

more deeply than poultry allowed us to understand that bias may also arise from our study

of infrastructure interdependencies considering food and agriculture stakeholders to be the

dependent infrastructure in many scenarios. Our respondents were exceptionally knowledge-

able in their chosen fields, but a thorough understanding of how other critical infrastructure

systems respond if food and agriculture is interrupted was elusive.

Generally, each interview was attended by at least two members of the research team

and lasted appropriately one hour. The research team’s preference was to conduct physical

interviews when possible, if not, teleconferencing was used. The research team traveled

to conduct interviews in Jonesboro at the Arkansas Soil & Water Education Conference

& Expo on January 31, 2018, and then further traveled to Little Rock and the Arkansas

delta region to interview commercial grain mill operators, commercial rice farmers, public

servants, and policy advocates. Interviews were also conducted in northwest Arkansas with

academics and utility providers. Each interview followed similar formats and guidelines to

effectively identify infrastructure sector interdependencies and discuss specific examples of

infrastructure interdependencies.

Three broad topics were addressed by each interviewee: the nature of their relationship

with the food and agriculture sector, perceptions of how the food and agriculture sector

depends on other DHS critical infrastructure sectors, and the risks or vulnerabilities affect-

ing food and agriculture. All interviews began with an interviewee’s personal introduction

and explanation of their professional responsibilities and expertise. The research team then
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introduced this research and the study of critical infrastructure systems in the context of

our interviewee’s profession. Discussions identifying infrastructure sector dependencies were

aided with a reference document enumerating and briefly discussing each of the critical infras-

tructure sectors. Sectors thought to be interdependent were further discussed to understand

specific examples of interdependency that the interviewees had observed. The research team

continued the discussion through questions designed to expose the nature of how specific

infrastructure components interact along in as much detail as possible. Clarifications of

specific examples developed an understanding of how these interactions and dependencies

changed over time, varied with operational tasks within the food and agriculture sector, and

exposed ancillary factors affecting the interdependence.

Furthermore, examples of interdependencies have been identified in news publications

and Arkansas agricultural publications. Interview participants widely acknowledged food

and agriculture production to be vulnerable to weather events. Specifically, the effects of

Hurricane Harvey making landfall in late August of 2017, during the peak of the rice harvest,

were well documented by news outlets and agricultural publications in Arkansas, Louisiana,

and Texas. Our study includes a further investigation of Hurricane Harvey’s effects on the

food and agriculture sector in the tri-state region. Specific, fully characterized examples

of interdependencies existing in the food and agriculture sector from the interviews and

periodicals were then aggregated for further analysis and classification.

Initially, interdependencies were classified to be physical, cyber, geographic, or logical in

accordance with the existing taxonomy. Analysis of the interdependency classification pre-

sented several distinct factors complicating multiple examples, each affecting the examples

in a distinct, generic fashion. The complicating factors frequently observed in this study

of the food and agriculture sector were identified in order to formally define new, distinct

interdependence classifications. Formalizing these frequently occurring factors necessitates

the proposal of five new classes of infrastructure interdependence which adequately capture

subtle characteristics the existing taxonomy is unable to do. Subsequently, the examples

13



were reclassified using a combination of the existing taxonomy and the newly-defined classi-

fications referred to as the expanded taxonomy. To validate the classifications, the research

team unanimously agrees the exposition of the example accurately characterizes the true

nature of the interdependence and then the example is also appropriately classified. We

then further standardized our observations using an industry classification taxonomy, North

American Industry Classification System (NAICS) developed by United States Department

of the Census. Through this standardization and aggregation, we are able to interpret our

findings and provide accurate, concrete accounts of the interactions we observed across spe-

cific infrastructure components.
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Chapter 4

Classification of Interdependencies in the Food and Agriculture Infrastructure

Sector

The focus of this study is to classify infrastructure interdependencies observed through-

out the food and agriculture sector. Interdependence classes of the existing taxonomy and

expanded taxonomy are defined and explicated in Chapter 5 and Chapter 6, respectively.

The expanded taxonomy interdependence classes are dynamic physical, dynamic geographic,

deadline, delay, and human, economic, and natural resource. Expanded taxonomy interde-

pendence classes are motivated by characteristics of infrastructure interdependencies ob-

served in the food and agriculture sector exhibiting subtleties not adequately captured by

the existing taxonomy. Further development of these concepts are found throughout Chap-

ter 5 and Chapter 6. This work aims to observe and formalize operational interdependencies

existing in the food and agriculture sector; more specifically, what factors characterize and

confound the nature in which two infrastructures rely on one another to remain operational

and productive day-to-day. We consider four of the five new, distinct interdependence classes

presented in this work to satisfy the definition of operational interdependence. However, dur-

ing the course of this work , we regularly observed a change in behavior among infrastructures

in the aftermath of some type of disruption. More specifically, we observed instances in which

a dependent infrastructure experienced a time lag before being impacted by an independent

infrastructure’s disruption, and we observed events requiring collaboration among neighbors

in order to mitigate the impact of a disruption. These interactions characterized by the geo-

graphic, dynamic geographic, and delay interdependence classes more accurately characterize

infrastructure tasks and operations that are undertaken in order to restore productivity after

a disruption, hence we consider them to be restoration interdependencies.

This study of the food and agriculture sector identified and classified approximately 115

examples of infrastructure interdependence. Of the 115 classified examples, five examples
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outside of the food and agriculture sector were identified. The existing taxonomy appropri-

ately classified 65 interdependencies, and the remaining 50 interdependencies were classified

by the expanded taxonomy. This study found the food and agriculture sector to be interde-

pendent with 13 of the 16 critical infrastructure sectors designated by DHS. Discussion and

analysis of interdependence classifications in this study is provided in Chapter 7. Table 4.1

presents the notation used to formalize interdependence classes in this paper.
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Table 4.1: The following symbols are used in this paper:

Notation Definition and description

A,B,Ai Infrastructure sectors are represented as A and B in a two-way in-

teraction, where a collection of n geographically interdependent in-

frastructure sectors is represented Ai for i = 1, . . . , n for n ≥ 2;

(A,B) An interdependence between two infrastructure sectors such that

infrastructure sectors A, in some way, depends on B;

infrastructureA,B,Ai The description of each observed infrastructure interdependence de-

notes an infrastructure in infrastructure sectors A,B,Ai as indepen-

dent infrastructureA, dependent infrastructureB, and geographically

interdependent infrastructureAi ;

S The set S is composed of distinct infrastructure sectors, Ai, when

there exists an interdependence with another infrastructure sector,

Aj, for i, j ∈ N, i.e., S = {Ai : ∃(Ai, Aj) for i = 1, . . . , n, j =

1, . . . , n, and i 6= j};

t The time at which an arbitrary deadline occurs is denoted t; and

δt An arbitrary interval of time is denoted δt.
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Chapter 5

Interdependence Classifications in the Existing Taxonomy

Interdependence classifications begin with the physical, cyber, geographic, and logical

classes of the existing taxonomy. Generally, the interdependence classes of the existing

are simply defined and adequately capture broad dependence relationships among critical

infrastructure sectors. This study considers physical, cyber, and logical interdependence

classifications to appropriately characterize distinct, static dependence relationships among

infrastructure sectors over time. Similarly, geographic interdependencies exhibit infrastruc-

ture consistency characteristics that are affected by some localized event.

5.1 Physical Interdependencies

Definition: The operational state of infrastructure A depends on a material output of

infrastructure B [24].

Observed frequency: 37.

Examples (A, B):

• (Food and agriculture, Food and agriculture). Animal food manufacturingA feed for-

mulations depend on cereal grains produced by the crop productionB infrastructure.

• (Food and agriculture, Chemical). Crop productionA depends on fertilizer, herbicides,

pesticides, and other agricultural chemicals produced by the agricultural chemical man-

ufacturingB infrastructure.

• (Food and agriculture, Critical manufacturing). Animal productionA and crop produc-

tionA depend on industrial equipment and farm machinery produced by the agricultural

implement manufacturingB infrastructure.

Discussion: The physical infrastructure interdependence classification characterizes an in-

frastructure’s dependence on the productivity of another infrastructure sector. Examples
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of physical interdependencies may be generalized across similar entities within an infras-

tructure. For instance, feed formulations may vary across dairy cattle, beef cattle, swine,

and poultry production operations based on nutritional requirements for a specific infras-

tructure’s livestock or if the infrastructure’s material outputs are organic or conventional,

but invariably commercial animal production infrastructures require large volumes of cereal

grains (e.g. soybeans, corn, wheat) to feed their livestock. Similarly, plant production op-

erations vary in size, output volume, and crop output, but the operational activities among

plant producers are similar, so there exists a uniform, collective dependence on agricultural

chemicals (e.g., fertilizers and herbicides) produced in the chemical infrastructure sector and

tractors, combines, and other farm equipment produced within the critical manufacturing

infrastructure sector. The general, collective nature of physical interdependencies captures

vital input requirements of the food and agriculture sector at an aggregate level. Thus, the

dependent infrastructures exhibit a consistent demand over time. In summary, the defining

characteristics of the physical interdependence classification are generic operational depen-

dence on widely accessible outputs from independent infrastructures and, in the aggregate,

variability in the nature and timing of operational activities across an infrastructure sector

creates consistent dependence on material outputs from independent infrastructures over

time.

A comprehensive list of all physical interdependencies classified in this study is presented

in Appendix B.

5.2 Cyber Interdependencies

Definition: The operational state of infrastructure A is dependent on a material output of

infrastructure B that is transmitted directly or indirectly through the information technology

or communications critical infrastructure sectors [24].

Observed frequency: 20.

Examples (A, B):

• (Dams, Information technology). Water supply and irrigation systemsA floodwater
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impoundment and diversion activities are planned using real-time environmental data

in the Damwatch web-application that depends on the data processing, hosting, and

related servicesB infrastructure.

• (Food and agriculture, Communications). Farm management servicesA that remotely

monitor and operate farm equipment such as grain bins depend on the wireless telecom-

munications carriersB infrastructure to transmit digital communications in rural areas.

• (Food and agriculture, Information technology). Agricultural research and develop-

mentA depends on physical and cybersecurity measures in the security systems ser-

vicesB and data processing, hosting, and related servicesB infrastructures to protect

proprietary technology and intellectual property from unauthorized access as a matter

of corporate security and national security.

Discussion: The cyber interdependence classification is a special case of physical inter-

dependencies. Indeed, the operational state of dependent infrastructures in the observed

examples of cyber interdependence are dependent on material output and productivity of

infrastructures operating within the information technology or communications critical in-

frastructure sectors. Modernization of entities within the food and agriculture sector has

created operational dependencies on communications and information technology infrastruc-

tures in order to monitor automated business processes such as billing, production, and

material management. Furthermore, reliance on automation and information technology in

the food and agriculture sector increases the complexity of operational activities by allow-

ing for farm management services to remotely monitor and control grain drying facilities

or necessitating managed services providers implement additional cybersecurity measures in

order to prevent corporate espionage and deter attempted of agri-terrorism. As in the case of

physical interdependencies, we consistently observed food and agriculture infrastructures ex-

hibiting dependence on generic outputs of the independent cyber infrastructures. Similarly,

the defining characteristics of the cyber interdependence classification are generic operational

20



dependence on widely accessible outputs from independent infrastructures and, in the aggre-

gate, variability in the nature and timing of operational activities across an infrastructure

sector creates consistent dependence on material outputs from independent infrastructures

over time.

