
University of Arkansas, Fayetteville
ScholarWorks@UARK

Theses and Dissertations

5-2017

Service Consistency in Vehicle Routing
Kunlei Lian
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/etd

Part of the Industrial Engineering Commons, and the Operational Research Commons

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by
an authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.

Recommended Citation
Lian, Kunlei, "Service Consistency in Vehicle Routing" (2017). Theses and Dissertations. 1912.
http://scholarworks.uark.edu/etd/1912

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fetd%2F1912&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F1912&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F1912&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=scholarworks.uark.edu%2Fetd%2F1912&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=scholarworks.uark.edu%2Fetd%2F1912&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd/1912?utm_source=scholarworks.uark.edu%2Fetd%2F1912&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20ccmiddle@uark.edu

Service Consistency in Vehicle Routing

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy in Engineering

by

Kunlei Lian
Huazhong University of Science and Technology

Bachelor of Science in Industrial Engineering, 2009
Huazhong University of Science and Technology
Master of Science in Industrial Engineering, 2012

May 2017
University of Arkansas

This dissertation is approved for recommendation to the Graduate Council.

Dr. Ashlea B. Milburn
Dissertation Director

Dr. Kelly M. Sullivan Dr. Ronald L. Rardin
Committee Member Committee Member

Dr. Scott J. Mason
Committee Member

Abstract

This thesis studies service consistency in the context of multi-period vehicle routing problems

(VRP) in which customers require repeatable services over a planning horizon of multiple

days. Two types of service consistency are considered, namely, driver consistency and time

consistency. Driver consistency refers to using the fewest number of different drivers to per-

form all of the visits required by a customer over a planning horizon and time consistency

refers to visiting a customer at roughly the same time on each day he/she needs service.

First, the multi-objective consistent VRP is defined to explore the trade-offs between the

objectives of travel cost minimization and service consistency maximization. An improved

multi-objective optimization algorithm is proposed and the impact of improving service con-

sistency on travel cost is evaluated on various benchmark instances taken from the literature

to facilitate managerial decision making. Second, service consistency is introduced for the

first time in the literature to the periodic vehicle routing problem (PVRP). In the PVRP,

customers may require multiple visits over a planning horizon, and these visits must occur

according to an allowable service pattern. A service pattern specifies the days on which

the visits required by a customer are allowed to occur. A feasible service pattern must be

determined for each customer before vehicle routes can be optimized on each day. Vari-

ous multi-objective optimization approaches are implemented to evaluate their comparative

competitiveness in solving this problem and to evaluate the impact of improving service

consistency on the total travel cost. Third, a branch-and-price algorithm is developed to

solve the consistent vehicle routing problem in which service consistency is enforced as a

hard constraint. In this problem, the objective is to minimize the total travel cost. New

constraints are devised to enhance the original mixed integer formulation of the problem.

The improved formulation outperforms the original formulation regarding CPLEX solution

times on all benchmark instances taken from the literature. The proposed branch-and-price

algorithm is shown to be able to solve instances with more than fourteen customers more

efficiently than either the existing mixed integer formulation or the one we propose in this

paper.

Acknowledgments

I would like to express special thanks to my advisor, Dr. Ashlea B. Milburn, for her support

and guidance on the long journey to finishing my Ph.D thesis. I feel I can never thank

her enough for dedicating countless hours of patience and expertise to help me advance

my research. I would also like to thank Dr. Ronald L. Rardin for his constant guidance

and encouragement, without which this work would not have been possible. Additionally, I

would like to thank Dr. Kelly M. Sullivan for serving on my committee and also providing

numerous advice for my research. I thank Dr. Scott J. Mason for serving on my committee.

I also thank Dr. Shengfan Zhang and Dr. Haitao Liao for their help. I also want to

express sincere thanks to many of my friends from the department: Jingying Zhang, Fan

Wang, Bin Li, Emre Kirac and Jingming Liu.

Finally, I want to express my deepest gratitude to my parents. They have always been

my strongest support in the past thirty years. I also want to give special thanks to my wife,

Liya Wang, and my daughter, Xinyuan Lian, without whom I would not have the courage

to finish my Ph.D program.

Dedication

I dedicate this work to my parents, my wife and my daughter.

Contents

1 Introduction 1

2 An Improved Multi-directional Local Search Algorithm for the Multi-

objective Consistent Vehicle Routing Problem 7

2.1 Introduction . 7

2.2 Related literature . 10

2.2.1 Service consistency in the small package delivery industry 10

2.2.2 Service consistency in the home health care industry 13

2.2.3 Summary and contribution to the literature 15

2.3 Problem description . 16

2.4 Improved MDLS for the MoConVRP . 18

2.4.1 Multi-objective optimization . 19

2.4.2 The original multi-directional local search algorithm 19

2.4.3 Improved multi-directional local search (IMDLS) 21

2.4.4 Initial solution generation . 22

2.4.5 Large neighborhood search . 24

2.4.5.1 Algorithm framework . 25

2.4.5.2 Removal and reinsertion operators 25

2.5 Computational experiments and analysis . 31

2.5.1 Benchmark instances and experiment setup 31

2.5.2 Metrics for comparison algorithms . 33

2.5.3 Parameter tuning . 34

2.5.4 Algorithm performance comparison 35

2.5.5 Trade-off analysis . 41

2.6 Conclusion . 45

3 A Multi-objective Approach for the Consistent Periodic Vehicle Routing

Problem 51

3.1 Introduction . 51

3.2 Related literature . 53

3.3 Problem description . 57

3.4 Solution approach . 61

3.4.1 Multi-objective optimization algorithms 61

3.4.2 Starting solution generation . 64

3.4.3 Local search for the travel cost objective 65

3.4.4 Local search for the consistency objectives 69

3.5 Computational experiments and analysis . 70

3.5.1 Benchmark instances and experiment design 70

3.5.2 Algorithm performance comparison 72

3.5.3 Trade-off analysis . 75

3.6 Conclusion . 77

4 A Branch-and-Price Algorithm for the Consistent Vehicle Routing Prob-

lem 82

4.1 Introduction . 82

4.2 Related literature . 84

4.3 Problem formulation . 87

4.4 Branch and price . 89

4.4.1 Problem reformulation . 90

4.4.2 Branch-and-price framework . 93

4.4.3 Generating starting column set ΩP0 for root node P0 96

4.4.3.1 Initial solution generation 97

4.4.3.2 New population generation 97

4.4.3.3 Crossover . 100

4.4.4 Column generation framework . 100

4.4.5 Column generation heuristic . 101

4.4.5.1 Algorithm framework . 101

4.4.5.2 Starting column generation and evaluation 102

4.4.5.3 Large neighborhood search operators 103

4.4.5.4 Operator selection . 108

4.4.6 Branching rule . 109

4.5 Computational experiments . 110

4.5.1 Existing instances . 110

4.5.2 New instances . 112

4.6 Conclusion . 115

5 Conclusion and Future Research Directions 119

List of Figures

2.1 Confliction between travel cost and service consistency 8

2.2 Key steps of MDLS . 20

2.3 Key steps of IMDLS . 23

2.4 Level diagram of instance 1 . 42

List of Tables

2.1 A summary of the literature on routing problems with service consistency . . 15

2.2 LNS operator pair used for each objective 31

2.3 Parameter α tuning results on Group0.7 . 35

2.4 Hypervolume results for Group0.5 . 36

2.5 Hypervolume results for Group0.7 . 37

2.6 Hypervolume results for Group0.9 . 37

2.7 Coverage comparison results . 38

2.8 Unary multiplicative indicator results for Group0.5 39

2.9 Unary multiplicative indicator results for Group0.7 39

2.10 Unary multiplicative indicator results for Group0.9 40

2.11 Frequency with which various operator pairs are invoked in IMDLS 41

2.12 Four solutions identified in R . 44

2.13 Comparisons of four solutions . 45

2.14 Four solutions identified in R with flexible vehicle departure time 46

2.15 Comparisons of four solutions with flexible vehicle departure time 47

3.1 Summary of PVRP instances . 71

3.2 Hypervolume comparison . 73

3.3 Coverage comparison . 74

3.4 Unary multiplicative epsilon comparison . 75

3.5 Four solutions . 76

3.6 Comparisons of four solutions . 77

4.1 Computational results on literature instances 112

4.2 Computational results on new instances . 116

4.3 Computational results on new instances . 117

List of Published Papers

Chapter 2. Lian, K., Milburn, A. B., and Rardin, R. L. (2016). An improved multi-

directional local search algorithm for the multi-objective consistent vehicle routing problem.

IIE Transactions, 48(10), 975-992.

1. Introduction

This thesis studies service consistency in the context of multi-period Vehicle Routing

Problems (VRPs). Two types of service consistency are considered, namely, driver

consistency and time consistency. Driver consistency refers to using the fewest number of

different drivers to perform all of the visits required by a customer over a planning horizon

and time consistency refers to visiting a customer at roughly the same time on each day

he/she needs service. The traditional objective of VRP is to minimize total travel cost,

which is often conflicting with the objective of service consistency maximization due to the

variations in customer demands and constraints on vehicle capacity and maximum route

duration. Minimizing total travel distance could result in a customer being visited by

multiple drivers at highly varying times over the planning horizon. On the other hand,

optimizing service consistency usually comes at the cost of increased travel cost. Therefore,

this thesis aims to study the impact of improving service consistency in multi-period VRPs

on the total travel cost.

Consistent service is valued in a number of service industries where repeatable services are

required. In the small package delivery industry, assigning the same driver to visit the same

set of customers over time helps enhance the customer-driver relationship and improve

service quality as well as efficiency as the driver becomes familiar with a set of customers.

Also, improved driver consistency usually results in improved region familiarity which

facilitates the driver serving future customers in the same area and thus gaining more

business (Smilowitz et al., 2013). In the retail industry, using a consistent service provider

has a big impact on the customer-retailer relationship. As an example, in the case of

scheduling 39 sales representatives to visit over 5000 ticket retailers for the Missouri lottery,

service provider consistency must be considered since many representatives have established

long standing relationships with their retailers and inconsistent service will jeopardize sales

(Jang et al., 2006). In the education sector of Belgium, consistent teaching assistants (TA)

are employed to help students with unique educational needs. It is required that a disabled

1

pupil can only be assigned to one TA across a certain period (Maya et al., 2012).

Home health care is another industry in which consistent service is valued. Home health

care is an important part of the healthcare system in the U.S. and has seen rapid growth in

the past few years due to (i) the ever-increasing demand of aging population, (ii) its

affordability when compared to hospitals or nursing homes, and (iii) higher level of comfort

and dignity when patients receive personal care at their own homes. According to the

National Association for Home Care and Hospice, in 2008 alone, there were 12 million

patients that received 428 million visits and the home health workforce drove more than 5

billion miles (NAHC, 2010). A key feature of home health care is its prolonged episode of

care requirement and multiple visits are usually demanded from patients. Therefore,

service consistency has been recognized as key to improving patient satisfaction.

Two types of service consistency are considered in home healthcare practice, namely, nurse

consistency and time consistency. Nurse consistency refers to minimizing the number of

different caregivers visiting a patient across the planning horizon. Time consistency

measures the maximum arrival time differential at a patient throughout the planning

horizon. Employing inconsistent nurses to visit a patient compromises development of

rapport, increases communication complexity and diminishes a caregiver’s ability to make

accurate observations across time (Woodward et al., 2004). It has been shown that

improved nurse consistency results in better health outcomes, including decreased rate of

episodes ending in hospitalization and increased likelihood of improving functioning in

activities of daily living between admission and discharge from home health care (Russell

et al., 2011). With consistent timing of care, patients can plan their day more readily

without too many disturbances (Woodward et al., 2004).

Chapter 2 explores the trade-offs between the objectives of travel cost minimization and

service consistency maximization in the context of a multi-period vehicle routing problem

using a multi-objective approach. This chapter is motivated by the driver scheduling

problem in the small package delivery industry in which customers request deliveries on

2

predetermined days over a planning horizon. Three objectives are considered, including

minimization of total travel cost, maximization of driver consistency and maximization of

time consistency. The resultant problem is referred to as the Multi-objective Consistent

Vehicle Routing Problem (MoConVRP). Three primary contributions of Chapter 2 are

summarized below.

• The trade-offs between travel cost and consistency objectives in the context of the

traditional Consistent Vehicle Routing Problem (ConVRP) are studied for the first

time in the literature to facilitate managerial decision making.

• An Improved Multi-directional Local Search (IMDLS) is proposed for general

multi-objective optimization problems. The performance of IMDLS is compared with

the original Multi-directional Local Search (MDLS) algorithm from Tricoire (2012)

and five other algorithms. Three are traditional multi-objective algorithms: the

Nondominated Sorting Genetic Algorithm II (NSGAII) from Deb et al. (2002), the

Nondominated Neighbor Immune Algorithm (NNIA) from Gong et al. (2008), and

the Strength Pareto Evolutionary Algorithm 2 (SPEA2) from Zitzler et al. (2002).

The remaining two are more recent multi-objective algorithms: the Nondominated

Sorting Genetic Algorithm III (NSGAIII) from Deb and Jain (2014) and the

Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D) from

Qingfu and Hui (2007). The performance of IMDLS is validated on a variety of

benchmark instances taken from the ConVRP literature.

• Large Neighborhood Search (LNS) operators are developed to improve each of three

objectives studied in this chapter.

Chapter 3 studies the impact of improving service consistency on travel cost in the context

of the Periodic Vehicle Routing Problem (PVRP). In the PVRP, customers may require

multiple visits over a planning horizon, and these visits must occur according to an

allowable service pattern. A service pattern specifies the days on which the visits required

3

by a customer are allowed to occur. An allowable service pattern must be determined for

each customer before vehicle routes can be optimized on each day. Also, the number of

available vehicles is limited in PVRP. Three objectives are considered in this chapter,

namely, minimization of total travel cost, maximization of driver consistency and

maximization of time consistency. The resultant problem is named the Multi-objective

Consistent Periodic Vehicle Routing Problem (MoConPVRP). The primary results of this

chapter are below.

• Service consistency is considered for the first time in the literature in the context of

the PVRP. A mathematical formulation of MoConPVRP is given and the Pareto

frontier is approximated using multi-objective algorithms to study the trade-offs

between the objectives of travel cost minimization and service consistency

maximization.

• Various multi-objective algorithms are implemented to solve the MoConPVRP,

including MDLS, IMDLS, MOEA/D, NNIA, SPEA2, NSGAII and NSGAIII. Their

comparative competitiveness is verified on the problem using benchmark instances

taken from the literature.

• Local search operators are developed to improve each of the three objectives.

Chapters 2 and 3 study service consistency using a multi-objective approach in which

service consistency is treated as an objective to strive for rather than as an absolute

requirement. Chapter 4 aims to study the impact of enforced service consistency on the

total travel cost. To this end, a branch-and-price algorithm is proposed to solve the

ConVRP in which each customer can only be visited by a single driver on each day he/she

needs service across the planning horizon, and the maximum arrival time differential at a

customer cannot exceed a given limit throughout the planning horizon. The objective of

ConVRP is to minimize the total distance traveled by all vehicles across the planning

4

horizon while enforcing driver and time consistency as hard constraints. The primary

contributions of this chapter to the vehicle routing literature are listed as below.

• A branch-and-price algorithm is developed for the first time in the literature for the

ConVRP. A set-covering reformulation of ConVRP is given along with the definition

of the pricing subproblem. An effective heuristic is designed to identify new columns

with negative reduced cost during the column generation process. The performance

of the proposed algorithm is validated on benchmark instances taken from the

literature and instances that are randomly generated following the same procedure

used in the literature. The proposed algorithm usually generates tighter optimality

gaps on larger instances (i.e., those with more than 14 customers) than those

provided by the integer programming formulation in the literature.

• A set of new constraints are identified and added to the original Mixed Integer

Program (MIP) of ConVRP. It is shown through computational experiments that the

resulting MIP with this new set of constraints outperforms the original MIP on all

instances, but is generally outperformed by the branch-and-price algorithm on larger

instances.

Chapter 5 summarizes the conclusions of this dissertation and proposes a number of future

research directions.

5

Reference

K. Deb and H. Jain. An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part i: Solving problems with box
constraints. Evolutionary Computation, IEEE Transactions on, 18(4):577–601, 2014.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic
algorithm: Nsga-ii. Evolutionary Computation, IEEE Transactions on, 6(2):182–197,
2002.

Maoguo Gong, Licheng Jiao, Haifeng Du, and Liefeng Bo. Multiobjective immune
algorithm with nondominated neighbor-based selection. Evolutionary Computation, 16
(2):225–255, 2008.

Wooseung Jang, Huay H. Lim, Thomas J. Crowe, Gail Raskin, and Thomas E. Perkins.
The missouri lottery optimizes its scheduling and routing to improve efficiency and
balance. Interfaces, 36(4):302–313, 2006.

Pablo Maya, Kenneth Srensen, and Peter Goos. A metaheuristic for a teaching assistant
assignment-routing problem. Computers and Operations Research, 39(2):249–258, 2012.

NAHC. Basic statistics about home care. Report, National Association for Home Care and
Hospice, 2010.

Zhang Qingfu and Li Hui. Moea/d: A multiobjective evolutionary algorithm based on
decomposition. Evolutionary Computation, IEEE Transactions on, 11(6):712–731, 2007.

David Russell, Robert J. Rosati, Peri Rosenfeld, and Joan M. Marren. Continuity in home
health care: Is consistency in nursing personnel associated with better patient outcomes?
Journal for Healthcare Quality, 33(6):33–39, 2011.

Karen Smilowitz, Maciek Nowak, and Tingting Jiang. Workforce management in periodic
delivery operations. Transportation Science, 47(2):214–230, 2013.

Fabien Tricoire. Multi-directional local search. Computers & Operations Research, 39(12):
3089–3101, 2012.

Christel A. Woodward, Julia Abelson, Sara Tedford, and Brian Hutchison. What is
important to continuity in home care?: Perspectives of key stakeholders. Social Science
and Medicine, 58(1):177–192, 2004.

Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Improving the strength
pareto evolutionary algorithm for multiobjective optimization. CIMNE, Spain, 2002.

6

2. An Improved Multi-directional Local Search Algorithm for the Multi-objective

Consistent Vehicle Routing Problem

2.1 Introduction

Service consistency has attracted attention in recent years in a number of service industries

where customers receive repeatable deliveries throughout a planning horizon, such as small

package delivery (Groër et al., 2009), vendor-managed inventory systems (Coelho et al.,

2012) and home health care. Two primary elements of service consistency include driver

consistency and time consistency. Driver consistency refers to using the same driver for a

given customer as often as possible, while time consistency refers to making the deliveries

to the customers at roughly the same time each visit. These concepts were first discussed

in Groër et al. (2009) with the introduction of a routing problem variant named the

Consistent Vehicle Routing Problem (ConVRP). A more recent review of routing problems

with consistency considerations is provided in Kovacs et al. (2014a).

Reducing transportation costs has historically been the primary objective in managerial

decision making in logistics firms. However, due to the recognized importance of service

consistency, it is desirable for some firms to obtain solutions that balance transportation

costs and service consistency objectives. These objectives are often conflicting because of

the variation in customer demands, vehicle capacity and driver work time limits.

Optimizing routing plans with regards to travel cost may result in a customer being visited

by multiple drivers at highly varying times over the planning horizon. However, pursuing

optimal service consistency with no consideration given to transportation costs will

increase travel costs.

This dilemma is illustrated in the small example given in Figure 2.1, in which three

customers require service across a two day horizon. Node 0 denotes the depot, and the first

element of the node label at other points denotes the customer number. Arc labels provide

the euclidean distance between pairs of locations. Note that customers 1 and 3 require

7

0

1
1

1

0.7

(2, 1.7)

(1, 1.0) (3, 1.0)

0.7

(a) Day 1 (TD = 4.4)

0

driver 1
1 1

1.5

(2, -)

(1, 1.0) (3, 2.5)

(b) Day 2 (TD = 3.5)

1 1

1 1

0 (2, -)

(1, 1.0) (3, 1.0)

(c) Day 2 (TD = 4.0)

Figure 2.1: Confliction between travel cost and service consistency

service on both days, while customer 2 only requires a visit on day 1. Suppose a vehicle has

the capacity to visit two customers, and there is no limit on route length. Then on day 1,

two drivers will be required. The solution for day 1 that minimizes total distance uses

driver 1 to visit customers 1 and 2, in that order, and uses driver 2 to visit customer 3.

The resulting tours are illustrated in Figure 2.1a and the associated arrival times at each

customer are provided in the second element of the node labels in parentheses. Now on day

2, if minimizing travel cost is the only objective, the route depicted in Figure 2.1b can be

used, requiring one driver and a distance of 3.5. However, customer 3 is visited by two

different drivers across the planning horizon. If instead, minimizing driver consistency were

the only objective, the route depicted in Figure 2.1c could be used. In this case the

distance is higher (4.0 instead of 3.5) but now, both customers 1 and 3 are only visited by

a single driver across the planning horizon. Note that the day 2 route illustrated in Figure

2.1c is also better than the route in Figure 2.1b with respect to time consistency, as the

arrival times to both customers 1 and 3 do not change between days 1 and 2. If the route

in Figure 2.1b were used on day 2, customer 3 would be visited at a later time on day 2

than day 1 (time 2.5 compared with time 1.0). Note also that vehicles are not allowed to

wait at customer locations to improve time consistency.

The traditional approach used in the literature to study the relationship between travel

cost and consistency objectives has been to enforce service consistency by incorporating

side constraints in vehicle routing problem (VRP) models while minimizing travel cost

using a single-objective (Groër et al., 2009; Tarantilis et al., 2012; Kovacs et al., 2014b,

8

2015a). This approach approximates the increase in travel costs that can be expected when

service consistency measures are strictly enforced. However, it may be desirable in some

applications to treat service consistency measures as something to strive for rather than to

enforce. That is, service consistency measures can be treated as objectives along with travel

costs instead of constraints, and compromise (trade-off) solutions can be sought. Modeling

service consistency using this new approach requires multi-objective VRP models. Kovacs

et al. (2015a) make a stride in this direction by using a single weighted objective function

to simultaneously consider travel cost minimization and time consistency maximization.

Milburn and Spicer (2013) also introduce a multi-objective VRP variant to consider service

consistency. They develop an approach to approximate the Pareto frontier for a routing

problem variant with travel cost, driver consistency and workload balance objectives.

Kovacs et al. (2015b) analyze the trade-offs between the objectives of minimizing travel

cost and improving driver consistency and time consistency in the context of a generalized

consistent vehicle routing problem. Customers in their study are associated with AM/PM

time windows. However, no paper of which we are aware has studied a multi-objective

variant of the traditional ConVRP without time windows where the Pareto frontier is

developed explicitly. The primary objective of this paper is to fill this gap.

In this paper, we use a multi-objective approach to study the relationship between travel

cost and service consistency objectives. Specifically, the three objectives considered include

minimization of traveling cost, maximization of driver consistency and maximization of

time consistency. There are three primary contributions in this paper. First, to the best of

our knowledge, this is the first paper to approach the traditional Consistent VRP with

both driver and time consistency from the perspective of developing the Pareto frontier.

This enables us to study the explicit trade-offs between travel cost and consistency

objectives, and use the results of our computational study to make observations that can

facilitate managerial decision making. Second, we propose an improved variant of the

multi-directional local search (MDLS) framework for general multi-objective optimization

9

problems (Tricoire, 2012). We denote this IMDLS (Improved MDLS). The effectiveness of

IMDLS is compared with the original MDLS and three traditional multi-objective

algorithms: the nondominated sorting genetic algorithm II (NSGAII), the nondominated

neighbor immune algorithm (NNIA) and the strength pareto evolutionary algorithm 2

(SPEA2) (Deb et al., 2002; Gong et al., 2008; Zitzler et al., 2002). Additionally, IMDLS is

compared with two more recent multi-objective algorithms: the non-dominated sorting

genetic algorithm III (NSGAIII) and the multi-objective evolutionary algorithm based on

decomposition (MOEA/D) (Deb and Jain, 2014; Qingfu and Hui, 2007). The competitive

performance of IMDLS is observed on a variety of benchmark instances taken from the

Consistent VRP literature. Finally, large neighborhood search (LNS) operators are

designed to explicitly improve each of the three objectives studied in this paper. These are

different from the LNS operators in the literature, which are designed to improve travel

cost while enforcing service consistency measures as constraints.

The remainder of this paper is organized as follows. Section 2.2 provides a review of the

Consistent VRP literature as it pertains to the application areas of small package delivery

and home healthcare. The multi-objective problem we study is formally introduced in

Section 2.3. Our proposed solution methodology is detailed in Section 2.4. Then, the

results of our computational study are provided in Section 2.5 with final remarks given in

Section 3.6.

2.2 Related literature

This section provides a brief review of existing research regarding service consistency in

routing problems. The papers are classified according to two primary application areas.

2.2.1 Service consistency in the small package delivery industry

Groër et al. (2009) are the first to introduce the consistent vehicle routing problem

(ConVRP). The problem is presented in the context of the small package delivery industry.

10

A formulation of ConVRP as a mixed-integer program is provided. The objective is to

minimize total transportation costs and there are side constraints to enforce consistency

requirements. Specifically, each customer is required to be visited by the same driver at

roughly the same time on each day that he/she needs service. The time consistency aspect

is modeled by imposing an upper limit on the arrival time differential for each customer.

For a single customer, this is measured as the difference between the earliest and latest

arrival time to the customer. The authors employ a record-to-record travel heuristic

(ConRTR) to obtain near optimal solutions quickly. Optimal driver consistency is enforced

and time consistency is encouraged throughout the search process by utilizing the concept

of template routes. Template routes are a set of artificial routes that only include visits to

customers that require service on more than one day of the planning horizon. To construct

actual routes for a specific day d, customers that do not need service on day d are removed

from the template and customers who require service only on day d are added.

Two additional papers employ the concept of template routes for the Consistent VRP.

Namely, Tarantilis et al. (2012) and Kovacs et al. (2014b) develop a template-based tabu

search heuristic (TTS) and a template-based adaptive large neighborhood search heuristic

(TALNS) for ConVRP, respectively. Both of these algorithms outperform ConRTR with

respect to solution quality, with TALNS offering the best performance among these three

approaches. A relaxed variant of the Consistent VRP is also considered in Kovacs et al.

(2014b), in which vehicles are allowed to wait at the depot before beginning their routes.

Improved performance with respect to time consistency is observed in this problem variant.

Kovacs et al. (2015a) generalize the ConVRP in a number of ways. First, instead of

requiring that exactly one driver visit each customer throughout the planning horizon, they

include a constraint that limits the maximum number of different drivers that visit a

customer. Second, the maximum arrival time differential used to model time consistency is

penalized in the objective function instead of being included as a constraint. Additionally,

customers are each associated with AM/PM time windows and vehicles are allowed to wait

11

at the depot before beginning their routes, as in Kovacs et al. (2014b). The minimization

objective considered in this ConVRP generalization is a weighted sum of travel cost and

maximal arrival time differential. A large neighborhood search that does not make use of

template routes is proposed. Note that the ConVRP is a special case of the new problem

these authors propose. Therefore, they use LNS to solve ConVRP and compare results

with ConRTR, TTS and TALNS. The superior performance of the new approach is

validated. Based on this research, Kovacs et al. (2015b) recently study the multi-objective

generalized consistent vehicle routing problem in which improving driver consistency and

arrival time consistency and minimizing travel cost are treated as independent objectives.

Two exact solution approaches based on the ε-constraint framework are used to solve small

instances with 10-12 customers and a planning horizon of 3 days to optimality. A heuristic

multi-directional large neighborhood search algorithm is proposed to solve large instances.

Trade-off analysis shows that 70% better arrival time consistency can be achieved by

increasing travel cost by not more than 3.84%.

Smilowitz et al. (2013) design a modified tabu search heuristic to study the effects of three

workforce management principles on routing costs in periodic vehicle routing problems.

The workforce management principles include driver consistency, customer familiarity and

region familiarity. Three objectives are proposed to model these principles and combined

into a single weighted objective. Experimental results show that trade-off solutions having

relatively good performance with respect to the workforce management principles can be

obtained at the cost of increasing traveling cost by at most 5.3%.

Zhong et al. (2007) develop a two-stage model to improve drivers’ familiarity with their

service territories in a vehicle dispatching problem for local package deliveries. In the first

stage of their model, a set of core areas to serve as service territories for each driver are

designed. Then, the optimal sequences of visits to customers in each core area are

determined in the second stage. The value of the two-stage model is compared with a

single stage ‘no-core area” model which simply reoptimizes routes on a daily basis.

12

Computational results show the two-stage model is able to provide more consistent service

than the no-core model.

Luo et al. (2015) study a multi-period vehicle routing problem in which customers require

visits within specific time windows over a time horizon and customers can be served by at

most a certain number of different vehicles over the planning horizon. The primary

objective is to minimize the number of vehicles required, and in case of ties, solutions are

evaluated using a secondary objective of minimizing the total travel distance. A mixed

integer programming model is proposed and the limited visiting quota is enforced using

hard constraints. A three-stage heuristic approach is developed to solve the problem.

Computational results show that when vehicle capacity is not the primary limiting

constraint, consistent customer service can be achieved with slight increases in operational

costs. However, when only a small number of customers can be serviced by a vehicle

because of its capacity limit, enforcing service consistency leads to more significant

increases in operational cost.

2.2.2 Service consistency in the home health care industry

Service consistency is especially important when the customer must be present to receive

the delivery or service, as in home health care. Home health care involves using skilled

licensed professionals to provide prescribed medical services to homebound patients over a

prescribed episode of care. Typically, the duration of an episode of care is seven to ten

weeks (Dey et al., 2011). In this industry, service consistency has been recognized as key in

improving customer satisfaction and loyalty (Woodward et al., 2004). Driver (nurse)

consistency can increase the familiarity between patients and caregivers, and thus reduce

the complexity of communication. It also improves the ability of caregivers to make

accurate observations, thereby benefiting health outcomes (Woodward et al., 2004). Time

consistency allows patients to plan their days more readily, without causing too many

disturbances to their daily routines (Woodward et al., 2004). A number of papers in the

13

operations research literature have studied home health nurse routing and scheduling

problems with consistency requirements.

