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ABSTRACT

Because of their health benefits, probiotics are a significant part of the functional

food industry. Spray drying is reported as the most common method used in the food

industry to encapsulate probiotics. The objectives of this study were to investigate the

effects of protective agents on the viability of lactobacilli after spray drying and during

storage at different conditions and to evaluate spray drying conditions to produce these

probiotic powders. Lactobacillus plantarum NRRL B-4496 (LP) and Lactobacillus

acidophilus NRRL B-4495 (LA) were separately grown (~109 CFU/ml) and suspended in a

200 g/L solution of high maize starch (HM); maltodextrin (MD); or gum arabic (GA). The

solutions were separately spray dried at 140 °C to obtain LP and LA-powders: LPHM,

LPMD, LPGA, LAHM, LAMD, and LAGA. The powders were separately placed in

aluminum bags and separately packed under 97% and 10% vacuum. The powders were

stored at refrigerated (4 °C) or at room (23 °C) temperature for 60 days. Physicochemical

properties, energy and mass balances, and cell viability during storage were determined.

Triplicate experiments were conducted and data were statistically analyzed (α=0.05). The

actual production rate of powders ranged from 0.091 to 0.105 (kg dry solids/h). The energy

used during spray drying was not significantly different for any of the powders. After 60

days, LPHM powders packed under 10% and 97% vacuum and stored at 4 °C had

significantly higher cell viability than the other powder samples. The study demonstrated

significantly improved on the viability of LP at 10% vacuum stored at refrigerated

temperature for the HM treatment compared to those treated with MD and GA. The data

obtained showed that high maize starch can be used as a protective agent to maintain the

viability of L. plantarum powder at recommended levels for up to 60 days of storage.
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CHAPTER 1. INTRODUCTION

Probiotics are defined as “live microorganisms that, when administered in adequate

amounts, confer a health benefit on the host” (FAO/WHO, 2001). They provide several

beneficial effects to humans, such as protecting from bowel diseases, normalizing gut

microbiota, improving lactose tolerance, and potentially reducing risk factors for colon cancer

(Meng, Stanton, Fitzgerald, Daly, & Ross, 2008). These benefits are reached by different

mechanisms including antimicrobial activity, immune, antimutagenic, and antigenotoxic effects,

influence on enzyme activity, enzyme delivery, etc. (Sanders, 2000). Lactobacilli species, such

as L. acidophilus, L. rhamnosus, L. paracasei, L. plantarum, are the most common probiotic

microorganisms (Saad, Delattre, Urdaci, Schmitter, & Bressollier, 2013). Currently, the food

industry is attempting to produce probiotic food products with high levels of viable cells because

of rapid growth and expansion in the demand for healthy and nutritious foods (Soukoulis,

Behboudi-Jobbehdar, Yonekura, Parmenter, & Fisk, 2014). However, probiotic viability in food

products is negatively affected by several factors, including the presence of antimicrobial

compounds, oxygen toxicity, post-acidification, and storage temperature (Vasiljevic & Shah,

2008). Poor cell viability during storage has been reported in many probiotic products as well as

low survival after consumption (Lin, Hwang, Chen, & Tsen, 2006; Vinderola, Bailo, &

Reinheimer, 2000; Vinderola, Mocchiutti, & Reinheimer, 2002).

Encapsulation is one of the approaches to assure probiotic viability. This technology can

help protect cell viability and functionality during processing, storage, and delivery through the

human gastrointestinal tract (de Vos, Faas, Spasojevic, & Sikkema, 2010). The cells are

entrapped within an encapsulating agent, resulting in a reduction of cell injury and/or cell loss

caused by adverse conditions (Shah, 2000). Spray drying is reported as the most common
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method used in the food industry to encapsulate probiotics. This technique can produce good

quality probiotic products with low production costs (Kailasapathy, 2002). Spray drying is a

process in which a liquid feed is put in contact with a hot drying medium (100 to 300 °C),

leading to the evaporation of the liquid, obtaining a dried product in form of powders, granules,

or agglomerates (Solval, 2011). In order to protect probiotic cells during the microencapsulation

process, different materials have been evaluated including gum arabic, alginate, gelatin,

maltodextrin, pectin, skimmed milk, resistant starch, and chitosan (De Castro-Cislaghi, Carina

Dos Reis, Fritzen-Freire, Lorenz, & Sant’Anna, 2012). Gum arabic is a polymer with excellent

emulsification properties consisting of D-glucuronic acid, L-rhamnose, D-galactose, L-arabinose,

and approximately 2% protein (Gharsallaoui, Roudaut, Chambin, Voilley, & Saurel, 2007). Gum

arabic is also a source of dietary fiber that has been used in the probiotic food industry because

of its health benefits (Desmond, Ross, O'callaghan, Fitzgerald, & Stanton, 2002). Maltodextrin is

a hydrolyzed starch commonly used as wall material in microencapsulation of food ingredients.

It has a relatively low cost, neutral aroma, and taste, low viscosity at high solids concentrations,

and provides good protection against oxidation (Carneiro, Tonon, Grosso, & Hubinger, 2013).

According to (Burgain, Gaiani, Linder, & Scher, 2011), resistant starch that is resistant to

pancreatic enzymes in the small intestine is used as an encapsulating agent for targeted delivery

of probiotic cells in the human colon. Due to its prebiotic and symbiotic functionality, resistant

starch can be used by probiotic bacteria in the large intestine (Topping, Fukushima, & Bird,

2003). The aim of this investigation was to evaluate effects of different encapsulating agents:

high maize starch, maltodextrin, and gum arabic on the viability of probiotics Lactobacillus

plantarum NRRL B-4496 and Lactobacillus acidophilus NRRL B-4495 during spray drying and

storage.
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CHAPTER 2. LITERATURE REVIEW

2.1. Probiotics

The concept of probiotics progressed around 1900 when Henry Tissier, a French

pediatrician observed that children with diarrhea had a low number of bacteria characterized by a

peculiarly Y-shaped morphology in their stools. These Bifid bacteria were, on the contrary,

abundant in healthy children (Gupta, 2015). The first observation of the positive role played by

some selected bacteria is attributed to Eli Metchnikoff (1907), who suggested that "the

dependence of the intestinal microbes on the food makes it possible to adopt measures to modify

the flora in our bodies and to replace the harmful microbes by useful microbes" (FAO/WHO,

2001). He also pointed out that Bulgarian peasants had long and healthy lives because of the

consumption of fermented milk products (Chuayana Jr, Ponce, Rivera, & Cabrera, 2003) which

contained Lactobacillus that positively influenced the microflora of the gut, being able to

establish and decrease the toxic microbial activity of the pathogenic bacterial population

(Figueroa‐González, Quijano, Ramírez, & Cruz‐Guerrero, 2011).

The term “probiotic” originates from the Greek term “probios” meaning “for life” which

is opposed to “antibiotic,” which means “against life” (Longdet, Kutshik, & Nwoyeocha, 2011).

The term probiotic was coined in 1965 by Lilly and Stillwell to describe substances secreted by

one microorganism which stimulates the growth of another (Seppo Salminen, Ouwehand, Benno,

& Lee, 1999). Over the years probiotics have been defined in several ways, depending on their

mechanisms of action, viability, and non-viability, effects on human health, etc. An early

definition proposed by Parker (1974), they were described as “Organisms and substances which

contribute to intestinal microbial balance”. Later, Fuller (1989) defined them as “A live

microbial feed supplement which beneficially affects the host animal by improving its intestinal

microbial balance”. The author in this definition was focused on the importance of live cells in



4

order to have beneficial effects on the host and not include the antibiotic concept. The most

recent and widely accepted definition is the one proposed by an expert panel of The Food and

Agriculture Organization (FAO) and World Health Organization (WHO) that define probiotics

as “live microorganisms which when administered in adequate amounts, confer a health benefit

on the host” (FAO/WHO, 2001). Although, there are reports which indicate that dead probiotic

microorganisms or even bacterial DNA also show beneficial health effects on the host

(Sarowska, Choroszy-Król, Regulska-Ilow, Frej-Madrzak, & Jama-Kmiecik, 2013).

The consumption of probiotic products is increasing worldwide because these organisms

are regarded as GRAS (generally recognized as safe); which is a status used to address the

problem of pathogen colonization in different ecosystems (Bouchard, Rault, Berkova, Le Loir, &

Even, 2013). The optimal level of microorganisms required to observe a positive health benefit

from consumption has not been established, but a daily recommended therapeutic dose should be

between 109- 1011CFU/ day (Mombelli & Gismondo, 2000). According to Kailasapathy and Chin

(2000), the criteria for classifying a bacterial strain as a probiotic include: bacteria of human

origin, stable against bile, acid, enzyme and oxygen, be able to colonize the human

gastrointestinal tract, production of antimicrobial substances, and probable efficacy and safety. In

Table 2.1 are shown some of the most important microorganisms considered as probiotics.
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Table 2.1. Microorganisms considered as probiotics.

Lactobacillus
species

Bifidobacterium
species

Other LAB Bacillus species Non LAB

L. acidophilusab

L. caseiab

L. crispatusab

L. delbrueckii
subsp. delbrueckiia

L. delbrueckii
subsp. bulgaricusa

L. delbrueckii
subsp. lactisa

L. gasseriab

1L. gallinarumab

L. helveticusa

L. fermentuma

L. johnsonii ab

L. paracaseiab

L. plantarumab

L. reuteriab

L. rhamnosusab

L. sakeia

L. salivariusa

B. adolescentisab

B. animalisab

B. animalis
subsp.
lactisab

B. bifidumab

B. breveab

B. infantisab

B. longumab

1Enterococcus
faecalisab

E. faeciumab

2Lactococcus
lactisab

Leuconostoc
mesenteroidesab

2Pediococcus
acidilacticiab

P. pentosaceusa

Streptococcus
salivariusa

S. macedonicusa

S. mitisa

S. sanguisa

S. thermophilusab

1B. cereus var.
toyoib

B. clausiia

B. coagulansa

B. licheniformisa

B. mesentericusa

B. subtillisa

Clostridium
butyricuma

Escherichia
Coli strain nissleb

Propionibacterium
freudenreichiiab

Saccharomyces
cerevisiaeab

Saccharomyces
cerevisiae
subsp.
boulardiiab

1Mainly used for animals
2Little is known about probiotic properties
Source: aFoligné, Daniel, and Pot (2013) and bKechagia et al. (2013)

2.2. Health benefits of probiotics

Probiotics in the form of Streptococcus thermophilus and Lactobacillus bulgaricus in

fermented milk have been ingested by humans for many years in the belief that they have health

benefits. Due to the constant scientific evaluation in this area, there is now strong evidence that

the use of probiotics helps in treating and preventing some human diseases (Boyle, Robins-

Browne, & Tang, 2006). Probiotics provide a number of health benefits mainly through: a)

maintenance of normal intestinal flora, protection against gastrointestinal and putrefactive

pathogens (D'Aimmo, Modesto, & Biavati, 2007); b) enhancement of the immune system; c)

reduction of serum cholesterol level and blood pressure; d) anti-carcinogenic activity; e)

improved utilization of nutrients; f) improved nutritional value of food (Tripathi & Giri, 2014);
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g) production of antimicrobial compounds; h) competition for mucosal binding sites (Marco,

Pavan, & Kleerebezem, 2006); i) improvement in symptoms of lactose intolerance (Kechagia et

al., 2013); j) respiratory and urinary tract infections have also been documented (Parvez, Malik,

Ah Kang, & Kim, 2006). Some of the probiotic beneficial effects are described below:

2.2.1. Lactose intolerance

Lactose intolerance is the pathophysiological situation in which the small intestinal

digestion and/or colonic fermentation is altered which leads to clinical symptoms due to the lack

of the colonic bacterial enzyme β-galactosidase (Vonk, Reckman, Harmsen, & Priebe, 2012).

