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ABSTRACT

Probiotics may improve gut microbial composition and immune function. Introduction of
probiotics via foods or supplements may result in the probiotics not surviving during processing
and passage through the stomach to the large intestine. The overall objective of this study was to
develop and investigate three delivery systems for delivering live probiotic cells (Lactobacillus
plantarum NRRL B-4496) (LP). The three delivery systems were: (1) immobilized LP (~10°*-10°
CFU/mL LP Free Cells) on purple rice bran fiber (PRF) (Delivery system 1), (2) encapsulated
LP with combined pectin-rice bran extract (Delivery system 2), and (3) double encapsulated LP
with protective agents (Delivery system 3). All three delivery systems were frozen prior to freeze
drying and they were tested for viability of LP during processing and under gastrointestinal fluid
conditions and compared with free LP cells. PRF protected cells in Delivery system 1 had less
than 1 log reduction of viable cells, while the control (free LP cells) had reductions greater than 6
logs after freeze drying. The log reductions of viable LP cells protected with PRF after freeze
drying and 12 weeks storage at 4 °C were between 0.7 and 1.3 log cycles. Delivery system 2 had
significantly higher viability under gut conditions than free LP cells prior to freeze drying.
However, the encapsulated LP did not survive during freeze drying. The third delivery system
was developed by mixing LP cells with a protective agent including maltodextrin, wheat dextrin
soluble fiber, or hi-maize starch. They were double encapsulated, first with pectin-rice bran
extract then with whey protein isolate. Delivery system 3 had greater numbers of viable cells
than delivery system 2 after freeze drying. The whey protein isolate coating significantly
improved cell viability of the encapsulated cells during freeze drying. Hi-maize starch provided
better protection to the encapsulated cells during freeze drying and in simulated gastrointestinal

conditions than maltrodextrin and wheat dextrin soluble fiber. Encapsulation of L. plantarum

viii



with hi-maize starch in freeze dried pectin-rice bran capsules would be a novel synbiotic
supplement that may potentially be incorporated into food products such as nutrition bars, cereal

products or dairy products.
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CHAPTER 1INTRODUCTION

Probiotics are well known for beneficial health effects on the host, such as improvement
of gut microbial composition, protection against pathogenic bacteria, and modulation of immune
systems. Probiotics have been incorporated into various food products, including both dairy
products, such as yogurt, cheese, and ice cream, and non-dairy products i.e. cereals and juices.
The global market of probiotic products has a tendency to increase at a compound annual growth
rate of 6.8% and is expected to reach $37.9 billion in 2018 (Sharma, Tomar, Goswami, Sangwan,
& Singh, 2014). For health benefits, viability of probiotic cells is a paramount factor that needs
to be considered. Typically, probiotic concentration levels of 10° to 10’ CFU/g, or greater, are
desirable for their application as food supplements. In addition, probiotics need to have good
survivability during the digestion process so that they reach the site of action, the large intestine,
in sufficient numbers and viability for functionality.

However, introduction of probiotics via foods may result in the probiotics not surviving
during processing and passage through the gastrointestinal tracts. Losses of probiotic cells could
result from not only unfavorable conditions of food processing, such as heating, freezing,
dehydration, and acidification, but also digestive system environments which contain gastric
fluids (high acid level), bile salts, and bile enzymes. Poor probiotic viability was found in
products containing free probiotic cells. The number of viable Lactobacillus casel added to
yogurt dramatically decreased from 107 to less than 10 CFU/g within 30 min after exposure to
pH 2, while the viable cells in low-fat cheese was reduced to 10° and 10* CFU/g after 30 and 120
min incubation at pH 2, respectively (Sharp, McMahon, & Broadbent, 2008). Providing
probiotics with a physical barrier can be an approach to resist harmful environments, improve

probiotic viability, and delivery through the stomach to the large intestine.



Immobilization and encapsulation are techniques that can be used to develop delivery
systems for probiotics, which provide protection of bacteria cells. Dietary fibers may be utilized
to immobilize bacterial cells throughout the fiber matrix. They provide surfaces for bacteria to
attach onto, and they function as a protective agent against physiochemical changes due to
adverse pH, temperature, and biles. For example, L. casei immobilized on wheat grains had a
large number of viable cells after freeze drying and during storage for 12 months at -18°C
(Bosnea et al., 2009). Oat bran fibers improved the survival of L. casal during dehydration and
storage at room temperature. The cells adhered to oat bran fibers had better survival in simulated
gastric acid (at pH 1.5) and bile salt media than did free cells after incubating for 2 h
(Guergoletto, Magnani, Martin, Andrade, & Garcia, 2010). Pectin is a soluble fiber that can form
three dimensional rigid and water insoluble hydrogels with a continuous layer. These hydrogels
encapsulate bacterial cells within their core matrix. Pectin hydrogels/capsules stay intact in the
stomach due to resistance to gastric acid and intestinal enzymes but can be degraded by colonic
bacteria in the large intestine (Sriamornsak, 2003). The degradation by colonic bacteria releases
the encapsulated cells. Viability of Lactobacillus rhamnosus in gastric conditions at pH 2 was
improved when the cell was encapsulated with pectin (Gerez, Font de Valdez, Gigante, &
Grosso, 2012). Encapsulated Lactobacillus acidophilus in pectin capsules had 1.51 log cycle
reductions after incubating in simulated gastric (pH 3) and intestinal (pH 7) juices, while a
reduction of 3.54 log cycles was observed in non-encapsulated cells (Gebara et al., 2013).

The overall objective of this dissertation was to develop and evaluate fiber and/or pectin
based delivery systems for delivering Lactobacillus plantarum. To accomplish this, three
constituent studies were conducted: (1) immobilization of L. plantarum on purple rice bran fiber,

(2) development of a combined pectin-rice bran extract delivery system to improve L. platarum



viability under acid and bile conditions, and (3) double encapsulation of L. plantarum with
protective agents to improve cell viability after freeze drying and during simulated

gastrointestinal conditions.



CHAPTER 2LITERATURE REVIEW

2.1. Probiotics
2.1.1. Definition and classification

The term “probiotic” was first used in 1965 by Lilly and Stillwell to describe “substances
secreted by one microorganism which stimulates the growth of another” (Schrezenmeir & de
Vrese, 2001). The term has been redefined by several researchers. In 1989, probiotic was
redefined as “A live microbial feed supplement which beneficially affects the host animal by
improving its intestinal microbial balance” (Fuller, 1989). This definition had increased focus on
viability of probiotics and beneficial effects on the host. The definition of probiotic was
improved by Food and Agriculture Organization of the United Nations and World Health
Organization as “live microorganisms that, when administered in adequate amounts, confer a
health benefit on the host” (FAO/WHO, 2001). Most probiotics are lactic acid bacteria (LAB).
LAB are gram-negative, non-spore forming, and non-aerobic, and are aero-tolerant and acid
tolerant bacteria (Agrawal, 2005). They are cocci or rods, which produce lactic acid as a major
end product after carbohydrate fermentation (Wee, Kim, & Ryu, 2006). The important genera of
LAB are Lactobacilli, Bifidobacteria and Enterococci (Agrawal, 2005); these genera are listed in
Table 2.1. However, some non-lactic acid bacteria such as Bacillus cereus var. toyoi and
Escherichia coli strain Nissle and some yeast are also considered as probiotics (Holzapfel,
Haberer, Snel, Schillinger, & Huis in't Veld, 1998).
2.2.2. Probiotic products and their viability

Digestive health products are one of the most successful categories of functional foods.
These include probiotic, prebiotic and dietary fiber products. Valls et al. (2013) mentioned that

digestive health had been the most used assertion made on new functional food launches between



2005 and 2009. Between 2004 and 2009 the global market for pre- and probiotic yogurt grew to
128%, from $3.3 billion to $7.6 billion, while the drinking yogurt market increased 44% to $11.2

billion (Valls et al., 2013).

Table 2.1. Microorganisms used as probiotics

Lactobacillussp.  Bifidobacteriumsp. Other LAB Bacillus sp. Non LAB

L. acidophilus B. adolescentis Enterococcus B. cereus Clostridium

L. casel B. animalis faecalis B. clausii butyricum

L. delbrueckii B. animalis subsp. E. faecium B. coagulans Escherichia
subsp. lactis Lactococcus B. licheniformis  coli

delbrueckii B. bifidum lactis B. mesentericus  Propionibacterium
L. delbrueckii B. breve Leuconostoc B. subtillis freudenreichii
subsp. bulgaricus B. longum subsp. mesenter oides Saccharomyces
L. delbrueckii infantis Pediococcus cerevisiae
subsp. lactis B. longum subsp. acidilactici subsp.

L. helveticus longum P. pentosaceus cerevisiae

L. fermentum Streptococcus Saccharomyces
L. johnsonii salivarius cerevisiae

L. leichmanii S macedonicus subsp.

= delbrueckii S mitis boulardii

subsp. lactis S sanguis

L. paracasei S. thermophilus

L. plantarum

L. reuteri

L. rhamnosus

L. sakei

Source: modified from Foligne, Daniel, and Pot (2013)

Recently, it was reported that global markets of probiotic products have a tendency to
grow at a CAGR (compound annual growth rate) of 6.8% and were expected to reach $37.9
billion in 2018 (Sharma et al., 2014). In the United State, 19% of American adults in 2008 had
purchased a pre/probiotic yogurt in the previous 3 months. 24% of women had consumed those
products which was two-fold higher than men. The majority of purchasers (30%) were in the 45
to 54 age range (Granato, Branco, Cruz, Faria, & Shah, 2010). Similarly, in Western Europe
probiotic foods are a huge consumer market. In 2008 the probiotic market earned more than 1.4

billion euros. Yogurt and desserts were the biggest sector, which was about 1 billion euros



(Saxelin, 2008). Japan is one of the biggest world-wild functional food markets. Sixty-five
probiotic products with 16 different strains had been listed as foods for specialized health use
(FOSHU) in 2005. This increased to 73 products in 2008 (Amagase, 2008; Fukushima & Hurt,
2011).

Fermented dairy products such as yogurts, kefir, and cultured drinks are the major
category of probiotic products. Milk and dairy products have been used as the main vehicle to
deliver probiotics through human GI tracts for decades. The traditional yogurts are prepared by
allowing yogurt cultures containing L. bulgaricus and Streptococcus thermophiles to ferment
milk (Ranadheera, Baines, & Adams, 2010). However, some studies found that the conventional
yogurt starter bacteria failed to survive through the intestinal gut or that their viability was lower
than the minimum requirement (< 10° cfu/g) (Plessas, Bosnea, Alexopoulos, & Bezirtzoglou,
2012). Incorporating extra probiotics to yogurts such as L. acidophilus or B. bifidum has been
suggested method to add more nutritional-physiological value (Lourens-Hattingh & Viljoen,
2001; Mortazavian et al., 2006). Ataie-Jafari, Larijani, Alavi Majd, and Tahbaz (2009) reported
that compared with traditional yogurt consumption of yogurt fortified with L. acidophilus and B.
lactis significantly decreased serum total cholesterol in mildly to moderately
hypercholesterolemic subjects,. Cheese is one of the food products appealing to many palates.
Cheese consumption has been growing in various countries in past decades (Gomes da Cruz,
Alonso Buriti, Batista de Souza, Fonseca Faria, & Isay Saad, 2009). Several studies have
mentioned that cheese functioned as a better probiotic carrier than yogurts. The high pH, fat
content, buffering capacity, and dense protein matrix of cheese could help improve probiotic
viability during storage and during passage through the gastrointestinal tract (Boylston,

Vinderola, Ghoddusi, & Reinheimer, 2004; Phillips, Kailasapathy, & Tran, 2006). Sharp et al.



(2008) found that the number of viable L. casei added in yogurt dramatically decreased from 10’
to less than 10 CFU/g within 30 min exposure to pH 2, while the strain in low-fat cheese was
reduced to 10° CFU/g after 30-min incubation and had 10* CFU/g after 120 min. Ice cream is
likely to be a good probiotic carrier due to its composition including milk proteins, fat and
lactose, as well as other compounds. Fortification of ice cream by probiotics could increase the
value of ice cream since it would become a functional food (Cruz, Antunes, Sousa, Faria, &
Saad, 2009). Lactobacillus acidophilus, L. agilis, and L. rhamnosus were added into ice cream
containing either sucrose or aspartame. Survivability of the cells was determined monthly during
storage at -20 °C. The results showed that their stable viability and properties, including
resistance to bile salts, antibiotics, and acidic conditions. Addition of the probiotic did not affect
the ice cream characteristics (Basyigit, Kuleasan, & Karahan, 2006). Similarly, probiotic ice
cream containing L. casel and L. rhamnosus had large lactic acid bacteria counts after frozen
stage, ranging from 6.5 to 6.9 log cfu/g, while the control (without cells added) had less than 3
log cfu/g. No cell loss was observed during storage at -20 °C for 16 weeks. For the sensory
assessment, probiotic vanilla ice cream had slightly lower taste intensity than the control ice
cream (Di Criscio et al., 2010). Overrun levels of ice cream were reported to negatively affect
probiotic viability due to probiotics lack of an oxygen-scavenging system. Microaerophilic and
anaerobic probiotics are unable to reduce hydrogen peroxide, a toxic oxygen metabolite, which
causes cell death (Vasiljevic & Shah, 2008). Ferraz et al. (2012) suggested that to maintain
probiotic viability through the ice cream shelf-life, lower overrun levels should be obtained
during manufacture. The authors found that a 90% overrun negatively affected viability of L.

acidophilus, decreasing viable cell count by 2 log CFU/g after 60 days of frozen storage.



Besides dairy products, fruit and vegetable based probiotic products have been launched
in order to satisfy vegetarians, consumers suffering from lactose intolerance, and consumers with
cholesterol-restricted diets. The probiotics are incorporated into fruit pieces, fruit and vegetable
juices and cereal bars. In one study, L. rhamnosus attached to apple wedges by dipping the apple
into a probiotic solution. The apple contained high cell viability (~10°cfu/g) during storage for
10 days at 4 °C in modified atmosphere packaging. Moreover, the sensory evaluation showed
that average overall acceptability of the fresh prepared probiotic apple wedges had no significant
difference with the control apple wedges (RoBle, Auty, Brunton, Gormley, & Butler, 2010).
Dried apple cubes containing L. plantarum and L. kefir were analyzed for cell viability. It was
found that the number of viable cells decreased by 2 log cycles after drying at 40 °C for 27 h.
After storage at 4 °C for 3 months, the dried apples had only a 1 log reduction of cells. Cells in
apples stored at room temperature died after 1 month of storage (Rego et al., 2013). Similarly,
probiotic pomegranate juice containing L. plantarum, L. delbruekii, L. paracasei, and L.
acidophilus had high cell survivability (~10* cfu/mL) after fermentation for 72 h. The number of
viable cells was gradually decreased after storage for 2 weeks at 4 °C and no cells were detected
after 4 weeks of storage (Mousavi, Mousavi, Razavi, Emam-Djomeh, & Kiani, 2011). Apple
juices fortified with the addition of oligofructose or sucralose as sugar substitutes and L.
paracasei were evaluated for sensory acceptability. Although the probiotics increased the
turbidity of the juice, it had no effects on acceptance (appearance, aroma, flavor, texture and
overall impression). The acceptance was positive on sweet taste, sweet aroma and bitter
aftertaste. On the contrary, it was negative on apple flavor, apple aroma, darker color and sour
taste (Pimentel, Madrona, & Prudencio, 2015). L. rhamnosus was inoculated into six cooked

grains including buckwheat, dark buckwheat, barley, oat, soya, and chickpea, which were then



molded and fermented at 37 °C for 10 h. It was found that the cells multiplied in the final
product of all grain types, yielding cell densities of 6.68—7.58 log CFU/g. The freshly prepared
probiotic grain was acceptable to consumers but sensory scores decreased when the stored
probiotic grain was evaluated. The researchers stated that lower acceptability scores were
possibly due to the probiotic metabolites produced during storage (Kockova & Valik, 2014).
2.1.3. Praobiotic functions and resulting health claims

Probiotics have many health benefits including reduction of infections, prevention of
certain types of acute diarrhea, reduction of the risk of antibiotic-associated symptoms and
improvement of lactose tolerance. Modulation of gut microbiota and immunomodulation by
probiotics are also well documented health benefits. Recently probiotics have been reported to
decrease cholesterol as well as prevent some cancers. A more detailed discussion follows.

1) Prevention of infectious diarrhea

It has been well established that probiotics help relieve acute infectious diarrhea

especially in infants and children. Competitive exclusion is a major mechanism of probiotics and
is responsible for the healing effect of infectious diarrhea (Saxelin, Tynkkynen, Mattila-
Sandholm, & de Vos, 2005). Some probiotics have an ability to adhere to the epithelial wall,
resulting in competition between probiotics and intestinal pathogens for the same adhesive
receptors (Oelschlaeger, 2010). Allen, Martinez, Gregorio, and Dans (2010) revealed effects of
probiotics on acute infectious diarrhea from 63 studies which included a total of 8,014
participants-mainly infants and young children. Overall probiotics shortened the duration of
diarrhea and reduce its severity. The study supported the use of probiotics in acute, infectious
diarrhoea. L. rhamnosus GG was reported to have the most consistent effect on prevention of

acute infectious diarrhea in infants and children, when compared with other effective probiotics



(Szajewska & Mrukowicz, 2001). The use of probiotics helps prevent diarrhea caused by
antibiotics particularly in children. Antibiotics negatively affected colonic microflora leading to
changes of carbohydrate metabolism and antimicrobial activity in the colon. As the results,
osmotic diarrhea and diarrhea caused by pathogens could occur (Salvini, 2013). Sixteen clinical
studies (3,432 children) related to the prevention of antibiotic-associated diarrhea (AAD) by
probiotics (Lactobacilus sp., Bifidobacterium sp., Sreptococcus sp., or Saccharomyces boulardii
alone or in combination) were reviewed and analyzed by Johnston, Goldenberg Joshua, Vandvik
Per, Sun, and Guyatt Gordon (2011). The analyses stated that 15 out of 16 trials reported the
benefits of probiotics against AAD compared to active, placebo or treatment controls. The
incidence of AAD in the probiotic group was 9%, while 18% was found in the control group.
The data indicated that a high dosage of L. rhamnosus and S. boulardii (5-40x10° CFU/day) was
likely to prevent the onset of AAD with no serious side effects. Clostridium difficile-associated
diseases (CDAD) are also reported to be relieved by probiotics. CDAD occur by transmission of
C. difficile via the fecal-oral route, for example from the contamination of the hands of
healthcare workers. A meta-analysis of 471 people across CDAD studies showed that the
treatments of probiotics reduced a 71% of CDAC risk (Avadhani & Miley, 2011).
2) Improvement of lactose tolerance

Lactose intolerance, the gastrointestinal symptoms such as abdominal pain,
flatulence, bloating, nausea, or diarrheas, results from lactose maldigestion, the inability to
completely digest lactose (Hertzler & Clancy, 2003). Probiotics alleviate lactose intolerance by
reducing lactose contents or by releasing lactase (Rolfe, 2000). Effects of kefir, a fermented milk
beverage that contains different cultures than yogurt, on fifteen lactose maldigesters were

evaluated and compared with the effect of yogurt and milk. The kinetics of hydrogen production
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after ingestion was used to determine lactose maldigestion. The results showed that the hydrogen
was not significantly different in yogurt and kefir treatments while milk had significantly
increased hydrogen. Flatulence, the most common symptom in lactose intolerance, was severe in
the subjects consuming milk. On the other hand, no differences in flatus severity were reported
between yogurts and kefir treatments. The highest B-galactosidase activity was found in the
subjects taking kefir (Hertzler & Clancy, 2003). Consuming of yogurt enriched with
Bifidobacterium animalis and probiotic B. longum was reported to reduce lactose intolerance
symptons in eleven adult lactose maldigesters. The study found that a number of total bacteria
and fecal B-galactosidase activity were increased after 2 week supplementation. The symptom
scores after lactose challenge was decreased (He et al., 2008). Almeida, Lorena, Pavan, Akasaka,
and Mesquita (2012) also mentioned that the symptoms of lactose intolerance were reduced after
lactose-intolerant patients consumed L. casel Shirota and B. breve Yakult. Hydrogen production
of subject consuming probiotic treatments was lower than the baseline group, and was the same
as that of the patients who received lactase.as same as the patients received lactase.
3) Modulation of gut microbiota

Probiotics have an influence on the ecosystem balance and/or metabolism
characteristics of intestinal microbiota (Rabot, Rafter, Rijkers, Watzl, & Antoine, 2010).
Probiotics stimulate the growth of indigenous bacteria resulting in increasing not only in the
number of the bacteria but also the density (Ohashi & Ushida, 2009). This plays an important
role in antagonism against pathogenic bacteria by reducing luminal pH, inhibiting bacterial
adherence and translocation, or producing antibacterial substances and defenses. The production
of a physiologically restrictive environment (pH, redox potential, and hydrogen sulfide

production) helps resists colonization of pathogens (Ng, Hart, Kamm, Stagg, & Knight, 2009).
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Effects of probiotics on the composition of the intestinal microbiota in humans were shown in
several studies. Tuohy et al. (2007) mentioned that the number of fecal lactobacilli recovered
from volunteers consuming a fermented milk drink (L. casei) was significantly increased after
ingestion and that there was no change in the level of L. casal in the recovered fecal samples
during the study period (21 days). The impact of yogurt consumption supplemented with B.
animalis subsp. lactis (BB12) and L. acidophilus (LA-5) on fecal bacterial counts of healthy
adults was studied. The results demonstrated that the healthy subjects consuming the yogurt had
higher fecal numbers of BB12, LAS, and total lactobacilli, but lower enterococci than the
placebo group (Savard et al., 2011). Similarly, it was evident that elderly volunteers who
consumed cheese containing L. rhamnosus HNOO1 and L. acidophilus NCFM had increased
number of the bacteria in fecal samples and lower counts of Clostridium difficile compared to the
plain cheese group (Lahtinen et al., 2012).
4) Immunomodulation

The immunomodulatoty effect is one of the crucial benefits of probiotics. As well-
known, segregation of immune systems is related to intestinal epithelial cells where microbiota
in the gut lumen attached. The bacteria recognize receptors on the epithelial cell surface and bind
to the receptors, immunological defense mechanisms such as the production of pro- and anti-
inflammatory cytokines are triggered (Saxelin et al., 2005). Cytokines such as antigen presenting
cells (APCs) and T lymphocytes have a positive impact on inflammatory bowel disease (IBD),
irritable bowel syndromes, and allergies (McGovern & Powrie, 2007). Transforming growth
factor beta (TFG-P) and interleukins such as IL-4, IL-5, IL-6 and IL-10 are multiple cytokines
required for IgA promotion and maturation (Corthesy, 2007). IgA or immunoglobulin plays key

roles in immune protection (Woof & Kerr, 2006). It has been reported that probiotics could
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modulate cytokine profiles and activate monocytes and macrophages. This plays a pivotal role in
activation of antigen-specific immunity and stimulation of IgA immunity. The result is related to
promoting of IgE induction and allergic responses (Drago, Nicola, Iemoli, Banfi, & De Vecchi,
2010).

In clinical human studies, consumption of probiotic products or probiotic
supplements helps enhance and/or modulate immune systems. According to the study of Parra,
Martinez de Morentin, Cobo, Mateos, and Martinez (2004), forty-five healthy volunteers
receiving fermented milk containing L. casei DN114001 increased of oxidative burst capacity of
monocytes and natural killer cells tumoricidal activity, indicating that the bacterial strain could
modulate the innate immune defense. Olivares et al. (2006) found that yogurt and a new
fermented product containing L. gasseri CECT 5714 and L. coryniformis CECT 5711 increased
the proportion of monocytes and neutrophils of healthy adult subjects as well as their phagocytic
activity. L. gasseri CECT 5714 and L. coryniformis CECT 5711 induced an increase in natural
killer cells proportion and IgA concentrations. It was reported that the use of probiotics in
patients with ulcerative colitis reduced the colonic concentration of IL-6, colonic
myeloperoxidase activity, and the level of fecal calprotectin, resulting in amelioration of colonic
inflammation (Hegazy & El-Bedewy, 2010).

