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Abstract 

The underutilization in trucking leads to nearly 5 billion gallons of wasted fuel annually. One way 

to recapture part of this waste is to use collaborative logistics.  This research focuses on one specific 

aspect of collaborative logistics: load mixing. Load mixing is the idea of mixing two or more items of 

different weights in the same container to reduce the number of trucks needed. 

Load mixing is similar to other packing problems such as the knapsack and container loading 

problems.  However, traditional packing problems typically only assume a single type of capacity (e.g., 

weight), whereas load mixing must simultaneously the weight and spatial capacities to effectively utilize 

containers.  We propose a mathematical model with constraints for the space and weight limits that can 

be used to minimize the number of trailers used.  Though there are some tractability issues associated 

with this formulation, a more fundamental issue is the existence of multiple optima for this type of 

problem.  While solutions that all use the same number of containers to transport to the commodities 

are all viewed equally by the model, these solutions vary in terms of how easily they can be 

implemented.  For these reasons, I propose a heuristic to solve the load mixing problem.  The 

performance of the heuristic is tested against our exact formulation to compare solutions.  

 First a heuristic to load two commodities with different weight and demand – one heavy and 

one light – on a set of containers was created. The theoretical minimum number of containers needed is 

calculated based on the total demand and total weight of the commodities. Once this heuristic was 

examined it was generalized to handle more than two commodities. Both heuristics were implemented 

in C++.  Testing for both heuristics shows both achieve the theoretical minimum in a large amount of 

cases. The testing of these heuristics also led to many insights about when to use or to not use load 

mixing. For example, when more of the demand is composed of lighter commodities the savings are 

greater than when the demand is mostly composed of heavy commodities.  
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1. Introduction 
 Typically companies produce and therefore ship multiple types of products. The trucks used to 

ship these products are limited in two ways: there is both a weight and spatial (cube) limit as to the 

amount of freight that can be transported. Some freight is very heavy, leading to full utilization of a 

truck’s weight capacity but an underutilization of a truck’s cube.  Conversely, other freight is very light, 

leading to high cube utilization but very low weight utilization.  

Take for instance a company such as PepsiCo that produces Frito Lay potato chips and Pepsi 

soda. Chips are a very light product; however, soda is considerably denser. Consider the example shown 

in Table 1, which shows demands and approximate weights for these items. 

Table 1: Example Problem Data 

Product Weight 
(lbs/pallet) 

Demand 
(pallets) 

Soda 1200 60 
Chips 300 60 

Typical 53’ truck trailers can hold up to 60 standard-sized pallets and up to 45,000 pounds.  

Shipped separately, three trucks would be required to transport these items.  One container would 

contain 60 pallets of the chips, which fully utilize the truck’s cube capacity, but only utilize 40% of the 

weight.    Two additional containers would be required to transport the soda.  One container would 

contain 37 pallets of soda, which would fully utilize the container’s weight capacity, but only utilize 62% 

of the cube. The remaining 23 remaining pallets of soda would be shipped in an additional container, 

leaving both the weight and cube underutilized.  

However, suppose that chips and soda could be shipped together in common containers.  Only 

two containers would be required now each containing 30 pallets each of soda and chips, fully utilizing 

both the weight and cube of the trailers.  
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While this is only a small example, it illustrates the powerful concept of shipping different 

products in the same container to achieve better weight and cube utilization.  We refer to this as load 

mixing; this has been implemented in by some companies in industry. Kraft implemented a load mixing 

system, which led to 9000 fewer loads and 6.2 million less miles driven (Neufarth, Haining, & Moore, 

2011). Kimberly Clark and Colgate-Palmolive have partnered together and successfully implemented a 

load mixing system as well. This partnership increased truckload utilization by 9%. The reduction of 

trucks on the road and fewer miles driven saved 28.3 carbon tons, which shows the impact load mixing 

can have on the environment (Degroot, Hood, & McHugh, Next Generation in Collaborative Shipping, 

2012).  These examples demonstrate impact that load mixing can have on transportation efficiency.  

Although some individual companies have implemented load mixing solutions, many companies 

have not yet implemented load mixing.  Furthermore, this important problem has not been studied in 

literature to the best of our knowledge.  The work on this problem has been motivated by the 

collaboration with a major retailer. This retailer is looking into the effect of mixing many of their 

suppliers’ freight on the overall trailer utilization. They are particularly interested to implement load 

mixing systems in the distribution center (DC) to store operations where they have to transport various 

types of freight. However, other opportunities for load mixing arise in shipping goods directly from the 

supplier to the store and in multi-stop situations where a truck visits many suppliers en route to a store 

or DC. 

Load mixing not only can have an impact for individual companies, but on the trucking industry 

as a whole due to the collaborative nature of load mixing. Trucking is the primary mode of US freight 

transportation and accounts for 79% of freight costs (Sutherland, 2006). On average these trucks are 

only 60% utilized, leading to nearly 5 billion gallons of wasted fuel annually (Federal Highway 

Administration, 2009). The Kimberly Clark and Colgate-Palmolive example from above shows how load 
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mixing, which is form of collaborative logistics, can help recapture part of the current waste. By the 

mixing of two or more types of items in the same container, Kimberly Clark and Colgate-Palmolive found 

an increase in overall truck utilization and therefore fewer trucks on the road, which would increase the 

overall truck utilization and reduce the amount of fuel wasted.   Similar improvements can also be 

obtained when other companies collaborate on load mixing. 

