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ABSTRACT 

Probiotics may improve gut microbial composition and immune function. Introduction of 

probiotics via foods or supplements may result in the probiotics not surviving during processing 

and passage through the stomach to the large intestine. The overall objective of this study was to 

develop and investigate three delivery systems for delivering live probiotic cells (Lactobacillus 

plantarum NRRL B-4496) (LP). The three delivery systems were: (1) immobilized LP (~108-109 

CFU/mL LP Free Cells) on purple rice bran fiber (PRF) (Delivery system 1), (2) encapsulated 

LP with combined pectin-rice bran extract (Delivery system 2), and (3) double encapsulated LP 

with protective agents (Delivery system 3). All three delivery systems were frozen prior to freeze 

drying and they were tested for viability of LP during processing and under gastrointestinal fluid 

conditions and compared with free LP cells. PRF protected cells in Delivery system 1 had less 

than 1 log reduction of viable cells, while the control (free LP cells) had reductions greater than 6 

logs after freeze drying. The log reductions of viable LP cells protected with PRF after freeze 

drying and 12 weeks storage at 4 °C were between 0.7 and 1.3 log cycles. Delivery system 2 had 

significantly higher viability under gut conditions than free LP cells prior to freeze drying. 

However, the encapsulated LP did not survive during freeze drying. The third delivery system 

was developed by mixing LP cells with a protective agent including maltodextrin, wheat dextrin 

soluble fiber, or hi-maize starch. They were double encapsulated, first with pectin-rice bran 

extract then with whey protein isolate. Delivery system 3 had greater numbers of viable cells 

than delivery system 2 after freeze drying. The whey protein isolate coating significantly 

improved cell viability of the encapsulated cells during freeze drying. Hi-maize starch provided 

better protection to the encapsulated cells during freeze drying and in simulated gastrointestinal 

conditions than maltrodextrin and wheat dextrin soluble fiber. Encapsulation of L. plantarum 
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with hi-maize starch in freeze dried pectin-rice bran capsules would be a novel synbiotic 

supplement that may potentially be incorporated into food products such as nutrition bars, cereal 

products or dairy products.   
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CHAPTER 1 INTRODUCTION 

Probiotics are well known for beneficial health effects on the host, such as improvement 

of gut microbial composition, protection against pathogenic bacteria, and modulation of immune 

systems. Probiotics have been incorporated into various food products, including both dairy 

products, such as yogurt, cheese, and ice cream, and non-dairy products i.e. cereals and juices. 

The global market of probiotic products has a tendency to increase at a compound annual growth 

rate of 6.8% and is expected to reach $37.9 billion in 2018 (Sharma, Tomar, Goswami, Sangwan, 

& Singh, 2014). For health benefits, viability of probiotic cells is a paramount factor that needs 

to be considered. Typically, probiotic concentration levels of 106 to 107 CFU/g, or greater, are 

desirable for their application as food supplements.  In addition, probiotics need to have good 

survivability during the digestion process so that they reach the site of action, the large intestine, 

in sufficient numbers and viability for functionality. 

However, introduction of probiotics via foods may result in the probiotics not surviving 

during processing and passage through the gastrointestinal tracts. Losses of probiotic cells could 

result from not only unfavorable conditions of food processing, such as heating, freezing, 

dehydration, and acidification, but also digestive system environments which contain gastric 

fluids (high acid level), bile salts, and bile enzymes. Poor probiotic viability was found in 

products containing free probiotic cells. The number of viable Lactobacillus casei added to 

yogurt dramatically decreased from 107 to less than 10 CFU/g within 30 min after exposure to 

pH 2, while the viable cells in low-fat cheese was reduced to 105 and 104 CFU/g after 30 and 120 

min incubation at pH 2, respectively (Sharp, McMahon, & Broadbent, 2008). Providing 

probiotics with a physical barrier can be an approach to resist harmful environments, improve 

probiotic viability, and delivery through the stomach to the large intestine.  
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Immobilization and encapsulation are techniques that can be used to develop delivery 

systems for probiotics, which provide protection of bacteria cells. Dietary fibers may be utilized 

to immobilize bacterial cells throughout the fiber matrix. They provide surfaces for bacteria to 

attach onto, and they function as a protective agent against physiochemical changes due to 

adverse pH, temperature, and biles. For example, L. casei immobilized on wheat grains had a 

large number of viable cells after freeze drying and during storage for 12 months at -18°C 

(Bosnea et al., 2009). Oat bran fibers improved the survival of L. casei during dehydration and 

storage at room temperature. The cells adhered to oat bran fibers had better survival in simulated 

gastric acid (at pH 1.5) and bile salt media than did free cells after incubating for 2 h 

(Guergoletto, Magnani, Martin, Andrade, & Garcia, 2010). Pectin is a soluble fiber that can form 

three dimensional rigid and water insoluble hydrogels with a continuous layer. These hydrogels 

encapsulate bacterial cells within their core matrix. Pectin hydrogels/capsules stay intact in the 

stomach due to resistance to gastric acid and intestinal enzymes but can be degraded by colonic 

bacteria in the large intestine (Sriamornsak, 2003). The degradation by colonic bacteria releases 

the encapsulated cells.  Viability of Lactobacillus rhamnosus in gastric conditions at pH 2 was 

improved when the cell was encapsulated with pectin (Gerez, Font de Valdez, Gigante, & 

Grosso, 2012). Encapsulated Lactobacillus acidophilus in pectin capsules had 1.51 log cycle 

reductions after incubating in simulated gastric (pH 3) and intestinal (pH 7) juices, while a 

reduction of 3.54 log cycles was observed in non-encapsulated cells (Gebara et al., 2013).      

The overall objective of this dissertation was to develop and evaluate fiber and/or pectin 

based delivery systems for delivering Lactobacillus plantarum.  To accomplish this, three 

constituent studies were conducted: (1) immobilization of L. plantarum on purple rice bran fiber, 

(2) development of a combined pectin-rice bran extract delivery system to improve L. platarum 
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viability under acid and bile conditions, and (3) double encapsulation of L. plantarum with 

protective agents to improve cell viability after freeze drying and during simulated 

gastrointestinal conditions.    
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CHAPTER 2 LITERATURE REVIEW 

2.1. Probiotics  

2.1.1. Definition and classification 

The term “probiotic” was first used in 1965 by Lilly and Stillwell to describe “substances 

secreted by one microorganism which stimulates the growth of another” (Schrezenmeir & de 

Vrese, 2001). The term has been redefined by several researchers. In 1989, probiotic was 

redefined as “A live microbial feed supplement which beneficially affects the host animal by 

improving its intestinal microbial balance” (Fuller, 1989). This definition had increased focus on 

viability of probiotics and beneficial effects on the host.  The definition of probiotic was 

improved by Food and Agriculture Organization of the United Nations and World Health 

Organization as “live microorganisms that, when administered in adequate amounts, confer a 

health benefit on the host” (FAO/WHO, 2001). Most probiotics are lactic acid bacteria (LAB). 

LAB are gram-negative, non-spore forming, and non-aerobic, and are aero-tolerant and acid 

tolerant bacteria (Agrawal, 2005). They are cocci or rods, which produce lactic acid as a major 

end product after carbohydrate fermentation (Wee, Kim, & Ryu, 2006). The important genera of 

LAB are Lactobacilli, Bifidobacteria and Enterococci (Agrawal, 2005); these genera are listed in 

Table 2.1. However, some non-lactic acid bacteria such as Bacillus cereus var. toyoi and 

Escherichia coli strain Nissle and some yeast are also considered as probiotics (Holzapfel, 

Haberer, Snel, Schillinger, & Huis in't Veld, 1998).  

2.2.2. Probiotic products and their viability  

Digestive health products are one of the most successful categories of functional foods. 

These include probiotic, prebiotic and dietary fiber products. Valls et al. (2013) mentioned that 

digestive health had been the most used assertion made on new functional food launches between 
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2005 and 2009. Between 2004 and 2009 the global market for pre- and probiotic yogurt grew to 

128%, from $3.3 billion to $7.6 billion, while the drinking yogurt market increased 44% to $11.2 

billion (Valls et al., 2013).  

Table 2.1. Microorganisms used as probiotics 

Lactobacillus sp. Bifidobacterium sp. Other LAB Bacillus sp. Non LAB 
L. acidophilus 
L. casei 
L. delbrueckii 
subsp. 
delbrueckii 
L. delbrueckii 
subsp. bulgaricus 
L. delbrueckii 
subsp. lactis 
L. helveticus 
L. fermentum 
L. johnsonii 
L. leichmanii 
= delbrueckii 
subsp. lactis 
L. paracasei 
L. plantarum 
L. reuteri 
L. rhamnosus 
L. sakei 

B. adolescentis 
B. animalis 
B. animalis subsp. 
lactis 
B. bifidum 
B. breve 
B. longum subsp. 
infantis 
B. longum subsp. 
longum 

Enterococcus 
faecalis 
E. faecium 
Lactococcus 
lactis 
Leuconostoc 
mesenteroides 
Pediococcus 
acidilactici 
P. pentosaceus 
Streptococcus 
salivarius 
S. macedonicus 
S. mitis 
S. sanguis 
S. thermophilus 

B. cereus 
B. clausii 
B. coagulans 
B. licheniformis 
B. mesentericus 
B. subtillis 

Clostridium 
butyricum 
Escherichia 
coli 
Propionibacterium
freudenreichii 
Saccharomyces 
cerevisiae 
subsp. 
cerevisiae 
Saccharomyces 
cerevisiae 
subsp. 
boulardii 

Source: modified from Foligne, Daniel, and Pot (2013) 

Recently, it was reported that global markets of probiotic products have a tendency to 

grow at a CAGR (compound annual growth rate) of 6.8% and were expected to reach $37.9 

billion in 2018 (Sharma et al., 2014). In the United State, 19% of American adults in 2008 had 

purchased a pre/probiotic yogurt in the previous 3 months. 24% of women had consumed those 

products which was two-fold higher than men. The majority of purchasers (30%) were in the 45 

to 54 age range (Granato, Branco, Cruz, Faria, & Shah, 2010). Similarly, in Western Europe 

probiotic foods are a huge consumer market. In 2008 the probiotic market earned more than 1.4 

billion euros. Yogurt and desserts were the biggest sector, which was about 1 billion euros 
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(Saxelin, 2008). Japan is one of the biggest world-wild functional food markets. Sixty-five 

probiotic products with 16 different strains had been listed as foods for specialized health use 

(FOSHU) in 2005. This increased to 73 products in 2008 (Amagase, 2008; Fukushima & Hurt, 

2011). 

Fermented dairy products such as yogurts, kefir, and cultured drinks are the major 

category of probiotic products. Milk and dairy products have been used as the main vehicle to 

deliver probiotics through human GI tracts for decades. The traditional yogurts are prepared by 

allowing yogurt cultures containing L. bulgaricus and Streptococcus thermophiles to ferment 

milk (Ranadheera, Baines, & Adams, 2010). However, some studies found that the conventional 

yogurt starter bacteria failed to survive through the intestinal gut or that their viability was lower 

than the minimum requirement (< 106 cfu/g) (Plessas, Bosnea, Alexopoulos, & Bezirtzoglou, 

2012). Incorporating extra probiotics to yogurts such as L. acidophilus or B. bifidum has been 

suggested method to add more nutritional-physiological value (Lourens-Hattingh & Viljoen, 

2001; Mortazavian et al., 2006).  Ataie-Jafari, Larijani, Alavi Majd, and Tahbaz (2009) reported 

that compared with traditional yogurt consumption of yogurt fortified with L. acidophilus and B. 

lactis significantly decreased serum total cholesterol in mildly to moderately 

hypercholesterolemic subjects,. Cheese is one of the food products appealing to many palates. 

Cheese consumption has been growing in various countries in past decades (Gomes da Cruz, 

Alonso Buriti, Batista de Souza, Fonseca Faria, & Isay Saad, 2009). Several studies have 

mentioned that cheese functioned as a better probiotic carrier than yogurts. The high pH, fat 

content, buffering capacity, and dense protein matrix of cheese could help improve probiotic 

viability during storage and during passage through the gastrointestinal tract (Boylston, 

Vinderola, Ghoddusi, & Reinheimer, 2004; Phillips, Kailasapathy, & Tran, 2006). Sharp et al. 
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(2008) found that the number of viable L. casei added in yogurt dramatically decreased from 107 

to less than 10 CFU/g within 30 min exposure to pH 2, while the strain in low-fat cheese was 

reduced to 105 CFU/g after 30-min incubation and had 104 CFU/g after 120 min. Ice cream is 

likely to be a good probiotic carrier due to its composition including milk proteins, fat and 

lactose, as well as other compounds. Fortification of ice cream by probiotics could increase the 

value of ice cream since it would become a functional food (Cruz, Antunes, Sousa, Faria, & 

Saad, 2009). Lactobacillus acidophilus, L. agilis, and L. rhamnosus were added into ice cream 

containing either sucrose or aspartame. Survivability of the cells was determined monthly during 

storage at -20 °C. The results showed that their stable viability and properties, including 

resistance to bile salts, antibiotics, and acidic conditions. Addition of the probiotic did not affect 

the ice cream characteristics (Basyigit, Kuleasan, & Karahan, 2006). Similarly, probiotic ice 

cream containing L. casei and L. rhamnosus had large lactic acid bacteria counts after frozen 

stage, ranging from 6.5 to 6.9 log cfu/g, while the control (without cells added) had less than 3 

log cfu/g. No cell loss was observed during storage at -20 °C for 16 weeks. For the sensory 

assessment, probiotic vanilla ice cream had slightly lower taste intensity than the control ice 

cream (Di Criscio et al., 2010). Overrun levels of ice cream were reported to negatively affect 

probiotic viability due to probiotics lack of an oxygen-scavenging system. Microaerophilic and 

anaerobic probiotics are unable to reduce hydrogen peroxide, a toxic oxygen metabolite, which 

causes cell death (Vasiljevic & Shah, 2008). Ferraz et al. (2012) suggested that to maintain 

probiotic viability through the ice cream shelf-life, lower overrun levels should be obtained 

during manufacture. The authors found that a 90% overrun negatively affected viability of L. 

acidophilus, decreasing viable cell count by 2 log CFU/g after 60 days of frozen storage. 
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Besides dairy products, fruit and vegetable based probiotic products have been launched 

in order to satisfy vegetarians, consumers suffering from lactose intolerance, and consumers with 

cholesterol-restricted diets. The probiotics are incorporated into fruit pieces, fruit and vegetable 

juices and cereal bars. In one study, L. rhamnosus attached to apple wedges by dipping the apple 

into a probiotic solution. The apple contained high cell viability (~108cfu/g) during storage for 

10 days at 4 °C in modified atmosphere packaging. Moreover, the sensory evaluation showed 

that average overall acceptability of the fresh prepared probiotic apple wedges had no significant 

difference with the control apple wedges (Roßle, Auty, Brunton, Gormley, & Butler, 2010). 

Dried apple cubes containing L. plantarum and L. kefir were analyzed for cell viability. It was 

found that the number of viable cells decreased by 2 log cycles after drying at 40 °C for 27 h. 

After storage at 4 °C for 3 months, the dried apples had only a 1 log reduction of cells. Cells in 

apples stored at room temperature died after 1 month of storage (Rego et al., 2013). Similarly, 

probiotic pomegranate juice containing L. plantarum, L. delbruekii, L. paracasei, and L. 

acidophilus had high cell survivability (~108 cfu/mL) after fermentation for 72 h. The number of 

viable cells was gradually decreased after storage for 2 weeks at 4 °C and no cells were detected 

after 4 weeks of storage (Mousavi, Mousavi, Razavi, Emam-Djomeh, & Kiani, 2011). Apple 

juices fortified with the addition of oligofructose or sucralose as sugar substitutes and L. 

paracasei were evaluated for sensory acceptability. Although the probiotics increased the 

turbidity of the juice, it had no effects on acceptance (appearance, aroma, flavor, texture and 

overall impression). The acceptance was positive on sweet taste, sweet aroma and bitter 

aftertaste. On the contrary, it was negative on apple flavor, apple aroma, darker color and sour 

taste (Pimentel, Madrona, & Prudencio, 2015). L. rhamnosus was inoculated into six cooked 

grains including buckwheat, dark buckwheat, barley, oat, soya, and chickpea, which were then 



 
9 

 

molded and fermented at 37 °C for 10 h. It was found that the cells multiplied in the final 

product of all grain types, yielding cell densities of 6.68–7.58 log CFU/g. The freshly prepared 

probiotic grain was acceptable to consumers but sensory scores decreased when the stored 

probiotic grain was evaluated. The researchers stated that lower acceptability scores were 

possibly due to the probiotic metabolites produced during storage (Kockova & Valik, 2014).  

2.1.3. Probiotic functions and resulting health claims  

Probiotics have many health benefits including reduction of infections, prevention of 

certain types of acute diarrhea, reduction of the risk of antibiotic-associated symptoms and 

improvement of lactose tolerance. Modulation of gut microbiota and immunomodulation by 

probiotics are also well documented health benefits. Recently probiotics have been reported to 

decrease cholesterol as well as prevent some cancers. A more detailed discussion follows.   

1) Prevention of infectious diarrhea  

It has been well established that probiotics help relieve acute infectious diarrhea 

especially in infants and children. Competitive exclusion is a major mechanism of probiotics and 

is responsible for the healing effect of infectious diarrhea (Saxelin, Tynkkynen, Mattila-

Sandholm, & de Vos, 2005). Some probiotics have an ability to adhere to the epithelial wall, 

resulting in competition between probiotics and intestinal pathogens for the same adhesive 

receptors (Oelschlaeger, 2010). Allen, Martinez, Gregorio, and Dans (2010) revealed effects of 

probiotics on acute infectious diarrhea from 63 studies which included a total of 8,014 

participants-mainly infants and young children. Overall probiotics shortened the duration of 

diarrhea and reduce its severity. The study supported the use of probiotics in acute, infectious 

diarrhoea.  L. rhamnosus GG was reported to have the most consistent effect on prevention of 

acute infectious diarrhea in infants and children, when compared with other effective probiotics 
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(Szajewska & Mrukowicz, 2001). The use of probiotics helps prevent diarrhea caused by 

antibiotics particularly in children. Antibiotics negatively affected colonic microflora leading to 

changes of carbohydrate metabolism and antimicrobial activity in the colon. As the results, 

osmotic diarrhea and diarrhea caused by pathogens could occur (Salvini, 2013). Sixteen clinical 

studies (3,432 children) related to the prevention of antibiotic-associated diarrhea (AAD) by 

probiotics (Lactobacilus sp., Bifidobacterium sp., Streptococcus sp., or Saccharomyces boulardii 

alone or in combination) were reviewed and analyzed by Johnston, Goldenberg Joshua, Vandvik 

Per, Sun, and Guyatt Gordon (2011). The analyses stated that 15 out of 16 trials reported the 

benefits of probiotics against AAD compared to active, placebo or treatment controls. The 

incidence of AAD in the probiotic group was 9%, while 18% was found in the control group. 

The data indicated that a high dosage of L. rhamnosus and S. boulardii (5-40x109 CFU/day) was 

likely to prevent the onset of AAD with no serious side effects. Clostridium difficile-associated 

diseases (CDAD) are also reported to be relieved by probiotics. CDAD occur by transmission of 

C. difficile via the fecal-oral route, for example from the contamination of the hands of 

healthcare workers. A meta-analysis of 471 people across CDAD studies showed that the 

treatments of probiotics reduced a 71% of CDAC risk (Avadhani & Miley, 2011).  

2) Improvement of lactose tolerance 

Lactose intolerance, the gastrointestinal symptoms such as abdominal pain, 

flatulence, bloating, nausea, or diarrheas, results from lactose maldigestion, the inability to 

completely digest lactose (Hertzler & Clancy, 2003). Probiotics alleviate lactose intolerance by 

reducing lactose contents or by releasing lactase (Rolfe, 2000). Effects of kefir, a fermented milk 

beverage that contains different cultures than yogurt, on fifteen lactose maldigesters were 

evaluated and compared with the effect of yogurt and milk. The kinetics of hydrogen production 
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after ingestion was used to determine lactose maldigestion. The results showed that the hydrogen 

was not significantly different in yogurt and kefir treatments while milk had significantly 

increased hydrogen. Flatulence, the most common symptom in lactose intolerance, was severe in 

the subjects consuming milk. On the other hand, no differences in flatus severity were reported 

between yogurts and kefir treatments. The highest β-galactosidase activity was found in the 

subjects taking kefir (Hertzler & Clancy, 2003). Consuming of yogurt enriched with 

Bifidobacterium animalis and probiotic B. longum was reported to reduce lactose intolerance 

symptons in eleven adult lactose maldigesters. The study found that a number of total bacteria 

and fecal β-galactosidase activity were increased after 2 week supplementation. The symptom 

scores after lactose challenge was decreased (He et al., 2008). Almeida, Lorena, Pavan, Akasaka, 

and Mesquita (2012) also mentioned that the symptoms of lactose intolerance were reduced after 

lactose-intolerant patients consumed L. casei Shirota and B. breve Yakult. Hydrogen production 

of subject consuming probiotic treatments was lower than the baseline group, and was the same 

as that of the patients who received lactase.as same as the patients received lactase.   

