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ABSTRACT

Intensity Modulated Radiation Therapy (IMRT) is a modern technique of delivering radiation
treatments to cancer patients. In IMRT technology, intensities must be chosen for the many small
unit grids into which the beams are divided to produce a desired distribution of dose at points
throughout the body with the goal of maximizing dose delivered to the tumor while sparing
healthy tissues from excessive radiation and keeping dose homogeneous across the tumor.
Although IMRT plans are optimized as a single overall treatment plan, they are delivered over

30-50 treatment sessions (fractions) and both cumulative and per-fraction dose constraints apply.

The extended time period of treatment allows for periodic re-imaging of the changing tumor
geometry and for adapting the treatment plan accordingly. This research presents promising
iterative optimization approaches that re-optimize and update the treatment plans periodically by
incorporating the latest tumor geometry information. Two realistic lung cases simulating
practice, based on anonymized archive datasets, are used to test the effectiveness of the proposed
adaptive planning approaches. The computed optimal plans both satisfy cumulative and per-
session dose constraints while improving the objective (average tumor dose) as compared to non-

adaptive treatment.

In addition to tracking tumor geometrical changes through the treatment, recent advances in
imaging technology also provide more insight on tumor biology which has been traditionally
disregarded in planning. The current practice of delivering homogeneous physical dose
distributions across the tumor can be improved by nonhomogeneous distributions guided by the

biological responses of the tumor points. This research is one of the first efforts in developing



radiation therapy planning optimization methods with tumor biology information while
maintaining both cumulative and per-fraction dose constraints. The proposed biological
optimization models generate treatment plans reacting to the tumor biology prior to the treatment
as well as the changing tumor biology throughout the treatment. The optimization models are
tested on a simulated head and neck test case. Results show computed biologically optimized
plans improve on tumor control obtained by traditional plans ignoring biology, and also with

adaptive over non-adaptive methods.
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1 Introduction

According to the American Cancer Society, “Cancer is the second most common cause of death
in the US, exceeded only by heart disease, and cancer accounts for nearly 1 of every 4 deaths”.
In 2011, over 570,000 Americans are expected to die of cancer, more than 1,500 people a day,
and the new cases that are expected to be diagnosed are about 1.6 million (Cancer Facts
&Figures, 2011). Treatment methods to cure cancer include surgery, radiation therapy,
chemotherapy, hormone therapy, biological therapy, and targeted therapy. Radiation therapy can
be used alone or in combination with other treatment methods. Over half of all cancer patients

receive radiation therapy at some point during their treatment (Bortfeld et al., 2008).

1.1 IMRT Technology

Radiation therapy aims to destroy cancer cells or slow their rate of growth by using high energy
rays without exposing the healthy tissues to excess dose. When applying radiation therapy to a
patient, a device mounted on a gantry called a /inear accelerator rotates around the patient and
shoots radiation from different beam angles aiming at targets (Figure 1.1). Using different beam
angles helps better sparing the healthy tissues since a particular surrounding healthy tissue will

not be heavily exposed to radiation consistently.



Figure 1.1: Radiation Therapy Environment

Intensity Modulated Radiation Therapy (IMRT) is illustrated on a lung case slice in Figure 1.2. A
slice is defined as an image of the particular cross section of the body and outlines the structures
of interest. Each structure is discretized into a collection of three dimensional volume elements
called voxels representing particular points in the structure. In IMRT, radiation is delivered
through a set of virtual beamlets (e.g. 0.5 cm to 0.5 cm) rather than whole beam (e.g. 10 cm to 10
cm) by modulating the beams using a multi-leaf collimator (Figure 1.3) which allows for the
radiation dose to conform more precisely to the three-dimensional shape of the tumor while more
effectively sparing healthy tissues (Webb, 2003). A multi-leaf collimator has leaves on two sides
of the beam which open/close in front of the beam in order to arrange a set of beamlets, called an
aperture. Radiation dose can be defined as the measure of physical effect at each point of the
body receiving radiation (ICRU 50, ICRU 62). Although the power of the beam is constant
throughout the treatment, each beam angle can have a non-uniform beamlet intensity map in
IMRT as shown in Figure 1.2 by blocking parts of the beam during its exposure. Intensity (or

fluence) is the measure of radiation delivered from the beamlet.



= L.Lung (L)
R.Lung (R)
Spinal Cord (S)

= Not Otherwise Specified (N)
Esophagus (E)

— PIV2(P)

= Original Tumor(T)

Figure 1.3: Modulating a Beam by a Multi-leaf Collimator

1.2 IMRT Planning

Traditional IMRT planning optimization uses penalty based methods where the excess dose on
healthy tissues and dose deficiency on targets are penalized in the objective function. By
contrast, the approach taken in this research chooses intensity/fluence levels for the beamlets of
selected beam angles which maximize the min/average tumor dose subject to explicitly enforced

cumulative dose constraints across the entire treatment including tumor dose homogeneity

3



requirements, dose maxima on healthy tissues, dose-volume limits of protected fractions of
healthy tissues (both a maximum limit and a lesser dose threshold that a certain percentage of the

healthy tissue can receive), and the minimum dose limits on secondary targets.

Although IMRT is planned as a single overall treatment, it is delivered over several weeks in a
series of fractions or treatment sessions. In order to have more effective and applicable treatment
plans, both cumulative and per-fraction dose constraints need to be taken into consideration (Wu
et al., 2000; Blanco and Chao, 2002). Table 1.1 shows a prescription for one of the lung cases
used in this research. The table presents both cumulative and per-fraction (fraction size) dose
objectives/limits for targets and healthy tissues in the prescription. For healthy tissues subject to
dose-volume constraints, a mean dose limit based on a predictive model discovered in Europe
and confirmed in the US that reduces the combinatorial complexity of planning (Kwa et al.,
1998; Bradley et al., 2007) is used. This predictive model using mean lung dose has been shown
to be a good predictor for radiation pneumonitis (frequent complication with symptoms of cough,
fever, and shortness of breath found typically within 6 months after the start of radiotherapy)
based on analysis of multiple datasets from different institutions which underlines the use of

mean dose limits in the prescriptions.



Table 1.1: Prescription for the Lung Case Illustrating Both Cumulative and Fraction Size Dose

Objectives/Limits
Prescription
Structure Cumulative Dose Fraction Size
Structure Description Objective/Limit Dose Limit
(Gy) (Gy)
Pri Maximize avg. dose
rimary : -
Tumor Target min. dose > 0.95 =2
max. dose
PTV2 Secondary 100% > 50 >2
Target
) Healthy
< <
Right Lung Tissue Avg. dose < 17 <21
Left Lung Heglthy Avg. dose < 17 <21
Tissue
Heart Heglthy Avg. dose <35 <21
Tissue
Healthy
< <
Esophagus Tissue Avg. dose < 35 <2.1
Not Otherwlse Specified Hgalthy 100% < 100 <21
Tissue Tissue
Spinal Cord Healthy 100% < 45 <21
Tissue

Numerous methods have been proposed in the literature to generate radiation therapy plans. Of
these methods, optimization models using mathematical programming formulations have been
developed to determine the best beamlet intensities (Langer ef al., 1990; Langer et al., 1991,
Langer et al., 2003; Lee ef al., 2003; Romeijn et al., 2003; Romeijn et al., 2006; Preciado-
Walters et al., 2004, Lee et al., 2006, Tuncel, 2008) and the best aperture intensities (Romeijn et
al., 2005; Preciado-Walters et al., 2006), along with non-linear gradient techniques (Cho et al.,
1998; Hristov and Fallone, 1998; Spirou and Chui, 1998; Wu and Mohan, 2000). Other methods

include randomized approaches, such as simulated annealing (Webb, 1991; Morril et al., 1990;



Mageras and Mohan, 1993; Langer et al., 1996) and genetic algorithms (Langer ef al., 1996;

Ezzel, 1996; Wu et al., 2000).

1.3 Objectives of the Research

All of these available methods used to generate radiation therapy plans optimize a single
cumulative treatment plan and neglect changes in the tumor geometry over time. However, with
the recent advances in imaging technology, the Image Guided Radiation Therapy (IGRT) allows
acquiring images throughout the treatment that capture the changes in the tumor geometry. This
motivates devising adaptive optimization methodologies that re-optimize the treatment plan in
response to the changing tumor geometry while maintaining both cumulative and fraction size

dose constraints.

In addition, the recent molecular and functional imaging technology can provide more insight on
the tumor biology and help incorporating the biological information, which has traditionally been
unknown, into the treatment planning. The ability to understand the tumor biology and quantify
the biological information invites developing optimization methodologies that would adjust
IMRT plans by incorporating tumor biology information in order to achieve more effective

treatment plans.

This dissertation research develops optimization models to meet the demand for optimization
methodologies exploiting tumor geometry and biology information over the course of the

treatment. The objectives of this dissertation research are as follows.



e To deal with both cumulative and fractionation constraints in adaptive IMRT planning
optimization

e To develop, implement, and test adaptive optimization methodologies that re-optimize
the treatment plan in response to the changes in the tumor geometry while satisfying both
cumulative and fractionation dose constraints to achieve the best IMRT design for the
overall treatment and for each fraction

e To develop, implement, and test static and adaptive optimization models that include the
initial and changing tumor biology information into the optimization which helps
adjusting IMRT plans to the tumor sensitivity in order to yield more effective treatment

plans

1.4 Research Tools

The optimization models and methodologies developed in this dissertation research are
implemented in C++ programming language by using ILOG Concert Technology Library. The
formulations are solved by using CPLEX 11.2 software. Since the cuts generated by CPLEX do
not help the optimization process, that feature of CPLEX is turned off. The other CPLEX
parameters are kept at their default values. All the computational experiments are performed on
the Industrial Engineering Department’s Windows Server 2003 R2 Datacenter x64 Edition
having 128 GB RAM and 16 processors at 2.93 GHz. The best performance is achieved by

allocating single processor.



1.5 Dissertation Organization

This dissertation is organized as follows. Chapter 2 derives mathematical programming and
related methods that optimize treatment plans where both cumulative and fraction size dose
limits on each tissue are satisfied. Chapter 3 describes the fractionation challenge that is
magnified in adaptive IMRT planning. Chapter 4 addresses the solution approaches for the
fractionation challenge in adaptive IMRT by developing an adaptive planning optimization
methodology with changing tumor geometry and fraction size limits and presents the
computational experiments showing the benefit of adaptation. Biologically guided IMRT
optimization methodologies are presented in Chapter 5 as well as the results demonstrating the
improvements in the treatment outcomes. Finally, conclusions, contributions and future research

are given in Chapter 6.



2 Models for Optimization of Treatment Plans Satisfying Fraction Size Requirements

2.1 Description of the CERRLung Test Case

This section describes one of the lung test cases, referred as “CERRLung”, which is used in the

computational experiments presented in Chapter 2 and 4. Table 2.1 shows the volume (cm’),

number of sampling voxels used for the optimization, the size of each voxel (cm’/voxel), and the

influence matrix density for each structure in the lung test case. The influence matrix represents

all the voxels as its rows and all selected beamlets as its columns and each element of the matrix

(dose coefficient) defines dose per unit beamlet intensity. The influence matrix density (%) for a

structure indicates the ratio of its non-zero dose coefficients to its all dose coefficients in the

influence matrix. The influence matrix for this test case is generated using a sample case found

on the CERR website (“CERR: A Computational Environment for Radiotherapy Research’)

established to allow collaborative computational experimentation in radiation therapy. The

prescription for this test case is presented in Section 1.2.

Table 2.1: Description of the Lung Test Case

Number of
Samplin 3 The
Structure Volume ping cm’/Voxel in | Influence
Structure Descripti 3 Voxels Used R -
escription (cm’) for Optimization | Matrix
Optimization Density
Tumor Primary Target 90.6 2,133 0.04 94%
PTV2 Secondary Target 256.0 1,519 0.17 93%
Right Lung Healthy Tissue 1,893.2 2,805 0.67 76%
Left Lung Healthy Tissue 1,689.3 2,476 0.68 35%
Heart Healthy Tissue 599.4 876 0.68 44%
Esophagus Healthy Tissue 42.3 233 0.18 66%
Not Otherwise | o iy Tissue | 31,430.0 11,425 2.75 40%
Specified
Spinal Cord Healthy Tissue 56.2 316 0.18 52%
Beam Angles: 0 40 80 120 160 200 240 280 320 (780 beamlets)




2.2 Notation

Tissues are represented by a collection of points (voxels). Let 7 denote the set of tumor points, .S
denote the set of points in the secondary target and H; denote the set of points in ™ healthy
tissue for k € K UK . Here, K and K denote the set of indices for the healthy and dose-volume

healthy tissues, respectively.

The set of beamlets used from preselected beam angles is denoted by J. Dose coefficients a;;
denote the dose received by tissue point i per unit intensity of beamlet ;. The coefficients for all
tissues form the influence matrix for the problem as defined above. The dose received from

beamlet j at point i is a;x; where x; >0 is the continuous decision variable defined as the value

of intensity assigned to beamlet ;.
Let variables d, denote the dose received at point i. This research makes the standard

assumption that the dose can be expressed as a linear combination of the individual beamlet

intensities. Thus, for every point i,

d; =3 a,x, (2.1)

jeJ

Let D,,;» be a variable denoting the minimum tumor dose and coefficient & be a homogeneity

ratio limit with 0 <« < 1. The prescribed minimum dose for the secondary target is denoted as

total
lsec

whereas the prescribed maximum dose for healthy tissues k € K is denoted as u" . The

parameter /, represents the mean dose limit for the k™ dose-volume healthy tissue.
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The fraction size limits are represented by the following parameters. Let /“” denote the

tumor

minimum dose that any point in the tumor must receive during the fraction and /%" denote the
minimum dose any point in the secondary target must receive during the fraction. uf”ﬂy denotes

the maximum dose that any point in healthy tissue k£ € K U K can receive during the fraction.

2.3 Optimization against Cumulative Dose Limits Alone

2.3.1 The Linear Programming (LP) Model

The LP formulation shown below and presented in Saka et al. (6) in 2010 is used to optimize the
treatment plan against the cumulative dose limits alone. It maximizes the average tumor dose
received over the entire treatment (2.2) subject to several overall treatment constraints.
Constraint set (2.3) ensures that the average dose received across all points in A dose-volume
healthy tissue is limited by the corresponding mean limit. Constraint sets (2.4) and (2.5) for the
overall treatment guarantees that the upper dose limit for healthy tissues and the lower dose limit
for secondary target tissue are satisfied, respectively. Constraint set (2.6) is the dose consistency
constraint assuring secondary target doses do not exceed the maximum tumor dose. Constraint
(2.7) satisfies the tumor dose homogeneity by enforcing the ratio of the minimum and maximum

tumor doses to be greater than or equal to homogeneity limit a.

maximize (Z dij/|T| (2.2)
ieT

>d, <|H,|p, VkeK (2.3)

ieH,

d, <ul™ VkeK,VieH, (2.4)

d 210" VieS (2.5)

11



d < Duin Vie$ (2.6)

VieT (2.7)

2.3.2 Difficulties with Fractionating the Cumulative Plan

Traditionally, optimized treatment plans are delivered into 30-50 fractions for which fraction
objectives apply (Wu et al., 2000; Blanco and Chao, 2002). The cumulative tolerances for
normal tissues are valid only if delivered in doses per fraction no higher than about 2.1 Gy, and
tumor eradication becomes uncertain when delivered dose per fraction falls below about 1.8 Gy
(Stewart and Li, 2007). Successful treatment rests on delivering feasible fractions satisfying

these stated fraction size dose objectives.

The optimized treatment plan cannot be divided into too many fractions since it is required to
deliver the minimum fraction size dose to the primary and secondary target. This puts an upper
bound on N denoted as N . Here, N denotes the integer number of fractions the treatment plan
will be given. N (not necessarily integer) is determined in the expression (2.8) as by taking the
minimum of the number of fractions dividing the secondary target doses by the secondary target

fraction size limit and the number of fractions dividing all the tumor doses by the tumor fraction

size dose limit.

A : : d[ Dmin
N<N-= mm{n&n{ldaﬂy }Idle} (2.8)

sec tumor

12



On the other hand, the treatment plan cannot be divided into too few fractions, because the
healthy tissues cannot receive a dose more than their maximum fraction size limits during each
fraction. This puts a lower bound on N denoted by N (not necessarily integer) determined in the
expression (2.9) by taking the maximum of number of fractions dividing the maximum dose each

healthy tissue receives by its fraction size dose limit.

ieH,, - uk
keKUK

N>N= max{ i’;ly} (2.9)
When the treatment plan is optimized against the cumulative dose limits alone, the lower bound
N may be greater than the upper bound N ; therefore, a feasible N to divide the treatment plan
does not exist. This is demonstrated by the results given in Table 2.2. There,
N= min{50/2,97.8/2}=25and N =103.5/2.1=49.3 . The treatment plan can be divided at
most in 25 fractions in order to satisfy the minimum fraction size limit (=2 Gy) on the targets. On

the other hand, it must be divided in at least |—49.3—‘ =50 fractions in order not to violate the

maximum fraction size limit (<2.1 Gy) on the right lung. As a result, a feasible integer N that
equally divides the cumulative treatment plan and satisfies both the minimum and maximum

fraction size dose limits cannot be found.

Furthermore, when the cumulative doses are divided by the integer upper (N=25) or integer
lower (N=50) bounds, the fraction size dose limits are significantly violated (4.14 Gy > 2.1 Gy
for the right lung in integer upper bound division, 1.0 < 2.0 Gy for the secondary target PTV2 in

integer lower bound division).

13



Table 2.2: Optimization against Cumulative Dose Limits Alone

: Feasible Fraction Size | Fraction Size
- Cum. Eractlon Integer Dose (Gy) Dose (Gy)
Dose Statistics Dose | Size Dose Wh
Gy) | Limit (Gy) Number of 'hen When

y Y)'| Fractions (N) | N = |_N J= 25 | N=[N]=50
Min. Tumor 97.8 >2 N<48 3.91 1.96
Min. PTV2 50.0 >2 N<25 2.00 1.00
Max. Right Lung | 103.5 <2.1 N>50 4.14 2.07

Notation: N (not necessarily integer) denotes the maximum number of fractions dividing all the
targets’ doses by their fraction size limit, and N (not necessarily integer) denotes the minimum

number of fractions dividing all the healthy tissues’ doses by their fraction size limit. PTV2
represents the secondary target.

2.4 Ratio Model: Optimization by Including Ratio Constraints and Rescaling

2.4.1 Ratio-Enforcing Constraints

In order to find a feasible N to divide the treatment plan, N needs to be at least less than or equal

to N . Thus:

di N . ; di Dmin
N = l«g}l_]ka‘x{ultjaily } < N = mln{%gn{]daily }’ Zdaily } (210)

keK UK sec fumor

Let s,,;, be a variable that defines the minimum dose that the secondary target receives, so

s, = min{d, }. Rewriting condition (2.10) by using this expression and then rearranging some

ieS
terms gives the condition in (2.11) which states that the ratio of dose at any healthy tissue point

to the dose at any primary or secondary tumor point cannot exceed the ratio of their respective

fraction size limits.

u daily udaily
. k k
’ng{dl}g min Smin*ldT[y’Dmin *ldle (211)
k
sec tumor
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This condition is incorporated into the LP-formulation referenced in the previous section by
adding ratio constraint sets (2.12) through (2.15) that ensure that the dose distribution healthy
tissues receive are within a specified ratio of the dose distribution the targets receive. Constraint
sets (2.12) and (2.13) capture the minimum secondary target and the tumor doses, respectively.
Constraint sets (2.14) and (2.15) ensure that the maximum dose that each healthy tissue receives
should be within a ratio of the minimum secondary target dose and the minimum tumor dose,
respectively. The LP-formulation presented in Section 2.3.1 plus these ratio constraint sets

constitute the ratio model.

dz>s,, Vies (2.12)
d>D, VieT (2.13)
daily J—
d < ”Z‘f;aﬂy *g Vke KUK, VieH, (2.14)
udaily _
<S_xp VkeK UK, VieH, (2.15)
aily

tumor

Table 2.3 shows the results from optimizing the treatment plan for the CERRLung test case by

solving the ratio model. Based on the dose statistic, N = min{72.4 /2,74.4/ 2} =36.2and

N =76/2.1=36.2. However, there is still not an integer N between N and N . In addition,

when the cumulative doses are divided by the integer upper (N=36) or integer lower (N=37)
bounds, the fraction size dose limits are still violated (2.11 Gy > 2.1 Gy for the right lung in
integer upper bound division, 1.96 < 2.0 Gy for the secondary target PTV2 in integer lower

bound division).
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Table 2.3: Optimization including Ratio Constraints

Fraction Feasible Fraction Size Fraction Size
Dose Statistics (];1:;:- Sizg D.ose Nlllliigeirof D(;;S;h(GY) Dose (Gy)
Limit : cn When
(Gy) (Gy) Fra((;;[]l)ons N= \_NJ _36 | N=[N]=37
Min. Tumor 74.4 >2 N<37 2.07 2.01
Min. PTV2 72.4 >2 N<36 2.01 1.96
Max. Right Lung | 76.0 <2.1 N>37 2.11 2.05

Notation: N (not necessarily integer) denotes the maximum number of fractions dividing all the
targets’ doses by their fraction size limit, and N (not necessarily integer) denotes the minimum

number of fractions dividing all the healthy tissues’ doses by their fraction size limit. PTV2
represents the secondary target.

2.4.2 Re-scaling to Achieve Feasibility
When N satisfying the integrality condition and |_N <N<Z |_NJ cannot be found, the dose

distribution can always be rescaled down on all plan intensities in order to get an N satisfying

fraction size limits.

Proposition: It is always possible to find a rescaling factor 7* to achieve a feasible division of

the treatment plans solving the ratio model.

Proof: Since N and N are within an integer bracket, it is always possible to find 0 < 7* <1that
rescales Af(] -r *) to LNJ where r*=1- \_NJ/ N.Given N > N, rescaling N by r* and
rounding it down will give Lﬁj Therefore, by rescaling doses down by /— \_NJ/ N, the

treatment plan can always be divided into \_NJ feasible fractions. m

16



Note that rescaling doses down may violate the minimum cumulative dose limit on the secondary

target if 1% /1% is fractional and the cumulative dose constraint on the secondary target

sec

= /™4 Tn order to avoid this

(constraint set (2.5)) is active in the optimization implying s, =1
violation, one can re-optimize the treatment plan by adding the fraction size dose (/%) to the

minimum cumulative dose limit on that tissue and then rescaling the dose distribution.

