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Abstract 

Personalized medicine has been utilized in all stages of cancer care in recent years, 

including the prevention, diagnosis, treatment and follow-up. Since prevention and early 

intervention are particularly crucial in reducing cancer mortalities, personalizing the 

corresponding strategies and decisions so as to provide the most appropriate or optimal medical 

services for different patients can greatly improve the current cancer control practices. This 

dissertation research performs an in-depth exploration of personalized decision modeling of 

cancer intervention and prevention problems. We investigate the patient-specific screening and 

vaccination strategies for breast cancer and the cancers related to human papillomavirus (HPV), 

representatively. Three popular healthcare analytics techniques, Markov models, regression-based 

predictive models, and discrete-event simulation, are developed in the context of personalized 

cancer medicine. We discuss multiple possibilities of incorporating patient-specific risk into 

personalized cancer prevention strategies and showcase three practical examples. The first study 

builds a Markov decision process model to optimize biopsy referral decisions for women who 

receives abnormal breast cancer screening results. The second study directly optimizes the annual 

breast cancer screening using a regression-based adaptive decision model. The study also 

proposes a novel model selection method for logistic regression with a large number of candidate 

variables. The third study addresses the personalized HPV vaccination strategies and develops a 

hybrid model combining discrete-event simulation with regression-based risk estimation. Our 

findings suggest that personalized screening and vaccination benefit patients by maximizing life 

expectancies and minimizing the possibilities of dying from cancer. Preventive screening and 

vaccination programs for other cancers or diseases, which have clearly identified risk factors and 

measurable risk, may all benefit from patient-specific policies. 
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1 Introduction 

Over the last few years, personalized cancer medicine has emerged as a popular topic in the 

healthcare community. The term personalized cancer medicine generally refers to the medical 

practices for cancers that categorize patients into different groups and tailor medical decisions, 

services, and products to individual characteristics of patients according to their risk of cancers 

or predicted clinical responses. Although “personalized medicine” is usually described as 

providing “the right patient with the right drug at the right dose at the right time”, it is involved 

in all stages of care, including prevention, diagnosis, treatment and follow-up (US Food and 

Drug Administration 2013). Personalized medicine provides different patients with customized 

and appropriate prevention, screening, and treatment strategies, which are more effective and 

cause fewer side effects compared with the standard options. 

When it comes to the cancer medicine, personalizing prevention and early intervention is 

extraordinarily more critical for cancer patients than for non-life-threating diseases patients. On 

one hand, cancer prevention directly reduces or eliminates the chances of developing cancers and 

cancer-related mortalities. On the other hand, cancer survival heavily depends upon early 

diagnosis. According to the American Cancer Society (ACS), during 2017, there will be 

1,688,780 newly diagnosed cancer cases and 600,920 cancer deaths in the U.S. (ACS 2017). 

However, a substantial proportion of cancer cases could be effectively prevented. For example, 

certain cancers caused by infectious agents, could be prevented through vaccinations, such as 

human papillomavirus (HPV) vaccines for cervical cancer prevention and hepatitis B virus 

(HBV) vaccines for liver cancer prevention. In addition, routine screening is known to help 

reduce mortalities for breast, colon, rectum, cervix, prostate and lung cancers by early detections 

(ACS 2017). Therefore, personalizing cancer prevention and invention strategies and providing 
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the most appropriate or optimal medical services for different patients can greatly improve the 

current cancer control practices. 

This dissertation concentrates on the decision making processes of the two types of 

intervention and prevention approaches, screenings and vaccinations, and aims to optimally 

determine the personalized strategies for patients. For cancer screening, we focus on the 

screening mammography of breast cancer, which is the most commonly diagnosed cancer in 

women worldwide, and model both pre- and post-screening decisions at the individual level. For 

vaccination, HPV-related cancers are analyzed with a special focus on cervical cancer, which is 

the third most common female cancer worldwide (Wardle et al. 2015). We model the 

personalized HPV vaccination from the perspective of HPV-related cancer prevention. Three 

mainstream methodologies in healthcare analytics are adopted in this dissertation, including 

Markov models, regression-based predictive model, and discrete-event simulation. We show 

how to apply these popular approaches in the context of personalized cancer prevention and 

propose some novel hybrid model frameworks. 

In Chapter 2, we explore the personalization of post-screening biopsy referral decision. A 

Markov decision process (MDP) model is developed to provide the optimal follow-up referral 

decision when a patient receives abnormal screening result. The optimal policy is generated by 

maximizing life expectancy generated based on every woman’s specific breast risk 

characteristics. The post-screening referral decisions can be converted to pre-screening decisions 

under some assumptions. The model not only considers post-screening biopsy decisions but also 

offer optimal surveillance decisions for treated breast cancer patients.  

Chapter 3 presents a screening decision model that provides an adaptive screening strategy 

while considering the tradeoff between advantage and disadvantages of screening. We present a 
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two-stage decision framework: (1) age-specific breast cancer risk estimation, and (2) annual 

mammography screening decision-making based on the estimated risk. Whether a woman should 

receive a mammogram is determined based on her breast cancer risk at her current age. Our “on-

line” pre-screening decision is adaptive to a woman’s latest health status, which causes less bias 

in reflecting the individual risk of every woman. Our optimal decisions outperform the existing 

mammography screening guidelines in terms of the average loss of life expectancy.  

Chapter 4 shifts the focus to the personalization of HPV vaccination policy. This study 

models the impact of HPV vaccination at different ages on every individual woman and track 

women’s courses of life to estimate the vaccination’s clinical outcomes in terms of prevented 

HPV-related cancers. With the purpose of providing patient-specific HPV vaccination strategies, 

especially personalized catch-up vaccination policies, we develop a discrete-event simulation 

model to evaluate multiple clinical consequences after a woman gets vaccinated based on a 

number of personal attributes. As our simulation model works at the individual level, we build an 

HPV risk estimation model reflecting every woman’s HPV risk, which dynamically changes 

over time, to support the lifetime simulation model. We use such a hybrid model to estimate the 

clinical consequences and proves that the optimal HPV vaccination catch-up policy should be 

personalized for different women. 
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2 Personalized Biopsy Referral Decision Modeling for Breast Cancer Screening and 

Surveillance Mammography in the Presence of Cancer Regression 

 
 
Abstract 

Mammography is currently the recommended method for population-based breast cancer 

screening. It is also used as a surveillance approach to monitor for recurrent breast cancers for 

patients already treated for early-stage breast cancer. However, all abnormal mammograms 

should be followed up with additional tests, e.g., biopsy exams, to confirm the presence of cancer 

due to the low specificity associated with mammography. Although biopsy is a relatively 

accurate approach with negligibly low false-positive rate, it is painful and often results in 

negative side-effects. This study aims to make personalized decision about whether abnormal 

screening and surveillance mammogram findings should be referred for follow-up biopsy 

immediately according to women's personal risk characteristics. We develop a discrete-time 

finite-horizon Markov decision process model to optimize biopsy referral policies, which 

maximizes women's total life expectancy. Our study provides personalized optimal follow-up 

biopsy referral policies for both screening mammography and surveillance mammography based 

on a woman's risk factors. We present the optimal biopsy referral policies for a typical high-risk 

and a typical low-risk woman under different scenarios of clinical history. These optimal 

screening policies vary with the personal risk factors significantly. Our results also demonstrate 

that the optimal biopsy policies for surveillance mammography fluctuate dramatically over years. 

In addition, different types of treatments for in situ breast cancer result in distinct optimal post-

treatment biopsy referral policies. This study suggests that existing screening and surveillance 

mammography guidelines can be improved. The optimal schedule of mammography follow-ups 

should be determined on a patient-specific basis.  
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2.1 Introduction 

As the most common non-cutaneous form of cancer and the second leading cause of cancer 

mortality among U.S. women (DeSantis et al. 2011), breast cancer has raised serious concerns 

from the public health community. According to the American Cancer Society (ACS), in 2017 

approximately 316,120 women will be diagnosed with breast cancer and about 40,610 women 

will die from this cause. Although the advances in treatments have reduced breast cancer 

mortality rates, whether the cancer is curable still relies heavily on the early detection (Berry et 

al.). The ACS reported that the 5-year relative survival rate is 99% for early stage (i.e. localized 

breast cancer) and 23% for late stage (i.e. distant breast cancer) (Smith et al, 2011).   

Mammography is the de facto standard for breast cancer screening practice. The ACS, the 

American College of Radiology (ACR) and the American Medical Association (AMA) 

recommend that U.S. women should receive annual mammograms beginning at age 40 or 45. 

There are a large number of clinical trials and population-based evaluations suggesting that 

mammography can significantly reduce breast cancer mortality. Specifically, Tabar et al. (2003) 

reported that screening mammography decreased the breast cancer mortality in women aged 40–

69 by 44%.   

Mammography is not merely an effective screening procedure to early detect new cases of 

breast cancers, but also intensely used as a surveillance approach to monitor for recurrent breast 

cancer for patients already treated for early-stage breast cancer. Numerous studies showed that 

breast cancer survivors, especially those who received breast-conserving surgeries (i.e. 

lumpectomy or lumpectomy followed by radiotherapy), remain at high risk of second breast 

cancers for a long time, including recurrences of the treated tumors and new primary breast 

cancers (Clarke et al. 2005, Solin et al. 2005). Shaitelman et al. (2005) conducted a long-term 

follow-up study on women with a history of ductal carcinoma in situ (DCIS) breast cancer and 
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found that these patients still have a risk of tumor recurrence for up to 20 years after treatments. 

The American Society of Clinical Oncology (ASCO) recommends women treated with breast-

conserving surgery (BCS) start annual surveillance mammograms one year after the initial 

diagnosis and no earlier than 6-months after the radiation therapy is completed (Khatcheressian 

et al. 2006). In recent studies, annual surveillance mammograms after treatments of breast 

cancers were proving to significantly reduce breast cancer mortality (Lash et al. 2007). 

However, mammography is not perfect. Whether a mammogram result is positive (i.e. 

abnormal) is subjectively decided by a radiologist based on his/her professional skills and 

experiences. Thus possible false interpretations are usually inevitable. Previous studies showed 

that the risk of false positive (i.e. radiologists labeled the mammograms as positive but the 

cancer is actually absent) is significant. The positive predictive value (PPV) of mammography 

lies between 1.4% and 9.1%, which means the likelihood that the breast cancer really exists is 

lower than 10% when a woman gets a positive mammogram result (Breast Cancer Surveillance 

Consortium 2009). 

To confirm the existence of cancer cells, all abnormal findings will be followed up with 

additional testing, such as a biopsy exam, to confirm whether the cancer is present. Biopsy is a 

medical test that conducts a pathological examination on the breast tissue sample obtained from 

the suspicious breast area through a needle or a surgical procedure. It is the current “gold 

standard” of evaluating suspicious screening results (Bruening et al. 2009). Although biopsy is 

an accurate test with negligibly low false-positive rate (Parker et al. 1994), it is often painful and 

may result in side-effects since it is an invasive procedure placing patients at the risk of 

morbidities and even mortalities (Bruening et al. 2009). Due to the low PPV of mammography, it 

is estimated that 70% to 90% of breast biopsies are performed unnecessarily for benign diseases 
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(Zhi et al. 2007). These unnecessary follow-up exams not only resulted in large medical 

expenses, but also caused the patients to suffer from pain, anxiety and multiple side-effects. 

   In addition to the inherent limitations of mammography technique, the occurrences of 

spontaneous regression of breast cancers may also stultify some of the follow-up biopsy exams. 

Zhang and Ivy (2012) summarized medical exploration of breast cancer spontaneous regression 

in the literature. These medical cases showed that some cancers may disappear in the absence of 

treatment. One observational study found that 22% of breast cancer tumors are likely to resolve 

themselves without any treatment (Zahl et al. 2008). There are limited analytical studies 

addressing this phenomenon though. Fryback et al. (2006) incorporated regression in their 

simulation model. They assigned approximately 40% of the breast tumors to be limited 

malignant potential tumors, which progressed to a maximum of 1cm in diameter and then 

regressed after 2 years if undetected. Zhang and Ivy (2012) studied the impact of regression on 

lifetime breast cancer mortality. They suggested the regression rate around 20% may make a 

difference in mortality under different breast cancer treatment decisions. These studies implied 

that even if the screening mammography were perfect in detecting breast cancer, a further biopsy 

test may still not be necessary in the case of breast tumor regression. 

Moreover, a number of prior studies showed that different women may face different risks 

of breast cancer. Gail et al. (1989,1999) estimated women’s risk of breast cancer based on a 

series of personal risk attributes, including age, race, age at menarche, age at birth of first child, 

number of first-degree family history of breast cancer, and number of previous breast biopsy 

exams. Barlow et al. (2006) established a breast cancer risk prediction model for women 

receiving screening mammography using factors including age, race, body mass index (BMI), 

prior breast procedure, menopause status, breast density, family history of breast cancer, and a 
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prior false-positive mammogram. For early-stage breast cancer (i.e. in situ cancer) patients who 

undergo BCS, numerous studies reported that different types of treatments (i.e. lumpectomy 

followed with radiotherapy and lumpectomy alone) result in significantly different post-

treatment recurrence risks (Boyages et al. 1999, Viani et al. 2007). Particularly, prior studies 

found that different treatments result in opposite risks of recurrence on the ipsilateral and the 

contralateral breasts: the addition of radiotherapy to lumpectomy reduced the risk of ipsilateral 

breast cancer recurrence (IBTR) while increasing the risk of contralateral breast cancer 

recurrence (CBTR) (Viani et al. 2007). Nevertheless, several studies argued that the risk of 

recurrence after treatment varies over time. (Shaitelman et a. 2012, Habel et al. 1997). Therefore, 

although multiple healthcare organizations provided standard guidelines for both breast cancer 

screening and surveillance practices, it is important to make personalized decision about whether 

an abnormal mammogram finding should be referred for biopsy according to the woman’s 

specific risk characteristic, which motivates the goal of this paper: determining whether a patient 

should undergo a biopsy when she receives a positive mammogram result. 

There are several studies seeking to optimize the trade-off between the negative effects of 

breast cancer screening and patients’ long-term benefits of early diagnosis. Maillart et al. (2008) 

employed a partially observable Markov decision process (POMDP) model to evaluate different 

screening mammography policies by measuring life-time breast cancer mortality risk and 

expected mammogram counts. Ayer et al. (2012) formulated a POMDP model to propose an 

optimal personalized screening mammography schedule based on their personal risk 

characteristics associated with breast cancer, including age, race, age at menarche, age at first 

live birth, and prior screening history. Chhatwal et al. (2010) investigated how to make biopsy 

referral decision to maximize patients total expected quality-adjusted life years (QALY). They 
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used a finite-horizon discrete-time Markov decision process (MDP) model to offer optimal 

biopsy referral policies for patients with different breast cancer risk scores (i.e. a woman’s 

current probability of cancer). In addition, Ayvaci et al. (2012) applied an MDP model to 

optimizing biopsy referral decisions for different breast cancer risk scores under budgetary 

restrictions.  

   Our study is different from previous studies and contributes to the literature in the following 

ways: 1) our model considers the complex pathology of breast cancer by incorporating the 

potential spontaneous regression of breast cancer; 2) our multidimensional model directly 

provides personalized biopsy referral policy for every individual patient with different 

combination of risk factors, instead of estimated risk scores; and 3) our model addresses dynamic 

personalized biopsy referral policy of surveillance mammograms after treatments for early-stage 

breast cancers (i.e. in situ cancer). We use an MDP model with history-dependent states to 

provide optimal policies for early-stage breast cancer patients at different years after different 

treatments. To the best of our knowledge, this is the first analytical study that optimizes 

surveillance mammography policies after breast cancer treatments in terms of total expected 

quality-adjusted life years. We also combine screening mammograms for new cancer cases with 

surveillance mammograms for breast cancer follow-ups into an integrated model, which is 

expected to provide a comprehensive solution of the breast cancer prevention and control 

problem. 

The remainder of this paper is organized as follows. Section 2.2 describes the formulation 

of the MDP model. We also present several structural properties associated with the model. In 

Section 2.3, we apply our model in two example cases to demonstrate how our method provides 

personalized optimal biopsy referral policies. Finally, we discuss our results and the limitations 
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of this paper in Section 2.4. The main medical terms used throughout the whole paper are 

summarized in Table 1. 

Table 1 The definitions of the main medical terms 
Medical Terms Acronym Definition 

Breast-conserving surgery BCS An operation to remove the breast cancer but not 
the breast itself. 

Contralateral breast tumor 
recurrence 

CBTR The cancer recurrence occurs in the opposite 
breast. 

In situ cancer  Non-invasive breast cancer. The abnormal cells 
have not spread outside the duct to other tissues 
in the breast. 

Invasive cancer  Cancer that has spread from where it started in 
the breast into surrounding, healthy tissue. 

Ipsilateral breast tumor 
recurrence 

IBTR The cancer recurrence occurs in the treated 
breast. 

Lumpectomy  A surgery to remove a tumor in a breast and a 
small amount of normal tissue around it  

Mastectomy  A surgery to remove part of or entire breast. 
Positive predictive value  PPV The probability that a person with a positive test 

result has, or will get, the disease. 
Radiotherapy    The use of high-energy radiation from x-rays, 

gamma rays, neutrons, protons, and other 
sources to kill cancer cells and shrink tumors. 

Salvage therapy  Salvage therapy is any therapy that is done in an 
attempt to cure cancer following the failure of an 
initial treatment. 

Source: Dictionary of cancer terms (National cancer institute 2015) 
 

2.2 Material and Methods 

2.2.1 Decision Process 

In this study, we assume that women strictly undergo yearly screening mammography from age 

40 as recommended by the ACR and AMA guidelines. A typical screening mammography 

process in one year consists of two main stages (Figure 1). The first stage is to conduct an annual 

mammogram exam. If the exam result is negative, the woman is considered to be healthy and 

recommended to do nothing and just wait till the next scheduled mammogram. If the woman 

receives a positive mammogram, in the next stage, a decision has to be made about whether this 
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patient should be referred to a biopsy exam. Due to biopsy’s extremely low false-positive rate 

(Parker et al. 1994), we assume biopsy is perfect. Thus, patients with positive biopsy findings 

will be scheduled for treatment immediately. Negative findings indicate absence of breast cancer, 

so that the patients should continue receiving annual mammograms.    

 

 

 
Figure 1 also demonstrates how we model the process of surveillance mammography for in 

situ cancer patients after being treated. As Figure 1 shows, we differentiate two types of local 

treatments: mastectomy and breast-conserving surgery (i.e. lumpectomy alone and lumpectomy 

with radiotherapy). For in situ patients who have received mastectomy treatments, surveillances 

after mastectomy vary from person to person. For example, patients treated with prophylactic 

bilateral mastectomy are no longer recommended to undergo routine follow-ups. Therefore, our 

decision process only considers surveillance mammography after lumpectomy with or without 

radiotherapy. For the patients who have received breast-conserving surgery, according to the 

ASCO guideline on breast cancer follow-up and management (Khatcheressian et al. 2006), the 

Mammography

Positive Biopsy ?

Positive

NO

YES

NegativeAge t

Next scheduled 
mammography

Invasive cancer 
treatment

Mastectomy

in situ cancer?

Age t+1

Negative

Lumpectomy
Lumpectomy

+ Radiotherapy

Surveillance 
mammography

Age t+1

YES

NO

Figure 1 Annual screening process of breast cancer 
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first post-treatment mammogram should be conducted one year after the initial mammogram. 

The ASCO also recommends these patients undergo yearly mammography thereafter. Hence we 

assume that all the patients treated with breast-conserving surgery will carry on with annual 

mammography after completion of treatments. 

Our study focuses on the biopsy referral decision when a woman receives a positive 

mammogram. In our decision model, whether a woman should be referred to biopsy is 

determined based on six breast cancer risk factors, including the woman’s age, race, age at birth 

of first child, first-degree family history of breast cancer, menopause status and clinical history 

of in situ breast cancer (Table 2). The first five factors are common risk factors and their risk 

associated with breast cancer is estimated by Barlow et al. (2006). We exclude the dynamic 

breast cancer risk attributes (e.g. BMI) that may change over time, since the levels of these 

dynamic factors in the future are unknown. The six risk factors produce 23,040 different 

combinations in total. 

Table 2 Risk factors of breast cancer considered in the model 
Risk factors Level 

Age 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74,75-
79, 80-100; 

Race White, Black, Asian, Hispanic, Other; 

Age at birth of first child <30, >=30 or Nulliparous; 

First-degree family history of breast 
cancer 

Yes, No; 

Menopause status Premenopausal, Postmenopausal; 

Clinical history of in situ breast cancer  

 
 
 

Had the woman been diagnosed 
with in situ breast cancer before? 

Yes, No; 

If yes, what was the treatment 
type? 

Mastectomy, Lumpectomy, Lumpectomy plus 
radiotherapy; 

How many years have passed 
since the treatment? 

1, 2, 3…20, 20+; 
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2.2.2 MDP Model 

We develop a discrete time finite-horizon Markov decision process (MDP) model to optimize 

biopsy referral policies, which maximize women’s total life expectancy. For every woman with 

specific background, we solve the MDP model optimally using patient-specific transition 

probabilities that are estimated based on the combination of her risk factors. We formulate the 

MDP model with the following components. 

Decision epochs: 
 = 40, 41, … 100, which represent a woman’s age at the current time 

period. Since both screening and surveillance mammograms are performed annually according to 

the ASCO, a biopsy decision will also be made on a yearly basis after a mammogram result 

starting at age 40. According to the U.S. life tables (Arias 2012), we employ age 100 as the 

terminating point. 

States: �� ∈ � = �N, P, N��, P��, N��, P��, M, I, D�, � = 1, 2, …, 20+. We use 89 states to describe 

a woman’s state after receiving a mammogram at time t. N and P represent that a woman without 

clinical history of breast cancer receives a negative mammogram and a positive mammogram, 

respectively. Two history-dependent states, NL
n and PL

n, represent that the in situ patients treated 

with lumpectomy alone (L) receive negative and positive surveillance mammograms 

respectively. The superscript n denotes the number of years after completion of the lumpectomy 

treatment. Since women with a history of in situ cancer have risk of recurrence up to 20 years 

after treatment (Shaitelman et al. 2012), n can take values from 1 to 20. If no recurrence occurs 

up to 20 years after the treatment, we use a single value “20+” to represent all the succeeding 

years. Thus, there are 21 states denoted by NL
n or PL

n. Similarly, NR
n and PR

n represent in situ 

patients treated with lumpectomy plus radiotherapy (R) receive negative and positive 

surveillance mammograms, respectively. Likewise, superscript n can take values from 1 to 20+. 
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In our model, M (mastectomy), I (invasive cancer) and D (death) are treated as absorbing states, 

which means once a woman enters one of these states, she will quit the decision process. Due to 

the high pathological complexity of treatments for invasive cancer, we do not consider the 

surveillance and follow-ups for invasive cancer patients either. Thus we use absorbing state I to 

represent that a woman is diagnosed with invasive breast cancer. The absorbing state D includes 

deaths from breast cancer and other causes. Considering 21 possible values of n in NL
n, PL

n, NR
n 

and PR
n, our model actually includes 89 states. 

Actions: "� ∈ �W, B�. There are two options being considered: waiting (i.e. doing nothing and 

waiting until the next annual mammogram) or doing a biopsy exam immediately. It is noted that 

waiting is always the optimal action when the state shows a negative screening result. 

Transition probability: %����&�|��, "��. Transition probability represents the possibility of 

transition from the state �� to the state st+1 at decision epoch 
, given that action at is taken. 

Intermediate rewards: (����, "��. The intermediate reward is life years assigned to the woman 

at time t given that she is in state st and action at is taken. Thus the intermediate reward equals 

the one year minus the disutility of the action "� at current age. We assume disutility of action W 

is zero and only address the disutility caused by a biopsy exam. Let )� denote the disutility of 

biopsy at age t, and then the immediate reward is defined as  

r
t

s
t
,a

t( ) =
1  if a

t  
= W,

1− d
t

if a
t  = B,






   for s

t
≠ M, I, D. 

Lump-sum rewards: *�����. If a woman enters one of the three absorbing states, she will be 

assigned with one-time lump-sum reward, which equals the total life expectancy calculated 

based on her current age and state. In addition, we implement the “half-cycle correction” by 

assuming that, on average, a transition from any transient state to an absorbing state occurs 
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halfway through each decision epoch, instead of at the beginning or the end of an age 

(Sonnenberg et al. 1993). Let ,����� denote the life expectancy for a woman at age 
 with 

state ��. The lump-sum reward can be calculated by 

( ), if M,I,
( )

0.5, if D.
t t t

t t

t

e s s
R s

s

=
=  =

 

Value function: -�����. Value function calculates the maximum total life expectancy given 

that the woman is at age t and her current state is ��. For the states associated with negative 

mammograms, value functions are deterministic since action W is always selected. For the 

absorbing states M, I and D, the value functions are equal to their corresponding lump-sum 

rewards at current age t. Thus, the general value function is given by 

(1) 

For �� = P, P��, P��, the optimal action "�∗���� for age t at state ��  is determined by 

 (2)   

Since t = 100 is the end of the decision horizon, we assume there will be no future reward 

accumulating for woman at age 100, i.e. 

100 100V (S )= 0.  