The objective of this research is to develop a heuristic that can be used to effectively mix freight 

to minimize the total number of containers required. In particular, this heuristic would determine how 

the freight should be loaded onto containers (i.e. how many pallets per item per truck) and the total 

number of containers required to transport the freight.  This heuristic is then used to show when a load 

mixing system would be beneficial – in other words what kind of freight can or should be mixed, and 

what types of benefits would be realized by mixing this freight. This methodology will make load mixing 

accessible to industries with varying type of products

2. Literature Review 
The load mixing problem is a packing problem similar to both the bin packing and a container 

loading problems.  In both problems, a known collection of items must be assigned to containers. In bin 

packing problems the objective is to minimize the number of containers used, and in container loading 

the objective is to load the container or containers to maximize volume utilization. Bin packing and 

container loading problems are extensively studied in literature and known to be NP-hard; therefore 

different solution methodologies to solve these problems have been developed. Classifications of 

various packing problems are given in Dyckhoff (1990) and Wascher, Haubner, Schumann (2007). Using 

these packing problem typologies, the classification of the load mixing problem is 2/V/I/C. The 2 

indicates that this is a 2-dimensional problem because it is constrained by the spatial and weight 

capacities of the container. The V indicates that all of the items – in this case pallets – have to be loaded 

onto a container, but not all of the containers available have to be used. The containers in this problem 
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(i.e., trailers) are all assumed to be the same size, so they are identical figures (I).  Finally, all of the 

pallets are the same size with varying weights; this is referred to as congruent (C). The load mixing 

problem will be formally introduced in Section 3.   

The majority of problems previously examined in the literature consider a heterogeneous set of 

boxes (i.e. boxes of varying sizes) on containers to maximize the volume utilization, while meeting 

various side constraints. The most commonly used constraints require that each box be completely in 

the container, boxes do not overlap with each other, each box is only placed on the floor or other boxes 

that can support it, and boxes are parallel to the side walls. To solve this set of bin packing and container 

loading problems, Gehring and Bortfeldt (1994, 2000) propose genetic algorithm approaches, as well as 

tabu search approaches (Bortfeldt & Gehring, 2001; Bortfeldt, Gehring, & Mack, A Parallel Tabu Search 

Algorithm for Solving the Container Loading Problem, 2003). Morabito and Arenales (1994) use of 

AND/OR-graphs, and Cesar and Armentano (2007) use a multi-start constructive heuristic to solve the 

container loading problem (Morabito & Arenales, 1994; Cesar & Armentano, 2006). Pisinger (2002) 

presents a heuristic to solve the Knapsack Container Loading Problem. Lodi, Martello and Monaci (2002) 

present a survey of algorithms, heuristics, and metaheuristics used in solving Two-Dimensional Bin 

Packing problems and Two-Dimensional Strip Packing problems (Pisinger, 2002; Lodi, Martello, & 

Monaci). Lim, Rodrigues, and Yang (2005) present a survey of heuristics used to solve the three-

dimensional container loading problem, and introduce their own heuristic for packing containers (Lim, 

Rodrigues, & Yang, 2005). The reader is referred to Dyckhoff (1990) for detailed descriptions of these 

problems (Dyckhoff, 1990).   

The primary difference between the load mixing problem and previous research is that this 

research considers both weight and volume. In previous work the focus is to maximize the volume 

utilization, without any weight considerations. That is, previous research assumes that the weight of the 
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objects does not further limit the capacity of the containers into which the objects are loaded.  While 

this is true for many objects, this is untrue for very dense, heavy items in many types of containers.  

Although weight limitations were identified by Bischoff and Ratcliff (1995) as a real-world constraint that 

made existing container loading research difficult or impossible to implement in practice, to the best of 

our knowledge this has not been addressed in the literature (Bischoff & Ratcliff, 1995).   

The remainder of the paper is organized as follows. In Section 0 the load mixing problem is 

formally defined. Section 4 presents how this problem can be formulated and solved as an optimization 

problem. Section 5 presents a heuristic for load mixing when there are just two products and describes 

the computational experiments used to validate the present heuristic. Section 6 extends the heuristic 

presented in a Section 5 to a generalized form and describes computational experiments to validate it. 

Finally Section 8 presents the conclusions found and possible future work.  

3. Problem Description  
For the load mixing problem, we are given a set of products, 𝑃 =  {1, 2, … ,𝑛}, where each 

product p has a weight, 𝑤𝑝, and demand, 𝑑𝑝.  It is assumed that pallet quantities of each product p are 

being shipped, and that each of these pallets has the same spatial dimensions.  The load mixing problem 

determines an assignment of products to containers so as to minimize the total number of containers 

used.   It is assumed that each container has the same weight capacity, W, and a volume capacity, V, and 

there are an infinite amount of containers available to use. The assignment of products to trailers must 

not violate these capacities.  This problem can be solved using a mathematical model as well as a 

heuristic approach both of which can be seen in future sections. 

4. Mathematical Formulation 
To assess the tractability of the load mixing problem we use the following formulation.  The sets 

for this problem are listed below.  
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𝑃 =  𝑆𝑒𝑡 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠, 𝑖𝑛𝑑𝑒𝑥𝑒𝑑 𝑏𝑦 𝑝  

𝑇 =  𝑆𝑒𝑡 𝑜𝑓 𝑡𝑟𝑢𝑐𝑘𝑠,  𝑖𝑛𝑑𝑒𝑥𝑒𝑑 𝑏𝑦 𝑡  

The parameters for this problem are defined as follows.  

𝑤𝑝 ≜ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑝 𝑖𝑛 𝑝𝑜𝑢𝑛𝑑𝑠 𝑝𝑒𝑟 𝑝𝑎𝑙𝑙𝑒𝑡       

𝑑𝑝 ≜ 𝑑𝑒𝑚𝑎𝑛𝑑 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑝 𝑖𝑛 𝑝𝑎𝑙𝑙𝑒𝑡𝑠 

𝑊 ≜ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑜𝑛 𝑎 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟  

𝑉 ≜ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑝𝑎𝑙𝑙𝑒𝑡𝑠 𝑎𝑙𝑙𝑜𝑤𝑒𝑑  𝑜𝑛 𝑎 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 

Finally the decision variables for this problem are to decide how many pallets of each product 

are to be shipped on each truck and whether a truck is used or not. The mathematical definition of these 

variables can be seen below.  