The effects of rescaling are demonstrated in Figure 2.1 by using the results in Table 2.3. Figure
2.1 shows the minimum doses the tumor and secondary target PTV2 receives and the maximum

dose the right lung receives before and after rescaling. It also displays the bounds on the number

of fractions to feasibly divide the corresponding doses. In this example, recall that N= N =362,

so the treatment plan cannot be divided more than 36 and less than 37 fractions. The rescaling
factor is computed as »*=0.005=1-(36/36.2). Rescaling the doses down by 0.5% allows treatment

plan to be divided in 36 fractions.

17



76.0 (>36.2)
76.0 I
754 75.6 (=36)
74.8 1744(<37:2)
g 74.2 I
E? 73.6 74.1 (<37)
S
a
73.0
72.4 (<36.2)
72.4 I
71.8
72.0 (236)
71.2 . . .
Min. tumor Min. PTV2 Max. right
dose dose lung dose

# Doses before re-scaling
(Gy)

M Doses after re-scaling
(Gy)

Figure 2.1: Rescaling Dose Distribution Received by Solving the Ratio Model (The bounds on
the number of fractions into which the doses can be divided without violating fraction size

requirement are given in the parenthesis. PTV2 represents the secondary target.)

2.5 Uniform Fractionation Model: Optimization Including Integer Fractionation

Constraints

A single integer variable mixed-integer linear programming (MILP) model can be developed
which generates higher quality treatment plans while explicitly satisfying the fraction size dose
limits. The underlying concepts for this uniform fractionation model were first developed by
Dink in 2005 and Dink et al. in 2011. The model maximizes the average tumor dose objective
(2.2) subject to the overall treatment constraint sets (2.3) through (2.7) and the integer
fractionation constraint sets (2.16) through (2.18) given below. Constraint sets (2.16) through
(2.18) impose lower dose limits on the secondary target and tumor points, and the upper dose

limits on all healthy tissue points for the N fractions in the plan. Here, N is an integer variable

18




and defined as the number of fractions in the plan. These integer fractionation constraints ensure

that the plan can be delivered in N equal, feasible fractions.

d, > 1% x N VieS (2.16)
d, 219" « N VieT (2.17)
d, <ul™ x N Vke KUK, VieH, (2.18)

Figure 2.2 compares the average tumor doses obtained by solving the uniform fractionation
model and the rescaled solution for the lung test case. The uniform fractionation model improves
the average tumor dose of 75.9 Gy received from the rescaled solution to 76.2 Gy corresponding
to a 0.3 Gy increase. These computational results illustrate the mathematical fact that the
rescaled solution cannot be better than the optimal solution received from the uniform
fractionation model, because the ratio solution is in the feasible space for the uniform
fractionation model. In addition to offering the opportunity to produce better solutions, solving

the uniform fractionation model will yield an optimal fractionation in every case if there is any.
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® Average Tumor Dose (Gy)

80.0

78.0
=
<) 76.2
o 76.0
3
A

74.0

72.0 ,

Re-scaled Solution Uniform Fractionation
Model Solution

Figure 2.2: Rescaled Solution vs. Uniform Fractionation Model Solution (The minimum and
maximum doses delivered to the tumor are shown with lower and upper bar on the columns,

respectively.)

Although small in these results, the difference between the rescaled solution and the uniform

fractionation model solution could worsen as the doses are rescaled down by a higher rescaling

factor. Table 2.4 shows the highest possible values of 7 =1 —\_NJ/ N for different values of LNJ

In this table, NV is kept very close to \_Nj‘i‘l in order to get an upper bound. As this table shows,
the doses could be rescaled down significantly as the treatment plan is optimized on fewer
fractions. For instance, for values of \_NJ <=18, the dose distribution could be rescaled down by

more than 5% possibly causing the solution to perform significantly worse compared to the
uniform fractionation model solution. As a result, solving the uniform fractionation model can be

more beneficial when clinical conditions, such as using tighter cumulative dose limits on healthy
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tissues or using higher fraction size limits, requires the treatment plan to be delivered in fewer

fractions.

Table 2.4: Highest Possible Values of Re-scaling Factor (7) for Different \_NJ

o T R T
40 40.999 0.024
30 30.999 0.032
20 20.999 0.048
18 18.999 0.053
10 10.999 0.091
5 5.999 0.167
2 2.999 0.333

Notation: N (not necessarily integer) denotes the maximum number of fractions dividing all the
targets’ doses by their fraction size limit, and N (not necessarily integer) denotes the minimum

number of fractions dividing all the healthy tissues’ doses by their fraction size limit.
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3  The Fractionation Challenge in Adaptive IMRT Planning

3.1 Background

Chapter 2 addressed the challenges that may arise in developing one cumulative plan (with
secondary targets) and constraining or adjusting it to satisfy per fraction constraints. Still, the
current standard practice of developing only one cumulative plan (without the secondary targets)
at the onset of treatment often results in planned dose to primary target higher than that planned
for any healthy tissue, and the minimum fraction dose for tumor slightly less than that of normal
tissues. Then an integer number of equal fractions can easily be chosen to divide the overall

treatment into feasible fractions and implicitly enforce per-fraction limits.

However, as the geometrical conditions change in adaptive planning, e.g. due to tumor
shrinkage/growth (Kupelian et al., 2005; Siker et al., 2006; Ramsey et al., 2006; Underberg et
al., 2006; Bosmans et al., 2006; Haasbek et al., 2007) or inter-fractional motion (Yan and
Lockman, 2001; Yan et al., 2005), a normal tissue which would have satisfied its bound with
slack in the initial plan is now pushed closer to its limit in the re-optimized plan. This creates a
circumstance where the conditions for equal division of the adapted plan into fractions can no

longer be satisfied easily.

This chapter demonstrates the problem of fractionating the adaptive plans by using another lung
case simulating real practice. The optimization model is formulated as a linear programming
formulation which is a mathematical representation of the prescription. The plan is first
optimized over the entire set of cumulative constraints and delivered for the first sub-sequence of

fractions (Epoch 1). Here, epoch defines a subsequence of fractions delivered as part of the
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adaptive plan. After subtracting the delivered doses from the cumulative limits, the treatment
plans are re-optimized partway through treatment in response to the changes in the tumor
geometry. The challenge of fractionating the re-optimized plan is demonstrated by computational
experiments performed with varying mean dose limit on both lungs and implicit minimum tumor

fraction size dose limits.

3.2 Description of the Lungl Test Case

This section describes the second lung test case treated here, referred as “Lungl”, which is used
in the computational experiments in Chapter 3 and 4. The points for optimization were
distributed throughout the contours, determined randomly within each structure volume for
computation efficiency rather than employing a uniform point set. They were more highly
concentrated within the target and the critical structures of interest (Morrill ef al., 1990;
Niemierko and Goitein, 1990; Lu and Chin, 1993; Niemierko and Goitein, 1993; Acosta et al.,
2009). Number of sample points used (the mean distance to the nearest neighbor point) is 683
(0.25 cm) for primary target PTV1, 95 (0.32 cm) for the esophagus, 400 (0.57 cm) for the heart,
500 (0.73 cm) on each of the lungs, 369 (0.21 cm) for spinal cord, and 2,580 (0.65 cm) for the
Not Otherwise Specified tissue. The influence matrix of a; was calculated by using the standard
radiation therapy software GRATIS (Sherouse Systems Inc.). For this test case, 9 co-planar beam

angles are used, spaced at intervals of 40° within the range of 20°-340°.

Table 3.1 shows the prescription used in the computational experiments with the lung test case.
The table presents both cumulative dose objectives and fraction size dose limits for the target and

healthy tissues in the prescription. All of the points in each structure are subject to its
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corresponding fraction size limit. Multiple values are shown for some structures varied in

experiments to be reported below.

Table 3.1: Prescription for the Lungl Test Case

Structure Curr?ulaj[ive Dose Fracti.on‘Size
Objective (Gy) Dose Limit (Gy)
Maximize avg. dose
Primary Target (PTV1) min. tumor dose >1.8,1.9,2.0
max. tumor dose =095
Right Lung Mean dose < 20, 22, 25 <2.1
Left Lung Mean dose < 20, 22, 25 <2.1
Heart Mean dose < 35 <2.1
Esophagus Mean dose <35 <2.1
Not Otherwise Specified Tissue 100% <100 <2.1
Spinal Cord 100% <45 <2.1

Note: PTV1 represents the planning target volume.

3.3 Adaptive Planning Optimization
The adaptive planning optimization approach taken in this study pursues the following steps.

First, the LP-formulation presented in Section 2.3.1 is solved over all cumulative constraints.

Then, an integer upper bound (N ) and an integer lower bound ( V) on the number of fractions

(N) are computed. Upper limit N is calculated as the maximum number of fractions into which

/ Jdaily J

min tumor

the tumor dose can be divided without violating fraction size requirement /% | i.e. \_D

tumor >

Similarly, lower limit N reflects the minimum number of fractions into which does for all

a

healthy tissues k can be divided while enforcing fraction size maximum u“", i.e.

max {d Ju cieH, ke KU E} When there is a feasible outcome with N > N the treatment
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plan is divided into N fractions, and the first N, are delivered in Epoch 1 before the patient is

re-imaged.

Following the first epoch, the PTV1 volume is updated based on the tumor shrinkage
information extracted from simulated re-imaging. After revising the cumulative dose limits by
subtracting the delivered doses, the treatment plan is re-optimized by solving the LP-formulation

against the residual cumulative dose limits that maximizes the mean dose delivered to the

residual tumor. Then, Epoch 2 fraction upper bound, N, = LD remaining ./ ] daily J fractions are

min tumor

Dremaining
min

delivered during the second epoch of the treatment where represents the minimum

tumor dose achieved in the re-optimized plan.

3.4 Results

3.4.1 Computational Experiments — Overall Plan and Epoch 1

To illustrate the fractionation problem in adaptive planning, complete plans without adaptation
are first computed for a range of mean doses of the lungs and tumor fraction limits. Table 3.2
shows that the optimized plan in the beginning of the treatment can be divided into integer
number of feasible fractions (V) when >1.8 Gy tumor fraction size requirement applies. In this
case, an integer N can be found within the range between lower and upper bound on N (31<N<32
for mean dose limit 20 Gy, 34<N<35 for 22 Gy, 39<N<40 for 25 Gy). For varying mean dose
limits of 20 Gy, 22 Gy and 25 Gy on lungs, the treatment plan is divided into 32, 35, and 40
fractions, respectively, in which all the tumor points receive fraction size doses >1.8 Gy and all

healthy tissue points receive fraction size doses <2.1 Gy.
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Table 3.2: Optimal Non-Adaptive Plan Results over the Entire Range of Cumulative Constraints

Upper and lower bound
on integer number of

Mean Optimal Plan Results (All the cumulative dose fractions (N)
dose requirements in Table 3.1 are satisfied.) Tumor fx size
limit limit

on >2.0]>1.9 | >1.8
both M M
lungs | Min. Ria)lil;: L:;[' Max. | Max. | Max. | Max. o o o
(Gy) | Tumor g Heart | Esoph. | N.O.S. | Cord | N | N N N

Lung | Lung

G 1 @Gy | @y | @ | G | Gy | (Gy)

<20 58.8 609 432 558 456 648 450 |31 ] 29 | 30 | 32
<22 644 672 469 613 494 714 450 (34| 32 | 33 | 35
<25 72.8 764 524 704 552 80.8 450 | 39| 36 | 38 | 40
Notation: N is the integer lower bound on N dividing all the healthy tissues’ doses into fraction sizes

of <2.1, N is the integer upper bound on N dividing all the target doses by the assumed tumor fraction
limit. “N.O.S.” is the abbreviation of “Not Otherwise Specified” tissue. Number of fractions to feasibly
divide each plan is indicated in bold.



Following the adaptive planning approach of Section 3.3, the first 25 of those fractions are
assumed to be delivered during the first epoch. Table 3.3 shows fraction size and the Epoch 1

cumulative dose statistics that result for the structures under interest. Note that all fraction limits

are satisfied.

Table 3.3: Epoch 1 Optimal Plan Results

Mean | Epoch 1 (first 25 fractions) Optimal Plan Results (>1.8 Gy tumor fraction size
dose requirement applies.)
limit

on Min. Max. | Avg. }1\{/{21)}(1; I\I/JI:E Max. | Max. | Max. | Max.
both | Tumor | Tumor | Tumor Lu%l Lun Heart | Esoph. | N.O.S. | Cord
lungs | (Gy) | @Y | @Y | Gy | @Gy | @ | G | Gy | Gy
(Gy) y Y)

0 45.8 48.3 47.1  47.6 33.7 436 35.6 50.5 35.2
- [1.83] [1.93] [1.89] [1.9] [1.35] [1.74] [1.43] [2.02] [1.41]
< 46.0 48.4 473 479 336 437 352 50.9 32.1
- [1.84] [1.94] [1.89] [1.92] [1.34] [1.75] [1.41] [2.04] [1.29]
5 45.4 47.8 46.7 47.8 328 44 34.5 50.5 28.1
- [1.82] [1.91] [1.87] [1.91] [1.31] [L1.76] [1.38] [2.02] [1.13]

Note: Fraction size doses are given in brackets below cumulative doses. “N.O.S.” is the
abbreviation of “Not Otherwise Specified” tissue.

3.4.2 Computational Experiments — Adaptation and Epoch 2

For the purpose of experimentation, the tumor shrinkage is simulated where the residual tumor
corresponds to the 65% of the original tumor after fraction 25 (See Section 4.4.1 for details).
After delivering 25 fractions in Epoch 1, the treatment plan is re-optimized based on the updated

image against residual cumulative dose limits.

Table 3.4 shows the Epoch 2 dose statistics and fraction limits obtained from re-optimization.

Only statistics related to Heart and Not Otherwise Specified tissues are shown here due to their
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dominant role in determining the lower bound on the integer number of fractions that the re-

optimized treatment plan can be delivered into (denoted N,).

Table 3.4: Epoch 2 Optimal Plan Results

Upper and lower bound

Epoch 2 Optimal Plan Results (In response to the on the number of
Mean i i fractions in the re-
tumor geometrical changes, the treatment plan is actions ere
405? re-optimized against the residual cumulative optimized plan (N,)
limit dose limits.) Tumor fx size limit
on >20 |>19] >1
both — >0 [>19]>18
lungs Min. Max. Mean | Max. N?)T I N
(Gy) | Tumor | Tumor | Tumor | Heart . N, | N N N
Otherwise | —= 2 2 2
(Gy) | Gy) | (Gy) | (Gy) (Gy)

<20 14.7 20.3 17.5 18.5 20.9 10 7 7 8
<22 21.6 27.7 24.6 24.7 28.7 14| 10 11 11
<25 323 38.9 35.6 32.8 41.9 20 | 16 17 17

The cases show that the adapted plan in Epoch 2 using only cumulative constraints can only be
divided into fractions satisfying tumor fraction size requirements at the price of violating the
fraction size dose limits of some healthy tissue structures. Similarly, the adapted plan can be
divided into fractions where all healthy tissue fraction size dose limits are satisfied without the

tumor fraction size limit being satisfied. No number of fractions meets all requirements.

These violations are displayed in Figure 3.1(a-c) for different mean dose limits on each lung. For
example, for mean dose limit 20 Gy, the adapted plan can be divided into 7 fractions satisfying
>2 Gy tumor fraction size requirement while violating the <2.1 Gy requirement on Heart and Not
Otherwise Specified tissue (2.64 Gy > 2.1 Gy for Heart, 2.99 Gy > 2.1 Gy for Not Otherwise

Specified tissue). These plots illustrate that as the tumor fraction size requirement is relaxed from
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>2 Gy to >1.8 Gy, the <2.1 Gy requirement on Heart and Not Otherwise Specified tissues are

less violated, but not fully satisfied.

Figure 3.1(a-c) also presents the number of fractions into which the adapted treatment plan can
be divided in order to satisfy all the healthy tissue fraction size requirements. However, this
causes tumor to be significantly underdosed (1.47 Gy minimum dose for mean dose limit 20 Gy,

1.54 Gy minimum dose for 22 Gy, and 1.62 Gy minimum dose for 25 Gy).
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Figure 3.1: Sensitivity of Healthy Tissue and Target Fraction Size (fx) Doses in Epoch 2 (a) For
Mean Dose Limit on Both Lungs 20 Gy (b) For Mean Dose Limit on Both Lungs 22 Gy (c) For
Mean Dose Limit on Both Lungs 25 Gy (“NOS” is the abbreviation of “Not Otherwise

Specified” tissue.)
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3.4.3 Computational Experiments — Potential Gains with Adaptation

Although the above treatment plans generated by adaptation are not feasible due to the lack of
fractionation in the second epoch, they are compared against plans generated by no adaptation in
Table 3.2 to assess the gains that could be realized from adaptive planning. Figure 3.2
summarizes the mean tumor doses delivered to the tumor by no adaptation (Table 3.2) versus
two-epoch adaptation (Epoch 1 in Table 3.3 and Epoch 2 in Table 3.4) for varying mean dose
limits on the lungs. Here, >1.8 Gy tumor fraction size requirement is enforced in delivering
Epoch 1. Adapting the treatment plan boosts the mean tumor dose from 60.3 Gy to 64.7 Gy for
mean dose limit 20 Gy, from 66.2 Gy to 71.9 Gy for 22 Gy, and from 74.6 Gy to 82.2 Gy for 25

Gy. These improvements correspond to a 7% to 10% gain in the doses delivered to the tumor.

B No Adaptation ™ Two-Epoch Adaptation

o0
9]

(e}

W

()

“wm N &N J 9 X
S wn O W
I

Average Tumor Dose (Gy)

N

Mean dose limit on Mean dose limit on Mean dose limit on
both lungs 20 Gy  both lungs 22 Gy  both lungs 25 Gy

Figure 3.2: Average Tumor Doses Received by No Adaptation vs. Two-Epoch Adaptation

3.5 Discussions
Chapter 3 addresses the problem of fractionation in the adaptive planning context. As a

consequence of solely taking cumulative dose objectives into account in the treatment planning
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optimization, plans re-optimized in response to the changes in the geometrical conditions can
provide dose distributions that do not allow the adapted plan to be divided into fractions
satisfying both the minimum fraction size requirement placed on tumor (e.g. >1.8 Gy) and the
maximum fraction size requirement placed on healthy tissues (<2.1 Gy). In this case, the
practitioners must take the approach of relaxing the fraction size dose requirements in order to
achieve a least violated fractionation plan which would likely reduce the efficacy of the overall

treatment plan.

Specifically, the fractionation challenge is illustrated above by using a lung test case simulating
real practice. Treatment plans are re-optimized partway through treatment by incorporating the
latest tumor shrinkage information. With the re-optimization in the experiments, structures Heart
and Not Otherwise Specified receive more dose relative to the tumor which does not allow
feasible fractionation of the adapted plan. The minimum number of fractions required for healthy
tissue doses to be given in fraction sizes below 2.1 Gy is significantly higher than the maximum
number of fractions that the tumor dose distribution can be given without falling below about 1.8
Gy (Table 3.4). When the adapted plans are divided, the violations of healthy tissue fraction sizes
doses can be as significant as 3 Gy per fraction whereas the tumor fraction size doses can fall

down to 1.47 Gy (Figure 3.1(a-c)).

The fractionation challenge investigated in this study motivates devising methodologies that
simultaneously re-optimize treatment plans against both cumulative and fraction size dose limits
in adaptive plans with two or more epochs. Although the gain obtained from adaptation (Figure

3.2) might reduce as the fraction size limits are explicitly enforced in the re-optimization,
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simultaneous methods would allow the feasible division of the adapted plans; therefore,

increasing the effectiveness of the treatment delivered.
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4 Adaptive IMRT Planning Optimization with Changing Tumor Geometry and Fraction
Size Limits
Adaptive planning responds to the changes in the tumor geometry throughout the treatment and
demands both cumulative and fraction size limits on tissues be satisfied together. The changes in
the tumor geometry between fractions known as inter-fractional changes happen mostly in two
forms: (1) the change in the position/shape of the tumor due to inter-fraction motion, e.g.
positional change of the prostate tumor due to how much the bladder/rectum is filled on the
particular day (Yan and Lockman, 2001; Yan et al., 2005), (2) the change in the tumor size, e.g.
tumor shrinkage/growth in lung cases (Kupelian et al., 2005; Siker et al., 2006; Ramsey et al.,
2006; Underberg et al., 2006; Bosmans et al., 2006; Haasbek et al., 2007). These inter-fractional
changes can be captured by the updated images acquired through the treatment and incorporated

into the planning to update the remaining plan accordingly.

In this study, the change in the tumor size/shape, specifically tumor shrinkage information over
time, is taken into account to adapt the treatment plan. This chapter develops a promising
adaptive planning optimization methodology which re-optimizes the treatment plan against both
cumulative and fraction size dose constraints after delivering each epoch by incorporating the
latest tumor shrinkage information. In re-optimizing the treatment plan at each adaptation point,
a mixed-integer linear programming (MILP) formulation is solved; therefore, a series of MILPs

will be solved in the proposed methodology to adapt the plan periodically.

The adaptive treatment plans computed by the developed optimization methodology are

compared with the treatment plans generated without adaptation (non-adaptive) by using the two
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realistic Lung test cases described in Section 2.1 (“CERRLung”) and Section 3.2 (“Lungl1”). The
prescription in Table 1.1 is used for CERRLung case whereas the prescription in Table 3.1 is
used for Lung] case. Note that the secondary target PTV2 is included in the Lungl case with the
same prescription in Table 1.1, and >2Gy fraction size requirement for tumor and mean dose
limit of 25 Gy is used for both lungs. The non-adaptive plans in this chapter are generated by
solving the uniform fractionation model presented in Section 2.5 or a non-adaptive planning
optimization with boost approach explained in Section 4.4.2. The computed adaptive plans both

satisfy cumulative and fraction size dose limits while improving the tumor doses.

4.1 Literature Review

The available methods used to generate radiation therapy plans optimize a single cumulative
treatment plan and neglect changes in the tumor over time. Besides these non-adaptive methods,
several approaches for adaptive treatment planning have been developed by operations
researchers. In most of these approaches, the uncertainty in the tumor geometry caused by
internal organ movements and set up-errors (random changes in the patient position) across all
fractions are incorporated into the treatment planning. In order to generate IMRT plans under
this uncertainty, a dynamic programming approach with practical strategies (Ferris and Voelker,
2004; Deng and Ferris, 2006), weighted power loss function approach calculating the ideal
spatial dose distribution (Sir ef al., 2006), and a probabilistic model achieving robust

optimization (Chu et al., 2005) have been presented.