2.2.3 State Transition 

State transitions are action dependent, and we introduce the one-step transition diagram for the biopsy 

action in Figure 2. 
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The state transitions from P to NL
n, PL

n, NR
n, and PR

n imply diagnoses of in situ breast cancer 

and treatments. For instance, the transition from P to NL
1 involves five stages: (a) the woman 

with a positive mammogram chooses to do biopsy; (b) the positive mammogram is proving to be 

a true-positive finding by the biopsy exam; (c) this true-positive finding is identified as in situ 

cancer; (d) this patient is then treated with lumpectomy; and (e) in the first surveillance 

mammography after completion of the treatment, the patient receives a negative mammogram.  

Similarly, for states PL
n and PR

n, if biopsy exams confirm their findings are true-positive, their 

transitions also involve implicit treatment stages. As an example, Figure 3 illustrates the one-step 

transition processes starting from PL
n with a tree structure. On one hand, if the finding at the PL

n 

state is confirmed by the biopsy exam to be a false positive mammogram, then the woman is 

considered cancer-free at the beginning of the current decision epoch. She may stay healthy or 

get a cancer recurrence during the current year. However, regardless of her true health status, the 

result of the next annual mammogram can be either negative NL
n+ or positive PL

n+1, (no treatment 

at PL
n). On the other hand, if the finding at PL

n turns out to be a true positive, then the woman has 

a cancer recurrence. For an invasive recurrence, the patient enters the absorbing state I. For an in 

Figure 2 The transition diagram for action B “do biopsy” 
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Figure 3 One-step state transitions starting from PL
n 

situ recurrence, we subsequently distinguish the types of treatment for the recurrence, which is 

referred to as salvage therapy. The main treatment approaches of salvage therapy for in situ 

cancers are the same as those for new breast cancer (i.e. lumpectomy alone, lumpectomy with 

radiotherapy, and mastectomy) (Solin et al. 2001). We assume all these in situ recurrences can be 

treated successfully (Fong et al. 2011). After completion of the salvage therapy, the first 

surveillance mammogram can be negative or positive, which are denoted as NL
1 or PL

1 for 

lumpectomy, and NR
1or PR

1 for lumpectomy with radiotherapy, respectively.  

 

 

 

 

 

 

 

 

 

 

   

     

 

 

 

  

With the tree structure, all the relevant transition probabilities are easy to calculate. For 

instance, to calculate the transition probability from PL
n to I under action B (i.e. %��I|P��, B�), we 

only need to multiply all the relevant probabilities from node PL
n to node I, namely, multiplying 

true positive rate by the proportion of invasive cancers in all breast cancers. Details of the 
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calculation of all the transition probabilities are presented in the Appendix A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 is the transition diagram for the women who choose the action “wait”. We assume 

that women will persistently wait until the next mammograms. As no biopsy will be performed 

on the women, the presence of cancer will be unknown. Given that spontaneous regressions may 

occur on some of breast cancer tumors if undetected (Fryback et al. 2006), our model considers 

the cancer regression in the transitions after the action “wait” has been taken or after a false-

negative mammogram. While spontaneous regressions of invasive cancers were rarely found in 

the medical literature, reported cases of spontaneous regression of in situ cancers are not 

infrequent (Joensuu and Lundin 2004). Hence we assume spontaneous regressions can only 

occur at in situ stage. Figure 5 shows an example of how cancer regressions get involved in the 

transitions starting from P under the action “wait”. As the figure suggests, the regression may 

occur when P is in fact a true positive result and corresponds to an in situ breast tumor. In 

addition to P, the possibility of spontaneous regression is implicated in all transient states (i.e. N, 

P, NL
n, PL

n, NR
n and PR

n) in Figure 4. 

Figure 4 The transition diagram for action W “wait” 
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There are two different types of deaths, death from breast cancer and death from other 

causes in the state transitions. We assume that only patients with invasive cancer may die from 

breast cancer in one-step transition. In situ cancer, as an early stage of breast cancer, is assumed 

not to result in death within one year. In an earlier study using the Carolina Mammography 

Registry data (Zhang 2011), the mortality rate is found to be close to zero. As a result, we 

separate deaths from in situ cancer and invasive cancer in Figure 5. 

2.2.4 Structural Properties 

In this section, we present several structural properties of the MDP model to investigate how the 

optimal solution is affected by model inputs. Based on the medical facts, we first introduce 

several assumptions used to prove structural properties. 

ASSUMPTION 1. Given two patients A and B at the same age t, if any one of the inequalities in 

the following holds, then all the other inequalities hold. 

P 

P 

N 

P 

N 

P N 

P 

D 

D 

P 

D 

N 

Figure 5 The transitions starting from P in one decision epoch 
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For every inequality, the left-hand side corresponds to patient A’s transition probability from a 

pre-clinical stage to breast cancer diagnosis, and the right-hand side corresponds to that of 

patient B. Condition (a) presents that all the transition probabilities from a screening positive 

mammogram to other possible post-treatment states including death are higher for patient A than 

B. Condition (b) includes all the transition probabilities from a surveillance positive 

mammogram to other possible post-treatment states. If patient A and patient B both receive 

breast-conserving surgeries (i.e. lumpectomy or lumpectomy with radiotherapy), then post-

treatment recurrence risk of patient A is not lower than that of patient B. 

   Assumption 1 reflects that patient A always has a faster deterioration rate than patient B in 

terms of both incidence of new primary breast cancer and cancer recurrence. It can be viewed as: 

if patient A’s transition probability from any one of the pre-clinical stages (i.e. screening 

mammogram or surveillance mammogram) to breast cancer diagnosis or death is higher than or 

equal to that of patient B, then all her other transition probabilities from pre-clinical stages to 

breast cancer diagnosis is not lower than those of patient B. This assumption also implies that if 

patient A’s risk of developing new breast cancer is higher than or equal to that of patient B, then 

once they are diagnosed with in situ cancer, the risk of cancer recurrence of patient A is not lower 

than that of patient B. It is consistent with prior medical literature (Buist et al. 2010).  

 

 



21 
 

ASSUMPTION 2.  �,
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   In this assumption, we denote the post- treatment total life expectancy of a woman with biopsy-

verified true positive mammogram by ( )T,BtV , where T and B represents treatment and biopy, 

respectively. ( )NP,BtV  corresponds to the total life expectancy of a women with biopsy-verified 

false positive mammogram. NP means the women will continue undergoing mammography, 

which will turn out to be either negative or positive. The assumption indicates that the post-

biopsy life expectancy after a negative (i.e. benign) biopsy result is always higher than or equal 

to that after a positive (i.e. malignant) biopsy result. The same assumption has been made in 

some other breast cancer screening studies (Chhatwal et al 2010). 

Theorem 1. For any given patient, there exists a threshold of biopsy disutility )�∗, ∀
, such that 

( )
*

*
*

,        if
 

         if . 
t t

t t

t t

W d d
a s

B d d

 >
=  ≤

                                     (3)                                                      
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According to Equation (1) in Section 2.2,  

1
1

*
1 1 1 1 1

1

( ) ( | , B) ( ) ( | , W).
t t

t t t t t t t t t t

s S s S

t
v s pd s s v s p s s+ + + + + +

+ ∈ + ∈

= −∑ ∑  

Thus )�∗ is the gain of life expectancy brought by doing biopsy. Theorem 1 implies that only 

when the disutility of biopsy does not exceed the gain of life expectancy brought by a biopsy 

exam, will doing biopsy be an optimal choice. Therefore, )�∗ provides a measurement to assess 

how likely a patient makes a biopsy decision. Obviously, a higher )�∗ indicates that the patient is 

more apt for biopsy relative to another patient with a lower )�∗.  

Proposition 1. Let -�0���� and -�1���� be the value functions of patient A and patient B, 

respectively. Under assumption 1, -�0���� ≤ -�1����,  ∀
 and ∀��. 

   Proposition 1 confirm the intuition that the higher risk of breast cancer is, the lower life 

expectancy of a patient will be. 

Proposition 2. Let *���3� and *�4�3� be the two possible lump-sum rewards at state I for a 

patient, respectively. If *���3� ≥ *�4�3�, then -������ ≥ -�4����, ∀
 and ∀��. 

Corollary 1.  Let *�0�6� and *�1�6� be the lump-sum rewards of state M for patient A patient 

B, respectively. If *�0�6� ≥ *�1�6�, then -�0���� ≥ -�1����, ∀
 and ∀��. 

Proposition 2 and corollary 1 mean that -����� is nondecreasing in *��3� as well as *��6�. 

The clinical significance of these two conclusions is that the better prognosis for invasive cancer 

patients or in situ cancer patients who received mastectomy, the higher life expectancy will be 

for all women undergoing annual mammography. 

The proofs of all the conclusions above are presented in Appendix B. 

 

2.3 Results 

In this section, we first describe how we use the data from various sources to estimate the model 
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parameters in Section 2.3.1. Then Section 2.3.2 presents the computational results by 

implementing the MDP model. Finally, we perform sensitivity analyses on several model 

parameters in Section 2.3.3. 

2.3.1 Parameter Estimation 

Since there is no single dataset that reports all the clinical data regarding epidemiology, diagnosis 

and treatment of breast cancer, we resort to multiple sources to estimate the model parameters 

(Table 3). In addition, the value of regression rate is assumed to be 20% in our base case analysis 

(Zhang and Ivy 2012). In the remainder of this section, we explain how we obtain the parameter 

estimation for calculating transition probabilities, intermediate reward and lump-sum reward.  

Table 3 The data source for parameter estimation 

Parameter Data source 
Parameter 

type 
Incidence Breast Cancer Surveillance Consortium 

(BCSC) dataset 
Case-specific 

Prevalence BCSC dataset Age-specific 
Sensitivity, specificity and PPV of 
mammography 

BCSC 2009 Age-specific 

Mortality for the general population Arias 2012 Age-specific 
One-year mortality of invasive cancers Zhang 2011 Age-specific 
Percentages of treatment types for in situ 
cancer 

Buist et al. 2010 Age-specific 

Breast cancer recurrent rate Wapnir et al. 2011, Shaitelman et al. 2012 Year-specific 

Life expectancy for invasive cancer patients Laboratory for Quantitative Medicine Age-specific 

    The incidences of in situ breast cancers and invasive cancers are estimated using a raw dataset 

from the BCSC, which consists of 1,007,660 women’s screening mammograms from 1996 

through 2002. This dataset reports one observation randomly selected from every woman’s 

screening history. Each observation reports a woman’s age (by 5-year age group), menopausal 

status, race, age at first birth, family history of breast cancer and diagnosis information within 1 

year of the screening mammogram. For women with a specific combination of risk levels, we 

treat them as one risk group, and use the diagnosis information to derive the incidence rate of 
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breast cancer, as well as the proportions of in situ cancers and invasive cancers for this group. 

Since only the women aged 35–84 are included in this dataset, we use the incidence of woman 

aged 80–84 as the incidence for all the women older than 80. We also use this assumption to 

process all other data that do not cover all age groups of 40–100 to fit our decision horizon.  

    Recurrence rate of breast cancer after treatment is different from the incidence of new breast 

cancer. In addition, the magnitude of recurrence risk fluctuates over the years after completion of 

treatment. Due to scarcity of data, we assume the recurrence rates to be the same for all women. 

We adopt the yearly incidence rate of recurrence for each of the 20 years after completion of 

lumpectomy with radiotherapy reported by Shaitelman et al. (2012). The yearly recurrence rates 

associated with lumpectomy alone are estimated based on Viani et al.’s meta-analysis (2007), 

which investigated the effect of the addition of radiation therapy to lumpectomy for in situ cancer 

on IBTR (ipsilateral breast tumor recurrence) and CBTR (contralateral breast tumor recurrence). 

Let P���IBTR�,  P���CBTR�, P���IBTR� and P���CBTR� denote the probabilities of IBTR and 

CBTR after lumpectomy and the probabilities of IBTR and CBTR after lumpectomy with 

radiation in the nth year after treatment, respectively. We have 

( ) ( )
( ) ( )

R L

R L

P IBTR IBTR

P

/P 0.6,

/CBTR CBTRP 1.53.

n n

n n

=

=
 

      Since no study discusses age-specific annual death rates of untreated invasive breast cancer, 

we estimate these rates for invasive cancer patients based on the one-year treated mortality using 

the Carolina Mammography Registry data (Zhang 2011). To adjust for the untreated breast 

cancer, we use Verkooijen et. al’s study (Verkooijen et al. 2005) on the effect of refusal of 

treatment on mortality, i.e., :��DUC� = 3:��DC�, where :��DUC� and :=�DC� are the annual 

mortality rates for untreated invasive cancer patients and treated invasive cancer patients at age t, 
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respectively. 

Table 4 The distribution of treatment types by age 

Treatment 
First-time cancer and CBTR IBTR 

40-49 50-59 60-69 70-79 ≥80  

Lumpectomy alone 25.8% 27% 31% 37.6% 53.2% 0 
Lumpectomy with 
radiotherapy 

37.2% 37% 35% 28.4% 16.8% 0 

Mastectomy 37% 36% 34% 34% 30% 100% 
Source:	Baxter et al. 2004	
IBTR = ipsilateral breast tumor recurrence, CBTR = contralateral breast tumor recurrence 

As explained in Section 2.2.3, the state transitions involve implicit treatment stage. Here we 

differentiate the probabilities of choosing different types of treatments for new cancers from 

those of choosing different salvage treatments for cancer recurrence. According to Zujewski et al. 

(2011), the use of breast-conserving surgery (BCS), including lumpectomy with or without 

radiotherapy, is correlated with age. Older patients are more likely to receive BCS than younger 

patients, while the use of radiotherapy following a BCS decreased with age. We adopt the 

treatment distribution of new in situ breast cancers reported by Baxter et al. (2004). With respect 

to cancer recurrences, mastectomy is considered to be the standard salvage therapy when IBTR 

occurs for patients who had BCS (Jatoi and Kaufmann 2010). An earlier study also reported that 

the vast majority of the patients who experienced in situ IBTR were treated with mastectomy 

(Solin et al. 2001). Although several cases of further BCS in patients previously receiving 

lumpectomy without radiotherapy have been reported, Harris and Solin found that a second BCS 

and mastectomy treatment result in nearly equivalent post-treatment survivals for in situ 

recurrence (Harris and Solin 2000). Therefore, we assume all the patients previously treated with 

lumpectomy with or without radiation will choose mastectomy as the salvage therapy when in 

situ IBTR occurs. However, for CBTR, to the best of our knowledge, there is no study available 

discussing the distribution of treatment types. Since CBTR is a tumor occurring in the 
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contralateral breast, which is independent of the primary breast tumor, we assume it has the same 

treatment distribution as the new cancer. Table 4 summarizes all the probability distributions of 

treatment types in different cases. 

2.3.1.1 Parameters for State Transitions 

In this section, we introduce parameter estimation for intermediate and lump-sum rewards. 

Biopsy is an invasive procedure that may place the patients at risk of morbidities and even 

mortalities. Thus, we assume the disutility of doing biopsy to be 2 weeks (Velanovich et al. 

1995). As a woman gets older, the risk and side-effects caused by biopsy also become more 

harmful. Hence, we assume the disutility associated with biopsy is inversely proportional to the 

age-specific EQ-5D scores, which reflects varying negative impacts of biopsy on women’s 

health at different ages. EQ-5D is a utility-based measure of health status and widely used in 

clinical and economic evaluation of health care (EuroQol Group 1990). Here we employ the age-

specific mean EQ-5D score reported by Saarni et al. (2006). All the disutility estimates are 

presented in Table 5. 

Table 5 Disutility of Biopsy 

Age group 40-44 45-54 55-64 65-74 75-84 >85 

EQ-5D values 0.911 0.870 0.816 0.776 0.633 0.446 

Disutility of biopsy (week) 2 2.09 2.23 2.35 2.88 4.09 

    The lump-sum rewards for absorbing states ,��M� and ,��I�, are determined based on a 

patient’s life expectancy. Hillner et al. (1996) showed that in situ cancers treated with 

mastectomy reduces women’s life expectancy by 1.8% over a 20-year period. Based on this 

finding, we assume that the discounting factor of mastectomy that shortens women’s life 

expectancy is 1.8%. Therefore, ,��M� is equal to the discounted population-based life 

expectancy of American women aged t, which is available in the United States life tables (Arias 
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2012). In addition, we use the breast cancer outcome calculator 

(http://www.lifemath.net/cancer/breastcancer/outcome/index.php) developed by the Laboratory 

for Quantitative Medicine to estimate the life expectancies (i.e. ,��I�) for treated invasive cancer 

patients. We use ages and the mean size of screening detected invasive tumors (BCSC 2009) as 

the inputs for the calculation. 

2.3.2 Experiment Results 

Table 6 The personal status of the risk factors for example cases 

Risk factors Patient A Patient B 

Age 40 40 
Race white Asian 
Age at birth of first child >30 <30 
First-degree family history of breast 
cancer 

Yes No 

Menopause status Premenopausal Premenopausal 
Clinical history of in situ breast 
cancer 

  

 
 
 
 
 

Scenario 1 None None 

Scenario 2 in situ cancer is detected 
at age 45 

in situ cancer is detected 
at age 45 

Scenario 3 in situ cancer is detected 
at age 70 

in situ cancer is detected 
at age 70 

 
In this section, we present two example cases to show the optimal biopsy referral policies for 

different women. The personal breast cancer risk attributes of the two examples are listed in 

Table 6. In these two case studies, we assume both patient A and patient B will turn into 

postmenopausal at age 51 based on the mean age of natural menopause reported by Kato et 

al.(1998). Patient A and patient B are representative of high-risk and low-risk women, 

respectively. Based on the BCSC dataset, the breast cancer incidence of the low-risk women 

represented by patient A is estimated to be 0.0049, while that of high-risk women represented by 

patient B is 0.0108. Therefore, patient A is expected to undergo more intensive screenings and 

follow-up biopsy exams for detecting breast cancer than patient B.   
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We study three scenarios to show the optimal policies for women with different clinical 

histories. Table 7 presents the optimal biopsy referral policies for the two women without clinical 

history on a 60-year horizon (i.e. from age 40 through age 99). In order to reach the highest life 

expectancy, these two women should follow the optimal policies until they reach age 100 or they 

are diagnosed with breast cancer. While patient A is recommended to receive 46 biopsies among 

60 positive mammograms, patient B is only recommended to undergo 42 biopsies. This outcome 

is consistent with the assumption that patient A bears higher breast cancer risk than patient B 

does. 

Table 7 The optimal biopsy referral policies for two patients in scenario 1 from age 40 to 90 

Age 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 

Patient A W W W W W B B B B B W W B B B B B B B B B B B B B W W W W W 

Patient B W W W W W W W W W W B B B B B B B B B B B B B B B W W W W W 

Age 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96 97 98 99 

Patient A B B B B B B B B B B B B B B B B B B B B B B B B B B B W W 

Patient B B B B W B B B B B B B B B B B B B B B B B B B B B B B W W 

B= do biopsy, W=wait. 
In this model, the optimal decisions at different ages depend on multiple variables, including 

the incidence rate, ratio of invasive cancer to all breast cancers, disutility of biopsy, death rate 

from invasive cancer, and distribution of treatment types. On the one hand, the monotonicity of 

these variables are not consistent. On the other hand, even some of these variables are not 

monotonic and fluctuate over age. As a result, our optimal policies demonstrate non-monotone 

patterns. For instance, patient A is recommended to do biopsy from age 45 but skip biopsy at 

ages 50 and 51. According to the data, the incidence rates of breast cancer for patient A from age 

40 to 44 are lower than those after age 44, which explains why patient A should start follow-up 

biopsy from age 45. However, the incidence rates of breast cancer at ages 50 and 51 are not 

significantly different from those between ages 45 and 60. This optimal action “wait” at ages 50 
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and 51 is probably because of a relatively low proportion of invasive cancers among new cancer 

cases at these two ages for patient A, since a lower possibility of developing malignant breast 

cancer means less necessity for biopsy exam. In a similar manner, the optimal policy flips 

between “W” and “B” with age to reach an optimal tradeoff among different non-monotone 

determinants.   

    Our results partly explain the controversy on screening guidelines in the public health 

community. While the ACS recommends women to start receiving routine mammography from 

age 45, the U.S. Preventive Services Task Force (USPTF) and the American College of 

Preventive Medicine (ACMP) suggest the starting age of mammography should be 50 (Oeffinger 

et al. 2015, Siu 2016). However, our results show that the first years of starting biopsies are age 

50 and age 45 for the patients with low risk and high risk, respectively. Since both women are 

not recommended to do biopsy before these two ages, no matter if the mammogram is positive or 

negative, their mammography decisions should also start from age 50 and age 45 respectively. 

This result also aligns with some individual studies, which argue that women should begin 

mammography screenings between age 45 and 50 (Antman and Shea 1999).  

The patient B’s optimal referral policy recommends women suspend biopsies at age 50 and 51 

after five consecutive biopsy recommendations between age 45 and age 49, which implicitly 

reflects the USPSTF’s concern that the potential benefit of frequent breast cancer screening 

before age 50 cannot offset the cumulative harms caused by potential false-positive results and 

potential over-diagnosis of mammograms as well as follow-up biopsies. 

It is worth noting that both patients are recommended to skip mammograms between ages 65 

and 69, consistent with some clinical studies indicating that recall rates were significantly lower 

for women aged 65–69 compared with women aged 50–64 (Moss et al. 2011). The experimental 
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results also echo some other researchers’ efforts on the improvement of screening 

mammography. For instance, we recommend patient A skip biopsies as well as mammograms in 

4 out of 9 years from age 66 to age 74. In addition, patient B, who bears relatively lower risk of 

breast cancer, is recommended to skip 5 out of 9 biopsies as well as mammograms during the 

same interval. To some extent, it coincides with Braithwaite et al.’s study on women undergoing 

annual mammograms between ages 66 and 89, which suggests that women aged 66 to 74 years 

should reduce the frequency of routine screenings to biennial (Braithwaite et al. 2013). 

Therefore, from the perspective of breast cancer prevention, age 66 to age 74 can be viewed as a 

“low-risk interval” that does not need intensive screenings.  

Table 8 The 20-year optimal post-treatment biopsy referrals for patients in scenarios 2 and 3 

state PL
1
 PL

2
 PL

3
 PL

4
 PL

5
 PL

6
 PL

7
 PL

8
 PL

9
 PL

10
 PL

11
 PL

12
 PL

13
 PL

14
 PL

15
 PL

16
 PL

17
 PL

18
 PL

19
 PL

20
 

Age 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 
Patient 

A 
B B B B W W W W W B B B B B W W W W W W 

Patient 

B 
B B B B W W W W W B B B B B W W W W W W 

state PR
1
 PR

2
 PR

3
 PR

4
 PR

5
 PR

6
 PR

7
 PR

8
 PR

9
 PR

10
 PR

11
 PR

12
 PR

13
 PR

14
 PR

15
 PR

16
 PR

17
 PR

18
 PR

19
 PR

20
 

Age 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 
Patient 

A 
B B B B W W W W W W W W W W B B B B B B 

Patient 

B 
B B B B W W W W W W W W W W B B B B B B 

                     

state PL
1
 PL

2
 PL

3
 PL

4
 PL

5
 PL

6
 PL

7
 PL

8
 PL

9
 PL

10
 PL

11
 PL

12
 PL

13
 PL

14
 PL

15
 PL

16
 PL

17
 PL

18
 PL

19
 PL

20
 

Age 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 
Patient 

A 
B B B B B W W W W W B W W W B B B B B W 

Patient 

B 
B B B B B W W W W W B W W W B B B B B W 

state PR
1
 PR

2
 PR

3
 PR

4
 PR

5
 PR

6
 PR

7
 PR

8
 PR

9
 PR

10
 PR

11
 PR

12
 PR

13
 PR

14
 PR

15
 PR

16
 PR

17
 PR

18
 PR

19
 PR

20
 

Age 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 
Patient 

A 
B B B B W W W W W W W W W W B B B W W W 

Patient 

B 
B B B B W W W W W W W W W W B B B W W W 

B= do biopsy, W=wait. 
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Next, we investigate the cases of the patients with clinical history of in situ cancer. Since we 

use the same yearly recurrence rates for all patients, we expect there is little difference between 

different patient’s optimal post-treatment biopsy referral policies. Therefore, only age, number of 

years after treatment, and treatment option are determinants of the optimal biopsy policies for 

these cases. In scenarios 2 and 3, two patients are diagnosed with in situ breast cancer at age 45 

and age 70, respectively. Table 8 presents the optimal biopsy referral policies for the two 

scenarios under different treatments. As expected, the two patients have identical optimal biopsy 

referral policies if they are in the same post-treatment year and received the same treatment. 

Moreover, neither lumpectomy alone nor lumpectomy with radiotherapy indicates a significant 

predominance in the total number of optimal biopsy decisions. 

2.3.3 Sensitivity Analysis 

We conduct two sensitivity analyses by varying two parameters: regression rate and disutility of 

biopsy. Since regression rate reflects “self-healing” property of breast tumors, the larger the 

regression rate is, the less likely that the patient should receive a follow-up biopsy. Figure 6 

shows the decreasing trend of total number of optimal biopsy decisions with the increase of 

regression rate. The inflection points of regression rate for patient B is approximately 35%, while 

varying regression rate for patient A does not impact her optimal biopsy referral policy.  

