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ABSTRACT 

Intensity Modulated Radiation Therapy (IMRT) is a modern technique of delivering radiation 

treatments to cancer patients. In IMRT technology, intensities must be chosen for the many small 

unit grids into which the beams are divided to produce a desired distribution of dose at points 

throughout the body with the goal of maximizing dose delivered to the tumor while sparing 

healthy tissues from excessive radiation and keeping dose homogeneous across the tumor.  

Although IMRT plans are optimized as a single overall treatment plan, they are delivered over 

30-50 treatment sessions (fractions) and both cumulative and per-fraction dose constraints apply.  

 

The extended time period of treatment allows for periodic re-imaging of the changing tumor 

geometry and for adapting the treatment plan accordingly. This research presents promising 

iterative optimization approaches that re-optimize and update the treatment plans periodically by 

incorporating the latest tumor geometry information. Two realistic lung cases simulating 

practice, based on anonymized archive datasets, are used to test the effectiveness of the proposed 

adaptive planning approaches. The computed optimal plans both satisfy cumulative and per-

session dose constraints while improving the objective (average tumor dose) as compared to non-

adaptive treatment. 

 

In addition to tracking tumor geometrical changes through the treatment, recent advances in 

imaging technology also provide more insight on tumor biology which has been traditionally 

disregarded in planning. The current practice of delivering homogeneous physical dose 

distributions across the tumor can be improved by nonhomogeneous distributions guided by the 

biological responses of the tumor points. This research is one of the first efforts in developing 



 

radiation therapy planning optimization methods with tumor biology information while 

maintaining both cumulative and per-fraction dose constraints. The proposed biological 

optimization models generate treatment plans reacting to the tumor biology prior to the treatment 

as well as the changing tumor biology throughout the treatment. The optimization models are 

tested on a simulated head and neck test case. Results show computed biologically optimized 

plans improve on tumor control obtained by traditional plans ignoring biology, and also with 

adaptive over non-adaptive methods.  
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1 

1 Introduction 

According to the American Cancer Society, “Cancer is the second most common cause of death 

in the US, exceeded only by heart disease, and cancer accounts for nearly 1 of every 4 deaths”. 

In 2011, over 570,000 Americans are expected to die of cancer, more than 1,500 people a day, 

and the new cases that are expected to be diagnosed are about 1.6 million (Cancer Facts 

&Figures, 2011). Treatment methods to cure cancer include surgery, radiation therapy, 

chemotherapy, hormone therapy, biological therapy, and targeted therapy. Radiation therapy can 

be used alone or in combination with other treatment methods. Over half of all cancer patients 

receive radiation therapy at some point during their treatment (Bortfeld et al., 2008). 

 

1.1 IMRT Technology 

Radiation therapy aims to destroy cancer cells or slow their rate of growth by using high energy 

rays without exposing the healthy tissues to excess dose. When applying radiation therapy to a 

patient, a device mounted on a gantry called a linear accelerator rotates around the patient and 

shoots radiation from different beam angles aiming at targets (Figure 1.1). Using different beam 

angles helps better sparing the healthy tissues since a particular surrounding healthy tissue will 

not be heavily exposed to radiation consistently.  
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requirements, dose maxima on healthy tissues, dose-volume limits of protected fractions of 

healthy tissues (both a maximum limit and a lesser dose threshold that a certain percentage of the 

healthy tissue can receive), and the minimum dose limits on secondary targets.  

 

Although IMRT is planned as a single overall treatment, it is delivered over several weeks in a 

series of fractions or treatment sessions. In order to have more effective and applicable treatment 

plans, both cumulative and per-fraction dose constraints need to be taken into consideration (Wu 

et al., 2000; Blanco and Chao, 2002). Table 1.1 shows a prescription for one of the lung cases 

used in this research. The table presents both cumulative and per-fraction (fraction size) dose 

objectives/limits for targets and healthy tissues in the prescription. For healthy tissues subject to 

dose-volume constraints, a mean dose limit based on a predictive model discovered in Europe 

and confirmed in the US that reduces the combinatorial complexity of planning (Kwa et al., 

1998; Bradley et al., 2007) is used. This predictive model using mean lung dose has been shown 

to be a good predictor for radiation pneumonitis (frequent complication with symptoms of cough, 

fever, and shortness of breath found typically within 6 months after the start of radiotherapy) 

based on analysis of multiple datasets from different institutions which underlines the use of 

mean dose limits in the prescriptions. 
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Table 1.1: Prescription for the Lung Case Illustrating Both Cumulative and Fraction Size Dose 

Objectives/Limits 

 
Structure 

 
Structure 

Description 

Prescription 
Cumulative Dose 
Objective/Limit  

(Gy) 

Fraction Size 
Dose Limit 

(Gy) 

Tumor 
Primary 
Target 

Maximize avg. dose 
≥ 2 

950
dosemax.

dose min.
.  

PTV2 
Secondary 

Target 
100% ≥ 50 ≥ 2 

Right Lung 
Healthy 
Tissue 

Avg. dose ≤ 17 ≤ 2.1 

Left Lung 
Healthy 
Tissue 

Avg. dose ≤ 17 ≤ 2.1 

Heart 
Healthy 
Tissue 

Avg. dose ≤ 35 ≤ 2.1 

Esophagus 
 Healthy 
Tissue 

Avg. dose ≤ 35 ≤ 2.1 

Not Otherwise Specified 
Tissue 

Healthy 
Tissue 

100% ≤ 100 ≤ 2.1 

Spinal Cord 
Healthy 
Tissue 

100% ≤ 45 ≤ 2.1 

 

Numerous methods have been proposed in the literature to generate radiation therapy plans. Of 

these methods, optimization models using mathematical programming formulations have been 

developed to determine the best beamlet intensities (Langer et al., 1990; Langer et al., 1991; 

Langer et al., 2003; Lee et al., 2003; Romeijn et al., 2003; Romeijn et al., 2006; Preciado-

Walters et al., 2004, Lee et al., 2006; Tuncel, 2008) and the best aperture intensities (Romeijn et 

al., 2005; Preciado-Walters et al., 2006), along with non-linear gradient techniques (Cho et al., 

1998; Hristov and Fallone, 1998; Spirou and Chui, 1998; Wu and Mohan, 2000).  Other methods 

include randomized approaches, such as simulated annealing (Webb, 1991; Morril et al., 1990; 
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Mageras and Mohan, 1993; Langer et al., 1996) and genetic algorithms (Langer et al., 1996; 

Ezzel, 1996; Wu et al., 2000). 

 

1.3 Objectives of the Research 

All of these available methods used to generate radiation therapy plans optimize a single 

cumulative treatment plan and neglect changes in the tumor geometry over time. However, with 

the recent advances in imaging technology, the Image Guided Radiation Therapy (IGRT) allows 

acquiring images throughout the treatment that capture the changes in the tumor geometry. This 

motivates devising adaptive optimization methodologies that re-optimize the treatment plan in 

response to the changing tumor geometry while maintaining both cumulative and fraction size 

dose constraints. 

 

In addition, the recent molecular and functional imaging technology can provide more insight on 

the tumor biology and help incorporating the biological information, which has traditionally been 

unknown, into the treatment planning. The ability to understand the tumor biology and quantify 

the biological information invites developing optimization methodologies that would adjust 

IMRT plans by incorporating tumor biology information in order to achieve more effective 

treatment plans. 

 

This dissertation research develops optimization models to meet the demand for optimization 

methodologies exploiting tumor geometry and biology information over the course of the 

treatment. The objectives of this dissertation research are as follows. 
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 To deal with both cumulative and fractionation constraints in adaptive IMRT planning 

optimization 

 To develop, implement, and test adaptive optimization methodologies that re-optimize 

the treatment plan in response to the changes in the tumor geometry while satisfying both 

cumulative and fractionation dose constraints to achieve the best IMRT design for the 

overall treatment and for each fraction 

 To develop, implement, and test static and adaptive optimization models that include the 

initial and changing tumor biology information into the optimization which helps 

adjusting IMRT plans to the tumor sensitivity in order to yield more effective treatment 

plans 

 

1.4 Research Tools 

The optimization models and methodologies developed in this dissertation research are 

implemented in C++ programming language by using ILOG Concert Technology Library. The 

formulations are solved by using CPLEX 11.2 software. Since the cuts generated by CPLEX do 

not help the optimization process, that feature of CPLEX is turned off. The other CPLEX 

parameters are kept at their default values. All the computational experiments are performed on 

the Industrial Engineering Department’s Windows Server 2003 R2 Datacenter x64 Edition 

having 128 GB RAM and 16 processors at 2.93 GHz. The best performance is achieved by 

allocating single processor.   
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1.5 Dissertation Organization 

This dissertation is organized as follows. Chapter 2 derives mathematical programming and 

related methods that optimize treatment plans where both cumulative and fraction size dose 

limits on each tissue are satisfied. Chapter 3 describes the fractionation challenge that is 

magnified in adaptive IMRT planning. Chapter 4 addresses the solution approaches for the 

fractionation challenge in adaptive IMRT by developing an adaptive planning optimization 

methodology with changing tumor geometry and fraction size limits and presents the 

computational experiments showing the benefit of adaptation. Biologically guided IMRT 

optimization methodologies are presented in Chapter 5 as well as the results demonstrating the 

improvements in the treatment outcomes. Finally, conclusions, contributions and future research 

are given in Chapter 6.   
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2 Models for Optimization of Treatment Plans Satisfying Fraction Size Requirements 

2.1 Description of the CERRLung Test Case 

This section describes one of the lung test cases, referred as “CERRLung”, which is used in the 

computational experiments presented in Chapter 2 and 4. Table 2.1 shows the volume (cm3), 

number of sampling voxels used for the optimization, the size of each voxel (cm3/voxel), and the 

influence matrix density for each structure in the lung test case. The influence matrix represents 

all the voxels as its rows and all selected beamlets as its columns and each element of the matrix 

(dose coefficient) defines dose per unit beamlet intensity. The influence matrix density (%) for a 

structure indicates the ratio of its non-zero dose coefficients to its all dose coefficients in the 

influence matrix. The influence matrix for this test case is generated using a sample case found 

on the CERR website (“CERR: A Computational Environment for Radiotherapy Research”) 

established to allow collaborative computational experimentation in radiation therapy. The 

prescription for this test case is presented in Section 1.2.  

 

Table 2.1: Description of the Lung Test Case 

Structure Structure 
Description 

Volume 
(cm3) 

Number of 
Sampling 

Voxels Used 
for 

Optimization

cm3/Voxel in 
Optimization 

The 
Influence 

Matrix 
Density 

Tumor Primary Target 90.6 2,133 0.04 94% 
PTV2 Secondary Target 256.0 1,519 0.17 93%

Right Lung Healthy Tissue 1,893.2 2,805 0.67 76%
Left Lung Healthy Tissue 1,689.3 2,476 0.68 35%

Heart Healthy Tissue 599.4 876 0.68 44%
Esophagus Healthy Tissue 42.3 233 0.18 66%

Not Otherwise 
Specified Healthy Tissue 31,430.0 11,425 2.75 40% 

Spinal Cord Healthy Tissue 56.2 316 0.18 52% 
Beam Angles: 0 40 80 120 160 200 240 280 320 (780 beamlets) 



10 

2.2 Notation 

Tissues are represented by a collection of points (voxels).  Let T denote the set of tumor points, S 

denote the set of points in the secondary target and Hk denote the set of points in kth healthy 

tissue for KKk  .  Here, K and K  denote the set of indices for the healthy and dose-volume 

healthy tissues, respectively. 

 

The set of beamlets used from preselected beam angles is denoted by J.  Dose coefficients aij 

denote the dose received by tissue point i per unit intensity of beamlet j. The coefficients for all 

tissues form the influence matrix for the problem as defined above. The dose received from 

beamlet j at point i is jij xa
 
where 0x j   is the continuous decision variable defined as the value 

of intensity assigned to beamlet j.   

Let variables id  denote the dose received at point i. This research makes the standard 

assumption that the dose can be expressed as a linear combination of the individual beamlet 

intensities. Thus, for every point i,  





Jj

jiji xad                                              (2.1) 

 

Let Dmin be a variable denoting the minimum tumor dose and coefficient   be a homogeneity 

ratio limit with 10   . The prescribed minimum dose for the secondary target is denoted as 

total
secl  whereas the prescribed maximum dose for healthy tissues Kk   is denoted as total

ku . The 

parameter k  represents the mean dose limit for the kth dose-volume healthy tissue. 
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The fraction size limits are represented by the following parameters. Let daily
tumorl  denote the 

minimum dose that any point in the tumor must receive during the fraction and daily
secl  denote the 

minimum dose any point in the secondary target must receive during the fraction.  daily
ku  denotes 

the maximum dose that any point in healthy tissue KKk   can receive during the fraction.  

 

2.3 Optimization against Cumulative Dose Limits Alone 

2.3.1 The Linear Programming (LP) Model 

The LP formulation shown below and presented in Saka et al. (6) in 2010 is used to optimize the 

treatment plan against the cumulative dose limits alone. It maximizes the average tumor dose 

received over the entire treatment (2.2) subject to several overall treatment constraints. 

Constraint set (2.3) ensures that the average dose received across all points in kth dose-volume 

healthy tissue is limited by the corresponding mean limit. Constraint sets (2.4) and (2.5) for the 

overall treatment guarantees that the upper dose limit for healthy tissues and the lower dose limit 

for secondary target tissue are satisfied, respectively. Constraint set (2.6) is the dose consistency 

constraint assuring secondary target doses do not exceed the maximum tumor dose. Constraint 

(2.7) satisfies the tumor dose homogeneity by enforcing the ratio of the minimum and maximum 

tumor doses to be greater than or equal to homogeneity limit a.   

 
T/d

Ti
i 









maximize                        (2.2) 

kk
Hi

i Hd
k




 Kk                     (2.3) 

total
ki ud   kHi,Kk                     (2.4) 

total
seci ld   Si                            (2.5) 
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
min

i

D
d   Si                            (2.6) 


min

imin

D
dD    Ti                      (2.7)     

 

2.3.2 Difficulties with Fractionating the Cumulative Plan	

Traditionally, optimized treatment plans are delivered into 30-50 fractions for which fraction 

objectives apply (Wu et al., 2000; Blanco and Chao, 2002). The cumulative tolerances for 

normal tissues are valid only if delivered in doses per fraction no higher than about 2.1 Gy, and 

tumor eradication becomes uncertain when delivered dose per fraction falls below about 1.8 Gy 

(Stewart and Li, 2007). Successful treatment rests on delivering feasible fractions satisfying 

these stated fraction size dose objectives. 

 

The optimized treatment plan cannot be divided into too many fractions since it is required to 

deliver the minimum fraction size dose to the primary and secondary target. This puts an upper 

bound on N denoted as N . Here, N denotes the integer number of fractions the treatment plan 

will be given. N  (not necessarily integer) is determined in the expression (2.8) as by taking the 

minimum of the number of fractions dividing the secondary target doses by the secondary target 

fraction size limit and the number of fractions dividing all the tumor doses by the tumor  fraction 

size dose limit. 


















 daily

tumor

min
daily
sec

i

Si l

D
,

l

d
minminNN                       (2.8)
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On the other hand, the treatment plan cannot be divided into too few fractions, because the 

healthy tissues cannot receive a dose more than their maximum fraction size limits during each 

fraction. This puts a lower bound on N denoted by N  (not necessarily integer) determined in the 

expression (2.9) by taking the maximum of number of fractions dividing the maximum dose each 

healthy tissue receives by its fraction size dose limit. 












 daily
k

i

KKk
,Hi u

d
maxNN

k

                       (2.9) 

 

When the treatment plan is optimized against the cumulative dose limits alone, the lower bound 

N  may be greater than the upper bound N ; therefore, a feasible N to divide the treatment plan 

does not exist. This is demonstrated by the results given in Table 2.2. There, 

  252897250  /.,/minN and 349125103 ../.N  . The treatment plan can be divided at 

most in 25 fractions in order to satisfy the minimum fraction size limit (≥2 Gy) on the targets. On 

the other hand, it must be divided in at least   50349 .  fractions in order not to violate the 

maximum fraction size limit (≤2.1 Gy) on the right lung. As a result, a feasible integer N that 

equally divides the cumulative treatment plan and satisfies both the minimum and maximum 

fraction size dose limits cannot be found.  

 

Furthermore, when the cumulative doses are divided by the integer upper (N=25) or integer 

lower (N=50) bounds, the fraction size dose limits are significantly violated (4.14 Gy > 2.1 Gy 

for the right lung in integer upper bound division, 1.0 < 2.0 Gy for the secondary target PTV2 in 

integer lower bound division). 
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Table 2.2: Optimization against Cumulative Dose Limits Alone 

Dose Statistics 
Cum. 
Dose 
(Gy) 

Fraction 
Size Dose 
Limit (Gy) 

Feasible 
Integer 

Number of 
Fractions (N) 

Fraction Size 
Dose (Gy) 

When 

  25 NN  

Fraction Size 
Dose (Gy) 

When 
  50 NN  

Min. Tumor 97.8 ≥2 N≤48 3.91 1.96 
Min. PTV2 50.0 ≥2 N≤25 2.00 1.00 

Max. Right Lung 103.5 ≤2.1 N≥50 4.14 2.07 

Notation: N  (not necessarily integer) denotes the maximum number of fractions dividing all the 

targets’ doses by their fraction size limit, and N (not necessarily integer) denotes the minimum 

number of fractions dividing all the healthy tissues’ doses by their fraction size limit. PTV2 
represents the secondary target. 

 

2.4 Ratio Model: Optimization by Including Ratio Constraints and Rescaling 

2.4.1 Ratio-Enforcing Constraints 

In order to find a feasible N to divide the treatment plan, N  needs to be at least less than or equal 

to N . Thus: 


































 daily

tumor

min
daily
sec

i

Sidaily
k

i

KKk
,Hi l

D
,

l

d
minminN

u

d
maxN

k

                  (2.10) 

 

Let smin be a variable that defines the minimum dose that the secondary target receives, so

 i
Si

min dmins


 . Rewriting condition (2.10) by using this expression and then rearranging some 

terms gives the condition in (2.11) which states that the ratio of dose at any healthy tissue point 

to the dose at any primary or secondary tumor point cannot exceed the ratio of their respective 

fraction size limits. 

 









 daily

tumor

daily
k

mindaily
sec

daily
k

mini
Hi l

u
D,

l

u
smindmax

k

                   (2.11) 
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This condition is incorporated into the LP-formulation referenced in the previous section by 

adding ratio constraint sets (2.12) through (2.15) that ensure that the dose distribution healthy 

tissues receive are within a specified ratio of the dose distribution the targets receive. Constraint 

sets (2.12) and (2.13) capture the minimum secondary target and the tumor doses, respectively. 

Constraint sets (2.14) and (2.15) ensure that the maximum dose that each healthy tissue receives 

should be within a ratio of the minimum secondary target dose and the minimum tumor dose, 

respectively. The LP-formulation presented in Section 2.3.1 plus these ratio constraint sets 

constitute the ratio model.    

  mini sd    Si              (2.12) 

  mini Dd    Ti              (2.13) 

  mindaily
sec

daily
k

i s*
l

u
d    kHi,KKk            (2.14) 

  mindaily
tumor

daily
k

i D*
l

u
d    kHi,KKk            (2.15) 

 

Table 2.3 shows the results from optimizing the treatment plan for the CERRLung test case by 

solving the ratio model. Based on the dose statistic,   23624742472 ./.,/.minN  and 

2361276 ../N  . However, there is still not an integer N between N  and N . In addition, 

when the cumulative doses are divided by the integer upper (N=36) or integer lower (N=37) 

bounds, the fraction size dose limits are still violated (2.11 Gy > 2.1 Gy for the right lung in 

integer upper bound division, 1.96 < 2.0 Gy for the secondary target PTV2 in integer lower 

bound division).  
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Table 2.3: Optimization including Ratio Constraints 

Dose Statistics 
Cum. 
Dose 
(Gy) 

Fraction 
Size Dose 

Limit 
(Gy) 

Feasible 
Integer 

Number of 
Fractions 

(N) 

Fraction Size 
Dose (Gy) 

When 

  36 NN  

Fraction Size 
Dose (Gy) 

When 
  37 NN  

Min. Tumor 74.4 ≥2 N≤37 2.07 2.01 
Min. PTV2 72.4 ≥2 N≤36 2.01 1.96 

Max. Right Lung 76.0 ≤2.1 N≥37 2.11 2.05 

Notation: N  (not necessarily integer) denotes the maximum number of fractions dividing all the 

targets’ doses by their fraction size limit, and N (not necessarily integer) denotes the minimum 

number of fractions dividing all the healthy tissues’ doses by their fraction size limit. PTV2 
represents the secondary target. 

 

2.4.2 Re-scaling to Achieve Feasibility 

When N satisfying the integrality condition and    NNN   cannot be found, the dose 

distribution can always be rescaled down on all plan intensities  in order to get an N satisfying 

fraction size limits. 

 

Proposition: It is always possible to find a rescaling factor r* to achieve a feasible division of 

the treatment plans solving the ratio model.  

Proof: Since N  and N  are within an integer bracket, it is always possible to find 10  *r that 

rescales  *r1N   to  N  where   N/N1*r  . Given NN  , rescaling N  by r* and 

rounding it down will give  N . Therefore, by rescaling doses down by   N/N1 , the 

treatment plan can always be divided into  N  feasible fractions. É   
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Note that rescaling doses down may violate the minimum cumulative dose limit on the secondary 

target if daily
sec

total
sec l/l  is fractional and the cumulative dose constraint on the secondary target 

(constraint set (2.5)) is active in the optimization implying total
secmin ls  . In order to avoid this 

violation, one can re-optimize the treatment plan by adding the fraction size dose ( daily
secl ) to the 

minimum cumulative dose limit on that tissue and then rescaling the dose distribution.   