Bennett and Erera (2011) present a rolling horizon myopic planning approach for the single

nurse routing and scheduling problem in which patients are revealed dynamically over a

time horizon. In their approach, both driver and time consistency are strictly enforced.

Eveborn et al. (2006) consider nurse consistency in the development of LAPS CARE, a

decision support system for determining nurse routes in Sweden. The minimization of the

total number of different nurses visiting a patient is incorporated into a weighted objective

function in their model. The objective function also includes a number of additional

elements, such as travel time, travel cost and patient preferences for particular staff

members. They provide a set partitioning formulation of their problem and describe a

repeated matching algorithm for its solution. Macdonald et al. (2009) also study a nurse

scheduling and routing problem where the objective includes a weighted sum of travel cost

and the number of different nurses visiting a patient. Nurse routes with good consistency

and routing costs are reported.

Nickel et al. (2012) study both short-term and mid-term home health nurse routing

problems using an approach that aims to minimize the weighted sum of four objectives:

the number of unscheduled tasks, overtime costs, patient-nurse loyalty and travel distance.

Patient-nurse loyalty is analogous to driver consistency in the ConVRP literature, defined

as the number of different nurses visiting each patient during the planning horizon.

Constraint programming and tabu search methods are developed.

Another paper that uses a multi-objective approach to incorporate consistency

considerations in home health nurse routing and scheduling problems is Milburn and Spicer

(2013). They consider a problem with nurse consistency, travel cost and balanced nurse

workload in the objective function. They approximate the Pareto frontier for these three

objectives using a tabu search based approach.

14

Reference Time Consistency Driver Consistency Constraints
Eveborn et al. (2006) 3 Soft
Nickel et al. (2012) 3 3 Soft
Macdonald et al. (2009) 3 Soft
Bennett and Erera (2011) 3 Hard
Milburn and Spicer (2013) 3 Soft
Groër et al. (2009) 3 3 Hard
Tarantilis et al. (2012) 3 3 Hard
Kovacs et al. (2014b) 3 3 Hard
Kovacs et al. (2015a) 3 3 Hard
Kovacs et al. (2015b) 3 3 Soft
Smilowitz et al. (2013) 3 Soft
Zhong et al. (2007) 3 Soft
Feillet et al. (2014) 3 Hard
Luo et al. (2015) 3 Hard

Table 2.1: A summary of the literature on routing problems with service consistency

2.2.3 Summary and contribution to the literature

Table 2.1 summarizes the reviewed research on routing problems with service consistency.

Columns are included for time consistency and driver consistency, and a checkmark

indicates whether each type of consistency is considered in each paper. A third column

indicates whether the consistency elements are treated as hard constraints or soft. A

review of the literature indicates there is currently a gap with respect to simultaneously

considering the three objectives of travel cost, driver consistency and time consistency

within an approach aimed at approximating the Pareto frontier in the context of

traditional ConVRP. We aim to fill this gap. Most other multi-objective approaches use

models that combine the objectives into a single weighted objective function. Such

approaches require choosing a set of weights to represent the relative importance among

objectives. Our model is based on the premise that a diverse set of decision makers may

have different opinions regarding the relative importance of the three objectives. Instead of

using such a set of weights to recommend a single best solution, our approach obtains a set

of promising compromise solutions effectively.

15

2.3 Problem description

The multi-objective consistent vehicle routing problem (MoConVRP) studied in this paper

is defined on a complete directed graph G = (N 0 = N ∪ {0},A), where N = {1, . . . , n} is

the set of customers and {0} indicates the depot, and A = {(i, j) | i, j ∈ N 0, i 6= j}. A time

horizon of D days is considered and each customer i ∈ N has a predetermined

non-negative demand qid and service time sid on day d ∈ D. An auxiliary parameter wid is

defined such that wid equals 1 if customer i requires service on day d (i.e., qid > 0), and

equals 0 otherwise. There are K homogenous vehicles available at the depot, where they

start and end their daily operations. Each vehicle is restricted by its physical capacity Q,

and a limit on route duration T . The number of vehicles is unlimited; practically, we can

set K to n. In this paper, the terms driver and vehicle are used interchangeably. The

problem is to determine a set of vehicle routes for each day of the planning horizon that are

feasible with respect to capacity and route duration constraints. Each route must begin

and end at the depot and each customer must be visited by exactly one vehicle on each day

that he/she needs service. The objectives are to minimize travel cost and maximize driver

and time consistency.

To model this problem, the following decision variables are defined:

• aid: continuous variable describing vehicle arrival time at customer i on day d,

• xdijk: binary variable indicating whether arc (i, j) is visited by driver k on day d,

• ydik: binary variable indicating whether customer i is visited by driver k on day d.

Additionally, to facilitate the linearization of consistency objectives, the following auxiliary

variables are defined:

• zik: binary variable indicating whether customer i is visited by driver k at any point

during the planning horizon,

• aei : continuous variable describing the arrival time of the earliest visit to customer i

over the planning horizon,

• ali: continuous variable describing the arrival time of the latest visit to customer i

over the planning horizon.

16

Then, the multi-objective problem is formulated as follows, extended from the MIP given

in Groër et al. (2009):

min fTD =
D∑
d=1

K∑
k=1

n∑
i=0

n∑
j=0

tijx
d
ijk, (2.1)

min fDC = zmax, (2.2)

min fTC = amax, (2.3)

s.t. yd0k = 1, ∀ k ∈ K, d ∈ D (2.4)

a0d = 0, ∀ d ∈ D (2.5)

K∑
k=1

ydik = wid, ∀ i ∈ N , d ∈ D (2.6)

n∑
i=1

qidy
d
ik ≤ Q, ∀ k ∈ K, d ∈ D (2.7)

0 ≤ aid + wid(sid + ti0) ≤ Twid, ∀ i ∈ N , d ∈ D (2.8)
n∑
i=0

xdijk =
n∑
i=0

xdjik = yjkd, ∀ j ∈ N 0, k ∈ K, d ∈ D (2.9)

aid + xdijk(sid + tij)− T (1− xdijk) ≤ ajd, ∀ d ∈ D, k ∈ K, i ∈ N 0, j ∈ N (2.10)

aid + xdijk(sid + tij) + T (1− xdijk) ≥ ajd, ∀ d ∈ D, k ∈ K, i ∈ N 0, j ∈ N (2.11)

zik ≥ ydik, ∀ i ∈ N , k ∈ K, d ∈ D (2.12)∑
k∈K

zik ≤ zmax, ∀i ∈ N (2.13)

ali ≥ aid ≥ aei , ∀ i ∈ N , d ∈ D (2.14)

ali − aei ≤ amax, ∀ i ∈ N (2.15)

xdijk ∈ {0, 1}, ∀ i ∈ N , j ∈ N , k ∈ K, d ∈ D (2.16)

ydik ∈ {0, 1}, ∀ i ∈ N , k ∈ K, d ∈ D (2.17)

aid ≥ 0, ∀ i ∈ N , d ∈ D (2.18)

zik ≥ 0, ∀ i ∈ N , k ∈ K (2.19)

17

aei , a
l
i ≥ 0, ∀ i ∈ N (2.20)

a∗ ≥ 0. (2.21)

The first objective (2.1) aims to minimize the total traveling distance of all vehicles on all

days of the planning horizon. Objective (2.2) seeks to minimize the maximum number of

different drivers that visit a customer. Objective (2.3) tries to minimize the maximal

arrival time differential over all customers. Constraint sets (2.4) and (2.5) require that the

depot be departed at time 0 by all vehicles on all days. Note that constraint (2.5) may be

relaxed for the case of flexible vehicle departure time. Constraint set (2.6) ensures that

customers are visited by exactly one vehicle on each day they need service. The vehicle

capacity and route duration constraints are given in sets (2.7) and (2.8), respectively.

Constraint set (2.9) makes sure that each customer has only one predecessor and successor.

Constraint sets (2.10) and (2.11) determine the customer arrival times and also serve to

eliminate subtours. Constraint set (2.12) and (2.13) compute the maximum number of

different drivers that visit a customer over the time horizon. Time consistency is computed

in constraint sets (2.14) and (2.15). The remaining constraints give the variable types.

Note that objectives (2.2, 2.3) and constraint sets (2.12, 2.13, 2.14, 2.15) are newly

introduced compared to the original model given in Groër et al. (2009). In addition, the

consistency constraints in Groër et al. (2009) are removed.

2.4 Improved MDLS for the MoConVRP

In this section, we first introduce the basic concepts of Pareto-based multi-objective

optimization. Next, we describe the original MDLS algorithm and comment on its

performance. We then present an improved MDLS framework for multi-objective

optimization problems, followed by the description of large neighborhood search which is

used as a subroutine of our proposed framework.

18

2.4.1 Multi-objective optimization

In the context of multi-objective optimization, solutions are evaluated according to an

objective function vector ~f = (f1, f2, . . . , fM) with M objectives. Pareto dominance is then

employed to compare the strength of different solutions. For a minimization problem, an

objective vector ~f(x) is said to dominate another objective vector ~f(x′), denoted by

~f(x) ≺ ~f(x′), if and only if:

fi(x) ≤ fi(x
′), ∀ i ∈ {1, 2, . . . ,M} and ∃ j ∈ {1, 2, . . . ,M} : fj(x) < fj(x

′). (2.22)

Accordingly, a solution x in the decision space X is said to dominate another solution x′ if

and only if ~f(x) ≺ ~f(x′). If there exists no solution x′ ∈ X that dominates x, x is said to

be Pareto optimal. The set of Pareto optimal solutions in X is referred to as the Pareto set

and its image in the objective space is called the Pareto frontier. Multi-objective

algorithms aim to attain the Pareto frontier if possible. In many cases, heuristic

approaches are utilized to approximate the Pareto frontier as closely as possible. In

addition, the final non-dominated solutions obtained by a heuristic algorithm should be

distributed along the Pareto frontier as evenly as possible in order to represent a diverse

approximation to the true Pareto frontier.

2.4.2 The original multi-directional local search algorithm

MDLS is proposed by Tricoire (2012) for general multi-objective optimization problems. It

is motivated by the concept of Pareto dominance, which implies that a neighbor solution x′

of x is either (i) dominating x or (ii) non-comparable with x if x′ is better than x on at

least one objective. Therefore, it is sufficient to improve upon one objective at a time to

find desirable neighbor solutions of x. This facilitates the utilization of single-objective

local search algorithms within the overall MDLS framework.

The input to MDLS is an initial set F of non-dominated solutions. The set F can be

19

𝑜𝑜𝑜1

𝑜𝑜𝑜2

0 1 2 3 4 5 6

2

4

5

3

1

Pareto front 𝐹

𝐴1

𝐴2

𝐴4

𝐴3

Approximate set 𝐹𝑡

Neighborhood solutions

𝐴3′

𝐴3′′

(a) Local search on chosen solution

0 1 2 3 4 5 6

2

4

5

3

1

𝐴1

𝐴2

𝐴4

𝐴3

Pareto front 𝐹

𝑜𝑜𝑜1

𝑜𝑜𝑜2

Approximate set 𝐹𝑡+1

𝐴3′

𝐴3′′

(b) Approximate set update

Figure 2.2: Key steps of MDLS

obtained by randomly generating a population of initial solutions, assigning dominance

rank using the sorting algorithm proposed in Deb et al. (2002) and deleting all dominated

solutions. The solution generation scheme used to generate a population of initial solutions

for the MoConVRP in this paper will be detailed in a later section. At each iteration,

MDLS selects a solution x from F and initiates an empty set G for keeping neighbor

solutions of x. Then for each of M objectives, a corresponding local search method LSm(x)

is applied on x and the resulting neighbor solution x′ is saved in G. After that, the

non-dominated set F is updated by merging solutions in F and G, and deleting all

dominated solutions. Algorithm 1 in the online supplement summarizes the MDLS

framework.

Figure 2.2 illustrates two key steps of MDLS. In Figure 2.2a, the non-dominated solution

set at iteration t, Ft, has four solutions. Solution A3 is the chosen solution and its two

neighbor solutions are obtained by applying local search on each of its two objectives.

Because the two neighbor solutions both dominate A3 and are not dominated by any other

solutions in Ft, both of them enter Ft+1, as shown in Figure 2.2b.

Our preliminary experiments reveal two limitations of MDLS. First, MDLS does not limit

the size of F during its search process, which may become very large for complex problems

like MoConVRP. Because F has to be updated at each iteration, maintaining a large

20

number of non-dominated solutions in F induces computational burden. In addition,

MDLS focuses on only one randomly selected solution to improve at each iteration, which

may lead to slow convergence speed and poor diversity of the final non-dominated set.

Based on these observations, we propose an improved MDLS framework and validate its

effectiveness on the MoConVRP studied in this paper.

2.4.3 Improved multi-directional local search (IMDLS)

Algorithm 1 shows the improved MDLS framework. In addition to an initial

non-dominated solution set F , the input to IMDLS includes a size limit on F , denoted

Fmax, which specifies the maximum number of solutions that can be maintained in F

throughout the search process. At each iteration, IMDLS begins by exploring neighbor

solutions of every solution x ∈ F with respect to each of the M objectives. As with MDLS,

a variety of local search methods can be used in IMDLS to find neighbor solutions with

respect to each objective. In this paper, a large neighborhood search heuristic is employed.

Every new neighbor solution enters a set G which is later used to update F . Performing

local search on all solutions in F instead of only one solution helps IMDLS converge more

quickly to the Pareto frontier. The additional computation time introduced by this

expanded search is remedied to some extent by the time saved in updating the set F at the

end of each iteration because a reduced F is maintained. Next, if the size of the updated F

exceeds Fmax, the crowding distance is computed for solutions in F (Deb et al., 2002). The

purpose is to guide the selection of specific solutions in F to delete.

The crowding distance of a solution on the Pareto frontier measures the density of solutions

surrounding it. It is defined as the average distance of two neighboring solutions on either

side of the solution along each of the objectives. For example, suppose a problem having

only two objectives is being considered. To compute the crowing distance of a solution on

the Pareto frontier, one must find the distances between the solutions on the Pareto frontier

just better than and just worse than it for both of the objectives. Lower values of crowding

21

Algorithm 1 Improved multi-directional local search

1: Input: A set of non-dominated solutions F and its size limit Fmax

2: repeat
3: G ← ∅
4: for all x ∈ F do
5: for m← 1 to M do
6: G ← G ∪ {LSm(x)}
7: end for
8: end for
9: update(F ,G)
10: if |F| > Fmax then
11: compute crowding distance for x ∈ F
12: truncate(F)
13: end if
14: until stopping criterion is met
15: Output: F

distance refer to more crowded solutions. In IMDLS, once the crowding distance has been

computed for every solution in F , a function truncate(F) iteratively removes solutions

from F in order of non-decreasing crowding distance until the number of solutions that

remain is no greater than Fmax. With this modification, IMDLS is able to focus attention

on less-crowded areas of the non-dominated set and hence improves the diversity of F .

Figure 2.3 highlights the two primary differences between IMDLS and MDLS. Comparing

Figure 2.3a to Figure 2.2a, it can be seen that the neighborhoods of all solutions in Ft are

explored in IMDLS, while only a single neighborhood is explored in MDLS. Then, Figure

2.3b illustrates the process in IMDLS for updating F when it becomes too large. Note that

after the local search step, a total of 8 non-dominated solutions are contained in Ft+1 while

the size limit Fmax is set to 7. Therefore, Ft+1 must be truncated by one. The crowding

distances of all solutions in Ft+1 are computed and A2′′ is identified as the solution with

minimum crowding distance (with a value of 0.9). Therefore, A2′′ is removed from set Ft+1.

2.4.4 Initial solution generation

The proposed IMDLS framework requires an initial set of non-dominated solutions as

input. Although widely used in the literature to generate solutions with good service

consistency, template routes, as described in Section 2.2, are not utilized in this paper to

22

𝐴1′′

0 1 2 3 4 5 6

2

4

5

3

1

𝐹𝑚𝑚𝑚 = 7

𝑜𝑜𝑜1

𝑜𝑜𝑜2
𝐴1

𝐴2
Approximate set 𝐹𝑡

𝐴4

𝐴3

𝐴1′

𝐴2′′
𝐴3′

𝐴3′′
𝐴4′

𝐴4′′

Pareto front 𝐹

𝐴2′

(a) Local search on all solutions

𝐴2′′
𝐴3′

𝐴3′′
𝐴4′

𝐴4′′

0 1 2 3 4 5 6

2

4

5

3

1

𝐹𝑚𝑚𝑚 = 7

𝑜𝑜𝑜1

𝑜𝑜𝑜2
𝐴1

𝐴2

𝐴4

𝐴3

Pareto front 𝐹

Approximate set 𝐹𝑡+1 𝐴2′

3.0

1.5
0.9

2.5

2.2

1.8

2.4

3.0

𝐴1′′

𝐴1′

(b) Update/truncation of approximation set

Figure 2.3: Key steps of IMDLS

generate initial solutions. This is because the resulting daily routes derived from template

routes always have optimal driver consistency. This limits the possibility to explore

trade-offs between the objectives of cost minimization and consistency maximization.

Therefore, instead of employing the concept of template routes, our IMDLS framework

operates on the entire routing plan. For each day of the planning horizon, the routing plan

contains a route for each vehicle in service that day. The set of routes corresponding to a

particular day contains visits to all customers requiring service on that day.

An overview of the initial solution generation scheme we use is provided here, with details

in Algorithm 2 in the online supplement. The algorithm begins generating an initial

solution (i.e., routing plan) s by constructing an empty route for each day of the planning

horizon. Any time an empty route is added to the routing plan s, a driver is assigned to it.

Then, customers are considered for insertion into s in random order. The first step in

inserting a customer c to a routing plan is to identify a “good” driver for the customer. In

general, a driver r is a good choice for customer c if they are already operating routes in

close proximity to customer c on the days customer c requires service. Selecting such a

driver r for customer c should encourage good driver consistency and low travel costs. To

this end, a parameter α is used to identify the set of routes that are adjacent to c on each

23

day customer c requires service. A route r is said to be adjacent to customer c if the angle

made between the location of customer c and the centroid of all locations in route r, taking

the depot as the origin, is no greater than α. Also, all empty routes are considered to be

adjacent to all customers. Then, the driver r∗ appearing most frequently in the set of

routes adjacent to c is determined. Next, for each day d on which customer c requires

service, the visit to customer c is placed into its cheapest insertion location in route r∗. If

no feasible insertion locations exist in route r∗ on day d for the visit to customer c, the visit

will be inserted into its cheapest feasible insertion location among all routes. Doing so may

require creating a new empty route. Note that while this method of defining adjacency

using the angle between two locations with respect to the depot is appropriate for problem

instances having Euclidean distances, such as those studied in this paper, it may need

further investigation for problem instances having distances along real street networks. For

example, two locations separated by a natural barrier such as a lake or river may be

considered as adjacent using the method employed here, but the road distance between

them could be quite large. In this case, the real distance between two customers could be

used to decide whether they are adjacent. To decide the closeness of a customer and a

route, the average distance of the customer to all the customers on the route could be used.

The objective of this generation scheme is to create an initial set of non-dominated

solutions that are relatively good. This scheme encourages the creation of solutions with

low travel cost and good driver consistency, thus the initial set of solutions will represent

closer approximation to the Pareto frontier. Moreover, randomness is introduced in the

scheme to ensure the diversity of generated solutions.

2.4.5 Large neighborhood search

In this section, we first explain the large neighborhood search (LNS) framework used in

IMDLS to find neighbor solutions. Then we describe the removal and reinsertion operators

designed for LNS to improve each of the three objectives considered in this paper.

24

2.4.5.1 Algorithm framework

Both MDLS and IMDLS are algorithm frameworks designed for general multi-objective

optimization problems; they rely on problem-specific local search operators to obtain

neighbor solutions. Any local search algorithm can be used for this purpose and we employ

large neighborhood search (LNS) in this research for its simplicity and effectiveness (Shaw,

1998). LNS searches for a neighbor of a current solution using two steps: removal and

reinsertion. Essentially, removal involves choosing a number of customer visits to remove

from the solution according to some specific criteria and reinsertion aims to reinsert

removed customer visits back into the solution according to some other criteria. The

neighbor solution is the routing plan obtained after one iteration of removal and reinsertion

is executed on the current solution.

Algorithm 2 describes the workflow of LNS within the overall algorithm framework of

IMDLS. Every time LNS is called with an input solution s, a pair of removal and

reinsertion operators, denoted by τ , is selected and applied to s to obtain its neighbor

solution s′. If s′ dominates or is non-comparable with s, then s′ replaces s. The LNS

subroutine will return the new neighbor solution to the IMDLS procedure. In this paper,

operator pairs are randomly selected in each iteration of LNS according to probabilities

that depend upon their previous performance. That is, for each pair, we keep record of the

ratio of the number of times the pair has succeeded in improving a solution to the total

number of times it has been invoked. This ratio is initialized to 1 for all pairs of operators

at algorithm onset. Note that the removal and reinsertion operator performance is updated

at every iteration in this research, while in Ropke and Pisinger (2006) and Kovacs et al.

(2014b) it is updated only at certain predefined iterations.

2.4.5.2 Removal and reinsertion operators

This section describes the removal and reinsertion operators used in LNS. First, there are

four types of removal operators and two reinsertion operators. One reinsertion operator

25

Algorithm 2 Large neighborhood search

1: Input: solution s
2: select a removal/reinsertion pair τ based on their previous performance
3: apply τ on s to get neighbor solution s′

4: if s′ dominates or is non-comparable with s then
5: let s = s′

6: end if
7: update performance of τ
8: Output: solution s

aims to achieve good travel cost, and the other to achieve good driver consistency. Any of

these removal operators can be paired with the appropriate reinsertion operator if the

objective of interest during the current iteration of local search is travel cost or driver

consistency. However, these removal and reinsertion pairs are not used to improve the time

consistency objective. This is because the removal operators tend to remove many

customer visits from a solution at once, as will be described. Customer arrival times are

highly interrelated, so it is difficult to reinsert several visits at once if the objective is to

improve time consistency. Therefore, a designated pair of removal and reinsertion operators

for improving the time consistency objective is described last.

Random removal

We employ two random removal operators to remove randomly chosen customer visits from

a solution. This is intended to diversify the search process. Both begin by generating a

removal probability pc ∼ U [0, 1] for each customer c. The first random removal operator,

denoted Rand1, then randomly generates a removal threshold ρ ∼ U [0.2, 0.4]. For every

customer c for which pc < ρ, the visits to the customer on every day they need service are

removed from the routing plan s. The second random removal operator, Rand2, randomly

generates a removal threshold ρd ∼ U [0.2, 0.4] for each day d of the planning horizon.

Then, for every customer and day pair (c,d), the visit to customer c on day d is removed

from routing plan s if pc < ρd. Thus, Rand1 removes all visits for select customers from s,

while Rand2 removes only a subset of visits for select customers.

26

Adjacent removal

There are two removal operators that aim to deconstruct routes in a particular geographic

area. These adjacent removal operators define any two customer b and c as adjacent if the

angle made between them, taking the depot as the origin, is no greater than α. The first,

Adj1, begins by randomly choosing a seed customer c. Then, the set of customers adjacent

to c are identified. Finally, visits to c and all its adjacent customers are removed from the

routing plan s on every day the customers require service. The second removal operator,

Adj2, identifies d seed customers, one for each day of the planning horizon. Denote the seed

customer on a given day d as cd. The customers adjacent to cd are identified, and then the

visits on day d to cd and all its adjacent customers on day d are removed from the routing

plan s. This process is repeated for each day d. For both operators Adj1 and Adj2, α is set

to 360/Kactive, where Kactive is the maximum number of drivers working in a given day in

routing plan s.

Worst driver consistency removal

The worst driver consistency removal operators attempt to remove visits to customers who

are seen by the largest number of different drivers over the planning horizon. The first

operator, WorstDC1, sets a removal threshold Kactive/2, where Kactive is as previously

defined. All visits to every customer seen by more than Kactive/2 drivers throughout the

planning horizon are removed. The second operator, WorstDC2, compares the number of

days a particular customer c requires visits (denoted mc) to the number of different drivers

that visit c in routing plan s (denoted nc). If these two numbers are equal (that is,

mc = nc, implying a different driver visits customer c each time they require service), then

all visits to customer c are removed from routing plan s. Otherwise, if nc < mc, then the

the driver dc that visits customer c most frequently is identified. Visits to customer c are

removed from s for every day c is visited by a driver different from dc. This process is

repeated for every customer c.

27

Worst time consistency removal

The worst time consistency removal operators try to remove visits for customers whose

arrival times differentials across the planning horizon are high. Both operators set a

removal threshold fTC/2, where fTC is the value of the time consistency objective value of

routing plan s. Denote the arrival time differential for customer c as ac. According to the

first operator, WorstTC1, all visits to every customer c for which ac > fTC/2 are removed

from s. According to the second operator, WorstTC2, if ac > fTC/2 for a particular

customer c, then the arrival times for all visits to c are placed into a list Lc and sorted in

either increasing or decreasing order. Next, list Lc is partitioned into two lists L1
c and L2

c

by splitting the list Lc at the largest difference between two consecutive arrival times.

Finally, for the list with smaller cardinality, the visits to customer c associated with each of

the arrival times in the list are removed from routing plan s. This process is repeated for

every customer c. This operator is inspired by a similar one in Kovacs et al. (2015a).

Reinsertion

Note that after removal has been carried out according to one of the above operators, a

partial solution (i.e., partial routing plan) exists. That is, the partial routing plan is

missing some of the required customer visits. In what follows, we let σ denote the partial

routing plan that remains after removal is carried out on routing plan s.

Reinsertion to reduce travel cost (Reinsert1)

This operator focuses on travel cost when reinserting customer visits. For every day d of

the planning horizon, a list Ld of customer visits on day d that need to be reinserted into σ

is maintained. Then, every customer visit i ∈ Ld that requires reinsertion is placed into the

cheapest feasible insertion location among all routes in σ on day d, updating the partial

routing plan after each insertion. If no feasible insertion locations exist for a particular

customer visit, a new empty route is added to σ. Each list Ld is shuffled to introduce

diversity into the order in which customer visits are considered for reinsertion.

28

Reinsertion to improve driver consistency (Reinsert2)

This operator focuses on driver consistency when reinserting customer visits. A list L of

customers who need one or more visits reinserted into σ is maintained. For each customer

c ∈ L, two possible scenarios exist: either customer c requires reinsertion for all of their

visits, or a subset of their visits. These scenarios are discussed separately below.

Customer c requires reinsertion for a subset of their visits: For each driver, a count nd of

the number of times they visit customer c in σ is maintained. For a particular day d on

which c requires reinsertion, the driver with maximum nd is identified, where the driver has

a route on day d and a feasible insertion location for the visit to c exists in that route. If

multiple drivers meet these conditions, one is selected arbitrarily. A new empty route is

added on day d if no drivers meet these conditions. The visit to customer c is inserted into

the selected route on day d in the cheapest feasible insertion location. The driver count

(nd) for the selected driver is updated and the process is repeated for each day that

customer c requires reinsertion. The order in which each day is considered is randomized to

promote diversity.

Customer c requires reinsertion for all of their visits: For every day customer c requires

service, the cheapest insertion locations within each route for which feasible insertion

locations exist for customer c are noted. Each of these locations are recorded using (d, r, j,

δ) where d is the day, r is the driver/route, j is the index of the customer that c will

immediately precede if inserted and δ is the insertion cost. Next, for every driver r, a count

nr of the number of such locations in which they appear is tabulated. Furthermore, for

every driver r, the sum of insertion costs over all such locations in which they appear as

driver is computed and denoted ∆. Note that nr can be at most m, the number of visits

customer c requires. Note also that ∆ represents the total travel cost associated with using

driver r to perform all of the identified visits to customer c. Next, the driver r∗ with

maximal visit count nr∗ is identified. Visits to customer c are inserted into the previously

29

recorded locations in driver r∗’s routes (preceding customer j). If there are multiple such

drivers, ties are broken using ∆ (the minimum total insertion cost will be selected).

Finally, if the maximum visit count nr∗ were equal to m, then the process of reinserting

customer c is complete. Otherwise, for every visit for which customer c still requires

reinsertion, the location with minimum δ is selected. If at any point in this process there

are no feasible insertion locations on a required day, an empty route is created and a visit

for customer c is inserted into it.

Note that when a new route is created in any of the reinsertion operators, the driver

numbered r + 1 will be assigned to it if there already exist r drivers on the same day. In

removal operators, it is possible that all customer visits on a route are removed; in this

case, the route simply exists as an empty route and is not deleted from the routing plan.

Note also that empty routes are defined to be a neighbor of any customer to be reinserted.

Removal and reinsertion to improve time consistency (RR)

This operator pair identifies the customer c∗ with the biggest arrival time differential.

Then, the visit to customer c∗ which will be removed is identified as follows. First, the

average of the earliest and latest arrival time to customer c is denoted ā and the median

arrival time to customer c is denoted med(a). Then, if med(a) > ā, the visit with the

earliest arrival time will be removed, and otherwise, the visit with the latest arrival time

will be removed. Denote the day of this visit d∗. The process for reinserting the visit on

day d∗ for customer c∗ begins by examining each route on day d∗. These routes are sorted

into a list L in non-decreasing order of the angle between the location of customer c∗ and

the centroid of the route, taking the depot as the origin. Beginning with the first route in

L, the operator examines whether there is a feasible insertion location in the route that

will improve the time consistency objective. If there are multiple such locations within the

route, the one that improves time consistency the most is selected. If there are no feasible

locations in the current route, the search proceeds through the list L. If the end of list L is

reached, the visit to customer c∗ on day d∗ is reinserted back into its original location.

30

Although the two worst time consistency removal operators, WorstTC1 and WorstTC2,

are not used explicitly in this removal and reinsertion operator pair, they do aid in

improving this objective. This is because they remove the customer with the largest arrival

time differential. The removal and reinsertion operators used for each objective are shown

in Table 2.2.