3) Modulation of gut microbiota  

Probiotics have an influence on the ecosystem balance and/or metabolism 

characteristics of intestinal microbiota (Rabot, Rafter, Rijkers, Watzl, & Antoine, 2010). 

Probiotics stimulate the growth of indigenous bacteria resulting in increasing not only in the 

number of the bacteria but also the density (Ohashi & Ushida, 2009). This plays an important 

role in antagonism against pathogenic bacteria by reducing luminal pH, inhibiting bacterial 

adherence and translocation, or producing antibacterial substances and defenses. The production 

of a physiologically restrictive environment (pH, redox potential, and hydrogen sulfide 

production) helps resists colonization of pathogens (Ng, Hart, Kamm, Stagg, & Knight, 2009). 
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Effects of probiotics on the composition of the intestinal microbiota in humans were shown in 

several studies. Tuohy et al. (2007) mentioned that the number of fecal lactobacilli recovered 

from volunteers consuming a fermented milk drink (L. casei) was significantly increased after 

ingestion and that there was no change in the level of L. casei in the recovered fecal samples 

during the study period (21 days). The impact of yogurt consumption supplemented with B. 

animalis subsp. lactis (BB12) and L. acidophilus (LA-5) on fecal bacterial counts of healthy 

adults was studied. The results demonstrated that the healthy subjects consuming the yogurt had 

higher fecal numbers of BB12, LA5, and total lactobacilli, but lower enterococci than the 

placebo group (Savard et al., 2011). Similarly, it was evident that elderly volunteers who 

consumed cheese containing L. rhamnosus HN001 and L. acidophilus NCFM had increased 

number of the bacteria in fecal samples and lower counts of Clostridium difficile compared to the 

plain cheese group (Lahtinen et al., 2012).            

4) Immunomodulation  

The immunomodulatoty effect is one of the crucial benefits of probiotics. As well-

known, segregation of immune systems is related to intestinal epithelial cells where microbiota 

in the gut lumen attached. The bacteria recognize receptors on the epithelial cell surface and bind 

to the receptors, immunological defense mechanisms such as the production of pro- and anti-

inflammatory cytokines are triggered (Saxelin et al., 2005). Cytokines such as antigen presenting 

cells (APCs) and T lymphocytes have a positive impact on inflammatory bowel disease (IBD), 

irritable bowel syndromes, and allergies (McGovern & Powrie, 2007). Transforming growth 

factor beta (TFG-β) and interleukins such as IL-4, IL-5, IL-6 and IL-10 are multiple cytokines 

required for IgA promotion and maturation (Corthesy, 2007). IgA or immunoglobulin plays key 

roles in immune protection (Woof & Kerr, 2006). It has been reported that probiotics could 
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modulate cytokine profiles and activate monocytes and macrophages. This plays a pivotal role in 

activation of antigen-specific immunity and stimulation of IgA immunity. The result is related to 

promoting of IgE induction and allergic responses (Drago, Nicola, Iemoli, Banfi, & De Vecchi, 

2010). 

In clinical human studies, consumption of probiotic products or probiotic 

supplements helps enhance and/or modulate immune systems. According to the study of Parra, 

Martínez de Morentin, Cobo, Mateos, and Martínez (2004), forty-five healthy volunteers 

receiving fermented milk containing L. casei DN114001 increased of oxidative burst capacity of 

monocytes and natural killer cells tumoricidal activity, indicating that the bacterial strain could 

modulate the innate immune defense. Olivares et al. (2006) found that yogurt and a new 

fermented product containing L. gasseri CECT 5714 and L. coryniformis CECT 5711 increased 

the proportion of monocytes and neutrophils of healthy adult subjects as well as their phagocytic 

activity. L. gasseri CECT 5714 and L. coryniformis CECT 5711 induced an increase in natural 

killer cells proportion and IgA concentrations. It was reported that the use of probiotics in 

patients with ulcerative colitis reduced the colonic concentration of IL-6, colonic 

myeloperoxidase activity, and the level of fecal calprotectin, resulting in amelioration of colonic 

inflammation (Hegazy & El-Bedewy, 2010).    

5) Lowering levels of cholesterol  

Recently cholesterol lowering probiotics have been studied by many researchers. 

Several in vitro and in vivo studies reveled probiotics’ the ability to assimilate cholesterol and/or 

deconjugate cholesterol to bile acids through bile salt hydrolase. These result in reduction of 

cholesterol and beneficial changes of lipid profile (Homayouni, Payahoo, & Azizi, 2012; Ooi & 

Liong, 2010). Guo et al. (2011) evaluated the effects of probiotic consumption on blood lipid in 
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13 trials that included a total of 485 participants with high, borderline high or normal cholesterol 

levels by a meta-analysis. They compared the treated probiotic groups to the control, and found 

that the pooled mean net change in total cholesterol, low-density lipoprotein (LDL) cholesterol, 

high-density lipoprotein (HDL) cholesterol and triglycerides were lower by 6.40 mg/dl, 4.90 

mg/dl, 0.11 mg/dl, and 3.95 mg/dl, respectively. This indicated that a rich probiotic diet 

decreased total cholesterol and LDL cholesterol concentration in plasma of subjects with high, 

borderline high and normal cholesterol levels. The result was also confirmed by other studies in 

later years. Asemi et al. (2011) mentioned that consumption of enriched probiotic yogurt for 9 

weeks reduced concentrations of total cholesterol (53.7 mg/dl), HDL-cholesterol (9.8 mg/dl), and 

triglyceride (42.8 mg/dl) in pregnant women. However, no difference in the reduction of total 

cholesterol and HDL-cholesterol concentrations was observed when compared to traditional 

yogurt. A yogurt containing microencapsulated L. reuteri NCIMB 30242 was found to 

significantly reduce LDL-cholesterol (8·92 %), total cholesterol (4·81 %) and non-HDL-

cholesterol (6·01 %) in hypercholesterolaemic adults over placebo (Jones, Martoni, Parent, & 

Prakash, 2012). Type 2 diabetes mellitus patients taking probiotic yogurt containing L. 

acidophilus La-5 and B. lactis Bb-12 for 8 weeks had a significant reduction in the ratio between 

LDL-cholesterol and HDL-cholesterol compared to type 2 patients consuming conventional 

yogurt, while there was no difference in the concentration of total cholesterol, triglyceride, LDL-

cholesterol and HDL-cholesterol.  

6) Prevention of colorectal cancer      

A number of in vitro and animal studies have demonstrated that probiotics could 

contribute to colorectal cancer (CRC) prevention. Anti-CRC mechanisms of probiotics are 

complex. According to Chong (2014), Intraluminal, systemic, and direct effects of probiotics on 
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intestinal mucosa are related to CRC prevention. Intraluminal effects include competitive 

exclusion, modulation of gut microbiota, reduction of carcinogenic secondary bile acids, binding 

of carcinogens and mutagens, and increasing short chain fatty acids production. Multifaceted 

immunomodulatories, in particular its ability to modulate intestinal inflammation, play an 

important role in decreasing the risk of CRC and reduction of DNA damages. Suppression of 

aberrant crypt foci formation on intestinal mucosa has also been mentioned as direct anti-CRC 

effects of probiotics. Anticancer activity of probiotics is strain dependent. L. reuteri ATCC PTA 

6475, L. rhamnosus GG, L. paracasei IMPC2.1, and L. acidophilus could inhibit the growth of 

colon cancer cell lines and induce their apoptosis. Iyer et al. (2008) revealed that L. reuteri 

inactivated a tumor necrosis factor induced nuclear factor-κB in a dose and time-dependent 

manner by regulating cell proliferation, resulting in promoting apoptosis of activated immune 

cells. L. rhamnosus GG and L. paracasei IMPC2.1 were found to cause significant reduction in 

proliferation activity of DLD-1 cells, colon cell lines, after 24 and 48 h of attachment (Orlando et 

al., 2012). An in vivo studie revealed that rats fed with L. rhamnosus GG or L. acidophilus 

NCDC #15 and injected with 1,2 dimethylhydrazine dihydrochloride (DMH) to induce chemical 

colon carcinogenesis had reduction in Aberrant crypts, and recognizable mucosal alterations. In 

histopathological studies, it was found that L. acidophilus + DMH-treated rats had moderate 

infiltration of lymphocytes with edema in submucosa and mucosa, whereas L. rhamnosus + 

DMH had normal morphology of the colon (closely packed glands with few lymphocytes) 

(Verma & Shukla, 2013). L. plantarum AS1 was reported to reduce colon tumor volume 

diameter and total number of tumors induced by DMH in probiotic pre- and post-treated rats. 

The number of tumors was reduced from 2.16 tumors per rat to 1.8 tumors per rat in the 
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pretreated rats and to 1.6 tumors per rat in the post treated rats (Kumar et al., 2012). To confirm 

the potential role of probiotics in CRC prevention, human studies are required.     

2.2. Human gastrointestinal tract and physiology 

The gastrointestinal (GI) tract is a hollow muscular tube which functions for digestion, 

absorption, excretion, and protection (Cheng et al., 2010). The GI tract includes the mouth, 

pharynx, esophagus, stomach, small intestine, and large intestine. Each section has its own 

physiology (Figure 2.1), which needs to be considered to design delivery systems for controlled 

release. According to Cook, Tzortzis, Charalampopoulos, and Khutoryanskiy (2012), delivery 

systems convey bioactive components pass esophagus quickly. Only 10 to 14 seconds are 

needed. The system then reaches to the stomach which is a crucial section for pH-sensitive 

components such as probiotic cells. High acidity levels in the stomach could cause greatest loss 

of bacteria viability. The pH of the stomach is in the range of pH 1 to 2.5 but it can be as high as 

5 in fed patients. The transit time is often reported between 0.5 and 2 hours. The pH and transit 

time of the stomach are highly variable and are dependent on many factors, such as time since 

eating and age. The stomach's fluid capacity ranges from 50 mL in a fasted state to as much as 

1500 mL. The stomach has epithelium cells that can secrete a proteolytic enzyme (pepsin), the 

hormone gastrin, and hydrochloric acid (Daniels & Allum, 2005). After passage through the 

stomach, a delivery system enters into the small intestine. The small intestine is divided into the 

duodenum, the first short sessile, jejunum, a long coiled part constituting about two-fifths of the 

small intestine, and the ileum, the distal part of the small intestine which constitutes about three-

fifths of the small intestine. (Sinha & Kumria, 2003). The small intestine has a pH ranging 

between 6.15 and 7.35 in the proximal region and a pH of 6.80 to 7.88 in the distal part of the 

small intestine. The transit time is approximately 3 to 4 h; however it can be varied depending on 
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individual subjects and formulation and dietary factors (Yu & Amidon, 1998). The duodenum 

contains some aerobic and gram positive bacteria (103 to 104 CFU/g), while a few 

microorganisms such as Lactobacillus sp. and Enterococcus sp. are found in the jejunum and the 

upper ileum. In the distal ileum, the bacterial concentration become greater and gram-negative 

bacteria start to out complete the gram-positive organisms (Sinha & Kumria, 2003). The large 

intestine is the large section into which the delivery system conveys a compound. It is divided 

into ascending, transverse, descending, and sigmoid regions. The pH of the colon varies 

depending on the section and the transit time, typically reported at 6 to 32 h (Cook et al., 2012). 

The colon is home to a large concentration of microbiota (which is 1010 to 1012 CFU/g) 

(Schrezenmeir & de Vrese, 2001). These bacteria are responsible for fermentation of protein and 

polysaccharides and can release the compounds that are carried by a delivery system. The 

fermentation contributes to formation of short chain fatty acids and fecal bulking, as well as 

increase transit time of colonic contents (Topping & Clifton, 2001a) 

2.3. Dietary fibers and their physiological effects 

The American Association of Cereal Chemists defined dietary fibers as “the edible parts 

of plants or analogous carbohydrates that are resistant to digestion and absorption in the human 

small intestine with complete or partial fermentation in the large intestine” (AACC, 2000). The 

dietary fibers can be derived from plants, vegetables, cereal grains, woody plants, fruits, 

legumes, leguminous plants, etc. They are classified into soluble and insoluble fibers. Soluble 

fibers are pectins, gums, inulin-type fructans and some hemicelluloses, while insoluble fibers 

consist of lignin, cellulose and some hemicelluloses. Most fibers include approximately one-third 

soluble and two-thirds insoluble fibers (Wong & Jenkins, 2007). Dietary fibers are composed of 

non-digestible poly- and oligosaccharides and compounds in plants. Table 2.2 displays 
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Table 2.2. Constituents of dietary fibers 

Non starch polysaccharides 
and oligosaccharides 

Analagous carbohydrates Lignin substances 

Cellulose 
Hemicellulose 
Arabinoxylans 
Arabinogalactans 
Polyfructoses 
Inulin 
Oligofructans 
Galacto-oligosaccharides 
Gums 
Mucilages 
Pectins 

Indigestible dextrins 
Resistant maltodextrins 
Resistant potato dextrins 
Synthesized carbohydrates 
compounds 
Polydextrose 
Methyl cellulose 
Hydroxypropylmethyl 
cellulose 
Resistant starches 

Waxes 
Phytate 
Cutin 
Saponins 
Suberin 
Tannin 

Source: AACC (2000) 

2.3.1. Physiological effects of dietary fibers in the small intestine 

Dietary fibers are reported to have an influence on rheology of the small intestine. 

Soluble fibers such as pectin or guar gum can increase the gut viscosity by forming gels, causing 

delay of gastric emptying and increase small intestinal transit time. Fibers with a high water 

holding capacity play an important role in the volume and bulk of the intestinal content. The 

change in gut rheology slows diffusion of glucose and increases the unstirred water layer at the 

surface of the small intestine, resulting in delay of glucose absorption (Guillon & Champ, 2000). 

Effects of dietary fibers in small intestinal simulation were investigated. The researchers reported 

that viscosity of small intestinal simulation was increased after incubating between 3 and 9 h 

with guar gum, oat bran and rice bran. Guar gum and oat bran had viscous characteristics, 

indicating the ability to attenuate blood glucose and lipid, while viscous characteristics were not 

found in wheat bran, rice bran and wood cellulose (Dikeman, Murphy, & Fahey, 2006). 

Insoluble fibers derived from peel of Citrus sinensis L. cv. Liucheng (Liucheng sweet orange) 

could adsorb glucose, retard glucose diffusion, and inhibit the activity of α-amylase. The result 
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might delay the rate of glucose absorption and further lower the concentration of postprandial 

serum glucose (Ahmed, Sairam, & Urooj, 2011). 

Dietary fibers can bind to bile acids and metabolize cholesterols, which can affect the 

digestion and absorption of lipids in the small intestine (Rodriguez, Jimenez, Fernandez-Bolanos, 

Guillen, & Heredia, 2006). The binding capacity of soluble dietary fiber from apple peel to bile 

acids and to cholesterol was compared to insoluble dietary fiber from wheat bran and soybean 

seed hulls, and to a mixture of soluble and insoluble dietary fiber. Soluble dietary fiber had the 

greatest binding capacity to bile acids and cholesterol, followed by the fiber mixture, and 

insoluble dietary fiber (Zhang, Huang, & Ou, 2011). In contrast, Kahlon and Woodruff (2003) 

reported that dehulled barley had the highest relative binding to bile acids (57%), followed by 

rice bran (49%), β-glucan enriched barley (40%), and oat bran (30%), The relative binding to 

bile acids was calculated based on bile acid binding to cholestyramine as 100%. The author 

suggested that bile acid binding to rice bran, oat bran, and β-glucan enriched barley may be 

related to their insoluble fiber contents. Soluble fibers more effectively lower low-density 

lipoprotein (LDL) cholesterol than insoluble fibers. Babio, Balanza, Basulto, Bullo, and Salas-

Salvado (2010) mentioned that soluble fibers affected metabolic pathways of hepatic cholesterol 

and lipoprotein metabolism, as the result of modification in volume, bulk, and viscosity in the 

intestinal lumen by fibers. The alteration of metabolic pathways leads to lowering of LDL 

cholesterol. Soluble fibers can also reduce plasma cholesterol by lowering absorption of 

intestinal bile acid. The interruption of the enterohepatic bile acid circulation elevated fecal bile 

acid loss and its de novo synthesis in liver. In clinical studies, it was suggested that intake of 5–

15 g per day of soluble fiber yielded a 5–13% reduction in LDL-cholesterol levels in both men 

and women (Anderson et al., 2009). A meta-analysis of 126 studies involving 5,590 subjects 
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indicated that consumption of 3 g per day of oat or barley β-glucan or more could decrease blood 

cholesterol. The results showed that consumption of oat and barley β-glucan reduced total 

cholesterol by 0.60 mmol/L, LDL cholesterol by 0.66 mmol/L, triglyceride by 0.04 mmol/L and 

increased high density lipoprotein (HDL) cholesterol by 0.03 mmol/L (Tiwari & Cummins, 

2011). Insoluble fiber enriched polyphenol was found to have an effect on serum blood 

cholesterol in hypercholesterolemic patients. Consumption of insoluble fiber rich in polyphenols 

lowered the total cholesterol, LDL cholesterol, LDL: HDL cholesterol ratio, and triglycerides by 

17.8%, 22.59%, 26.2% and 16.3% after 4 weeks consumption compared with the baseline (Ruiz-

Roso, Quintela, de la Fuente, Haya, & Perez-Olleros, 2010). 

2.3.2. Physiological effects of dietary fibers in the large intestine 

The large intestine contains a numerically large and diverse range of bacteria. More than 

500 bacterial species with up to 1010 CFU/g of intestinal contents are found in the large intestine 

(Hold, Pryde, Russell, Furrie, & Flint, 2002). Dietary fibers play an important role in colonic 

fermentation. They provide the colonic bacteria with energy sources and are then fermented to 

short-chain fatty acids (SCFAs) and bacterial mass (Tungland & Meyer, 2002). Increase of 

SCFAs levels contributes to prevention of colon cancers and gastrointestinal disorders (Wong, de 

Souza, Kendall, Emam, & Jenkins, 2006). Fermentability of fibers is dependent on 

physiochemical properties of fibers such as solubility, type of linkages, degree of 

polymerization, and transit time (Raninen et al., 2011). Production of SCFAs from seven 

different dietary fibers by intestinal microflora was compared by Pylkas, Juneja, and Slavin 

(2005). The results showed that SCFAs production was dependent on fiber sources. After 24 h 

incubation, the highest total SCFAs concentration was found in hydrolyzed guar gum and 

galactomannan, followed by indigestible dextrin, arabinogalctan, polydextrose, psyllium husk, 
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and methylcellulose, respectively. Butyrate production was greater in the fiber treatments 

compared to the glucose control. Rice bran fibers were reported as a novel prebiotic. The fiber 

was utilized by lactobacilli to produce some SCFAs, while butyrate was produced when the fiber 

was fermented by Eubacterium limosum (Osamu et al., 2010). Oat bran could be degraded by 

human fecal bacteria and altered to SCFAs including acetate, lactate, propionate, and butyrate. 

Concentration of butyrate from oat bran fermentation was not different compared to prebiotic 

fructo-oligasaccharide fermentation but higher than in glucose fermentation. Oat bran could also 

increase the number of bifidobacterium and lactobacilli and had the same pattern as fermentation 

of prebiotic fructo-oligosaccharide (Kedia, Vazquez, Charalampopoulos, & Pandiella, 2009). 

Mice fed with rice bran had higher colonization of native lactobacilli in fecal samples, compared 

to a control. The author suggested that induction of lactobacilli was possibly related to an 

increase of mucosal IgA response (Henderson, Kumar, Barnett, Dow, & Ryan, 2012). 

Insoluble fibers play an important role in bowel functions by increasing fecal volume and 

weight (bulking effect) and decreasing transit time. Raninen et al. (2011) mentioned that intake 

of fibers derived from bran or whole grains of 11 to 30 g/d helped decrease transit time, increase 

stool weight and frequency, and improved stool consistency. Consumption of low fiber diets 

could lead to the formation of very compact feces which might promote oncogenesis, resulting 

from large exposure time of the intestinal mucosa, to cancer-risk agents (Rodriguez et al., 2006). 