    These results suggest that the spontaneous regression of breast tumors does not necessarily 

influence our biopsy referral policy. As compared to patient B, patient A’s risk of developing 

breast cancer is too high to be counteracted by potential spontaneous regression of in situ tumor. 

It is worth mentioning that the decrease in the total number of optimal biopsy decisions 

predominantly occurs in young women in our finding. The proportion of in situ cancers among 

all breast cancer cases is very low among very elderly (Barlow et al. 2006). Particularly, in our 
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dataset, the percentage of in situ cancers is close to zero for the patients older than 80. Therefore, 

the spontaneous regression of in situ tumors has little effect on the biopsy decisions for older 

women. 

 

 

 

    

  

We then vary the magnitude of biopsy disutility by multiplying the base value (i.e. 2 weeks 

at age 40) using different coefficients (Fig 7). When the multiplier is set to zero, which means 

biopsy has no negative impact on patient’s health so that doing biopsy would not reduce 

intermediate life years at the current decision epoch, the optimal action is always undertaking 

biopsy. As the disutility of biopsy increases, the patient is increasingly likely opt to “wait” when 
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Figure 6 The trend of total number of optimum biopsies from age 40 through 100 when 
varying the regression rate 
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receiving a positive mammogram, since the reduction of mortality by choosing biopsy is no 

longer sufficient to offset inherent harm and risk posed on health brought by the biopsy exam. 

When the disutility of biopsy increases threefold (6 weeks at age 40), both patient A and patient 

B should never do biopsy in their lifetime. 

 

2.4 Conclusion and Limitations 

2.4.1 Discussion 

This study provides personalized optimal follow-up biopsy referral policies for both screening 

mammography and surveillance mammography. We aim at analyzing the common over-

diagnosis problem in the current annual mammography practice of breast cancer. This problem is 

formulated as an MDP model with a value function of maximizing total life expectancy. 

Although we focus on decisions of biopsy referring after positive mammograms, our policy is in 

fact equivalent to a mammography guideline. If a patient is recommended not to do biopsy in the 

current year, the corresponding mammogram is actually also unnecessary, since no matter 

whether the outcome is positive or negative, the woman will wait until the next mammogram. 

Previous medical literature suggests that the dose required for a mammogram is so small that the 

associated risk of radiation exposure is negligible (Berry et al. 2005). Therefore, it is reasonable 

to assume that mammography is a harmless exam without significant disutility. Removing the 

mammograms associated with optimal decision of “wait” from our model has no effect on model 

output. As a result, our study suggests that existing mammography guidelines proposed by the 

healthcare organizations, which recommend periodic screening mammography for all women, 

can be improved. The schedule of mammography should be determined on a patient-specific 

basis. 

We also discuss the influence of potential spontaneous regression of breast tumor on the 
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biopsy referral decision. Despite lack of sufficient direct evidence, there have been concerns that 

spontaneous regression of tumor may lead to a percentage of over-diagnosis in the breast cancer 

screening practice. Our sensitivity analysis finds that regression has no effect on high risk 

women, but a certain level of regression rate may reduce the need for biopsy exams in low-risk 

women.  

In addition, our model addresses the surveillance mammography after completion of 

treatment for in situ cancers. Our case studies demonstrate that surveillance mammography 

schedules can also be personalized. Although we have only three-dimensional determinants (i.e. 

age, number of years after treatment, and treatment type) for biopsy referral policy of following 

surveillance mammography, our results still reveal the differences between the optimal policies 

of people with different combinations of determinants. Previous studies showed that the 

recurrence risk after breast-conserving surgery varies nonlinearly over time and risk factors for 

recurrence need to be viewed differently based on the time frame of follow-ups (Shaitelman et a. 

2012, Braithwaite at al. 2013). Our experimental results demonstrate that the optimal biopsy 

policies fluctuate dramatically over years, which are consistent with the non-monotone pattern of 

post-treatment recurrence risk over a long-term time horizon.  

Moreover, although radiotherapy after lumpectomy is proving to significantly reduce the risk 

of local recurrence after treatment of in situ cancer, our study does not show that patients with 

lumpectomy plus radiotherapy will perform less biopsies than those with lumpectomy alone, 

which is a somewhat counter-intuitive result since the good performance of postoperative 

radiotherapy in reducing local recurrence has been emphasized for years.  

2.4.2 Limitations and Future work 

There are several limitations in our study. First, we use a general set of yearly recurrence rates 
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for all patients. In fact, previous studies found several major risk factors associated with breast 

cancer are also related to recurrence rate after initial diagnosis of in situ cancer (Buist et al.2010). 

Future work using patient-specific yearly recurrence rates may provide more realistic 

personalized biopsy referral polices for surveillance mammography. Second, our MDP model 

only considers two options, skipping or doing biopsy. As a matter of fact, there exist more 

approaches to early detect breast cancer, such as breast self-examination. Therefore, our biopsy 

referral policy is very conservative, since introducing self-examination would potentially reduce 

mortality brought by skipping mammograms and follow-up biopsies. Including breast self-

examination as an option in the model will represent the real situations better. Third, in order to 

fit our MDP model, the risk factors we used to categorize patients do not include any dynamic 

breast cancer risk factors (e.g. BMI and breast density), which may change over time. For 

instance, since we do not know a woman’s BMI at her next age, it is very difficult to determine 

her breast cancer risk in the following year as well as all future years when we consider BMI as a 

determinant of breast cancer risk. As a result, we are unable to calculate the associated transition 

probabilities. There are a lot of dynamic breast cancer risk factors identified in our raw dataset, 

including BMI, prior breast procedure, breast density, result of last mammogram and hormone 

therapy use. We plan to incorporate the effects of these dynamic factors in our future work. 

Lastly, the experimental results of the optimal biopsy referral policies are completely data-

driven, which are inevitably impacted by the statistical noise and numerical errors in the input 

data. As a result, the optimal policy may not be a generally optimal.  The flips in the optimal 

policies are therefore insufficiently justified. Our future research will employ some data-

smoothing techniques to mitigate these undesirable impacts from the input data.   

  
 



36 
 

Acknowledgement 

Data collection and sharing was supported by the National Cancer Institute-funded Breast Cancer 

Surveillance Consortium (U01CA63740, U01CA86076, U01CA86082, U01CA63736, 

U01CA70013, U01CA69976, U01CA63731, U01CA70040, HHSN261201100031C). A list of 

the BCSC investigators and procedures for requesting BCSC data for research purposes are 

provided at: http://breastscreening.cancer.gov/ 

 

References 

American Cancer Society. (2017) Cancer Facts & Figures 2017.Atlanta: American Cancer 
Society;  
 
Antman, K., & Shea, S. (1999). Screening mammography under age 50. JAMA: the journal of 

the American Medical Association, 281(16), 1470-1472. 
 
Arias, E. (2012). United States life tables, 2008. National vital statistics reports: from the 

Centers for Disease Control and Prevention, National Center for Health Statistics, National 

Vital Statistics System, 54(14), 1-40. 
 
Ayvaci, M. U., Alagoz, O., & Burnside, E. S. (2012). The effect of budgetary restrictions on 
breast cancer diagnostic decisions. Manufacturing & Service Operations Management, 14(4), 
600-617. 
 
Ayer, T., Alagoz, O., & Stout, N. K. (2012). OR Forum—A POMDP Approach to Personalize     
Mammography Screening Decisions. Operations Research, 60(5), 1019-1034. 
 
Barlow, W. E., White, E., Ballard-Barbash, R., Vacek, P. M., Titus-Ernstoff, L., Carney, P. A., ... 
& Kerlikowske, K. (2006). Prospective breast cancer risk prediction model for women 
undergoing screening mammography. Journal of the National Cancer Institute, 98(17), 1204-
1214. 
 
Baxter, N. N., Virnig, B. A., Durham, S. B., & Tuttle, T. M. (2004). Trends in the treatment of 
ductal carcinoma in situ of the breast. Journal of the National Cancer Institute, 96(6), 443-448. 
 
Berry, D. A., Cronin, K. A., Plevritis, S. K., Fryback, D. G., Clarke, L., Zelen, M., ... & Feuer, E. 
J. (2005). Effect of screening and adjuvant therapy on mortality from breast cancer. New 

England Journal of Medicine, 353(17), 1784-1792. 
 
Boyages, M. B. B. S., Delaney, M. B. B. S., & Taylor, M. B. B. S. (1999). Predictors of local     
recurrence after treatment of ductal carcinoma in situ. Cancer, 85(3), 616-628. 



37 
 

 
Braithwaite, D., Zhu, W., Hubbard, R. A., O’Meara, E. S., Miglioretti, D. L., Geller, B., ... & 
Kerlikowske, K. (2013). Screening outcomes in older US women undergoing multiple 
mammograms in community practice: does interval, age, or comorbidity score affect tumor 
characteristics or false positive rates?. Journal of the National Cancer Institute, 105(5), 334-341. 
 
Breast Cancer Surveillance Consortium (2009) Performance Measures for 1,960,150 Screening 
Mammography Examinations from 2002 to 2006 by Age. Retrieved July 25, 2015 from 
http://breastscreening.cancer.gov/data/performance/screening/2009/perf_age.html 
 
Breast Cancer Surveillance Consortium (2009) Cancers for 2,264,089 Screening Mammography     
Examinations from 2002 – 2006. Retrieved July 25, 2015 from 
http://breastscreening.cancer.gov/data/benchmarks/screening/2009/table4.html 
 
Bruening, W., Schoelles, K., Treadwell, J., Launders, J., Fontanarosa, J., & Tipton, K. (2009). 
Comparative effectiveness of core-needle and open surgical biopsy for the diagnosis of breast 
lesions. 
 
Buist, D. S., Abraham, L. A., Barlow, W. E., Krishnaraj, A., Holdridge, R. C., Sickles, E. A., ... 
& Geller, B. M. (2010). Diagnosis of second breast cancer events after initial diagnosis of early 
stage breast cancer. Breast cancer research and treatment, 124(3), 863-873. 
 
Chhatwal, J., Alagoz, O., & Burnside, E. S. (2010). Optimal breast biopsy decision-making 
based on mammographic features and demographic factors. Operations research, 58(6), 1577-
1591. 
 
Clarke, M., Collins, R., Darby, S., Davies, C., Elphinstone, P., Evans, E., ... & Wang, Y. (2005). 
Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local 
recurrence and 15-year survival: an overview of the randomised trials. Lancet, 366(9503), 2087. 
 
DeSantis, C., Siegel, R., Bandi, P., & Jemal, A. (2011). Breast cancer statistics, 2011. CA: A 

Cancer Journal for Clinicians, 61(6), 408-418. 
 
EuroQol Group. (1990). EuroQol-a new facility for the measurement of health-related quality of 
life. Health Policy, 16(3), 199-208. 
 
Fong, J., Kurniawan, E. D., Rose, A. K., Mou, A., Collins, J. P., Miller, J. A., & Mann, G. B. 
(2011). Outcomes of screening-detected ductal carcinoma in situ treated with wide excision 
alone. Annals of surgical oncology, 18(13), 3778-3784. 
 
Fryback, D. G., Stout, N. K., Rosenberg, M. A., Trentham-Dietz, A., Kuruchittham, V., & 
Remington, P. L. (2006). The Wisconsin breast cancer epidemiology simulation model. JNCI 
Monographs, 2006(36), 37-47. 
 



38 
 

Gail, M. H., Brinton, L. A., Byar, D. P., Corle, D. K., Green, S. B., Schairer, C., & Mulvihill, J. 
J. (1989). Projecting individualized probabilities of developing breast cancer for white females 
who are being examined annually. Journal of the National Cancer Institute, 81(24), 1879-1886. 
 
Gail, M. H., Costantino, J. P., Bryant, J., Croyle, R., Freedman, L., Helzlsouer, K., & Vogel, V. 
(1999). Weighing the risks and benefits of tamoxifen treatment for preventing breast cancer. 
Journal of the National Cancer Institute, 91(21), 1829-1846. 
 
Habel, L. A., Moe, R. E., Daling, J. R., Holte, S., Rossing, M. A., & Weiss, N. S. (1997). Risk of 
contralateral breast cancer among women with carcinoma in situ of the breast. Annals of surgery, 
225(1), 69. 
 
Harris, E. E., & Solin, L. J. (2000). The diagnosis and treatment of ductal carcinoma in situ of 
the breast. The breast journal, 6(2), 78-95. 
 
Hillner, B. E., Desch, C. E., Carlson, R. W., Smith, T. J., Esserman, L., & Bear, H. D. (1996). 
Trade-offs between survival and breast preservation for three initial treatments of ductal 
carcinoma-in-situ of the breast. Journal of clinical oncology, 14(1), 70-77. 
 
Jatoi, I., & Kaufmann, M. (2010). Management of breast diseases. Springer. 
 
Joensuu, H., & Lundin, J. (2004). Spontaneous Regression of Cancerous Tumors Detected by 
Mammography Screening—Reply. JAMA: The Journal of the American Medical Association, 
292(21), 2580-2580. 
 
Kato, I., Toniolo, P., Akhmedkhanov, A., Koenig, K. L., Shore, R., & Zeleniuch-Jacquotte, A. 
(1998).  Prospective study of factors influencing the onset of natural menopause. Journal of 
clinical epidemiology, 51(12), 1271-1276. 
 
Khatcheressian, J. L., Wolff, A. C., Smith, T. J., Grunfeld, E., Muss, H. B., Vogel, V. G., ... & 
Davidson, N. E. (2006). American Society of Clinical Oncology 2006 update of the breast cancer 
follow-up and management guidelines in the adjuvant setting. Journal of Clinical Oncology, 
24(31), 5091-5097. 
 
Lash, T. L., Fox, M. P., Buist, D. S., Wei, F., Field, T. S., Frost, F. J., ... & Silliman, R. A. 
(2007). Mammography surveillance and mortality in older breast cancer survivors. Journal of 
clinical oncology, 25(21), 3001-3006. 
 
Maillart, L. M., Ivy, J. S., Ransom, S., & Diehl, K. (2008). Assessing dynamic breast cancer 
screening policies. Operations Research, 56(6), 1411-1427. 
 
Moss, S. M., Brown, J., Garvican, L., Coleman, D. A., Johns, L. E., Blanks, R. G., ... & Gamble, 
P. (2001). Routine breast screening for women aged 65–69: results from evaluation of the 
demonstration sites. British journal of cancer, 85(9), 1289. 
 



39 
 

National cancer institute. Dictionary of cancer terms. Retrieved July 25, 2015 from 
http://www.cancer.gov/dictionary 
 
Oeffinger, K. C., Fontham, E. T., Etzioni, R., Herzig, A., Michaelson, J. S., Shih, Y. C. T., ... & 
Wolf, A. M. (2015). Breast cancer screening for women at average risk: 2015 guideline update 
from the American Cancer Society. Jama, 314(15), 1599-1614. 
 
Parker, S. H., Burbank, F., Jackman, R. J., Aucreman, C. J., Cardenosa, G., Cink, T. M., ... & 
Garver, P. R. (1994). Percutaneous large-core breast biopsy: a multi-institutional study. 
Radiology, 193(2), 359-364. 
 
Saarni, S. I., Härkänen, T., Sintonen, H., Suvisaari, J., Koskinen, S., Aromaa, A., & Lönnqvist, J. 
(2006). The impact of 29 chronic conditions on health-related quality of life: a general 
population survey in Finland using 15D and EQ-5D. Quality of Life Research, 15(8), 1403-1414. 
 
Schootman, M., Jeffe, D. B., Reschke, A. H., & Aft, R. L. (2003). Disparities related to 
socioeconomic status and access to medical care remain in the United States among women who 
never had a mammogram. Cancer Causes & Control, 14(5), 419-425. 
 
Shaitelman, S. F., Wilkinson, J. B., Kestin, L. L., Ye, H., Goldstein, N. S., Martinez, A. A., & 
Vicini, F. A. (2012). Long-Term Outcome in Patients With Ductal Carcinoma In Situ Treated 
With Breast-Conserving Therapy: Implications for Optimal Follow-up Strategies. International 
Journal of Radiation Oncology* Biology* Physics, 83(3), e305-e312. 
 
Siu, A. L. (2016). Screening for breast cancer: US Preventive Services Task Force 
recommendation 
 
Smith, R. A., Cokkinides, V., Brooks, D., Saslow, D., Shah, M., & Brawley, O. W. (2011). 
Cancer screening in the United States, 2011 
 
Solin, L. J., Fourquet, A., Vicini, F. A., Haffty, B., Taylor, M., McCormick, B., ... & Schultz, D. 
J. (2001). Salvage treatment for local recurrence after breast‐conserving surgery and radiation 
as initial treatment for mammographically detected ductal carcinoma in situ of the breast. 
Cancer, 91(6), 1090-1097. 
 
Solin, L. J., Fourquet, A., Vicini, F. A., Taylor, M., Olivotto, I. A., Haffty, B., ... & Hwang, W. 
T. (2005). Long-term outcome after breast-conservation treatment with radiation for 
mammographically detected ductal carcinoma in situ of the breast. Cancer, 103(6), 1137-1146. 
 
Sonnenberg, F. A., & Beck, J. R. (1993). Markov models in medical decision making a practical 
guide. Medical decision making, 13(4), 322-338. 
 
Tabar, L., Yen, M. F., Vitak, B., Chen, H. H., Smith, R. A., & Duffy, S. W. (2003). 
Mammography service screening and mortality in breast cancer patients: 20-year follow-up 
before and after introduction of screening. Lancet, 361(9367), 1405. 
 



40 
 

Velanovich, V. (1995). Immediate biopsy versus observation for abnormal findings on 
mammograms: an analysis of potential outcomes and costs. The American journal of surgery, 
170(4), 327-332. 
 
Verkooijen, H. M., Fioretta, G. M., Rapiti, E., Bonnefoi, H., Vlastos, G., Kurtz, J., ... & 
Bouchardy, C. (2005). Patients’ refusal of surgery strongly impairs breast cancer survival. 
Annals of surgery, 242(2), 276. 
 
Viani, G. A., Stefano, E. J., Afonso, S. L., De Fendi, L. I., Soares, F. V., Leon, P. G., & 
Guimarães, F. S. (2007). Breast-conserving surgery with or without radiotherapy in women with 
ductal carcinoma in situ: a meta-analysis of randomized trials. Radiat oncol, 2(1), 28. 
 
Wapnir, I. L., Dignam, J. J., Fisher, B., Mamounas, E. P., Anderson, S. J., Julian, T. B., ... & 
Wolmark, N. (2011). Long-term outcomes of invasive ipsilateral breast tumor recurrences after 
lumpectomy in NSABP B-17 and B-24 randomized clinical trials for DCIS. Journal of the 
National Cancer Institute, 103(6), 478-488. 
 
Zahl, P. H., Mæhlen, J., & Welch, H. G. (2008). The natural history of invasive breast cancers 
detected by screening mammography. Archives of internal medicine, 168(21), 2311. 
 
Zhang, S., & Ivy, J., (2012) Analytic Modeling of Breast Cancer Spontaneous Regression. 
Proceedings of the 2012 Industrial and Systems Engineering Research Conference, Orlando, FL, 
2012. 
 
Zhang S. (2011) Modeling the Complexity of Breast Cancer under Conditions of Uncertainty. 
PhD dissertation, North Carolina State University. 
 
Zhi, H., Ou, B., Luo, B. M., Feng, X., Wen, Y. L., & Yang, H. Y. (2007). Comparison of 
ultrasound elastography, mammography, and sonography in the diagnosis of solid breast lesions. 
Journal of Ultrasound in Medicine, 26(6), 807-815. 
 
Zujewski, J. A., Harlan, L. C., Morrell, D. M., & Stevens, J. L. (2011). Ductal carcinoma in situ: 
trends in treatment over time in the US. Breast cancer research and treatment, 127(1), 251-257. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



41 
 

Appendix 

 

A. Estimation for Transition Probabilities 

Parameters 

P�DO� = annual death probability (excluding death of breast cancer)  

P�DUC� = annual death probability of untreated invasive breast cancer patient 

P�DC� = annual death probability of treated invasive cancer patient 

P�NC − C� = annual incidence rate of new breast cancer 

P�NC − NC� = 1− P�NC − C� 

P�ins|C� = proportion of in situ cancers among all breast cancers 

P�inv|C� = proportion of invasive cancers among all breast cancers 

P�NC|Negative� = percentage of negative mammograms in which no cancer exists. 

P�C|Negative� = percentage of negative mammograms in which cancers exist. 

P�NC|Positive� = percentage of positive mammograms in which no cancer exists. 

P�C|Positive� = percentage of positive mammograms in which cancers exist.  

P�Negative|NC� = percentage of non-cancers that are interpreted as negative mammograms 

P�Positive|NC� = percentage of non-cancers that are interpreted as negative mammograms 

P�Negative|C� = percentage of cancers that are interpreted as negative mammograms 
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P�Positive|C� = percentage of cancers that are interpreted as negative mammograms 

P�R� = annual regression rate of in situ cancer 

P�L|ins� = probability of choosing lumpectomy treatment for in situ patients 

P�R|ins� = probability of choosing lumpectomy with radiotherapy treatment for in situ patients 

P�M|ins� = probability of choosing mastectomy treatment for in situ patients 

P���IBTR� = recurrence rate of IBTR in the nth year after completion of lumpectomy  

P���CBTR� = recurrence rate of CBTR in the nth year after completion of lumpectomy  

P���IBTR� = recurrence rate of IBTR in the nth year after completion of lumpectomy with 

radiotherapy 

P���CBTR� = recurrence rate of CBTR in the nth year after completion of lumpectomy with 

radiotherapy 

P�ins, IBTR|C�G� = proportion of in situ IBTRs in all the recurrences in the nth year after 

completion of lumpectomy 

P�inv, IBTR|C�G� = proportion of invasive IBTRs in all the recurrences in the nth year after 

completion of lumpectomy 

P�ins, CBTR|C�G� = proportion of in situ IBTRs in all the recurrences in the nth year after 

completion of lumpectomy 

P�inv, CBTR|C�G� = proportion of invasive CBTRs in all the recurrences in the nth year after 

completion of lumpectomy 
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P�ins, IBTR|C�G� = proportion of in situ IBTRs in all the recurrences in the nth year after 

completion of lumpectomy with radiotherapy 

P�inv, IBTR|C�G� = proportion of invasive IBTRs in all the recurrences in the nth year after 

completion of lumpectomy with radiotherapy 

P�ins, CBTR|C�G� = proportion of in situ IBTRs in all the recurrences in the nth year after 

completion of lumpectomy with radiotherapy 

P�inv, CBTR|C�G� = proportion of invasive IBTRs in all the recurrences in the nth year after 

completion of lumpectomy with radiotherapy 

Probabilities 

Starting from N 

� p�N|N, W� = P�NC|Negative�I1 − P�DO�JIP�NC − NC�P�Negative|NC� +
 P�NC − C�P�Negative|C�J + P�C|Negative�I�P�ins|C�I1 −
P�DO�J IP�R�P�Negative│NC� + �1 − P�R��P�Negative│NC�J +  P�inv|C��1 −
P�DO��1 − P�DUC��P�Negative|C�J  

� p�D|N, W� =  P�NC|Negative�P�DO� + P�C|Negative� LP�ins|C�P�DO� +

P�inv|C� M1 − I1 − P�DO�JI1 − P�DUC�JNO  

� p�P|N, W� = 1 −  p�N|N, W� − p�D|N, W� 

Starting from P 

Action: B 
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� p�P|P, B� =  P�NC|Positive��1 − P�DO� )(P�NC − NC�P�Positive|NC� +  P�NC −
C�P�Positive|C�) 

� p�N|P, B� = P�NC|Positive��1 − P�DO�(P�NC − NC�P�Negative|NC� +  P�NC −
C�P�Negative|C�) 

� p�P��|P, B� = P�C|Positive�P�ins|C�P�L|ins�I1 − P�DO�J PL1 − M1 − P���IBTR�NM1 −

 P���CBTR�NO P�Positive|C� + M1 − P���IBTR�NM1 − P���CBTR�NP�Positive|NC�Q  

� p�N��|P, B� = P�C|Positive�P�ins|C�P�L|ins�I1 − P�DO�J PL1 − M1 − P���IBTR�NM1 −

 P���CBTR�NO P�Negative|C� + M1 − P���IBTR�NM1 −  P���CBTR�NP�Negative|NC�Q  

� p�P��|P, B� = P�C|Positive�P�ins|C�P�R|ins�I1 − P�DO�J PL1 − M1 − P���IBTR�NM1 −

 P���CBTR�NO P�Positive|C� + M1 − P���IBTR�NM1 − P���CBTR�NP�Positive|NC�Q  

� p�N�� |P, B� = P�C|Positive�P�ins|C�P�R|ins�I1 − P�DO�J PL1 − M1 − P���IBTR�NM1 −

 P���CBTR�NO P�Positive|C� + M1 − P���IBTR�NM1 − P���CBTR�NP�Positive|NC�Q  

� p�M|P, B� =  P�C|Positive�P�ins|C�P�M|ins� 

� p�I|P, B� =  P�C|Positive�P�inv|C� 

� p�D|P, B� = 1 −  p�P|P, B� − p�N|P, B� − p�P��|P, B� − p�N��|P, B� − p�P��|P, B� −
p�N�� |P, B� − p�M|P, B� − p�I|P, B� 