Obj. Removal operator Reinsertion operator

fTD
Rand1, Rand2, Adj1, Adj2,
WorstDC1, WorstDC2, WorstTC1, WorstTC2

Reinsert1

fDC
Rand1, Rand2, Adj1, Adj2,
WorstDC1, WorstDC2, WorstTC1, WorstTC2

Reinsert2

fTC RR

Table 2.2: LNS operator pair used for each objective

2.5 Computational experiments and analysis

In this section, we first introduce the benchmark instances used in this paper to validate

the performance of our proposed IMDLS for solving MoConVRP. Then, metrics used to

compare the performance of the various algorithms are described. Finally, the results of the

computational study are presented and a trade-off analysis between the objectives of cost

minimization and consistency maximization is provided.

2.5.1 Benchmark instances and experiment setup

A total of 36 instances are taken from the literature to verify the performance of our

proposed algorithm. They appeared first in Groër et al. (2009) and Kovacs et al. (2014b)

based on the Christofides benchmark instances for VRP (Christofides and Eilon, 1969). All

instances are generated in such a way that each customer requires service with a certain

probability, namely, 0.5, 0.7 and 0.9, on each day of the planning horizon. These instances

are classified into three groups, namely, Group0.5, Group0.7 and Group0.9, according to

their service probability.

31

The performance of our proposed IMDLS is compared against the original MDLS, three

classical multi-objective algorithms including NSGAII, NNIA and SPEA2, and two more

recent multi-objective algorithms, namely, NSGAIII and MOEA/D. For MOEA/D, there

exist three decomposition approaches that convert a multi-objective optimization problem

into a set of scalar optimization subproblems, which results in three algorithms, namely,

the MOEA/D with the weighted sum approach (MOEA/D-WS), the MOEA/D with the

Tchebycheff approach (MOEA/D-TCH) and the MOEA/D with the penalty-based

boundary intersection arpproach (MOEA/D-PBI). Neither MDLS nor IMDLS require the

recombination of two solutions during execution. However, crossover is an essential element

of the comparison algorithms NSGAII, NNIA, SPEA2, NSGAIII and MOEA/D. The

crossover operator used in this paper works in a removal and reinsertion fashion as in LNS:

given two parent solutions A and B, a child solution is initialized as a copy of parent A.

Then all the customers in the child solution whose driver consistency objectives are worse

than that of parent solution B are removed from the child. After removal, Reinsert2 is

employed to reinsert the removed customers back to the partial child solution.

All of the comparison algorithms are implemented following their descriptions in the

literature. The same crossover operator and large neighborhood search described in the

literature are used whenever applicable. Both crossover and LNS operators are applied to

parent solutions with probability 1 in the comparison algorithms. The population size in

NSGAII is set to 100. The population size and archive size in SPEA2 are both set to 100.

The sizes of the dominant population, active population and clone population in NNIA are

set to 100, 20 and 100, respectively. The population size of NSGAIII is determined by the

size of the user-defined reference point set. In this paper, we use the reference point set

generated by Deb and Jain (2014) for three-objective optimization problems. It contains 91

reference points and the NSGAIII population size is set to 91. Similarly, the MOEA/D

population size is determined by the number of weight vectors and we use the weight

vectors provided by Qingfu and Hui (2007) for three-objective optimization problems. The

32

MOEA/D population size is therefore set to 351. The number of initial non-dominated

solutions is set to 100 for both MDLS and IMDLS. The Fmax in IMDLS is set to 100 in all

experiments. A time limit of 30 minutes is set on all the algorithms and 10 replications are

run for each instance. All algorithms are implemented in C++ and experiments are

conducted on a computer with 2.70GHz CPU.

2.5.2 Metrics for comparison algorithms

Three metrics are employed to compare the performance of different multi-objective

algorithms. First, hypervolume (IH) is a unary operator that is able to indicate the

convergence and diversity of a non-dominated approximation set for the Pareto frontier

(Coello et al., 2007). It measures the size of the objective space covered by a set of

non-dominated solutions F . A reference point z is necessary to compute the hypervolume

of F . For maximization problems, it is common to set z as the origin (0, 0, 0). For

minimization problems, z is usually set to a point with the worst values for each objective.

Either way, larger hypervolumes indicate better performance. For our problem with three

objectives, each solution x ∈ F in the objective space covers a cuboid defined by its

coordinates (f1(x), f2(x), f3(x)) and the reference point z. The hypervolume is computed

as the size of the union of all such cuboids covered by solutions in F . The WFG algorithm

descried in While et al. (2012) is used to compute the hypervolume metric. Because the

three objectives considered in this paper do not have the same scale, it is necessary to

normalize the objective values before computing the hypervolume metric. To this end, for

each instance, we record the best and worst values for each of the three objectives obtained

by all algorithms over all 10 replications. Then all objective values are normalized into the

range [0, 1] and the reference point is set to (1.1, 1.1, 1.1) for all instances.

Second, coverage (IC) is a binary operator that compares the convergence of different

non-dominated solution sets (Zitzler et al., 2000) . It measures the extent to which one

solution set B is covered by another solution set A by comparing the number of solutions

33

in B that are dominated by solutions in A to the cardinality of B:

IC(A,B) =
|{b ∈ B : ∃ a ∈ A, a ≺ b}|

|B|
. (2.23)

The value IC(A,B) = 1 means that all solutions in B are dominated by solutions in A,

while IC(A,B) = 0 means that none of the solutions in B are dominated by those in A.

Note that IC(A,B) does not necessarily equal 1− IC(B,A); both values need to be

computed. Larger values of coverage indicate better performance.

Third, the unary multiplicative epsilon indicator (Iε) computes the minimum factor ε by

which each point in the reference set R can be multiplied such that the resulting set is

weakly dominated by set A (Zitzler et al., 2003):

Iε(A,R) = inf
ε
{∀r ∈ R ∃a ∈ A : a �ε r} (2.24)

This indicator is based on the ε-dominance relation, �ε, which is defined as:

a �ε r ⇔ ∀i = 1, . . .M, ai ≤ ε · ri (2.25)

for a minimization prolem with M objectives and assuming that all points are positive in

all objectives. A smaller Iε value indicates better performance. The reference set R is

constructed for each instance by taking the union of all replications of all algorithms and

removing dominated solutions. Note that a Iε value smaller than 1 indicates that A strictly

dominates the reference set R.

2.5.3 Parameter tuning

In the proposed initial solution generation scheme, the parameter α is defined to decide

whether a route r is considered as the neighbor of a customer c that is to be inserted. The

performances of different α values are evaluated using the hypervolume metric on 12

instances from Group0.7. Results from five replications are obtained for each instance using

34

the proposed IMDLS algorithm. A total of 18 α values are chosen from the range (0, 360].

Table 2.3 shows the comparison results. The first column in the table indicates the

instance number. The first row shows the 18 α values. Each hypervolume value in the

table is the averaged value of five replications. The last row gives the average hypervolume

values across 12 instances. It can be seen from Table 2.3 that the best performance (the

biggest hypervolume value, 0.87) is observed with α = 60; therefore, this value is used in

the final experiments.

α 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360
1 1.24 1.23 1.24 1.23 1.22 1.15 1.16 1.17 1.04 1.11 1.14 1.22 1.23 1.18 1.22 1.22 1.15 1.16
2 1.00 0.93 1.01 0.92 0.77 0.89 0.72 0.82 0.77 0.72 0.77 0.77 0.77 0.77 0.76 0.77 0.78 0.77
3 1.00 1.03 1.02 1.00 1.00 0.97 1.02 0.79 0.81 0.96 0.88 1.01 0.92 0.86 0.94 0.96 0.86 0.91
4 0.71 0.78 0.79 0.75 0.62 0.62 0.59 0.61 0.60 0.59 0.57 0.58 0.58 0.59 0.56 0.60 0.58 0.58
5 0.58 0.53 0.62 0.52 0.50 0.49 0.44 0.41 0.44 0.40 0.42 0.37 0.43 0.42 0.44 0.43 0.43 0.42
6 1.15 1.13 1.13 1.07 1.08 1.08 1.13 1.14 1.13 1.13 1.14 1.14 1.15 1.14 1.14 1.14 1.14 1.14
7 0.84 0.85 0.88 0.80 0.85 0.78 0.81 0.76 0.88 0.85 0.77 0.83 0.89 0.89 0.86 0.89 0.89 0.90
8 0.87 0.87 0.85 0.76 0.77 0.82 0.78 0.80 0.78 0.84 0.88 0.87 0.87 0.88 0.88 0.86 0.88 0.87
9 0.44 0.42 0.66 0.52 0.50 0.61 0.52 0.60 0.62 0.65 0.64 0.65 0.65 0.65 0.66 0.65 0.65 0.66

10 0.42 0.46 0.44 0.42 0.33 0.34 0.44 0.33 0.43 0.44 0.45 0.47 0.48 0.49 0.47 0.49 0.48 0.48
11 0.73 0.79 0.83 0.81 0.83 0.84 0.82 0.77 0.84 0.81 0.78 0.78 0.82 0.69 0.74 0.80 0.73 0.71
12 1.00 1.02 1.02 0.79 0.90 0.97 0.85 1.00 0.87 0.85 0.91 0.99 1.01 1.03 1.02 1.02 1.02 1.01
¯̄IH 0.83 0.84 0.87 0.80 0.78 0.80 0.77 0.77 0.77 0.78 0.78 0.81 0.82 0.80 0.81 0.82 0.80 0.80

Table 2.3: Parameter α tuning results on Group0.7

2.5.4 Algorithm performance comparison

This section presents a comparison of the multi-objective algorithms according to the

metrics described in the previous section. Then, the frequencies with which various LNS

operator pairs in IMDLS are invoked are presented.

Table 2.4 provides the hypervolumes for the instances in Group0.5. The first column

indicates the instance number. Each of the next nine columns corresponds to one of the

comparison algorithms. Each entry in the table gives the average hypervolume across 10

replications for the instance number and algorithm indicated by the row and column labels.

The last two columns give the hypervolumes for the reference set R and the I%
H value

defined by IH(IMDLS)/IH(R), respectively. The last row provides the averages across all

12 instances for each of the comparison algorithms. The best result for each instance is

35

highlighted in bold.

It can be seen from Table 2.4 that IMDLS outperforms MDLS for all instances in Group0.5.

However, IMDLS is outperformed by other comparison algorithms on 6 out of the 12

instances. The reference set R can be considered as a near-optimal approximation to the

real Pareto frontier and IMDLS is able to cover 90.48 percent of the objective space

covered by R on average. Tables 2.5 and 2.6 provide hypervolumes for instances in

Group0.7 and Group0.9, respectively. For both groups of instances, IMDLS outperforms

MDLS. On the other hand, IMDLS is outperformed by other comparison algorithms on

most instances. However, IMDLS is able to cover about 85 percent of the objective space

covered by R in both instance groups.

Instance NSGAII NSGAIII
MOEA/D

NNIA SPEA2 MDLS IMDLS R I%
HWS TCH PBI

1 1.163 1.175 1.151 1.176 1.120 1.162 1.156 1.016 1.179 1.239 95.17%
2 1.174 1.167 1.152 1.161 1.038 1.136 1.165 0.854 1.176 1.239 94.89%
3 1.170 1.172 1.139 1.165 1.018 1.159 1.186 0.883 1.194 1.252 95.38%
4 1.047 1.054 0.990 1.023 0.732 0.991 1.026 0.533 1.103 1.212 90.95%
5 1.121 1.123 1.034 1.131 0.912 1.099 1.098 0.717 1.144 1.262 90.68%
6 1.113 1.126 1.121 1.147 1.098 1.093 1.114 0.962 1.139 1.220 93.34%
7 1.101 1.115 1.082 1.125 1.048 0.979 1.113 0.609 1.044 1.223 85.32%
8 1.116 1.100 1.066 1.096 0.969 1.077 1.083 0.610 1.104 1.228 89.84%
9 0.965 1.038 0.879 1.054 0.916 0.891 1.011 0.355 0.987 1.208 81.70%
10 1.026 1.011 0.941 1.070 0.893 0.893 1.054 0.391 0.995 1.235 80.56%
11 1.143 1.184 1.040 1.120 0.931 1.157 1.158 0.607 1.155 1.283 90.01%
12 1.239 1.226 1.213 1.230 1.010 1.227 1.225 0.854 1.248 1.274 97.92%

Average 1.115 1.124 1.067 1.125 0.974 1.072 1.116 0.699 1.122 1.240 90.48%

Table 2.4: Hypervolume results for Group0.5

Table 2.7 provides the coverage comparisons of IMDLS with other algorithms for different

instance groups. The MC(∗, IMDLS) value indicates the percentage of solutions produced

by IMDLS that are dominated by at least one solution generated by the comparison

algorithm *. Take the third entry in the second row for example. The value 22.60% means

22.60% of the non-dominated solutions produced by IMDLS are dominated by at least one

of the solutions in the set produced by NSGAII. On the other hand, the 58.37% in the

third row indicates that 58.37% of the solutions obtained by NSGAII are dominated by at

least one of the solutions in the set generated by IMDLS. It is worth noting that 98.65% of

36

Instance NSGAII NSGAIII
MOEA/D

NNIA SPEA2 MDLS IMDLS R I%
HWS TCH PBI

1 1.163 1.150 1.141 1.149 1.022 1.159 1.155 0.946 1.173 1.216 96.42%
2 1.144 1.149 1.116 1.135 0.937 1.109 1.124 0.762 1.144 1.228 93.15%
3 1.170 1.167 1.111 1.164 0.957 1.147 1.162 0.708 1.130 1.243 90.88%
4 1.117 1.127 1.101 1.066 0.801 1.079 1.021 0.570 1.035 1.247 82.99%
5 0.977 0.845 0.828 0.826 0.586 0.770 0.819 0.316 0.877 1.197 73.21%
6 1.165 1.166 1.138 1.138 1.042 1.150 1.149 0.767 1.173 1.238 94.70%
7 1.082 1.071 0.981 1.071 0.926 0.929 1.042 0.412 0.995 1.220 81.51%
8 1.085 1.077 1.042 1.079 0.956 1.052 1.045 0.460 1.039 1.230 84.48%
9 1.035 1.059 0.970 1.077 0.800 0.856 1.036 0.269 0.798 1.220 65.43%
10 1.010 0.972 0.896 1.005 0.829 0.796 0.884 0.236 0.829 1.215 68.24%
11 1.243 1.232 1.180 1.210 1.060 1.187 1.172 0.406 1.173 1.283 91.42%
12 1.160 1.146 1.061 1.118 0.834 1.095 1.131 0.561 1.120 1.249 89.70%

Average 1.113 1.097 1.047 1.086 0.896 1.028 1.062 0.534 1.040 1.232 84.34%

Table 2.5: Hypervolume results for Group0.7

Instance NSGAII NSGAIII
MOEA/D

NNIA SPEA2 MDLS IMDLS R I%
HWS TCH PBI

1 1.152 1.142 1.097 1.131 1.018 1.144 1.137 0.942 1.143 1.219 93.78%
2 1.111 1.096 1.031 1.046 0.861 1.082 1.081 0.455 1.122 1.217 92.23%
3 1.159 1.150 1.103 1.133 1.069 1.137 1.130 0.727 1.086 1.241 87.54%
4 1.148 1.135 1.082 1.016 0.940 1.085 1.121 0.466 1.067 1.263 84.49%
5 1.119 1.065 0.974 0.936 0.775 0.938 1.116 0.473 1.024 1.278 80.14%
6 1.138 1.129 1.058 1.121 0.965 1.109 1.097 0.933 1.106 1.213 91.16%
7 1.169 1.165 1.120 1.132 0.951 1.111 1.137 0.505 1.131 1.252 90.34%
8 1.108 1.104 0.990 1.052 0.849 1.082 1.074 0.569 1.097 1.214 90.39%
9 1.189 1.166 1.119 1.115 1.027 1.043 1.148 0.305 0.949 1.265 75.02%
10 1.059 1.062 1.048 1.012 0.965 0.940 0.967 0.231 0.881 1.255 70.22%
11 1.077 1.130 1.019 1.030 0.940 1.054 1.088 0.422 0.962 1.284 74.92%
12 1.231 1.210 1.105 1.140 0.961 1.201 1.166 0.574 1.169 1.278 91.49%

Average 1.138 1.130 1.062 1.072 0.943 1.077 1.105 0.550 1.061 1.248 85.14%

Table 2.6: Hypervolume results for Group0.9

the solutions produced by the original MDLS are dominated by at least one of the

solutions obtained by IMDLS, while only 0.26% solutions generated by IMDLS are

dominated by solutions produced by MDLS. Overall, our proposed IMDLS produces the

best non-dominated solution set among the nine comparison algorithms for all instance

groups except NSGAII and NSGAIII on Group0.9. These two occurrences are indicated in

bold in Table 2.7. Detailed pairwise comparison results are given in Tables 1, 2 and 3 in

the online supplement.

Table 2.8 shows the unary multiplicative epsilon indicator comparisons of IMDLS with

other algorithms for instances in Group0.5. The first columns gives the instance number

37

Instance group Coverage metric NSGAII NSGAIII
MOEA/D

NNIA SPEA2 MDLS
WS TCH PBI

Group0.5
MC(∗, IMDLS) 22.60% 24.11% 12.00% 22.92% 5.06% 15.56% 20.92% 0.26%
MC(IMDLS, ∗) 58.37% 56.25% 53.08% 47.40% 71.27% 71.80% 61.78% 98.65%

Group0.7
MC(∗, IMDLS) 27.95% 29.10% 11.73% 21.11% 4.60% 16.00% 20.67% 0.14%
MC(IMDLS, ∗) 49.25% 49.03% 48.70% 41.27% 45.99% 65.08% 58.23% 98.22%

Group0.9
MC(∗, IMDLS) 44.80% 41.21% 18.44% 24.61% 12.38% 28.04% 35.63% 0.34%
MC(IMDLS, ∗) 34.82% 38.11% 45.09% 45.93% 39.26% 55.03% 49.31% 97.25%

Table 2.7: Coverage comparison results

and the next nine columns correspond to one of the comparison algorithms. Each entry in

the table gives the average Iε across 10 replications for the instance number and algorithm

indicated by the row and column labels. The last row provides the averages across all 12

instances for each of the comparison algorithms. The best value for each instance is shown

in bold.

It can be seen from Table 2.8 that IMDLS outperforms the comparison algorithms for all

instances in Group0.5 except instance 11. These observations are also supported by the

comparisons given in Tables 2.9 and 2.10, corresponding to instances in Group0.7 and

Group0.9, respectively.

Note that there exist some large unary epsilon indicator values, sometimes over 300, in

Tables 2.8, 2.9 and 2.10. They are due to very small normalized travel cost objective

values. Such a scenario occurs any time the final non-dominated solution set of an

algorithm includes a solution with very good travel distance while another comparison

algorithm fails to do so.

It can be seen from the above comparisons that IMDLS outperforms other comparison

algorithms with respect to the coverage and multiplicative epsilon indicators. On the other

hand, IMDLS is outperformed by other comparison algorithms with respect to

hypervolume. These conflicting observations with hypervolume and unary epsilon

indicators are due to the fact that these two indicators work on different principles and

therefore opposite preference orderings for two approximation sets A ans B may result

(Knowles et al., 2006). In the next section, we conduct our trade-off analysis based on the

reference set instead of the approximation set produced by IMDLS alone.

38

Instance NSGAII NSGAIII
MOEA/D

NNIA SPEA2 MDLS IMDLS
WS TCH PBI

1 14.58 14.41 13.50 16.41 29.41 14.19 17.36 63.61 12.18
2 43.74 47.15 27.58 87.39 160.13 50.21 59.74 175.82 15.32
3 54.92 41.66 36.07 60.14 198.62 46.72 47.70 180.20 18.22
4 120.22 96.23 69.39 153.27 420.58 112.76 111.09 341.22 40.39
5 186.80 200.65 116.61 251.49 462.45 163.71 200.43 356.19 60.93
6 25.95 28.10 24.89 29.61 61.34 25.03 25.12 41.46 16.21
7 37.51 47.37 41.68 59.99 60.10 25.64 37.65 138.45 14.02
8 45.11 59.83 45.50 78.29 261.88 31.72 44.80 165.59 12.90
9 154.30 164.52 108.72 227.74 283.14 143.98 158.88 379.83 49.48
10 187.53 210.49 191.86 293.09 490.39 213.90 194.74 548.13 50.05
11 103.74 75.24 155.71 160.95 286.47 57.86 103.82 374.36 62.71
12 21.09 24.96 19.39 31.02 248.79 18.41 22.72 219.54 9.33

Average 82.958 84.219 70.907 120.783 246.942 75.343 85.338 248.702 30.144

Table 2.8: Unary multiplicative indicator results for Group0.5

Instance NSGAII NSGAIII
MOEA/D

NNIA SPEA2 MDLS IMDLS
WS TCH PBI

1 22.98 28.38 18.97 44.10 189.15 19.92 31.47 93.01 14.48
2 88.99 103.25 71.89 126.13 432.68 84.49 108.74 267.52 39.11
3 65.18 44.71 68.59 75.65 303.68 45.19 42.07 236.01 19.32
4 188.02 161.23 202.92 297.15 535.37 168.06 186.83 425.45 66.34
5 230.24 251.09 293.34 321.38 642.59 202.48 214.12 520.50 57.79
6 32.27 41.87 56.14 71.84 154.47 28.44 63.61 121.73 11.84
7 106.07 86.54 113.35 175.32 371.77 78.14 101.63 338.01 24.20
8 123.45 123.26 141.66 184.85 409.71 102.28 124.57 288.91 41.62
9 251.46 197.96 270.47 390.78 749.32 197.71 265.33 588.60 67.68
10 257.56 281.08 361.82 387.46 771.87 311.03 255.07 680.68 69.54
11 58.82 60.91 118.70 122.02 482.20 120.37 84.38 870.78 57.74
12 92.91 99.36 83.23 178.82 585.47 95.34 98.19 408.62 40.57

Average 126.496 123.304 150.091 197.959 469.024 121.121 131.335 403.320 42.519

Table 2.9: Unary multiplicative indicator results for Group0.7

Next the frequencies with which each removal/reinsertion operator pairs are invoked in

IMDLS is reported. Table 2.11 provides these results for the instances in Group0.7. The

first row gives the name of the removal operator and the second row gives the name of the

reinsertion operator that is paired with it. Each of the eight removal operators is paired

with both of the reinsertion operator designed for travel distance (TD) and driver

consistency (DC), which results in a total of 16 operator pairs. The operator pair designed

for TC is not shown in this table because it is invoked with frequency 1.0 in IMDLS by

definition. Each element in the table is an average frequency over 10 replications for each

39

Instance NSGAII NSGAIII
MOEA/D

NNIA SPEA2 MDLS IMDLS
WS TCH PBI

1 27.45 23.10 31.48 38.01 135.96 22.81 27.37 100.41 17.61
2 84.19 98.13 144.11 177.26 377.95 99.99 127.23 363.62 50.96
3 51.72 43.00 82.94 76.78 120.82 38.93 58.80 222.16 23.84
4 141.23 129.35 176.59 245.84 328.03 168.09 144.64 476.90 93.79
5 152.19 133.88 248.76 314.99 579.71 182.68 135.19 587.47 110.91
6 40.31 48.00 85.98 59.23 224.61 56.61 71.57 171.77 48.22
7 72.53 54.31 139.42 145.68 452.53 71.32 76.41 427.57 38.86
8 107.14 106.46 169.22 150.00 361.14 106.86 112.53 291.76 71.68
9 89.14 102.69 267.40 279.12 495.92 165.84 130.55 662.54 67.49
10 281.37 246.13 443.97 521.05 588.19 343.82 269.01 956.20 186.51
11 600.71 409.76 739.77 724.90 1005.15 608.35 529.74 1323.39 620.42
12 59.38 77.63 211.80 169.89 391.30 82.38 113.85 521.52 81.96

Average 142.281 122.704 228.453 241.896 421.775 162.306 149.741 508.776 117.687

Table 2.10: Unary multiplicative indicator results for Group0.9

instance in Group0.7. In each row, the entries in the eight columns corresponding to either

TD or DC sum to 1.0. The average application frequency for each operator pair over all

instances is shown in the last row of the table.

It can be seen from the last row of Table 2.11 that with regard to the TD objective,

removal operator WorstDC is chosen with frequency 22.72% (18.92% + 3.80%) on average,

more than any other operator. The next most frequently invoked removal operator is

WorstTC, with frequency 14.26% (5.57% + 8.69%) on average. Moreover, random removal

seems to be more effective in reducing travel cost than adjacent removal (Adj1 and Adj2).

With regard to the driver consistency objective, it is clear that WorstDC is the most

effective in improving the objective with a frequency of 34.59% on average. Next,

WorstTC removal is the next most frequently invoked operator to improve driver

consistency. Additionally, random removal is more effective than adjacent removal in

improving driver consistency. Table 2.11 also shows that random removal and adjacent

removal are more effective in improving travel cost than driver consistency.

40

Removal: Rand1 Rand2 Adj1 Adj2 WorstDC1 WorstDC2 WorstTC1 WorstTC2

Reinsertion: TD DC TD DC TD DC TD DC TD DC TD DC TD DC TD DC
1 4.28% 2.55% 3.46% 3.79% 4.36% 2.26% 4.11% 2.62% 14.13% 20.07% 5.38% 9.78% 5.15% 4.49% 9.13% 4.44%
2 2.98% 1.11% 3.48% 2.01% 2.39% 2.35% 2.07% 2.28% 20.58% 25.32% 2.89% 10.12% 5.66% 2.83% 9.96% 3.98%
3 3.86% 1.47% 3.51% 2.47% 3.34% 1.23% 2.46% 1.28% 18.96% 26.73% 5.02% 10.31% 4.73% 3.21% 8.13% 3.31%
4 2.87% 1.38% 3.48% 1.01% 3.35% 1.62% 3.49% 2.58% 19.01% 29.57% 4.57% 10.23% 4.69% 0.97% 8.53% 2.64%
5 4.96% 1.69% 4.76% 3.91% 4.45% 1.41% 3.88% 2.67% 16.58% 22.77% 1.48% 11.96% 6.41% 3.00% 7.48% 2.60%
6 4.41% 2.90% 3.73% 2.59% 4.07% 2.83% 3.76% 2.69% 17.66% 16.48% 3.21% 10.45% 5.28% 4.90% 7.87% 7.15%
7 3.24% 1.93% 1.52% 1.04% 3.81% 1.59% 2.37% 2.35% 22.89% 27.31% 4.65% 9.28% 4.62% 3.87% 6.90% 2.64%
8 4.64% 0.96% 4.15% 3.05% 2.08% 1.89% 1.43% 1.60% 19.21% 23.04% 4.22% 12.49% 4.76% 2.56% 9.51% 4.40%
9 3.69% 2.17% 2.93% 2.91% 3.97% 1.99% 3.04% 2.48% 19.07% 23.38% 3.04% 10.02% 6.03% 4.00% 8.24% 3.05%
10 4.79% 1.15% 4.48% 3.47% 3.24% 2.74% 3.88% 1.11% 17.44% 23.42% 1.08% 9.82% 6.72% 4.21% 8.37% 4.08%
11 2.69% 1.21% 2.62% 0.87% 0.70% 1.14% 0.35% 2.35% 18.98% 21.03% 6.82% 12.53% 6.89% 5.03% 10.95% 5.83%
12 1.72% 1.22% 2.16% 1.22% 3.47% 1.12% 1.82% 1.22% 22.49% 27.49% 3.17% 11.50% 5.95% 2.70% 9.23% 3.52%

Average 3.68% 1.65% 3.36% 2.36% 3.27% 1.85% 2.72% 2.10% 18.92% 23.88% 3.80% 10.71% 5.57% 3.48% 8.69% 3.97%

Table 2.11: Frequency with which various operator pairs are invoked in IMDLS

2.5.5 Trade-off analysis

In this section, we aim to analyze the non-dominated reference set R obtained by all

algorithms in all runs to facilitate managerial decision making, for there usually exist many

solutions in R and it is desirable to identify the best compromise solution to implement in

practice. To this end, we employ the level diagram technique proposed by Blasco et al.

(2008). First, the objective values of non-dominated solutions in R are normalized on a

[0,1] scale. Next, the euclidean norm is computed for each solution s ∈ R, where f̄i

represents the normalized value of objective i: E(s) =

√∑3
i=1 f̄i

2
(s). The original objective

values of solutions in R are then plotted against their euclidean distance in separate graphs

corresponding to each of the three objectives.

Figure 2.4 depicts the level diagram of non-dominated reference set R for instance 1 in

Group0.9. The x axis in each graph provides the original objective values for TD, DC and

TC, respectively. The y axis provides the euclidean distances for solutions in R. Taken

together, the three points at the same coordinate in each of the three graphs correspond to

a particular solution in R. For example, the point denoted by a triangle in black color

corresponds to a particular solution in R having a travel distance of 2412.96, driver

consistency of 2 and time consistency of 107.87. This point corresponds to the solution in

R having lowest travel distance. In the graph, a smaller value of euclidean distance

indicates a better compromise solution. Therefore, the best compromise solution in R is

41

denoted by a red square in Figure 2.4. It has a travel distance of 2507.75, driver

consistency 1 and time consistency 14.05.

Figure 2.4: Level diagram of instance 1

Let sBC denote the best compromise solution in the reference set R. It is identified as

described above. Furthermore, let sTD, sDC and sTC denote the solutions with best travel

distance, driver consistency and time consistency values. This results in twelve values

recorded for each test instance. Table 2.12 provides these twelve values for each test

instance. Consider for example the best compromise solution sBC for instance 1 of Group0.5

in Table 2.12. The travel distance of the best travel distance solution for this instance is

1528.72, while the driver and time consistency values are 3 and 91.00, respectively. For

comparison purposes, the travel distance of the best compromise solution (sBC) is 1642.34,

approximately 7.4% higher than the travel distance in the best travel distance solution.

However, the increase in travel distance results in better consistency values, with driver

42

and time consistencies of 1 (a 66.67% decrease) and 38.13 (a 58.10% decrease), respectively.

From the table, it can be seen that improvement in time consistency typically comes at a

higher cost, in terms of travel distance, than does improvement in driver consistency.