𝑥𝑝,𝑡 ≜ 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑙𝑙𝑒𝑡𝑠 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑝 𝑖𝑛 𝑡𝑟𝑢𝑐𝑘 𝑡    

𝑦𝑡 ≜ �
1       𝑖𝑓 𝑡𝑟𝑢𝑐𝑘 𝑡 𝑖𝑠 𝑢𝑠𝑒𝑑 
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                

  

The values of 𝑦𝑡 and 𝑥𝑝,𝑡 determine the assignment of pallets to containers and therefore how 

many containers are needed.  The mathematical model of the load mixing problem is given below. 

min∑ 𝑦𝑡𝑡∈𝑇          (1) 

∑ 𝑤𝑝𝑥𝑝,𝑡 ≤ 𝑊𝑦𝑡      ∀ 𝑡 ∈ 𝑇𝑝∈𝑃       (2) 

∑ 𝑥𝑝,𝑡 ≤ 𝑉𝑦𝑡              ∀ 𝑡 ∈ 𝑇𝑝∈𝑃       (3)   

∑ 𝑥𝑝,𝑡 ≥ 𝑑𝑝                ∀ 𝑝 ∈ 𝑃𝑡∈𝑇       (4)  
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𝑥𝑝,𝑡 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ∀ 𝑝 ∈ 𝑃, 𝑡 ∈ 𝑇 ,  𝑦𝑡 ∈ {0,1}  ∀ 𝑡 ∈ 𝑇   (5) 

The objective function (1) seeks to minimize the total number of containers used. Constraint 

sets (2) and (3) ensure that the weight and spatial capacities respectively of each container are not 

violated. Constraint set (4) ensures that each product is assigned to containers. Finally, constraint set (5) 

enforces the integrality of all variables.  

Because it assumed than an unlimited number of trucks are available to transport items, it is 

assured that this mathematical model will have a feasible solution and can therefore be solved to obtain 

the optimal solution.  However, there are some drawbacks to optimization-based approaches. First, 

preliminary research showed that a non-trivial number of instances cannot be solved within an hour. For 

an operational level problem such as load mixing, this is problematic if these problems are going to be 

implemented in industry. Note that the time it takes to solve the load mixing problem significantly 

increased as the number of pallets increased, which would be a problem in cases with a large quantity of 

items. Second, since there are many different ways that items can be loaded into the same number of 

containers, there are typically many alternative optimal solutions to each instance.  Note that while 

these are all the same from the perspective that they utilize the same number of containers, these 

solutions can be more or less desirable based on secondary objectives such as how easily they can be 

loaded by operators. For these reasons a heuristic was created to solve this problem. The heuristic is 

more efficient than optimization solvers, and results in solutions with similar loading configuration for 

each trailer without significantly affecting solution quality.  

5. Two Product Heuristic Approach 
Motivated by work with a major retailer, we begin by focusing on cases where just two types of 

freight must be transported: one heavy and one light. This section details the notation needed for the 

heuristic then walks through the heuristic used to load two products onto a set of containers. First, an 
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assumption about the number of pallet positions and maximum allowed weight for a container needs to 

be made. This information would then be used to determine what products are considered to be light or 

heavy. Trailers loaded with only heavy products would fully utilize the weight capacity of the container, 

while underutilizing the space.  Before presenting the heuristic, the notation is introduced in Figure 1. 

 

 

 

 

 

 

 

   

 

The overall approach for this heuristic was to first load the heavy product onto containers based 

on the demand for the product then load the light product based on the remaining space and weight of 

the container. But first, the theoretical minimum number of trucks needed is calculated. The theoretical 

minimum is the fewest number of trucks required based on the weight and demand of the products. For 

items that weigh less, the theoretical minimum will be based on the demand since the space of the 

container is the main constraint. Conversely, with heavier items the minimum number of trucks required 

is based on total weight since the weight capacity of the container met first. Note that this theoretical 

minimum is obtained by selecting the maximum of the number of containers needed based on the 

weight constraint and the cube constraint. This equation, used to calculate the theoretical minimum, T, 

is given in line 1 of the heuristic shown in Figure 2. For each of the containers the slack weight, slack 

Notation 
F = set of freight types f:  F={H, L} 
W = Total weight capacity of trailer 
V = Total cube capacity of trailer 
wf = Weight per pallet of the freight type f (in lbs.), f in{H,L} 
df = Demand of freight type f (in pallets), f in{H,L} 
T = number of trailers required to transport freight 
nf[i] = number of pallets of freight type f assigned to truck i (in pallets), i = 1…T, f in{H,L} 
af = number of assigned pallets of freight type f, f in{H,L } 
sW[i] = weight slack of trailer i (in lbs.), i = 1…T 
sV[i] = volume slack of trailer i (in lbs.), i = 1…T 
 

Figure 1: Notation for 2-Product Heuristic Figure 1: Notation for 2-Product Heuristic 
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cube, and number of pallets for each product are initialized (lines 4-9). The slack weight is the remaining 

weight left on the truck, which is initialized to 45,000 and the slack cube is the remaining pallets on the 

trucks, which is initialized to 60. The number of pallets for each product just refers to the number of 

pallets for that product that will be loaded onto an individual truck. Next the number of pallets of the 

heavy product to be loaded on each container is calculated based on the demand of the item and the 

theoretical minimum number of containers (line 10-12). When the demand is a multiple of the minimum 

number of trailers needed, T, then this process loads the entire demand for the product. If the demand 

is not a multiple T, then there are at most T-1 remaining pallets, which are loaded one at a time until the 

entire demand for the heavy product is assigned to trailers (lines 14-20). Once the heavy product is 

completely loaded the light product is loaded onto the containers based on the combination of demand 

of the item, the slack weight and the slack cube of the container are updated (lines 25-32). Throughout 

the entire heuristic the number of pallets loaded of each product is tracked to ensure the demand for 

each product is met. This value is initialized in lines 2 and 3 and updated in lines 13, 18, and 30. If 

assigned number of pallets for the light product is less than the demand and no more space is available 

in the current set of containers, a new container is added and the heuristic restarts (lines 33-36). The 

heuristic is formally given in Figure 2 below.  
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Two-Product Loading Heuristic 