Recently, in the medical world, the reimaging of gross tumor boundaries over time has been

introduced into the clinic. Devices now widely available allow periodic CTs to be performed on
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the treatment couch (using cone beam or rail methods) and cross registered using fiducial
markers against the planning CT (Wiersma et al., 2007). The first image guided therapies in
radiation accommodated rigid change in geometry by moving the treatment couch in space, a
technique now widely implemented to "adapt" to a rigid shift of the body or target over time (Wu
et al., 2006). More sophisticated re-optimizations over the course of treatment based on observed
change in shape have now been examined. Many set a goal of minimizing the difference between
the initially intended and the final achieved dose distributions; linear programming proved
desirable for its speed and promise of optimality (Wu et al., 2008). A broader extension
considers re-optimizations on the underlying tissue constraints rather than simply matching to the
original plan when structure outlines are found to have changed (Wu et al., 2002). The advent of
a commercial system (“Planned Adaptive” marketed by Tomotherapy of Madison, WI) that
captures physical change over the course of treatment replans using cumulative doses, and is
linked to a reproducible system for delivery that has established the concept of adaptive radiation
therapy in the minds of oncologists as a tool by which gains in tumor control can be achieved

(Woodford et al., 2007).

None of these adaptive approaches have succeeded in optimizing against both cumulative dose
limits and dose limits placed on each fraction. This deficit may have slowed their adoption into
regular practice, but increased use is expected as the technology becomes increasingly familiar,
pitfalls are identified, and workarounds are devised to satisfy fraction size rules even at the price
of diminishing the potential gains from the adaptive strategy. This chapter aims to help meet this
deficit by developing an adaptive planning approach that re-optimizes the treatment plan against

both cumulative dose limits and dose limits placed on each fraction simultaneously when it can
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be productive to do so. A paper on the proposed adaptive planning approach has recently been

accepted for publication (Saka et al., 2011).

4.2 Uniform and Non-Uniform Fractionation Model and Rationale

The uniform fractionation model described in Section 2.5 produces a single uniform plan across
all fractions. One could propose improving the average tumor dose received from uniform
fractionation by splitting the treatment plan into two stages where different plans would be used
for each stage. Stage defines a subsequence of fractions delivered as part of a non-adaptive plan.

That is, no changes in geometry are taken into account.

4.2.1 Non-Uniform Fractionation Model with Two-Stage Optimization

The non-uniform fractionation model is developed to optimize the treatment plan over two stages

where new beamlet intensities for each stage are defined. Let x; and xf be intensities assigned
to beamlet j €J during stage 1 and 2, respectively. The total dose delivered to point i during the

first stage is denoted as d, and equal to Zaijxj, . Similarly, d’ denotes the total dose delivered
jel

to point i during the second stage and equal to Za[jsz. .
jeJ

Table 4.1 presents this non-uniform fractionation model for two-stage optimization. It maximizes
the average dose delivered to the tumor over two stages. Constraint sets (4.1) through (4.5) are
the overall treatment constraints imposed over two stages and have the same nature as the
constraint sets (2.3) through (2.7) presented previously in Section 2.3.1. Constraint sets (4.6)

through (4.8) impose lower dose limits on the secondary target and tumor points, and the upper
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dose limits on all healthy tissue points for the N; fractions in the first stage. These integer
fractionation constraints guarantee that the treatment plan in Stage 1 is delivered in uniform,
feasible fractions. Here, N; is a choice for the number of equal fractions employed in the first

stage. For instance, if the treatment plan is split after fraction 10, then N, is equal to 10.

For the plan delivered in the second stage, an integer variable N defines the number of fractions
given during the second stage. Constraint sets (4.9) through (4.11) impose lower dose limits on
the secondary target and tumor points, and the upper dose limits on all healthy tissue points for
the NV, fractions in the first stage. These constraints guarantee that the plan delivered in second

stage can be divided in N, uniform, feasible fractions.

Table 4.1: Non-Uniform Fractionation Model for Two-Stage Optimization

Objective and the Overall Treatment Constraints
maximize (Z di +d; J /|T|
ieT
Sd! +d? <|H]|u, VkeK (4.1)
ieH,
d +d} <u?™ VkeK VieH, 4.2)
d +d} >1°" VieS 4.3)
d'+d’ < D VieS (4.4)
a
1 » D, :
Dmm S di + di S = VZ € T (45)
a
Integer Fractionation Constraints for Integer Fractionation Constraints for Stage
Stage 1 2
d! >1""x N, VieS (4.6)| d}>1“"xN, VieS§ (4.9)
d'>1“" «xN, ~ VieT @7 | d>=1“" xN, VieT (4.10)
d' <u <N, VkeKUKVieH, (48)| d><u®” xN, Vke KUK, Vie H, (4.11)
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4.2.2 Rationale for Non-Uniform Fractionation in Adaptive Planning

Unless the treatment environment such as the patient geometry, the selected beam angles or the
optimization parameters changes, this research found that it does not help to split the course of
the treatment and deliver non-uniform fraction plans. This finding is proven by the following

lemmas and stated as a theorem at the end.

1 2 . . .
Let x* and x~ vectors of |J| size where their components correspond to variables x; and xf for

j €J , respectively. Let x be a vector of |J| size where its components correspond to variables x;

for jeJ.

Lemma 1: Any feasible solution (x1 x*,N. 2) for non-uniform fractionation model can be mapped
to a feasible solution (x, N ) for uniform fractionation model by using x < x' + x> and

N <= N, + N, , and their objective function values are same.

Proof: Since (xl,xz,N 2) is a feasible solution for non-uniform fractionation model, it satisfies
the overall treatment constraint sets (4.1) through (4.5). Then, re-writing d; +d; in those

constraint sets by using expression (4.12), x < x' +x” satisfies them, and they are same as the
overall treatment constraint sets (2.3) through (2.7) of the uniform fractionation model in Section

2.5. Therefore, (x, N ) satisfies the overall treatment constraints in uniform fractionation model.

1 2 1 2 1 2 1 2
dj+d! =) ax;+) a,x] =) ax;+ax; =) a, (xj tX; ): 2 a,x;=d, (4.12)

jeJ jeJ jeJ jeJ jeJ
As part of the feasibility, (x1 x°,N. 2) also satisfies the integer fractionation constraints for each

stage. Adding integer fractionation constraint sets across two stages for each tissue and using the
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same expression (4.12) to re-write those three added inequalities, x < x, +x” satisfies them
where N <— N, +N,. These inequalities are the same as the fractionation constraint sets (2.16)

through (2.18) in uniform fractionation model in Section 2.5. Therefore, (x, N ) satisfies the

fractionation constraints in uniform fractionation model.

Since (x, N ) satisfies both overall treatment and integer fractionation constraints in uniform
fractionation model, it is a feasible solution. Its objective function is equal to the objective

function of (x1 ,x*,N, ), because re-writing the objective function of (x1 ,x*,N. 2) which is

ieT

[z d' +d’ j /|T | by using expression (4.12) , the objective function of (x, N ) which is

(Zdij/ | T'| is obtained. m

iel

Lemma 2: Any feasible solution (x, N ) for uniform fractionation model can be mapped to a
feasible solution (xl,xz,N 2) for non-uniform fractionation model by using

N N o .
x' Wlx,x2 «— sz and N, <— N—N,, and their objective function values are same.

Proof: Since (x,N) is feasible for uniform fractionation model, it satisfies the cumulative dose

constraint sets (2.3) through (2.7) and integer fraction size dose constraint sets (2.16) through

(2.18). When those constraints are re-written by using expression (4.13), x' « %x and

X7 sz where N, <— N — N, satisfy those constraints which are identical to the constraints in
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non-uniform fractionation model. Therefore, (xl,xz,N 2) 1s a feasible solution for the non-

uniform fractionation model.
le X Z (x R— j Z (XJ+ZCZ (Xj Z 3514‘2 Xg:d;#—diz (4.13)

The objective function of (xl,xz,Nz) is equal to the objective function of (x, N ) , because by re-

writing [Zd[j/ | T'| using expression (4.13), the objective function (Zd; +d[2J/ |T| is

ieT ieT

received. m

Theorem: The optimal solution values for uniform and non-uniform models are equivalent in
the sense that the optimal solution to either model can be converted to a feasible solution of other
with the same objective function value.

Proof: Without loss of generality, pick up the optimal solution for non-uniform fractionation
model. By using Lemma 1, this optimal solution can be mapped to a feasible solution for
uniform fractionation model with the same objective function value. Suppose there is a better
solution for uniform fractionation model than this feasible solution. Then, by Lemma 2, it could
be mapped back to a feasible solution with the same objective function value for non-uniform
fractionation model which would have a higher objective function value than the optimal
solution which creates a contradiction. Therefore, by contradiction, the feasible solution for
uniform fractionation model mapped from the optimal solution for non-uniform fractionation

model is optimal for the uniform fractionation model. m

Note that by induction any use of non-uniform plans across multiple stages over the course of the

treatment would not help the tumor doses received from delivering uniform plan across all
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fractions unless something in the treatment environment changes such as the patient geometry,
the selected beam angles or the optimization parameters changes. However, there is a potential
value for re-optimizing the treatment plan over time and producing time-varying plans when the
treatment environment changes. This justifies the idea of adapting treatment plans over the

course of the treatment when the changes in the tumor geometry are observed.

4.3 Adaptive Planning Optimization Methodology

It is assumed that the beamlets of beam angles are pre-selected prior to the optimization. In the
proposed approach, only a cumulative dose homogeneity requirement for tumor is considered.
Epoch-based re-imaging is assumed, so the treatment plan is adapted after delivering each epoch.
As previously stated, a mean dose limit is used for healthy tissues with dose-volume limits.

Lastly, only the tumor is subject to geometrical change over the course of the treatment.

For the methodology, a few new notations are defined. Let 7 denote the set of residual tumor
points having radiological evident disease through the treatment, and D denote the set of
removed tumor points locating in tumor volume not currently radio graphically apparent as
disease, but which was formerly occupied by tumor. The points in the set D are subject to the

secondary target prescription.

4.3.1 Optimization Methodology

The process for the methodology is given below. The counter for the iterations is denoted as m.

Let M denote the number of adaptation points throughout the treatment, so the treatment plan is
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periodically adapted M times which indicates that there are M+1 epochs. d"““/ denotes dose

delivered at each tissue point and initially equal to O for all points.

Form=0to M
Acquire new image.
Update residual tumor volume by removing tumor points from the set 7 into the set D.
Revise the cumulative dose limits for the remaining plan according to the delivered plans.

Solve the re-optimization formulation to determine the immediate plan.
Deliver the fractions in the immediate plan. Update d“"“*’ for each tissue point.

Next m

The methodology iterates M+ 1 times. The first iteration (m=0) occurs at the beginning of the
treatment plan where no shrinkage is observed; therefore, the set T includes all the points in the
original tumor while the set D is empty. In the rest of the iterations, tumor shrinkage is reflected
by removing tumor points into the set D. In the methodology, each time the immediate plan is

delivered, the time horizon is rolled forward by an epoch.

4.3.2 Re-optimization Formulation

At each adaptation point, the treatment plan is re-optimized by solving the formulation given in
Figure 4.1. For the illustration purpose, this figure assumes that epochs /...m has been delivered
and the immediate plan for epoch m+1/ will be determined. The re-optimization formulation
optimizes the remaining plan against residual cumulative dose limit constraints and remaining

plan fractionation constraints, and then the first N; optimal fractions are delivered for the
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immediate plan which is labeled as a dashed rectangle in Figure 4.1. Here, V,, a clinician defined

parameter, represents the duration of the immediate plan. For example, if patient is re-imaged

and the plan is updated bi-weekly, N;/=10.

Optimizing the remaining plan requires defining one set of continuous variables for the

intensities of the beamlets in the remaining plan. Let x; be the continuous variable defined for the

intensity of beamlet j € J in the remaining plan. Then, dose delivered to point i in the remaining

plan denoted as d; is computed as Z ax; .

jeJ
Delivered Plan Remaining Plan
_An A
-~ ~ —
! -
1 .
: I d=1“UxN  (419) VieSuD
. 1
Delivered LONC L g N (420) VieT
Fractions I fractions | . _
! ' d<uxN  (421) VkeKUK, VieH,
1 1
e=1...m e=mtl | 0 iiieeeassas e=M+1
: i | >

Maximize (Z d,)/T
ieT
Z dl- < ‘Hk ‘,uk _ Z didelivered vk c E

ieH,; ieH,;
d[ < u/z(otal _dide/ivered \v/k c K,VI c Hk
di > ltotal _dide[ivered vl c S UD

sec
D .
dl» S min _didehvered Vl = SUD
a

D

min

) D .
< di +d[dellvered < min VieT
o

(4.14)

(4.15)
(4.16)

(4.17)

(4.18)

Figure 4.1: Re-optimization Formulation

> Overall Treatment

The formulation in Figure 4.1 maximizes the average tumor dose delivered to residual tumor

points i € T in the remaining plan subject to overall treatment and remaining plan fractionation
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constraints. Constraint sets (4.14) through (4.18) make sure that cumulative dose limits for dose-
volume healthy tissues, healthy tissues, secondary target and removed tumor points, and residual

tumor points are maintained, respectively.

Constraint sets (4.19) through (4.21) impose lower dose limits on the secondary target, removed
tumor and residual tumor points, and upper dose limits on healthy and dose-volume healthy
tissue points for the N fractions in the remaining plan. Here, N is an integer variable and defined
as the number of fractions in the remaining plan. These constraints on remaining plan ensure that

the remaining plan can be delivered in N equal, feasible fractions.

At each iteration, except the last one, N; of these N optimal fractions are delivered in immediate
plan, and the methodology moves to the next iteration. However, at the last iteration where the
final adaptation occurs, all the N optimal fractions in the remaining plan are delivered in the last

epoch.

In the re-optimization formulation, the immediate plan and the prospective plan (the remaining
timeline after N, fractions) are combined into a remaining plan. It would be desired to treat them
separately if the new conditions in the prospective plan were considered, e.g. further tumor
shrinkage. However, this research considers the simplest case where the tumor geometry in the
immediate and prospective plan is the same. It would not help the optimization results to treat
them separately as a consequence of the finding stated previously. Moreover, treating them
separately in this simplest case would require defining two sets of variables and two sets of

fractionation constraints which would worsen the computational efficiency of the formulation.
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Note that a simple relaxation of the integer variable N into a continuous variable may lead to
infeasibility when the optimal fractional value of N is further rounded up or down as illustrated

in Table 4.2. This motivates defining N as an integer variable in the re-optimization formulation.

Table 4.2: Infeasible Fractionation from Solving the LP-relaxation of the Re-optimization
Formulation at the First Iteration for the Lungl Case (Violations of fraction size requirements are

in bold and highlighted.)

Fract. size Fract. size
Dose Cum. | dose (Gy) dose (Gy)
Structure Statistics dose when N=34.7 yvhen N=34.7
(Gy) | isrounded | isrounded up
down to 34 to 35
Tumor Min. dose 71.3 2.10 2.04
PTV2 Min. dose 69.4 2.04 1.98
Right Lung Max. dose | 72.8 2.14 2.08
Left Lung Max. dose | 56.1 1.65 1.60
Heart Max. dose 70.9 2.08 2.02
Esophagus Max. dose | 59.5 1.75 1.70
Not Otherwise |y dose | 72.8 2.14 2.08
Specified
Spinal Cord Max. dose | 45.0 1.32 1.29

Notation: N is the number of fractions the treatment plan is divided into and equal

to 34.7 in the relaxation.
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4.4 Computational Experiments

4.4.1 Generating Tumor Shrinkage

To test the proposed adaptive planning optimization methodology, tumor shrinkage data over
time is essential. Using clinical guidance, residual tumor volumes on each slice that correspond
to the tumor volume after delivering 25 fractions are generated. Figure 4.2 illustrates an example
slice z=0 for Lung] case. This figure shows how the original tumor in red (“T”) has shrunk to

the residual tumor volume in dark blue (T*) after 25 fractions in the treatment.

10 L] ¥ ¥ L LI

i. Lung (L)
R. Lung (R)
e » Spinal Cord (S)
Not Otherwise
Specified (N)
Esophagus (E)
PTV2 (P)
5k Original Tumor (T)]
Residual Tumor (T*
0F L
-5k 4
. 10 i A A i A A
-15 -10 -5 0 5 10 15 20

Figure 4.2: Slice z=0 for Lungl Case

For experiments adapting the treatment plan before fraction 25, the original tumor volume is
reduced with some percentage, such as 20%, 50% and 80%, to its plotted residual volume near

the root of the lung. On the other hand, the residual tumor volume after fraction 25 is reduced
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with some percentage, such as 10%, 30% and 50%, for the experiments where the treatment plan

is adapted during the subsequent fractions after fraction 25.

4.4.2 Two-Epoch Adaptation Results

For two-epoch adaptation experiments, the treatment plans for both test cases are adapted once
after fraction 25 based on the generated residual tumor volumes and compared with treatment
plans generated with no adaptation (non-adaptive). When the treatment plan is adapted after
fraction 25, the minimum fraction size limit constraints on the secondary target PTV2 and the
removed tumor points (part of the original tumor during the first 25 fractions) are dropped from
the re-optimization formulation since these points satisfy their prescribed cumulative dose limits
(>50 Gy) by receiving fraction size doses at least or greater than their required minimum limits
during the first 25 fractions and there is no clinical need to deliver the minimum fraction size
doses to these points during the subsequent fractions. Thus, dropping these constraints relaxes

the re-optimization formulation and creates freedom.

Non-adaptive plans are first prepared by non-adaptive planning optimization without boost
employed in most of the commercial products. In order to have a fuller comparison between non-
adaptive and adaptive plans, a non-adaptive planning optimization with boost was also employed
where the treatment plan is re-optimized after fraction 25 by dropping the fraction size limit
constraints on PTV2 points without acquiring an updated image (For non-adaptive plans, “main
stage” includes the first 25 fractions and “boost stage” includes fractions after re-optimization).
The non-adaptive planning optimization with boost is motivated by the clinical desire to design

treatments with a boosting strategy (employed in commercial systems) which uses different
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uniform fractions in successive periods of treatment (Li et al. 2005, Popple et al. 2005, Dink et

al. 2011).

Note that the uniform fractionation model presented in Section 2.5 and the ratio model with re-
scaling presented in Section 2.4 are solved to prepare non-adaptive plans without boost.
Adaptive plans are generated by using the proposed methodology presented in Section 4.3 where
the uniform fractionation or the ratio model with re-scaling is used for re-optimization
formulation. Non-adaptive plans with boost where the treatment plan is re-optimized after
fraction 25 without responding to the tumor shrinkage are generated by using the same
methodology. For the computational experiments presented in this chapter, all the plans for
Lung] case are computed in less than 5 minutes whereas all the plans for CERRLung case are
computed in less than 30 minutes on the department’s server (specifications of the machine and

software are given in Section 1.4).

4.4.2.1 Using Uniform Fractionation Model in the Optimization

Table 4.3 presents results for no adaptation and two-epoch adaptation for the Lungl and
CERRLung test cases where the uniform fractionation model is solved in the optimization. Note
that the tumor statistics presented throughout the computational experiments are for the whole
tumor in non-adaptive plans and for the residual tumor in adaptive plans. However, due to not
having adaptation, the removed tumor points are not known in the non-adaptive plans; therefore,

no statistics are presented for those points.
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Non-adaptive optimization without boost delivers minimum dose of 2 Gy/fraction to PTV2
points over the course of the treatment. By non-adaptive optimization with boost, the PTV2
points receive minimum dose of 0.9 Gy/fraction for Lung1 Case and minimum dose of 0.91
Gy/fraction for CERRLung case during the boost stage since the fraction size limit (>2 Gy) on
PTV2 points are not imposed in the re-optimization after fraction 25. This freedom created in
non-adaptive optimization with boost improves the average tumor dose achieved in the boost
epoch by 0.5 Gy for Lung] case, so the average cumulative dose achieved by non-adaptive
optimization without boost increased from 72.9 Gy to 73.4 Gy. The effect of the freedom on the
optimization results is more significant in CERRLung case. Re-optimizing the treatment plan
better spares the right lung by delivering average dose of 0.35 Gy/fraction after fraction 25
compared to the average dose of 0.47 Gy/fraction by non-adaptive optimization without boost.
The reduction in the average dose that right lung receives allows adding 4 more fractions to the

boost epoch and boosts the cumulative dose from 76.2 Gy to 84.9 Gy.

When the treatment is adapted to the tumor shrinkage after fraction 25, the right lung is better
spared during the second epoch by receiving average dose of 0.6 Gy/fraction in Lungl case and
0.31 Gy/fraction in CERRLung case compared to the 0.71 Gy/fraction and 0.35 Gy/fraction
received from non-adaptive optimization with boost for both test cases, respectively. Better
sparing the right lung is achieved by taking advantage of the extra freedom created in the re-
optimization formulation by dropping the minimum fraction size limit constraints on the
removed tumor points. The removed tumor points receive minimum dose of 0.53 Gy/fraction
during the second epoch (with boost) for Lungl case and minimum dose of 0.65 Gy/fraction for

CERRLung case. However, same points are required to receive 2 Gy/fraction in non-adaptive
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plans. The reduction in the average dose/fraction that the right lung receives during the second
epoch allows increasing the number of fractions delivered in the second epoch from 10 to 12 for

Lungl case and from 15 to 17 for CERRLung case.
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Table 4.3: No Adaptation and Two-Epoch Adaptation Results for Lung1 and CERRLung Test
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The overall tumor dose statistics received from no adaptation and two-epoch adaptation for
Lungl case are summarized in Figure 4.3(a). Adapting the treatment plan improves the overall
tumor doses significantly. It adds 2 more fractions to the overall treatment and increases the
average tumor dose by 5.3 to 5.8 Gy. This corresponds to over 7% boost in the average tumor
dose. Figure 4.3(b) illustrates the improvement in the overall tumor doses achieved by adaptation
for CERRLung case. Compared to non-adaptive optimization without boost, 6 more fractions are
delivered in the treatment plan and average dose of 12.7 Gy (17%) gain is achieved by adapting
the treatment plan once. Although re-optimizing the non-adaptive plan after fraction 25 improves
non-adaptive planning results significantly, two-epoch adaptation still performs superior to no
adaptation. In this case, the average tumor dose is boosted from 84.9 Gy to 88.9 Gy

corresponding to a 4 Gy (4.7%) increase and 2 more fractions are delivered in the treatment plan.
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Figure 4.3: Comparison of Overall Tumor Dose Statistics Received by No Adaptation and Two-
Epoch Adaptation (Number of fractions delivered in the overall treatment given in the
parenthesis, the lower and upper bar on each column showing the minimum and maximum

cumulative tumor dose achieved, respectively.)