The next table provides a summary of the trade-offs between the traditional efficiency

objective of travel cost and the consistency considerations. Specifically, Table 2.13

compares the three objective values for three pairs of solutions: the best travel distance

solution compared with the best compromise solution, the best travel distance compared

with the best driver consistency solution, and the best travel distance compared with the

best time consistency solution. The three rows of the table present the three comparisons

in that order. The first row indicates that if a manager chooses the best compromise

solution, they can expect to increase travel distance by 5.02%, decrease driver consistency

objective value by 61.57%, and decrease time consistency objective value by 76.47%, on

average, when compared with the compromise solution having best travel distance. That

is, an approximate 60% improvement in driver consistency and 75% improvement in time

consistency comes at a cost of a 5% increase in travel distance. Now suppose instead of

seeking the best compromise among all three objectives, the manager is only interested in

improving driver consistency. Then, they can expect travel distance to increase by 5.49%,

driver consistency objective value to decrease by 64.81%, and time consistency objective

value to decrease by 76.30%, when compared with the compromise solution with best travel

distance, on average. This table also supports the conclusion that improvements in time

consistency come at a greater increase in travel costs than do improvements in driver

consistency.

In previous sections, it is assumed that all vehicles leave the depot at time 0. This rigidness

limits the potential to further improve time consistency. In this paper, we also consider the

case where vehicles are allowed to wait at the depot to improve time consistency. Note that

vehicles are not permitted to wait at customer locations after finishing service. In order to

determine the vehicle departure time, we employ the post-optimization algorithm proposed

43

Group Inst.
sBC sTD sDC sTC

fTD fDC fTC fTD fDC fTC fTD fDC fTC fTD fDC fTC

0.5

1 1642.34 1 38.13 1528.72 3 91.00 1642.34 1 38.13 2044.93 1 10.44
2 2407.38 2 28.34 2313.96 3 82.55 2576.84 1 21.43 2815.56 2 10.16
3 2661.75 1 32.92 2500.36 3 141.42 2661.75 1 32.92 2994.89 2 15.63
4 3364.70 1 28.04 3091.29 3 106.36 3364.70 1 28.04 3997.73 2 15.87
5 4067.11 1 36.02 3831.96 3 99.20 4067.11 1 36.02 4364.44 1 16.98
6 1749.24 1 40.59 1593.66 3 130.66 1749.24 1 40.59 2285.23 2 16.83
7 2852.82 1 41.35 2633.98 3 134.61 2852.82 1 41.35 3154.58 2 20.10
8 2908.39 1 58.28 2705.74 3 195.55 2908.39 1 58.28 3194.53 2 31.83
9 3811.95 1 54.09 3490.22 4 170.80 3811.95 1 54.09 4549.87 2 30.55
10 4593.66 1 50.14 4308.64 3 169.30 4593.66 1 50.14 5310.85 1 33.97
11 3265.39 1 20.44 3222.56 2 221.78 3265.39 1 20.44 3657.10 2 10.71
12 2866.80 1 15.51 2713.87 3 75.95 2866.80 1 15.51 3066.74 1 7.70

0.7

1 2110.59 1 28.01 1963.07 3 122.24 2110.59 1 28.01 2272.77 2 12.38
2 3459.85 2 18.79 3220.35 3 74.22 3586.04 1 23.65 4167.13 2 9.72
3 3274.16 1 27.81 3152.65 3 128.49 3274.16 1 27.81 3468.50 1 14.47
4 4512.07 1 18.14 4253.73 3 101.52 4512.07 1 18.14 4943.33 2 11.09
5 5726.25 1 22.54 5416.51 3 101.52 5726.25 1 22.54 6175.66 2 10.93
6 2340.72 1 42.28 2226.34 4 157.76 2340.72 1 42.28 2717.13 1 22.13
7 3905.77 1 43.52 3650.57 3 137.37 3905.77 1 43.52 4541.16 2 21.81
8 3619.01 1 54.24 3444.17 3 184.26 3619.01 1 54.24 3926.42 1 31.24
9 4989.20 2 54.74 4820.86 4 160.47 5209.78 1 52.82 5744.70 1 31.58
10 6122.81 2 60.76 5825.86 4 159.41 6182.47 1 75.49 6459.38 2 34.14
11 4487.90 1 16.47 4398.88 3 185.00 4487.90 1 16.47 5986.82 2 8.29
12 3509.10 1 12.45 3244.45 3 85.78 3509.10 1 12.45 4005.38 1 6.92

0.9

1 2507.75 1 14.05 2412.96 2 107.87 2507.75 1 14.05 3031.65 1 7.06
2 4026.83 1 13.02 3854.00 3 70.75 4026.83 1 13.02 4953.14 1 2.09
3 4029.06 1 13.72 3956.20 2 102.97 4029.06 1 13.72 4523.35 1 4.15
4 5021.37 1 16.56 4930.39 2 93.63 5021.37 1 16.56 5513.28 1 5.12
5 6612.57 1 6.38 6467.25 2 76.96 6612.57 1 6.38 7794.14 1 2.83
6 2618.31 1 38.60 2468.51 3 167.49 2618.31 1 38.60 3255.85 2 17.22
7 4404.69 1 30.76 4287.76 3 121.26 4404.69 1 30.76 5460.18 1 11.62
8 4204.22 1 43.24 4094.70 3 185.45 4204.22 1 43.24 4621.41 1 18.43
9 5793.50 1 33.68 5684.89 3 171.27 5793.50 1 33.68 6714.30 1 21.24
10 7151.66 1 35.88 6951.80 3 158.25 7151.66 1 35.88 8451.13 1 20.21
11 5073.55 1 13.51 5018.10 2 118.06 5073.55 1 13.51 6861.26 1 2.98
12 4018.81 1 7.44 3967.80 3 58.44 4018.81 1 7.44 4885.07 1 2.17

Table 2.12: Four solutions identified in R

44

fTD fDC fTC
sTD vs. sBC 5.02% Ú 61.57% Ø 76.47% Ø

sTD vs. sDC 5.49% Ú 64.81% Ø 76.30% Ø

sTD vs. sTC 21.88% Ú 50.00% Ø 88.77% Ø

Table 2.13: Comparisons of four solutions

by Kovacs et al. (2015a). This algorithm is called every time before the time consistency

objective value is computed. Table 2.14 shows the four solutions identified from the

reference set R generated by all the mentioned multi-objective algorithms considering

flexible vehicle departure time. Table 2.15 shows the trade-off analyais in the case of

flexible vehicle departure time. Compared to Table 2.13 in which 76.47% improvement of

time consistency is obtained at the cost of 5.02% increase in travel cost, the first row in

Table 2.15 indicates that 73.33% improvement of time consistency could be achieved at the

cost of 4.40% increase in travel cost. This comparison shows that better time consistency

could be achieved by allowing flexible vehicle departure time.

2.6 Conclusion

This paper presents a multi-objective variant of the Consistent Vehicle Routing Problem

(MoConVRP). Instead of modeling consistency considerations such as driver consistency

and time consistency as constraints as in the majority of the ConVRP literature, they are

included as objectives. Furthermore, instead of formulating a single weighted objective

that relies on specifying relative priorities among objectives, an approach to approximate

the Pareto frontier is developed. Specifically, an improved version of multi-directional local

search is developed. The updated algorithm, IMDLS, makes use of large neighborhood

search (LNS) to find solutions which are improved according to at least one objective to

add to the set of non-dominated solutions at each iteration. The performance of IMDLS is

compared with MDLS, three classical multi-objective algorithms and two recent

state-of-the-art multi-objective algorithms on a set of ConVRP test instances from the

literature. The computational study validates the superior performance of IMDLS.

45

Group Inst.
sBC sTD sDC sTC

fTD fDC fTC fTD fDC fTC fTD fDC fTC fTD fDC fTC

0.5

1 1586.99 2 30.6853 1529.39 3 91.0022 1633.75 1 40.721 1753.46 2 15.1533
2 2434.79 2 19.5592 2321.68 3 80.7748 2582.27 1 17.7844 2957.48 1 10.4705
3 2664.21 1 28.358 2502.41 3 92.7609 2664.21 1 28.358 2959.68 1 13.8148
4 3389.79 1 29.2694 3103.61 3 93.8438 3389.79 1 29.2694 3713.89 1 14.7006
5 4089.95 1 30.1747 3878.07 3 74.4973 4089.95 1 30.1747 4393.96 1 16.2428
6 1642.92 2 45.7791 1593.66 3 139.511 1713.12 1 61.0159 1907.17 1 21.9954
7 2852.59 1 38.4889 2631.1 3 128.383 2852.59 1 38.4889 3346.09 2 24.241
8 2761.84 2 68.9921 2688.73 3 194.013 2900.04 1 73.2841 3064.59 2 37.3059
9 3814.39 1 66.6259 3492.12 3 155.025 3814.39 1 66.6259 4089.27 2 38.2727
10 4546.31 2 60.3602 4314.94 4 169.721 4660.58 1 63.0563 5010.58 2 41.0381
11 3288.04 1 26.3474 3221.5 3 223.044 3288.04 1 26.3474 3705.56 1 10.2576
12 2768.09 2 10.8564 2715.22 3 64.5884 2869.35 1 17.7951 3161.04 1 7.4221

0.7

1 2013.28 2 32.8865 1963.33 3 148.845 2110.59 1 28.0129 2349.85 1 11.2718
2 3377.64 2 30.0914 3226.73 3 55.2659 3544.2 1 19.7436 3798.37 1 12.6151
3 3205.74 2 30.8166 3161.99 4 97.2011 3272.45 1 28.836 3333.61 1 15.1584
4 4548.69 1 22.7975 4297.84 3 71.0542 4548.69 1 22.7975 4719.92 2 13.1476
5 5741.13 1 38.9752 5499.39 3 74.3167 5741.13 1 38.9752 6009.83 2 10.5656
6 2332.69 1 41.4395 2234.74 3 170.489 2332.69 1 41.4395 2428.15 2 22.2407
7 3924.78 1 36.5621 3641.56 4 121.943 3924.78 1 36.5621 4552.54 1 24.3287
8 3684.04 1 54.1701 3446.63 3 194.33 3684.04 1 54.1701 4078.4 2 35.7646
9 5167.4 1 54.034 4815.78 3 156.357 5167.4 1 54.034 5828.51 2 34.9573
10 6068.1 1 63.7833 5781.7 4 169.293 6068.1 1 63.7833 6660.54 2 37.3423
11 4502.34 1 13.9685 4411.71 2 119.241 4502.34 1 13.9685 6156.64 1 6.92
12 3513.9 1 13.1922 3239.13 3 80.5811 3513.9 1 13.1922 4272.47 1 6.3995

0.9

1 2507.75 1 14.0522 2412.96 2 88.544 2507.75 1 14.0522 2883.21 1 6.3807
2 4072.92 1 8.4836 3904.45 3 52.0331 4072.92 1 8.4836 4675.58 2 1.8941
3 4013.72 1 16.6845 3953.32 2 113.316 4013.72 1 16.6845 4392.39 1 6.9418
4 5007.31 1 16.5556 4911.24 3 82.2048 5007.31 1 16.5556 5701.5 1 5.8038
5 6588.17 1 14.9041 6499.9 2 64.4741 6588.17 1 14.9041 6904.98 1 3.4049
6 2618.31 1 38.5992 2476.73 3 164.468 2618.31 1 38.5992 3041.66 1 16.0138
7 4402.07 1 30.7596 4259.99 3 105.628 4402.07 1 30.7596 5231.76 1 11.9757
8 4250.79 1 33.5165 4151.71 2 167.186 4250.79 1 33.5165 5011.52 1 16.9418
9 5752.77 1 34.406 5655.93 3 170.887 5752.77 1 34.406 6218.04 1 22.7931
10 7143.1 1 31.956 6948.86 3 154.354 7143.1 1 31.956 7880.53 1 20.6984
11 5325.04 1 12.8723 5091.6 2 127.292 5325.04 1 12.8723 6952.12 1 4.1422
12 4024.25 1 5.662 3968.65 2 103.227 4024.25 1 5.662 4996.38 1 2.169

Table 2.14: Four solutions identified in R with flexible vehicle departure time

46

fTD fDC fTC
sTD vs. sBC 4.40% Ú 56.48% Ø 73.33% Ø

sTD vs. sDC 5.44% Ú 64.35% Ø 73.04% Ø

sTD vs. sTC 18.48% Ú 53.70% Ø 86.62% Ø

Table 2.15: Comparisons of four solutions with flexible vehicle departure time

Traditionally, travel distance has been the most common objective in routing problems in

the literature. While customer service considerations such as driver and time consistency

are becoming increasingly important in certain industries such as small package delivery

and home healthcare, their associated costs are not well known. There are studies that

quantify increases in travel distance when consistency considerations are implemented

using hard constraints. However, depending on the application, strict enforcement of

consistency considerations may not be required. The relative costs of “good but not

perfect” consistency was not previously known. The results of our computational study

suggest that pursuing the best compromise solution among all three objectives may

increase travel costs by about 5% while improving driver and time consistency by

approximately 60% and over 75% on average, when compared with a compromise solution

having lowest overall travel distance.

Directions for future work can include studying consistency concerns in the context of

other routing problem variants. For example, in the general ConVRP, customers require

service on various days throughout a planning horizon, and the specific days each customer

requires service are treated as problem input. The days each customer requires service

could be modeled using decision variables instead, as in the Periodic VRP. Additionally,

the problem studied in this paper is static and deterministic. Real problems are often

dynamic and/or stochastic in nature. Therefore, dynamic and/or stochastic variants of the

Consistent VRP can be explored.

47

Reference

Ashlea R. Bennett and Alan L. Erera. Dynamic periodic fixed appointment scheduling for
home health. IIE Transactions on Healthcare Systems Engineering, 1(1):6–19, 2011.

X. Blasco, J. M. Herrero, J. Sanchis, and M. Martnez. A new graphical visualization of
n-dimensional pareto front for decision-making in multiobjective optimization.
Information Sciences, 178(20):3908–3924, 2008.

N. Christofides and S. Eilon. An algorithm for the vehicle-dispatching problem. OR, 20(3):
309–318, 1969.

Leandro C. Coelho, Jean-Franois Cordeau, and Gilbert Laporte. Consistency in
multi-vehicle inventory-routing. Transportation Research Part C: Emerging
Technologies, 24(0):270–287, 2012.

Carlos Coello Coello, Gary B Lamont, and David A Van Veldhuizen. Evolutionary
algorithms for solving multi-objective problems. Springer, 2007. ISBN 0387367977.

K. Deb and H. Jain. An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part i: Solving problems with box
constraints. Evolutionary Computation, IEEE Transactions on, 18(4):577–601, 2014.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic
algorithm: Nsga-ii. Evolutionary Computation, IEEE Transactions on, 6(2):182–197,
2002.

Judy Goldberg Dey, Margaret Johnson, MBA William Pajerowski, Myra Tanamor, and
MPP Alyson Ward. Home health study report. See http://www.cms.
gov/Medicare/Medicare-Fee-for-Service-Payment/HomeHealthPPS/downloads/HHPPS
LiteratureReview.pdf (last checked 18 October 2013), 2011.

Patrik Eveborn, Patrik Flisberg, and Mikael Rnnqvist. Laps carean operational system for
staff planning of home care. European Journal of Operational Research, 171(3):962–976,
2006.

Dominique Feillet, Thierry Garaix, Fabien Lehud, Olivier Pton, and Dominique Quadri. A
new consistent vehicle routing problem for the transportation of people with disabilities.
Networks, 63(3):211–224, 2014.

Maoguo Gong, Licheng Jiao, Haifeng Du, and Liefeng Bo. Multiobjective immune
algorithm with nondominated neighbor-based selection. Evolutionary Computation, 16
(2):225–255, 2008.

Chris Groër, Bruce Golden, and Edward Wasil. The consistent vehicle routing problem.
Manufacturing & Service Operations Management, 11(4):630–643, 2009.

Joshua D. Knowles, Lothar Thiele, and Eckart Zitzler. A tutorial on the performance
assessment of stochastic multiobjective optimizers. Report 214, Computer Engineering
and Networks Laboratory (TIK), ETH Zurich, Switzerland, 2006.

48

Attila A. Kovacs, Bruce L. Golden, Richard F. Hartl, and Sophie N. Parragh. Vehicle
routing problems in which consistency considerations are important: A survey.
Networks, 64(3):192–213, 2014a.

Attila A. Kovacs, Sophie N. Parragh, Richard F. Hartl, and Sophie N. Parragh. A
template-based adaptive large neighborhood search for the consistent vehicle routing
problem. Networks, 63(1):60–81, 2014b.

Attila A. Kovacs, Bruce L. Golden, Richard F. Hartl, and Sophie N. Parragh. The
generalized consistent vehicle routing problem. Transportation Science, 49(4):796–816,
2015a.

Attila A. Kovacs, Sophie N. Parragh, and Richard F. Hartl. The multi-objective
generalized consistent vehicle routing problem. European Journal of Operational
Research, 247(2):441–458, 2015b.

Zhixing Luo, Hu Qin, ChanHou Che, and Andrew Lim. On service consistency in
multi-period vehicle routing. European Journal of Operational Research, 243(3):731–744,
2015.

Thomas Macdonald, Karl Dorner, and Xavier Gandibleux. Metaheuristics for the
consistent nurse scheduling and routing problem, 2009.

Ashlea Bennett Milburn and Jessica Spicer. Multi-objective home health nurse routing
with remote monitoring devices. International Journal of Planning and Scheduling, 1(4):
242–263, 2013.

Stefan Nickel, Michael Schrder, and Jrg Steeg. Mid-term and short-term planning support
for home health care services. European Journal of Operational Research, 219(3):
574–587, 2012.

Zhang Qingfu and Li Hui. Moea/d: A multiobjective evolutionary algorithm based on
decomposition. Evolutionary Computation, IEEE Transactions on, 11(6):712–731, 2007.

Stefan Ropke and David Pisinger. An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transportation Science, 40(4):455–472,
2006.

Paul Shaw. Using Constraint Programming and Local Search Methods to Solve Vehicle
Routing Problems, volume 1520 of Lecture Notes in Computer Science, chapter 30, pages
417–431. Springer Berlin Heidelberg, 1998.

Karen Smilowitz, Maciek Nowak, and Tingting Jiang. Workforce management in periodic
delivery operations. Transportation Science, 47(2):214–230, 2013.

C. D. Tarantilis, F. Stavropoulou, and P. P. Repoussis. A template-based tabu search
algorithm for the consistent vehicle routing problem. Expert Systems with Applications,
39(4):4233–4239, 2012.

49

Fabien Tricoire. Multi-directional local search. Computers & Operations Research, 39(12):
3089–3101, 2012.

L. While, L. Bradstreet, and L. Barone. A fast way of calculating exact hypervolumes.
Evolutionary Computation, IEEE Transactions on, 16(1):86–95, 2012.

Christel A. Woodward, Julia Abelson, Sara Tedford, and Brian Hutchison. What is
important to continuity in home care?: Perspectives of key stakeholders. Social Science
and Medicine, 58(1):177–192, 2004.

Hongsheng Zhong, Randolph W. Hall, and Maged Dessouky. Territory planning and
vehicle dispatching with driver learning. Transportation Science, 41(1):74–89, 2007.

E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fonseca. Performance
assessment of multiobjective optimizers: an analysis and review. Evolutionary
Computation, IEEE Transactions on, 7(2):117–132, 2003.

Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of multiobjective
evolutionary algorithms: Empirical results. Evolutionary Computation, 8(2):173–195,
2000.

Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Improving the strength
pareto evolutionary algorithm for multiobjective optimization. CIMNE, Spain, 2002.

50

3. A Multi-objective Approach for the Consistent Periodic Vehicle Routing

Problem

3.1 Introduction

In a number of industries in which customers require multiple visits throughout a planning

period of multiple days, service consistency has been recognized as a key to improving

customer satisfaction and customer loyalty (Russell et al., 2012; Woodward et al., 2004).

Two types of service consistency, namely, driver consistency and time consistency, have

been studied extensively in recent years in the context of vehicle routing problems (VRPs)

spanning multiple periods. Driver consistency refers to using the fewest number of different

drivers to perform all of the visits required by a customer over a planning horizon and time

consistency refers to visiting a customer at roughly the same time on each day he/she

needs service. The Consistent Vehicle Routing Problem (ConVRP), proposed in Groër

et al. (2009), is a pioneering work in this research area. The ConVRP is inspired from

routing problems occurring in the small package delivery industry where a set of vehicle

routes must be designed to provide consistent services to customers requiring visits over a

planning horizon of multiple days. Specifically, each customer needing services on more

than one day (frequent customer) is required in ConVRP to be visited by the same driver

each time it requires service. Time consistency is achieved by limiting the difference

between the earliest and latest arrival time at each frequent customer not to exceed a

certain value. The objective is to minimize the total distance traveled by all vehicles on all

days across the planning horizon.

Another example service industry in which companies strive to provide consistent services

is the home healthcare industry. In this industry, home-bound patients are scheduled to be

visited on a regular basis by home healthcare workers, including home health aides, nurses,

social workers or rehabilitation therapists. Minimizing the number of different caregivers

assigned to a patient helps provide an opportunity to build up rapport between patients

51

and caregivers. With increased familiarity and reduced communication complexity,

caregivers will be able to make more accurate observations. It has been shown that

improved nurse consistency often results in better health outcomes, such as lower rates of

hospitalization and fewer visits to the emergency department (Russell et al., 2012). With

consistent service starting time, patients will be able to plan their daily routines more

readily without too many disturbances (Woodward et al., 2004).

Kovacs et al. (2014a) provide a comprehensive review on the importance of service

consistency in service industries. The existing studies on VRPs with service consistency

considerations have assumed the days on which a customer requires service over a planning

horizon is a problem input rather than a decision (Groër et al., 2009; Subramanyam and

Gounaris, 2016; Kovacs et al., 2015a,b; Lian et al., 2016). The travel cost increase is then

examined when service consistency is either enforced using hard constraints in a

single-objective optimization approach, or treated as objectives within a multi-objective

optimization framework. However, there exist various applications in which customers

require multiple visits over a planning horizon, where the days those visits occur must be

selected according to a set of allowable service patterns. A service pattern specifies the

days on which the visits required by a customer are allowed to occur. The selection of a

service pattern for each customer must be determined before vehicle routes can be

optimized on each day. This multi-period VRP with service pattern selection has been

named the Periodic Vehicle Routing Problem (PVRP) in the literature and various studies

have been conducted to address its solution methods and novel applications. These will be

reviewed in Section 3.2. To the best of our knowledge, no existing paper examines service

consistency in the context of PVRP. We intend to fill this gap with this paper.

It has been shown in the ConVRP literature that the service consistency objective is often

conflicting with the traditional travel cost objective due to variation in customer demands,

limited vehicle availability and constraints on vehicle capacity and route duration (Lian

et al., 2016). Minimizing travel cost with no consideration given to service consistency may

52

result in the assignment of multiple drivers to a particular customer and highly varying

vehicle arrival times. However, optimizing service consistency may result in a routing plan

with increased travel cost. In this paper, we use a multi-objective approach to study the

relationship between the objectives of minimizing total travel cost and maximizing service

consistency. There are three primary contributions in this paper. First, we study service

consistency for the first time in the literature in the context of PVRP. The Pareto frontier

is approximated using multi-objective algorithms to explicitly study the trade-offs between

travel cost and service consistency objectives, which can facilitate managerial decision

making. Second, various multi-objective algorithms are employed to solve the studied

problem. The performance of these algorithms is validated on benchmark instances taken

from the literature. Last, local search operators are designed to improve each of the three

objectives.

The remainder of this paper is organized as follows. Section 3.2 reviews related literature

on the PVRP and service consistency. Section 3.3 gives the mathematical model of the

multi-objective PVRP with service consistency. Section 3.4 discusses the various

multi-objective algorithms used in this paper to address the problem. The local search

operator designed for each objective is also presented. Computational experiments and

results are shown in Section 3.5. Section 3.6 concludes the paper.

3.2 Related literature

The PVRP is first discussed by Beltrami and Bodin (1974) in their seminal paper in which

they examine the vehicle routing problem for municipal waste collection in New York City.

The garbage is collected from large industrial sites which may require services either three

or six times a week and there exist two feasible service day combinations for customers

needing services three times a week. The service pattern must be selected first for each

customer before vehicle routes on each day can be determined. The objective is to

minimize both the number of vehicles used and the total travel cost. Two other earlier

53

papers related to PVRP appear in Russell and Igo (1979) and Christofides and Beasley

(1984). Russell and Igo (1979) consider an assignment routing problem in which each

customer has a predetermined number of days to be serviced in a week. The problem is to

assign each customer to distinct days of the week in order to minimize the total distance

traveled by all vehicles across the week. Christofides and Beasley (1984) give the first exact

formulation of the PVRP.

The PVRP has been applied in various service industries. Matos and Oliveira (2004)

develop an ant colony system to solve the PVRP modeled from a solid waste collection

system involving 8087 containers in Viseu, Portugal. Nuortio et al. (2006) study the

municipal solid waste collection problem in Eastern Finland and model it as a Stochastic

Periodic Vehicle Routing Problem with Time Windows and a limited number of vehicles

(SPVRPTW). A guided variable neighborhood thresholding metaheuristic is developed to

solve the real-life waste collection problem. PVRP is also used to model the problem of

collecting recyclable materials (Bommisetty et al., 1998), recycling paper containers

(Baptista et al., 2002), waste vegetable oil (Aksen et al., 2012), infectious waste (Shih and

Lin, 1999; Shih and Chang, 2001), animal waste (Coene et al., 2010), and others.

Banerjea-Brodeur et al. (1998) examine the daily linen delivery problem in the Jewish

General Hospital in Montreal and model it as a PVRP. A tabu search algorithm is used to

solve the problem. Jang et al. (2006) study a sales representatives routing problem for a

lottery company in Missouri. Thirty-nine representatives are scheduled to visit 5043 ticket

retailers periodically to check on product inventory, replenish supplies, collect returned

tickets, clean point-of-sale counters and inspect equipments. Maya et al. (2012) consider an

assignment routing problem in which disabled pupils are visited by assigned teaching

assistants at their own schools. Pupils with various level of disability have different

assistance frequency. A solution approach based on an auction algorithm and a variable

neighborhood search heuristic is proposed.

Many solution approaches have been proposed since the pioneering work of Beltrami and

54

Bodin (1974). Christofides and Beasley (1984) propose an exact formulation for PVRP but

solve it via a heuristic. Cordeau et al. (1997) propose a tabu search algorithm to solve the

PVRP. Other recent algorithms proposed for PVRP include variable neighborhood search

(Hemmelmayr et al., 2009), ant colony optimization (Matos and Oliveira, 2004) and a

genetic algorithm (Vidal et al., 2012). Campbell and Wilson (2014) provide an extensive

review on PVRP applications and solution methods.

Service consistency in vehicle routing is first formulated in the Consistent Vehicle Routing

Problem (ConVRP) (Groër et al., 2009). The authors consider a routing problem inspired

from the small package delivery industry where customers require one or more visits over a

planning horizon of multiple days. Consistent services are enforced during the construction

of vehicle routes using hard constraints and a record-to-record travel heuristic (ConRTR) is

proposed to obtain near optimal solutions quickly. The concept of template routes is used

in the heuristic to ensure a customer is visited by the same driver throughout the planning

horizon and also to encourage better time consistency. Template routes consider only

frequent customers that require service on more than one day. A route for day d can be

derived from the template route by removing all those customers who do not require

service on day d and inserting customers who require service on only day d. A tabu search

heuristic (TTS) and adaptive large neighborhood search algorithm (TALNS) are developed

in Tarantilis et al. (2012) and Kovacs et al. (2014b) to solve the ConVRP using the idea of

template routes.

In the Generalized Consistent Vehicle Routing Problem (GenConVRP) (Kovacs et al.,

2015a), strict driver consistency is relaxed by allowing multiple drivers to visit a customer

and time consistency is incorporated into the objective function using a weighted sum

approach. A large neighborhood search heuristic is proposed to solve this problem

efficiently. Luo et al. (2015) investigate a multi-period VRP in which the maximum

number of different drivers visiting a customer is limited and each customer is associated

with a time window. A three-stage solution approach is proposed to solve this problem.

55

The impact of imposing different levels of service consistency on operational cost is studied.

Braekers and Kovacs (2016) introduce driver consistency to the classical Dial-a-ride

Problem (DARP) by limiting the maximum number of different drivers assigned to service

a user across the planning horizon. The authors suggest two mathematical formulations

and a branch-and-cut solution method. A large neighborhood search heuristic is also

developed to obtain near-optimal solutions quickly. Computational results show that

enforcing only one driver visiting a customer may cause up to 27.98% increase in travel

cost, while the routing cost increase is no more than 5.80% when at least two drivers are

allowed per customer.

Subramanyam and Gounaris (2016) study the Consistent Traveling Salesman Problem

(ConTSP) over a multi-day planning horizon and consistent arrival times are imposed for

frequent customers. The authors examine different mixed-integer linear programming

formulations and develop a branch-and-cut framework with a new class of valid inequalities.

Research on the trade-offs between consistency objectives and other objectives appear in

Milburn and Spicer (2013), Kovacs et al. (2015b), and Lian et al. (2016). Milburn and

Spicer (2013) study a home healthcare nurse routing and scheduling problem with the

objectives of minimizing total travel cost, maximizing nurse consistency and balancing

nurse workload. A tabu search based multi-objective algorithm is developed to

approximate the Pareto frontier. Kovacs et al. (2015b) employ two ε-constraint-based exact

multi-objective solution approaches to analyze the trade-offs between the objective of

travel cost minimization and the objectives of driver and time consistency maximization. A

multi-directional large neighborhood search heuristic is also proposed to solve large

instances. It is shown that 70% better time consistency can be achieved for the tested

benchmark instances by at most 3.84% increase in total travel cost. Most recently, Lian

et al. (2016) investigate a multi-objective version of the ConVRP in which driver

consistency and time consistency are optimized as individual objectives together with the

minimization of travel cost. An improved multi-directional local search algorithm is

56

proposed for general multi-objective optimization problems. It is shown that

approximately 60% better driver consistency and 75% better time consistency can be

achieved at the cost of 5% increase in travel cost.

The review of the literature indicates that there is currently a gap with respect to

considering service consistency in the context of the periodic vehicle routing problem. We

aim to fill this gap by studying the trade-offs between the traditional objective of

minimizing total travel cost and the consistency objectives of maximizing driver

consistency and time consistency. By analyzing the Pareto frontier obtained using various

multi-objective algorithms, observations of the impact of improving service consistency on

travel cost in the PVRP will be made to facilitate managerial decision making.