A comprehensive list of all cyber interdependencies classified in this study is presented

in Appendix C.

5.3 Geographic Interdependencies

Definition: A “local environmental event can create state changes in all [infrastructures in

a collection]” (A1, . . . , An) [24].

Observed frequency: 8.

Examples (A1, . . . , An):

• (Food and agricultureA1 , WaterA2). Food manufacturingA1 facilities consume large

amounts of potable water and require high volumes of wastewater collection and hence

tend to be geographically clustered in regions where distribution networks and wastew-

ater treatment facilities in the municipal water and sewage systemsA2 infrastructures

are well established.

• (Food and agricultureA1,A2, A3 , TransportationA4). Grain farmingA1 , grain millingA2 ,

and grain elevators and storageA3 , and the road transportationA4 infrastructures used

in crop production are typically within a 25 mile radius.

Discussion: Observed examples of geographic interdependencies exhibit characteristics for-

malized in the well-studied interdependencies. The first example of geographically interde-

pendent infrastructures presented in our study are food processing facilities and municipal

water and wastewater utilities. We have identified examples of geographic interdependence

between food processing facilities and municipal water and sewer systems induced by ca-

pacities of the existing water distribution and wastewater collection networks. In smaller,

rural communities food processing facilities were strategically located to avoid insufficient
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wastewater processing capacity which, in turn, may limit production capacity and prevent

expanding operations in the region. Similarly, poultry processing facilities clustered in more

populated areas are located in close spatial proximity because of high accessibility to the mu-

nicipal water and sewer infrastructures. The second example of geographic interdependence

in our study is based on the nature of operations for rice production in the Arkansas delta

region. Rice production processes are typically localized such that rice growing, harvesting,

milling, and processing all occur within a local area. This clustering of infrastructures re-

sponsible for productivity in multiple steps of the broader row crop production infrastructure

creates opportunity for both production efficiencies and cascading disruptions that require

neighboring facilities to increase production levels and transportation infrastructures to haul

grain farther.

The rice production infrastructure’s shifting preference for local grain drying and storage

showcases the importance of differentiating between resource requirements as physical inter-

dependencies and geographic interdependencies induced by co-location and spatial proximity.

As the rice production infrastructures become more reliant on on-farm grain drying and stor-

age systems, the sector’s dependence on tractor trailers in order to haul wet, freshly-harvested

grain to commercial rice mills that, generally, are located farther from rice harvesting ac-

tivities than an on-farm drying and storage bin. This reduction in delivery distance implies

an increase in operational efficiency during the transition from rice harvesting operations to

grain processing activities, but there is simultaneously a geographic interdependence induced

between the infrastructures when the physical facilities and operational activities occupy the

same space. The rice production and grain processing infrastructures have both become

susceptible to localized events, which may disrupt and damage the land, equipment, growing

rice, and harvest rice simultaneously.

These examples of geographic interdependence are specific to our study but, as with the

other classes of the existing taxonomy, geographic interdependencies characterize generic

mechanisms that correlate operational states within a collection of infrastructures that is
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consistent across specific entities or infrastructures that perform similar operational activ-

ities within the larger critical infrastructure sector. A comprehensive list of all geographic

interdependencies classified in this study is presented in Appendix D.

5.4 Logical Interdependencies

Definition: The operational state of A is dependent on B by some “mechanism that is not

a physical, cyber, or geographic connection” [24].

Observed frequency: 5.

Examples (A, B):

• (Water, Food and agriculture). Water supply and irrigation systemA infrastructures

in Arkansas depend on crop productionB to self-report groundwater usage to conser-

vation districts monitoring groundwater use and forecasting groundwater availability

for future growing seasons.

• (Food and agriculture, Financial services). Animal productionA and crop productionA

depend on agriculturally-focused credit servicesB, the Farm Credit System, created,

operated, and regulated by the federal government.

Discussion: The final interdependence class of the existing taxonomy is defined to compre-

hensively classify infrastructure interdependencies that exist beyond the interdependencies

induced by operational input requirements or geospatial proximity. In this study, we classify

observations as logical interdependencies in the cases such that neither input requirements

nor spatial proximity is the primary mechanisms driving correlated state changes between

infrastructures. Moreover, we classify observations as logical interdependencies if we are

able to infer an interdependence is systematically observable in a more general context. In

our first example of logical interdependence, a majority of crop production infrastructures

throughout the state of Arkansas draw vast amounts of groundwater for irrigation, and the

Arkansas Natural Resources Commission (ANRC) requires users to self-report usage data

annually. Groundwater usage data is recorded and analyzed by ANRC in order to estimate
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groundwater levels, identify regions of critically low groundwater levels, and formulate the

Arkansas Water Plan. In this example, our knowledge of the groundwater supply is in-

formed by producers operating within the crop production infrastructure, and the producers

operating within the crop production infrastructure influence groundwater availability and

usage policy through continued irrigation. Moreover, instances of asymmetric information

have influenced the actions of ANRC when users intentionally under-report or over-report

usage in fear of municipal usage fees or groundwater rationing, respectively, as groundwater

levels continue to fall. Despite the complexity, we have observed consistent activity from the

mutually interdependent infrastructures over time and across the greater crop production

infrastructures operating in the state of Arkansas. Summarily, the logical interdependence

classification captures intricate correlations between the operability of infrastructures which

are consistently observed over time and systematically occurring throughout the general

critical infrastructure sector.

We must also distinguish the decision to classify these examples as logical interdepen-

dencies rather than human, economic, and natural resources interdependencies defined in

Chapter 6. The first example of logical interdependence identifies the mechanism in which

water supply and irrigation infrastructures depends on crop production infrastructures. This

example is only classified under the logical interdependence because there is a regulatory

mechanism coupling and confounding the relationship between independent and dependent

infrastructures. Public entities mandate row crop farmers estimate and self-report groundwa-

ter usage around the aquifer, and then calculate groundwater metrics like water consumption

projections, approximate water levels, and net change in the groundwater supply. Row crop

farmers tend to be skeptical of the motivations for reporting groundwater consumption, hence

clouding the validity of reported consumption. Clearly this example of interdependence is

more complex, and we are unable to capture the true nature of the interaction between these

infrastructures simply, hence the catch-all classification.

Similarly, agricultural infrastructures rely on financial services infrastructures coupled
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through a public enterprise under federal oversight and administration. Congress created

the Farm Credit System in 1916 in order to finance agricultural production throughout

the country, and operations of the Farm Credit System are influenced through public pol-

icy. Moreover, the establishment of a system that funds private enterprises by the federal

government confounds the mechanisms in which animal production and crop production in-

frastructures receive the credit necessary to operate. The true nature of interdependence

in the examples of logical interdependence is influenced by factors not solely determined

to result from changing human, economic, and natural resource factors. Hence, the second

complex example that involves human resources, economic resources, or natural resources

that does not fit the definition of the new interdependence.

A comprehensive list of logical interdependencies classified in this study is presented in

Appendix E.
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Chapter 6

Interdependence Classifications in the Expanded Taxonomy

We examined the true nature of interactions captured by the physical, cyber, geographic,

and logical interdependence classes of the existing taxonomy. Generally, existing taxonomy

classifications characterize a given infrastructure’s operational behavior in relation to an inde-

pendent infrastructure’s ability to produce and distribute resources necessary for production

in the dependent infrastructure. We now aim to examine infrastructure interdependencies,

input requirements, disruption effects, and the temporal and geographic scales of operational

activities in a granular fashion through the classifications of our expanded taxonomy. In this

section, we present and discuss the dynamic physical, dynamic geographic, deadline, and de-

lay interdependencies along with our classification of human, economic, and natural resource

interdependencies.

6.1 Dynamic Physical Interdependencies

The dynamic physical infrastructure interdependence classification enhances the resolu-

tion of physical interdependencies by accommodating resource requirements for time-varying

operational activities in the dependent infrastructure. Enhancing the resolution of a physical

interdependence necessitates we examine an infrastructure’s production cycle more closely in

order to identify sources of variation in between the independent and dependent infrastruc-

tures. We observed production and operational tasks that vary over time, due to seasonal

demand fluctuations or environmentally constrained productivity among other reasons, ex-

hibited analogous varying resource requirements. This examination of production cycles and

time varying resource requirements provided key insights for our high-resolution analysis to

more adequately capture the true nature of this behavior. Examining the operational in-

frastructure components, associated physical resource requirements, and schedule in which

these processes occur underpins accurately assessing of timely component-level susceptibility

to cascading failures and measuring disruption-driven performance degradation.
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Definition: The time-varying operational activities of infrastructure sector A depend on

different amounts of material outputs of infrastructure sector B over time.

Observed frequency: 14.

Examples (A, B):

• (Food and agriculture, Transportation). Broiler chicken productionA flock production

cycles last approximately 10 weeks where the cycle begins with the placement of live

chicks to begin a seven week grow-out period that ends when the mature birds are

processed. Cleaning and sanitation tasks are completed in the final three weeks of

the cycle while the house is empty, hence broiler chicken production depends on truck

transportationB to deliver poultry feed from the feedmill to poultry farms only during

the seven week grow-out period when the house is occupied.

• (Food and agriculture, Water). Rice farmingA depends on water supply and irrigation

systemsB to deliver groundwater for irrigating crops from May through September.

• (Transportation, Food and agriculture). Truck transportationA depends on grain

millingB efficiency in September - November to efficiently unload grain deliveries pre-

venting long queues that disrupt truck flow from grain mills to farms.

Discussion: In the first observed example of dynamic physical interdependence, we recog-

nize that, generally, a tractor-trailer filled with age appropriate feed is filled at the feedmill

and then dispatched to deliver the feed to a poultry flock that is being grown in multi-

ple houses across many farms operated by contract-growers. Moreover, the standardized

grow-out cycle includes several weeks where no livestock production activity occurs, when

dependence on truck transportation of feed vanishes, in order to prepare for the arrival of

the next flock. Disruptions in feed delivery typically do not fully disrupt production out-

put, rather there is a reduction in the yield of the flock caused by a lack of feed during the

disruption period.
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The second example characterizes a rice farm’s dependence on water and irrigation re-

sources used specifically for the production period occurring annually from May to Septem-

ber. During periods when no crops are grown there is essentially no dependence on water

infrastructures as no activities occurring in the rice growing infrastructures require irrigation.

A disruption of water supply and irrigation systems during the growing period is unlikely to

fully disrupt production, but reduces harvest yield as the crops were unable to grow during

the disruption period. The disruption of water during harvest illustrates the effects of con-

tinuously occurring disruptions observed frequently in our study of the food and agriculture

sector. Similarly, grain milling productivity spikes as rice is harvested and milled annually

from September through November. Rice farms using the same rice mill typically have ho-

mogeneous production cycles caused by localized weather patterns; homogeneous production

cycles, in turn, require grain milling facilities to accept high volumes of freshly harvested

rice in a brief period. The influx of rice deliveries creates long queues of trucks waiting to

be processed at production facilities which increases the lead time between deliveries. This

increase in lead times at the production facility then stops harvesting operations if on-farm

temporary storage reaches capacity. Harvesting operations may resume only if trucking in-

frastructures increase productivity by supplying more trucks to unload temporary storage

containers that must wait in long queues or if rice milling facilities increase the rate deliveries

are processed, unloaded, and released from the queue. More importantly, this disruption in

the trucking infrastructure at harvest time is detrimental to total rice production.