    

The effects of rescaling are demonstrated in Figure 2.1 by using the results in Table 2.3. Figure 

2.1 shows the minimum doses the tumor and secondary target PTV2 receives and the maximum 

dose the right lung receives before and after rescaling. It also displays the bounds on the number 

of fractions to feasibly divide the corresponding doses. In this example, recall that 236.NN  , 

so the treatment plan cannot be divided more than 36 and less than 37 fractions. The rescaling 

factor is computed as r*=0.005=1-(36/36.2). Rescaling the doses down by 0.5% allows treatment 

plan to be divided in 36 fractions.  
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Figure 2.1: Rescaling Dose Distribution Received by Solving the Ratio Model (The bounds on 

the number of fractions into which the doses can be divided without violating fraction size 

requirement are given in the parenthesis. PTV2 represents the secondary target.) 

 

2.5 Uniform Fractionation Model: Optimization Including Integer Fractionation 

Constraints 

A single integer variable mixed-integer linear programming (MILP) model can be developed 

which generates higher quality treatment plans while explicitly satisfying the fraction size dose 

limits. The underlying concepts for this uniform fractionation model were first developed by 

Dink in 2005 and Dink et al. in 2011. The model maximizes the average tumor dose objective 

(2.2) subject to the overall treatment constraint sets (2.3) through (2.7) and the integer 

fractionation constraint sets (2.16) through (2.18) given below. Constraint sets (2.16) through 

(2.18) impose lower dose limits on the secondary target and tumor points, and the upper dose 

limits on all healthy tissue points for the N fractions in the plan. Here, N is an integer variable 
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and defined as the number of fractions in the plan. These integer fractionation constraints ensure 

that the plan can be delivered in N equal, feasible fractions.  

 Nld daily
seci   Si                    (2.16) 

 Nld daily
tumori    Ti                    (2.17) 

 Nud daily
ki   kHiKKk  ,                  (2.18) 

 

Figure 2.2 compares the average tumor doses obtained by solving the uniform fractionation 

model and the rescaled solution for the lung test case. The uniform fractionation model improves 

the average tumor dose of 75.9 Gy received from the rescaled solution to 76.2 Gy corresponding 

to a 0.3 Gy increase. These computational results illustrate the mathematical fact that the 

rescaled solution cannot be better than the optimal solution received from the uniform 

fractionation model, because the ratio solution is in the feasible space for the uniform 

fractionation model. In addition to offering the opportunity to produce better solutions, solving 

the uniform fractionation model will yield an optimal fractionation in every case if there is any.    
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Figure 2.2: Rescaled Solution vs. Uniform Fractionation Model Solution (The minimum and 

maximum doses delivered to the tumor are shown with lower and upper bar on the columns, 

respectively.) 

 

Although small in these results, the difference between the rescaled solution and the uniform 

fractionation model solution could worsen as the doses are rescaled down by a higher rescaling 

factor. Table 2.4 shows the highest possible values of   N/Nr 1  for different values of  N . 

In this table, N  is kept very close to   1N  in order to get an upper bound. As this table shows, 

the doses could be rescaled down significantly as the treatment plan is optimized on fewer 

fractions. For instance, for values of   18N ,  the dose distribution could be rescaled down by 

more than 5% possibly causing the solution to perform significantly worse compared to the 

uniform fractionation model solution. As a result, solving the uniform fractionation model can be 

more beneficial when clinical conditions, such as using tighter cumulative dose limits on healthy 
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tissues or using higher fraction size limits, requires the treatment plan to be delivered in fewer 

fractions. 

 

Table 2.4: Highest Possible Values of Re-scaling Factor (r) for Different  N  

 N  N    N/Nr 1

40 40.999 0.024 
30 30.999 0.032 
20 20.999 0.048 
18 18.999 0.053 
10 10.999 0.091 
5 5.999 0.167 
2 2.999 0.333 

Notation: N  (not necessarily integer) denotes the maximum number of fractions dividing all the 

targets’ doses by their fraction size limit, and N (not necessarily integer) denotes the minimum 

number of fractions dividing all the healthy tissues’ doses by their fraction size limit.  
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3 The Fractionation Challenge in Adaptive IMRT Planning 

3.1 Background 

Chapter 2 addressed the challenges that may arise in developing one cumulative plan (with 

secondary targets) and constraining or adjusting it to satisfy per fraction constraints. Still, the 

current standard practice of developing only one cumulative plan (without the secondary targets) 

at the onset of treatment often results in planned dose to primary target higher than that planned 

for any healthy tissue, and the minimum fraction dose for tumor slightly less than that of normal 

tissues.  Then an integer number of equal fractions can easily be chosen to divide the overall 

treatment into feasible fractions and implicitly enforce per-fraction limits. 

  

However, as the geometrical conditions change in adaptive planning, e.g. due to tumor 

shrinkage/growth (Kupelian et al., 2005; Siker et al., 2006; Ramsey et al., 2006; Underberg et 

al., 2006; Bosmans et al., 2006; Haasbek et al., 2007) or inter-fractional motion (Yan and 

Lockman, 2001; Yan et al., 2005), a normal tissue which would have satisfied its bound with 

slack in the initial plan is now pushed closer to its limit in the re-optimized plan. This creates a 

circumstance where the conditions for equal division of the adapted plan into fractions can no 

longer be satisfied easily.   

 

This chapter demonstrates the problem of fractionating the adaptive plans by using another lung 

case simulating real practice. The optimization model is formulated as a linear programming 

formulation which is a mathematical representation of the prescription. The plan is first 

optimized over the entire set of cumulative constraints and delivered for the first sub-sequence of 

fractions (Epoch 1). Here, epoch defines a subsequence of fractions delivered as part of the 
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adaptive plan. After subtracting the delivered doses from the cumulative limits, the treatment 

plans are re-optimized partway through treatment in response to the changes in the tumor 

geometry. The challenge of fractionating the re-optimized plan is demonstrated by computational 

experiments performed with varying mean dose limit on both lungs and implicit minimum tumor 

fraction size dose limits.  

 

3.2 Description of the Lung1 Test Case 

This section describes the second lung test case treated here, referred as “Lung1”, which is used 

in the computational experiments in Chapter 3 and 4. The points for optimization were 

distributed throughout the contours, determined randomly within each structure volume for 

computation efficiency rather than employing a uniform point set. They were more highly 

concentrated within the target and the critical structures of interest (Morrill et al., 1990; 

Niemierko and Goitein, 1990; Lu and Chin, 1993; Niemierko and Goitein, 1993; Acosta et al., 

2009). Number of sample points used (the mean distance to the nearest neighbor point) is 683 

(0.25 cm) for primary target PTV1, 95 (0.32 cm) for the esophagus, 400 (0.57 cm) for the heart, 

500 (0.73 cm) on each of the lungs, 369 (0.21 cm) for spinal cord, and 2,580 (0.65 cm) for the 

Not Otherwise Specified tissue. The influence matrix of aij was calculated by using the standard 

radiation therapy software GRATIS (Sherouse Systems Inc.). For this test case, 9 co-planar beam 

angles are used, spaced at intervals of 40° within the range of 20°-340°.  

 

Table 3.1 shows the prescription used in the computational experiments with the lung test case. 

The table presents both cumulative dose objectives and fraction size dose limits for the target and 

healthy tissues in the prescription. All of the points in each structure are subject to its 
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corresponding fraction size limit. Multiple values are shown for some structures varied in 

experiments to be reported below.  

 

Table 3.1: Prescription for the Lung1 Test Case 

       Note: PTV1 represents the planning target volume. 
 

3.3 Adaptive Planning Optimization 

The adaptive planning optimization approach taken in this study pursues the following steps. 

First, the LP-formulation presented in Section 2.3.1 is solved over all cumulative constraints. 

Then, an integer upper bound ( N ) and an integer lower bound ( N ) on the number of fractions 

(N) are computed. Upper limit N  is calculated as the maximum number of fractions into which 

the tumor dose can be divided without violating fraction size requirement daily
tumorl , i.e.  daily

tumormin l/D . 

Similarly, lower limit N  reflects the minimum number of fractions into which does for all 

healthy tissues k can be divided while enforcing fraction size maximum daily
ku , i.e. 

 KKk,Hi:u/dmax k
daily
ki  . When there is a feasible outcome with NN   the treatment 

Structure 
Cumulative Dose  
Objective (Gy) 

Fraction Size 
Dose Limit (Gy) 

Primary Target (PTV1) 
Maximize avg. dose 

≥ 1.8, 1.9, 2.0 
95.0

dosetumor max.

dose tumor min.
  

Right Lung Mean dose ≤ 20, 22, 25 ≤ 2.1 
Left Lung Mean dose ≤ 20, 22, 25 ≤ 2.1 

Heart Mean dose  ≤ 35 ≤ 2.1 
Esophagus Mean dose  ≤ 35 ≤ 2.1 

Not Otherwise Specified Tissue 100%  ≤ 100 ≤ 2.1 
Spinal Cord 100%  ≤ 45 ≤ 2.1 
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plan is divided into N  fractions, and the first N1 are delivered in Epoch 1 before the patient is 

re-imaged.  

 

Following the first epoch, the PTV1 volume is updated based on the tumor shrinkage 

information extracted from simulated re-imaging. After revising the cumulative dose limits by 

subtracting the delivered doses, the treatment plan is re-optimized by solving the LP-formulation 

against the residual cumulative dose limits that maximizes the mean dose delivered to the 

residual tumor. Then, Epoch 2 fraction upper bound,  daily
tumor

remaining
min l/DN 2  fractions are 

delivered during the second epoch of the treatment where remaining
minD  represents the minimum 

tumor dose achieved in the re-optimized plan.  

  

3.4 Results 

3.4.1 Computational Experiments – Overall Plan and Epoch 1 

To illustrate the fractionation problem in adaptive planning, complete plans without adaptation 

are first computed for a range of mean doses of the lungs and tumor fraction limits. Table 3.2 

shows that the optimized plan in the beginning of the treatment can be divided into integer 

number of feasible fractions (N) when ≥1.8 Gy tumor fraction size requirement applies. In this 

case, an integer N can be found within the range between lower and upper bound on N (31≤N≤32 

for mean dose limit 20 Gy, 34≤N≤35 for 22 Gy, 39≤N≤40 for 25 Gy). For varying mean dose 

limits of 20 Gy, 22 Gy and 25 Gy on lungs, the treatment plan is divided into 32, 35, and 40 

fractions, respectively, in which all the tumor points receive fraction size doses ≥1.8 Gy and all 

healthy tissue points receive fraction size doses ≤2.1 Gy. 



 

 

Table 3.2: Optimal Non-Adaptive Plan Results over the Entire Range of Cumulative Constraints 

Mean 
dose 
limit 
on 

both 
lungs 
(Gy) 

Optimal Plan Results (All the cumulative dose 
requirements in Table 3.1 are satisfied.)  

Upper and lower bound 
on integer number of 

fractions (N) 

 
 
 

 
N
 

Tumor fx size 
limit 

≥2.0 ≥1.9 ≥1.8

Min. 
Tumor 
(Gy) 

Max. 
Right 
Lung 
(Gy) 

Max. 
Left 
Lung 
(Gy) 

Max. 
Heart 
(Gy) 

Max. 
Esoph. 
(Gy) 

Max. 
N.O.S. 
(Gy) 

Max. 
Cord 
(Gy) 

N  N  N  

≤20 58.8 60.9 43.2 55.8 45.6 64.8 45.0 31 29 30 32 
≤22 64.4 67.2 46.9 61.3 49.4 71.4 45.0 34 32 33 35 
≤25 72.8 76.4 52.4 70.4 55.2 80.8 45.0 39 36 38 40 

Notation: N  is the integer lower bound on N dividing all the healthy tissues’ doses into fraction sizes  

of ≤2.1, N  is the integer upper bound on N dividing all the target doses by the assumed tumor fraction  
limit. “N.O.S.” is the abbreviation of “Not Otherwise Specified” tissue. Number of fractions to feasibly  
divide each plan is indicated in bold.  
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Following the adaptive planning approach of Section 3.3, the first 25 of those fractions are 

assumed to be delivered during the first epoch. Table 3.3 shows fraction size and the Epoch 1 

cumulative dose statistics that result for the structures under interest. Note that all fraction limits 

are satisfied. 

 

Table 3.3: Epoch 1 Optimal Plan Results 

Mean 
dose 
limit 
on 

both 
lungs 
(Gy)  

Epoch 1 (first 25 fractions) Optimal Plan Results (≥1.8 Gy tumor fraction size 
requirement applies.) 

Min. 
Tumor 
(Gy) 

Max. 
Tumor 
(Gy) 

Avg. 
Tumor 
(Gy) 

Max. 
Right 
Lung 
(Gy) 

Max. 
Left 
Lung 
(Gy) 

Max. 
Heart 
(Gy) 

Max. 
Esoph. 
(Gy) 

Max. 
N.O.S. 
(Gy) 

Max. 
Cord 
(Gy) 

≤20 
45.8 

[1.83] 
48.3 

[1.93] 
47.1 

[1.89] 
47.6 
[1.9] 

33.7 
[1.35]

43.6 
[1.74] 

35.6 
[1.43] 

50.5  
[2.02] 

35.2 
[1.41] 

≤22 
46.0 

[1.84] 
48.4 

[1.94] 
47.3 

[1.89] 
47.9 

[1.92]
33.6 

[1.34]
43.7 

[1.75] 
35.2 

[1.41] 
50.9  

[2.04] 
32.1 

[1.29] 

≤25 
45.4 

[1.82] 
47.8 

[1.91] 
46.7 

[1.87] 
47.8 

[1.91]
32.8 

[1.31]
44 

[1.76] 
34.5 

[1.38] 
50.5  

[2.02] 
28.1 

[1.13] 
Note: Fraction size doses are given in brackets below cumulative doses. “N.O.S.” is the 
abbreviation of “Not Otherwise Specified” tissue. 
  

3.4.2 Computational Experiments – Adaptation and Epoch 2 

For the purpose of experimentation, the tumor shrinkage is simulated where the residual tumor 

corresponds to the 65% of the original tumor after fraction 25 (See Section 4.4.1 for details). 

After delivering 25 fractions in Epoch 1, the treatment plan is re-optimized based on the updated 

image against residual cumulative dose limits.  

 

Table 3.4 shows the Epoch 2 dose statistics and fraction limits obtained from re-optimization. 

Only statistics related to Heart and Not Otherwise Specified tissues are shown here due to their 
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dominant role in determining the lower bound on the integer number of fractions that the re-

optimized treatment plan can be delivered into (denoted N2).   

 

Table 3.4: Epoch 2 Optimal Plan Results 

Mean 
dose 
limit 
on 

both 
lungs 
(Gy) 

Epoch 2 Optimal Plan Results (In response to the 
tumor geometrical changes, the treatment plan is 

re-optimized against the residual cumulative 
dose limits.) 

Upper and lower bound 
on the number of 
fractions in the re-

optimized plan (N2) 

 
 

 
2N

 

Tumor fx size limit
≥2.0 ≥1.9 ≥1.8

Min. 
Tumor 
(Gy) 

Max. 
Tumor 
(Gy) 

Mean 
Tumor 
(Gy) 

Max. 
Heart 
(Gy) 

Max. 
Not 

Otherwise 
(Gy) 

2N  2N  2N  

≤20 14.7  20.3 17.5 18.5 20.9 10 7 7 8 
≤22 21.6 27.7 24.6 24.7 28.7 14 10 11 11 
≤25 32.3  38.9 35.6 32.8  41.9  20 16 17 17 

 

The cases show that the adapted plan in Epoch 2 using only cumulative constraints can only be 

divided into fractions satisfying tumor fraction size requirements at the price of violating the 

fraction size dose limits of some healthy tissue structures. Similarly, the adapted plan can be 

divided into fractions where all healthy tissue fraction size dose limits are satisfied without the 

tumor fraction size limit being satisfied. No number of fractions meets all requirements. 

 

These violations are displayed in Figure 3.1(a-c) for different mean dose limits on each lung. For 

example, for mean dose limit 20 Gy, the adapted plan can be divided into 7 fractions satisfying 

≥2 Gy tumor fraction size requirement while violating the ≤2.1 Gy requirement on Heart and Not 

Otherwise Specified tissue (2.64 Gy ≥ 2.1 Gy for Heart, 2.99 Gy ≥ 2.1 Gy for Not Otherwise 

Specified tissue). These plots illustrate that as the tumor fraction size requirement is relaxed from 
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≥2 Gy to ≥1.8 Gy, the ≤2.1 Gy requirement on Heart and Not Otherwise Specified tissues are 

less violated, but not fully satisfied. 

 

Figure 3.1(a-c) also presents the number of fractions into which the adapted treatment plan can 

be divided in order to satisfy all the healthy tissue fraction size requirements. However, this 

causes tumor to be significantly underdosed (1.47 Gy minimum dose for mean dose limit 20 Gy, 

1.54 Gy minimum dose for 22 Gy, and 1.62 Gy minimum dose for 25 Gy).  
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Figure 3.1: Sensitivity of Healthy Tissue and Target Fraction Size (fx) Doses in Epoch 2 (a) For 

Mean Dose Limit on Both Lungs 20 Gy (b) For Mean Dose Limit on Both Lungs 22 Gy (c) For 

Mean Dose Limit on Both Lungs 25 Gy (“NOS” is the abbreviation of “Not Otherwise 

Specified” tissue.) 
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3.4.3 Computational Experiments – Potential Gains with Adaptation 

Although the above treatment plans generated by adaptation are not feasible due to the lack of 

fractionation in the second epoch, they are compared against plans generated by no adaptation in 

Table 3.2 to assess the gains that could be realized from adaptive planning. Figure 3.2 

summarizes the mean tumor doses delivered to the tumor by no adaptation (Table 3.2) versus 

two-epoch adaptation (Epoch 1 in Table 3.3 and Epoch 2 in Table 3.4) for varying mean dose 

limits on the lungs. Here, ≥1.8 Gy tumor fraction size requirement is enforced in delivering 

Epoch 1. Adapting the treatment plan boosts the mean tumor dose from 60.3 Gy to 64.7 Gy for 

mean dose limit 20 Gy, from 66.2 Gy to 71.9 Gy for 22 Gy, and from 74.6 Gy to 82.2 Gy for 25 

Gy. These improvements correspond to a 7% to 10% gain in the doses delivered to the tumor. 

 

Figure 3.2: Average Tumor Doses Received by No Adaptation vs. Two-Epoch Adaptation 

 

3.5 Discussions 

Chapter 3 addresses the problem of fractionation in the adaptive planning context. As a 

consequence of solely taking cumulative dose objectives into account in the treatment planning 
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optimization, plans re-optimized in response to the changes in the geometrical conditions can 

provide dose distributions that do not allow the adapted plan to be divided into fractions 

satisfying both the minimum fraction size requirement placed on tumor (e.g. ≥1.8 Gy) and the 

maximum fraction size requirement placed on healthy tissues (≤2.1 Gy). In this case, the 

practitioners must take the approach of relaxing the fraction size dose requirements in order to 

achieve a least violated fractionation plan which would likely reduce the efficacy of the overall 

treatment plan.  

 

Specifically, the fractionation challenge is illustrated above by using a lung test case simulating 

real practice. Treatment plans are re-optimized partway through treatment by incorporating the 

latest tumor shrinkage information. With the re-optimization in the experiments, structures Heart 

and Not Otherwise Specified receive more dose relative to the tumor which does not allow 

feasible fractionation of the adapted plan. The minimum number of fractions required for healthy 

tissue doses to be given in fraction sizes below 2.1 Gy is significantly higher than the maximum 

number of fractions that the tumor dose distribution can be given without falling below about 1.8 

Gy (Table 3.4). When the adapted plans are divided, the violations of healthy tissue fraction sizes 

doses can be as significant as 3 Gy per fraction whereas the tumor fraction size doses can fall 

down to 1.47 Gy (Figure 3.1(a-c)). 

 

The fractionation challenge investigated in this study motivates devising methodologies that 

simultaneously re-optimize treatment plans against both cumulative and fraction size dose limits 

in adaptive plans with two or more epochs. Although the gain obtained from adaptation (Figure 

3.2) might reduce as the fraction size limits are explicitly enforced in the re-optimization, 
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simultaneous methods would allow the feasible division of the adapted plans; therefore, 

increasing the effectiveness of the treatment delivered.      
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4 Adaptive IMRT Planning Optimization with Changing Tumor Geometry and Fraction 

Size Limits 

Adaptive planning responds to the changes in the tumor geometry throughout the treatment and 

demands both cumulative and fraction size limits on tissues be satisfied together. The changes in 

the tumor geometry between fractions known as inter-fractional changes happen mostly in two 

forms: (1) the change in the position/shape of the tumor due to inter-fraction motion, e.g. 

positional change of the prostate tumor due to how much the bladder/rectum is filled on the 

particular day (Yan and Lockman, 2001; Yan et al., 2005), (2) the change in the tumor size, e.g. 

tumor shrinkage/growth in lung cases (Kupelian et al., 2005; Siker et al., 2006; Ramsey et al., 

2006; Underberg et al., 2006; Bosmans et al., 2006; Haasbek et al., 2007). These inter-fractional 

changes can be captured by the updated images acquired through the treatment and incorporated 

into the planning to update the remaining plan accordingly. 

 

In this study, the change in the tumor size/shape, specifically tumor shrinkage information over 

time, is taken into account to adapt the treatment plan. This chapter develops a promising 

adaptive planning optimization methodology which re-optimizes the treatment plan against both 

cumulative and fraction size dose constraints after delivering each epoch by incorporating the 

latest tumor shrinkage information. In re-optimizing the treatment plan at each adaptation point, 

a mixed-integer linear programming (MILP) formulation is solved; therefore, a series of MILPs 

will be solved in the proposed methodology to adapt the plan periodically. 

 

The adaptive treatment plans computed by the developed optimization methodology are 

compared with the treatment plans generated without adaptation (non-adaptive) by using the two 
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realistic Lung test cases described in Section 2.1 (“CERRLung”) and Section 3.2 (“Lung1”). The 

prescription in Table 1.1 is used for CERRLung case whereas the prescription in Table 3.1 is 

used for Lung1 case. Note that the secondary target PTV2 is included in the Lung1 case with the 

same prescription in Table 1.1, and ≥2Gy fraction size requirement for tumor and mean dose 

limit of 25 Gy is used for both lungs. The non-adaptive plans in this chapter are generated by 

solving the uniform fractionation model presented in Section 2.5 or a non-adaptive planning 

optimization with boost approach explained in Section 4.4.2. The computed adaptive plans both 

satisfy cumulative and fraction size dose limits while improving the tumor doses.  