Compared to a low fiber diet, high fiber cereal breakfasts namely All- Bran, Bran Buds with 

Corn and Bran Buds with Psyllium significantly increased fecal bulk and bowel movement as 

well as decrease intestinal transit time in healthy persons. The largest fecal wet weight was found 

in the subjects consuming Bran Buds with Psyllium (Vuksan et al., 2008). Fecal bulk and 

moisture were increased when hamsters were fed with insoluble fibers derived from passion fruit 
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seeds.  The levels of triglyceride and total cholesterol in serum as well as liver cholesterol were 

reported to be increased, in contrast the levels of total lipids, cholesterol, and bile acids in feces 

were decreased. The authors noted that cholesterol and lipid lowering effects might be partly due 

to the ability of the insoluble fibers in promoting the excretion of lipids and bile acids via feces 

(Chau & Huang, 2005). 

2.4. Immobilization and encapsulation  

Cell immobilization refers to trapping of microorganisms within or throughout a matrix 

(Mitropoulou, Nedovic, Goyal, & Kourkoutas, 2013). It has been applied to enzymes, proteins, 

and alcohol beverages. This technology provides several advantages such as enhancing 

fermentation productivity, improving continuous processes, increasing cell stability, and 

lowering costs of recovery, recycling, and downstream processing (Kosseva, 2011). One of the 

well-known applications of cell immobilization is production of high fructose corn syrup 

(HFCS). According to Kosseva (2011), in 1969, Tekasaki and his colleagues discovered that 

Streptomyces albus, glucose isomerase production bacteria, was able to grow on crude xylans 

such as cereal bran or straw. During growth on xylans, the cells could retain their enzyme 

activity in a prolonged process and cell lysis was prevented at operating temperature (60 °C). 

This could lay a foundation on the reuse of whole-cell biocatalyst, and continuous processing in 

a column reactor. Use of cell immobilized-biocatalyst technology was used to produce HFCS on 

a commercial scale in 1975 and has been continuously since then. In addition to enzyme 

production purposes, immobilization techniques have been used to protect probiotics during 

processing and improve their stability during storage. Immobilization of lactobacilli on wheat 

dextrin, oat bran fiber, bacterial cellulose, and mungbean fibers were reported to help enhance 

viability of the cell during dehydrating, freeze-drying and storage (Guergoletto et al., 2010; 
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material can be termed the carrier material, wall material, matrix, or external phase (Zuidam & 

Shimoni, 2010).  Cell encapsulation was first applied in the biotechnology area. The 

encapsulated cells helped improve efficiency of processes by allowing rapid and efficient 

separation of cells and metabolites. The technique was then introduced to the pharmaceutical 

sector for drug and vaccine delivery and to the food industry (Nedovic, Kalusevic, Manojlovic, 

Levic, & Bugarski, 2011). 

In the food industry, encapsulation techniques have been applied to bioactive molecules 

such as antioxidants, vitamins, essential oils, or flavors and living microorganisms (probiotics) 

for several purposes. Encapsulation helps slow down degradation/inactivation of active 

compounds and protect them from adverse effects during processing and storage (de Vos, Faas, 

Spasojevic, & Sikkema, 2010). The technology serves as a barrier between the encapsulated 

compounds and surrounding environments, which helps stabilize food ingredients, allow aroma 

or flavor differentiation or mask bad odors (Champagne & Fustier, 2007). For probiotics, 

encapsulation provides protection to the cells and their functionalities against unfavorable factors 

(i.e. heat, moisture, light, or oxygen) not only during production, but also when passing through 

the gastrointestinal system (Anal & Singh, 2007). Encapsulation can also modify physical 

characteristics of original materials to allow easy handling, separation of components that would 

react to others, and uniform dispersion (Desai & Jin, 2005). Additionally, delivery of active 

compounds to the right place at a right time or controlled release is one of the important roles of 

encapsulation. Controlled release could improve the effectiveness of active ingredients, increase 

the application range of food ingredients and ensure optimal dosage (Desai & Jin, 2005). A 

specific barrier formed by encapsulation can serve to manipulate the release of active compounds 

to provide functional benefits and unique sensory experiences (Lakkis, 2007). For example, 
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encapsulation of probiotics contributes to cell stability and viability in a food matrix and during 

passage through the gut and allows progressive liberation of the cells in the intestine (Nazzaro, 

Fratianni, Orlando, & Coppola, 2012).  

2.4.1. Immobilization of probiotics on a dietary fiber based matrix  

As mentioned earlier, probiotics provide a variety of health benefits, if they survive until 

they reach the intestine and colonize the host. The use of plant-based matrixes to enhance 

probiotic survival during processing, formulation, and passage through the gastrointestinal tract 

was demonstrated in several studies. According to Saarela et al. (2006), immobilization of L. 

rhamnosus on wheat dextrin and polydextrose had good cell viability after freeze-drying and 

during storage. Only 0.7 and 1.3 log reductions were reported in wheat dextrin and polydextrose-

freeze dried cells, respectively, after storage at 37 °C for 4 weeks. The freeze-dried cells with the 

fibers were incorporated into chocolate-coated breakfast cereals and stored for 7 months. This 

showed that freeze dried cells with polydextrose was more stable than those with wheat dextrin. 

L. casei immobilized on wheat grains had a large number of viable cells after freeze drying. The 

cell morphology was retained and no shrinkage was observed. Freeze dried L. casei on wheat 

grains was highly stable during storage for 12 months at -18 °C (Bosnea et al., 2009). Oat bran 

fiber was found to improve the survival of L. casei during dehydration and storage at room 

temperature. The cells adhered to oat bran fiber had better survival in gastric (at pH 1.5) and in 

bile salt media than did free cells after incubating for 2 h (Guergoletto, Magnani, Martin, 

Andrade, & Garcia, 2010). Jagannath et al. (2010) found that nata or bacteria cellulose could 

function as a cryoprotectant and an immobilized support for freeze dried lactobacilli. After freeze 

drying, the viability of lactobacilli attaching on nata had approximately a 3 log cycle reduction. 

The freeze-dried cells with nata had ~105 CFU/g viable cells after storage for 60 days at 4 °C. 
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The presence of mungbean fiber helped maintain viability of L. plantarum after freeze drying 

and during storage. It was observed that in freezed-dried cells, a thin layer of mungbean fiber 

coated the cells, which could indicate that the fiber served as a physical barrier, protecting the 

cells from freeze-drying process (Hongpattarakere et al., 2013).      

2.4.2. Encapsulation of bioactive components using a hydrogel-base matrix 

1) Hydrogels  

Hydrogels or hydrocolloid gels are cross-linked polymers with the ability to swell in an 

aqueous medium (Kim, Bae, & Okano, 1992). Hydrogels can be applied in several areas 

including the pharmaceutical, medical, cosmetic, and food industries. A major  applications is to 

use hydrogels to encapsulate drug, probiotics, and bioactive molecules and to control their 

release (Burey, Bhandari, Howes, & Gidley, 2008). Hydrogels can be either physically or 

chemically formed (called physical and chemical gels, respectively) by using natural or synthetic 

polymers. Physical gels are achieved via physical processes including association, aggregation, 

crystallization, complexation, and hydrogen bonding, while chemical gels are prepared by 

chemical processes (Omidian & Park, 2012). Figure 2.3 illustrates the difference of physical and 

chemical gel preparations. Hydrogels can also be classified according to their responses to the 

environmental conditions such as pH, temperature, and the composition of the surrounding liquid 

(Figure 2.4). Hydrogels react to environmental changes by changing their size or shape. Ionic 

hydrogels are sensitive to and respond to pH changes. Hydrogels containing hydrophobic groups  

swell and shrink in response to temperature changes. Non-ionic hydrogels are more stable than 

ionic hydrogels in a salt swelling media and in a nonsolvent media (Omidian & Park, 2012). 

Hydrogels are versatile. Their characteristics are dependent on the types of polymers, the 

network formation mechanism and the processing method used for gel formation (Burey et al., 
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loaded into the hydrogel by combining the gelation with emulsification, coacervation, or 

extrusion dripping. Ionotropic gelation is carried out by two diffusion setting techniques, external 

gelation and internal gelation. For external gelation, a polymer solution is introduced into an 

ionic solution. The ions diffuse into the polymer solution to form a three dimensional lattice of 

ionically crosslinked moieties during gelation occurring from the surface to the core. This 

technique can cause non-homogenous hydrogels and a firm outer surface but soft core gel. For 

Internal gelation, an inactive form of the ion is sufficiently dispersed in the polymer solution. 

The ion is then activated and released by pH adjustment to form hydrogels. Although this 

technique has been developed to overcome non-homogeneity of the hydrogels in external 

gelation, the problem could still occur if gelation happens prior to adequate ion dispersion. In 

addition, it is evident that hydrogels from internal gelation have less dense matrices than 

externally cross-linked hydrogels with large pore size leading to low loading efficiency and fast 

release rates (Chan, Lee, & Heng, 2006). 

There are a wide and diverse range of polymers available with which to fabricate 

hydrogels. Alginate is the most common natural polymer used to form the hydrogels. This 

polymer is reported to be suitable for bioactive food components and living cell encapsulation as 

well as for drug or protein delivery (Matricardi, Meo, Coviello, & Alhaique, 2008). Alginate-

based hydrogels are used to facilitate controlled release of bioactive molecules in the colon 

(Shah, Shah, & Amin, 2011). Pectin is generally used for targeted drug delivery. It remains intact 

in the stomach and the small intestine. It is degraded by enzymes secreted by the host microbiota 

in the large intestine (Liu, Fishman, & Hicks, 2007). Carboxymethly cellulose is applied in 

enzyme immobilization, dry removal, and drug and probiotic delivery (Chitprasert, Sudsai, & 

Rodklongtan, 2012). It has gastric acid resistance and intestinal solubility characteristics (Kamel, 
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are often required (Lee, Ravindra, & Chan, 2013). The technique has many advantages 

particularly for living cells and sensitive bioactive compounds. It is relatively simple, gentle and 

non-toxic. The process can be operated under both aerobic and anaerobic conditions (de Vos et 

al., 2010). However, a major drawback of this method is that the matrix has high porosity 

allowing fast and easy diffusion of water and other fluids in and out of the matrix (Rathore, 

Desai, Liew, Chan, & Heng, 2013). The encapsulates are less stable due to rapid cross-linking 

and hardening at the surfaces of the beads delaying the movement of cross-linking ions into the 

inner core (Liu et al., 2002). To overcome these problems coating the beads with chitosan or 

whey protein isolate and/or adding filler agents such as starch or rice bran have been suggested 

(Chitprasert et al., 2012; Gerez et al., 2012; Kanmani et al., 2011; Martin, Lara-Villoslada, Ruiz, 

& Morales, 2013). Lactobacillus plantarum encapsulated by alginate covered with a whey 

protein isolate layer had better survival than uncoated treatments after exposure to simulated 

gastric fluid (pH 1.8) and to simulated  intestinal fluid (pH 6.5) (Gbassi, Vandamme, Ennahar, & 

Marchioni, 2009). Whey protein isolate and starch could function as barriers to solvent flow and 

delay release of active compounds. Table 2.3 lists some studies of probiotic and bioactive 

compound encapsulation by the ionotropic gelation/extrusion dripping process. 

Table 2.3. Studies of probiotic and bioactive compound encapsulation prepared by iontropic 
gelation/extrusion dripping process 

Probiotics  Materials Outcomes Reference 
L. plantarum Alginate 

coated with 
whey protein 
isolate  

The beads had higher cell viability than 
uncoated beads when they were exposed 
to simulated  gastric acid fluid and only 
coated beads had cell survive in 
simulated  intestinal fluid  

Gbassi et al. (2009) 
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Table 2.3. continued 

Probiotics  Materials Outcomes Reference 
L. acidophilus Pectin coated 

with why 
protein isolate 

The beads had a high encapsulation 
yield and positively affected cell 
viability when cells were exposed to 
simulated gastrointestinal tract 
conditions. The beads released the cells 
in simulated intestinal fluid.  

Gebara et al. (2013) 

L. bulgaricus Carageenan-
locus bean 
gum coated 
with milk  

The microsphere provided protection to 
the cells. More than 8 log CFU/g were 
recovered when they were incubated in 
simulated gastric fluid and in bile salt 
conditions, only 1.5 log reduction of cell 
viability was found. The cells were 
completely released in 45 min under 
simulated intestinal fluid. 

Shi et al. (2013) 

Lactobacillus 
rhamnosus 

Alginate-locus 
bean gum 
coated with 
chitosan 

The encapsulated cells could encounter 
stress upon freeze drying, heat and acid 
exposure. A majority of the cells 
released in simulated intestinal fluid 
rather than simulated gastric fluid. 

Cheow, Kiew, and 
Hadinoto (2014) 

 
2.6. Pectin based hydrogel beads  

2.6.1. Pectin 

Pectin is a complex mixture of polysaccharides, present in the middle lamella and 

primary cell wall of higher order plants. Commercial pectin is mainly derived from citrus peel 

and apple pomace, by-products of juice manufacturing. Figure 2.6 shows chemical structure of 

pectin consisting of three main building blocks including homogalacturonan (HG), 

rhamnogalacturonan I (RG-I) and rhamnogalacturonan II (RG-II) (Fraeye, Duvetter, Doungla, 

Van Loey, & Hendrickx, 2010b) HG, RG-I, and RG-II form a continuous backbone by covalent 

bonding (Coenen, Bakx, Verhoef, Schols, & Voragen, 2007; Vincken et al., 2003). HG are 

unbranched molecules composed of 1,4-linked α-D-galacturonic acid units, which are called 

smooth regions (Fraeye et al., 2010b). The GalA units have carboxyl groups, some of which are 

naturally methyl esterified. RG-I is referred as hairy regions. It has a backbone of the repeating 
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amounts of soluble solid. Low methoxyl pectin requires the presence of calcium or other divalent 

cations to form a gel (Fraeye et al., 2010a). Pectin gelation is discussed in the next section. 

2.6.2. Pectin as a bioactive polysaccharide 

Pectin is well-known as a rich source of soluble dietary fiber (SDF), which is associated 

with gastrointestinal health, cholesterol reduction, and weight management (Olivares et al., 2006; 

Wicker et al., 2014; Willats, Knox, & Mikkelsen, 2006). Pectin may prevent and reduce 

carcinogenesis (Maxwell et al., 2012). Pectin is considered a highly fermentable substance. 

When it reaches to the large intestine, it will be fermented by gut microflora and degraded to 

oligosaccharides and smaller metabolites. Fermentation of pectin increased the fecal bulk and 

exhibited bifidogenic and prebiotic properties in a recent study (Nazzaro et al., 2012). Pectin 

modulated gut metabolism by improving the growth of Bifidobacterium and Lactobacillus sp., 

leading to an increase of digestion and decrease of inflammation. A number of Bifidobacterium 

sp. and Lactobacillus sp. derived from fecal bacteria of ulcerative colitis patients and fermented 

in pectin fraction media were higher than in the control; acetate levels were also higher 

(Vigsnæs, Holck, Meyer, & Licht, 2011).  Pectin oligosaccharides (POS) from bergamot peel 

increased the number of bifidobacteria and lactobacilli while decreasing clostridial populations. 

It was also observed that POS had higher prebiotic index (PI) than fructo-oligosaccharide 

(Mandalari et al., 2007). The stimulation of Bifidobacterium sp. and Lactobacillus sp. also 

contributes to their action as immunomodulaters, inhibition of pathogens, reduction of ammonia 

formation, lowering of blood cholesterol levels and restoration of normal flora during antibiotic 

therapy (Blaut, 2002). POS could increase short chain fatty acid (SCFA) concentrations, 

particularly that of acetate, propionate and butyrate. Fermentation of POS from apple pomace by 

fecal inoculum increased SCFA concentrations, resulting in pH lowering (Gullon, Gullon, Sanz, 
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Alonso, & Parajo, 2011). High generation of acids with low pH upon fermentation was desired 

as it helped inhibit the overgrowth of pathogens such as E. coli and Salmonella sp. (Topping & 

Clifton, 2001b). 

Pectin has an ability to lower blood cholesterol levels. Highly viscous fibers such as 

pectin restrict the formation of micelles, the absorbable form of cholesterol, or decrease its 

diffusion rate (Gunness & Gidley, 2010). An early study revealed that both low and high 

methoxyl pectin reduced total cholesterol (Judd & Truswell, 1982), however their efficiencies 

are dependent on physico-chemical properties including viscosity, molecular weight (MW) and 

degree of esterification (DE) (Brouns et al., 2012). That study showed that high MW and high 

DE pectin such as apple or citrus pectin (DE-70) had the highest reduction of low-density 

lipoprotein (LDL) cholesterol in hypercholesterolemic patients, followed by apple or citrus 

pectin (DE-35), orange pulp fiber (DE-70), low-MW pectin (DE-70), and citrus pectin (DE-0). 

Highly viscous pectin (13 mPa.s viscosity) provided significantly lower plasma cholesterol 

concentrations in hamsters than a pectin with low viscosity (7 mPa.s) (Terpstra, Lapre, de Vries, 

& Beynen, 1998). Cholesterol lowering is also related to the interaction between bile acids and 

pectin in the small intestine. Bile acids function as an emulsifier, facilitating the formation of 

micelles which promote digestion and absorption of dietary fat. Bile acids are synthesized in the 

human liver and reabsorbed the intestinal tract (Einarsson et al., 1991). The interaction of pectin 

and bile acids reduces reabsorption of bile acids in the small intestine resulting in an increase of 

bile acids, which are transported to the colon and deconjugated or partly dehydroxylated by 

enzymes of the microflora. This probably had an effect on reduction of serum cholesterol levels 

due to increased hepatic synthesis of bile acids and liver depletion of cholesterol (Dongowski & 

Lorenz, 2004). They studied the effects of pectin (with different degrees of methylation) on 
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cholesterol and bile acids concentrations in conventional rats and found that LDL-cholesterol in 

the rats fed the pectin-containing diets was lowered significantly after 21 days and bile acid 

concentrations were also reduced in all groups. 

In addition, pectin possibly reduces the risk of some cancers. Although the mechanism 

has been unclear, it is evident that pectin fragments with small molecular weight (modified 

pectin) can bind to cancer galectin-3 recognition domain, inhibiting cell adhesion and migration 

and preventing apoptosis (Maxwell et al., 2012). Modified citrus pectin (MCP) was reported to 

inhibit cell proliferation and apoptosis of prostate cancer cell lines (Jun & Katz, 2010) and colon 

carcinoma and  erythroleukemia cell lines (Bergman, Djaldetti, Salman, & Bessler, 2010). MCP 

was fed in animal studies employing mice as colon cancer models. The result showed that liver 

metastasis, the main cause impacting the therapeutic effect and postoperative prognosis of 

colorectal cancer, was significant lower in the MCP-diet group (Liu, Huang, Yang, Lu, & Yu, 

2008).  The effects of modified apple pectin (MAP) on a mouse model of colitis-associated colon 

cancer were also studied. The result showed that MAP prevented tumor formation and decreased 

inflammation (Li et al., 2012).  

2.6.3. Low-methoxyl pectin hydrogels  

1) Low-methoxyl pectin gelation  

As mentioned earlier, pectin is classified into low methoxyl (LM) and high methoxyl 

(HM) pectin. They have different gelation mechanisms. HM pectin requires high concentrations 

of sucrose or other sugars (typically ~60-65%wt) under an acidic condition, while LM pectin can 

form gels in the presence of divalent ions. In this research we focused on LM pectin only. As 

well-known, LM pectin requires the presence of divalent ions, generally calcium (Ca) ion, to 
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conditions, such as calcium ion and pectin content, pH, sugar content and temperature. It has 

been found that a single factor has an influence on several other factors. For example, the impact 

of gel properties with increasing calcium ion concentration is strongly affected the amount of 

methyl esters in pectin, pectin concentration, or pH of the gel. 

(a) Intrinsic factors 

The ability to form egg box junction zones is depended on degree methylation 

(DM), the amount of methoxylated galacturonic acid (GalA) residues, and its pattern. The lower 

the DM is, the higher the egg box that is formed. This contributes to an increase of Ca ion 

binding capacity, resulting in higher gel strength (Fraeye et al., 2010b). It was found that the 

modulus of elasticity of pectin gel was increased with decreased DM and that the gel became 

brittle when pectin had very low DM (Fraeye et al., 2010a). With decreasing DM, the chain 

length of the interjunction zones was shortened because a larger proportion of the pectin chains 

was bound in junction zones. This caused reduction of network flexibility (MacDougall, Needs, 

Rigby, & Ring, 1996). The pattern or distribution of non-methoxylated GalA residues also 

affects the gel properties. Pectin with blockwise distribution of free carboxyl groups bound to Ca 

ion more tightly (Ralet, Dronnet, Buchholt, & Thibault, 2001) and exhibited stronger gels 

(Willats, McCartney, Mackie, & Knox, 2001). Pectin with blockwise distribution was also 

reported to be able to associate by egg-box formation at higher DM, compared to pectin with 

random distribution (Liners, Thibault, & Van Cutsem, 1992).  