A comprehensive list of dynamic physical interdependencies classified in this study is

presented in Appendix F.

6.2 Dynamic Geographic Interdependencies

The dynamic geographic infrastructure interdependence classification extends and en-

hances a geographic interdependence by characterizing operational changes in a collection of

infrastructures spontaneously and unexpected caused by a local event over a period of time.

It is important to distinguish our dynamic geographic classification from the geographic
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class of the existing taxonomy. We consider the existing taxonomy to account for a static

collection of infrastructures that are simultaneously disrupted, but our dynamic geographic

classification is distinct through a recognition of interdependent infrastructures productivity

levels shifting such that production and output exist in the affected infrastructures when

other infrastructures, not necessarily subject to disruption by traditional geographic interde-

pendence, become necessary to sustain output. This shift in productivity is recognized when

there is a change in geographic footprint of operational activities is triggered by another dis-

rupted infrastructure. The shifts in productivity result from a flow of output from one region

unaffected by the triggering event to support production in the affected region. The change

of infrastructure operations and output in the unaffected region that result from a disruption

are the infrastructures which are classified by the dynamic geographic interdependence. This

dynamic geographic interdependence further presents correlated activities during restoration

activities in the event an infrastructure is disrupted by an extreme event. Thus, the dynamic

geographic may also be classified as a new type of restoration interdependence.

Definition: The geographic or spatial scales in which a local event can create state changes

in all infrastructures in a collection (A1, . . . , An) are altered by some process, event, or

circumstance.

Observed frequency: 9.

Examples (A1, . . . , An):

• (Food and agricultureA1, A2, A3 , TransportationA4 ). The geographic scale of crop pro-

ductionA1 , grain millingA2 , grain elevators and storageA3 , and truck transportationA4 

infrastructures interdependence shrinks as on-farm grain drying storage systems be-

come more prevalent.

• (Food and agricultureA1, A2 , TransportationA3 ). The geographic scale of animal pro-

ductionA1 , animal food manufacturingA2 , and truck transportationA3 infrastructure 

interdependence increases when a feedmill is unable to manufacture feed creating 

dependence on neighboring feedmills for the production and transportation of feed
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Discussion: The first example of dynamic geographic interdependence classifies infrastruc-

tures whose operations are determined by the usual grain production cycle but are shifting

over time to accommodate changes in operational tasks during harvest which result from lo-

cal farmers adopting on-farm grain drying systems as a substitute for immediately shipping

freshly harvested grain to commercial mills during the harvest. The adoption of on-farm

grain drying systems has added a number of operational activities in the crop production

infrastructures and reduced the volume of operational activities in the grain milling and

truck transportation infrastructures specifically when crops are harvested. The distances in

which crop delivery trucks travel from the field to the dryer and elevator is reduced to the

distance from the field to the on-farm systems. Similarly, commercial grain elevators observe

reductions in the amount of wet rice that must be unloaded, processed, and dried as more

farmers utilize local drying and storage solutions. These reductions of production volume

correspond to the crop production infrastructures assuming the burden of drying grain lo-

cally. This reduction in operational activities is specific to grain drying infrastructures, but

the total amount of work done by the truck transportation becomes more evenly distributed

throughout the year since most farmers sell dried, unprocessed rice to commercial grain el-

evators that mill, package, and resell the inventory. However, there is a tradeoff between

increased production efficiency resulting from co-locating the equipment and processes per-

formed in the grain drying and storage stages of supply chain to the same space where row

crops are grown and harvested. This co-location increases the susceptibility of both row

crop production and grain milling operations to be affected by the same localized event that

would have previously only disrupted the row crop production operations during the growing

season.

The second example presented in our study occurs in the event a livestock feedmill,

or more generally another production facility, becomes inoperable for some period of time.

When production facilities in the food and agricultural sector are unable to operate as
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planned when biological processes occurring in livestock production, crop production, and

food processing operations require productivity in interdependent infrastructure components

then an increase in the volume of operational activities in those interdependent infrastruc-

tures is observed. In this case, neighboring feedmills are contracted to produce feed for

livestock impacted by the disrupted feedmill. Delivery from this alternate location during

the period of disruption increases the amount of production required from the truck trans-

portation infrastructure. Moreover, the neighboring feedmill may have to increase total

productivity in order to produce the volume of feed required for planned operations in ad-

dition to the feed production burden they are contracted to satisfy until operability of the

affected infrastructures is restored.

A comprehensive list of dynamic geographic interdependencies classified in this study is

presented in Appendix G.

6.3 Deadline Interdependencies

The deadline infrastructure interdependence classification also enhances the resolution

of physical interdependencies by characterizing infrastructure components or tasks that re-

quire the operations of an independent infrastructure be completed by a specific deadline.

Like the dynamic physical classification, deadline interdependence extends and enhances the

physical interdependence class to accommodate a temporal factor observed frequently in

our study of the food and agriculture sector. The deadline interdependence resembles the

time-sensitive options restoration interdependence presented in Sharkey et al. [10] that char-

acterizes the existence of a restoration task in the dependent infrastructure when restoration

of an independent infrastructure is not completed by an unknown deadline. Comparatively,

the deadline interdependence formalizes a resource requirement (in the form of a good or

service) that must be satisfied by a known deadline. Furthermore, our study aimed to iden-

tify examples of deadline interdependence are observed during day-to-day operating tasks in

the food and agriculture sector rather than during restoration tasks following a disruption.

Productivity in the food and agriculture sector requires punctual operations and task com-
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pletion in order to satisfy biological processes inherent in the production of plants, animals,

and processed food products. For the purposes of this work, we consider a deadline t to

be the point in time when some task or output required by the dependent infrastructure

must be received such that the operational activities and production outputs are in-line with

plans and expectations. The dependent infrastructure relies on punctual productivity in the

independent infrastructure to prevent disruptions affecting output volumes and scheduled

operations.

Definition: The operational state of infrastructure A depends on resources provided by

infrastructure B by a deadline t.

Observed frequency: 12.

Examples (A, B, t):

• (Food and agriculture, Transportation, 10 hours). Poultry productionA and animal

slaughtering and processingA depends on truck transportationB of live birds from poul-

try farms to processing plants as the birds lose mass during transit and perish if not

processed within 10 hours.

• (Food and agriculture, Energy, 24 hours). Rice farmingA depends on electric power

generationB and natural gas distributionB to power irrigation pumps so that no rice

fields are not flooded or irrigated for longer than 24 hours.

• (Food and agriculture, Food and agriculture, June 30). Rice farmingA depends on crop

productionB infrastructure to cultivate and distribute rice seeds to be planted by June

30.

Discussion: Output yield (in pounds produced) of the animal slaughtering and processing

infrastructure is subject to fluctuations in the yield (in live weight) of each poultry flock

grown in the poultry production infrastructure. The truck transportation infrastructure is

responsible for bridging the gap between separate food and agriculture infrastructures by

delivering poultry flocks from farms to slaughtering and processing facilities when the live
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birds reach market weight. The transition time for poultry beginning at pick-up and ending

with delivery to processing facilities must not exceed 10 hours. Live birds actively lose mass

during transport from the grow-out farms to the processing facility causing the livelihood

of the poultry flock to rapidly deteriorate approximately 10 hours after the birds leave the

grow-out facilities. Rapid deterioration of the flock disrupts total yield in the outputs of

both the animal slaughtering and processing and poultry production while birds expire in

transit and surviving birds lose substantial amounts of mass due to dehydration. Moreover, if

this deadline is unmet by the truck transportation infrastructure then yield loss may disrupt

planned operations and procedures in the food and agriculture sector so they may be altered

to increase welfare standards in order to mitigate yield losses and societal backlash spurred

by instances of animal cruelty causing excessive losses of live animals.

The second and third examples of deadline interdependencies characterize requirement

deadlines observed in the rice farming infrastructure. Typically, irrigation pumps rely on

the power and natural gas infrastructures in the energy sector to operate normally. A

disruption in the infrastructure responsible for powering the pumps, in turn, triggers a 24

hour restoration deadline; rice crop vitality is correlated with soil moisture. The time until

the deadline t is a function of the production tasks, extent of the disruption, and available

contingencies. In this instance, backup generators powered by diesel fuel or natural gas would

appreciably mitigate the impact of a disruption, but such contingencies are not frequently

used by row crop farmers. Typically, irrigated rice fields are able to retain moisture and

sustain plant growth for 24 hours before crops begin to wither, lose mass, and ultimately

die in the summer heat. Rice harvest yield losses in the event this deadline is not met

vary in relation to the the amount of crop land that is unable to be irrigated and with the

length of the disruption. It is unlikely that disruptions in either the natural gas or power

infrastructures occur on temporal and geographic scales large enough to bring a rice farm’s

output to zero, much less disrupt rice output of the entire rice farming infrastructure in a

binary sense. The third example, however, has potential to reduce total output of domestic
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hybrid rice farming yields to zero. At the time of this writing, approximately half of rice

farmers in Arkansas grow hybrid rice as opposed to conventional rice while there is only a

single producer of hybrid rice seeds. Optimal planting dates vary throughout geographic

regions, but the results of our study indicate rice farming infrastructures consider June 30

to be the latest possible planting date so that the growth and harvest processes occur in

the usual fashion. Consequently, a disruption that prevents rice producers from meeting

this planting deadline could escalate so severely that restoration becomes significantly more

difficult or even impossible as the local environment is less suitable to facilitate the initial

stages of rice production that should have occurred prior to the planting deadline. Restoring

productivity in the wake of an escalating failure may not be possible until environmental

conditions are appropriate for growing rice, hence there would be a full, binary production

loss in the affected infrastructure components. The June 30 planting deadline generally

applied to any rice farming operation, but we noted documented instances of a disruption

in the production of hybrid rice seeds creating shortage concerns and complicating rice

farming infrastructure operations as farmers considered altering crop rotations and other

contingencies. During this event, the independent infrastructure was able to produce enough

seed so that hybrid rice yield losses were marginal.

A comprehensive list of deadline interdependencies classified in this study is presented in

Appendix H.

6.4 Delay Interdependencies

The delay infrastructure interdependence classification also enhances the resolution of

physical interdependencies by characterizing the ability of some infrastructure processes to

continue functioning for some period of time δt in the event an that infrastructure that

produces a material input is disrupted. Similar to the dynamic physical classification, delay

interdependence extends and enhances the physical interdependence class to accommodate

a temporal factor observed frequently in our study of the food and agriculture sector. Some

production processes in food and agriculture infrastructures are able to withstand tempo-
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rary disruptions in independent infrastructures through raw material stockpiles that create

a buffer between the time of a disruption onset in the independent infrastructure and the

dependent infrastructure [49]. In addition to this buffering characteristic, we also observed

instances such that a δt exists when circumstances prevent instantaneous detection of dis-

ruptions in the independent infrastructure’s operating procedures.