Increasing the delivered number of fractions by re-optimization in the non-adaptive plan with
boost and adaptive plans may create very high hot-spots within the tumor. However, a
homogeneity dose constraint is enforced in the re-optimization (constraint set (4.18) in Figure
4.1) which should prevent having very low cold-spots as well as very high hot-spots at the end of
the treatment. For example, as Table 4.3 shows, two-epoch adaptation plan for CERRLung case
delivers minimum and maximum tumor doses of 86.4 Gy and 91.0 Gy, respectively, which
satisfies the prescribed tumor homogeneity dose limit (86.4/91.0>0.95). As a result, enforcing
tumor homogeneity dose constraint in the re-optimization imposes homogeneous tumor dose
distribution to be delivered over the course of the treatment. Furthermore, an upper dose limit

constraint on the removed tumor points is enforced in the re-optimization which would prevent
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having very high hot-spots among the removed tumor points by ensuring that their cumulative

doses do not exceed the maximum cumulative dose achieved in the tumor.

It could be desired to bound the increase in the number of fractions by re-optimization due to
clinical reasons, e.g. considering adjuvant therapies, such as chemotherapy. This could be easily
done in the developed methodology by adding the following constraint N+Nge/iverea<U to the re-
optimization formulation given in Figure 4.1 where Nyiveres defines the number of fractions
given in the delivered plan, and U is the clinician-defined parameter for the upper bound on the
number of fractions delivered in the overall treatment. Nevertheless, adding this constraint might

reduce the gains in average tumor dose achieved by adaptation.

The detailed results for the computed plans on CERRLung test case given in Table 4.3 are shown
in Table 4.4. Table 4.4 presents cumulative and fraction size dose statistics for each structure
over each stage/epoch and the overall treatment as well as the number of fractions delivered in
each time period in non-adaptive plans without or with boost and two-epoch adaptive plan. The
dose statistics in Table 4.4 indicate that both cumulative and fraction size dose limits placed on
each healthy tissue are satisfied in the non-adaptive and adaptive plans. For example, the right
lung receives a mean dose of 17.0 Gy (<17 Gy) in mean fraction size doses of 0.47 during 36
fractions in the non-adaptive plan without boost. During each of these fractions, the maximum
dose that the right lung receives is 2.1 Gy which is in accordance with its maximum fraction size
limit (<2.1 Gy). Furthermore, the other healthy tissues satisfy their cumulative dose limits being
that the mean dose that the left lung receives is 9.7 Gy (<17 Gy), the heart receives 4.2 Gy (<35

Gy), and the esophagus receives 16.8 Gy (<35 Gy). The maximum dose the not otherwise
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specified tissue receives is 75.6 Gy (<100 Gy) and the spinal cord receives is 9.5 Gy (<45 Gy).
These healthy tissues under interest receive fraction size doses less than or equal to their
maximum fraction size limit during each fraction. Satisfaction of both the cumulative and the
fraction size limits for each tissue carries over to the non-adaptive plan with boost and adaptive

plans as Table 4.4 demonstrates.

Since the developed re-optimization approach is to maximize dose delivered to the tumor within
cumulative and fraction size tolerance levels of healthy tissues, rather than meeting a specific
prescription for the tumor, some healthy tissues are dosed to its cumulative limit (e.g. Right lung
receives average cumulative dose of 17 Gy in CERRLung case). However, this approach is in
accordance with clinical studies on dose escalation (c.f. van Baardwijk et al., 2008; van
Baardwijk et al., 2010) and the prescribed cumulative dose limits on healthy tissues are respected

in the computed adaptive plans.

The detailed dose statistics for Lungl case are given in Appendix A. The results show that all

cumulative dose limits for the overall treatment and fraction size dose limits for each stage/epoch

fraction are satisfied in both non-adaptive and adaptive plans.
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Table 4.4: No Adaptation vs. Two-Epoch Adaptation Results for the CERRLung Test Case (The

uniform fractionation model is solved in the optimization.)

No . .
Dose Adaptation No Adeg)é’:l)tslgn (with Two-Epoch Adaptation
Structure | Statistics | (No Boost)
(Gy) Main Boost Epoch Epoch 2
Total Stage | Stage Total 1 (with Boost) Total
Max. 78.2 54.3 349 86.9 54.3 39.0 91.0
Dose [2.17] [2.17] | [2.33] | [2.17] [2.30] '
Min. 74.3 51.6 30.0 51.6 34.0
Tumor Dose 2.06] | 2.06] | 2.007 | 322 | 12.06] 12.00] 86.4
Mean 76.2 52.9 31.9 84.9 52.9 36.0 839
Dose [2.12] [2.12] | [2.13] | [2.12] [2.12] '
Max. ) i ) ) ) 37.7 91.0
Dose [2.22] )
Removed - 111
Tumor Min. - - - - - : 64.5
Points Dose [0.65]
Mean ) ) ) ) ) 32.0 84.9
Dose [1.88] )
Max. 78.2 54.3 35.9 36.9 54.3 40.0 91.0
Dose [2.17] [2.17] | [2.39] ) [2.17] [2.35] )
Min. 72.0 50 13.7 50 4.2
PTV2 Dose 200 | 2007 | 0917 ] 37 | 12.00] [0.25] 242
Mean 75.3 52.3 29.4 316 52.3 30.9 83 1
Dose [2.09] [2.09] | [1.96] © | [2.09] [1.81] '
Max. 75.6 52.5 31.5 4.0 52.5 35.7 8.2
Right Lung |25 [2.10] [2.10] | [2.10] [2.10] [2.10]
Mean 17.0 11.8 5.2 17.0 11.8 5.2 17.0
Dose [0.47] [0.47] | [0.35] ) [0.47] [0.31] )
Max. 75.6 52.5 31.5 82.0 52.5 323 817
Left Lung Dose [2.10] [2.10] | [2.10] ) [2.10] [1.90] )
Mean 9.7 6.7 2.8 96 6.7 2.6 94
Dose [0.27] [0.27] | [0.19] ) [0.27] [0.16] )
Max. 72.3 50.2 25.4 756 50.2 20.6 697
Heart Dose [2.01] [2.01] | [1.69] ) [2.01] [1.21] )
Mean 4.2 2.9 1.0 39 2.9 1.0 40
Dose [0.12] [0.12] | [0.06] : [0.12] [0.06] :
Max. 75.6 52.5 24.8 77 3 52.5 22.0 745
Esonhacus | DOSe [2.10] [2.10] | [1.65] : [2.1] [1.29] :
phag Mean 16.8 17 35 [ 5, | 117 3.0 47
Dose [0.47] [0.47] | [0.23] < | [0.47] [0.18] '
Max. 75.6 52.5 31.5 52.5 35.7
oot Dose 2101 | 2101 | 107 | 3*0 | 12.10] 12.10] 88.2
therwise
Specified Mean 7.5 5.2 2.4 76 5.2 2.4 76
Dose [0.21] [0.21] | [0.16] [0.21] [0.14]
Max. 9.5 6.6 4.5 106 6.6 7.2 12.0
Spinal Dose [0.26] [0.26] | [0.30] ) [0.26] [0.42] )
Cord Mean 1.7 1.2 0.7 1.9 1.2 0.5 1.7
Dose [0.05] [0.05] | [0.05] ) [0.05] [0.03] )
# of Fractions Given 36 25 15 40 25 17 42

Note: The fraction size doses are given in brackets below the cumulative doses. PTV2 represents the
secondary target.
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4.4.2.2 Using the Ratio Model in the Optimization

Non-adaptive and adaptive treatment plans for both test cases are also generated where the ratio
model is solved in the re-optimization and the results are re-scaled if necessary (Table 4.5). Note
that, the freedom generated by non-adaptive planning optimization with boost over optimization
without boost, and the extra freedom created by adaptation in the re-optimization, which has
been explained through the results in Table 4.3, apply to the results in Table 4.5 too. For Lung1
case, doses received from the optimization in the beginning of the treatment are re-scaled down
by 2% and the treatment plan is divided into 34 feasible fractions. After delivering 25 of those 34
fractions in the main stage, the re-optimization for non-adaptive planning optimization with
boost allows dividing the remaining plan into at most 10 fractions to satisfy the minimum
fraction size limit on the tumor and at least 11 fractions to satisfy the maximum fraction size
limit on healthy tissues. The doses for the remaining plan are re-scaled down by 0.5% and the
boost epoch is delivered in 10 feasible fractions. For adaptive planning optimization, the tumor
volume is updated after fraction 25 and the re-optimization allows dividing the remaining
treatment plan into at most 12 fractions to satisfy the minimum fraction size limit on the residual
tumor and at least 13 fractions to satisfy the maximum healthy tissue fraction size limit. The
doses for the remaining plan are re-scaled down by 3.7% and the second epoch is delivered in 12

feasible fractions in the adaptive planning optimization.

For CERRLung case, the doses received from the optimization in the beginning of the treatment
are re-scaled down by 0.5% and the treatment plan is divided into 36 feasible fractions. In the
main stage, 25 of those 36 fractions are delivered. Then, the treatment plan is re-optimized after

fraction 25 for non-adaptive planning optimization with boost, and the computed doses allow
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dividing the remaining plan into at most 15 and at least 16 fractions in order to satisfy the
minimum and the maximum fraction size limits, respectively. These doses are re-scaled down by
5% and the remaining treatment plan is delivered in 15 feasible fractions. For the adaptive
planning optimization, the doses received from the re-optimization allow dividing the remaining
plan into at most 17 and at least 18 fractions. These doses are re-scaled down by 2% and 17

feasible fractions are delivered in the second epoch.
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Table 4.5: No Adaptation vs. Two-Epoch Adaptation Results for Lungl and CERRLung Test
Case (Ratio model is solved in the optimization and the results are rescaled if necessary, bold

and highlighting signifies numbers referenced in the text.)

w L1 ST ov ST ST 9¢ U9AIS SUONORI JO IqUINN
691 | 0€0 | TS| b0 |LT1]| L9I €60 [0S | L¥O |LT1| L¥O |691 [psoqd Say| Suniysry
9¢s | 170 | 9¢| 00T |00S| LT9 ¥80 |LTI| 00T |00S| 0T |0TL|osod wn| — TALd

. . . ] ] ] ] ] ] ] ] " losoct SHIog
$T9 | 790 |[soI @ WIN| on  pasowy
$88 | 01T [8se| 11T |LTS| TH8 01'C |ST€| 11T |LTS| 11T |6SL[esoq Sav

098 | 00T [OvE| 90T |¥IS| 618 00Z |00€| 90T |+¥IS| 90T |I1¥bL[esoq uy|  Jownp
906 | STT [LSE| LIT |I¥S| T98 6TT |¥YE| LT |TbS| LI'T |0°8LPSOA XeW|

ase)
SunTYdD

LE (4! Y4 1% 01 Y4 e USAIS SUOTORL JO JQUINN
L'YCT 9¢°0 L9 L0 0'8I 0°ST 690 69 L0 0'81 Lo ST [osoq 8Ay|  SunTysrg
0°9¢ 050 09 00'C 00§ L'6S L6°0 L6 00'C 008 00'C 0°89 |[9sod UIN CALd
. . . _ } ) _ } } - j - losot syu1oq
L'LS 00 |09 "W own |, panoway]|eseD 18ung
€'8L €r'e 9°6C 11T LTS Ve LO'C L0T | R4 LTS I 9°IL [9so( "8AY
¥'9L 00'C 0'vC 90'C 7'IS SIL 00'C 00T 90°C V1S 90°C 6'69 [°so WA Jowmng,
708 Iv'C 6'8C LT'C I'vS €CL 1T¢C 1'cc LT'T I'vS LT'C 9'¢L PS0d "XeJN
(AD) (D) (AD) (AD) (AD) (AD)
asop |79 98 asop |00 asop | o 2509 (o2 | 350D (1) 200 sop
‘wn) IS J0u1q wny RN | ‘wnH P D[OZIS 10el ] wny [ 1Rl wny [ o6l ‘wnH
10 (1s00g ood 10 o3e1g 1500 o3e)Q ure ©]0 sonsne aImont QwIeN 9se
[eI0L M) 7 yoodg [ ysodyg [®e10L 1S 1soog 1S UIR]\ [eI0L nsnels monng N 958D
uoneydepy yoodg-om [, (1soog ynm) uonerdepy oN EMMMW@“ZWZ

60



Figure 4.4 compares the average tumor dose and the number of fractions delivered in non-
adaptive and adaptive plans for both test cases. For Lungl case, Figure 4.4(a) shows that
adapting the treatment plan once adds 3 more fractions to the overall treatment received by
optimization without boost and boosts the average tumor dose from 71.6 Gy to 78.3 Gy which
corresponds to a 6.7 Gy (9.4%) increase. Compared to the non-adaptive planning optimization
with boost, adaptation improves the average tumor dose from 73.4 Gy to 78.3 Gy corresponding
to a 4.9 Gy (6.7%) gain while adding 2 more fractions to the overall treatment. The improvement
in the treatment outcomes by adaptation is illustrated by the CERRLung case results presented in
Figure 4.4(b). Adapting the treatment plan once adds 2 more fractions to the overall treatment
received by non-adaptive planning optimization with boost and boosts the average tumor dose
from 84.2 Gy to 88.5 Gy corresponding to a 4.3 Gy increase (5.1% gain). This gain gets
significantly bigger when the adaptive planning results are compared to the optimization without
boost results where the average tumor dose is boosted by 12.6 Gy (16.6%) and the number of

fractions given in the treatment increased by 6.
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Figure 4.4: Comparison of Treatment Outcomes When the Ratio Model is solved in the

Optimization

The detailed dose statistics for each structure in non-adaptive and adaptive plans for Lungl and
CERRLung case are presented in Appendix B and C, respectively. The results show that both

cumulative and fraction size dose limits for all structures are satisfied in the computed plans.

4.4.3 Three-Epoch Adaptation Results

It is an interesting question to investigate whether the tumor doses received from two-epoch
adaptation would improve by acquiring another image of the patient and adapting the plan at
some point during the first 25 fractions. In addition, the extended time in second epoch (i.e. the
second epoch includes 12 and 17 fractions for Lungl and CERRLung case, respectively, as

Table 4.3 indicates) allows additional adaptation before the treatment ends.
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4.4.3.1 Adapting after Fraction 10 and 25 (Earlier Re-Imaging)

Three-epoch adaptation results for Lungl case where the treatment plan is adapted after
delivering fractions 10 and 25 are summarized in Figure 4.5(a). This figure displays both the
average tumor dose achieved at the end of the treatment and the number of fractions given in the
treatment when the original tumor shrinks with different rates during the first 10 fractions
towards the residual tumor. For the purpose of comparison, two-epoch adaptation results are

given too.

Adapting the plan twice in case of 80% tumor shrinkage during the first 10 fractions only
improves the two-epoch adaptation results by 0.6 Gy while the number of fractions given in the
treatment does not change. This small gain diminishes when tumor shrinks with a lower rate in
the first 10 fractions. As a result, adapting the treatment plan during the first 25 fractions does
not improve the two-epoch adaptation results considerably and is not sensitive to the rate of

tumor shrinkage.

The same conclusion is reached from three-epoch adaptation results for CERRLung case given
in Figure 4.5(b). The average tumor dose achieved from two-epoch adaptation increases slightly
from 88.9 Gy to 89.0 Gy under 50% and 80% shrinkage during the first 10 fractions while the

number of fractions given in the treatment does not change.
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Figure 4.5: Two-Epoch Adaptation (Adapting after Fraction 25) vs. Three-Epoch Adaptation
(Adapting after Fraction 10 and 25) when the Original Tumor Shrinks with Different Rates (%)
during the first 10 Fractions towards the Residual Tumor after Fraction 25 (Uniform

fractionation model is solved in the re-optimization.)

The details of the experiments summarized in Figure 4.5 can be found in Appendix D and E for
Lungl and CERRLung case, respectively, which demonstrate that the targets and healthy tissues
satisfy their cumulative limits for the overall treatment and fraction size limits during each

fraction delivered in epoch 1, 2, and 3.

4.4.3.2 Adapting after Fraction 25 and 30 (Later Re-Imaging)

In contrast to the earlier adaptation, later adaptation performed after fraction 30 for both Lungl
and CERRLung cases improves two-epoch adaptation results significantly. Appendix F and G
present the details of these experiments indicating both cumulative and fraction size dose limits

are satisfied in the computed plans. Figure 4.6(a) summarizes results from adapting the plan
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twice after fraction 25 and 30 for Lungl case where the residual tumor shrinks with different
rates after fraction 25. The average tumor dose achieved from two-epoch adaptation improves by
1.5 Gy and 2.2 Gy with 10% and 30% tumor shrinkage rates, respectively. For these cases, the
number of fractions delivered in the treatment increased by 1. With residual tumor shrinking
50%, 3 more fractions are added to the treatment, and the average tumor dose is boosted from
78.7 Gy to 84.2 Gy indicating a boost of 5.5 Gy. Moreover, compared to 73.4 Gy received from
non-adaptive planning optimization with boost, this corresponds to a 15% gain. The results in
Figure 4.6(a) illustrate that the amount of gain obtained from adapting the plan after fraction 30

1s sensitive to the rate the residual tumor shrinks after fraction 25.

Figure 4.6(b) draws the same conclusions from the results on adapting the treatment plan after
fraction 25 and 30 for CERRLung case. With 50% shrinkage, the average tumor dose achieved is
enhanced from 88.9 Gy to 93.6 Gy corresponding to a 4.7 Gy increase while two additional
fractions are delivered in the treatment. Compared to the 84.9 Gy received from non-adaptive
planning optimization with boost, a 10.2% gain is accomplished by adapting the plan after

fraction 30.
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Figure 4.6: Two-Epoch Adaptation (Adapting after Fraction 25) vs. Three-Epoch Adaptation
(Adapting after Fraction 25 and 30) with Residual Tumor after Fraction 25 Shrinking with

Different Rates (%) (Uniform fractionation model is solved in the re-optimization.)

The reason behind the improvement by later adaptation is related to the extra freedom created in
the re-optimization. When more tumor points are removed from the residual tumor after fraction
30 for both test cases, the minimum fraction size limit constraints on those points are dropped
from the re-optimization formulation because the cumulative limits on those points have already
been fulfilled. This relaxes the optimization model and creates more freedom to take advantage
of in the rest of the plan. In contrast, with the earlier adaptation, fractionation constraints on
those points are not dropped from the re-optimization since they have not received their
minimum cumulative dose by that time. Therefore, this prevents relaxing the model and does not
create necessary freedom for achieving significant improvement by adapting the plan early.
Note that re-planning the treatment plan at later stages of the treatment (e.g. during the

subsequent fractions after fraction 25) is always feasible due to the fact that the re-optimization

66



formulation solved at later adaptation points does not include any minimum cumulative dose
constraint on the secondary target and removed tumor points. For example, one feasible solution
for re-optimization after fraction 25 would be the solution with 0 beamlet intensity values and
N=0 since this solution preserves the homogeneous tumor dose distribution achieved during the
first 25 fractions and satisfies the residual cumulative dose constraints on healthy tissues and

fraction size dose constraints on all tissues.

However, for the re-optimization formulation solved at a later adaptation point after fraction 30,
the same solution (0 beamlet intensities and N=0) might not be feasible for the re-optimization
because the delivered dose to the tumor by fraction 30 could be inhomogeneous in spite of
maintaining tumor dose homogeneity over the course of the treatment (constraint set (4.18) in
Figure 4.1). Although this is the case, there still exists a feasible solution defined as the
remaining part of the plan after fraction 30 determined by the re-optimization after fraction 25
(e.g. the plan for the last 12 of the 17 fractions in Epoch 2 computed by the re-optimization after
fraction 25 is feasible for the re-optimization formulation solved after fraction 30 for CERRLung
case). Note that this feasible solution may result in higher tumor cumulative dose homogeneity
than the prescribed level (> 0.95), because some of the points from the residual tumor after
fraction 25 are removed due to the tumor shrinkage after fraction 30. As a result, due to existence
of at least one feasible solution for the re-optimization after fraction 25 or 30, the potential
infeasibility of the subsequent optimization problems at later epochs of re-planning is not an

issue in the proposed methodology.
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4.4.4 Three-Epoch Cases Using the Ratio Model in the Re-Optimization

Three-epoch adaptation experiments for the more interesting case of adapting after fraction 25
and 30 by solving the ratio model (rescaling results if necessary) in the re-optimization are also
performed. The results for Lungl and CERRLung case are summarized in Figure 4.7(a) and (b),
respectively. The details of these results are given in Appendix H and I demonstrating that both
cumulative and fraction size dose limits for all structures are satisfied in the twice adapted plans.
When the residual tumor shrinks with 10% and 30% for Lungl case, the average tumor dose
received by two-epoch adaptation is boosted by 2 Gy while an additional fraction is given in the
overall treatment. With 50% shrinkage, 4.3 Gy increase is achieved whereas 2 more fractions are
added to the overall treatment. In addition to these results, three-epoch adaptation results for
CERRLung case show a similar improvement in one time adaptation results in Figure 4.7(b).
With 50% shrinkage, the average tumor dose received from two-epoch adaptation increased from
88.5 Gy to 94.9 Gy corresponding to a 6.4 Gy increase whereas 3 fractions are added to the

overall treatment.
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Figure 4.7: Two-Epoch Adaptation (Adapting after Fraction 25) vs. Three-Epoch Adaptation
(Adapting after Fraction 25 and 30) with Residual Tumor after Fraction 25 Shrinking with
Different Rates (%)(The ratio model is solved (the results are rescaled if necessary) in the re-

optimization.)
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5 Biologically Guided IMRT Optimization with Fraction Constraints

5.1 Background and Significance

Adaptive radiation therapy based only on geometric changes in the tumor does not exploit
modern imaging science fully. The frontier of treatment now is generating radiation therapy
plans that can act on the information acquired on tumor biology (Kim and Tome, 2006; Ling and
Li, 2005). The initial tumor biological information and the changes in the tumor biology over the
course of the treatment can be demonstrated using modern methods of physical, functional and

molecular imaging (Titz and Jeraj, 2008; Stewart and Li, 2007).