Molecular mass of pectin plays an important role in gel properties. Gel strength 

was reduced with decrease of pectin molecular mass. When pectin was depolymerized (>1% 

GalA bonds cleaved), the gel network broke down, resulting in decrease of gel elasticity (Fraeye 

et al., 2010b). As formation of a continuous network needs at least two binding sites per chain, 
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strong depolymerization can overly shorten the chains and reduce the gelation efficiency (Capel, 

Nicolai, Durand, Boulenguer, & Langendorff, 2006). However when the depolymerization is 

limited, loss of network strength could be resolved by increasing ionic crosslinks. Addition of 

excessive amount of Ca ions is recommended (Fraeye et al., 2009).  

Pectin can be modified by demethoxylating the polymer in the presence of 

ammonia. The modified pectin is then called as amidated pectin. The added amide groups change 

the viscoelastic properties of pectin gels. Amidation can increase pectin gel strength. In the 

absence of calcium, amidated pectin was able to form strong gels at pHs below 3, while non-

amidated pectin yielded much weaker gels (Lootens et al., 2003). Reduction of pH lowered 

charge density of pectin molecules, resulting in decrease of electrostatic repulsion, and inducing 

aggregation of pectin chains to form gels (Cardoso, Coimbra, & Lopes da Silva, 2003). With 

non-amidated pectin, coarse gel was formed, while the amide groups in amidated pectin helped 

reinforce the gel via hydrogen bonding and inhibited coarsening. Moreover, in the presence of 

Ca ions, decreasing the pH reduced the elasticity of non-amidated pectin gels. On the contrary, 

the gels from amidated pectin were reinforced. This obviously indicated that amidation 

contributed to acid induced gelation (Lootens et al., 2003).    

(b) Extrinsic factors 

Calcium and pectin contents have major impacts on pectin gelation. According to 

the egg box model, two-fold symmetrical helices of pectin are bound by Ca ions. The molar 

ratio, R = 2[Ca2+]/[COO-], is an important parameter. Gel strength increased with R due to more 

amount of egg boxes. All calcium ions are theoretically bound to the egg boxes when R is at 

least 0.5. However, when R is above a certain value, phase separation could occur. The type of 

phase separation is different, dependent on pectin concentrations. At a low concentration, pectin 
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separates because of a salting out effect. Alternatively, gel syneresis is likely to occur at a high 

pectin concentration. In addition to divalent ions (Ca2+), monovalent ions such as Na+ or K+ 

could help enhance gel formation. The larger monovalent cation yielded higher gel strength (Yoo 

et al., 2009). When R is constant, increase of pectin concentration yields higher gel strength 

(Fraeye et al., 2010a). At a lower concentration, the gel is formed by intramolecular ionic 

bonding, which is not effective for gel elasticity (Capel et al., 2006). On the contrary, increase of 

pectin concentrations decreases the fraction of the intramolecular ionic bonding, promoting 

effective junction zones (Cardoso et al., 2003).  

The pH of the pectin solution is also one of the important factors affecting pectin 

gel formation. Decrease of pH reduces the pectin charge density, resulting in lower sensitivity of 

pectin to calcium ions. Pectin can form weak gels in the absence of Ca at pH below 2.0. The 

carboxyl groups in a pectin molecule are almost fully protonated while the electrostatic 

interactions are neglected. Moreover, it was found that the carboxyl groups functioned as 

hydrogen-bond donors when the pH was below 3.5 (pKa of pectin), inducing the gel formation 

by association of three-fold helices through cooperative hydrogen bonding (Gilsenan, 

Richardson, & Morris, 2000). On the contrary, the pectin is almost fully charged when the pH is 

above 4.5. It has remarkably electrostatic interactions that can form gels easily in the presence of 

calcium ions. At greater pH, the gel properties are independent of pH. The microstructure of 

pectin revealed that pectin gels at pH 7 were denser than at pH 3. Pore sizes were in a range of 

100 nm and 300-400 nm for the gel at pH 7 and pH 3, respectively (Lofgren, Guillotin, & 

Hermansson, 2005).  

Sol-gel transition occurs at a temperature, depending on pectin structure and gel 

compositions (Lootens et al., 2003). Mixing pectin and calcium ions at a high temperature 
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decreased the gel strength due to formation of short junction zones, on the other hand, highly 

cooperative helix junctions followed by aggregation was formed at lower temperature (Cardenas, 

Goycoolea, & Rinaudo, 2008). Increasing of temperature reduces the concentration of crosslinks 

and has a tendency to break the gel more than form it (Lootens et al., 2003). High temperatures 

also degrad the pectin chain, negatively affecting texture properties of the gels (Fraeye et al., 

2007). 

Properly amounts of sugar added to pectin solution increases pectin gel rigidity. 

Gel strength and firmness were improved when sucrose (10-20%) was added to a pectin solution. 

However, the gels were weaker, featured, and started syneresis when sugar was added more than 

20% (El-Nawawi & Heikal, 1995). The effects of sugar on gel strength are varied, depending on 

sugar concentration, types of sugar, its structural characteristics, and pH (Fraeye et al., 2010b). 

Pectin gels with fructose and sorbitol had lower gel rigidity than those with sucrose and glucose 

(Grosso, Bobbio, & Airoldi, 2000). The researcher stated that reduction of gel rigidity could 

result from the capacity of sugar to form complex cations in competition with pectin. Fructose 

and sorbitol were able to form a complex with Ca2+. This decreased the availability of the cation 

to associate with pectin molecules, causing lower gel rigidity. On the contrary, sucrose and 

glucose formed no complexes with Ca2+. Sucrose was reported to improve pectin-pectin 

interactions by reducing the water content and stabilizing the crosslink junctions through its 

specific spacing of the hydroxyl groups (Lofgren et al., 2005).         

2.6.4. Applications of pectin based hydrogels in microorganisms 

Pectin based hydrogels are mainly developed for drug delivery systems. A few studies 

were reported the use of pectin based hydrogels for microorganisms. Pectin hydrogel beads were 

initially developed to immobilize yeast and bacteria cells for a continuous fermentation process 
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as an alternative to alginate gels. The beads are expected to be reused as many times as possible. 

Calcium alginate gels were reported to be unstable in the presence of calcium chelators such as 

phosphate, lactate or citrate and cations such as sodium, magnesium. This could cause alginate 

beads to disintegrate during fermentations. In contrast, calcium pectate gels were found to be less 

sensitive to ions and chemical reagents. Bacterial cells, Nocardia tartaricans, immobilized in 

calcium pectate gels had notable high stability during storage and during semi-continuous and 

continuous processing in both stirred batch and packed-bed reactors. The gel could resist the 

destructive effects of tartaric acid, a product from fermentation, for 21 h. On the contrary, 

calcium alginate gels were destroyed within 30 min. To increase the gel stability, the calcium 

pectate gels loaded with N. tartaricans were hardened by glutaraldehyde. It was determined that 

the hardened pectate gels would be last long more than 360 days in the presence of high 

concentration of tartaric acid, while hardened calcium alginate could remain in the acid condition 

for only 3 h (Kurillova et al., 2000). Comparison of alginate and pectin based hydrogels for 

production of poultry probiotics was studied. The researcher revealed that the pectin gels were 

more stable than alginate gels and that their stability was enhanced by coating with chitosan. 

Coating the pectin gels with chitosan effectively limited cell release during fermentation 

compared to the uncoated pectin gels, while there was no significant difference between cell 

release for coated or uncoated alginate gels. Limiting cell release helps the gel to be reusable for 

three or four fermentation cycles (Voo, Ravindra, Tey, & Chan, 2011). 

Pectin was mixed with alginate in order to improve the mechanical and chemical stability 

of alginate gels and their encapsulation effectiveness. The pectin-alginate hydrogels were then 

used to encapsulate Lactobacillus casei. The addition of pectin to alginate increased the 

encapsulation efficiency from 54.3% to 79.2%. It was also found that, compared to alginate 
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hydrogels, pectin-alginate hydrogels increased decaying time of the encapsulated cells during 

storage in yogurt and had higher cell viability after exposure to simulated gastrointestinal 

conditions (Sandoval-Castilla, Lobato-Calleros, García-Galindo, Alvarez-Ramírez, & Vernon-

Carter, 2010). Lactobacillus rhamnosus encapsulated by pectin and coated with whey protein 

isolate showed high viability after freeze drying. The freeze dried microcapsules had no loss and 

75% loss of viability after 120-h incubation in simulated gastric fluid at pH 2.0 and 1.2, 

respectively, while no viable cells were detected in non-encapsulated cells (Gerez et al., 2012). 

Pectin was also used to encapsulate Lactobacillus acidophilus. The researcher reported that the 

pectin microparticles remained intact in simulated gastric juice at pH 1.2 and 3.0 for 120 min and 

in simulated  intestinal juice at pH 7.0 for 300 min. Viability reduction of the encapsulated cells 

was lower than the non-encapsulated cells after exposure to simulated gastric juice at pH 3.0 and 

simulated intestinal juice at pH 7.0. However, the encapsulation could not protect the cells when 

they were exposed at pH 1.2 (Gebara et al., 2013).           
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CHAPTER 3 EFFECTS OF ENZYMATICALLY EXTRACTED PURPLE 
RICE BRAN FIBERS AS A PROTECTANT OF L. PLANTARUM NRRL B-

4496 DURING FREEZING, FREEZE DRYING, AND STORAGE 

3.1. Abstract 

This study investigated purple rice bran-fiber (PRF) as a protectant for Lactobacillus 

plantarum NRRL B-4496 (LP) during freezing, freeze drying, and storage. PRF was 

enzymatically extracted from purple rice bran. L. plantarum NRRL B-4496 was grown in MRS 

broth, centrifuged, and immobilized on PRF suspension. LP cells immobilized on PRF (LP-PRF) 

and free LP cell (control) samples were frozen in either air blast (AF) or cryogenic freezers (CF) 

before freeze drying. Freeze-dried (FLP) samples were stored either at room temperature or at 

refrigerated temperatures. For either freezing method, PRF protected cells had less than one log 

reduction of viable cells while the control had reductions greater than six logs after freeze drying. 

The counts of viable LP cells protected with PRF after freeze drying and 12 weeks storage at 4o 

C for AF and CF treatments were 7.55±0.07 and 7.49±0.06 log CFU/g, respectively. The viable 

LP-PRF cell count for CF was significantly lower than for AF after 12 weeks at room 

temperature. PRF improved LP survival in both AF and CF samples in bile. This study 

demonstrated that freezing methods affected LP viability during storage and that PRF could 

protect at both refrigerated and room temperatures. 

Keywords: Purple rice bran fiber, Lactobacillus plantarum, Freeze drying
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3.2. Introduction 

The American Association of Cereal Chemists defined dietary fiber as “the edible parts 

of plants or analogous carbohydrates that are resistant to digestion and absorption in the human 

small intestine with complete or partial fermentation in the large intestine.” (AACC, 2001). 

Dietary fibers are composed of non-starch polysaccharides, such as cellulose, hemicelluloses, or 

pectin, oligosaccharides such as resistant starches, resistant maltodextrins, or indigestible dextrin, 

and some lignin substances including phytate, cutin and tannin. (Lattimer & Haub, 2010). 

Common food sources for these fibers are whole grains, legumes, fruits, and vegetables (Slavin, 

2008). Besides their well-known benefits of reducing the risk of chronic diseases, some dietary 

fibers could exhibit prebiotic effects, enhancing the growth of colonic bacteria or probiotics 

resulting in improving the host’s health (Manning & Gibson, 2004) Some of the fibers can also 

be used as probiotic protectants, protecting the probiotic cells during down-stream processing, 

formulation and storage (Saarela, Virkajärvi, Nohynek, Vaari, & Mättö, 2006). Thus, these 

positive interactions between prebiotics (dietary fibers) and probiotics would contribute to 

functional foods and nutraceutical products. 

Survival of the bacteria during processing and storage is a necessity for effective 

probiotic products. Most marketed probiotics markets have been preserved by lyophilization or 

freeze drying. Although it is a gentle method, losses of cell viability occur, particularly during 

freezing (Meng, Stanton, Fitzgerald, Daly, & Ross, 2008). For this reason, protective agents such 

as skim milk, sucrose, dextran or polyethylene glycol are commonly required to maintain high 

levels of cell viability during freeze drying and storage (Li et al., 2011). Several dietary fibers 

have been reported to have potential as protectants for probiotics. Saarela et al. (2006) found that 

survival of Lactobacillus rhamnosus E800 was increased after freeze drying when the cell was 
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adhered to wheat dextrin. Oat bran fiber also improved the survival of Lactobacillus casei during 

dehydration and storage at room temperature (Guergoletto, Magnani, Martin, Andrade, & Garcia, 

2010). Similarly, Nata or bacteria cellulose could function as a cryoprotectant and an 

immobilized support for freeze dried lactobacilli (Jagannath, Raju, & Bawa, 2010). Recently, 

Hongpattarakere, Rattanaubon, and Buntin (2013) revealed that the presence of mungbean fiber 

helped maintain viability of L. plantarum after freeze drying and during storage. 

Rice bran, a by-product from rice milling, is a rich source of protein, fat, dietary fiber and 

phytochemicals helpful in promoting human health. In particular, purple rice bran, an excellent 

source of natural antioxidants including tocopherol, tocotrienol, and oryzanol, is a better source 

of antioxidants than the regular rice bran (Jang & Xu, 2009). Kanauchi et al. (2010) 

demonstrated that enzyme-treated rice bran fiber, which was a novel prebiotic, could decrease 

major symptoms of irritable bowel syndrome. Moreover, it could reduce inflammation in the 

colon by modulating the colonic environment and stimulating immune cell differentiation 

(Komiyama et al., 2011). 

Freeze drying consists of two main processes: freezing and drying by sublimation. 

Freezing, especially freezing rates, has been reported as a crucial factor affecting viability of 

lactic acid bacteria after drying (Morgan, Herman, White, & Vesey, 2006). Therefore, it is 

important to determine the effect of combined freezing and freeze drying processes on the 

viability and stability of probiotic cells in addition to evaluating purple rice bran fiber as a 

probiotic protectant. In the present study, dietary fiber enzymatically extracted from purple rice 

(Blanca Isabel) bran was selected to be used as a cryoprotectant for L. plantarum. The aim of 

this study was to examine effects of purple rice bran fiber and freezing methods (air blast 

freezing and cryogenic freezing) on the viability of LP after freezing, freeze drying, and storage. 
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3.3. Material and methods 

3.3.1. Extraction of purple rice bran fiber (PRF)  

PRF was prepared by the enzymatic extraction described by Kanauchi et al. (2010) with 

some modifications. Three hundred grams of defatted purple rice bran was suspended in 1200 

mL of distilled water. Nine-tenths mL of heat-stable amylase (Sigma-Aldrich, St. Louis, MO) 

was subsequently added. The mixture was incubated at 80 °C for 1 h with continuous stirring at 

2400 rpm (IKA RW 20 digital, IKA Works Inc., NC). The mixture was filtered through a 75-µm 

sieve (Fisherbrand Test Sieve, Fisher Scientific Co., PA.). The insoluble fraction was recovered 

and re-suspended in distilled water. The pH was then adjusted to 8 by NaOH (Sigma-Aldrich, St. 

Louis, MO), followed by addition of 0.45 mL of Alcalase (Sigma-Aldrich, St. Louis, MO). The 

re-suspended mixture was continuously stirred at 650 rpm and maintained in a water bath 

(Microprocessor Controlled 280 Series Water bath, Thermo Scientific Inc., MA.) at 63 °C for 5 

h. After hydrolysis, the insoluble residue was isolated using a 75-µm sieve and then was 

suspended in distilled water. The pH of mixture was adjusted to 4.5 by HCl. A 2.4 g of 

hemicellulase (Sigma-Aldrich, St. Louis, MO) was added to the suspension and incubated at 40 

°C for 12 h with 650 rpm stirring. The insoluble fraction was collected by filtering through a 75-

µm sieve and washed with distilled water 4 times prior to drying in a dehydrator (Excalibur 

2900ECB food dehydrator, Excalibur®, FL) at 60°C for 8 h to obtain the PRF. The proximate 

analysis of the PRF was determined. The antioxidant activity, total phenolic contents, moisture 

contents, and colors were also obtained.  

3.3.2. Microorganism  

A lyophilized L. plantarum NRRL B-4496 isolated from sauerkraut was kindly provided 

by ARS Culture Collection (Washington DC, US). The culture was activated in deMan Rogosa 
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Sharpe (MRS) broth (Neogen Corporation, Lansing, MI). Twenty five mL of the strain was 

subsequently inoculated in MRS broth (500 mL) and incubated at 37 °C for 16 h to reach 

stationary phase. Cell pellets were harvested by centrifugation at 12,000 x g for 10 min at 4 °C. 

The pellets were washed three times and suspended in sterile distilled water.  

3.3.3. Preparation of freeze-dried L. plantarum adhered on PRF 

A 5.5 g of PRF was mixed with 55 mL of cell pellet suspension in a sterile weighting 

boat. The bacterium-PRF suspension was kept at room temperature for 1 h (Guergoletto et al., 

2010). Then, the suspension was divided into two groups; one was frozen using an air blast 

freezer (Master-Bilt Products, New Albany, MS) at -20 °C for 24 h, while the other group was 

frozen in a cabinet cryogenic freezer (Air Liquide Co., Houston, TX) with liquid nitrogen (Air 

Liquide, Houston, TX, USA). After reaching an internal temperature of -20 °C, the samples were 

stored at -20 °C for 24 h in a regular freezer. All samples were subsequently dried in a freeze 

dryer (Virtis Genesis 35 xl, SP Scientific, PA). After freeze drying, the freeze dried cells adhered 

on PRF (FLP-PRF) were measured for moisture content and color. Two gram samples of FLP-

PRF were loaded in glass bottles and stored either at ambient temperature or at refrigerated 

temperature to examine cell stability during storage.  

3.3.4. Proximate analysis of PRF 

PRF was analyzed for moisture content, fat, protein, ash, total dietary fiber. The moisture 

content was determined according to AOAC standard methods 930.15 (AOAC, 2005) and then 

the fat was extracted with Soxhlet extraction from the dehydrated PRF according to AOAC 

standard methods 920.39 (AOAC, 2005). The protein content was determined according to 

AOAC procedure 992.15 (AOAC, 2005) using a Perkin Elmer Model 2410 Nitrogen Analyzer 

(Perkin Elmer Instruments, Norwalk, CT). The ash content was determined with a Thermolyne 
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Type 6000 muffle furnace (Thermo Scientific, Lawrence, KS) at 549 ºC as described in AOAC 

method 920.153 (AOAC, 2005). The total dietary fiber was determined according to AOAC 

method 985.29 (AOAC, 2005) using an enzymatic-gravimetric method.  

3.3.5. Determination of antioxidant activity and total phenolic content of PRF 

Antioxidant activity and total phenolic content of the PRF were determined. Antioxidant 

activity of PRF was measured using the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) 

method described by Jun, Song, Yang, Youn, and Kim (2012). Trolox® (6-hydroxy-2,5,7,8-

tetramethylchroman-2-carboxylic acid) was used as a standard. Antioxidant activity was 

expressed as %Antioxidant activity = [(absorbance 515 nm of control – absorbance 515 nm of 

sample)/absorbance 515 nm of control] × 100. The result was reported as Trolox equivalents. 

Total phenolic content was determined according to the method of Jun et al. (2012). Gallic acid 

was used as a standard, and total phenolic contents were expressed as gallic acid equivalents. All 

chemicals were purchased from Sigma-Aldrich (St. Louis, MO). 

3.3.6. Colors of PRF and FLP-PRF 

Colors of PRF and FLP-PRE were determined using the chroma meter LABSCAN XE 

(Hunterlab, VA, USA). The data was reported in CIELAB color scales (L*, a*, and b*). Chroma 

and hue angle value were calculated with Eq. 3.1 and 3.2, respectively.  

Chroma = [a*2 + b*2] ½   (3.1) 

Hue angle = tan-1 (b*/a*)   (3.2) 

3.3.7. Scanning electron microscopy (SEM) 

FLP-PRF samples were mounted on aluminum SEM stubs and then coated with gold: 

palladium (60:40) in an Edwards S150 sputter coater. The morphology of FLP-PRF was 

observed under a scanning electron microscope (JSM-6610LV, JEOL Ltd. Japan). 
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3.3.8. Cell viability of L. plantarum after freezing and freeze drying  

Cell viability was determined according to the method described by Jagannath et al. 