Definition: The operational state of infrastructure A is dependent on a material output of

infrastructure B and, from the onset of a disruption in B, A is unaffected for a period of

time δt.

Observed frequency: 7.

Examples (A, B, δt):

• (Food and agriculture, Transportation, 24 hours). Poultry productionA growth pro-

cesses experience a delayed onset disruption when the buffering stock of animal feed is

depleted approximately 24 hours after a disruption in the truck transportationB infras-

tructures responsible for delivering feed to poultry houses which causes the grow-out

period to be extended while the birds reach market weight.

• (Food and agriculture, Energy, 24 hours). Poultry productionA growth processes ex-

periences a delayed onset disruption when the buffering stock of diesel fuel powering

a backup generator is depleted approximately 24 hours after a disruption in the elec-

tric power generationB infrastructure which causes the grow-out period to be extended

while the birds reach market weight.

• (Water, Food and agriculture, years). Water supply and irrigation systemsA experi-

ences a delayed onset disruption of distribution when pollution is detected in the water

supply, up to several years after polluting begins, after disruption in the animal pro-

ductionB, crop productionB, and food manufacturingB infrastructures allows pollutants

to reach a water supply causing the water infrastructures to perform sanitation and

restoration processes before distribution may be resumed.
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Discussion: The first and second examples of delay interdependencies exhibit the depen-

dent infrastructure’s ability to continue operating following a disruption in an independent

infrastructure that produces a material production input through an inventory buffer. Occa-

sionally, contingencies that mitigate temporary disruptions in lifeline infrastructure systems

are found in commercial production processes. A standard procedure for commercial poul-

try producers is to require contract growers to construct and use on-site storage tanks for

water, poultry feed, and diesel fuel so livestock are able to withstand short periods of dis-

ruption without substantial yield losses on the affected grow-out farms. The feed and diesel

fuel stored on-site compose buffers that mitigate reductions in production when the truck

transportation and energy infrastructures are unable to deliver their respective inputs to

the poultry farms. Generally, the contingency plans are implemented to create buffering

stocks so that each farm may withstand disruptions lasting up to 24 hours. Furthermore,

these contingencies are enacted with an assumption that disruptions are so widespread or

severe that restoration processes will require more than 24 hours. When buffering stocks are

depleted then, in these instances, the poultry production infrastructure is disrupted in the

same manner as dynamic physical interdependencies. Instances of delay interdependencies

with a buffering stock attribute are also observed in the food processing infrastructure. In

contrast to the poultry production and crop production infrastructures, the food processing

infrastructure operates more similarly to traditional manufacturing where production will

cease if essential raw materials are unavailable and the buffering stock has been depleted. For

instance, food processing facilities must meet sanitation and hygiene standards that require

the use of cleaning chemicals, but if cleaning chemicals or substitutes are unavailable, then

productivity and output cease at the facility affected by the disruption at time δt.

The third example of delay interdependence is an instance where the water infrastructure

is unable to detect an ongoing disruption of environmental and waste management produc-

tion processes that suppress environmental contamination. In the event industrial waste

created by production processes in food and agriculture infrastructures continually contami-
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nate a municipal water supply or groundwater sources, then the water supply infrastructure

would operate normally until there exist detectable levels of contamination built up over a

considerable δt. Once the contamination is detected, then water supply infrastructure must

take appropriate countermeasures outside the scope of day-to-day operations in order to

ensure their output meets health and safety standards. The delayed onset disruption in the

example manifests exactly when pollutant concentration levels exceed the tolerances set by

the water distribution infrastructure.

A comprehensive list of delay interdependencies classified in this study is presented in

Appendix I.

6.5 Human, Economic, and Natural Resource Interdependencies

The human, economic, and natural resource interdependence classification is an exten-

sion and enhancement of the existing taxonomy’s logical interdependence class. Because

infrastructures operate as complex adaptive systems, operability is affected and influenced

by societal factors in the operating environment. Human resources in an infrastructure’s

operating environment are composed of changes in production or operations influenced by

the shifts in cultural and geographic factors affecting human operators and stake-holders of

the infrastructure’s production; human resources are examined through census-like demo-

graphics. Economic resources depict changes in the infrastructure’s operational behavior in

response to variations in credit availability, consumer preference, and the overall macroeco-

nomic climate. Consumption of scarce natural resources used for production in the lifeline

infrastructure sectors is altering the infrastructure operating environment which, in turn,

necessitates interdependent infrastructures adapt production processes to become more ef-

ficient and robust to limited resource availability or allocation. This classification aims to

evaluate modifications in an infrastructure’s operational tasks that are correlated to chang-

ing human resources, economic resources, or natural resources within the infrastructure’s

operating environment.

Definition: The operational state of infrastructure A is affected by changes in human,
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economic, or natural resources provided by infrastructure B.

Observed frequency: 7.

Examples (A, B):

• (Food and agriculture, Energy). Grain crop productionA planting decisions are affected

by petroleum merchantsB in OPEC due to a positive correlation of grain prices and

commodity oil prices.

• (Food and agriculture, Chemical). Crop productionA depends on fertilizer, herbicides,

pesticides, and other agricultural chemicals produced by the agricultural chemical man-

ufacturingB infrastructure which affects the natural environment and resources avail-

able in water and soil.

• (Food and agriculture, Water). A majority of irrigation for row crop productionA draws

large amounts of water from groundwater aquifers and surface water reservoirsB.

Discussion: Typically, a single producer in the crop production infrastructure segments

production among several crop varieties in order to maximize returns when the crops are

harvested and improve soil quality based on the characteristics of biological processes for

each crop in the rotation. A producer’s desire to maximize crop returns may lead to strate-

gic modifications of crop rotation and planting strategies based on speculation of oil prices,

actions taken by OPEC, and considering the strategies used by other crop producers to es-

timate total crop yields across the infrastructure sector. Operations in the crop production

infrastructure are reliant on production and operations in the petroleum merchant infrastruc-

ture when crop producers develop and implement production processes based on petroleum

production and distribution decisions made by the petroleum merchants. While the effects

of a disruption in the petroleum merchant infrastructure are variable and difficult to assess,

identifying that producers alter operations and production decisions in response to produc-

tivity in the petroleum merchants infrastructure enhances a comprehensive understanding
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the infrastructure environment and solidifies the need for inter-disciplinary studies of critical

infrastructure systems and the food and agriculture critical infrastructure sector.

In the second and third examples, production in the food and agriculture sector is af-

fected by shifts in economic resources in the context of resource availability as a function

of operations in the agricultural chemical manufacturing infrastructure sector and the water

infrastructure, respectively. Productivity in the crop production infrastructure, along with

its output, depend on availability of resource requirements coming from infrastructures that

are also influenced by human, economic, and natural resource components of the indepen-

dent infrastructure’s operating environment. Furthermore, both examples depict production

factors in an independent infrastructure influencing production decisions in the food and

agriculture sector where each infrastructures’ operational behaviors are correlated and al-

tered productivity in the dependent infrastructure, composed of the operational activities,

production processes, and output, is attributable to the availability of a production resource

requirement. However, the interdependence classes defined in this study do not adequately

capture the true nature of the relationship between the infrastructures.

It is important to note that the low frequency of interdependencies found in this classifi-

cation indicates these examples rarely occur and the mechanisms in which human, socioeco-

nomic, and environmental factors affect access to scarce resources is not widely considered.

This classification provides the foundation to categorize the effects of changes in labor, pop-

ulation, demographics, socioeconomics, and natural environments which, in the near-term,

seemingly have little consequence but influences change in infrastructure productivity and

viability over the long run. This interdependence is contextualized through macro-scale shifts

rather than the more granular classifications in our study that concretely describe infrastruc-

ture interdependence for specific infrastructure components, specific resource requirements,

and specific types of disruptions.

A comprehensive list of human, economic, and natural resource interdependencies clas-

sified in this study is presented in Appendix J.
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Chapter 7

Analysis of Interdependencies Observed in the Food and Agriculture Critical

Infrastructure Sector

In total, we classified 116 examples of operational interdependencies during the course

of this study. The existing taxonomy adequately classified 68 examples of operational in-

terdependencies, and the remaining 48 examples, approximately 41 percent of all identified

examples, were aggregated to formalize each of the interdependence classifications in the ex-

panded taxonomy. As the study progressed, we continued to observe variations in operational

tasks and resource requirements due to biological processes in plants and animals and the

inconsistent nature of output when row crop producers routinely sell one year’s productivity

as the crops are harvested. Similarly, livestock have unpredictable, time varying changes

in operational tasks. Infrastructures beyond food and agriculture also experience produc-

tion dynamics and are subject to similar concerns presented in this work. The heatmap

in Figure 7.1 is a visual representation of the frequency in which we identified examples of

interdependency between the food and agriculture sector and and other critical infrastruc-

ture sectors where interactions occurring most frequently are shaded dark blue. Naively, we

may inspect the figure and conclude that physical resource requirements between the food

and agriculture sector and water, transportation, information technology, and energy infras-

tructures are most vital for stakeholders in the food and agriculture sector because those

interactions were documented more frequently than others. However, the subtleties inves-

tigated in this study provided insight into necessities and considerations beyond resource

requirements. Upon further inspection, we may observe elevated levels of interdependence

within the food and agriculture sector, nontrivial restoration interdependencies induced by

spatial proximity, and significant interactions between food and agriculture infrastructures

and infrastructures providing resources more abstractly than traditional material input re-

quirements for production. The analysis presented in this chapter further explicates these
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interdependence observations with concrete examples from our empirical study of the rice and

poultry industries in Arkansas. This chapter presents a cross section of our analysis in order

to compare and contrast the rice and poultry production infrastructures, and then generalize

our findings to the highly fragmented and diverse food and agriculture infrastructure sector

as we work towards recognizing dynamic interdependence among all critical infrastructure

sectors. We then present the factors complicating our understanding of these interdepen-

dencies: dynamic temporal scales, spatial clustering of production that induces cooperation

among producers, and prevalent nonbinary responses in production and operability in the

wake of a disruption.

7.1 Food and Agriculture Sector Fragmentation

The food and agriculture critical infrastructure sector is unique among the critical infras-

tructures. The mix of goods grown, produced, and distributed by the food and agriculture

sector is exceptionally diverse; the sector is responsible for growing and processing cereal

grains, beverage manufacturing, producing further processed food items, restaurant dining,

and even growing timber used by homebuilders and paper mills. Despite the breadth of oper-

ational tasks occurring within the sector, our work focused mainly on the large, commercial

rice and poultry production infrastructures in Arkansas. The nature of food and agriculture

production is unique due to variations in operational tasks depending on seasonality or the

current stage of production. Furthermore, we observed agricultural producers create large

production footprints through contract livestock growing, networks of production facilities

built to accommodate a simultaneous annual influx of freshly harvested crops, and true

mutual dependence between food and agriculture infrastructures.