Historically, the internal structure (biology) of a tumor in the individual was unknown, leading to
guidelines that recommend homogeneous dose distributions of doses across target (ICRU Report
#62, Goitein 1986). However, recent pathologic analysis of tumor specimens from surgery and
physiologic studies of animal models reveal a complicated tumor structure where the biological
elements, e.g. hypoxia, proliferation or drug concentration, are not distributed homogeneously
across the tumor (Levin-Plotnik and Hamilton, 2004; Sovik et al., 2007; Chen et al., 2007).
These biological elements are related to the tumor point sensitivity defined as the biological

responses (sensitivity) of the points to radiation.

Tumor hypoxia (low oxygenation) is a well-known biological cause of resistance to radiation and
can be quantified by using recent molecular and functional images. Hypoxic (low-oxygenated)
tumor regions are resistant to radiation whereas well-oxygenated tumor regions are sensitive to
radiation. Identifying the resistant and sensitive tumor regions based on their oxygenation levels

motivates designing Biologically Guided Radiation Therapy (BGRT) plans that realign the
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radiation delivered across the tumor with the new information on tumor biology in order to yield

more effective plans achieving higher tumor control.

In BGRT, the dose at each tumor point can be classified as follows.
e Tumor physical dose is the dose deposited from all beamlets to each tumor point
e Tumor biological dose is the effective dose received at each tumor point due to the tumor
point sensitivity (Note that, the tumor biological dose can be at most as great as the tumor

physical dose)

Figure 5.1 demonstrates the effective biological dose received at tumor points across conditions
of different oxygenation given the same physical dose. As illustrated, as the oxygenation level
decreases (extreme hypoxia), the resistance to the radiation increases; therefore, the biological
dose received at tumor points reduces significantly. This motivates BGRT plans to deliver higher

dose to the hypoxic tumor points in order to prevent cold spots (under-dosed regions) in tumor.
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Figure 5.1: Tumor Physical Dose vs. Tumor Biological Dose across Conditions of Different

Oxygenation

This research develops optimization models that take biological information, e.g. tumor hypoxia,
into account in the treatment planning optimization. Developing mathematical models and
testing them is a challenging problem since BGRT is a new area. Quantification of biological
data is new and still in development and not much known on modeling issues. Also, there are no
known, openly available datasets on tumor biology outside of the clinical institutions yet. This
dissertation research is one of the first attempts that deal with modeling and testing biological

optimization concepts without losing significant relevancy to clinical practice.

5.2 Biological Optimization Models
5.2.1 Modeling Notation and Assumptions
The previous notation introduced for secondary targets in Chapter 2 is modified in order to

handle multiple secondary targets. Let ¥ denote the set of secondary targets. Let /' and /%"
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represent the minimum cumulative and fraction size dose limit for all the points in secondary

target ve V', respectively.

Up to this point, all the tumor doses computed in Chapter 2 through Chapter 4 were physical
doses where no information was known on the biology. In this chapter, the tumor dose will be

specifically classified as tumor physical or tumor biological dose.

Note that, the equation (1) in Section 2.2 presented the physical dose computation for each tumor

pointieT as d, = Za ;% ; - The physical tumor dose d; for each tumor point 7 will be adjusted by

jeJ
its tumor point sensitivity in order to compute the actual biological dose received at that point.
Tumor point sensitivity can represented as:

A;: adjustment factor due to the loss of effect with hypoxia for each point ieT (0<A,<I)

Then let d” be biological dose received at tumor point ie7 computed by multiplying tumor point
i’s sensitivity (4;) by the physical dose deposited to point i (d;) as follows (Titz and Jeraj 2008).
d’ = (ka, ), =4 a,x, =2d, Viel (5.1)

yJ
jeJ jeJ

It is assumed that sensitivity needs to be accounted for only on tumor points and the tumor point

sensitivities (4) do not change over the course of the treatment in static (non-adaptive) plans.
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5.2.2

Biological Uniform Fractionation Model

The biological uniform fractionation model developed is a variant of the uniform fractionation

model presented in Section 2.5. The model maximizes average tumor biological dose (5.2) over

non-negative d;’ subject to cumulative average and upper dose limit constraint sets (5.3) through

(5.4) on healthy tissues, cumulative minimum dose limit constraint set (5.5) on secondary

targets, tumor dose homogeneity limit (5.6), dose consistency constraint (5.7) and the integer

fraction size dose constraint sets (5.8) through (5.10). In the rest of this section, the major

differences between the uniform fractionation model of Section 2.5 and the biological uniform

fractionation will be highlighted.
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Biological objective function
The objective function of the optimization model (5.2) maximizes average biological dose across
the tumor in contrast to the previous objective of maximizing average tumor physical dose in the

uniform fractionation model.

Tumor physical dose homogeneity

One of the open questions in biological optimization is whether homogeneity limits should be
enforced on tumor physical or biological doses. In the case of enforcing a homogeneity limit on
tumor physical doses, the constraint set (5.6) would remain the same. In addition, that constraint
set would allow capturing the maximum tumor physical dose (D,,;/@) which then would be used
as the right hand side of the dose consistency constraint set (5.7) (Recall that, the dose
consistency constraint ensures that the maximum dose received at secondary targets does not

exceed the maximum tumor physical dose).

Furthermore, in order to effectively react to the more severe hypoxia in tumor, one could choose
lower homogeneity value (e.g a = 0.8) which would give freedom to the model in optimizing

tumor physical dose distribution.

Tumor biological dose homogeneity
If one desires to impose a homogeneity limit on tumor biological doses rather than tumor

physical doses, constraint set (5.6) would be replaced with constraint set (5.11) in the

optimization model, where D’

min

is a continuous variable defining the minimum tumor biological

dose.
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Enforcing constraint set (5.11) captures the maximum tumor biological dose but not the
maximum tumor physical dose which makes the dose consistency constraint harder to model.
Exact modeling of this constraint requires introducing binary variables resulting in a much more
computationally expensive optimization model. To avoid this, an approximate method is used to
estimate the maximum tumor physical dose by dividing the maximum biological dose by
hypoxic adjustment factor A of the second most insensitive region value. By using this

estimation, the dose consistency constraint (5.7) is replaced with the following dose consistency

constraint set (5.12) where A denotes the hypoxic adjustment factor of the second most

insensitive tumor region value.

b
d,.s%/“ YvelV, Vies, (5.12)

Tumor fraction size requirement

Lastly, the tumor fraction size dose constraint set (5.9) is stated in terms of biological dose in the
optimization model. This imposes a lower dose requirement on tumor biological doses per
fraction rather than tumor physical doses per fraction. Controlling the minimum biological dose

achieved per fraction would increase the probability of cure.

In summary, the biological uniform fractionation model is a single integer variable mixed-integer
linear programming model producing uniform plans over N fractions. The integer variable N in

the fraction size dose constraint sets guarantees that the cumulative plan can be divided into
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integer number of fractions where all the fraction size dose limits on healthy tissues and

secondary targets, and biological fraction size dose limit on all tumor points are satisfied.

5.2.3 Biological Adaptive Planning Optimization Methodology

An adaptive planning optimization methodology is also developed that re-plans treatment plans
in response to the changes in the tumor point sensitivities (). This methodology follows the
same steps summarized in Section 4.3. Although the adaptive planning optimization
methodology given in Section 4.3 considers adapting the treatment plan M times, here only two-
epoch adaptation (M=1) would be investigated. The major reasons behind this choice are two-
epoch adaptation in Chapter 4 gave excellent results (lessening the need to adapt more than once)
and adapting more than once to the changes in the sensitivities would require more data
generation for testing which could not have been done realistically since little is known on

quantifying the sensitivity change.

In the proposed adaptive approach, the treatment plan is adapted after delivering a sequence of
fractions by incorporating the latest tumor point sensitivity information (4) in order to achieve
the best IMRT design for the overall treatment and for each fraction. The treatment plan is first
optimized against both cumulative and fraction size dose limits based on the biological image at
the beginning of the treatment by solving the biological uniform fractionation model presented in
the previous section. The optimized treatment plan is divided into NV fractions and the first N; are

delivered in Epoch 1.
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After delivering the first epoch, a new biological image showing the latest hypoxia information
is acquired and the tumor point sensitivities () are updated. In addition to this, the residual
cumulative dose limits for all tissue points (right hand side of the constraints in the previous
section) are updated by subtracting the dose delivered from against their cumulative dose limits
in Epoch 1. Then, the remaining treatment plan is re-optimized against residual cumulative and
fraction size dose limits by solving the model in the previous section (with integer variable N,) to
compute N, fractions to be delivered in Epoch 2. The steps taken in this adaptive approach are

summarized with a flow chart in Figure 5.2.

Solve the biological uniform fractionation model with
initial tumor point sensitivities (2).

Deliver the first NV, fractions in the first epoch.

Acquire a new biological image and update tumor
point sensitivities (A).

Adjust right hand side of the constraints by subtracting
dose already delivered from cumulative dose limits.

Solve biological uniform fractionation model with
adjusted right hand sides and an integer variable N..

Deliver N, fractions in Epoch 2.

Figure 5.2: Summary of Biological Adaptive Optimization Approach
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5.2.4 Tumor Control Probability: Measure of Effectiveness

In the previous chapters, the effectiveness of the computed plans is measured by the tumor dose
statistics such as maximum, minimum and average tumor physical doses. With the tumor point
sensitivity information (), it is not possible to compute tumor biological dose statistics and use
them instead to evaluate treatment plans. A further step to more accurately measure the
biological effectiveness of plans would be to convert the tumor physical dose distributions with
the tumor point sensitivity information (1) into a commonly used biological objective in the

literature as Tumor Control Probability (TCP) (Ruggieri et al., 2010; Yang and Xing, 2005).

TCP is defined as the probability that all the cells in tumor are inactivated after a course of
treatment; therefore, it estimates the success of the treatment. Using 7CP provides a fair
comparison between plans since it is impacted by both average and the minimum biological
doses. For example, although a treatment plan achieving a higher average biological dose seems
to be a more effective plan, it could result in being a less successful treatment due to under-dosed
points with a smaller minimum biological dose. However, the effect of both achieved average
biological dose and the minimum biological dose is captured in 7CP calculation; therefore,

allows a fair comparison between treatment plans.

Equation (5.13) computes 7CP by multiplying 7CP; across all tumor voxels. TCP; represents the

probability that all the cells in voxel i are inactivated for Vie T .
7]

rcp=]]rce (5.13)

i=1
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TCP; is a function of initial number of cells in each tumor voxel, denoted as », and the surviving

fraction of cells at voxel i (S, (a’ . )) after d; physical dose is delivered over N fractions. The

effect of hypoxia is included in the surviving fraction formula in (5.15). Here, 7 is equal to tumor
voxel size (mm’) times tumor cell density (cells/mm®). TCP; is computed in equation (5.14) as
follows.

TCP. = exp{~nS,,(d,)} VieT (5.14)

The S, (d l.) at each tumor voxel i is computed by the equation (5.14) (Ruggieri et al., 2010). The

first term of the exponential function is the cell killing effect over N fractions whereas the second
term is the re-population effect (i.e. tendency of tumor cells to regrow over the course of the
treatment) over N fractions. Here, re-population parameters are denoted as following: At is the
inter-fractional time interval, T, 1s effective clonogenic doubling time, 77 is delay time in

clonogenic accelerated repopulation.

Sy(d)= exp{— di(ai +p. %j+l”‘—2[(N—1)At—Td]} VieT (5.15)
eff

The tumor hypoxia at each voxel i is included in equation (5.15) by the radiosensitivity
parameters «; and ;. Here, ;= a,*4; and ;= f, *(/l,)2 are used (Titz and Jeraj, 2008) where a,

and f, are radiosensitivity parameters at well-oxygenated state.

The formula given in equation (5.15) computes surviving fraction assuming same tumor point
sensitivity over N uniform fractions. There is a need to use a slightly modified formula in case of

tumor point sensitivity change. Equation (5.16) computes the overall surviving fraction for tumor
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voxel i after d physical dose is delivered over N; fractions in the first epoch taking into account

initial hypoxia and d; physical dose is delivered over N, fractions in the second epoch taking
into account updated hypoxia. Since the tumor point sensitivity (4;) changes between first and
second epoch, radiosensitivity parameters (af , ﬂf) and (af , ﬂf) are defined for the first and

second epoch, respectively. The first and second term of the exponential function in equation
(5.16) is the cell killing effects over the first and second epoch, respectively, whereas the last

term incorporates the repopulation effect into the formula.

(v,.N,)\Gi a4y )= ex i| % +ﬂi7 di| o +ﬂ17 +_[(N1+N2 ])At Td] (5.16)

1 2 eff

5.3 Generating a Test Case

5.3.1 The Need

Testing biological optimization models requires cases where the tumor hypoxia information is
known. Unfortunately, such desired test cases are not publicly available, because clinical studies
on hypoxia imaging are new and not many institutions have performed these studies. In addition,
it is always challenging to get datasets from research institutions due to their very strict rules on

sharing patient data.

One way to obtain the tumor hypoxia information might be randomly generating the tumor point
sensitivities (A) across the tumor. However, this approach would not have much clinical validity
and would conflict with this dissertation research’s efforts on testing optimization models with
cases simulating real practice. In order to maintain clinical relevancy as much as possible, the

approach (Section 5.3.3) of inserting artificial hypoxia information based on a published test case
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extracted from CERR website (“CERR: A Computational Environment for Radiotherapy

Research) was adopted.

5.3.2 Description of the CERR Head and Neck Test Case

An anonymized head and neck case presented on CERR website is used as a basis for the test
case. Figure 5.3 displays an example slice outlining structures under interest. With clinical
guidance, it was decided to treat Target1, Target2, and Target3 as secondary targets and insert an
artificial primary target (tumor) inside Target] (shown as dashed circle). Note that, the artificial
primary target is stretched in z-direction (+) to have a 3-dimensional, more realistic tumor shape

of a prolate sperhoid (i.e. shape of a football).

Table 5.1 shows the number of sampling points used for the optimization and the influence
matrix density for each structure in the head and neck test case along with the selected beam
angles. The number of sampling points for each structure is determined after doing
experimentation with different sampling densities. During experimentation, the dose-volume
histograms (DVHs) using all possible points are created from the optimization results based on
different sampling densities, and a sampling density that creates acceptable DVHs was selected
for each structure. The influence matrix for this test case is generated using radiation therapy

software system CERR.
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Figure 5.3: Example Head and Neck Case Slice

Table 5.1: Head and Neck Test Case Description

Structure Struc.tuye ‘ Head and Neck .Case ‘
Description Point Count | Matrix Density

Tumor Primary Target 2,528 86%
Targetl Secondary Target 1,314 85%
Target2 Secondary Target 2,412 91%
Target3 Secondary Target 1,465 84%
Mandible Healthy Tissue 681 78%
Brainstem Healthy Tissue 671 82%
Sﬁg;ggée,}vgssje Healthy Tissue 8,489 52%
Spinal Cord Healthy Tissue 2,198 72%

Beam Angles: 0 40 80 120 160 200 240 280 320 (1,393 beamlets)
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Table 5.2 shows the prescription used in the computational experiments with the head and neck

test case. The table presents both cumulative dose objectives and fraction size dose limits for the




primary target, secondary targets and healthy tissues. All of the points in each structure are

subject to its corresponding fraction size limit.

Table 5.2: Prescription for the Head and Neck Test Case (“pDose” refers to tumor physical dose,

“bDose” refers to tumor biological dose)

Head and Neck Case
Structure Struc.tu.re Cumulative Dose Fractlon‘S1.ze
Description . .. Dose Limit
Objective/Limit (Gy)
(Gy)
Maximize avg.
T P T pDose/bDose 120
umor rimary larget . > 1.
min. tumor p(b)Dose > 0.9
max. tumor p(b)Dose
Targetl Secondary 100% > 60 > 1.80
Target
Target2 Secondary 100% > 60 >1.80
Target
Target3 Secondary 100% > 54 >1.65
Target
. . Avg. dose <40
Mandible Healthy Tissue 100% < 72 <2.10
Brainstem Healthy Tissue 100% < 58 <2.10
Not Otherwise . 0
<
Specified Tissue Healthy Tissue 100% < 80 <2.10
Spinal Cord Healthy Tissue 100% < 50 <2.10

5.3.3 Calibrating Tumor Point Sensitivities (1)

An human PET image acquired prior to the treatment and the mathematical relationships from a
recent study (Titz and Jeraj, 2008) are used in order to generate A’s in the simulated tumor.
Figure 5.4(a) shows the PET image with tumor hypoxia information (in color) where different
colors indicate different hypoxia levels. As Figure 5.4(b) illustrates, the hypoxia distribution of
the inserted artificial primary target on a single slice (the example slice in Figure 5.3) is

approximated with the help of the hypoxia map on the PET image given in Figure 5.4(a) where
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the primary target is divided into five different hypoxic regions represented by a different color:
Red, Green, Yellow, Light Blue, and Dark Blue. All tumor regions are stretched in z-direction
(%) proportional to their x-y radius which take the final form of prolate spheroids within each

other.

Different colors are quantified by using the color code for standardized uptake value (SUV)
presented in in Figure 5.4(c). Higher SUV values indicate more hypoxia while lower SUV values
indicate well-oxygenation. For example, the color red corresponding to SUV values close to 7

illustrate hypoxic region whereas the color dark blue taking SUV values close to 0 illustrate well-

@

(b) Artificial Primary Target
Inserted in the Test Case
Resembling the Hypoxia
Distribution in (a)

oxygenated region in Figure 5.4(b).

0 3.5 7
| |

(c) Color code for Standardized
(a) PET Image with Tumor Hypoxia Information Uptake Value (SUV)

Figure 5.4: PET Image Used to Generate Tumor Hypoxia in the Test Case'

'F igure 5.4(a) and (c) are taken from a published study (Titz and Jeraj, 2008).
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Once the SUV values for tumor regions are quantified, they are then converted into oxygen
tension pO, (mmHg) by using the sigmoid relationship presented in Figure 5.5(a). Next, the pO,
values are matched to oxygen-enhanced ratio (OER) values and oxygen modification factor
(OMF) values by using the dependence demonstrated in Figure 5.5(b). The mathematical
function used to map pO, values to OER values is given in equation (5.17) where m denotes the
maximum OER value and K is the pO; value at OER=(m+1)/2. In this study, m value of 3 and K

value of 3 mmHg are used based on Titz and Jeraj’s paper (2008).

60

T
[ ——OER, K=2.0 mmHyg
[ —— OFER, K=3.0mmHg
25| OER, K=4.0mmHg
[ —— OMF, K=2.0mmHg
~OMF, K=3.0 mmHg
20k OMTF, K=4.0 mmlig

Oxygen tension pO, [mmHg]
Relative radiosensitivity/OMF

0 e
0 1 2 3 4 5 6

Standardized uptake value (SUV) Oxygen tension pO, [mmHg)
(a) Illustration of the sigmoid relationship (b) Dependence of the relative radio-
between the oxygen partial pressure (pO,) and  sensitivity (expressed through oxygen-
the standardized uptake value (SUV) enhanced ratio (OER)) and the oxygen-
modification factor (OMF) as a function
of the pO,.

Figure 5.5: Mathematical Relationships Used to Derive Tumor Point Sensitivities”

m-p0,+K
)= PO K

OER(pO
(p p0O,+K

(5.17)

2 Figure 5.5(a) and (b) are taken from published study (Titz and Jeraj 2008).
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The OMF values in Figure 5.5(b) are actually equal to rescaled OER to [0-1] range. These OMF

values are used as tumor point sensitivities (1) in the biological optimization.

The OMF values (1) for each tumor region used in the computational experiments are
summarized in Table 5.3. The details including the approximate SUV range for each tumor
region, the selected SUV values and their pO, values corresponding to the OMF values in each
base case are given in Appendix J. As Table 5.3 demonstrates, only the hypoxia level in red
region differs between two base cases, where the red region is more hypoxic in the second base
case with a lower OMF value (OMF=0.77 vs. OMF=0.82). Besides the OMF values, the table

presents the point count and matrix density for each tumor region.

Table 5.3: Two Base Cases Used in the Experiments (OMF=0xygen-Modification Factor,

A=Tumor Point Sensitivities)

Tumor First Base Case Second Base Point Matrix
Regions Case Count Density
OMF=A1 OMF=A1
Red 0.82 0.77 94 85%
Yellow 0.88 0.88 186 85%
Green 0.91 0.91 749 85%
Light Blue 0.92 0.92 710 86%
Dark Blue 0.98 0.98 789 87%

5.3.4 Generating Biological Change in Tumor Point Sensitivity (1)

The initial A values presented in Table 5.3 may change as the treatment evolves. However, how
to quantify this change as a function of delivered dose is unknown, and more clinical research is
required to understand how tumor point sensitivities change throughout the treatment. Currently,

there are published studies in the literature giving insight on the direction of the change
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(Eschmann et al., 2007; Popple et al., 2002; Titz and Jeraj, 2008; Lee et al., 2009; Rischin et al.,
2001; Hall, 1994). These papers indicate that the hypoxic cells can absorb oxygen and change

their state to oxygenated. This phenomenon is known as re-oxygenation of tumor cells.

Following the re-oxygenation phenomenon, the tumor regions in the generated test case are
expected to get more oxygenated; therefore, the A values (FOMF) in Table 5.3 are likely to
increase over the course of the treatment and get closer to 1.0 (OMF value for well-oxygenated
state). Since the rate of the re-oxygenation is not known, it is assumed that the all tumor regions
will close their gap by a fraction S at a specific point in time, referred as adaptation/re-
optimization point, denoted as R. For example, assuming all tumor regions are one quarter re-
oxygenated after delivering R=25 fractions, 8 would be equal to 0.25. The following formula
computes the updated 4, denoted as 4,, at the adaptation point.