3.3 Problem description

The multi-objective consistent periodic vehicle routing problem (MoConPVRP) studied in

this paper can be defined on a complete directed graph G = (N 0,A), where N 0 = N ∪ {0}

with N = {1, . . . , n} representing the set of customers and {0} indicating the depot, and

A = {(i, j)|i, j ∈ N 0, i 6= j}. Associated with each arc (i, j) ∈ A is a travel time tij and

triangle inequality is satisfied. A time horizon D = {d1, . . . , d|D|} is considered and there

are |K| homogeneous vehicles available at the depot. Each vehicle starts and ends its daily

operations at the depot, and can only service a limited number of customers due to the

restriction on its physical capacity Q and maximum route duration T . In this paper, the

terms driver and vehicle are used interchangeably.

Each customer i ∈ N is associated with a service frequency mi and has a predetermined set

of allowable service patterns Ci. A service pattern r ∈ Ci specifies the days on which the

customer i is allowed to receive service. A constant wdr is defined such that wdr = 1 if and

only if day d belongs to pattern r, and 0 otherwise. A non-negative demand qi and service

duration si are known in advance. The problem is to choose a single allowable service

pattern for each customer and determine a set of vehicle routes for each day of the

57

planning horizon that are feasible with respect to capacity and route duration constraints.

Each route must begin and end at the depot and each customer must be visited by exactly

one vehicle on each day that he/she needs service. The objectives include minimizing total

travel cost, minimizing the number of different drivers visiting a customer across the

planning horizon and minimizing the maximum arrival time differential at a customer

throughout the planning horizon.

The problem can be modeled using the following decision variables:

• xijkd: binary variable indicating whether arc (i, j) is traversed by vehicle k on day d,

(i, j) ∈ A, k ∈ K and d ∈ D

• yikd: binary variable indicating whether customer i is visited by vehicle k on day d,

i ∈ N 0, k ∈ K and d ∈ D

• zir: binary variable indicating whether service pattern r is chosen for customer i,

r ∈ Ci and i ∈ N

• aid: continuous variable describing the arrival time at customer i on day d, i ∈ N 0

and d ∈ D

The following auxiliary variables are defined to facilitate the modeling and linearization of

consistency objectives:

• uik: binary variable indicating whether customer i is visited by vehicle k over the

planning horizon, i ∈ N 0 and k ∈ K

• aei : continuous variable describing the earliest arrival time at customer i over the

planning horizon, i ∈ N 0

• ali: continuous variable describing the latest arrival time at customer i over the

planning horizon., i ∈ N 0

58

• umax: continuous variable representing the maximum number of different drivers

visiting a customer

• amax: continuous variable representing the maximum arrival time differential at a

customer

Combining aspects of the PVRP formulation in Cordeau et al. (1997) and the ConVRP

formulation in Groër et al. (2009), we formulate the MoConPVRP as follows:

min
∑
d∈D

∑
k∈K

∑
i∈N 0

∑
j∈N 0

tijxijkd, (3.1)

min umax, (3.2)

min amax, (3.3)

s.t.
∑
r∈Ci

zir = 1, ∀i ∈ N (3.4)

∑
j∈N 0

∑
k∈K

xijkd −
∑
r∈Ci

wdrzir = 0, ∀i ∈ N , d ∈ D (3.5)

∑
k∈K

yikd −
∑
r∈Ci

wdrzir = 0, ∀i ∈ N , d ∈ D (3.6)

∑
i∈N 0

xijkd =
∑
i∈N 0

xjikd = yjkd, ∀ j ∈ N 0, k ∈ K, d ∈ D (3.7)

∑
j∈N

x0jkd ≤ 1, ∀k ∈ K, d ∈ D (3.8)

y0kd = 1, ∀k ∈ K, d ∈ D (3.9)∑
i∈N

qiyikd ≤ Q, ∀k ∈ K, d ∈ D (3.10)

0 ≤ aid +
∑
r∈Ci

wdrzir(si + ti0) ≤ T
∑
r∈Ci

wdrzir, ∀ i ∈ N , d ∈ D (3.11)

a0d = 0, ∀d ∈ D (3.12)

aid + xijkd(si + tij)− T (1− xijkd) ≤ ajd, ∀ d ∈ D, k ∈ K, i ∈ N 0, j ∈ N (3.13)

aid + xijkd(si + tij) + T (1− xijkd) ≥ ajd, ∀ d ∈ D, k ∈ K, i ∈ N 0, j ∈ N (3.14)

59

uik ≥ yikd, ∀i ∈ N , k ∈ K, d ∈ D (3.15)∑
k∈K

uik ≤ umax, ∀i ∈ N (3.16)

ali ≥ aid ≥ aei , ∀i ∈ N , d ∈ D (3.17)

ali − aei ≤ amax, ∀i ∈ N (3.18)

xdijk ∈ {0, 1}, ∀ i ∈ N 0, j ∈ N 0, k ∈ K, d ∈ D (3.19)

yikd ∈ {0, 1}, ∀ i ∈ N , k ∈ K, d ∈ D (3.20)

zir ∈ {0, 1}, ∀i ∈ N , r ∈ Ci (3.21)

aid ≥ 0, ∀ i ∈ N 0, d ∈ D (3.22)

uik ≥ 0, umax ≥ 0, ∀ i ∈ N , k ∈ K (3.23)

aei , a
l
i ≥ 0, amax ≥ 0 ∀ i ∈ N (3.24)

Objective (3.1) minimizes the total travel distance of all vehicles on all days of the

planning horizon. Objective (3.2) minimizes the maximum number of different drivers that

visit any one customer. Objective (3.3) minimizes the maximum arrival time differential

experience by any one customer. Constraint set (3.4) ensures that each customer is

assigned one and only one allowable service pattern. Constraint set (3.5) ensures that the

days on which a customer receives visits are those days appearing in the service pattern

selected for the customer. Constraint set (3.6) ensures that each required visit to a

customer is performed by exactly one vehicle. Constraint set (3.7) makes sure that each

customer has only one predecessor and successor whenever it requires service. Constraint

sets (3.8) and (3.9) ensure that each vehicle departs the depot at most once per day. The

vehicle capacity and route duration constraints are given in constraint sets (3.10) and

(3.11), respectively. Constraint sets (3.12), (3.13) and (3.14) aim to compute vehicle arrival

times at customers and also serve to eliminate subtours. Constraint sets (3.15) and (3.16)

compute the maximal number of different drivers visiting a customer. Constraint sets

(3.17) and (3.18) compute the maximum arrival time differential over all customers. The

60

variable types are given in remaining constraint sets. Note that objectives (3.2)–(3.3),

constraint sets (3.6) and (3.15)–(3.18), and variables (3.19)–(3.24) are newly introduced in

this paper. The objective (3.1) and constraint sets (3.4), (3.5) and (3.7)–(3.14) are taken

from Cordeau et al. (1997) and Groër et al. (2009).

3.4 Solution approach

This section briefly describes the multi-objective algorithms employed in this paper to

approximate the Pareto frontier of the MoConPVRP. The solution generation method and

local search operators for the three objectives will be detailed in following sections. The

term solution used from this point forward refers to a routing plan consisting of a set of

vehicle routes for each day of the planning horizon such that each customer is assigned an

allowable service pattern, all customer demands are satisfied and vehicle capacity and

maximum route duration constraints are respected.

3.4.1 Multi-objective optimization algorithms

Using exact solution approaches to obtain the Pareto frontier of MoConPVRP is

time-consuming since these methods rely on iteratively solving single-objective

optimization problems. Given that PVRP reduces to classical VRP when the planning

horizon is set to one, PVRP is also NP-hard and therefore the time required to obtain the

Pareto frontier of MoConPVRP is prohibitive. In this paper, we use seven multi-objective

algorithms to approximate the Pareto frontier of MoConPVRP. The rationale is that

different algorithms have different strengths in approximating the true Pareto frontier and

a better approximation of the true Pareto frontier can be obtained by utilizing a set of

multi-objective algorithms together. Also, it provides us an opportunity to evaluate the

performance of various multi-objective algorithms for the MoConPVRP. The seven

multi-objective algorithms include the Multi-directional Local Search (MDLS), the

Improved Multi-directional Local Search (IMDLS), the Multi-objective Evolutionary

61

Algorithm based on Decomposition (MOEA/D), the Nondominated Neighbor Immune

Algorithm (NNIA), the Strength Pareto Evolutionary Algorithm 2 (SPEA2), the

Nondominated Sorting Genetic Algorithm II (NSGAII) and the Nondominated Sorting

Genetic Algorithm III (NSGAIII) (Tricoire, 2012; Lian et al., 2016; Qingfu and Hui, 2007;

Gong et al., 2008; Zitzler et al., 2002; Deb et al., 2002; Deb and Jain, 2014).

MDLS is an algorithmic solution framework for general multi-objective optimization

problems (Tricoire, 2012). It is inspired by the concept of Pareto dominance. Starting from

any solution x in the solution space, a neighboring solution x′ is desirable if it is not

dominated by x, which means that x′ is either dominating x or non-comparable with x.

The concept of Pareto dominance simply requires x′ be better than x on at least one

objective in order for x′ to dominate x. Therefore, it is enough to apply local search

operators to each objective individually to find such a neighbor solution x′. MDLS starts

with an initial set of non-dominated solutions F and goes through three steps in each

subsequent iteration: (1) selecting a solution, (2) applying local search on this solution for

each objective to obtain a new solution corresponding to each objective and (3) updating

the set of non-dominated solutions F using the newly generated solutions. Lian et al.

(2016) introduce three new features to the original MDLS and propose the IMDLS.

Specifically, in IMDLS, the size of F is bounded by a fixed number and all the

non-dominated solutions in F are selected for local search in each iteration. If the size of F

exceeds the input bound, a truncation procedure is applied on F using a crowding distance

based selection rule.

MOEA/D, proposed by Qingfu and Hui (2007), utilizes a decomposition strategy to

transform a multi-objective optimization problem into a number of scalar optimization

problems and optimize them simultaneously. In MOEA/D, an initial population of

solutions are first generated and each of them is assigned to a predefined weight vector. All

the neighbors of a solution in the population are then identified based on their

corresponding weight vectors. In each iteration, each solution x in the current population is

62

examined and a new solution y is obtained using two of x’s neighboring solutions. The new

solution y is then improved using local search operators to get y′ which is used to update

all the neighboring solutions of x based on their corresponding weight vectors. The authors

propose three decomposition approaches, including the weighted sum approach, the

Tchebycheff approach and the penalty-based boundary intersection approach. Each of the

decomposition strategies is used to convert the various objectives to a scalar value and the

corresponding MOEA/D variants are named MOEA/D-WS, MOEA/D-TCH and

MOEA/D-PBI, respectively.

NNIA is a multi-objective optimization algorithm inspired from the immune system’s

ability to adapt its B-cells to new types of antigens (Gong et al., 2008). The term antibody

is used to represent a solution. The algorithm maintains a set of non-dominated antibodies,

namely, the dominant population D. In each iteration t, a fixed number of antibodies are

selected from the dominant population Dt to create an active population At. Each active

antibody is then cloned a number of times based on its crowding distance value. The

resulting clone population Ct is subject to recombination and hypermutation, and C ′t

denotes the new clone population. The C ′t is then combined with Dt to identify the new

dominant population Dt+1.

SPEA2 is proposed by Zitzler et al. (2002) to improve the original SPEA. It maintains a

solution population P and an archive population P̄ throughout its search process. SPEA2

starts with generating an initial population P0 and empty archive P̄0, and in each following

iteration t, all non-dominated solutions are first identified from Pt and P̄t and saved in

P̄t+1. Binary tournament selection is then used to fill the mating pool based on P̄t+1. The

new population in iteration t+ 1, Pt+1, is obtained by applying recombination and

mutation operators to the mating pool. This process repeats until a maximum number of

iterations are reached.

NSGAII is proposed by Deb et al. (2002) and starts with creating a random parent

population P0 of size N . An offspring population Q0 of the same size is generated by

63

applying binary tournament selection, recombination and mutation operators on P0. In

each subsequent iteration t, Pt and Qt are first combined to form Rt which is sorted into

different dominance levels (F1, F2, . . .). The new population Pt+1 is then generated by

selecting these levels one at a time until the size of Pt+1 reaches N . If |Pt+1| exceeds N by

including a dominance level Fl, only those solutions in Fl with best crowding distance

values are accepted. The new offspring population Qt+1 is generated using

crowded-comparison based binary tournament selection, recombination and mutation on

solutions from Pt+1. NSGAIII (Deb and Jain, 2014) follows the same framework with

NSGAII. The difference is how solutions from dominance level Fl are selected when

creating Pt+1. Instead of using a crowding distance based selection operator as in NSGAII,

NSGAIII employs a more complex rule to identify the solutions in Fl to enter Pt+1. Let

St =
∑l

i=1 Fi, where the objective values of solutions in St are first normalized. A reference

set Zr is created and each solution s ∈ S is associated with a reference point in Zr. A

niche count ρj is computed for each reference point j ∈ Zr. Finally, solutions to enter Pt+1

are determined based on ρ.

3.4.2 Starting solution generation

All of the multi-objective algorithms used in this paper require a starting set of randomly

generated solutions for the MoConPVRP. The solution generation process starts by

assigning an allowable service pattern to each customer sequentially and the order in which

customers are considered for assignment is randomized. For a customer being considered

for service pattern assignment, the service pattern that will balance the total demand on

each day is chosen. To this end, for a service pattern, the average daily total demand

across the planning horizon is first noted if this service pattern is chosen for this customer.

Then the total daily demand difference from this average demand is computed. The service

pattern that results in the smallest demand difference will be chosen for this customer.

After the service pattern for each customer is determined, the resulting vehicle routing

64

problem is solved on each day using a cluster-first route-second approach. On each day of

the planning horizon, the Sweep heuristic (Gillett and Leland, 1974) for VRP is used to

order the customers with respect to the angles they make with the horizontal line and the

depot. Then, the Next Fit bin packing heuristic (Coffman et al., 1984) is used with this

ordering to assign customers to vehicles. A new vehicle will be used if the vehicle capacity

constraint is violated. All of the remaining customers will be assigned to the last vehicle if

no more vehicles are available. In this way, all but the last vehicle will satisfy the vehicle

capacity constraint. The actual route operated by a vehicle is determined using Farthest

Insertion (Rosenkrantz et al., 1974). To initialize the heuristic, the convex hull for all

customers assigned to this vehicle and the depot serves as the initial route. Note that the

resulting vehicle route may violate the maximum route duration constraint.

With any feasible solution, its total travel cost can be computed by summing up the

distance traveled by all vehicles across the planning horizon. The driver consistency

objective value can be determined by identifying the maximum number of different drivers

visiting a customer across the planning horizon. The time consistency value can be

computed by determining the maximum arrival time differential at a customer across the

planning horizon. Objective values of infeasible solutions will be penalized using formula

(3.25) in Section 3.4.3.

3.4.3 Local search for the travel cost objective

This section describes a tabu search heuristic used in this paper to minimize the total

travel cost. Algorithm 3 shows the framework of the heuristic. Infeasible solutions are

allowed during the search process and the vehicle capacity and route duration constraint

violations are penalized using coefficients γ and δ, respectively. Specifically, the penalized

travel distance of a vehicle route k on day d is computed as

f̄TD(k, d) = fTD(k, d) + γ ∗max(Qk,d −Q, 0) + δ ∗max(Tk,d − T, 0), (3.25)

65

where fTD(k, d) is the travel distance of the route k on day d, and Qk,d and Tk,d are the

total load and travel time of vehicle k on day d, respectively. The penalty coefficient γ is

applied to any vehicle whose total load exceeds its capacity (Qk,d > Q). Similarly, the

penalty coefficient δ is applied to any vehicle whose total travel time exceeds its limit

(Tk,d > T).

Algorithm 3 Tabu search heuristic for minimizing total travel cost

1: Input: initial solution π0

2: initialize coefficients γ, δ and λ
3: initialize tabu list and frequency list and let iteration ρ = 0
4: let current solution πρ = π0 and let π∗ denote the best solution, π∗ = πρ
5: apply local search operator on vehicle routes on each day separately
6: repeat
7: construct a list of candidate neighboring solutions of πρ
8: choose the best admissible solution π′ from the list
9: let new current solution πρ = π′

10: update π∗ if f̄TD(πρ) < f̄TD(π∗)
11: update tabu list and frequency list
12: update penalty coefficients
13: apply local search operator on daily vehicle routes every ξ iterations
14: let ρ = ρ+ 1
15: until stopping criteria is met

The proposed heuristic starts with a randomly generated solution π0 and it is evaluated

using equation (3.25) to get its total travel cost f̄TD(π0). In each subsequent iteration ρ, a

list of candidate solutions can be obtained from the current solution πρ by selecting a single

customer in πρ and changing its current service pattern to another randomly selected

allowable service pattern. Thus the total number of candidate solutions generated in each

iteration equals the total number of customers having more than one allowable service

pattern. To change the service pattern of a customer, its old and new service patterns are

compared on each day d sequentially: if the customer requires service on day d only in the

old service pattern, the visit to this customer is removed from the solution; if the customer

requires service on day d only in the new service pattern, the visit to this customer is

inserted to the solution with least penalized travel distance increase; no change is made for

66

the days on which the customer requires visits in both the old and new service patterns.

A tabu list is initialized such that each allowable service pattern of a customer is assigned a

tabu status which is an integer value initialized as 0 at the beginning of the algorithm. In

iteration ρ, to decide whether a candidate solution π′ should be accepted as the new

current solution πρ+1, the only customer c with changed service pattern in π′ compared to

πρ is identified and the tabu status of the service pattern for c in π′ is checked. If the tabu

status value is smaller than the current iteration number, the candidate solution π′ is

accepted as the new current solution πρ+1; otherwise, the π′ is still accepted as the πρ+1 if

the aspiration criterion is satisfied, that is, the π′ is better than the best solution π∗

encountered since the beginning of the algorithm. If π′ is accepted as πρ+1, the tabu status

of the service pattern of c used in πρ is updated as the summation of the current iteration

number and the tabu length ζ. In this way, the old service pattern is forbidden to be

selected for customer c for the next ζ number of iterations unless aspiration criteria is met.

A frequency list is also created to record the number of times an allowable service pattern

is chosen for a customer throughout the search process. This is to decrease the likelihood

that a candidate solution with worse objective value than the incumbent will be accepted if

the service pattern in the candidate solution has been frequently used. Every time a

candidate solution π′ is accepted as the new current solution πρ+1, the frequency µ ∈ N of

the new service pattern r of the aforementioned customer c in π′ is increased by 1. This

service pattern selection frequency is used to penalize a candidate solution π′ whose

penalized objective value is bigger than that of the current solution πρ (Cordeau et al.,

1997). In other words, if f̄TD(π′) > f̄TD(πρ), the frequency-based penalized objective value

is g(π′) = f̄TD(π′) + λf̄TD(π′)
√
nµ, where λ is the penalty coefficient and n the total

number of customers; otherwise, g(π′) = f̄TD(π′) if f̄TD(π′) ≤ f̄TD(πρ). In each iteration,

all the candidate solutions are sorted in non-decreasing order of g(π′) and they are then

checked sequentially to decide whether to become the new current solution πρ+1.

The penalty coefficients γ and δ are updated at each iteration based on the feasibility of

67

the current solution. Specifically, after a new current solution πρ is obtained, its feasibility

is checked regarding vehicle capacity and maximum route duration constraints. If πρ is

feasible, the penalty coefficients γ and δ are updated by multiplying by factor σ; otherwise,

they are updated by adding a factor τ . The parameter σ is a relatively small number in

order to decrease the penalty applied on infeasible routes, while the τ represents a small

increment to the penalty coefficients.

In Algorithm 3, a local search operator is applied on daily vehicle routes periodically. It is

a tabu search heuristic that aims to optimize the vehicle routes on any given day.

Algorithm 4 shows the framework of the tabu search heuristic. In this heuristic, a solution

refers to the set of vehicle routes on day d. In each iteration ρ, a candidate solution π′ is

created from the current solution πρ by removing a customer c from its current vehicle and

inserting it into another vehicle. The total number of candidate solutions generated in each

iteration equals the product of the total number of customers requiring service on day d

and the total number of vehicles minus 1.

A tabu status value is assigned to each customer-vehicle combination such that a customer

c is forbidden to be inserted into a vehicle k for ζd iterations if c is removed from vehicle k.

All tabu status values are initialized to 0 at the beginning of the algorithm. The same

candidate acceptance rule and aspiration criterion as in Algorithm 3 are used here.

Similarly, a frequency list is created to record the number of times a customer c is inserted

into a vehicle k throughout the search process. The same frequency update rule as in

Algorithm 3 is used here. Also, candidate solutions with worse penalized objective values

are further penalized using the frequency-based approach explained previously in this

section. Note that in Algorithm 4, the penalty coefficients γd and δd are set as constant

values.

68

Algorithm 4 Tabu search heuristic for minimizing total travel cost on day d

1: Input: initial solution πd0
2: initialize coefficients γd, δd and λd
3: initialize tabu list and frequency list and let iteration ρ = 0
4: let current solution πdρ = πd0 and let π∗d denote the best solution, π∗d = πdρ
5: repeat
6: construct a list of candidate neighboring solutions of πdρ
7: choose the best admissible solution π′d from the list
8: let new current solution πdρ = π′d
9: update π∗d if f̄TD(πdρ) < f̄TD(π∗d)
10: update tabu list and frequency list
11: let ρ = ρ+ 1
12: until stopping criteria is met

3.4.4 Local search for the consistency objectives

For the time consistency objective, the same heuristic proposed in Lian et al. (2016) to

achieve time consistency in the context of the MoConVRP is used. The heuristic is not

adapted to explicitly address the service pattern decisions present in the MoConPVRP.

This is due to the difficulty of identifying an alternative allowable service pattern that can

improve the time consistency objective. The solution techniques tailored to addressing this

challenge are saved for future work.

The local search operators used to optimize driver consistency do explicitly treat service

pattern selection decisions. These operators are described in this section. This heuristic for

improving driver consistency will first randomly choose a customer with the worst driver

consistency objective value and all the required visits to this customer will be removed

from the solution. If there is only one service pattern available for this customer, all the

vehicle routes on all the days on which it requires service will be checked to determine

whether this customer can be feasibly inserted without violating vehicle capacity and route

duration constraints. Then all available vehicles will be checked sequentially to compute

the maximum number of days they can service this customer and the total travel cost

increase that would result. The vehicle v∗ that can visit this customer most frequently with

least travel cost increase will be selected to visit this customer whenever it is feasible to do

69

so. For the days on which the customer visit requests are not satisfied, all of the vehicles

are checked again using a similar procedure and the best vehicle is selected. This process

repeats until all of the required visits to this customer are satisfied.

If there are multiple service patterns available for this customer, all of the vehicle routes on

all days across the planning horizon will be checked to determine whether this customer

can be feasibly inserted without violating the vehicle capacity and route duration

constraints. For each available service pattern, the algorithm determines the minimum

number of different drivers that can satisfy all of the service requirements of this customer

and the total travel cost increase associated with this service pattern. This determination

process follows the same steps as in the previous one service pattern scenario. Then the

service pattern with the best driver consistency objective value for this customer will be

selected. The above removal and reinsertion process will be repeated until no improvement

in the driver consistency objective can be made.

3.5 Computational experiments and analysis

In this section, the benchmark instances used in this paper to evaluate the performance of

various multi-objective algorithms for solving MoConPVRP are first introduced. Next, the

three metrics used to compare the performance of the various algorithms are described.

Finally, the results of the computational study are presented and a trade-off analysis

between the objectives of cost minimization and consistency maximization is provided.

3.5.1 Benchmark instances and experiment design

A total of 26 instances are taken from the literature (Cordeau et al., 1997) to validate the

performance of the various multi-objective algorithms and to study the trade-offs between

the objectives of cost minimization and consistency maximization. There exist some

instances in the literature in which each customer requires service only once and they are

excluded from the computational study in this paper. Table 3.1 summarizes the

70

Table 3.1: Summary of PVRP instances

Name |N | |D| |K| Name |N | |D| |K|
p02 50 5 3 p20 184 4 4
p05 75 5 6 p21 60 4 4
p08 100 5 5 p22 114 4 6
p10 100 5 4 p23 168 4 6
p11 139 5 4 p24 51 6 3
p12 163 5 3 p25 51 6 3
p13 417 7 9 p26 51 6 3
p14 20 4 2 p27 102 6 6
p15 38 4 2 p28 102 6 6
p16 56 4 2 p29 102 6 6
p17 40 4 4 p30 153 6 9
p18 76 4 4 p31 153 6 9
p19 112 4 4 p32 153 6 9

characteristics of these instances. The total number of customers, the total number of days

in the planning horizon and the number of vehicles available are given for each instance.

All of the multi-objective algorithms considered in this paper are implemented following

their descriptions in the literature. The same local search operators described in the

previous sections are used whenever possible. For algorithms other than MDLS and

IMDLS, a recombination operator is required to generate offspring solution from two

parent solutions. The crossover operator works as follows: an empty offspring solution πo is

first created and a random recombination point pcx is selected from U(1, n). Customers

with identity less than pcx will use the same service pattern of corresponding customers in

parent solution πm, and other customers will use the same service pattern of their

counterparts in parent solution πf . The daily vehicle routes of the offspring solution are

determined using the same procedure given in Section 3.4.2.

The parameter values of the multi-objective algorithms are set the same as those in Lian

et al. (2016). For MDLS and IMDLS, the number of initial solutions is set to 100 and the

Fmax in IMDLS is set to 100. For MOEA/D, we use the weight vectors generated by

Qingfu and Hui (2007) for three-objective optimization problems. The population size is

determined by the number of weight vectors and is therefore set to 351. For NNIA, the

71

sizes of the dominant population, active population, and clone population are set to 100,

20, and 100, respectively. For SPEA2, the population size and archive size are both set to

100. For NSAGII, the population size is set to 100. For NSGAIII, the population size is

determined by the size of the user-defined reference point set. In this paper, we use the

reference point set created by Deb and Jain (2014) for three-objective optimization

problems. It contains 91 reference points and the NSGAIII population size is set to 91.

The parameter values of local search operators are set based on experience. For the tabu

search heuristic, both γ and δ are set to 500.0 at the beginning of the algorithm. The

penalty updating factors σ and τ are set to 0.10 and 1, respectively. The frequency-based

penalty coefficient λ is set to 0.015 and the local search on daily routes is applied every

ξ = 50 iterations. In addition, the γd and δd values are set to corresponding γ and δ values

when the local search operator on daily routes is invoked. The parameter λd is set to 0.015.

All algorithms are implemented in C++ and five replications are solved for each instances

with a time limit of one hour.

3.5.2 Algorithm performance comparison

Hypervolume (IH), coverage (IC) and unary multiplicative epsilon indicator (Iε) metrics

are used in this paper to compare the performance of the various multi-objective

algorithms for MoConPVRP. Their definitions are detailed in Lian et al. (2016). To

perform the comparisons, the superset is constructed for each instance-algorithm pair by

taking the union of the non-dominated solution sets from all five replications.

Table 3.2 shows the hypervolume comparison results. The instance number is given in the

first column. Each of the next nine columns represents one of the comparison

multi-objective algorithms implemented in this paper. Each entry in the table gives the

hypervolume value computed based on the superset for the instance number and algorithm

indicated by the row and column labels. The last row provides the average hypervolume

value across all 26 instances for each of the nine algorithms.

72

Table 3.2: Hypervolume comparison

Instance MDLS IMDLS
MOEA/D

NNIA SPEA2 NSGAII NSGAIII
WS TCH PBI

2 0.8575 0.9035 1.0114 1.0317 1.0388 1.0536 1.0071 1.1466 1.0721
5 0.9500 1.0352 0.9073 0.8984 0.9753 1.0372 1.0064 0.9963 1.0133
8 0.8626 0.9505 0.9254 0.9387 0.9428 1.0132 0.9546 1.0681 1.1569
10 0.9463 0.9489 0.9644 0.9863 0.9564 1.1412 1.0762 1.1051 1.0955
11 0.9745 0.9489 0.8705 0.8439 0.8702 1.0424 1.0340 0.9580 0.9925
12 1.0871 1.1178 0.9856 0.9558 0.9779 1.1516 1.1008 1.1452 1.0829
13 0.7321 0.4001 0.6530 0.7069 0.6501 0.7700 0.6307 0.6456 0.5525
14 1.2066 1.2063 1.2187 1.2190 1.2194 1.2209 1.2194 1.2199 1.2194
15 1.2162 1.2160 1.2109 1.2110 1.2064 1.2177 1.2125 1.2132 1.2132
16 1.2279 1.2220 1.1942 1.2049 1.1847 1.2158 1.1991 1.2136 1.1991
17 1.1917 1.1458 1.1587 1.0719 1.0405 1.1962 1.2035 1.2195 1.2071
18 1.1340 1.1209 1.0579 1.0416 1.1220 1.1120 1.0672 1.1182 1.1404
19 1.1379 1.2074 1.1318 1.1221 1.1716 1.1508 1.1519 1.1958 1.2190
20 1.0217 1.1929 0.9568 1.0922 0.9088 1.1094 1.0553 1.1367 1.0733
21 0.9198 0.9409 0.7840 0.8240 0.7633 0.8178 0.8582 0.8959 0.8969
22 1.0009 1.0571 1.0215 0.9953 0.9895 1.1168 1.1087 1.1590 1.1479
23 0.7972 0.7012 0.9336 0.9659 0.9055 1.0585 0.9694 1.1182 1.0452
24 0.9312 0.9471 0.9546 0.9371 0.9199 1.1009 1.0137 1.0222 1.0983
25 0.8988 0.8846 0.9363 0.9162 0.9765 0.9866 0.9892 1.0064 0.9544
26 0.7973 0.8487 0.8887 0.8390 0.9094 0.9288 1.0425 0.9528 1.0095
27 0.9306 0.9080 0.9434 0.8603 0.8657 0.9443 0.9707 0.9382 0.9177
28 0.9564 0.9541 0.8876 0.8859 0.9189 1.0027 1.0008 0.9846 0.9962
29 0.9964 0.9325 0.8995 0.8928 0.9411 0.9838 1.0071 0.9911 1.0001
30 0.7227 0.6514 0.7936 0.7472 0.7232 0.8387 0.8264 0.8284 0.9142
31 0.7511 0.7893 0.8067 0.7676 0.7504 0.8245 0.8413 0.8244 0.8229
32 0.8002 0.7553 0.7307 0.7928 0.7328 0.7998 0.8472 0.8842 0.7694
Average 0.9634 0.9610 0.9549 0.9519 0.9485 1.0321 1.0152 1.0380 1.0312

It can be seen from Table 3.2 that according to the hypervolume metric, NSGAII performs

the best among all comparison algorithms. NSGAIII achieves the second best average

hypervolume value across all instances. MDLS and IMDLS perform similarly, and all three

versions of MOEA/D perform the worst.