Action: W 
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� p�N|P, W� = P�NC|Positive�I1 − P�DO�JIP�NC − NC�P�Negative|NC� +
 P�NC − C�P�Negative|C�J + P�C|Positive�I�P�ins|C�I1 −
P�DO�J IP�R�P�Negative│NC� + �1 − P�R��P�Negative│NC�J +  P�inv|C��1 −
P�DO��1 − P�DUC��P�Negative|C�J  

� p�D|P, W� =  P�NC|Positive�P�DO� + P�C|Positive� LP�ins|C�P�DO� + P�inv|C� M1 −

I1 − P�DO�JI1 − P�DUC�JNO 

� p�P|P, W� = 1 −  p�N|P, W� − p�D|P, W� 

 

Starting from RST 

� p�N��&�|N��, W� = P�NC|Negative�I1 − P�DO�J LM1 − I1 − P���IBTR�JI1 −

 P���CBTR�JN P�Negative|C� + I1 − P���IBTR�JI1 −  P���CBTR�JP�Negative|NC�O +

P�C|Negative�  LIP�ins, IBTR|C�G� + P�ins, CBTR|C�G�JI1 −
P�DO�J MP�R�P�Negative|NC� + I1 − P�R�JP�Negative|C�N + IP�inv, IBTR|C�G� +
P�inv, CBTR|C�G�JI1 − P�DO�JI1 − P�DUC�JP�Negative|C�O  

� p�D|N��, W� = P�NC|Negative�P�DO� + P�C|Negative� LIP�ins, IBTR|C�G� +
P�ins, CBTR|C�G�JP�DO� + IP�inv, CBTR|C�G� + P�inv, CBTR|C�G�J M1 − I1 − P�DO�JI1 −
P�DUC�JNO  

� p�P��&�|N��, W� = 1 −  p�N�G&�|N�G, W� − p�D|N�G, W� 
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Starting from UST 

Action: B 

� p�P��&�|P��, B� = P�NC|Positive�I1 − P�DO�J LM1 − I1 − P���IBTR�JI1 −

 P���CBTR�JN P�Positive|C� + I1 − P���IBTR�JI1 −  P���CBTR�JP�Positive|NC�O  

� p�N��&�|P��, B� = P�NC|Positive�I1 − P�DO�J LM1 − I1 − P���IBTR�JI1 −

 P���CBTR�JN P�Negative|C� + I1 − P���IBTR�JI1 −  P���CBTR�JP�Negative|NC�O  

� p�P��|P��, B� = P�C|Positive�I1 − P�DO�J�P�ins, CBTR|C�G�P�L|ins�� PL1 −

M1 − P���IBTR�NM1 −  P���CBTR�NO P�Positive|C� + M1 − P���IBTR�NM1 −

 P���CBTR�NP�Positive|NC�Q  

� p�N��|P��, B� = P�C|Positive�I1 − P�DO�JIP�ins, CBTR|C�G�P�L|ins�J PL1 −

M1 − P���IBTR�NM1 −  P���CBTR�NO P�Negative|C� + M1 − P���IBTR�NM1 −

 P���CBTR�NP�Negative|NC�Q  

� p�P��|P��, B� = P�C|Positive�I1 − P�DO�J �P�ins, CBTR|C�G�P�R|ins�� PL1 −

M1 − P���IBTR�NM1 −  P���CBTR�NO P�Positive|C� + M1 − P���IBTR�NM1 −

 P���CBTR�NP�Positive|NC�Q  
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� p�N�� |P��, B� = P�C|Positive�I1 − P�DO�JIP�ins, CBTR|C�G�P�R|ins�J PL1 −

M1 − P���IBTR�NM1 −  P���CBTR�NO P�Negative|C� + M1 − P���IBTR�NM1 −

 P���CBTR�NP�Negative|NC�Q  

� p�I|P��, B� = P�C|Positive�IP�inv, IBTR|C�G� + P�inv, CBTR|C�G�J  

� p�M|P��, B� = P�C|Positive�IP�ins, IBTR|C�G� + P�ins, CBTR|C�G�P�M|ins�J  

� p�D|P��, B� = 1 − p�P��&�|P��, B� − p�N��&�|P��, B� − p�P��|P��, B� − p�N��|P��, B� −
p�P��|P��, B� − p�N�� |P��, B� − p�I|P��, B� − p�M|P��, B�  

Action: W 

� p�N��&�|P��, W� = P�NC|Positive�I1 − P�DO�J LM1 − I1 − P���IBTR�JI1 −

 P���CBTR�JN P�Negative|C� + I1 − P���IBTR�JI1 −  P���CBTR�JP�Negative|NC�O +

P�C|Positive� LIP�ins, IBTR|C�G� + P�ins, CBTR|C�G�JI1 −
P�DO�J MP�R�P�Negative|NC� + I1 − P�R�JP�Negative|C�N + IP�inv, IBTR|C�G� +
P�inv, CBTR|C�G�JI1 − P�DO�JI1 − P�DUC�JP�Negative|C�O  

� p�D|P��, W� = P�NC|Positive�P�DO� + P�C|Positive� LIP�ins, IBTR|C�G� +
P�ins, CBTR|C�G�JP�DO� + IP�inv, CBTR|C�G� + P�inv, CBTR|C�G�J M1 − I1 − P�DO�JI1 −
P�DUC�JNO  

� p�P��&�|P��, W� = 1 −  p�N�G&�|P�G, W� − p�D|P�G, W� 
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Starting from RVT 

� p�N��&�|N��, W� = P�NC|Negative�I1 − P�DO�J LM1 − I1 − P���IBTR�JI1 −

 P���CBTR�JN P�Negative|C� + I1 − P���IBTR�JI1 −  P���CBTR�JP�Negative|NC�O +

P�C|Negative�  LIP�ins, IBTR|C�G� + P�ins, CBTR|C�G�JI1 −
P�DO�J MP�R�P�Negative|NC� + I1 − P�R�JP�Negative|C�N + IP�inv, IBTR|C�G� +
P�inv, CBTR|C�G�JI1 − P�DO�JI1 − P�DUC�JP�Negative|C�O  

� p�D|N��, W� = P�NC|Negative�P�DO� + P�C|Negative� LIP�ins, IBTR|C�G� +
P�ins, CBTR|C�G�JP�DO� + IP�inv, CBTR|C�G� + P�inv, CBTR|C�G�J M1 − I1 − P�DO�JI1 −
P�DUC�JNO  

� p�P��&�|N��, W� = 1 −  p�N�G&�|N�G, W� − p�D|N�G, W� 

Starting from UVT 

Action: B 

� p�P��&�|P��, B� = P�NC|Positive�I1 − P�DO�J LM1 − I1 − P���IBTR�JI1 −

 P���CBTR�JN P�Positive|C� + I1 − P���IBTR�JI1 −  P���CBTR�JP�Positive|NC�O  

� p�N��&�|P��, B� = P�NC|Positive�I1 − P�DO�J LM1 − I1 − P���IBTR�JI1 −

 P���CBTR�JN P�Negative|C� + I1 − P���IBTR�JI1 −  P���CBTR�JP�Negative|NC�O  
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� p�P��|P��, B� = P�C|Positive�I1 − P�DO�J�P�ins, CBTR|C�G�P�L|ins�� PL1 −

M1 − P���IBTR�NM1 −  P���CBTR�NO P�Positive|C� + M1 − P���IBTR�NM1 −

 P���CBTR�NP�Positive|NC�Q  

� p�N��|P��, B� = P�C|Positive�I1 − P�DO�JIP�ins, CBTR|C�G�P�L|ins�J PL1 −

M1 − P���IBTR�NM1 −  P���CBTR�NO P�Negative|C� + M1 − P���IBTR�NM1 −

 P���CBTR�NP�Negative|NC�Q  

� p�P��|P��, B� = P�C|Positive�I1 − P�DO�J �P�ins, CBTR|C�G�P�R|ins�� PL1 −

M1 − P���IBTR�NM1 −  P���CBTR�NO P�Positive|C� + M1 − P���IBTR�NM1 −

 P���CBTR�NP�Positive|NC�Q  

� p�N�� |P��, B� = P�C|Positive�I1 − P�DO�JIP�ins, CBTR|C�G�P�R|ins�J PL1 −

M1 − P���IBTR�NM1 −  P���CBTR�NO P�Negative|C� + M1 − P���IBTR�NM1 −

 P���CBTR�NP�Negative|NC�Q  

� p�I|P��, B� = P�C|Positive�IP�inv, IBTR|C�G� + P�inv, CBTR|C�G�J  

� p�M|P��, B� = P�C|Positive�IP�ins, IBTR|C�G� + P�ins, CBTR|C�G�P�M|ins�J  

� p�D|P��, B� = 1 − p�P��&�|P��, B� − p�N��&�|P��, B� − p�P��|P��, B� − p�N��|P��, B� −
p�P��|P��, B� − p�N�� |P��, B� − p�I|P��, B� − p�M|P��, B�  
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Action: W 

� p�N��&�|P��, W� = P�NC|Positive�I1 − P�DO�J LM1 − I1 − P���IBTR�JI1 −

 P���CBTR�JN P�Negative|C� + I1 − P���IBTR�JI1 −  P���CBTR�JP�Negative|NC�O +

P�C|Positive� LIP�ins, IBTR|C�G� + P�ins, CBTR|C�G�JI1 −
P�DO�J MP�R�P�Negative|NC� + I1 − P�R�JP�Negative|C�N + IP�inv, IBTR|C�G� +
P�inv, CBTR|C�G�JI1 − P�DO�JI1 − P�DUC�JP�Negative|C�O  

� p�D|P��, W� = P�NC|Positive�P�DO� + P�C|Positive� LIP�ins, IBTR|C�G� +
P�ins, CBTR|C�G�JP�DO� + IP�inv, CBTR|C�G� + P�inv, CBTR|C�G�J M1 − I1 − P�DO�JI1 −
P�DUC�JNO  

� p�P��&�|P��, W� = 1 −  p�N�G&�|P�G, W� − p�D|P�G, W� 

 

B. Proofs of Structural Properties 

Proof of Theorem 1. 

If )� > )�∗, 

  )� >  ∑ Z�&����&��%����&�|��, B�[\]^∈_ − ∑ Z�&����&��%����&�|��, W�[\]^∈_ . 

∴ ∑ Z�&����&��%����&�|��, W�[\]^∈_ >  ∑ Z�&����&��%����&�|��, B�[\]^∈_ −  )�;  



51 
 

∴  (����, W� + ∑ Z�&����&��%����&�|��, W�[\]^∈_ >  ∑ Z�&����&��%����&�|��, B�[\]^∈_ − )� +
 (����, W� ; 

∴  (����, W� + ∑ Z�&����&��%����&�|��, W�[\]^∈_ >   (����, B� +
∑ Z�&����&��%����&�|��, B�[\]^∈_ ; 

∴  argmaxe\∈fg,1h  -����� =  W. 

if )� ≤ )�∗, 

 )� ≤ ∑ Z�&����&��%����&�|��, B�[\]^∈_∈_ − ∑ Z�&����&��%����&�|��, W�.[\]^∈_∈_   

∴ ∑ Z�&����&��%����&�|��, W�[\]^∈_∈_ ≤  ∑ Z�&����&��%����&�|��, B�[\]^∈_∈_ −  )�;  

∴  (����, W� + ∑ Z�&����&��%����&�|��, W�[\]^∈_ ≤  ∑ Z�&����&��%����&�|��, B�[\]^∈_ −  )� +
 (����, W�; 

∴  (����, W� + ∑ Z�&����&��%����&�|��, W�[\]^∈_ ≤   (����, B� +
∑ Z�&����&��%����&�|��, B�[\]^∈_ ; 

∴ argmaxe\∈fg,1h  -����� =  B . 

 

Proof of Proposition 1.  

We prove proposition 1 by induction based on the case �� = :. The proofs for cases �� ≠ : are 

similar. For t =100, -�jj0 ���� ≤ -�jj1 ���� holds because -�jj���� = 0. 
Let 
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Z��P, B� =  (��P, B� + ∑ Z�&����&��%����&�|P, B�[&�∈_  ,  

Z��W, B� =  (��P, W� + ∑ Z�&����&��%����&�|P, W�[&�∈_  ,  

%��NP|P, B� = %��P|P, B� + %k�P|P, B�, and 

%��T|P, B� = :��:l�|:, m� + :��nl�|:, m� + :��:o�|:, m� + :��no�|:, m� + :��6|:, m�
+ :��3|:, m�. 

Given any t = T and -k&�0 ���� ≤ -k&�1 ����, we need to prove -k0��k� ≤ -k1��k�.  

Using assumption 2, 

 vpq�P, B� − vpr�P, B�
= M rp�P, B� + Vpq�NP, B�ppq�NP|P, B� + Vpq�T, B�Ppq�T|P, B�
+  Vpq�D�ppq�D|P, B�N
− M rp�P, B� + Vpr�NP, B�ppr�NP|P, B� + Vpr�T, B�Ppr�T|P, B�
+  Vpr�D�ppr�D|P, B�N
=  Vpq�NP, B�ppq�NP|P, B� − Vpr�NP, B�ppr�NP|P, B� + Vpq�T, B�Ppq�T|P, B�
− Vpr�T, B�Ppr�T|P, B� +  Vpq�D�ppq�D|P, B� − Vpr�D�ppr�D|P, B� 

According to Vpq�sp� ≤ Vpr�sp�, we have 

 Vpq�NP, B� ≤ Vpr�NP, B�, Vpq�T, B� ≤ Vpr�T, B�, and Vpq�D� = Vpr�D� 

Using assumption 1, we have  

ppq�NP|P, B� ≤  ppr�NP|P, B�, ppq�T|P, B� ≥  ppr�T|P, B�, and ppq�D|P, B� ≥  ppr�D|P, B� 
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∴  vpq�P, B� − vpr�P, B�
≤ Vpr�NP, B� Mppq�NP|P, B� −  ppr�NP|P, B�N
+ Vpr�T, B� Mppq�T|P, B� −  ppr�T|P, B�N + Vpr�D� Mppq�D|P, B� − ppr�D|P, B�N
≤ Vpr�NP, B� Mppq�NP|P, B� −  ppr�NP|P, B� + ppq�T|P, B� − ppr�T|P, B�
+ ppq�D|P, B� −  ppr�D|P, B�N = Vpr�NP, B��1 − 1� = 0  

Let 

V��NP, W� = V�N� P��N|P, W�
P��N|P, W� + P��P|P, W� +  V�P� P��P|P, W�

P��N|P, W� + P��P|P, W�  
According to Vpq�sp� ≤ Vpr�sp�, we have Vpq�NP, W� ≤ Vpr�NP, W� 

According to assumption 1, we have  

ppq�NP|P, W� ≤  ppr�NP|P, W�, and ppq�D|P, W� ≥  ppr�D|P, W� 

 ∴ vpq�P, W� − vpr�P, W�
= Vpq�NP, W�ppq�NP|P, W� − Vpr�NP, W�ppr�NP|P, W� + Vpq�D�ppq�D|P, W�
−  Vpr�D�ppr�D|P, W�
≤  Vpr�NP, W� Mppq�NP|P, W� − ppr�NP|P, W�N
+ Vpr�D� Mppq�D|P, W� −  ppr�D|P, W�N
≤  Vpr�NP, W� Mppq�NP|P, W� − ppr�NP|P, W� + ppq�D|P, W� −  ppr�D|P, W�N
= Vpr�NP, W��1 − 1� = 0 

∴ -k0���� = maxt vpq�P, B�,  vpq�P, W�u ≤ maxt vpr�P, B�,  vpr�P, W�u = -k1����. 

 

Proof of Proposition 2.  
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We prove proposition 2 based on the case �� = :. The proofs for cases �� ≠ : are similar. 

 v���P, B� −  v�4�P, B� = M rv�P, B� + ∑ Z�&����&��%����&�|P, B�[\]^∈wxy + *�&�� �3�N −
M rv�P, B� + ∑ Z�&����&��%����&�|P, B�[\]^∈wxy + *�&�4 �3�N = *�&�� �3� − *�&�4 �3� ≥ 0 ; 

  v���P, W� −  v�4�P, W� = 0; 

∴ -������ = max� vv��P, B�,  vv��P, W�� ≥ max� vv4�P, B�,  vv4�P, W�� = -�4����. 

 
Proof of Corollary 1.  

The proof is similar to that of proposition 2. 
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3 Adaptive Decision-Making of Breast Cancer Mammography Screening: A Heuristic-

Based Regression Model 

 

 
Abstract 

The American Cancer Society (ACS) updated their breast cancer screening guidelines in late 

2015 and recommends that all women have the choice to start annual mammography screenings 

beginning at age 40. For women ages 45 to 54, the ACS explicitly recommends annual 

mammograms. However, due to the potential harms associated with screening mammography, 

such as overdiagnosis and unnecessary work-ups, the best strategy to design an appropriate 

breast cancer mammography screening schedule remains controversial. Instead of recommending 

a one-size-fits-all screening schedule, this study identifies a personalized mammography 

screening strategy adaptive to each woman’s age-specific breast cancer risk. We present a two-

stage decision framework: (1) age-specific breast cancer risk estimation, and (2) annual 

mammography screening decision-making based on estimated risk. The results suggest that the 

optimal combinations of independent variables used in risk estimation are not the same across 

age groups. Our optimal decision models outperform the existing mammography screening 

guidelines in terms of the average loss of life expectancy. While most earlier studies improved 

the breast cancer screening decisions by offering lifetime screening schedules, our proposed 

model provides an adaptive screening decision aid by age. Since whether or not a woman should 

receive a mammogram is determined based on her breast cancer risk at her current age, our “on-

line” screening policy adapts to a woman’s latest health status, which reflects the current 

individual risk of each woman more accurately. 
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3.1. Introduction 

Breast cancer is the most common non-skin cancer among U.S. women. According to the 

American Cancer Society (ACS), an estimated 246,660 women will be diagnosed with breast 

cancer, and an estimated 40,450 women will die from this disease in 2016 (ACS 2016). Routine 

screening mammography may reduce mortality from breast cancer by detecting the disease at 

early stages, before the cancer has spread. Several clinical trials and population-based 

evaluations suggest that mammography may reduce breast cancer mortality significantly (Tabar 

et al. 2003, Weedon-Fekjær et al. 2014).  

    Nevertheless, there are potential harms associated with screening mammography, such as 

overdiagnosis, exposure to radiation, and work-up of positive findings. A cohort study by 

Hubbard et al. (2011) reported that after ten years of annual screenings, over half of participating 

women will receive at least one false-positive result. The high false-positive rate of screening 

mammography (i.e., the mammogram is interpreted as positive but no cancer is present) often 

results in unnecessary follow-up imaging and biopsy exams, which rule in or out the presence of 

breast cancer after a positive test result. As an invasive procedure, a biopsy may place a woman 

at risk of morbidity and, in rare cases, mortality (Bruening et al. 2009). The proportion of women 

with abnormal mammography findings that are diagnosed with breast cancer is less than 10% 

(Rosenberg et al. 2006).  

    Due to the significant benefits and harms associated with screening mammography, designing 

the most efficient breast cancer screening guideline that maximizes the benefit and minimizes the 

harms remains controversial in the public health community (Nelson 2010, Tarnay 2012). The 

ACS updated their breast cancer screening guidelines in late 2015 and now recommends that 

women begin annual breast cancer screenings beginning at age 45. The guidelines also 
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recommend that a woman when reaching age 55 should either switch to biennial screenings or 

continue annual mammography. In addition, the American College of Radiology (ACR) 

recommends all women begin annual mammography at the age of 40, while the U.S. Preventive 

Services Task Force (USPSTF) and the American College of Physicians (ACP) advocate 

beginning screening mammography at age 50 and doing so on a biennial basis (Nelson 2010). In 

addition, the age at which to cease mammography screening is also debated. Although the ACS 

and ACR do not specify the age to stop routine screening mammography, the USPSTF and ACP 

recommend against routine screening for women 75 years or older. Furthermore, there are 

ongoing discussions on screening frequency and whether it is necessary to perform annual or 

biennial screening. 

The ongoing debate surrounding screening mammography guidelines motivates researchers to 

pursue a decision policy that finds the optimal trade-offs between the negative effects of 

screening and patients’ long-term benefits of early diagnosis of breast cancer. Kirch and Klein 

(1974) designed a mathematical model to determine the frequency of mammography screening 

that minimizes the detection delay for the general population. Their model assumed perfect 

mammography screening sensitivity and specificity, but in fact, the actual false positive rate of 

mammography is high. Some additional studies, such as Ozekici and Pliska (1991) and Zelen 

(1993), considered false positives and false negatives of screening mammography exams in their 

mathematical models. However, the parameters used in these models were not age-specific, 

making their solutions less practical since breast cancer risk increases with age. According to 

Gail and Rimer (1998), an appropriate screening recommendation should reflect each woman’s 

individual risk. Since each woman has different levels of breast cancer risk based on her personal 

risk factors, breast cancer screening schedules should not be uniform across women. Several 
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more recent studies addressed this issue by including age- and patient-specific input parameters 

and generated some effective optimization models for mammography screening policies. Maillart 

et al. (2008) employed a partially observable Markov process model considering women’s age 

and menopausal status to evaluate different screening mammography policies. Their model used 

different stages of breast cancer as core states and generated a set of efficient policies in terms of 

life-time breast cancer mortality and the expected total number of screening mammograms. 

Chhatwal et al. (2010) focused on how to make biopsy referral decisions after positive screening 

mammograms to maximize patients total expected quality-adjusted life years (QALYs). They 

developed a finite-horizon discrete-time Markov decision process (MDP) model to offer optimal 

biopsy referral policies for patients with different breast cancer risk scores (i.e., a woman’s 

current probability of cancer based on her risk factors and mammographic features). Ayvaci et al. 

(2012) applied an MDP model to optimize biopsy referral decisions for different breast cancer 

risk scores under budgetary restrictions.  The model by Ayer et al. (2012) is the first screening 

decision study that directly personalizes mammography screening. They developed a partially 

observable Markov decision process (POMDP) model that offers optimal screening 

mammography schedules based on five personal risk factors: age, race, age at menarche, age at 

first birth and prior screening history. Moreover, similar modeling approaches have also been 

applied to the screening decisions of some other cancers, such as prostate cancer. Zhang et al. 

(2012) developed a POMDP to determine optimal biopsy referral decisions for prostate cancer 

screening based on prostate-specific antigen tests. Erenay et al.’s POMDP model optimized 

colonoscopy screening policies for colorectal cancer (2014). Besides age, Erenay et al.’s 

personalized model incorporated both static (i.e., gender) and dynamic factors (i.e., history of 
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colorectal cancer and polyp). In particular, Alagoz et al. (2011) provided an overall review 

regarding the applications of various operations research models in cancer screening. 

    Most of these previous studies utilized Markov modeling approaches, which are inefficient in 

solving problems with high computational complexity. Since incorporating additional breast 

cancer risk factors into the model leads to a higher dimensionality of the decision-making 

framework, a Markov model will inevitably suffer from the so-called curse of dimensionality 

(Bellman), which refers to the computational complexity that grows exponentially with the 

dimensionality. Incorporating too many risk factors could cause a Markov model to be 

computationally intractable. In addition, since all states and transition probabilities between 

states in Markov models must be precisely pre-specified, it is difficult for these models to 

process some dynamic risk factors, such as a woman’s body mass index (BMI), which are 

fluctuating over time and thus unpredictable. Hence, these prior studies mainly focused on 

optimal static lifetime screening policies such that optimal decisions cannot be updated 

dynamically or adjusted with unpredictable new information. 

Our study aims to circumvent the limitations of traditional Markov modeling approaches on 

this topic by proposing a two-stage individualized mammography screening decision framework 

that is adaptive to changes in risk factors. We first perform a heuristic-based regression analysis 

with model selection to evaluate a woman’s probability of breast cancer at her current age based 

on a range of personal risk factors. Then we determine whether this woman should undergo a 

screening mammogram based on her estimated breast cancer risk at her current age.  

Advances in health informatics and analytics in recent years have improved health prediction 

and management for chronic diseases (West et al. 2005, Misiunas et al. 2016, Bertsimas et al. 

2016). In this study, we not only take advantage of logistic regression to eschew the curse of 
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dimensionality of Markov models, but also discuss the dimensionality reduction of regression 

models in the context of medical decision-making. We design a novel model selection method 

for logistic regression from the perspective of making optimal screening decisions. The 

optimality of a decision is defined in terms of minimal misclassification cost (i.e., the cost of 

false positives and false negatives), which is a critical concern in medical practice.  

The remainder of the paper proceeds as follows: in Section 3.2, we describe the decision-

making framework. We then present the numerical results by implementing the model in Section 

3.3. In Section 3.4, we discuss the results and their significance to the decision-making of breast 

cancer mammography screening as well as other disease prevention and treatment problems. 

 
3.2. Methods  

In this study, the decision-making process consists of two sub-models: breast cancer risk 

estimation and decision-making of mammography screening utilization based on the estimated 

risk. The risk estimation model is a regression model used to predict a woman’s probability of 

developing breast cancer at her current age based on a number of breast cancer risk factors. The 

risk estimation model is built based on the predictors from the widely accepted Barlow model 

(Barlow et al. 2006). We improve their model by conducting a model selection with the aim of 

increasing life expectancy, which is impacted by the false-positive and false-negative prediction 

errors. According to the estimated probability of developing breast cancer, the next sub-model 

determines whether this woman should be referred for a screening mammogram or if she should 

skip the mammogram in the current year and return for screening the following year. In this sub-

model, a pre-specified optimal cut-off point of cancer probabilities, which is expected to 

minimize the woman’s loss of life expectancy, serves as a threshold of recommending a 

screening mammogram. Therefore, the decision-making framework works in an adaptive manner 
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such that it allows women to input their current risk factor levels, and then the framework 

generates corresponding optimal decisions regarding mammography screening.  