 

4.1 Literature Review 

The available methods used to generate radiation therapy plans optimize a single cumulative 

treatment plan and neglect changes in the tumor over time. Besides these non-adaptive methods, 

several approaches for adaptive treatment planning have been developed by operations 

researchers. In most of these approaches, the uncertainty in the tumor geometry caused by 

internal organ movements and set up-errors (random changes in the patient position) across all 

fractions are incorporated into the treatment planning. In order to generate IMRT plans under 

this uncertainty, a dynamic programming approach with practical strategies (Ferris and Voelker, 

2004; Deng and Ferris, 2006), weighted power loss function approach calculating the ideal 

spatial dose distribution (Sir et al., 2006), and a probabilistic model achieving robust 

optimization (Chu et al., 2005) have been presented. 

 

Recently, in the medical world, the reimaging of gross tumor boundaries over time has been 

introduced into the clinic. Devices now widely available allow periodic CTs to be performed on 
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the treatment couch (using cone beam or rail methods) and cross registered using fiducial 

markers against the planning CT (Wiersma et al., 2007). The first image guided therapies in 

radiation accommodated rigid change in geometry by moving the treatment couch in space, a 

technique now widely implemented to "adapt" to a rigid shift of the body or target over time (Wu 

et al., 2006). More sophisticated re-optimizations over the course of treatment based on observed 

change in shape have now been examined. Many set a goal of minimizing the difference between 

the initially intended and the final achieved dose distributions; linear programming proved 

desirable for its speed and promise of optimality (Wu et al., 2008). A broader extension 

considers re-optimizations on the underlying tissue constraints rather than simply matching to the 

original plan when structure outlines are found to have changed (Wu et al., 2002). The advent of 

a commercial system (“Planned Adaptive” marketed by Tomotherapy of Madison, WI) that 

captures physical change over the course of treatment replans using cumulative doses, and is 

linked to a reproducible system for delivery that has established the concept of adaptive radiation 

therapy in the minds of oncologists as a tool by which gains in tumor control can be achieved 

(Woodford et al., 2007).  

 

None of these adaptive approaches have succeeded in optimizing against both cumulative dose 

limits and dose limits placed on each fraction. This deficit may have slowed their adoption into 

regular practice, but increased use is expected as the technology becomes increasingly familiar, 

pitfalls are identified, and workarounds are devised to satisfy fraction size rules even at the price 

of diminishing the potential gains from the adaptive strategy. This chapter aims to help meet this 

deficit by developing an adaptive planning approach that re-optimizes the treatment plan against 

both cumulative dose limits and dose limits placed on each fraction simultaneously when it can 
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be productive to do so. A paper on the proposed adaptive planning approach has recently been 

accepted for publication (Saka et al., 2011).   

 

4.2 Uniform and Non-Uniform Fractionation Model and Rationale 

The uniform fractionation model described in Section 2.5 produces a single uniform plan across 

all fractions. One could propose improving the average tumor dose received from uniform 

fractionation by splitting the treatment plan into two stages where different plans would be used 

for each stage. Stage defines a subsequence of fractions delivered as part of a non-adaptive plan. 

That is, no changes in geometry are taken into account. 

 

4.2.1 Non-Uniform Fractionation Model with Two-Stage Optimization 

The non-uniform fractionation model is developed to optimize the treatment plan over two stages 

where new beamlet intensities for each stage are defined. Let 1
jx  and 2

jx  be intensities assigned 

to beamlet Jj  during stage 1 and 2, respectively. The total dose delivered to point i during the 

first stage is denoted as 1
id  and equal to 

Jj
jij xa 1 . Similarly, 2

id  denotes the total dose delivered 

to point i during the second stage and equal to 
Jj

jij xa 2 . 

 

Table 4.1 presents this non-uniform fractionation model for two-stage optimization. It maximizes 

the average dose delivered to the tumor over two stages. Constraint sets (4.1) through (4.5) are 

the overall treatment constraints imposed over two stages and have the same nature as the 

constraint sets (2.3) through (2.7) presented previously in Section 2.3.1. Constraint sets (4.6) 

through (4.8) impose lower dose limits on the secondary target and tumor points, and the upper 
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dose limits on all healthy tissue points for the N1 fractions in the first stage. These integer 

fractionation constraints guarantee that the treatment plan in Stage 1 is delivered in uniform, 

feasible fractions. Here, N1 is a choice for the number of equal fractions employed in the first 

stage. For instance, if the treatment plan is split after fraction 10, then N1 is equal to 10.  

 

For the plan delivered in the second stage, an integer variable N2 defines the number of fractions 

given during the second stage. Constraint sets (4.9) through (4.11) impose lower dose limits on 

the secondary target and tumor points, and the upper dose limits on all healthy tissue points for 

the N2 fractions in the first stage. These constraints guarantee that the plan delivered in second 

stage can be divided in N2 uniform, feasible fractions. 

 

Table 4.1: Non-Uniform Fractionation Model for Two-Stage Optimization 

Objective and the Overall Treatment Constraints 

T/dd
Ti

ii 











21maximize  

kk
Hi

ii Hdd
k




21

 
Kk                (4.1)

total
kii udd  21

 kHi,Kk                (4.2)
total
secii ldd  21

 Si                       (4.3)


min

ii

D
dd  21  Si                                                  (4.4)  


min

iimin

D
ddD  21

 
Ti                 (4.5)

Integer Fractionation Constraints for 
 Stage 1 

Integer Fractionation Constraints for Stage 
2 

1
1 Nld daily

seci   Si                   (4.6)

1
1 Nld daily

tumori   Ti                   (4.7)

1
1 Nud daily

ki   kHi,KKk  (4.8)

2
2 Nld daily

seci   Si                      (4.9)

2
2 Nld daily

tumori   Ti                    (4.10)

2
2 Nud daily

ki  kHi,KKk  (4.11)  
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4.2.2 Rationale for Non-Uniform Fractionation in Adaptive Planning 

Unless the treatment environment such as the patient geometry, the selected beam angles or the 

optimization parameters changes, this research found that it does not help to split the course of 

the treatment and deliver non-uniform fraction plans. This finding is proven by the following 

lemmas and stated as a theorem at the end.   

 

Let x1 and x2 vectors of |J| size where their components correspond to variables 1
jx  and 2

jx  for 

Jj , respectively. Let x be a vector of |J| size where its components correspond to variables xj 

for Jj .  

 

Lemma 1: Any feasible solution  2
21 N,x,x  for non-uniform fractionation model can be mapped 

to a feasible solution  N,x  for uniform fractionation model by using 21 xxx   and 

21 NNN  , and their objective function values are same. 

Proof: Since   2
21 N,x,x  is a feasible solution for non-uniform fractionation model, it satisfies 

the overall treatment constraint sets (4.1) through (4.5). Then, re-writing 21
ii dd   in those 

constraint sets by using expression (4.12), 21 xxx   satisfies them, and they are same as the 

overall treatment constraint sets (2.3) through (2.7) of the uniform fractionation model in Section 

2.5. Therefore,  N,x  satisfies the overall treatment constraints in uniform fractionation model. 

   i
Jj

jij
Jj

jjij
Jj

jijjij
Jj

jij
Jj

jijii dxaxxaxaxaxaxadd  


21212121    (4.12) 

As part of the feasibility,  2
21 N,x,x  also satisfies the integer fractionation constraints for each 

stage. Adding integer fractionation constraint sets across two stages for each tissue and using the 
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same expression (4.12) to re-write those three added inequalities, 
2

1 xxx   satisfies them 

where 21 NNN  . These inequalities are the same as the fractionation constraint sets (2.16) 

through (2.18) in uniform fractionation model in Section 2.5. Therefore,  N,x  satisfies the 

fractionation constraints in uniform fractionation model. 

 

Since  N,x  satisfies both overall treatment and integer fractionation constraints in uniform 

fractionation model, it is a feasible solution. Its objective function is equal to the objective 

function of  2
21 N,x,x , because re-writing  the objective function of   2

21 N,x,x  which is 

|T|/dd
Ti

ii 











21  by using expression (4.12) , the objective function of  N,x  which is

|T|/d
Ti

i 









 is obtained. É 

 

Lemma 2: Any feasible solution  N,x  for uniform fractionation model can be mapped to a 

feasible solution  2
21 N,x,x  for non-uniform fractionation model by using 

x
N

N
x,x

N

N
x 2211   and 12 NNN  , and their objective function values are same. 

Proof: Since  N,x  is feasible for uniform fractionation model, it satisfies the cumulative dose 

constraint sets (2.3) through (2.7) and integer fraction size dose constraint sets (2.16) through 

(2.18). When those constraints are re-written by using expression (4.13), x
N

N
x 11   and 

x
N

N
x 22   where 12 NNN   satisfy those constraints which are identical to the constraints in 
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non-uniform fractionation model. Therefore,  2
21 N,x,x  is a feasible solution for the non-

uniform fractionation model.   

 21212111
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 
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      

(4.13) 

The objective function of  2
21 N,x,x  is equal to the objective function of  N,x , because by re-

writing |T|/d
Ti

i 







  

using expression (4.13), the objective function |T|/dd
Ti

ii 











21  is 

received. É 

 

Theorem: The optimal solution values for uniform and non-uniform models are equivalent in 

the sense that the optimal solution to either model can be converted to a feasible solution of other 

with the same objective function value.  

Proof: Without loss of generality, pick up the optimal solution for non-uniform fractionation 

model. By using Lemma 1, this optimal solution can be mapped to a feasible solution for 

uniform fractionation model with the same objective function value. Suppose there is a better 

solution for uniform fractionation model than this feasible solution. Then, by Lemma 2, it could 

be mapped back to a feasible solution with the same objective function value for non-uniform 

fractionation model which would have a higher objective function value than the optimal 

solution which creates a contradiction. Therefore, by contradiction, the feasible solution for 

uniform fractionation model mapped from the optimal solution for non-uniform fractionation 

model is optimal for the uniform fractionation model. É  

  

Note that by induction any use of non-uniform plans across multiple stages over the course of the 

treatment would not help the tumor doses received from delivering uniform plan across all 
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fractions unless something in the treatment environment changes such as the patient geometry, 

the selected beam angles or the optimization parameters changes. However, there is a potential 

value for re-optimizing the treatment plan over time and producing time-varying plans when the 

treatment environment changes. This justifies the idea of adapting treatment plans over the 

course of the treatment when the changes in the tumor geometry are observed.    

 

4.3 Adaptive Planning Optimization Methodology 

It is assumed that the beamlets of beam angles are pre-selected prior to the optimization. In the 

proposed approach, only a cumulative dose homogeneity requirement for tumor is considered. 

Epoch-based re-imaging is assumed, so the treatment plan is adapted after delivering each epoch. 

As previously stated, a mean dose limit is used for healthy tissues with dose-volume limits. 

Lastly, only the tumor is subject to geometrical change over the course of the treatment.  

 

For the methodology, a few new notations are defined. Let T denote the set of residual tumor 

points having radiological evident disease through the treatment, and D denote the set of 

removed tumor points locating in tumor volume not currently radio graphically apparent as 

disease, but which was formerly occupied by tumor. The points in the set D are subject to the 

secondary target prescription.   

 

4.3.1 Optimization Methodology 

The process for the methodology is given below. The counter for the iterations is denoted as m. 

Let M denote the number of adaptation points throughout the treatment, so the treatment plan is 
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periodically adapted M times which indicates that there are M+1 epochs. delivered
id  denotes dose 

delivered at each tissue point and initially equal to 0 for all points. 

 

For m = 0 to M 

 Acquire new image. 

Update residual tumor volume by removing tumor points from the set T into the set D. 

Revise the cumulative dose limits for the remaining plan according to the delivered plans. 

Solve the re-optimization formulation to determine the immediate plan. 

 Deliver the fractions in the immediate plan. Update delivered
id  for each tissue point. 

Next m 

 

The methodology iterates M+1 times. The first iteration (m=0) occurs at the beginning of the 

treatment plan where no shrinkage is observed; therefore, the set T includes all the points in the 

original tumor while the set D is empty. In the rest of the iterations, tumor shrinkage is reflected 

by removing tumor points into the set D. In the methodology, each time the immediate plan is 

delivered, the time horizon is rolled forward by an epoch.  

 

4.3.2 Re-optimization Formulation 

At each adaptation point, the treatment plan is re-optimized by solving the formulation given in 

Figure 4.1. For the illustration purpose, this figure assumes that epochs 1…m has been delivered 

and the immediate plan for epoch m+1 will be determined. The re-optimization formulation 

optimizes the remaining plan against residual cumulative dose limit constraints and remaining 

plan fractionation constraints, and then the first N1 optimal fractions are delivered for the 
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immediate plan which is labeled as a dashed rectangle in Figure 4.1. Here, N1, a clinician defined 

parameter, represents the duration of the immediate plan. For example, if patient is re-imaged 

and the plan is updated bi-weekly, N1=10. 

 

Optimizing the remaining plan requires defining one set of continuous variables for the 

intensities of the beamlets in the remaining plan. Let xj be the continuous variable defined for the 

intensity of beamlet Jj  in the remaining plan. Then, dose delivered to point i in the remaining 

plan denoted as di is computed as 
Jj

jij xa .  

 

Figure 4.1: Re-optimization Formulation 

 

The formulation in Figure 4.1 maximizes the average tumor dose delivered to residual tumor 

points Ti  in the remaining plan subject to overall treatment and remaining plan fractionation 
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constraints. Constraint sets (4.14) through (4.18) make sure that cumulative dose limits for dose-

volume healthy tissues, healthy tissues, secondary target and removed tumor points, and residual 

tumor points are maintained, respectively.  

 

Constraint sets (4.19) through (4.21) impose lower dose limits on the secondary target, removed 

tumor and residual tumor points, and upper dose limits on healthy and dose-volume healthy 

tissue points for the N fractions in the remaining plan. Here, N is an integer variable and defined 

as the number of fractions in the remaining plan. These constraints on remaining plan ensure that 

the remaining plan can be delivered in N equal, feasible fractions.  

 

At each iteration, except the last one, N1 of these N optimal fractions are delivered in immediate 

plan, and the methodology moves to the next iteration. However, at the last iteration where the 

final adaptation occurs, all the N optimal fractions in the remaining plan are delivered in the last 

epoch.  

 

In the re-optimization formulation, the immediate plan and the prospective plan (the remaining 

timeline after N1 fractions) are combined into a remaining plan. It would be desired to treat them 

separately if the new conditions in the prospective plan were considered, e.g. further tumor 

shrinkage.  However, this research considers the simplest case where the tumor geometry in the 

immediate and prospective plan is the same. It would not help the optimization results to treat 

them separately as a consequence of the finding stated previously. Moreover, treating them 

separately in this simplest case would require defining two sets of variables and two sets of 

fractionation constraints which would worsen the computational efficiency of the formulation.  
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Note that a simple relaxation of the integer variable N into a continuous variable may lead to 

infeasibility when the optimal fractional value of N is further rounded up or down as illustrated 

in Table 4.2. This motivates defining N as an integer variable in the re-optimization formulation. 

 

Table 4.2: Infeasible Fractionation from Solving the LP-relaxation of the Re-optimization 

Formulation at the First Iteration for the Lung1 Case (Violations of fraction size requirements are 

in bold and highlighted.) 

Structure 
Dose 

Statistics 

Cum. 
dose 
(Gy) 

Fract. size 
dose (Gy) 

when N=34.7 
is rounded 
down to 34 

Fract. size 
dose (Gy) 

when N=34.7 
is rounded up 

to 35 
Tumor Min. dose 71.3 2.10 2.04 
PTV2 Min. dose 69.4 2.04 1.98 

Right Lung Max. dose 72.8 2.14 2.08 
Left Lung Max. dose 56.1 1.65 1.60 

Heart Max. dose 70.9 2.08 2.02 
Esophagus Max. dose 59.5 1.75 1.70 

Not Otherwise 
Specified 

Max. dose 72.8 2.14 2.08 

Spinal Cord Max. dose 45.0 1.32 1.29 
Notation: N is the number of fractions the treatment plan is divided into and equal  

to 34.7 in the relaxation. 
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with some percentage, such as 10%, 30% and 50%, for the experiments where the treatment plan 

is adapted during the subsequent fractions after fraction 25.  

 

4.4.2 Two-Epoch Adaptation Results 

For two-epoch adaptation experiments, the treatment plans for both test cases are adapted once 

after fraction 25 based on the generated residual tumor volumes and compared with treatment 

plans generated with no adaptation (non-adaptive). When the treatment plan is adapted after 

fraction 25, the minimum fraction size limit constraints on the secondary target PTV2 and the 

removed tumor points (part of the original tumor during the first 25 fractions) are dropped from 

the re-optimization formulation since these points satisfy their prescribed cumulative dose limits 

(≥50 Gy) by receiving fraction size doses at least or greater than their required minimum limits 

during the first 25 fractions and there is no clinical need to deliver the minimum fraction size 

doses to these points during the subsequent fractions. Thus, dropping these constraints relaxes 

the re-optimization formulation and creates freedom.  

 

Non-adaptive plans are first prepared by non-adaptive planning optimization without boost 

employed in most of the commercial products. In order to have a fuller comparison between non-

adaptive and adaptive plans, a non-adaptive planning optimization with boost was also employed 

where the treatment plan is re-optimized after fraction 25 by dropping the fraction size limit 

constraints on PTV2 points without acquiring an updated image (For non-adaptive plans, “main 

stage” includes the first 25 fractions and “boost stage” includes fractions after re-optimization).  

The non-adaptive planning optimization with boost is motivated by the clinical desire to design 

treatments with a boosting strategy (employed in commercial systems) which uses different 
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Non-adaptive optimization without boost delivers minimum dose of 2 Gy/fraction to PTV2 

points over the course of the treatment. By non-adaptive optimization with boost, the PTV2 

points receive minimum dose of 0.9 Gy/fraction for Lung1 Case and minimum dose of 0.91 

Gy/fraction for CERRLung case during the boost stage since the fraction size limit (≥2 Gy) on 

PTV2 points are not imposed in the re-optimization after fraction 25. This freedom created in 

non-adaptive optimization with boost improves the average tumor dose achieved in the boost 

epoch by 0.5 Gy for Lung1 case, so the average cumulative dose achieved by non-adaptive 

optimization without boost increased from 72.9 Gy to 73.4 Gy. The effect of the freedom on the 

optimization results is more significant in CERRLung case. Re-optimizing the treatment plan 

better spares the right lung by delivering average dose of 0.35 Gy/fraction after fraction 25 

compared to the average dose of 0.47 Gy/fraction by non-adaptive optimization without boost. 

The reduction in the average dose that right lung receives allows adding 4 more fractions to the 

boost epoch and boosts the cumulative dose from 76.2 Gy to 84.9 Gy.   

 

When the treatment is adapted to the tumor shrinkage after fraction 25, the right lung is better 

spared during the second epoch by receiving average dose of 0.6 Gy/fraction in Lung1 case and 

0.31 Gy/fraction in CERRLung case compared to the 0.71 Gy/fraction and 0.35 Gy/fraction 

received from non-adaptive optimization with boost for both test cases, respectively. Better 

sparing the right lung is achieved by taking advantage of the extra freedom created in the re-

optimization formulation by dropping the minimum fraction size limit constraints on the 

removed tumor points. The removed tumor points receive minimum dose of 0.53 Gy/fraction 

during the second epoch (with boost) for Lung1 case and minimum dose of 0.65 Gy/fraction for 

CERRLung case. However, same points are required to receive 2 Gy/fraction in non-adaptive 
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plans. The reduction in the average dose/fraction that the right lung receives during the second 

epoch allows increasing the number of fractions delivered in the second epoch from 10 to 12 for 

Lung1 case and from 15 to 17 for CERRLung case.  
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Table 4.3: No Adaptation and Two-Epoch Adaptation Results for Lung1 and CERRLung Test 

Cases (The uniform fractionation model is solved in optimization, bold and highlighting signifies 

numbers referenced in the text.) 
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The overall tumor dose statistics received from no adaptation and two-epoch adaptation for 

Lung1 case are summarized in Figure 4.3(a). Adapting the treatment plan improves the overall 

tumor doses significantly. It adds 2 more fractions to the overall treatment and increases the 

average tumor dose by 5.3 to 5.8 Gy. This corresponds to over 7% boost in the average tumor 

dose. Figure 4.3(b) illustrates the improvement in the overall tumor doses achieved by adaptation 

for CERRLung case. Compared to non-adaptive optimization without boost, 6 more fractions are 

delivered in the treatment plan and average dose of 12.7 Gy (17%) gain is achieved by adapting 

the treatment plan once. Although re-optimizing the non-adaptive plan after fraction 25 improves 

non-adaptive planning results significantly, two-epoch adaptation still performs superior to no 

adaptation. In this case, the average tumor dose is boosted from 84.9 Gy to 88.9 Gy 

corresponding to a 4 Gy (4.7%) increase and 2 more fractions are delivered in the treatment plan. 
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       (a) Lung1 Case               (b) CERRLung Case 

Figure 4.3: Comparison of Overall Tumor Dose Statistics Received by No Adaptation and Two-

Epoch Adaptation (Number of fractions delivered in the overall treatment given in the 

parenthesis, the lower and upper bar on each column showing the minimum and maximum 

cumulative tumor dose achieved, respectively.) 