Table 3.3 shows the coverage comparison of all considered multi-objective algorithms. Each

entry in the table indicates the percentage of solutions produced by the algorithm

corresponding to the column label that are dominated by at least one solution generated by

the algorithm corresponding to the row label. The second entry in the first row indicates

that 45.13% of the nondominated solutions generated by IMDLS are dominated by at least

73

Table 3.3: Coverage comparison

MDLS IMDLS
MOEA/D

NNIA SPEA2 NSGAII NSGAIII Average
WS TCH PBI

MDLS - 45.13% 52.99% 55.14% 53.12% 33.59% 37.17% 33.84% 33.93% 43.11%
IMDLS 37.87% - 58.00% 59.75% 57.89% 33.67% 39.58% 38.78% 39.25% 45.60%
MOEA/D-WT 25.16% 28.40% - 45.69% 47.17% 9.98% 12.55% 11.89% 14.15% 24.37%
MOEA/D-TCH 24.95% 26.68% 37.88% - 43.29% 9.34% 12.22% 13.11% 9.33% 22.10%
MOEA/D-PBI 23.54% 27.80% 35.95% 39.18% - 9.72% 12.75% 12.64% 13.98% 21.94%
NNIA 46.20% 54.03% 75.26% 79.90% 72.61% - 51.66% 43.35% 49.36% 59.04%
SPEA 40.94% 48.81% 71.23% 77.85% 70.55% 35.14% - 32.81% 36.66% 51.75%
NSGAII 48.09% 52.28% 70.28% 76.72% 68.93% 39.37% 45.06% - 41.54% 55.29%
NSGAIII 44.43% 48.20% 70.42% 77.88% 72.16% 39.69% 42.01% 39.73% - 54.32%

one solution in the nondominated solution set produced by MDLS. On the other hand, (as

indicated by the first entry in the second row) 37.87% of the solutions obtained by MDLS

are dominated by at least one of the solutions in the set generated by IMDLS. It can be

seen from the table that NNIA and NSGAII perform the best and second best among all of

the comparison algorithms according to the coverage metric. MDLS and IMDLS perform

similarly with IMDLS working slightly better. MOEA/D generally performs the worst

among all algorithms.

Table 3.4 shows the unary multiplicative epsilon indicator comparisons of all

multi-objective algorithms implemented in this paper. The first column gives the instance

number and the next nine columns correspond to one of the comparison algorithms. Each

entry in the table gives the Iε value computed based on the superset for the instance

number and algorithm indicated by the row and column labels. The last row gives the

average Iε value across all 26 instances for each of the comparison algorithms. It can be

seen from the table that MDLS outperforms all other multi-objective algorithms on

average. IMDLS, NSGAII and NSGAIII have similar performance with respect to this

metric.

It can be seen from the above comparisons that NNIA and NSGAII perform similarly

among all comparison algorithms with respect to the hypervolume and coverage metrics.

On the other hand, they are outperformed by MDLS with respect to the multiplicative

epsilon indicator. In the next section, we conduct our trade-off analysis based on the super

74

Table 3.4: Unary multiplicative epsilon comparison

Instance MDLS IMDLS
MOEA/D

NNIA SPEA2 NSGAII NSGAIII
WS TCH PBI

2 22.32 21.00 21.00 14.54 14.89 15.89 21.00 1.33 14.87
5 6.00 2.31 66.48 96.99 103.82 19.28 16.73 13.69 18.43
8 52.75 43.40 85.10 88.09 83.40 32.33 40.25 17.87 5.92
10 19.85 24.79 138.23 126.16 139.00 8.16 5.00 5.63 4.49
11 16.51 24.86 57.35 63.98 61.28 5.33 11.90 22.51 18.65
12 8.92 3.77 111.11 133.78 115.25 7.73 10.91 9.17 10.55
13 58.17 11.19 301.74 385.18 331.44 165.63 180.71 190.42 166.02
14 4.05 4.05 2.51 2.51 2.51 2.51 1.61 2.51 1.61
15 5.37 5.37 5.37 5.37 8.29 1.54 5.37 5.37 5.37
16 1.00 4.52 29.13 32.05 33.75 13.72 22.60 11.00 15.07
17 2.90 11.00 57.39 45.54 50.64 4.48 2.90 1.63 2.90
18 5.58 4.75 55.99 56.42 39.87 25.37 43.38 14.05 12.62
19 51.69 33.98 55.58 89.81 56.21 32.51 34.16 10.26 13.80
20 11.00 4.58 134.02 135.97 324.12 135.66 155.59 30.54 129.52
21 1.91 30.36 68.83 64.57 72.54 28.50 29.42 28.36 28.50
22 30.69 29.09 242.58 210.53 213.93 26.52 28.39 11.10 3.18
23 74.29 62.59 520.68 473.73 496.78 188.83 71.12 140.49 160.22
24 50.28 42.74 190.49 167.37 190.49 1.91 18.33 24.21 5.88
25 19.68 4.93 5.23 5.23 46.77 3.29 4.92 4.92 4.42
26 20.82 7.26 1.98 4.30 5.51 3.29 3.74 3.29 3.29
27 89.61 158.47 846.10 785.30 700.40 40.60 47.60 93.10 158.92
28 18.35 14.09 569.60 677.40 383.20 46.10 42.00 56.80 48.30
29 42.70 73.51 791.20 1243.40 989.50 88.74 73.51 82.73 69.25
30 504.20 959.13 5182.80 4678.00 4809.10 623.32 457.10 30.70 134.44
31 217.46 147.20 3349.60 3930.31 3630.10 322.30 313.20 219.50 196.20
32 177.00 11.00 5127.19 4053.29 6188.19 610.00 458.20 498.20 443.50
average 58.20 66.92 692.97 675.76 734.27 94.37 80.76 58.82 64.46

set obtained by taking the union of all the nondominated solutions generated by all

algorithms in all replications.

3.5.3 Trade-off analysis

In this section, we conduct the trade-off analysis using the super set R of all

non-dominated solutions obtained by all multi-objective algorithms in all replications.

There usually exist many nondominated solutions in R and it is desirable to identify the

best compromise solution to facilitate managerial decision making. Specifically, the level

diagram technique proposed by Blasco et al. (2008) is employed here to identify four

special solutions in the super set of each instance.

Let sBC denote the best compromise solution in the super set R. Furthermore, let sTD,

75

Table 3.5: Four solutions

Inst.
sBC sTD sDC sTC

fTD fDC fTC fTD fDC fTC fTD fDC fTC fTD fDC fTC
2 1493.69 1 47.0687 1322.87 3 81.1521 1493.69 1 47.0687 1623.52 1 28.3847
5 2045.28 3 49.2837 2039.84 4 83.0219 2653.06 1 72.32 2435.15 3 48.9537
8 2188.37 3 69.5397 2042.1 4 102.664 2410.21 1 67.4573 2523.02 1 40.5877
10 1948.12 1 62.001 1610.73 3 89.1024 1948.12 1 62.001 2068.86 2 44.0197
11 952.9 1 29.1384 781.15 3 51.3433 952.9 1 29.1384 1234.75 2 11.7552
12 1285.21 1 14.9957 1204.31 3 56.887 1285.21 1 14.9957 1641.23 2 4.0544
13 4304.54 1 46.9806 3646.68 2 48.7686 4304.54 1 46.9806 4587.07 2 29.124
14 971.323 1 2.9154 954.807 1 5.3523 971.323 1 2.9154 1517.37 1 2.3054
15 1862.63 1 15.9017 1862.63 1 15.9017 1862.63 1 15.9017 1879.15 1 12.9863
16 2875.24 1 23.4297 2875.24 1 23.4297 2875.24 1 23.4297 2875.24 1 23.4297
17 1637.53 3 6.3969 1597.75 2 94.3632 1714.91 1 7.5118 1637.53 3 6.3969
18 3248.1 2 181.055 3131.09 3 226.375 3576.36 1 182.666 4398.1 2 115.811
19 4893.14 1 282.699 4834.34 3 386.351 4893.14 1 282.699 5739.09 2 244.103
20 8376.21 1 521.491 8367.4 3 524.989 8376.21 1 521.491 12152.4 2 360.734
21 2720.53 1 74.4719 2172.29 4 133.351 2720.53 1 74.4719 3442.78 3 46.1994
22 4353.74 2 188.086 4195.74 4 181.828 4943.28 1 181.316 5380.42 2 162.707
23 6739.68 2 311.363 6441.23 3 307.049 8594.84 1 279.107 8807.6 2 223.713
24 3865.41 2 117.758 3687.46 2 175.492 4285.86 1 122.157 4633.7 1 61.5742
25 4138.17 2 84.1048 3780.56 3 174.349 4566.07 1 125.335 4342.77 3 55.4473
26 4224.89 2 61.1 3795.32 2 122.641 4178.84 1 117.791 3960.5 3 55.4483
27 22307.8 4 805.372 21965.9 5 1050.67 29579.6 1 824.496 30357.9 2 613.267
28 22480 4 608.573 22329.7 6 992.933 29878.5 1 888.111 22453.6 5 593.097
29 22742.8 4 608.277 22605.4 6 985.627 29491.2 1 1005.43 33118.3 2 520.531
30 79778.2 5 2131.04 74997.2 5 2921.05 105167 1 2463.56 116977 2 1810
31 103157 2 2444.25 77230.5 6 3345.39 103248 1 3148.27 78362.4 6 1812.38
32 103375 2 2197.44 78540.3 6 2903.9 109361 1 3397.3 82183.7 5 1794.45

sDC and sTC denote the solutions with best travel distance, driver consistency, and time

consistency value, respectively. Table 3.5 shows these four solutions for each of the 26

instances. Take the best compromise solution sBC and the best travel distance solution sTD

for instance 2 in Table 3.5 as an example. The travel distance of sTD for this instance is

1322.87, with driver and time consistency values being 3 and 81.1521, respectively. The

travel distance of the best compromise solution sBC is 1493.69, approximately 12.91%

higher than the travel distance in the best travel distance solution. However, the increase

in travel distance results in better consistency values, with driver and time consistencies of

1 (a 66.67% decrease) and 47.0687 (a 41.99% decrease), respectively.

Table 3.6 summarizes the trade-offs between the objectives of travel cost minimization and

service consistency maximization. Specifically, three pairs of solutions are compared: the

best travel distance solution compared with the best compromise solution, the best travel

76

fTD fDC fTC
sTD vs. sBC 8.88% Ú 34.42% Ø 30.96% Ø

sTD vs. sDC 18.81% Ú 61.28% Ø 22.12% Ø

sTD vs. sTC 26.79% Ú 24.81 % Ø 48.26% Ø

Table 3.6: Comparisons of four solutions

distance compared with the best driver consistency solution, and the best travel distance

compared with the best time consistency solution. The first row indicates that the best

compromise solution increases travel distance by 8.88% on average and decreases driver

and time consistency by 34.42% and 30.96% on average, respectively, when compared with

the solution obtained by optimizing travel distance alone. That is, an approximate 34%

improvement in driver consistency and 30% improvement in time consistency comes at a

cost of a 9% increase in travel distance. The second row shows that, if only driver

consistency is considered, the best compromise solution, on average, increases travel

distance by 18.81%, decreases the driver consistency by 61.28%, and time consistency by

22.12%, when compared with the solution with best travel distance.

3.6 Conclusion

This paper studies service consistency in the context of periodic vehicle routing problems

using a multi-objective optimization approach and defines, for the first time in the

literature, the MoConPVRP. Two service consistency objectives (maximization of driver

consistency and maximization of time consistency) are considered separately with the

traditional objective of minimizing total travel distance. Seven multi-objective

optimization algorithms are employed to solve the studied problem and their performance

is validated on a total of 26 benchmark instances taken from the literature. Trade-off

analysis on the nondominated solutions obtained by all algorithms suggest that pursuing

the best compromise solution among all three objectives may increase travel cost by about

8% while improving driver and time consistency by approximately 34% and 30% on

average, when compared with a compromise solution having lowest overall travel distance.

77

Directions for future work can include studying service consistency in PVRP using a single

objective approach where travel distance is minimized while service consistency is enforced

via hard constraints.

78

Reference

Deniz Aksen, Onur Kaya, F. Sibel Salman, and Yeliz Aka. Selective and periodic inventory
routing problem for waste vegetable oil collection. Optimization Letters, 6(6):1063–1080,
2012.

M. Banerjea-Brodeur, J. F. Cordeau, G. Laporte, and A. Lasry. Scheduling linen deliveries
in a large hospital. The Journal of the Operational Research Society, 49(8):777–780,
1998.

Susana Baptista, Rui Carvalho Oliveira, and Eduardo Zquete. A period vehicle routing
case study. European Journal of Operational Research, 139(2):220–229, 2002.

E. J. Beltrami and L. D. Bodin. Networks and vehicle routing for municipal waste
collection. Networks, 4(1):65–94, 1974.

X. Blasco, J. M. Herrero, J. Sanchis, and M. Martnez. A new graphical visualization of
n-dimensional pareto front for decision-making in multiobjective optimization.
Information Sciences, 178(20):3908–3924, 2008.

Devika Bommisetty, Mohamed Dessouky, and Larry Jacobs. Scheduling collection of
recyclable material at northern illinois university campus using a two-phase algorithm.
Computers and Industrial Engineering, 35(34):435–438, 1998.

Kris Braekers and Attila A. Kovacs. A multi-period dial-a-ride problem with driver
consistency. Transportation Research Part B: Methodological, 94:355–377, 2016.

Ann Melissa Campbell and Jill Hardin Wilson. Forty years of periodic vehicle routing.
Networks, 63(1):2–15, 2014.

N. Christofides and J. E. Beasley. The period routing problem. Networks, 14(2):237–256,
1984.

S. Coene, A. Arnout, and F. C. R. Spieksma. On a periodic vehicle routing problem. The
Journal of the Operational Research Society, 61(12):1719–1728, 2010.

E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation Algorithms for
Bin-Packing An Updated Survey, pages 49–106. Springer Vienna, Vienna, 1984.

Jean-Franois Cordeau, Michel Gendreau, and Gilbert Laporte. A tabu search heuristic for
periodic and multi-depot vehicle routing problems. Networks, 30(2):105–119, 1997.

G. A. Croes. A method for solving traveling-salesman problems. Operations Research, 6
(6):791–812, 1958.

K. Deb and H. Jain. An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part i: Solving problems with box
constraints. Evolutionary Computation, IEEE Transactions on, 18(4):577–601, 2014.

79

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic
algorithm: Nsga-ii. Evolutionary Computation, IEEE Transactions on, 6(2):182–197,
2002.

Billy E. Gillett and R. Miller Leland. A heuristic algorithm for the vehicle-dispatch
problem. Operations Research, 22(2):340–349, 1974.

Maoguo Gong, Licheng Jiao, Haifeng Du, and Liefeng Bo. Multiobjective immune
algorithm with nondominated neighbor-based selection. Evolutionary Computation, 16
(2):225–255, 2008.

Chris Groër, Bruce Golden, and Edward Wasil. The consistent vehicle routing problem.
Manufacturing & Service Operations Management, 11(4):630–643, 2009.

Vera C. Hemmelmayr, Karl F. Doerner, and Richard F. Hartl. A variable neighborhood
search heuristic for periodic routing problems. European Journal of Operational
Research, 195(3):791–802, 2009.

Wooseung Jang, Huay H. Lim, Thomas J. Crowe, Gail Raskin, and Thomas E. Perkins.
The missouri lottery optimizes its scheduling and routing to improve efficiency and
balance. Interfaces, 36(4):302–313, 2006.

Attila A. Kovacs, Bruce L. Golden, Richard F. Hartl, and Sophie N. Parragh. Vehicle
routing problems in which consistency considerations are important: A survey.
Networks, 64(3):192–213, 2014a.

Attila A. Kovacs, Sophie N. Parragh, Richard F. Hartl, and Sophie N. Parragh. A
template-based adaptive large neighborhood search for the consistent vehicle routing
problem. Networks, 63(1):60–81, 2014b.

Attila A. Kovacs, Bruce L. Golden, Richard F. Hartl, and Sophie N. Parragh. The
generalized consistent vehicle routing problem. Transportation Science, 49(4):796–816,
2015a.

Attila A. Kovacs, Sophie N. Parragh, and Richard F. Hartl. The multi-objective
generalized consistent vehicle routing problem. European Journal of Operational
Research, 247(2):441–458, 2015b.

Kunlei Lian, Ashlea Bennett Milburn, and Ronald L. Rardin. An improved
multi-directional local search algorithm for the multi-objective consistent vehicle routing
problem. IIE Transactions, 48(10):975–992, 2016.

Zhixing Luo, Hu Qin, ChanHou Che, and Andrew Lim. On service consistency in
multi-period vehicle routing. European Journal of Operational Research, 243(3):731–744,
2015.

AnaCristina Matos and RuiCarvalho Oliveira. An Experimental Study of the Ant Colony
System for the Period Vehicle Routing Problem, volume 3172 of Lecture Notes in
Computer Science, book section 26, pages 286–293. Springer Berlin Heidelberg, 2004.

80

Pablo Maya, Kenneth Srensen, and Peter Goos. A metaheuristic for a teaching assistant
assignment-routing problem. Computers and Operations Research, 39(2):249–258, 2012.

Ashlea Bennett Milburn and Jessica Spicer. Multi-objective home health nurse routing
with remote monitoring devices. International Journal of Planning and Scheduling, 1(4):
242–263, 2013.

Teemu Nuortio, Jari Kytjoki, Harri Niska, and Olli Brysy. Improved route planning and
scheduling of waste collection and transport. Expert Systems with Applications, 30(2):
223–232, 2006.

Zhang Qingfu and Li Hui. Moea/d: A multiobjective evolutionary algorithm based on
decomposition. Evolutionary Computation, IEEE Transactions on, 11(6):712–731, 2007.

D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis. Approximate algorithms for the
traveling salesperson problem. In 15th Annual Symposium on Switching and Automata
Theory (swat 1974), pages 33–42, 1974.

David Russell, Robert J. Rosati, and Evie Andreopoulos. Continuity in the provider of
home-based physical therapy services and its implications for outcomes of patients.
Physical Therapy, 92(2):227–235, 2012.

R. Russell and W. Igo. An assignment routing problem. Networks, 9(1):1–17, 1979.

L. Shih and Y. Lin. Optimal routing for infectious waste collection. Journal of
Environmental Engineering, 125(5):479–484, 1999.

Li-Hsing Shih and Hua-Chi Chang. A routing and scheduling system for infectious waste
collection. Environmental Modeling and Assessment, 6(4):261–269, 2001.

Anirudh Subramanyam and Chrysanthos E. Gounaris. A branch-and-cut framework for the
consistent traveling salesman problem. European Journal of Operational Research, 248
(2):384–395, 2016.

C. D. Tarantilis, F. Stavropoulou, and P. P. Repoussis. A template-based tabu search
algorithm for the consistent vehicle routing problem. Expert Systems with Applications,
39(4):4233–4239, 2012.

Fabien Tricoire. Multi-directional local search. Computers & Operations Research, 39(12):
3089–3101, 2012.

Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, Nadia Lahrichi, and Walter Rei.
A hybrid genetic algorithm for multidepot and periodic vehicle routing problems.
Operations Research, 60(3):611–624, 2012.

Christel A. Woodward, Julia Abelson, Sara Tedford, and Brian Hutchison. What is
important to continuity in home care?: Perspectives of key stakeholders. Social Science
and Medicine, 58(1):177–192, 2004.

Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Improving the strength
pareto evolutionary algorithm for multiobjective optimization. CIMNE, Spain, 2002.

81

4. A Branch-and-Price Algorithm for the Consistent Vehicle Routing Problem

4.1 Introduction

In today’s competitive markets, consistent service is a key to improving customer

satisfaction and customer loyalty (Kovacs et al., 2014a). Practitioners in a number of

service industries, including home health care and small package delivery, strive to provide

two important types of service consistency: driver consistency and time consistency. In the

home health care industry, caregivers are scheduled to visit home-bound patients over an

enrolled treatment horizon. Minimizing the number of different caregivers assigned to a

patient helps increase familiarity between them and reduce communication complexity. It

also improves caregivers’ ability to make accurate observations and benefits health care

outcomes, such as lower rates of hospitalization and fewer visits to the emergency

department (Russell et al., 2012). Consistent visiting times allow patients to plan their

days more readily without causing too many disturbances to their daily routines

(Woodward et al., 2004). In the small package delivery industry, consistent driver and

delivery time increases driver familiarity with a delivery region and also fosters

customer-centered service that leads to possible additional business gains (Wong, 2008).

Service consistency has also been recognized as a key characteristic of high customer

loyalty in other service applications, including vendor-managed inventory systems (Day

et al., 2009), beer and wine distribution (Erera et al., 2009) and aircraft fleet routing and

scheduling (Ioachim et al., 1999).

The Consistent Vehicle Routing Problem (ConVRP), first defined in Groër et al. (2009),

models an important class of transportation problems with service consistency

considerations encountered in the aforementioned service industries. It is the first vehicle

routing problem (VRP) variant in the literature that focuses on improving customer

experience though consistent service. In the traditional VRP, a set of vehicle routes must

be determined such that each customer is visited once and only once, and the total travel

82

distance of all vehicles is minimized. ConVRP generalizes the traditional VRP to consider

an extended planning horizon over which service consistency is enforced. In the ConVRP, a

customer may require visits on one or more predetermined days over a planning horizon of

multiple days. A customer is said to be a frequent customer if it needs visits on more than

one day. Service consistency constraints are defined to require that each frequent customer

be visited by the same driver across the planning horizon (driver consistency), and the

arrival time differential at a customer must not exceed a preset limit (time consistency).

The objective of ConVRP is to minimize the total travel distance of all vehicles across the

planning horizon such that all customer requirements are fulfilled without violating vehicle

capacity, maximum route duration and service consistency constraints.

The ConVRP is NP-hard, given that it reduces to the traditional VRP when the planning

horizon is set to one or to multiple separate VRPs when no customers are frequent

customers. Noting the imposed service consistency constraints on frequent customers, the

ConVRP does not separate into individual VRPs and hence poses a significant challenge

from a solution perspective. There exist a number of heuristic algorithms in the literature

that aim to identify near-optimal solutions quickly. These are reviewed in Section 4.2.

However, it remains a challenge to solve the ConVRP exactly within a reasonable amount

of time and very limited efforts have been made in the literature to address this. This

paper intends to fill this gap. There are two primary contributions in this paper. First, we

identify a new set of constraints based on the existing mixed-integer program (MIP)

formulation for the ConVRP in the literature. The enhanced MIP is able to reduce

computational times significantly compared to the existing MIP. Second, we propose a

branch-and-price (B&P) solution method for the ConVRP for the first time in the

literature. A heuristic algorithm is designed to solve the subproblem efficiently. The

performance of B&P is validated on benchmark instances taken from the literature and

newly generated instances of the same form. Computational results show its

competitiveness in solving instances with more than 14 customers.

83

The remainder of this paper is organized as follows: Section 2 reviews existing solution

methods in the literature that aim to solve consistency-related vehicle routing problems.

Section 3 provides the MIP formulation of the ConVRP from Groër et al. (2009) and

introduces a set of new constraints to sharpen its LP relaxation. Section 4 details the

proposed B&P algorithm. Computational results are given in Section 5, followed by

conclusions in Section 6.

4.2 Related literature

This section provides a brief review of research related to our study. We focus on the

existing solution approaches related to ConVRP.

The ConVRP is first introduced by Groër et al. (2009) in the context of the small package

delivery industry where customers require repeatable visits over a planning horizon of

multiple days. The ConVRP is modeled by Groër et al. (2009) as a MIP and a

record-to-record travel heuristic (ConRTR) is proposed to obtain near optimal solutions

quickly. The concept of template routes is used in the algorithm to ensure optimal driver

consistency and encourage better time consistency. Template routes consider only frequent

customers that require service on more than one day. A route for day d can be derived from

the template route by removing all those customers who do not require service on day d

and inserting customers who require service on only day d. The MIP formulation takes up

to several days to solve small-sized instances with 10 or 12 customers using CPLEX 11.0.

Utilizing the concept of template routes, Tarantilis et al. (2012) propose a two-stage tabu

search heuristic (TTS) for the ConVRP. In the first stage, template routes involving only

frequent customers are optimized using tabu search to minimize total travel time. During

the search process, daily routes are derived from template routes in order to evaluate a

neighborhood solution and check its feasibility. Based on the template routes identified in

the first stage, tabu search is employed in another mode to optimize daily vehicle routes

including both frequent customers and customers that only require service on that day.

84

Computational experiments on the benchmark instances created in Groër et al. (2009)

show that TTS outperforms ConRTR both in terms of total travel times and total number

of vehicles used.

Kovacs et al. (2014b) develop an adaptive large neighborhood search algorithm (TALNS)

that employs a number of destroy and repair operators to improve template routes

involving only frequent customers. Actual daily routes are derived from template routes

during the search process in order to compute the objective values of template routes. The

proposed algorithm shows better performance than both ConRTR and TTS with respect to

solution quality on the instances created in Groër et al. (2009). The authors also consider a

relaxed variant of the ConVRP in which vehicles are allowed to wait at the depot before

beginning their routes and improved time consistency is observed in this problem variant.

Luo et al. (2015) examine a multi-period VRP variant in which each customer must receive

service within a given time window and can only be serviced by a limited number of

different vehicles over the planning horizon. A MIP model is formulated and a three-stage

heuristic algorithm named Decomposition, Repair and Distance Reduction (DRDR) is

devised. The first stage tries to construct a feasible initial solution using a decomposition

strategy. An iterative tree-search-with-repair mechanism is then employed to reduce the

number of vehicles used in the second stage. A unified tabu search is applied in the last

stage to reduce total travel distance of the solution. The proposed heuristic is applied to

solve the ConVRP instances created in Groër et al. (2009) and performs better than

ConRTR in terms of total travel time, but worse than TTS and TALNS. It is shown that

DRDR can achieve the smallest arrival time differential on average among all tested

algorithms.

Kovacs et al. (2015) study a generalized variant of the ConVRP that relaxes the strict

driver consistency in the ConVRP by allowing multiple different drivers to visit a

customer. Time consistency considerations are included in the objective function using a

weighted sum approach. In addition, customers are each associated with AM/PM time

85

windows which limit the earliest possible service starting time at customer locations. The

authors propose a large neighborhood search heuristic that does not use the concept of

template routes. The ConVRP instances created in Groër et al. (2009) are solved using the

proposed algorithm and performance superior to ConRTR, TTS and TALNS is observed.

The only exact solution methods proposed for consistency-related routing problems that we

are aware of in the literature are contributed by Braekers and Kovacs (2016) and

Subramanyam and Gounaris (2016). Braekers and Kovacs (2016) consider a dial-a-ride

problem in the transportation of disabled and elderly people over a multi-period time

horizon. Each customer is associated with a time window and maximum ride time. Driver

consistency is imposed such that the maximum number of different drivers that transport a

customer over the planning horizon does not exceed a preset bound. Two mathematical

formulations are proposed and a branch-and-cut solution method is suggested. Seven types

of valid inequalities are used to ensure feasibility and strengthen the model. A large

neighborhood search heuristic is developed to find near optimal solutions efficiently.

Computational results on a set of newly generated instances show that enforcing only one

driver visiting a customer may cause up to 27.98% increase in travel cost, while the routing

cost increase is no more than 5.80% when at least two drivers are allowed per customer.

Subramanyam and Gounaris (2016) study the consistent traveling salesman problem

(ConTSP) in which a minimum cost set of routes should be designed for a single vehicle in

order to visit customers requiring service over a planning horizon of multiple days.

Consistent arrival times constraints on frequent customers are imposed. A branch-and-cut

solution framework is developed. Specifically, three MIP formulations for this problem are

introduced, and a new class of inconsistent path elimination inequalities is defined.

Computational experiments show that instances with up to 50 customers over a five-period

horizon can be solved to optimality. These exact methods can not be generalized to solve

the ConVRP directly due to the availability of multiple vehicles with constraints and

different definitions of driver consistency. In addition, Braekers and Kovacs (2016) do not

86

consider time consistency in their formulation.

This review of the literature shows that there is no effective solution approach in the

literature to solve the the ConVRP optimally. We intend to fill this gap by proposing a

B&P algorithm for this problem. B&P algorithms have proven effective in solving other

VRP variants, including capacitated VRP (Pecin et al., 2014), pickup and delivery problem

with time windows (Cherkesly et al., 2016) and split-delivery VRP with time windows

(Desaulniers, 2010).

4.3 Problem formulation

In the ConVRP, customers in set N = {1, . . . , |N |} require service over a planning horizon

D = {d1, . . . , d|D|}. Located at the depot {0} there are a set of homogeneous vehicles

K = {1, . . . , |K|} available to serve the customers. Each vehicle k ∈ K has the same

physical capacity Q and maximum route duration T . The number of vehicles |K| can be as

large as |N |.

The ConVRP is defined on a complete directed graph G = (N 0 = N ∪ {0},A), where

A = {(i, j) | i, j ∈ N 0, i 6= j}. Each arc (i, j) is associated with a travel time tij. On each

day d ∈ D, each customer i has a predetermined non-negative demand qid and service

duration sid. An auxiliary parameter wid is defined such that it equals 1 if qid > 0 and 0

otherwise. It is assumed that a driver is always assigned to the same vehicle across the

planning horizon and this paper uses the terms driver and vehicle interchangeably. The

time consistency is imposed on all frequent customers by limiting the maximum arrival

time differential not to exceed L.

