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ABSTRACT 

Ranking tests are important preference and attribute difference tools for sensory evaluation. 

Replicated testing is used widely to reduce the number of panelists required in other sensory 

methods such as discrimination. The information regarding replications sensory ranking is limited.  

This research evaluated important statistical and technical aspects for the development of the 

foundation for duplicated sensory ranking tests. Three studies were accomplished: 1) A study of 

nonparametric analyses on real preference ranked data; 2) a sensitivity study of two samples 

serving protocols for duplicated visual ranking, and 3) protocols comparison in taste. In study 1, 

125 panelists ranked in duplicates each of two sets of three orange juice samples. One set contained 

very different samples and the other similar samples. Five methods of data analysis were evaluated. 

With similar samples, analyzing duplicates separately yielded inconsistent conclusions across 

sample sizes.  The Mack-Skillings test was more sensitive than the Friedman test and is more 

appropriate for analyzing duplicated rank data. 

Study 2 compared the sensitivity of duplicated yellow color intensity ranking served either 

in one or two sessions. Panelists (n=75) ranked both similar and different orange juice sets. For 

each set, rank sum data were obtained from (1) intermediate ranks from jointly re-ranked scores 

of two separate duplicates for each panelist, (2) joint ranked data of all panelists from the two 

replications in one serving session, and (3) median rank data of each panelist from two replications. 

Rank data (3) were analyzed by the Friedman test, while those from 1 and 2 by the M-S test. The 

similar-samples set had higher variation and inconsistency with one serving session, producing 

higher P-values than two serving sessions. Both M-S ranking protocols were more sensitive to 

color differences than Friedman on the medians. 
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 For study 3, an identical design was used to evaluate both serving protocols of duplicated 

sweetness ranking tests. Separate duplicates were more sensitive for color but not in sweetness, 

especially with confusable samples. This showed that the conducting duplicated ranking in a single 

session can be beneficial, but it should be tested for the products and attributes of interest before 

standardizing testing. 
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CHAPTER 1.   INTRODUCTION 

1.1   Introduction 

In sensory evaluation, ranking procedures help researchers to obtain analytical and 

affective information from the perception of subjects toward foods, personal care goods, cosmetics 

and many other consumer goods (Kemp and others, 2009). In sensory evaluation of foods, ranking 

tests require that each individual from a defined group of panelists rank three or more products, 

according to personal preference or perceived intensity of an attribute (Meilgaard and others, 

2016). Panelists may be allowed to assign ties to closely perceived samples; however, it represents 

a different methodology than simple ranking and it has its own statistical analysis (Meilgaard and 

others, 2016). Without the ability to assign the same score to more than one sample, panelists are 

“forced” to order all samples from first to last or vice-versa. Therefore, this variant is commonly 

referred to as a forced choice multiple ranking test. The applications for the ranking tests are wide, 

but mostly help complement other sensory methods such as hedonic rating and intensity scaling 

screening from a large pool of products or as a direct source of information from special 

populations because of its simplicity (Lawless and Heymann, 2010). Other methods require 

ranking as a part of the screening exercises for panelist selection (Stone and Others, 2012) or the 

use of ranking combined with other scaling techniques such as in rank rating methods (Kim and 

O’Mahony, 1998).   

Given the ordinal and dependent (within subjects) nature of the dataset obtained from a 

panel, the statistical testing of forced choice multiple rankings is accomplished with the Friedman 

(1937) non-parametric test (Gaito, 1980; Joanes, 1985; Lawless and Heymann, 2010; Meilgaard, 

2016). The test has a null hypothesis and applications equivalent to a two-way Analysis of 
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Variance (ANOVA) without requiring normally distributed data.  Panelists are used as complete 

blocks in a randomized complete block design (Lawless and Heymann, 2010). 