1. T  max{�dHwH + dLwL

W
� , �dH + dL

V
� }  

2. 𝑎𝐻   0 
3. 𝑎𝐿   0 
4. FOR i = 1…T 
5.   𝑛𝐻[𝑖] 0 
6.   𝑛𝐿[𝑖] 0 
7.   𝑠𝑊[𝑖] W 
8.   𝑠𝑉[𝑖]  V 
9. END FOR 
10. FOR i = 1…T 
11.   𝑛𝐻[𝑖] �𝑑𝐻

𝑇
�  

12. END FOR 
13. 𝑎𝐻  T∙ 𝑛𝐻[1] 
14. IF 𝑎𝐻  < 𝑑𝐻 
15.  Value   𝑚𝑖𝑛 �1, 𝑠𝑊[1]

𝑤𝐻
� 

16.   FOR i = 1… (𝑑𝐻 - 𝑎𝐻) 
17.    𝑛𝐻[𝑖] 𝑛𝐻[𝑖]+ Value 
18.    𝑎𝐻  𝑎𝐻 + Value 
19.  END FOR 
20. END IF 
21. FOR i=1..T   
22.   𝑠𝑊[𝑖]   𝑠𝑊[𝑖] - 𝑤𝐻 ∙ 𝑛𝐻[𝑖] 
23.   𝑠𝑉[𝑖]  𝑠𝑉[𝑖] - 𝑛𝐻[𝑖] 
24. END FOR 
25. FOR i = 1… T 
26.   IF 𝑎𝐿  < 𝑑𝐿 
27.    𝑛𝐿[𝑖]  𝑚𝑖𝑛 ��s𝑊[𝑖]

𝑤𝐿
� , 𝑠𝑉[𝑖],𝑑𝐿 − 𝑎𝐿�  

28.    𝑠𝑊[𝑖]  𝑠𝑊[𝑖]– 𝑤𝐿 ∙ 𝑛𝐿[𝑖] 
29.    𝑠𝑉[𝑖]  𝑠𝑉[𝑖] – 𝑛𝐿[𝑖] 
30.    𝑎𝐿 𝑎𝐿 + 𝑛𝐿[𝑖] 
31.  END IF 
32. END FOR  
33. IF 𝑎𝐿  < 𝑑𝐿 
34.   T  T+1 
35.   RETURN to line 2 
36. END IF 

  

Figure 2: Heuristic to Load Two Products 
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6. Two Product Computational Experiments  

6.1 Data Generation
To assess how the heuristic performs, computational experiments were performed to vary both 

the total demand for the products and the proportion of heavy and light products shipped. For this 

project, it is assumed that on the container there are 60 pallet positions and maximum allowed weight 

of 45,000 pounds on each container.  To have a fully utilized container with respect to weight and cube, 

the average weight per pallet would need to be 750 pounds (i.e., 45,000/60). Knowing this, a light 

product is defined as a product that weighs less than 750 pounds. Trailers loaded only with light 

products would fully utilize the container’s spatial capacity while underutilizing its weight capacity.  A 

heavy product is then defined as a product weighing more than 750 pounds per pallet, and would fully 

utilize a container’s weight capacity without using its full spatial capacity.    

The total demand for the products refers to the combined total demand of the products; values 

for the total demand considered are shown in Table 2.  The number of heavy and light pallets for each 

demand level will be based on the demand distributions. The demand distributions indicate the 

proportion of freight that is light and heavy, respectively. For example, if the total demand level is set at 

100 pallets and the demand needs to be equally distributed between the products then there will be 

approximately 50 pallets that are considered light and approximately 50 pallets that are considered to 

be heavy.  Note that the values given in Table 3 are approximate; this will be discussed further later in 

this section along with additional details about the data generated to test this heuristic. 

  



12 
 

 

Table 2: Total Demand Levels to be Examined 

Total Demand 
Levels (pallets) 

50 
100 
150 
300 
500 
750 

1,000 
2,000 
5,000 

10,000 
 
For each of the total demand levels given in Table 2, we considered several demand 

distributions. These are summarized in Table 3 below. 

Table 3: Demand Distributions to be Examined 

Demand Distributions 
 Cases Light Product Heavy Product  
Even 45%-55% 45%-55% 

Skewed Light  70%-80% 20%-30% 
Skewed Heavy  20%-30% 70%-80% 

 
The heuristic was then used to solve the instances generated for each demand level-demand 

distribution combination. To show the quality of the heuristic, 50 instances were taken from each 

combination and the optimal solution was found for all of the instances that were not loaded in the 

theoretical minimum.  For most of the instances, our heuristic obtained the optimal solution.  

The total demand levels were manually input into the system. The weight for each of the 

products was randomly generated. Recall that the 750 pounds per pallet cutoff is based on the weight of 

a pallet that would fully utilize both a container’s weight and spatial capacity. The weight of light 

products was uniformly distributed between 150 and 750 pounds per pallet; the weight of heavy 
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products was uniformly distributed between 751 and 2200 pounds per pallet. The lower and upper 

bounds were based on data provided from a major retailer and were used for data generation. 

The three demand distributions shown in Table 3 were considered: even, skewed heavy and 

skewed light.  In the even case, the total demand is distributed approximately evenly for both products. 

For example if the total demand level was set at 50 pallets, then the demand for the light product would 

be approximately 25 pallets and the demand for the heavy product would be approximately 25 pallets. 