3.2.1. Breast Cancer Risk Estimation Model 

The probabilities of breast cancer for women with various risk factors are estimated using a 

logistic regression model. We formulate the regression model based on the results from the 

Barlow breast cancer risk model (Barlow et al.2006). The breast cancer risk factors identified in 

the Barlow model includes age (by 5-year age groups), race (white, black, Asian, native 

American, and other), Hispanic ethnicity (year/no), number of first degree relatives with breast 

cancer (0, 1, and 2 or more), age at first birth (<30, >=30, and nulliparous), surgical menopause 

(yes/no), use of hormone replacement therapy (yes/no), menopausal status 

(premenopausal/postmenopausal), body mass index (10-25, 25-30, 30-35, and 35 or more), 

previous breast procedure (yes/no), and last mammographic outcome (positive/negative). 

However, a number of prior studies revealed that breast cancer risk factors are not independent. 

Mayberry and Stoddard-Wright (1992) reported that the effects of some breast risk factors on 

women of different races are not the same, such as family history and age at menarche. For 

instance, they found that black women who have first-degree relatives and second-degree 

relatives with breast cancer have similar relative risks of breast cancer, while for white women 

having first-degree relatives with breast cancer leads to higher relative risk compared to only 

having second-degree relatives with breast cancer. Cleary and Maihle (1997) reported an inverse 

association between BMI and the relative risk (RR) of developing breast cancer in 

premenopausal women, but a positive association in post-menopausal women.  Some studies 

showed that breast cancer risk patterns vary by age and menopausal status (Clavel-Chapelon and 

Gerber 2002). These studies suggest the existence of interaction effects between the 11 risk 
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factors described above. Therefore, we consider all possible two-way interaction terms in the 

regression analysis to more accurately estimate woman’s breast cancer risk. The binary response 

variable is defined by whether a woman has breast cancer in the current year. 

A regression model that includes all explanatory variables with interaction terms may lead to 

overfitting and thereby have poor predictive power (Wears and Lewis 1999). In addition, 

although all of the 11 risk factors have been associated with breast cancer risk, not all of them 

may be instrumental for finding the optimal decision of mammography screening at every age 

based on the prediction of breast cancer risk. Thus, a model selection procedure aimed to reduce 

dimensionality of explanatory variables and find the optimal regression model is necessary. 

Two components are essential to model selection: a criterion or a benchmark for comparing 

different models and a search strategy for selecting variables. While a criterion serves as a cost 

function that measures whether a subset of the variables available produces the best model, a 

search strategy specifies the course of evaluating each subset of explanatory variables according 

to the criterion. 

3.2.1.1. H Measure 

There are many traditional model selection criteria in the literature, such as the Akaike 

information criterion (AIC), the Bayesian information criterion (BIC), the R4, the adjusted R4, 

and the Mallow’s Cz (Kadane and Lazar 2004). In medical applications, however, the 

performance of binary classification that determines whether a predicted probability of a specific 

disease should be assigned to an abnormal group (also known as positive) or a normal group 

(also known as negative) is of special interest to medical decision makers. The receiver operating 

characteristic (ROC) analysis, which plots the true positive rate versus the false positive rate at 

various threshold settings (from 0 to 100%), is widely adopted for model selection in the medical 
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literature (Rosset 2004). Specifically, the area under the curve (AUC) of a ROC curve provides a 

direct measure to compare models. Nevertheless, a fundamental weakness of the AUC measure 

is that it assigns two types of error (i.e., false positive and false negative) with the same weights. 

Neither the AUC nor other traditional criteria pay attention to the relative severity between the 

two types of errors in prediction and classification models. Thus, their model selection outcomes 

may be undesired or even unacceptable, especially for some prediction or classification models 

used to study life-threatening diseases. For the above reasons, this study applies a recently 

developed statistic, called the H measure (Hand 2009, 2010), as a criterion for model selection.  

    The H measure introduces the notion of misclassification costs by quantifying the relative 

severity between the two types of errors. Let { denote a specified threshold, then the following 

logic is used to classify a probability output by the breast cancer prediction model as class 1 

(cancerous) or class 0 (non-cancerous): 

|�}� = ~1, if %�}� > {0, otherwise  , (1) 

where } is the vector of explanatory variables;  %�}� is a predicted probability; and |�}� is the 

final prediction that whether a woman has breast cancer or not. We normalize the two types of 

misclassification costs by scaling their numeric values in the range of f0,1h. Let � in f0,1h denote 

the relative cost of misclassifying a non-cancerous observation as cancer, and thereby 1 − � 

represents the relative cost of misclassifying a cancerous observation as non-cancerous. Then the 

misclassification cost function of the regression model with given � and { is defined as follows: 

���, {� = ��jI1 − Sp�{�J + �1 − ����I1 − Se�{�J, (2) 

where Sp�{� is the specificity (i.e., the probability of class 0 observations that are correctly 

identified as class 0) when the threshold is set to {; Se�{� is the sensitivity (i.e., the probability of 

class 1 observations that are correctly classified as class 1) when the threshold is set to {; and  
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�� , � = 0,1 is the proportion of class i in all observations. In the current study, Se�{� and Sp�{� 

can be deemed the true positive rates and the true negative rates, respectively. Then we define 

the minimum weighted cost (MWC) under the cost � as follows, 

MWC��� = min� ���, {� . (3) 

Thus, the minimum weighted cost is reached when finding the optimal threshold {�: 

{� = argmin� ���, {� . (4) 

    Instead of using a constant cost, the H measure specifies a distribution, ����, to reflect the 

uncertainty about the exact value of the cost �. Beta distribution with shape parameters α = β = 2 

is usually adopted to represent the cost distribution (Hand 2010). Therefore, the average MWC 

(Lg) of the breast cancer prediction model is calculated by 

Lg = � ���, {��
�

����)� . (5)

    It is desirable for an index to take larger values for better performance, and ranges between 0 

for the worst classification and 1 for perfect classification. Thus, the H measure is defined as 

H = 1 − LgL���� , (6)

where L���� is a constant equal to the maximum value that Lg can reach, which means a trivial 

classifier is employed to make random classification (i.e., the false positive rate is always 

identical to the true positive rate).  

We calculate the H measure for each candidate prediction model, which is a regression 

polynomial composed of a non-null subset of the explanatory variables. Hence, the optimal 

prediction model is the one with the highest H measure.  
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3.2.1.2. Misclassification Cost 

The calculation of the H measure is based on well-defined misclassification costs.  In this study, 

the cost � (the misclassification cost of a false positive result) is defined as the reduction in life 

expectancy if a woman without breast cancer is classified into the group with an increased risk of 

cancer and recommended to undergo a screening mammogram exam. The cost 1 − � (the 

misclassification cost of a false negative result) corresponds to the loss of life expectancy when a 

woman with breast cancer is classified into the group with a low risk of cancer and 

recommended to skip a screening mammogram. The Breast Imaging Reporting and Data System 

(BI-RADS) of the ACR, a lexicon used by radiologists for mammography interpretation, 

describes the level of cancer suspicion for the exam (Sickles et al. 2013). Radiologists interpret 

and assign screening mammograms into one of the seven BI-RADS assessment categories 

(D’Orsi et al. 2013). BI-RADS 0 is considered an incomplete mammogram that requires 

additional imaging. BI-RADS 1 and 2 are associated with negative or benign findings. BI-RADS 

3 is a probably benign finding, which needs short interval follow-up. BI-RADS 4 is suspicious 

abnormality, and BI-RADS 5 is highly suggestive of malignancy. Patients with either BI-RADS 

4 or 5 are recommended to undergo an immediate biopsy. BI-RADS 6 is used for biopsy proven 

breast cancers.  In this study, we define a positive screening mammogram as those with a BI-

RADS score of 0, 4 or 5. We assume BI-RADS 0 is always followed up by a diagnostic 

mammogram. We also assume that if a diagnostic mammogram is suspicious (BI-RADS 4 or 5), 

then a biopsy is recommended. Thus, mammograms that are finally classified as BI-RADS 4 or 5 

result in biopsy referrals. The cost c includes the disutilities (i.e., reduction in life expectancy) of 

an initial screening mammogram, a possible diagnostic mammogram and a possible follow-up 
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biopsy. Let ��� denote the unscaled value of � at age 
, then ��� represents the cost of a false 

positive decision for a woman at age 
: 

��� = )�� + P��Bj|NC� ∙ )�� + P��Positive|NC� ∙ )�1, (7) 

where )�M and )�B are the disutilities (in years) of a mammogram (both screening and diagnostic) 

and a biopsy at age 
, respectively; :��Bj|NC� is the probability that a healthy woman’s 

screening mammogram is labeled as BI-RADS 0; and :��Positive|NC� is the probability that a 

mammogram is finally assigned to BI-RADS 4 or 5 for a healthy woman without breast cancer.  

    The misclassification cost of a false negative result is the loss of life expectancy caused by 

skipping a screening mammogram, which would have detected a cancer for a woman with breast 

cancer. Let ��� denote the unscaled value of 1 − � at age 
. The misclassification cost of a false 

negative result is equal to the difference between the life expectancy of skipping a necessary 

screening mammogram (��w�) and undergoing a necessary screening mammogram (����) for a 

woman with breast cancer: 

��� = ���� − ��w�, (8) 

    We consider the cost of skipping one necessary screening mammogram (i.e. a mammogram 

for a woman with cancer) as the loss of life expectancy due to at least a one-year delay in 

diagnosis and treatment of breast cancer. For a breast cancer patient, such a loss involves two 

possibilities: (1) an untreated in situ cancer progresses to an invasive cancer; (2) an untreated 

invasive cancer patient dies from breast cancer. According to Yen et al. (2003), we can 

categorize in situ breast cancers into two types: the non-progressive in situ cancer (insj), which 

has no propensity to progress to an invasive stage; and the progressive in situ cancer (ins�), 

which has the possibility to advance. We model the progression from in situ cancer to invasive 

cancer as a Poisson process, which is a common assumption used in previous studies (Yen et al, 
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2003, Jackson et al, 1981). Therefore, a breast cancer patient who skips a screening mammogram 

at age 
 has a life expectancy of: 

��w� = :��ins|C� ∙ ��w��ins� + :��inv|C� ∙ ��w��inv�, (9) 

where :��ins|C� and :��inv|C� are proportions of in situ cancers and invasive cancers among all 

breast cancer cases for women at age 
; ��w��ins� and  ��w��inv� are life expectancies of in situ 

and invasive patients when skipping a necessary screening mammogram, respectively. As in situ 

cancers are generally considered not life-threating, we assume an in situ cancer patient will not 

die from breast cancer within one year of diagnosis (Ozanne et al. 2011). We calculate ��w��ins� 

as follows: 

��w��ins� = :��insj|ins�f1 + ��&��insj�h + :��ins�|ins� ∙ �ex�\ ∙ f1 + ��&��ins��h + �1
− ex�\� ∙ f1 + ��&��inv�h�, 

(10) 

where :��insj|ins� and :��ins�|ins� are the proportions of insj and ins� in all in situ cancer 

cases, respectively; �� is the one-year progression rate from ins� to invasive cancer;  ��&��insj�, 

��&��ins��, and ��&��inv� are life expectancies of patients with non-progressive in situ, 

progressive in situ, and invasive cancers at age 
 + 1, respectively. Note that we calculate the 

difference of life expectancy between skipping and undergoing a screening mammogram by 

subtraction, so the loss of life expectancy due to death from a cause other than breast cancer is a 

redundant term appearing in both the minuend and the subtrahend. Thus, we omit the mortality 

from other causes in one year and focus on the cancer-specific survival. Similarly, the life 

expectancy (��w��inv�) of an invasive cancer patient who skips a mammogram is: 

��w��inv� = :��UD� ∙ 0.5 + f1 − :��UD�h ∙ f1 + ��&��inv�h, (11) 
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where P��UD� represents the breast cancer-specific death rate of an untreated invasive cancer 

patient at age 
. We assume the life expectancy of a treated patient who dies at age 
 to be half 

year (Chhatwal et al. 2010). 

    To derive ����, we first consider a breast cancer patient who chooses to undergo a screening 

mammogram and successfully detects her breast cancer. Let ����denote such a patient’s life 

expectancy: 

���� = :��ins|C� ∙ f1 + ��&��insk�h + :��inv|C� ∙ �f1 − :��D�h ∙ f1 + ��&��invk�h +
0.5 ∙ :��D��, 

(12) 

where ��&��insk�and ��&��invk� are life expectancies of patients treated for in situ cancer and 

invasive cancer patients at age 
 + 1, respectively; and  :��D� denotes the one-year death rate of 

treated invasive cancer at age 
.  

    Taking into account the possible false negative mammogram outcome and the disutility of 

screening, we obtain the life expectancy of a breast cancer patient who chooses to undergo a 

screening mammogram at age 
:  

���� = −)�� − P��Bj|C� ∙ )�� + :��Positive|C� ∙ I���� − )�rJ + :��Negative|C� ∙ ��w�, (13) 

where :��Bj|C� is the probability that a breast cancer patient’s screening mammogram is labeled 

as BI-RADS 0; :��Positive|C� is the probability that a breast cancer patient is referred for a 

biopsy, whose screening mammogram or diagnostic mammogram has a BI-RADS score of 4 or 

5; and :��Negative|C� is the probability that a breast cancer patient is not recommended for a 

biopsy when either the screening mammogram or the diagnostic mammogram (when necessary) 

is classified as BI-RADS 1, 2 or 3. The life expectancy for a woman with biopsy-confirmed 

breast cancer is �v�� subtracting the disutility of the biopsy, the screening mammogram and the 

possible diagnostic mammogram. If a woman is not referred for a biopsy after a screening 
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mammogram and/or a diagnostic mammogram, only the disutility of the possible mammograms 

needs to be considered in life expectancy calculation. 

    After normalizing the costs obtained from (7) and (8) to � and 1 − �, we obtain the costs of 

two types of misclassification errors for calculating the H measure. As mentioned above, the 

costs of the two types of misclassification are both age-specific. Hence, we stratify the optimal 

risk estimation model by age. 

3.2.1.3. Search Strategy 

The H measure is used as a criterion to compare different models and identify the optimal 

combination of explanatory variables. The model selection can be considered as an integer 

programming problem. In this problem, the H measure is the objective function to be maximized. 

The solution space consists of all available explanatory variables and their interaction effects. 

Every feasible solution is a binary configuration of explanatory variables and interaction effects, 

where values 0 and 1 correspond to being selected and excluded, respectively. Suppose that there 

is a dependent variable |, a group of explanatory variables Χ� and their corresponding 

coefficients �� as well as the intercept �j. Given a sample S composed of a group of observations 

of | and ���, �4, … , ���, let Hw�∙� denote the H measure function with a sample S. The binary 

configuration of every explanatory variable is represented by a binary variable }�, which 

indicates whether the corresponding explanatory variable �� is chosen or not. Likewise, every 

interaction effect is denoted by  ����, controlled by a binary variable }��. Then the search 

strategy to find the optimal logistic regression model maximizing H measure can be formulated 

as a 0-1 integer programming problem as follows, 

Maximize HwIlogit�Pr�||��, �4, … , ����J (14) 
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where logit�Pr�||��, �4 … , ���� = �j + �� ¢ ��}�
�

+ ¢ �������}��
�£�

 

                        subject to:  }� = 1 or 0, }�� = 1 or 0 . 
Solving this 0-1 nonlinear integer programming problem would find the optimal subset of 

explanatory variables. Traditionally, some nonlinear integer programming problems can be 

solved by linearization techniques, e.g. simple approximation using piecewise linear functions 

(Jünger et al. 2009). Considering the complex structure of Hw�∙� and the varying values of the 

objective function dependent upon the given sample S, it is obvious to see that the objective 

function in (14) cannot be converted to an integer linear programing problem. Thus, it is unable 

to solve this 0-1 nonlinear integer programming using existing exact algorithms, such as cutting 

plane and branch and bound methods. Although an exhaustive search that examines all non-null 

subsets of the explanatory variables can always find the optimal model, such a full-scale search 

is often not feasible in practice. In medical studies, regression analyses often involve a large 

number of observations, which make exhaustive searches computationally expensive. 

Furthermore, the high dimensionality of the explanatory variable space can also result in 

intractable computational effort. For example, if we model all the 11 breast cancer risk factors 

and all possible two-way interaction effects between them as the explanatory variables, there are 

66 variables being considered, which constitute 2©© − 1 non-null subsets in total. Calculating the 

H measure for each model and identifying the optimal model is nearly impractical. Therefore, a 

suboptimal heuristic search strategy is useful in this case. 

In recent years, the most commonly used heuristic search strategy of model selection is the 

greedy search algorithm, which is also referred to as stepwise search (Miller 2002). Since a 

greedy search usually finds local optima, there are studies using more advanced heuristic 

algorithms to avoid the shortcoming of the stepwise search. Yang and Honavar (Yang and 
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Honavar 1998) used a genetic algorithm to perform the model selection and received near-

optimal results. Sivagaminathan and Ramakrishnan (2007) developed a hybrid approach of 

neural networks and ant colony optimization for model selection. Orkcu (2013) found a 

combination of the genetic algorithm and the simulated annealing algorithm outperforms the 

original genetic algorithm in most cases. 

In this study, aiming at overcoming the local optima of the stepwise model selection methods, 

we propose a new model selection method for generalized linear model by combining the tabu 

search algorithm with the H measure. Tabu search was originally introduced by Glover (1989) as 

an optimization tool applicable to nonlinear covering problems. In various problem settings, tabu 

search has produced outcomes equal or superior to the best results previously found by other 

algorithms (Fouskakis and Draper 2002). Furthermore, tabu search has been shown to be very 

efficient in terms of calculation time in solving many search and optimization problems, even 

when compared with some advanced heuristic algorithms, such as genetic algorithm and 

simulated annealing (Augugliaro et al. 1999). As our model has a large number of candidate 

variables, the calculation time is of great concern. Considering the efficiency and effectiveness 

of tabu search, we adopt a modified version of tabu search as the search strategy. The modified 

algorithm consists of three phases: preliminary, intensification, and diversification (Fouskakis 

and Draper 2002, Glover 1990). In the first phase, this algorithm works as the original tabu 

search. The preliminary search continues for a specified number of iterations. When it reaches 

the upper limit of iterations, it moves on to the intensification phase. The intensification starts 

with the best solution found thus far and clears the tabu list, and then proceeds as in the 

preliminary phase. If a better solution is found, intensification is restarted with the better solution 

and an empty tabu list. Such a process repeats until the upper limit of iterations is reached and 
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then goes to the diversification stage. Intensification allows the algorithm to focus the search 

around the current best solution. The last phase, diversification, provides a way to explore spaces 

that have not been visited in the first two phases. The diversification clears the tabu list and sets 

the most frequent moves as tabu. Then the algorithm starts with a random solution and proceeds 

as in the preliminary phase. After going through the three phases, the model with the highest H 

measure found in the whole process is reported as the optimal breast cancer risk estimation 

model. A detailed algorithm is described in Figure 1. 

Tabu Search Model Selection Algorithm 

1. Specify the size of the tabu list s and the number of iterations n. 

2. Fit a model using all variables and use the one with the highest absolute multiplier as initial 
solution. 
3. Evaluate the solution (by calculating the corresponding H measure). 
  Preliminary Phase 

  Repeat 

(1) Change the solution by removing or adding a variable (switch the value of variable 
between 0 and 1). 
(2) If the objective value > the aspiration value i.e., the best solution so far, then accept it 
as the current solution. 
        Else if the element is in the tabu list, then go to the neighboring variable. 
        Else if the element is not in the tabu list, then accept it as the current solution. 
(3) Update the tabu list and the aspiration value. 
(4) Check stopping criterion. 
If the iterations reach the upper limit n, record the best solution X so far and go to the 
intensification phase. 

   Intensification Phase 

   Start with the best solution X so far and clear the tabu list. 
   Repeat 

Do the preliminary phase, until a solution better than X is found and restart the 
intensification phase. 

          If the number of iteration reaches n, go to the diversification phase. 
   Diversification Phase 

   (1) Clear the tabu list and set the s most frequent moves as tabu. 
   (2) Randomly generate a solution. 
   Repeat 

 Do the preliminary phase, until the number of iteration reaches the upper limit n. 
   Report the best solution found in the three phases. 

Figure 1 The model selection algorithm 
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It is known that, in order for an interaction effect to be significant, at least one of its 

constituent main effects should be significant under the so-called effect heredity principle (Wu 

and Hamada 2011). However, since the purpose of the modeling focuses on the predictive 

performance of each model under the imbalanced misclassification costs, rather than its 

conventional statistical interpretability, our model selection procedure still allows an interaction 

effect to be selected without its constituent main effects, which is consistent with the majority of 

other model selection methods (Cleves 2008, Shmueli 2010, Lenz et al. 2012). 

3.2.2. Decision Rule of Accepting or Rejecting a Screening Mammography Exam 

After the optimal risk estimation model is identified, the second stage of the decision-making 

framework is to determine whether a woman should undergo a screening mammogram in the 

current year based on her estimated breast cancer risk. We adopt the misclassification cost term 

criterion (MCT) (Greiner 1996) to calculate the optimal cut-off points of cancer probabilities for 

recommending a screening mammogram. The MCT is a variant of Equation (4). It also 

incorporates the costs associated with false-positive and false-negative misclassifications to 

determine the optimal threshold that results in the least expected cost. Let ∅� denote the optimal 

cut-off point at age 
. Only when a woman has a breast cancer risk higher than the optimal cut-

off point, should she be recommended to undergo a screening mammogram at the current age.  

Based on the MCT, the optimal cut-off point for age t, ∅�, is determined by 

min∅\∈fj,�jj%h MCT = ������
∙ %� ∙ f1 − Se�∅��h + �1 − %�� ∙ f1 − Sp�∅��h, (15) 

where %� is the prevalence of breast cancer in age group 
; Se�∅�� is the sensitivity associated 

with ∅� (i.e., the percentage of true positive decisions in all positive classifications); Sp�∅�� is 

the specificity associated with ∅� (i.e., the percentage of true negative decisions in all negative 
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decisions). Since all parameters involved above are age-specific, we provide the optimal cut-off 

point for each age group separately. 

 
3.3. Numerical Study 

3.3.1. Data and Parameters Estimation 

We use the Breast Cancer Surveillance Consortium (BCSC) dataset (Barlow 2006), which 

includes screening mammography information from 1,007,600 women from January 2000 to 

December 2009, to execute the regression analysis. The BCSC is a collaborative network of 

seven mammography registries for studies aiming to assess the delivery and quality of breast 

cancer screening and related patient outcomes in the United States (2004). Each woman in the 

BCSC dataset has one screening mammogram and corresponding one-year outcome. The dataset 

includes each participants’ breast cancer diagnosis information within 1 year of the screening 

mammogram as well as their personal characteristics (including risk factors) as introduced in 

Section 3.2.1. All these risk factors, except age, are incorporated as explanatory variables in the 

regression analysis of the risk model. Age is used to stratify the regression models so as to 

provide age-specific risk estimation models and cut-off points. We adopt the listwise deletion to 

deal with missing data. In this numerical study, we consider women aged 40-84 since the BCSC 

data only includes women aged 84 and younger. Whether the woman is diagnosed with breast 

cancer within one year of the screening mammogram serves as the response variable. We also 

use this dataset to derive the age-specific prevalence of breast cancer (:�), as well as the 

proportions of in situ cancer (:��ins|C�) and invasive cancer cases (:��inv|C�).  

In order to validate the performance of our decision model, we use the holdout method that 

randomly splits the dataset into a training set and a test set. The training set contains 70% of the 

observations, while the remaining 30% are used to build the test set. We use the training set to fit 
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regression models and determine optimal cut-off points. Then the test set is employed to validate 

our decision model and make comparisons with alternative mammography screening 

recommendations. 

Table 1 Sources of data input for model parameter estimation 
Parameters Source ��, P��insj|ins�, P��ins�|ins�, Yen et al. (2003) )��, )�r Saarni et al. (2006); Ayer et al., (2012) :��D�, :��UD� Verkooijen et al. (2005); Zhang (2011) ���invp�,  Beck et al. (1982) ���insp�, ���insj� Arias (2011); Howlader et al. (2012) :��Positive|NC�, :��Negative|C�, :��Positive|C� 

Yankaskas et al. (2005); Weaver et al. (2006) 

P��Bj|NC�, :��Bj|C�� Hubbard et al. (2011) 

���ins��,  ���inv�, 
BCSC (2009); Zhang (2011); Arias (2011); Yen et al. 
(2003) 

    Table 1 lists other parameters used in the numerical experiments. In particular, as a woman 

ages, the risk and side-effects caused by a biopsy become more serious (Burnside et al. 2012). 