We were able to interview 39 professional and academic experts during the course of our

study, and each of the participants provided expert insight into the nature of food and agri-

culture productivity throughout the state. Out of the 39 participants, approximately five

possessed exceptional knowledge of the poultry production infrastructure and approximately

14 possessed exceptional knowledge of the rice production and processing infrastructures. We
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recognize this disparity among our two study subjects; throughout the course of our study

we were continuously able to connect with stakeholders in the rice production infrastructure

but, through no lack of effort or attempts, meeting with poultry producers occurred less fre-

quently than rice. We recognize this imbalance may introduce rice production infrastructure

bias in the analysis. Despite the interview subject imbalance, we classified 47 and 37 distinct

instances of infrastructure interdependence in the rice production and poultry production

infrastructures, respectively. Furthermore, we were able to classify examples of interdepen-

dence extending beyond conventional rice production and poultry production in the food

and agriculture sector. Our analysis of the empirical data showed that approximately 40%

of our classified examples of interdependence in this study identified interdependencies be-

tween a component of the food and agriculture sector outside of the poultry production and

rice production infrastructures. We observed examples of interdependence that, using the

Department of the Census NAICS taxonomy, we identified to be significant components of

capital planning, food processing and production, agricultural research and development,

food storage, soil cultivation, agricultural transportation, and commercial farm management

services for absentee land owners.

In total, the food and agriculture sector contextualizes the study of critical infrastructure

systems and infrastructure interdependence so that both broad implications and intricate de-

tails are examined. For instance, by observed frequency, the three infrastructure components

outside of the food and agriculture sector observed to be dependent of other infrastructures

most frequently were water supply and irrigation components within the dams and water

infrastructure sectors in addition to the truck transportation component of the transporta-

tion sector. More interestingly, the infrastructure components found to be an independent

infrastructure most frequently were electric power generation and crop production infras-

tructures. Row crops are required ubiquitously throughout critical infrastructure sectors,

but subtle infrastructure correlations exist between chemical manufacturers, utility compa-

nies, other food and agriculture infrastructures, and financial service infrastructures. These
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subtle correlations are more difficult to detect and appropriately classify, hence these inter-

actions were identified less frequently than obvious resource requirements. We can refine this

concept and develop further support for studying less obvious, more abstract examples of

interdependence in the row crop infrastructure. The geographic area supporting most row

crop farmland in Arkansas is experiencing a groundwater crisis as the aquifer is reaching

critically low levels while farmers continue drawing unsustainably to grow crops. Impending

scarcity and depletion of a natural resource like groundwater has spurred investment in sur-

face water impoundments, sustainable farming practices and education, and more abstractly,

conservation. Moreover, row crop farmers throughout Arkansas rely on the finite, concen-

trated groundwater supply in the aquifer to irrigate their fields; this concentrated, aggregate

resource reliance affects the scale of geographic interdependencies as more infrastructures

become reliant on alternative irrigation technologies or municipal utilities to provide that

water.

7.2 Generalizing Dynamic Interdependencies Beyond Food and Agriculture

Certainly there are unique attributes to production in the food and agriculture infrastruc-

ture sector. However, using the interdependence concepts informed by this study, we were

able to classify 30 examples of temporal phenomena, effects of geographic clustering, season-

ality, and exogenous factors influencing infrastructure interactions in nine critical infrastruc-

ture sectors including financial services, information technology, healthcare, transportation,

and energy. Despite the differences in operating characteristics and resource requirements

of each infrastructure sector, the factors studied in the food and agriculture infrastructure

sector also affect operations and restoration in dissimilar infrastructure sectors.

The empirical evidence we collected and analyzed to formalize the interdependence clas-

sifications that account for nontrivial complications observed specifically in the food and

agriculture sector provided a firm foundation for this investigation. Similarly, the empirical

evidence gathered and used to formalize the various taxonomies of the well-studied interde-

pendencies. Each taxonomy of the well-studied interdependencies depicts and characterizes
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some unique factor not yet considered in the critical infrastructure systems literature. Just as

the taxonomies of the well-studied interdependencies have been successfully applied and ex-

panded beyond their initial scope; we have classified examples of dynamic interdependencies

that are not associated with food and agriculture production. This study of interdepen-

dencies in the food and agriculture sector reinforces the importance utilizing empirical data

as a stepping stone to develop more sophisticated methods in order to solve more general

problems of time-varying interdependencies and variable resource consumption which we

observed specifically in the food and agriculture infrastructure sector.

7.3 Temporal Analysis

Operations in the food and agriculture infrastructure sector are complex due to the field’s

fragmented nature; many different entities with dissimilar operations operate simply because

we have biological requirements that necessitate a productive food and agriculture infrastruc-

ture. Time varying operations in the food and agriculture sector tend to be either seasonal

or triggered by a precursing operational activity within a production process. Furthermore,

variation in operational activities and resource requirements affect production levels at the

infrastructure component level such that disruptions do not affect productivity or yield in a

binary manner.

Seasonality in operational activities is observed more easily throughout the rice pro-

duction infrastructures and, more generally, crop production infrastructures that consist of

biological processes. The biological processes occurring during crop production cycles are de-

pendent on natural resources and the surrounding environment. Generally, crop production

has similar timetables for capital acquisition, field preparation, planting, growing, harvest-

ing, and processing. The seasonal nature of these processes and resource requirements allows

for the development of timetables that characterize and quantify resource requirements dur-

ing the production cycle along with their effects on total yield (production) occurring at

harvest. The changes in infrastructure operations throughout the year also influences the

infrastructure’s susceptibility to disruption, and the severity of disruptions based on produc-
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tion seasonality.

Conversely, there are operating activities occurring in the food and agriculture sector that

are triggered by preceding events in the production cycle. Triggered operational activities are

more prevalent in the livestock production infrastructures. Livestock production cycles are

time sensitive in the sense that timeliness and punctuality is necessary to sustain biological

processes for each animal in production, hence there must be stocks of food and water in

place at the production facilities, transportation must occur within a short time window, and

the conclusion of process necessitates the process in the production cycle begin immediately,

else yield falls and overall productivity declines.

7.4 Geographic Analysis

There are interesting geographic characteristics in food and agriculture infrastructure

operations. Food and agriculture operations tend to be clustered in close proximity due

to environmental suitability, transportation timescales, and resource availability. Clustered

operations may exhibit an enhanced susceptibility to disruptive events, especially when we

consider the time-varying characteristics also observed in food and agriculture operations.

Examining spatial relationships among interdependent infrastructures and interdependent

components of the food and agriculture infrastructure supplements the temporal analysis

performed above.

Environmental factors significantly affect the productivity and operability of food and

agriculture infrastructures, and hence, productive components tend to cluster where the lo-

cal environment supports production. For instance, the Mississippi river delta spanning the

eastern side of Arkansas is mostly agricultural land used to grow rice, cotton, and soybeans.

On the western side of the state, poultry production is the predominant form of agriculture.

The delta region’s environmental conditions are favorable for growing rice and other cereal

grains, and cereal grain production then generally relies on the grain processing infrastruc-

tures to dry, mill, store, and sell harvested grain. The livestock production infrastructure

requires significant amounts of grain to be used as the primary ingredient in feed. From this
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simple chain of resource requirements and infrastructure interdependencies found in the rice

and poultry infrastructure sectors, the region most suitable for agricultural production must

also accommodate the production facilties and infrastructures completing the agricultural

supply chain. The clustering of agricultural infrastructures which rely on one another to

complete production processes in the agricultural supply chain illustrates an agricultural

intradependence such that distinct infrastructures operating in the same infrastructure layer

have correlated states of operation. Our study identified readily apparent examples of in-

tradependence in the food and agriculture infrastructure sector. Localizing grain drying and

storage systems in the rice production infrastructure demonstrates tightly coupled infras-

tructure components exist in the agricultural supply chain, especially where environmental

factors are ideal for crop production. As discussed in Chapter 6, spatial clustering of these

infrastructures likely increases infrastructure production efficiency, but at the expense of

increasing the entire supply chain’s susceptibility to local extreme events.

Similarly, the clustering of agricultural infrastructures makes interdependent infrastruc-

tures more vulnerable to failures and disruptions that are locally devastating. Consider the

interdependent relationship between the row crop production infrastructure and the finan-

cial institution financing crop production. Typically, the banks providing financing for crop

production are members of the Farm Credit System that lend strictly for agricultural pro-

duction financing, agricultural equipment purchase/lease, or to purchase a home in a rural

area. The member banks of the Farm Credit System also typically operate small branches

in rural communities to serve customers locally. Based on the operational interdependencies

and temporal analysis given throughout this study, we can assume the financial institu-

tions operating in close proximity to the crop production infrastructures are geographically

interdependent. If an extreme event were to disrupt the local area and devastate crop pro-

duction operations, then banking operability is disrupted because the locally concentrated

row crop producers each suffered significant losses and are unable to repay the operating

line of credit. Furthermore, the financial institution is not going to recoup any of the losses
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from this year’s disaster until next year when row crop production reaches a point of pro-

ductivity when the environmental conditions allow it. So, the aspects of spatial clustering

in the food and agricultural sector are on a continuum. There are positive aspects of spatial

clustering that allow for dynamic restoration from neighboring areas to sharing vulnerabili-

ties to disruption and extreme events through operational relationships. Correlated states of

operation of infrastructures in geographically interdependent infrastructures may compound

disruption susceptibility at the component (or individual infrastructure level) and reduce

overall resilience of an infrastructure sector depending on how other factors are affecting the

infrastructure system.

7.5 Nonbinary Response to Disruption

The unique characteristics of food and agriculture production we have presented culmi-

nate in an infrastructure system that, in general, does not respond to a disruption in resource

requirements in a binary manner. Production in the food and agriculture sector is unique.

For instance, the growing season for rice shifts marginally across the state of Arkansas where

the optimal dates to plant rice seed vary by 10 days across the southern, central, and north-

ern regions of the state [50]. Furthermore rice fields account for a significant portion of

Arkansas’s 14 million acres dedicated to agricultural production. We infer that the oper-

ational process of growing rice across the region does not vary significantly from producer

to producer, and the abundance of producers spread across large amounts of land reinforces

the ability of the rice crop, and more generally row crops, to survive disruptions in some

input to a growing process and simply yield less at harvest than if the disruption had not

occurred rather than suffer catastrophic loss in the case of a binary disruption. Similarly for

the poultry production infrastructure sector, we gathered examples of poultry production

disruptions in northwest Arkansas after an ice storm impeded traffic flow so badly that the

poultry farms ran of feed on-hand, and the birds were unable to eat until the transportation

network was operable. Despite the poultry feed delivery disruptions, the response in pro-

ductivity levels was nonbinary. In this case, the birds did not reach market weight on time
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and the producers had to make the choice whether to process low-yielding birds or to keep

the flock on feed for a brief time until they had reached market weight.

This interesting harvest-time production dynamic prevalent in the row crop and livestock

production infrastructures provides a reasonable context to more accurately model and study

the true nonbinary responses to disruption due to the infrastructure’s operational nature.

This discussion of an infrastructure’s nonbinary response to a disruption is necessary due to

the time-varying production schedules and operational activities found throughout the sector

as opposed to a poultry processing facility’s generic, consistent requirements for energy

and water. If a generic food production facility does not receive water or energy from

the utility providers, then production stops at the immediate onset of the disruption and,

generally, the food being processed throughout the facility must be thrown away resulting

in a true binary response to disruption. The variability and diversity of production in the

food and agriculture infrastructure sector has developed structural complexity throughout

the operating environment and, in turn, exhibits interesting characteristics with possible

applications throughout each of the critical infrastructure sectors.
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Chapter 8

Conclusions and Further Work

Our study of the food and agriculture infrastructure sector identified more than 100

examples of interdependence across 13 critical infrastructure sectors. We identified interde-

pendencies through interviews with 39 industry stakeholders across the state of Arkansas.