To model variation, the demand of each product will be between 45% and 55% of the total demand. 

Note that because the demand of heavy and light products are generated independently, the total 

demand does not always add up to the demand levels given in Table 2; this is intended to represent 

slight randomness in the demand for products.  These three cases will show how the how the 

composition of the total demand (i.e., heavy-light distribution) may influence the effects of mixing.   

For each demand distribution, random numbers in the intervals given above was found. For 

example, in the skewed light case, a number between 0.7 and 0.8 was randomly generated and a second 

random number between 0.2 and 0.3 was independently generated. Then each of the numbers is then 

multiplied by the total demand level of interest. This gives the demand for each of the products, the 

larger demand in this case belonging to the light product. This calculated value for the demand 

alternates between being round up or down to ensure variation among the instances. 

For each demand level-demand distribution combination, 500 instances were created. This 

means that 30 total different combinations were examined with a total of 15,000 instances. The data 

was generated in Visual Basic for Applications in Excel and the heuristic implementation was completed 

in C++ in Visual Studio 2008 on a computer with an Intel® Core™ i7-2620M CPU @ 2.70Ghz processor.  

6.2 Results  
Two methods were used to determine the effectiveness of the heuristic. First, 50 instances from 

each demand level and demand distribution combination, 1500 overall were solved.  The instances 
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where the theoretical minimum was not obtained by the heuristic were solved to optimality using the 

mathematical model. The information used in the analysis that can be seen in the Table 4 below 

includes the average time it took the heuristic to find a solution, the average time it took the model took 

to find the optimal solutions, and the number of cases that were sent to the model to be solved, which 

is the number of cases where the theoretical minimum was not met. Note that the average times 

recorded in first columns only include the cases solved to optimality (i.e. for the even demand 

distributions the average time is for the 76 cases that were solved to optimality). The table also includes 

information about how many more trucks are used using the heuristic solution versus the optimal 

solution (% more trucks used with heuristic). The final piece of information given is the percentage of 

instances that were optimal (% Optimal) in each demand distribution.  

Table 4: Optimality Results 

Demand 
Distribution  

Avg Time to 
Find Heuristic 
Solution (min) 

Avg Time for 
Model to find 
Optimal (min) 

# Cases 
solved to 
optimality  

% more trucks 
used with 
heuristic 

%  Optimal 

Even 0.0005 127.865 76 0.289% 90.6% 
Skewed Light  0.0003 28.014 34 0.155% 95.6% 

Skewed Heavy  0.0009 21.852 95 0.187% 89.4% 
 

This analysis was performed to assess the quality of the heuristic. As can be seen in Table 4, the 

heuristic was able to obtain high-quality solutions for each of the demand distributions very quickly.  In 

the cases that were the heuristic was not able to obtain the optimal solutions, there was not a large 

increase in the number of more trucks used. These results show that this heuristic is very effective. 

The second method used to assess the heuristic compared the results obtained from the 

computational experiments against those obtained from the mathematical model presented in Section 

4. To make a proper comparison, the time the heuristic takes to find a solution was compared to the 

time the mathematical model takes to find the same solution, for each instance that was not loaded to 

the theoretical minimum number of trucks.  This analysis shows the speed of the heuristic relative to 
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that of the mathematical model. The mathematical model was implemented in C++ linked to CPLEX 12.2 

libraries.  The initial experimentation revealed that it could take a very long time to solve certain 

instances.  As a result we implemented a maximum time limit of 60 minutes for each instance to reach 

the heuristic solution. The results of these experiments can be seen in the table below.  

Table 5: Timing Results  

Demand 
Distribution 

Avg Time 
to Find 

Heuristic 
Solution 

(Min) 

Avg Time for 
Model to find our 

Solution (Min) 
# Cases 

# Cases 
that took 

60 minutes 

Avg 
Optimality 

Gap 
# Failed 

Even 0.0398 2.439 751 14 2.150% 19 
Skewed Light  0.0005 8.958 332 11 2.511% 3 

Skewed Heavy  0.0013 2.951 929 22 1.644% 11 
 

The first column of Table 5 is the average time it takes the heuristic to solve an instance, which 

is much less than a minute. The second column shows the time it takes the mathematical model to find 

the heuristic solution, which in all cases is much longer to solve than the heuristic. Since the model was 

only solved for cases that did not obtain the theoretical minimum, this number was also recorded, which 

is in column 3. Column 4 shows the number of cases that took 60 minutes to find the heuristic solution 

and the average optimality gap for the instances is seen in column 5. The final column (# failed) refers 

the number of instances that could not find the heuristic solution in the 60 minute time limit. Overall 

this table provides support to the claim that the heuristic solves much faster than the mathematical 

model.  

Recall that understanding how load mixing enables companies to more efficiently utilize trailers 

was a main interest in this research.  To assess this, the number of trucks required if each product were 

shipped independently (i.e., containers contain only a single type of product) was compared to the 

number required using load mixing.   Then the percentage difference (i.e., one minus the total amount 
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of trucks used by the heuristic divided by the total number of trucks used if the products were shipped 

separately) was computed.  

The results from the experiments can be summarized in the graph below.  

 

Figure 3: Summary Graph for Two Product Heuristic Experiments 

Many conclusions can be drawn from Figure 3. First, it is observed that as the total demand level 

increases, the percentage of trucks decreased asymptotically approaches a non-zero limit beyond which 

further improvements are not possible. Though currently it is not fully understood how this limit can be 

obtained, this result will be examined further in future work. Second, it can be seen that mixing is most 

effective when the demand is highly composed of the lighter product and least effective when the 

demand is highly composed of the heavy product. This demonstrates that the demand distributions 

have a significant impact on the amount of savings.   