When lactose intolerant people consume milk or lactose-containing products, the gastrointestinal

symptoms include abdominal pain, flatulence, bloating, nausea, or diarrhea as a result from

lactose maldigestion (Hertzler & Clancy, 2003). One approach that has been employed for

overcoming the lactose intolerance problem is through the use of fermented dairy foods. For

example, yogurt is well tolerated by lactose malabsorbers due to the reduced levels of lactose

which is partially hydrolyzed during the fermentation process. Other factors that appear to be

responsible for a better yogurt tolerance include; a) yogurt bacteria (i.e. Str. thermophilus and Lb.

delbrueckii ssp. bulgaricus), b) β-galactosidase produced by these bacteria and c) oro-caecal

transit time (Chandan, White, Kilara, & Hui, 2008).

Kefir is another fermented dairy food for which claims of improved lactose digestion

have been made. Kefir grains are small, irregularly shaped, yellow-white, hard granules that

resemble miniature cauliflower blossoms which contain a complex mixture of bacteria, yeasts,

polysaccharides, products of bacterial metabolism, and curds of milk protein (Hertzler & Clancy,

2003). Regular consumption of kefir in lactose intolerant individuals can help to relieve the

gastrointestinal symptoms of lactose maldigestion due to the abundance of beneficial yeast and
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bacteria which provide the enzyme lactase which consumes most of the lactose left after the

culturing process (Otles & Cagindi, 2003). Rolfe (2000) and Seppo Salminen (2001) suggest the

beneficial effects of probiotics and LAB on lactose intolerance can be explained by two

mechanisms of action, namely, a) lower lactose concentration in the fermented foods due to the

high lactase activity of bacteria used during production, and b) increase active lactase enzyme

entering the small intestine with the fermented product or within the viable bacteria that survive

gastric and bile conditions.

2.2.2. Prevention of diarrhea

It has been reported that a wide range of probiotic strains has been evaluated and help to

relieve different types of diarrhea (i.e. infantile diarrhea, antibiotic-associated diarrhea, traveler’s

diarrhea, and relapsing Clostridium difficile colitis) (Tuohy, Probert, Smejkal, & Gibson, 2003).

Disruption in the normal intestinal microflora structure can result in the proliferation of

pathogens in the colon resulting in diarrhea. For instance, Clostridium difficile which is an

indigenous colonic bacteria is the primary causative agent in pseudomembranous colitis. The

proliferation of C. difficile is thought to occur after antibiotic treatment (Ziemer & Gibson,

1998). The treatment and prevention of infectious diarrhea are probably the best-documented

health benefit of probiotic bacteria. Rotavirus is the most common cause of acute infantile

diarrhea in the world and a significant cause of infant mortality, primarily in infants and young

children (S. Salminen et al., 1998). However, the use of probiotic supplementation in infant

formulas aid in the prevention of rotavirus infection.

Several microorganisms have been effective in reducing the severity and duration of

acute diarrhea in children such as L. reuteri, L. rhamnosus GG, L. casei, and S. boulardii (Canani

et al., 2007; Chmielewska, Ruszczynski, & Szajewska, 2008). Saxelin, Tynkkynen, Mattila-
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Sandholm, and de Vos (2005) and Kechagia et al. (2013) state that the proposed mechanisms by

which probiotics seem to help to relieve the effect of infectious diarrhea include competitive

exclusion, enhancement of the immune response, and production of substances that directly

inactivate the viral particles.

2.2.3. Protective role of probiotics on colon cancer

Colon cancer is one of the most important causes of cancer morbidity and mortality in

Western cultures (Jemal et al., 2008; Landis, Murray, Bolden, & Wingo, 1998). Diets containing

high animal proteins, fat, and low dietary fiber make an important contribution to the risk of

colon cancer, while a diet rich in fruits and vegetables appears to have a protective effect.

According to Brady, Gallaher, and Busta (2000), the development of colon cancer is a sequence

of events occurring on definable steps. First, a metabolic activated precursor produces a

carcinogen which causes an alteration in the DNA. In the next step, there is an overgrowth of

colonic crypts, morphologically described as aberrant crypts (precancerous lesions) which will

progress to polyps and eventually to tumors. Specific bacteria strains have been implicated in the

pathogenesis of cancer, including Streptococcus bovis, Bacteriodes, Clostridia and Helicobacter

pylori (Davis & Milner, 2009). There is evidence that suggests the consumption of probiotics

may be able to play a preventive role in the onset of colorectal cancer (Uccello et al., 2012).

Anticancer activity of probiotics is strain dependent; L. acidophilus, L. reuteri, L. casei, B.

longum, and B. breve bacteria have been reported that may reduce the risk of developing colon

cancer (Brady et al., 2000; Iyer et al., 2008; Wollowski, Rechkemmer, & Pool-Zobel, 2001).

The proposed mechanisms by which lactic acid bacteria may inhibit colon cancer include:

enhancing the host’s immune response to antimutagenic substances in the colon; binding,

blocking, and degrading potential carcinogens and procarcinogens, reduction of the intestinal pH
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that alters intestinal microflora activity linked to the production of carcinogens, alteration of

physicochemical conditions in the colon; alteration of colonic motility and transit time, among

others (Hirayama & Rafter, 1999; McIntosh, 1996; Uccello et al., 2012). Reid, Jass, Sebulsky,

and McCormick (2003) report that lactobacilli and bifidobacteria bacteria modify the gut

microbiota and reduce the risk of cancer due to their ability to decrease β-glucuronidase and

carcinogenetic enzymes levels produced by colon microflora.

2.2.4. Modulation of immune response

Probiotics have been reported to enhance specific and nonspecific host immune responses

without inducing a harmful inflammatory response (Kopp-Hoolihan, 2001). There is an

established interaction between microbiota in the gastrointestinal tract and epithelial cells and

immune cells. These bacteria recognize receptors on the epithelial cell surface and bind to them

and as result, a cascade of immunological defense mechanisms such as the production of pro-

and anti-inflammatory cytokines occur (Saxelin et al., 2005). Gill (1998) reported that lactic acid

bacteria exert their immunity enhancing effects by augmenting both non-specific (e.g. phagocyte

function, NK cell activity) and specific (e.g. antibody production, cytokine production,

lymphocyte proliferation, delayed-type hypersensitivity) host immune responses. Dendritic cells

which play a key role in the balance of T helper cells Th1, Th2 and Th3, initiate the local

immune response in the intestinal mucosa (Marteau, Seksik, & Jian, 2002). Some of the

proposed mechanisms by which probiotics might induce immunomodulatory beneficial effects in

human diseases include: a) modulation and stabilization of microbiota composition; b) inhibition

of inflammatory response of the intestinal immune system through inhibition of NF-κB

activation; c) increase the activity of Natural Killer (NK) cells; and d) increasing the secretion of

mucus; e) direct immunomodulatory action by inducing secretion of cytokines; f) inducing
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dendritic cells maturation (Aureli et al., 2011). Erickson and Hubbard (2000), LeBlanc, Matar,

Valdez, LeBlanc, and Perdigon (2002), and (Schultz et al., 2003) report that L. acidophilus,

Bifidobacterium longum, L. rhamnosus subsp. GG, Lactobacillus casei, and L. helveticus are

among probiotic bacteria that have been shown to enhance the immune response.

2.3. Probiotic mechanisms of action

The identification of the exact mechanisms by which probiotics exert their effect on the

host is not completely understood (Harish & Varghese, 2006a). According to Hemaiswarya,

Raja, Ravikumar, and Carvalho (2013), the effective performance of probiotics depends on their

strong adherence and colonization of the human gut in order to improve the host immune system.

It should be mentioned that probiotics differ significantly in their mechanism of action; also there

is not a single probiotic able to exhibit all mechanisms of action for the prevention or therapy of

different kinds of diseases (O'Hara & Shanahan, 2007; Oelschlaeger, 2010). Some of the

proposed mechanisms of probiotic actions include: a) metabolic effects that exert an

antimicrobial effect through the production of bacteriocins; b) lactic acid, and short-chain fatty

acids which lower the gut lumen pH to avoid pathogens colonization; c) maintenance of the

epithelial barrier by activation of tight junction proteins to avoid the development of a leaky

intestine; d) inflammation prevention and apoptosis of the lining intestinal epithelial cells

(Michail, 2005; Ng, Hart, Kamm, Stagg, & Knight, 2009; Sherman, Ossa, & Johnson-Henry,

2009). Also, Harish and Varghese (2006b) and Sarowska et al. (2013) report other proposed

mechanisms such as modulation of the immune system, enhancement of microbial flora, and

competition for nutrients.
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2.4. Lactic acid bacteria

Lactic acid bacteria (LAB) have a long and safe history of application and consumption

in the production of fermented foods and beverages. They cause rapid acidification of the raw

food material through the production of lactic acid, acetic acid, ethanol, aroma compounds,

bacteriocins, exopolysaccharides, and several enzymes for the production of fermented foods

(Leroy & De Vuyst, 2004). Fermented foods’ shelf life and safety are enhanced by the different

antimicrobials produced by probiotics which inhibit pathogenic and spoilage microorganisms

(Indira, Jayalakshmi, Gopalakrishnan, & Srinivasan, 2011). LAB are a group of Gram-positive,

non-spore forming, non-aerobic, aero-tolerant, and acid tolerant (Agrawal, 2005), usually

nonmotile, generally catalase-negative and usually devoid of cytochromes bacteria (Ringø &

Gatesoupe, 1998). They are nutritionally fastidious, requiring rich media to grow (carbohydrates,

amino acids, peptides, fatty acid esters, salts, nucleic acid derivatives, and vitamins) (Lebeer,

Vanderleyden, & De Keersmaecker, 2008).

This bacterial group contains both rods (Lactobacilli and Carnobacteria) and cocci

(Streptococci) (Kumar, 2011) that ferment carbohydrates and higher alcohols to form mainly

lactic acid (Stiles & Holzapfel, 1997). LAB are commonly found in the gastrointestinal tract of

various animals, dairy products, seafood products, soil, and on some plant surfaces (Ringø &

Gatesoupe, 1998). The live bacteria present in probiotic products are LAB, including

Lactobacilli, Bifidobacteria, and Enterococci (Agrawal, 2005). Based on the nature of

carbohydrate fermentation, LAB are classified into homofermentative and heterofermentative

bacteria. The homofermentative group consists of Lactococcus, Pediococcus, Enterococcus,

Streptococcus and some lactobacilli that utilize the Embden-Meyerhof-Parnas (glycolytic)

pathway to transform the carbon source mainly into lactic acid.
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Heterofermentative bacteria, however, produce equimolar amounts of lactate, CO2, ethanol or

acetate from glucose by using phosphoketolase pathway. Leuconostoc, Weisella and some

lactobacilli are members of this group (Vasiljevic & Shah, 2008).

2.4.1. Lactobacillus acidophilus

Lactobacillus acidophilus is a Gram-positive rod, with rounded ends, occurring in pairs

or short chains. The typical size is 0.6-0.9 μm in length. It is non-flagellated, non-motile, non-

spore forming, and intolerant to salt. It is also homofermentative producing mainly lactic acid

(>85%) by the Embden-Meyerhof-Parnas pathway. Likewise, it is microaerophilic and capable

of aerobic growth in static cultures. Anaerobic conditions (5% CO2, 10% H, and 85% N) are

preferable to stimulate its growth. Most strains of L. acidophilus can ferment amygdalin,

cellobiose, fructose, galactose, glucose, lactose, maltose, mannose, salicin, sucrose, and esculin

(Mosilhey, 2003; Selle, Klaenhammer, & Russell, 2014). L. acidophilus is probably the most

explored lactobacilli, found in most probiotic foods in the market (Anekella, 2012) like milk,

yogurt, toddler formula, dietary supplements, and traditional fermented foods (Bull, Plummer,

Marchesi, & Mahenthiralingam, 2013).