5) Lowering levels of cholesterol
Recently cholesterol lowering probiotics have been studied by many researchers.
Several in vitro and in vivo studies reveled probiotics’ the ability to assimilate cholesterol and/or
deconjugate cholesterol to bile acids through bile salt hydrolase. These result in reduction of
cholesterol and beneficial changes of lipid profile (Homayouni, Payahoo, & Azizi, 2012; Ooi &

Liong, 2010). Guo et al. (2011) evaluated the effects of probiotic consumption on blood lipid in
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13 trials that included a total of 485 participants with high, borderline high or normal cholesterol
levels by a meta-analysis. They compared the treated probiotic groups to the control, and found
that the pooled mean net change in total cholesterol, low-density lipoprotein (LDL) cholesterol,
high-density lipoprotein (HDL) cholesterol and triglycerides were lower by 6.40 mg/dl, 4.90
mg/dl, 0.11 mg/dl, and 3.95 mg/dl, respectively. This indicated that a rich probiotic diet
decreased total cholesterol and LDL cholesterol concentration in plasma of subjects with high,
borderline high and normal cholesterol levels. The result was also confirmed by other studies in
later years. Asemi et al. (2011) mentioned that consumption of enriched probiotic yogurt for 9
weeks reduced concentrations of total cholesterol (53.7 mg/dl), HDL-cholesterol (9.8 mg/dl), and
triglyceride (42.8 mg/dl) in pregnant women. However, no difference in the reduction of total
cholesterol and HDL-cholesterol concentrations was observed when compared to traditional
yogurt. A yogurt containing microencapsulated L. reuteri NCIMB 30242 was found to
significantly reduce LDL-cholesterol (8:92 %), total cholesterol (4-81 %) and non-HDL-
cholesterol (6:01 %) in hypercholesterolaemic adults over placebo (Jones, Martoni, Parent, &
Prakash, 2012). Type 2 diabetes mellitus patients taking probiotic yogurt containing L.
acidophilus La-5 and B. lactis Bb-12 for 8 weeks had a significant reduction in the ratio between
LDL-cholesterol and HDL-cholesterol compared to type 2 patients consuming conventional
yogurt, while there was no difference in the concentration of total cholesterol, triglyceride, LDL-
cholesterol and HDL-cholesterol.
6) Prevention of colorectal cancer

A number of in vitro and animal studies have demonstrated that probiotics could

contribute to colorectal cancer (CRC) prevention. Anti-CRC mechanisms of probiotics are

complex. According to Chong (2014), Intraluminal, systemic, and direct effects of probiotics on
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intestinal mucosa are related to CRC prevention. Intraluminal effects include competitive
exclusion, modulation of gut microbiota, reduction of carcinogenic secondary bile acids, binding
of carcinogens and mutagens, and increasing short chain fatty acids production. Multifaceted
immunomodulatories, in particular its ability to modulate intestinal inflammation, play an
important role in decreasing the risk of CRC and reduction of DNA damages. Suppression of
aberrant crypt foci formation on intestinal mucosa has also been mentioned as direct anti-CRC
effects of probiotics. Anticancer activity of probiotics is strain dependent. L. reuteri ATCC PTA
6475, L. rhamnosus GG, L. paracasei IMPC2.1, and L. acidophilus could inhibit the growth of
colon cancer cell lines and induce their apoptosis. Iyer et al. (2008) revealed that L. reuteri
inactivated a tumor necrosis factor induced nuclear factor-kB in a dose and time-dependent
manner by regulating cell proliferation, resulting in promoting apoptosis of activated immune
cells. L. rhamnosus GG and L. paracasel IMPC2.1 were found to cause significant reduction in
proliferation activity of DLD-1 cells, colon cell lines, after 24 and 48 h of attachment (Orlando et
al., 2012). An in vivo studie revealed that rats fed with L. rhamnosus GG or L. acidophilus
NCDC #15 and injected with 1,2 dimethylhydrazine dihydrochloride (DMH) to induce chemical
colon carcinogenesis had reduction in Aberrant crypts, and recognizable mucosal alterations. In
histopathological studies, it was found that L. acidophilus + DMH-treated rats had moderate
infiltration of lymphocytes with edema in submucosa and mucosa, whereas L. rhamnosus +
DMH had normal morphology of the colon (closely packed glands with few lymphocytes)
(Verma & Shukla, 2013). L. plantarum AS1 was reported to reduce colon tumor volume
diameter and total number of tumors induced by DMH in probiotic pre- and post-treated rats.

The number of tumors was reduced from 2.16 tumors per rat to 1.8 tumors per rat in the
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pretreated rats and to 1.6 tumors per rat in the post treated rats (Kumar et al., 2012). To confirm
the potential role of probiotics in CRC prevention, human studies are required.
2.2. Human gastrointestinal tract and physiology

The gastrointestinal (GI) tract is a hollow muscular tube which functions for digestion,
absorption, excretion, and protection (Cheng et al., 2010). The GI tract includes the mouth,
pharynx, esophagus, stomach, small intestine, and large intestine. Each section has its own
physiology (Figure 2.1), which needs to be considered to design delivery systems for controlled
release. According to Cook, Tzortzis, Charalampopoulos, and Khutoryanskiy (2012), delivery
systems convey bioactive components pass esophagus quickly. Only 10 to 14 seconds are
needed. The system then reaches to the stomach which is a crucial section for pH-sensitive
components such as probiotic cells. High acidity levels in the stomach could cause greatest loss
of bacteria viability. The pH of the stomach is in the range of pH 1 to 2.5 but it can be as high as
5 in fed patients. The transit time is often reported between 0.5 and 2 hours. The pH and transit
time of the stomach are highly variable and are dependent on many factors, such as time since
eating and age. The stomach's fluid capacity ranges from 50 mL in a fasted state to as much as
1500 mL. The stomach has epithelium cells that can secrete a proteolytic enzyme (pepsin), the
hormone gastrin, and hydrochloric acid (Daniels & Allum, 2005). After passage through the
stomach, a delivery system enters into the small intestine. The small intestine is divided into the
duodenum, the first short sessile, jejunum, a long coiled part constituting about two-fifths of the
small intestine, and the ileum, the distal part of the small intestine which constitutes about three-
fifths of the small intestine. (Sinha & Kumria, 2003). The small intestine has a pH ranging
between 6.15 and 7.35 in the proximal region and a pH of 6.80 to 7.88 in the distal part of the

small intestine. The transit time is approximately 3 to 4 h; however it can be varied depending on
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individual subjects and formulation and dietary factors (Yu & Amidon, 1998). The duodenum
contains some acrobic and gram positive bacteria (10° to 10* CFU/g), while a few
microorganisms such as Lactobacillus sp. and Enterococcus sp. are found in the jejunum and the
upper ileum. In the distal ileum, the bacterial concentration become greater and gram-negative
bacteria start to out complete the gram-positive organisms (Sinha & Kumria, 2003). The large
intestine is the large section into which the delivery system conveys a compound. It is divided
into ascending, transverse, descending, and sigmoid regions. The pH of the colon varies
depending on the section and the transit time, typically reported at 6 to 32 h (Cook et al., 2012).
The colon is home to a large concentration of microbiota (which is 10" to 10" CFU/g)
(Schrezenmeir & de Vrese, 2001). These bacteria are responsible for fermentation of protein and
polysaccharides and can release the compounds that are carried by a delivery system. The
fermentation contributes to formation of short chain fatty acids and fecal bulking, as well as
increase transit time of colonic contents (Topping & Clifton, 2001a)
2.3. Dietary fibersand their physiological effects

The American Association of Cereal Chemists defined dietary fibers as “the edible parts
of plants or analogous carbohydrates that are resistant to digestion and absorption in the human
small intestine with complete or partial fermentation in the large intestine” (AACC, 2000). The
dietary fibers can be derived from plants, vegetables, cereal grains, woody plants, fruits,
legumes, leguminous plants, etc. They are classified into soluble and insoluble fibers. Soluble
fibers are pectins, gums, inulin-type fructans and some hemicelluloses, while insoluble fibers
consist of lignin, cellulose and some hemicelluloses. Most fibers include approximately one-third
soluble and two-thirds insoluble fibers (Wong & Jenkins, 2007). Dietary fibers are composed of

non-digestible poly- and oligosaccharides and compounds in plants. Table 2.2 displays
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components of dietary fibers as listed by AACC. Dietary fibers have physiological effects on
human health such as attenuating blood glucose and cholesterol levels as well as improving
colonic fermentation and bowel functions (Raninen, Lappi, Mykkanen, & Poutanen, 2011).
These effects can contribute to reducing blood pressure, improving serum lipid concentration,
promoting regularity, inducing weight loss, and enhancing immune functions. These result in
reduction of risk of several diseases, such as coronary heart diseases, diabetes, obesity, and
certain gastrointestinal disorders (Anderson et al., 2009). According to Tungland and Meyer
(2002), the GI tract is the primary area where dietary fibers function. Intake of dietary fiber
affects absorption of nutrients, carbohydrate and fat metabolism, and sterol metabolism. Dietary

fiber also influences colonic fermentation and stool production.

" Letter Region pH Transit Time

O | Oesophagus 7.0 10-14 seconds
A Stomach 1-2.5(upto 5fed] | Half emptying:~80.5 mins
B Proximal Small intestine | 6.15-7.35
¢ DistalSmall intestine | 6.80-7.88 3.221.6 hrs (combined)
D Ascend-ing'c'o'l'on 5.26-6.72 Higﬁl;,-variable. dependent
E DescendingColon 5.20-7.02 on bowel evacuations

Figure 2.1. Characteristics of human gastrointestinal tracts

Source: Cook et al. (2012)
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Table 2.2. Constituents of dietary fibers

Non starch polysaccharides Analagous carbohydrates Lignin substances
and oligosaccharides

Cellulose Indigestible dextrins Waxes
Hemicellulose Resistant maltodextrins Phytate
Arabinoxylans Resistant potato dextrins Cutin
Arabinogalactans Synthesized carbohydrates Saponins
Polyfructoses compounds Suberin
Inulin Polydextrose Tannin
Oligofructans Methyl cellulose
Galacto-oligosaccharides Hydroxypropylmethyl

Gums cellulose

Mucilages Resistant starches

Pectins

Source: AACC (2000)

2.3.1. Physiological effects of dietary fibersin the small intestine

Dietary fibers are reported to have an influence on rheology of the small intestine.
Soluble fibers such as pectin or guar gum can increase the gut viscosity by forming gels, causing
delay of gastric emptying and increase small intestinal transit time. Fibers with a high water
holding capacity play an important role in the volume and bulk of the intestinal content. The
change in gut rheology slows diffusion of glucose and increases the unstirred water layer at the
surface of the small intestine, resulting in delay of glucose absorption (Guillon & Champ, 2000).
Effects of dietary fibers in small intestinal simulation were investigated. The researchers reported
that viscosity of small intestinal simulation was increased after incubating between 3 and 9 h
with guar gum, oat bran and rice bran. Guar gum and oat bran had viscous characteristics,
indicating the ability to attenuate blood glucose and lipid, while viscous characteristics were not
found in wheat bran, rice bran and wood cellulose (Dikeman, Murphy, & Fahey, 2006).
Insoluble fibers derived from peel of Citrus sinensis L. cv. Liucheng (Liucheng sweet orange)

could adsorb glucose, retard glucose diffusion, and inhibit the activity of a-amylase. The result
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might delay the rate of glucose absorption and further lower the concentration of postprandial
serum glucose (Ahmed, Sairam, & Urooj, 2011).

Dietary fibers can bind to bile acids and metabolize cholesterols, which can affect the
digestion and absorption of lipids in the small intestine (Rodriguez, Jimenez, Fernandez-Bolanos,
Guillen, & Heredia, 2006). The binding capacity of soluble dietary fiber from apple peel to bile
acids and to cholesterol was compared to insoluble dietary fiber from wheat bran and soybean
seed hulls, and to a mixture of soluble and insoluble dietary fiber. Soluble dietary fiber had the
greatest binding capacity to bile acids and cholesterol, followed by the fiber mixture, and
insoluble dietary fiber (Zhang, Huang, & Ou, 2011). In contrast, Kahlon and Woodruff (2003)
reported that dehulled barley had the highest relative binding to bile acids (57%), followed by
rice bran (49%), B-glucan enriched barley (40%), and oat bran (30%), The relative binding to
bile acids was calculated based on bile acid binding to cholestyramine as 100%. The author
suggested that bile acid binding to rice bran, oat bran, and B-glucan enriched barley may be
related to their insoluble fiber contents. Soluble fibers more effectively lower low-density
lipoprotein (LDL) cholesterol than insoluble fibers. Babio, Balanza, Basulto, Bullo, and Salas-
Salvado (2010) mentioned that soluble fibers affected metabolic pathways of hepatic cholesterol
and lipoprotein metabolism, as the result of modification in volume, bulk, and viscosity in the
intestinal lumen by fibers. The alteration of metabolic pathways leads to lowering of LDL
cholesterol. Soluble fibers can also reduce plasma cholesterol by lowering absorption of
intestinal bile acid. The interruption of the enterohepatic bile acid circulation elevated fecal bile
acid loss and its de novo synthesis in liver. In clinical studies, it was suggested that intake of 5—
15 g per day of soluble fiber yielded a 5-13% reduction in LDL-cholesterol levels in both men

and women (Anderson et al., 2009). A meta-analysis of 126 studies involving 5,590 subjects
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indicated that consumption of 3 g per day of oat or barley B-glucan or more could decrease blood
cholesterol. The results showed that consumption of oat and barley B-glucan reduced total
cholesterol by 0.60 mmol/L, LDL cholesterol by 0.66 mmol/L, triglyceride by 0.04 mmol/L and
increased high density lipoprotein (HDL) cholesterol by 0.03 mmol/L (Tiwari & Cummins,
2011). Insoluble fiber enriched polyphenol was found to have an effect on serum blood
cholesterol in hypercholesterolemic patients. Consumption of insoluble fiber rich in polyphenols
lowered the total cholesterol, LDL cholesterol, LDL: HDL cholesterol ratio, and triglycerides by
17.8%, 22.59%, 26.2% and 16.3% after 4 weeks consumption compared with the baseline (Ruiz-
Roso, Quintela, de la Fuente, Haya, & Perez-Olleros, 2010).
2.3.2. Physiological effects of dietary fibersin thelargeintestine

The large intestine contains a numerically large and diverse range of bacteria. More than
500 bacterial species with up to 10'° CFU/g of intestinal contents are found in the large intestine
(Hold, Pryde, Russell, Furrie, & Flint, 2002). Dietary fibers play an important role in colonic
fermentation. They provide the colonic bacteria with energy sources and are then fermented to
short-chain fatty acids (SCFAs) and bacterial mass (Tungland & Meyer, 2002). Increase of
SCFAs levels contributes to prevention of colon cancers and gastrointestinal disorders (Wong, de
Souza, Kendall, Emam, & Jenkins, 2006). Fermentability of fibers is dependent on
physiochemical properties of fibers such as solubility, type of linkages, degree of
polymerization, and transit time (Raninen et al., 2011). Production of SCFAs from seven
different dietary fibers by intestinal microflora was compared by Pylkas, Juneja, and Slavin
(2005). The results showed that SCFAs production was dependent on fiber sources. After 24 h
incubation, the highest total SCFAs concentration was found in hydrolyzed guar gum and

galactomannan, followed by indigestible dextrin, arabinogalctan, polydextrose, psyllium husk,
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and methylcellulose, respectively. Butyrate production was greater in the fiber treatments
compared to the glucose control. Rice bran fibers were reported as a novel prebiotic. The fiber
was utilized by lactobacilli to produce some SCFAs, while butyrate was produced when the fiber
was fermented by Eubacterium limosum (Osamu et al., 2010). Oat bran could be degraded by
human fecal bacteria and altered to SCFAs including acetate, lactate, propionate, and butyrate.
Concentration of butyrate from oat bran fermentation was not different compared to prebiotic
fructo-oligasaccharide fermentation but higher than in glucose fermentation. Oat bran could also
increase the number of bifidobacterium and lactobacilli and had the same pattern as fermentation
of prebiotic fructo-oligosaccharide (Kedia, Vazquez, Charalampopoulos, & Pandiella, 2009).
Mice fed with rice bran had higher colonization of native lactobacilli in fecal samples, compared
to a control. The author suggested that induction of lactobacilli was possibly related to an
increase of mucosal IgA response (Henderson, Kumar, Barnett, Dow, & Ryan, 2012).

Insoluble fibers play an important role in bowel functions by increasing fecal volume and
weight (bulking effect) and decreasing transit time. Raninen et al. (2011) mentioned that intake
of fibers derived from bran or whole grains of 11 to 30 g/d helped decrease transit time, increase
stool weight and frequency, and improved stool consistency. Consumption of low fiber diets
could lead to the formation of very compact feces which might promote oncogenesis, resulting
from large exposure time of the intestinal mucosa, to cancer-risk agents (Rodriguez et al., 2006).
Compared to a low fiber diet, high fiber cereal breakfasts namely All- Bran, Bran Buds with
Corn and Bran Buds with Psyllium significantly increased fecal bulk and bowel movement as
well as decrease intestinal transit time in healthy persons. The largest fecal wet weight was found
in the subjects consuming Bran Buds with Psyllium (Vuksan et al., 2008). Fecal bulk and

moisture were increased when hamsters were fed with insoluble fibers derived from passion fruit
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seeds. The levels of triglyceride and total cholesterol in serum as well as liver cholesterol were
reported to be increased, in contrast the levels of total lipids, cholesterol, and bile acids in feces
were decreased. The authors noted that cholesterol and lipid lowering effects might be partly due
to the ability of the insoluble fibers in promoting the excretion of lipids and bile acids via feces
(Chau & Huang, 2005).
2.4. Immobilization and encapsulation

Cell immobilization refers to trapping of microorganisms within or throughout a matrix
(Mitropoulou, Nedovic, Goyal, & Kourkoutas, 2013). It has been applied to enzymes, proteins,
and alcohol beverages. This technology provides several advantages such as enhancing
fermentation productivity, improving continuous processes, increasing cell stability, and
lowering costs of recovery, recycling, and downstream processing (Kosseva, 2011). One of the
well-known applications of cell immobilization is production of high fructose corn syrup
(HFCS). According to Kosseva (2011), in 1969, Tekasaki and his colleagues discovered that
Sreptomyces albus, glucose isomerase production bacteria, was able to grow on crude xylans
such as cereal bran or straw. During growth on xylans, the cells could retain their enzyme
activity in a prolonged process and cell lysis was prevented at operating temperature (60 °C).
This could lay a foundation on the reuse of whole-cell biocatalyst, and continuous processing in
a column reactor. Use of cell immobilized-biocatalyst technology was used to produce HFCS on
a commercial scale in 1975 and has been continuously since then. In addition to enzyme
production purposes, immobilization techniques have been used to protect probiotics during
processing and improve their stability during storage. Immobilization of lactobacilli on wheat
dextrin, oat bran fiber, bacterial cellulose, and mungbean fibers were reported to help enhance

viability of the cell during dehydrating, freeze-drying and storage (Guergoletto et al., 2010;
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Hongpattarakere, Rattanaubon, & Buntin, 2013; Jagannath, Raju, & Bawa, 2010; Saarela,
Virkajarvi, Nohynek, Vaari, & Matto, 2006). Cell immobilization is conducted by replicating the
conditions under which cells grow on surfaces since microorganism themselves have ability to
naturally adhere to different types of support materials (Kourkoutas, Bekatorou, Banat,
Marchant, & Koutinas, 2004). Immobilization techniques can be divided into three main
categories based on the physical mechanism employed, namely attachment or adsorption on solid
carrier surfaces, entrapment within a porous matrix, and self-aggregation by flocculation or with
crosslinking agents as shown in Figure 2.2 (Pilkington, Margaritis, Mensour, & Russell, 1998).
Some papers include cell containment behind barriers or encapsulation as one of immobilization

methods.

(A1) (A2) (A3)

5200 weee aan
UMMM

Adsorption Electrostatic binding Covalent binding
on a surface on a surface on a surface

(B) (C1) (C2)

Entrapment within a Natural flocculation Artificial flocculation
porous matrix (Aggregation) (cross-linking)

Figure 2.2. Basis methods of cell immobilization (A=immobilization on solid surface,
B=entrapment within porous matrix, and C=cell flocculation)

Source: Kourkoutas et al. (2004)

Encapsulation refers to a process of forming a continuous layer entrapping a whole
compound within a matrix core. The technique can produce particles or capsules with diameters
of a few nanometers to a few millimeters. The entrapped substance, usually an active compound,

is normally called the core material or internal phase, while the substance encapsulating the core
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material can be termed the carrier material, wall material, matrix, or external phase (Zuidam &
Shimoni, 2010). Cell encapsulation was first applied in the biotechnology area. The
encapsulated cells helped improve efficiency of processes by allowing rapid and efficient
separation of cells and metabolites. The technique was then introduced to the pharmaceutical
sector for drug and vaccine delivery and to the food industry (Nedovic, Kalusevic, Manojlovic,
Levic, & Bugarski, 2011).

In the food industry, encapsulation techniques have been applied to bioactive molecules
such as antioxidants, vitamins, essential oils, or flavors and living microorganisms (probiotics)
for several purposes. Encapsulation helps slow down degradation/inactivation of active
compounds and protect them from adverse effects during processing and storage (de Vos, Faas,
Spasojevic, & Sikkema, 2010). The technology serves as a barrier between the encapsulated
compounds and surrounding environments, which helps stabilize food ingredients, allow aroma
or flavor differentiation or mask bad odors (Champagne & Fustier, 2007). For probiotics,
encapsulation provides protection to the cells and their functionalities against unfavorable factors
(i.e. heat, moisture, light, or oxygen) not only during production, but also when passing through
the gastrointestinal system (Anal & Singh, 2007). Encapsulation can also modify physical
characteristics of original materials to allow easy handling, separation of components that would
react to others, and uniform dispersion (Desai & Jin, 2005). Additionally, delivery of active
compounds to the right place at a right time or controlled release is one of the important roles of
encapsulation. Controlled release could improve the effectiveness of active ingredients, increase
the application range of food ingredients and ensure optimal dosage (Desai & Jin, 2005). A
specific barrier formed by encapsulation can serve to manipulate the release of active compounds

to provide functional benefits and unique sensory experiences (Lakkis, 2007). For example,
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encapsulation of probiotics contributes to cell stability and viability in a food matrix and during
passage through the gut and allows progressive liberation of the cells in the intestine (Nazzaro,
Fratianni, Orlando, & Coppola, 2012).
2.4.1. Immabilization of probioticson a dietary fiber based matrix

As mentioned earlier, probiotics provide a variety of health benefits, if they survive until
they reach the intestine and colonize the host. The use of plant-based matrixes to enhance
probiotic survival during processing, formulation, and passage through the gastrointestinal tract
was demonstrated in several studies. According to Saarela et al. (2006), immobilization of L.
rhamnosus on wheat dextrin and polydextrose had good cell viability after freeze-drying and
during storage. Only 0.7 and 1.3 log reductions were reported in wheat dextrin and polydextrose-
freeze dried cells, respectively, after storage at 37 °C for 4 weeks. The freeze-dried cells with the
fibers were incorporated into chocolate-coated breakfast cereals and stored for 7 months. This
showed that freeze dried cells with polydextrose was more stable than those with wheat dextrin.
L. casel immobilized on wheat grains had a large number of viable cells after freeze drying. The
cell morphology was retained and no shrinkage was observed. Freeze dried L. casel on wheat
grains was highly stable during storage for 12 months at -18 °C (Bosnea et al., 2009). Oat bran
fiber was found to improve the survival of L. casei during dehydration and storage at room
temperature. The cells adhered to oat bran fiber had better survival in gastric (at pH 1.5) and in
bile salt media than did free cells after incubating for 2 h (Guergoletto, Magnani, Martin,
Andrade, & Garcia, 2010). Jagannath et al. (2010) found that nata or bacteria cellulose could
function as a cryoprotectant and an immobilized support for freeze dried lactobacilli. After freeze
drying, the viability of lactobacilli attaching on nata had approximately a 3 log cycle reduction.

The freeze-dried cells with nata had ~10° CFU/g viable cells after storage for 60 days at 4 °C.
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The presence of mungbean fiber helped maintain viability of L. plantarum after freeze drying
and during storage. It was observed that in freezed-dried cells, a thin layer of mungbean fiber
coated the cells, which could indicate that the fiber served as a physical barrier, protecting the
cells from freeze-drying process (Hongpattarakere et al., 2013).
2.4.2. Encapsulation of bioactive components using a hydrogel-base matrix

1) Hydrogels

Hydrogels or hydrocolloid gels are cross-linked polymers with the ability to swell in an
aqueous medium (Kim, Bae, & Okano, 1992). Hydrogels can be applied in several areas
including the pharmaceutical, medical, cosmetic, and food industries. A major applications is to
use hydrogels to encapsulate drug, probiotics, and bioactive molecules and to control their
release (Burey, Bhandari, Howes, & Gidley, 2008). Hydrogels can be either physically or
chemically formed (called physical and chemical gels, respectively) by using natural or synthetic
polymers. Physical gels are achieved via physical processes including association, aggregation,
crystallization, complexation, and hydrogen bonding, while chemical gels are prepared by
chemical processes (Omidian & Park, 2012). Figure 2.3 illustrates the difference of physical and
chemical gel preparations. Hydrogels can also be classified according to their responses to the
environmental conditions such as pH, temperature, and the composition of the surrounding liquid
(Figure 2.4). Hydrogels react to environmental changes by changing their size or shape. Ionic
hydrogels are sensitive to and respond to pH changes. Hydrogels containing hydrophobic groups
swell and shrink in response to temperature changes. Non-ionic hydrogels are more stable than
ionic hydrogels in a salt swelling media and in a nonsolvent media (Omidian & Park, 2012).
Hydrogels are versatile. Their characteristics are dependent on the types of polymers, the

network formation mechanism and the processing method used for gel formation (Burey et al.,
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2008). They also have many different physical forms, including solid molded forms, pressed
powder matrices, microparticles, coatings, membrane or sheet, encapsulated solids, and liquid

(Hoffman, 2002).
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Figure 2.3. Examples of (a) physical hydrogels crosslinked by ion—polymer complexation, (b)
polymer—polymer complexation, (¢) hydrophobic association, (d) chain aggregation, and (e)
chemical hydrogels

Source: Omidian and Park (2012)
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Figure 2.4. Hydrogel responses dependence on (a) temperature and (b) pH

Source: Omidian and Park (2012)

2) lonotropic gelation

Ionotropic gelation is a mechanism of physical gel formation. It is based on the ability of
polyelectrolytes to cross link in the presence of counter ions. Typically, negatively charged

polymers are cross-linked by cations from an aqueous solution. Bioactive compounds can be
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loaded into the hydrogel by combining the gelation with emulsification, coacervation, or
extrusion dripping. lonotropic gelation is carried out by two diffusion setting techniques, external
gelation and internal gelation. For external gelation, a polymer solution is introduced into an
ionic solution. The ions diffuse into the polymer solution to form a three dimensional lattice of
ionically crosslinked moieties during gelation occurring from the surface to the core. This
technique can cause non-homogenous hydrogels and a firm outer surface but soft core gel. For
Internal gelation, an inactive form of the ion is sufficiently dispersed in the polymer solution.
The ion is then activated and released by pH adjustment to form hydrogels. Although this
technique has been developed to overcome non-homogeneity of the hydrogels in external
gelation, the problem could still occur if gelation happens prior to adequate ion dispersion. In
addition, it is evident that hydrogels from internal gelation have less dense matrices than
externally cross-linked hydrogels with large pore size leading to low loading efficiency and fast
release rates (Chan, Lee, & Heng, 2006).