Groër et al. (2009) define a MIP, which we denote as MIP1, for the ConVRP using the

following decision variables:

• xijkd: equals 1 if vehicle k visits customer j immediately after customer i on day d

and equals 0 otherwise, d ∈ D, k ∈ K, i ∈ N 0, j ∈ N 0

87

• aid: the vehicle arrival time at customer i on day d, i ∈ N 0, d ∈ D

• yikd: equals 1 if customer i is visited by vehicle k on day d and equals 0 otherwise,

i ∈ N 0, k ∈ K, d ∈ D

Using this notation, MIP1 is given as follows:

min f =
∑
d∈D

∑
k∈K

∑
(i,j)∈A

tijxijkd, (4.1)

s.t. y0kd = 1, ∀k ∈ K, d ∈ D, (4.2)

a0d = 0, ∀d ∈ D, (4.3)∑
k∈K

yikd = wid, ∀i ∈ N , d ∈ D, (4.4)

∑
i∈N

qidyikd ≤ Q, ∀k ∈ K, d ∈ D, (4.5)

∑
i∈N 0

xijkd =
∑
i∈N 0

xjikd = yjkd, ∀j ∈ N 0, k ∈ K, d ∈ D, (4.6)

yikdα − yikdβ ≥ widα + widβ − 2, ∀dα, dβ ∈ D, α 6= β, i ∈ N 0, k ∈ K, (4.7)

yikdα − yikdβ ≤ −(widα + widβ − 2), ∀dα, dβ ∈ D, α 6= β, i ∈ N 0, k ∈ K, (4.8)

aid + xijkd(sid + tij)− T (1− xijkd) ≤ ajd, ∀d ∈ D, k ∈ K, i ∈ N 0, j ∈ N , (4.9)

aid + xijkd(sid + tij) + T (1− xijkd) ≥ ajd, ∀d ∈ D, k ∈ K, i ∈ N 0, j ∈ N , (4.10)

0 ≤ aid + wid(sid + ti0) ≤ Twid, ∀i ∈ N , d ∈ D, (4.11)

aidα − aidβ ≥ −L+ T (widα + widβ − 2), ∀i ∈ N 0, dα, dβ ∈ D, α 6= β, (4.12)

aidα − aidβ ≤ L− T (widα + widβ − 2), ∀i ∈ N 0, dα, dβ ∈ D, α 6= β, (4.13)

xijkd ∈ {0, 1}, yikd ∈ {0, 1}, aid ≥ 0,∀i, j ∈ N 0, k ∈ K, d ∈ D. (4.14)

The objective function (4.1) minimizes the total travel distance of all vehicles over all days

in the planning horizon. Constraint sets (4.2) and (4.3) require that the depot be visited at

time 0 by all vehicles on all days. Constraint set (4.4) ensures that customers are visited

exactly once when they require service on any day. Constraint set (4.5) guarantees that

88

each vehicle carries no more than Q units on any given day. Constraint set (4.6) makes

sure that each customer has only one predecessor and one successor. Constraint sets (4.7)

and (4.8) ensure that each customer is served by the same driver whenever he/she needs

service. Constraint sets (4.9) and (4.10) determine the arrival times at the individual

customers. Constraint set (4.11) requires that the vehicle travel time limit is not violated.

Constraint sets (4.12) and (4.13) enforce the maximum arrival time differential at customer

i on any two days is no more than L units. Constraint set (4.14) specifies the decision

variable types.

In this paper, we introduce a new MIP formulation, denoted MIP2, by adding new

variables and constraints to the previous MIP1. Define a new binary variable nkd to

indicate whether there exists any customer on day d that is visited by vehicle k. The new

constraints can then be defined as follows:

nkd ≥ yikd, ∀i ∈ N , k ∈ K, d ∈ D, (4.15)

nkd ≤
∑
i∈N

yikd, ∀k ∈ K, d ∈ D, (4.16)

∑
i∈N 0

xi0kd =
∑
i∈N 0

x0ikd = nkd, ∀k ∈ K, d ∈ D. (4.17)

Constraint sets (4.15) and (4.16) compute the value of nkd. Constraint set (4.17) requires

the number of in-arcs and out-arcs at the depot equals nkd.

4.4 Branch and price

This section describes the proposed B&P algorithm for the ConVRP. Section 4.4.1

introduces the master problem and subproblem associated with the proposed B&P

algorithm. Section 4.4.2 describes the B&P framework. A starting set of columns is

generated using the heuristic detailed in Section 4.4.3. The column generation process is

described in Section 4.4.4. The proposed column generation heuristic is explained in

89

Section 4.4.5. Section 4.4.6 describes the branching approach.

4.4.1 Problem reformulation

The ConVRP can be reformulated as the following set covering model:

min
∑
v∈Ω

cvθv, (4.18)

s.t.
∑
v∈Ω

givθv ≥ 1, ∀i ∈ N , (4.19)

∑
v∈Ω

θv ≤ |K|, (4.20)

θv ∈ N0, ∀v ∈ Ω. (4.21)

In this formulation, the set Ω includes all the feasible columns for the ConVRP and each

column v ∈ Ω represents a routing plan visiting a set of customers Nv ⊂ N across the

planning horizon. A column consists of a set of single vehicle routes; one for each day

d ∈ D that visits all customers in Nv requiring service on that day (i.e., such that wid = 1).

Furthermore, the maximum arrival time differential at any frequent customer in Nv across

the planning horizon must not exceed the time limit L. By enforcing that the daily routes

in v are operated by the same driver, customers in Nv also satisfy driver consistency as

required in the formulation of the ConVRP. In addition, cv represents the total travel

distance of all the routes in column v.

Usually there exist a very large number of columns in Ω: we use a decision variable θv to

indicate whether a column v is in the optimal solution. Variable θv is set to be a

nonnegative integer (given by the set N0) instead of a binary variable in order to avoid

constraints θv ≤ 1 in the LP relaxation of (4.18)–(4.21). It is clear that any solution with

θv ≥ 2 for any v would not be optimal. Constant giv equals 1 if customer i is included in

column v, and equals 0 otherwise. Constraint set (4.19) requires that every customer i

must appear in at least one column. Constraint set (4.20) limits the total number of

90

vehicles used. Constraint set (4.21) sets the variable types.

Define the Master Problem (MP (Ω)) as the LP relaxation of (4.18)–(4.21), i.e.,

min
∑
v∈Ω

cvθv, (4.22)

s.t.
∑
v∈Ω

givθv ≥ 1, ∀i ∈ N , (4.23)

∑
v∈Ω

θv ≤ |K|, (4.24)

θv ≥ 0, ∀v ∈ Ω, (4.25)

and the Restricted Master Problem (RMP (Ω1)) associated with a subset Ω1 ⊂ Ω as

min
∑
v∈Ω1

cvθv, (4.26)

s.t.
∑
v∈Ω1

givθv ≥ 1, ∀i ∈ N , (4.27)

∑
v∈Ω1

θv ≤ |K|, (4.28)

θv ≥ 0, ∀v ∈ Ω1, (4.29)

and the dual problem D(Ω1) of RMP (Ω1) as

max
∑
i∈N

λi + |K|λ0, (4.30)

s.t.
∑
i∈N

givλi + λ0 ≤ cv, ∀v ∈ Ω1, (4.31)

λi ≥ 0, ∀i ∈ N , (4.32)

λ0 ≤ 0, (4.33)

where λi is the dual variable associated with the ith constraint (4.27) and λ0 is the dual

variable associated with constraint (4.28).

91

Then the subproblem is to find a new column v ∈ Ω\Ω1 such that

rv : cv −
∑
i∈N

givλ
∗
i − λ∗0 < 0 (4.34)

To formulate the subproblem, define the following variables:

• yi: equals 1 if customer i is included in the new column, 0 otherwise, i ∈ N 0

• nd: equals 1 if there is at least one customer requiring service on day d, 0 otherwise,

d ∈ D

• xijd: equals 1 if arc (i, j) is used on day d, (i, j) ∈ A, d ∈ D

• aid: arrival time at customer i on day d, i ∈ N 0, d ∈ D

The subproblem can then be stated as follows:

min
∑
d∈D

∑
(i,j)∈A

tijxijd −
∑
i∈N

yiλ
∗
i − λ∗0, (4.35)

s.t. y0 = 1, (4.36)

xdii = 0, ∀d ∈ D, i ∈ N , (4.37)∑
j∈N 0

xijd =
∑
j∈N 0

xjid = yiwid, ∀i ∈ N , d ∈ D, (4.38)

nd ≥ yi, ∀d ∈ D, i ∈ N , (4.39)

nd ≤
∑
i∈N

yi, ∀d ∈ D, (4.40)

∑
i∈N

xi0d =
∑
i∈N

x0id = nd, ∀d ∈ D, (4.41)

a0d = 0, ∀d ∈ D, (4.42)

aid + xijd(sid + tij)− T (1− xijd) ≤ ajd, ∀d ∈ D, i ∈ N 0, j ∈ N , (4.43)

aid + xijd(sid + tij) + T (1− xijd) ≥ ajd, ∀d ∈ D, i ∈ N 0, j ∈ N , (4.44)∑
i∈N

qidyiwid ≤ Q, ∀d ∈ D, (4.45)

92

0 ≤ aid + yiwid(sid + ti0) ≤ Tyiwid, ∀i ∈ N , d ∈ D, (4.46)

aidα − aidβ ≥ −L+ T (yiwidα + yiwidβ − 2), ∀i ∈ N , dα, dβ ∈ D, α 6= β, (4.47)

aidα − aidβ ≤ L− T (yiwidα + yiwidβ − 2), ∀i ∈ N , dα, dβ ∈ D, α 6= β, (4.48)

yi ∈ {0, 1}, xijd ∈ {0, 1}, aid ≥ 0, ∀i ∈ N 0, j ∈ N 0, d ∈ D. (4.49)

The objective function (4.35) minimizes the total travel distance across all days minus the

reward due to including customer i ∈ N 0 in the column. Constraint set (4.36) requires that

the depot is always included in the column. Constraint set (4.37) forbids the use of arcs

(i, i) on any day in the column. Constraint set (4.38) requires that each node has one

outgoing arc and one incoming arc on each day if they require service. Constraint sets

(4.39) and (4.40) determine whether there exists any customer requiring service on day d.

Constraint set (4.41) sets the number of outgoing and incoming arcs at the depot on day d

based on the value of nd. Constraint set (4.42) sets the arrival time at the depot on each

day to 0. Constraint sets (4.43) and (4.44) compute the arrival times at customers if they

require visits. These constraints also serve to eliminate subtours. Constraint set (4.45)

makes sure that the total load on the tour must not exceed the vehicle capacity. Constraint

set (4.46) limit the total route duration on each day to be at most T . Constraint sets

(4.47) and (4.48) enforce the arrival time differential at a customer on any two different

days to be no more than L units. Constraint set (4.49) specifies the decision variable types.

Compared with MIP1 given in (4.1)–(4.14), this subproblem can be viewed as a

prize-collecting ConTSP where the selection of customers to be serviced by the single

vehicle is affected by their associated prizes that are indicated by λ defined in (4.30)–(4.33).

4.4.2 Branch-and-price framework

The B&P algorithm combines the branch-and-bound (B&B) framework with the column

generation process at each tree node of B&B. Algorithm 5 shows the framework of the

proposed B&P algorithm. In this paper, we use Px and P0 to denote a general B&B tree

93

node and the root node, respectively. Each tree node Px stores (i) a set of columns denoted

by ΩPx ; (ii) an optimal LP objective value f(Px); (iii) an optimal set of columns V (Px);

and (iv) an underlying graph G(Px). The proposed B&P algorithm starts with populating

the empty ΩP0 using columns obtained from the procedure FindInitialCols(|M |, Imax).

Since the number of vehicles is unlimited, a special set of columns Ω0 is also created by

using a separate vehicle to visit each individual customer and supplemented to ΩP0 . This is

to ensure the feasibility of the root node master problem.

The master problem associated with P0 (i.e., MP (ΩP0)) is then solved using a column

generation process. New columns are generated by solving the subproblem defined in

(4.35)–(4.49) heuristically or/and exactly: a heuristic is employed first to identify new

columns and the exact algorithm will be skipped if the heuristic succeeds; otherwise, the

exact algorithm (i.e., applying CPLEX to model (4.35)–(4.49)) will be used after the

heuristic algorithm fails to find new columns. The master problem is said to be optimal if

no more new columns can be found using the exact method. If the optimal solution of the

master problem is integer feasible, the ConVRP is solved; otherwise, branching is required

to create two child nodes on the B&B tree. The column generation process is applied

immediately upon branching for each child tree node to solve its associated master

problem. After the master problem associated with a tree node P is solved using column

generation, this tree node P is added into set Φ for further processing, including checking

integer feasibility or branching. The processing of tree nodes in Φ takes a last-in-first-out

approach.

This algorithm takes as input in Step 1 the time limit of the whole algorithm. The lower

and upper bound are set in Step 2. Step 3 creates the root node P0 with empty ΩP0 and an

empty set Φ. The starting set of columns to be used in the restricted master problem of P0

are generated using procedure FindInitialCols(|M |, Imax) in Step 4, which is a genetic

algorithm. This is described in detail in Section 4.4.3. The special set of single-customer

columns Ω0 is added to ΩP0 too. The column generation process is denoted by ColGen(P0)

94

Algorithm 5 Branch-and-Price workflow

1: Input: time limit
2: let incumbent column set V ∗ = ∅, lower bound LB = −∞ and upper bound UB =∞
3: create tree node P0 with empty column set ΩP0 and empty set Φ
4: populate ΩP0 using procedure FindInitialCols(|M |, Imax) and Ω0

5: solve MP (ΩP0) using procedure ColGen(P0) and let Φ = Φ ∪ P0

6: repeat
7: take the last node Px from Φ and let Φ = Φ\Px
8: if MP (ΩPx) is feasible then
9: if V (Px) of MP (ΩPx) is integer feasible then
10: if f(Px) < UB then let UB = f(s∗Px) and update V ∗ = V (Px)
11: end if
12: terminate this node by solving, no branching required
13: else
14: use procedure Branch(Px) to create two child nodes Pl and Pr
15: apply ColGen(Pl) and ColGen(Pr) on Pl and Pr
16: let Φ = Φ ∪ {Pl, Pr}
17: let LB = minf(Px) where P ∈ Φ
18: end if
19: else
20: discard this node by infeasibility
21: end if
22: until Φ is empty or time limit is reached
23: Output: LB, UB and V ∗

as in Step 5. In Steps 7 to 21, a tree node Px is taken from Φ and checked for feasibility:

Px is discarded if it is infeasible (Step 20); otherwise, the integer feasibility is checked in

Step 9 to decide whether branching is required. If there exist fractional values in the

optimal solution, procedure Branch(Px) is called to generate two child tree nodes Pl and

Pr (Step 14). The two new nodes are immediately solved using ColGen and added to set Φ

for future processing. Every time new tree nodes enter the set Φ, the global lower bound is

updated using all tree nodes in set Φ (Step 17). The algorithm stops when set Φ is empty,

which indicates global optimality, or the given time limit is reached. The following sections

describe the algorithm in details.

95

4.4.3 Generating starting column set ΩP0 for root node P0

This section describes the procedure FindInitialCols(|M |, Imax) in Step 4 of Algorithm

5 to generate the initial set of feasible columns for the Restricted Master Problem at root

node P0. A good set of initial columns at P0 helps speed up the solution process. In this

paper, a Genetic Algorithm (GA) is developed to find near optimal solutions to the

ConVRP quickly. Algorithm 6 shows its workflow. Note that the term solution is used here

to indicate a routing plan for the ConVRP and a solution may consist of multiple columns

for (4.18)–(4.21).

Algorithm 6 describes the GA framework that takes as input a population size |M | and

maximal number of non-improving iterations Imax. The initial population M0 in Step 2 is

generated using the procedure in the following section. All feasible columns that exist in

M0 are saved to Ψ in Step 3. In each following iteration, a new population M ′
η is created

from Mη using a crossover operator (Step 6). Solutions from Mη and M ′
η are combined to

generate Mη+1 (Step 7). The best solution m∗ is then updated and all feasible columns in

Mη+1 are saved to Ψ.

Algorithm 6 Workflow of FindInitialCols(|M |, Imax)

1: Input: population size |M | and maximal number of non-improving iterations Imax
2: let iteration η = 0 and create an initial population Mη of |M | randomly generated

solutions
3: save all feasible columns in each solution of the population to set Ψ
4: let m∗ denote the best solution encountered so far
5: repeat
6: employ GenChildPop() to create a new population M ′

η based on Mη

7: use GenNextPop() to create Mη+1 based on Mη and M ′
η

8: update Ψ and m∗

9: let η = η + 1
10: until m∗ not improved for Imax iterations
11: Output feasible column set Ψ

96

4.4.3.1 Initial solution generation

This section explains the algorithm used to generate the solutions in population M0 in

Algorithm 6. The algorithm starts with sorting all customers in the non-decreasing order of

the clockwise angle they make with the depot and the vector pointing from the depot along

the positive horizontal line. An empty solution m is then created and customers are

considered for insertion into m following the determined order. The first customer to be

inserted is randomly selected from the sorted customer list and all required visits to a

customer are inserted into m at once when the customer is chosen for insertion. For a

customer i being considered for insertion, the algorithm identifies all the vehicles in which

all required visits to i can be appended to the tail of the vehicle route on corresponding

days feasibly with respect to vehicle capacity, maximum route duration and the time

consistency constraint for i. Note that there may exist multiple empty vehicles at this step

and only the one with the smallest index is chosen. The total travel distance increase of

inserting all required visits to i into any feasible vehicle k is noted. Finally, vehicle k∗ with

the smallest travel distance increase is chosen and all required visits to i are appended to

the end of k∗ on the corresponding days.

4.4.3.2 New population generation

In GenChildPop(), each solution in the child population M ′
η is generated by applying a

crossover operator on two randomly selected solutions from Mη. Each solution in M ′
η is

further improved by a Large Neighborhood Search (LNS) heuristic with probability pl. The

LNS is described in the following section. All feasible columns in any solution of M ′
η are

saved to Ψ. In GenNextPop(), Mη and M ′
η are combined and sorted in non-decreasing

order of total travel distance. The top 0.8|M | solutions in the combined population enter

the new population Mi+1. The remaining solutions in Mη+1 are generated randomly to

introduce diversity. With probability pl, a newly generated solution is improved by the

LNS. The percentage values of 0.8 and 0.2 are determined based on experience.

97

The LNS used in this paper follows the same LNS framework proposed in Kovacs et al.

(2015). Four removal operators are taken from Kovacs et al. (2015), including random

removal, related removal, cluster removal and worst time consistency removal. Two

reinsertion operators are adapted from the repair operators proposed in Kovacs et al.

(2015) to insert removed customer visits back to the partial solution after removal:

(1) GreedyInsertion: This operator starts with identifying the set of customers whose

required visits are removed from the solution on at least one days and their total number of

removed visits. The sequence in which these customers are considered for reinsertion is

random and all removed visits to a customer are reinserted back to the solution at once if

the customer is chosen for reinsertion. If the customer i being considered for reinsertion

into m does not have all required visits removed, this operator will first identify the vehicle

k that operates the un-removed visits and check whether it is feasible to use k to fulfill

removed visits with respect to vehicle capacity and maximum route duration constraints. If

feasible, all removed visits to i will be inserted at the best position in k with least travel

distance increase on corresponding days. Otherwise, all un-removed visits to i are removed

from m and all remaining vehicles are checked for feasibility to insert all required visits to i

with respect to vehicle capacity and maximum route duration constraints. All required

visits to i will be inserted into the feasible vehicle k∗ with least travel distance increase on

corresponding days. Note that among empty vehicles, only the one with the smallest index

will be considered in this step. If the customer i being considered has all its required visits

removed from the solution m, all vehicles are checked for feasibility to insert all required

visits to i regarding vehicle capacity and maximum route duration constraints. The feasible

vehicle k∗ with smallest travel distance increase across all days will be selected for visiting i.

A variant of the above operator is obtained by reducing the vehicle capacity artificially

during reinsertion (Kovacs et al., 2015). Specifically, the new vehicle capacity will be

chosen uniformly in the interval [max{max qid, Q/2}, Q]. The variant works the same with

the original operator except that the new artificial vehicle capacity is used to determine

98

insertion feasibility.

(2) RegretInsertion: this operator starts with identifying the set of customers Γp whose

required visits are partially removed from the solution m, and those customers Γa whose

required visited are all removed from m. The operator will try to reinsert removed visits to

customers in Γp first and the sequence in which customers in Γp are considered is random.

For the customer i being considered for insertion, the vehicle k that operates the

un-removed visits to i will be identified and checked for feasibility of inserting all removed

visits with respect to vehicle capacity and maximum route duration constraints. If feasible,

all removed visits to i will be inserted at a position in k with least travel distance increase

on corresponding days. Otherwise, all un-removed visits to i are removed from m and i is

inserted into set Γa. After all customers in Γp are processed, customers in Γa will be

considered for insertion into m by taking into account the loss that might arise if reinsertion

of visits to a customer is delayed into future iterations. For each customer, this operator

checks all available vehicles in solution m for feasibility of inserting all the required visits to

this customer on corresponding days. The total travel distance increase σki of inserting all

required visits to customer i into a feasible vehicle k is noted. All the feasible vehicles are

sorted in non-decreasing order of σki . That is, let s(i, h) for h = 1, . . . , K denote the vehicle

that appears in the hth position in the sorted list associated with customer i, such that

σ
s(i,1)
k ≤ σ

s(i,2)
k ≤ · · · ≤ σ

s(i,|K|)
k . (4.50)

Then customer i∗ is selected according to

i∗ ∈ arg max
i∈N
{

min{b,o}∑
h=2

(σ
s(i,h)
i − σs(i,1))}. (4.51)

Parameter b defines the number of feasible vehicles that are considered in the regret

operator and o denotes the total number of available vehicles. All the required visits to i∗

will be inserted into the vehicle associated with σ1
i in the previously ordered list at the best

99

positions on corresponding days. This process repeats until all visits to customers in Γa are

reinserted into m. Four possible b values are used in the algorithm, namely, 2, 3, 4, o.

4.4.3.3 Crossover

The crossover operator works in the way of removal and reinsertion described in the LNS.

With two parent solutions m1 and m2, the child solution mc is initialized as a copy of m1

and all required visits to customers in mc whose time consistency is worse than that of m2

are removed. The first version of the previously described greedy reinsertion is used to

reinsert removed visits back to the partial solution.

4.4.4 Column generation framework

This section describes the column generation process at each tree node of the B&P

algorithm. Note that a set covering model given in (4.18)–(4.21) is defined at each tree

node P based on its underlying graph G(P) and its LP relaxation given in (4.22)–(4.25),

denoted by MP (Ω), is solved. Since only a subset Ω1 of Ω is available, the restricted

master problem given in (4.26)–(4.29) is solved and new columns are generated if possible.

This column generation process repeats until no more columns can be identified, which

indicates the optimality of MP (Ω). Algorithm 7 shows the framework of the column

generation process. ColGenExact(λ) solves (4.35)–(4.49) exactly using CPLEX. Likewise,

ColGenHeurAlg() generates new columns by solving (4.35)–(4.49) heuristically. Every time

the RMP is solved, the ColGenHeurAlg() is applied first to identify new column(s) with

negative reduced cost. The ColGenExact(λ) will be employed if the ColGenHeurAlg()

fails to find new column(s).

100

Algorithm 7 Workflow of ColGen(P0)

1: Input: Ω1 the starting set of columns
2: solve RMP (Ω1) and get the dual values λ associated with each customer
3: repeat
4: use ColGenHeurAlg() to generate new columns Ωh and set Ω1 = Ω1 ∪ Ωh

5: if Ωh is empty, use ColGenExact(λ) to find new column Ωe and set Ω1 = Ω1 ∪ Ωe

6: if either Ωh or Ωe is not empty then
7: solve RMP (Ω1) and get its dual values
8: end if
9: until both Ωh and Ωe are empty

4.4.5 Column generation heuristic

This section describes the ColGenHeurAlg() that is used to generate new column(s) with

negative reduced cost in the column generation process.

4.4.5.1 Algorithm framework

Algorithm 8 shows the framework of the LNS. It starts with an initial column v and

generates new columns in subsequent iterations using a set of designed operators. The new

column replaces the current column with certainty if it has better objective value. A worse

column can also be accepted as current column with a given aspiration probability. The

algorithm stops after a maximal number of iterations and all feasible columns with

negative reduced cost encountered during the search process will be output.

101

Algorithm 8 Large neighborhood search

1: Require: optimal dual values of the RMP, maximal number of iterations ηmax, aspira-
tion probability pa, operator performance update interval U

2: create an initial column v and empty set Ψ, let Ψ = Ψ ∪ v if v is feasible and rv < 0
3: let vcurr = v, vbest = v, η = 0
4: repeat
5: choose an operator δ
6: apply operator δ on vcurr to create a new column vnew and compute its objective

value rvnew
7: if rvnew < rvcurr then
8: vcurr = vnew

9: let vbest = vcurr if vnew is feasible and rsnew < rsbest
10: let Ψ = Ψ ∪ vnew if vnew is feasible and rsnew < 0
11: else
12: let vcurr = vnew with probability pa

13: end if
14: update operator performance every T iterations
15: let η = η + 1
16: until η > ηmax

17: return column set Ψ

4.4.5.2 Starting column generation and evaluation

To generate the initial column v, a customer is randomly selected and all its required visits

are inserted into an empty column on corresponding days. The next customer to be

included in the column is determined by computing for each remaining customer its

reduced cost increase if its required visits are inserted at the end of the route on

corresponding days and identifying the customer with the smallest reduced cost increase.

The reduced cost increase of a customer is defined as the total travel cost increase across

all days minus its optimal dual value obtained from RMP. All required visits of the

identified customer will be inserted at the end of the route on corresponding days. This

customer identification and visit insertion process continue until no more customer can be

inserted into the column feasibly.

To evaluate a column, its total travel distance fTD across all days on the planning horizon

is first noted. The optimal dual values associated with all customers included in the

102

column are then subtracted from fTD. In addition, three penalty factors, namely, pc, pd

and ptc, are defined to account for infeasibility caused by violations of vehicle capacity,

maximal route duration and time consistency constraints. A column v is evaluated using

the following formula

rv = fTD(v)−
∑
i∈v

λi

+ pc
∑
d∈D

max (Loadd −Q, 0)

+ pd
∑
d∈D

max (Durad − T, 0)

+ ptc max (TC − L, 0)

where Loadd and Durad are the load and duration of the route on day d in the column,

and TC is the maximum arrival time differential among all customers in the column.

4.4.5.3 Large neighborhood search operators

There are four types of operators that can be used to generate a new column based on an

input column: (1) removal, (2) insertion, (3) swap and (4) removal and reinsertion.

(1) Removal: Removal operators remove visits to selected customers from a column

without reinserting them. Six different removal operators are defined:

• rm rand: this operator randomly selects a customer currently in the column and

removes all its required visits from the column.

• rm rand prob: in this operator, every customer in the column has a certain

probability ρ to be selected and all required visits to selected customers will be

removed from the column. In case that no customer is selected, a customer is

randomly chosen and all its required visits are removed from the column.

103

• rm reduced cost: this operator first computes for each customer in the column its

reduced cost contribution c̄i which is defined as the total travel cost increase for

visiting this customer on all its required days minus its dual value. The customers in

the column are then sorted in list L in decreasing order of c̄i and the customer

L[byg|L|c] is selected. Note that y is a random number in U(0, 1) and g a parameter

that controls the degree of randomization. Therefore, customer with greater c̄i will

have higher probability to be chosen. All required visits to the chosen customer are

removed from the column.

• rm worst tc: in this operator, the customer in the column that has the biggest

arrival time differential across the planning horizon is identified and all its required

visits are removed from the column.

• rm isolated cus: this operator computes for each customer in the column the total

travel cost increase for visiting this customer on all its required days. The customers

in the column are then sorted in list L in decreasing order and the customer L[yg|L|]

is selected. Note that y and g are calculated as in rm reduced cost. All required

visits to the chosen customer are removed from the column.

• rm cluster: this operator groups all the customers in the column into two clusters

using Kruskal’s algorithm to find the minimum spanning tree among them and

deleting the longest edge in the tree. One of the two clusters is chosen randomly and

all required visits to customers in the chosen cluster are removed from the column.

• rm taboo arc: this operator randomly selects a customer whose connecting arc is

declared taboo after branching and removes all its required visits from the column.

Note that the rm cluster only applies to columns with at least three customers while the

other removal operators apply to columns with at least two customers. This is to avoid

generating empty columns. The rm taboo arc is only used for Restricted Master Problems

after branching.

104

(2) Insertion: These operators reinsert customers currently not in the column. In the

operators described below, the best insertion position for a customer c into a route k is

defined as the position on k such that the travel cost increase is minimized if c is inserted

into the route. Three different insertion operators are defined:

• is rand: this operator randomly selects a customer not in the column and inserts all

its required visits into the column on corresponding days. A customer visit is always

inserted into the route at the best insertion position.

• is reduced cost: this operator first computes for each customer currently not in the

column its reduced cost contribution c̄i if all the required visits to this customer are

inserted into the column on corresponding days. Parameter c̄i is computed as the

total travel cost increase associated with the best insertion positions on

corresponding days minus the dual value of the customer being inserted. The

customers not in the column are then sorted in list L in increasing order of c̄i and the

customer L[yg|L|] is selected. y is a random number in U(0, 1) and g a parameter

that controls the degree of randomization. All required visits to the chosen customer

are inserted into the column at its best insertion positions on corresponding days.

• is min dist: this operator first chooses a customer randomly from the column and

identifies its nearest customer that is not in the column. All the required visits to

this nearest neighbor customer will be inserted into the column at the best insertion

positions. on corresponding days.

(3) Swap: These operators replace one customer that is currently in the column with

another customer that is not currently in the column. Three swap operators are defined:

• sw rand: this operator first removes all required visits to a randomly chosen customer

in the column and then reinserts all required visits to a randomly chosen customer

105

not in the column. That is, sw rand consists of applying rm rand and is rand in

succession.

• sw reduced cost: this operator first follows the same procedure defined in

rm reduced

cost to find a customer i to insert into the column. The customer j to be removed

from the column is identified using the same procedure given in rm reduced cost.