Hence, we assume the disutility of biopsy is inversely proportional to the age-specific EQ-5D 

scores of the general population (Saarni et al. 2006), which reflects the varying negative impacts 

of biopsy on women’s health at different ages. Since no study provides age-specific annual death 

rates of untreated invasive breast cancer, we estimate these rates based on the one-year treated 

death rate of invasive cancer using the data from an earlier study (Zhang 2011). To adjust for the 

untreated breast cancer, we use Verkooijen et al.’s finding (2005) on the effect of refusal of 

treatment on mortality, i.e., the death rate of untreated breast cancers is threefold higher than that 

of treated breast cancers. In addition, we assume that life expectancy of patients treated for in 

situ cancer (���insp�) is equal to that of the general population, since the survival rate of in situ 

cancer is nearly 100% (Recht et al. 1998). Similarly, as a non-progressive in situ cancer will 

never progress to a life-threating invasive disease even if left untreated (Yen et al. 2003), we also 

assume the life expectancy of a non-progressive in situ cancer patient ����insj�� to be equal to 
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that of the general population. We calculate the life expectancy of patients treated for invasive 

cancer (���invp�) using the DEALE method based on the 10-year survival of invasive breast 

cancer (Beck et a. 1982, Howlader et al. 2012). 

  

The Markov chain representing progressive 
in situ cancer 

The Markov chain representing 
progression of invasive cancer ins� = undetected progressive in situ cancer; insp= in situ cancer patient in treatment; inv = undetected invasive cancer; invp= treated invasive cancer;  

Death = all-cause death 
 

Figure 2 Markov chain diagrams for estimating ���ins�� and ���inv� 

     In order to estimate ���ins�� and ���inv�, we assume that the two types of breast cancer 

patients will strictly undergo annual screening mammography from 
. We use two discrete-time 

Markov chain models to estimate their expected values. Figure 2 shows the respective transition 

diagrams of the Markov chain models. The transitions from ins� and inv to their corresponding 

treatment states (inspand invp) are defined as true positive rate of mammography. Thus, a self-

loop means the mammogram in the current year fail to detect the in situ cancer or invasive 

cancer. The transition from ins� to “Death” represents the one-year all-cause mortality rate. The 

transitions between ins� and inv represents the one-year progression from in situ cancer to 

invasive cancer. The treatments and death states are all absorbing states. We assume age 100 is 

the end of the time horizon, so there are 100 − 
 steps for a process starting with a state at age 
. 

���� ��Z 

Death 
���k

 

��Z 

Death 
��Zk
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Thus, the expected lengths of survival counted during the Markov chains looping from age 
 to 

age 100 can be used to estimate the life expectancy of ���ins�� and ���inv�. 

3.3.2. Data Smoothing 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Monotonic transformation of the cost ratios  

Braithwaite et al. (Braithwaite et al. 2013) found frequent screenings result in higher risk of false 

positive mammography results and biopsy referrals without added benefit on older women as 

compared with younger women. Therefore, it is reasonable to assume that, the ratio between the 

cost of a false negative result and the cost of a false positive result, which reflects the net benefit 

of undergoing a mammography screening, will decrease as women age.  While the calculated 

results of the cost ratios by age show a decreasing trend (dots in Figure 3), they are not 

monotonically decreasing. This may be due to various sources of input data for numerical 

calculation. In this study, we use a monotone smoothing method proposed by Ramsay (1998) to 

regularize the raw results of the cost ratios so that they are monotonically decreasing with age. 
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Suppose }j is the lower boundary of age, and the monotonically increasing smoothing function 

is defined as follows.  

¬�}� = �j + �� � e�®�d�¯�°
°±

, (16) 

where �j is the value of ¬�}j�; β1 is the slope of ¬�}� at }j; and w�¯� is a B-spline basis 

function of order 6 with w�}j� equal to zero. �j , �� and w�¯� are three objects for each 

smoothed curve estimated from the raw results. The smoothing function iteratively minimizes 

the least squares fitting criterion (see Ramsay (1998) for details). The monotonically smoothed 

results of the cost ratios are plotted in Figure 3 with a solid line. 

3.3.3. Results 

Table 2 Parameters of the tabu search 
Size of the tabu list 5 10 20 

Iterations in each phase 100 500 1000 
Total iterations in three phases 300 1500 3000 

We set several scenarios to execute the tabu search algorithm for each age group. Table 2 

summarizes the size of the tabu list and the number of iterations in each phase for each scenario. 

We use three typical levels of total iterations, which represent small, medium and large iteration 

numbers to test the convergence of the tabu search algorithm. In addition, three different tabu list 

sizes are employed to ensure a better performance. Therefore, for each age, the model selection 

is performed 9 times. The best results in 9 runs are selected as the optimal prediction models.  

We found the choice of the size of tabu list does not affect the final solutions (results not 

shown). However, for most age groups, only when the number of iterations in each phase is set 

to be higher than or equal to 500, does the iteration procedures converge to their final solutions.  

In contrast, when it is set to 100, the iteration process rarely converges but usually keeps finding 

better solutions until the end of the intensification phase or the diversification phase. Table 3 



79 
 

shows the combination of explanatory variables of each age’s optimal risk prediction model as 

well as its corresponding value of the H measure.  

Although all of the risk factors we included have been associated with increased breast cancer 

risk in previous studies, the main effects included in the prediction model vary dramatically with 

age. The main effect selected most often is last mammographic result, which is included in 28 

out of 45 age groups. In contrast, the main effect selected least often is current menopausal 

status, which never appears as a main effect. In addition, as expected, the interaction effects 

between different risk factors play a vital role in every model. Since we allow our model 

selection to select an interaction effect without its constituent main effects, some risk factors, 

which form the principal part of interaction effects of a model, do not appear in the main effects 

of the model. For example, in the risk model of age 40, although BMI and previous breast 

procedure are not selected as main effects, they are involved in 8 different interaction effects 

(i.e., race×bmi, bmi×agefirst, bmi×nrelbc, bmi×brstproc, bmi×lastmamm, race×brstproc, 

hispanic×brstproc, and brstproc×lastmamm). Such a pattern is very common in other age groups. 

In particular, although menopausal status never serves as a main effect, it is included in the 

interaction effects of all age groups between 45 and 54 years. In addition to menopausal status, 

we also found some risk factors are much more common in the interaction effects than in the 

main effects, such as the number of first degree relatives with breast cancer. While this factor is 

the second least selected main effect and only appears in 14 age groups as the main effect (ages 

40-44, 47-49, 62, and 80-84), it appears in the interaction effects of 44 out of 45 age groups. 

These results imply menopausal status and the number of first degree relatives with breast cancer 

are akin to cofactors that join with another factor to affect a woman’s breast cancer risk. 
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Table 3 Risk estimation models and cut-off probabilities for accepting a mammogram 
Age 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 

Main  

effects 

menopaus                
race √ √ √   √ √ √ √ √ √ √ √ √ √ 
hispanic √ √ √ √ √       √    
bmi      √ √ √ √ √      
agefirst √ √ √ √ √      √ √ √ √ √ 
nrelbc √ √ √ √ √   √ √ √      
brstproc        √ √ √    √ √ 
lastmamm √ √ √ √ √ √ √ √ √ √ √ √ √   
surgmeno              √ √ 
hrt           √ √ √   

Interaction 

effects 

menopaus×race                
menopaus×hispanic           √     
menopaus×bmi        √ √ √    √ √ 
menopaus×agefirst      √ √ √ √ √ √ √ √   
menopaus×nrelbc              √ √ 
menopaus×brstproc      √ √ √ √ √ √ √ √   
menopaus×surgmeno      √ √ √ √ √  √  √ √ 
menopaus×lastmamm        √ √ √ √ √ √ √ √ 
menopaus×hrt              √ √ 
race×hispanic √ √ √ √ √   √ √ √    √ √ 
race×bmi √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
race×agefirst    √ √ √ √ √ √ √ √ √ √ √ √ 
race×nrelbc √ √ √ √ √ √ √ √ √ √    √ √ 
race×brstproc √ √ √ √ √      √ √ √ √ √ 
race×lastmamm √ √ √ √ √ √ √ √ √ √ √  √   
race×surgmeno      √ √ √ √ √ √  √ √ √ 
race×hrt      √ √       √ √ 
hispanic×bmi        √ √ √ √ √ √   
hispanic×agefirst           √ √ √ √ √ 
hispanic×nrelbc      √ √ √ √ √ √  √ √ √ 
hispanic×brstproc √ √ √ √ √ √ √ √ √ √ √  √ √ √ 
hispanic×lastmamm √ √ √ √ √           
hispanic×surgmeno        √ √ √ √ √ √   
hispanic×hrt           √  √ √ √ 
bmi×agefirst √ √ √ √ √   √ √ √ √ √ √ √ √ 
bmi×nrelbc √ √ √ √ √         √ √ 
bmi×brstproc √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
bmi×lastmamm √ √ √ √ √   √ √ √   √ √ √ 
bmi×surgmeno            √ √   
bmi×hrt      √ √ √ √ √ √ √ √   
agefirst×nrelbc √ √ √ √ √         √ √ 
agefirst×brstproc                
agefirst×lastmamm      √ √ √ √ √ √ √ √ √ √ 
agefirst×surgmeno      √ √ √ √ √ √ √ √ √ √ 
agefirst×hrt      √ √ √ √ √ √ √ √ √ √ 
nrelbc×brstproc      √ √         
nrelbc×lastmamm √ √ √ √ √ √ √ √ √ √      
nrelbc×surgmeno           √  √ √ √ 
nrelbc×hrt             √ √ √ 
brstproc×lastmamm √ √ √ √ √ √ √ √ √ √ √ √ √   
brstproc×surgmeno      √ √ √ √ √      
brstproc×hrt      √ √ √ √ √    √ √ 
lastmamm×surgmeno      √ √ √ √ √ √ √ √   
lastmamm×hrt      √ √ √ √ √ √ √ √ √ √ 
surgmeno×hrt      √ √ √ √ √ √ √ √   
H measure 0.146 0.146 0.147 0.145 0.145 0.240 0.239 0.231 0.231 0.231 0.235 0.228 0.273 0.266 0.266

Ratio between ���and ��� 2023 1993 1933 1900 1893 1890 1881 1850 1817 1808 1803 1789 1739 1705 1700 
Optimal Cut-off point (‰) 1.713 1.713 1.713 1.765 1.765 2.201 2.201 2.315 2.315 2.315 2.727 2.845 3.091 3.127 3.127

(Menopaus =menopausal status, Agefirst=age at first birth, Nrelbc=No. of first degree relatives with 
breast cancer, Brstproc= Previous breast procedure, Lastmamm= last mammogram, Surgmeno=surgical 
menopause, Hrt=current hormone therapy) 
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Table 3 Risk estimation models and cut-off probabilities for accepting a mammogram (Cont.) 
Age 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 

Main 

 effects 

menopaus                
race √ √ √ √ √   √ √ √ √ √ √ √ √ 
hispanic    √  √ √         
bmi √ √      √ √   √ √ √ √ 
agefirst √ √  √ √ √ √     √ √ √ √ 
nrelbc        √        
brstproc √ √ √ √     √ √ √ √ √ √ √ 
lastmamm √ √ √ √ √ √ √   √      
surgmeno        √ √ √      
hrt    √    √   √ √ √ √ √ 

Interaction 

effects 

menopaus×race                
menopaus×hispanic                
menopaus×bmi                
menopaus×agefirst                
menopaus×nrelbc                
menopaus×brstproc                
menopaus×surgmeno                
menopaus×lastmamm                
menopaus×hrt                
race×hispanic   √ √ √ √     √ √ √ √ √ 
race×bmi      √ √ √ √ √ √ √ √ √ √ 
race×agefirst √ √ √ √ √      √ √ √ √ √ 
race×nrelbc √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
race×brstproc       √  √ √ √ √ √ √ √ 
race×lastmamm √ √ √ √ √ √ √ √ √ √      
race×surgmeno   √  √ √ √ √ √ √ √ √ √ √ √ 
race×hrt √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
hispanic×bmi √ √ √ √            
hispanic×agefirst            √ √ √ √ 
hispanic×nrelbc    √  √          
hispanic×brstproc        √    √ √ √ √ 
hispanic×lastmamm √ √ √ √ √ √ √ √ √ √      
hispanic×surgmeno √ √ √ √ √ √ √ √ √ √      
hispanic×hrt       √ √ √ √ √     
bmi×agefirst   √ √ √ √ √ √ √ √ √ √ √ √ √ 
bmi×nrelbc   √ √       √ √ √ √ √ 
bmi×brstproc √ √ √ √ √ √ √ √ √  √ √ √ √ √ 
bmi×lastmamm       √ √ √ √ √ √ √ √ √ 
bmi×surgmeno √ √ √ √ √ √ √ √ √ √      
bmi×hrt √ √ √  √ √ √ √   √ √ √ √ √ 
agefirst×nrelbc √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
agefirst×brstproc         √ √ √     
agefirst×lastmamm √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
agefirst×surgmeno √ √ √ √ √ √ √ √ √ √      
agefirst×hrt √ √ √ √ √ √ √ √ √ √      
nrelbc×brstproc       √  √ √ √ √ √ √ √ 
nrelbc×lastmamm √ √ √   √ √ √ √ √ √ √ √ √ √ 
nrelbc×surgmeno √ √ √        √ √ √ √ √ 
nrelbc×hrt   √ √ √ √ √ √ √       
brstproc×lastmamm √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
brstproc×surgmeno                
brstproc×hrt √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
lastmamm×surgmeno √ √ √  √   √ √ √ √ √ √ √ √ 
lastmamm×hrt √ √ √ √ √ √ √ √ √ √ √     
surgmeno×hrt                
H measure 0.230 0.230 0.219 0.243 0.228 0.238 0.226 0.235 0.256 0.241 0.237 0.218 0.221 0.221 0.221 

Ratio between ���and ��� 1698 1687 1623 1509 1426 1355 1260 1149 1047 965 898 854 840 839 838 
Optimal Cut-off point (‰) 3.524 3.524 3.461 3.761 3.593 3.725 4.523 4.476 4.687 4.729 5.013 5.132 5.132 5.132 5.132 
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Table 3 Risk estimation models and cut-off probabilities for accepting a mammogram (Cont.) 
Age 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 

Main  

effects 

menopaus                
race                
hispanic √    √ √ √ √  √ √ √ √ √ √ 
bmi √ √ √ √      √    √ √ 
agefirst  √ √ √ √    √ √      
nrelbc           √ √ √ √ √ 
brstproc       √ √ √  √ √ √   
lastmamm       √ √   √ √ √ √ √ 
surgmeno √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
hrt √ √ √ √ √ √ √ √ √ √      

Interaction 

effects 

menopaus×race                
menopaus×hispanic                
menopaus×bmi                
menopaus×agefirst                
menopaus×nrelbc                
menopaus×brstproc                
menopaus×surgmeno                
menopaus×lastmamm                
menopaus×hrt                
race×hispanic √ √ √ √  √ √ √ √ √      
race×bmi     √ √ √ √ √ √ √ √ √ √ √ 
race×agefirst      √ √ √        
race×nrelbc √ √ √ √ √    √ √      
race×brstproc √ √ √ √ √ √ √ √ √ √      
race×lastmamm √ √ √ √ √ √ √ √      √ √ 
race×surgmeno √ √ √ √ √ √ √ √ √ √ √ √ √   
race×hrt √ √ √ √ √    √ √      
hispanic×bmi              √ √ 
hispanic×agefirst √ √ √ √ √ √ √ √ √       
hispanic×nrelbc         √ √ √ √ √   
hispanic×brstproc √ √ √ √ √  √ √ √  √ √ √   
hispanic×lastmamm          √    √ √ 
hispanic×surgmeno      √ √ √  √ √ √ √ √ √ 
hispanic×hrt      √ √ √   √ √ √ √ √ 
bmi×agefirst √ √ √ √ √ √   √ √      
bmi×nrelbc √ √ √ √ √ √  √ √ √ √ √ √ √ √ 
bmi×brstproc        √ √ √ √ √ √ √ √ 
bmi×lastmamm √ √ √ √ √  √       √ √ 
bmi×surgmeno √ √ √ √ √  √  √ √      
bmi×hrt √ √ √ √ √    √ √      
agefirst×nrelbc √ √ √ √ √  √ √   √ √ √   
agefirst×brstproc     √ √ √ √ √ √ √ √ √ √ √ 
agefirst×lastmamm √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
agefirst×surgmeno      √  √ √ √ √ √ √ √ √ 
agefirst×hrt     √ √ √ √      √ √ 
nrelbc×brstproc √ √ √ √       √ √ √ √ √ 
nrelbc×lastmamm √ √ √ √       √ √ √ √ √ 
nrelbc×surgmeno √ √ √ √ √ √ √ √ √       
nrelbc×hrt √ √ √ √ √ √   √ √ √ √ √ √ √ 
brstproc×lastmamm √ √ √ √ √ √ √ √ √  √ √ √ √ √ 
brstproc×surgmeno                
brstproc×hrt √ √ √ √ √  √  √ √ √ √ √ √ √ 
lastmamm×surgmeno √ √ √ √ √    √  √ √ √ √ √ 
lastmamm×hrt √ √ √ √ √  √ √ √  √ √ √ √ √ 
surgmeno×hrt              √ √ 
H measure 0.270 0.270 0.270 0.272 0.311 0.419 0.422 0.425 0.439 0.483 0.550 0.551 0.553 0.546 0.550 

Ratio between ���and ��� 838 838 838 830 798 740 666 582 515 483 468 454 424 356 272 
Optimal Cut-off point (‰) 4.869 4.869 4.869 4.869 4.598 6.253 6.131 6.102 6.195 6.224 6.721 6.721 6.721 6.833 6.833 
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    The interaction effects included in each age group are also remarkably different. In particular, 

the interaction effect between previous breast procedure and last mammographic result is the 

most commonly selected predictor, which appears in 42 out of 45 age groups. The second most 

commonly selected interaction effect is the one between age at first birth and last mammogram 

(40 age groups), followed by BMI and previous breast procedure (37 age groups). In contrast, the 

interaction effect between menopausal status and race is excluded from all age groups. 

    After the monotone smoothing, the ratio between false negative cost and false positive cost 

strictly decreases with age. The cost ratios for young age groups are as high as 2023 (age 40), but 

the ratios for older age groups (ages 79-84) fall below 500, implying that the net benefit of 

undergoing a mammogram will reduce as a woman ages. In addition, there is also a quasi-

monotone relationship between age and the optimal cut-off points of predicted probabilities for 

accepting a mammogram (Figure 4). Since a higher value of the cut-off point implies a lower 

chance of accepting a mammogram, the figure indicates that as women age, they should adopt a 

more parsimonious attitude towards annual screening mammography. The curve rises with a 

significantly higher rate after age 75, which is consistent with the USPSTF’s recommendation 

against routine screening for women 75 years or older.  

 
Figure 4 Optimal cut-off points of probabilities for accepting a mammogram by age 
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3.3.4. Sensitivity Analyses 

Due to insufficient data in the literature, two sets of parameters may be subject to variability: 

disutilities associated with screening ()�� and )�1) and death rates of untreated invasive cancers 

(P��UD�). We perform a sensitivity analyses on these parameters to examine the impact of their 

variability on the risk model. The sensitivity analyses are conducted on the age groups 40, 60 and 

80, which represent the start of screening, mid-point and older age. We adjust these two 

parameters (increase or decrease by 10%, 30% or 50% each time) to see whether and how the 

cut-off probability of receiving a mammogram in the optimal risk model may change, with the 

results summarized in Table 4. “N” suggests that the model stays the same; otherwise, the 

differences from the original cut-off probabilities are reported. The results suggest that variation 

in the disutilities associated with screening do not impact the risk models and cut-off points in 

most cases. However, the risk model is sensitive to the variation in the death rates of untreated 

invasive cancers for the 60 and 80 years age groups; even just a 10% increase of Pv�UD� results 

in changed risk models and cut-off points. 

Table 4 Sensitivity analyses  

Age Tested Parameter +50% +30% +10% -10% -30% -50% 

40 
)��, )�1 +0.052‰ +0.052‰ N N -0.024‰ -0.024‰ 

P��UD� N N N N N N 

60 
)��, )�1 +0.798‰ +0.751‰ N N -0.034‰ -0.034‰ 

P��UD� -0.384‰ -0.384‰ -0.384‰ N +0.079‰ +0.079‰ 

80 
)��, )�1 N N N N N -0.611‰ 

P��UD� -0.494‰ -0.494‰ -0.494‰ N +0.152‰ +0.152‰ 

3.3.5. Comparison of Different Screening Policies 

For women with an average risk of breast cancer, the ACS recommends that they undergo annual 

screening mammography starting at age 45. Women 55 years and older should either switch to 

biennial screenings or continue screening annually. We compare the outcome of using the 
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decisions generated by our optimal model with that of annual screenings starting at age 45, 

which is one of the screening scenarios recommended by the ACS. In addition, in order to 

validate the advantage of the tabu search-based risk model, a risk model using all of the breast 

cancer risk factors suggested by Barlow et al. (2006) as well as a model using predictors selected 

by a simple greedy search are included in the comparison. Likewise, the MCT is used to 

determine the optimal cut-off points of generating screening mammogram decisions for the 

Barlow model and the model selected by greedy search. We also use AUC as an alternative 

criterion in tabu search to demonstrate the superiority of using the H measure over traditional 

model selection criteria. Table 5 summarizes the decision policies used in the comparison.        

Table 5 Summary of decision models and screening policy for comparison 

Decision Policy 
Search 

Strategy 

Model Selection 

Criterion 

Mammogram Decision 

rule 

Optimal model Tabu search H measure MCT threshold 
Greedy search model Greedy search H measure MCT threshold 

AUC model Tabu search AUC MCT threshold 
Barlow model N/A N/A MCT threshold 

Annual screening from 
age 45 

N/A N/A Annual mammogram 

We calculate the average loss of life expectancy caused by a single screening decision at each 

age when following the decision policies in Table 5. The comparison focuses on the average 

impact of a single screening decision at a particular age on a woman’s life expectancy. With the 

intention of validating the out-of-sample performance of our proposed model, the loss of life 

expectancy for each of the decision models are calculated based on the test set split from the 

original dataset. Since every woman in our dataset has in fact undergone a screening 

mammogram and been informed of the result, it is straightforward to determine each subject’s 

actual loss of life expectancy using the calculated costs of false negative results and false 

positive results. Thus, for every age from 45 through 84 years old, we calculate the loss of life 
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expectancy for each woman in the age group when the woman adopts each of the five decision 

policies. Then we use each woman’s risk characteristics to calculate her possibility of having 

breast cancer at her current age, and generate the optimal screening decision for her based on the 

optimal threshold. Since whether a woman has cancer is known, we are able to calculate her loss 

of life expectancy under different screening decision policies. Then we sum the total losses for 

all women in each age group and compute the average loss ��, for every policy using  

�� = ²�� × ��� +  ²n� × ����� , 
where ²�� is the number of cancerous observations which are incorrectly identified as non-

cancerous by the given decision model; ²n� is the number of non-cancerous observations which 

are falsely identified as cancerous by the given decision model; and �� is the total number of 

observations in age group t.  

The age-specific average losses of the five decision policies are plotted in Figure 5. Our 

optimal decision model consistently outperforms the annual screening and the remaining four 

decision models. When following the optimal decisions, the average loss of life expectancy 

caused by a single decision ranges between 0.001062 and 0.001663 years. The annual screening 

policy results in a significantly higher range of loss (between 0.001699 and 0.001738 years) as 

compared with our optimal decisions. Adopting the ACS’s biennial mammography screening 

after age 54 incurs higher loss of life expectancy (results not shown on Figure 5). In addition, the 

average loss of switching to biennial screening mammography after age 54 ranges from 0.01678 

to 0.00521 years, which is three to nine times higher than the average loss when continuing 

annual mammography at the corresponding ages. The decision model based on the Barlow model 

shows slightly better outcomes compared to the annual screening policy. The performance of the 

model selected by a simple greedy search lies between the Barlow model and the optimal model. 
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The decision model selected by the AUC has the worst out-of-sample performance, which may 

be due to the ROC curve assigning the same weights to false positive and false negative errors.  

 
Figure 5 Comparing the optimal decisions with the annual screening policy and other models 

Figure 6 presents the optimal cut-off probabilities associated with the four decision models 

starting at age 45. The annual screening policy does not make screening recommendations based 

on risk probabilities, and thus is not compared. The cut-off points from the greedy search model 

are closest to those of the optimal model. The cut-off points of the AUC model are significantly 

higher than the other three models, while the Barlow model has the lowest cut-off points among 

the four models. Since the Barlow model uses the same predictors for all age groups, it has a 

smoother curve than the other three models.  

 
Figure 6 Comparing the optimal cut-off probabilities associated with the four decision models 
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We further compare the five screening policies in terms of the total number of screening 

mammograms recommended in the population using the test set. As shown in Table 6, our 

optimal model recommends the second lowest number of screening mammograms (331,504), 

which is only 86% of the total number of mammograms recommended in the annual screening 

policy (384,900). Therefore, using the optimal screening policy developed in this study not only 

decreases the loss of life expectancy of the general population, but also potentially reduces the 

amount of medical expenses on breast cancer screenings.  