 

Increasing the delivered number of fractions by re-optimization in the non-adaptive plan with 

boost and adaptive plans may create very high hot-spots within the tumor. However, a 

homogeneity dose constraint is enforced in the re-optimization (constraint set (4.18) in Figure 

4.1) which should prevent having very low cold-spots as well as very high hot-spots at the end of 

the treatment. For example, as Table 4.3 shows, two-epoch adaptation plan for CERRLung case 

delivers minimum and maximum tumor doses of 86.4 Gy and 91.0 Gy, respectively,  which 

satisfies the prescribed tumor homogeneity dose limit (86.4/91.0≥0.95). As a result, enforcing 

tumor homogeneity dose constraint in the re-optimization imposes homogeneous tumor dose 

distribution to be delivered over the course of the treatment. Furthermore, an upper dose limit 

constraint on the removed tumor points is enforced in the re-optimization which would prevent 

72.9 (35)
73.4 (35)

78.7 (37)

70.0

72.0

74.0

76.0

78.0

80.0

 No Adaptation
(No Boost)

No Adaptation
(with Boost)

Two-Epoch
Adaptation

Average Tumor Dose (Gy)

76.2 (36)

84.9 (40)

88.9 (42)

70.0

74.0

78.0

82.0

86.0

90.0

 No Adaptation
(No Boost)

No Adaptation
(with Boost)

Two-Epoch
Adaptation

Average Tumor Dose (Gy)
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having very high hot-spots among the removed tumor points by ensuring that their cumulative 

doses do not exceed the maximum cumulative dose achieved in the tumor. 

 

It could be desired to bound the increase in the number of fractions by re-optimization due to 

clinical reasons, e.g. considering adjuvant therapies, such as chemotherapy. This could be easily 

done in the developed methodology by adding the following constraint N+Ndelivered≤U to the re-

optimization formulation given in Figure 4.1 where Ndelivered defines the number of fractions 

given in the delivered plan, and U is the clinician-defined parameter for the upper bound on the 

number of fractions delivered in the overall treatment. Nevertheless, adding this constraint might 

reduce the gains in average tumor dose achieved by adaptation.         

 

The detailed results for the computed plans on CERRLung test case given in Table 4.3 are shown 

in Table 4.4. Table 4.4 presents cumulative and fraction size dose statistics for each structure 

over each stage/epoch and the overall treatment as well as the number of fractions delivered in 

each time period in non-adaptive plans without or with boost and two-epoch adaptive plan. The 

dose statistics in Table 4.4 indicate that both cumulative and fraction size dose limits placed on 

each healthy tissue are satisfied in the non-adaptive and adaptive plans. For example, the right 

lung receives a mean dose of 17.0 Gy (≤17 Gy) in mean fraction size doses of 0.47 during 36 

fractions in the non-adaptive plan without boost. During each of these fractions, the maximum 

dose that the right lung receives is 2.1 Gy which is in accordance with its maximum fraction size 

limit (≤2.1 Gy). Furthermore, the other healthy tissues satisfy their cumulative dose limits being 

that the mean dose that the left lung receives is 9.7 Gy (<17 Gy), the heart receives 4.2 Gy (<35 

Gy), and the esophagus receives 16.8 Gy (<35 Gy). The maximum dose the not otherwise 
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specified tissue receives is 75.6 Gy (<100 Gy) and the spinal cord receives is 9.5 Gy (<45 Gy). 

These healthy tissues under interest receive fraction size doses less than or equal to their 

maximum fraction size limit during each fraction. Satisfaction of both the cumulative and the 

fraction size limits for each tissue carries over to the non-adaptive plan with boost and adaptive 

plans as Table 4.4 demonstrates. 

 

Since the developed re-optimization approach is to maximize dose delivered to the tumor within 

cumulative and fraction size tolerance levels of healthy tissues, rather than meeting a specific 

prescription for the tumor, some healthy tissues are dosed to its cumulative limit (e.g. Right lung 

receives average cumulative dose of 17 Gy in CERRLung case). However, this approach is in 

accordance with clinical studies on dose escalation (c.f. van Baardwijk et al., 2008; van 

Baardwijk et al., 2010) and the prescribed cumulative dose limits on healthy tissues are respected 

in the computed adaptive plans.  

 

The detailed dose statistics for Lung1 case are given in Appendix A. The results show that all 

cumulative dose limits for the overall treatment and fraction size dose limits for each stage/epoch 

fraction are satisfied in both non-adaptive and adaptive plans. 
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Table 4.4: No Adaptation vs. Two-Epoch Adaptation Results for the CERRLung Test Case (The 

uniform fractionation model is solved in the optimization.) 

Structure 
Dose 

Statistics 
(Gy) 

No 
Adaptation 
(No Boost)

No Adaptation (with 
Boost) Two-Epoch Adaptation 

Total Main 
Stage

Boost 
Stage Total Epoch

1
Epoch 2 

(with Boost) Total 

Tumor 

Max. 
Dose 

78.2 
[2.17] 

54.3 
[2.17]

34.9 
[2.33] 86.9 54.3 

[2.17]
39.0 

[2.30] 91.0 

Min. 
Dose 

74.3 
[2.06] 

51.6 
[2.06]

30.0
[2.00] 82.5 51.6 

[2.06]
34.0 

[2.00] 86.4 

Mean 
Dose 

76.2 
[2.12] 

52.9 
[2.12]

31.9 
[2.13] 84.9 52.9 

[2.12]
36.0 

[2.12] 88.9 

Removed 
Tumor 
Points 

Max. 
Dose - - - - - 37.7 

[2.22] 91.0 

Min. 
Dose - - - - - 11.1 

[0.65] 64.5 

Mean 
Dose - - - - - 32.0 

[1.88] 84.9 

PTV2 

Max. 
Dose 

78.2 
[2.17] 

54.3 
[2.17]

35.9 
[2.39] 86.9 54.3 

[2.17]
40.0 

[2.35] 91.0 

Min. 
Dose 

72.0 
[2.00] 

50 
[2.00]

13.7 
[0.91] 63.7 50 

[2.00]
4.2 

[0.25] 54.2 

Mean 
Dose 

75.3 
[2.09] 

52.3 
[2.09]

29.4 
[1.96] 81.6 52.3 

[2.09]
30.9 

[1.81] 83.1 

Right Lung 

Max. 
Dose 

75.6 
[2.10] 

52.5 
[2.10]

31.5 
[2.10] 84.0 52.5 

[2.10]
35.7 

[2.10] 88.2 

Mean 
Dose 

17.0 
[0.47] 

11.8 
[0.47]

5.2 
[0.35] 17.0 11.8 

[0.47]
5.2 

[0.31] 17.0 

Left Lung 

Max. 
Dose 

75.6 
[2.10] 

52.5 
[2.10]

31.5 
[2.10] 82.0 52.5 

[2.10]
32.3 

[1.90] 81.7 

Mean 
Dose 

9.7 
[0.27] 

6.7 
[0.27]

2.8 
[0.19] 9.6 6.7 

[0.27]
2.6 

[0.16] 9.4 

Heart 

Max. 
Dose 

72.3 
[2.01] 

50.2 
[2.01]

25.4 
[1.69] 75.6 50.2 

[2.01]
20.6 

[1.21] 69.7 

Mean 
Dose 

4.2 
[0.12] 

2.9 
[0.12]

1.0
[0.06] 3.9 2.9 

[0.12]
1.0 

[0.06] 4.0 

Esophagus 

Max. 
Dose 

75.6 
[2.10] 

52.5 
[2.10]

24.8 
[1.65] 77.3 52.5 

[2.1]
22.0 

[1.29] 74.5 

Mean 
Dose 

16.8 
[0.47] 

11.7 
[0.47]

3.5 
[0.23] 15.2 11.7 

[0.47]
3.0 

[0.18] 14.7 

Not 
Otherwise 
Specified 

Max. 
Dose 

75.6 
[2.10] 

52.5 
[2.10]

31.5 
[2.10] 84.0 52.5 

[2.10]
35.7 

[2.10] 88.2 

Mean 
Dose 

7.5 
[0.21] 

5.2 
[0.21]

2.4 
[0.16] 7.6 5.2 

[0.21]
2.4 

[0.14] 7.6 

Spinal 
Cord 

Max. 
Dose 

9.5 
[0.26] 

6.6 
[0.26]

4.5 
[0.30] 10.6 6.6 

[0.26]
7.2 

[0.42] 12.0 

Mean 
Dose 

1.7 
[0.05] 

1.2 
[0.05]

0.7 
[0.05] 1.9 1.2 

[0.05]
0.5 

[0.03] 1.7 

# of Fractions Given 36 25 15 40 25 17 42
Note: The fraction size doses are given in brackets below the cumulative doses. PTV2 represents the 
secondary target. 
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dividing the remaining plan into at most 15 and at least 16 fractions in order to satisfy the 

minimum and the maximum fraction size limits, respectively. These doses are re-scaled down by 

5% and the remaining treatment plan is delivered in 15 feasible fractions. For the adaptive 

planning optimization, the doses received from the re-optimization allow dividing the remaining 

plan into at most 17 and at least 18 fractions. These doses are re-scaled down by 2% and 17 

feasible fractions are delivered in the second epoch.   
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Table 4.5: No Adaptation vs. Two-Epoch Adaptation Results for Lung1 and CERRLung Test 
Case (Ratio model is solved in the optimization and the results are rescaled if necessary, bold 

and highlighting signifies numbers referenced in the text.) 
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Figure 4.4 compares the average tumor dose and the number of fractions delivered in non-

adaptive and adaptive plans for both test cases. For Lung1 case, Figure 4.4(a) shows that 

adapting the treatment plan once adds 3 more fractions to the overall treatment received by 

optimization without boost and boosts the average tumor dose from 71.6 Gy to 78.3 Gy which 

corresponds to a 6.7 Gy (9.4%) increase. Compared to the non-adaptive planning optimization 

with boost, adaptation improves the average tumor dose from 73.4 Gy to 78.3 Gy corresponding 

to a 4.9 Gy (6.7%) gain while adding 2 more fractions to the overall treatment. The improvement 

in the treatment outcomes by adaptation is illustrated by the CERRLung case results presented in 

Figure 4.4(b). Adapting the treatment plan once adds 2 more fractions to the overall treatment 

received by non-adaptive planning optimization with boost and boosts the average tumor dose 

from  84.2 Gy to 88.5 Gy corresponding to a 4.3 Gy increase (5.1% gain). This gain gets 

significantly bigger when the adaptive planning results are compared to the optimization without 

boost results where the average tumor dose is boosted by 12.6 Gy (16.6%) and the number of 

fractions given in the treatment increased by 6.   
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 (a) Lung1 Case      (b) CERRLung Case 

Figure 4.4: Comparison of Treatment Outcomes When the Ratio Model is solved in the 

Optimization 

 

The detailed dose statistics for each structure in non-adaptive and adaptive plans for Lung1 and 

CERRLung case are presented in Appendix B and C, respectively. The results show that both 

cumulative and fraction size dose limits for all structures are satisfied in the computed plans. 

 

4.4.3 Three-Epoch Adaptation Results 

It is an interesting question to investigate whether the tumor doses received from two-epoch 

adaptation would improve by acquiring another image of the patient and adapting the plan at 

some point during the first 25 fractions. In addition, the extended time in second epoch (i.e. the 

second epoch includes 12 and 17 fractions for Lung1 and CERRLung case, respectively, as 

Table 4.3 indicates) allows additional adaptation before the treatment ends.  
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twice after fraction 25 and 30 for Lung1 case where the residual tumor shrinks with different 

rates after fraction 25. The average tumor dose achieved from two-epoch adaptation improves by 

1.5 Gy and 2.2 Gy with 10% and 30% tumor shrinkage rates, respectively. For these cases, the 

number of fractions delivered in the treatment increased by 1. With residual tumor shrinking 

50%, 3 more fractions are added to the treatment, and the average tumor dose is boosted from 

78.7 Gy to 84.2 Gy indicating a boost of 5.5 Gy. Moreover, compared to 73.4 Gy received from 

non-adaptive planning optimization with boost, this corresponds to a 15% gain. The results in 

Figure 4.6(a) illustrate that the amount of gain obtained from adapting the plan after fraction 30 

is sensitive to the rate the residual tumor shrinks after fraction 25. 

 

Figure 4.6(b) draws the same conclusions from the results on adapting the treatment plan after 

fraction 25 and 30 for CERRLung case. With 50% shrinkage, the average tumor dose achieved is 

enhanced from 88.9 Gy to 93.6 Gy corresponding to a 4.7 Gy increase while two additional 

fractions are delivered in the treatment. Compared to the 84.9 Gy received from non-adaptive 

planning optimization with boost, a 10.2% gain is accomplished by adapting the plan after 

fraction 30. 
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(a) Lung1 Case                          (b) CERRLung Case 

Figure 4.6: Two-Epoch Adaptation (Adapting after Fraction 25) vs. Three-Epoch Adaptation 

(Adapting after Fraction 25 and 30) with Residual Tumor after Fraction 25 Shrinking with 

Different Rates (%) (Uniform fractionation model is solved in the re-optimization.) 

 

The reason behind the improvement by later adaptation is related to the extra freedom created in 

the re-optimization. When more tumor points are removed from the residual tumor after fraction 

30 for both test cases, the minimum fraction size limit constraints on those points are dropped 

from the re-optimization formulation because the cumulative limits on those points have already 

been fulfilled. This relaxes the optimization model and creates more freedom to take advantage 

of in the rest of the plan. In contrast, with the earlier adaptation, fractionation constraints on 

those points are not dropped from the re-optimization since they have not received their 

minimum cumulative dose by that time. Therefore, this prevents relaxing the model and does not 

create necessary freedom for achieving significant improvement by adapting the plan early.  

Note that re-planning the treatment plan at later stages of the treatment (e.g. during the 

subsequent fractions after fraction 25) is always feasible due to the fact that the re-optimization 
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formulation solved at later adaptation points does not include any minimum cumulative dose 

constraint on the secondary target and removed tumor points. For example, one feasible solution 

for re-optimization after fraction 25 would be the solution with 0 beamlet intensity values and 

N=0 since this solution preserves the homogeneous tumor dose distribution achieved during the 

first 25 fractions and satisfies the residual cumulative dose constraints on healthy tissues and 

fraction size dose constraints on all tissues.  

 

However, for the re-optimization formulation solved at a later adaptation point after fraction 30, 

the same solution (0 beamlet intensities and N=0) might not be feasible for the re-optimization 

because the delivered dose to the tumor by fraction 30 could be inhomogeneous in spite of 

maintaining tumor dose homogeneity over the course of the treatment (constraint set (4.18) in 

Figure 4.1).  Although this is the case, there still exists a feasible solution defined as the 

remaining part of the plan after fraction 30 determined by the re-optimization after fraction 25 

(e.g. the plan for the last 12 of the 17 fractions in Epoch 2 computed by the re-optimization after 

fraction 25 is feasible for the re-optimization formulation solved after fraction 30 for CERRLung 

case). Note that this feasible solution may result in higher tumor cumulative dose homogeneity 

than the prescribed level (> 0.95), because some of the points from the residual tumor after 

fraction 25 are removed due to the tumor shrinkage after fraction 30. As a result, due to existence 

of at least one feasible solution for the re-optimization after fraction 25 or 30, the potential 

infeasibility of the subsequent optimization problems at later epochs of re-planning is not an 

issue in the proposed methodology. 
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4.4.4 Three-Epoch Cases Using the Ratio Model in the Re-Optimization 

Three-epoch adaptation experiments for the more interesting case of adapting after fraction 25 

and 30 by solving the ratio model (rescaling results if necessary) in the re-optimization are also 

performed. The results for Lung1 and CERRLung case are summarized in Figure 4.7(a) and (b), 

respectively. The details of these results are given in Appendix H and I demonstrating that both 

cumulative and fraction size dose limits for all structures are satisfied in the twice adapted plans. 

When the residual tumor shrinks with 10% and 30% for Lung1 case, the average tumor dose 

received by two-epoch adaptation is boosted by 2 Gy while an additional fraction is given in the 

overall treatment. With 50% shrinkage, 4.3 Gy increase is achieved whereas 2 more fractions are 

added to the overall treatment. In addition to these results, three-epoch adaptation results for 

CERRLung case show a similar improvement in one time adaptation results in Figure 4.7(b). 

With 50% shrinkage, the average tumor dose received from two-epoch adaptation increased from 

88.5 Gy to 94.9 Gy corresponding to a 6.4 Gy increase whereas 3 fractions are added to the 

overall treatment.  
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(a) Lung1 Case                                             (b) CERRLung Case 

Figure 4.7: Two-Epoch Adaptation (Adapting after Fraction 25) vs. Three-Epoch Adaptation 

(Adapting after Fraction 25 and 30) with Residual Tumor after Fraction 25 Shrinking with 

Different Rates (%)(The ratio model is solved (the results are rescaled if necessary) in the re-

optimization.) 
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5 Biologically Guided IMRT Optimization with Fraction Constraints 

5.1 Background and Significance 

Adaptive radiation therapy based only on geometric changes in the tumor does not exploit 

modern imaging science fully. The frontier of treatment now is generating radiation therapy 

plans that can act on the information acquired on tumor biology (Kim and Tome, 2006; Ling and 

Li, 2005). The initial tumor biological information and the changes in the tumor biology over the 

course of the treatment can be demonstrated using modern methods of physical, functional and 

molecular imaging (Titz and Jeraj, 2008; Stewart and Li, 2007).  

 

Historically, the internal structure (biology) of a tumor in the individual was unknown, leading to 

guidelines that recommend homogeneous dose distributions of doses across target (ICRU Report 

#62, Goitein 1986). However, recent pathologic analysis of tumor specimens from surgery and 

physiologic studies of animal models reveal a complicated tumor structure where the biological 

elements, e.g. hypoxia, proliferation or drug concentration, are not distributed homogeneously 

across the tumor (Levin-Plotnik and Hamilton, 2004; Sovik et al., 2007; Chen et al., 2007). 

These biological elements are related to the tumor point sensitivity defined as the biological 

responses (sensitivity) of the points to radiation. 

 

Tumor hypoxia (low oxygenation) is a well-known biological cause of resistance to radiation and 

can be quantified by using recent molecular and functional images. Hypoxic (low-oxygenated) 

tumor regions are resistant to radiation whereas well-oxygenated tumor regions are sensitive to 

radiation. Identifying the resistant and sensitive tumor regions based on their oxygenation levels 

motivates designing Biologically Guided Radiation Therapy (BGRT) plans that realign the 
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radiation delivered across the tumor with the new information on tumor biology in order to yield 

more effective plans achieving higher tumor control. 

 

In BGRT, the dose at each tumor point can be classified as follows.  

 Tumor physical dose is the dose deposited from all beamlets to each tumor point 

 Tumor biological dose is the effective dose received at each tumor point due to the tumor 

point sensitivity (Note that, the tumor biological dose can be at most as great as the tumor 

physical dose)  

 

Figure 5.1 demonstrates the effective biological dose received at tumor points across conditions 

of different oxygenation given the same physical dose. As illustrated, as the oxygenation level 

decreases (extreme hypoxia), the resistance to the radiation increases; therefore, the biological 

dose received at tumor points reduces significantly. This motivates BGRT plans to deliver higher 

dose to the hypoxic tumor points in order to prevent cold spots (under-dosed regions) in tumor.   
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Figure 5.1: Tumor Physical Dose vs. Tumor Biological Dose across Conditions of Different 

Oxygenation 

 

This research develops optimization models that take biological information, e.g. tumor hypoxia, 

into account in the treatment planning optimization. Developing mathematical models and 

testing them is a challenging problem since BGRT is a new area. Quantification of biological 

data is new and still in development and not much known on modeling issues. Also, there are no 

known, openly available datasets on tumor biology outside of the clinical institutions yet. This 

dissertation research is one of the first attempts that deal with modeling and testing biological 

optimization concepts without losing significant relevancy to clinical practice.  

 

5.2 Biological Optimization Models 

5.2.1 Modeling Notation and Assumptions  

The previous notation introduced for secondary targets in Chapter 2 is modified in order to 

handle multiple secondary targets. Let V denote the set of secondary targets. Let total
vl  and daily

vl  

Extreme
Hypoxia

Hypoxia Intermediate
Oxygenation

Full
Oxygenation

Physical Dose Biological Dose
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represent the minimum cumulative and fraction size dose limit for all the points in secondary 

target Vv , respectively.  

 

Up to this point, all the tumor doses computed in Chapter 2 through Chapter 4 were physical 

doses where no information was known on the biology. In this chapter, the tumor dose will be 

specifically classified as tumor physical or tumor biological dose. 

 

Note that, the equation (1) in Section 2.2 presented the physical dose computation for each tumor 

point iœT as 



Jj

jiji xad . The physical tumor dose di for each tumor point i will be adjusted by 

its tumor point sensitivity in order to compute the actual biological dose received at that point. 

Tumor point sensitivity can represented as:  

li: adjustment factor due to the loss of effect with hypoxia for each point iœT (0<li≤1) 

 

Then let b
id be biological dose received at tumor point iœT computed by multiplying tumor point 

i’s sensitivity (li) by the physical dose deposited to point i (di) as follows (Titz and Jeraj 2008). 

  ii
Jj

jiji
Jj

jiji
b
i dxaxad   



 Ti                                     (5.1) 

 

It is assumed that sensitivity needs to be accounted for only on tumor points and the tumor point 

sensitivities (l) do not change over the course of the treatment in static (non-adaptive) plans. 
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5.2.2  Biological Uniform Fractionation Model  

The biological uniform fractionation model developed is a variant of the uniform fractionation 

model presented in Section 2.5. The model maximizes average tumor biological dose (5.2) over 

non-negative b
id  subject to cumulative average and upper dose limit constraint sets (5.3) through 

(5.4) on healthy tissues, cumulative minimum dose limit constraint set (5.5) on secondary 

targets, tumor dose homogeneity limit (5.6), dose consistency constraint (5.7) and the integer 

fraction size dose constraint sets (5.8) through (5.10). In the rest of this section, the major 

differences between the uniform fractionation model of Section 2.5 and the biological uniform 

fractionation will be highlighted.  

 

|T|/d
Ti

b
i 









maximize                        (5.2) 

 
kk

Hi
i Hd

k




 Kk                     (5.3) 

 
total
ki ud   kHi,Kk                     (5.4) 

 
total
vi ld   vSi,Vv                                (5.5) 

 
min

imin

D
dD   Ti                      (5.6) 

 
min

i

D
d   vSi,Vv                         (5.7) 

 Nld daily
vi   vSi,Vv                     (5.8) 

 Nld daily
tumor

b
i   Ti                                     (5.9) 

 Nud daily
ki    kHi,KKk                   (5.10) 
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Biological objective function 

The objective function of the optimization model (5.2) maximizes average biological dose across 

the tumor in contrast to the previous objective of maximizing average tumor physical dose in the 

uniform fractionation model.      