A=A+ (1-1)*8 (5.18)

5.4 Computational Experiments

Computational experiments on biological optimization compared various approaches by testing
on the cases presented above. Section 5.4.1 will present physically and biologically optimized
plans computed for the datasets above to assess the benefit of taking the initial tumor point
sensitivity () information into account in the treatment planning optimization. To illustrate the
importance of modeling fractionation constraints explicitly in the optimization, Section 5.4.2 will
compare plans optimized against cumulative dose constraints alone and plans optimized against
both cumulative and fraction size dose constraints. Furthermore, Section 5.4.3 will show results

from re-planning the treatment plans to the changes in the tumor point sensitivity to realize if
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gains in the treatment outcomes can be achieved. All these plans are computed with two different

tumor hypoxia scenarios summarized in Table 5.3.

For the TCP computation throughout the computational experiments, the following parameters
are used based on a published paper (Ruggieri et al., 2010): A=1 day, T.;=3 days, 7,0 days,
@,=0.35Gy™" and 8,0.035Gy™. The number of cells in each tumor voxel (n) is equal to
1,200,000 (voxel size (12 mm®)*cell density (10> cells/mm?)) where the used cell density of 10
cells/mm’ is an acceptable value between 10 cells/mm’ (Ruggieri et al., 2010) and 10°
cells/mm’ (Titz and Jeraj, 2008). The TCP calculation for the plans presented in Section 5.4.1
and Section 5.4.2 uses the surviving fraction equation (5.15) whereas the TCP calculation for the

plans given in Section 5.4.3 uses the surviving fraction equation (5.16).

5.4.1 Physically Optimized Plan Results vs. Biologically Optimized Plan Results
Physically and biologically optimized plans can be defined as follows.
e Physically optimized plans: Plans computed ignoring tumor biology in the optimization,
but biologically scored after optimization using the tumor point sensitivity (A)
e Biologically optimized plans: Plans computed considering tumor biology in the

optimization

Physically optimized plans are generated by solving the uniform fractionation model presented in

Section 2.5. Biologically optimized plans are generated by solving the biological uniform

fractionation model presented in Section 5.2.2. All the physical and biological plans were
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computed in less than a day on the server employed (specifications of the machine are given in

Section 1.4).

5.4.1.1 First Base Case Results (Red Hypoxia Lower, Homogeneity=0.9)

Figure 5.6 summarizes the results obtained from physically and biologically optimized plans
with 0.9 tumor dose homogeneity. Figure 5.6(a) presents physical and biological tumor dose
statistics whereas Figure 5.6(b) shows the number of fractions delivered and the achieved TCP at
the end of the treatment across all plans. The biologically optimized plans are computed
considering either tumor biological dose homogeneity requirement, referred as biological
homogeneity, or tumor physical dose homogeneity requirement, referred as physical
homogeneity. All these computed plans satisfy their cumulative and fraction size dose
constraints on all targets and healthy tissues (for details on dose statistics for each structure, see

Appendix K).

As Figure 5.6(a) exhibits, although the biologically optimized plan with physical homogeneity
provides similar tumor physical dose statistics as physically optimized plan does, the biological
plan increases the minimum tumor biological dose from 66.9 Gy to 68.4 Gy corresponding to a
1.5 Gy increase. In addition, using the number of fractions delivered from Figure 5.6(b), the
minimum tumor biological fraction size dose delivered in physically optimized plan is 1.72 Gy
(66.9 Gy/39) compared to the minimum tumor biological fraction size dose of 1.80 Gy in the
biologically optimized plan with physical homogeneity (68.4 Gy/38). Delivering at least 1.80 Gy
biological dose per fraction to tumor points is ensured by the enforced biological fraction size

requirement in the optimization. As a result, the increase in both the minimum biological
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cumulative and fraction size dose achieved by biologically optimized plan with physical

homogeneity raises the 7CP value by 0.08 (0.66 vs. 0.74).

By contrast, enforcing biological homogeneity in biologically optimized plan reduces average
tumor physical and biological dose substantially (Figure 5.6(a)). Comparing against the
physically optimized plan, the average biological dose decreased by 4.4 Gy (78.9 Gy vs. 74.5
Gy). The main reason behind the significant reduction in average biological dose is the
optimization keeps the maximum biological dose lower in order to maintain tumor biological
dose homogeneity. The restriction of the average biological dose in biologically optimized plan
with biological homogeneity reduced the TCP significantly from 0.66 to 0.47 corresponding to a

0.19 decrease (Figure 5.6(b)).
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Figure 5.6: Summary of Physically Optimized Plans vs. Biologically Optimized Plans at Lower
Red Hypoxia and 0.9 Tumor Dose Homogeneity (*Physically optimized plans are biologically

scored using initial tumor point sensitivities.)

5.4.1.2 Second Base Case Results (Red Hypoxia Higher, Homogeneity=0.8)

Due to the more severe hypoxia in red region in the second base, the biological fraction size
requirement (=1.80) on red region points is replaced with the same physical fraction size
requirement (relaxing the model to maintain feasibility) and maximizing biological dose in red
region objective is used instead for biologically optimized plans. Figure 5.7(a) and (b)
summarize all the results received from physically optimized and biologically optimized plans
with 0.8 tumor dose homogeneity. Both the cumulative and fraction size dose constraints are
satisfied in all computed plans (for details on dose statistics for each structure, see Appendix L).
Similar to the first base case results, biologically optimized plan with physical homogeneity

improves the 7CP obtained by the physically optimized plan. Considering the results in Figure
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5.7(a) and (b), although the biological plan achieves less average tumor dose (81.6 Gy vs. 78.8
Gy), it increases the minimum tumor biological dose from 63.5 Gy to 64.8 Gy and the minimum
tumor biological fraction size dose from 1.67 Gy (63.5 Gy/38 fractions) to 1.71 Gy (64.8 Gy/38
fractions). Since TCP is very sensitive to the increase in the minimum biological dose, these
increases in both biological cumulative and fraction size dose were reflected in 0.07 raise in 7CP

(0.63 vs. 0.70).

As the results in Figure 5.7(a) and (b) illustrate, biologically optimized plan with biological
homogeneity again lowers the 7CP obtained by physically optimized plan significantly which is
in line with the first base case results. The biological optimization keeps the maximum tumor
biological dose lower due to the homogeneity requirement on tumor biological doses. This
restricts the average tumor biological dose over 6 Gy (81.6 Gy vs. 75.2 Gy). This significant

decrease in average tumor biological dose reduced the TCP value from 0.63 to 0.27.
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Figure 5.7: Summary of Physically Optimized Plans vs. Biologically Optimized Plans at Higher
Red Hypoxia and 0.8 Tumor Dose Homogeneity (*Physically optimized plans are biologically

scored with initial tumor point sensitivities.)

The results presented on both cases in Section 5.4.1.1 and 5.4.1.2 demonstrate the potential
benefit of incorporating biological information into the treatment planning optimization, and
therefore, prove the concept of possible clinically significant gains that might be achieved by
biological optimization. Furthermore, the importance of deciding whether to enforce
homogeneity requirement on tumor physical or biological doses is demonstrated by the results,
and enforcing tumor physical dose homogeneity in the optimization is preferred throughout the

computational experiments due to allowing better plans.
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It is noteworthy to state that although TCP is a good measure of biological effectiveness, it was
discovered during the computational experiments that it could be volatile for some instances.

This volatility is further illustrated in Appendix M.

5.4.2 Illustrating the Need to Include Fractionation Constraints Explicitly in the
Optimization
In addition to the improvement in 7CP obtained by biological optimization, satisfying fraction
size requirements on secondary targets in the computed plans helps achieve better cure for these
structures. Figure 5.8(a) and (b) illustrates the importance of explicitly including integer
fractionation constraints into both physical and biological optimization. The physically or
biologically optimized feasibly fractionated plans already presented in Section 5.4.1.1 and
5.4.1.2 were optimized against both cumulative and fraction size dose constraints. For
comparison purposes, physically optimized cumulative plans are generated by solving the LP
formulation in Section 2.3.1 and biologically optimized cumulative plans are generated by
solving the biological uniform fractionation model in Section 5.2.2 ignoring fraction size
constraints. Note that, both physical and biological cumulative plans are optimized against

cumulative dose constraints alone.

The graphs in Figure 5.8(a) and (b) show the control probabilities for the secondary targets
including Targetl, Target2, and Target 3 as well as the primary target across all computed plans.
The cumulative plans are divided into integer number of fractions satisfying all the healthy tissue
maximum fraction size requirements (e.g. cumulative plans are delivered over 39 fractions).

Satisfying the healthy tissue fraction size limits come at the expense of violating the minimum
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fraction size requirements on secondary targets in cumulative plans. This is reflected by
computing control probabilities for secondary targets by using the same calculations in Section
5.2.4. Lower cell density (10°cells/mm’) is used for secondary target control probability

computations (Strigari et al., 2008).

As Figure 5.8(a) and (b) show, although the tumor control probabilities are very close to each
other between cumulative and feasibly fractionated plans, the secondary target control
probabilities are clinically significantly lower in cumulative plans (e.g. 0.07 vs. 0.92 Target2
control probabilities for base case 1 and 0.07 vs. 0.95 Target2 control probabilities for base case
2 achieved in biologically optimized cumulative and feasibly fractionated plans, respectively).
The reason behind achieving better secondary target control probabilities in feasibly fractionated
plans is imposing minimum fraction size requirement on secondary targets in the optimization.
Explicitly including constraints on this requirement ensures higher control probability values for

secondary targets without sacrificing the tumor control probability values.
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Figure 5.8: Illustrating the Importance of Including Fractionation Constraints in the Optimization
(“Cumulative” refers to plans optimized against cumulative dose constraints alone, “Feasibly
Fractionated” refers to plans optimized against both cumulative and fraction size dose

constraints.)

5.4.3 Results from Re-planning the Biologically Optimized Plans to the Changes in
Tumor Point Sensitivity (1)

Treatment plans are adapted to the changes in the tumor point sensitivity () by using the
biological adaptive optimization methodology presented in Section 5.2.3. The initial A values
used in the adaptive methodology are as same as the A values presented in Table 5.3. For the
computational experiments in this section, initial A4 values are assumed to one quarter and one
half re-oxygenate, closing their gap by $=0.25 and $=0.50, respectively. The updated 1 values
are calculated by using equation (5.18). The re-optimization (adaptation) point, denoted as R,

correspond to after fraction 25 or fraction 30 in the experiments.
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The adaptive plans computed in this section are compared against the physically optimized plans
and biologically optimized plans presented in Section 5.4.1. Note that before, the plans from
Section 5.4.1 did not take into account the changes in A both in planning and scoring; therefore,
they can be referred as non-adaptive plans. Now, all these non-adaptive plans are re-scored in
later fractions using updated .4, in order to have fair comparison. The plans considered in this
section can be summarized as follows.

e Non-adaptive physically optimized plans: Physically optimized plans from Section 5.4.1,
but biologically scored after optimization using original A for the first R fractions and
updated A, in later fractions

e Non-adaptive biologically optimized plans: Biologically optimized plans from Section
5.4.1, but later fractions after R are biologically re-scored after optimization with updated
Ay

e Biologically optimized adaptive plans: Biologically optimized plans re-optimized with

updated A, after delivering R fractions

5.4.3.1 First Base Case Results (Red Hypoxia Lower, Homogeneity=0.9)

Figure 5.9 compares non-adaptive physically optimized plans, non-adaptive biologically
optimized plans, and biologically optimized adaptive plans across various scenarios where plans
are adapted at different re-optimization points (R) with respect to different re-oxygenation rates
(B). The biological dose statistics, including maximum, average, and minimum doses, as well as
the achieved TCP for each plan and the number of fractions delivered in each plan are displayed
in the Figure. Note that, with biological re-scoring, only the cumulative biological doses received

at tumor increases in non-adaptive plans without changing the doses on other structures;
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therefore, the plans still satisfy all their cumulative and fraction size dose limits. In addition, both
cumulative and fraction size dose limits are maintained in computed adaptive plans since the

related constraints are explicitly enforced in the optimization.

B (Non-Adaptive) Physically Optimized Plan (biologically re-scored)
B (Non-Adaptive) Biologically Optimized Plan (biologically re-scored)
u Biologically Optimized Adaptive Plan (Adaptation after Fraction R)
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Figure 5.9: Comparison of Treatment Plans across Various Scenarios of Different Re-
optimization Point (R) and Re-oxygenation rate (8) on First Base Case (Each column shows the
average biological dose with its upper and lower bar indicating the minimum and maximum
biological doses achieved, respectively. The numbers in bold show TCP values for each plan
whereas the numbers in parenthesis below average doses indicate the number of fractions

delivered in each plan.)

Although biological re-scoring due to re-oxygenation helps non-adaptive physically optimized
plans, non-adaptive biologically optimized plans still do better in terms of 7CP as Figure 5.9
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illustrates. In case of quarter re-oxygenation acquired by a biological image after fraction 25
(R=25, =0.25), the biologically optimized plan improves the TCP by 0.06 (0.76 vs. 0.82). For a
different scenario with halfway re-oxygenation after fraction 30 (R=30, $=0.50), the increase in
TCP is equal to 0.04 (0.79 vs. 0.83). These increases in TCP by biologically optimized plans are
achieved by due to the significant raises in the minimum biological doses of the physically

optimized plans as illustrated in Figure 5.9.

Furthermore, re-optimizing the treatment plan to the changes in the tumor point sensitivity (1)
produces further gains in 7CP. The biological plan is re-optimized in response to quarter re-
oxygenation acquired by an image after fraction 30 (R=30, 5=0.25) and improves the TCP by
0.01 (0.79 vs. 0.80) due to the small increase in average tumor biological dose (78.8 Gy vs. 78.9
Gy). Similar improvement (0.83 vs. 0.84) is achieved by biologically optimized adaptive plan in
case of halfway re-oxygenation after fraction 30 (R=30, 5=0.50) due to the small increase in
average tumor biological dose (79.2 Gy vs. 79.3 Gy). As a result, these small improvements in
TCP obtained by adaptive plans increase the 7CP gain over physically optimized plans (0.73 vs.

0.80 for (R=30, 4=0.25), 0.79 vs. 0.84 for (R=30, =0.50)).

One last note on the results presented in Figure 5.9 is related to the number of fractions delivered
in each plan. As demonstrated in the Figure, except for (R=25, =0.50), the number of fractions
delivered in adaptive plans does not change by re-optimization (i.e. 38 fractions are delivered at
those scenarios). However, for the specified case, the re-optimization adds a single fraction to the
treatment resulting in 39 fractions. The increase in the number of fractions lowers the per-

fraction biological effect resulting in a lower T7CP of 0.83.

100



5.4.3.2 Second Base Case Results (Red Hypoxia Higher, Homogeneity=0.8)

Results obtained from non-adaptive and adaptive plans computed for the second base case are
summarized in Figure 5.10. In re-optimizing the adaptive plans, the objective of maximizing
average biological dose over all tumor regions is used with enforcing biological fraction size
requirement on all tumor regions in contrast to using the objective of maximizing average
biological dose only in red region with physical fraction size requirement on red region
(biological fraction requirement elsewhere) in the first epoch optimization. This change was
possible due to re-oxygenation of red region avoiding the violation of the biological fraction size
requirement caused by higher hypoxia. Lastly, all the adaptive plans computed in this section

satisfy both prescribed cumulative and fraction size dose limits.
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Figure 5.10: Comparison of Treatment Plans across Various Scenarios of Different Re-
optimization Point (R) and Re-oxygenation rate (8) on Second Base Case (Each column shows
the average biological dose with its upper and lower bar indicating the minimum and maximum
biological doses achieved, respectively. The numbers in bold show TCP values for each plan
whereas the numbers in parenthesis below average doses indicate the number of fractions

delivered in each plan.)

Similar to the first base case results presented in the previous section, non-adaptive biologically
optimized plans improve over non-adaptive physically optimized plans in case of re-oxygenation
as illustrated in Figure 5.10. In case of the quarter re-oxygenation that occurs at the end fraction
25 (R=25, p=0.25), the biological plan improves the 7CP by 0.03 (0.76 vs. 0.79). For the case of

halfway re-oxygenation by the end of fraction 30 (R=30, 5=0.50), TCP improves from 0.79 to
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0.81 corresponding to a 0.02 gain. The improvements in 7CP are achieved due to the significant

increases in the minimum tumor biological doses of the physical plans.

As Figure 5.10 demonstrates, biologically optimized adaptive plans raise 7CP for all these
higher red hypoxia (lower OMF) scenarios by a higher magnitude than the improvements seen in
the previous section. It is also important to note that the average tumor biological doses achieved
in non-adaptive biologically optimized plans increase by significant amount with the help of re-
optimization in adaptive plans. When an acquired biological image after fraction 25 shows
quarter re-oxygenation (R=25, $=0.25), re-optimizing the treatment plan to this change improves
the average tumor biological dose by 1.8 Gy (79.3 Gy vs. 81.1 Gy) resulting in a 0.02 gain in
TCP (0.79 vs. 0.81). Similarly, re-optimizing the treatment plan after fraction 25 in response to
the halfway re-oxygenation (R=25, $=0.50) improves the average tumor biological dose by 1.8
Gy (79.9 Gy vs. 81.7 Gy) and improves the TCP from 0.85 to 0.87. For the scenario considering
(R=30, 5=0.25), the biological adaptive plan improves the average tumor biological dose
obtained from non-adaptive biological plan by 1.3 Gy (79.1 Gy 80.4 Gy) resulting in a 0.02
increase in T7CP (0.76 vs. 0.78). Lastly, for (R=30, 5=0.50), the average tumor biological dose
increases by 1.4 Gy (79.4 Gy 80.8 Gy) and the TCP rises from 0.81 to 0.83 corresponding to a

0.02 gain.

These gains produced by biologically optimized adaptive plans help achieving more significant
improvements over the physically optimized plans. For example, in case of quarter re-
oxygenation after fraction 25 (R=25, $=0.25), adaptive plan improves TCP of physical plan by

0.05 (0.76 vs. 0.81). In addition, for (R=30, =0.25), TCP increases by 0.06 (0.72 vs. 0.78).
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The results presented in Figure 5.9 and 5.10 demonstrate the importance of when to re-optimize
(R) and how fast the re-oxygenation occurs (8) for the improvements in 7CP obtained by
biologically optimized adaptive plan. For both first and second base cases, the improvement gets
its highest values (0.07 for the first base case and 0.06 for the second base case) at a later re-
optimization point (R=30) with lower re-oxygenation rate (8=0.25). The lower re-oxygenation
rate acquired by a late image in the treatment leaves a longer period of time where the initial
hypoxia values are used in scoring the physical plans which worsens the results. However, a
longer period of time with initial hypoxia values favors biologically optimized plans since the
initial biology information is dealt with in the optimization allowing the opportunity for the
biological plans to show their superiority. In contrast, higher re-oxygenation rate imaged earlier
in the treatment (R=25, =0.50) reduces the TCP gain by helping physical plans significantly and
removing opportunities for biologically optimized plans by reducing the period of time that more

severe hypoxia applies.

Overall, the results presented in Section 5.4.3.1 and 5.4.3.2 show that re-planning the biological
plans in response to the changes in the tumor point sensitivity (1) provides mathematical gains
that are enough to be clinically significant. These gains demonstrate the potential benefit of
adapting the biological plans to the changing tumor biology, and therefore, prove the concept of

achieving higher TCP by biologically adaptive planning optimization.
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6 Conclusions and Future Research

This research investigates the opportunities that could be created in IMRT planning by
incorporating the changes in the tumor geometry and the initial and changing tumor biology into
the optimization. Adaptive optimization methodologies were developed that re-optimized the
treatment plans in response to the changes in the tumor geometry acquired from updated images
against both cumulative and fraction size dose constraints in order to determine the best design

for each fraction and the overall treatment.

Using the tumor biology information prior to the treatment, biological optimization models were
developed that adjusted the radiation delivered across tumor to the sensitivity of tumor points.
Furthermore, biologically optimized plans were designed which were adaptive to the changes in

tumor point sensitivity over the course of the treatment.

All the optimization models developed in this research were based on mixed-integer linear
programming formulations of the problem with single non-negative integer variable for the
number of fractions. Throughout the research, significant attention was given to the feasible
fractionation of the treatment plans by explicitly including cumulative and fraction size dose

constraints in the formulations.

The contributions of this dissertation research are listed as follows. This research:

e Developed and tested a ratio model with re-scaling approach to deal with fractionation of

treatment plans
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¢ Demonstrated the challenge of fractionating adaptive plans re-optimized against only
cumulative dose limits using a lung test case simulating real practice

e Showed clinically significant improvements in tumor doses with re-optimizing treatment
plans in response to the changes in the tumor geometry over the course of the treatment
using two lung test cases simulating real practice (Both cumulative and fraction size dose
limits are satisfied in computed adaptive plans.)

¢ Demonstrated significant improvements in tumor control by including initial tumor
hypoxia information into the optimization on a synthetic head and neck test case

o [llustrated the need to explicitly enforce integer fraction size dose constraints in such
biological optimization

¢ Showed mathematical gains in tumor control and average tumor doses that are enough to
be clinically important by adapting treatment plans to the changes in the tumor hypoxia
throughout the treatment (Both cumulative and fraction size dose limits are satisfied in
computed adaptive plans.)

e Displayed the volatility of tumor control probability to the changes in the tumor hypoxia

values

For future research on adaptive planning optimization with changes in the tumor geometry, the
currently used tumor homogeneity dose requirement over the course of the treatment can be
extended by introducing tumor dose homogeneity limit for each epoch which will make the
computed plans clinically more applicable. Modeling this requirement in the re-optimization
formulation will make sure that all regions of the tumor receive a homogeneous dose distribution

not only over the entire treatment but also over each epoch. Another extension of this study
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might be on improving the quality of the updated plans received from re-optimization. At
present, the treatment plan is re-optimized based on the latest tumor geometry, so no future
changes on the tumor geometry are predicted. Information on the future tumor geometry received
by using a predictive modeling can be incorporated into the re-optimization formulation which
might improve the plan delivered after adaptation. Lastly, although incorporating dose-volume
constraints into the optimization increases the computational complexity of the models (Lee et
al., 2006; Tuncel et al. 2010), the trade-off between the quality of the adaptive plans with dose-

volume constraints and the computational time to generate them should be investigated.