L. acidophilus has been reported to be a beneficial probiotic microorganism with

excellent therapeutic benefits. Rousseaux et al. (2007) found that L. acidophilus NCFM could

alleviate abdominal pain in patients with irritable bowel syndrome by the expression of receptors

on intestinal epithelial cells which have analgesic functions in the gut similar to that of morphine.

Meanwhile, Simakachorn et al. (2000) report that an oral rehydration containing L. acidophilus

LB reduced the duration of acute diarrhea in children compared to control group. Gilliland and

Speck (1977) report that lactic acid and hydrogen peroxide produced by L. acidophilus inhibit

growing of different enteric pathogens in associative liquid cultures. Most of the ability of
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several L. acidophilus strains to inhibit microbes through the production of antimicrobial

compounds has been demonstrated in vitro, but this pathogenic inhibitory activity has not been

yet demonstrated in in vivo studies (Jose, 2015).

2.4.2. Lactobacillus plantarum

Lactobacillus plantarum is a Gram-positive, rod-shaped, and non-pathogenic bacterium.

It is facultative heterofermentative meaning in aerobic conditions it produces acetic acid, while

in anaerobic conditions it is able to undergo fermentation to produce lactic acid as a major

product (Farnworth, 2008). This versatile bacterium can be found in different environments

including dairy, meat, many vegetable fermentations, the human gastrointestinal tract, and

human saliva.

Several L. plantarum strains have been tested for health effects due to their abundance,

easy growth characteristics, and human origin (De Vries, Vaughan, Kleerebezem, & de Vos,

2006). Klarin et al. (2008) report that enteral administration of L. plantarum 299v reduced the

incidence of colonization of C. difficile in critically ill patients treated with antibiotics, while

19% of the control group patients were positive for the pathogen. Bukowska, Pieczul-Mróz,

Jastrzebska, Chelstowski, and Naruszewicz (1998) found that levels of total and LDL-cholesterol

in men with moderately elevated blood cholesterol were reduced by 7.3 and 9.6%, respectively.

Also, fibrinogen protein a coronary artery disease factor was reduced by 13.5% probably by

modulation of the immune system response. Domingo (2017) used three L. plantarum strains in

patients with irritable bowel syndrome (IBS) and he found that the DSM 9843 strain significantly

reduced flatulence, whereas LPO 1, and 299v strains significantly reduced abdominal pain in the

test group.
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2.5. Encapsulation

Encapsulation was originally introduced in the area of biotechnology to make production

processes more efficient as the matrix around the cells allows for rapid and efficient separation

of the producer cells and the metabolites (de Vos et al., 2010). The technique, of significant

interest for the pharmaceutical industry, is used for drug and vaccine delivery and also in the

food industry for the protection of functional and bioactive compounds (Nedovic, Kalusevic,

Manojlovic, Levic, & Bugarski, 2011). Encapsulation is a physicochemical or mechanical

process to entrap a substance in a material in order to produce particles with diameters of a few

nanometers or millimeters (Burgain et al., 2011). From a microbiological point of view,

encapsulation is defined as the process of entrapment of cells by coating them with hydrocolloids

in order to isolate them from the environment for an appropriate release in the gut (Jayalalitha,

2013) (Figure 2.1). The material inside the microcapsule is referred to as the core, internal phase,

or fill, whereas the wall is called a shell, coating, or membrane (Umer, Nigam, Tamboli, &

Nainar, 2011). Encapsulation can be used to preserve and control flavor, color, texture,

functional properties and to retain potential health benefits of functional ingredients and

additives such as probiotics, enzymes, acids, vitamins, minerals, flavors, fatty acids,

antioxidants, spices, etc. (Anekella, 2012; Mosilhey, 2003).

Applied to probiotics, the objective of encapsulation is to protect the cells against the

host’s natural barriers and mild heat treatment from food processing (Ding & Shah, 2007).

Encapsulation also allows probiotics release in a viable and biologically active state in the gut

(Picot & Lacroix, 2004), while improving taste, aroma, stability, nutritional value, and product

appearance (Parra Huertas, 2010). Materials commonly used to encapsulate probiotic cells

include different polysaccharides (agar, sodium alginate, carrageenan, gum arabic, chitosan,
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starch, etc.), oligosaccharides (corn syrup, sucrose, and maltodextrin), proteins (gluten, casein,

whey protein, and albumin), and lipids (waxes, paraffin, diglycerides, oils, fats, etc) (Das, Ray,

Raychaudhuri, & Chakraborty, 2014; Serna-Cock & Vallejo-Castillo, 2013).

Figure 2.1. Protection of bacterial cells by microencapsulation.
Source: Kailasapathy (2002)

According to Umer et al. (2011) there are several reasons why substances may be

encapsulated including a) protection of reactive substances from the environment; b) conversion

of liquid active components into a dry solid system; c) to separate incompatible components for

functional reasons; d) to mask undesired properties of the active components; e) to protect the

immediate environment of the microcapsules from the active components; and f) to control

release of the active components for either delayed or long-acting release. An exploration into

the encapsulation process of microbial cells has utilized different techniques such as extrusion,

coacervation, spray drying, and emulsification (Rathore, Desai, Liew, Chan, & Heng, 2013).

However, spray drying is the most commonly used microencapsulation technology in food

industries (Pu, Bankston, & Sathivel, 2011) because it is flexible, continuous, and a cost

effective technique (Nedovic et al., 2011).
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2.5.1. Spray drying

Spray drying is the transformation of a feeding solution, suspension, dispersion or

emulsion into dried particulate form by spraying the feed into a hot drying medium. The dried

product can be in the form of powders, granules or agglomerates depending upon the physical

and chemical properties of the feed, the dryer design, and desired powder properties (Patel, Patel,

& Suthar, 2009). Spray drying is widely used in the food industry for the encapsulation of

vitamins, minerals, flavor compounds, antioxidants (Murugesan & Orsat, 2012), natural food

colorants, lipids, probiotics, antimicrobials, polyphenols, anti-oxidants, etc. (Kandansamy &

Somasundaram, 2012). The process of microencapsulation by spray drying (Figure 2.1) involves

the formation of an emulsion or suspension of coating and core material, atomization of the

emulsion into a drying chamber with circulating hot dry air, and evaporation of droplets moisture

while the coating material entraps the core (Mosilhey, 2003).

During the drying process the temperature-time profile of the droplets can be divided into

two periods: a) constant rate period (beginning of drying), where the temperature of spray-dried

particles and heat inactivation are limited to the wet bulb temperature by the evaporative cooling

effect, and b) falling rate period, where the temperature of the spray-dried particles increases but

generally does not reach inlet air temperature (Santivarangkna, Kulozik, & Foerst, 2007). The

most important factors which optimize the spray drying conditions include feed flow rate, air

inlet/outlet temperature, and feed temperature (Kandansamy & Somasundaram, 2012). Other

critical parameters of spray drying process include viscosity of the feed, feed solid content, the

surface tension of the feed, volatility of solvent, and nozzle material (More Swati & Wagh,

2014). According to Patel et al. (2009), the critical elements of a spray drying system includes

the atomizer, the air flow, and the spray drying chamber.
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Figure 2.2. Schematic representation of the pilot scale FT80 Tall Form Spray Dryer Armfield
Limited®

2.5.1.1. Atomizer

The atomizer is regarded as the “heart” of any spray drying system. According to

Kandansamy and Somasundaram (2012), the main purpose of the atomization process is to

maximize the heat transfer surface between the liquid and the dry air in the drying chamber.

More Swati and Wagh (2014) state that the atomizer includes three main functions. One function

is the dispersion of the feed material into small droplets in order to distribute and mix it

thoroughly with the hot gas in the drying chamber. Secondly, the droplets produced must not be

so large that they are incompletely dried, nor so small that product recovery is difficult. Lastly,
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the atomizer must act as a metering device, controlling the rate at which the material is fed into

the drying chamber. There are several types of atomizers which are classified according to the

type of energy used including rotary nozzles (centrifugal energy), two-fluid or pneumatic nozzles

(kinetic energy), pressure nozzles (pressure energy), and ultrasonic nozzles (acoustic energy)

(Miller & Gil, 2012).

2.5.1.2. Drying air flow pattern

Regarding the liquid spray direction, the large industrial dryers can have a variety of air

flow patterns including co-current, counter-current, and mixed flow pattern (Figure 2.2).

Figure 2.3. Different spray dryer configurations according to product and air flow patterns.
Source: Vega-Mercado, Góngora-Nieto, and Barbosa-Cánovas (2001).

Most of the dryers used are of the co-current air flow and mixed flow pattern (Wisniewski,

2015). Patel et al. (2009) describe these three different spray drying air flow patterns:

a) Co-current flow: in this configuration, the spray is directed into the hot air entering the dryer

and both pass through the chamber in the same direction.

b) Counter-current flow: in this dryer design, the spray and the air are introduced at opposite

ends of the dryer, with the atomizer positioned at the top and the air entering at the bottom.
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c) Mixed flow: dryers of this type combine both co-current and counter current flow. In a mixed

flow dryer, the air enters at the top and the atomizer is located at the bottom.

2.5.1.3. Spray drying chamber

The drying chamber is an important component of a spray dryer where the atomized

droplets are contacted with the hot air and the drying process begins. Before entering the drying

chamber, the air is heated by the heating element to a predefined temperature depending upon the

characteristics of the feed fluid (S. Singh & Dixit, 2014). Air circulating within the chamber

keeps a flow pattern; this prevents the deposition of partially dried product on the wall or

atomizer. Air movement and temperature of inlet air influence the type of final product (Deis,

1997). According to Mujumdar (1995), the drying chamber design depends on a) the type of

atomizer used because the sprayed angle will determine the droplets trajectory and therefore the

diameter and height of the chamber, and b) the air-fluid contact system selected. Spray dryers

based on the position of the drying chamber can be either horizontal or vertical (Aundhia et al.,

2011).

2.5.2. Spray drying of probiotics

Among all possible drying techniques used to preserve probiotic bacteria, spray drying is

one of the most predominant in the dairy industry (Huang et al., 2017). This technique is carried

out by dispersing the cells in a polymer solution which is atomized in the drying chamber leading

to evaporation of the solvent and consequently to the formation of microcapsules (De Castro-

Cislaghi et al., 2012). Nowadays, most efforts have focused on the drying of Lactobacillus,

Lactococcus and various Bifidobacteria species (Huang et al., 2017).

In spray drying, bacterial cultures are exposed to osmotic, heat, and oxidative stress due

to the high temperature used for product dehydration, which causes thermal inactivation of cells
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(Paéz et al., 2012). The cytoplasmic membrane, cell wall, DNA, and RNA of cells are mostly

affected during spray drying, which results in a reduction of their metabolic activity (Perdana et

al., 2013; Tripathi & Giri, 2014). Peighambardoust et al. (2011) state that inlet air temperature

has a small effect on bacterial inactivation, while the combination of temperature and time

played a major role in cells inactivation. The outlet air temperature is believed to be the major

drying parameter affecting the viability of spray dried bacterial cultures (Santivarangkna,

Kulozik, & Foerst, 2008). This parameter depends on the inlet air temperature, air flow rate,

product feed rate, and atomized droplet size (Santivarangkna et al., 2007). Also, many

investigators have reported that low outlet air temperature increases survival of cells (Ananta,

Volkert, & Knorr, 2005; Desmond et al., 2002).