(2010) with some modification. After freezing, the LP-PRF was thawed at room temperature. 

One mL of thawed sample was added to 9 mL of 0.85 g/100 mL sterile saline solution. 

Regarding FLP-PRF, one g of sample was mixed with 9 mL of the saline solution in a stomacher 

(AES Carboratoire easy MIX, AEC Chemunex, NJ) for 2 min. Serial dilutions were performed in 

the saline solution. The pour plating method using MRS agar (Neogen Corporation, Lansing, MI) 

with 0.75 g/100 mL CaCO3 (Sigma-Aldrich, St. Louis, MO) as the media was used in 

enumeration of the cells. The plates were incubated at 37 °C and were enumerated for colony 

forming units per gram (CFU/g) after 48 h. 

3.3.9. Acid and bile tolerances 

Acid and bile tolerances were determined according to the method described by Cebeci 

and Gürakan (2003) with some modifications. Both free cells and FLP-PRF were considered. 

Free cells were prepared by growing the strain in MRS broth for 16 h. Determination of acid 

tolerance was accomplished by adding 1 g of FLP-PRF or 1 mL of free cells to 30 mL of sterile 

acidified MRS broth adjusted to a pH of 2.0 or 3.0. The cells were incubated at 37 °C and 

collected after 1 and 2 h incubation. In the bile tolerance test, FLP-PRF samples and free cells 

were separately exposed to 30 mL of MRS broth containing either 0.3g/100mL, 0.5g/100mL, or 

1g/100mL oxgall (Sigma-Aldrich, St. Louis, MO) and incubated at 37 °C. Samples were tested 

after incubation for 12 and 24 h. The viable cells of both acid and bile tolerance studies were 

enumerated on MRS agar containing 0.75 g/100 mL CaCO3 after incubation at 37 °C for 48 h. 
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3.3.10. Stability of FLP-PRF during storage 

Cell viability of FLP-PRF samples stored at either ambient or refrigerated temperatures 

was investigated after storage for up to 12 weeks. A new bottle was opened at every time 

interval. One gram of FLP-PRF was mixed with 9 mL of 0.85g/100mL sterile saline solution in a 

stomacher (AES Carboratoire easy MIX, AEC Chemunex, NJ) for 2 min prior to performing 

decimal dilution. The viable cells on MRS agar containing 0.75g/100mL CaCO3 were counted 

after 48 h incubation at 37 °C. The specific rate of degradation (k) of FLP-PRF was calculated 

according to Eq 3.3 (Korakoch et al., 2005) 

logN = logN0 – kt   (3.3) 

where N0 is the initial (time t = to) number of viable cells (CFU/g of solids), N is the number of 

viable cells (CFU/g of solids) at time t (week), k is the specific rate of degradation (week-1) and t 

is the storage time. 

3.3.11. Statistical analysis 

All values were means and standard deviations of three determinations. Means values 

from statistical analysis was condcuted with the SAS (Statistical Analysis System) software 

(version 9.2) (SAS Institute Inc., Cary, NC, USA) to test the significance of the differences 

among the different treatments. 

3.4. Results and Discussions 

3.4.1. Evaluation of PRF and FLP-PRF 

As shown in Table 3.1, the major dry components of PRF were dietary fiber (66.34 

g/100g), protein (20.7 g/100g), fat (9.05 g/100g), and ash (2.25 g/100g). Digestible carbohydrate 

was 1.56 g/100g in the PRF. The composition of PRF was within the range reported by other 

researches (Abdul-Hamid & Luan, 2000; Choi et al., 2011; Kanauchi et al., 2010). PRF had 
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antioxidant activity and contained phenolic compounds. Vitaglione, Napolitano, and Fogliano 

(2008) suggested that most of phenolic compounds in bran covalently bound to cell wall 

polysaccharides via ester bonds, called as dietary-fiber phenolic compounds including ferulic 

acid, diferulic acids ,ρ-coumaric acid, caffeic acid, and benzoic acid derivatives.  

Table 3.1. Proximate analysis, antioxidant activity, and total phenolic contents of PRF  

Compositions  g/100 g (dry basis) 

Proteins 20.7±0.14 

Fats 9.05±0.10 

Carbohydrates* 67.9±0.22 

    Total dietary fibers 66.3±1.21 

Ash 2.25±0.15 

Antioxidant activity (µmol TE/kg)  1350.38±12.84 

Total phenolic contents (mg GA/kg)  260.3±1.45 

*Carbohydrate (g/100 g) was calculated by the formula, 100 - protein - lipids - ash. Values are 
means + standard deviation of triplicate measurements. 

The moisture content of PRF and FLP-PRF is listed in Table 3.2. The moisture of PRF 

was 5.68 g/100g which was not significantly different than FLP-PRF frozen by air blast freezing, 

5.23 g/100g (P ≤ 0.05). The moisture content of FLP-PRF cryogenically frozen (7.22 g/100g) 

was significantly higher than both PRF and air blast frozen FLP-PRF (P ≤ 0.05). All color values 

(L*, a*, b*, chroma, and hue angle) of FLP-PRF for both AF and CF treatments were 

significantly different than those of PRF (P ≤ 0.05). The color of FLP-PRF was darker than PRF.  

3.4.2. Viability of L. plantarum adhered on PRF after freezing and after freeze-drying  

Viability of L. plantarum, both as free cells and as cells adhered on PRF and frozen by 

different freezing methods, is shown in Figure 3.1. Free cells, the cells without any protectants, 

were used as a control.  
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Jagannath et al. (2010) suggested that a disorganized arrangement of overlapping and 

twisting fibrous strands could have the potential to hold bacteria in the spaces and on the surface. 

It has been reported that insoluble fibers have potential as probiotic protectants by their reducing 

bacteria inactivation during freezing, drying, and storage (Charalampopoulos, Wang, Pandiella, 

& Webb, 2002; Guergoletto et al., 2010; Hongpattarakere et al., 2013; Saarela et al., 2006). 

 
3.4.3. Acid and bile tolerance of freeze dried L. plantarum adhered on PRF 

This strain of L. plantarum has been reported as acid tolerant (Reddy, Raghavendra, 

Kumar, Misra, & Prapulla, 2007) and capable of surviving in acidic mediums of both pH 2 and 

pH 3. In our study, the number of viable free cells was decreased less than 1 log after incubation 

for either 1 or 2 h in either pH condition (Figure 3.3). The number of viable cells for FLP-PRF 

after incubation at pH 3 for 2 h was 7.75±0.10 log CFU/g and 7.64±0.07 log CFU/g for AF and 

CF treatments, respectively. These values were not significantly different (P ≤ 0.05). After 2 h 

incubation at pH 2, the viable cells of FLP-PRF/CF (6.06±0.01 log CFU/g) was significantly 

lower than FLP-PRF/AF (6.99±0.12 log CFU/g) (P ≤ 0.05). This might indicate that cryogenic 

freezing, a rapid freezing method, could cause some cell damage resulting in the reduction of 

acid tolerance. Bâati, Fabre-Gea, Auriol, and Blanc (2000) reported that high freezing rates 

failed to improve cell viability and also might have detrimental effects on cells. When a high 

freezing rate was applied, membranes could be ruptured due to osmotic fluxes.(Volkert, Ananta, 

Luscher, & Knorr, 2008). This phenomenon could probably affect the proton permeability of 

plasma membrane, contributing to the regulation of intracellular pH which directly relates to the 

acid-stress response of microorganisms. 
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acid bacteria. Bile sensitive cells were likely to become non-viable during storage more rapidly 

than bile resistant cells (Heenan, Adams, Hosken, & Fleet, 2004). Thus, the result could confirm 

that cryogenic freezing negatively affected cell activities. 

3.4.4. Cell stability during storage 

After 12-week storage at 4°C, less than 1 log cycle reduction was observed in both FLP-

PRF/AF and FLP-PRF/CF (Figure 3.5). The viable cell counts were 7.55±0.07 and 7.49±0.06 log 

CFU/g for FLP-PRF/AF and FLP-PRF/CF, respectively. The specific rate of degradation (k) of 

FLP-PRF/AF (0.053±0.001 week-1) was significantly lower than FLP-PRF/CF (0.115±0.002 

week-1) (P ≤ 0.05). Regarding the room temperature storage condition, the viability of the freeze 

dried cells in both AF and CF were reduced to about 1 log cycle after storage for 4 weeks. By the 

end of the 12-week period, the number of viable cells had been gradually decreased to 5.02±0.09 

log CFU/g for FLP-PRF/AF and to 4.32±0.03 log CFU/g for FLP-PRF/CF. Similar to the 4°C 

storage condition results, the degradation rate of the cryogenically frozen FLP-PRF (0.362±0.001 

week1) was significantly higher than the air blast frozen FLP-PRF (0.283±0.001 week-1). These 

results were in agreement with those of Péter and Reichart (2001) who noted that slow freezing 

positively affected the survival of L. plantarum, compared to fast freezing, At a high freezing 

rate, cell injury would ensue due to mechanical forces originated from intracellular ice formation 

(Volkert et al., 2008). Our study indicates that PRF may become a preferred protectant for freeze 

dried L. plantarum cells during storage. For example, in contrast with our PRF results, viable 

counts of freeze dried L. plantarum incorporated with inulin and gum acacia was considerably 

reduced after storage at 25°C for 1 month (Dhewa, Pant, & Mishra, 2011). Likewise, the number 

of freeze dried L. plantarum immobilized on mungbean crude fiber had 3 log reductions after 

storage for 4 weeks at 30°C (Hongpattarakere et al., 2013).  
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bars, cereal products or dairy products). The application of the probiotic-purple rice bran fiber 

supplement in food systems are recommended to study. 
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CHAPTER 4 DEVELOPMENT OF A COMBINED LOW METHOXYL 
PECTIN AND RICE BRAN EXTRACT DELIVERY SYSTEM TO 

IMPROVE THE VIABILITY OF L. PLANTARUM UNDER ACID AND 
BILE CONDITIONS 

4.1. Abstract  

A combined pectin-rice bran delivery system for Lactobacillus plantarum NRRL-B4496 

(LP) was developed. Four pectin (PE)-rice bran extract (RB) gel solutions were prepared: (1) 2.0 

g/100 mL PE with 0.5 g/100 mL RB, (2) 2.0 g/100 mL PE with 1.0 g/100 mL RB, (3) 2.0 g/100 

mL PE with 2.0 g/100 mL RB, and (4) 2.0 g/100 mL PE (control). L. plantarum was grown in 

MRS broth, centrifuged, and mixed with the gel solutions. The capsules loaded with L. 

plantarum (LP/PE-RB capsules) were then prepared by ionotropic gelation. PE-RB gel solutions 

exhibited pseudoplastic behavior. The gel solution containing 2.0 g/100 mL RB had the highest 

consistency and viscosity. All LP/PE-RB capsules had similar diameter. Both the sphericity and 

the encapsulation efficiency of the capsules were increased with higher RB content, while the 

hardness and springiness were decreased. When exposed to acidic and bile salt conditions, the 

viability of encapsulated cells was higher than free cells. The study demonstrated that PE-RB 

capsules could have potential as a delivery system for L. plantarum.  

Keywords: Pectin-rice bran delivery system, Lactobacillus plantarum, capsules 

4.2. Introduction 

Probiotics are well-known for their health promoting effects. They can relieve diarrhea, 

reduce colonization of pathogenic bacteria and intestinal inflammation, alleviate lactose
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 intolerance, reduce blood cholesterol, and possess anti-colon cancer effects (Ratna, Chauhan, 

Dixit, Babu, & Jamil, 2009; Saxelin, Tynkkynen, Mattila-Sandholm, & de Vos, 2005). The 

probiotic activity depends on the dose levels and the probiotic’s viability in products and in gut 

environments (Kailasapathy & Chin, 2000). The recommended levels of live probiotic bacteria 

for addition to food products is at least 106-107 cfu/g (Floch et al., 2008). Therefore, it is 

necessary to maintain high levels of probiotics in products before consumption and to ensure 

good survival during the digestion processes to reach the sites of action with sufficient numbers 

and viability to provide health benefits. 

Encapsulation is the packaging technology of active ingredients in small capsules that 

release their content at controlled rates over prolonged periods of time (Corbo, Bevilacqua, 

Gallo, Speranza, & Sinigaglia, 2013). Different encapsulation techniques are used for probiotics 

to enhance their viability and for target delivery, generally, including spray drying, freeze drying, 

emulsion, and extrusion (Huq, Khan, Khan, Riedl, & Lacroix, 2012). According to Krasaekoopt, 

Bhandari, and Deeth (2003), probiotic powder encapsulated by drying processes is released in 

food products.  This results in loss of protection and greater deterioration in unfavorable 

environments, such as during the passage through the gastrointestinal (GI) tract. (de Castro-

Cislaghi, Silva, Fritzen-Freire, Lorenz, & Sant’Anna, 2012) found that spray dried 

Bifidobacterium animalis subsp. lactis Bb-12 powder with whey had greater decrease in viability 

at low pH and bile conditions than free cells. On the other hand, encapsulation of probiotics in a 

hydrocolloid gel matrix provides protection against GI conditions.  Encapsulated B. animalis Bb-

12 in milk protein or alginate-chitosan capsules formed by gelation methods had a larger number 

of viable cells than free cells at GI conditions (Heidebach, Forst, & Kulozik, 2009; Liserre, Re, 

& Franco, 2007).  
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Encapsulation of probiotics in gel/bead matrix, such as sodium alginate (Sathyabama, 

Ranjith, Bruntha, Vijayabharathi, & Brindha, 2014), carrageenan (Hernandez-Rodriguez, 

Lobato-Calleros, Pimentel-Gonzalez, & Vernon-Carter, 2014), carboxymethyl cellulose 

(Chitprasert, Sudsai, & Rodklongtan, 2012), and gelatin (Annan, Borza, & Hansen, 2008) has 

been successfully studied. However, there are few reports on encapsulation of probiotics using 

pectin matrix, although it has been widely used in the pharmaceutical industry as a delivery 

vehicle for colon-specific oral drugs. Pectin is a complexly structured polysaccharide 

predominantly composed of homogalacturonan, a homopolymer of partially methyl-esterified (1-

4)-linked α-D-galacturonic acid, and a range of neutral sugars such as rhamnose, galactose, or 

arabinose (Maxwell, Belshaw, Waldron, & Morris, 2012). It can form three dimensional rigid 

and water insoluble hydrogels by calcium-induced ionotropic gelation (Lee, Kim, Chung, & Lee, 

2009 & Lee, 2009). Pectin is a soluble fiber that is resistant to GI conditions and degradable by 

colonic bacteria (Cabrera, Cambier, & Cutsem, 2011). It also has prebiotic properties, which can 

enhance the growth of Bifidobacterium and Lactobacillus sp. (Wicker et al., 2014). 

Pectin has been reported to be less sensitive to chemical agents and more resistant to GI 

environments than alginate. Voo, Ravindra, Tey, and Chan (2011) found that pectin based beads 

containing poultry probiotic cells had higher mechanical strength than alginate beads. As a 

result, cell release from pectin beads was less than that from alginate beads during fermentation. 

Viability of Lactobacillus rhamnosus in gastric conditions at pH 2 was improved when the cell 

was encapsulated with pectin (Gerez, Font de Valdez, Gigante, & Grosso, 2012). In a recent 

study, Gebara et al. (2013) encapsulated Lactobacillus acidophilus in pectin beads by ionotropic 

gelation. The result showed that the reduction of encapsulated cells was 1.51 log cycles after 
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incubating in simulated gastric (pH 3) and intestinal (pH 7) juices, while a reduction of 3.54 log 

cycles was observed in non-encapsulated cells. 

Pectin’s high porosity and weak binding behavior to a crosslink agent (Ca2+) are 

disadvantages, limiting the use of pectin in encapsulation technology (Chan et al., 2011; Fang et 

al., 2008). Adding a filler agent, such as starch or rice bran was suggested to overcome the 

problem and to increase the protective effect for probiotic delivery. Chan et al. (2011) revealed 

that starch filler could improve sphericity, flowability, and mechanical strength and reduce 

porosity of the calcium alginate beads. Viability of Lactobacillus casei encapsulated in the beads 

with starch filler was higher than the control after lyophilization and during storage. Chitprasert 

et al. (2012) determined that encapsulation of Lactobacillus reuteri in aluminum carboxymethyl 

cellulose–rice bran capsules helped increase microencapsulation yield and contributed to cell 

survival during heat exposure.  

A pectin (PE) and rice bran extract (RB) delivery system may protect viable L. plantarum 

cells under acidic and bile conditions.  There are either no data or only limited information 

available on effects of PE and RB delivery systems containing probiotics at acidic and bile 

conditions.  Therefore, the intention of this study was to develop and analyze PE-RB loaded with 

L. plantarum capsules. The effects of RB on physical properties of the capsules were 

investigated as well as the viability of the encapsulated cells after encapsulation and exposure to 

acidic and bile conditions. The L. plantarum NRRL-B4496 strain used is a probiotic strain used 

in fermented food products (Fijan, 2014; Pedreschi, Campos, Noratto, Chirinos, & Cisneros-

Zevallos, 2003; Upadhyay, 2014). It has the ability to inhibit the growth of some bacteria that 

cause digestive illness, such as Helicobacter pylori (Apostolidis, Kwon, Shinde, Ghaedian, & 

Shetty, 2011) and Listeria monocytogenes (Upadhyay, 2014).  The L. plantarum also reduces 
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hypolipidemic activity (Haroun, Refaat, El-Waseif, El-Menoufy, & Amin, 2013). Additionally, it 

shows antioxidant (Das & Goyal, 2015) and antifungal activities (Cortes-Zavaleta, Lopez-Malo, 

Hernandez-Mendoza, & Garcia, 2014).  

4.3. Materials and methods 

4.3.1. Cell culture preparation  

Lactobacillus plantarum NRRL B-4496 (LP) isolated from pickled cabbage was kindly 

provided by ARS Culture Collection (Washington DC, US). The frozen stock culture was 

reactivated twice in de Man Rogosa Sharpe (MRS) broth (Neogen Corporation, Lansing, MI). 

The culture (25 mL) was subsequently inoculated in MRS broth (500 mL) and incubated at 37 

°C for 16 h to reach stationary phase.  Cell pellets were harvested by centrifuging at 10,000 x g 

for 10 min at 4 °C (Beckman J2-HC, Beckman Coulter, Inc., Brea, CA). The pellets were 

washed three times and suspended in sterile distilled water (LP suspension). 

4.3.2. Preparation of pectin-rice bran loaded with L. plantarum capsules 

The preparation was performed as described by Lee et al. (2009) with some 

modifications. First, pectin-rice bran gel solutions loaded (PE-RB gel solution) with LP were 

prepared by mixing a LP suspension (~109cfu/mL) with 2 g/100 mL of low-methoxyl pectin (PE) 

(TIC PRETESTED® pectin LM 32 powder), provided by TIC Gums Inc (Belcamp, MD) and 

rice bran extract (RB) (Ribus Inc. (St. Louis, MO). The proximate composition of RB is 17 g/100 

g protein, 41 g/100 g carbohydrate, 22 g/100 g fat, 13 g/100 g ash, and 7 g/100 g water. The 

required concentrations of RB were 0.5 g/100 mL, 1 g/100 mL, and 2 g/100 mL. PE gel solution 

(without RB) containing LP was used to produce control (LP/PE) capsules. All gel solutions with 

LP were then stirred for 1 h, extruded through a 23G needle by a syringe pump at a flow rate of 

1.2 mL/min, and dropped into calcium chloride (CaCl2) solution (4 g/100 mL) (Fisher Scientific 
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Inc., Pittsburgh, PA). The pectin-rice bran loaded with LP (LP/PE-RB) capsules were 

immediately formed and continuously hardened in CaCl2 solution for 30 min. The capsules were 

collected, washed twice, and kept at 4 °C for further analysis.  

4.3.3. Rheological properties of PE-RB gel solutions 

Flow behavior of the PE-RB gel solutions without LP was measured using an AR 2000 

Ex Rheometer (TA Instruments, New Castle, DE) fitted with a plate geometry (a steel plate with 

a 40-mm diameter, having a 200 μm gap between the two plates). Each sample was placed on the 

temperature-controlled parallel plate at 25 °C. The shear stress was measured at shear rates from 

1 to100 s-1. The flow properties of the gel sample were characterized by the power law, shown in 

Eq. 4.1. 