In the case composed mostly of the light products, load mixing is able to decrease the number 

of containers used by approximately 12%. With the total demand split evenly between heavy and light 

products, load mixing is able to decrease the number of containers used by approximately 12%.  In the 

case with mostly heavy pallets, the percent of trucks decreased is only around 4%. This indicates that 
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mixing does not have a large effect when the demand is mostly the heavy product, but a significant 

effect when the demand is either mostly light or split evenly between the products. Intuitively, these 

results make sense. In the case with mostly light products, the number of containers needed is based on 

the total demand. There are a few heavy pallets on each container followed by many light pallets, which 

better utilize the weight and cube of the container than if the products were shipped separately. As a 

result, fewer containers are required. The same reasoning explains the reduced number of trucks 

required in the even case. Since the containers utilize both weight and cube instead of just one or the 

other, the number of trucks needed is less.  In the case with mostly heavy products, the number of 

containers is based on the total weight. In this case, the containers will still use more utilize the weight 

of the container and underutilize the cube, so the number of trucks used is not as reduced to the same 

extent as in the other two cases.     

Note also the impact of demand level on the effectiveness of load mixing.  In particular, it is 

observed that load mixing is most effective when the demand level is low.  This can be explained by the 

low number of containers needed in general when the demand is low. For example, in the case of the 

total demand level of 50, the total number of trucks required when shipping the products separately is 

two, but with mixing only one truck is needed. Therefore, the percent of trucks decreased is around 

50%. This drives the average percentage for that case up, but as can be seen this quickly decreases to 

the limit value. An anomaly in the graph for the “Even” case can be seen. It actually decreases 

substantially for a total demand level of 100 but increases again for 150. Therefore, instances with a 

total demand level of 75 and 125 were also run for this demand distribution to give insight to why the 

graph behaved this way. The only explanation for this behavior is that at demand levels of 75 or 100 the 

total number of trucks needed would be at least 2 if shipped separately and shipped with mixing. Since 

many of the cases will have the same number of trucks using the heuristic as with shipping separately 

there is not as big of a percentage decrease, but as the total demand goes to 150 where at least 4 trucks 
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will be needed to ship separately and only 3 with the heuristic then the percent decrease is higher. From 

this point on the curve behaves like the curves from the other demand distributions. 

 This research shows that for two products, load mixing has the most effect when the total 

demand is mostly composed of light pallets or evenly mixed between both the products. Mixing is also 

more effective with lower total levels of demand, but as the total demand increases the percent of 

trucks decreased approaches an asymptotic limit.  

 

7. Generalization Heuristic Approach  
The heuristic described in Section 5 focused on loading only two products.  This section will extend 

the heuristic previously presented to now accommodate more than two products. The same 

assumptions about weight and spatial capacity of the truck will be used here as well. An additional 

assumption made in this case is that the products will be ordered from heavy to light, which will be 

known before the heuristic begins.  

This heuristic has three main parts. Two of the parts account for loading the heaviest and lightest 

items and are the same as in the two-product heuristic. The additional part loads the second heaviest to 

the second lightest items. The generalized heuristic can be seen in Figure 5 and Figure 6 below.  

The notation for the heuristic is similar to the notation from Section 5 can be seen in Figure 4 below. 

  Notation 
N types of freight, f 
W = Total weight capacity of trailer 
V = Total cube capacity of trailer 
wf = Weight per pallet of the freight type f (in lbs.), f = 1, …, N 
df = Demand of freight type f (in pallets), f = 1, …, N 
T = number of trailers required to transport freight 
nf[i] = number of pallets of freight type f assigned to truck i (in pallets), i = 1…T, f = 1, …, N 
af = number of assigned pallets of freight type f, f = 1, …, N 
sW[i] = weight slack of trailer i (in lbs.), i = 1…T 
sV[i] = volume slack of trailer i (in lbs.), i = 1…T 
 

Figure 4: Notation for Generalized Heuristic 
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Generalized Loading Heuristic  
 

1. T  max{�
∑ 𝑑𝑓∗𝑤𝑓
𝑁
𝑓=1

W
� , �

∑ 𝑑𝑓𝑁
𝑓=1

V
� }  

2. FOR i = 1…T 
3.      FOR f = 1…N 
4.           nf[i]  0 
5.           sW[i]  W 
6.           sv[i]  V 
7.      END FOR 
8. END FOR  
9. FOR f = 1 
10.      FOR i=1…T 

11.           nf[i] �
d𝑓
𝑇
� 

12.           sw[i]  sw[i] – wf∙nf[i] 
13.           sV[i]  sV[i] – nf[i] 
14.           af  af + nf[i] 
15.      END FOR 
16.      IF af < df THEN  
17.          FOR i=1… df - af 
18.               nf[i]  nf[i]+ 1  
19.               sw[i]  sw[i] – wf  
20.               sV[i]  sV[i] – 1 
21.               af  af + 1 
22.          END FOR 
23.      END IF 
24. END FOR 
25. FOR f = 2…N-1 
26.      j  1 
27.      FOR i=j…T 

28.           nf[i] 𝑀𝐼𝑁 ��
d𝑓
𝑇
� , �s𝑊[𝑖]

𝑤𝑓
� , 𝑠𝑣[𝑖]� 

29.           sw[i]  sw[i] – wf∙nf[i] 
30.           sV[i]  sV[i] – nf[i] 
31.           af  af + nf[i] 
32.      END FOR 

 
Figure 5: Generalized Heuristic Part 1 
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33.      FOR i=1…j 

34.           nf[i] 𝑀𝐼𝑁 ��
d𝑓
𝑇
� , �s𝑊[𝑖]

𝑤𝑓
� , 𝑠𝑣[𝑖]� 

35.           sw[i]  sw[i] – wf∙nf[i] 
36.           sV[i]  sV[i] – nf[i] 
37.           af  af + nf[i] 
38.       END FOR 
39.       j  j+1 
40.       IF j > T THEN 
41.           j  1 
42.       END IF 
43.       IF af < df THEN 
44.           WHILE af < df 