There are a wide and diverse range of polymers available with which to fabricate
hydrogels. Alginate is the most common natural polymer used to form the hydrogels. This
polymer is reported to be suitable for bioactive food components and living cell encapsulation as
well as for drug or protein delivery (Matricardi, Meo, Coviello, & Alhaique, 2008). Alginate-
based hydrogels are used to facilitate controlled release of bioactive molecules in the colon
(Shah, Shah, & Amin, 2011). Pectin is generally used for targeted drug delivery. It remains intact
in the stomach and the small intestine. It is degraded by enzymes secreted by the host microbiota
in the large intestine (Liu, Fishman, & Hicks, 2007). Carboxymethly cellulose is applied in
enzyme immobilization, dry removal, and drug and probiotic delivery (Chitprasert, Sudsai, &

Rodklongtan, 2012). It has gastric acid resistance and intestinal solubility characteristics (Kamel,
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Ali, Jahangir, Shah, & El-Gendy, 2008). Gelatin, carrageenan, and gellan gum are also widely
used for encapsulation of active compounds by ionotropic gelation method (Patil, Chavanke, &
Wagh, 2012).

3) Production of hydrogels by ionotropic gelation/extrusion dripping

The extrusion dripping technique has been extensively applied for encapsulation of living
cells and bioactive ingredients. This method can be done by forcing a mixed solution of
biopolymers (mainly alginate, carboxymethy cellulose, or pectin) with active ingredients through
nozzles or small openings in droplet-generating devices into a bath containing a cross-linking
solution (de Vos et al., 2010). In the laboratory, the solution is forced through a syringe needle
to form droplets. For large scale production, multiple-nozzle systems, spinning disc atomizers, or

jet-cutter techniques are employed to produce droplets (Figure 2.5).
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Figure 2.5. Extrusion dripping technologies by simple needle droplet generator using air driven
(left) and pinning disk (right)

Source: Solanki et al. (2013)

The bead size and shape depend on the liquid formulation and parameter setup such as

solution viscosity, surface tension, tip size, collecting distance etc. Some trial-and-error attempts
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are often required (Lee, Ravindra, & Chan, 2013). The technique has many advantages
particularly for living cells and sensitive bioactive compounds. It is relatively simple, gentle and
non-toxic. The process can be operated under both aerobic and anaerobic conditions (de Vos et
al., 2010). However, a major drawback of this method is that the matrix has high porosity
allowing fast and easy diffusion of water and other fluids in and out of the matrix (Rathore,
Desai, Liew, Chan, & Heng, 2013). The encapsulates are less stable due to rapid cross-linking
and hardening at the surfaces of the beads delaying the movement of cross-linking ions into the
inner core (Liu et al., 2002). To overcome these problems coating the beads with chitosan or
whey protein isolate and/or adding filler agents such as starch or rice bran have been suggested
(Chitprasert et al., 2012; Gerez et al., 2012; Kanmani et al., 2011; Martin, Lara-Villoslada, Ruiz,
& Morales, 2013). Lactobacillus plantarum encapsulated by alginate covered with a whey
protein isolate layer had better survival than uncoated treatments after exposure to simulated
gastric fluid (pH 1.8) and to simulated intestinal fluid (pH 6.5) (Gbassi, Vandamme, Ennahar, &
Marchioni, 2009). Whey protein isolate and starch could function as barriers to solvent flow and
delay release of active compounds. Table 2.3 lists some studies of probiotic and bioactive
compound encapsulation by the ionotropic gelation/extrusion dripping process.

Table 2.3. Studies of probiotic and bioactive compound encapsulation prepared by iontropic
gelation/extrusion dripping process

Probiotics Materials Outcomes Reference
L. plantarum  Alginate The beads had higher cell viability than ~ Gbassi et al. (2009)
coated with uncoated beads when they were exposed
whey protein to simulated gastric acid fluid and only
isolate coated beads had cell survive in

simulated intestinal fluid
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Table 2.3. continued

Probiotics Materials Outcomes Reference
L. acidophilus  Pectin coated  The beads had a high encapsulation Gebara et al. (2013)
with why yield and positively affected cell
protein isolate  viability when cells were exposed to
simulated gastrointestinal tract
conditions. The beads released the cells
in simulated intestinal fluid.
L. bulgaricus Carageenan- The microsphere provided protection to ~ Shi et al. (2013)
locus bean the cells. More than 8 log CFU/g were
gum coated recovered when they were incubated in
with milk simulated gastric fluid and in bile salt

conditions, only 1.5 log reduction of cell
viability was found. The cells were
completely released in 45 min under
simulated intestinal fluid.

Lactobacillus The encapsulated cells could encounter

Alginate-locus Cheow, Kiew, and

rhamnosus bean gum stress upon freeze drying, heat and acid  Hadinoto (2014)
coated with exposure. A majority of the cells
chitosan released in simulated intestinal fluid

rather than simulated gastric fluid.

2.6. Pectin based hydrogel beads
2.6.1. Pectin

Pectin is a complex mixture of polysaccharides, present in the middle lamella and
primary cell wall of higher order plants. Commercial pectin is mainly derived from citrus peel
and apple pomace, by-products of juice manufacturing. Figure 2.6 shows chemical structure of
pectin consisting of three main building blocks including homogalacturonan (HG),
rhamnogalacturonan I (RG-I) and rhamnogalacturonan II (RG-II) (Fraeye, Duvetter, Doungla,
Van Loey, & Hendrickx, 2010b) HG, RG-I, and RG-II form a continuous backbone by covalent
bonding (Coenen, Bakx, Verhoef, Schols, & Voragen, 2007; Vincken et al., 2003). HG are
unbranched molecules composed of 1,4-linked a-D-galacturonic acid units, which are called

smooth regions (Fraeye et al., 2010b). The GalA units have carboxyl groups, some of which are

naturally methyl esterified. RG-I is referred as hairy regions. It has a backbone of the repeating
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disaccharide [-4)-0-D-GalA-(1,2)-0-L-Rha-(1-], composed of GalA and rhamnose (Rha)
residues. The Rha residues are substituted with side chains of a single sugar unit (mainly
arabinose and galactose) or complex polymers (arabinans, galactans and arabinogalactans). RG-
II is composed of approximately nine 1,4-linked a-D-GalA residues with four heteropolymeric
side chains of 11 different monosaccharides. Some of the monosaccharides are uncommon

sugars, such as apiose, aceric acid and 2-keto-3-deoxy-D-manno-octulosonic acid.
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Figure 2.6. Schematic diagrams of pectin structure
Source: Maxwell, Belshaw, Waldron, and Morris (2012)

Pectin is classified into two groups based on degree of esterification (DE). As mentioned
above, HG is partially esterified by methyl groups. The ratio of esterified GalA groups to total
GalA groups is referred to the DE. The DE is dependent on species, tissue, and maturity of the
plant (Sriamornsak, 2003). Pectin in which the DE is higher than 50% is known as high
methoxyl pectin. With less than 50% DE, pectin is referred to low methoxyl pectin (Ridley,
O'Neill, & Mohnen, 2001). The DE plays an important role in pectin properties particularly in

pectin gelation. High methoxyl pectin forms a gel in acidic mediums (pH < 3.5) with minimal
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amounts of soluble solid. Low methoxyl pectin requires the presence of calcium or other divalent
cations to form a gel (Fraeye et al., 2010a). Pectin gelation is discussed in the next section.
2.6.2. Pectin as a bioactive polysaccharide

Pectin is well-known as a rich source of soluble dietary fiber (SDF), which is associated
with gastrointestinal health, cholesterol reduction, and weight management (Olivares et al., 2006;
Wicker et al., 2014; Willats, Knox, & Mikkelsen, 2006). Pectin may prevent and reduce
carcinogenesis (Maxwell et al., 2012). Pectin is considered a highly fermentable substance.
When it reaches to the large intestine, it will be fermented by gut microflora and degraded to
oligosaccharides and smaller metabolites. Fermentation of pectin increased the fecal bulk and
exhibited bifidogenic and prebiotic properties in a recent study (Nazzaro et al., 2012). Pectin
modulated gut metabolism by improving the growth of Bifidobacterium and Lactobacillus sp.,
leading to an increase of digestion and decrease of inflammation. A number of Bifidobacterium
sp. and Lactobacillus sp. derived from fecal bacteria of ulcerative colitis patients and fermented
in pectin fraction media were higher than in the control; acetate levels were also higher
(Vigsnaes, Holck, Meyer, & Licht, 2011). Pectin oligosaccharides (POS) from bergamot peel
increased the number of bifidobacteria and lactobacilli while decreasing clostridial populations.
It was also observed that POS had higher prebiotic index (PI) than fructo-oligosaccharide
(Mandalari et al., 2007). The stimulation of Bifidobacterium sp. and Lactobacillus sp. also
contributes to their action as immunomodulaters, inhibition of pathogens, reduction of ammonia
formation, lowering of blood cholesterol levels and restoration of normal flora during antibiotic
therapy (Blaut, 2002). POS could increase short chain fatty acid (SCFA) concentrations,
particularly that of acetate, propionate and butyrate. Fermentation of POS from apple pomace by

fecal inoculum increased SCFA concentrations, resulting in pH lowering (Gullon, Gullon, Sanz,
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Alonso, & Parajo, 2011). High generation of acids with low pH upon fermentation was desired
as it helped inhibit the overgrowth of pathogens such as E. coli and Salmonella sp. (Topping &
Clifton, 2001b).

Pectin has an ability to lower blood cholesterol levels. Highly viscous fibers such as
pectin restrict the formation of micelles, the absorbable form of cholesterol, or decrease its
diffusion rate (Gunness & Gidley, 2010). An early study revealed that both low and high
methoxyl pectin reduced total cholesterol (Judd & Truswell, 1982), however their efficiencies
are dependent on physico-chemical properties including viscosity, molecular weight (MW) and
degree of esterification (DE) (Brouns et al., 2012). That study showed that high MW and high
DE pectin such as apple or citrus pectin (DE-70) had the highest reduction of low-density
lipoprotein (LDL) cholesterol in hypercholesterolemic patients, followed by apple or citrus
pectin (DE-35), orange pulp fiber (DE-70), low-MW pectin (DE-70), and citrus pectin (DE-0).
Highly viscous pectin (13 mPa.s viscosity) provided significantly lower plasma cholesterol
concentrations in hamsters than a pectin with low viscosity (7 mPa.s) (Terpstra, Lapre, de Vries,
& Beynen, 1998). Cholesterol lowering is also related to the interaction between bile acids and
pectin in the small intestine. Bile acids function as an emulsifier, facilitating the formation of
micelles which promote digestion and absorption of dietary fat. Bile acids are synthesized in the
human liver and reabsorbed the intestinal tract (Einarsson et al., 1991). The interaction of pectin
and bile acids reduces reabsorption of bile acids in the small intestine resulting in an increase of
bile acids, which are transported to the colon and deconjugated or partly dehydroxylated by
enzymes of the microflora. This probably had an effect on reduction of serum cholesterol levels
due to increased hepatic synthesis of bile acids and liver depletion of cholesterol (Dongowski &

Lorenz, 2004). They studied the effects of pectin (with different degrees of methylation) on
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cholesterol and bile acids concentrations in conventional rats and found that LDL-cholesterol in
the rats fed the pectin-containing diets was lowered significantly after 21 days and bile acid
concentrations were also reduced in all groups.

In addition, pectin possibly reduces the risk of some cancers. Although the mechanism
has been unclear, it is evident that pectin fragments with small molecular weight (modified
pectin) can bind to cancer galectin-3 recognition domain, inhibiting cell adhesion and migration
and preventing apoptosis (Maxwell et al., 2012). Modified citrus pectin (MCP) was reported to
inhibit cell proliferation and apoptosis of prostate cancer cell lines (Jun & Katz, 2010) and colon
carcinoma and erythroleukemia cell lines (Bergman, Djaldetti, Salman, & Bessler, 2010). MCP
was fed in animal studies employing mice as colon cancer models. The result showed that liver
metastasis, the main cause impacting the therapeutic effect and postoperative prognosis of
colorectal cancer, was significant lower in the MCP-diet group (Liu, Huang, Yang, Lu, & Yu,
2008). The effects of modified apple pectin (MAP) on a mouse model of colitis-associated colon
cancer were also studied. The result showed that MAP prevented tumor formation and decreased
inflammation (Li et al., 2012).

2.6.3. Low-methoxyl pectin hydrogels

1) Low-methoxyl pectin gelation

As mentioned earlier, pectin is classified into low methoxyl (LM) and high methoxyl
(HM) pectin. They have different gelation mechanisms. HM pectin requires high concentrations
of sucrose or other sugars (typically ~60-65%wt) under an acidic condition, while LM pectin can
form gels in the presence of divalent ions. In this research we focused on LM pectin only. As

well-known, LM pectin requires the presence of divalent ions, generally calcium (Ca) ion, to

36



form gels. The gelation occurs by forming of junction zones, as illustrated by well known “egg

box” model (Figure 2.7).

Figure 2.7. Schematic representation of the ‘‘egg-box’’” model for junction zone formation in
pectin calcium gels

Source: Fraeye et al. (2010b)

The junction zone is created by binding of calcium ions on two-fold symmetrical,
antiparallel polygalacturonant chains, which are packed in the interstices of the twisted chains
(analogy with a corrugated egg-box). As one of the chains is slightly shifted with respect to the
other, the association is better described as a shifted egg box. The egg-box formed between two
neighbouring chains is linked intermolecularly through electrostatic interactions, hydrogen
bonds, and van der Waals interactions.

2) Factorsaffecting LM pectin gelation

Factors affecting LM pectin gelation are divided into two main categories, namely
intrinsic and extrinsic factors. Intrinsic factors are primarily related to pectin structural
characteristics such as amount and distribution of methyl esters, chain length, pectin side chains,

amidation and acetylation. Extrinsic factors are related to gel compositions and environmental
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conditions, such as calcium ion and pectin content, pH, sugar content and temperature. It has
been found that a single factor has an influence on several other factors. For example, the impact
of gel properties with increasing calcium ion concentration is strongly affected the amount of
methyl esters in pectin, pectin concentration, or pH of the gel.

(a) Intrinsic factors

The ability to form egg box junction zones is depended on degree methylation
(DM), the amount of methoxylated galacturonic acid (GalA) residues, and its pattern. The lower
the DM is, the higher the egg box that is formed. This contributes to an increase of Ca ion
binding capacity, resulting in higher gel strength (Fraeye et al., 2010b). It was found that the
modulus of elasticity of pectin gel was increased with decreased DM and that the gel became
brittle when pectin had very low DM (Fraeye et al., 2010a). With decreasing DM, the chain
length of the interjunction zones was shortened because a larger proportion of the pectin chains
was bound in junction zones. This caused reduction of network flexibility (MacDougall, Needs,
Rigby, & Ring, 1996). The pattern or distribution of non-methoxylated GalA residues also
affects the gel properties. Pectin with blockwise distribution of free carboxyl groups bound to Ca
ion more tightly (Ralet, Dronnet, Buchholt, & Thibault, 2001) and exhibited stronger gels
(Willats, McCartney, Mackie, & Knox, 2001). Pectin with blockwise distribution was also
reported to be able to associate by egg-box formation at higher DM, compared to pectin with
random distribution (Liners, Thibault, & Van Cutsem, 1992).

Molecular mass of pectin plays an important role in gel properties. Gel strength
was reduced with decrease of pectin molecular mass. When pectin was depolymerized (>1%
GalA bonds cleaved), the gel network broke down, resulting in decrease of gel elasticity (Fraeye

et al., 2010b). As formation of a continuous network needs at least two binding sites per chain,
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strong depolymerization can overly shorten the chains and reduce the gelation efficiency (Capel,
Nicolai, Durand, Boulenguer, & Langendorff, 2006). However when the depolymerization is
limited, loss of network strength could be resolved by increasing ionic crosslinks. Addition of
excessive amount of Ca ions is recommended (Fraeye et al., 2009).

Pectin can be modified by demethoxylating the polymer in the presence of
ammonia. The modified pectin is then called as amidated pectin. The added amide groups change
the viscoelastic properties of pectin gels. Amidation can increase pectin gel strength. In the
absence of calcium, amidated pectin was able to form strong gels at pHs below 3, while non-
amidated pectin yielded much weaker gels (Lootens et al., 2003). Reduction of pH lowered
charge density of pectin molecules, resulting in decrease of electrostatic repulsion, and inducing
aggregation of pectin chains to form gels (Cardoso, Coimbra, & Lopes da Silva, 2003). With
non-amidated pectin, coarse gel was formed, while the amide groups in amidated pectin helped
reinforce the gel via hydrogen bonding and inhibited coarsening. Moreover, in the presence of
Ca ions, decreasing the pH reduced the elasticity of non-amidated pectin gels. On the contrary,
the gels from amidated pectin were reinforced. This obviously indicated that amidation
contributed to acid induced gelation (Lootens et al., 2003).

(b) Extrinsic factors

Calcium and pectin contents have major impacts on pectin gelation. According to
the egg box model, two-fold symmetrical helices of pectin are bound by Ca ions. The molar
ratio, R = 2[Ca*"]/[COO], is an important parameter. Gel strength increased with R due to more
amount of egg boxes. All calcium ions are theoretically bound to the egg boxes when R is at
least 0.5. However, when R is above a certain value, phase separation could occur. The type of

phase separation is different, dependent on pectin concentrations. At a low concentration, pectin
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separates because of a salting out effect. Alternatively, gel syneresis is likely to occur at a high
pectin concentration. In addition to divalent ions (Ca®"), monovalent ions such as Na" or K*
could help enhance gel formation. The larger monovalent cation yielded higher gel strength (Yoo
et al.,, 2009). When R is constant, increase of pectin concentration yields higher gel strength
(Fraeye et al., 2010a). At a lower concentration, the gel is formed by intramolecular ionic
bonding, which is not effective for gel elasticity (Capel et al., 2006). On the contrary, increase of
pectin concentrations decreases the fraction of the intramolecular ionic bonding, promoting
effective junction zones (Cardoso et al., 2003).

The pH of the pectin solution is also one of the important factors affecting pectin
gel formation. Decrease of pH reduces the pectin charge density, resulting in lower sensitivity of
pectin to calcium ions. Pectin can form weak gels in the absence of Ca at pH below 2.0. The
carboxyl groups in a pectin molecule are almost fully protonated while the electrostatic
interactions are neglected. Moreover, it was found that the carboxyl groups functioned as
hydrogen-bond donors when the pH was below 3.5 (pK, of pectin), inducing the gel formation
by association of three-fold helices through cooperative hydrogen bonding (Gilsenan,
Richardson, & Morris, 2000). On the contrary, the pectin is almost fully charged when the pH is
above 4.5. It has remarkably electrostatic interactions that can form gels easily in the presence of
calcium ions. At greater pH, the gel properties are independent of pH. The microstructure of
pectin revealed that pectin gels at pH 7 were denser than at pH 3. Pore sizes were in a range of
100 nm and 300-400 nm for the gel at pH 7 and pH 3, respectively (Lofgren, Guillotin, &
Hermansson, 2005).

Sol-gel transition occurs at a temperature, depending on pectin structure and gel

compositions (Lootens et al., 2003). Mixing pectin and calcium ions at a high temperature
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decreased the gel strength due to formation of short junction zones, on the other hand, highly
cooperative helix junctions followed by aggregation was formed at lower temperature (Cardenas,
Goycoolea, & Rinaudo, 2008). Increasing of temperature reduces the concentration of crosslinks
and has a tendency to break the gel more than form it (Lootens et al., 2003). High temperatures
also degrad the pectin chain, negatively affecting texture properties of the gels (Fraeye et al.,
2007).
Properly amounts of sugar added to pectin solution increases pectin gel rigidity.

Gel strength and firmness were improved when sucrose (10-20%) was added to a pectin solution.
However, the gels were weaker, featured, and started syneresis when sugar was added more than
20% (El-Nawawi & Heikal, 1995). The effects of sugar on gel strength are varied, depending on
sugar concentration, types of sugar, its structural characteristics, and pH (Fraeye et al., 2010b).
Pectin gels with fructose and sorbitol had lower gel rigidity than those with sucrose and glucose
(Grosso, Bobbio, & Airoldi, 2000). The researcher stated that reduction of gel rigidity could
result from the capacity of sugar to form complex cations in competition with pectin. Fructose
and sorbitol were able to form a complex with Ca>". This decreased the availability of the cation
to associate with pectin molecules, causing lower gel rigidity. On the contrary, sucrose and
glucose formed no complexes with Ca®". Sucrose was reported to improve pectin-pectin
interactions by reducing the water content and stabilizing the crosslink junctions through its
specific spacing of the hydroxyl groups (Lofgren et al., 2005).
2.6.4. Applications of pectin based hydrogelsin microor ganisms

Pectin based hydrogels are mainly developed for drug delivery systems. A few studies
were reported the use of pectin based hydrogels for microorganisms. Pectin hydrogel beads were

initially developed to immobilize yeast and bacteria cells for a continuous fermentation process
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as an alternative to alginate gels. The beads are expected to be reused as many times as possible.
Calcium alginate gels were reported to be unstable in the presence of calcium chelators such as
phosphate, lactate or citrate and cations such as sodium, magnesium. This could cause alginate
beads to disintegrate during fermentations. In contrast, calcium pectate gels were found to be less
sensitive to ions and chemical reagents. Bacterial cells, Nocardia tartaricans, immobilized in
calcium pectate gels had notable high stability during storage and during semi-continuous and
continuous processing in both stirred batch and packed-bed reactors. The gel could resist the
destructive effects of tartaric acid, a product from fermentation, for 21 h. On the contrary,
calcium alginate gels were destroyed within 30 min. To increase the gel stability, the calcium
pectate gels loaded with N. tartaricans were hardened by glutaraldehyde. It was determined that
the hardened pectate gels would be last long more than 360 days in the presence of high
concentration of tartaric acid, while hardened calcium alginate could remain in the acid condition
for only 3 h (Kurillova et al., 2000). Comparison of alginate and pectin based hydrogels for
production of poultry probiotics was studied. The researcher revealed that the pectin gels were
more stable than alginate gels and that their stability was enhanced by coating with chitosan.
Coating the pectin gels with chitosan effectively limited cell release during fermentation
compared to the uncoated pectin gels, while there was no significant difference between cell
release for coated or uncoated alginate gels. Limiting cell release helps the gel to be reusable for
three or four fermentation cycles (Voo, Ravindra, Tey, & Chan, 2011).

Pectin was mixed with alginate in order to improve the mechanical and chemical stability
of alginate gels and their encapsulation effectiveness. The pectin-alginate hydrogels were then
used to encapsulate Lactobacillus casel. The addition of pectin to alginate increased the

encapsulation efficiency from 54.3% to 79.2%. It was also found that, compared to alginate
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hydrogels, pectin-alginate hydrogels increased decaying time of the encapsulated cells during
storage in yogurt and had higher cell viability after exposure to simulated gastrointestinal
conditions (Sandoval-Castilla, Lobato-Calleros, Garcia-Galindo, Alvarez-Ramirez, & Vernon-
Carter, 2010). Lactobacillus rhamnosus encapsulated by pectin and coated with whey protein
isolate showed high viability after freeze drying. The freeze dried microcapsules had no loss and
75% loss of viability after 120-h incubation in simulated gastric fluid at pH 2.0 and 1.2,
respectively, while no viable cells were detected in non-encapsulated cells (Gerez et al., 2012).
Pectin was also used to encapsulate Lactobacillus acidophilus. The researcher reported that the
pectin microparticles remained intact in simulated gastric juice at pH 1.2 and 3.0 for 120 min and
in simulated intestinal juice at pH 7.0 for 300 min. Viability reduction of the encapsulated cells
was lower than the non-encapsulated cells after exposure to simulated gastric juice at pH 3.0 and
simulated intestinal juice at pH 7.0. However, the encapsulation could not protect the cells when
they were exposed at pH 1.2 (Gebara et al., 2013).
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CHAPTER SEFFECTSOF ENZYMATICALLY EXTRACTED PURPLE
RICE BRAN FIBERSASA PROTECTANT OF L. PLANTARUM NRRL B-
4496 DURING FREEZING, FREEZE DRYING, AND STORAGE

3.1. Abstract

This study investigated purple rice bran-fiber (PRF) as a protectant for Lactobacillus
plantarum NRRL B-4496 (LP) during freezing, freeze drying, and storage. PRF was
enzymatically extracted from purple rice bran. L. plantarum NRRL B-4496 was grown in MRS
broth, centrifuged, and immobilized on PRF suspension. LP cells immobilized on PRF (LP-PRF)
and free LP cell (control) samples were frozen in either air blast (AF) or cryogenic freezers (CF)
before freeze drying. Freeze-dried (FLP) samples were stored either at room temperature or at
refrigerated temperatures. For either freezing method, PRF protected cells had less than one log
reduction of viable cells while the control had reductions greater than six logs after freeze drying.
The counts of viable LP cells protected with PRF after freeze drying and 12 weeks storage at 4°
C for AF and CF treatments were 7.55+0.07 and 7.49+0.06 log CFU/g, respectively. The viable
LP-PRF cell count for CF was significantly lower than for AF after 12 weeks at room
temperature. PRF improved LP survival in both AF and CF samples in bile. This study
demonstrated that freezing methods affected LP viability during storage and that PRF could
protect at both refrigerated and room temperatures.