Research on biologically guided radiation therapy planning optimization can be extended in
several ways. As more test cases with tumor hypoxia information become available in the future,
the biological optimization models developed in this research can be further tested and the
improvements in the tumor control can be evaluated. In addition, in parallel to the clinical
research on quantifying change in the hypoxia with respect to dose, more reliable adaptive
scenarios could be generated and the proposed adaptive planning optimization methodology

could be tested with multiple scenarios.
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APPENDICES
Appendix A’: No Adaptation vs. Two-Epoch Adaptation Results for the Lungl Test Case (The
uniform fractionation model solved in the optimization)

No

Adaptation No Adaptation (with Two-Epoch Adaptation
Dose (No Boost) Boost)
Structure Statistics Epoch
(Gy) Total g{tlaln Boost Total Epoch 2 (with | Total
age | Stage 1 Boost)
Max. 75.0 536 | 243 | 155 | 336 | 290 | gos
Dose [2.14] [2.14] | [2.43] S| 20141 | [2.47] -
Min. 713 509 | 20.0 509 | 24.0
Tumor Dose .04 | 2041 | 2001 | 710 | 2.041 | 2.001 | 76
Ave. 72.9 520 | 213 | 30 | 521 | 266 | 77
Dose [2.08] [2.08] | [2.13] 4| 2,081 | [2.22] -
Max. _ ] _ ] _ 27.2 80.5
Removed Dose [2.26] :
T Min. 6.4 8
umor Dose - - - - - 053] | >
Points :
Avg. 16.1
g - - - - - 68.2
Dose [1.34]
Max. 75.0 536 | 234 | 553 | 336 | 298 | gos
Dose [2.14] [2.14] | [2.34] S | 2141 | [2.48] :
Min. 70.0 500 | 9.0 50.0 6.4
PTV2 Dose 2.00] | 12001 | 091 | *°! | r2.001 | [0.531 | 26-¢
Ave. 72.7 51.9 [ 210 | 750 | 519 | 225 | 7.,
Dose [2.08] [2.08] | [2.10] 21 12,081 | [1.87] :
Max. 73.2 523 | 210 | 135 | 523 | 242 | 75,
Right Dose [2.09] [2.09] | [2.10] S 2,091 | [2.02] :
Lung Avg. 25.0 179 | 7.1 | 550 | 179 71 | s
Dose [0.71] [0.711 | [0.71] 0110711 | [0.60] -
Max. 62.8 448 [ 161 | sg3 | 448 | 166 | =5
Left Dose [1.79] [1.79] | [1.61] S 111791 | [1.38] :
Lung Avg. 228 163 | 6.7 | 530 | 163 71 | 234
Dose [0.65] [0.65] | [0.67] 0110651 | [0.59] -
Max. 70.2 502 | 189 | oy | 302 | 252 | 75,
Heart Dose [2.01] [2.017 | [1.89] o1 | 210] -
Ave. 242 173 | 71 | 2aa | 173 73 | ac
Dose [0.69] [0.69] | [0.71] 41 70.691 | [0.61] :
Max. 60.6 B33 172 [ eoa | 433 | 204 | ¢
Esonhacys | DOse [1.73] [1.73] | [1.72] 41 11731 | [1.70] -
phag Avg. 27.6 197 1 77 | 574 | 197 89 | 156
Dose [0.79] [0.79] | [0.77] 4170791 | 10.74] :
Max. 735 525 | 21.0 25 | 252
ot | Dose 101 | 2101 | 2101 | 39 | 2oy | 2101 | 777
it Ave. 24.6 175 | 70 | ype | 175 76 | 252
p Dose [0.70] [0.70] | [0.71] 6170701 | [0.63] :
Max. 45.0 320 | 155 | 4o | 321 7.7 | 450
Soinal Cord | Dose [1.29] [1.29] | [1.55] O 1 11291 | [1.48] :
p Ave. 23.9 7.1 | 692 | 5u0 | 120 | 777 | 749
Dose [0.68] [0.68] | [0.69] 01 10681 | [0.65] :
# of Fractions Given 35 25 10 35 25 12 37

3 The fraction size doses are given in brackets below the cumulative doses. PTV2 represents the
secondary target.
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Appendix B*: No Adaptation vs. Two-Epoch Adaptation Results for the Lung] Test
Case (The ratio model solved in the optimization and the optimized doses rescaled if necessary)

No . .
D Adaptation No Adaptation (with Two-Epoch Adaptation
ose (No Boost) 0ost)
Structure Statistics Eooch
(Gy) Total g/t[:m ES;OOSt Total Ep ?Ch 2 (with | Total
ge tage Boost)
Max. 73.6 541 | 221 541 289
Dose [2.17] 2171 | 2211 | 33 | pan | 241y | 804
Min. 69.9 51.4 | 20.0 514 24.0
Tumor Dose 12.06] .06 | 12.001 | 712 | r2.061 | 12.001 | 764
Dose 2.11] 2.117 | [2.07] 4112017 | [2.13] :
Max. - - - - - 267 | s04
Removed Dose [2.22] :
< Min. 6.0
umor - - - - - 57.7
Points Dose [0.50]
Avg. - - - - - 148 | 75
Dose [1.24] '
Max. 736 541 [ 222 | 755 | 941 289 [ ¢oa
Dose [2.17] 2.17] | [2.22] S 112171 | [2.41] :
Min. 68.0 30 9.7 50.0 6.0
PTV2 Dose 12.00] 12.001 | 10971 | %7 | 12.001 | [0.507 | 60
Avg. 713 524 [ 204 [ 159 | 524 216 | 740
Dose 12.10] 12.10] | [2.04] 21 12,101 | [1.80] :
Max. 714 525 [ 210 | 535 | 323 232 [ 754
Right Dose [2.10] [2.10] | [2.10] > | 12.10] | [1.93] :
Lung Ave. 245 18.0 | 69 | 550 | 180 6.7 47
Dose [0.72] [0.72] | [0.69] V170721 | [0.56] -
Max. 55.0 404 [ 153 | 557 | 404 148 | o5 g
Left Dose 11.62] [1.62] | [1.53] 111,621 | [1.24] :
Lung Avg. 225 165 | 65 | 230 | 165 6.5 3.0
Dose [0.66] [0.66] | [0.65] V1 10,661 | [0.54] :
Max. 69.5 SL1 | 197 [ 796 | SLI 252 | 76
Heart Dose [2.04] [2.04] | [1.97] 61 12,041 | [2.10] -
Avg. 2377 175 1 70 | yaa | 175 7.0 44
Dose [0.70] [0.70] | [0.70] 4| [0.70] | [0.58] :
Max. 383 429 161 | sgg | 429 190 | o0
Esonhacus | DOse [1.72] [1.72] | [1.61] 2111721 | [1.58] :
phag Avg. 273 20.1 75 [ 276 | 201 78 278
Dose [0.8] [0.80] | [0.75] 61 70.801 | [0.65] -
Max. 71.4 525 | 21.0 525 252
Not Dose [2.10] .07 | [2.101 | 732 | 20y | 2oy | 777
Otherwise |—x 240 78 | 69 178 72
Specified Ve " ; : 24.7 " : 25.0
Dose [0.71] [0.717 | [0.69] [0.717 | [0.60]
Max. 441 324 | 153 | 440 | 324 150 | 145
Soinal Cord | Dose [1.30] [1.30] | [1.53] < 1 11.30] | [1.25] -
p Avg. 234 72 [ 68 | H40 | 172 7.0 240
Dose [0.69] [0.69] | [0.68] Y1 10,691 | [0.59] :
# of Fractions Given 34 25 10 35 25 12 37

* The fraction size doses are given in brackets below the cumulative doses. PTV2 represents the
secondary target.
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Appendix C”: No Adaptation vs. Two-Epoch Adaptation Results for the CERRLung Test Case
(The ratio model solved in the optimization and the optimized doses rescaled if necessary)

No . }
Adaptation No Adaptation (with Two-Epoch Adaptation
Dose 00st)
S oL (No Boost)
tructure Statistics . Eooch
(Gy) Total Main | Boost | 1.4, Epoch 2 ?with Total
Stage | Stage 1 Boost)
Max. 73.0 541 | 344 541 | 387
R
m. . . .
Tumor Dose 12.06] .061 | 1201 | 812 | 2061 | 12.01 | 860
Avg. 75.9 527 | 31.5 527 | 358
Dose 211 i | 20 | 2 | pin | 21y | 883
Max. 37.7
R 4 | Dose - - - - - 2321 | 20-6
Tumor Min, ] ] ] ] ] 1051 625
Points Dose [0.62] '
Do - - - - - [? 18';1 84.5
0OS¢C . '
Max. 730 SAT [ 349 | g0 | 541 | 393 | o0s
Dose 2.17] 2.171 | [2.33] 2| 2171 | 231 :
Min. 72.0 50 | 127 50 3.6
PTV2 Dose [2.0] 2.0] | 10841 | 27 | oy | (0217 | 230
Avg. 751 521 | 287 | g09 | 521 | 30.6 | g5-
Dose [2.09] 12.091 | [1.91] 2.097 | [1.8]
Max. 75.6 525 | 315 | sa0 | 525 | 357 | gso
Right Dose 2.1] 211 | 21 00 a1 | 20 :
Lung Avg. 6.0 1.7 5 67 | 17 T 51 | 160
Dose [0.47] [0.47] | [033] 7| 10471 | [03] :
Max. 75.6 2.5 | 315 | g0s | 525 | 332 | g20
Left Dose 2.1] 211 | 21 S| A1 | 1957 :
Lung Avg. 9.7 67 | 27 | o5 | 6 26 | 93
Dose [0.27] 0271 | 1081 | °° | 0271 | 10151 | *
Do [520';] [3003] [%71'411] 67.6 [godg] [%Ozg] 68.2
Heart . . . . .
Avg. %) 29 [ 09 | 30 | 29 I 10
Dose [0.12] [0.12] | [0.06] [0.12] | [0.06]
Max. 75.6 525 | 229 | 75 | 525 | 203 | 157
Esonhagus | DOse 2.1] 211 | [1.53] 31 2a1 | 19 :
phag Avg. 16.6 15[ 32 [ 147 | 113 3 145
. I N
ax. . . . . .
Othﬁ?vtvis o | Dose [2.1] 2| | 30 2 | 21y | 882
p Dose [0.21] 0211 10151 | 7 | 0211 | 0141 | 7
Max. 10.4 72 | 68 | 104 | 72 77 1 113
Soinal Cord | Dose [0.29] [0.29] | [0.45] [0.29] | [0.45]
p Avg. 1.6 1.1 0.6 17 1.1 0.5 16
Dose [0.04] 10.041 | 10041 | 17 | 10.041 | 10.031 |
# of Fractions Given 36 25 15 40 25 17 42

> The fraction size doses are given in brackets below the cumulative doses. PTV2 represents the
secondary target.
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Appendix D°: Three-Epoch Adaptation Results for the Lung] Case (Adapted after fraction 10
and 25, the uniform fractionation model solved in the re-optimization)

Slgnm?s The original tumor The original tumor The original tumor
dslivere d shrinks 20% towards the | shrinks 50% towards the | shrinks 80% towards the
residual tumor after residual tumor after residual tumor after
Dose f(gr‘cslge fraction 25 during the fraction 25 during the fraction 25 during the
Structure Statistics epoch first 10 fractions first 10 fractions first 10 fractions
Gy)
Epoch | Epoch Epoch Epoch Epg)ch Epoch Epgch
p P 3 (with | Total P . Total P . Total
1 2 Boost) 2 (with 2 (with
Boost) Boost)
Max. 214 | 323 | 296 328 | 295 335 | 294
et v R e Rl R
m. . . . . .
| Dese | D04 L D03 | 00 | ™0 Lpod | L™ L poe oo | T
vg. . ) . ) ) .
Dose | [208] | [2.091 | 2221 | ®8 | 211y | 2221 72 | 2131 | 2211 | 793
Max. - 322 [ 271 | goe | 327 | 272 | g10 | 334 | 273 | g1
R 4 | Dose 2.15] | [2.26] 6 1 81 | [227] 01 2221 | 228 :
Tumor Min. ] 300 |7 65 [ g7, | 300 | 635 | o 5 | 300 [ 65 | oo,
bumor Dose [2.00] | [0.55] 2 | 2.00] | [0.54] 2 | 12.00] | [0.55] :
bos | - | ponl pas | 83 | pos | pasy | 685 | posy | s | 684
Mo 214 [32 3] [29 9] [32 9] [29 7] [33 2] [29 6]
ax. . . . . . . .
Dose | [zia | 120s1L o) | V0L pien Lz 0|zl L pan |
m. . . . . . . .
R A Bt B S S, R
Dose 2.08] | [2.08] | [1.88] S 241 ] [1.88] S 2111 | [1.87] :
Max. 209 | 314 | 242 | 755 | 313 | 247 314 | 246
76.0 76.3
Right Lung | oS [2.09] | [2.10] | [2.02] [2.08] | [2.06] O 211 | 205 :
Avg. 71 107 | 7.1 107 | 7.1 107 | 7.1
Dose | [0.71] | [0.711] 1061 | 239 | 10711 | [o.6] | 230 | [0.711 | [o6 | 20
Max. 179 [ 259 | 167 | s,y | 247 [ 162 | o5 | 234 | 164 | 51,
LLeft gose [16.759] [19.783] [17.329] : [19.684] [17.315] : [19.586] [17.316] :
ung vg. . . . ) ) . .
Doe L W e L e )
ax. . . . . . . .
Heart Dose | [2.01] | 2031 ] (211 | 77 | 2081 | (211 | 7%% | 12097 | (2.1 | 7€
Ave 6.0 104 | 73 | yae | 104 | 73 | 507 | 104 | 73 | 24
ose [0.69] | [0.69] | [0.61] [0.69] | [0.61] [0.69] | [0.61]
R i |9 L [0 e e g o
Esoph. A?/Sge [7'9] [11 9] : 9 : [12 1] [89] [12 2] [9'0]
SRR B B B
ax. . . . . . . .
NOS. Dose | 2101 |01 2|77 | ealeagl ™| el g | 77
A [07.700] [(1)97'8] [07.6641] 25.2 [(1)97'?] [07.663] 252 [(1)97'?] [07.663] 252
Max. 2.9 193 [ I8T | oo | 193 | 174 | 450 | 193 | 167 | 45,
Spinal Dose 1291 | [1.29] | [1.51] 01 11291 | [1.45] 01 291 | 11.39] :
Cord Ave. 6.8 103 | 78 | 249 | 103 | 7.7 [ 248 | 102 | 76 | 227
Dose [0.68] | [0.68] | [0.65] [0.68] | [0.64] [0.68] | [0.64] :
# of Fractions Given 10 15 12 37 15 12 37 15 12 37

% The fraction size doses are given in brackets below the cumulative doses. PTV2 represents the
secondary target. “N.O.S” is abbreviation of “Not Otherwise Specified” tissue.
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Appendix E’: Three-Epoch Adaptation Results for the CERRLung Case (Adapted after fraction
10 and 25, the uniform fractionation model solved in the re-optimization)

Slgnmies The original tumor The original tumor The original tumor
. SNrinks o towards the SNrinks o towards the SNrinks o towards
GDanis 1 shrinks 20% towards the | shrinks 50% towards the | shrinks 80% toward
for the residual tumor after residual tumor after the residual tumor after
Dose raction 25 during the raction 25 during the raction 25 during the
o fraction 25 during th fraction 25 during the | fraction 25 during th
Structure | Statistics epoch first 10 fractions first 10 fractions first 10 fractions
(Gy)
Epoch Epoch Epoch Epoch Ep;)Ch Epoch EPSCh
131 p 5 3 (with | Total p > ith Total p2 th Total
Boost) é‘())vcl)st) ]?(>\())V<1)tst)
Max. 217 327 | 390 329 | 39.1 329 | 390
L L e L
. . . . . . . .
TS| Dee | poe) | posl ool | 2 poel | oo | 7 |06 | oo | T
vg. ) ) i ) ) ) )
Dose | (221 | B2 | fla) | 27 L0 LB | Y L
ax. . . . . . .
Removed |_Dose - 2171 | 2221 | 210 | sy | 221 | 210 | sy | sy | OO
emoved ™ npin, ] 300 | 108 | c3s | 300 | 10 | cis | 300 | 375 | o00
yomer | Dose 2.00] | 0.641 | 2 | 2.001 | [0.651 | 2 | ooy | 2217 | &+
Avg. ] 313 | 319 | gro | 313 | 321 | oo | 313 | 1L0 | g4
Dose 2.08] | 1881 | ¥*® | 2.001 | [1.891 | ®*® | 2.091 | [0.65] | 3*
Max. 217 328 | 396 | o1 | 330 | 406 | oo | 331 | 400 | o o
Dose 2171 | 2191 | 2331 | °10 | 2201 | 2391 | °10 | 221y | 235y | O
PTV2 Doss [3.00'8] [390'8] [(3:235] >4.3 | 3012] [03.293] 53.9 [;%8] [0{214] >4.1
Avg. 20.9 314 | 308 314 | 309 314 | 309
Dos¢ 2091 | 12091 | 817 | 8 | 2097 | [1.821 | 832 | 2097 | [1.827 | 832
Max. 21.0 315 | 357 315 | 357 315 | 357
Right | Dose | [2.10] | (2101 | 2100 | 882 | 210 | 2107 | 382 | 12107 | 12107 | 3*7
Lung
Ave. 47 71 52 | 1701 7L | 352 | 170l 71 | 52 | 170
Dose [0.47] | [0.47] | [031] [0.47] | [0.31] [0.47] | [0.31]
Max. 21.0 315 | 323 | g1e | 315 | 325 | g1g | 315 | 335 | o)
Left Dose 2.10] | [21] | [19] 61y | ey | 38 | 20y | o7y | ¥
Lung Avg. 2.7 4.0 26 | o3 | 39 | 26 | 95 | 40 | 26 | o5
Dose 0271 | 10271 | 10151 | 3 | 10261 | 0151 | 2 | 10271 | j0.151 | >
Max. 20.1 307 | 208 | o0 | 3LL [ 202 | o | 313 | 219 | -
Heart Dose 2.01] | 2041 | (1231 | 78 | o7y | (1251 | 713 | 209y | [1201 | 7*
Avg. 12 18 0 | .0 | 18 0 [ a0 | 18 | LI | 4o
e T B S B T L St I - ¥ 2
ax. . . . . . .
Bsoph, |__Dose a1 | 1 | e | 8 g sy | P 21y | o | 740
Doss 0 o | oist | 48 | o | ot | 146 | oas | odsy | 148
Mo 31031 357 R Rk ]
ax. . . . . . . .
NOS Dose 101 | 211 | 211 %2 2 | 2 | 82 | o | 2oy | 382
08 —xve 2.1 31 24 | oo | 3 | 24 | oo [ 31 | 24 | -,
Dose 0211 | 10211 | 10141 | 7° | 10211 | 10141 | 7% | (0211 | (0141 | 7
‘ Max. 26 54 70 | 121 | 53 | T4 | 3g | 48 | 84 | 5,
Spinal | Dose [0.26] | [0.36] | [0.41] [0.35] | [0.43] [0.32] | [0.49]
Cord Avg. 05 0.8 05 09 | 05 08 | 05
Dose 10.05] | 10.05] | 10031 | ® | 10.061 | 10.031 | ' | 0.051 | 10.031 | '8
# of Fractions Given 10 15 17 42 15 17 42 15 17 42

7 The fraction size doses are given in brackets below the cumulative doses. PTV2 represents the

secondary target. “N.O.S” is abbreviation of “Not Otherwise Specified” tissue.
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Appendix F*: Three-Epoch Adaptation Results for the Lungl Case (Adapted after fraction 25
and 30, the uniform fractionation model solved in the re-optimization)

Same plan is
delivered for the

The residual
tumor after

The residual
tumor after

The residual
tumor after

Dose fraction 25 fraction 25 fraction 25
Structure | Statistics first two epochs shrinks 10% shrinks 30% shrinks 50%
(Gy) Epoch Epoch | Epoch Epoch Epoch
Pl 2 (with | 3 (with | Total | 3 (with | Total | 3 (with | Total
Boost) | Boost) Boost) Boost)
Max. 536 | 123 | 195 19.7 235
Dose | [2.14] | 12471 | 12431 | 823 | 12461 | 828 | (2351 | 867
Min. 509 | 10.0 | 16.0 16.0 20.0
Tumor Dose | [2.04] | 12.001 | 12.001 | 782 | r2.001 | 7%¢ | 2.001 | 824
Avg. 521 | 111 | 170 7.7 211
Dose | [2.08] | [2.221 | [2.121 | 892 | 23271 | 809 | 21y | 342
Max. 113 | 175 183 250
R Dose - .36 | 2191 | 819 | 2291 | 828 | 2207 | 864
emoved
Lumor Dose [0.53] | [0.47] 81 10.45] 61 1037] :
Dose 341 | 11.12] 3| 18] 81 10.01] :
Max. 536 | 124 | 195 19.9 233
Dose | [2.14] | [2.48] | [2.441 | 823 | 12491 | 828 | 2351 | 867
Min. 500 | 2.6 38 36 37
PTV2 Dose | [2.00] | [0.53] | [0.48] | 20 | [0.451 | %73 | (0371 | 372
Avg. 519 | 94 13.6 3.2 132
Dose | [2.08] | 11.871 | (171 | 7*° | 11651 | 7*° | 1321 | 49
Max. 523 | 101 | 148 155 16.1
Right Dose | [2.09] | [2.02] | [1.861 | 73 | 11941 | 770 | 11617 | 72!
Lung Ave. 7.0 | 3.0 %) %) %)
Dose | [0.711 | [0.6] | (0521 | 250 | 0521 | 250 | [0.427 | 250
Max. 448 T 69 10.5 T1.8 133
Left Dose | [1.791 | 11381 | 11311 | 271 | 11477 | 29 | (1331 | 57
Lung Avg. 163 3.0 41 44 %)
Dose | [0.65] | [0.59] | [0.517 | 234 | 10551 | 237 | (0421 | 233
Max. 500 | 105 | 158 16.8 18.7
Heart Dose | [2.011 | 211 | o7 | 703 | 21y | 773 | gy | 793
Avg. 173 3.0 i3 T oue | 44 507 [ 45 | 210
Dose [2.362] [08.61] [(1).35?] : [0155] : [(1).643] :
Max. . 5 . 5 .
Esonh Dose | [1731 | 1 | 11631 | 922 | 11871 | ©%2 | 1697 | 060
Dose | [0.79] | [0.74] | [0.61] 31 10.72] 2 | 10.54] :
Max. 555 | 105 | 168 16.8 21.0
NOS Dose | [2001 | 211 | 2ay | 8 | 21y | 28 | 2oy | 840
0.8 Avg. 175 | 32 56 553 | 47 | o5a | 48 | 253
Dose | [0.70] | [0.63] | [0.58] 3| 10.58] 4| 10.48] ~
Max. 31 74 9.7 16.5 12.6
S ingl Dose | [129] | 11.48] | (12171 | #0 | 206y | 40 | [126) | 450
or Avg. 7.1 32 46 5 43
Dose | [0.68] | [0.65] | [0.571 | 2*° | 10631 | 224 | [0.48] | 251
# of Fractions Given 25 5 8 38 8 38 10 40