All visits to the identified customer j are first removed from the column, followed by

insertion of all required visits to customer i into the column at the best insertion

positions on corresponding days.

• sw min dist: in this operator, a customer i is randomly chosen from the column and

its nearest neighbor j that is not in the column is identified. All of the customer’s

required visits are first removed from the column on corresponding days, followed by

insertion of all required visits to customer j into the column at its best insertion

positions on corresponding days.

• sw taboo arc rcost: this operator first identifies all the customers in the column

that have connecting arcs that are declared as taboo after branching. Their

corresponding reduced costs are noted and the customer i with the biggest reduced

cost is chosen. The customer j that is to enter the column is the one with the smallest

reduced cost if all its required visits are inserted into the column. All required visits

of i are removed, followed by insertion of visits to customer j into the column.

• sw taboo arc mdist: this operator selects the customer i to be removed as defined in

sw taboo arc rcost. The nearest neighbor j of customer i that is not in the column

is to enter the column. All required visits of i are removed, followed by insertion of

visits to customer j into the column.

(4) Removal-reinsertion: These operators remove a number of customer visits from the

106

column and then reinsert them to the column. Seven removal operators are defined:

• rr rand day: in this operator, each vehicle route on each day is checked separately.

Customer visits on a route are subject to removal with a given probability ρ.

• rr rand cus: in this operator, customers in the column are checked sequentially and

marked as to be removed with a given probability ρ. All required visits to determined

customers will be removed from the column.

• rr worst tc: this operator removes all required visits to the customer in the column

that has the biggest arrival time differential across the planning horizon.

• rr worst dual: this operator removes all required visits to the customer in the

column that has the biggest dual value.

• rr worst reduced cost: this operator removes all required visits to the customer in

the column that has the biggest reduced cost contribution c̄i.

• rr related: this operator takes as input the percentage of customer visits to be

removed from the column and determines the total number u of customer visits to be

removed. This operator aims to remove customers with similar characteristics. The

similarity of two customers i and j is computed using equation given in Kovacs et al.

(2015). The related removal operator starts with a randomly selected customer in the

column and removes all its required visits. The customer is then added to set S. In

following iterations, a customer is randomly chosen from S and similarity values

between the chosen customer and all other customers in the column are computed.

The customer with the smallest R(i, j) is chosen as the next customer to be removed.

The removal process continues until at least u removals have been made.

• rr cluster: the same customer clustering approach given in rm cluster is used to

identify a set of customers and all the required visits to the identified customers are

removed from the column.

107

• rr taboo arc day: this operator checks the vehicle route on each day separately and

removes all customers whose incoming arcs are declared taboo after branching.

• rr taboo arc cus: this operator removes all customers from the column whose

connecting arcs are declared taboo on any day of the planning horizon.

Two reinsertion operators are defined:

• rr insert day: In this operator, the reinsertion of removed customer visits to a

column is conducted for each day separately. On a day, the order in which the

removed visits are reinserted is randomized. For a visit to be reinserted, the operator

identifies its best insertion position on the route that has the smallest travel cost

increase.

• rr insert cus: in this operator, the reinsertion of removed customer visits is carried

out for each customer sequentially. The order in which customers are considered for

reinsertion is randomized. For a customer who has removed visits on one or more

days of the planning horizon, its removed visits are reinserted back to the column on

each day sequentially. For a visit to be reinserted, the operator identifies its best

insertion position on the route that has the smallest travel cost increase.

Note that any of the seven removal operators can be paired with one of the reinsertion

operators, which creates a total of fourteen removal-reinsertion operators.

4.4.5.4 Operator selection

At each iteration of the proposed heuristic algorithm, a neighborhood search operator is

selected from the four types of operators. Operator selection is based on the historical

performance of each individual operator. Specifically, the total number of times an

operator is selected and the total number of times it successfully replaces the current

column are recorded. The quotient of these two numbers is set to be the success rate of the

108

operator. The initial success rates of all operators are set to 1.0 and they can not drop

below 0.20 at each performance update, this is to ensure that every operator has a positive

probability to be selected.

The operator selection consists of two steps: operator type selection and operator selection.

In the first step, the average operator success rate is computed for each operator type and

the roulette wheel method is used to select the operator type. Operator types with greater

average success rates have higher chance to be chosen. In the second step, an operator is

selected from the determined type using the roulette wheel selection method with the

individual success rate in the operator type.

Note that only removal operators and swap operators are considered for columns with

vehicle capacity constraint violations. These two types of operators help to restore

feasibility. All four types of operators can be applied on a column without vehicle capacity

constraint violations. The operator success rate is recomputed every T iterations.

4.4.6 Branching rule

At a tree node Px, branching is required if there exist fractional values in the obtained

optimal solution from the column generation process. To branch, all columns appearing in

the optimal solution are used to construct the original xijkd variable. To this end, let

θ∗ = {θ∗1, . . . , θ∗|V ∗|} denote the optimal values associated with the optimal column set V ∗.

Then, the xijkd can be computed as
∑

v∈V ∗ x
v
ijkdθ

∗
v where xvijkd equals 1 if arc (i, j) is

traveled by vehicle k on day d in column v, and equals 0 otherwise.

For every arc (i, j, k, d) with fractional xijkd value, the value b = min(xijkd, 1− xijkd) ∗ tij is

computed. All such (i, j, k, d) arcs are sorted in non-increasing order of b and an arc

(i∗, j∗, k∗, d∗) with smallest b value is used to branch. After branching, two child tree nodes

are generated, namely, Pl and Pr, and the graph associated with each tree node must be

modified accordingly. In Pl, the arc (i∗, j∗, k∗, d∗) must be used and the underlying graph

Gl is defined as

109

• if i∗ = 0 and j∗ 6= 0, then Gl = GPx \ {(i, j∗, k∗, d∗),∀i ∈ N 0, i 6= i∗}

• if i∗ 6= 0 and j∗ = 0, then Gl = GPx \ {(i∗, j, k∗, d∗),∀j ∈ N 0, j 6= j∗}

• if i∗ 6= 0 and j∗ 6= 0, then

Gl = GPx \ {{(i, j∗, k∗, d∗),∀i ∈ N 0, i 6= i∗} ∪ {(i∗, j, k∗, d∗),∀j ∈ N 0, j 6= j∗}}

In Pr, the arc (i∗, j∗, k∗, d∗) must not be used and the underlying graph Gr is defined as

G \ (i∗, j∗, k∗, d∗). Note that the subproblem of a tree node is defined on its underlying

graph. For example, any feasible column of Pl must contain arc (i∗, j∗, k∗, d∗) and any

feasible column of Pr must not contain arc (i∗, j∗, k∗, d∗). After branching, the master

problem MP (Ω) (defined in (4.22)–(4.25)) and the restricted master problem (defined in

(4.26)–(4.29)) associated with a tree node P are then defined on the updated graph GP .

4.5 Computational experiments

This section describes the computational experiments conducted to verify the performance

of the proposed branch-and-price algorithm. Both MIP1 and MIP2 are solved in CPLEX

12.6 using C++ Concert Technology and B&P is also implemented in C++. A time limit

of one day is set for all algorithms. For the procedure FindInitialCols(|M |, Imax), the

population size |M | is set to 200 and the maximum number of non-improving iterations

Imax is set to 20. The LNS is applied with probability 0.05. For the column generation

heuristic, maximal number of iterations ηmax is set to the product of the instance size and

50000. The operator performance update interval T is set to 200. These parameters are set

based on experience and no attempt is made to find the best parameter values.

4.5.1 Existing instances

Ten small-sized instances are taken from Groër et al. (2009) to test the performance of the

proposed B&P algorithm. Five of them have ten customers and the other five have twelve

customers. Both coordinates of all customer locations are generated randomly following a

110

continuous uniform distribution U(0, 10) and the depot is located at (0, 0). The planning

horizon is set to three days and customers require service on each day with probability 0.7.

Customer demand is uniformly distributed in [1, 3] and all service duration are set to one

unit. The maximum travel time limit is T = 35 and vehicle capacity is Q = 15. The

maximum arrival time differential is L = 5.

Table 4.1 shows the computational results comparison between the MIPs and the B&P

algorithm. The first column gives the number of customers in each instance. The second

column indicates the instance number for each instance size. The next six columns show

for MIP1 and MIP2 their corresponding best integer solution (column Best), the relative

percent optimality gap (column Gap) and time used in seconds (column Time). The last

five columns report for the B&P the best integer solution (column Best), the lower bound

(column LB), the relative percent optimality gap (column Gap), the time used in seconds

(column Time) and the indicator of whether the corresponding instance requires branching

at the root node (column Branch). The last row provides the averages across all ten

instances.

It can be seen from the table that all the three compared algorithms can find the optimal

solutions, but MIP1 fails to prove optimality of the obtained solutions for two

twelve-customer instances. MIP2 outperforms MIP1 for all instances with respect to

computational times and significant reduction in the total time required to prove

optimality is observed for all instances. Take the instance 1 with 12 customers for example.

MIP1 stops at a 30.47% gap after a time limit of one day, while MIP2 proves optimality

within 962 seconds. On average, MIP1 returns a 6.28% gap for this set of benchmark

instances with an average runtime of 27884 seconds. On the other hand, MIP2 is able to

prove optimality for all instances within 669 seconds.

Table 4.1 also proves the superior performance of the proposed B&P algorithm when

compared to MIP1 in the literature. First, the B&P is able to prove optimality for all

instances within the time limit of one day. Second, the time required for the B&P to prove

111

optimality is less than that of MIP1 for six out of ten instances. Last, the B&P uses an

average time of 6534 seconds to close the gap for all instances, while MIP1 takes 27884

seconds to reach an average gap of 6.28%.

It can be observed from Table 4.1 that, while both MIP2 and the B&P can prove

optimality for all instances, MIP2 outperforms the B&P for eight out of ten instances with

respect to computational times used. On average, the times required for the B&P to prove

optimality, 6534 seconds, are ten times more than that of MIP2, which is 669 seconds. It

can be seen from the last column that nine out of the ten instances require branching at

the root node. The instance 2 with 12 customers takes the least time to prove optimality

among all the benchmark instances.

Table 4.1: Computational results on literature instances

size id
MIP1 MIP2 B&P

Best Gap Time Best Gap Time Best LB Gap Time Branch

10

1 122.032 0.00% 203 122.032 0.00% 34 122.032 122.032 0.00% 232 YES
2 99.069 0.00% 470 99.069 0.00% 9 99.069 99.069 0.00% 4595 YES
3 123.411 0.00% 9006 123.411 0.00% 380 123.411 123.411 0.00% 2707 YES
4 126.886 0.00% 1904 126.886 0.00% 18 126.886 126.886 0.00% 2904 YES
5 109.313 0.00% 2535 109.313 0.00% 48 109.313 109.313 0.00% 245 YES

12

1 145.025 30.47% 86400 145.025 0.00% 962 145.025 145.025 0.00% 786 YES
2 89.5416 0.00% 3583 89.5416 0.00% 82 89.5416 89.5416 0.00% 216 NO
3 119.687 37.70% 86400 119.687 0.00% 507 119.687 119.687 0.00% 47437 YES
4 141.37 0.00% 84114 141.37 0.00% 4753 141.37 141.37 0.00% 1071 YES
5 117.418 0.00% 4528 117.418 0.00% 195 117.418 117.418 0.00% 5145 YES

Average 119.375 6.28% 27884 119.375 0.00% 669 119.375 119.375 0.00% 6534 -

4.5.2 New instances

To further compare the performance of the three algorithms, we randomly generated a new

set of instances using the same procedure and parameters given in Groër et al. (2009). The

parameter values are used to generate the benchmark instances tested in Section 4.5.1. Ten

instances are generated for each problem size. Tables 4.2 and 4.3 show the computational

results on the newly generated instances (using a 24-hour time limit). In these tables, the

first and second columns give the instance size and number, respectively. The best integer

solution, the relative percent optimality gap and the time used in seconds are reported for

112

MIP1 and MIP2 in the next six columns. The best integer solution, the lower bound, the

relative percent optimality gap, the time used in seconds and the indicator of whether

branching is required at the root node are given for the B&P. The last row in Table 4.3

gives the averages across all instances.

It can be seen from Table 4.2 that MIP2 outperforms MIP1 for all instances with ten or

twelve customers. Although both MIP1 and MIP2 can find the optimal solutions for all

these instances within the time limit, MIP1 fails to prove optimality for five instances with

twelve customers, while MIP2 is able to close the gap for all these instances. Also MIP2

achieves significant reduction in computational times required to prove optimality for these

instances. Take the instance four with twelve customers as example. MIP1 requires 37793

seconds to prove optimality, while MIP2 only needs 107 seconds to close the gap, which is a

99.72% reduction in computational time. For the ten instances with fourteen customers,

MIP2 outperforms MIP1 for seven instances. MIP1 and MIP2 perform the same for the

rest three instances with fourteen customers.

For all of the instances with more than fourteen customers, MIP2 is able to achieve smaller

gaps than MIP1. Take the instance one with sixteen customers as example. MIP2 reaches

a 34.24% gap after the time limit of one day, while MIP1 achieves a 55.23% gap for the

same instance. However, MIP1 outperforms MIP2 with respect to the best integer solution

found within the time limit. On average, MIP1 takes an average time of 66940 seconds to

achieve a 38.75% gap and the average best integer solution objective value is 155.752, while

MIP2 requires an average time of 49549 seconds to reach a 17.35% gap with an average

best integer solution objective value of 152.347. In conclusion, compared to MIP1, MIP2

requires 25.98% less time to achieve a 21.40% reduction in optimality gap and a 2.18%

improvement in the best integer solution objective value.

Table 4.2 also reveals that the proposed B&P algorithm outperforms MIP1 in six out of ten

instances with 10 customers and is outperformed by MIP1 for the rest four instances with

the same size. For all the instances with twelve to eighteen customers, the B&P algorithm

113

achieves superior performance to MIP1 with respect to the best integer solution objective

value, the optimality gap and the total time requirement. Take the instance one with

eighteen customers as an example. The B&P reaches a 7.02% gap within the time limit,

while MIP1 has a 58.80% gap for the same instance. For the instances with twenty

customers, the B&P is able to outperform MIP1 with respect to the best integer solution

objective value. But the B&P fails to find the lower bound for four out of ten instances.

However, for the six instances for which the B&P is able to find the lower bonds, the B&P

achieves smaller gaps than MIP1. On average, the B&P requires an average time of 43517

seconds to achieve a 1.24% gap and the average best integer solution objective value is

151.166, while MIP1 takes an average time of 66940 seconds to achieve a 38.75% gap and

the average best integer solution objective value is 155.752. In conclusion, compared to

MIP1, the B&P requires 34.99% less time to achieve a 37.51% reduction in optimality gap

and a 2.94% improvement in the best integer solution objective value.

Table 4.2 shows that MIP2 outperforms the B&P in nine out of ten instances with ten

customers. While both of them can find the optimal solutions, MIP2 requires significantly

less time for the majority of these instances. Similar comparative performance of MIP2 and

the B&P is also observed for instances with twelve customers in which the B&P is

outperformed by MIP2 in seven out of ten instances. However, for instances with fourteen

customers, MIP2 is outperformed by the B&P in eight out of ten instances and the B&P is

able to close the optimality gap for the majority of these instances. Furthermore, the B&P

outperforms MIP2 for all instances with sixteen or eighteen customers. For the largest

instances with twenty customers, the B&P still outperforms MIP2 whenever it can obtain

the lower bounds. In the cases when the B&P fails to find the lower bounds, it is able to

identify a better integer solution objective value in three out of four times. On average,

compared to MIP2, the B&P requires 12.17% less time to achieve a 16.11% reduction in

optimality gap and a 0.77% improvement in the best integer solution objective value. It

can also be observed from Tables 4.2 and 4.3 that the B&P uses significant less time in

114

proving optimality when no branching is required at the root node.

4.6 Conclusion

This paper investigates methods for exact or near-exact solution of the consistent vehicle

routing problem (ConVRP). We first present a MIP formulation for the ConVRP from the

literature and then show how that formulation can be improved with new constraints.

Testing with ordinary branch-and-bound shows the constraints introduce substantial

benefits.

The main contribution of the paper is the development of a branch-and-price (B&P)

algorithm using columns for routes serving the same customers across the time horizon. LP

relaxations of partial master problems are solved over a subset of known columns, and a

subproblem produces new columns of interest or demonstrates none exist. Heuristics are

derived for all steps including creation of the first set of columns, generation of new ones as

needed, and branching with the partial master optimum is fractional. Comparative

computational testing over randomly generated instances paralleling available ones in the

literature validates the merit of the (B&P) approach. Algorithm (B&P) outperforms the

MIP methods on all but the smallest instances. Indeed it offers the only approach that is

competitive for larger instances. In summary, MIP2 achieves the same or better

performance than MIP1 for all instances and the B&P outperforms MIPs for medium size

instances with fourteen to eighteen customers. Therefore, MIP2 can be used to solve small

ConVRP instances quickly and B&P can be used to obtain a good near-optimal solution.

In the future, heuristic or exact algorithms can be explored to solve the subproblems more

efficiently. Also, cutting planes can be incorporated after the column generation process at

each tree node to tighten the lower bound.

115

Table 4.2: Computational results on new instances

size id
MIP1 MIP2 B&P

Best Gap Time Best Gap Time Best LB Gap Time Branch

10

1 136.619 0.00% 1694 136.619 0.00% 78 136.619 136.619 0.00% 2568 YES
2 138.692 0.00% 1327 138.692 0.00% 40 138.692 138.692 0.00% 1250 YES
3 87.4332 0.00% 134 87.4332 0.00% 100 87.4332 87.4332 0.00% 4199 YES
4 132.993 0.00% 7626 132.993 0.00% 403 132.993 132.993 0.00% 2993 YES
5 140.091 0.00% 4731 140.091 0.00% 48 140.091 140.091 0.00% 426 YES
6 129.79 0.00% 2488 129.79 0.00% 53 129.79 129.79 0.00% 20 NO
7 111.241 0.00% 3017 111.241 0.00% 157 111.241 111.241 0.00% 3044 YES
8 154.778 0.00% 20061 154.778 0.00% 1560 154.778 154.778 0.00% 7834 YES
9 143.801 0.00% 1404 143.801 0.00% 66 143.801 143.801 0.00% 3991 YES

10 101.777 0.00% 3639 101.777 0.00% 82 101.777 101.777 0.00% 202 YES

12

1 120.98 44.92% 86400 120.98 0.00% 67 120.98 120.98 0.00% 50899 YES
2 133.453 0.00% 15574 133.453 0.00% 884 133.453 133.453 0.00% 7802 YES
3 122.56 40.41% 86400 122.56 0.00% 4379 122.56 122.56 0.00% 9656 YES
4 122.249 0.00% 37793 122.249 0.00% 107 122.249 122.249 0.00% 3778 YES
5 138.442 0.00% 11976 138.442 0.00% 2674 138.442 138.442 0.00% 380 YES
6 137.97 44.15% 86400 137.97 0.00% 3686 137.97 137.97 0.00% 7681 YES
7 132.653 41.15% 86400 132.653 0.00% 1442 132.653 132.653 0.00% 14720 YES
8 140.046 0.00% 6276 140.046 0.00% 221 140.046 140.046 0.00% 1524 YES
9 139.536 0.00% 10690 139.536 0.00% 178 139.536 139.536 0.00% 95 NO

10 148.294 52.05% 86400 148.294 0.00% 3063 148.294 148.294 0.00% 406 NO

14

1 126.886 49.44% 86400 126.886 0.00% 387 126.886 123.045 3.12% 86400 YES
2 164.356 51.94% 86400 155.225 23.16% 86400 155.225 155.225 0.00% 28750 YES
3 159.065 40.04% 86400 159.065 40.04% 86400 158.358 158.358 0.00% 48107 YES
4 151.269 54.76% 86400 151.269 25.55% 86400 151.269 151.269 0.00% 2989 YES
5 137.578 52.69% 86400 137.578 0.00% 8659 137.578 137.578 0.00% 79035 YES
6 140.214 46.74% 86400 140.214 0.00% 2986 140.214 140.214 0.00% 62102 YES
7 158.209 49.31% 86400 158.209 49.31% 86400 155.025 155.025 0.00% 28001 YES
8 152.033 44.93% 86400 152.033 44.93% 86400 152.033 152.033 0.00% 44147 YES
9 127.475 45.11% 86400 127.476 0.00% 6388 127.709 121.931 4.74% 86400 YES

10 143.865 42.57% 86400 143.865 0.00% 15392 143.865 143.865 0.00% 5540 YES

16

1 198.96 55.23% 86400 179.209 34.24% 86400 179.209 179.209 0.00% 59097 YES
2 178.053 54.94% 86400 177.885 24.26% 86400 177.885 170.641 4.25% 76400 YES
3 136.405 36.05% 86400 136.405 0.00% 31141 136.405 136.405 0.00% 10279 YES
4 152.472 49.24% 86400 147.591 8.71% 86400 147.592 145.159 1.68% 86400 YES
5 148.146 51.36% 86400 148.146 23.01% 86400 148.146 146.666 1.01% 86400 YES
6 134.328 45.04% 86400 132.065 24.25% 86400 132.065 132.065 0.00% 198 NO
7 124.001 50.05% 86400 124.001 0.00% 56788 124.001 124.001 0.00% 295 NO
8 117.696 52.36% 86400 116.999 0.00% 67097 116.999 116.999 0.00% 356 NO
9 156.827 53.90% 86400 161.093 27.43% 86400 156.827 156.827 0.00% 3586 YES

10 164.275 59.52% 86400 163.483 22.79% 86400 163.483 148.513 10.08% 86400 YES

18

1 207.639 58.80% 86400 210.136 40.81% 86400 207.639 194.016 7.02% 86400 YES
2 196.964 58.14% 86400 173.886 32.97% 86400 167.26 167.26 0.00% 11782 YES
3 159.143 58.04% 86400 160.041 43.96% 86400 157.759 153.789 2.58% 86400 YES
4 205.657 66.41% 86400 180.916 33.69% 86400 180.916 180.673 0.13% 86400 YES
5 140.571 49.25% 86400 138.916 30.79% 86400 138.84 136.544 1.68% 86400 YES
6 142.59 51.24% 86400 137.623 40.44% 86400 135.535 128.63 5.37% 86400 YES
7 148.873 46.84% 86400 147.906 16.06% 86400 147.906 144.741 2.19% 86400 YES
8 152.064 56.19% 86400 152.064 33.55% 86400 152.064 142.838 6.46% 86400 YES

116

Table 4.3: Computational results on new instances

size id
MIP1 MIP2 B&P

Best Gap Time Best Gap Time Best LB Gap Time Branch

20

1 198.336 54.44% 86400 217.817 46.55% 86400 198.336 190.047 4.36% 86400 YES
2 219.878 63.71% 86400 205.274 52.44% 86400 200.339 NA NA 86400 NA
3 207.173 60.02% 86400 203.635 38.35% 86400 203.635 199.632 2.01% 86400 YES
4 208.82 56.99% 86400 206.609 42.42% 86400 198.384 NA NA 86400 NA
5 217.151 59.99% 86400 220.95 38.25% 86400 217.151 213.058 1.92% 86400 YES
6 208.622 54.84% 86400 209.872 31.75% 86400 208.622 194.345 7.35% 86400 YES
7 178.283 60.31% 86400 135.464 18.95% 86400 135.464 NA NA 86400 NA
8 199.08 50.59% 86400 203.1258 42.84% 86400 199.08 NA NA 86400 NA
9 200.023 58.58% 86400 162.399 32.68% 86400 162.399 159.246 1.98% 86400 YES

10 215.525 53.01% 86400 210.307 37.00% 86400 210.307 210.307 0.00% 82589 YES
Average 155.752 38.75% 66940 152.347 17.35% 49549 151.166 146.795 1.24% 43517 -

Reference

Kris Braekers and Attila A. Kovacs. A multi-period dial-a-ride problem with driver
consistency. Transportation Research Part B: Methodological, 94:355–377, 2016.

Marilne Cherkesly, Guy Desaulniers, Stefan Irnich, and Gilbert Laporte.
Branch-price-and-cut algorithms for the pickup and delivery problem with time windows
and multiple stacks. European Journal of Operational Research, 250(3):782–793, 2016.

Jamison M. Day, P. Daniel Wright, Tobias Schoenherr, Munirpallam Venkataramanan, and
Kevin Gaudette. Improving routing and scheduling decisions at a distributor of
industrial gasses. Omega, 37(1):227–237, 2009.

Guy Desaulniers. Branch-and-price-and-cut for the split-delivery vehicle routing problem
with time windows. Operations Research, 58(1):179–192, 2010.

Alan L. Erera, Martin Savelsbergh, and Emrah Uyar. Fixed routes with backup vehicles
for stochastic vehicle routing problems with time constraints. Networks, 54(4):270–283,
2009.

Chris Groër, Bruce Golden, and Edward Wasil. The consistent vehicle routing problem.
Manufacturing & Service Operations Management, 11(4):630–643, 2009.

Irina Ioachim, Jacques Desrosiers, Franois Soumis, and Nicolas Blanger. Fleet assignment
and routing with schedule synchronization constraints. European Journal of Operational
Research, 119(1):75–90, 1999.

Attila A. Kovacs, Bruce L. Golden, Richard F. Hartl, and Sophie N. Parragh. Vehicle
routing problems in which consistency considerations are important: A survey.
Networks, 64(3):192–213, 2014a.

Attila A. Kovacs, Sophie N. Parragh, Richard F. Hartl, and Sophie N. Parragh. A
template-based adaptive large neighborhood search for the consistent vehicle routing
problem. Networks, 63(1):60–81, 2014b.

117

Attila A. Kovacs, Bruce L. Golden, Richard F. Hartl, and Sophie N. Parragh. The
generalized consistent vehicle routing problem. Transportation Science, 49(4):796–816,
2015.

Zhixing Luo, Hu Qin, ChanHou Che, and Andrew Lim. On service consistency in
multi-period vehicle routing. European Journal of Operational Research, 243(3):731–744,
2015.

Diego Pecin, Artur Pessoa, Marcus Poggi, and Eduardo Uchoa. Improved
Branch-Cut-and-Price for Capacitated Vehicle Routing, pages 393–403. Springer
International Publishing, Cham, 2014.

David Russell, Robert J. Rosati, and Evie Andreopoulos. Continuity in the provider of
home-based physical therapy services and its implications for outcomes of patients.
Physical Therapy, 92(2):227–235, 2012.

Anirudh Subramanyam and Chrysanthos E. Gounaris. A branch-and-cut framework for the
consistent traveling salesman problem. European Journal of Operational Research, 248
(2):384–395, 2016.

C. D. Tarantilis, F. Stavropoulou, and P. P. Repoussis. A template-based tabu search
algorithm for the consistent vehicle routing problem. Expert Systems with Applications,
39(4):4233–4239, 2012.

Richard T. Wong. Vehicle Routing for Small Package Delivery and Pickup Services, pages
475–485. Springer US, Boston, MA, 2008.

Christel A. Woodward, Julia Abelson, Sara Tedford, and Brian Hutchison. What is
important to continuity in home care?: Perspectives of key stakeholders. Social Science
and Medicine, 58(1):177–192, 2004.

118

5. Conclusion and Future Research Directions

This thesis studies service consistency in the context of multi-period vehicle routing

problems. Chapter 2 studies the impact of improving service consistency on the total travel

cost in the context of multi-period vehicle routing problems using a multi-objective

optimization approach. An improved multi-directional local search algorithm is proposed

to approximate the Pareto frontier of the problem. The performance of the proposed

algorithm is validated on a set of benchmark instances taken from the literature. Trade-off

analysis using the technique of level diagram shows that approximately 60% and 75%

improvement in driver consistency and time consistency can be achieved at the cost of 5%

increase in total travel cost.

Chapter 3 considers service consistency in the context of the periodic vehicle routing

problems for the first time in the literature. The trade-offs between the objectives of

service consistency maximization and travel cost minimization are investigated using a

multi-objective optimization approach. Various multi-objective optimization algorithms are

employed to approximate the Pareto frontier of the problem. Competitive strengths of

these algorithms are verified on a set of benchmark instances taken from the literature.

Trade-off analysis is conducted on the super set of the non-dominated solutions obtained

by all algorithms to facilitate managerial decision making. Computational results show

that approximately 34% and 30% improvement in driver consistency and time consistency

can be achieved at the cost of 9% increase in total travel cost.

Chapter 4 examines the impact of enforcing service consistency on the total travel cost in

the context of the consistent vehicle routing problems. Service consistency is treated as

hard constraints in a single-objective optimization framework. An improved mixed-integer

programming formulation is proposed for this problem and a branch-and-price algorithm is

developed. The problem is reformulated as a set covering problem and the associated

subproblem is defined. An efficient subproblem heuristic is proposed to identify new

columns with negative reduced costs quickly. The performance of the new mixed-integer

119

programming formulation and the branch-and-price algorithm is validated on a set of

benchmark instances taken from the literature and a new set of randomly generated

instances. Computational results show that the new mixed-integer program outperforms

the existing one from the literature and the branch-and-price algorithm is able to obtain

better gaps than mixed-integer programs for instances with more than fourteen customers.

Studying the impact of enforcing strict service consistency in PVRP is a possible research

direction. Chapter 3 represents a first stride in the literature to consider service consistency

in the context of PVRP. It is worthwhile to evaluate the travel cost increase if strict driver

consistency and time consistency is enforced in PVRP as in the ConVRP studied in

Chapter 4, due to the wide applicability and versatility of PVRP. The Pareto frontier

approximation obtained in Chapter 4 for the MoConPVRP may not contain a solution that

satisfies the service consistency constraints defined in Chapter 4 and therefore can not be

used to study the impact of enforcing service consistency on the travel cost. Efficient

solution methods must be defined for this problem since PVRP is more constrained than

ConVRP, mainly because the number of available vehicles is limited at the depot. Another

research direction is to develop efficient exact solution methods for the generalized

consistency vehicle routing problems in which multiple drivers are allowed to visit a

customer across a planning horizon and time consistency is enforced as in the ConVRP.

120

	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	5-2017

	Service Consistency in Vehicle Routing
	Kunlei Lian
	Recommended Citation

	tmp.1495818398.pdf.aSkJz