Interdependencies were first classified utilizing the existing taxonomy, and then further char-

acterized using five new, distinct interdependence classes that account for variations in tem-

poral and geographic scales affecting resource requirements and productivity.

In future work, we can expect these interdependencies to be generalized and applied

throughout the critical infrastructure sectors to more accurately portray complex infras-

tructure interactions. Furthermore modeling restoration tasks in the food and agriculture

infrastructures is necessary to ensure productivity and reduce food scarcity that attributes

to civil unrest and societal tumult. Considering complexity and creating general charac-

terizations for each of these complicating factors is necessary to provide deeper, poignant

insights into infrastructure interdependence.
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Appendix A

Well-Studied Interdependencies

Table A.1: Aggregation of well-studied infrastructure interdependencies. Prominent inter-
dependency taxonomies are aggregated in chronological order by publication.

Publication Classification Description

Rinaldi et al. [24]

Physical The state of an infrastructure

is dependent on the material

output(s) of the other.

Cyber The state of an infrastructure

depends on information trans-

mitted through the digital in-

formation infrastructure.

Geographic A local environmental event

can create state changes in a

collection of infrastructures.

Logical The state of an infrastructure

depends on the state of an-

other via a connection that is

not physical, cyber, or geo-

graphic.

Zimmerman [23]
Functional Infrastructures can be depen-

dent on one another opera-

tionally.
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Table A.1: (continued)

Publication Classification Description

Spatial Infrastructures become more

dense and compact as dis-

tributed networks occupy the

same conduits in cities.

Wallace et al. [25]

Input An infrastructure requires one

or more services, as an input,

from another infrastructure to

provide another service.

Shared Physical components or ac-

tivities of infrastructures are

shared to provide some service.

Exclusive-or Only one of the two or more

services can be provided by an

infrastructure.

Mutually dependent Infrastructures mutually de-

pend on an output of one an-

other.

Co-located Any physical components or

activities are situated within

an established geographical

area.

Dudenhoeffer et al. [26]

Physical (a, b)e defines a requirement of

b on a.
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Table A.1: (continued)

Publication Classification Description

Informational (a, b)i defines an informational

or control requirement be-

tween a and b. Information

from asset a, not necessary for

the existence of node b, is es-

sential for certain functionality

in node b, ∼a →∼f(b) where

f(b) is a function of operation

for asset b.

Geospatial (a, b)g defines a relationship

that exists entirely due to the

proximity of nodes a to b, (e.g.

(a, b)g → d(a, b) < ε for some

predefined distance ε). Thus

a physical event occurring at

node a represented as E(a),

E(a)→ E(b).1

Policy/Procedural (a, b)p defines an interdepen-

dency that exists due to policy

or procedures relating an event

or state of change for node a to

a subsequent effect on node b

or Ej(a)→ Ek(b).1
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Table A.1: (continued)

Publication Classification Description

Societal (a, b)s defines interdependen-

cies or influences that an

event, physical or otherwise,

on an infrastructure compo-

nent may impart on societal

factors which may be time

sensitive in nature, decaying

as the time from the original

event grows. So for (a, b)s,

Ej(a) → Ek(b, t), a decaying

effect over time t.

Chang et al. [33]

Cascading The disruption of the power

system directly causes the dis-

ruption in the impacted sys-

tem.

Escalating The disruption of the power

system exacerbates an already-

existing disruption in the im-

pacted system, increasing the

severity or outage time.

Restoration The power outage hampers the

restoration of the impacted

system.
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Table A.1: (continued)

Publication Classification Description

Compound damage propaga-

tion

The power system disrup-

tion leads to a disruption

that then causes serious dam-

age/accidents/problems in the

impacted system.

Substitutive A system is disrupted due to

demands placed on it to sub-

stitute for the power system.

Zhang and Peeta [27]

Functional Functionality of an infrastruc-

ture system requires inputs

from another system, or can

be substituted, to a certain ex-

tent, by the other system.

Physical Infrastructure systems are cou-

pled through shared physical

attributes and share flow right

of way.

Budgetary Infrastructure systems rely on

some level of public financing

leading to resource allocation

budget interdependencies.

Market and Economic Infrastructures share market

resources in the same economic

system.
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Table A.1: (continued)

Publication Classification Description

Sharkey et al. [10]

Traditional precedence (A, B) : A restoration task

in infrastructure B cannot be

started until a restoration task

in infrastructure A is complete.

Effectiveness precedence (A, B) : A restoration task in

infrastructure B is not as effec-

tive until a restoration task in

infrastructure A is complete.

Options precedence A restoration task in infras-

tructure B can be completed

by accomplishing a restoration

task in one of a set of possible

infrastructures A1, A2, . . . , An.

Time-sensitive options A restoration task in infras-

tructure B must be com-

pleted only if a restoration

task in infrastructure A is not

completed by a certain (un-

known) deadline. Therefore,

the restoration task in A must

be completed by its deadline

or the task in B must be com-

pleted.
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Table A.1: (continued)

Publication Classification Description

Competition for resources Restoration tasks in infrastruc-

tures A1, A2, . . . , An compete

for the same set of scarce re-

sources.
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Appendix B

Observed Physical Interdependencies

Recall a physical infrastructure interdependency, (A,B), exists when the operational state of

infrastructure A depends on a material output of infrastructure B [24].

Table B.1: Enumeration of physical interdependencies observed in the food and agriculture
sector denoting infrastructure AA and infrastructure BB in the description of each example.

A B Description

Chemical Food and agriculture Ethyl alcohol manufacturingA depends

on grains produced by the crop produc-

tionB infrastructure.

Food and agriculture Chemical Crop productionA depends on fertilizer,

herbicides, pesticides, and other agricul-

tural chemicals produced by the agri-

cultural chemical manufacturingB infras-

tructure.

Food and agriculture Chemical Food manufacturingA adheres to sanita-

tion standards that depend on chlorine

dioxide and other cleaning chemicals pro-

duced by the chemical manufacturingB

infrastructure.
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Table B.1: Physical interdependencies (continued)

A B Description

Food and agriculture Critical manufacturing Animal productionA and crop produc-

tionA depend on industrial equipment

and farm machinery manufactured in the

agricultural implement manufacturingB

infrastructure.

Food and agriculture Critical manufacturing Food manufacturingA processes depend

on industrial equipment manufactured in

the food product machinery manufactur-

ingB infrastructure.

Food and agriculture Dams Crop productionA, grain millingA, and

food manufacturingA infrastructures are

vulnerable to flooding and depend on

floodwater impoundment and diversion

operations of the water supply and irri-

gation systemsB infrastructure.

Food and agriculture Energy Crop productionA equipment and vehi-

cles depend on gasoline and diesel fuel

from the petroleum manufacturingB in-

frastructure.

Food and agriculture Energy Refrigerated storageA refrigeration sys-

tems prolonging the shelf-life of perish-

able food products depend on the electric

power generationB infrastructure.
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Table B.1: Physical interdependencies (continued)

A B Description

Food and agriculture Energy Grain elevators and storageA facilities are

monitored and ventilated by equipment

that depends on the electric power gen-

erationB infrastructure.

Food and agriculture Energy Grain millingA boilers depend on dedi-

cated transmission lines from the natural

gas distributionB infrastructure.

Food and agriculture Energy Grain millingA industrial equipment re-

lies on dedicated transmission lines from

the electric power generationB infrastruc-

ture.

Food and agriculture Financial services Animal productionA financing depends

on credit extended by commercial banks

or the Farm Credit System in the credit

intermediationB infrastructure.

Food and agriculture Food and agriculture Animal food manufacturingA feed formu-

lations depend on cereal grains produced

by the grain farmingB infrastructure.

Food and agriculture Food and agriculture Food manufacturingA perishable goods

spoilage prevention depends on refrigera-

tion provided by the refrigerated storageB

infrastructure.
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Table B.1: Physical interdependencies (continued)

A B Description

Food and agriculture Healthcare Animal productionA healthcare and an-

imal welfare standards depend on phar-

maceuticals and vaccinations from the

pharmaceutical and medicine manufac-

turingB infrastructure.

Food and agriculture Healthcare Animal productionA healthcare and bio-

logical security standards depend on an-

imal diagnostic testing services from the

veterinary servicesB infrastructure.

Food and agriculture Transportation Food manufacturingA shipments and de-

liveries depend on transportation from

the air transportationB, rail transporta-

tionB, water transportationB, and truck

transportationB infrastructures.

Food and agriculture Transportation Soil preparation and cultivationA opera-

tions performed aerially depend on com-

mercial pilots, aircraft, and airports in

the air transportationB infrastructure.
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Table B.1: Physical interdependencies (continued)

A B Description

Food and agriculture Water Food manufacturingA, animal produc-

tionA, and crop productionA depend on

municipal water supplies, irrigation reser-

voirs, and distribution of potable water

from the water supply and irrigation sys-

temsB infrastructure.

Food and agriculture Water Food manufacturingA, animal produc-

tionA, and crop productionA operations

typically are unable to appropriately

treat wastewater byproduct and then de-

pends on collection and treatment pro-

vided by the wastewater treatmentB in-

frastructure.

Transportation Food and agriculture Rail transportationA, water transporta-

tionA, and truck transportationA long-

haul grain shipments rely on fumiga-

tion for vermin control provided by the

postharvest crop activitiesB infrastruc-

ture.
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Appendix C

Observed Cyber Interdependencies

Recall a cyber infrastructure interdependence exists when A is dependent on a material out-

put of B that is transmitted directly or indirectly through the information technology or

communications infrastructure sectors [24].

Table C.1: Enumeration of cyber interdependencies observed in the food and agriculture
sector denoting infrastructure AA and infrastructure BB in the description of each example.

A B Description

Dams Information technology Water supply and irrigation sys-

temsA floodwater impoundment and

diversion activities are planned using

real-time environmental data in the

Damwatch web-application that de-

pends on the data processing, hosting,

and related servicesB infrastructure.

Dams Communications Water supply and irrigation systemsA

floodwater impoundment and diver-

sion activities are planned using real-

time environmental data disseminated

by the Damwatch web-application

that depends on the wired telecommu-

nications carriersB, wireless telecom-

munications carriersB, and satellite

telecommunicationsB infrastructures.
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Table C.1: Cyber interdependencies (continued)

A B Description

Information technology Communications Data processing, hosting, and related

servicesA aggregation, analysis, and

dissemination of environmental data

from across the country in real-time

depends on data transmission through

the wired telecommunications carri-

ersB, wireless telecommunications car-

riersB, and satellite telecommunica-

tionsB infrastructures.

Food and agriculture Information technology Grain farmingA remotely operated,

on-farm grain drying and storage sys-

tems depends on the ability to dig-

itally manage operations and equip-

ment through the computer facilities

management serviceB infrastructure.