        

Tumor physical dose homogeneity 

One of the open questions in biological optimization is whether homogeneity limits should be 

enforced on tumor physical or biological doses. In the case of enforcing a homogeneity limit on 

tumor physical doses, the constraint set (5.6) would remain the same. In addition, that constraint 

set would allow capturing the maximum tumor physical dose (Dmin/a) which then would be used 

as the right hand side of the dose consistency constraint set (5.7) (Recall that, the dose 

consistency constraint ensures that the maximum dose received at secondary targets does not 

exceed the maximum tumor physical dose).    

 

Furthermore, in order to effectively react to the more severe hypoxia in tumor, one could choose 

lower homogeneity value (e.g 80. ) which would give freedom to the model in optimizing 

tumor physical dose distribution. 

 

Tumor biological dose homogeneity 

If one desires to impose a homogeneity limit on tumor biological doses rather than tumor 

physical doses, constraint set (5.6) would be replaced with constraint set (5.11) in the 

optimization model, where b
minD  is a continuous variable defining the minimum tumor biological 

dose.  
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

b
minb

i
b
min

D
dD   Ti           (5.11) 

 

Enforcing constraint set (5.11) captures the maximum tumor biological dose but not the 

maximum tumor physical dose which makes the dose consistency constraint harder to model. 

Exact modeling of this constraint requires introducing binary variables resulting in a much more 

computationally expensive optimization model. To avoid this, an approximate method is used to 

estimate the maximum tumor physical dose by dividing the maximum biological dose by 

hypoxic adjustment factor l of the second most insensitive region value. By using this 

estimation, the dose consistency constraint (5.7) is replaced with the following dose consistency 

constraint set (5.12) where ̂  denotes the hypoxic adjustment factor of the second most 

insensitive tumor region value. 

 


ˆ
/D

d
b
min

i   vSi,Vv              (5.12) 

 

Tumor fraction size requirement 

Lastly, the tumor fraction size dose constraint set (5.9) is stated in terms of biological dose in the 

optimization model. This imposes a lower dose requirement on tumor biological doses per 

fraction rather than tumor physical doses per fraction. Controlling the minimum biological dose 

achieved per fraction would increase the probability of cure. 

  

In summary, the biological uniform fractionation model is a single integer variable mixed-integer 

linear programming model producing uniform plans over N fractions. The integer variable N in 

the fraction size dose constraint sets guarantees that the cumulative plan can be divided into 
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integer number of fractions where all the fraction size dose limits on healthy tissues and 

secondary targets, and biological fraction size dose limit on all tumor points are satisfied. 

 

5.2.3 Biological Adaptive Planning Optimization Methodology 

An adaptive planning optimization methodology is also developed that re-plans treatment plans 

in response to the changes in the tumor point sensitivities (l). This methodology follows the 

same steps summarized in Section 4.3. Although the adaptive planning optimization 

methodology given in Section 4.3 considers adapting the treatment plan M times, here only two-

epoch adaptation (M=1) would be investigated. The major reasons behind this choice are two-

epoch adaptation in Chapter 4 gave excellent results (lessening the need to adapt more than once) 

and adapting more than once to the changes in the sensitivities would require more data 

generation for testing which could not have been done realistically since little is known on 

quantifying the sensitivity change.  

 

In the proposed adaptive approach, the treatment plan is adapted after delivering a sequence of 

fractions by incorporating the latest tumor point sensitivity information (l) in order to achieve 

the best IMRT design for the overall treatment and for each fraction. The treatment plan is first 

optimized against both cumulative and fraction size dose limits based on the biological image at 

the beginning of the treatment by solving the biological uniform fractionation model presented in 

the previous section. The optimized treatment plan is divided into N fractions and the first N1 are 

delivered in Epoch 1.  
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After delivering the first epoch, a new biological image showing the latest hypoxia information 

is acquired and the tumor point sensitivities (l) are updated. In addition to this, the residual 

cumulative dose limits for all tissue points (right hand side of the constraints in the previous 

section) are updated by subtracting the dose delivered from against their cumulative dose limits 

in Epoch 1. Then, the remaining treatment plan is re-optimized against residual cumulative and 

fraction size dose limits by solving the model in the previous section (with integer variable N2) to 

compute N2 fractions to be delivered in Epoch 2. The steps taken in this adaptive approach are 

summarized with a flow chart in Figure 5.2.  

 

 

 

 

 

  

 

 

 

 

 

 

Figure 5.2: Summary of Biological Adaptive Optimization Approach 

 

Solve the biological uniform fractionation model with 
initial tumor point sensitivities (l). 

Deliver the first N1 fractions in the first epoch. 

Acquire a new biological image and update tumor 
point sensitivities (l).  

 
Adjust right hand side of the constraints by subtracting 

dose already delivered from cumulative dose limits. 

Solve biological uniform fractionation model with 
adjusted right hand sides and an integer variable N2. 

Deliver N2 fractions in Epoch 2. 
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5.2.4 Tumor Control Probability: Measure of Effectiveness   

In the previous chapters, the effectiveness of the computed plans is measured by the tumor dose 

statistics such as maximum, minimum and average tumor physical doses. With the tumor point 

sensitivity information (l), it is not possible to compute tumor biological dose statistics and use 

them instead to evaluate treatment plans. A further step to more accurately measure the 

biological effectiveness of plans would be to convert the tumor physical dose distributions with 

the tumor point sensitivity information (l) into a commonly used biological objective in the 

literature as Tumor Control Probability (TCP) (Ruggieri et al., 2010; Yang and Xing, 2005). 

 

TCP is defined as the probability that all the cells in tumor are inactivated after a course of 

treatment; therefore, it estimates the success of the treatment. Using TCP provides a fair 

comparison between plans since it is impacted by both average and the minimum biological 

doses. For example, although a treatment plan achieving a higher average biological dose seems 

to be a more effective plan, it could result in being a less successful treatment due to under-dosed 

points with a smaller minimum biological dose. However, the effect of both achieved average 

biological dose and the minimum biological dose is captured in TCP calculation; therefore, 

allows a fair comparison between treatment plans.  

 

Equation (5.13) computes TCP by multiplying TCPi across all tumor voxels. TCPi represents the 

probability that all the cells in voxel i are inactivated for Ti . 





|T|

1i
iTCPTCP                       (5.13) 
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TCPi is a function of initial number of cells in each tumor voxel, denoted as n, and the surviving 

fraction of cells at voxel i (  iN dS ) after di physical dose is delivered over N fractions. The 

effect of hypoxia is included in the surviving fraction formula in (5.15). Here, n is equal to tumor 

voxel size (mm3) times tumor cell density (cells/mm3). TCPi is computed in equation (5.14) as 

follows. 

  iNi dnSexpTCP   Ti           (5.14) 

 

The  iN dS  at each tumor voxel i is computed by the equation (5.14) (Ruggieri et al., 2010). The 

first term of the exponential function is the cell killing effect over N fractions whereas the second 

term is the re-population effect (i.e. tendency of tumor cells to regrow over the course of the 

treatment) over N fractions. Here, re-population parameters are denoted as following: Dt is the 

inter-fractional time interval, Teff is effective clonogenic doubling time, Td is delay time in 

clonogenic accelerated repopulation.  

    


















  d

eff

i
iiiiN Tt1N

T

2ln

N

d
dexpdS   Ti          (5.15) 

 

The tumor hypoxia at each voxel i is included in equation (5.15) by the radiosensitivity 

parameters αi and βi. Here, αi= αo*li and βi= βo*(li)
2  are used (Titz and Jeraj, 2008) where αo 

and βo are  radiosensitivity parameters at well-oxygenated state.  

 

The formula given in equation (5.15) computes surviving fraction assuming same tumor point 

sensitivity over N uniform fractions. There is a need to use a slightly modified formula in case of 

tumor point sensitivity change. Equation (5.16) computes the overall surviving fraction for tumor 
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voxel i after 1
id  physical dose is delivered over N1 fractions in the first epoch taking into account 

initial hypoxia and 2
id  physical dose is delivered over N2 fractions in the second epoch taking 

into account updated hypoxia.  Since the tumor point sensitivity (li) changes between first and 

second epoch, radiosensitivity parameters  1
i

1
i ,  and  2

i
2
i ,  are defined for the first and 

second epoch, respectively. The first and second term of the exponential function in equation 

(5.16) is the cell killing effects over the first and second epoch, respectively, whereas the last 

term incorporates the repopulation effect into the formula.   
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

     
(5.16) 

 

5.3 Generating a Test Case 

5.3.1 The Need 

Testing biological optimization models requires cases where the tumor hypoxia information is 

known. Unfortunately, such desired test cases are not publicly available, because clinical studies 

on hypoxia imaging are new and not many institutions have performed these studies. In addition, 

it is always challenging to get datasets from research institutions due to their very strict rules on 

sharing patient data. 

 

One way to obtain the tumor hypoxia information might be randomly generating the tumor point 

sensitivities (l) across the tumor. However, this approach would not have much clinical validity 

and would conflict with this dissertation research’s efforts on testing optimization models with 

cases simulating real practice. In order to maintain clinical relevancy as much as possible, the 

approach (Section 5.3.3) of inserting artificial hypoxia information based on a published test case 



 

82 

extracted from CERR website (“CERR: A Computational Environment for Radiotherapy 

Research”) was adopted.    

 

5.3.2 Description of the CERR Head and Neck Test Case 

An anonymized head and neck case presented on CERR website is used as a basis for the test 

case. Figure 5.3 displays an example slice outlining structures under interest. With clinical 

guidance, it was decided to treat Target1, Target2, and Target3 as secondary targets and insert an 

artificial primary target (tumor) inside Target1 (shown as dashed circle). Note that, the artificial 

primary target is stretched in z-direction (≤) to have a 3-dimensional, more realistic tumor shape 

of a prolate sperhoid (i.e. shape of a football).  

 

Table 5.1 shows the number of sampling points used for the optimization and the influence 

matrix density for each structure in the head and neck test case along with the selected beam 

angles. The number of sampling points for each structure is determined after doing 

experimentation with different sampling densities. During experimentation, the dose-volume 

histograms (DVHs) using all possible points are created from the optimization results based on 

different sampling densities, and a sampling density that creates acceptable DVHs was selected 

for each structure. The influence matrix for this test case is generated using radiation therapy 

software system CERR.  
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primary target, secondary targets and healthy tissues. All of the points in each structure are 

subject to its corresponding fraction size limit.  

 

Table 5.2: Prescription for the Head and Neck Test Case (“pDose” refers to tumor physical dose, 

“bDose” refers to tumor biological dose) 

Structure 
Structure 

Description 

Head and Neck Case 

Cumulative Dose 
Objective/Limit (Gy) 

Fraction Size 
Dose Limit 

(Gy) 

Tumor Primary Target 

Maximize avg. 
pDose/bDose 

≥ 1.80 
90

p(b)Dose tumor max.

p(b)Dose tumor min.
.

Target1 
Secondary 

Target 
100% ≥ 60 ≥ 1.80 

Target2 
Secondary 

Target 
100% ≥ 60 ≥ 1.80 

Target3 
Secondary 

Target 
100% ≥ 54 ≥ 1.65 

Mandible Healthy Tissue 
Avg. dose ≤ 40 

100% ≤ 72 
≤ 2.10 

Brainstem Healthy Tissue 100% ≤ 58 ≤ 2.10 
Not Otherwise 

Specified Tissue 
Healthy Tissue 100% ≤ 80 ≤ 2.10 

Spinal Cord Healthy Tissue 100% ≤ 50 ≤ 2.10 
 

5.3.3 Calibrating Tumor Point Sensitivities (l) 

An human PET image acquired prior to the treatment and the mathematical relationships from a 

recent study (Titz and Jeraj, 2008) are used in order to generate l’s in the simulated tumor. 

Figure 5.4(a) shows the PET image with tumor hypoxia information (in color) where different 

colors indicate different hypoxia levels. As Figure 5.4(b) illustrates, the hypoxia distribution of 

the inserted artificial primary target on a single slice (the example slice in Figure 5.3) is 

approximated with the help of the hypoxia map on the PET image given in Figure 5.4(a) where 
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The OMF values in Figure 5.5(b) are actually equal to rescaled OER to [0-1] range. These OMF 

values are used as tumor point sensitivities (l) in the biological optimization. 

 

The OMF values (l) for each tumor region used in the computational experiments are 

summarized in Table 5.3. The details including the approximate SUV range for each tumor 

region, the selected SUV values and their pO2 values corresponding to the OMF values in each 

base case are given in Appendix J. As Table 5.3 demonstrates, only the hypoxia level in red 

region differs between two base cases, where the red region is more hypoxic in the second base 

case with a lower OMF value (OMF=0.77 vs. OMF=0.82). Besides the OMF values, the table 

presents the point count and matrix density for each tumor region.  

 

Table 5.3: Two Base Cases Used in the Experiments (OMF=Oxygen-Modification Factor, 

l=Tumor Point Sensitivities) 

Tumor 
Regions 

First Base Case 
Second Base 

Case Point 
Count 

Matrix 
Density 

OMF=l OMF=l 
Red 0.82 0.77 94 85% 

Yellow 0.88 0.88 186 85% 
Green 0.91 0.91 749 85% 

Light Blue 0.92 0.92 710 86% 
Dark Blue 0.98 0.98 789 87% 

 

5.3.4 Generating Biological Change in Tumor Point Sensitivity (l) 

The initial l values presented in Table 5.3 may change as the treatment evolves. However, how 

to quantify this change as a function of delivered dose is unknown, and more clinical research is 

required to understand how tumor point sensitivities change throughout the treatment. Currently, 

there are published studies in the literature giving insight on the direction of the change 
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(Eschmann et al., 2007; Popple et al., 2002; Titz and Jeraj, 2008; Lee et al., 2009; Rischin et al., 

2001; Hall, 1994). These papers indicate that the hypoxic cells can absorb oxygen and change 

their state to oxygenated. This phenomenon is known as re-oxygenation of tumor cells.  

 

Following the re-oxygenation phenomenon, the tumor regions in the generated test case are 

expected to get more oxygenated; therefore, the l values (=OMF) in Table 5.3 are likely to 

increase over the course of the treatment and get closer to 1.0 (OMF value for well-oxygenated 

state). Since the rate of the re-oxygenation is not known, it is assumed that the all tumor regions 

will close their gap by a fraction b at a specific point in time, referred as adaptation/re-

optimization point, denoted as R. For example, assuming all tumor regions are one quarter re-

oxygenated after delivering R=25 fractions, b would be equal to 0.25. The following formula 

computes the updated l, denoted as lu,  at the adaptation point. 

lu = l + (1-l)*b              (5.18) 

 

5.4 Computational Experiments 

Computational experiments on biological optimization compared various approaches by testing 

on the cases presented above. Section 5.4.1 will present physically and biologically optimized 

plans computed for the datasets above to assess the benefit of taking the initial tumor point 

sensitivity (l) information into account in the treatment planning optimization. To illustrate the 

importance of modeling fractionation constraints explicitly in the optimization, Section 5.4.2 will 

compare plans optimized against cumulative dose constraints alone and plans optimized against 

both cumulative and fraction size dose constraints. Furthermore, Section 5.4.3 will show results 

from re-planning the treatment plans to the changes in the tumor point sensitivity to realize if 
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gains in the treatment outcomes can be achieved. All these plans are computed with two different 

tumor hypoxia scenarios summarized in Table 5.3.   

  

For the TCP computation throughout the computational experiments, the following parameters 

are used based on a published paper (Ruggieri et al., 2010): Dt=1 day, Teff=3 days, Td=0 days, 

ao=0.35Gy-1 and bo=0.035Gy-2.  The number of cells in each tumor voxel (n) is equal to 

1,200,000 (voxel size (12 mm3)*cell density (105 cells/mm3)) where the used cell density of 105 

cells/mm3 is an acceptable value between 104 cells/mm3 (Ruggieri et al., 2010) and 106 

cells/mm3 (Titz and Jeraj, 2008). The TCP calculation for the plans presented in Section 5.4.1 

and Section 5.4.2 uses the surviving fraction equation (5.15) whereas the TCP calculation for the 

plans given in Section 5.4.3 uses the surviving fraction equation (5.16). 

 

5.4.1 Physically Optimized Plan Results vs. Biologically Optimized Plan Results	

Physically and biologically optimized plans can be defined as follows.  

 Physically optimized plans: Plans computed ignoring tumor biology in the optimization, 

but biologically scored after optimization using the tumor point sensitivity (l) 

 Biologically optimized plans: Plans computed considering tumor biology in the 

optimization 

 

Physically optimized plans are generated by solving the uniform fractionation model presented in 

Section 2.5. Biologically optimized plans are generated by solving the biological uniform 

fractionation model presented in Section 5.2.2. All the physical and biological plans were 
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cumulative and fraction size dose achieved by biologically optimized plan with physical 

homogeneity raises the TCP value by 0.08 (0.66 vs. 0.74).  

 

By contrast, enforcing biological homogeneity in biologically optimized plan reduces average 

tumor physical and biological dose substantially (Figure 5.6(a)). Comparing against the 

physically optimized plan, the average biological dose decreased by 4.4 Gy (78.9 Gy vs. 74.5 

Gy). The main reason behind the significant reduction in average biological dose is the 

optimization keeps the maximum biological dose lower in order to maintain tumor biological 

dose homogeneity. The restriction of the average biological dose in biologically optimized plan 

with biological homogeneity reduced the TCP significantly from 0.66 to 0.47 corresponding to a 

0.19 decrease (Figure 5.6(b)). 
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5.7(a) and (b), although the biological plan achieves less average tumor dose (81.6 Gy vs. 78.8 

Gy), it increases the minimum tumor biological dose from 63.5 Gy to 64.8 Gy and the minimum 

tumor biological fraction size dose from 1.67 Gy (63.5 Gy/38 fractions) to 1.71 Gy (64.8 Gy/38 

fractions). Since TCP is very sensitive to the increase in the minimum biological dose, these 

increases in both biological cumulative and fraction size dose were reflected in 0.07 raise in TCP 

(0.63 vs. 0.70).     

  

As the results in Figure 5.7(a) and (b) illustrate, biologically optimized plan with biological 

homogeneity again lowers the TCP obtained by physically optimized plan significantly which is 

in line with the first base case results. The biological optimization keeps the maximum tumor 

biological dose lower due to the homogeneity requirement on tumor biological doses. This 

restricts the average tumor biological dose over 6 Gy (81.6 Gy vs. 75.2 Gy). This significant 

decrease in average tumor biological dose reduced the TCP value from 0.63 to 0.27.  
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Figure 5.7: Summary of Physically Optimized Plans vs. Biologically Optimized Plans at Higher 

Red Hypoxia and 0.8 Tumor Dose Homogeneity (*Physically optimized plans are biologically 

scored with initial tumor point sensitivities.) 

 

The results presented on both cases in Section 5.4.1.1 and 5.4.1.2 demonstrate the potential 

benefit of incorporating biological information into the treatment planning optimization, and 

therefore, prove the concept of possible clinically significant gains that might be achieved by 

biological optimization. Furthermore, the importance of deciding whether to enforce 

homogeneity requirement on tumor physical or biological doses is demonstrated by the results, 

and enforcing tumor physical dose homogeneity in the optimization is preferred throughout the 

computational experiments due to allowing better plans.    
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It is noteworthy to state that although TCP is a good measure of biological effectiveness, it was 

discovered during the computational experiments that it could be volatile for some instances. 

This volatility is further illustrated in Appendix M. 

 

5.4.2 Illustrating the Need to Include Fractionation Constraints Explicitly in the 

Optimization 

In addition to the improvement in TCP obtained by biological optimization, satisfying fraction 

size requirements on secondary targets in the computed plans helps achieve better cure for these 

structures. Figure 5.8(a) and (b) illustrates the importance of explicitly including integer 

fractionation constraints into both physical and biological optimization. The physically or 

biologically optimized feasibly fractionated plans already presented in Section 5.4.1.1 and 

5.4.1.2 were optimized against both cumulative and fraction size dose constraints. For 

comparison purposes, physically optimized cumulative plans are generated by solving the LP 

formulation in Section 2.3.1 and biologically optimized cumulative plans are generated by 

solving the biological uniform fractionation model in Section 5.2.2 ignoring fraction size 

constraints. Note that, both physical and biological cumulative plans are optimized against 

cumulative dose constraints alone.  

 

The graphs in Figure 5.8(a) and (b) show the control probabilities for the secondary targets 

including Target1, Target2, and Target 3 as well as the primary target across all computed plans. 

The cumulative plans are divided into integer number of fractions satisfying all the healthy tissue 

maximum fraction size requirements (e.g. cumulative plans are delivered over 39 fractions). 

Satisfying the healthy tissue fraction size limits come at the expense of violating the minimum 
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fraction size requirements on secondary targets in cumulative plans. This is reflected by 

computing control probabilities for secondary targets by using the same calculations in Section 

5.2.4. Lower cell density (103cells/mm3) is used for secondary target control probability 

computations (Strigari et al., 2008). 

 

As Figure 5.8(a) and (b) show, although the tumor control probabilities are very close to each 

other between cumulative and feasibly fractionated plans, the secondary target control 

probabilities are clinically significantly lower in cumulative plans (e.g. 0.07 vs. 0.92 Target2 

control probabilities for base case 1 and 0.07 vs. 0.95 Target2 control probabilities for base case 

2 achieved in biologically optimized cumulative and feasibly fractionated plans, respectively). 

The reason behind achieving better secondary target control probabilities in feasibly fractionated 

plans is imposing minimum fraction size requirement on secondary targets in the optimization. 

Explicitly including constraints on this requirement ensures higher control probability values for 

secondary targets without sacrificing the tumor control probability values.  

 

 

 

 

 

 



 

97 

 
(a) First Base Case     (b) Second Base Case 

Figure 5.8: Illustrating the Importance of Including Fractionation Constraints in the Optimization 

(“Cumulative” refers to plans optimized against cumulative dose constraints alone, “Feasibly 

Fractionated” refers to plans optimized against both cumulative and fraction size dose 

constraints.) 