The Friedman statistic follows a chi-squared distribution, which is obtained from a 

permutation of all the possible theoretical arrangements of the rank scores in a panel, and the 

likelihood of the observed compound difference when compared against that theoretical universe 

of permutations (Conover, 1999; Hollander and others, 2013). A limitation of the Friedman test is 

the inability to allocate replications of the complete rankings from the same panelists. The 

Friedman test can be used only after obtaining the median of the replicates because it requires 

independence between blocks (Conover, 1971). One of the main emphases for validity of sensory 

results is using a large enough number of panelists (Meilgaard and others, 2016). However, 

replications from the same panelists help account for intrapanelist variation due to the possible 

random assignation of scores in the absence of difference, also helping reduce the number of 

panelists and resources (Stone and others, 2012; Lawless and Heymann, 2010). Special statistical 

models were adapted for analysis of replicated preference and discrimination methods to determine 

if differences exists between two products (Ennis and Bi, 1999; Brockhoff, 2003). The Mack-

Skillings test (1980) is extension of the Friedman procedure, capable of handling multiple 

replications of complete rankings from a block (Hollander and others, 2013). Replicated results 

equal those from the application of the Friedman’s test, representing a viable option among other 

nonparametric tests for analysis of replicated sensory ranked data, e.g., the Van Elteren (1959) 

procedure. 

1.2   Research justification  

Replications are seldom used in raking tests and when used, the analysis with the Friedman 

test can be risky or inefficient. For discrimination, descriptive and simple preference tests there is 
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a solid literature foundation for replicated testing (Bi, 2006; Lawless and Heymann, 2010, Stone 

and Others, 2012; Meilgaard and others; 2016). Conversely, there is a clear gap in knowledge 

about handling replications in ranking tests. The availability of the M-S test can help the 

implementation of replicated ranking; however the methodology is to our knowledge, seldom 

known to sensory evaluation and consumer science. The adaptation of a replicated ranking 

methodology by researchers requires reliable answers to statistical and technical equally important 

concerns including: 1) Applicability, reliability, estimated power, benefits and possible 

compromises of the Mack-Skillings tests and competitor tests for statistical analysis; 2) Practical 

and measurable knowledge of the worthiness of applying replicated ranking tests; 3) Assessment 

of the impact of estimating P values for the M-S statistic for hypothesis rejection either with a chi-

squared approximation or computer intensive methods; 4) How samples should be presented to 

panelists in a lab testing and if a break is required between replications as it pertains to sensory 

fatigue and other physiological effects.  

 Sensory evaluation uses humans as active instruments of measurement giving particular 

requirements in the design of experiments (Tormod and others, 2011). The comparison of methods 

or protocols for sensory testing (in this case replicated sensory ranking) usually requires 

applications on large enough panels to estimate power or sensitivity to differences (Kunert and 

Meyners, 1999; Garcia and others, 2012). Sensitivity to differences is one of the most desired 

qualities of sensory tests (Bi and Ennis, 1999).  Sensitivity is affected by number of samples, 

training, instructions, categorical (or ordinal) decision strategy, order of presentation and statistical 

analysis among others (Bi, 2006). Research has covered several of these variables for multiple 

sensory tests. However, for duplicated ranking implementation, the consequences of the statistical 

analyses and if replicates could be served in the same joint ranking to a panelists are two variables 
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not previously studied. Only duplications are considered in this study because of possible sensory 

fatigue (Meilgaard, 2016). The effectiveness of a joint serving session for duplicated ranking might 

not be transferable from one sensory attribute to another, and in principle it can be harder to 

generalize the effectiveness of joint duplicated ranking to attributes perceived with different 

senses. Therefore, both serving protocols should be evaluated for different senses such as color vs. 

taste.  

1.3   Research Objectives 

This research aims to investigate aspects that consolidate the foundation of duplicated 

sensory ranking methodologies from statistical analysis to applications in preference and intensity 

ranking and possible serving protocols applied to tasks with different degree of difficulty.  Namely, 

the objectives of this research are: 1) Evaluate the Mack-Skillings test and other alternative 

methods for statistical analysis of duplicated multiple samples preference ranking test; 2) Study 

the sensitivity to differences between the two possible serving protocols for multiple samples 

visual intensity ranking; 3) Evaluate the serving protocols for attribute intensity in a chemical 

sense, e.g., taste. 
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CHAPTER 2.   LITERATURE REVIEW 