Cultures may need to be spray dried using co-current conditions because the high inlet air

temperature will have less effect on cells due to the evaporative cooling effect (Santivarangkna et

al., 2008). A big particle size of atomized cells suspension is another factor that greatly affects

cells viability since drying time increases due to the higher contact time between cells and hot air

(Riveros, Ferrer, & Borquez, 2009). Fu and Chen (2011) report that the atomization process per

se has a negligible effect on cell inactivation during the drying process. Viability of probiotics is

also greatly affected by different factors during storage period including composition of the food,

types of packaging material, and storage conditions such as storage temperature, moisture

content, relative humidity, oxygen content, exposure to light, etc. (Meng et al., 2008; Tripathi &

Giri, 2014).

A number of studies have been conducted on spray drying of L. plantarum and L.

acidophilus and reported on their performance under different drying conditions. Perdana et al.

(2013) compared a single droplet drying to spray and freeze drying and found that dehydration
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and thermal shock affect the viability of L. plantarum WCFS1 during drying. These cell

inactivation mechanisms were dependent on the moisture content, temperature, and drying time.

Golowczyc, Silva, Abraham, De Antoni, and Teixeira (2010) investigated the survival of three

microorganisms isolated from kefir during spray drying at different outlet temperatures (70, 75,

80 and 85oC) and storage in different conditions (20 and 6oC). L. plantarum CIDCA 83114

showed a reduction of 1 log CFU/ml after drying and also the highest survival rate for all the

tested outlet air temperatures when stored at 6oC. Iaconelli et al. (2015) investigated the impact

of freeze-drying, air-drying, and spray-drying on viability and functionality of three bacterial

species without the use of protective agents. Cultivability of L. plantarum CNRZ 1997 was the

least affected by the three drying methods (0 and 1 log reduction). Immunomodulatory properties

of L. plantarum were not affected by drying processes may be due to its heat tolerance. They

conclude that drying processes can positively or negatively affect probiotic viability and

functionality and that sensitivity to each method is bacterial strain-specific. J. Barbosa et al.

(2015) obtained probiotic orange powders by spray, freeze, and hot air drying techniques to

investigate the survival of two lactic acid bacteria during storage. There was no decrease in L.

plantarum 299v during spray and freeze drying, but a reduction of almost 2 log cycles occurred

for convective drying. During storage at 4 °C, no differences in the viability of L. plantarum

were observed between the drying methods. Freeze dried L. plantarum stored at room

temperature without light showed a low reduction in viability.

Su, Lin, and Chen (2007) encapsulated both L. acidophilus BCRC 14079 and culture

filtrates from lao-chao, a yogurt-like product, by spray drying at various outlet air temperatures

and evaluate probiotic viability during storage. It was found that the culture filtrates provided

good protection for both milk-clotting enzymes and probiotics. Also, the culture filtrates
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improved microencapsulation efficiency and lowered water activity, but a reduction in the

survival of L. acidophilus occurred when outlet air temperature was increased.

The viability of L. acidophilus was maintained above 107 CFU/g, representing >92%

survival percentage during storage. Zhao, Sun, Torley, Wang, and Niu (2008) spray dried L.

acidophilus XH1 with a mixture of β-cyclodextrin and acacia gum at different concentrations.

They concluded that 20% (w/v) was the optimal wall material concentration to achieve a uniform

capsule size (avg. 22.153 µm). After 8 weeks of storage at 4oC, the number of live bacteria was

hiher than 107 CFU/ml. Yonekura, Sun, Soukoulis, and Fisk (2014) investigated L. acidophilus

NCIMB 701748 spray dried with sodium alginate, chitosan and hydroxypropyl methylcellulose

(HPMC) as coencapsulants to evaluate cell viability after drying and during storage. L.

acidophilus with chitosan powders had a low viable count (5.312 log CFU/g) during drying may

be due to the positively charged chitosan amino groups and drying stress. Chitosan significantly

enhanced the storage stability of spray-dried L. acidophilus powders that showed a low

inactivation rate (0.007 ± 0.001/day) and significantly higher viable counts in chitosan powders

(4.72 log CFU/g) when compared with other treatments during 35 days of storage at 25°C. They

state that chitosan may be used as a shelf-life enhancer of anhydrobiotics.

2.6. Wall materials

The selection of a coating material for microencapsulation by spray drying is very

important to attain an efficient encapsulation and microcapsule stability. Wall materials selection

is based on the physicochemical properties such as solubility, molecular weight, glass/melting

transition, crystallinity, diffusibility, film forming, and emulsifying properties (Gharsallaoui et

al., 2007). The wall material offers protection to the core and allows a targeted release at the

functional site interacting with the prevailing conditions in the release medium
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(Anandharamakrishnan & Ishwarya, 2015). According to Agnihotri, Mishra, Goda, and Arora

(2012), the selection of appropriate wall material decides the physical and chemical properties of

the resultant microcapsules. Different materials such as gum arabic, alginate, gelatine,

maltodextrin, pectin, skim milk, starch, and chitosan, among others, have been used to

microencapsulate probiotics (De Castro-Cislaghi et al., 2012). Maltodextrin, gum arabic, and

starch are commonly used as carriers to increase the glass transition temperature (Tg) of spray-

dried products and to bring the liquid solution to an economically spray-dryable range (Mestry,

Mujumdar, & Thorat, 2011).

2.6.1. Resistant starch

Resistant starch is the small fraction of starch that is not digested by pancreatic amylases

in the small intestine. It reaches the large intestine where it will be fermented by the colonic flora

to produce short-chain fatty acids (Sajilata, Singhal, & Kulkarni, 2006) and lower the pH in the

lumen (Jayalalitha, 2013). Resistant starch can be used to ensure the viability of probiotic

populations because it offers an ideal surface for cells adherence to the starch granule during

processing, storage, and transit through the upper gastrointestinal tract, providing robustness and

resilience to environmental stresses (Crittenden et al., 2001). Resistant starch has been classified

into four general subtypes called RS1, RS2, RS3, RS4, and RS5 (Raigond, Ezekiel, & Raigond,

2015). The RS2 type is made of ungelatinized resistant granules with type B crystallinity which

is slowly hydrolyzed by α-amylase. Food sources include raw potatoes, green bananas, and high-

amylose (high-amylose corn) starches (Fuentes-Zaragoza, Riquelme-Navarrete, Sánchez-Zapata,

& Pérez-Álvarez, 2010). In relation to probiotics encapsulation, de Araújo Etchepare et al.

(2016) state that resistant starch is a technological support that helps to control the release of

bioactive molecules, provide thermal stability, and increased the shelf life of sensitive
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compounds. Several studies report the protective effects of resistant starch on probiotic cultures

viability when exposed to different adverse conditions and during storage (de Araújo Etchepare

et al., 2016; Fahimdanesh et al., 2013; Homayouni, Azizi, Ehsani, Yarmand, & Razavi, 2008).

2.6.2. Maltodextrin

Maltodextrin is a polysaccharide produced from the acidic or enzymatic hydrolysis of

starch. It is a polymer of D-glucose chains linked by glycosidic α-(1-4) and α-(1-6) bonds that

are formed by amylose and amylopectin with different equivalents of dextrose (Saavedra-Leos,

Leyva-Porras, Araujo-Díaz, Toxqui-Terán, & Borrás-Enríquez, 2015). The dextrose equivalency

(DE) is the parameter used to classify this polysaccharide (Kurozawa, Park, & Hubinger, 2009).

Maltodextrin offers advantages such as relatively low cost, neutral aroma and taste, low viscosity

at high solids concentrations, and good protection against oxidation. However, the main problem

when it is used as wall material during spray drying is its low emulsifying capacity (Carneiro et

al., 2013). Due to its high glass transition temperature (Tg), maltodextrin reduces stickiness in

food products with low Tg and low molecular weight sugars during the spray drying process (De

Oliveira et al., 2009). The use of maltodextrin with different DE and combined with other

encapsulating agents have been used to encapsulate probiotic bacteria through spray drying.

Protective effects on probiotic cells have been reported mainly due to the ability of maltodextrin

to form a high viscous glassy matrix during drying (Joana Barbosa, Borges, & Teixeira, 2016;

Semyonov, Ramon, & Shimoni, 2011; Shokri, Fazeli, Ardjmand, Mousavi, & Gilani, 2015)

2.6.3. Gum arabic

Gum arabic is a polymer consisting of D-glucuronic acid, L-rhamnose, D-galactose, and

L-arabinose, with approximately 2% protein that gives it emulsification properties (Dickinson,

2003). Gum arabic has a unique combination of excellent emulsifying properties, low solution
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viscosity, and high water solubility which makes it an effective encapsulation agent (Dauqan &

Abdullah, 2013). Due to these and other properties, it is the most widely used encapsulating

material in microencapsulation by spray drying (da Silva et al., 2013). However, the use of this

polymer is difficult due to its limited supply and high cost (Estevinho, Rocha, Santos, & Alves,

2013). Besides its technological benefits when used as an encapsulating agent, gum arabic also

has the added advantage of providing the health benefits associated with dietary fiber for use in

the probiotic food industry (Chun, Kim, & Cho, 2014; Desmond et al., 2002).
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CHAPTER 3. MATERIALS AND METHODS

3.1. Microorganisms

Lactobacillus plantarum NRRL B-4496 (LP) and Lactobacillus acidophilus NRRL B-

4495 (LA) were provided by ARS Culture Collection (Washington DC, US). The frozen bacteria

were separately activated twice in deMan Rogosa Sharpe (MRS) broth (Neogen Corporation,

Lansing, MI, USA). Seventy-five mL of each strain were inoculated in MRS broth (1500 mL)

and incubated at 37 °C for 16 h to reach stationary phase. The LP and LA cell cultures were

harvested and washed with sterile distilled water by centrifugation at 10000 x g for 10 min at 4

°C (Beckman J2-HC, Beckman Coulter, Inc., Brea, CA, USA).

3.2. Preparation of probiotics solutions

Three wall material solutions were separately prepared by suspending 200 g of wall

material per liter of distilled water. High maize starch (Hi-maize ® 260, Ingredion Incorporated,

NJ, USA), maltodextrin (Dextrose Equivalent (DE) of 9-13, Now Foods Company,

Bloomingdale, IL, USA), and gum arabic (Frontier Co-op, Norway, IA, USA) were dissolved in

distilled water and autoclaved at 121 °C for 15 min . The wall material solutions were then

separately mixed with the LP and LA cell cultures (~109 CFU/mL) to produce LP and LA

solutions, respectively. The cell solutions were analyzed for moisture content by a microwave-

type moisture analyzer (Model 907875, CEM Corporation, Inc., Matthews, NC, USA) as well as

cell viability before spray drying was determined.