 

5.4.3 Results from Re-planning the Biologically Optimized Plans to the Changes in 

Tumor Point Sensitivity (l) 

Treatment plans are adapted to the changes in the tumor point sensitivity (l) by using the 

biological adaptive optimization methodology presented in Section 5.2.3. The initial l values 

used in the adaptive methodology are as same as the l values presented in Table 5.3. For the 

computational experiments in this section, initial l values are assumed to one quarter and one 

half re-oxygenate, closing their gap by b=0.25 and b=0.50, respectively. The updated l values 

are calculated by using equation (5.18). The re-optimization (adaptation) point, denoted as R, 

correspond to after fraction 25 or fraction 30 in the experiments.   
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therefore, the plans still satisfy all their cumulative and fraction size dose limits. In addition, both 

cumulative and fraction size dose limits are maintained in computed adaptive plans since the 

related constraints are explicitly enforced in the optimization.  

 

 

Figure 5.9: Comparison of Treatment Plans across Various Scenarios of Different Re-

optimization Point (R) and Re-oxygenation rate (b) on First Base Case (Each column shows the 

average biological dose with its upper and lower bar indicating the minimum and maximum 

biological doses achieved, respectively. The numbers in bold show TCP values for each plan 

whereas the numbers in parenthesis below average doses indicate the number of fractions 

delivered in each plan.) 

 

Although biological re-scoring due to re-oxygenation helps non-adaptive physically optimized 

plans, non-adaptive biologically optimized plans still do better in terms of TCP as Figure 5.9 
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illustrates. In case of quarter re-oxygenation acquired by a biological image after fraction 25 

(R=25, b=0.25), the biologically optimized plan improves the TCP by 0.06 (0.76 vs. 0.82). For a 

different scenario with halfway re-oxygenation after fraction 30 (R=30, b=0.50), the increase in 

TCP is equal to 0.04 (0.79 vs. 0.83). These increases in TCP by biologically optimized plans are 

achieved by due to the significant raises in the minimum biological doses of the physically 

optimized plans as illustrated in Figure 5.9. 

 

Furthermore, re-optimizing the treatment plan to the changes in the tumor point sensitivity (l) 

produces further gains in TCP. The biological plan is re-optimized in response to quarter re-

oxygenation acquired by an image after fraction 30 (R=30, b=0.25) and improves the TCP by 

0.01 (0.79 vs. 0.80) due to the small increase in average tumor biological dose (78.8 Gy vs. 78.9 

Gy). Similar improvement (0.83 vs. 0.84) is achieved by biologically optimized adaptive plan in 

case of halfway re-oxygenation after fraction 30 (R=30, b=0.50) due to the small increase in 

average tumor biological dose (79.2 Gy vs. 79.3 Gy). As a result, these small improvements in 

TCP obtained by adaptive plans increase the TCP gain over physically optimized plans (0.73 vs. 

0.80 for (R=30, b=0.25), 0.79 vs. 0.84 for (R=30, b=0.50)).  

 

One last note on the results presented in Figure 5.9 is related to the number of fractions delivered 

in each plan. As demonstrated in the Figure, except for (R=25, b=0.50), the number of fractions 

delivered in adaptive plans does not change by re-optimization (i.e. 38 fractions are delivered at 

those scenarios). However, for the specified case, the re-optimization adds a single fraction to the 

treatment resulting in 39 fractions. The increase in the number of fractions lowers the per-

fraction biological effect resulting in a lower TCP of 0.83.  
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Figure 5.10: Comparison of Treatment Plans across Various Scenarios of Different Re-

optimization Point (R) and Re-oxygenation rate (b) on Second Base Case (Each column shows 

the average biological dose with its upper and lower bar indicating the minimum and maximum 

biological doses achieved, respectively. The numbers in bold show TCP values for each plan 

whereas the numbers in parenthesis below average doses indicate the number of fractions 

delivered in each plan.) 

 

Similar to the first base case results presented in the previous section, non-adaptive biologically 

optimized plans improve over non-adaptive physically optimized plans in case of re-oxygenation 

as illustrated in Figure 5.10. In case of the quarter re-oxygenation that occurs at the end fraction 

25 (R=25, b=0.25), the biological plan improves the TCP by 0.03 (0.76 vs. 0.79). For the case of 

halfway re-oxygenation by the end of fraction 30 (R=30, b=0.50), TCP improves from 0.79 to 
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0.81 corresponding to a 0.02 gain. The improvements in TCP are achieved due to the significant 

increases in the minimum tumor biological doses of the physical plans. 

 

As Figure 5.10 demonstrates, biologically optimized adaptive plans raise TCP for all these 

higher red hypoxia (lower OMF) scenarios by a higher magnitude than the improvements seen in 

the previous section. It is also important to note that the average tumor biological doses achieved 

in non-adaptive biologically optimized plans increase by significant amount with the help of re-

optimization in adaptive plans. When an acquired biological image after fraction 25 shows 

quarter re-oxygenation (R=25, b=0.25), re-optimizing the treatment plan to this change improves 

the average tumor biological dose by 1.8 Gy (79.3 Gy vs. 81.1 Gy) resulting in a 0.02 gain in 

TCP (0.79 vs. 0.81). Similarly, re-optimizing the treatment plan after fraction 25 in response to 

the halfway re-oxygenation (R=25, b=0.50) improves the average tumor biological dose by 1.8 

Gy (79.9 Gy vs. 81.7 Gy) and improves the TCP from 0.85 to 0.87.  For the scenario considering 

(R=30, b=0.25), the biological adaptive plan improves the average tumor biological dose 

obtained from non-adaptive biological plan by 1.3 Gy (79.1 Gy 80.4 Gy) resulting in a 0.02 

increase in TCP (0.76 vs. 0.78). Lastly, for (R=30, b=0.50), the average tumor biological dose 

increases by 1.4 Gy (79.4 Gy 80.8 Gy) and the TCP rises from 0.81 to 0.83 corresponding to a 

0.02 gain.  

 

These gains produced by biologically optimized adaptive plans help achieving more significant 

improvements over the physically optimized plans. For example, in case of quarter re-

oxygenation after fraction 25 (R=25, b=0.25), adaptive plan improves TCP of physical plan by 

0.05 (0.76 vs. 0.81). In addition, for (R=30, b=0.25), TCP increases by 0.06 (0.72 vs. 0.78).    
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The results presented in Figure 5.9 and 5.10 demonstrate the importance of when to re-optimize 

(R) and how fast the re-oxygenation occurs (b) for the improvements in TCP obtained by 

biologically optimized adaptive plan. For both first and second base cases, the improvement gets 

its highest values (0.07 for the first base case and 0.06 for the second base case) at a later re-

optimization point (R=30) with lower re-oxygenation rate (b=0.25). The lower re-oxygenation 

rate acquired by a late image in the treatment leaves a longer period of time where the initial 

hypoxia values are used in scoring the physical plans which worsens the results. However, a 

longer period of time with initial hypoxia values favors biologically optimized plans since the 

initial biology information is dealt with in the optimization allowing the opportunity for the 

biological plans to show their superiority.  In contrast, higher re-oxygenation rate imaged earlier 

in the treatment (R=25, b=0.50) reduces the TCP gain by helping physical plans significantly and 

removing opportunities for biologically optimized plans by reducing the period of time that more 

severe hypoxia applies. 

 

Overall, the results presented in Section 5.4.3.1 and 5.4.3.2 show that re-planning the biological 

plans in response to the changes in the tumor point sensitivity (l) provides mathematical gains 

that are enough to be clinically significant. These gains demonstrate the potential benefit of 

adapting the biological plans to the changing tumor biology, and therefore, prove the concept of 

achieving higher TCP by biologically adaptive planning optimization. 
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6 Conclusions and Future Research  

This research investigates the opportunities that could be created in IMRT planning by 

incorporating the changes in the tumor geometry and the initial and changing tumor biology into 

the optimization. Adaptive optimization methodologies were developed that re-optimized the 

treatment plans in response to the changes in the tumor geometry acquired from updated images 

against both cumulative and fraction size dose constraints in order to determine the best design 

for each fraction and the overall treatment.  

 

Using the tumor biology information prior to the treatment, biological optimization models were 

developed that adjusted the radiation delivered across tumor to the sensitivity of tumor points. 

Furthermore, biologically optimized plans were designed which were adaptive to the changes in 

tumor point sensitivity over the course of the treatment.  

 

All the optimization models developed in this research were based on mixed-integer linear 

programming formulations of the problem with single non-negative integer variable for the 

number of fractions. Throughout the research, significant attention was given to the feasible 

fractionation of the treatment plans by explicitly including cumulative and fraction size dose 

constraints in the formulations.  

 

The contributions of this dissertation research are listed as follows. This research: 

 Developed and tested a ratio model with re-scaling approach to deal with fractionation of 

treatment plans 
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 Demonstrated the challenge of fractionating adaptive plans re-optimized against only 

cumulative dose limits using a lung test case simulating real practice  

 Showed clinically significant improvements in tumor doses with re-optimizing treatment 

plans in response to the changes in the tumor geometry over the course of the treatment 

using two lung test cases simulating real practice (Both cumulative and fraction size dose 

limits are satisfied in computed adaptive plans.) 

 Demonstrated significant improvements in tumor control by including initial tumor 

hypoxia information into the optimization on a synthetic head and neck test case 

 Illustrated the need to explicitly enforce integer fraction size dose constraints in such 

biological optimization 

 Showed mathematical gains in tumor control and average tumor doses that are enough to 

be clinically important by adapting treatment plans to the changes in the tumor hypoxia 

throughout the treatment (Both cumulative and fraction size dose limits are satisfied in 

computed adaptive plans.) 

 Displayed the volatility of tumor control probability to the changes in the tumor hypoxia 

values 

 

For future research on adaptive planning optimization with changes in the tumor geometry, the 

currently used tumor homogeneity dose requirement over the course of the treatment can be 

extended by introducing tumor dose homogeneity limit for each epoch which will make the 

computed plans clinically more applicable. Modeling this requirement in the re-optimization 

formulation will make sure that all regions of the tumor receive a homogeneous dose distribution 

not only over the entire treatment but also over each epoch. Another extension of this study 



 

107 

might be on improving the quality of the updated plans received from re-optimization. At 

present, the treatment plan is re-optimized based on the latest tumor geometry, so no future 

changes on the tumor geometry are predicted. Information on the future tumor geometry received 

by using a predictive modeling can be incorporated into the re-optimization formulation which 

might improve the plan delivered after adaptation. Lastly, although incorporating dose-volume 

constraints into the optimization increases the computational complexity of the models (Lee et 

al., 2006; Tuncel et al. 2010), the trade-off between the quality of the adaptive plans with dose-

volume constraints and the computational time to generate them should be investigated.  

 

Research on biologically guided radiation therapy planning optimization can be extended in 

several ways. As more test cases with tumor hypoxia information become available in the future, 

the biological optimization models developed in this research can be further tested and the 

improvements in the tumor control can be evaluated. In addition, in parallel to the clinical 

research on quantifying change in the hypoxia with respect to dose, more reliable adaptive 

scenarios could be generated and the proposed adaptive planning optimization methodology 

could be tested with multiple scenarios.   
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APPENDICES 
Appendix A3: No Adaptation vs. Two-Epoch Adaptation Results for the Lung1 Test Case (The 

uniform fractionation model solved in the optimization) 

Structure 
Dose 

Statistics 
(Gy) 

No 
Adaptation 
(No Boost)

No Adaptation (with 
Boost) Two-Epoch Adaptation 

Total Main 
Stage 

Boost 
Stage Total Epoch 

1 
Epoch 
2 (with 
Boost) 

Total 

Tumor 

Max. 
Dose

75.0
[2.14]

53.6
[2.14]

24.3
[2.43] 75.3 53.6 

[2.14] 
29.6 

[2.47] 80.5 

Min. 
Dose

71.3
[2.04]

50.9
[2.04]

20.0
[2.00] 71.6 50.9 

[2.04] 
24.0 

[2.00] 76.5 

Avg. 
Dose

72.9
[2.08]

52.1
[2.08]

21.3
[2.13] 73.4 52.1 

[2.08] 
26.6 

[2.22] 78.7 

Removed 
Tumor 
Points 

Max. 
Dose - - - - - 27.2 

[2.26] 80.5 

Min. 
Dose - - - - - 6.4 

[0.53] 57.8 

Avg. 
Dose - - - - - 16.1 

[1.34] 68.2 

PTV2 

Max. 
Dose

75.0
[2.14]

53.6
[2.14]

23.4
[2.34] 75.3 53.6 

[2.14] 
29.8 

[2.48] 80.5 

Min. 
Dose

70.0
[2.00]

50.0
[2.00]

9.0
[0.9] 59.1 50.0 

[2.00] 
6.4 

[0.53] 56.6 

Avg. 
Dose

72.7
[2.08]

51.9
[2.08]

21.0
[2.10] 72.9 51.9 

[2.08] 
22.5 

[1.87] 74.4 

Right  
Lung 

Max. 
Dose

73.2
[2.09]

52.3
[2.09]

21.0
[2.10] 73.3 52.3 

[2.09] 
24.2 

[2.02] 75.6 

Avg. 
Dose

25.0
[0.71]

17.9
[0.71]

7.1
[0.71] 25.0 17.9 

[0.71] 
7.1 

[0.60] 25.0 

Left  
Lung 

Max. 
Dose

62.8
[1.79]

44.8
[1.79]

16.1
[1.61] 58.3 44.8 

[1.79] 
16.6 

[1.38] 55.7 

Avg. 
Dose

22.8
[0.65]

16.3
[0.65]

6.7
[0.67] 23.0 16.3 

[0.65] 
7.1 

[0.59] 23.4 

Heart 

Max. 
Dose

70.2
[2.01]

50.2
[2.01]

18.9
[1.89] 69.1 50.2 

[2.01] 
25.2 

[2.10] 75.2 

Avg. 
Dose

24.2
[0.69]

17.3
[0.69]

7.1
[0.71] 24.4 17.3 

[0.69] 
7.3 

[0.61] 24.6 

Esophagus 

Max. 
Dose

60.6
[1.73]

43.3
[1.73]

17.2
[1.72] 60.4 43.3 

[1.73] 
20.4 

[1.70] 61.1 

Avg. 
Dose

27.6
[0.79]

19.7
[0.79]

7.7
[0.77] 27.4 19.7 

[0.79] 
8.9 

[0.74] 28.6 

Not 
Otherwise 
Specified 

Max. 
Dose

73.5
[2.10]

52.5
[2.10]

21.0
[2.10] 73.5 52.5 

[2.10] 
25.2 

[2.10] 77.7 

Avg. 
Dose

24.6
[0.70]

17.5
[0.70]

7.1
[0.71] 24.6 17.5 

[0.70] 
7.6 

[0.63] 25.2 

Spinal Cord 

Max. 
Dose

45.0
[1.29]

32.1
[1.29]

15.5
[1.55] 45.0 32.1 

[1.29] 
17.7 

[1.48] 45.0 

Avg. 
Dose

23.9
[0.68]

17.1
[0.68]

6.92
[0.69] 24.0 17.1 

[0.68] 
7.77 

[0.65] 24.9 

# of Fractions Given 35 25 10 35 25 12 37

                                                            
3 The fraction size doses are given in brackets below the cumulative doses. PTV2 represents the 
secondary target. 
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Appendix B4: No Adaptation vs. Two-Epoch Adaptation Results for the Lung1 Test 
Case (The ratio model solved in the optimization and the optimized doses rescaled if necessary)   

Structure 
Dose 

Statistics 
(Gy) 

No 
Adaptation 
(No Boost)

No Adaptation (with 
Boost) Two-Epoch Adaptation 

Total Main 
Stage 

Boost 
Stage Total Epoch 

1 
Epoch 
2 (with 
Boost) 

Total 

Tumor 

Max. 
Dose 

73.6
[2.17]

54.1
[2.17]

22.1
[2.21] 75.3 54.1 

[2.17] 
28.9 

[2.41] 80.4 
Min.  
Dose 

69.9
[2.06]

51.4
[2.06]

20.0
[2.00] 71.5 51.4 

[2.06] 
24.0 

[2.00] 76.4 

Avg.  
Dose 

71.6
[2.11]

52.7
[2.11]

20.7
[2.07] 73.4 52.7 

[2.11] 
25.6 

[2.13] 78.3 

Removed 
Tumor 
Points 

Max. 
Dose - - - - - 26.7 

[2.22] 80.4 
Min.  
Dose - - - - - 6.0 

[0.50] 57.7 
Avg.  
Dose - - - - - 14.8 

[1.24] 67.5 

PTV2 

Max. 
Dose 

73.6
[2.17]

54.1
[2.17]

22.2
[2.22] 75.3 54.1 

[2.17] 
28.9 

[2.41] 80.4 
Min.  
Dose 

68.0
[2.00]

50
[2.00]

9.7
[0.97] 59.7 50.0 

[2.00] 
6.0 

[0.50] 56.0 
Avg.  
Dose 

71.3
[2.10]

52.4
[2.10]

20.4
[2.04] 72.9 52.4 

[2.10] 
21.6 

[1.80] 74.0 

Right  
Lung 

Max. 
Dose 

71.4
[2.10]

52.5
[2.10]

21.0
[2.10] 73.5 52.5 

[2.10] 
23.2 

[1.93] 75.1 
Avg.  
Dose 

24.5
[0.72]

18.0
[0.72]

6.9
[0.69] 25.0 18.0 

[0.72] 
6.7 

[0.56] 24.7 

Left  
Lung 

Max. 
Dose 

55.0
[1.62]

40.4
[1.62]

15.3
[1.53] 55.7 40.4 

[1.62] 
14.8 

[1.24] 52.8 
Avg.  
Dose 

22.5
[0.66]

16.5
[0.66]

6.5
[0.65] 23.0 16.5 

[0.66] 
6.5 

[0.54] 23.0 

Heart 
Max. 
Dose 

69.5
[2.04]

51.1
[2.04]

19.7
[1.97] 70.6 51.1 

[2.04] 
25.2 

[2.10] 76.1 
Avg.  
Dose 

23.7
[0.70]

17.5
[0.70]

7.0
[0.70] 24.4 17.5 

[0.70] 
7.0 

[0.58] 24.4 

Esophagus 
Max. 
Dose 

58.3
[1.72]

42.9
[1.72]

16.1
[1.61] 58.9 42.9 

[1.72] 
19.0 

[1.58] 60.0 
Avg.  
Dose 

27.3
[0.8]

20.1
[0.80]

7.5
[0.75] 27.6 20.1 

[0.80] 
7.8 

[0.65] 27.8 

Not 
Otherwise 
Specified 

Max. 
Dose 

71.4
[2.10]

52.5
[2.10]

21.0
[2.10] 73.5 52.5 

[2.10] 
25.2 

[2.10] 77.7 
Avg.  
Dose 

24.2
[0.71]

17.8
[0.71]

6.9
[0.69] 24.7 17.8 

[0.71] 
7.2 

[0.60] 25.0 

Spinal Cord 
Max. 
Dose 

44.1
[1.30]

32.4
[1.30]

15.3
[1.53] 44.9 32.4 

[1.30] 
15.0 

[1.25] 44.5 

Avg.  
Dose 

23.4
[0.69]

17.2
[0.69]

6.8
[0.68] 24.0 17.2 

[0.69] 
7.0 

[0.59] 24.2 
# of Fractions Given 34 25 10 35 25 12 37

 

                                                            
4 The fraction size doses are given in brackets below the cumulative doses. PTV2 represents the 
secondary target. 
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Appendix C5: No Adaptation vs. Two-Epoch Adaptation Results for the CERRLung Test Case 
(The ratio model solved in the optimization and the optimized doses rescaled if necessary)  

Structure 
Dose 

Statistics 
(Gy) 

No 
Adaptation 
(No Boost)

No Adaptation (with 
Boost) Two-Epoch Adaptation 

Total Main 
Stage 

Boost 
Stage Total Epoch 

1 
Epoch 
2 (with 
Boost)

Total 

Tumor 

Max. 
Dose 

78.0
[2.17]

54.1 
[2.17]

34.4 
[2.29] 86.2 54.1 

[2.17] 
38.7 

[2.28] 90.6 
Min. 
Dose 

74.1
[2.06]

51.4 
[2.06]

30 
[2.0] 81.9 51.4 

[2.06] 
34  

[2.0] 86.0 

Avg. 
Dose 

75.9
[2.11]

52.7 
[2.11]

31.5 
[2.1] 84.2 52.7 

[2.11] 
35.8 
[2.1] 88.5 

Removed 
Tumor 
Points 

Max. 
Dose - - - - - 37.7 

[2.22] 90.6 
Min. 
Dose - - - - - 10.5 

[0.62] 62.5 
Avg. 
Dose - - - - - 31.7 

[1.87] 84.5 

PTV2 

Max. 
Dose 

78.0
[2.17]

54.1 
[2.17]

34.9 
[2.33] 86.2 54.1 

[2.17] 
39.3 

[2.31] 90.6 
Min. 
Dose 

72.0
[2.0]

50
[2.0]

12.7 
[0.84] 62.7 50 

[2.0] 
3.6 

[0.21] 53.6 
Avg. 
Dose 

75.1
[2.09]

52.1 
[2.09]

28.7 
[1.91] 80.9 52.1 

[2.09] 
30.6 
[1.8] 82.7 

Right  
Lung 

Max. 
Dose 

75.6
[2.1]

52.5 
[2.1]

31.5 
[2.1] 84.0 52.5 

[2.1] 
35.7 
[2.1] 88.2 

Avg. 
Dose 

16.9
[0.47]

11.7 
[0.47]

5 
[0.33] 16.7 11.7 

[0.47] 
5.1  

[0.3] 16.9 

Left  
Lung 

Max. 
Dose 

75.6
[2.1]

52.5 
[2.1]

31.5 
[2.1] 82.5 52.5 

[2.1] 
33.2 

[1.95] 82.0 
Avg. 
Dose 

9.7
[0.27]

6.7 
[0.27]