Table 6 Total number of mammograms under different policies 

Decision Policy 
Total Number of 

Mammograms 

Ratio to the Annual 

Screening Policy 

AUC model 310501 81% 
Optimal model 331504 86% 

Greedy search model 358603 93% 
Barlow model 374564 97% 

Annual screening from age 45 384900 100% 
  

It is noteworthy that the comparison is based on the general population, which includes both 

low risk and high risk women, so that the average differences of loss between the optimal 

policies and other policies are low in terms of magnitude (less than one day). However, a lifetime 

cumulative comparison would make a more dramatic difference. In addition, if we were to apply 

the same comparison to a group of low risk women, instead of the general population or high risk 

women, we expect the differences to be sharper, as our optimal decision model propels low risk 

women to undergo fewer mammograms. 

  
3.4 Discussion and Future Work 

This paper presents a personalized decision-making model that aims to minimize the negative 

effects of current breast cancer screening practice. In Figure 7, we illustrate the process of using 

our personalized model to make screening mammogram decisions in practice. Whether a woman 
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should receive a screening mammogram is determined based on her risk level in the current year, 

our “on-line” screening policy is adaptive to a woman’s health status. While most previous 

studies strive to improve the breast cancer screening guidelines by offering lifetime 

mammography screening schedules, our model proposes utilizing a dynamic decision aid to 

determine if breast cancer screening should be conducted in the current year. The personalized 

model does not attempt to answer when to start or end routine mammography screening and how 

often women should be screened, but instead uses a woman’s personal risk of breast cancer and 

the net benefit of receiving a screening mammogram as two variable constraints to dynamically 

adjust the screening decision. As a uniform and static breast cancer screening policy is by no 

means perfectly applicable to different women or even the same woman at different time points, 

this research may inform the long-term controversies on breast cancer screening policies. 

Furthermore, the two-stage decision-making framework proposed in this study could also be 

applied to other disease prevention and treatment areas, such as prostate cancer screening, as 

long as there exists a binary decision-making process and the costs of two types of wrong 

decisions can be well quantified. 

 
Figure 7 Flow chart of mammography decision-making process 
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There are methodological contributions in this study. Different from previous personalized 

optimization models that do not purposely select variables but adopt all available static risk 

factors, the determinants of the proposed risk estimation model are selected based on a particular 

focus, i.e., making an optimal decision that minimizes the expected cost of false prediction. This 

study combined the H measure, a novel prediction-cost-oriented criterion of classification and 

prediction problems, with an efficient heuristic search algorithm model selection to overcome the 

high dimensionality of explanatory variables and the large number of observations. We expect 

this combination can provide new insights into the improvement of efficiency and effectiveness 

when dealing with large scale problems, especially for medical decision making. Meanwhile, we 

incorporate interaction effects between different risk factors to the risk estimation model of 

breast cancer. Many prior studies revealed that different risk factors do not affect women’s breast 

cancer risk independently (Mayberry and Stoddard-Wright 1992, Cleary and Maihle 1997,  

Clavel-Chapelon and Gerber 2002). However, earlier risk estimation studies fail to directly 

formulate these possible interaction effects in their model (Gail and Rimer 1998, Gail et al. 1989, 

Barlow et al. 2006). While stratifying risk models by age is commonly adopted, interaction 

effects between other risk factors have received little attention in previous screening 

mammography optimization studies. Our results show that interaction effects between risk 

factors play a critical role in the decision process.  

A major limitation of this study is the estimation of the misclassification cost of a false 

negative result. Life expectancy calculation (���ins�� and ���inv�) is based on the assumption 

that a woman will strictly undergo annual screening mammograms in the future. In fact, whether 

the woman will receive mammograms in the subsequent years depends on her future risk factors. 

However, since the misclassification cost of a false negative result is considered as the difference 
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between the life expectancies of skipping a necessary screening mammogram and receiving a 

necessary screening mammogram, the subtraction greatly offsets the possible bias caused by the 

assumption. Another major limitation is that the model incorporates only the most recent 

mammogram result as a risk factor, rather than the full history of previous mammography 

screenings. Different numbers of prior negative and positive mammography results may indicate 

different levels of risk. Moreover, the interval between the last mammogram and the current time 

point may also make a difference in terms of cancer risk. Due to the fact that the BCSC dataset 

only contains one observation per woman, we are only able to consider the most recent screening 

mammogram regardless of the number or interval, which is a common practice in prior studies 

(Barlow et al. 2006, McCann et al. 2002). Lastly, some parameters in our model are based on the 

general population rather than being woman-specific. For instance, different women may have 

different cancer progression rates, but the progression rates used in this study are age-specific, 

which means all women in the same age group share the same cut-off probability regardless of 

their risk characteristics. To the best of our knowledge, there is no information on these patient-

specific parameters reported in the literature. The model proposed in this study will be able to 

personalize both risk models and optimal cut-off points when such information becomes 

available in the future. Compared with Markovian models, our proposed method has a 

disadvantage in representing the abovementioned dynamics of the breast cancer screening 

problem. Our model requires a significant amount of data to properly incorporate these dynamics 

and such large data is unavailable in most cases.  Although the proposed method is capable of 

processing dynamic risk factors, it primarily focuses on the current decision epoch and does not 

sufficiently model the women’s screening decisions in the future, which may potentially impact 

the outcome (i.e., total life expectancy) of the current screening decision. 
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    As a future research direction, a different model could be formulated to determine optimal 

decisions for women who have a personal history of breast cancer and who are undergoing 

surveillance mammography. The risk of cancer recurrence is not only affected by the identified 

breast cancer risk factors but also by type of treatment, number of years since treatment, and 

initial tumor characteristics (Buist et al. 2010). Using the methods developed in this study with 

data on women with a personal history of breast cancer may allow for the creation of another 

model that will contribute to our ability to generate personalized recommendations for 

prevention and control of breast cancer. 
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4 Personalized Modeling for Assessing Human Papillomavirus (HPV) Vaccination Policies 

for Women 

 

 

Abstract 

Human papillomavirus (HPV) is the most common sexually transmitted infection in the United 

States. HPV can cause genital warts and multiple types of cancers on females, including cervical, 

anal, vaginal, vulvar, and oropharyngeal cancers. In order to prevent future HPV-related 

diseases, currently, all boys and girls ages 11 or 12 years are recommended to receive the three-

dose HPV vaccine. Catch-up vaccines are recommended for males and females through ages 21 

and 26, respectively, if they have not been vaccinated previously. In this research, we 

hypothesize that the cut off age of catch-up vaccine should be determined based on every single 

woman’s risk characteristics, rather than a one-size-fits-all age 26. We model the impact of HPV 

vaccination at different ages on every individual and track her course of life to estimate the 

clinical outcomes that resulted from receiving vaccines. With the purpose of providing patient-

specific HPV vaccination strategies, especially personalized catch-up vaccination policies, we 

develop a discrete-event simulation model to evaluate multiple clinical consequences after a 

woman is vaccinated based on a number of personal attributes. As our simulation model works at 

the individual level, we build an HPV risk estimation model reflecting every woman’s HPV risk, 

which dynamically changes over time, to support the lifetime simulation model. We estimate the 

following patient-specific clinical consequences: life time risk of developing HPV-related 

cancers, life expectancy, life years saved by vaccines. Our study shows that catch-up vaccines 

still benefit all women after age 26 from the perspective of clinical outcomes. Especially, women 

facing high risk of HPV infection is expected to gain more health benefits compared with women 

with low HPV risk. The study reveals that the optimal HPV vaccination catch-up policy should 

be personalized for different women. 
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4.1 Introduction 

Human papillomavirus (HPV) is the most common sexually transmitted disease in the United 

States. According to Satterwhite et al.’s estimation (2013), 14,100,000 people are newly infected 

with HPV each year.  Among over 150 identified HPV subtypes, more than 40 HPV types can be 

transmitted via sexual contacts (Bernard et al. 2010). Although most HPV infections are 

asymptomatic and often regress on their own spontaneously, some HPV subtypes can cause 

genital warts and multiple types of cancers for females, including cervical, anal, vaginal, vulvar, 

and oropharyngeal cancers. In particular, HPV types 16 and 18, result in 70% of cervical 

cancers, which is the second largest cause of cancer deaths among women worldwide. (Arbyn et 

al.2011, Lowy and Schiller 2012).  

While there is no effective treatment for HPV, HPV infections can be prevented through 

vaccination. Currently, three vaccines have been approved by the Food and Drug Administration 

(FDA), including Gardasil (bivalent vaccine), Cervarix (quadrivalent vaccine) and Gardasil 9 (9-

valent vaccine). While bivalent HPV vaccine protects against HPV 16 and 18, quadrivalent 

vaccine protects against HPV 6 and 11 in addition to HPV 16 and 18. 9-valent vaccine, which 

was newly approved by FDA, provides protection against HPV types of 6, 11, 16, 18, 31, 33, 45, 

52, and 58. Although the HPV subtypes covered by the three vaccines vary, all of them provide 

strong protection against HPV 16 and 18, which account for most HPV-related cancers. The 

American Cancer Society (ACS) recommends that girls and boys should receive HPV 

vaccination at age 11 to 12 (Saslow et al. 2016). For those who have not previously been 

vaccinated, catch-up HPV vaccination is also recommended for females through age 26 and for 

males through age 21.  

Since the introduction and implementation of HPV vaccination, significant reductions in 

vaccine type infections among women have been reported. Markowitz et al. (2013) found a 56% 
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decrease in the prevalence of vaccine-type HPV among females aged 14 to 19 years in the 4 

years after vaccine introduction.  A clinic-based study reported substantial decrease in the 

prevalence of vaccine-type HPV in both vaccinated and unvaccinated women from a community 

4 years after the quadrivalent HPV vaccine was introduced (Kahn et al. 2012). Previous studies 

also suggested substantial reduction in HPV-related diseases. Ali et al. (2013) reported that there 

was a 60% reduction in new cases of genital warts. Clinical trials showed that HPV vaccines 

have very high efficacy for prevention of vaccine-type pre-cancers. Specifically, the efficacy of 

bivalent and quadrivalent against cervical pre-cancer is higher than 93% (Dunne et al. 2014). 

Previous studies evaluated HPV vaccination program at the population level. Most of these 

studies assessed the cost-effectiveness and clinical outcomes of HPV vaccination program based 

on simulation models. Sanders and Taira (2003) developed a Markov model to evaluate the cost-

effectiveness of vaccinating adolescent girls with high-risk of HPV infections. They assumed a 

75% probability of immunity against high-risk HPV infection and found that such a vaccine 

would result in a gain of 4 quality-adjusted life days at a cost of $246. If all 12-year-old girls in 

the United States were vaccinated, over 1,300 deaths from cervical cancer would be prevented. 

Elbasha et al. (2007) assessed the clinical outcomes and cost-effectiveness of quadrivalent 

vaccines and found that vaccinating girls before age 12 would reduce the incidences of genital 

warts and cervical cancers by 83% and 78%, respectively. Chesson et al. (2008, 2011) estimated 

the decrease in the health and economic burden of HPV-related diseases in males and females as 

a result of HPV vaccination. Their models incorporated cervical, vaginal, vulvar, anal, 

oropharyngeal, and penile cancers as well as genital warts. Guzzetta et al. (2014) estimated the 

impact of HPV vaccination on Italian women. Their study also found that catch-up vaccines of 

25-year-old women can avert 9.6% of all cervical cancer cases expected in the scenario without 
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catch-up. Velde et al. (2011) investigated why different HPV vaccination evaluation studies 

usually produced very inconsistent results. They concluded that differences in the elements of 

model design, such as natural immunity, partnership duration, HPV types, and waning of vaccine 

protection, result in significant differences in the estimated effectiveness of HPV vaccines. 

However, to the best of our knowledge, there is no study evaluating HPV vaccination at the 

individual level. As Velde et al. (2011) suggested, differences in some model parameters may 

result in very different outcomes. It is reasonable to expect that people with different levels of 

HPV risk have very different clinical outcomes after receiving vaccines. Previous studies 

identified a number of risk factors that determine the level of HPV risk on different women, 

including demographic attributes, personal life style and sexual behavior (Winer et al. 2003, 

Dempsey 2008, Shi et al. 2014). The HPV risk varies dramatically on different individuals. Thus, 

a personalized evaluation model incorporating individual HPV risk will precisely reveal the 

different impacts of HPV vaccination on different people. 

In addition, although the current HPV vaccination guideline proposed by the ACS does not 

recommend vaccines for women older than 26, recent studies showed that women over the age of 

26 still bear significant HPV risk (Velentzis et al. 2014). In some other countries, HPV 

vaccination recommendations go beyond age 26. Particularly, in Australia, HPV vaccines are 

registered for use in females up to 45 years old (Mazza et al. 2014). Some studies showed that 

HPV vaccines are still beneficial to older women (Muñoz et al. 2009, Schwarz et al. 2009, 

Westra et al. 2011). Those conclusions were drawn mainly from the efficacy perspective rather 

than from cost-effectiveness considerations. 

In this study, we address the abovementioned problems with two objectives: (1) providing a 

personalized evaluation model of HPV vaccination, and (2) examining the clinical outcomes of 
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HPV vaccination for women older than 26. We also seek to synthesize these two problems and 

determine the cut-off age of HPV catch-up vaccine based on every single woman’s risk 

characteristics. Our study models the impact of HPV vaccination at different ages on every 

individual, and tracks her course of life to estimate the clinical outcomes that has resulted from 

receiving vaccines. With the purpose of providing patient-specific HPV vaccination strategies, 

especially personalized catch-up vaccination policies, we develop a discrete-event simulation 

model to evaluate multiple clinical consequences after a woman receives vaccines based on a 

number of personal attributes. As our simulation model works at the individual level, we build an 

HPV risk estimation model incorporating every woman’s HPV risk, which dynamically changes 

over time, to support the lifetime simulation model. We estimate the following patient-specific 

clinical consequences: life time risk of developing HPV-related cancers, life expectancy, life 

years saved by vaccines. 

The contribution of our study is two-fold. Firstly, this is the only patient-specific simulation 

model for the evaluation of HPV vaccination, which provides more practical and accurate 

decision support for both individual woman and medical decision makers. The model proposes a 

new framework which is able to reflect the dynamic HPV risk of an individual during the 

simulated life course. Secondly, our study considers vaccination after age 26, which exceeds the 

recommended age of catch-up vaccines in the U.S. The results of the study would be 

instrumental for medical decision makers to rationally determine the catch-up vaccination and 

potentially amplify the public health benefits of HPV vaccines. 

The remainder of the chapter proceeds as follows. Section 4.2 introduces the basic 

framework of the simulation model and the adjunct HPV risk model. Section 4.3 presents the 

numerical experiment performed. We introduce the model input, data processing and experiment 
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results under different scenarios in this section. Section 4.4 provides a discussion on the 

proposed model and concludes the significance of the study. 

 
4.2 Methodologies 

The HPV vaccination evaluation model consists of two sub-models. The main body of the model 

is a discrete event simulation model that keeps track of every individual woman’s course of life, 

which involves multiple deterministic events and probabilistic events. An HPV risk model 

dynamically estimates the patient-specific HPV risk of every simulated woman’s life course so 

as to update the likelihoods of probabilistic events while a simulation is running. 

4.2.1. Estimation of Clinical Consequences Using Discrete Event Simulation  

We use a discrete event simulation to model individual women’s course of life in different 

vaccination scenarios (i.e. varying age at vaccination). The model simulates every woman’s life 

course with the given risk characteristic repeatedly over a planning horizon from the starting age 

to age 100. The system clock is incremented by a fixed amount of time at each step of the 

simulation. In this study, we define the increment of time by 1 year. We use 
 to represent the 

current time epoch (i.e. a woman’s age). We use five main states to represent a woman’s health 

status. 

• Susceptible (S): the woman has no immunity against HPV and therefore is susceptible to 

HPV 

• Immune (I): the woman has been vaccinated and therefore is immune to HPV 

• HPV infection (H): the woman without immunity is infected with HPV. 

• Cancer (C): the woman has developed an HPV-related cancer. 

• Death (D): the woman dies from HPA-related cancers or other causes. 
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A woman’s state at time 
 is denoted by ��, where  �� ∈ �S, I, H, C, D�. During the course of a 

woman’s simulated life, her health status will switch between the five states until she enters 

death or reaches age 100. There are both deterministic events and probabilistic events that may 

change a woman’s state. Table 1 summarizes the main deterministic events and probabilistic 

events in a woman’s simulated life course. Figure 1 shows the five states and the specific events 

resulting in the transitions between these states. In particular, we assume all women complete 3-

dose HPV and acquire full immunity against HPV. As the long-term clinical trials that follow up 

the HPV vaccines’ protection duration are still ongoing and have reported almost persistent 

efficacy during the whole follow-up period (Romanowski et al. 2016), we also assume that 

vaccines provide women with lifetime immunity against HPV infection, which is a common 

practice in previous studies (Elbasha et al. 2007). Thus, once a woman gets vaccinated, she will 

never enter “HPV infection” or “Susceptible” states. At each step of the simulation, the system 

determines the occurrences of the events based on the woman’s current state and the 

corresponding likelihoods of probabilistic events. The woman stays in one of the states until an 

event occurs and changes her state.   

Table 1 Main events in the simulation model 
Deterministic events Probabilistic events 

▪ The woman will get vaccinated 
at a specific age. 

▪ The woman may or may not be infected with 
HPV. 

▪ She will die at age 100 if not 
dying at an earlier age. 

▪ After the woman is infected with HPV, the 
HPV may regress spontaneously. 

 
▪ After the woman is infected with HPV, the 

HPV may progress to an HPV-related cancer. 

 

▪ If the woman develops an HPV-related 
cancer, the cancer may result in death or be 
successfully treated. 

 ▪ The woman may die at any age. 
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Figure 1 The main structure of the simulation model 

Let :�� ��&�| ��� denote the transition probability from state  �� to state  ��&� for a woman at 

age t. Table 2 summarizes how the transition probabilities are determined. 

Table 2 States transitions in the simulation model 
Probability Transition Value 

:��H|S� The woman is infected with HPV. 
Patient-specific annual HPV 
incidence rate :��S|H� HPV regresses spontaneously. One-year regression rate of HPV 

:��D|H� 
The infected woman dies from reasons 
other than HPV-related cancers. 

One-year death rate (excluding 
HPV-related cancers)  

:��C|H� HPV progresses to an HPV-related cancer. 
Cancer-specific one-year 
progression rate of HPV 

:��D|C� 
The woman dies from any reasons, 
including HPV-related cancer. 

Cancer-specific one-year death 
rate (including other reasons) 

:��D|I� 
The uninfected woman dies from reasons 
other than HPV-related cancers. 

One-year death rate (excluding 
HPV-related cancers)  

:��D|S� 
The uninfected woman dies from reasons 
other than HPV-related cancers. 

One-year death rate (excluding 
HPV-related cancers)  

:��I|S� The woman gets vaccinated. 
 100% at a specified age 
 0% at other ages 

:��H|C� 
The HPV-related cancer regresses. HPV 
persists. 

 HPV persistent rate after cancer 
treatment or cancer regression 

:��I|C� 
The HPV-related cancer regresses. HPV 
clears. 

1 - HPV persistent rate 
(excluding death in one year) 

HPV progresses to a cancer 

The woman 

is 

infected 

with HPV 

HPV regresses 

spontaneously 

The woman gets vaccinated 

SusceptibleSusceptibleSusceptibleSusceptible    (S)(S)(S)(S) 

HPV infectionHPV infectionHPV infectionHPV infection    

(H)(H)(H)(H) 

CancerCancerCancerCancer    (C)(C)(C)(C) 

ImmuneImmuneImmuneImmune    (I)(I)(I)(I) 

DeathDeathDeathDeath    (D)(D)(D)(D) 

Cancer regresses and HPV 

persists 

Cancer 

regresses 

and HPV 

clears  
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Different from other states, “cancer” is a complex state that consists of several sub-states 

representing the development, diagnosis and treatment of HPV-related cancers. Figure 2 

illustrates the subsequent process after a woman’s HPV develops to HPV-related cancers. We 

use multiple sub-states to differentiate detected and undetected HPV-related cancers as well as 

different stages of the cancers, as they have different death rates. The simulation clock is still 

incremented by one year at each step after a woman enters the sub-states of the “cancer” state. 

When a woman completes the transitions from “HPV infection” state to “cancer” state, she will 

immediately be assigned to “pre-cancer/ in situ cancer” state. Then the woman’s pre-cancer or in 

situ cancer may progress to a invasive cancer or be diagnosed.  The state transitions in the sub-

structure are similar to the transitions in the main structure of the simulation model. 

 

Figure 2 The sub-structure of the “cancer” state 

Pre-cancer/ in 
situ cancer  

Death  

Detected Local 
cancer 

Detected 
regional cancer 

Detected distant 
cancer 

Undetected 
regional cancer 

Undetected 
distant cancer 

Undetected local 
cancer 

Survivor  

Detected pre-
cancer/ in situ 

cancer  
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Every year, a simulated woman’s health status may stay at the same state or change to 

another state with a certain possibility. The woman’s status switches between the different states 

until she enters an absorbing state (i.e. “survivor” or “death”) or leave the sub-structure (i.e., two 

outgoing arrows from the “pre-cancer/ in situ cancer” states). 

We take cervical cancer as an example to explain the detailed simulation process after a 

woman’s HPV progresses to HPV-related cancer. Every year, an HPV infection may naturally 

progress to HPV-related cancers with a certain probability. The first status after the progression 

is the pre-cancer or in situ cancer stage. For cervical cancer, this status includes three states: 

cervical intraepithelial neoplasia (CIN) 1, CIN 2 and CIN 3, which are cervical cancer’s non-

malignant pre-cancer stages with the propensities of regression and progression (Schiffman et al. 

1993). These pre-cancer stages may be detected by routine cervical cancer screening (i.e., Pap 

test) with a certain probability every year. Once detected, the CINs will be treated. Then the 

simulated woman will re-enter “HPV infection” state or “Immune” state in Figure 1, depending 

upon whether the HPV infection persists or not. During the year, the woman may also die from 

another causes other than cervical cancer. If the CINs are not detected, the woman’s status may 

stay the same, regress to “HPV infection”, regress to “Immune”, or progress to a real cancer, i.e. 

local cervical cancer. When the woman enters “undetected local cancer” state, similarly, the local 

cancer has potentials of evolving to a regional cervical cancer and being detected. Since the 

woman has cervical cancer, there is a certain possibility for her to develop cancer-related 

symptoms, which finally results in diagnosis and treatment of the cancer. The combination of the 

symptom development rate and cervical cancer screening rate is the transition probability from 

undetected local cancer to detected local or regional cancer. If the cancer is detected, the woman 

will enter the “detected local cancer” state and end up with “survivor”. The “survivor” state 
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makes the simulated woman quit the simulation and be assigned with a lump-sum life 

expectancy based on her specific cancer stage. A similar process is true for regional cancer and 

distant cancer.  

In addition to cervical cancer, HPV has been identified as an important cause of four other 

cancers of women, including anal cancer, vaginal cancer, vulvar cancer and oropharyngeal 

cancer (Chaturvedi 2010). The simulation model takes into account the five HPV-related 

cancers. We assume that a woman will never develop multiple HPV-related cancers 

simultaneously, as the incidence of synchronous primary cancers of the female genital tract is 

very rare (Tong et al. 2008). An HPV infection may progress to one of the five cancers with a 

certain probability every year. Once a woman develops an HPV-related cancer, she is 

temporarily free from the other cancers.  

The goal of the simulation is to estimate patient-specific clinical consequences in different 

vaccination scenarios (i.e. varying age at vaccination) and with given individual HPV risk 

characteristics. A woman’s life course is simulated for multiple times to derive the average 

values of life time risk of developing HPV-related cancers and life expectancy. By changing the 

age at vaccination and performing the simulation on women with different HPV risk, we expect 

to receive dramatically different outcomes of these metrics. 

4.2.2. HPV Risk Model 

In the simulation model, individual HPV risk is embodied in the transition possibility :��H|S�, 

which is from “Susceptible” to “HPV infection”. Different women’s possibilities of being 

infected with HPV at every age are estimated based on their personal risk characteristic. Previous 

studies have identified several behavioral and demographic risk factors of HPV (Moscicki et al. 

1990, Winer et al. 2003, Dempsey 2008, Shi et al. 2014, Reiter and McRee 2016).  We use a 
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number of identified HPV risk factors to build a penalized regression model to estimate the 

personal HPV risk for every individual, including demographic attributes, personal life style and 

sexual behaviors. 

Table 3 Candidate HPV risk factors 
Demographic attributes Personal life style Sexual behaviors 

Age Recent alcohol use Age at first sex 
Race Recent tobacco use Lifetime number of sex partners 

Marital status  Number of recent sex partners 
Ratio of family income to 

poverty 
 Sex orientation 

Age at first menarche   
Parity   

Table 3 summarizes the twelve candidate variables that are used to build the HPV risk 

model. We use these risk factors to determine every individual’s HPV risk at different ages. The 

risk factors are employed as the predictors of the logistic regression model to estimate the HPV 

risk. Since HPV 16 and 18 are responsible for most HPV-related cancers and preventable by the 

three approved vaccines, we only take these two HPV subtypes into account and treat the 

incidence of HPV 16 and 18 as a single binary variable. Thus, the response variable is whether a 

woman has HPV 16 or 18 at her current age. 