2.1    Overview of sensory ranking tests 

2.1.1 Introduction 

Ranking is one of the most commonly used types of ordinal scale.  The most direct 

approach is to ask subjects to arrange a set of products such that each succeeding product has more 

or less of intensity of an attribute or preference.  With simultaneous product presentation, ranking 

is considered a direct method, and the products serve as their own frame of reference.  The paired 

comparison (e.g., which sample is sweeter) and paired preference (which sample you prefer more) 

tests are a simplified case of the rank-order test and are of directional discrimination.  When a large 

number of samples and time constraints are involved, it is not practical to use paired comparison 

tests.  The multiple samples ranking test becomes useful for screening/presorting a large array of 

products to a smaller more manageable product subset. Data obtained from a multiple-samples 

ranking test are typically analyzed by the non-parametric Friedman’s test. In some cases, in order 

to reduce the number of subjects, time and cost, duplicated ranking tests are performed, and data 

are analyzed using the non-parametric Friedman’s test, not taking into consideration additional 

dependency between duplicates.  Duplicated ranking testing can be beneficial provided that data 

analysis is properly handled (Carabante and others, 2016); however, this topic has not received 

much attention until recently. 

This review discusses historical development of method and statistical analysis of sensory 

ranking tests, current practices and alternative procedures including duplicated ranking testing, 

some factors that induce errors, and statistical considerations for the duplicated multiple samples 

ranking test. 
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2.1.2   Simple paired preference test 

According to Lawless and Heymann (2010), preference tests determine choices between 

two or more products by a group of panelists.  The simplest preference comparison, based on two 

products, is known as the paired preference test. Each panelist simultaneously receives two 

samples (A and B) and is asked to identify which sample is more preferred. Because panelists must 

select one sample, it is a forced choice method. The two possible balanced serving sequences (AB 

or BA) should be randomized across a set of panelists. Advantages of this method include 

simplicity for consumers and simulation of actual consumer choice mechanisms (Lawless and 

Heymann, 2010). The test is suitable for use with children (Schraidt, 1991; Kimmel and Guinard, 

1994). Moreover, it has been shown that illiterate panelists did not experience problems when 

performing the paired preference method (Coetzee and Taylor, 1996). 

The main disadvantages of this method are a lack of absolute magnitude of differences and 

the results that may not associate with sensory liking. For example, a product “A” might be chosen 

over product “B”, but consumers might dislike both products. In addition, Lawless and Heymann 

(2010) recommended avoiding a preference question right after other types of sensory 

discrimination tests, possibly due to pre-conceived frame of mind for sensory differences. Another 

drawback is a lack of appropriate handling for preference responses from panelists producing 

incorrect responses in discrimination; however, this issue was recently discussed (Rousseau and 

Ennis, 2017). 

Data obtained from the forced choice paired preference test can be analyzed by statistical 

analysis methods with either a chi-square distribution, a normal distribution or a binomial 

distribution with probability of success (p) = 0.5. Using a binomial distribution, the probability of 

obtaining “y” selections for a product over another from “N” evaluations is expressed as: 𝑝𝑦 =
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1/2𝑁 𝑁!

(𝑁−𝑦)!𝑦!
. Bi (2006) provided tables of critical values based on a two-tailed test, showing the 

minimum number of responses favoring one product. With a large sample (N > 100), the binomial 

Cumulative Distribution Function (CDF) closely approximates the CDF of a standard normal 

distribution (Lawless and Heymann, 2010). 

2.1.3   Variations of simple paired preference test 

The simple paired preference test has been altered over the years to improve sensitivity to 

differences and increase power. The preference test with no-preference option or non-forced 

choice includes a third possible selection stating “no preference” or “equally preferred”. For 

certain legal claims, this variation might be required (ASTM, 2006). According to Dhar (1997), 

difficulties in deciding among products can delay purchase decision, whereas opting for no 

preference or no choice can facilitate the process. There are four alternatives for handling data 

from non-forced preference tests: (1) a signal detection theory approach based on a Tau criterion 

and d’ used in difference tests with no difference options (Braun and others, 2004); (2) a 

confidence interval approach used for large sample sizes (N > 100) and less than 20% of non-

preference selections (Lawless and Heymann, 2010); (3) assigning of the non-preference 

selections equally to both products or based on the ratio of preference selections (Odesky, 1967); 

(4) elimination of the non-preference selections but using information about the description of the 

frequencies for the three options.  Three common analytic methods (dropping, equal splitting, and 

proportional splitting) for handling no preference votes are compared with respect to power and 

type I error (Ennis and Ennis, 2012).  They suggested that proportional splitting yielded more false 

alarms than expected and hence should not be used. Recently, a lack of appropriate data handling 

for preference responses from panelists failing to produce correct responses in discrimination tests 

was discussed (Rousseau and Ennis, 2017). 
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2.1.4   Multiple samples ranking tests 

Ranking tests require panelists to completely rank a set of three or more samples for either 

general preference or the intensity of a specific attribute (Meilgaard and others, 2006). Simple 

ranking tests are regarded as a high-performance option for sensory analysis with the elderly 

(Wichchukit and O'Mahony, 2015). Among multiple sample tests, ranking tests are the cheapest, 

simplest and most efficient to set up, administer and perform (Stone and others, 2012). 