σ = Kγn                           (4.1) 

where σ = shear stress (Pa), γ = shear rate (s−1), K = consistency index (Pa sn), and n = flow 

behavior index. A plot of log σ against log γ was constructed, and the magnitudes of K and n 

were determined from the resulting straight line intercept and slope, respectively. The mean 

values of n, K, and apparent viscosity for triplicate gel solution samples were reported. 

4.3.4. Determination of LP/PE-RB capsule size and shape 

Thirty capsule diameters were measured with a stereomicroscope (Zeiss SteREO 

Lumar.V12, Thornwood, NY), using an image analyzer software. The capsule shape was 

quantified by the sphericity factor (SF), shown in Eq. 4.2 (Chan et al., 2011).  

SF = 
dmax	- dmin

dmax + dmin
                   (4.2) 

where dmax is the largest diameter and dmin is the smallest diameter perpendicular to dmax. 
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4.3.5. Determination of encapsulation efficiency 

The encapsulation efficiency (EE) represented a combined measure of the efficacy of 

entrapment and survival of viable cells during the microencapsulation procedure, calculated 

according to Eq. 4.3 (Gebara et al., 2013).  

EE (%) = 
N

N0
 x 100                       (4.3) 

where EE is the encapsulation efficiency, expressed in percentage, N is the number of cells 

released from the beads (log CFU/g of capsules), and N0 is the number of cells in the gel solution 

(log CFU/g of LP suspension). 

To determine the number of cells in the capsules, the encapsulated LP was released 

according to the method described by Sathyabama et al. (2014) with some modifications. One 

gram of the capsules was added to 99 mL of 0.1 M phosphate buffer (pH 7.2) and stirred at 250 

rpm by a shaker (Lab line incubator shaker model 3525, Fisher Scientific Inc., Pittsburgh, PA) 

for 30 min. The colony forming units (CFU/g) was examined by pour-plate method on MRS agar 

containing CaCO3 (0.6g/100mL) (Fisher Scientific Inc., Pittsburgh, PA). The plate was incubated 

at 37 °C for 24-48 h. 

4.3.6. Textural properties of LP/PE-RB capsules 

The LP/PE-RB capsules were analyzed for texture profile as described by Sandoval-

Castilla, Lobato-Calleros, Garcia-Galindo, Alvarez-Ramírez, and Vernon-Carter (2010) with 

some modification. An Instron Universal Testing Device (Model 5544, Norwood, MA) equipped 

with a 5 Kg-load cell was used for determination. The capsule samples (5 g) were placed on a 

fixed bottom plate under the probe. The contact force was controlled at 0.005 N. The samples 

were compressed 30%, using two compression cycles at a constant crosshead velocity of 30 mm 

min-1. Hardness, cohesiveness, and springiness (ratio between the areas under the compression 
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and decompression curves) were analyzed using the software Bluehill Materials Testing 

Software (Bluehill 3, version 3.13, 2010, Instron). 

4.3.7. Scanning electron micrographs of LP/PE-RB capsules 

The LP/PE-RB capsules were incubated overnight in a mixture of ethanol, acetic acid, 

and formaldehyde. After incubation, they were rinsed and dehydrated with ethanol. Then they 

were dried with liquid CO2 using a critical point-dryer. The dried capsules were cut, mounted on 

aluminum SEM stubs, and coated with gold:palladium (60:40) in an Edwards S150 sputter 

coater. The capsule morphology was observed under a scanning electron microscope (JSM-

6610LV, JEOL Ltd. Japan). 

4.3.8. Survival of the cells in LP/PE-RB capsules under acidic and bile conditions 

Acid and bile tolerance of the encapsulated cells and of free cells was determined 

according to the method described by Ding and Shah (2007). One gram of capsules and 1 mL of 

free cells (~108 CFU/g) were inoculated into acidified MRS broth (pH 3.0) to measure acid 

tolerance and separately into MRS broth containing 1 g/100 mL oxgall (Sigma Aldrich, St. 

Louis, MO) to measure bile tolerance. They were then incubated at 37 °C for 2 h (acid) and 24 h 

(bile) to determine acid and bile tolerances. The encapsulated LP was released from the capsules 

and enumerated according to the method described in section 4.3.5. 

4.3.9. Statistical analysis 

All values were means and standard deviations of three determinations.  Statistical analysis 

on the mean values was conducted with the SAS (Statistical Analysis System) software (version 

9.4) (SAS Institute Inc., Cary, NC, USA) to test for differences among the treatments (P ≤ 0.05). 
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4.4. Results and discussions  

4.4.1. Rheological properties of PE-RB gel solutions 

Flow behavior and apparent viscosity of the gel solutions are shown in Table 4.1. The 

results indicated that the rheological properties of gel solutions were affected by RB 

concentrations. All gel solutions exhibited non-Newtonian or  pseudoplastic behaviors, as 

evidenced by the flow index (n) which was less than 1.0 (Paredes, Rao, & Bourne, 1989).   

Table 4.1. Flow behavior properties of PE-RB gel solutions at 25°C 

Gel 

solutions 

RB concentration 

(g/100 mL) 
n 

K 

(Pa sn) 

Viscosity 

(Pa s) 

PE (control) 0 0.968±0.014a 0.064±0.005b 0.056±0.007b 

PE-0.5RB 0.5 0.961±0.013a 0.021±0.001c 0.018±0.001c 

PE-1.0RB 1 0.865±0.024b 0.092±0.009b 0.050±0.001b 

PE-2.0RB 2 0.275±0.035c 5.711±0.865a 0.213±0.007a 

Gel solutions of PE, PE-0.5RB, PE-1.0RB, and PE-2.0RB are gel solution containing 2.0 g/100 
mL pectin without rice bran extract, 2.0 g/100 mL pectin with 0.5 g/100 mL rice bran extract, 2.0 
g/100 mL pectin with 1.0 g/100 mL rice bran extract, and 2.0 g/100 mL pectin with 2.0 g/100 
mL rice bran extract, respectively. a-cMeans ± standard deviation with different letters within the 
same column are significantly different (P ≤ 0.05). 

The n obtained in the current study was 0.968±0.014, 0.961±0.013, 0.865±0.024, and 

0.275±0.035 for PE, PE-0.5RB, PE-1.0RB, and PE-2.0RB gel solutions, respectively. PE and 

PE-0.5RB gel solutions demonstrated a nearly Newtonian like fluid behavior. Pseudoplasticity of 

the gel solutions increased significantly with higher RB concentrations. The PE-2.0RB gel 

solution had significantly highest consistency (5.711±0.865 Pa sn) (P ≤ 0.05). Moreover, RB 

concentration greatly influenced gel solution viscosity. The PE-0.5RB gel solution had 

significantly lower viscosity than the PE gel solution (0.018±0.001 and 0.056±0.007 Pa s, 

respectively) (P ≤ 0.05). RB functions as a processing aid for extrusion processes, helping to 

reduce a product’s surface irregularity and increase production rates (Hammond (2000).  In 
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general, viscosities of polymers decrease when the proper amount of processing aid is used 

(Achilleos, Georgiou, & Hatzikiriakos, 2002).  This could possibly explain the reduction of 

viscosity at low levels of RB (PE-0.5RB gel solution), followed by increased viscosity at higher 

RB concentrations. The PE-2.0RB gel solution had a viscosity value of 0.213±0.007 Pa s, which 

was significantly higher than PE-1.0RB gel solution (0.050±0.001 Pa s) and the PE gel solution. 

Some interactions between RB and PE may have occurred, causing changes to their functional 

properties. Our lab examined structural aspects of PE-RB powder by Fourier Transform Infrared 

Spectroscopy (FTIR) and found certain changes in spectra profiles of PE-RB powder, compared 

to PE or RB alone (see Appendix A). RB contains high protein and fat content. Certain 

functional groups of RB protein and fatty acids are mainly involved in the interaction, as 

reported by Chitprasert et al. (2012) 

4.4.2. LP/PE-RB capsule size, shape, and encapsulation efficiency  

As shown in Table 4.2, all capsules had similar sizes (P ≤ 0.05). The sphericity factor 

(SF) was used to determine the shape of the capsule samples. Capsules with SF less than 0.05 are 

considered to be spherical beads (Lee, Ravindra, & Chan, 2013). LP/PE-2.0RB capsules had the 

lowest SF (0.03±0.02) (P ≤ 0.05). The highest SF was in LP/PE-0.5RB (0.07±0.05) capsules, 

which were not significantly different compared to LP/PE samples (0.06±0.04) (P ≤ 0.05). The 

appearance of the LP/PE-RB capsules is shown in Figure 4.1. The LP/PE-2.0RB capsules had 

spherical shape, and were light brown in color due to the natural color of RB. LP/PE, LP/PE-

0.5RB, and LP/PE-1.0RB samples were unable to form spherical particles which may be due to 

insufficient RB and pectin concentration. These results are compatible with those of  Chitprasert 

et al. (2012) who determined that the capsules produced from carboxymethyl cellulose became 

more spherical when rice bran was added. This effect may be viscosity dependent, as noted by 
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Chan et al. (2011). Lee et al. (2013) reported that spherical beads or capsules could not be 

formed if the gel solutions had a viscosity between 60-150 cp. Although all gel solutions in our 

study had viscosities out of this critical range, only PE-2.0RB gel solution had a higher viscosity 

than the critical value (0.213 Pa.s. or 213 cp). 

Table 4.2. Diameter, sphericity factor, and encapsulation yield of LP/PE-RB capsules 

Capsules 

RB 

concentration 

(g/100 mL) 

Diameter of 

beads 

(Hammond)  

Sphericity 

factor 

(SF) 

Encapsulation 

Efficiency (EE) 

(%) 

LP/PE 0 6.54±0.53a 0.06±0.04a 83.23±3.41c 

LP/PE-0.5RB 0.5 6.52±0.57a 0.07±0.05a 90.94±1.98b 

LP/PE-1.0RB 1 6.23±0.52a 0.05±0.03b 93.40±1.64ab 

LP/PE-2.0RB 2 6.37±0.28a 0.03±0.02b 95.44±1.22a 
 

LP/PE = L. plantarum loaded in pectin capsules without rice bran extract (control). LP/PE-
0.5RB, LP/PE-1.0RB, and LP/PE-2.0RB = L. plantarum loaded in pectin capsules containing 0.5 
g/100 mL, 1.0 g/100 mL, and 2.0 g/100 mL rice bran extract, respectively. a-bMeans ± standard 
deviation with different letters within the same column are significantly different (P ≤ 0.05). 

Table 4.2 demonstrated that LP/PE-RB capsules showed high encapsulation efficiency 

(EE) in all samples (less than one log cycle of viable cells reduction).  LP/PE-RB capsules 

contained more than 107 CFU/g of viable cells. Mattila-Sandholm et al. (2002) suggested that for 

colonization, viable population of probiotics should be in a range of 107-109 CFU/g. High EE 

would be attributed to the pectin shell. White, Budarin, and Clark (2010) have reported that 

pectin is categorized as a nanoporous polymer, having pore sizes between 2 to 50 nm. It is well 

known that bacteria sizes are about 0.2 µm in diameter and 2-8 µm in length. Thus, pectin has 

considerable capacity for cell entrapment. It was obvious that RB helped improve the EE of 

LP/PE-RB capsules. The EE monotonically increased with RB. LP/PE-2.0RB samples had the 

highest EE (95.44±1.22%), followed by LP/PE-1.0RB (93.40±1.64%), LP/PE-0.5RB 

(90.94±1.98%), and LP/PE capsules (83.23±3.41%). The increase of EE probably resulted from 
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of LP/PE-1.0RB and LP/PE-2.0RB capsules possibly occurred because of protein and fat in RB. 

Liu, Xu, and Guo (2008) observed that protein is broken up by water and functions as a 

lubricant, providing smoothness and softness.  Fat can also act as a lubricant by changing 

compression properties of the gel matrix and decreasing its breakdown forces (Pereira, Matia-

Merino, Jones, and Singh (2006).  Moreover, lipids increase the apparent viscosity of the gel 

matrix, resulting in a lower friction coefficient and consequently changing the gel’s lubricant 

properties (Chojnicka, Sala, de Kruif, and van de Velde (2009). Costas, Pera, Lopez, Mechetti, 

and Castro (2012) noted that an increase of viscosity leads to reduction of gel deformation which 

affects textural properties of the gels.     

Table 4.3. Textural properties of LP/PE-RB capsules  

Capsules 
RB concentration 

(g/100mL) 

Hardness  

(N) 

Springiness  

(mm)  

Cohesiveness 

(ratio) 

LP/PE 0 14.59±0.75a 1.43±0.11a 0.63±0.01a 

LP/PE-0.5RB 0.5 14.90±0.89a 1.29±0.19a 0.63±0.05a 

LP/PE-1.0RB 1 11.49±1.18ab 0.99±0.02b 0.63±0.05a 

LP/PE-2.0RB 2 8.61±1.74b 0.97±0.01b 0.58±0.01a 

LP/PE = L. plantarum loaded in pectin capsules without rice bran extract (control); LP/PE-
0.5RB, LP/PE-1.0RB, and LP/PE-2.0RB = L. plantarum loaded in pectin capsules containing 0.5 
g/100 mL, 1.0 g/100 mL, and 2.0 g/100 mL of the rice bran extract, respectively. a-cMeans ± 
standard deviation with different letters within the same column are significantly different (P ≤ 
0.05).   

 
4.4.4. Morphology of LP/PE-RB capsules 

Scanning electron micrographs of the external and internal structures of LP/PE-RB 

capsules are shown in Figure 4.2. Cracks were observed on the surface of all LP-bead samples 

(Figure 4.2a). In accordance with literature, this was presumably due to loss of water and 

collapse of the gel matrix during sample drying (Badve, Sher, Korde, & Pawar, 2007; Jung, 

Arnold, & Wicker, 2013). Further, it was reported that crosslinking fixatives and the base buffer 
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using used in sample preparation could weaken the hydrated capsules integrity (Allan-Wojtas, 

Truelstrup Hansen, & Paulson, 2008). In the present study, cells were covered with a thin matrix 

and distributed under the surface (Figure 4.2b); there were no cells observed on the surface. The 

results were similar to the microstructures recently revealed by Jimenez-Pranteda et al. (2012) 

and Martin, Lara-Villoslada, Ruiz, and Morales (2013). In our study, it was evident that the 

bacteria cells were randomly entrapped in the mesh-like network (indicated by white arrows), as 

illustrated in Figure 4.2c. At higher concentrations of RB, a greater network was observed. This 

could suggest that there were some interactions or overlaps between RB and the PE matrix. In 

this regard, our results were in agreement with the study of Chitprasert et al. (2012). They found 

that it was more difficult to find Lactobacillus reuteri entrapped in aluminum carboxymethy 

cellulose capsules with added RB (AlCMC-RB), than in capsules without RB. They suggested 

that AlCMC-RB consisted of a dense matrix of RB sheets and AlCMC-entrapped RB interstices. 

4.4.5. Survival of the cells in LP/PE-RB beads under acidic and bile conditions 

The viability of LP under acidified media (pH 3.0) is shown in Figure 4.3. The results 

demonstrated that the cells in all samples exhibited good acid survivability after 2 h incubation, 

which is supported by the work of Chotiko and Sathivel (2014). Regarding reduction of the 

viable cells, viability of LP in all capsules, except LP/PE-0.5RB samples, had lower log 

reduction than free cells (P ≤ 0.05). After incubation, the free cells had 0.97±0.01 log CFU/g 

reduction. The PE/PE-1.0RB sample had the least viable cell reduction (0.41±0.07 log CFU/g), 

followed by LP/PE-2.0RB (0.48±0.05 log CFU/g), LP/PE (0.63±0.10 log CFU/g), and LP/PE-

0.5RB (1.05±0.09 log CFU/g). The greatest number of viable cells was found in LP/PE-2.0RB 
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exposed to low pH conditions (Mokarram, Mortazavi, Najafi, & Shahidi, 2009; Nazzaro, 

Fratianni, Coppola, Sada, & Orlando, 2009; Sabikhi, Babu, Thompkinson, & Kapila, 2010; Shi 

et al., 2013). Recently, Gebara et al. (2013) reported that viability of L. acidophilus LA 5 after 

exposure to simulated gastric juice (pH 3.0) was increased when the cell was encapsulated with 2 

g/100 mL amidated pectin. de Vos, Faas, Spasojevic, and Sikkema (2010) suggested that the 

formation of hydrogels acted as a physical barrier, delaying penetration of fluids into the cells. 

Sandoval-Castilla et al. (2010) found that addition of pectin to alginate beads loaded with L. 

casei slows the diffusion rate of growth inhibition compounds, such as acids and hydrogen 

peroxide into the cells. In addition, our results suggest that at low pH viability of LP in the 

capsules was enhanced by the presence of RB. This is possibly due to their structural stability.  

Regarding the effect of mechanical strength (hardness) of the gel matrix on cell viability 

under acidic conditions, our results contradict those reported by Zhao et al. (2015). They found 

that viability of encapsulated cells in simulated gastric juice was positively correlated with 

mechanical strength of the capsules, and that greater mechanical strength led to a more integrated 

structure and a smaller mesh size of the network. In our study, the mechanical strength of PE 

capsules containing RB was lower than the capsules without RB. However, they had more mesh-

like networks, as shown in Figure 4.2c. This could effectively help protect the cells from acid 

penetration. This is in agreement with the results reported by Chitprasert et al. (2012) that the 

addition of rice bran to carboxyl methyl cellulose beads provided a high density structure to the 

encapsulating matrix, which contributed to high survival rates of probiotic bacteria. Lactobacilli 

survive under acidic conditions when they can maintain a pH gradient between the medium and 

their cytoplasm (Charalampopoulos, Pandiella, & Webb, 2003). The mesh matrix formed by RB 
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could increase the diffusion path length (Chitprasert et al., 2012), which possibly reduced the 

diffusion rate of acid into the encapsulated cells. 

To obtain a measure of bile tolerance both encapsulated LP and free cells were exposed 

to media containing high oxgall concentration (1 g/100 mL). Oxgall functions as an emulsifier 

and fat solubilizer, hydrolyzing plasma membranes of bacteria cells, resulting in cell damage 

(Begley, Gahan, & Hill, 2005). In our study, encapsulated LP of all samples had higher cell 

viability than the free cells (Figure 4.4). After 24-h incubation, the number of free cells was 

reduced to 3.51±0.01 log CFU/g (5.35±0.01 log CFU/g reduction). A greater number of viable 

cells was observed for LP/PE capsules (5.80±0.15 log CFU/g) (P ≤ 0.05). These cells had 

undergone a reduction of 2.35±0.06 log CFU/g, indicating that a pectin matrix could protect LP 

from bile effects. According to Cheewatanakornkool et al. (2012), pectins have the ability to 

bind with bile salts, however their binding efficiency depends upon pectin sources. Many studies 

have reported that encapsulation of probiotic bacteria in polysaccharide matrices, such as 

alginate, pectin, or carrageenan successfully enhanced the survival of the bacteria during 

exposure to 1-3% bile salt solutions (Rokka & Rantamäki, 2010; Sandoval-Castilla et al., 2010; 

Shi et al., 2013).  