Keywords: Purple rice bran fiber, Lactobacillus plantarum, Freeze drying

This chapter previously appeared as Arranee Chotiko and Subramaniam Sathivel, Effect of
enzymatically extracted purple rice bran fiber as a protectant of L. plantarum NRRL-B4496
during freezing, freeze drying, and storage, June 9 2014. It is reprinted by permission of
Elsevier—see the permission letter for proper acknowledgment phrase in Appendix B (see page
139).
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3.2. Introduction

The American Association of Cereal Chemists defined dietary fiber as “the edible parts
of plants or analogous carbohydrates that are resistant to digestion and absorption in the human
small intestine with complete or partial fermentation in the large intestine.” (AACC, 2001).
Dietary fibers are composed of non-starch polysaccharides, such as cellulose, hemicelluloses, or
pectin, oligosaccharides such as resistant starches, resistant maltodextrins, or indigestible dextrin,
and some lignin substances including phytate, cutin and tannin. (Lattimer & Haub, 2010).
Common food sources for these fibers are whole grains, legumes, fruits, and vegetables (Slavin,
2008). Besides their well-known benefits of reducing the risk of chronic diseases, some dietary
fibers could exhibit prebiotic effects, enhancing the growth of colonic bacteria or probiotics
resulting in improving the host’s health (Manning & Gibson, 2004) Some of the fibers can also
be used as probiotic protectants, protecting the probiotic cells during down-stream processing,
formulation and storage (Saarela, Virkajirvi, Nohynek, Vaari, & Mitto, 2006). Thus, these
positive interactions between prebiotics (dietary fibers) and probiotics would contribute to
functional foods and nutraceutical products.

Survival of the bacteria during processing and storage is a necessity for effective
probiotic products. Most marketed probiotics markets have been preserved by lyophilization or
freeze drying. Although it is a gentle method, losses of cell viability occur, particularly during
freezing (Meng, Stanton, Fitzgerald, Daly, & Ross, 2008). For this reason, protective agents such
as skim milk, sucrose, dextran or polyethylene glycol are commonly required to maintain high
levels of cell viability during freeze drying and storage (Li et al., 2011). Several dietary fibers
have been reported to have potential as protectants for probiotics. Saarela et al. (2006) found that

survival of Lactobacillus rhamnosus E800 was increased after freeze drying when the cell was
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adhered to wheat dextrin. Oat bran fiber also improved the survival of Lactobacillus casei during
dehydration and storage at room temperature (Guergoletto, Magnani, Martin, Andrade, & Garcia,
2010). Similarly, Nata or bacteria cellulose could function as a cryoprotectant and an
immobilized support for freeze dried lactobacilli (Jagannath, Raju, & Bawa, 2010). Recently,
Hongpattarakere, Rattanaubon, and Buntin (2013) revealed that the presence of mungbean fiber
helped maintain viability of L. plantarum after freeze drying and during storage.

Rice bran, a by-product from rice milling, is a rich source of protein, fat, dietary fiber and
phytochemicals helpful in promoting human health. In particular, purple rice bran, an excellent
source of natural antioxidants including tocopherol, tocotrienol, and oryzanol, is a better source
of antioxidants than the regular rice bran (Jang & Xu, 2009). Kanauchi et al. (2010)
demonstrated that enzyme-treated rice bran fiber, which was a novel prebiotic, could decrease
major symptoms of irritable bowel syndrome. Moreover, it could reduce inflammation in the
colon by modulating the colonic environment and stimulating immune cell differentiation
(Komiyama et al., 2011).

Freeze drying consists of two main processes: freezing and drying by sublimation.
Freezing, especially freezing rates, has been reported as a crucial factor affecting viability of
lactic acid bacteria after drying (Morgan, Herman, White, & Vesey, 2006). Therefore, it is
important to determine the effect of combined freezing and freeze drying processes on the
viability and stability of probiotic cells in addition to evaluating purple rice bran fiber as a
probiotic protectant. In the present study, dietary fiber enzymatically extracted from purple rice
(Blanca Isabel) bran was selected to be used as a cryoprotectant for L. plantarum. The aim of
this study was to examine effects of purple rice bran fiber and freezing methods (air blast

freezing and cryogenic freezing) on the viability of LP after freezing, freeze drying, and storage.

61



3.3. Material and methods
3.3.1. Extraction of purplericebran fiber (PRF)

PRF was prepared by the enzymatic extraction described by Kanauchi et al. (2010) with
some modifications. Three hundred grams of defatted purple rice bran was suspended in 1200
mL of distilled water. Nine-tenths mL of heat-stable amylase (Sigma-Aldrich, St. Louis, MO)
was subsequently added. The mixture was incubated at 80 °C for 1 h with continuous stirring at
2400 rpm (IKA RW 20 digital, IKA Works Inc., NC). The mixture was filtered through a 75-um
sieve (Fisherbrand Test Sieve, Fisher Scientific Co., PA.). The insoluble fraction was recovered
and re-suspended in distilled water. The pH was then adjusted to 8 by NaOH (Sigma-Aldrich, St.
Louis, MO), followed by addition of 0.45 mL of Alcalase (Sigma-Aldrich, St. Louis, MO). The
re-suspended mixture was continuously stirred at 650 rpm and maintained in a water bath
(Microprocessor Controlled 280 Series Water bath, Thermo Scientific Inc., MA.) at 63 °C for 5
h. After hydrolysis, the insoluble residue was isolated using a 75-um sieve and then was
suspended in distilled water. The pH of mixture was adjusted to 4.5 by HCl. A 2.4 g of
hemicellulase (Sigma-Aldrich, St. Louis, MO) was added to the suspension and incubated at 40
°C for 12 h with 650 rpm stirring. The insoluble fraction was collected by filtering through a 75-
pm sieve and washed with distilled water 4 times prior to drying in a dehydrator (Excalibur
2900ECB food dehydrator, Excalibur®, FL) at 60°C for 8 h to obtain the PRF. The proximate
analysis of the PRF was determined. The antioxidant activity, total phenolic contents, moisture
contents, and colors were also obtained.
3.3.2. Microorganism

A lyophilized L. plantarum NRRL B-4496 isolated from sauerkraut was kindly provided

by ARS Culture Collection (Washington DC, US). The culture was activated in deMan Rogosa
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Sharpe (MRS) broth (Neogen Corporation, Lansing, MI). Twenty five mL of the strain was
subsequently inoculated in MRS broth (500 mL) and incubated at 37 °C for 16 h to reach
stationary phase. Cell pellets were harvested by centrifugation at 12,000 x g for 10 min at 4 °C.
The pellets were washed three times and suspended in sterile distilled water.
3.3.3. Preparation of freeze-dried L. plantarum adhered on PRF

A 5.5 g of PRF was mixed with 55 mL of cell pellet suspension in a sterile weighting
boat. The bacterium-PRF suspension was kept at room temperature for 1 h (Guergoletto et al.,
2010). Then, the suspension was divided into two groups; one was frozen using an air blast
freezer (Master-Bilt Products, New Albany, MS) at -20 °C for 24 h, while the other group was
frozen in a cabinet cryogenic freezer (Air Liquide Co., Houston, TX) with liquid nitrogen (Air
Liquide, Houston, TX, USA). After reaching an internal temperature of -20 °C, the samples were
stored at -20 °C for 24 h in a regular freezer. All samples were subsequently dried in a freeze
dryer (Virtis Genesis 35 x1, SP Scientific, PA). After freeze drying, the freeze dried cells adhered
on PRF (FLP-PRF) were measured for moisture content and color. Two gram samples of FLP-
PRF were loaded in glass bottles and stored either at ambient temperature or at refrigerated
temperature to examine cell stability during storage.
3.3.4. Proximate analysis of PRF

PRF was analyzed for moisture content, fat, protein, ash, total dietary fiber. The moisture
content was determined according to AOAC standard methods 930.15 (AOAC, 2005) and then
the fat was extracted with Soxhlet extraction from the dehydrated PRF according to AOAC
standard methods 920.39 (AOAC, 2005). The protein content was determined according to
AOAC procedure 992.15 (AOAC, 2005) using a Perkin Elmer Model 2410 Nitrogen Analyzer

(Perkin Elmer Instruments, Norwalk, CT). The ash content was determined with a Thermolyne
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Type 6000 muffle furnace (Thermo Scientific, Lawrence, KS) at 549 °C as described in AOAC
method 920.153 (AOAC, 2005). The total dietary fiber was determined according to AOAC
method 985.29 (AOAC, 2005) using an enzymatic-gravimetric method.
3.3.5. Determination of antioxidant activity and total phenolic content of PRF

Antioxidant activity and total phenolic content of the PRF were determined. Antioxidant
activity of PRF was measured using the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH)
method described by Jun, Song, Yang, Youn, and Kim (2012). Trolox® (6-hydroxy-2,5,7,8-
tetramethylchroman-2-carboxylic acid) was used as a standard. Antioxidant activity was
expressed as %Antioxidant activity = [(absorbance 515 nm of control — absorbance 515 nm of
sample)/absorbance 515 nm of control] x 100. The result was reported as Trolox equivalents.
Total phenolic content was determined according to the method of Jun et al. (2012). Gallic acid
was used as a standard, and total phenolic contents were expressed as gallic acid equivalents. All
chemicals were purchased from Sigma-Aldrich (St. Louis, MO).
3.3.6. Colors of PRF and FL P-PRF

Colors of PRF and FLP-PRE were determined using the chroma meter LABSCAN XE
(Hunterlab, VA, USA). The data was reported in CIELAB color scales (L*, a*, and b*). Chroma
and hue angle value were calculated with Eq. 3.1 and 3.2, respectively.

Chroma = [a** + b**] % (3.1)
Hue angle = tan” (b*/a*) (3.2)

3.3.7. Scanning electron microscopy (SEM)

FLP-PRF samples were mounted on aluminum SEM stubs and then coated with gold:
palladium (60:40) in an Edwards S150 sputter coater. The morphology of FLP-PRF was

observed under a scanning electron microscope (JSM-6610LV, JEOL Ltd. Japan).
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3.3.8. Cdll viability of L. plantarum after freezing and freeze drying

Cell viability was determined according to the method described by Jagannath et al.
(2010) with some modification. After freezing, the LP-PRF was thawed at room temperature.
One mL of thawed sample was added to 9 mL of 0.85 g/100 mL sterile saline solution.
Regarding FLP-PRF, one g of sample was mixed with 9 mL of the saline solution in a stomacher
(AES Carboratoire easy MIX, AEC Chemunex, NJ) for 2 min. Serial dilutions were performed in
the saline solution. The pour plating method using MRS agar (Neogen Corporation, Lansing, MI)
with 0.75 g/100 mL CaCO; (Sigma-Aldrich, St. Louis, MO) as the media was used in
enumeration of the cells. The plates were incubated at 37 °C and were enumerated for colony
forming units per gram (CFU/g) after 48 h.
3.3.9. Acid and bile tolerances

Acid and bile tolerances were determined according to the method described by Cebeci
and Giirakan (2003) with some modifications. Both free cells and FLP-PRF were considered.
Free cells were prepared by growing the strain in MRS broth for 16 h. Determination of acid
tolerance was accomplished by adding 1 g of FLP-PRF or 1 mL of free cells to 30 mL of sterile
acidified MRS broth adjusted to a pH of 2.0 or 3.0. The cells were incubated at 37 °C and
collected after 1 and 2 h incubation. In the bile tolerance test, FLP-PRF samples and free cells
were separately exposed to 30 mL of MRS broth containing either 0.3g/100mL, 0.5g/100mL, or
1g/100mL oxgall (Sigma-Aldrich, St. Louis, MO) and incubated at 37 °C. Samples were tested
after incubation for 12 and 24 h. The viable cells of both acid and bile tolerance studies were

enumerated on MRS agar containing 0.75 g/100 mL CaCOs after incubation at 37 °C for 48 h.
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3.3.10. Stability of FL P-PRF during storage

Cell viability of FLP-PRF samples stored at either ambient or refrigerated temperatures
was investigated after storage for up to 12 weeks. A new bottle was opened at every time
interval. One gram of FLP-PRF was mixed with 9 mL of 0.85g/100mL sterile saline solution in a
stomacher (AES Carboratoire easy MIX, AEC Chemunex, NJ) for 2 min prior to performing
decimal dilution. The viable cells on MRS agar containing 0.75g/100mL CaCO; were counted
after 48 h incubation at 37 °C. The specific rate of degradation (k) of FLP-PRF was calculated
according to Eq 3.3 (Korakoch et al., 2005)

logN = logNo — kt (3.3)

where Ny is the initial (time t = t,) number of viable cells (CFU/g of solids), N is the number of
viable cells (CFU/g of solids) at time t (week), K is the specific rate of degradation (week™) and t
is the storage time.
3.3.11. Statistical analysis

All values were means and standard deviations of three determinations. Means values
from statistical analysis was condcuted with the SAS (Statistical Analysis System) software
(version 9.2) (SAS Institute Inc., Cary, NC, USA) to test the significance of the differences
among the different treatments.
3.4. Resultsand Discussions
3.4.1. Evaluation of PRF and FL P-PRF

As shown in Table 3.1, the major dry components of PRF were dietary fiber (66.34
g/100g), protein (20.7 g/100g), fat (9.05 g/100g), and ash (2.25 g/100g). Digestible carbohydrate
was 1.56 g/100g in the PRF. The composition of PRF was within the range reported by other

researches (Abdul-Hamid & Luan, 2000; Choi et al., 2011; Kanauchi et al., 2010). PRF had
66



antioxidant activity and contained phenolic compounds. Vitaglione, Napolitano, and Fogliano
(2008) suggested that most of phenolic compounds in bran covalently bound to cell wall
polysaccharides via ester bonds, called as dietary-fiber phenolic compounds including ferulic
acid, diferulic acids ,p-coumaric acid, caffeic acid, and benzoic acid derivatives.

Table 3.1. Proximate analysis, antioxidant activity, and total phenolic contents of PRF

Compositions g/100 g (dry basis)
Proteins 20.7+0.14
Fats 9.05+0.10
Carbohydrates* 67.9+0.22

Total dietary fibers 66.3+1.21
Ash 2.254+0.15
Antioxidant activity (umol TE/kg) 1350.38+12.84
Total phenolic contents (mg GA/kg) 260.3+1.45

*Carbohydrate (g/100 g) was calculated by the formula, 100 - protein - lipids - ash. Values are
means =+ standard deviation of triplicate measurements.

The moisture content of PRF and FLP-PRF is listed in Table 3.2. The moisture of PRF
was 5.68 g/100g which was not significantly different than FLP-PRF frozen by air blast freezing,
5.23 g/100g (P < 0.05). The moisture content of FLP-PRF cryogenically frozen (7.22 g/100g)
was significantly higher than both PRF and air blast frozen FLP-PRF (P < 0.05). All color values
(L*, a*, b*, chroma, and hue angle) of FLP-PRF for both AF and CF treatments were
significantly different than those of PRF (P < 0.05). The color of FLP-PRF was darker than PRF.
3.4.2. Viability of L. plantarum adhered on PRF after freezing and after freeze-drying

Viability of L. plantarum, both as free cells and as cells adhered on PRF and frozen by
different freezing methods, is shown in Figure 3.1. Free cells, the cells without any protectants,

were used as a control.
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Table 3.2. Moisture contents and colors of PRF and FLP-PRF

FLP-PRF
Physicochemical PRF

properties Air blast freezing Cryogenic freezing

(AF) (CF)

Moisture (g/100g) 5.68+0.27" 5.23+0.31° 7.22+0.12°

L* 32.0+1.61° 25.53+0.88" 27.72+0.32°

a* 7.39+0.03° 8.77+0.14° 8.610.09°

b* 4.65+0.06° 6.05+0.14* 6.14+0.33
Chroma 38.11+0.44° 56.82+2.03 55.95+2.87°
Hue angle 32.20+0.31° 34.60+0.27 35.05+1.17°

PRF= purple rice bran fiber, FLP-PRF = freeze dried L. plantarum adhered on purple rice bran
fiber.*”Means + standard deviation with different letters within the same row were significantly
different (P < 0.05).
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Figure 3.1. Viability of L. plantarum adhered on PRF before and after freezing and freeze
drying. [1 = Free cells/AF (cells without any protectant, grown in MRS broth for 16 h and frozen
by air blast freezer), [ = Free cells/CF (cells without any protectant, grown in MRS broth for 16
h and cryogenically frozen), Ll = LP-PRF/AF (L. plantarum adhered on purple rice bran fiber
frozen by air blast freezer), and B = LP-PRF/CF (L. plantarum adhered on purple rice bran fiber
cryogenically frozen). “"means with different letters in different treatments before and after
freezing and freeze drying are significantly different (P < 0.05).
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All treatments had high survival rates with less than 1 log reduction after freezing. After
freeze drying, the numbers of viable cells for the free cell control were dramatically decreased to
1.91+0.04 log CFU/g for the AF treatment and 2.17+0.03 log CUF/g for the CF treatment. On
the other hand, the cells with PRF in both the AF and CF treatments (LP-PRF/AF and LP-
PRF/CF) maintained much greater viability. LP-PRF/CF had 8.78+0.10 log CFU/g viable cells,
while LP-PRF/AF had 8.22+0.13 log CFU/g viable cells. This indicated that PRF successfully
helped protect the viability of the cells during freeze drying. PRF may have functioned as a
physical barrier protecting the cells from unfavorable environments. As Figure 3.2 shown, the

cells attached to the fiber matrix after freeze drying.
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Figure 3.2. Scanning electron micrographs of freeze-dried L. plantarum adhered on PRF and
frozen by air blast freezing (a and b) or by cryogenic freezing (c and d).
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Jagannath et al. (2010) suggested that a disorganized arrangement of overlapping and
twisting fibrous strands could have the potential to hold bacteria in the spaces and on the surface.
It has been reported that insoluble fibers have potential as probiotic protectants by their reducing
bacteria inactivation during freezing, drying, and storage (Charalampopoulos, Wang, Pandiella,

& Webb, 2002; Guergoletto et al., 2010; Hongpattarakere et al., 2013; Saarela et al., 2006).

3.4.3. Acid and biletolerance of freezedried L. plantarum adhered on PRF

This strain of L. plantarum has been reported as acid tolerant (Reddy, Raghavendra,
Kumar, Misra, & Prapulla, 2007) and capable of surviving in acidic mediums of both pH 2 and
pH 3. In our study, the number of viable free cells was decreased less than 1 log after incubation
for either 1 or 2 h in either pH condition (Figure 3.3). The number of viable cells for FLP-PRF
after incubation at pH 3 for 2 h was 7.75+0.10 log CFU/g and 7.64+0.07 log CFU/g for AF and
CF treatments, respectively. These values were not significantly different (P < 0.05). After 2 h
incubation at pH 2, the viable cells of FLP-PRF/CF (6.06+0.01 log CFU/g) was significantly
lower than FLP-PRF/AF (6.99+0.12 log CFU/g) (P < 0.05). This might indicate that cryogenic
freezing, a rapid freezing method, could cause some cell damage resulting in the reduction of
acid tolerance. Baati, Fabre-Gea, Auriol, and Blanc (2000) reported that high freezing rates
failed to improve cell viability and also might have detrimental effects on cells. When a high
freezing rate was applied, membranes could be ruptured due to osmotic fluxes.(Volkert, Ananta,
Luscher, & Knorr, 2008). This phenomenon could probably affect the proton permeability of
plasma membrane, contributing to the regulation of intracellular pH which directly relates to the

acid-stress response of microorganisms.
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Figure 3.3. Viability of freeze dried L. plantarum adhered to PRF and frozen by air blast freezing

(FLP-PRF/AF) and by cryogenic freezing (FLP-PRF/CF) and viability of the control (under
acidic conditions. [] = Free cells (cells without any protectant and grown in MRS broth for 16
h), &2 = FLP-PRF/AF (freeze dried L. plantarum adhered on purple rice bran fiber frozen by air
blast freezer), and & = FLP-PRF/CF (freeze dried L. plantarum adhered on purple rice bran fiber
cryogenically frozen). “'means with different letters in different treatments before and after
incubation are significantly different (P < 0.05).

In the bile tolerance study, the number of viable cells of all treatments was decreased by
increasing oxgall concentration (Figure 3.4). Oxgall is bile that can emulsify and solubilize fats.
It damages cells by lysing plasma membranes mainly composed of phospholipids (Begley,
Gahan, & Hill, 2005). The number of viable cells of FLP-PRF in both AF and CF treatments was
significantly higher than the number of viable free cells (control) (P < 0.05). After incubation for
24 h in 1% oxgall media, no free cells survived. Regardless of freezing method, FLP-PRF had
cells survive in all concentrations of oxgall. Thus, it seemed that PRF provided the cells with

protection from the bile.
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Figure 3.4. Viability of freeze dried L. plantarum adhered to PRF and frozen by air blast freezing
(FLP-PRF/AF) and by cryogenic freezing (FLP-PRF/CF) and viability of the control (free cells)
under bile salt conditions. [1 = Free cells (cells without any protectant and grown in MRS broth
for 16 h), [l = FLP-PRF/AF (freeze dried L. plantarum adhered on purple rice bran fiber frozen
by air blast freezer), and I = FLP-PRF/CF (freeze dried L. plantarum adhered on purple rice
bran fiber cryogenically frozen). “’means with different letters in different treatment before and
after incubation are significantly different (P < 0.05).

According to Dongowski (2007), dietary fiber was able to interact with bile acids;
however, the mechanism has not been clearly understood. Kahlon and Chow (2000) mentioned
that rice bran had bile acid binding ability higher than wheat bran, oat bran, and corn bran. It was
also reported that bile acid binding appeared to be related to the content of insoluble dietary fiber
(Kahlon & Woodruff, 2003). Moreover, similar to the acid tolerance results, FLP-PRF/AF had a
significantly higher number of viable cells than FLP-PRF/CF (P < 0.05). Previous research has

indicated that bile sensitivity could be used to predict the relative level of freezing injury to lactic
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acid bacteria. Bile sensitive cells were likely to become non-viable during storage more rapidly
than bile resistant cells (Heenan, Adams, Hosken, & Fleet, 2004). Thus, the result could confirm
that cryogenic freezing negatively affected cell activities.
3.4.4. Cdll stability during storage

After 12-week storage at 4°C, less than 1 log cycle reduction was observed in both FLP-
PRF/AF and FLP-PRF/CF (Figure 3.5). The viable cell counts were 7.554+0.07 and 7.49+0.06 log
CFU/g for FLP-PRF/AF and FLP-PRF/CF, respectively. The specific rate of degradation (K) of
FLP-PRF/AF (0.053+£0.001 week™) was significantly lower than FLP-PRF/CF (0.115+0.002
week™) (P < 0.05). Regarding the room temperature storage condition, the viability of the freeze
dried cells in both AF and CF were reduced to about 1 log cycle after storage for 4 weeks. By the
end of the 12-week period, the number of viable cells had been gradually decreased to 5.02+0.09
log CFU/g for FLP-PRF/AF and to 4.3240.03 log CFU/g for FLP-PRF/CF. Similar to the 4°C
storage condition results, the degradation rate of the cryogenically frozen FLP-PRF (0.362+0.001
week') was significantly higher than the air blast frozen FLP-PRF (0.283+0.001 week™). These
results were in agreement with those of Péter and Reichart (2001) who noted that slow freezing
positively affected the survival of L. plantarum, compared to fast freezing, At a high freezing
rate, cell injury would ensue due to mechanical forces originated from intracellular ice formation
(Volkert et al., 2008). Our study indicates that PRF may become a preferred protectant for freeze
dried L. plantarum cells during storage. For example, in contrast with our PRF results, viable
counts of freeze dried L. plantarum incorporated with inulin and gum acacia was considerably
reduced after storage at 25°C for 1 month (Dhewa, Pant, & Mishra, 2011). Likewise, the number
of freeze dried L. plantarum immobilized on mungbean crude fiber had 3 log reductions after

storage for 4 weeks at 30°C (Hongpattarakere et al., 2013).
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Figure 3.5. Viability of freeze dried L. plantarum adhered to PRF and frozen by air blast freezing
(FLP-PRF/AF) and by cryogenic freezing (FLP-PRF/CF) during storage at 4°C (4T) and at room
temperature (RT). @ = FLP-PRF/AF-4T, - = FLP-PRF/AF-RT, -&— = FLP-PRF/CF-RT,
and ~®= = FLP-PRF/CF-4T.