3.3. Spray drying of probiotic solutions

LP and LA probiotic solutions mixed with wall materials were separately fed into a pilot-

scale spray dryer (FT80/81 Tall Form Spray Dryer Armfield Inc., Ringwood, UK) under co-

current drying conditions. The spray drying process started by blowing the ambient air into the
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air heating chamber by the inlet fan where the ambient air was heated at 140°C by an electric

resistance heater. The heated air was then blown into the top of the drying chamber. At the same

time, a feeding pump delivered the probiotic solutions mixed with wall materials through a two-

fluid type spray nozzles where they were atomized with an atomizing air pressure of 14.5 psig

and sprayed into the main dryer chamber. The probiotic solutions mixed with wall materials

droplets were dried yielding dried powder and dust. Then the dried powder, dust, and air were

pulled out of the drying chamber to the cyclone by the exhaust fan where the powder and dust

were separated in the cyclone due to density differences. The powder was collected in the

cyclone walls and powder collector. The dust was trapped in the filter bag and the exhaust air

was released through filter bag to the ambient. During the drying process the air velocity and

temperature of inlet ambient air; the relative humidity, temperature, and air velocity that passed

through the exhaust fan were measured using a hot-wire anemometer (Anemomaster Model

6162, Kanomax Inc. Japan). The relative humidity of inlet ambient air was measured using an

Omega 4-in-1 multifunctional anemometer (Omega Engineering, Stamford, CT, USA). Also, the

internal diameter of both ambient air intake pipe and exhaust air pipe were measured. In total, six

different spray dried probiotic powders were produced, namely, L. plantarum with high maize

starch (LPHM), L. plantarum with maltodextrin (LPMD), L. plantarum with gum arabic

(LPGA), L. acidophilus with high maize starch (LAHM), L. acidophilus with maltodextrin

(LAMD), and L. acidophilus with gum arabic (LAGA). Samples of approximately 1.5 g of the

six spray dried powders were separately placed in 4” x 6” aluminum bags and packed either

under 97% or 10% vacuum (Koch Ultravac UV550 Double-Chamber Vacuum-Packaging,

Kansas City, USA). The packed powders were stored separately at refrigerated (4 °C) and at

room (23 °C) temperatures for up to 60 days in order to analyze the cell viability after spray
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drying and during storage. The powder production rate and actual powder production rate were

determined. The powder production rate was the mass of the powder collected from the powder

collector divided by the time of production; the actual powder production rate was the dry solids

mass of powder recovered from the powder collector divided by the time of production. The

estimated production rate was the sum of the actual production rate and the rate at which powder

was retained within the internal spray dryer walls.

3.3.1. Estimation of production rate of probiotic powders

The mass balances expressed as average mass flow rates of dry solids entering and

leaving the spray dryer system (Figure 3.1.) is described by Eq. (1).

e dm mP m  (1)

The production rate of powder (mP) was obtained using the Eq. (2).

e dmP m m  (2)

Where: me is the probiotic solution flow rate (kg dry solids/h); md is the dust flow rate (kg dry

solids/h); and mP is the estimated powder production rate (kg dry solids/h) which included both

the actual production flow rate (mp) for the powder collected from the cyclone collector vessel

and product retained in the spray dryer. The physical properties of the product retained in the

spray dryer were assumed to be the same as the powder collected in cyclone collector vessel (Pu

et al., 2011).
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Figure 3.1. Material balances for the spray drying system.

3.3.2. Estimation of evaporation rate for drying probiotic solutions

The overall moisture balance expressed as water entering and leaving the spray dryer is

described by Eq. (3).

aa aa e e ao ao d d pm AH m w m AH m w mPw    (3)

Where: maa is the dry air mass flow rate of inlet ambient air (kg dry air/h); mao is the dry air mass

flow rate of outlet air (kg dry air/h); me is the mass flow rate of probiotic solution (kg dry

solids/h); md is the mass flow rate of dust (kg dry solids/h); mP is the estimated powder

production rate (kg dry solids/h) which included both the product flow rate (mp) for the powder
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recovered from cyclone collector vessel and product retained in the spray dryer; AHaa is the

absolute humidity of inlet ambient air (kg water/kg dry air); AHao is the absolute humidity of

outlet air (kg water/kg dry solids); we is the dry basis moisture content of probiotic solution (kg

water/kg dry solids); wd is the dry basis moisture content of dust (kg water/kg dry solids); and wp

is the dry basis moisture content of product (kg water/kg dry solids). It has been assumed that the

powder retained in the spray dryer had essentially the same moisture content as the collected

powder and that the encapsulation effectively removes that moisture from the air stream (Solval,

Sundararajan, Alfaro, & Sathivel, 2012). The evaporation rate (Evp) based on the moisture

content of the probiotic solution; powder recovered from the cyclone collector vessel; and dust

was calculated using Eq. (4).

vp e e d d pE m w m w mPw   (4)

The dry air mass flow rate of inlet ambient or outlet air were estimated following the method

described by Solval (2011) using Eq. (5).

'

V
m

V
 (5)

Where: m is the dry air mass flow rate (kg dry air/h); V is the volumetric flow rate of inlet or

outlet air (m3/h), and V’ is the specific volume of inlet or outlet dry air (m3/kg dry air).

The volumetric flow rate of inlet ambient or outlet air was calculated using Eq. (6).

V v A  (6)

Where: v is the average velocity of the inlet or outlet air (m/s) and A is the cross-sectional area of

the inlet or outlet air pipe (m2).

The specific volume of inlet or outlet dry air was calculated using Eq. (7).

1
' (0.082 22.4)

29 18

AH
V T

    
 

(7)
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Where: T is the temperature of inlet ambient or outlet air (K) and AH is the absolute humidity of

inlet ambient or outlet air (kg water/kg dry air).

The absolute humidity of the inlet ambient or the outlet air was calculated using Eq. (8).

0.622
101.325

w

w

p
AH

p
 


(8)

Where: AH is the absolute humidity of the inlet ambient or outlet air (kg water/kg dry air) and pw

is the partial pressure exerted by water vapor (kPa).

The partial pressure exerted by water vapor is estimated using Eq. (9).

w vp p RH  (9)

Where: pw is the partial pressure exerted by water vapor (kPa); pv is the saturation pressure of

water vapor (kPa), and RH is the relative humidity (%).

3.3.3. Estimation of energy used to dry the probiotic solutions

The estimation of the energy used to heat the air to spray dry the probiotic solutions

mixed with wall materials was estimated using Eq. (5) as described by (Singh & Heldman,

2001).

( )( )aa p aa aa v aa ad aaQ m c T m c c AH T T     (5)

Where: maa is dry air mass flow rate of inlet ambient air (kg dry air/h); Cp is specific heat of inlet

ambient air (kJ/kg K); caa is specific heat of inlet ambient dry air (kJ/kg K); cv is the specific heat

of water vapor (kJ/kg K); AHaa is the absolute humidity of inlet ambient air (kg water/kg dry air);

ΔT is the temperature difference between inlet ambient air and inlet drying air (K); Tad is the

temperature of inlet drying air (K); and Taa is the temperature of inlet ambient air (K).
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3.3.4. Physicochemical properties of the probiotic powders

The probiotic powders were analyzed for water activity (aw), moisture content, and color.

The water activity was measured using an AquaLab Pawkit (Decagon Devices, Inc., Pullman,

WA, USA). The moisture content was determined using a microwave-type moisture analyzer

(Model 907875, CEM Corporation, Inc., Matthews, NC, USA). The color of the probiotic

powders was determined using the chroma meter LabScan XE (Hunterlab, VA, USA). The data

was reported in CIELAB color scales L*, a*, and b*. In the CIELAB color scale, the L*

parameter ranges from 0 to 100, that defines the lightness level; a* denotes the variation from

red (+a*) to green (−a*); while b* denotes the variation from yellow (+b*) to blue (−b*).

Chroma and hue angle values were calculated with Eq. (6) and (7), respectively. All the samples

were analyzed in triplicate.

1/2* *Chroma a b    (6)

*
1

*
tan

b
Hue

a
  

  
 

(7)

3.4. Determination of probiotics viability after spray drying and during storage

Probiotic solutions mixed with wall materials and powders were tested for cell viability

by separately suspending and homogenizing with a vortex mixer the probiotic solutions (1 g) and

probiotic powders (1 g) in 9 mL of 0.85 g/100 mL sterile saline solution, respectively. Serial

dilutions and the pour plating method using MRS agar (Neogen Corporation, Lansing, MI, USA)

with 0.6 g CaCO3/100 mL (Sigma-Aldrich, St. Louis, MO, USA) was performed in triplicate.

The plates were incubated at 37 °C, enumerated after 48 h and results expressed as colony

forming units per gram sample (CFU/g).
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3.5. Scanning electron microscopy (SEM)

The morphology of probiotic powders was observed in a scanning electron microscope

(JSM-6610LV, JEOL Ltd. Japan). Samples were mounted on aluminum SEM stubs and then

coated with platinum in an Edwards S150 sputter coater (Edwards High Vacuum International,

Wilmington, MA, USA) for 4 minutes prior to observation at both 1000X and 3000X

magnification.

3.6. Statistical analysis

The data were analyzed using SAS (Statistical Analysis System) software version 9.4

(SAS Institute Inc., Cary, NC, USA). Experiments were performed in triplicate and the data were

reported as means±standard deviation. Tukey’s test at an alpha of 0.05 was carried out to

determine significant differences among the treatments.
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CHAPTER 4. RESULTS AND DISCUSSION

4.1. Physicochemical properties of the probiotic powders

4.1.1. Water activity of LP and LA powders

In this study, water activity (aw) of LP and LA powders was not affected either by type of

wall material or bacterial strain. As shown in Table 4.1, aw values of both LP and LA powders

ranged from 0.26 to 0.36 and were not significantly different. The aw indicates free water (water

not bound to molecules) which allows biochemical reactions to proceed. The aw of probiotic

powders or products has an impact on maintaining cell viability. According to Viernstein,

Raffalt, and Polheim (2005), lower aw (0.2-0.3) caused better cell viability during storage.

However, membrane lipids could be oxidized, leading to viability reduction, if aw is lower than

0.1.

4.1.2. Moisture content of LP and LA powders

Moisture contents (wet basis) of LP and LA powders varied between 5.63% and 8.98%

(Table 4.1). Regardless of probiotic strain, the maltodextrin (LPMD = 5.89% and LAMD =

5.63%) powders had lower moisture content than gum arabic (LPGA = 7.84% and LAGA =

8.94%) and high maize starch (LPHM = 8.90% and LAHM = 8.98%) treatments. Similar to our

results Tonon, Brabet, Pallet, Brat, and Hubinger (2009) reported that spray dried açai powder

produced with maltodextrin (10 DE) had a lower moisture content than those produced with

gum arabic. Encapsulating agents play an important role in moisture content of powders after

spray drying, which is related to their glass transition temperature (Tg). Tg is specific to each

amorphous material and is affected by molecular weight, chemical structure and moisture

content of the material. de Barros Fernandes, Borges, and Botrel (2014) defined Tg as the

temperature at which a state of polymeric material changes from a glassy amorphous state to a
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rubbery state. Tg has an influence on duration of particle crust formation during the drying

process. Aghbashlo, Mobli, Madadlou, and Rafiee (2012) stated that when the crust is formed,

water is enclosed within the particle, causing the interior moisture to be difficult to evaporate.

Droplets containing wall materials with lower Tg form the crust before the droplets containing

materials with higher Tg (Pourashouri et al., 2014). Therefore, it is possible that crust formation

of droplets containing MD occurred later than that of droplets with GA and HM. As a result,

LPMD and LAMD powders had lower moisture content than LP and LA powders containing

HM or GA. Kurozawa et al. (2009) reported that spray dried chicken breast protein hydrolysate

powders with 20% (w/w) maltodextrin (9 ≤ DE ≤ 12) had a higher Tg value compared to those

produced with 20% (w/w) gum arabic. Meanwhile, Freire, Fertig, Podczeck, Veiga, and Sousa

(2009) report no Tg detection for Hylon V, a high amylose (56%) maize starch, claiming that the

glass transition temperature can only be identified in these type of samples with a moisture

content above 13%.

Table 4.1. Water activity and moisture content (dry basis) of probiotic powders.

Wall Material
Water activity

Moisture content
(dry basis, kg water/kg dry solids)

LP LA LP LA

HM 0.36±0.04Aa 0.35±0.01Aa 0.10±0.00Aa 0.09±0.00Aa

MD 0.29±0.02Aa 0.26±0.00Aa 0.06±0.00Ba 0.06±0.00Aa

GA 0.28±0.01Aa 0.31±0.05Aa 0.08±0.00Ba 0.09±0.02Aa

Values are means ± SD of triplicate determinations. A,BMeans with the same letter in a column
are not significantly different (P ≤ 0.05). aMeans with the same letter in a row within a parameter
are not significantly different (P ≤ 0.05). LP = L. plantarum NRRL B-4496, LA = L. acidophilus
NRRL B-4495, HM = high maize starch, MD = maltodextrin, and GA = gum arabic.