Food and agriculture Communications Farm management servicesA that re-

motely monitor and operate farm

equipment such as grain bins de-

pend on the wireless telecommunica-

tions carriersB infrastructure to trans-

mit digital communications in rural ar-

eas.
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Table C.1: Cyber interdependencies (continued)

A B Description

Food and agriculture Information technology Food manufacturingA, animal produc-

tionA, and crop productionA enter-

prise resource planning software inte-

gral to productivity depends on soft-

ware consultants developing and main-

taining functionality through the com-

puter systems design servicesB infras-

tructure.

Food and agriculture Information technology Food manufacturingA, animal produc-

tionA, and crop productionA enterprise

resource planning software depends on

managed technology services provided

by the data processing, hosting, and

related servicesB infrastructure.

Food and agriculture Information technology Agricultural research and develop-

mentA depends on physical and cy-

bersecurity measures in the security

systems servicesB and data processing,

hosting, and related servicesB infras-

tructures to protect proprietary tech-

nology and intellectual property from

unauthorized access as a matter of cor-

porate security and national security.
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Appendix D

Observed Geographic Interdependencies

Recall a geographic infrastructure interdependence exists among a collection of infrastructures

“if a local environmental event can create state changes in all of them” [24].

Table D.1: Enumeration of geographic interdependencies observed in the food and agriculture
sector denoting infrastructures A1 . . . An

A1 . . . An in each example’s description.

S = {A1, . . . , An} Description

Food and agricultureA1 , Commercial

faciltiesA2 . . . A4

Restaurants and other eating placesA1 are

collocated with commercial facilities hous-

ing performing arts and spectator sportsA2 ,

museums and historical sitesA3 , amusement

parks, gambling, and recreationA4 .

DamsA1 , Food and agricultureA2 . . . A4 ,

TransportationA5 , WaterA6 , EnergyA7 ,

Emergency servicesA8 . . . A10

Floods in the Arkansas delta affect water

supply and irrigation systemsA1 , grain farm-

ingA2 , grain millingA3 , animal productionA4 ,

water transportationA5 , water supply and

irrigation systemsA6 , electric power gener-

ationA7 , emergency road servicesA8 , emer-

gency medical transportation servicesA9 ,

and emergency relief servicesA10 infrastruc-

tures.
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Table D.1: Geographic interdependencies (continued)

S = {A1, . . . , An} Description

Food and agricultureA1, A2 , WaterA3 ,

HealthcareA4, A5 , Emergency servicesA6

Food manuacturingA1 and animal produc-

tionA2 pollution affects water treatment and

distributionA3 , health care servicesA4 , hospi-

talsA5 , and emergency relief servicesA6 op-

erations to treat the polluted water, health-

care and testing for ill residents, and emer-

gency relief for those without potable water.

Food and agricultureA1 . . . A3 ,

TransportationA4

Grain farmingA1 , grain millingA2 , and grain

elevators and storageA3 , and the road trans-

portationA4 infrastructures used in crop pro-

duction are typically within a 25 mile ra-

dius.

WaterA1, A4 , Food and agricultureA2 , Emer-

gency servicesA3, A6 , TransportationA5

Drought and wildfires disrupting the wa-

ter supplyA1 for animal productionA2 re-

quire emergency relief servicesA3 deliver wa-

ter from neighboring water suppliesA4 us-

ing truck transportationA5 and fire depart-

mentsA6 .
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Table D.1: Geographic interdependencies (continued)

S = {A1, . . . , An} Description

Food and agricultureA1 . . . A4 ,

TransportationA5 , EnergyA6

Ice storms in Arkansas simultaneously dis-

rupt animal productionA1 , animal produc-

tion support activitiesA2 , animal food man-

ufacturingA3 , food manufacturingA4 , truck

transportationA5 , and electric power distri-

butionA6 .

Food manufacturingA1 , WaterA2 Food manufacturingA1 facilities consume

large amounts of potable water and require

high volumes of wastewater collection and

hence tend to be geographically clustered

in regions where distribution networks and

wastewater treatment facilities in the mu-

nicipal water and sewage systemsA2 infras-

tructures are well established.
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Appendix E

Observed Logical Interdependencies

Recall a logical infrastructure interdependence exists when the state of A is dependent on B

by some mechanism that is not physical, cyber, or geographic in nature [24].

Table E.1: Enumeration of logical interdependencies observed in the food and agriculture
sector denoting infrastructure AA and infrastructure BB in the description of each example.

A B Description

Chemical Food and agriculture Agricultural chemical manufacturingA de-

pends on grain farmingB infrastructures

challenging the regulatory bans on the use

of the dicamba herbicide.

Food and agriculture Financial services Animal productionA and crop productionA

depend on agriculturally-focused credit

servicesB, the Farm Credit System, cre-

ated, operated, and regulated by the fed-

eral government.

Transportation Emergency services Road transportationA depends on govern-

ment emergency planningB to lift work-

ing time limitations during states of emer-

gency.
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Table E.1: Logical interdependencies (continued)

A B Description

Water Food and agriculture Water supply and irrigation systemA in-

frastructures depend on crop productionB

to self-report groundwater usage to con-

servation districts monitoring groundwater

use and forecasting groundwater availabil-

ity for future growing seasons.
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Appendix F

Observed Dynamic Physical Interdependencies

Recall a dynamic physical infrastructure interdependence exists when the time-varying oper-

ational activities of infrastructure sector A depend on different amounts of material outputs

of infrastructure sector B over time.

Table F.1: Enumeration of dynamic physical interdependencies observed in the food and
agriculture sector denoting infrastructure AA and infrastructure BB in the description of
each example.

A B Description

Food and agriculture Food and agriculture Broiler chicken productionA depends on

poultry hatcheriesB for chick placement

at the beginning of every seven week

flock grow-out period.
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Table F.1: Dynamic physical interdependencies (continued)

A B Description

Food and agriculture Transportation Broiler chicken productionA production

cycles last approximately 10 weeks where

the cycle begins with the placement of

live chicks to begin a seven week grow-

out period that ends when the mature

birds are processed. Cleaning and san-

itation tasks are completed in the final

three weeks of the cycle while the house

is empty, hence broiler chicken produc-

tion depends on truck transportationB to

deliver poultry feed from the feedmill to

poultry farms only during the seven week

grow-out period when the house is occu-

pied.
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Table F.1: Dynamic physical interdependencies (continued)

A B Description

Food and agriculture Water Broiler chicken productionAproduction

cycles last approximately 10 weeks where

the cycle begins with the placement of

live chicks to begin a seven week grow-

out period that ends when the mature

birds are processed depends on water

supply and irrigation systemsB to deliver

water for drinking and cooling systems

on poultry farms housing a flock dur-

ing the seven week grow-out period when

they occupy the chicken houses..

Food and agriculture Energy Broiler chicken productionA depends on

electric power generationB to deliver un-

interrupted power for feeding, drinking,

monitoring, and cooling systems on poul-

try farms housing a flock during the

seven week grow-out period when they

occupy the chicken houses..

Food and agriculture Healthcare Broiler chicken productionA depends on

veterinary servicesB to test and monitor

flock health during the seven week grow-

out period when they occupy the chicken

houses..
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Table F.1: Dynamic physical interdependencies (continued)

A B Description

Food and agriculture Healthcare Animal food manufacturingA depends

on pharmaceutical and medicine man-

ufacturingB for specific antibiotics and

vitamins necessary for individual flock

health and feed-mass conversion during

the seven week grow-out period when

they occupy the chicken houses..

Food and agriculture Food and agriculture Truck transportationA of market weight

broiler chickens must be caught and

loaded into trucks through processes

that depend on poultry catchingB infras-

tructures on the final day of the seven

week grow-out period when they occupy

the chicken houses..

Food and agriculture Food and agriculture Animal slaughtering and processingA of

market weight broiler chickens depends

on poultry catchingB infrastructures to

catch and load broiler flocks on the final

day of the seven week grow-out period

when they occupy the chicken houses..

79



Table F.1: Dynamic physical interdependencies (continued)

A B Description

Food and agriculture Water Rice farmingA depends on water sup-

ply and irrigation systemsB to deliver

ground water for irrigating crops from

May through September.

Food and agriculture Energy Rice farmingA depends on electric power

generationB and natural gas distribu-

tionB to power water pumps that irrigate

rice fields in the hottest months of June,

July, and August.

Food and agriculture Energy Grain millingA depends on electric power

generationB and natural gas distribu-

tionB to power fans and heaters dry-

ing wet rice harvested in October and

November to a moisture content of 14%.

Food and agriculture Information technology Grain millingA depends on data process-

ing, hosting, and related activitiesB to

monitor grain drying operations and re-

motely control equipment responsible for

the grain drying process.

80



Table F.1: Dynamic physical interdependencies (continued)

A B Description

Food and agriculture Transportation Grain millingA depends on truck trans-

portationB in September - November

to deliver large amounts of freshly har-

vested grain from the fields to grain

milling facilities or on-farm grain drying

and storage systems.

Transportation Food and agriculture Truck transportationA depends on grain

millingB efficiency in September -

November to efficiently unload grain de-

liveries preventing long queues that dis-

rupt truck flow from grain mills to farms.

Energy Food and agriculture Electric power generationA depends on

radio transmitters installed on crop pro-

ductionB irrigation pumps to stop irriga-

tion and divert power to other customers

during peak usage hours in the hot sum-

mer months.
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Appendix G

Observed Dynamic Geographic Interdependencies

Recall a dynamic geographic infrastructure interdependence exists when the geographic or

spatial scales of interdependent infrastructure operations are altered by some process, event,

or circumstance.

Table G.1: Enumeration of dynamic geographic interdependencies observed in the food and
agriculture sector denoting infrastructures A1 . . . An

A1 . . . An in each example’s description.

S = {A1, . . . , An} Description

Food and agricultureA1 . . . A3 ,

TransportationA4

The geographic scale of crop productionA1 ,

grain millingA2 , grain elevators and stor-

ageA2 , and truck transportationA4 infras-

tructures interdependence shrinks as on-

farm grain drying storage systems become

more prevalent.

Food and agricultureA1, A2 , ChemicalA3 ,

TransportationA4

The geographic scale of crop productionA1 ,

soil preparation and cultivationA2 , agricul-

tural chemical manufacturingA3 , and air

transportationA4 infrastructure interdepen-

dence increases as the herbicide dicamba

volatilizes during aerial application drifting

several miles to other fields and affecting

non-resistant crops.
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Table G.1: Dynamic geographic interdependencies (continued)

S = {A1, . . . , An} Description

Food and agricultureA1 . . . A4 , HealthcareA5 ,

Emergency servicesA6 , Financial servicesA7

The geographic scale of crop productionA1 ,

animal productionA2 and food manufactur-

ingA3 laborers dependence on food and bev-

erage storesA4 , health care servicesA5 , emer-

gency medical transportation servicesA6 ,

and financial servicesA7 increases as rural

populations become smaller and local busi-

nesses close throughout the Arkansas delta.

Food and agricultureA1, A2 ,

TransportationA3

The geographic scale of animal produc-

tionA1 , animal food manufacturingA2 , and

truck transportationA3 infrastructure inter-

dependence increases when a feedmill is dis-

rupted and unable to manufacture feed cre-

ating dependence on neighboring feedmills

for the production and transportation of

feed.