RB also helped protect the survival of LP from bile salts. After incubation under the bile 

condition, the number of viable cells in LP/PE capsules with RB was greater than either that of 

capsules without RB or free cells (P ≤ 0.05). LP/PE-1.0RB capsules had the most viable cells 

(6.87±0.18 log CFU/g) after incubation, which was not significantly different from LP/PE-2.0RB 

(6.80±0.01 log CFU/g) and LP/PR-0.5RB (6.71±0.09 log CFU/g). As viable cells in the tested 

acid condition were reduced less than one log, approximately 106 CFU of LP/g of PE-RB 

capsules could survive for colonization. Compared to LP/PE-RB capsules, the greater 
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4.5. Conclusion 

The use of pectin and rice bran extract to obtain capsules loaded with L. plantarum 

NRRL-B4496 could improve encapsulation efficiency and sphericity of the capsules. Addition of 

2 g/100 mL RB yielded the highest encapsulation efficiency and highest sphericity, however it 

reduced hardness and springiness of the capsules. The rice bran extract helped create a mesh-like 

network in the calcium pectinate-based capsules, contributing to enhancement of cell viability 

after exposure to acid and bile conditions. In summary, the pectin-rice bran extract capsules 

could be used as a new vehicle for probiotic bacteria and incorporated into some food products 

such as yogurt, cereal bars, or fruit juices. 
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CHAPTER 5 DOUBLE ENCAPSULATION OF L. PLANTARUM WITH 
PROTECTIVE AGENTS IN PECTIN-RICE BRAN EXTRACT CAPSULES 

WITH WHEY PROTEIN ISOLATE COATING TO IMPROVE CELL 
VIABLITY AFTER FREEZE DRYING AND DURING SIMULATED 

GASTROINTESTINAL CONDITIONS 

5.1. Abstract 

Three protective agents, maltrodextrin, wheat dextrin soluble fiber, and hi-maize starch 

were incorporated into pectin-rice bran capsules loaded with Lactobacillus plantarum prepared 

by ionotropic gelation. The capsules were coated with and without whey protein isolate and then 

freeze dried. The viability of the encapsulated cells in the freeze dried capsules was evaluated 

after freeze drying and at simulated gastrointestinal conditions. All uncoated and coated pectin-

rice bran capsules yielded high encapsulation efficiency (> 95%). The whey protein isolate 

coating significantly enhanced viability of the encapsulated cells after the freeze drying. The 

freeze dried capsules with hi-maize starch (FHMC) had the highest cell viability, 8.63±0.01 and 

5.63±0.02 log CFU/g for the coated and uncoated capsules, respectively. In simulated 

gastrointestinal conditions, only 0.89 and 2.12 log cycles was reduced when the encapsulated 

cells of FHMC were exposed to fed state with a copious meal (at pH 3.0, followed by pH 7.0) 

and with a standard meal (at pH 2.5, followed by pH 6.5) condition, respectively. Due to the 

effect of pH 1.8, low number of viable cells was recovered from FHMC (3.27±0.13 log CFU/g) 

after incubating in a fasted state without meal, while there was no survival cells found in other 

treatments. The study demonstrated that the freeze dried pectin-rice bran capsules containing hi-

maize starch with whey protein isolate coating effectively improved viability of L. plantarum. 

Keywords: probiotics, encapsulation, freeze drying, pectin, whey protein isolate 
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5.2. Introduction 

Probiotics have been well known for their health benefits such as reducing pathogenic 

bacteria colonization, alleviating diarrhea, reducing intestinal inflammation, lowering blood 

cholesterol, and for potentially having anti-colon cancer activity (Ratna Sudha, Chauhan, Dixit, 

Babu, & Jamil, 2009; Saxelin, Tynkkynen, Mattila-Sandholm, & de Vos, 2005). They have been 

incorporated into many foods such as yogurt, cheese, and fruit and vegetable juices (Ranadheera, 

Baines, & Adams, 2010; Rivera-Espinoza & Gallardo-Navarro, 2010). For beneficial health 

effects, the number of live probiotic bacteria in food products is recommended to be at least 106-

107 cfu/g (Floch et al., 2008). However, that an effective number of live probiotic bacterial food 

products is dependent upon the number of probiotics decreased during formulation, down-stream 

processing, and storage as well as during passage through the gastrointestinal tract (Saarela, 

Virkajarvi, Nohynek, Vaari, & Matto, 2006).  

Encapsulation technology can help protect probiotics from the undesired conditions and 

function as a vehicle, to deliver them to the intestine with sufficient number and viability to exert 

their benefits. Encapsulation is a process of forming a continuous layer entrapping a whole 

compound within a matrix core (Zuidam & Shimoni, 2010). According to Anal and Singh 

(2007), probiotics can be encapsulated by various techniques such as spray drying, freeze drying, 

emulsion, and extrusion. These various techniques may not have the same efficacy, for example, 

it has been reported that the probiotics encapsulated by drying processes were released when 

applied to food products, resulting in loss of protection in unfavorable environments such as 

passage through gastrointestinal tracts. On the other hand, the bead matrix in which probiotics 

were entrapped or immobilized by emulsion or extrusion techniques provided protection against 

the conditions (Krasaekoopt, Bhandari, and Deeth (2003).  
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Pectin is a soluble fiber, which is resistant to gastrointestinal conditions and can be 

degraded by microorganisms. It is considered as highly fermentable substances for gut 

microflora. Fermentation of pectin increased in the fecal bulk and exhibited bifidogenic and 

prebiotic properties (Nazzaro, Fratianni, Orlando, & Coppola, 2012). A number of 

Bifidobacterium sp. and Lactobacillus sp. derived from fecal bacteria of ulcerative colitis 

patients and fermented in pectin fraction media was higher than control as well as acetate levels 

(Vigsnæs, Holck, Meyer, & Licht, 2011). Use of pectin hydrogels as a matrix for probiotic 

delivery has been reported to improve cell viability at gastrointestinal conditions. It forms three 

dimensional rigid and water insoluble hydrogels by calcium-induced ionotropic gelation (Lee, 

Kim, Chung, & Lee, 2009). Pectin microparticles loaded with Lactobacillus acidophilus 

remained intact in simulated gastric juice at pH 1.2 and 3.0 for 120 min and in simulated 

intestinal juice at pH 7.0 for 300 min. After exposure to simulated gastric juice at pH 3.0 and 

simulated intestinal juice at pH 7.0, viability reduction of pectin encapsulated cells was lower 

than the non-encapsulated (Gebara et al., 2013). Similarly, viability of Lactobacillus rhamnosus 

under a gastric condition at pH 2 was improved when the cell was encapsulated with pectin 

coated with whey protein isolate (Gerez, Font de Valdez, Gigante, & Grosso, 2012). In our 

previous study, we found that pectin with rice bran extract capsules could enhance the viability 

of Lactobacillus plantarum when they were incubated under acid (pH 3.0) and bile (1.0% oxgall) 

conditions for 2 h and 24 h, respectively. 

For long-term storage, probiotics are usually preserved by freeze drying. Although it is a 

gentle method, losses of cell viability occur due to freeze damage. Protective agents are required 

to reduce cell damage during freeze drying and to avoid intracellular ice formation by raising the 

glass-phase transition temperature (Meng, Stanton, Fitzgerald, Daly, & Ross, 2008). Sugars such 
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as sucrose, lactose, trehalose, and maltodextrin and some prebiotics were used to increase cell 

viability of probiotic bacteria after freeze drying (Reddy, Awasthi, Madhu, & Prapulla, 2009; 

Semyonov et al., 2010). Wheat dextrin was reported to protect viability of L. rhamnosus during 

freeze drying and maintain their viability during storage for 4 weeks at 37 °C (Saarela et al., 

2006). Encapsulation of Lactobacillus casei and Bifidobacterium lactis in alginate-resistant 

starch (high amylose corn starch) beads had a high number of cells survive during freezing. The 

viability of the encapsulated cells was higher by 30%, compared to non-encapsulated cells during 

storage for 180 days in ice-cream (-20 °C) (Homayouni, Azizi, Ehsani, Yarmand, & Razavi, 

2008).  

Whey protein isolate can be used as a coating material for various hydrocolloid matrices 

and as a wall material for spray drying or freeze drying of probiotics to improve probiotic 

viability. Gbassi, Vandamme, Ennahar, and Marchioni (2009) reported that WPI coated alginate 

beads of L. plantarum had better cell survival than uncoated beads after exposure to simulated 

gastric and intestinal fluids. L. casei encapsulated in alginate beads coated with WPI had high 

cell viability after incubating in simulated gastrointestinal conditions for 24 h (Smilkov et al., 

2014). Encapsulation of spray-freeze dried and freeze dried L. plantarum in WPI was reported to 

protect the cells in simulated gastrointestinal fluids up to 4 h (Dolly, Anishaparvin, Joseph, & 

Anandharamakrishnan, 2011). Viability of L. plantarum mixed with a mixture of sodium 

alginate and WPI after freeze drying was 9-12% higher than that obtained from the spray drying 

process (Rajam, Karthik, Parthasarathi, Joseph, & Anandharamakrishnan, 2012).   

The objectives of this study were to develop freeze-dried pectin-rice bran capsules as a 

delivery vehicle for L. plantarum and evaluate the effects of protective agents and whey protein 
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isolate coating on the cell viability after freeze drying and during exposure to simulated 

gastrointestinal conditions. 

5.3. Materials and methods  

5.3.1. Cell culture preparation  

L. plantarum NRRL B-4496 (LP)  isolated from sauerkraut, was kindly provided by ARS 

Culture Collection (Washington DC, US). The frozen stock culture was reactivated twice in 

deMan Rogosa Sharpe (MRS) broth (Neogen Corporation, Lansing, MI). Twenty five mL of the 

strain was subsequently inoculated in MRS broth (500 mL) and incubated at 37 °C for 16 h to 

reach stationary phase. Cell pellets were harvested by centrifugation at 10,000 x g for 10 min at 4 

°C (Beckman J2-HC, Beckman Coulter, Inc., Brea, CA). The pellets were washed three times 

and suspended in sterile distilled water to obtain concentrated LP (~109 CFU/ml). The 

concentrated LP was then mixed with protective agents (20 g/100 mL) including maltodextrin 

(MD) (Dextrose Equivalent of 9–13, NOW Foods Company, Bloomingdale, IL), wheat dextrin 

soluble fiber (WF) (Nutriose®FM06, Ingredion Incorporated, Westchester, IL), and hi-maize 

starch (HM) (Ingredion Incorporated, Westchester, IL) to obtain concentrated LP with protective 

agents, LP+MD, LP+WF, and LP+HM, respectively. In order to obtain LP+HM, HM was 

dissolved in distilled water, autoclaved at 121 °C for 15 min and cooled in a refrigerator 

overnight. The concentrated LP was then centrifuged and re-suspended in the HM solution. 

5.3.2. Encapsulation of L. plantarum in pectin-rice bran capsules   

Capsule preparation was performed as described by Lee et al. (2009) with some 

modifications. First, pectin-rice bran (PE-RB) gel solutions were prepared by mixing low-

methoxyl pectin (TIC PRETESTED® pectin LM 32 powder), that was provided by TIC Gums 

Inc. (Belcamp, MD), and rice bran extract, provided by Ribus Inc. (St. Louis, MO), for 1 hour at 
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room temperature. Concentrated LP with a protective agent, (LP+MD, LP+WF, or LP+HM) was 

added separately into gel solutions at the ratio of 1:4 and stirred at room temperature for 30 min. 

Concentrated LP with no protective agents (LP-NP) was used to prepare control capsules. Each 

gel solution containing LP had a final concentration of 2 g/100 mL PE and 2 g/100 mL RB. 

These solutions were extruded through a 21G needle by a syringe pump (Pump 11, Harvard 

Apparatus, Holliston, MA) at 1.2 mL/min and dropped into a crosslink solution, 4 g/100 mL of 

calcium chloride (Fisher Scientific Inc., Pittsburgh, PA) with and without whey protein isolate 

(WPI) (BiPRO®, Davisco Food International, Inc., Eden Prairie, MN) at a concentration of 8 

g/100 mL. The crosslink solution with WPI was adjusted to pH 4.0 and stirred for 1 h before use. 

The PE-RB loaded with LP plus protective agent capsules were immediately formed and 

continuously hardened in the crosslink solution for 30 min. The wet capsules, PE-RB capsules 

loaded LP with MD (MDC), WF (WFC), HM (HMC), and no protective agents (NPC) were 

collected, washed, and cryogenically frozen by liquid nitrogen (Air Liquide Co., Houston, TX) 

until the temperature of capsules reached -85 °C. They were subsequently placed into a freeze 

dryer (Heto PowerDry LL3000, Thermo Scientific, Laurel, MD) for 40 h. The freeze-dried MDC 

(FMDC), freeze dried WFC (FWFC), freeze dried HMC (FHMC), and freeze-dried NPC (FNPC) 

were then stored in glass bottles in a refrigerator.  

5.3.3. Enumeration of L. plantarum viable cells in pectin-rice bran beads   

To determine the number of the cells in the wet and in the freeze dried capsules, the 

encapsulated LP was released as the method described by Sathyabama, Ranjith kumar, Bruntha 

devi, Vijayabharathi, and Brindha priyadharisini (2014) with some modifications. One gram of 

the wet and/or lyophilized capsules was added to 99 mL of 0.1 M phosphate buffer (pH 7.2) and 

stirred at 250 rpm in a shaker (Lab line incubator shaker model 3525, Fisher Scientific Inc., 



109 
 

Pittsburgh, PA) for 30 min. The colony forming units (CFU/g) was examined by the pour-plate 

method on MRS agar containing 0.6 g/100 mL of CaCO3 (Fisher Scientific Inc., Pittsburgh, PA). 

The plate was incubated at 37 °C for 24-48 h.  

5.3.4. Encapsulation efficiency  

The encapsulation efficiency represented a combined measurement of the efficacy of 

entrapment and survival of viable cells during the microencapsulation procedure, calculated 

according to Eq. 5.1 (Gebara et al., 2013) 

EE (%) = 
N

N0
 x 100            (5.1) 

where EE is the encapsulation efficiency, expressed in percentage; N is the number of the cells 

released from the wet beads (log CFU/g); and N0 is the number of the cells added to the gel 

solution (log CFU/g).  

5.3.5. Sizes, shapes, and bulk density of freeze-dried pectin-rice bran loaded with LP 
capsules 

The diameter of thirty capsules was measured under a stereomicroscope (Zeiss SteREO 

Lumar.V12, Thornwood, NY) using image analyzer software. The capsule shape was quantified 

by the sphericity factor (SF), shown in Eq. 5.2 (Chan et al., 2011) 

SF = 
dmax	- dmin

dmax + dmin
    (5.2) 

where dmax is the largest diameter and dmin is the smallest diameter perpendicular to dmax.  

Determination of bulk density was conducted according to the method described by 

Sandoval-Castilla, Lobato-Calleros, García-Galindo, Alvarez-Ramírez, and Vernon-Carter 

(2010). One gram of freeze-dried capsules was weighed and poured into a 25-mL graduate 

cylinder, from which the bulk volume was determined. The bulk density was calculated by 

dividing the mass by the bulk volume.  
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5.3.6. Scanning electron micrographs of lyophilized pectin-rice bran loaded with L. 
plantarum capsules 

The freeze-dried capsules were cross sectioned and mounted on aluminum SEM stubs. 

The samples were coated with gold:palladium (60:40) in an Edwards S150 sputter coater. The 

capsule morphology was observed under a scanning electron microscope (JSM-6610LV, JEOL 

Ltd. Japan). 

5.3.7. Viability of L. plantarum in freeze-dried pectin-rice bran capsules during exposure to 
simulated gastrointestinal fluids  

The assay was carried out as described by Gbassi, Vandamme, Yolou, and Marchioni 

(2011) and Sathyabama et al. (2014). Phosphate buffer saline solution used as simulated 

gastrointestinal fluids (SGIF) consisted of 8g/L of NaCl (Fisher Scientific Inc., Pittsburgh, PA), 

0.2g/L of Na2HPO4 (Fisher Scientific Inc., Pittsburgh, PA), and 1.44 g/L of KH2PO4 (Sigma-

Aldrich, St. Louis, MO). The pH of the buffer was adjusted according to the gastrointestinal tract 

conditions shown in Table 5.1.  

Table 5.1. In vitro experimental conditions of gastrointestinal tract    

Parameter Stomach Intestine 
Incubation time 2 h 4 h 
pH  

 copious meal  
 standard meal 
 without meal 

 
3.0 
2.5 
1.8 

 
7.0 
6.5 
6.0 

 

The freeze dried capsules (0.5 g) were added into SGIFs (50 mL) at pHs of 1.8, 2.5, and 

3.0 for 2 hours (stomach incubation time) at 37 °C in an orbital shaker with 100-rpm agitation 

then removed from the acid conditions and sequentially placed into SGIFs (50mL) at pHs of 6.0, 

6.5, and 7.0, respectively. The samples were incubated at 37 °C for additional 4 h (intestinal 

incubation time) with 100-rpm agitation. At the end of incubation period, the capsules were 

collected, disintegrated, and enumerated for viable cells. 
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5.3.8. Statistical analysis 

 All values are means and standard deviations of two determinations. Mean values from 

statistical analysis were determined with the SAS (Statistical Analysis System) software (version 

9.4) (SAS Institute Inc., Cary, NC, USA). ANOVA and Tukey’s studentized range test were 

carried out to determine differences among treatments at the significant level of P ≤ 0.05. 

5.4. Results and discussion  

5.4.1. Encapsulation efficiency  

As shown in Figure 5.1, all treatments had excellent encapsulation efficiency (EE), 

greater than 95%. EEs of the samples were not significantly different. The large EEs were 

attributed to the ability of pectin to entrap cells. This ability is due to the minuscule pore sizes of 

pectin, which are in a range from 2 to 50 nm (Gbassi et al., 2011; White, Budarin, & Clark, 

2010). During PE-RB capsule formation, only water molecules and particles smaller than the 

pectin pore sizes were able to diffuse from the capsules, while the bacteria cells which are 

considerable larger than pore sizes of pectin (0.2 µm in diameter and 2-8 µm in length) were 

entrapped inside of the capsules. Addition of rice bran extract possibly helped reduce cell losses 

during hardening in the crosslink solution. In our previous study, it was shown that addition of 

rice bran extract improved EE of pectin capsules loaded with LP (Chotiko & Sathivel, 2016). 

The result also indicated that adding of protectants and coating with WPI had no effect on EE. 

The EE depends on encapsulation techniques, wall materials used, and microorganisms. High EE 

(99.9%) was observed in encapsulation of Lactobacilli and Bifidobacterium bifidum in alginate 

beads prepared by extrusion-ionotropic gelation. Coating the beads with chitosan, alginate, and 

combined poly-L-lysine with alginate was reported to have no significant difference in EE, 

compared with the uncoated beads (Krasaekoopt, Bhandari, & Deeth, 2004). 
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5.4.2. Viability of L. plantarum in pectin-rice bran capsules after freeze drying  

Viability of freeze-dried LP was improved by use of protective agents and a coating 

material, such as WPI. Before freeze drying, the number of viable cells in all samples was 

similar, approximately 10 log CUF/g (dry basis) (Figure 5.2a). After freeze drying (Figure 5.2b), 

the results demonstrated that the freeze dried capsules coated with WPI had significantly greater 

cells survive than the uncoated samples (P ≤ 0.05). WPI could cover the capsules and protect the 

cells from freeze-drying injuries. WPI has isoelectric point of approximately 5.2 and at pH 4 (the 

pH value of our CaCl2 crosslinking solution with WPI), the compound contains positive charges. 

As pectin is an anionic polymer, electrostatic association between pectin and WPI is created by 

interaction of the positive charges of protein patches (mainly –NH+3 groups) and the negative 

charges carried by carboxyl groups of pectin polymer (Gentès, St-Gelais, & Turgeon, 2010). 

Souza et al. (2012) mentioned that electrostatic interaction between pectin and whey proteins can 

occur at pH below 4.5. In addition, whey protein can be used as a protectant for microorganisms 

during freeze drying. Protein can accumulate within the cells resulting in reduction of the 

osmotic difference between the internal and external environments (Meng et al., 2008). The 

different polysaccharides also had different protective effects on the viability of encapsulated LP 

during freeze drying. Without a protective agent, uncoated FNPC had the lowest number of 

viable cells compared with other treatments, which was 2.30±0.01 log CFU/g with decrease of 

8.19 log reductions. Reddy et al. (2009) found that viability of lactobacilli was reduced up to 

50% in the absence of protective agents. Powder of L. plantarum NRRL-B4495 had severe 

decreases in the cell viability when the pure culture was freeze-dried without any protective 

agents (Chotiko & Sathivel, 2014). Meng et al. (2008) stated that the loss of cell viability noted 
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The coated FHMC had a 1.59 log CFU/g reduction, while uncoated FHMC showed a 4.75 log 

reduction. Martin, Lara-Villoslada, Ruiz, and Morales (2013) reported that addition of starch into 

probiotic encapsulations improved polymeric networks and partially isolated the cells from 

environmental conditions. No losses of Lactobacillus fermentum was found after freeze drying 

when the cells were encapsulated in alginate mixed with corn starch. Crittenden et al. (2001) 

mentioned that resistant starch offered a surface for probiotic adherence, providing robustness 

and resilience to environmental stresses. This possibly indicated that the hi-maize resistant starch 

(HM) functioned as an attachment matrix, helping the cells avoid effects of ice crystallization 

and extracellular osmolality. 