3.6. Conclusions

This study demonstrated that purple rice bran fiber functioned as a fiber matrix,
supporting and protecting the viability of the cells during freeze drying and storage. The fiber
also helped protect the cells from bile. Freezing methods had an influence on the viability of the
cells. Cryogenically frozen cells had lower survival, compared with air blast frozen cells. The
result indicated that cryogenic freezing caused cell damage resulting in loss of acid and bile
tolerance and loss of cell stability during storage. In summary, the study successfully developed

a new probiotic-fiber supplement that would be incorporated into food products (e.g. nutrition
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bars, cereal products or dairy products). The application of the probiotic-purple rice bran fiber
supplement in food systems are recommended to study.
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CHAPTER 4 DEVELOPMENT OF A COMBINED LOW METHOXYL
PECTIN AND RICE BRAN EXTRACT DELIVERY SYSTEM TO
IMPROVE THE VIABILITY OF L. PLANTARUM UNDER ACID AND
BILE CONDITIONS

4.1. Abstract

A combined pectin-rice bran delivery system for Lactobacillus plantarum NRRL-B4496
(LP) was developed. Four pectin (PE)-rice bran extract (RB) gel solutions were prepared: (1) 2.0
g/100 mL PE with 0.5 g/100 mL RB, (2) 2.0 g/100 mL PE with 1.0 g/100 mL RB, (3) 2.0 g/100
mL PE with 2.0 g/100 mL RB, and (4) 2.0 g/100 mL PE (control). L. plantarum was grown in
MRS broth, centrifuged, and mixed with the gel solutions. The capsules loaded with L.
plantarum (LP/PE-RB capsules) were then prepared by ionotropic gelation. PE-RB gel solutions
exhibited pseudoplastic behavior. The gel solution containing 2.0 g/100 mL RB had the highest
consistency and viscosity. All LP/PE-RB capsules had similar diameter. Both the sphericity and
the encapsulation efficiency of the capsules were increased with higher RB content, while the
hardness and springiness were decreased. When exposed to acidic and bile salt conditions, the
viability of encapsulated cells was higher than free cells. The study demonstrated that PE-RB
capsules could have potential as a delivery system for L. plantarum.
Keywords. Pectin-rice bran delivery system, Lactobacillus plantarum, capsules
4.2. Introduction

Probiotics are well-known for their health promoting effects. They can relieve diarrhea,

reduce colonization of pathogenic bacteria and intestinal inflammation, alleviate lactose

This chapter previously appeared as Arranee Chotiko and Subramaniam Sathivel, Development
of a combined low-methoxyl-pectin and rice-bran-extract delivery system to improve the
viability of Lactobacillus plantarum under acid and bile conditions, October 28, 2015. It is
reprinted by permission of Elsevier—see the permission letter for proper acknowledgment
phrase in Appendix B (see page 144).
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intolerance, reduce blood cholesterol, and possess anti-colon cancer effects (Ratna, Chauhan,
Dixit, Babu, & Jamil, 2009; Saxelin, Tynkkynen, Mattila-Sandholm, & de Vos, 2005). The
probiotic activity depends on the dose levels and the probiotic’s viability in products and in gut
environments (Kailasapathy & Chin, 2000). The recommended levels of live probiotic bacteria
for addition to food products is at least 10°-10’ cfu/g (Floch et al., 2008). Therefore, it is
necessary to maintain high levels of probiotics in products before consumption and to ensure
good survival during the digestion processes to reach the sites of action with sufficient numbers
and viability to provide health benefits.

Encapsulation is the packaging technology of active ingredients in small capsules that
release their content at controlled rates over prolonged periods of time (Corbo, Bevilacqua,
Gallo, Speranza, & Sinigaglia, 2013). Different encapsulation techniques are used for probiotics
to enhance their viability and for target delivery, generally, including spray drying, freeze drying,
emulsion, and extrusion (Huq, Khan, Khan, Riedl, & Lacroix, 2012). According to Krasaekoopt,
Bhandari, and Deeth (2003), probiotic powder encapsulated by drying processes is released in
food products. This results in loss of protection and greater deterioration in unfavorable
environments, such as during the passage through the gastrointestinal (GI) tract. (de Castro-
Cislaghi, Silva, Fritzen-Freire, Lorenz, & Sant’Anna, 2012) found that spray dried
Bifidobacterium animalis subsp. lactis Bb-12 powder with whey had greater decrease in viability
at low pH and bile conditions than free cells. On the other hand, encapsulation of probiotics in a
hydrocolloid gel matrix provides protection against GI conditions. Encapsulated B. animalis Bb-
12 in milk protein or alginate-chitosan capsules formed by gelation methods had a larger number
of viable cells than free cells at GI conditions (Heidebach, Forst, & Kulozik, 2009; Liserre, Re,

& Franco, 2007).
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Encapsulation of probiotics in gel/bead matrix, such as sodium alginate (Sathyabama,
Ranjith, Bruntha, Vijayabharathi, & Brindha, 2014), carrageenan (Hernandez-Rodriguez,
Lobato-Calleros, Pimentel-Gonzalez, & Vernon-Carter, 2014), carboxymethyl cellulose
(Chitprasert, Sudsai, & Rodklongtan, 2012), and gelatin (Annan, Borza, & Hansen, 2008) has
been successfully studied. However, there are few reports on encapsulation of probiotics using
pectin matrix, although it has been widely used in the pharmaceutical industry as a delivery
vehicle for colon-specific oral drugs. Pectin is a complexly structured polysaccharide
predominantly composed of homogalacturonan, a homopolymer of partially methyl-esterified (1-
4)-linked a-D-galacturonic acid, and a range of neutral sugars such as rhamnose, galactose, or
arabinose (Maxwell, Belshaw, Waldron, & Morris, 2012). It can form three dimensional rigid
and water insoluble hydrogels by calcium-induced ionotropic gelation (Lee, Kim, Chung, & Lee,
2009 & Lee, 2009). Pectin is a soluble fiber that is resistant to GI conditions and degradable by
colonic bacteria (Cabrera, Cambier, & Cutsem, 2011). It also has prebiotic properties, which can
enhance the growth of Bifidobacterium and Lactobacillus sp. (Wicker et al., 2014).

Pectin has been reported to be less sensitive to chemical agents and more resistant to GI
environments than alginate. Voo, Ravindra, Tey, and Chan (2011) found that pectin based beads
containing poultry probiotic cells had higher mechanical strength than alginate beads. As a
result, cell release from pectin beads was less than that from alginate beads during fermentation.
Viability of Lactobacillus rhamnosus in gastric conditions at pH 2 was improved when the cell
was encapsulated with pectin (Gerez, Font de Valdez, Gigante, & Grosso, 2012). In a recent
study, Gebara et al. (2013) encapsulated Lactobacillus acidophilus in pectin beads by ionotropic

gelation. The result showed that the reduction of encapsulated cells was 1.51 log cycles after
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incubating in simulated gastric (pH 3) and intestinal (pH 7) juices, while a reduction of 3.54 log
cycles was observed in non-encapsulated cells.

Pectin’s high porosity and weak binding behavior to a crosslink agent (Ca®") are
disadvantages, limiting the use of pectin in encapsulation technology (Chan et al., 2011; Fang et
al., 2008). Adding a filler agent, such as starch or rice bran was suggested to overcome the
problem and to increase the protective effect for probiotic delivery. Chan et al. (2011) revealed
that starch filler could improve sphericity, flowability, and mechanical strength and reduce
porosity of the calcium alginate beads. Viability of Lactobacillus casal encapsulated in the beads
with starch filler was higher than the control after lyophilization and during storage. Chitprasert
et al. (2012) determined that encapsulation of Lactobacillus reuteri in aluminum carboxymethyl
cellulose—rice bran capsules helped increase microencapsulation yield and contributed to cell
survival during heat exposure.

A pectin (PE) and rice bran extract (RB) delivery system may protect viable L. plantarum
cells under acidic and bile conditions. There are either no data or only limited information
available on effects of PE and RB delivery systems containing probiotics at acidic and bile
conditions. Therefore, the intention of this study was to develop and analyze PE-RB loaded with
L. plantarum capsules. The effects of RB on physical properties of the capsules were
investigated as well as the viability of the encapsulated cells after encapsulation and exposure to
acidic and bile conditions. The L. plantarum NRRL-B4496 strain used is a probiotic strain used
in fermented food products (Fijan, 2014; Pedreschi, Campos, Noratto, Chirinos, & Cisneros-
Zevallos, 2003; Upadhyay, 2014). It has the ability to inhibit the growth of some bacteria that
cause digestive illness, such as Helicobacter pylori (Apostolidis, Kwon, Shinde, Ghaedian, &

Shetty, 2011) and Listeria monocytogenes (Upadhyay, 2014). The L. plantarum also reduces
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hypolipidemic activity (Haroun, Refaat, El-Waseif, EI-Menoufy, & Amin, 2013). Additionally, it
shows antioxidant (Das & Goyal, 2015) and antifungal activities (Cortes-Zavaleta, Lopez-Malo,
Hernandez-Mendoza, & Garcia, 2014).
4.3. Materials and methods
4.3.1. Cell culture preparation

Lactobacillus plantarum NRRL B-4496 (LP) isolated from pickled cabbage was kindly
provided by ARS Culture Collection (Washington DC, US). The frozen stock culture was
reactivated twice in de Man Rogosa Sharpe (MRS) broth (Neogen Corporation, Lansing, MI).
The culture (25 mL) was subsequently inoculated in MRS broth (500 mL) and incubated at 37
°C for 16 h to reach stationary phase. Cell pellets were harvested by centrifuging at 10,000 x g
for 10 min at 4 °C (Beckman J2-HC, Beckman Coulter, Inc., Brea, CA). The pellets were
washed three times and suspended in sterile distilled water (LP suspension).
4.3.2. Preparation of pectin-rice bran loaded with L. plantarum capsules

The preparation was performed as described by Lee et al. (2009) with some
modifications. First, pectin-rice bran gel solutions loaded (PE-RB gel solution) with LP were
prepared by mixing a LP suspension (~10°cfu/mL) with 2 g/100 mL of low-methoxyl pectin (PE)
(TIC PRETESTED® pectin LM 32 powder), provided by TIC Gums Inc (Belcamp, MD) and
rice bran extract (RB) (Ribus Inc. (St. Louis, MO). The proximate composition of RB is 17 g/100
g protein, 41 g/100 g carbohydrate, 22 g/100 g fat, 13 g/100 g ash, and 7 g/100 g water. The
required concentrations of RB were 0.5 g/100 mL, 1 g/100 mL, and 2 g/100 mL. PE gel solution
(without RB) containing LP was used to produce control (LP/PE) capsules. All gel solutions with
LP were then stirred for 1 h, extruded through a 23G needle by a syringe pump at a flow rate of

1.2 mL/min, and dropped into calcium chloride (CaCl,) solution (4 g/100 mL) (Fisher Scientific
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Inc., Pittsburgh, PA). The pectin-rice bran loaded with LP (LP/PE-RB) capsules were
immediately formed and continuously hardened in CaCl, solution for 30 min. The capsules were
collected, washed twice, and kept at 4 °C for further analysis.
4.3.3. Rheological properties of PE-RB gel solutions

Flow behavior of the PE-RB gel solutions without LP was measured using an AR 2000
Ex Rheometer (TA Instruments, New Castle, DE) fitted with a plate geometry (a steel plate with
a 40-mm diameter, having a 200 pum gap between the two plates). Each sample was placed on the
temperature-controlled parallel plate at 25 °C. The shear stress was measured at shear rates from
110100 s'. The flow properties of the gel sample were characterized by the power law, shown in
Eq. 4.1.

o =Ky" 4.1)

where ¢ = shear stress (Pa), y = shear rate s, K= consistency index (Pa s"), and n = flow
behavior index. A plot of log ¢ against log y was constructed, and the magnitudes of K and n
were determined from the resulting straight line intercept and slope, respectively. The mean
values of n, K, and apparent viscosity for triplicate gel solution samples were reported.
4.3.4. Deter mination of L P/PE-RB capsule size and shape

Thirty capsule diameters were measured with a stereomicroscope (Zeiss SteREO
Lumar.V12, Thornwood, NY), using an image analyzer software. The capsule shape was

quantified by the sphericity factor (SF), shown in Eq. 4.2 (Chan et al., 2011).
SF — dmax - dmin (42)

dmax * dmin

where dpmax 1S the largest diameter and dpiy is the smallest diameter perpendicular to diax.
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4.3.5. Deter mination of encapsulation efficiency
The encapsulation efficiency (EE) represented a combined measure of the efficacy of

entrapment and survival of viable cells during the microencapsulation procedure, calculated

according to Eq. 4.3 (Gebara et al., 2013).
EE (%) =—x 100 (4.3)
0

where EE is the encapsulation efficiency, expressed in percentage, N is the number of cells
released from the beads (log CFU/g of capsules), and Ny is the number of cells in the gel solution
(log CFU/g of LP suspension).

To determine the number of cells in the capsules, the encapsulated LP was released
according to the method described by Sathyabama et al. (2014) with some modifications. One
gram of the capsules was added to 99 mL of 0.1 M phosphate buffer (pH 7.2) and stirred at 250
rpm by a shaker (Lab line incubator shaker model 3525, Fisher Scientific Inc., Pittsburgh, PA)
for 30 min. The colony forming units (CFU/g) was examined by pour-plate method on MRS agar
containing CaCOj (0.6g/100mL) (Fisher Scientific Inc., Pittsburgh, PA). The plate was incubated
at 37 °C for 24-48 h.

4.3.6. Textural properties of L P/PE-RB capsules

The LP/PE-RB capsules were analyzed for texture profile as described by Sandoval-
Castilla, Lobato-Calleros, Garcia-Galindo, Alvarez-Ramirez, and Vernon-Carter (2010) with
some modification. An Instron Universal Testing Device (Model 5544, Norwood, MA) equipped
with a 5 Kg-load cell was used for determination. The capsule samples (5 g) were placed on a
fixed bottom plate under the probe. The contact force was controlled at 0.005 N. The samples
were compressed 30%, using two compression cycles at a constant crosshead velocity of 30 mm

min”'. Hardness, cohesiveness, and springiness (ratio between the areas under the compression
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and decompression curves) were analyzed using the software Bluehill Materials Testing
Software (Bluehill 3, version 3.13, 2010, Instron).
4.3.7. Scanning electron micrographs of L P/PE-RB capsules

The LP/PE-RB capsules were incubated overnight in a mixture of ethanol, acetic acid,
and formaldehyde. After incubation, they were rinsed and dehydrated with ethanol. Then they
were dried with liquid CO, using a critical point-dryer. The dried capsules were cut, mounted on
aluminum SEM stubs, and coated with gold:palladium (60:40) in an Edwards S150 sputter
coater. The capsule morphology was observed under a scanning electron microscope (JSM-
6610LV, JEOL Ltd. Japan).
4.3.8. Survival of the cellsin LP/PE-RB capsules under acidic and bile conditions

Acid and bile tolerance of the encapsulated cells and of free cells was determined
according to the method described by Ding and Shah (2007). One gram of capsules and 1 mL of
free cells (~10° CFU/g) were inoculated into acidified MRS broth (pH 3.0) to measure acid
tolerance and separately into MRS broth containing 1 g/100 mL oxgall (Sigma Aldrich, St.
Louis, MO) to measure bile tolerance. They were then incubated at 37 °C for 2 h (acid) and 24 h
(bile) to determine acid and bile tolerances. The encapsulated LP was released from the capsules
and enumerated according to the method described in section 4.3.5.
4.3.9. Statistical analysis

All values were means and standard deviations of three determinations. Statistical analysis

on the mean values was conducted with the SAS (Statistical Analysis System) software (version

9.4) (SAS Institute Inc., Cary, NC, USA) to test for differences among the treatments (P < 0.05).
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4.4. Resultsand discussions
4.4.1. Rheological properties of PE-RB gel solutions

Flow behavior and apparent viscosity of the gel solutions are shown in Table 4.1. The
results indicated that the rheological properties of gel solutions were affected by RB
concentrations. All gel solutions exhibited non-Newtonian or pseudoplastic behaviors, as
evidenced by the flow index (n) which was less than 1.0 (Paredes, Rao, & Bourne, 1989).

Table 4.1. Flow behavior properties of PE-RB gel solutions at 25°C

Gel RB concentration K Viscosity
solutions (g/100 mL) " (Pa s") (Pas)
PE (control) 0 0.968+0.014° 0.064+0.005° 0.056+0.007°
PE-0.5RB 0.5 0.961+0.013* 0.021+0.001° 0.018+0.001°
PE-1.0RB 1 0.865+0.024 0.092+0.009" 0.050:£0.001°
PE-2.0RB 2 0.275+0.035° 5.711+0.865° 0.213+0.007°

Gel solutions of PE, PE-0.5RB, PE-1.0RB, and PE-2.0RB are gel solution containing 2.0 g/100
mL pectin without rice bran extract, 2.0 g/100 mL pectin with 0.5 g/100 mL rice bran extract, 2.0
g/100 mL pectin with 1.0 g/100 mL rice bran extract, and 2.0 g/100 mL pectin with 2.0 g/100
mL rice bran extract, respectively. ““Means =+ standard deviation with different letters within the
same column are significantly different (P < 0.05).

The n obtained in the current study was 0.968+0.014, 0.961+0.013, 0.865+0.024, and
0.275+0.035 for PE, PE-0.5RB, PE-1.0RB, and PE-2.0RB gel solutions, respectively. PE and
PE-0.5RB gel solutions demonstrated a nearly Newtonian like fluid behavior. Pseudoplasticity of
the gel solutions increased significantly with higher RB concentrations. The PE-2.0RB gel
solution had significantly highest consistency (5.711£0.865 Pa s") (P < 0.05). Moreover, RB
concentration greatly influenced gel solution viscosity. The PE-0.5RB gel solution had
significantly lower viscosity than the PE gel solution (0.018+0.001 and 0.056+0.007 Pa s,
respectively) (P < 0.05). RB functions as a processing aid for extrusion processes, helping to

reduce a product’s surface irregularity and increase production rates (Hammond (2000). In
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general, viscosities of polymers decrease when the proper amount of processing aid is used
(Achilleos, Georgiou, & Hatzikiriakos, 2002). This could possibly explain the reduction of
viscosity at low levels of RB (PE-0.5RB gel solution), followed by increased viscosity at higher
RB concentrations. The PE-2.0RB gel solution had a viscosity value of 0.2134+0.007 Pa s, which
was significantly higher than PE-1.0RB gel solution (0.050+0.001 Pa s) and the PE gel solution.
Some interactions between RB and PE may have occurred, causing changes to their functional
properties. Our lab examined structural aspects of PE-RB powder by Fourier Transform Infrared
Spectroscopy (FTIR) and found certain changes in spectra profiles of PE-RB powder, compared
to PE or RB alone (see Appendix A). RB contains high protein and fat content. Certain
functional groups of RB protein and fatty acids are mainly involved in the interaction, as
reported by Chitprasert et al. (2012)
4.4.2. LP/PE-RB capsule size, shape, and encapsulation efficiency

As shown in Table 4.2, all capsules had similar sizes (P < 0.05). The sphericity factor
(SF) was used to determine the shape of the capsule samples. Capsules with SF less than 0.05 are
considered to be spherical beads (Lee, Ravindra, & Chan, 2013). LP/PE-2.0RB capsules had the
lowest SF (0.03+£0.02) (P < 0.05). The highest SF was in LP/PE-0.5RB (0.07+0.05) capsules,
which were not significantly different compared to LP/PE samples (0.06+0.04) (P < 0.05). The
appearance of the LP/PE-RB capsules is shown in Figure 4.1. The LP/PE-2.0RB capsules had
spherical shape, and were light brown in color due to the natural color of RB. LP/PE, LP/PE-
0.5RB, and LP/PE-1.0RB samples were unable to form spherical particles which may be due to
insufficient RB and pectin concentration. These results are compatible with those of Chitprasert
et al. (2012) who determined that the capsules produced from carboxymethyl cellulose became

more spherical when rice bran was added. This effect may be viscosity dependent, as noted by

87



Chan et al. (2011). Lee et al. (2013) reported that spherical beads or capsules could not be
formed if the gel solutions had a viscosity between 60-150 cp. Although all gel solutions in our
study had viscosities out of this critical range, only PE-2.0RB gel solution had a higher viscosity
than the critical value (0.213 Pa.s. or 213 cp).

Table 4.2. Diameter, sphericity factor, and encapsulation yield of LP/PE-RB capsules

RB Diameter of Sphericity Encapsulation
Capsules concentration beads factor Efficiency (EE)
(g/100 mL) (Hammond) (SF) (%)
LP/PE 0 6.54+0.53" 0.06+0.04" 83.23+3.41°
LP/PE-0.5RB 0.5 6.52+0.57° 0.07+0.05° 90.94+1.98"
LP/PE-1.0RB 1 6.230.52° 0.05+0.03" 93.40+1.64™
LP/PE-2.0RB 2 6.37+0.28* 0.03+0.02° 05.44+1.22%

LP/PE = L. plantarum loaded in pectin capsules without rice bran extract (control). LP/PE-
0.5RB, LP/PE-1.0RB, and LP/PE-2.0RB = L. plantarum loaded in pectin capsules containing 0.5
/100 mL, 1.0 g/100 mL, and 2.0 g/100 mL rice bran extract, respectively. “"Means + standard
deviation with different letters within the same column are significantly different (P < 0.05).

Table 4.2 demonstrated that LP/PE-RB capsules showed high encapsulation efficiency
(EE) in all samples (less than one log cycle of viable cells reduction). LP/PE-RB capsules
contained more than 10’ CFU/g of viable cells. Mattila-Sandholm et al. (2002) suggested that for
colonization, viable population of probiotics should be in a range of 10’-10° CFU/g. High EE
would be attributed to the pectin shell. White, Budarin, and Clark (2010) have reported that
pectin is categorized as a nanoporous polymer, having pore sizes between 2 to 50 nm. It is well
known that bacteria sizes are about 0.2 um in diameter and 2-8 um in length. Thus, pectin has
considerable capacity for cell entrapment. It was obvious that RB helped improve the EE of
LP/PE-RB capsules. The EE monotonically increased with RB. LP/PE-2.0RB samples had the
highest EE (95.44+1.22%), followed by LP/PE-1.0RB (93.40+1.64%), LP/PE-0.5RB

(90.94+1.98%), and LP/PE capsules (83.23+3.41%). The increase of EE probably resulted from
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higher sphericity of the LP capsules containing RB, leading to a reduction of cell losses during
the gelation process. Woo et al. (2007) mentioned that irregular and tear shape beads could cause
the release of encapsulants.

LP/PE-0.5RB

LP/PE-1.ORB LP/PE-2.0RB

Figure 4.1. L. plantarum-loaded pectin-rice bran extract capsules. LP/PE = L. plantarum loaded
in pectin capsules without rice bran extract (control). LP/PE-0.5RB, LP/PE-1.0RB, and LP/PE-
2.0RB = L. plantarum loaded in pectin capsules containing 0.5 g/100 mL, 1.0 g/100 mL, and 2.0
g/100 mL rice bran extract, respectively.

4.4.3. Textural propertiesof L P/PE-RB capsules

The textural properties of the LP/PE-RB capsules were affected by RB concentration
(Table 4.3). Hardness and springiness decreased with increasing RB content. The lowest
hardness and springiness were in LP/PE-2.0RB capsules (8.61+1.74 N and 0.97+0.01 mm,
respectively) (P < 0.05). These values were not significantly different from LP/PE-1.0RB
samples (11.49£1.18 N and 0.99+0.02 mm, respectively) (P < 0.05). Similarly, no significant
differences were observed in hardness and springiness between LP/PE-0.5RB and LP/PE

samples (P < 0.05). All treatment samples had similar cohesiveness (P < 0.05). The softer texture
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of LP/PE-1.0RB and LP/PE-2.0RB capsules possibly occurred because of protein and fat in RB.
Liu, Xu, and Guo (2008) observed that protein is broken up by water and functions as a
lubricant, providing smoothness and softness. Fat can also act as a lubricant by changing
compression properties of the gel matrix and decreasing its breakdown forces (Pereira, Matia-
Merino, Jones, and Singh (2006). Moreover, lipids increase the apparent viscosity of the gel
matrix, resulting in a lower friction coefficient and consequently changing the gel’s lubricant
properties (Chojnicka, Sala, de Kruif, and van de Velde (2009). Costas, Pera, Lopez, Mechetti,
and Castro (2012) noted that an increase of viscosity leads to reduction of gel deformation which
affects textural properties of the gels.