45.                nf[i]  nf[i]+𝑀𝐼𝑁 �1, �s𝑊[𝑖]
𝑤𝑓

� , 𝑠𝑣[𝑖]� 

46.                sw[i]  sw[i] – wf ∙  𝑀𝐼𝑁 �1, �s𝑊[𝑖]
𝑤𝑓

� , 𝑠𝑣[𝑖]� 

47.                sV[i]  sV[i] – 𝑀𝐼𝑁 �1, �s𝑊[𝑖]
𝑤𝑓

� , 𝑠𝑣[𝑖]� 

48.                af  af + 𝑀𝐼𝑁 �1, �s𝑊[𝑖]
𝑤𝑓

� , 𝑠𝑣[𝑖]� 

49.            END WHILE 
50.       END IF 
51. END FOR 
52. FOR f = N 
53.       FOR i = 1… T 
54.           IF af < df 

55.                nf[i]  𝑀𝐼𝑁 ��s𝑊[𝑖]
𝑤𝑓

� , 𝑠𝑣[𝑖],𝑑𝑓 − 𝑎𝑓� 

56.                sw[i]  sw[i] – wf∙nf[i] 
57.                sV[i]  sV[i] – nf[i] 
58.                af  af + nf[i] 
59.           END IF 
60.       END FOR 
61. END FOR 
62. IF af < df then  
63.       T  T+1  
64.       RETURN TO LINE 2 
65. END IF 

 
Figure 6: Generalized Heuristic Part 2 Figure 6: Generalized Heuristic Part 2 
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As in the two – product heuristic line 1 calculates the minimum number of trucks needed based 

on the total weight and demand and lines 2 - 8 initialize the number of pallet per freight type, slack 

weight, and slack cube for each truck. Lines 9 - 24 load the heaviest product on to the trucks similarly to 

how the heavy product is loaded in the two-product heuristic. Lines 25 - 51 load all of the products from 

the second heaviest to the second lightest. Line 27 starts the first loop through the containers, note the 

starting point for this loop changes with each product. Line 28 calculates the number of pallets to be 

loaded on to each container based on the minimum of the slack weight and slack cube of the container 

and the demand of the product. Lines 29 -31 update the slack weight of the container, the slack cube of 

the container, and the number of assigned pallets for that product respectively. Lines 33 -38 loops 

through the containers that were not accessed in the loop from line 27, performing the same task as 

lines 28-31. Then lines 43-50 ensure that the complete demand for that product is loaded. As the loop 

progresses, the starting point for the first loop is increased (line 39). This means that as the product 

changes the container that is the first to be loaded changes. All of the containers still have items added, 

which is ensured by the loop in lines 33-38. Finally, the lightest product is loaded in lines 52-61. This 

again is similar to the two-product heuristic presented in section 5. The lightest product is loaded onto 

each truck based on the slack weight of the truck, the slack cube of the truck, and the remaining 

demand of the product. The structure of this heuristic ensures that in the case of two products it is the 

same as the two –product heuristic presented previously.  

7.1 Generalization Computational Experiments  
7.1.1 Data Generation 

To assess the performance of the heuristic presented in Section 7, experiments were performed 

by varying many different factors. These factors include the number of products, the total demand, and 

how the product demand is distributed (i.e., proportion of different product weights). In the two 
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products heuristic there were definitions for heavy and light products. To test the generalized heuristic 

the idea of a “medium” product is introduced. The new definitions can be seen in Table 6 below.  

Table 6: Definitions of different weight classes 

Weight Definitions 
Light Medium Heavy 

150-599 lbs 600-899 lbs 900-2200 lbs 
 

These weights were randomly generated in the ranges in Table 6. The total demand levels that 

were examined can be seen in Table 7 below.  

Table 7: Total Demand Levels Examined 

Total Demand Level  
50 

100 
150 

These demand levels were used as inputs along with the number of products examined, which 

can be seen in the table below. 

Table 8: Number of Products Examined 

Number of Products 
3 
4 
5 
6 
7 
8 
9 

10 
 

Varying the number of products in this way gives insight to how the heuristic performs as the 

number of products increases. The last factor examined was how the demand was distributed.  
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Table 9: Demand Distribution Cases 

Demand Distributions 

Cases Light 
Product 

Medium 
Product 

Heavy 
Product  

Half Light/Half 
Heavy 45%-55% 0 45%-55% 

Skewed Heavy 20%-30% 0 70%-80% 
Skewed Light  70%-80% 0 20%-30% 

All Equal  27%-38% 28%-39% 27%-38% 

  
As can be seen in Table 9, four different cases were examined. The half-light/half-heavy case 

only contained items that had weights between 150-600 pounds and 900-2200 pounds ant the demand 

was equally distributed between heavy and light items. The skewed heavy and skewed light cases only 

considered very light or very heavy products, with the demand consisting of more heavy items or more 

light items respectively. Finally, the all equal case distributes the demand relatively even over all the 

products. To implement this design in code values were randomly generated within the ranges given in 

the same manner described in Section 7.1. The ranges help model variability that may occur in practice.   

All of the combinations of number of products, total demand, and demand distributions were 

examined, for a total of 96 different combinations.  For each of these combinations, 500 instances were 

generated and tested using the heuristic.  

7.2 Results  
 To assess how well the generalized heuristic performs, we compared the number of trucks used 

in the solutions generated by our heuristic to the theoretical minimum number of trucks. Note that 

when our heuristic can assign the demand to the theoretical minimum number of trucks, we are assured 

we have obtained an optimal solution for that instance.  However recall that in many situations, the 

number of trucks required in the optimal solution exceeds the theoretical minimum – that is to say, that 

even when our solutions require more trucks than the theoretical minimum, our solutions may or may 

not be optimal.  In the tables below we report how many instances are loaded into the theoretical 
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minimum number of trucks (% Theo. Min.) .  Additionally, for the cases where more trucks than the 

theoretical minimum were required, the percentage of extra trucks the solution uses than if everything 

was loaded in the theoretical minimum is reported (% More Trucks Used) are reported.   These results 

are broken down by demand level and the demand distributions discussed in Section 7.1.1, which shows 

how the heuristic performs at different demand levels.  