2.7 
[0.18] 9.5 6.7 

[0.27] 
2.6 

[0.15] 9.3 

Heart 
Max. 
Dose 

72.7
[2.02]

50.5 
[2.02]

17.1 
[1.14] 67.6 50.5 

[2.02] 
20.7 

[1.22] 68.2 
Avg. 
Dose 

4.2
[0.12]

2.9 
[0.12]

0.9 
[0.06] 3.9 2.9 

[0.12] 
1  

[0.06] 4.0 

Esophagus 
Max. 
Dose 

75.6
[2.1]

52.5 
[2.1]

22.9 
[1.53] 75.3 52.5 

[2.1] 
20.3 

[1.19] 72.7 
Avg. 
Dose 

16.6
[0.46]

11.5 
[0.46]

3.2 
[0.21] 14.7 11.5 

[0.46] 
3  

[0.17] 14.5 

Not 
Otherwise 
Specified 

Max. 
Dose 

75.6
[2.1]

52.5 
[2.1]

31.5 
[2.1] 84.0 52.5 

[2.1] 
35.7 
[2.1] 88.2 

Avg. 
Dose 

7.5 
[0.21]

5.2 
[0.21]

2.3 
[0.15] 7.5 5.2 

[0.21] 
2.4 

[0.14] 7.6 

Spinal Cord 
Max. 
Dose 

10.4
[0.29]

7.2 
[0.29]

6.8 
[0.45] 10.4 7.2 

[0.29] 
7.7 

[0.45] 11.3 

Avg. 
Dose 

1.6
[0.04]

1.1 
[0.04]

0.6 
[0.04] 1.7 1.1 

[0.04] 
0.5 

[0.03] 1.6 
# of Fractions Given 36 25 15 40 25 17 42

 

                                                            
5 The fraction size doses are given in brackets below the cumulative doses. PTV2 represents the 
secondary target. 
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Appendix D6: Three-Epoch Adaptation Results for the Lung1 Case (Adapted after fraction 10 
and 25, the uniform fractionation model solved in the re-optimization) 

Structure 
Dose 

Statistics 
(Gy) 

Same 
plan is 

delivered 
for the 

first 
epoch 

The original tumor 
shrinks 20% towards the 

residual tumor after 
fraction 25 during the 

first 10 fractions 

The original tumor 
shrinks 50% towards the 

residual tumor after 
fraction 25 during the 

first 10 fractions 

The original tumor 
shrinks 80% towards the 

residual tumor after 
fraction 25 during the 

first 10 fractions 

Epoch 
1 

Epoch 
2 

Epoch 
3 (with 
Boost) 

Total Epoch 
2 

Epoch 
3 

(with 
Boost)

Total Epoch 
2 

Epoch
3 

(with 
Boost)

Total 

Tumor 

Max. 
Dose 

21.4 
[2.14] 

32.3
[2.15]

29.6
[2.47] 80.6 32.8

[2.19]
29.5

[2.46] 81.0 33.5 
[2.23] 

29.4
[2.45] 81.2 

Min. 
Dose 

20.4 
[2.04] 

30.5
[2.03]

24.0
[2.00] 76.5 30.6

[2.04]
24
[2] 76.9 31 

[2.06] 
24.0

[2.00] 77.1 

Avg. 
Dose 

20.8 
[2.08] 

31.4
[2.09]

26.6
[2.22] 78.8 31.7

[2.11]
26.6

[2.22] 79.2 32 
[2.13] 

26.5
[2.21] 79.3 

Removed 
Tumor 
Points 

Max. 
Dose - 32.2

[2.15]
27.1

[2.26] 80.6 32.7
[2.18]

27.2
[2.27] 81.0 33.4 

[2.22] 
27.3

[2.28] 81.2 

Min. 
Dose - 30.0

[2.00]
6.5

[0.55] 57.2 30.0
[2.00]

6.5
[0.54] 57.2 30.0 

[2.00] 
6.5

[0.55] 57.2 

Avg. 
Dose - 31.0

[2.07]
16.2

[1.35] 68.3 31.2
[2.08]

16.2
[1.35] 68.5 31.2 

[2.08] 
16.2

[1.35] 68.4 

PTV2 

Max. 
Dose 

21.4 
[2.14 

32.3
[2.15]

29.9
[2.49] 80.6 32.9

[2.19]
29.7

[2.47] 81.0 33.2 
[2.22] 

29.6
[2.47] 81.2 

Min. 
Dose 

20.0 
[2.00] 

30.0
[2.00]

6.5
[0.54] 56.6 30.0

[2.00]
6.4

[0.54] 56.5 30.0 
[2.00] 

6.5
[0.54] 56.6 

Avg. 
Dose 

20.8 
[2.08] 

31.2
[2.08]

22.5
[1.88] 74.5 31.5

[2.1]
22.6

[1.88] 74.8 31.6 
[2.11] 

22.5
[1.87] 74.8 

Right Lung 

Max. 
Dose 

20.9 
[2.09] 

31.4 
[2.10] 

24.2 
[2.02] 

75.5 
 

31.3 
[2.08] 

24.7 
[2.06] 76.0 31.4 

[2.1] 
24.6 

[2.05] 76.3 

Avg. 
Dose 

7.1 
[0.71] 

10.7
[0.71]

7.1
[0.6] 25.0 10.7

[0.71]
7.1

[0.6] 25.0 10.7 
[0.71] 

7.1
[0.6] 25.0 

Left 
Lung 

Max. 
Dose 

17.9 
[1.79] 

25.9
[1.73]

16.7
[1.39] 54.1 24.7

[1.64]
16.2

[1.35] 52.3 23.4 
[1.56] 

16.4
[1.36] 51.9 

Avg. 
Dose 

6.5 
[0.65] 

9.8 
[0.65]

7.2
[0.6] 23.5 9.8

[0.66]
7.1

[0.59] 23.5 9.8 
[0.65] 

7.1
[0.59] 23.4 

Heart 

Max. 
Dose 

20.1 
[2.01] 

30.4
[2.03]

25.2
[2.1] 75.5 31.2

[2.08]
25.2
[2.1] 76.4 31.4 

[2.09] 
25.2
[2.1] 76.6 

Avg. 
Dose 

6.9 
[0.69] 

10.4
[0.69]

7.3
[0.61] 24.6 10.4

[0.69]
7.3

[0.61] 24.7 10.4 
[0.69] 

7.3
[0.61] 24.6 

Esoph. 

Max. 
Dose 

17.3 
[1.73] 

25.8
[1.72]

20.5
[1.71] 61.2 25.6

[1.71]
20.6

[1.72] 61.6 27.3 
[1.82] 

20.4
[1.7] 61.4 

Avg. 
Dose 

7.9 
[0.79] 

11.9
[0.79]

9
[0.75] 28.7 12.1

[0.81]
8.9

[0.74] 28.9 12.2 
[0.82] 

9.0
[0.75] 29.1 

N.O.S. 

Max. 
Dose 

21.0 
[2.10] 

31.5
[2.10]

25.2
[2.1] 77.7 31.5

[2.1]
25.2
[2.1] 77.7 31.5 

[2.1] 
25.2
[2.1] 77.7 

Avg. 
Dose 

7.0 
[0.70] 

10.5
[0.70]

7.6
[0.64] 25.2 10.6

[0.71]
7.6

[0.63] 25.2 10.6 
[0.71] 

7.6
[0.63] 25.2 

Spinal 
Cord 

Max. 
Dose 

12.9 
[1.29] 

19.3
[1.29]

18.1
[1.51] 45.0 19.3

[1.29]
17.4

[1.45] 45.0 19.3 
[1.29] 

16.7
[1.39] 45.0 

Avg. 
Dose 

6.8 
[0.68] 

10.3
[0.68]

7.8
[0.65]

24.9 10.3
[0.68]

7.7
[0.64]

24.8 10.2 
[0.68] 

7.6
[0.64] 24.7 

# of Fractions Given 10 15 12 37 15 12 37 15 12 37
 

                                                            
6 The fraction size doses are given in brackets below the cumulative doses. PTV2 represents the 
secondary target. “N.O.S” is abbreviation of “Not Otherwise Specified” tissue. 
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Appendix E7: Three-Epoch Adaptation Results for the CERRLung Case (Adapted after fraction 
10 and 25, the uniform fractionation model solved in the re-optimization) 

Structure 
Dose 

Statistics 
(Gy) 

Same 
plan is 

delivered 
for the 

first 
epoch 

The original tumor 
shrinks 20% towards the 

residual tumor after 
fraction 25 during the 

first 10 fractions 

The original tumor 
shrinks 50% towards the 

residual tumor after 
fraction 25 during the 

first 10 fractions 

The original tumor 
shrinks 80% towards 

the residual tumor after 
fraction 25 during the 

first 10 fractions 

Epoch 
1 

Epoch 
2 

Epoch 
3 (with 
Boost) 

Total Epoch 
2 

Epoch 
3 

(with 
Boost)

Total Epoch 
2 

Epoch
3 

(with 
Boost)

Total

Tumor 

Max. 
Dose 

21.7 
[2.17] 

32.7
[2.18]

39.0
[2.3] 91.0 32.9

[2.19]
39.1
[2.3] 91.0 32.9 

[2.19] 
39.0

[2.29] 91.0 

Min. 
Dose 

20.6 
[2.06] 

30.8
[2.05]

34.0
[2.00] 86.5 30.9

[2.06]
34.0

[2.00] 86.5 31.0 
[2.06] 

34.0
[2.00] 86.5 

Avg. 
Dose 

21.2 
[2.12] 

31.8
[2.12]

36.0
[2.12] 88.9 31.9

[2.12]
35.9

[2.11] 89.0 31.9 
[2.13] 

35.9
[2.11] 89.0 

Removed 
Tumor 
Voxels 

Max. 
Dose - 32.6

[2.17]
37.7

[2.22] 91.0 32.7
[2.18]

37.4
[2.2] 91.0 32.7 

[2.18] 
30.9

[1.82] 91.0 

Min. 
Dose - 30.0

[2.00]
10.8

[0.64] 63.5 30.0
[2.00]

11.0
[0.65] 63.5 30.0 

[2.00] 
37.5

[2.21] 64.0 

Avg. 
Dose - 31.3

[2.08]
31.9

[1.88] 84.8 31.3
[2.09]

32.1
[1.89] 84.8 31.3 

[2.09] 
11.0

[0.65] 84.7 

PTV2 

Max. 
Dose 

21.7 
[2.17] 

32.8
[2.19]

39.6
[2.33] 91.0 33.0

[2.20]
40.6

[2.39] 91.0 33.1 
[2.21] 

40.0
[2.35] 91.0 

Min. 
Dose 

20.0 
[2.00] 

30.0
[2.00]

4.3
[0.25] 54.3 30[2] 3.9

[0.23] 53.9 30.0 
[2.00] 

4.1
[0.24] 54.1 

Avg. 
Dose 

20.9 
[2.09] 

31.4
[2.09]

30.8
[1.81] 83.1 31.4

[2.09]
30.9

[1.82] 83.2 31.4 
[2.09] 

30.9
[1.82] 83.2 

Right 
Lung 

Max. 
Dose 

21.0 
[2.10] 

31.5 
[2.10] 

35.7 
[2.10] 88.2 31.5 

[2.10] 
35.7 

[2.10] 88.2 31.5 
[2.10] 

35.7 
[2.10] 84.7 

Avg. 
Dose 

4.7 
[0.47] 

7.1 
[0.47]

5.2
[0.31] 17.0 7.1

[0.47]
5.2

[0.31] 17.0 7.1 
[0.47] 

5.2
[0.31] 17.0 

Left 
Lung 

Max. 
Dose 

21.0 
[2.10] 

31.5
[2.1]

32.3
[1.9] 81.6 31.5

[2.1]
32.5

[1.91] 81.8 31.5 
[2.10] 

33.5
[1.97] 82.2 

Avg. 
Dose 

2.7 
[0.27] 

4.0 
[0.27]

2.6
[0.15] 9.3 3.9

[0.26]
2.6

[0.15] 9.2 4.0 
[0.27] 

2.6
[0.15] 9.3 

Heart 

Max. 
Dose 

20.1 
[2.01] 

30.7
[2.04]

20.8
[1.23] 70.8 31.1

[2.07]
21.2

[1.25] 71.3 31.3 
[2.09] 

21.9
[1.29] 72.3 

Avg. 
Dose 

1.2 
[0.12] 

1.8 
[0.12]

1.0
[0.06] 4.0 1.8

[0.12]
1.0

[0.06] 4.0 1.8 
[0.12] 

1.1
[0.06] 4.0 

Esoph. 

Max. 
Dose 

21.0 
[2.1] 

31.5
[2.1]

22.4
[1.32] 74.8 31.5

[2.1]
20

[1.18] 72.4 31.5 
[2.1] 

21.6
[1.27] 74.0 

Avg. 
Dose 

4.7 
[0.47] 

7.0 
[0.47]

3.1
[0.18] 14.8 7.1

[0.47]
2.8

[0.17] 14.6 7.2 
[0.48] 

3
[0.18] 14.8 

N.O.S. 

Max. 
Dose 

21.0 
[2.10] 

31.5
[2.1]

35.7
[2.1] 88.2 31.5

[2.1]
35.7
[2.1] 88.2 31.5 

[2.10] 
35.7

[2.10] 88.2 

Avg. 
Dose 

2.1 
[0.21] 

3.1 
[0.21]

2.4
[0.14] 7.6 3.1

[0.21]
2.4

[0.14] 7.6 3.1 
[0.21] 

2.4
[0.14] 7.6 

Spinal 
Cord 

Max. 
Dose 

2.6 
[0.26] 

5.4 
[0.36]

7.0
[0.41] 12.1 5.3

[0.35]
7.4

[0.43] 13.8 4.8 
[0.32] 

8.4
[0.49] 13.2 

Avg. 
Dose 

0.5 
[0.05] 

0.8 
[0.05]

0.5
[0.03] 1.8 0.9

[0.06]
0.5

[0.03] 1.9 0.8 
[0.05] 

0.5
[0.03] 1.8 

# of Fractions Given 10 15 17 42 15 17 42 15 17 42

                                                            
7 The fraction size doses are given in brackets below the cumulative doses. PTV2 represents the 
secondary target. “N.O.S” is abbreviation of “Not Otherwise Specified” tissue. 
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Appendix F8: Three-Epoch Adaptation Results for the Lung1 Case (Adapted after fraction 25 
and 30, the uniform fractionation model solved in the re-optimization) 

Structure 
Dose 

Statistics 
(Gy) 

Same plan is 
delivered for the 
first two epochs 

The residual 
tumor after 
fraction 25 

shrinks 10%

The residual 
tumor after 
fraction 25 

shrinks 30% 

The residual 
tumor after 
fraction 25 

shrinks 50%

Epoch 
1 

Epoch 
2 (with 
Boost)

Epoch 
3 (with 
Boost)

Total 
Epoch 
3 (with 
Boost)

Total 
Epoch 
3 (with 
Boost)

Total 

Tumor 

Max. 
Dose 

53.6 
[2.14] 

12.3
[2.47]

19.5
[2.43] 82.3 19.7

[2.46] 82.8 23.5
[2.35] 86.7 

Min. 
Dose 

50.9 
[2.04] 

10.0
[2.00]

16.0
[2.00] 78.2 16.0

[2.00] 78.6 20.0
[2.00] 82.4 

Avg. 
Dose 

52.1 
[2.08] 

11.1
[2.22]

17.0
[2.12] 80.2 17.7

[2.22] 80.9 21.1
[2.11] 84.2 

Removed 
Tumor 
Points 

Max. 
Dose - 11.3

[2.26]
17.5

[2.19] 81.9 18.3
[2.29] 82.8 22.0

[2.20] 86.4 
Min. 
Dose - 2.7

[0.53]
3.8

[0.47] 57.8 3.6
[0.45] 57.6 3.7 

[0.37] 57.6 
Avg. 
Dose - 6.7

[1.34]
9.0

[1.12] 68.3 9.5
[1.18] 69.8 9.1 

[0.91] 70.0 

PTV2 

Max. 
Dose 

53.6 
[2.14] 

12.4
[2.48]

19.5
[2.44] 82.3 19.9

[2.49] 82.8 23.5
[2.35] 86.7 

Min. 
Dose 

50.0 
[2.00] 

2.6
[0.53]

3.8
[0.48] 56.5 3.6

[0.45] 57.3 3.7 
[0.37] 57.2 

Avg. 
Dose 

51.9 
[2.08] 

9.4
[1.87]

13.6
[1.7] 74.9 13.2

[1.65] 74.5 13.2
[1.32] 74.5 

Right 
Lung 

Max. 
Dose 

52.3 
[2.09] 

10.1
[2.02]

14.8
[1.86] 76.3 15.5

[1.94] 77.0 16.1
[1.61] 72.1 

Avg. 
Dose 

17.9 
[0.71] 

3.0
[0.6]

4.2
[0.52] 25.0 4.2

[0.52] 25.0 4.2 
[0.42] 25.0 

Left  
Lung 

Max. 
Dose 

44.8 
[1.79] 

6.9
[1.38]

10.5
[1.31] 57.1 11.8

[1.47] 56.6 13.3
[1.33] 55.7 

Avg. 
Dose 

16.3 
[0.65] 

3.0
[0.59]

4.1
[0.51] 23.4 4.4

[0.55] 23.7 4.2 
[0.42] 23.5 

Heart 
Max. 
Dose 

50.2 
[2.01] 

10.5
[2.1]

15.8
[1.97] 76.3 16.8

[2.1] 77.3 18.7
[1.87] 79.3 

Avg. 
Dose 

17.3 
[0.69] 

3.0
[0.61]

4.3
[0.53] 24.6 4.4

[0.55] 24.7 4.5 
[0.45] 24.9 

Esoph. 
Max. 
Dose 

43.3 
[1.73] 

8.5
[1.7]

13.1
[1.63] 62.2 15

[1.87] 64.2 16.9
[1.69] 66.0 

Avg. 
Dose 

19.7 
[0.79] 

3.7
[0.74]

4.9
[0.61] 28.3 5.7

[0.72] 29.2 5.4 
[0.54] 28.9 

N.O.S. 
Max. 
Dose 

52.5 
[2.10] 

10.5
[2.1]

16.8
[2.1] 79.8 16.8

[2.1] 79.8 21.0
[2.10] 84.0 

Avg. 
Dose 

17.5 
[0.70] 

3.2
[0.63]

4.6
[0.58] 25.3 4.7

[0.58] 25.4 4.8 
[0.48] 25.5 

Spinal 
Cord 

Max. 
Dose 

32.1 
[1.29] 

7.4
[1.48]

9.7
[1.21] 45.0 16.5

[2.06] 45.0 12.6
[1.26] 45.0 

Avg. 
Dose 

17.1 
[0.68] 

3.2
[0.65]

4.6
[0.57] 24.9 5

[0.63] 25.4 4.8 
[0.48] 25.1 

# of Fractions Given 25 5 8 38 8 38 10 40
 

                                                            
8 The fraction size doses are given in brackets below the cumulative doses. PTV2 represents the 
secondary target. “N.O.S” is abbreviation of “Not Otherwise Specified” tissue. 
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Appendix G9: Three-Epoch Adaptation Results for the CERRLung Case (Adapted after fraction 
25 and 30, the uniform fractionation model solved in the re-optimization) 

Structure 
Dose 

Statistics 
(Gy) 

Same plan is 
delivered for the 
first two epochs 

The residual 
tumor after 
fraction 25 

shrinks 10%

The residual 
tumor after 
fraction 25 

shrinks 30% 

The residual 
tumor after 
fraction 25 

shrinks 50%

Epoch 
1 

Epoch 
2 (with 
Boost)

Epoch 
3 (with 
Boost)

Total 
Epoch 
3 (with 
Boost)

Total 
Epoch 
3 (with 
Boost)

Total 

Tumor 

Max. 
Dose 

54.3 
[2.17] 

11.5 
[2.3]

28.0 
[2.33] 91.4 30.2 

[2.32] 93.4 32.9 
[2.35] 95.9 

Min. 
Dose 

51.6 
[2.06] 10 [2] 24.0

[2] 86.8 26 [2] 88.8 28.0 
[2.0] 91.1 

Avg. 
Dose 

52.9 
[2.12] 

10.6 
[2.12]

25.8 
[2.15] 89.3 27.7 

[2.13] 91.1 30.2 
[2.16] 93.6 

Removed 
Tumor 
Points 

Max. 
Dose - 11.1 

[2.22]
27.7 

[2.31] 91.4 30.1 
[2.31] 93.4 32.4 

[2.31] 95.9 
Min. 
Dose - 3.3 

[0.65]
4.2

[0.35] 60.6 3.4
[0.26] 60.6 2.4 

[0.17] 59.8 
Avg. 
Dose - 9.4 

[1.88]
21.6
[1.8] 84.0 21.9 

[1.69] 84.6 22.7 
[1.62] 85.6 

PTV2 

Max. 
Dose 

54.3 
[2.17] 

11.8 
[2.35]

29.0 
[2.42] 91.4 30.1 

[2.32] 93.4 33.3 
[2.38] 95.9 

Min. 
Dose 

50 
[2.0] 

1.2 
[0.25]

2.0
[0.16] 53.2 2.1

[0.16] 53.3 1.5 
[0.1] 53.0 

Avg. 
Dose 

52.3 
[2.09] 

9.1 
[1.81]

21.6
[1.8] 82.9 21.8 

[1.68] 83.2 22.5 
[1.61] 83.8 

Right 
Lung 

Max. 
Dose 

52.5 
[2.1] 

10.5 
[2.1]

25.2
[2.1] 88.2 27.3

[2.1] 90.3 29.4 
[2.1] 92.4 

Avg. 
Dose 

11.8 
[0.47] 

1.5 
[0.31]

3.7
[0.31] 17.0 3.7

[0.28] 17.0 3.7 
[0.26] 17.0 

Left  
Lung 

Max. 
Dose 

52.5 
[2.1] 

9.5
[1.9]

24.8 
[2.06] 83.5 23.6 

[1.82] 73.5 29.3 
[2.09] 84.3 

Avg. 
Dose 

6.7 
[0.27] 

0.8 
[0.16]

1.8
[0.15] 9.3 1.6

[0.12] 9.1 1.8 
[0.13] 9.3 

Heart 
Max. 
Dose 

50.2 
[2.01] 

6.1 
[1.21]

15.7 
[1.31] 69.3 15.4 

[1.18] 65.4 16.7 
[1.2] 61.6 

Avg. 
Dose 

2.9 
[0.12] 

0.3 
[0.06]

0.7
[0.06] 4.0 0.6

[0.05] 3.9 0.6 
[0.04] 3.9 

Esoph. 
Max. 
Dose 

52.5 
[2.1] 

6.5 
[1.29]

15.3 
[1.28] 74.3 13.0

[1.0] 71.7 9.6 
[0.69] 68.4 

Avg. 
Dose 

11.7 
[0.47] 

0.9 
[0.18]

1.9
[0.15] 14.4 1.7

[0.13] 14.3 1.4 
[0.1] 14.0 

N.O.S. 
Max. 
Dose 

52.5 
[2.1] 

10.5 
[2.1]

25.2
[2.1] 88.2 27.3

[2.1] 90.3 29.4 
[2.1] 92.4 

Avg. 
Dose 

5.2 
[0.21] 

0.7 
[0.14]

1.6
[0.14] 7.6 1.6

[0.13] 7.6 1.7 
[0.12] 7.6 

Spinal 
Cord 

Max. 
Dose 

6.6 
[0.26] 

2.1 
[0.42]

1.4
[0.12] 7.6 2.6

[0.2] 9.2 4.4 
[0.31] 10.4 

Avg. 
Dose 

1.2 
[0.05] 

0.2 
[0.03]

0.3
[0.02] 1.6 0.5

[0.04] 1.8 0.5 
[0.04] 1.8 

# of Fractions Given 25 5 12 42 13 43 14 44

                                                            
9 The fraction size doses are given in brackets below the cumulative doses. PTV2 represents the 
secondary target. “N.O.S.” is abbreviation of “Not Otherwise Specified” tissue. 