Table 4.3. Textural properties of LP/PE-RB capsules

RB concentration Hardness Springiness  Cohesiveness
Capsules
(g/100mL) (N) (mm) (ratio)
LP/PE 0 14.5940.75"  1.43+0.11°  0.63£0.01°
LP/PE-0.5RB 0.5 14.90+0.89°  1.29+0.19* 0.63+0.05°
LP/PE-1.0RB 1 11.49+1.18%°  0.99+0.02° 0.63+0.05°
LP/PE-2.0RB 2 8 61+1.74° 0.97+0.01° 0.58+0.01°

LP/PE = L. plantarum loaded in pectin capsules without rice bran extract (control); LP/PE-
0.5RB, LP/PE-1.0RB, and LP/PE-2.0RB = L. plantarum loaded in pectin capsules containing 0.5
g/100 mL, 1.0 g/100 mL, and 2.0 g/100 mL of the rice bran extract, respectively. “*“Means +
standard deviation with different letters within the same column are significantly different (P <
0.05).
4.4.4. Mor phology of L P/PE-RB capsules

Scanning electron micrographs of the external and internal structures of LP/PE-RB
capsules are shown in Figure 4.2. Cracks were observed on the surface of all LP-bead samples
(Figure 4.2a). In accordance with literature, this was presumably due to loss of water and

collapse of the gel matrix during sample drying (Badve, Sher, Korde, & Pawar, 2007; Jung,

Arnold, & Wicker, 2013). Further, it was reported that crosslinking fixatives and the base buffer
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using used in sample preparation could weaken the hydrated capsules integrity (Allan-Wojtas,
Truelstrup Hansen, & Paulson, 2008). In the present study, cells were covered with a thin matrix
and distributed under the surface (Figure 4.2b); there were no cells observed on the surface. The
results were similar to the microstructures recently revealed by Jimenez-Pranteda et al. (2012)
and Martin, Lara-Villoslada, Ruiz, and Morales (2013). In our study, it was evident that the
bacteria cells were randomly entrapped in the mesh-like network (indicated by white arrows), as
illustrated in Figure 4.2c. At higher concentrations of RB, a greater network was observed. This
could suggest that there were some interactions or overlaps between RB and the PE matrix. In
this regard, our results were in agreement with the study of Chitprasert et al. (2012). They found
that it was more difficult to find Lactobacillus reuteri entrapped in aluminum carboxymethy
cellulose capsules with added RB (AICMC-RB), than in capsules without RB. They suggested
that AICMC-RB consisted of a dense matrix of RB sheets and AICMC-entrapped RB interstices.
4.4.5. Survival of the cellsin L P/PE-RB beads under acidic and bile conditions

The viability of LP under acidified media (pH 3.0) is shown in Figure 4.3. The results
demonstrated that the cells in all samples exhibited good acid survivability after 2 h incubation,
which is supported by the work of Chotiko and Sathivel (2014). Regarding reduction of the
viable cells, viability of LP in all capsules, except LP/PE-0.5RB samples, had lower log
reduction than free cells (P < 0.05). After incubation, the free cells had 0.97+0.01 log CFU/g
reduction. The PE/PE-1.0RB sample had the least viable cell reduction (0.41+0.07 log CFU/g),
followed by LP/PE-2.0RB (0.48+0.05 log CFU/g), LP/PE (0.63+0.10 log CFU/g), and LP/PE-

0.5RB (1.05+0.09 log CFU/g). The greatest number of viable cells was found in LP/PE-2.0RB
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Figure 4.2. Scanning electron micrographs of LP/PE-RB capsules illustrating surface area of the capsules at low magnification (a), at
high magnification (b), and capsule cross sections (c). LP/PE = L. plantarum loaded in pectin capsules without rice bran extract
(control). LP/PE-0.5RB, LP/PE-1.0RB, and LP/PE-2.0RB = L. plantarum loaded in pectin capsules containing 0.5 g/100 mL, 1.0
g/100 mL, and 2.0g/100 mL of the rice bran extract, respectively.
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capsules (8.30+0.01 log CFU/g), which was not significantly different from the number of viable
cells in LP/PE-1.0RB (8.16+0.04 log CFU/g) (P < 0.05). This indicated that pectin could protect
the cell from acidic conditions and that sufficient concentrations of RB were able to enhance the

protection of the encapsulated cells.
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Figure 4.3. Viability of L. plantarum-loaded calcium pectinate-rice bran capsules before (L) and
after () incubating in acidified MRS at pH 3.0. Free cells = L. plantarum grown in MRS broth
for 16 h, LP/PE = L. plantarum loaded in pectin capsules without rice bran extract (control).
LP/PE-0.5RB, LP/PE-1.0RB, and LP/PE-2.0RB = L. plantarum loaded in pectin capsules
containing 0.5g/100mL, 1.0g/100mL, and 2.0g/100mL of the rice bran extract, respectively.
ABMeans + standard deviation with different letters within the same treatment are significantly
different (P < 0.05). “*“Means + standard deviation with different letters within different
treatments (before and after incubation) are significantly different (P < 0.05).

Protective effects of biopolymer encapsulation on probiotic survivability have been
studied by several researchers. Their results indicated that encapsulated bacteria exhibited a

significantly greater number of viable cells than free or non-encapsulated cells when were
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exposed to low pH conditions (Mokarram, Mortazavi, Najafi, & Shahidi, 2009; Nazzaro,
Fratianni, Coppola, Sada, & Orlando, 2009; Sabikhi, Babu, Thompkinson, & Kapila, 2010; Shi
et al., 2013). Recently, Gebara et al. (2013) reported that viability of L. acidophilus LA 5 after
exposure to simulated gastric juice (pH 3.0) was increased when the cell was encapsulated with 2
g/100 mL amidated pectin. de Vos, Faas, Spasojevic, and Sikkema (2010) suggested that the
formation of hydrogels acted as a physical barrier, delaying penetration of fluids into the cells.
Sandoval-Castilla et al. (2010) found that addition of pectin to alginate beads loaded with L.
casel slows the diffusion rate of growth inhibition compounds, such as acids and hydrogen
peroxide into the cells. In addition, our results suggest that at low pH viability of LP in the
capsules was enhanced by the presence of RB. This is possibly due to their structural stability.
Regarding the effect of mechanical strength (hardness) of the gel matrix on cell viability
under acidic conditions, our results contradict those reported by Zhao et al. (2015). They found
that viability of encapsulated cells in simulated gastric juice was positively correlated with
mechanical strength of the capsules, and that greater mechanical strength led to a more integrated
structure and a smaller mesh size of the network. In our study, the mechanical strength of PE
capsules containing RB was lower than the capsules without RB. However, they had more mesh-
like networks, as shown in Figure 4.2c. This could effectively help protect the cells from acid
penetration. This is in agreement with the results reported by Chitprasert et al. (2012) that the
addition of rice bran to carboxyl methyl cellulose beads provided a high density structure to the
encapsulating matrix, which contributed to high survival rates of probiotic bacteria. Lactobacilli
survive under acidic conditions when they can maintain a pH gradient between the medium and

their cytoplasm (Charalampopoulos, Pandiella, & Webb, 2003). The mesh matrix formed by RB

94



could increase the diffusion path length (Chitprasert et al., 2012), which possibly reduced the
diffusion rate of acid into the encapsulated cells.

To obtain a measure of bile tolerance both encapsulated LP and free cells were exposed
to media containing high oxgall concentration (1 g/100 mL). Oxgall functions as an emulsifier
and fat solubilizer, hydrolyzing plasma membranes of bacteria cells, resulting in cell damage
(Begley, Gahan, & Hill, 2005). In our study, encapsulated LP of all samples had higher cell
viability than the free cells (Figure 4.4). After 24-h incubation, the number of free cells was
reduced to 3.51+£0.01 log CFU/g (5.35+0.01 log CFU/g reduction). A greater number of viable
cells was observed for LP/PE capsules (5.80+0.15 log CFU/g) (P < 0.05). These cells had
undergone a reduction of 2.35+0.06 log CFU/g, indicating that a pectin matrix could protect LP
from bile effects. According to Cheewatanakornkool et al. (2012), pectins have the ability to
bind with bile salts, however their binding efficiency depends upon pectin sources. Many studies
have reported that encapsulation of probiotic bacteria in polysaccharide matrices, such as
alginate, pectin, or carrageenan successfully enhanced the survival of the bacteria during
exposure to 1-3% bile salt solutions (Rokka & Rantaméki, 2010; Sandoval-Castilla et al., 2010;
Shi et al., 2013).

RB also helped protect the survival of LP from bile salts. After incubation under the bile
condition, the number of viable cells in LP/PE capsules with RB was greater than either that of
capsules without RB or free cells (P < 0.05). LP/PE-1.0RB capsules had the most viable cells
(6.87+0.18 log CFU/g) after incubation, which was not significantly different from LP/PE-2.0RB
(6.80+0.01 log CFU/g) and LP/PR-0.5RB (6.71+0.09 log CFU/g). As viable cells in the tested
acid condition were reduced less than one log, approximately 10° CFU of LP/g of PE-RB

capsules could survive for colonization. Compared to LP/PE-RB capsules, the greater
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mechanical strength of LP/PE capsules did not contribute to increase of cell viability. According
to Zhao et al. (2015), survivability of encapsuleated cells in bile conditions were not increased
when mechanical strength of matrix was higher. Similar to the acid tolerant study, RB possibly
provided the capsules with higher networks and diffusion path lengths, reducing penetration of

bile solution and consequently decreasing cell losses.
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Figure 4.4. Viability of L. plantarum-loaded calcium pectinate-rice bran capsules before (L) and
after (EJ) incubating in MRS containing 1 g/100 mL oxgall. Free cells = L. plantarum grown in
MRS broth for 16 h, LP/PE = L. plantarum loaded in pectin capsules without rice bran (control).
LP/PE-0.5RB, LP/PE-1.0RB, and LP/PE-2.0RB = L. plantarum loaded in pectin capsules
containing 0.5g/100mL, 1.0g/100mL, and 2.0g/100mL rice bran extract, respectively. ~Means
+ standard deviation with different letters within the same treatment are significantly different (P
< 0.05). *“Means + standard deviation with different letters within different treatments (before
and after incubation) are significantly different (P < 0.05).
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4.5. Conclusion

The use of pectin and rice bran extract to obtain capsules loaded with L. plantarum
NRRL-B4496 could improve encapsulation efficiency and sphericity of the capsules. Addition of
2 g/100 mL RB yielded the highest encapsulation efficiency and highest sphericity, however it
reduced hardness and springiness of the capsules. The rice bran extract helped create a mesh-like
network in the calcium pectinate-based capsules, contributing to enhancement of cell viability
after exposure to acid and bile conditions. In summary, the pectin-rice bran extract capsules
could be used as a new vehicle for probiotic bacteria and incorporated into some food products
such as yogurt, cereal bars, or fruit juices.

4.6. References

Achilleos, E. C., Georgiou, G., & Hatzikiriakos, S. G. (2002). Role of processing aids in the
extrusion of molten polymers. Journal of Vinyl and Additive Technology, 8(1), 7-24. doi:
10.1002/vnl.10340

Allan-Woijtas, P., Truelstrup Hansen, L., & Paulson, A. T. (2008). Microstructural studies of
probiotic bacteria-loaded alginate microcapsules using standard electron microscopy
techniques and anhydrous fixation. LWT - Food Science and Technology, 41(1), 101-108.
doi: http://dx.doi.org/10.1016/j.lwt.2007.02.003

Annan, N. T., Borza, A. D., & Hansen, L. T. (2008). Encapsulation in alginate-coated gelatin
microspheres improves survival of the probiotic Bifidobacterium adolescentis 15703T
during exposure to simulated gastro-intestinal conditions. Food Research International,
41(2), 184-193. doi: http://dx.doi.org/10.1016/j.foodres.2007.11.001

Apostolidis, E., Kwon, Y. I., Shinde, R., Ghaedian, R., & Shetty, K. (2011). Inhibition of
Helicobacter pylori by Fermented Milk and Soymilk Using Select Lactic Acid Bacteria
and Link to Enrichment of Lactic Acid and Phenolic Content. Food Biotechnology, 25(1),
58-76. doi: 10.1080/08905436.2011.547118

Badve, S. S., Sher, P., Korde, A., & Pawar, A. P. (2007). Development of hollow/porous calcium
pectinate beads for floating-pulsatile drug delivery. European Journal of Pharmaceutics
and Biopharmaceutics, 65(1), 85-93. doi: http://dx.doi.org/10.1016/j.ejpb.2006.07.010

Cabrera, J. C., Cambier, P., & Cutsem, P. V. (2011). Drug encapsulation in pectin hydrogel

beads-A systematic study of stimulated digestion media. International Journal of
Pharmacy and Pharmaceutical Sciences, 3(5), 292-299.

97



Chan, E.-S., Wong, S.-L., Lee, P.-P., Lee, J.-S., Ti, T. B., Zhang, Z., . . . Yim, Z.-H. (2011).
Effects of starch filler on the physical properties of lyophilized calcium—alginate beads
and the viability of encapsulated cells. Carbohydrate Polymers, 83(1), 225-232. doi:
http://dx.doi.org/10.1016/j.carbpol.2010.07.044

Charalampopoulos, D., Pandiella, S. S., & Webb, C. (2003). Evaluation of the effect of malt,
wheat and barley extracts on the viability of potentially probiotic lactic acid bacteria
under acidic conditions. International Journal of Food Microbiology, 82(2), 133-141.
doi: 10.1016/s0168-1605(02)00248-9

Chitprasert, P., Sudsai, P., & Rodklongtan, A. (2012). Aluminum carboxymethyl cellulose-rice
bran microcapsules: Enhancing survival of Lactobacillus reuteri KUB-ACS.
Carbohydrate Polymers, 90(1), 78-86. doi: http://dx.doi.org/10.1016/j.carbpol.2012.04.065

Chojnicka, A., Sala, G., de Kruif, C. G., & van de Velde, F. (2009). The interactions between oil
droplets and gel matrix affect the lubrication properties of sheared emulsion-filled gels.
Food Hydrocolloids, 23(3), 1038-1046. doi:
http://dx.doi.org/10.1016/j.foodhyd.2008.08.008

Chotiko, A., & Sathivel, S. (2014). Effects of enzymatically-extracted purple rice bran fiber as a
protectant of L. plantarum NRRL B-4496 during freezing, freeze drying, and storage.
LWT - Food Science and Technology, 59(1), 59-64. doi:
http://dx.doi.org/10.1016/j.Iwt.2014.05.056

Corbo, M. R., Bevilacqua, A., Gallo, M., Speranza, B., & Sinigaglia, M. (2013). Immobilization
and microencapsulation of Lactobacillus plantarum: Performances and in vivo
applications. Innovative Food Science & Emerging Technologies, 18(0), 196-201. doi:
http://dx.doi.org/10.1016/j.ifset.2012.12.004

Cortes-Zavaleta, O., Lopez-Malo, A., Hernandez-Mendoza, A., & Garcia, H. S. (2014).
Antifungal activity of lactobacilli and its relationship with 3-phenyllactic acid production.
International Journal of Food Microbiology, 173, 30-35. doi:
http://dx.doi.org/10.1016/j.ijffoodmicro.2013.12.016

Costas, L., Pera, L., Lopez, A., Mechetti, M., & Castro, G. (2012). Controlled Release of
Sulfasalazine Release from “Smart” Pectin Gel Microspheres under Physiological
Simulated Fluids. Applied Biochemistry and Biotechnology, 167(5), 1396-1407. doi:
10.1007/s12010-012-9615-x

Das, D., & Goyal, A. (2015). Antioxidant activity and y-aminobutyric acid (GABA) producing
ability of probiotic Lactobacillus plantarum DMS5 isolated from Marcha of Sikkim. LWT -
Food Science and Technology, 61(1), 263-268. doi:
http://dx.doi.org/10.1016/j.lwt.2014.11.013

de Castro-Cislaghi, F. P., Silva, C. D. R. E., Fritzen-Freire, C. B., Lorenz, J. G., & Sant’Anna, E.
S. (2012). Bifidobacterium Bb-12 microencapsulated by spray drying with whey:
Survival under simulated gastrointestinal conditions, tolerance to NaCl, and viability

98



during storage. Journal of Food Engineering, 113(2), 186-193. doi:
http://dx.doi.org/10.1016/j.jfoodeng.2012.06.006

de Vos, P., Faas, M. M., Spasojevic, M., & Sikkema, J. (2010). Encapsulation for preservation of
functionality and targeted delivery of bioactive food components. International Dairy
Journal, 20(4), 292-302. doi: http://dx.doi.org/10.1016/j.idairyj.2009.11.008

Ding, W. K., & Shah, N. P. (2007). Acid, bile, and heat tolerance of free and microencapsulated
probiotic bacteria. Journal of Food Science, 72(9), M446-M450. doi: 10.1111/j.1750-
3841.2007.00565.x

Fang, Y., Al-Assaf, S., Phillips, G. O., Nishinari, K., Funami, T., & Williams, P. A. (2008).
Binding behavior of calcium to polyuronates: Comparison of pectin with alginate.
Carbohydrate Polymers, 72(2), 334-341. doi:
http://dx.doi.org/10.1016/j.carbpol.2007.08.021

Fijan, S. (2014). Microorganisms with Claimed Probiotic Properties: An Overview of Recent
Literature. International Journal of Environmental Research and Public Health, 11(5),
4745-4767. doi: 10.3390/ijerph110504745

Floch, M. H., Walker, W. A., Guandalini, S., Hibberd, P., Gorbach, S., Surawicz, C., . ..
Dieleman, L. A. (2008). Recommendations for Probiotic Use—2008. Journal of Clinical
Gastroenterology, 42, S104-S108 110.1097/MCG.1090b1013e31816b31903f.

Gebara, C., Chaves, K. S., Ribeiro, M. C. E., Souza, F. N., Grosso, C. R. F., & Gigante, M. L.
(2013). Viability of Lactobacillus acidophilus La5 in pectin—whey protein microparticles
during exposure to simulated gastrointestinal conditions. Food Research International,
51(2), 872-878. doi: http://dx.doi.org/10.1016/j.foodres.2013.02.008

Gerez, C. L., Font de Valdez, G., Gigante, M. L., & Grosso, C. R. F. (2012). Whey protein
coating bead improves the survival of the probiotic Lactobacillus rhamnosus CRL 1505
to low pH. Lettersin Applied Microbiology, 54(6), 552-556. doi: 10.1111/j.1472-
765X.2012.03247.x

Hammond, N. A. (2000). US Patent No. 6,054,149. Woodland, CA: US.

Haroun, B. M., Refaat, B. M., El-Waseif, A. A., EI-Menoufy, H. A., & Amin, H. A. (2013).
Hypolipidemic activity of the probiotic Lactobacillus plantarum NRRL B-4496 and their
prebiotic exopolysaccharide in vitro and in vivo. Journal of Applied Sciences Research,
9(1), 1015-1020.

Heidebach, T., Forst, P., & Kulozik, U. (2009). Microencapsulation of probiotic cells by means
of rennet-gelation of milk proteins. Food Hydrocolloids, 23(7), 1670-1677. doi:
http://dx.doi.org/10.1016/j.foodhyd.2009.01.006

Hernandez-Rodriguez, L., Lobato-Calleros, C., Pimentel-Gonzalez, D. J., & Vernon-Carter, E. J.
(2014). Lactobacillus plantarum protection by entrapment in whey protein isolate: k-

99



carrageenan complex coacervates. Food Hydrocolloids, 36(0), 181-188. doi:
http://dx.doi.org/10.1016/j.foodhyd.2013.09.018

Hugq, T., Khan, A., Khan, R. A., Riedl, B., & Lacroix, M. (2012). Encapsulation of probiotic
bacteria in biopolymeric system. Critical Reviewsin Food Science and Nutrition, 53(9),
909-916. doi: 10.1080/10408398.2011.573152

Jimenez-Pranteda, M. L., Poncelet, D., Nader-Macias, M. E., Arcos, A., Aguilera, M.,
Monteoliva-Sanchez, M., & Ramos-Cormenzana, A. (2012). Stability of lactobacilli
encapsulated in various microbial polymers. Journal of Bioscience and Bioengineering,
113(2), 179-184. doi: http://dx.doi.org/10.1016/j.jbiosc.2011.10.010

Jung, J., Arnold, R. D., & Wicker, L. (2013). Pectin and charge modified pectin hydrogel beads
as a colon-targeted drug delivery carrier. Colloids and Surfaces B: Biointerfaces, 104(0),
116-121. doi: http://dx.doi.org/10.1016/j.colsurfb.2012.11.042

Kailasapathy, K., & Chin, J. (2000). Survival and therapeutic potential of probiotic organisms
with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol Cell Biol,
78(1), 80-88.

Krasaekoopt, W., Bhandari, B., & Deeth, H. (2003). Evaluation of encapsulation techniques of
probiotics for yoghurt. International Dairy Journal, 13(1), 3-13. doi:
http://dx.doi.org/10.1016/50958-6946(02)00155-3

Lee, B. B., Ravindra, P., & Chan, E. S. (2013). Size and shape of calcium aginate beads
produced by extrusion dripping. Chemical Engineering & Technology, 36(10), 1627-
1642. doi: 10.1002/ceat.201300230

Lee, J.-S., Kim, E.-J., Chung, D., & Lee, H. G. (2009). Characteristics and antioxidant activity of
catechin-loaded calcium pectinate gel beads prepared by internal gelation. Colloids and
Surfaces B: Biointerfaces, 74(1), 17-22. doi:
http://dx.doi.org/10.1016/j.colsurfb.2009.06.018

Liserre, A. M., Re, M. 1., & Franco, B. D. G. M. (2007). Microencapsulation of Bifidobacterium
animalis subsp. lactis in modified alginate-chitosan beads and evaluation of survival in
simulated gastrointestinal conditions. Food Biotechnology, 21(1), 1-16. doi:
10.1080/08905430701191064

Liu, H., Xu, X. M., & Guo, S. D. (2008). Comparison of full-fat and low-fat cheese analogues
with or without pectin gel through microstructure, texture, rheology, thermal and sensory
analysis. International Journal of Food Science & Technology, 43(9), 1581-1592. doi:
10.1111/.1365-2621.2007.01616.x

Martin, M. J., Lara-Villoslada, F., Ruiz, M. A., & Morales, M. E. (2013). Effect of unmodified
starch on viability of alginate-encapsulated Lactobacillus fermentum CECT5716. LWT -
Food Science and Technology, 53(2), 480-486. doi:
http://dx.doi.org/10.1016/j.lwt.2013.03.019

100



Maxwell, E. G., Belshaw, N. J., Waldron, K. W., & Morris, V. J. (2012). Pectin — An emerging
new bioactive food polysaccharide. Trendsin Food Science & Technology, 24(2), 64-73.
doi: http://dx.doi.org/10.1016/j.tifs.2011.11.002

Mokarram, R. R., Mortazavi, S. A., Najafi, M. B. H., & Shahidi, F. (2009). The influence of
multi stage alginate coating on survivability of potential probiotic bacteria in simulated
gastric and intestinal juice. Food Research International, 42(8), 1040-1045. doi:
http://dx.doi.org/10.1016/j.foodres.2009.04.023

Nazzaro, F., Fratianni, F., Coppola, R., Sada, A., & Orlando, P. (2009). Fermentative ability of
alginate-prebiotic encapsulated Lactobacillus acidophilus and survival under simulated
gastrointestinal conditions. Journal of Functional Foods, 1(3), 319-323. doi:
http://dx.doi.org/10.1016/j.jff.2009.02.001

Paredes, M. D. C., Rao, M. A., & Bourne, M. C. (1989). Rheological characterization of salad
dressings 2: effect of storage. Journal of Texture Studies, 20(2), 235-250. doi:
10.1111/5.1745-4603.1989.tb00436.x

Pedreschi, R., Campos, D., Noratto, G., Chirinos, R., & Cisneros-Zevallos, L. (2003). Andean
yacon root (Smallanthus sonchifolius Poepp. Endl) fructooligosaccharides as a potential
novel source of prebiotics. Journal of Agricultural and Food Chemistry, 51(18), 5278-
5284. doi: 10.1021/jf0344744

Pereira, R., Matia-Merino, L., Jones, V., & Singh, H. (2006). Influence of fat on the perceived
texture of set acid milk gels: a sensory perspective. Food Hydrocolloids, 20(2-3), 305-
313. doi: http://dx.doi.org/10.1016/j.foodhyd.2005.01.009

Ratna, S. M., Chauhan, P., Dixit, K., Babu, S., & Jamil, K. (2009). Probiotics as complementary
therapy for hypercholesterolemia. Biology & Medicine, 1(4), 1-13.

Sabikhi, L., Babu, R., Thompkinson, D. K., & Kapila, S. (2010). Resistance of
microencapsulated Lactobacillus acidophilus LA to processing treatments and simulated
gut conditions. Food and Bioprocess Technology, 3(4), 586-593. doi: 10.1007/s11947-
008-0135-1

Sandoval-Castilla, O., Lobato-Calleros, C., Garcia-Galindo, H. S., Alvarez-Ramirez, J., &
Vernon-Carter, E. J. (2010). Textural properties of alginate—pectin beads and
survivability of entrapped Lb. casei in simulated gastrointestinal conditions and in
yoghurt. Food Research International, 43(1), 111-117. doi:
http://dx.doi.org/10.1016/j.foodres.2009.09.010

Sathyabama, S., Ranjith, K. M., Bruntha, D. P., Vijayabharathi, R., & Brindha, P. V. (2014). Co-
encapsulation of probiotics with prebiotics on alginate matrix and its effect on viability in
simulated gastric environment. LWT - Food Science and Technology, 57(1), 419-425.
doi: http://dx.doi.org/10.1016/j.lwt.2013.12.024

101



Saxelin, M., Tynkkynen, S., Mattila-Sandholm, T., & de Vos, W. M. (2005). Probiotic and other
functional microbes: from markets to mechanisms. Current Opinion in Biotechnology,
16(2), 204-211. doi: http://dx.doi.org/10.1016/j.copbio.2005.02.003

Shi, L. E., Li, Z. H,, Li, D. T., Xu, M., Chen, H. Y., Zhang, Z. L., & Tang, Z. X. (2013).
Encapsulation of probiotic Lactobacillus bulgaricus in alginate—milk microspheres and
evaluation of the survival in simulated gastrointestinal conditions. Journal of Food
Engineering, 117(1), 99-104. doi: http://dx.doi.org/10.1016/j.jfoodeng.2013.02.012

Upadhyay, A. (2014). Investigating the potential of plant-derived antimicrobials and probiotic
bacteria for controlling Listeria monocytogenes. Doctoral dissertation, University of
Connecticut - Storrs.