4.1.3. Color of LP and LA powders

The color values of probiotic powders with different wall materials are reported in Table

4.2. The color of LP and LA powders is attributed to the carrier color (da Silva et al., 2013).
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Regardless of bacteria strain, the powders with MD and HM had significantly greater lightness

(L*) than GA. This was because the colors of MD and HM were white, while GA used in this

experiment was light brown. The color of spray dried powders can be affected by the

concentrations (Comunian et al., 2011) and types (Fritzen-Freire et al., 2012) of wall materials.

Table 4.2. Color values of probiotic powders.

HM MD GA

L*
LP 91.83±0.67Aa 93.58±0.76Aa 88.77±0.36Ba

LA 91.02±0.96Aa 93.67±1.09Aa 87.03±0.32Bb

a*
LP 0.25±0.03Aa -0.45±0.01Cb 0.17±0.01Ba

LA -0.04±0.01Ab -0.39±0.01Ba 0.11±0.11Aa

b*
LP 7.21±0.13Aa 3.23±0.27Ca 5.04±0.23Ba

LA 5.55±0.29Ab 2.47±0.63Ba 3.16±0.71ABa

Hue
LP 88.02±0.26Bb 97.95±0.41Aa 88.12±0.17Ba

LA 90.42±0.17Ba 99.19±2.47Aa 88.27±1.53Ba

Chroma
LP 7.22±0.12Aa 3.26±0.27Ca 5.04±0.23Ba

LA 5.55±0.29Ab 2.50±0.62Ba 3.16±0.71Ba

L*, a*, and b* are the degree of lightness to darkness, redness to greenness, and yellowness to
blueness, respectively. Values are means ± SD of triplicate determination. ABCMeans with the
same letter in a row are not significantly different (P ≤ 0.05). abMeans with the same letter in a
column within a parameter are not significantly different (P ≤ 0.05). LP = L. plantarum NRRL
B-4496, LA = L. acidophilus NRRL B-4495, HM = high maize starch, MD = maltodextrin, and
GA = gum arabic.

4.2. Spray drying of probiotic solutions

The estimated evaporation rates calculated based on the moisture content of the probiotic

solutions mixed with wall materials, powder recovered from cyclone collector vessel, and dust

ranged between 0.758 and 0.830 kg water/h (Table 4.3). The water evaporation during spray

drying is affected by the inlet temperature (Gharsallaoui et al., 2007), the dryness of the air

(Goula & Adamopoulos, 2005), and feeding flow rate (Garg, Sharma, Jayaprakashan, &

Subramanian, 2009). In this study, probiotic solutions mixed with wall materials had different

mass flow rates (kg/h) which produced as a result different evaporation rate values for the
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production of the probiotic powders. The energy required to spray dry the probiotic solutions

varied between wall materials (Table 4. 3). According to Kajiyama and Park (2011), the energy

required to heat the ambient air during spray drying is affected by the feeding flow rate, feeding

initial and final moisture content. The required power was calculated as 2.09, 2.04, and 2.06 kW

for spray drying LPHM, LPMD, and LPGA, respectively. Meanwhile, the required power for

spray drying LAHM, LAMD, and LAGA, was calculated as 2.09, 2.10, and 2.16 kW,

respectively. The heat energy for heating the inlet ambient air was generated by an electric heater

with a power of 4.5kW. In this study, the power requirements were within the available power of

the electric heater of the FT80/81 Tall Form Spray Dryer (Spray Dryer Manual, Armfield,

Ringwood, UK).

Table 4.3. Estimated evaporation rates and energy required to spray dry the probiotic solutions.

Wall Material
Evaporation rate

(kg water/h)1
Energy used to spray dry
probiotic powders (kJ/kg)

LP LA LP LA

HM 0.758±0.02Aa 0.766±0.01Ba 8255.89±268.92Aa 8266.44±123.00Aa

MD 0.773±0.04Aa 0.775±0.01Ba 7557.63±10.85Ba 7789.16±288.95Aa

GA 0.814±0.00Aa 0.830±0.01Aa 7532.73±34.58Bb 7774.37±13.91Aa

Values are means ± SD of triplicate determination. 1Calculated based on the moisture content of
the probiotic solution mixed with wall material, powder recovered from cyclone collector vessel,
and dust (kg water/h). ABMeans with the same letter in a column are not significantly different (P
≤ 0.05). aMeans with the same letter in a row within a parameter are not significantly different (P
≤ 0.05). LP = L. plantarum NRRL B-4496, LA = L. acidophilus NRRL B-4495, HM = high
maize starch, MD = maltodextrin, and GA = gum arabic.

As shown in Table 4.4, the actual production rates of LP and LA powders ranged from

0.091 to 0.105 (kg dry solids/h) and were significantly (P ≥ 0.05) lower than the estimated

production rates that ranged from 0.132 to 0.147 (kg dry solids/h). These results were expected

because all the produced powders were not recovered due to adherence of the powder particles in
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the different internal parts of the spray dryer. The summary of the inlet and outlet air conditions

for spray drying of LP and LA powders are shown in Table 4.5 and 4.6, respectively. As Table

4.6 shows, the outlet air temperatures varied between 336.31±0.62 and 342.76±0.16 K.

According to Peighambardoust et al. (2011), outlet air temperatures are affected by the inlet air

temperature, air flow rate, product feed rate, medium composition, and atomized droplet size.

The dry air mass flow rate of the inlet (Table 4.5) and outlet (Table 4.6) air values were similar;

this means that the measurements carried out to determine these values were accurate.
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Table 4.4. Data for the estimation of the production rate of probiotic powders.

Batch
Mass flow rate powder

(x10-3 kg/h)
Actual production rate

(dry basis, x10-3 kg dry solids/h)
Estimated production rate

(dry basis, x10-3 kg dry solids/h)

LPHM
Powder 104.92±7.22a 95.56±6.36Aa 138.31±3.79Ba

Dust 0.96±0.65a 0.87±0.59a

LPMD
Powder 111.65±6.38a 105.13±5.79Aa 147.19±3.18Ba

Dust 2.47±0.19a 2.32±0.18a

LPGA
Powder 101.62±0.70a 93.63±0.07Aa 133.19±14.49Aa

Dust 2.25±0.31a 2.07±0.30a

LAHM
Powder 101.02±6.71a 91.92±5.60Aa 132.59±1.06Ba

Dust 2.38±0.38a 2.16±0.35a

LAMD
Powder 106.12±0.48a 100.13±0.43Aa 144.36±0.12Ba

Dust 2.09±0.33a 1.97±0.32a

LAGA
Powder 108.97±7.10a 99.27±8.30Aa 147.24±2.96Ba

Dust 1.35±1.13a 1.22±1.01a

Values are means ± SD of triplicate determination. The estimated powder production rate included both powder recovered from
cyclone collector vessel and product retained inside the spray dryer. ABMeans with the same letter in a row are not significantly
different (P ≤ 0.05). aMeans with the same letter in a column are not significantly different (P ≤ 0.05). LP=L. plantarum NRRL B-
4496, LA=L. acidophilus NRRL B-4495. HM = high maize starch, MD = maltodextrin, and GA = gum arabic. LPHM=LP with high
maize starch spray dried at 140°C, LPMD=LP with maltodextrin spray dried at 140°C, LPGA=LP with gum arabic spray dried at
140°C, LAHM=LA with high maize starch spray dried at 140°C, LAMD=LA with maltodextrin spray dried at 140°C, and LAGA=LA
with gum arabic spray dried at 140°C.
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Table 4.5. Summary of inlet air conditions for spray drying the probiotic solutions.

Condition LPHM LPMD LPGA LAHM LAMD LAGA

Ambient air temperature (AAT)
(K)

306.46±1.53 307.65±0.89 308.03±2.43 306.42±0.47 305.73±1.62 303.48±0.84

Inlet air velocity (m/s) 18.32±0.21 18.15±0.11 18.32±0.16 18.39±0.12 18.32±0.26 18.37±0.19
Internal pipe diameter (m) 0.034 0.034 0.034 0.034 0.034 0.034
Volumetric flow rate of inlet air
(m3/h)

59.87±0.69 59.33±0.39 59.87±0.54 60.09±0.39 59.87±0.85 60.04±0.62

Relative humidity of inlet
air (%)

54.73±2.02 52.14±0.66 53.23±0.85 61.85±1.67 52.80±8.24 49.19±8.32

Partial pressure exerted by water
vapor at the inlet point (kPa)

2.81±0.14 2.87±0.11 2.99±0.35 3.17±0.18 2.59±0.17 2.15±0.46

Saturation pressure of water
vapor at the inlet point (kPa)*

5.15 5.49 5.62 5.12 4.94 4.34

Absolute humidity of inlet air
(x10-3 kg water/kg dry air)

17.75±0.90 18.07±0.69 18.92±2.34 20.06±1.13 16.31±1.10 13.46±2.98

Specific volume of inlet air
(m3/kg dry air)

0.90±0.01 0.90±0.01 0.90±0.01 0.90±0.01 0.89±0.00 0.88±0.01

Mass flow rate of inlet air
(kg dry air/h)

67.17±1.21 66.26±0.17 66.70±0.17 67.18±0.66 67.48±1.20 68.47±0.19

Specific heat of dry air at
AAT (kJ/kg K)*

1.0133 1.0133 1.0133 1.0133 1.0133 1.0133

Specific heat of water vapor at
AAT (kJ/kg K)**

1.88 1.88 1.88 1.88 1.88 1.88

Temperature of inlet
drying air (K)

413.15±0.21 413.13±0.66 413.13±0.99 413.80±0.28 413.83±0.24 413.50±0.26

Values are means ± SD of triplicate determination. *Obtained from Appendix A 4.2 and A 4.4, respectively (Singh & Heldman,
2001). **Selected as 1.88 kJ/(kg K) according to Singh & Heldman, 2001. LP=L. plantarum NRRL B-4496, LA=L. acidophilus
NRRL B-4495. HM = high maize starch, MD = maltodextrin, and GA = gum arabic. LPHM=LP with high maize starch spray dried at
140°C, LPMD=LP with maltodextrin spray dried at 140°C, LPGA=LP with gum arabic spray dried at 140°C, LAHM=LA with high
maize starch spray dried at 140°C, LAMD=LA with maltodextrin spray dried at 140°C, and LAGA=LA with gum arabic spray dried
at 140°C.
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Table 4.6. Summary of outlet air conditions for spray drying the probiotic solutions.