 

122 

Appendix H10: Three-Epoch Adaptation Results for the Lung1 Case (Adapted after fraction 25 
and 30, the ratio model is solved in the re-optimization and the re-optimized doses rescaled if 

necessary) 

Structure 
Dose 

Statistics 
(Gy) 

Same plan is 
delivered for the 
first two epochs 

The residual 
tumor after 
fraction 25 

shrinks 10%

The residual 
tumor after 
fraction 25 

shrinks 30% 

The residual 
tumor after 
fraction 25 

shrinks 50%

Epoch 
1 

Epoch 
2 (with 
Boost)

Epoch 
3 (with 
Boost)

Total 
Epoch 
3 (with 
Boost)

Total 
Epoch 
3 (with 
Boost)

Total 

Tumor 

Max. 
Dose 

54.1 
[2.17] 

12.1
[2.41]

19.0
[2.38] 82.5 18.7

[2.34] 82.7 21.9
[2.43] 85.0 

Min. 
Dose 

51.4 
[2.06] 

10.0
[2.00]

16.0
[2.00] 78.4 16.0

[2.00] 78.5 18 
[2] 80.7 

Avg. 
Dose 

52.7 
[2.11] 

10.7
[2.13]

16.9
[2.12] 80.3 17.0

[2.13] 80.3 19.3
[2.14] 82.6 

Removed 
Tumor 
Points 

Max. 
Dose - 11.1

[2.22]
17.4

[2.18] 82.2 17.8
[2.22] 82.7 20 

[2.22] 84.1 
Min. 
Dose - 2.5

[0.50]
3.8

[0.47] 58.4 3.4
[0.42] 57.5 3.3 

[0.37] 57.5 
Avg. 
Dose - 6.2

[1.24]
8.9

[1.11] 68.4 8.4
[1.05] 68.8 8.3 

[0.92] 69.2 

PTV2 

Max. 
Dose 

54.1 
[2.17] 

12.1
[2.41]

19.0
[2.38] 82.5 18.8

[2.35] 82.7 21.3
[2.37] 85.0 

Min. 
Dose 

50.0 
[2.00] 

2.5
[0.5]

3.8
[0.47] 56.3 3.4

[0.42] 56.2 3.3 
[0.37] 57.1 

Avg. 
Dose 

52.4 
[2.1] 

9.0
[1.80]

13.6
[1.7] 75.0 12.4

[1.55] 73.8 12.0
[1.33] 73.4 

Right 
Lung 

Max. 
Dose 

52.5 
[2.1] 

9.7
[1.93]

15.2
[1.89] 76.7 14.6

[1.83] 76.2 14.3
[1.59] 70.4 

Avg. 
Dose 

18.0 
[0.72] 

2.8
[0.56]

4.2
[0.52] 25.0 3.8

[0.47] 24.6 3.8 
[0.42] 24.6 

Left 
 Lung 

Max. 
Dose 

40.4 
[1.62] 

6.2
[1.24]

9.8
[1.22] 53.1 13.1

[1.64] 52.1 10.7
[1.19] 50.0 

Avg. 
Dose 

16.5 
[0.66] 

2.7
[0.54]

4.1
[0.51] 23.3 3.8

[0.47] 23.0 3.9 
[0.43] 23.1 

Heart 
Max. 
Dose 

51.1 
[2.04] 

10.5
[2.1]

14.5
[1.81] 75.9 16.8

[2.1] 78.2 17.2
[1.91] 78.4 

Avg. 
Dose 

17.5 
[0.7] 

2.9
[0.58]

4.2
[0.53] 24.6 4.0

[0.51] 24.4 4.2 
[0.47] 24.6 

Esoph. 
Max. 
Dose 

42.9 
[1.72] 

7.9
[1.58]

13.1
[1.63] 62.0 13.1

[1.63] 62.0 14.9
[1.65] 63.8 

Avg. 
Dose 

20.1 
[0.8] 

3.2
[0.65]

4.9
[0.61] 28.2 4.7

[0.59] 28.1 5.0 
[0.56] 28.3 

N.O.S. 
Max. 
Dose 

52.5 
[2.1] 

10.5
[2.1]

16.8
[2.1] 79.8 16.8

[2.1] 79.8 18.9
[2.1] 81.9 

Avg. 
Dose 

17.8 
[0.71] 

3.0
[0.6]

4.6
[0.57] 25.4 4.3

[0.54] 25.1 4.4 
[0.48] 25.1 

Spinal 
Cord 

Max. 
Dose 

32.4 
[1.3] 

6.3
[1.25]

9.2
[1.15] 45.0 9.3

[1.16] 44.3 13.1
[1.45] 44.3 

Avg. 
Dose 

17.2 
[0.69] 

2.9
[0.59]

4.5
[0.57] 24.7 4.2

[0.53] 24.4 4.4 
[0.49] 24.6 

# of Fractions Given 25 5 8 38 8 38 9 39

                                                            
10 The fraction size doses are given in brackets below the cumulative doses. PTV2 represents the 
secondary target. “N.O.S.” is abbreviation of “Not Otherwise Specified” tissue. 
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Appendix I11: Three-Epoch Adaptation Results for the CERRLung Case (Adapted after fraction 
25 and 30, the ratio model solved in the re-optimization and the re-optimized doses rescaled if 

necessary) 

Structure 
Dose 

Statistics 
(Gy) 

Same plan is 
delivered for the 
first two epochs 

The residual 
tumor after 
fraction 25 

shrinks 10%

The residual 
tumor after 
fraction 25 

shrinks 30% 

The residual 
tumor after 
fraction 25 

shrinks 50%

Epoch 
1 

Epoch 
2 (with 
Boost)

Epoch 
3 (with 
Boost)

Total 
Epoch 
3 (with 
Boost)

Total 
Epoch 
3 (with 
Boost)

Total 

Tumor 

Max. 
Dose 

54.1 
[2.17] 

11.4 
[2.28]

27.5 
[2.29] 90.6 29.7 

[2.28] 92.9 34.4 
[2.3] 97.5 

Min. 
Dose 

51.4 
[2.06] 

10
[2.0]

24.0
[2.0] 86.1 26.0

[2.0] 88.3 30.0
[2.0] 92.6 

Avg. 
Dose 

52.7 
[2.11] 

10.5 
[2.1]

25.3 
[2.11] 88.5 27.5 

[2.11] 90.6 31.8 
[2.12] 94.9 

Removed 
Tumor 
Points 

Max. 
Dose - 11.1 

[2.22]
27.0 

[2.25] 90.6 29.7 
[2.28] 92.9 33.9 

[2.26] 97.5 
Min. 
Dose - 3.1 

[0.62]
4.0

[0.34] 59.8 3.6
[0.28] 59.9 2.0 

[0.13] 58.9 
Avg. 
Dose - 9.3 

[1.87]
21.4 

[1.78] 83.6 22.1
[1.7] 84.5 23.6 

[1.58] 86.2 

PTV2 

Max. 
Dose 

54.1 
[2.17] 

11.6 
[2.31]

27.8 
[2.31] 90.6 29.6 

[2.28] 92.9 35.8 
[2.39] 97.5 

Min. 
Dose 

50 
[2.0] 

1.1 
[0.21]

2.0
[0.17] 53.1 2.0

[0.15] 53.1 1.5
[0.1] 52.7 

Avg. 
Dose 

52.1 
[2.09] 

9.0
[1.8]

21.1 
[1.76] 82.2 21.8 

[1.68] 83.0 23.5 
[1.57] 84.7 

Right 
Lung 

Max. 
Dose 

52.5 
[2.1] 

10.5 
[2.1]

25.2
[2.1] 88.2 27.3

[2.1] 90.3 31.5
[2.1] 94.5 

Avg. 
Dose 

11.7 
[0.47] 

1.5 
[0.3]

3.5
[0.29] 16.7 3.6

[0.28] 16.9 3.7 
[0.25] 17.0 

Left 
Lung 

Max. 
Dose 

52.5 
[2.1] 

9.8 
[1.95]

23.1 
[1.93] 79.3 25.6 

[1.97] 80.6 29.7 
[1.98] 83.7 

Avg. 
Dose 

6.7 
[0.27] 

0.8 
[0.15]

1.8
[0.15] 9.4 1.8

[0.14] 9.3 1.8 
[0.12] 9.3 

Heart 
Max. 
Dose 

50.5 
[2.02] 

6.1 
[1.22]

14.1 
[1.17] 66.8 14.6 

[1.13] 66.3 18.7 
[1.25]

61.0

Avg. 
Dose 

2.9 
[0.12] 

0.3 
[0.06]

0.7
[0.06] 4.0 0.7

[0.05] 3.9 0.6 
[0.04]

3.9

Esoph. 
Max. 
Dose 

52.5 
[2.1] 

6.0 
[1.19]

15.8 
[1.32] 74.2 13.0

[1.0]
71.5 

 
9.9 

[0.66]
68.3

Avg. 
Dose 

11.5 
[0.46] 

0.9 
[0.17]

2.2
[0.18] 14.6 2.1

[0.16]
14.5 

 
1.6 

[0.11]
14.0

N.O.S. 
Max. 
Dose 

52.5 
[2.1] 

10.5 
[2.1]

25.2
[2.1] 88.2 27.3

[2.1] 90.3 31.5 
[2.1]

94.5

Avg. 
Dose 

5.2 
[0.21] 

0.7 
[0.14]

1.6
[0.14] 7.5 1.7

[0.13] 7.6 1.8 
[0.12]

7.6

Spinal 
Cord 

Max. 
Dose 

7.2 
[0.29] 

2.3 
[0.45]

5.3
[0.44] 11.2 3.6

[0.27] 9.0 1.6
[0.1]

8.0

Avg. 
Dose 

1.1 
[0.04] 

0.2 
[0.03]

0.4
[0.03] 1.6 0.5

[0.04] 1.7 0.3 
[0.02]

1.5

# of Fractions Given 25 5 12 42 13 43 15 45
 

                                                            
11 The fraction size doses are given in brackets below the cumulative doses. PTV2 represents the 
secondary target. “N.O.S.” is abbreviation of “Not Otherwise Specified” tissue. 
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Appendix J12: Detailed Biological Data Information for Two Base Cases 

Tumor 
Regions 

Possible 
SUV Range 

First Base Case: Input 
Values 

Second Base Case: Input 
Values 

 SUV 
pO2 

(mmHg) 
OMF SUV 

pO2 
(mmHg) 

OMF

Red 5.75-7.00 6.5 7.4 0.82 6.7 5.1 0.77 
Yellow 5.00-5.75 5.2 12.1 0.88 5.2 12.1 0.88 
Green 3.50-5.00 3.6 14.7 0.91 3.6 14.7 0.91 
Light 
Blue 

2.00-3.50 2.5 17.5 0.92 2.5 17.5 0.92 

Dark 
Blue 

0.00-2.00 0.25 46.6 0.98 0.25 46.6 0.98 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                            
12 SUV denotes Standardized Uptake Value, OMF denotes Oxygen-Modification Factor, pO2 
denotes Oxygen Tension 
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Appendix K13: Physical and Biological Optimization Results for the Head and Neck Base Case 

1 (“bDose” refers to biological dose, “pDose” refers to physical dose) 

Structure 
Dose Statistics 

(Gy) 

Physically 

Optimized Plan 

with 0.9 Physical 

Homogeneity 

Biologically 

Optimized Plan 

with 0.9 Physical 

Homogeneity 

Biologically 

Optimized Plan 

with 0.9 

Biological 

Homogeneity 

Total Total Total 

Primary 

Target 

Max. bDose 86.6 [2.22] 86.4 [2.27] 77.5 [2.04] 

Min. bDose 66.9 [1.71] 68.4 [1.8] 69.7 [1.84] 

Avg. bDose 78.9 [2.02] 78.5 [2.07] 74.5 [1.96] 

Primary 

Target 

Max. pDose 88.5 [2.27] 88.2 [2.32] 88.9 [2.34] 

Min. pDose 79.6 [2.04] 79.4 [2.09] 74.9 [1.97] 

Avg. pDose 85.0 [2.18] 84.6 [2.23] 80.4 [2.11] 

Target1 

Max. Dose 88.5 [2.27] 88.2 [2.32] 87.6 [2.30] 

Min. Dose 70.2 [1.8] 68.4 [1.80] 68.4 [1.8] 

Avg. Dose 78.5 [2.01] 77.9 [2.05] 76.3 [2.01] 

Target2 

Max. Dose 88.5 [2.27] 88.2 [2.32] 87.6 [2.3] 

Min. Dose 70.2 [1.8] 68.4 [1.80] 68.4 [1.8] 

Avg. Dose 76.5 [1.96] 75.3 [1.98] 75.5 [1.99] 

Target3 

Max. Dose 88.5 [2.27] 88.2 [2.32] 87.6 [2.30] 

Min. Dose 64.3 [1.65] 62.7 [1.65] 62.7 [1.65] 

Avg. Dose 73.8 [1.89] 72.7 [1.91] 72.7 [1.91] 

Mandible 
Max. Dose 72.0 [1.85] 72.0 [1.89] 72.0 [1.89] 

Avg. Dose 40.0 [1.03] 40.0 [1.05] 40.0 [1.05] 

Brainstem 
Max. Dose 58.0 [1.49] 58.0 [1.53] 58.0 [1.53] 

Avg. Dose 34.1 [0.87] 33.4 [0.88] 29.6 [0.78] 

Spinal 

Cord 

Max. Dose 50.0 [1.28] 50.0 [1.32] 50.0 [1.32] 

Avg. Dose 18.5 [0.47] 17.0 [0.45] 18.5 [0.49] 

Not 

Otherwise 

Specified 

Max. Dose 80.0 [2.05] 79.8 [2.10] 79.8 [2.10] 

Avg. Dose 25.7 [0.66] 25.5 [0.67] 25.2 [0.66] 

# of Fractions Given 39 38 38 

 

                                                            
13 The fraction size doses are given in brackets besides the cumulative doses. 
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Appendix L14: Physical and Biological Optimization Results for the Head and Neck Base Case 2 

(“bDose” refers to biological dose, “pDose” refers to physical dose) 

Structure 
Dose Statistics 

(Gy) 

Physically 

Optimized Plan 

with 0.8 Physical 

Homogeneity 

Biologically 

Optimized Plan 

with 0.8 Physical 

Homogeneity 

Biologically 

Optimized Plan 

with 0.8 

Biological 

Homogeneity 

Total Total Total 

Primary 

Target 

Max. bDose 95.9 [2.52] 96.5 [2.54] 84.7 [2.23] 

Min. bDose 63.5 [1.67] 64.8 [1.7] 67.8 [1.78] 

Avg. bDose 81.6 [2.15] 78.8 [2.07] 75.2 [1.98] 

Primary 

Target 

Max. pDose 97.9 [2.58] 98.6 [2.59] 98.0 [2.58] 

Min. pDose 78.4 [2.06] 78.9 [2.08] 69.8 [1.84] 

Avg. pDose 88.1 [2.32] 85.2 [2.24] 81.3 [2.14] 

Target1 

Max. Dose 97.9 [2.58] 98.6 [2.59] 95.7 [2.52] 

Min. Dose 68.4 [1.80] 68.4 [1.80] 68.4 [1.80] 

Avg. Dose 79.4 [2.09] 78.7 [2.07] 77.2 [2.03] 

Target2 

Max. Dose 97.9 [2.58] 94.3 [2.48] 95.7 [2.52] 

Min. Dose 68.4 [1.80] 68.4 [1.80] 68.4 [1.80] 

Avg. Dose 76.5 [2.01] 76.6 [2.01] 76.1 [2.00] 

Target3 

Max. Dose 97.9 [2.58] 98.6 [2.59] 95.7 [2.52] 

Min. Dose 62.7 [1.65] 62.7 [1.65] 62.7 [1.65] 

Avg. Dose 73.9 [1.94] 74.2 [1.95] 72.9 [1.92] 

Mandible 
Max. Dose 72.0 [1.89] 72.0 [1.89] 72.0 [1.89] 

Avg. Dose 40.0 [1.05] 40.0 [1.05] 40.0 [1.05] 

Brainstem 
Max. Dose 58.0 [1.53] 58.0 [1.53] 58.0 [1.53] 

Avg. Dose 28.5 [0.75] 27.9 [0.73] 27.0 [0.71] 

Spinal Cord 
Max. Dose 50.0 [1.32] 50.0 [1.32] 50.0 [1.32] 

Avg. Dose 19.2 [0.5] 16.2 [0.43] 15.6 [0.41] 

Not 

Otherwise 

Specified 

Max. Dose 79.8 [2.10] 79.8 [2.10] 79.8 [2.10] 

Avg. Dose 23.9 [0.63] 25 [0.66] 24.1 [0.63] 

# of Fractions Given 38 38 38 

 

                                                            
14 The fraction size doses are given in brackets besides the cumulative doses. 
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Appendix M: Sensitivity of TCP to the Change in Standardized Uptake Value (SUV) 

 

Throughout the computational experiments on biology, the sensitivity of tumor control 

probability (TCP) to the change in the standardized uptake value (SUV) was realized. This is 

illustrated in Table M.1 where the cumulative tumor biological and physical dose statistics as 

well as the achieved TCP are given for both physical and biological plans computed for second 

and third base cases. The third base case differs from the second base case by having higher 

hypoxia in red region (SUV=6.8 vs. 6.7). As the results in Table M.1 show, although the average 

biological doses in physical (biological) plans are very similar between second and third base 

case, the reduction in the minimum biological dose (63.5 Gy vs. 58.6 Gy for physical plans, 64.8 

Gy vs. 59.8 Gy for biological plans) has reduced the TCPs from 0.63 to 0.05 and 0.70 to 0.20 for 

physical and biological plans, respectively. The significant decline in TCP relative to the change 

in SUV shows the sensitivity of the TCP function. However, the improvement in TCP obtained 

by biological plan still holds for the third base case (from TCP=0.05 to TCP=0.20).      
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Table M.1: Illustrating the Sensitivity of Tumor Control Probability to the Change in 

Standardized Uptake Value (SUV) by Comparing Physical and Biological Plans between Second 

and Third Base Cases (Numbers in bold are referred in the text.) 

Cumulative Tumor 
Dose Statistics 

Second Base Case (SUV=6.7 
for Red Region) 

Third Base Case (SUV=6.8 for 
Red Region) 

Physically 
Optimized 

Plan with 0.8 
Tumor 

Physical Dose 
Homogeneity 

Biologically 
Optimized 

Plan with 0.8 
Tumor 

Physical Dose 
Homogeneity 

Physically 
Optimized 

Plan with 0.8 
Tumor 

Physical Dose 
Homogeneity 

Biologically 
Optimized 

Plan with 0.8 
Tumor 

Physical Dose 
Homogeneity 

Max. bDose (Gy) 95.9          96.5 95.9 96.5 
Min. bDose (Gy)  63.5 64.8 58.6 59.8 
Avg. bDose (Gy)  81.6 78.8 81.4 78.5 
Max. pDose (Gy) 97.9 98.6 97.9 98.6 
Min. pDose (Gy) 78.4 78.9 78.4 78.9 

Avg. pDose (Gy) 88.1 85.2 88.1 85.2 

Tumor Control 
Probability (TCP) 

0.63  0.70 0.05 0.20 

 

For the physical plan enforcing 0.8 physical homogeneity, Figure M.1 shows how its TCP 

changes relative to the different values of red region OMF. The graph shows that the TCP 

becomes sensitive when red region’s OMF value falls below 0.8. The reason behind higher 

sensitivity at lower OMF values is due to the mathematical function of the surviving fraction. 

After leaving the re-population effect term off the surviving fraction equation (5.15) in Section 

5.2.4 due to being independent of OMF, the surviving fraction formula only includes the cell 

killing effect which has the form of 1/ex. This function decreases slower as x increases. Since the 

higher values of OMF (≥0.8) would correspond to higher values of x, the change in the higher x 

values wouldn’t change the surviving fraction as much the change in the lower x values 

(corresponding to lower OMF values) would create. As a result, the change in the lower OMF 
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values would change the surviving fraction with a higher rate resulting in a more significant 

change in TCP.       

 

 

Figure M.1: Tumor Control Probability Relative to the Change in Oxygen-Modification Factor 

of Red Region  
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