Voo, W.-P., Ravindra, P., Tey, B.-T., & Chan, E.-S. (2011). Comparison of alginate and pectin
based beads for production of poultry probiotic cells. Journal of Bioscience and
Bioengineering, 111(3), 294-299. doi: http://dx.doi.org/10.1016/j.jbiosc.2010.11.010

White, R. J., Budarin, V. L., & Clark, J. H. (2010). Pectin-derived porous materials. Chemistry —
A European Journal, 16(4), 1326-1335. doi: 10.1002/chem.200901879

Wicker, L., Kim, Y., Kim, M.-J., Thirkield, B., Lin, Z., & Jung, J. (2014). Pectin as a bioactive
polysaccharide — Extracting tailored function from less. Food Hydrocolloids, 42, Part
2(0), 251-259. doi: http://dx.doi.org/10.1016/j.foodhyd.2014.01.002

Woo, J. W., Roh, H. J., Park, H. D., Ji, C. L., Lee, Y. B., & Kim, S. B. (2007). Sphericity
optimization of calcium alginate gel beads and the effects of processing conditions on
their physical properties Food Sci. Biotechnal., 16, 715-721.

Zhao, M., Qu, F., Cai, S., Fang, Y., Nishinari, K., Phillips, G., & Jiang, F. (2015).
Microencapsulation of Lactobacillus acidophilus CGMCC1.2686: correlation between
bacteria survivability and physical properties of microcapsules. Food Biophysics, 10(3),
292-299. doi: 10.1007/s11483-014-9389-5

102



CHAPTER 5DOUBLE ENCAPSULATION OF L. PLANTARUM WITH
PROTECTIVE AGENTSIN PECTIN-RICE BRAN EXTRACT CAPSULES
WITH WHEY PROTEIN ISOLATE COATING TO IMPROVE CELL
VIABLITY AFTER FREEZE DRYING AND DURING SIMULATED
GASTROINTESTINAL CONDITIONS

5.1. Abstract

Three protective agents, maltrodextrin, wheat dextrin soluble fiber, and hi-maize starch
were incorporated into pectin-rice bran capsules loaded with Lactobacillus plantarum prepared
by ionotropic gelation. The capsules were coated with and without whey protein isolate and then
freeze dried. The viability of the encapsulated cells in the freeze dried capsules was evaluated
after freeze drying and at simulated gastrointestinal conditions. All uncoated and coated pectin-
rice bran capsules yielded high encapsulation efficiency (> 95%). The whey protein isolate
coating significantly enhanced viability of the encapsulated cells after the freeze drying. The
freeze dried capsules with hi-maize starch (FHMC) had the highest cell viability, 8.63+0.01 and
5.63+£0.02 log CFU/g for the coated and uncoated capsules, respectively. In simulated
gastrointestinal conditions, only 0.89 and 2.12 log cycles was reduced when the encapsulated
cells of FHMC were exposed to fed state with a copious meal (at pH 3.0, followed by pH 7.0)
and with a standard meal (at pH 2.5, followed by pH 6.5) condition, respectively. Due to the
effect of pH 1.8, low number of viable cells was recovered from FHMC (3.27+0.13 log CFU/g)
after incubating in a fasted state without meal, while there was no survival cells found in other
treatments. The study demonstrated that the freeze dried pectin-rice bran capsules containing hi-
maize starch with whey protein isolate coating effectively improved viability of L. plantarum.

Keywords. probiotics, encapsulation, freeze drying, pectin, whey protein isolate

This chapter previously submitted to a peer reviewed publication as Arranee Chotiko and
Subramaniam Sathivel, Double encapsulation of L. plantarum with protective agents in pectin-
rice bran extract capsules with whey protein isolate coating to improve cell viability after freeze
drying and during simulated gastrointestinal conditions.
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5.2. Introduction

Probiotics have been well known for their health benefits such as reducing pathogenic
bacteria colonization, alleviating diarrhea, reducing intestinal inflammation, lowering blood
cholesterol, and for potentially having anti-colon cancer activity (Ratna Sudha, Chauhan, Dixit,
Babu, & Jamil, 2009; Saxelin, Tynkkynen, Mattila-Sandholm, & de Vos, 2005). They have been
incorporated into many foods such as yogurt, cheese, and fruit and vegetable juices (Ranadheera,
Baines, & Adams, 2010; Rivera-Espinoza & Gallardo-Navarro, 2010). For beneficial health
effects, the number of live probiotic bacteria in food products is recommended to be at least 10°-
107 cfu/g (Floch et al., 2008). However, that an effective number of live probiotic bacterial food
products is dependent upon the number of probiotics decreased during formulation, down-stream
processing, and storage as well as during passage through the gastrointestinal tract (Saarela,
Virkajarvi, Nohynek, Vaari, & Matto, 2006).

Encapsulation technology can help protect probiotics from the undesired conditions and
function as a vehicle, to deliver them to the intestine with sufficient number and viability to exert
their benefits. Encapsulation is a process of forming a continuous layer entrapping a whole
compound within a matrix core (Zuidam & Shimoni, 2010). According to Anal and Singh
(2007), probiotics can be encapsulated by various techniques such as spray drying, freeze drying,
emulsion, and extrusion. These various techniques may not have the same efficacy, for example,
it has been reported that the probiotics encapsulated by drying processes were released when
applied to food products, resulting in loss of protection in unfavorable environments such as
passage through gastrointestinal tracts. On the other hand, the bead matrix in which probiotics
were entrapped or immobilized by emulsion or extrusion techniques provided protection against

the conditions (Krasaekoopt, Bhandari, and Deeth (2003).
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Pectin is a soluble fiber, which is resistant to gastrointestinal conditions and can be
degraded by microorganisms. It is considered as highly fermentable substances for gut
microflora. Fermentation of pectin increased in the fecal bulk and exhibited bifidogenic and
prebiotic properties (Nazzaro, Fratianni, Orlando, & Coppola, 2012). A number of
Bifidobacterium sp. and Lactobacillus sp. derived from fecal bacteria of ulcerative colitis
patients and fermented in pectin fraction media was higher than control as well as acetate levels
(Vigsnees, Holck, Meyer, & Licht, 2011). Use of pectin hydrogels as a matrix for probiotic
delivery has been reported to improve cell viability at gastrointestinal conditions. It forms three
dimensional rigid and water insoluble hydrogels by calcium-induced ionotropic gelation (Lee,
Kim, Chung, & Lee, 2009). Pectin microparticles loaded with Lactobacillus acidophilus
remained intact in simulated gastric juice at pH 1.2 and 3.0 for 120 min and in simulated
intestinal juice at pH 7.0 for 300 min. After exposure to simulated gastric juice at pH 3.0 and
simulated intestinal juice at pH 7.0, viability reduction of pectin encapsulated cells was lower
than the non-encapsulated (Gebara et al., 2013). Similarly, viability of Lactobacillus rhamnosus
under a gastric condition at pH 2 was improved when the cell was encapsulated with pectin
coated with whey protein isolate (Gerez, Font de Valdez, Gigante, & Grosso, 2012). In our
previous study, we found that pectin with rice bran extract capsules could enhance the viability
of Lactobacillus plantarum when they were incubated under acid (pH 3.0) and bile (1.0% oxgall)
conditions for 2 h and 24 h, respectively.

For long-term storage, probiotics are usually preserved by freeze drying. Although it is a
gentle method, losses of cell viability occur due to freeze damage. Protective agents are required
to reduce cell damage during freeze drying and to avoid intracellular ice formation by raising the

glass-phase transition temperature (Meng, Stanton, Fitzgerald, Daly, & Ross, 2008). Sugars such
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as sucrose, lactose, trehalose, and maltodextrin and some prebiotics were used to increase cell
viability of probiotic bacteria after freeze drying (Reddy, Awasthi, Madhu, & Prapulla, 2009;
Semyonov et al., 2010). Wheat dextrin was reported to protect viability of L. rhamnosus during
freeze drying and maintain their viability during storage for 4 weeks at 37 °C (Saarela et al.,
2006). Encapsulation of Lactobacillus casei and Bifidobacterium lactis in alginate-resistant
starch (high amylose corn starch) beads had a high number of cells survive during freezing. The
viability of the encapsulated cells was higher by 30%, compared to non-encapsulated cells during
storage for 180 days in ice-cream (-20 °C) (Homayouni, Azizi, Ehsani, Yarmand, & Razavi,
2008).

Whey protein isolate can be used as a coating material for various hydrocolloid matrices
and as a wall material for spray drying or freeze drying of probiotics to improve probiotic
viability. Gbassi, Vandamme, Ennahar, and Marchioni (2009) reported that WPI coated alginate
beads of L. plantarum had better cell survival than uncoated beads after exposure to simulated
gastric and intestinal fluids. L. casei encapsulated in alginate beads coated with WPI had high
cell viability after incubating in simulated gastrointestinal conditions for 24 h (Smilkov et al.,
2014). Encapsulation of spray-freeze dried and freeze dried L. plantarum in WPI was reported to
protect the cells in simulated gastrointestinal fluids up to 4 h (Dolly, Anishaparvin, Joseph, &
Anandharamakrishnan, 2011). Viability of L. plantarum mixed with a mixture of sodium
alginate and WPI after freeze drying was 9-12% higher than that obtained from the spray drying
process (Rajam, Karthik, Parthasarathi, Joseph, & Anandharamakrishnan, 2012).

The objectives of this study were to develop freeze-dried pectin-rice bran capsules as a

delivery vehicle for L. plantarum and evaluate the effects of protective agents and whey protein
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isolate coating on the cell viability after freeze drying and during exposure to simulated
gastrointestinal conditions.
5.3. Materials and methods
5.3.1. Céll culture preparation

L. plantarum NRRL B-4496 (LP) isolated from sauerkraut, was kindly provided by ARS
Culture Collection (Washington DC, US). The frozen stock culture was reactivated twice in
deMan Rogosa Sharpe (MRS) broth (Neogen Corporation, Lansing, MI). Twenty five mL of the
strain was subsequently inoculated in MRS broth (500 mL) and incubated at 37 °C for 16 h to
reach stationary phase. Cell pellets were harvested by centrifugation at 10,000 x g for 10 min at 4
°C (Beckman J2-HC, Beckman Coulter, Inc., Brea, CA). The pellets were washed three times
and suspended in sterile distilled water to obtain concentrated LP (~10° CFU/ml). The
concentrated LP was then mixed with protective agents (20 g/100 mL) including maltodextrin
(MD) (Dextrose Equivalent of 9-13, NOW Foods Company, Bloomingdale, IL), wheat dextrin
soluble fiber (WF) (Nutriose®FMO06, Ingredion Incorporated, Westchester, IL), and hi-maize
starch (HM) (Ingredion Incorporated, Westchester, IL) to obtain concentrated LP with protective
agents, LP+MD, LP+WF, and LP+HM, respectively. In order to obtain LP+HM, HM was
dissolved in distilled water, autoclaved at 121 °C for 15 min and cooled in a refrigerator
overnight. The concentrated LP was then centrifuged and re-suspended in the HM solution.
5.3.2. Encapsulation of L. plantarum in pectin-rice bran capsules

Capsule preparation was performed as described by Lee et al. (2009) with some
modifications. First, pectin-rice bran (PE-RB) gel solutions were prepared by mixing low-
methoxyl pectin (TIC PRETESTED® pectin LM 32 powder), that was provided by TIC Gums

Inc. (Belcamp, MD), and rice bran extract, provided by Ribus Inc. (St. Louis, MO), for 1 hour at
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room temperature. Concentrated LP with a protective agent, (LP+MD, LP+WF, or LP+HM) was
added separately into gel solutions at the ratio of 1:4 and stirred at room temperature for 30 min.
Concentrated LP with no protective agents (LP-NP) was used to prepare control capsules. Each
gel solution containing LP had a final concentration of 2 g/100 mL PE and 2 g/100 mL RB.
These solutions were extruded through a 21G needle by a syringe pump (Pump 11, Harvard
Apparatus, Holliston, MA) at 1.2 mL/min and dropped into a crosslink solution, 4 g/100 mL of
calcium chloride (Fisher Scientific Inc., Pittsburgh, PA) with and without whey protein isolate
(WPI) (BiPRO®, Davisco Food International, Inc., Eden Prairie, MN) at a concentration of 8
g/100 mL. The crosslink solution with WPI was adjusted to pH 4.0 and stirred for 1 h before use.
The PE-RB loaded with LP plus protective agent capsules were immediately formed and
continuously hardened in the crosslink solution for 30 min. The wet capsules, PE-RB capsules
loaded LP with MD (MDC), WF (WFC), HM (HMC), and no protective agents (NPC) were
collected, washed, and cryogenically frozen by liquid nitrogen (Air Liquide Co., Houston, TX)
until the temperature of capsules reached -85 °C. They were subsequently placed into a freeze
dryer (Heto PowerDry LL3000, Thermo Scientific, Laurel, MD) for 40 h. The freeze-dried MDC
(FMDC), freeze dried WFC (FWFC), freeze dried HMC (FHMC), and freeze-dried NPC (FNPC)
were then stored in glass bottles in a refrigerator.
5.3.3. Enumeration of L. plantarum viable cellsin pectin-rice bran beads

To determine the number of the cells in the wet and in the freeze dried capsules, the
encapsulated LP was released as the method described by Sathyabama, Ranjith kumar, Bruntha
devi, Vijayabharathi, and Brindha priyadharisini (2014) with some modifications. One gram of
the wet and/or lyophilized capsules was added to 99 mL of 0.1 M phosphate buffer (pH 7.2) and

stirred at 250 rpm in a shaker (Lab line incubator shaker model 3525, Fisher Scientific Inc.,
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Pittsburgh, PA) for 30 min. The colony forming units (CFU/g) was examined by the pour-plate
method on MRS agar containing 0.6 g/100 mL of CaCOs (Fisher Scientific Inc., Pittsburgh, PA).
The plate was incubated at 37 °C for 24-48 h.
5.3.4. Encapsulation efficiency

The encapsulation efficiency represented a combined measurement of the efficacy of
entrapment and survival of viable cells during the microencapsulation procedure, calculated

according to Eq. 5.1 (Gebara et al., 2013)
N
EE (%) =—x 100 (5.1)
No

where EE is the encapsulation efficiency, expressed in percentage; N is the number of the cells
released from the wet beads (log CFU/g); and Ny is the number of the cells added to the gel
solution (log CFU/g).

5.3.5. Sizes, shapes, and bulk density of freeze-dried pectin-rice bran loaded with LP
capsules

The diameter of thirty capsules was measured under a stereomicroscope (Zeiss SteREO
Lumar.V12, Thornwood, NY) using image analyzer software. The capsule shape was quantified

by the sphericity factor (SF), shown in Eq. 5.2 (Chan et al., 2011)

SF = dimax - dmin (5.2)

dimax + dmin

where dp.x is the largest diameter and dy,i, 1s the smallest diameter perpendicular to dpax.
Determination of bulk density was conducted according to the method described by

Sandoval-Castilla, Lobato-Calleros, Garcia-Galindo, Alvarez-Ramirez, and Vernon-Carter

(2010). One gram of freeze-dried capsules was weighed and poured into a 25-mL graduate

cylinder, from which the bulk volume was determined. The bulk density was calculated by

dividing the mass by the bulk volume.
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5.3.6. Scanning electron micrographs of lyophilized pectin-rice bran loaded with L.
plantarum capsules

The freeze-dried capsules were cross sectioned and mounted on aluminum SEM stubs.
The samples were coated with gold:palladium (60:40) in an Edwards S150 sputter coater. The
capsule morphology was observed under a scanning electron microscope (JSM-6610LV, JEOL
Ltd. Japan).

5.3.7. Viability of L. plantarum in freeze-dried pectin-rice bran capsules during exposure to
simulated gastrointestinal fluids

The assay was carried out as described by Gbassi, Vandamme, Yolou, and Marchioni
(2011) and Sathyabama et al. (2014). Phosphate buffer saline solution used as simulated
gastrointestinal fluids (SGIF) consisted of 8g/L. of NaCl (Fisher Scientific Inc., Pittsburgh, PA),
0.2g/L of Na,HPO, (Fisher Scientific Inc., Pittsburgh, PA), and 1.44 g/L of KH,PO4 (Sigma-
Aldrich, St. Louis, MO). The pH of the buffer was adjusted according to the gastrointestinal tract
conditions shown in Table 5.1.

Table 5.1. In vitro experimental conditions of gastrointestinal tract

Parameter Stomach Intestine
Incubation time 2h 4h
pH

e copious meal 3.0 7.0

e standard meal 2.5 6.5

e without meal 1.8 6.0

The freeze dried capsules (0.5 g) were added into SGIFs (50 mL) at pHs of 1.8, 2.5, and
3.0 for 2 hours (stomach incubation time) at 37 °C in an orbital shaker with 100-rpm agitation
then removed from the acid conditions and sequentially placed into SGIFs (50mL) at pHs of 6.0,
6.5, and 7.0, respectively. The samples were incubated at 37 °C for additional 4 h (intestinal
incubation time) with 100-rpm agitation. At the end of incubation period, the capsules were

collected, disintegrated, and enumerated for viable cells.
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5.3.8. Statistical analysis

All values are means and standard deviations of two determinations. Mean values from
statistical analysis were determined with the SAS (Statistical Analysis System) software (version
9.4) (SAS Institute Inc., Cary, NC, USA). ANOVA and Tukey’s studentized range test were
carried out to determine differences among treatments at the significant level of P < 0.05.
5.4. Results and discussion
5.4.1. Encapsulation efficiency

As shown in Figure 5.1, all treatments had excellent encapsulation efficiency (EE),
greater than 95%. EEs of the samples were not significantly different. The large EEs were
attributed to the ability of pectin to entrap cells. This ability is due to the minuscule pore sizes of
pectin, which are in a range from 2 to 50 nm (Gbassi et al., 2011; White, Budarin, & Clark,
2010). During PE-RB capsule formation, only water molecules and particles smaller than the
pectin pore sizes were able to diffuse from the capsules, while the bacteria cells which are
considerable larger than pore sizes of pectin (0.2 pm in diameter and 2-8 pm in length) were
entrapped inside of the capsules. Addition of rice bran extract possibly helped reduce cell losses
during hardening in the crosslink solution. In our previous study, it was shown that addition of
rice bran extract improved EE of pectin capsules loaded with LP (Chotiko & Sathivel, 2016).
The result also indicated that adding of protectants and coating with WPI had no effect on EE.
The EE depends on encapsulation techniques, wall materials used, and microorganisms. High EE
(99.9%) was observed in encapsulation of Lactobacilli and Bifidobacterium bifidum in alginate
beads prepared by extrusion-ionotropic gelation. Coating the beads with chitosan, alginate, and
combined poly-L-lysine with alginate was reported to have no significant difference in EE,

compared with the uncoated beads (Krasaeckoopt, Bhandari, & Deeth, 2004).
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Figure 5.1. Encapsulation efficiency of pectin-rice bran capsules loaded with L. plantarum
uncoated (L) and coated () with whey protein isolate; NPC, MDC, WFC, and HMC were
pectin-rice bran capsules loaded with L. plantarum with: no protectants, maltodextrin, wheat
dextrin soluble fiber, and hi-maize resistance starch, respectively. “Means + standard deviation
with same letters within the same treatment are not significantly different (P < 0.05). “Means +
standard deviation with same letters within a different treatment between uncoated and coated
capsules with the same protective agents are not significantly different (P < 0.05).

The EEs obtained in our study were higher than those reported in other studies. For
example, Gebara et al. (2013) found that microencapsulation of L. acidophilus by emulsion-
ionotropic gelation using pectin as a wall material and coated with WPI had 84.35% EE. Similar
to our results, the researcher reported that EE of the coated and uncoated samples were not
significantly different. Trabelsi et al. (2013) mentioned that EE of alginate beads coated with
chitosan containing L. plantarum, which were prepared by extrusion-ionotropic gelation was
80.98%. The EE of L. casel in alginate-pectin beads varied between 54.3% and 79.2% (Corbo,

Bevilacqua, Gallo, Speranza, & Sinigaglia, 2013).
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5.4.2. Viability of L. plantarum in pectin-rice bran capsules after freeze drying

Viability of freeze-dried LP was improved by use of protective agents and a coating
material, such as WPI. Before freeze drying, the number of viable cells in all samples was
similar, approximately 10 log CUF/g (dry basis) (Figure 5.2a). After freeze drying (Figure 5.2b),
the results demonstrated that the freeze dried capsules coated with WPI had significantly greater
cells survive than the uncoated samples (P < 0.05). WPI could cover the capsules and protect the
cells from freeze-drying injuries. WPI has isoelectric point of approximately 5.2 and at pH 4 (the
pH value of our CaCl, crosslinking solution with WPI), the compound contains positive charges.
As pectin is an anionic polymer, electrostatic association between pectin and WPI is created by
interaction of the positive charges of protein patches (mainly -NH"™ groups) and the negative
charges carried by carboxyl groups of pectin polymer (Gentes, St-Gelais, & Turgeon, 2010).
Souza et al. (2012) mentioned that electrostatic interaction between pectin and whey proteins can
occur at pH below 4.5. In addition, whey protein can be used as a protectant for microorganisms
during freeze drying. Protein can accumulate within the cells resulting in reduction of the
osmotic difference between the internal and external environments (Meng et al., 2008). The
different polysaccharides also had different protective effects on the viability of encapsulated LP
during freeze drying. Without a protective agent, uncoated FNPC had the lowest number of
viable cells compared with other treatments, which was 2.30+0.01 log CFU/g with decrease of
8.19 log reductions. Reddy et al. (2009) found that viability of lactobacilli was reduced up to
50% in the absence of protective agents. Powder of L. plantarum NRRL-B4495 had severe
decreases in the cell viability when the pure culture was freeze-dried without any protective

agents (Chotiko & Sathivel, 2014). Meng et al. (2008) stated that the loss of cell viability noted
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after freeze drying is mainly caused by extracellular ice formation during freezing. Ice formation

leads to increase of extracellular osmolality, resulting in dehydration of the cell.

Aa A Aa Aa Aa Aa Aa Ag
_ 10 B
3—."'
= 8
3
[T
= 6
8 4
2
s 2
s
0
NPC MDC WFC HMC
da
10
o) bA aA
=8 = dA
2 7
- aB
geo bB
= —— cB
ER
=3 dB
=2 5
b
1
0
FNPC FMDC FWFC FHMC

b

Figure 5.2. Viability of L. plantarum in pectin-rice bran capsules containing different protectants
uncoated ([]) and coated () with whey protein isolate before (a) and after (b) freeze drying;
NPC, MDC, WDC, and HMC were pectin-rice bran capsules loaded with L. plantarum with: no
protectants, maltodextrin, wheat dextrin soluble fiber, and hi-maize starch, respectively. FNPC,
FMDC, FWFC, and FHMC were freeze-dried NPC, WDC, WFC, and HMC respectively. *
“Means with different letters within the same color indicate significant differences (P < 0.05).
ABMeans with different letters between uncoated and coated treatments with the same protective
agents indicate significant differences (P < 0.05).

The greatest number of viable cells after freeze drying was found in FHMC, which was

8.63+0.01 log CFU/g and 5.63+0.02 log CFU/g for coated and uncoated treatments (P < 0.05).
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The coated FHMC had a 1.59 log CFU/g reduction, while uncoated FHMC showed a 4.75 log
reduction. Martin, Lara-Villoslada, Ruiz, and Morales (2013) reported that addition of starch into
probiotic encapsulations improved polymeric networks and partially isolated the cells from
environmental conditions. No losses of Lactobacillus fermentum was found after freeze drying
when the cells were encapsulated in alginate mixed with corn starch. Crittenden et al. (2001)
mentioned that resistant starch offered a surface for probiotic adherence, providing robustness
and resilience to environmental stresses. This possibly indicated that the hi-maize resistant starch
(HM) functioned as an attachment matrix, helping the cells avoid effects of ice crystallization
and extracellular osmolality.