Condition LPHM LPMD LPGA LAHM LAMD LAGA

Outlet air temperature (K) 341.86±1.15 341.31±0.85 342.76±0.16 341.13±0.78 339.38±1.46 336.31±0.62
Outlet air velocity (m/s) 4.63±0.11 4.59±0.16 4.65±0.10 4.64±0.08 4.59±0.12 4.50±0.04
Internal pipe diameter (m) 0.072 0.072 0.072 0.072 0.072 0.072
Volumetric flow rate of outlet
air (m3/h)

67.79±1.56 65.55±0.18 68.16±1.32 67.86±1.12 67.08±1.87 65.81±0.62

Relative humidity of outlet
air (%)

10.24±0.52 12.00±0.14 11.25±0.49 12.45±0.78 12.00±0.28 11.40±0.14

Partial pressure exerted by
water vapor at the outlet point
(kPa)

3.03±0.01 3.47±0.07 3.46±0.17 3.57±0.10 3.19±0.30 2.65±0.11

Saturation pressure of water
vapor at the outlet point (kPa)*

29.61 28.92 30.72 28.70 26.55 23.17

Absolute humidity of outlet air
(x10-3 kg water/kg dry air)

19.16±0.06 22.07±0.47 22.03±1.10 22.74±0.67 20.24±2.00 16.68±0.71

Specific volume of outlet air
(m3/kg dry air)

1.00±0.01 1.00±0.00 1.01±0.01 1.00±0.00 1.00±0.01 0.98±0.01

Mass flow rate of outlet
air (kg dry air/h)

67.56±1.13 66.62±1.43 67.93±1.46 67.86±1.21 67.83±1.17 67.39±0.43

Values are means ± SD of triplicate determination. *Obtained from Appendix A 4.2 (Singh & Heldman, 2001). LP=L. plantarum
NRRL B-4496, LA=L. acidophilus NRRL B-4495. HM = high maize starch, MD = maltodextrin, and GA = gum arabic. LPHM=LP
with high maize starch spray dried at 140°C, LPMD=LP with maltodextrin spray dried at 140°C, LPGA=LP with gum arabic spray
dried at 140°C, LAHM=LA with high maize starch spray dried at 140°C, LAMD=LA with maltodextrin spray dried at 140°C, and
LAGA=LA with gum arabic spray dried at 140°C.
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4.3. Effect of wall materials on the viability of spray-dried probiotic powders

The viability of LP and LA powders after spray drying with different wall materials is

illustrated in Figures 4.1 and 4.2, respectively. Initial cell counts in LPHM, LAHM, LPMD,

LAMD, LPGA, and LAGA probiotic solutions before spray drying were 9.48, 9.06, 9.25, 9.05,

9.06, and 9.24 log CFU/g, respectively. The number of viable cells of both LP and LA powders

decreased by less than 1.25 log CFU/g after spray drying, except for LPGA powders which had a

0.26 log CFU/g reduction. After spray drying, the number of viable cells in LPGA, LPHM, and

LPMD powders was 8.80, 8.31, and 8.09 log CFU/g, respectively. Meanwhile, LAGA had a

number of viable cells of 8.10 log CFU/g, followed by LAHM with 7.90 log CFU/g, and 7.82 log

CFU/g for LAMD. These results showed that GA was the best protective agent of cells after the

spray drying process. Regarding the storage temperatures, the results showed that the cell

viability of LP and LA powders was more stable at refrigerated temperature (4 °C) than those

stored at ambient temperature (23 °C). These results are in agreement with other studies that used

different bacterial strains and encapsulating agents (Gardiner et al., 2000; Hamsupo et al., 2005;

Soukoulis et al., 2014). According to Chávez and Ledeboer (2007) and Santivarangkna et al.

(2007), the survival of probiotic bacteria is inversely related to the temperature during storage

conditions. Furthermore, De Castro-Cislaghi et al. (2012) state that the encapsulating agent also

has a direct effect on the stability of the microencapsulated cells. Regarding the vacuum

conditions, both strains showed a higher survival at 97% vacuum than at 10% vacuum when they

were kept at 4 °C and at 23 °C. This suggests that lower levels of oxygen improved cell viability

during storage (Chávez & Ledeboer, 2007). According to (Champagne, Gardner, & Roy, 2005),

oxygen affects probiotic cells due to the intracellular production of hydrogen peroxide. In
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addition, Tripathi and Giri (2014) revealed that the production of free radicals from the oxidation

of cellular fats can be toxic to probiotic cells. A detailed discussion of each condition follows:

4.3.1. Viability of spray-dried L. plantarum NRRL B-4496 powders during storage at
refrigerated (4 °C) temperature

At 60 days of storage under 4 °C (Figure 4.1a), the results demonstrated that LPHM

powders yielded the highest viability of LP, followed by LPGA and LPMD. At 60 days of

storage, LPHM powders stored at 97% vacuum had a cell viability of 8.17 log CFU/g powder

representing a 0.14 log reduction in viability. Regarding LPHM powder stored at 10% vacuum,

the number of viable cells after 60 days was 8.08 log CFU/g which corresponds to a 0.23 log

reduction in viability. Bandyopadhyay and Mandal (2014) and Anal and Singh (2007) state that

resistant starch offers a surface for adherence of the bacterial cells during processing, storage,

and transit through the upper gastrointestinal tract, providing robustness and resilience to

environmental stresses. Probably this is the reason why LP had a higher viability during

refrigerated storage at both vacuum conditions compared to those with MD and GA. Goderska

and Czarnecki (2008) reported that the use of high maize starch (Hylon VII) as an encapsulating

agent kept the viability of spray dried Bifidobacterium bifidum DSM 20239 cells stable during

four months of storage at 4 °C, stating that may be the adhesion of cells to the starch is

responsible for the improvement on the cells viability. The viability of LPGA powders was not

significantly different (P ≤ 0.05) than HM powders at both 97% and 10% vacuum conditions,

having at the 60th day of storage a viability of 7.94 and 7.85 log CFU/g, respectively. Regarding

LPMD powders, both reported viability of more than 7 log CFU/g at the 60th day of storage time.

The number of viable cells was 7.85 log CFU/g for LPMD at 97% vacuum and 7.34 log CFU/g

for LPMD at 10% vacuum. The numbers of viable cells in all samples in the present study met

the recommended levels in a probiotic product to confer health benefits to humans (Meng et al.,
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2008; Reddy, Madhu, & Prapulla, 2009; Su, Lin, & Chen, 2007; Ying, Sun, Sanguansri,

Weerakkody, & Augustin, 2012). According to the results, the three wall materials can be used

to preserve L. plantarum up to 60 days of storage at refrigerated (4 °C) conditions. However,

other factors such as powder yields, costs, and physicochemical properties need to be considered

to select a wall material for a specific application.

4.3.2. Viability of spray-dried L. plantarum NRRL B-4496 powders during storage at room
(23 °C) temperature

When L. plantarum powders were stored at room temperature (Figure 4.1b), a rapid

decrease in cell viability was observed in all powder samples. GA was more effective to preserve

the cells viability than HM and MD after 60 days of storage. However, the number of viable cells

in GA powders at 97% and 10% vacuum had decreased significantly (P ≥ 0.05) after 5 days of

storage from 8.80 to 7.87 log CFU/g. At the 60th day, the highest number of live bacteria was

found in LPGA-vac and LPGA-air powders with a cell viability of 6.97 and 6.33 log CFU/g

respectively. Also, LPHM-air and LPMD-vac powders reported a cell viability of 6.11, and 6.02

log CFU/g, respectively. It was obvious that the viability of LP powders stored at 23 °C was

significantly lower at the end of the storage period than LP powders stored at 4 °C. These results

are supported by other studies that found the same downward trend in viability when L.

plantarum was stored at high temperatures (Bucio, Hartemink, Schrama, Verreth, & Rombouts,

2005; Coghetto, Flores, Brinques, & Ayub, 2016; Lapsiri, Bhandari, & Wanchaitanawong,

2012). Fu and Chen (2011) and Teixeira, Castro, and Kirby (1996) claim this downward trend in

viability is likely because during long storage periods at high temperatures the bacteria undergo a

natural degradation of life-essential macromolecules such as lipids and proteins due to oxidation

and denaturation processes.
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Figure 4.1. Effect of different wall materials on the survival of spray-dried L. plantarum NRRL B-4496 microcapsules stored under 97
and 10% vacuum at (a) refrigerated (4 °C) and (b) room (23 °C) temperature. HM = high maize starch, MD = maltodextrin, GA = gum
arabic, Vac = 97% vacuum, Air = 10% vacuum, and LP = L. plantarum NRRL B-4496. GA-Vac ( ), and GA-Air ( ) = spray-
dried LP with GA stored under 97 and 10% vacuum, respectively; HM-Vac ( ) and HM-Air ( ) = spray-dried LP with HM
stored under 97 and 10% vacuum, respectively; and MD-Vac (         ) and MD-Air ( ) = spray-dried LP with MD stored under 97
and 10% vacuum, respectively.
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Figure 4.2. Effect of different wall materials on the survival of spray-dried L. acidophilus NRRL B-4495 microcapsules stored under
97 and 10% vacuum at (a) refrigerated (4 °C) and (b) room (23 °C) temperature. HM = high maize starch, MD = maltodextrin, GA =
gum arabic, Vac = 97% vacuum, Air = 10% vacuum, and LA = L. acidophilus NRRL B-4495. GA-Vac ( ), and GA-Air (         ) =
spray-dried LA with GA stored under 97 and 10% vacuum, respectively; HM-Vac ( ) and HM-Air ( ) = spray-dried LA with
HM stored under 97 and 10% vacuum, respectively; and MD-Vac ( ) and MD-Air ( ) = spray-dried LA with MD stored under
97 and 10% vacuum, respectively.



47

4.3.3. Viability of spray-dried L. acidophilus NRRL B-4495 powders during storage at
refrigerated (4 °C) temperature

Similar to the previous result, GA showed better protective effects on preserving LA

during storage at 4 °C (Figure 4.2a) than HM and MD. At 60 days of storage, LAGA-vac

powders had higher cell viability than the other powder samples with 7.36 log CFU/g of cells,

corresponding to a 0.75 log reduction in viability, while the number of live bacteria for LAGA-

air powders was 6.98 log CFU/g. The number of live bacteria for LAMD-vac and LAMD-air

powders after 60 days had decreased to 7.18 and 6.66 log CFU/g, respectively. Meanwhile, the

number of live bacteria for LPHM-vac powders was 6.35 log CFU/g. The results showed that

more than 6 log CFU/g of L. acidophilus survived at 4oC after 60 days of storage. Zhao et al.

(2008) claim that a minimum concentration of L. acidophilus equivalent to 106 CFU/mL or gram

of product is needed to have therapeutic benefits in the human body. Also, Kailasapathy and

Chin (2000) state that regular consumption of yogurt containing 1.0×106 CFU/g of human origin

L. acidophilus, which is able to survive the upper regions of the gastrointestinal tract, is essential

to achieve therapeutic benefits.

4.3.4. Viability of spray-dried L. acidophilus NRRL B-4495 microcapsules stored at room
(23 °C) temperature

The L. acidophilus powders stored at room temperature (Figure 4.2b) experienced a steep

decline in cell viability. At the 10th day of storage, the number of viable cells in all LA powders

was above of 6 log CFU/g. However, at the 20th and 30th day of storage, only LAMD-vac and

LAGA-vac were able to keep a cell viability of more than 6 log CFU/g. Unlike LP, there were no

viable cells of LA detected at 60 days of storage at room temperature regardless wall material or

vacuum conditions, except for the LAMA-air powders which had 3.56 log CFU/g. Overall, cell

counts for LA powders stored at room temperature failed to meet the requirement for probiotic

products. The results indicated that LA was more susceptible to the tested storage conditions
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than LP. Golowczyc et al. (2010), report that L. plantarum species had a greater thermotolerance

throughout spray drying compared with L. kefir and Saccharomyces lipolytica. Soukoulis et al.

(2014), state that L. acidophilus is a thermo-sensitive probiotic strain and their viability is

critically affected by the operating spray drying conditions. Also, Fu and Chen (2011) classify L.

plantarum as a thermophilic bacteria and L. acidophilus as a heat sensitive bacteria. According to

Soukoulis et al. (2014) some lactobacilli strains have greater thermotolerance throughout spray

drying and this characteristic is strictly strain specific. Probably, the effects of spray drying on

cell damage could subsequently affect the viability of L. acidophilus during the storage

conditions.