Coated FMDC had significantly more viable cells (7.72±0.03 log CFU/g) than FWFC 

(7.21±0.02 log CUF/g) (P ≤ 0.05). The number of viable cells of uncoated FMDC was also 

significantly greater than the viable cell counts in uncoated FWFC, 5.10±0.03 and 4.44±0.04 log 

CFU/g, respectively (P ≤ 0.05). Viable cell reductions were 2.56, 3.11, 5.30, and 5.99 log CFU/g 

for coated FMDC, coated FWFC, uncoated FMDC, and uncoated FWFC, respectively. The 

result indicated that maltodextrin (MD) protected the cells from freeze drying damages more 

effectively than wheat dextrin soluble fiber (WF). This was possibly because MD has a smaller 

molecular weight than WF. The lower molecular weight of dextrins yields higher bacterial 

survival during freezing and after drying (Semyonov et al., 2010). In dehydration processes, 

sugars and some polysaccharides can function as a water replacer (Santivarangkna, Higl, & 

Foerst, 2008). It is noted that removal of water from bacteria cells interrupts the structure of 

phospholipids in cell membranes, causing large lateral compressive stresses in the plane of the 

membrane and consequently leading to cell membrane transition and leakage (Santivarangkna, 

Kulozik, & Foerst, 2008). Hydroxyl groups of the sugars bind to the phosphate group of 
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phospholipids though hydrogen bonds at the surface of the cell membrane lipid bilayer (Pereira 

& Hünenberger, 2006). This helps stabilize the cell membrane during dehydration. It has been 

revealed that the interaction of polysaccharides and phospholipids mainly depend on the 

flexibility of the structure. Vereyken, van Kuik, Evers, Rijken, and de Kruijff (2003) reported 

branched polysaccharide dextran rarely interacts with phospholipids. Unexpectedly, FNPC 

coated with WPI had significantly greater cell viability (8.24±0.01 log CFU/g) than the coated 

capsules of FMDC and FWFC. Viable cell reduction of coated FNPC was 2.08 log cycles. The 

reason might be because addition of MD or WF hindered the interactions between pectin and 

WPI.  

5.4.3. Sizes, shapes, and bulk density of freeze-dried pectin-rice bran loaded with L. 
plantarum capsules  

The diameters of freeze-dried PE-RB loaded with LP capsules were shown in Table 5.2. 

Uncoated FNPC had the largest diameter (3.05±0.50 mm) and were more irregular than other 

uncoated treatments. There was no significant difference in diameters of uncoated FMDC 

(2.81±0.43 mm), uncoated FWFC (2.68±0.28 mm), and uncoated FHMC (2.64±0.28 mm). The 

results also showed that FHMC, FMDDC, and FWFC coated with WPI had significantly larger 

diameters than uncoated samples, which were 3.18±0.38, 2.94±0.63, and 3.21±0.41 mm, 

respectively. FHMC, FMDDC, and FWFC coated with WPI had similar diameter compared to 

the coated FNPC (3.20±0.51 mm). The results were in agreement with Mokarram, Mortazavi, 

Najafi, and Shahidi (2009), who reported that diameter of alginate gels were increased by multi 

stage alginate coating. Coatings of chitosan, combined poly-L-lysine with alginate, or alginate 

was also reported to increase the diameter of alginate beads of encapsulated probiotics 

(Krasaekoopt et al., 2004). 
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Table 5.2. Sizes of freeze dried pectin-rice bran loaded with LP capsules  

Capsules 
Diameter (mm) 

Uncoated Coated 
FNPC 3.05±0.50aA 3.20±0.51aA 
FMDC 2.81±0.43abB 3.03±0.63aA 
FWFC 2.68±0.28bB 3.21±0.41aA 
FHMC 2.64±0.28bB 3.18±0.38aA 

FNPC, FMDC, FWFC, and FHMC were freeze-dried pectin-rice bran capsules loaded with L. 
plantarum with: no protectants, maltodextrin, wheat dextrin soluble fiber, and hi-maize starch, 
respectively. a,bMeans ± standard deviation with different letters within the same column indicate 
significant differences (P ≤ 0.05). A,BMeans ± standard deviation with different letters between 
uncoated and coated treatments with the same protective agents indicate significant differences 
(P ≤ 0.05).  

Capsules’ shape was characterized by their sphericity factor (SF) (Table 5.3). The lower 

the number are, the more spherical the capsule is (Lee, Ravindra, & Chan, 2013). The lowest SF 

was observed in uncoated FHMC (0.07±0.03) (P ≤ 0.05). The largest SF was found in uncoated 

FNPC (0.21±0.13), which was not significantly different than uncoated FMDC (0.19±0.10) and 

uncoated FWFC (0.12±0.07). The result indicated that HM could enhance sphericity of freeze 

dried capsules. According to Chan et al. (2011), removal of water from hydrogel capsules caused 

the hydrogels to collapse, resulting in reduction of sphericity and shape changes from spherical 

to irregular shapes. Addition of a filler agent such as starch into gel capsules helped maintain the 

capsules shape during drying. Starch acted as a structure support to protect the gel capsules from 

collapse and shrinkage. Starch in alginate gels could create a new matrix or a co-matrix with the 

polymer by touching of starch granules themselves or binding of starch granules within or 

between alginate matrixes (Rassis, Saguy, & Nussinovitch, 2002). WPI molecules trended to 

randomly layer on the gel capsules, and SF of the freeze dried capsules seemed to be 

independent of WPI coating. Significantly increase of SF was found in coated FHMC 

(0.11±0.09) when compared to uncoated FHMC. In contrast, coated FMDC had significantly 

lower SF (0.14±0.07) than uncoated FMDC (0.19±0.10). No significantly difference of SF was 
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shown between uncoated and coated FNPC (0.15±0.10) as well as FWFC (0.12±0.07 for 

uncoated FWFC and 0.15±0.09 for coated FWFC). 

Table 5.3. Shapes of freeze dried pectin-rice bran loaded with LP capsules  

Capsules 
Sphericity factor 

Uncoated Coated 
FNPC 0.21±0.13aA 0.15±0.10aA 
FMDC 0.19±0.10aA 0.14±0.07aB 
FWFC 0.12±0.07bA 0.15±0.09aA 
FHMC 0.07±0.04bB 0.11±0.09aA 

FNPC, FMDC, FWFC, and FHMC are freeze-dried pectin-rice bran capsules loaded with L. 
plantarum with: no protectants, maltodextrin, wheat dextrin soluble fiber, and hi-maize starch, 
respectively. a,bMeans ± standard deviation with different letters within the same column indicate 
significant differences (P ≤ 0.05). A,BMeans ± standard deviation with different letters between 
uncoated and coated treatments with the same protective agents indicate significant differences 
(P ≤ 0.05).  

In the present work, bulk density refers to the mass of capsules divided by the total 

volume including the capsule volume, the inter-particle void volume, and the internal pore 

volume. As shown in Table 5.4, uncoated FHMC had significantly higher bulk density 

(0.105±0.003 g/mL) than uncoated FMDC (0.090±0.001 g/mL), uncoated FWFD (0.090±0.001 

g/mL), and uncoated FNPC (0.089±0.002 g/mL) (P ≤ 0.05). For coated capsules, the highest bulk 

density was obtained from coated FHMC (0.109±0.002 g/mL), which was not significantly 

different than coated FWFD (0.105±0.003 g/mL) but significantly greater than coated FMDC 

(0.101±0.002 g/mL) and coated FNPC (0.090±0.001 g/mL) (P ≤ 0.05). Coating with WPI 

significantly increased the bulk density of FMDC and FWFC. Bulk density of capsules is mainly 

dependent upon size, shape, and surface characteristics of the capsules (Rajam & 

Anandharamakrishnan, 2015). High bulk density in FHMC treatments was probably due to 

greater sphericity than FNPC, FMDC, and FWFC. Irregular shapes increases external voids, 

leading to higher bulk volume which in turn causes lower loose bulk density (Caparino et al., 

2012).     
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Table 5.4. Bulk density of freeze dried pectin-rice bran loaded with LP capsules 

Capsules 
Bulk density (g/mL) 

Uncoated Coated 
FNPC 0.089±0.002bA 0.090±0.001cA 

FMDC 0.090±0.001bB 0.101±0.002bA 
FWFC 0.090±0.001bB 0.105±0.003abA 
FHMC 0.105±0.003aA 0.109±0.002aA 

FNPC, FMDC, FWFC, and FHMC are freeze-dried pectin-rice bran capsules loaded with L. 
plantarum with: no protectants, maltodextrin, wheat dextrin soluble fiber, and hi-maize starch, 
respectively. a-cMeans ± standard deviation with different letters within the same column indicate 
significant differences (P ≤ 0.05). A,BMeans ± standard deviation with different letters between 
uncoated and coated treatments with the same protective agents indicate significant differences 
(P ≤ 0.05).  

5.4.4. Morphology of freeze-dried pectin-rice bran capsules from scanning electron 
microscope 

The exterior surface of uncoated and coated freeze-dried PE-RB capsules loaded with 

LP is displayed in Figure 5.3. Due to dehydration effects, all capsules were collapsed. Pereira 

and Hünenberger (2006) mentioned that freeze drying collapsed the wall of calcium pectinate gel 

beads causing fragile structure. In our results, cracks were obviously seen on the surface of 

uncoated FNPC (Figure 5.3a I). Uncoated FHMC had rough surfaces containing a number of 

attached starch particles (Figure 5.3a II). All coated capsules were randomly covered with WPI 

particles and no visible cracks were found as illustrated in Figure 5.3b. Freeze dried particles of 

WPI resembled broken glass or a flake-like structure, similar to the result reported by Ezhilarasi, 

Indrani, Jena, and Anandharamakrishnan (2013). The interior of the fractured freeze dried 

capsules are shown in Figure 5.4, indicating a large number of bacteria cells randomly 

distributed and attached on the capsule matrix of all treatments. Cracks were obvious in uncoated 

FNPC and FWFC. Bacteria cells in uncoated FHMC aggregated on starch particles (Figure 5.4a 

II), confirming our hypothesis that starch could provide LP with an adherence matrix. In Figure 

5.4b, the cells attached on the matrix of coated capsules were less visible than that which was on 
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the uncoated capsule, a result of thin layering of WPI on the capsule. Some cracks were observed 

on the coated FNPC.  

5.4.5. Viability of L. plantarum in freeze-dried pectin-rice bran capsules coated with WPI 
during exposure to simulated conditions of a gastrointestinal tract  

Because of low cell viability of the uncoated capsules after freeze drying process, only 

the PE-RB capsules with WPI coating were only selected to test the viability of the encapsulated 

LP during exposure to simulated gastrointestinal tract. Conditions in a gastrointestinal tract are 

different as a result of contents and locations. The stomach is a crucial section for pH-sensitive 

components such as probiotic cells. In the fasted state, the stomach of healthy subjects has a 

range of pH from 1.3 to 2.5, while eating can increase the pH to a 4.5 to 5.8 range (Kong & 

Singh, 2008). In the small intestine, the pH changed to pH 6 and gradually increases to about pH 

7.4 in the terminal ileum (Fallingborg, 1999). In this study, three main conditions were 

simulated, including a fed state with a copious meal (pH 3.0 for 2 h, followed by pH 7.0 for 4 h), 

a fed state with a standard meal (pH 2.5 for 2 h, followed by pH 6.5 for 4 h), and a fasted state 

without meal (pH 1.8 for 2 h, followed by pH 6.0 for 4 h). Viability of the encapsulated LP in 

freeze dried capsules during a fed state with a copious meal condition is illustrated in Figure 5.5. 

Following exposure to the simulated conditions, the viable cells in the capsules were enumerated 

after incubation for 6 h. The results showed that the number of viable cells of all treatments was 

significantly reduced (P ≤ 0.05). The highest viability of encapsulated LP was found in coated 

FHMC (7.38±0.01 log CFU/g), only a 0.89 log CFU/g reduction. The number of viable cells in 

coated FWFC (6.76±0.02 log CFU/g) was significantly higher than coated FNPC (6.50±0.01 log 

CFU/g) and FMDC (6.07±0.02 log CFU/g) (P ≤ 0.05). Their viable cell log reductions were 

1.00, 1.68, and 1.86 log CFU/g for coated FWFC, FNPC, and FMDC respectively. 
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the bacteria to starch was reported to involve binding of specific cell surface proteins to α-1, 4-

linked glucose saccharides (Crittenden et al., 2001). Aggregation of bacteria on starch and its 

bulking capacity contributed to an increase of cell density, resulting in high cell loading content. 

Chandramouli, Kailasapathy, Peiris, and Jones (2004) revealed that a high level of initial cells 

load of probiotic products led to an increase in the number of viable cells in gastrointestinal tract 

conditions. It is the fact that acid inhibits bacterial growth and their activity by passage of 

undissociated acid forms through the cell membrane causing acidification of the cytoplasm 

(Cotter & Hill, 2003). Adhesion to starch by the bacteria possibly blocked or delayed diffusion 

of the acid to the cell membrane. It was reported that Lactobacillus casei mixed with corn starch 

had more viable cells than free cells after exposure to simulated gastric fluids at pH 3.0, which 

was likely to be due to entrapment of the cells between the starch granules. Moreover, the cell 

survival was increased with bacteria fusion protein (starch-binding domain) improving 

attachment of the cell on the starch and the cells’ acid tolerance (Tarahomjoo, Katakura, & 

Shioya, 2008). And and Kailasapathy (2005) mentioned that addition of hi-maize starch into 

alginate capsules improved probiotic survival in acid conditions. The starch particles could plug 

the pores of capsule, preventing diffusion of acidic content into the capsules. The addition of 

starch was reported to increase the integrated structure and firmness of alginate capsules 

(Khosravi Zanjani, Ghiassi Tarzi, Sharifan, & Mohammadi, 2014). This also might help enhance 

the protective effects of FHMC against harsh environmental conditions.  

5.5. Conclusion  

The study indicated that pectin-rice bran capsules offered high encapsulation efficiency. 

Adding of protective agents or coating with whey protein isolate has no effect on the 

encapsulation efficiency. Whey protein isolate coating significantly improved cell viability of the 
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encapsulated cells after freeze drying process. Supplementation of uncoated pectin-rice bran 

capsules with protective agents significantly enhanced the number of viable cells in the freeze 

dried capsules. Hi-maize starch provided better protection to the encapsulated cells during freeze 

drying and in simulated gastrointestinal conditions than maltrodextrin and wheat dextrin soluble 

fiber. Hi-maize starch is classified as a prebiotic. Encapsulation of L. plantarum with hi-maize 

starch in freeze dried pectin-rice bran capsules would become a novel synbiotic supplement that 

may potentially be incorporated into some food products such as nutrition bars, cereal products 

or dairy products.  
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CHAPTER 6. SUMMARY 

This research was focused on developing delivery systems for L. planrarum and 

evaluating the effects of the delivery systems on cell viability at simulated gastrointestinal 

conditions. Three delivery systems were developed, immobilized L. plantarum on purple rice 

bran fibers (PRF) (delivery system 1), encapsulated L. plantarum with combined pectin-rice bran 

extract (delivery system 2), and double encapsulated L. plantarum with protective agents 

(delivery system 3).  

In delivery system 1, L. planrarum was immobilized on PRF and freeze-dried to obtain 

immobilized cell powder. The study indicated that PRF could function as a matrix supporting L. 

plantarum and protecting the viability of L. plantarum during freeze drying and storage.  PRF 

may act as a physical barrier which protects the bacterial cells against physicochemical changes 

caused by freeze drying and unfavorable conditions during storage. Immobilization of L. 

plantarum on PRF also helped to improve cell viability during exposure to bile media. PRF has 

the ability to bind to bile salts. Cell viability was influenced by freezing rates. Cryogenically 

frozen cells had lower survival compared to air blast frozen cells, indicating cryogenic freezing 

may cause cell damages resulting in loss of acid and bile tolerances and loss of cell viability 

during storage. Immobilized L. plantarum on PRF was successfully developed as a new 

probiotic-fiber supplement that could be incorporated into food products (e.g. nutrition bars, 

cereal products or dairy products).   

In delivery system 2, encapsulated L. plantarum in pectin-rice bran extract capsules were 

prepared by using an ionotropic gelation/extrusion method. The delivery system enhanced L. 

plantarum viability under acid and bile conditions. Rice bran extract possibly had some 

interaction with pectin, creating a mesh-like network in the delivery system. This contributed to 
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enhancement of cell viability under acid and bile conditions. Addition of rice bran extract to 

pectin capsules also improved encapsulation efficiency and capsule sphericity. However, 

delivery system 2 failed to protect the bacterial cells during freeze drying. Therefore, a third 

delivery system was developed to enhance survivability of L. plantarum during freeze drying.  

Delivery system 3 was developed by mixing L. plantarum with a protective agent 

(maltodextrin, wheat dextrin soluble fiber, or hi-maize starch). Double encapsulation was then 

performed, by first encapsulating L. plantarum with a protective agent in pectin-rice bran extract 

capsules then coating the capsules with whey protein isolate. Delivery system 3 enhanced cell 

viability after freeze drying; as evidenced by a greater number of viable cells observed in this 

delivery system than in delivery system 2. Enhancement of cell viability during freeze drying in 

delivery system 3 was mainly due to the whey protein isolate (WPI) coating. WPI provided a 

thin layer covering bacterial cells in the capsule. Hi-maize starch provided better protection to 

the encapsulated cells during freeze drying and in simulated gastrointestinal conditions than the 

other protective agents. Hi-maize starch provides surfaces for bacterial cell attachment, and 

aggregation of starch granules also helps to partially isolate the bacterial cells from harmful 

environments.  This study indicated that double encapsulated L. plantarum with hi-maize starch 

in freeze dried pectin-rice bran capsules could be a novel synbiotic supplement that may be 

incorporated into food products such as nutrition bars, cereal products or dairy products.   
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APPENDIX A: FOURIER TRANSFORM INFRARED SPECTROSCOPY 
(FT-IR) OF PECTIN AND RICE BRAN EXTRACT 

Materials and methods 

FT-IR spectra of pectin (PE), rice bran extract (RB), and pectin-rice bran extract (PE-

2.0RB) powders, as well as PE and PE-2.0RB capsules were analyzed using a TENSOR 27 FT-

IR spectrometer (Bruker Opics, Germany). PE-2.0RB powder was prepared by dissolving 2 

g/100 mL PE with 2 g/100 mL RB. The solution was stirred for 1 h and freeze dried. To obtain 

PE-2.0RB capsules, PE-2.0RB solution was prepared by mixing 2 g/100 mL PE and 1 g/ 100 mL 

RB in distilled water. The solution was stirred for 1 h. It was dropped into a crosslink solution (4 

g/100 mL CaCl2) by a syringe pump. PE-2.0RB capsules were immediately formed and 

continued stirring for additional 30 min to harden the capsules. PE-2.0RB capsules were then 

harvested. PE capsules were also prepared with the same method as PE-RB capsules, but RB was 

not added. Samples were placed on the diamond/ZnSe crystal and pressed by a Teflon spacer. 

Spectra were determined with ATR mode in the range of 4000-650 cm-1 using a resolution of 4 

cm-1. A total of 256 scans were performed to obtain a high signal-to-noise ratio.         

Results and discussion  

 The bands at about 3300 cm−1 of the PE, RB, and PE-2.0RB spectra could represent OH 

stretching vibrations of the absorbed water, as displayed in Figure A1. The result was in 

agreement with that reported by Yu, Wang, Hu, and Wang (2014). Regarding the PE powder 

spectrum, the peak at 1738 cm-1 could be due to C=O stretching vibrations of the methyl 

esterified carboxylic group. According to Manrique and Lajolo (2002), a band at 1740 cm-1 was 

found in the spectrum of PE from citrus fruit. The peak at 1589 cm-1 possibly corresponded to 

asymmetrical stretching vibrations of the carboxylate group, as reported by Rao (1976). The 

stretching vibrations of PE’s glycosidic linkage (COC) were likely observed at 1012 cm-1. The 
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The bands at 1726 cm-1 of the PE capsule spectrum indicated presence of the methyl 

esterified carboxylic group, which was similar to the band at 1723 cm-1 observed in the spectrum 

of PE-2.0RB capsules. The peak of methyl ester groups and carboxylic acid groups of pectin 

were detected in calcium pectinate films at 1735 cm-1 (Assifaoui, Loupiac, Chambin, & Cayot, 

2010). The researcher mentioned that the shape and wavenumber values of this band depended 

on the type and amount of cations used in cross-linking solutions. The band at 1445 cm-1 was 

found in both PE and PE-2.0RB capsule spectra, possibly due to deformation of methyl ester 

(OCH2) (Wellner, Kacurakova, Malovikova, Wilson, & Belton, 1998).     

Unlike the spectrum of PE capsules, the aliphatic CH stretching vibrations were 

detected at 2924 and 2854 cm-1 of the PE-2.0RB capsule spectrum due to the fatty acids found in 

RB. The band at 1624 cm-1 of the PE capsule spectrum could be due to the non-esterified 

carboxyl groups of the pectin molecules, as mentioned by Chatjigakis et al. (1998). This band 

was likely shifted by -19 cm-1 to obtain the band at 1605 cm-1 shown in the PE-2.0RB capsule 

spectrum due to the interaction between PE and RB.             
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