83



Table G.1: Dynamic geographic interdependencies (continued)

S = {A1, . . . , An} Description

Food and agricultureA1, A2 ,

TransportationA3

The geographic scale of animal produc-

tionA1 , animal slaughtering and process-

ingA2 , and truck transportationA3 infras-

tructure interdependence increases when a

animal slaughtering and processing facility

is disrupted and unable to operate creating

dependence on neighboring facilities for an-

imal slaughtering and processing.

Food and agricultureA1 . . . A3 ,

TransportationA4, A5

The geographic scale of crop productionA1 ,

grain millingA2 , grain elevators and stor-

ageA3 , truck transportationA4 , and rail

transportationA5 infrastructure interdepen-

dence increases when a grain mill is dis-

rupted and unable to operate creating de-

pendence on neighboring grain mills to mill,

store, and distribute harvested grain.
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Table G.1: Dynamic geographic interdependencies (continued)

S = {A1, . . . , An} Description

Food and agricultureA1, A2 ,

TransportationA3

The geographic scale of food manufac-

turingA1 , refrigerated storageA2 and truck

transportationA3 infrastructure interdepen-

dence increases when a food manufacturing

plant is disrupted and unable to operate cre-

ating dependence on neighboring manufac-

turing plants and storage facilities to man-

ufacture, store, and distribute products.

Food and agricultureA1 . . . A4 , WaterA5 ,

TransportationA6

The geographic scale of animal pro-

ductionA1 , food manufacturingA2 , animal

slaughtering and processingA3 , animal food

manufacturingA4 , water treatment and dis-

tributionA5 , and truck transportationA6 in-

frastructure interdependence increases as

manufacturing facilities are unable to ex-

pand operations or increase productivity

when municipal water utilities are unable to

process higher volumes of wastewater.
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Table G.1: Dynamic geographic interdependencies (continued)

S = {A1, . . . , An} Description

Food and agricultureA1 , HealthcareA2 . . . A4 ,

Emergency servicesA5

The geographic scale of animal produc-

tionA1 , veterinary servicesA2 , pharmaceuti-

cal and medicine manufacturingA3 , health

care servicesA4 , and government emergency

planningA5 infrastructure interdependence

increases as pathogen-carrying migratory

birds infect animal flocks requiring veteri-

nary testing and epidemic prevention, and

emergency services planning and health care

services if the pathogens infect human pop-

ulation.
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Table G.1: Dynamic geographic interdependencies (continued)

S = {A1, . . . , An} Description

Food and agricultureA1, A2 , Criti-

cal manufacturingA3, A4 , ChemicalA5 ,

CommunicationsA6 , Information

technologyA7

The geographic scale of agricultural pro-

ductionA1 , agricultural research and devel-

opmentA2 , agricultural implement manufac-

turingA3 , food product machinery manu-

facturingA4 , agricultural chemical manufac-

turingA5 , wireless telecommunications car-

riersA6 , and data processing, hosting, and

related servicesA7 infrastructure interdepen-

dence increases as advances in information

technology and communication create cy-

bersecurity vulnerabilities in food and agri-

culture systems exploitable from remote lo-

cations.
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Appendix H

Observed Deadline Interdependencies

Recall a deadline infrastructure interdependence exists when infrastructure A depends on

resources provided by infrastructure B by a deadline t.

Table H.1: Enumeration of deadline interdependencies observed in the food and agriculture
sector denoting infrastructure AA and infrastructure BB in the description of each example.

A B t Description

Food and agriculture Transportation 10 hours Poultry productionA and

animal slaughtering and

processingA depends on

truck transportationB of

live birds from poul-

try farms to processing

plants as the birds lose

mass during transit and

perish if not processed

within 10 hours.

Food and agriculture Energy 24 hours Rice farmingA depends

on electric power gener-

ationB and natural gas

distributionB to power ir-

rigation pumps so that

no rice fields are not

flooded or irrigated for

longer than 24 hours.
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Table H.1: Deadline interdependencies (continued)

A B t Description

Food and agriculture Healthcare 36 hours Animal productionA de-

pends on veterinary ser-

vicesB and pharmaceuti-

cal medicine manufactur-

ingB infrastructures for

testing and vaccinations

to stop disease spread

within 36 hours of detec-

tion.

Food and agriculture Energy 14 days Grain millingA depends

on electric power gener-

ationB and natural gas

distributionB infrastruc-

tures to dry grain to 14%

moisture content within

14 days of harvest.

Food and agriculture Dams 7 days Crop productionA de-

pends on water supply

and irrigation systemsB

infrastructure to allevi-

ate floodwaters in low-

lying fields before crops

drown in seven days.

89



Table H.1: Deadline interdependencies (continued)

A B t Description

Food and agriculture Chemical March 31 Soil preparation and

cultivationA depends on

agricultural chemical

manufacturingB so that

fertilizer and nutrients

may be sowed into the

fields by the end of

March before planting

begins.

Food and agriculture Food and agriculture June 30 Rice farmingA depends

on crop productionB in-

frastructure to cultivate

and distribute rice seeds

to be planted by June 30.
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Table H.1: Deadline interdependencies (continued)

A B t Description

Food and agriculture Financial services January 31 Soil preparation and

cultivationA and crop

productionA depend on

credit servicesA and fund

disbursement by January

31 to purchase seed,

fertilizer, chemicals, and

other inputs necessary

for the upcoming crop

year.
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Appendix I

Observed Delay Interdependencies

Recall a delay infrastructure interdependence exists when the operational state of infrastruc-

ture A experiences a delayed onset disruption δt time after a disruption in infrastructure

B.

Table I.1: Enumeration of delay interdependencies observed in the food and agriculture
sector denoting infrastructure AA and infrastructure BB in the description of each example.

A B δt Description

Food and agriculture Transportation 24 hours Poultry productionA experi-

ences a delayed onset disrup-

tion when the buffering stock

of animal feed is depleted, ap-

proximately 24 hours, after a

disruption in the truck trans-

portationB infrastructure re-

sponsible for delivering feed to

poultry houses.

Food and agriculture Energy 24 hours Poultry productionA experi-

ences a delayed onset disrup-

tion when the buffering stock

of diesel fuel powering a backup

generator is depleted, approxi-

mately 24 hours, after a disrup-

tion in the electric power gen-

erationB infrastructure.
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Table I.1: Delay interdependencies (continued)

A B δt Description

Food and agriculture Water 24 hours Poultry productionA experi-

ences a delayed onset disrup-

tion when the buffering stock

of reserve-tank water, approx-

imately 24 hours, after a dis-

ruption in the water supply and

irrigationB infrastructure.

Water Food and agriculture years Water supply and irrigation

systemsA experiences a delayed

onset disruption when pollu-

tion is detectable in the wa-

ter supply, up to several years

after polluting begins, after a

disruption in the animal pro-

ductionB, crop productionB,

and food manufacturingB in-

frastructures allows the pollu-

tants to reach a water supply.
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Table I.1: Delay interdependencies (continued)

A B δt Description

Food and agriculture Food and agriculture 3 months Rice farmingA experiences a

delayed onset disruption when

herbicide resistant seed pro-

duction fails to meet demand,

approximately 3 months, after

a disruption in the crop pro-

ductionB infrastructure caus-

ing rice farming productivity

loss until the following crop

year.

Financial services Food and agriculture 3 months Credit servicesA financing row

crop operations experiences a

delayed onset disruption when

farmers’ harvest proceeds fail

to meet financial obligations,

approximately 3 months, after

a disruption in the crop pro-

ductionB infrastructure reduc-

ing crop yield.
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Appendix J

Observed Human, Economic, and Natural Resource Interdependencies

Recall a human, economic, and natural resource infrastructure interdependence exists when

the operational state of infrastructure A is affected by changes in human, economic, or

natural resources provided by infrastructure B.

Table J.1: Enumeration of human, economic, and natural resource interdependencies ob-
served in the food and agriculture sector denoting infrastructure AA and infrastructure BB

in the description of each example.

A B Description

Financial services Food and agriculture Availability and accessibility of agricul-

tural credit servicesA to finance row crop

operations, equipment purchases, and

farmers’ living expenses on an annual ba-

sis is affected by crop production harvest

volumes.

Food and agriculture Energy Grain crop production planting decisions

are affected by petroleum merchants in

OPEC due to a positive correlation of

grain prices and commodity oil prices.

Food and agriculture Information technology Crop production labor force within the

food and agriculture sector is becom-

ing smaller due to increased productivity

from information technology innovations

allowing farmers to work at older ages.
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Table J.1: Human, economic, and natural resource interdependencies interdependencies (con-
tinued)

A B Description

Food and agriculture Transportation Grain milling infrastructures require in-

creased volumes of barge and truck

transportation affected by the increased

maintenance costs of rail transportation.

Food and agriculture Water A majority of irrigation for row crop pro-

ductionA draws large amounts of water

from groundwater aquifers and surface

water reservoirsB.

Food and agriculture Commercial facilties The average age of row crop producersA

continues to increase as populations in

rural areas continue to decline as resi-

dents leave in response to fewer commer-

cial faciltiesB operating in typically poor,

rural areas that ultimately leads to gen-

erational information loss as fewer fami-

lies are able to maintain farm production

with sufficient financial support through

the generations.
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Appendix K

Institutional Review Board Protocol
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109 MLKG • 1 University of Arkansas • Fayetteville, AR 72701-1201 • (479) 575-2208 • Fax (479) 575-6527 • Email irb@uark.edu 
The University of Arkansas is an equal opportunity/affirmative action institution. 

Office of Research Compliance 
Institutional Review Board 

August 31, 2017 

MEMORANDUM 

TO: Sarah Nurre  
Kelly Sullivan  
Benjamin Runkle 

FROM: Ro Windwalker 
IRB Coordinator 

RE: New Protocol Approval 

IRB Protocol #: 1708017910 (previously 17-07-012) 

Protocol Title: Classification of the Interdependencies in the Food and 
Agriculture Critical Infrastructure Sector in Arkansas 

Review Type:  EXEMPT  EXPEDITED  FULL IRB 

Approved Project Period: Start Date: 08/31/2017  Expiration Date:  08/24/2018 

Your protocol has been approved by the IRB.  Protocols are approved for a maximum period of 
one year.  If you wish to continue the project past the approved project period (see above), you 
must submit a request, using the form Continuing Review for IRB Approved Projects, prior to the 
expiration date.  This form is available from the IRB Coordinator or on the Research Compliance 
website (https://vpred.uark.edu/units/rscp/index.php).  As a courtesy, you will be sent a reminder 
two months in advance of that date.  However, failure to receive a reminder does not negate 
your obligation to make the request in sufficient time for review and approval.  Federal 
regulations prohibit retroactive approval of continuation.  Failure to receive approval to continue 
the project prior to the expiration date will result in Termination of the protocol approval.  The 
IRB Coordinator can give you guidance on submission times. 
This protocol has been approved for 50 participants.  If you wish to make any modifications 
in the approved protocol, including enrolling more than this number, you must seek approval 
prior to implementing those changes.  All modifications should be requested in writing (email is 
acceptable) and must provide sufficient detail to assess the impact of the change. 
If you have questions or need any assistance from the IRB, please contact me at 109 MLKG 
Building, 5-2208, or irb@uark.edu.
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