However, it might not be necessary to include all available predictors in the regression 

analysis. Firstly, we need a parsimonious model – some risk factors are dynamic and therefore 

intractable to be tracked over time, such as number of sex partners. The change of a variable in a 

woman’s life time needs to be fully modeled. Therefore, a simple model with as few predictors 

as possible would greatly reduce the difficulty of data preparation. Secondly, multicolinearity 

may exist in the model, as many variables are inherently correlated. For instance, a woman’s 

marital status is naturally correlated with the number of her recent sex partners. Thirdly, 

incorporating too many variables may result in overfitting, which leads to a poor out-of-sample 

predictive power. Thus, we choose lasso regression to perform variable selection for the logistic 
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regression as it penalizes multicollinearity by removing correlated variables while pursuing a 

good predictive performance. The optimal tuning penalty parameter (lambda) is determined by 

a10-fold cross-validation. Optimality is evaluated based on the area under curve (AUC) since the 

data are highly unbalanced (i.e., observations with response variables equal to 0 make up the vast 

majority of the data).  

In order to be easily tracked over time, all numerical candidate variables are converted to 

categorical variables, which means regular lasso regression may have undesirable results. Firstly, 

lasso regression makes the matrix of predictors sparse—every categorical variable is broken 

down to multiple dummy variables, resulting in very high column dimension. Secondly, lasso 

regression often partially selects dummy variables—it is not reasonable to select only a portion of 

dummy variables from one categorical predictor. Especially, lasso regression may not be able to 

reduce the difficulty of data collection. It may only remove part of the dummy variables derived 

from a predictor, which means the predictor still needs to be considered and fully prepared in the 

simulation model.  

Therefore, group lasso (Yuan and Lin 2006, Meier et al. 2008) is an appropriate choice of 

penalization method for multicollinearity in this case. The group lasso does variable selection on 

predefined groups of variables in regression models, which allow us to group all dummy 

variables from a categorical variable and manipulate them at the same time.  In a typical logistic 

regression set-up, assume that we have a binary response variable ´� ∈ �0,1� and G independent 

variables }� = �}�,�p , … , }�,µp �p with }�,¶ ∈ ℝ¸¹º , where » = 1, … , ¼. And df¶ is the degree of 

freedom. In the context of this study, the categorical variable with three levels has a df¶ = 2, 

while a numerical variable has df¶ = 1. The conditional probability %½�}�� =  %½�| = 1| }�� is 

modeled by  
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log ¾ %½�}��1 − %½�}��¿ = À½�}��, (1) 

with                              À½�}�� = �j + ∑ }�,µpµ¶Á� �¶,                 

where �j is the intercept; �¶ is the coefficient vector of the gth independent variable with a 

degree freedom of df¶. So the estimator  �Â� is calculated by minimizing the convex function 

����� = −Ã��� + � ∑ ��df¶�Ä�¶Ä4µ¶Á� , (2) 

where Ã��� = ∑ ´�À½�}�� − log �1 + eÅÆ�°Ç����Á� , which is the log-likelihood function of � (Meier 

et al. 2008). � is a non-negative tuning parameter that controls the strength of penalization. 

�Idf¶J = Èdf¶   is used to rescale the penalty with respect to the dimensionality of the coefficient 

vector �¶ and ensure that the penalty is of the order of df¶. For a logistic regression with 

categorical variables, all dummy variables from the same categorical variable are grouped, so 

they are either entirely kept or discarded during the variable selection process.  

We adopt the logistic regression penalized by the group lasso method to build the HPV risk 

model and use the HPV risk as the input for the transition possibility :��H|S�, which represents 

the change from the “susceptible” state to the “HPV infection” state. Then the simulation is 

personalized for different women and generates patient-specific clinical outcomes. 

 

4.3 Numerical Experiments 

4.3.1. Parameter Estimation For Simulation Model 

Table 4 summarizes the data sources that are used to estimate the transition probabilities between 

the main states in the simulation model. It is worth noting that our HPV risk model actually 

outputs the prevalence of HPV associated with people having specific risk characteristics. For 

initial state distribution of every individual woman at the beginning of the simulation, we use the 
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HPV risk model to estimate the prevalence of HPV and assign the woman to either “Susceptible” 

or “HPV infection” states according to the calculated prevalence. The epidemiologic equation 

Prevalence =  Incidence × Duration (Aschengrau and Seage 2013) is used to calculate  

Pv�H|S�, which is the incidence associated with a specific risk characteristic. The 1.2 years 

duration of oncogenic HPV 16/18 infection is adopted (Elbasha et al. 2007).   

Table 4 Sources of data input for transition probabilities 
Transition Probability Source for Parameter Estimation :��H|S� refer to the HPV risk model in Section 4.3.2 :��S|H� Sanders and Taira 2003 :��D|H� Arias et al. 2016 :��C|H� Elbasha et al. 2007, Chesson et al. 2008 :��D|C� Adriano et al. 2003, Elbasha et al. 2007, Arias et al. 2016 :��D|I� Arias et al. 2016 :��D|S� Arias et al. 2016 :��I|S� 100% at specified vaccination age, and 0% at other ages :��H|C� Elbasha et al. 2007 :��I|C� Elbasha et al. 2007 

This study considers five HPV-related cancers, including cervical cancer, anal cancer, 

vaginal cancer, vulvar cancer and oropharyngeal cancer. Therefore, there should be five different 

sub-structures of “cancer” state, each of which represent one of the five cancers. For the annual 

progression rates, annual regression rates, annual symptom development probabilities, annual 

screening rate and stage-specific annual death rates of cervical cancer, we use the data reported 

by Sanders and Taira (2003) as well as Elbasha et al. (2007). For the stage-specific lump-sum 

life expectancy of the absorbing state “survivor”, we use the DEALE method based on the 5-year 

survival of invasive cervical cancer (Beck et al. 1986, Howlader et al. 2013). 

However, unlike cervical cancer, there are relatively limited epidemiological data on the 

nature history, diagnosis and prognosis of anal cancer, vaginal cancer, vulvar cancer and 

oropharyngeal cancer. Due to the low incidences rates of these four cancers, most prior studies 

on HPV vaccination evaluation only took cervical cancer into consideration and focused on HPV 
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vaccination’s health outcomes from the perspective of cervical cancer prevention (Sanders and 

Taira 2003, Elbasha et al. 2007, Ley-Chavez 2012, Guzzetta et al. 2014). Therefore, our study 

simplifies the four HPV-related cancers’ impacts of the four HPV-related cancers on women’s 

life expectancy by introducing the loss of life years associated with different cancers reported by 

Chesson et al. (2008), rather than use the sub-structures of “cancer” state to simulate the 

outcomes of these cancers. Once a woman develops one of the four cancers, her life expectancy 

is deducted by a certain amount of life years (Chesson et al. 2008), which are not only cancer-

specific but also age-specific. 

4.3.2. Parameter Estimation for HPV Risk Model 

We use the National Health and Nutrition Examination Survey (NHANES) 2011-2012 data to 

build the individual HPV risk model. 13,431 people from 30 different study locations across the 

US participated in the survey. The publicly available datasets include data for people aged 18-59 

years. The NHANES data report a large number of personal information of participants, 

including demographic, socioeconomic, dietary, and health-related information as well as 

medical laboratory exam results, which cover all the variables summarized in Table 3. 

Especially, the NHANES 2011-2012 include exam results of multiple HPV subtypes. It provides 

us an access to evaluate the risk of HPV infection in different groups. 

However, one critical issue of NHANES data that needs to be addressed is its large number 

of missing data. Although 13,431 people were included in the survey, only 1,767 observations 

include HPV 16/18 data for participants. It is noteworthy that, among the 1,767 observations, 

only 247 subjects have complete data in all the twelve candidate variables. If we use the simple 

listwise deletion to deal with missing values (i.e. as long as there is at least one variable with 

missing value, the whole observation is removed), the deletion procedure would discard around 
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86% of the observations, which results in a considerable loss of data and potential bias. 

Following the previous studies that dealt with a large number of missing values in training data 

(Barlow et al. 2006, Shi et al. 2014), we treat the missing values in category variables as a single 

level “unknown” and only remove the observations with unknown or missing values in 

numerical variables (e.g. age). 

The infection of HPV 16/18 (i.e. positive exam result) is modeled as the response variable 

in the regression analysis. We also exclude all women who have been vaccinated before they 

took the surveys. We conduct the group lasso variable selection on the twelve candidate 

variables and find the best combination of HPV risk factors.  

Since the study simulates every woman’s lifetime, our model takes into account the change 

of every individual’s risk characteristic. Among the twelve candidate risk factors, eight of them 

are dynamic and change over time, including age, marital status, ratio of family income to 

poverty, recent alcohol use, recent drug use, parity, lifetime number of sex partners, and number 

of recent sex partners. Age is simply increased by 1 with every increment of the system clock.  

For the remaining seven dynamic variables, longitudinal data are needed to track their changes 

over a long period of time. Moreover, the relationships between HPV risk and some variables are 

not necessarily linear. In order to simplify the tracking process, we convert all numerical 

dynamic variables to categorical variables. Specifically, “age” is categorized by 5-year age 

groups, starting with group “20-24”. We model “ratio of family income to poverty” as a binary 

variable with 1 indicating that the ratio is lower than or equal to 1, and 0 indicating that the ratio 

is higher than 1. “Parity” is also converted to a binary variable with 1 indicating that the woman 

has had a live birth, and 0 indicating that the woman has no live birth. As heavy drinking is 

defined as 8 or more drinks a week for women (U.S. Department of Health and Human Services 
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2015), we convert recent alcohol use to a binary variable with 1 indicating the woman drink 

more than one alcoholic beverages on average every day in the past 12 months, and 0 indicating 

not more than one drink every day. For “lifetime number of sex partners”, we use five levels, 

“=0”, “1”,”2-4”,”5-9”,”>=10”, and “unknown”, to categorize the variable. “Number of recent 

sex partner” is categorized by “0”, “1”, “>=2” and “unknown”. In addition, although “age at first 

menarche” and “age at first sex” are not dynamics variables, in order to incorporate missing 

values, we also categorize them using five levels, “<=12”, “13-15”, “16-19”,”>=20” and 

“unknown”.  

Table 5 Model selection result 
Candidate variable Original data type Property Selected 

Age Numerical Dynamic Yes 
Race Categorical Static Yes 

Marital status Categorical Dynamic Yes 
Ratio of family income to poverty Numerical Dynamic No 

Age at first menarche Numerical Static No 
Parity Numerical Dynamic Yes 

Recent alcohol use Numerical Dynamic No 
Recent tobacco use Numerical Dynamic Yes 

Age at first sex Numerical Static Yes 
Lifetime number of sex partners Numerical Dynamic No 
Number of recent sex partners Numerical Dynamic Yes 

Sex orientation Categorical Static No 

The entire analysis is performed in R 3.32. Using the group lasso logistic regression, seven 

variables are selected (Table 5). Among the seven selected variables, age, race, age at first 

menarche and age at first sex are either static or uniformly increased. In contrast, the values of 

marital status, recent tobacco use, parity and number of recent sex partners are fluctuating and 

need to be modeled throughout every woman’s whole life. During the simulation, if one of these 

variables has any changes, the HPV risk is also updated accordingly. We use multiple data 

sources to model these dynamic variables as follows.  
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Marital status  

We model women’s changes of marital status based on the method proposed by Ley-

Chavez (2012). Five statuses are considered in the model, including first marriage, first divorce, 

second marriage, second divorce and never-married. The duration of each status is modeled by a 

discrete distribution depending on age. The basic process of modeling marital status proceeds as 

follows. The simulation randomly assigns an age of first marriage to women based on the 

probability distribution estimated from the Survey of Income and Program Participation (U.S. 

Census Bureau 2015). The marriage will last for a certain amount of time or a lifetime, based on 

the probability distribution of 1st marriage duration estimated using the National Survey of 

Family Growth (Centers for Disease Control and Prevention data 2002) and the Survey of 

Income and Program Participation (U.S. Census Bureau (2015). Once a woman divorces, her 

length of divorce status is determined by a probability distribution reported by the Survey of 

Income and Program Participation. A divorced woman may get married for the second time. In 

addition, the duration of a woman’s second marriage is determined by a probability distribution, 

using the data of the Survey of Income and Program Participation. We do not model third and 

higher-order marriages as they are very rare (Ley-Chavez 2012).   

Recent tobacco use 

For women’s smoking behavior, women are classified into two groups: smokers or non-

smokers. The likelihood of a non-smoker turning into a smoker is directly estimated using the 

NHANES data, which also report participants’ ages at starting smoking cigarettes regularly. If a 

woman becomes a smoker, she may quit smoking at any age based on an age-specific probability 

of quitting smoking. We use the recent smoking cessation rate reported by the Centers for 
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Disease Control and Prevention (2011) to evaluate the yearly likelihood of a smoker to quit 

smoking. 

Number of sex partners 

The yearly changes of the number of sex partners is modeled based on the method proposed 

by Ley-Chavez (2012). The number of a woman’s acquired new sex partner every year is 

categorized into three groups: 0, 1, 2 and “3 or more”. Women in the category “3 or more” are 

assigned 3 partners in the simulation. In this study, unmarried women include the following 

status: “widowed”, “divorced”, “separated” and “never married”, while married women include 

“married” and “living with partner”. The probability of unmarried women having 0 to 3 or more 

new partners each year is modeled by an age-specific discrete distribution. So an unmarried 

woman is randomly assigned to one of the four categories according to the discrete distribution 

based on her age group. For married woman, we assume the probability of getting a new partner 

in one year is 0.06 (O’Dowd 2003).  

Parity 

The parity in this study is defined by a binary variable indicating if a woman has had live 

birth at her current age. For those who had no live birth at their current ages, they may expect a 

birth in the future. The birth rates of 1st child are used to probabilistically determine when a 

woman will have her first child (Martin et al. 2017). The birth rate is grouped by three factors: 

age, marital status and race. As the reported birth rates of 1st child do not distinguish marital 

statuses, we assume the percentage of 1st births to unmarried women (among all women) is the 

same as the percentage of all births to unmarried women, which is reported to be 40.3% (Martin 

et al. 2017). Then the birth rates of 1st child by age, marital status and race are estimated based 
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on the three parameters: the percentages of 1st births to unmarried women, the percentage of 

unmarried woman and overall birth rates of 1st child.  

4.3.3 Design of Numerical Experiments 

Based on the HPV risk model, two typical risk characteristics are identified using the selected 

variables: a high risk woman, who has the highest HPV incidence; and a low risk woman, who 

has the lowest HPV incidence (Table 6). We set multiple vaccination scenarios for the two 

women, that is, the two patients are vaccinated at age 20, 26, 30, 35, 40 and 45, respectively. The 

age at vaccination is also the starting age of the simulation. The simulation is run for the two 

women starting from age 20 under each of the scenarios for 10,000 times. Then the average 

values of the four metrics are reported for each woman under different scenarios, including life 

expectancy, lifetime risk of developing cervical cancer, and lifetime risk of developing an HPV-

related cancer. 

Table 6 Simulation scenarios 

Candidate variable High risk woman Low risk woman 

Age at vaccination 20, 26, 30, 35, 40, 45 20, 26, 30, 35, 40, 45 
Race Black Asian 

Marital status Unmarried Married 
Parity Yes No 

Recent tobacco use Yes No 
Age at first sex <=12 >=20 

Number of recent sex partners >=3 0 

As a contrast, we also use the general female population’s HPV incidences to run the 

simulation under the same 6 scenarios. The contrast demonstrates how the clinical outcomes 

differ between a high risk woman, a low risk woman and an average woman. When simulating 

an average woman, we do not use HPV risk model to dynamically update :��H|S�, but use the 

age-specific incidences reported by Myers et al (2000). Table 7 summarizes the annual 

incidences of HPV among the three different women. The high risk and low risk women’s 

incidence rates are directly estimated using the NHANES data.  
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Table 7 HPV incidences of three groups 

Age at vaccination High risk woman Low risk woman Average woman* 

20 27.1% 4.0% 15.0% 
26 24.2% 1.1% 5.0% 
30 23.5% 0.4% 1.0% 
35 23.4% 0.3% 1.0% 
40 23.2% 0.1% 1.0% 
45 23.2% 0.1% 1.0% 

* Average woman’s annual incidences are collected from Myers et al. (2000) 

4.3.4 Results of Numerical Experiments 

Since the incidences of the HPV-related cancer among teenagers are very low (Howlader et al. 

2013), we assume no woman has HPV-related cancer before age 20 and only consider every 

woman’s HPV-related cancer from age 20 to death. The simulation outputs the average values of 

the gain in life expectancy, lifetime risk of developing cervical cancer and lifetime risk of HPV-

related cancers for 10,000 runs. The gain in life expectancy is equal to the difference of life 

expectancy between a woman receiving vaccines at a specific age and the same woman who will 

never receive the vaccine. The lifetime risk of HPV-related cancers reflects the impact from the 

HPV-infection before a woman gets vaccinated. Therefore, the later a woman receives vaccines, 

the higher risk of developing HPV-related cancers she faces. 

Table 8 shows the three types of clinical outcomes of vaccinations at different ages. The 

clinical outcomes show dramatic differences among the women with different level of HPV risk. 

The gain in life expectancy for high risk patient is over 10 times higher than that for the low risk 

woman. However, no matter how high the risk is, receiving catch-up vaccines almost always 

benefit women. The high risk woman has the highest gain in life expectancy when receiving 

vaccines at age 20, which amounts to 64 days (0.176 year) on average. When getting vaccinated 

at the same age, the average woman improves her life expectancy by 12 days (0.032), while the 

low risk woman only gains 4 additional days in her life expectancy. The current HPV 
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vaccination policy only recommends catch-up vaccines for women up to age 26, but we still see 

significant improvements in life expectancy on women older than 26, especially the woman 

bearing a high HPV risk, which suggests that catch-up vaccine after age 26 should be 

deliberately considered.  

Table 8 Clinical outcomes of HPV vaccination at different ages 
Gain in life expectancy (in years) 
Age at vaccination High risk woman Low risk woman Average woman 

20 0.176 0.012 0.032 
26 0.113 0.004 0.019 
30 0.075 0.002 0.015 
35 0.043 0.001 0.014 
40 0.040 0.001 0.012 
45 0.031 0.000 0.011 

 

Lifetime risk of developing cervical cancer 

Age at vaccination High risk woman Low risk woman Average woman 

20 0.42% 0.00% 0.11% 
26 0.76% 0.01% 0.23% 
30 0.85% 0.01% 0.32% 
35 0.90% 0.03% 0.37% 
40 1.03% 0.03% 0.40% 
45 1.10% 0.05%  0.45%  

 
Lifetime risk of developing HPV-related cancer 

Age at vaccination High risk woman Low risk woman Average woman 

20 0.91% 0.01% 0.24% 
26 1.44% 0.02% 0.47% 
30 1.73% 0.02% 0.65% 
35 1.94% 0.06% 0.80% 
40 2.12% 0.06% 0.82% 
45 2.21% 0.09% 0.91% 

Although the average gain in life expectancy from receiving catch-up vaccines after age 26 is 

numerically modest even for the high risk individual, the potentially averted HPV-related cancer 

cases can aggregate to substantial numbers on a group of women with the same risk profile. For 

instance, the high risk woman vaccinated at age 30 has a lifetime risk of developing cervical 

cancer equal to 0.85%. If the catch-up vaccine is delayed to age 45, the risk rises to 1.1%. The 
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increased risk (i.e. 0.26%) is equivalent to a significant number of cancer cases when applying to 

the population with the same high risk characteristics. For instance, assuming there are 100,000 

women having the high risk profile, if we set the vaccination at age 45 as a baseline, the catch-up 

vaccination at age 26 would prevent 770 more cancer cases compared with the vaccination at age 

45. However, the vaccination as late as age 30 still could prevent 260 cervical cancer cases 

compared with baseline age 45. In contrast, the increased risk on low risk woman is relatively 

low, implying the necessity of personalizing the catch-up vaccination policy. 

 
4.4 Discussion 

This study showcases a novel vaccination evaluation framework, which combines a discrete-

event simulation with a dynamically updated regression-based risk model. Specifically, we show 

how to address dynamic risk factors and model these factors over every woman’s lifespan. The 

modeling process involves a lot of data from a variety of sources and generates reasonable 

results. The same approach may be applied to the clinical outcome evaluations on the vaccines 

for other diseases such as hepatitis B. 

What makes the study different from the prior studies on this topic is that the model works 

at the individual level rather than the population level. We evaluate the impact of HPV vaccines 

on different women and reveal that the catch-up vaccines after age 26 are still very beneficial for 

women, especially for those with high HPV risk. Our study finds that the gain in life expectancy 

for a high risk woman at age 45 is almost as high as that for an average woman if vaccinated at 

age 20. These results prove that, from a pure health outcomes perspective, the HPV vaccination 

policy should be personalized, rather than set at a one-size-fits-all cutoff age. Our results are 

consistent with many previous arguments that support providing catch-up HPV vaccines to older 

women (Muñoz et al. 2009, Schwarz et al. 2009, Westra et al. 2011). We also confirm that 
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Australian’s HPV vaccination policy, which provides vaccines to women up to 45 years old, is 

also rational for some US women.  

Table 9 Main assumptions in the study 

Assumptions Justifications and references 

▪ All women complete the 3-dose HPV 

vaccination and acquire full immunity against 

HPV. 

Chesson et al. 2008, Dunne et 

al. 2014 

▪ Vaccines provide women with lifetime immunity 

against HPV infection. 

Elbasha et al. 2007, Chesson et 

al. 2008  

▪ A woman will never develop multiple HPV-

related cancers simultaneously. 

Tong et al. 2008 

▪ Women who have not married by age 50 will 

never get married. 

Ley-Chavez 2012 

▪ We assume no woman has HPV-related cancers 

before age 20 and only consider every woman’s 

HPV-related cancers from age 20 to death. 

Howlader et al. 2013 

Our analysis also has some limitations. Firstly, due to the data scarcity, the diagnosis and 

prognosis of the HPV-related cancers other than cervical cancer are not sufficiently modeled. 

The simplified method may result in some inaccuracy in our final outcomes. The model can be 

improved when the corresponding data are available. Secondly, we made several assumptions in 

the parameters estimation (see Table 9). For instance, we assume the vaccines’ duration of 

protection against HPV is lifelong. Currently, the long-term clinical trials that follow up the HPV 

vaccines’ protection duration are still ongoing and only report 10 years effective duration 

(Romanowski et al. 2016). Once the number is updated, the model may generate different 

outcomes. In addition, we also assume that the efficacy of HPV is 100%. However, the vaccines’ 

efficacy range between 90% and 100% by vaccine types and number of vaccine shots (Dunne et 

al. 2014). 
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In the future, a sensitivity analysis on the HPV efficacy and protection duration will be 

conducted. Our study may also be extended to males and examines how men’s vaccination ages 

impact their spouses or partners’ health. Moreover, our current study only considers life-

threating cancers related to HPV. In the future study, we may also incorporate HPV-related non-

cancer diseases (e.g. genital warts) to evaluate HPV vaccinations policy’s impact on quality-

adjusted life years (QALYs). This extension will show how different types of vaccines, 

especially those against HPV subtypes other than 16 and 18, impact women’s health. 
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5 Conclusion 

This dissertation performs an in-depth exploration of personalized decision modeling of cancers 

intervention and prevention. We investigate the patient-specific prevention strategies for breast 

cancer and HPV-related cancers, representative of cancers prevented by screening and 

vaccination, respectively. Three popular healthcare analytics techniques, Markov models, 

regression-based forecasting models, and discrete-event simulation, are further developed in the 

context of personalized cancer medicine. Although widely used in quantities analyses of 

healthcare, utilizing these approaches to optimize personalized cancer medicine was rarely 

addressed in the previous literature. This dissertation explores multiple possibilities of 

incorporating patient-specific risk into personalized cancer prevention and intervention strategies 

and showcases three practical examples. 

Chapter 2 presents a relatively simple method of personalizing cancer screening decisions. 

Individual breast cancer risk is reflected in the transition probabilities of a Markov decision 

process model to optimize biopsy referral decisions. The optimal biopsy referral policy can be 

considered as a lifetime mammography schedule, which informs a patient when she should skip 

the routine mammography in her lifetime. The study suggests that both screening mammography 

and surveillance mammography schedules should be determined on a patient-specific basis.  

Chapter 3 differs from chapter 2 by providing an “on-line” screening policy adaptive to a 

woman’s health status. Whether a woman should receive a mammogram is determined according 

to her risk level in the current year. This study emphasizes the risk model of breast cancer and 

makes decisions based on the tradeoff of type I errors and type II errors. While most previous 

studies optimized the breast cancer screening policy by providing lifetime mammography 

screening schedules, our proposed model provides the dynamic decision model updated with 

women’s latest cancer risk.  
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Chapter 4 shift focus from personalized screening decisions to personalized vaccination 

strategy. This study does not provide optimal decisions but rather evaluates different vaccination 

scenarios’ outcomes. We demonstrate a hybrid framework combining regression-based risk 

estimation with discrete-event simulation. This study discusses how to overcome the difficulty of 

modeling dynamic risk factors, which are excluded in Chapter 2 and Chapter 3.   

Our findings suggest that, by receiving personalized screening and vaccination, patients are 

expected to have longer life expectancy and less possibility of dying from cancer. We also 

provide three practical solutions for patient-specific screening and vaccination strategies. 

Preventive screening and vaccination programs for other cancers or diseases, which have clearly 

identified risk factors and measurable risk, may all benefit from patient-specific policies. 
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