Table 10: Results for Half Light/Half Heavy Case 

Half Light/Half Heavy 
Demand Level  % Theo Min % More Trucks Used  

50 99.550% 0.161% 
100 98.975% 0.379% 
150 98.675% 0.483% 

 

Table 11: Results for Skewed Light Case 

Skewed Light  
Demand Level  % Theo Min % More Trucks Used  

50 100.000% 0.000% 
100 99.975% 0.012% 
150 99.750% 0.118% 

 

Table 12: Results for Skewed Heavy Case 

Skewed Heavy  
Demand Level  % Theo Min % More Trucks Used  

50 99.425% 0.178% 
100 99.225% 0.234% 
150 99.400% 0.176% 

 

Table 13: Results for All Equal Case 

All Equal 
Demand Level % Theo Min % More Trucks Used  

50 99.675% 0.121% 
100 99.050% 0.354% 
150 99.100% 0.344% 
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As can be seen in Table 10, Table 11, Table 12, and Table 13 for all demand distributions and 

demand levels, our heuristic was able to obtain solutions that loaded the freight into the theoretical 

minimum number of trucks for the vast majority of instances. Also note that, even when we were not 

able to obtain solutions that loaded the freight into the theoretical minimum number of trucks, very few 

additional trucks were required to move the freight. For all of the demand distributions overall all the 

products in the demand level (i.e., 4000 examples), less than a full percent of trucks more were used 

when the theoretical minimum was not met. This shows that even when the theoretical minimum was 

not met, our heuristic was still able to obtain high quality solutions.  

Analysis was also completed to assess how the number of products affects quality of the solutions 

found. This analysis can be seen in the graphs below.  

 

Figure 7: Graph of % Known Optimal vs. Number of Products 

Figure 7 shows that for this set of number of products that we considered our heuristic is able to 

find the known optimal solution in the vast majority of the cases.  

To assess the actual effect of the load mixing, a method of counting the number of trucks used when 

the products are shipped separately needed to be developed. This is not as straightforward as in the two 
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product case. The method developed for this research first calculates the number of trucks each 

individual item needs to ship all of its demand. Then the number of trucks is added up over all the 

products and the ceiling is taken to get the total number. This process can be expressed by the 

equation # trucks = �∑ max �wi*di
W

,  di
V
�P

i=1 �. For each case, the number of trucks that may be used if the 

items are shipped without a mixing system was calculated and compared to the number of trucks used 

by the heuristic. The results can be seen in Figure 8 below.  

 

Figure 8: Savings from Generalized Heuristic below shows the graph of the change in percentage of 

more trucks used in the cases where the theoretical minimum is not met. These numbers are low 

showing that even when the theoretical minimum is not met, very few additional trucks are used 

overall. These results show that as the number of product increases the quality of results only slightly 

varies.  

To assess the actual effect of the load mixing, a method of counting the number of trucks used when 

the products are shipped separately needed to be developed. This is not as straightforward as in the two 

product case. The method developed for this research first calculates the number of trucks each 
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individual item needs to ship all of its demand. Then the number of trucks is added up over all the 

products and the ceiling is taken to get the total number. This process can be expressed by the 

equation # trucks = �∑ max �w𝑖∗d𝑖
W

,  𝑑𝑖
V
�𝑃

𝑖=1 �. For each case, the number of trucks that may be used if 

the items are shipped without a mixing system was calculated and compared to the number of trucks 

used by the heuristic. The results can be seen in Figure 8 below.  

 

Figure 8: Savings from Generalized Heuristic 

From the graph in Figure 8, substantial savings can be seen for the skewed light, all equal, and half-

light/half heavy cases. The lowest savings were seen in the skewed heavy case similarly to what was 

seen in the two product case.  

8. Conclusions and Future Work  

8.1 Conclusion  
This research makes several important contributions to the literature. The heuristic that was 

created is effective in that it usually obtains the optimal solutions to the instances we consider quickly.  

Even when the heuristic is not able to obtain the optimal solutions, very few additional trucks are 

required.  Experiments were conducted to determine when the load mixing made the biggest impact. 
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The results show that load mixing is most effect when the total demand to be shipped is composed 

mostly of light freight or evenly divided among heavy and light freight. They also show that mixing is 

most effective for lower total demand to be shipped.  As the total demand increases, the number of 

trucks saved approaches a limit. The results presented show that for ten or less products the heuristic 

performs well as indicated by our ability to obtain optimal solutions.  

8.2 Future Work  
There are a number of natural extensions of this work.  First, higher number of products and 

higher demand levels should be examined using the generalized heuristic. This would lead to additional 

information such as how higher demand levels affect the heuristic solution.  Additionally, a method for 

counting the trucks that are used to ship the products separately in general case should be created and 

then used to find the true effectiveness of load mixing in the many product case. Second, the heuristic 

presented can be modified to incorporate real world constraints such as stackability constraints and 

freight due dates. This would ensure that product is stacked in a way that nothing is damaged and that 

all items are delivered on time, as well as lend insight as to how these constraints impact the solutions 

obtained. Additionally, the scope of the problem can be expanded to consider product routing 

considerations.  For the routing piece, consider there are many suppliers with different items located 

stored or produced in different locations that need to get their items to the same locations (e.g., 

common retailer DCs). The containers should be loaded not only based on weight and demand as 

before, but also with location of supplier. This piece will assess the tradeoff between the savings 

incurred by using load mixing verses the increased transportation cost of having to make many stops 

before reaching its final destination.  
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