4.4. Scanning electron microscopy of spray-dried probiotic powders

The spray-dried lactobacilli powders were observed by a scanning electron microscopy

(SEM) (Figures 4.3 and 4.4). Spray-dried powders had a surface without mechanical fissures and

the presence of concavities. These concavities were the result of the rapid evaporation of the

atomized liquid drops during spray drying (Fritzen-Freire et al., 2012). Both LPHM and LAHM

powders had a donut shape, possibly because of a particular property of starch when it is

subjected to spray drying (O'riordan, Andrews, Buckle, & Conway, 2001). LPMD and LAMD

powders consisted of particles with a wrinkled surface or with concavities. Rodríguez-Huezo et

al. (2007) reported that the use of moderate inlet drying temperatures in spray dried powders

(140 °C) could produce concavities, making the particles stronger against mechanical fracture

and solute diffusion. LPGA and LAGA powders had spherical shape and a flat ball effect on

their surfaces, which was also found in other studies using gum arabic (Desmond et al., 2002;

Lian, Hsiao, & Chou, 2002) as a wall material for the production of spray-dried probiotic

powders.
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Figure 4.3. Scanning electron micrographs of spray-dried L. plantarum NRRL B-4496 powders.
HM = high maize starch, MD = maltodextrin, GA = gum arabic, and LP = L. plantarum NRRL
B-4496. SD-LPHM = spray-dried microcapsules of LP with high maize starch, SD-LPMD =
spray-dried microcapsules of LP with maltodextrin, and SD-LPGA = spray-dried microcapsules
of LP with gum arabic. Magnification: left side = 1000x, right side = 3000x.

SD-LPHM SD-LPHM

SD-LPMD SD-LPMD

SD-LPGA SD-LPGA
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Figure 4.4. Scanning electron micrographs of spray-dried L. acidophilus NRRL B-4495 powders.
HM = high maize starch, MD = maltodextrin, GA = gum arabic, and LA = L. acidophilus NRRL
B-4495. SD-LAHM = spray-dried microcapsules of LA with high maize starch, SD-LAMD =
spray-dried microcapsules of LA with maltodextrin, and SD-LAGA = spray-dried microcapsules
of LA with gum arabic. Magnification: left side = 1000x, right side = 3000x.

SD-LAHMSD-LAHM

SD-LAHM SD-LAHM

SD-LAMD SD-LAMD

SD-LAGA SD-LAGA
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CHAPTER 5. SUMMARY AND CONCLUSIONS

The objectives of the present study were to a) investigate the effect of high maize starch

(HM), maltodextrin (MD), and gum arabic (GA) on the viability of L. plantarum NRRL B-4496

(LP) and L. acidophilus NRRL B-4495 (LA) after spray drying and during storage at different

conditions and b) to evaluate the spray drying conditions to produce the aforementioned

probiotic powders.

Probiotic solutions mixed with wall materials were separately spray dried at an inlet

drying air temperature of 140°C to obtain six LP and LA-powders. The actual production rate of

powders ranged from 0.091 to 0.105 (kg dry solids/h). The energy used during spray drying was

not significantly different for any of the powders. The estimated evaporation rate of water from

the six powders during spray drying ranged from 0.758 to 0.830 (kg water/h) and was not

affected by wall materials or probiotic strains. The moisture content of LP and LA-powders

ranged from 5.63 to 8.98 % and regardless of probiotic strain, the maltodextrin treatment had

lower moisture content than gum arabic and high maize starch treatments.

At the end of the storage period, LPHM powders packed under 10% and 97% vacuum

and stored at 4oC had significantly higher cell viability than the other powder samples. LA

powders had lower numbers of surviving cells than LP powders for the same protective agents

and storage conditions. The results showed that cell viability of both LP and LA powders was

more stable at refrigerated temperature (4 °C) than those powders stored at ambient temperature

(23 °C). Also, both LP and LA powders packed at 97% vacuum had a higher viability than those

powders stored at 10% vacuum. The data obtained showed that high maize starch can be used as

a protective agent to maintain the viability of L. plantarum powder at recommended levels for up

to 60 days of storage.
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APPENDIX A. EFFECT OF DIFFERENT WALL MATERIALS ON THE SURVIVAL
OF SPRAY-DRIED L. PLANTARUM NRRL B-4496.

Table A1. Viability of L. plantarum NRRL B-4496 stored under 97 or 10% vacuum at room (23
°C) temperature.

Time HM-air HM-vac MD-air MD-vac GA-air GA-vac
0 8.31±0.00Aa 8.31±0.00Aa 8.09±0.00Aa 8.09±0.00Aa 8.80±0.00Aa 8.80±0.00Aa

5 8.42±0.01Aa 8.01±0.02Bb 7.53±0.05Bb 7.77±0.01Ab 7.87±0.04Ab 7.87±0.02Ab

10 7.73±0.04Ab 7.78±0.05Ac 7.08±0.08Ac 7.12±0.03Ac 7.81±0.02Ab 7.85±0.06Abc

20 7.56±0.02Ac 7.16±0.08Bd 7.14±0.00Ac 7.12±0.02Ac 7.69±0.03Abc 7.71±0.01Abc

30 7.21±0.02Ad 6.93±0.00Be 6.64±0.04Bd 6.98±0.07Ac 7.54±0.09Ac 7.68±0.07Ac

60 6.11±0.04Ae 5.96±0.00Bf 4.16±0.07Be 6.02±0.04Ad 6.33±0.00Bd 6.97±0.04Ad

ABMeans with the same letter in a row are not significantly different (P ≤ 0.05). abcdeMeans with
the same letter in a column are not significantly different (P ≤ 0.05). HM = high maize starch,
MD = maltodextrin, GA = gum arabic, Vac = 97% vacuum, Air = 10% vacuum, and LP = L.
plantarum NRRL B-4496. GA-Vac and GA-Air = spray-dried LP with GA stored under 97 and
10% vacuum, respectively; HM-Vac and HM-Air = spray-dried LP with HM stored under 97 and
10% vacuum, respectively; and MD-Vac and MD-Air = spray-dried LP with MD stored under 97
and 10% vacuum, respectively.

Table A2. Viability of L. plantarum NRRL B-4496 stored under 97 or 10% vacuum at
refrigerated (4 °C) temperature.

Time HM-air HM-vac MD-air MD-vac GA-air GA-vac
0 8.31±0.00Aa 8.31±0.00Aa 8.09±0.00Aa 8.09±0.00Aa 8.80±0.00Aa 8.80±0.00Aa

5 8.23±0.00Ab 8.07±0.00Bc 7.58±0.01Bb 8.07±0.05Aa 7.96±0.03Bbc 8.16±0.02Ab

10 8.24±0.00Ab 8.08±0.00Bc 7.62±0.00Bb 8.03±0.02Aa 7.77±0.02Ad 7.74±0.04Ad

20 8.29±0.00Aa 8.20±0.01Bb 7.64±0.09Ab 7.73±0.03Ab 8.02±0.02Ab 8.02±0.07Abc

30 8.29±0.00Aa 8.29±0.02Aa 7.55±0.02Bb 7.83±0.07Ab 8.12±0.05Ab 8.11±0.02Abc

60 8.08±0.01Ac 8.17±0.04Ab 7.34±0.02Bc 7.85±0.00Ab 7.84±0.07Acd 7.94±0.06Ac

ABMeans with the same letter in a row are not significantly different (P ≤ 0.05). abcdeMeans with
the same letter in a column are not significantly different (P ≤ 0.05). HM = high maize starch,
MD = maltodextrin, GA = gum arabic, Vac = 97% vacuum, Air = 10% vacuum, and LP = L.
plantarum NRRL B-4496. GA-Vac and GA-Air = spray-dried LP with GA stored under 97 and
10% vacuum, respectively; HM-Vac and HM-Air = spray-dried LP with HM stored under 97 and
10% vacuum, respectively; and MD-Vac and MD-Air = spray-dried LP with MD stored under 97
and 10% vacuum, respectively.
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APPENDIX B. EFFECT OF DIFFERENT WALL MATERIALS ON THE SURVIVAL
OF SPRAY-DRIED L. ACIDOPHILUS NRRL B-4495.

Table B1. Viability of L. acidophilus NRRL B-4496 stored under 97 or 10% vacuum at room (23
°C) temperature.

Time HM-air HM-vac MD-air MD-vac GA-air GA-vac
0 7.90±0.00Aa 7.90±0.00Aa 7.82±0.00Aa 7.82±0.00Ab 8.10±0.00Aa 8.10±0.00Aa

5 6.79±0.04Ab 6.23±0.07Bc 7.26±0.02Bb 8.04±0.05Aa 7.22±0.01Ab 7.30±0.04Ab

10 5.72±0.05Bc 6.61±0.06Ab 6.91±0.03Bc 7.48±0.00Ac 6.45±0.06Bc 7.13±0.02Ac

20 3.89±0.15Bd 5.30±0.04Ad 4.30±0.00Be 6.42±0.09Ad 5.44±0.06Bd 6.31±0.07Ad

30 2.28±0.00Be 3.04±0.05Ae 4.55±0.05Bd 6.22±0.04Ae 4.35±0.07Be 5.67±0.04Ae

60 0.00±0.00 0.00±0.00 3.54±0.13Af 0.00±0.00 0.00±0.00 0.00±0.00
ABMeans with the same letter in a row are not significantly different (P ≤ 0.05). abcdeMeans with
the same letter in a column are not significantly different (P ≤ 0.05). HM = high maize starch,
MD = maltodextrin, GA = gum arabic, Vac = 97% vacuum, Air = 10% vacuum, and LA = L.
acidophilus NRRL B-4495. GA-Vac and GA-Air = spray-dried LA with GA stored under 97 and
10% vacuum, respectively; HM-Vac and HM-Air = spray-dried LA with HM stored under 97
and 10% vacuum, respectively; and MD-Vac and MD-Air = spray-dried LA with MD stored
under 97 and 10% vacuum, respectively.

Table B2. Viability of L. acidophilus NRRL B-4496 stored under 97 or 10% vacuum at
refrigerated (4 °C) temperature.

Time HM-air HM-vac MD-air MD-vac GA-air GA-vac
0 7.90±0.00Aa 7.90±0.00Aa 7.82±0.00Ab 7.82±0.00Ab 8.10±0.00Aa 8.10±0.00Aa

5 7.59±0.14Aab 7.81±0.04Aab 7.62±0.02Bc 8.04±0.04Aab 7.28±0.02Bc 7.65±0.03Ac

10 7.53±0.06Ab 7.66±0.02Ab 8.19±0.01Aa 8.33±0.06Aa 7.85±0.04Ab 7.82±0.02Ab

20 7.07±0.07Bc 7.38±0.04Ac 6.82±0.08Ad 7.13±0.07Ac 7.01±0.02Bd 7.46±0.08Ad

30 6.48±0.04Ad 6.54±0.00Ad 6.90±0.01Bd 7.41±0.02Ac 7.03±0.06Bd 7.27±0.00Ae

60 5.42±0.04Be 6.34±0.07Ae 6.65±0.03Ae 7.16±0.17Ac 6.97±0.11Bd 7.36±0.03Ade

ABMeans with the same letter in a row are not significantly different (P ≤ 0.05). abcdeMeans with
the same letter in a column are not significantly different (P ≤ 0.05). HM = high maize starch,
MD = maltodextrin, GA = gum arabic, Vac = 97% vacuum, Air = 10% vacuum, and LA = L.
acidophilus NRRL B-4495. GA-Vac and GA-Air = spray-dried LA with GA stored under 97 and
10% vacuum, respectively; HM-Vac and HM-Air = spray-dried LA with HM stored under 97
and 10% vacuum, respectively; and MD-Vac and MD-Air = spray-dried LA with MD stored
under 97 and 10% vacuum, respectively.
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