Coated FMDC had significantly more viable cells (7.72+0.03 log CFU/g) than FWFC
(7.21£0.02 log CUF/g) (P < 0.05). The number of viable cells of uncoated FMDC was also
significantly greater than the viable cell counts in uncoated FWFC, 5.10+0.03 and 4.44+0.04 log
CFU/g, respectively (P < 0.05). Viable cell reductions were 2.56, 3.11, 5.30, and 5.99 log CFU/g
for coated FMDC, coated FWFC, uncoated FMDC, and uncoated FWFC, respectively. The
result indicated that maltodextrin (MD) protected the cells from freeze drying damages more
effectively than wheat dextrin soluble fiber (WF). This was possibly because MD has a smaller
molecular weight than WF. The lower molecular weight of dextrins yields higher bacterial
survival during freezing and after drying (Semyonov et al., 2010). In dehydration processes,
sugars and some polysaccharides can function as a water replacer (Santivarangkna, Higl, &
Foerst, 2008). It is noted that removal of water from bacteria cells interrupts the structure of
phospholipids in cell membranes, causing large lateral compressive stresses in the plane of the
membrane and consequently leading to cell membrane transition and leakage (Santivarangkna,

Kulozik, & Foerst, 2008). Hydroxyl groups of the sugars bind to the phosphate group of
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phospholipids though hydrogen bonds at the surface of the cell membrane lipid bilayer (Pereira
& Hiinenberger, 2006). This helps stabilize the cell membrane during dehydration. It has been
revealed that the interaction of polysaccharides and phospholipids mainly depend on the
flexibility of the structure. Vereyken, van Kuik, Evers, Rijken, and de Kruijff (2003) reported
branched polysaccharide dextran rarely interacts with phospholipids. Unexpectedly, FNPC
coated with WPI had significantly greater cell viability (8.24+0.01 log CFU/g) than the coated
capsules of FMDC and FWFC. Viable cell reduction of coated FNPC was 2.08 log cycles. The
reason might be because addition of MD or WF hindered the interactions between pectin and
WPL

5.4.3. Sizes, shapes, and bulk density of freeze-dried pectin-rice bran loaded with L.
plantarum capsules

The diameters of freeze-dried PE-RB loaded with LP capsules were shown in Table 5.2.
Uncoated FNPC had the largest diameter (3.05+0.50 mm) and were more irregular than other
uncoated treatments. There was no significant difference in diameters of uncoated FMDC
(2.81£0.43 mm), uncoated FWFC (2.68+0.28 mm), and uncoated FHMC (2.64+0.28 mm). The
results also showed that FHMC, FMDDC, and FWFC coated with WPI had significantly larger
diameters than uncoated samples, which were 3.18+0.38, 2.94+0.63, and 3.21+0.41 mm,
respectively. FHMC, FMDDC, and FWFC coated with WPI had similar diameter compared to
the coated FNPC (3.20+0.51 mm). The results were in agreement with Mokarram, Mortazavi,
Najafi, and Shahidi (2009), who reported that diameter of alginate gels were increased by multi
stage alginate coating. Coatings of chitosan, combined poly-L-lysine with alginate, or alginate
was also reported to increase the diameter of alginate beads of encapsulated probiotics

(Krasaekoopt et al., 2004).
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Table 5.2. Sizes of freeze dried pectin-rice bran loaded with LP capsules

Diameter (mm)

Capsules Uncoated Coated
FNPC 3.05+0.50* 3.20+0.51**
FMDC 2.8140.43%8 3.03+0.63*
FWFC 2.68+0.28°8 3.21+0.41**
FHMC 2.64+(.28°8 3.18+0.38**

FNPC, FMDC, FWFC, and FHMC were freeze-dried pectin-rice bran capsules loaded with L.
plantarum with: no protectants, maltodextrin, wheat dextrin soluble fiber, and hi-maize starch,
respectively. “*Means + standard deviation with different letters within the same column indicate
significant differences (P < 0.05). “*Means + standard deviation with different letters between
uncoated and coated treatments with the same protective agents indicate significant differences
(P <0.05).

Capsules’ shape was characterized by their sphericity factor (SF) (Table 5.3). The lower
the number are, the more spherical the capsule is (Lee, Ravindra, & Chan, 2013). The lowest SF
was observed in uncoated FHMC (0.07+0.03) (P < 0.05). The largest SF was found in uncoated
FNPC (0.21+0.13), which was not significantly different than uncoated FMDC (0.19+0.10) and
uncoated FWFC (0.12+0.07). The result indicated that HM could enhance sphericity of freeze
dried capsules. According to Chan et al. (2011), removal of water from hydrogel capsules caused
the hydrogels to collapse, resulting in reduction of sphericity and shape changes from spherical
to irregular shapes. Addition of a filler agent such as starch into gel capsules helped maintain the
capsules shape during drying. Starch acted as a structure support to protect the gel capsules from
collapse and shrinkage. Starch in alginate gels could create a new matrix or a co-matrix with the
polymer by touching of starch granules themselves or binding of starch granules within or
between alginate matrixes (Rassis, Saguy, & Nussinovitch, 2002). WPI molecules trended to
randomly layer on the gel capsules, and SF of the freeze dried capsules seemed to be
independent of WPI coating. Significantly increase of SF was found in coated FHMC
(0.11+0.09) when compared to uncoated FHMC. In contrast, coated FMDC had significantly

lower SF (0.14+0.07) than uncoated FMDC (0.19+0.10). No significantly difference of SF was
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shown between uncoated and coated FNPC (0.15+£0.10) as well as FWFC (0.12+0.07 for
uncoated FWFC and 0.15+0.09 for coated FWFC).

Table 5.3. Shapes of freeze dried pectin-rice bran loaded with LP capsules

Sphericity factor
Capsules Uncoated Coated
FNPC 0.21+0.13* 0.15+0.10**
FMDC 0.19+0.10* 0.14+0.07*8
FWFC 0.12+0.07°* 0.15+0.09*
FHMC 0.07+0.04°8 0.11+0.09**

FNPC, FMDC, FWFC, and FHMC are freeze-dried pectin-rice bran capsules loaded with L.
plantarum with: no protectants, maltodextrin, wheat dextrin soluble fiber, and hi-maize starch,
respectively. “**Means + standard deviation with different letters within the same column indicate
significant differences (P < 0.05). ~®Means + standard deviation with different letters between
uncoated and coated treatments with the same protective agents indicate significant differences
(P<0.05).

In the present work, bulk density refers to the mass of capsules divided by the total
volume including the capsule volume, the inter-particle void volume, and the internal pore
volume. As shown in Table 5.4, uncoated FHMC had significantly higher bulk density
(0.105+0.003 g/mL) than uncoated FMDC (0.090+0.001 g/mL), uncoated FWFD (0.090+0.001
g/mL), and uncoated FNPC (0.089+0.002 g/mL) (P < 0.05). For coated capsules, the highest bulk
density was obtained from coated FHMC (0.109+0.002 g/mL), which was not significantly
different than coated FWFD (0.105+0.003 g/mL) but significantly greater than coated FMDC
(0.101+£0.002 g/mL) and coated FNPC (0.090+0.001 g/mL) (P < 0.05). Coating with WPI
significantly increased the bulk density of FMDC and FWFC. Bulk density of capsules is mainly
dependent upon size, shape, and surface characteristics of the capsules (Rajam &
Anandharamakrishnan, 2015). High bulk density in FHMC treatments was probably due to
greater sphericity than FNPC, FMDC, and FWFC. Irregular shapes increases external voids,

leading to higher bulk volume which in turn causes lower loose bulk density (Caparino et al.,

2012).
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Table 5.4. Bulk density of freeze dried pectin-rice bran loaded with LP capsules

Bulk density (g/mL)
Capsules Uncoated Coated
FNPC 0.089+0.002°* 0.090-£0.001*
FMDC 0.090:0.001°® 0.10140.002°*
FWFC 0.090+0.001°® 0.105+0.003%*
FHMC 0.105+0.003** 0.109+0.002%*

FNPC, FMDC, FWFC, and FHMC are freeze-dried pectin-rice bran capsules loaded with L.
plantarum with: no protectants, maltodextrin, wheat dextrin soluble fiber, and hi-maize starch,
respectively. ““Means =+ standard deviation with different letters within the same column indicate
significant differences (P < 0.05). “*Means + standard deviation with different letters between
uncoated and coated treatments with the same protective agents indicate significant differences
(P <0.05).

5.4.4. Morphology of freeze-dried pectin-rice bran capsules from scanning electron
micr oscope

The exterior surface of uncoated and coated freeze-dried PE-RB capsules loaded with
LP is displayed in Figure 5.3. Due to dehydration effects, all capsules were collapsed. Pereira
and Hiinenberger (2006) mentioned that freeze drying collapsed the wall of calcium pectinate gel
beads causing fragile structure. In our results, cracks were obviously seen on the surface of
uncoated FNPC (Figure 5.3a I). Uncoated FHMC had rough surfaces containing a number of
attached starch particles (Figure 5.3a II). All coated capsules were randomly covered with WPI
particles and no visible cracks were found as illustrated in Figure 5.3b. Freeze dried particles of
WPI resembled broken glass or a flake-like structure, similar to the result reported by Ezhilarasi,
Indrani, Jena, and Anandharamakrishnan (2013). The interior of the fractured freeze dried
capsules are shown in Figure 5.4, indicating a large number of bacteria cells randomly
distributed and attached on the capsule matrix of all treatments. Cracks were obvious in uncoated
FNPC and FWFC. Bacteria cells in uncoated FHMC aggregated on starch particles (Figure 5.4a
II), confirming our hypothesis that starch could provide LP with an adherence matrix. In Figure

5.4b, the cells attached on the matrix of coated capsules were less visible than that which was on
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the uncoated capsule, a result of thin layering of WPI on the capsule. Some cracks were observed
on the coated FNPC.
5.4.5. Viability of L. plantarum in freeze-dried pectin-rice bran capsules coated with WPI
during exposureto smulated conditions of a gastrointestinal tract

Because of low cell viability of the uncoated capsules after freeze drying process, only
the PE-RB capsules with WPI coating were only selected to test the viability of the encapsulated
LP during exposure to simulated gastrointestinal tract. Conditions in a gastrointestinal tract are
different as a result of contents and locations. The stomach is a crucial section for pH-sensitive
components such as probiotic cells. In the fasted state, the stomach of healthy subjects has a
range of pH from 1.3 to 2.5, while eating can increase the pH to a 4.5 to 5.8 range (Kong &
Singh, 2008). In the small intestine, the pH changed to pH 6 and gradually increases to about pH
7.4 in the terminal ileum (Fallingborg, 1999). In this study, three main conditions were
simulated, including a fed state with a copious meal (pH 3.0 for 2 h, followed by pH 7.0 for 4 h),
a fed state with a standard meal (pH 2.5 for 2 h, followed by pH 6.5 for 4 h), and a fasted state
without meal (pH 1.8 for 2 h, followed by pH 6.0 for 4 h). Viability of the encapsulated LP in
freeze dried capsules during a fed state with a copious meal condition is illustrated in Figure 5.5.
Following exposure to the simulated conditions, the viable cells in the capsules were enumerated
after incubation for 6 h. The results showed that the number of viable cells of all treatments was
significantly reduced (P < 0.05). The highest viability of encapsulated LP was found in coated
FHMC (7.38+0.01 log CFU/g), only a 0.89 log CFU/g reduction. The number of viable cells in
coated FWFC (6.76+0.02 log CFU/g) was significantly higher than coated FNPC (6.50+0.01 log
CFU/g) and FMDC (6.07+0.02 log CFU/g) (P < 0.05). Their viable cell log reductions were

1.00, 1.68, and 1.86 log CFU/g for coated FWFC, FNPC, and FMDC respectively.
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Figure 5.3. Scanning electron micrographs of surface area of freeze dried pectin-rice bran
capsules loaded with L.plantarum and protective agents (a = uncoated capsules and b = WPI
coated capsules). I = FNPC, II = FHMC, III = FMDC, and IV = FWFC. FNPC, FMDC, FWFC,
and FHMC are freeze-dried pectin-rice bran capsules loaded with L. plantarum with: no
protectants, maltodextrin, wheat dextrin soluble fiber, and hi-maize starch, respectively.
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Figure 5.4. Scanning electron micrographs of cross-scetions of freeze dried pectin-rice bran
capsules loaded with L.plantarum and protective agents (a = uncoated capsuels and b = WPI
coated capsules). I = FLPC, Il = FHMC, III = FMDC, and IV = FWFC. FNPC, FMDC, FWFC,
and FHMC are freeze-dried pectin-rice bran capsules loaded with L. plantarum with: no
protectants, maltodextrin, wheat dextrin soluble fiber, and hi-maize starch, respectively.
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Figure 5.5. Viability of L. plantarum loaded in freeze-dried pectin-rice bran extract capsules in a
simulated gastrointestinal condition of fed state with a copious meal (L] at 0 h, [ at stomach (pH
3.0 and duration time = 2 h), and B at intestine (pH 7.0 and duration time =4 h). FNPC, FMDC,
FWFC, and FHMC are freeze-dried pectin-rice bran capsules loaded with L. plantarum with: no
protectants, maltodextrin, wheat dextrin soluble fiber, and hi-maize starch, respectively; =\ eans
with different letters within the same color indicate significant differences (P <0.05). ACMeans
with different letters of the same protective agents before and after incubation indicate
significant differences (P < 0.05).

Compared to a fed state with a copious meal, a fed state with a standard meal resulted in
more cell losses which may be attributable to the lower pH in the mimicked stomach condition
(Figure 5.6). Coated FHMC had the greatest number of viable cells (6.14+0.03 log CFU/g),
having undergone only a 2.12 log reduction. There was no significant difference in the number
of recovered viable cells in coated FWFC (3.75+0.05 log CFU/g), FMDC (3.89+0.01 log
CFU/g), and FNPC (4.64+0.04 log CFU/g). Their log reductions were 4.05, 4.01, and 3.53 log
CFU/g, respectively. The lowest number of recovered viable cells from encapsulated LP was
obtained from the fasted state condition and is attributed to the effect of pH 1.8 (the most acidic

condition). The number of viable cells in coated FNPC, FMDC, and FWFC were below the
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detection limit (< 2 log CFU/g). Only a few numbers of viable cells in coated FHMC were
recovered (3.27+0.13 log CFU/g (5.00 log reduction)). Because of low cell counts, study of cell

viability in the simulated intestinal fluid for the fasted condition was not conducted.
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Figure 5.6. Viability of L. plantarum loaded in freeze-dried pectin-rice bran extract capsules in a
simulated gastrointestinal condition of fed state with a standard meal (L] at 0 h, [ at stomach
(pH 2.5 and duration time = 2 h), and M at intestine (pH 6.5 and duration time =4 h). FNPC,
FMDC, FWFC, and FHMC are freeze-dried pectin-rice bran capsules loaded with L. plantarum
with: no protectants, maltodextrin, wheat dextrin soluble fiber, and hi-maize starch, respectively;
““Means with different letters within the same color indicate significant differences (P <0.05). *°
“Means with different letters of the same protective agents before and after incubation indicate
significant differences (P < 0.05).

Incorporation of HM into freeze dried PE-RB capsules coated with WPI contributed to an
increase of cell viability during exposure to SGIF (particularly for acidic conditions) in
comparison to the other treatments investigated. Wang, Brown, Evans, and Conway (1999)
reported that high amylose maize starch had the ability to protect Bifidobacterium exposed to in
vitro low pH conditions and in vivo gastrointestinal conditions. It was claimed that the increase

of acid resistance was mainly due to the adhesion of the cell to the starch granules. Adhesion of
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the bacteria to starch was reported to involve binding of specific cell surface proteins to a-1, 4-
linked glucose saccharides (Crittenden et al., 2001). Aggregation of bacteria on starch and its
bulking capacity contributed to an increase of cell density, resulting in high cell loading content.
Chandramouli, Kailasapathy, Peiris, and Jones (2004) revealed that a high level of initial cells
load of probiotic products led to an increase in the number of viable cells in gastrointestinal tract
conditions. It is the fact that acid inhibits bacterial growth and their activity by passage of
undissociated acid forms through the cell membrane causing acidification of the cytoplasm
(Cotter & Hill, 2003). Adhesion to starch by the bacteria possibly blocked or delayed diffusion
of the acid to the cell membrane. It was reported that Lactobacillus casei mixed with corn starch
had more viable cells than free cells after exposure to simulated gastric fluids at pH 3.0, which
was likely to be due to entrapment of the cells between the starch granules. Moreover, the cell
survival was increased with bacteria fusion protein (starch-binding domain) improving
attachment of the cell on the starch and the cells’ acid tolerance (Tarahomjoo, Katakura, &
Shioya, 2008). And and Kailasapathy (2005) mentioned that addition of hi-maize starch into
alginate capsules improved probiotic survival in acid conditions. The starch particles could plug
the pores of capsule, preventing diffusion of acidic content into the capsules. The addition of
starch was reported to increase the integrated structure and firmness of alginate capsules
(Khosravi Zanjani, Ghiassi Tarzi, Sharifan, & Mohammadi, 2014). This also might help enhance
the protective effects of FHMC against harsh environmental conditions.
5.5. Conclusion

The study indicated that pectin-rice bran capsules offered high encapsulation efficiency.
Adding of protective agents or coating with whey protein isolate has no effect on the

encapsulation efficiency. Whey protein isolate coating significantly improved cell viability of the
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encapsulated cells after freeze drying process. Supplementation of uncoated pectin-rice bran
capsules with protective agents significantly enhanced the number of viable cells in the freeze
dried capsules. Hi-maize starch provided better protection to the encapsulated cells during freeze
drying and in simulated gastrointestinal conditions than maltrodextrin and wheat dextrin soluble
fiber. Hi-maize starch is classified as a prebiotic. Encapsulation of L. plantarum with hi-maize
starch in freeze dried pectin-rice bran capsules would become a novel synbiotic supplement that
may potentially be incorporated into some food products such as nutrition bars, cereal products
or dairy products.
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CHAPTER 6. SUMMARY

This research was focused on developing delivery systems for L. planrarum and
evaluating the effects of the delivery systems on cell viability at simulated gastrointestinal
conditions. Three delivery systems were developed, immobilized L. plantarum on purple rice
bran fibers (PRF) (delivery system 1), encapsulated L. plantarum with combined pectin-rice bran
extract (delivery system 2), and double encapsulated L. plantarum with protective agents
(delivery system 3).

In delivery system 1, L. planrarum was immobilized on PRF and freeze-dried to obtain
immobilized cell powder. The study indicated that PRF could function as a matrix supporting L.
plantarum and protecting the viability of L. plantarum during freeze drying and storage. PRF
may act as a physical barrier which protects the bacterial cells against physicochemical changes
caused by freeze drying and unfavorable conditions during storage. Immobilization of L.
plantarum on PRF also helped to improve cell viability during exposure to bile media. PRF has
the ability to bind to bile salts. Cell viability was influenced by freezing rates. Cryogenically
frozen cells had lower survival compared to air blast frozen cells, indicating cryogenic freezing
may cause cell damages resulting in loss of acid and bile tolerances and loss of cell viability
during storage. Immobilized L. plantarum on PRF was successfully developed as a new
probiotic-fiber supplement that could be incorporated into food products (e.g. nutrition bars,
cereal products or dairy products).

In delivery system 2, encapsulated L. plantarum in pectin-rice bran extract capsules were
prepared by using an ionotropic gelation/extrusion method. The delivery system enhanced L.
plantarum viability under acid and bile conditions. Rice bran extract possibly had some

interaction with pectin, creating a mesh-like network in the delivery system. This contributed to
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enhancement of cell viability under acid and bile conditions. Addition of rice bran extract to
pectin capsules also improved encapsulation efficiency and capsule sphericity. However,
delivery system 2 failed to protect the bacterial cells during freeze drying. Therefore, a third
delivery system was developed to enhance survivability of L. plantarum during freeze drying.
Delivery system 3 was developed by mixing L. plantarum with a protective agent
(maltodextrin, wheat dextrin soluble fiber, or hi-maize starch). Double encapsulation was then
performed, by first encapsulating L. plantarum with a protective agent in pectin-rice bran extract
capsules then coating the capsules with whey protein isolate. Delivery system 3 enhanced cell
viability after freeze drying; as evidenced by a greater number of viable cells observed in this
delivery system than in delivery system 2. Enhancement of cell viability during freeze drying in
delivery system 3 was mainly due to the whey protein isolate (WPI) coating. WPI provided a
thin layer covering bacterial cells in the capsule. Hi-maize starch provided better protection to
the encapsulated cells during freeze drying and in simulated gastrointestinal conditions than the
other protective agents. Hi-maize starch provides surfaces for bacterial cell attachment, and
aggregation of starch granules also helps to partially isolate the bacterial cells from harmful
environments. This study indicated that double encapsulated L. plantarum with hi-maize starch
in freeze dried pectin-rice bran capsules could be a novel synbiotic supplement that may be

incorporated into food products such as nutrition bars, cereal products or dairy products.
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APPENDIX A: FOURIER TRANSFORM INFRARED SPECTROSCOPY
(FT-IR) OF PECTIN AND RICE BRAN EXTRACT

Materials and methods

FT-IR spectra of pectin (PE), rice bran extract (RB), and pectin-rice bran extract (PE-
2.0RB) powders, as well as PE and PE-2.0RB capsules were analyzed using a TENSOR 27 FT-
IR spectrometer (Bruker Opics, Germany). PE-2.0RB powder was prepared by dissolving 2
g/100 mL PE with 2 g/100 mL RB. The solution was stirred for 1 h and freeze dried. To obtain
PE-2.0RB capsules, PE-2.0RB solution was prepared by mixing 2 g/100 mL PE and 1 g/ 100 mL
RB in distilled water. The solution was stirred for 1 h. It was dropped into a crosslink solution (4
g/100 mL CaCly) by a syringe pump. PE-2.0RB capsules were immediately formed and
continued stirring for additional 30 min to harden the capsules. PE-2.0RB capsules were then
harvested. PE capsules were also prepared with the same method as PE-RB capsules, but RB was
not added. Samples were placed on the diamond/ZnSe crystal and pressed by a Teflon spacer.
Spectra were determined with ATR mode in the range of 4000-650 cm™ using a resolution of 4
cm’. A total of 256 scans were performed to obtain a high signal-to-noise ratio.

Results and discussion

The bands at about 3300 cm ' of the PE, RB, and PE-2.0RB spectra could represent O—H
stretching vibrations of the absorbed water, as displayed in Figure Al. The result was in
agreement with that reported by Yu, Wang, Hu, and Wang (2014). Regarding the PE powder
spectrum, the peak at 1738 cm™ could be due to C=O stretching vibrations of the methyl
esterified carboxylic group. According to Manrique and Lajolo (2002), a band at 1740 cm™ was
found in the spectrum of PE from citrus fruit. The peak at 1589 cm™ possibly corresponded to
asymmetrical stretching vibrations of the carboxylate group, as reported by Rao (1976). The

stretching vibrations of PE’s glycosidic linkage (C—O—-C) were likely observed at 1012 cm™. The
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high absorbances, between 1200 and 950 cm ', indicate the fingerprint region of carbohydrates,
which is specific for each polysaccharide (Manrique & Lajolo, 2002).

In the spectrum of RB powder, the peak at 3293 cm ' represented N—H stretching
vibrations, which could overlap the O—H stretching vibrations. The distinct bands at 2920 and
2852 cm’ indicated asymmetric and symmetric stretching vibrations of aliphatic C—H,
respectively, which could result from the fatty acids in RB. The bands at 1740, 1642, and 1544
cm™ were due to the C=0 stretching vibrations of ester functional groups, asymmetric stretching
vibrations of C(=0)-0O", and N—-H bending vibrations of amide (II), respectively. The bands at
1022 and 997 cm™ indicated the C—O—C stretching vibrations of polysaccharides. The results

were in accordance with those reported by Chitprasert, Sudsai, and Rodklongtan (2012).
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Figure Al. FT-IR spectra of PE, RB, and PE-2.0RB powders. PE, RB, and PE-2.0RB are pectin,
rice bran extract, and pectin mixed with 2 g/100 mL rice bran extract, respectively.

The PE-2.0RB powder spectrum showed the bands at 2925 and 2855 c¢m™, which could
indicate the presence of RB in the powder. The C=O stretching vibrations, which could represent

ester functional groups, was shown by the band at 1741 cm™. The distinct band at 1603 cm™ was
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observed in the spectrum of PE-2.0RB powder only. The band at 1642 and 1544 cm™ of the RB
powder spectrum, which corresponded to C=O stretching vibrations and N—-H bending
vibrations, respectively, possibly merged and shifted to the 1603 cm™ band of PE-2.0RB powder.
On the other hand, the band at 1589 cm™ from the PE powder spectrum (the vibrations of
carboxylate group) was not detected in the spectrum of PE-2.0RB powder. This could suggest
that C=0 and N-H was likely involved in the interaction.

The spectra of PE and PE-2.0RB capsules had a broad band of O-H stretching
vibrations at 3357 and 3550 cm™, respectively (Figure A2). The O—H stretching vibrations of PE
were shifted by +115 cm™, compared to the spectrum of PE powder. Shifts of the O—H stretching
vibrations by +82 cm™ in the PE-2.0RB spectrum were also observed when compared to the
spectrum of PE-2.0RB powder. This may confirm the ionic crosslinking of PE and PE-2.0RB

solutions to form PE and PE-2.0RB capsules.
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Figure A2. FT-IR spectra of PE and PE-2.0RB capsules. PE and PE-2.0RB are pectin and pectin
mixed with 2 g/100 mL rice bran extract, respectively.
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The bands at 1726 cm™ of the PE capsule spectrum indicated presence of the methyl
esterified carboxylic group, which was similar to the band at 1723 cm™ observed in the spectrum
of PE-2.0RB capsules. The peak of methyl ester groups and carboxylic acid groups of pectin
were detected in calcium pectinate films at 1735 cm’ (Assifaoui, Loupiac, Chambin, & Cayot,
2010). The researcher mentioned that the shape and wavenumber values of this band depended
on the type and amount of cations used in cross-linking solutions. The band at 1445 cm™ was
found in both PE and PE-2.0RB capsule spectra, possibly due to deformation of methyl ester
(—OCH;) (Wellner, Kacurakova, Malovikova, Wilson, & Belton, 1998).

Unlike the spectrum of PE capsules, the aliphatic C—H stretching vibrations were
detected at 2924 and 2854 cm™ of the PE-2.0RB capsule spectrum due to the fatty acids found in
RB. The band at 1624 cm™ of the PE capsule spectrum could be due to the non-esterified
carboxyl groups of the pectin molecules, as mentioned by Chatjigakis et al. (1998). This band
was likely shifted by -19 cm™ to obtain the band at 1605 cm™ shown in the PE-2.0RB capsule
spectrum due to the interaction between PE and RB.
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