¥ The fraction size doses are given in brackets below the cumulative doses. PTV2 represents the
secondary target. “N.O.S” is abbreviation of “Not Otherwise Specified” tissue.
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Appendix G’: Three-Epoch Adaptation Results for the CERRLung Case (Adapted after fraction
25 and 30, the uniform fractionation model solved in the re-optimization)

. The residual The residual The residual
d e?ifrgfegl%grlfh e tumor after tumor after tumor after
Dose first two epochs fraction 25 fraction 25 fraction 25
Structure | Statistics p shrinks 10% shrinks 30% shrinks 50%
(Gy) Epoch Epoch | Epoch Epoch Epoch
Pl % Witl)l 3B witl)l Total % witl)l Total % Witl)l Total
00st 00st 00st 00st
Max., 523 | 115 | 28.0 30.2 32.9
Dose | 2171 | 1231 | 12331 | 214 | 2321 | 934 | 2351 | 9
Tumor Min. [3.10'2] 10 [2] 2[‘5-]0 86.8 | 26[2] | 88.8 [228_0% 91.1
Ave. 520 | 106 | 258 277 302
Dose | 2121 | 2121 | 2451 | 893 | 2131 | 9L | puiey | 936
Max. T1 | 277 30.1 304
Dose - 2221 | (2311 | 214 | p31p | B4 | 2317 | 990
Removed i, - 33 P2 [ eoe | .32 T eos | 24 | s0g
ur Dose [0.65] | [0.35] 6 | 10.26] 61 1017 :
Points Av 94 | 21.6 21.9 N
Dogs - 1881 | [1.8] | 8%0 | (1697 | 846 | (1621 | 850
Max. 543 | 118 | 29.0 30.1 333
Dose | [2.171 | 12351 | 2421 | 214 | 2321 | 234 | 2381 | 939
Min. 50 12 2.0 71 13
PTV2 Dose | [2.0] | 0351 | [016] | 232 | 10161 | 233 | 017 | 230
Avg. 553 1 9.1 21.6 21.8 275
Dose | [2.09] | [1.811 | [1.8] | 82 | [1.681 | 832 | (1617 | 838
Max. 525 | 105 | 252 273 2904
Right Dose | [21]1 | 211 | (217 | 882 | 21y | 293 | [2a1 | %24
Lung Ave. 1.8 I3 37 37 37
Dose | [047] | 10317 | 10317 | 170 | (o281 | 170 | [o.261 | 170
Max. 25 1 95 243 23.6 203
Left Dose 211 | 191 | 12061 | 83 | 821 | 32 | 2.9 | 843
Dose | [027]1 | [0.16] | [0.151 | 23 | 10121 ] ! | 0131 |
Max. 502 T 6.1 15.7 15.4 16.7
Dose | [201] | (211 | (1317 | ©93 | sy | 4 | 12y | 616
Heart Avg. 2. 0.3 07 [ 20 1 .06 | 39 | 06 | 30
Dose [0.212] [06.06] [(1).02] : [(1).30(5)] : [09.064] :
Max. 575 5 5] . )
Esonh Dose 211 | n2or | 28 | 3 ] oy | 717 | 0691 | 084
PR Avg. 17 [ 09 19 44 | 17 | 1a3 | 1% | (10
Dose | [0.47] | [0.18] | [0.15] 41 10.13] 31 01] :
Max. 525 | 105 | 252 273 29.4
Dose | [21]1 | 211 | (217 | 882 | 21y | 293 | [2a1 | 924
N.OS. Avg. 520 1 07 6 | 76 | 06 | 76 | LT | 7¢
Dose | [0.211 | [0.14] | [0.141 | 7¢ | 10131 7© | j0.121 | 7
Max. 6.6 71 T4 7.6 44
Spinal Dose | [026] | 10421 | 0121 | 7¢ | 1021 | 22 | j0317 | 104
Dose | [0.05] | [0.03] | 10.021 | ¢ | [0.041 | 18 | 0047 | L
# of Fractions Given 25 5 12 42 13 43 14 44

? The fraction size doses are given in brackets below the cumulative doses. PTV2 represents the
secondary target. “N.O.S.” is abbreviation of “Not Otherwise Specified” tissue.
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Appendix H'’: Three-Epoch Adaptation Results for the Lung1 Case (Adapted after fraction 25
and 30, the ratio model is solved in the re-optimization and the re-optimized doses rescaled if

necessary)
. The residual The residual The residual
d e??érelreegl%grltsh o tumor after tumor after tumor after
Dose first two epochs fraction 25 fraction 25 fraction 25
Structure | Statistics WO €p shrinks 10% shrinks 30% shrinks 50%
(Gy) Epoch Epoch | Epoch Epoch Epoch
p?c 2 (with | 3 (with | Total | 3 (with | Total | 3 (with | Total
Boost) | Boost) Boost) Boost)
Max, 541 2.1 19.0 18.7 21.9
Dose | [2.171 | (2411 | 12381 | 825 | 2341 | 827 | (2431 | 850
Min. ST4 | 100 | 160 16.0 T8
Tumor | poce | 12.061 | [2.001 | 2.007 | 784 | 2001 | 785 | o | 807
Avg. 527 [ 107 | 169 17.0 193
Dose | 2117 | 12131 | r2.121 | 893 | 12137 | 803 | 213y | 826
Max. 1.1 7.4 17.8 30
Removed | Dose © 2221 |28y | 822 | 2o | 827 | 22y | 341
%mrgv‘; Min. 25 38 53.4 34 575 33 575
umo Dose - [0.50] | [0.47] 4| 10.42] S | 1037] :
Points  —43e. - 6.2 89 | esa | 54 | ess | .83 | co2
A % ML X v £ B e
Max. 54. . . } .
Dose | [2.17]1 | 12417 | 12381 | 82 | 12351 | 827 | 12371 | 80
Min. 50.0 35 33 34 33
PTV2 Dose | [2.00] | [05] | [0.471 | 263 | 10421 | 562 | 10377 | 37!
Ave. 554 9.0 13.6 2.4 15.0
Dose 211 | 8oy | iy | PO pissy | 738 | i3z | 34
Max. 555 9.7 5.2 14.6 143
Right | Dose | [2.0] | [1.93] | [1.89] | 767 | [1.83] | 762 | [1.59] | 704
Lung Avg. 8.0 7.8 %) 38 338
Dose | [0.72] | 10561 | [0.52] | 230 | 0471 | 24 | (0427 | 246
Max. 404 6.2 9.8 13.1 10.7
II:eft Dose | [1.62] | (1241 | 1221 | 31 | 1641 | 92! | oy | 900
ung Ave. 16.5 37 | 33 39
Dose [0.16?] [(1).0541 [(1)4511 23.3 [(1).64? 23.0 [(1).431 23.1
Max. 5T, 5 3 . 7,
Heart Dose | [2.04] | 1211 | ng1iy | 22| 1211 | 82 | o1y | 784
Avg. 17.5 29 %) 40 %)
Dose 071 | 1058 | 10531 | 2% | 10511 | 244 | 0471 | 246
Max. 43.9 79 3.1 3.1 14.9
Dose | [1.721 | 11581 | 115631 | 929 | 13631 | 20 | 11651 | 038
Esoph.  —R 0201 | 32 29 T agy | %7 T ag1 | .50 | 233
Dose [0.8] | [0.65] | [0.61] 2 | 1059 1| 10.56] ~
Max. 555 | 105 | 168 16.8 18.9
Dose i | 2 | e | O8] g | P8 g | 819
NOS —Ave [ 178 [ 30, | 46 | 554 | 43 | 251 | 44 | 351
Dose | [0.71] | [0.6] | [0.57] 4| 10541 11 10.48] :
Max. 354 6.3 9.0 9.3 3.1
S ingl Dose 3] | 11351 | (.15 | 9 | idep | 443 | 1451 | 443
or Avg. 172 39 43 %) 44
Dose | [0.69] | 10591 | [0.571 | 2*7 | 10531 | 244 | [0.491 | 240
# of Fractions Given 25 5 8 38 8 38 9 39

' The fraction size doses are given in brackets below the cumulative doses. PTV2 represents the

secondary target. “N.O.S.” is abbreviation of “Not Otherwise Specified” tissue.

122




Appendix I'': Three-Epoch Adaptation Results for the CERRLung Case (Adapted after fraction
25 and 30, the ratio model solved in the re-optimization and the re-optimized doses rescaled if

necessary)
. The residual The residual The residual
d e?ﬁznelfegl?grltsh o tumor after tumor after tumor after
Dose first two epochs fraction 25 fraction 25 fraction 25
Structure | Statistics WO €p shrinks 10% shrinks 30% shrinks 50%
(Gy) Epoch Epoch | Epoch Epoch Epoch
Pl 2 (with | 3 (with | Total | 3 (with | Total | 3 (with | Total
Boost) | Boost) Boost) Boost)
Max. 541 | 114 | 275 29.7 344
Dose | [2.17] | 12281 | 12291 | 206 | 28y | 929 | 231 | 97
Min, 514 i0 24.0 26.0 30.0
Tumor Dose | [2.06] | [2.01 | (201 | 3¢ | ooy | 883 | oy | 926
Avg. 527 1 105 | 253 275 31.8
Dose | 2111 | 1211 | 21y | 882 | 211y | 296 | g1 | 949
Max. 11 [ 27.0 29.7 33.0
Dose - 2321 | 2251 | 906 | 2281 | 929 | paey | 975
Rgmn(;"‘;d Min, 31 50 [ sog | 36 | s00 | 20 | sg9
Tumor Dose - [0.62] | [0.34] 8 1 10.28] 9| 1013] :
Sz)’gé 4;1 [%9.1832] [?7-‘2‘] 83.6 [2127;] 84.5 @_35%] 86.2
Max. 54. . 7 ) 5.
Dose | [2.171 | 12311 | 123171 | 206 | 2281 | 929 | 391 | 975
Min. 50 11 3.0 7.0 13
PTV2 Dose 201 | (0217 | 017y | 31 | joasy | 33| oy | 327
Ave. 531 5.0 | 201 718 235
Dose | 2091 | 1181 | (1761 | 822 | [T.ésy | 830 | (137 | 847
Max. 525 | 105 | 252 273 315
Right Dose | 2] | 2.0 | 2] 88.2 2.4] 90.3 2.1] 94.5
ung vg. i S S . Jl
Dose | [0.47] | 1031 | (0291 | 107 | 10281 | 169 | 10251 | 170
Max. 525 1 9.8 | 23.1 25.6 20.7
LLeft Dose 217 | (1951 | (1931 | 793 | (1971 | 806 | 11987 | 837
ung Ave. 6.7 0.8 18 18 18
Dose | [027] | 10.15] | 10.151 | 94 | 1o.147 | 93 | jo.127 | 93
Max. 505 | 6.1 41 [ cog | 146 | go3 | 187 | 610
Heart Dose | [2.02] | 11221 | [1.17] 81 11.13] 3| 11.25]
Avg. 2.9 0.3 0.7 0.7 06 | 39
Dose | [0.12] | 10.06] | 10.067 | %O | 10051 | 32 | [0.04]
Max. 525 | 6.0 15.8 130 | 715 | 99 | 683
Esonh Dose 211 | (o | 32y | 742 | qio) [0.66]
ph. Avg. 15 [ 09 33 [ ae | 2L [ 145 16 | 140
Dose | [0.46] | [0.17] | [0.18] 6 | 1016] [0.11]
Max. 52.5 | 105 | 252 | gg5 | 273 | 903 | 315 | 945
Dose 21 | 217 | [21] 2 0] 3
N.O.5. Avg. 52 1 07 06 | 75 | 17 | 76 | I8 | 76
Dose | [0.211 | (0141 | 10141 | 7 | [0.13] 6 | 10.12]
Max. 72 73 53 36 16 | 80
Spinal Dose | [0.29] | [0.45] | [0.441 | 112 | o271 | 29 | (o]
ord Avg. 11 0.2 0.4 6 | 03 7 .03 3
Dose | [0.04] | 0.03] | [0.031 | 16 | 10.04] 7| 10.02]
# of Fractions Given 25 5 12 42 13 43 15 45

" The fraction size doses are given in brackets below the cumulative doses. PTV2 represents the
secondary target. “N.O.S.” is abbreviation of “Not Otherwise Specified” tissue.
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Appendix J'*: Detailed Biological Data Information for Two Base Cases

First Base Case: Input Second Base Case: Input
Tumor Possible Values Values
Regions | SUV Range SUV pO: oMmF | suv p0O; OMF
(mmHg) (mmHg)
Red | 5.75-7.00 | 6.5 74 [ 08 | 67 | 51 [077
Yellow | 5.00-5.75 | 5.2 121 | 088 | 52 | 12.1 | 0.88
Green | 3.50-5.00 [ 3.6 147 | 091 | 36 | 147 | 091
Light | 500350 | 2.5 175 | 092 | 25 | 175 | 092
Blue
Dark 1000200 | 025 | 466 | 098 | 025 | 466 | 0.9
Blue

12 SUV denotes Standardized Uptake Value, OMF denotes Oxygen-Modification Factor, pO,
denotes Oxygen Tension
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Appendix K": Physical and Biological Optimization Results for the Head and Neck Base Case

1 (“bDose” refers to biological dose, “pDose” refers to physical dose)

Biologicall
Physically Biologically 1,0 (?glca Y
. o Optimized Plan
o Optimized Plan Optimized Plan th 0.9
ith 0.
Structure | POSC STRUSUCS 1 0 9 Physical | with 0.9 Physical Wit
(Gy) ] ] Biological
Homogeneity Homogeneity )
Homogeneity
Total Total Total
. Max. bDose 86.6 [2.22] 86.4 [2.27] 77.5[2.04]
Primary ,
Tareet Min. bDose 66.9 [1.71] 68.4 [1.8] 69.7 [1.84]
arge
8 Avg. bDose 78.9 [2.02] 78.5[2.07] 74.5 [1.96]
. Max. pDose 88.5[2.27] 88.2 [2.32] 88.9 [2.34]
Primary -
Tareet Min. pDose 79.6 [2.04] 79.4 [2.09] 74.9 [1.97]
arge
8 Avg. pDose 85.0 [2.18] 84.6 [2.23] 80.4 [2.11]
Max. Dose 88.5[2.27] 88.2 [2.32] 87.6 [2.30]
Targetl Min. Dose 70.2 [1.8] 68.4 [1.80] 68.4 [1.8]
Avg. Dose 78.52.01] 77.9 [2.05] 76.3 [2.01]
Max. Dose 88.5[2.27] 88.2 [2.32] 87.6 [2.3]
Target2 Min. Dose 70.2 [1.8] 68.4 [1.80] 68.4 [1.8]
Avg. Dose 76.5[1.96] 75.3 [1.98] 75.5[1.99]
Max. Dose 88.5[2.27] 88.2 [2.32] 87.6 [2.30]
Target3 Min. Dose 64.3 [1.65] 62.7 [1.65] 62.7 [1.65]
Avg. Dose 73.8 [1.89] 72.7[1.91] 72.7[1.91]
. Max. Dose 72.0 [1.85] 72.0[1.89] 72.0 [1.89]
Mandible
Avg. Dose 40.0 [1.03] 40.0 [1.05] 40.0 [1.05]
) Max. Dose 58.0[1.49] 58.0[1.53] 58.0 [1.53]
Brainstem
Avg. Dose 34.10.87] 33.410.88] 29.6 [0.78]
Spinal Max. Dose 50.0 [1.28] 50.0[1.32] 50.0 [1.32]
Cord Avg. Dose 18.510.47] 17.0 [0.45] 18.5[0.49]
Not Max. Dose 80.0 [2.05] 79.8 [2.10] 79.8 [2.10]
Otherwise
) Avg. Dose 25.7[0.66] 25.510.67] 25.2[0.66]
Specified
# of Fractions Given 39 38 38

1 The fraction size doses are given in brackets besides the cumulative doses.
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Appendix L'*: Physical and Biological Optimization Results for the Head and Neck Base Case 2

(“bDose” refers to biological dose, “pDose” refers to physical dose)

Biologicall
Physically Biologically 1_0 (.)glca Y
. o Optimized Plan
o Optimized Plan Optimized Plan ih 0.8
ith 0.
Structure | DOSC STBUSHES | i 0.8 Physical | with 0.8 Physical Wit o
(Gy) . . Biological
Homogeneity Homogeneity )
Homogeneity
Total Total Total
) Max. bDose 95.9 [2.52] 96.5 [2.54] 84.7 [2.23]
Primary -
T . Min. bDose 63.5[1.67] 64.8 [1.7] 67.8 [1.78]
arge
g Avg. bDose 81.6 [2.15] 78.8 [2.07] 75.2 [1.98]
] Max. pDose 97.9 [2.58] 98.6 [2.59] 98.0 [2.58]
Primary -
T . Min. pDose 78.4 [2.06] 78.9 [2.08] 69.8 [1.84]
arge
g Avg. pDose 88.1[2.32] 85.2 [2.24] 81.3[2.14]
Max. Dose 97.9 [2.58] 98.6 [2.59] 95.7[2.52]
Targetl Min. Dose 68.4 [1.80] 68.4 [1.80] 68.4 [1.80]
Avg. Dose 79.4 [2.09] 78.7[2.07] 77.2 [2.03]
Max. Dose 97.9 [2.58] 94.3 [2.48] 95.7[2.52]
Target2 Min. Dose 68.4 [1.80] 68.4 [1.80] 68.4 [1.80]
Avg. Dose 76.5[2.01] 76.6 [2.01] 76.1[2.00]
Max. Dose 97.9 [2.58] 98.6 [2.59] 95.7 [2.52]
Target3 Min. Dose 62.7 [1.65] 62.7 [1.65] 62.7 [1.65]
Avg. Dose 73.9 [1.94] 74.2 [1.95] 72.9[1.92]
) Max. Dose 72.0 [1.89] 72.0 [1.89] 72.0 [1.89]
Mandible
Avg. Dose 40.0 [1.05] 40.0 [1.05] 40.0 [1.05]
) Max. Dose 58.0[1.53] 58.0[1.53] 58.0[1.53]
Brainstem
Avg. Dose 28.5[0.75] 27.910.73] 27.0[0.71]
) Max. Dose 50.0[1.32] 50.0[1.32] 50.0[1.32]
Spinal Cord
Avg. Dose 19.2 [0.5] 16.2 [0.43] 15.6 [0.41]
Not Max. Dose 79.8 [2.10] 79.8 [2.10] 79.8 [2.10]
Otherwise
) Avg. Dose 23.9[0.63] 2510.66] 24.1[0.63]
Specified
# of Fractions Given 38 38 38

' The fraction size doses are given in brackets besides the cumulative doses.
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Appendix M: Sensitivity of TCP to the Change in Standardized Uptake Value (SUV)

Throughout the computational experiments on biology, the sensitivity of tumor control
probability (7CP) to the change in the standardized uptake value (SUV) was realized. This is
illustrated in Table M.1 where the cumulative tumor biological and physical dose statistics as
well as the achieved TCP are given for both physical and biological plans computed for second
and third base cases. The third base case differs from the second base case by having higher
hypoxia in red region (SUV=6.8 vs. 6.7). As the results in Table M.1 show, although the average
biological doses in physical (biological) plans are very similar between second and third base
case, the reduction in the minimum biological dose (63.5 Gy vs. 58.6 Gy for physical plans, 64.8
Gy vs. 59.8 Gy for biological plans) has reduced the 7CPs from 0.63 to 0.05 and 0.70 to 0.20 for
physical and biological plans, respectively. The significant decline in 7CP relative to the change
in SUV shows the sensitivity of the TCP function. However, the improvement in 7CP obtained

by biological plan still holds for the third base case (from 7CP=0.05 to TCP=0.20).
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Table M.1: Illustrating the Sensitivity of Tumor Control Probability to the Change in

Standardized Uptake Value (SUV) by Comparing Physical and Biological Plans between Second

and Third Base Cases (Numbers in bold are referred in the text.)

Second Base Case (SUV=6.7 | Third Base Case (SUV=6.8 for
for Red Region) Red Region)
Physically Biologically Physically Biologically
Cumulative Tumor | Optimized Optimized Optimized Optimized
Dose Statistics Plan with 0.8 | Plan with 0.8 | Plan with 0.8 | Plan with 0.8
Tumor Tumor Tumor Tumor
Physical Dose | Physical Dose | Physical Dose | Physical Dose
Homogeneity | Homogeneity | Homogeneity | Homogeneity
Max. bDose (Gy) 95.9 96.5 95.9 96.5
Min. bDose (Gy) 63.5 64.8 58.6 59.8
Avg. bDose (Gy) 81.6 78.8 81.4 78.5
Max. pDose (Gy) 97.9 98.6 97.9 98.6
Min. pDose (Gy) 78.4 78.9 78.4 78.9
Avg. pDose (Gy) 88.1 85.2 88.1 85.2
Tumor Control
Probability (TCP) 0.63 0.70 0.05 0.20

For the physical plan enforcing 0.8 physical homogeneity, Figure M.1 shows how its TCP
changes relative to the different values of red region OMF. The graph shows that the TCP
becomes sensitive when red region’s OMF value falls below 0.8. The reason behind higher
sensitivity at lower OMF values is due to the mathematical function of the surviving fraction.
After leaving the re-population effect term off the surviving fraction equation (5.15) in Section
5.2.4 due to being independent of OMF’, the surviving fraction formula only includes the cell
killing effect which has the form of 1/¢". This function decreases slower as x increases. Since the
higher values of OMF (>0.8) would correspond to higher values of x, the change in the higher x
values wouldn’t change the surviving fraction as much the change in the lower x values

(corresponding to lower OMF values) would create. As a result, the change in the lower OMF
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values would change the surviving fraction with a higher rate resulting in a more significant

change in TCP.

=& Tumor Control Probability (TCP) for Physical Plan at 0.8
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Figure M.1: Tumor Control Probability Relative to the Change in Oxygen-Modification Factor

of Red Region
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