Nevertheless, carryover could generate interaction, and memory effects could become a 

confounding variable. Meilgaard and others (2006) recommended ranking tests for multi-sample 

evaluations with seven or less samples.  Other than product testing, ranking tests have been used 

for panel performance or proficiency testing, as in the study by McEwan and others (2003), which 

required panelists to rank five apple juice samples according to their perceived sweetness. The 

applications for attribute intensity or difference ranking are wide. Some recent examples include 

difference tests for three tomato base samples (Belingheri and others 2015); consistency ranking 

of five samples of sweet potato porridge (De Carvalho and others, 2014); ranking of bitterness in 

three samples of spray-dried hydrolyzed casein (Subtil and others, 2014); and ranking of the taste 

and aroma attributes (terms) associated with the dissolved solids of fresh and dried lulo (Solanum 

quitoense Lam.) fruit samples (Forero and others, 2015); ranking of bitterness and pungency of six 

virgin olive oil samples to validate bitterness results from phenolic contents and bitterness index 

results (Aguilera and others 2015). Recent applications of preference ranking include a study by 

Karnopp and others (2015) on cookies containing whole-wheat flour and Bordeaux grape (Vitis 

labrusca L.) pomace. For all the previous examples, the statistical analysis performed was the non-

parametric (distribution-free) test by Friedman (1937). 
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2.1.5   Variations of multiple samples ranking tests 

The paired preference test is the two-sample version of a multiple-samples preference 

ranking test (Stone and others, 2012). More than two samples can be evaluated with the paired 

tests by grouping samples in pairs. Thus, the sensory evaluation or the analysis can be performed 

for all possible pairs or selected pairs. The Friedman (1937) test is used if each panelist evaluates 

all possible pairs.  If only selected pairs are evaluated and different subjects were used for different 

pairs, a confidence interval tests is recommended (Bi, 2006). The “Q” statistic by Cochran (1950) 

serves as an alternative test for preference frequencies when the responses are dependent or 

matched, that is, all the subjects evaluate all the selected pairs. 

 Variations of multiple samples complete ranking tests can be applied to both preference 

and attribute intensity difference. The simplest ranking test does not allow ties; thus, panelists are 

“forced” to order all the samples. The Friedman (1937) test is the most widely accepted test for 

ranked data without ties from panelists in a Randomized Complete Block Design (RCBD). A 

ranking test variation allows panelists to assign ties between samples, thus affecting the statistical 

analysis. Hollander and Wolfe (1973) described an adjusted Friedman test for ranked data with 

ties from the RCBD setting. 

 A Balanced Incomplete Block Design (BIBD) is recommended for sensory or consumer 

studies with “too many” samples for a single subject to completely evaluate due to sensory fatigue, 

carryover or other physiological problems (Wakeling and McFie, 1995). The analysis of ranked 

data from a study carried out with a BIBD is performed with the test by Durbin (1951), which was 

later extended to more general incomplete block designs (Skillings and Mack, 1981). All these 

tests for the analysis of multiple samples ranked data are non-parametric, or distribution-free 
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methods that require fewer assumptions than tests based on standard-normal or parametric tests 

(Hollander and others, 2013). 

2.1.6 Non-parametric or distribution-free tests 

Statistical tests for the analysis of ranked data are usually non-parametric. Therefore 

understanding this class of statistics helps clarify why parametric ANOVA is not preferred. 

Hollander and others (2013) defined non-parametric methods as “statistical procedures that have 

certain desirable properties that hold under relatively mild assumptions regarding the underlying 

populations from which the data are obtained.” In a simple metaphor, Conover (1999) described 

non-parametric statistics as “approximate solutions for exact problems”. On the other hand, 

parametric statistics analogized “exact solutions to approximate problems”.  Non-parametric 

statistics differ from parametric even at the level of descriptive statistics.  Boddy and Smith (2009) 

stated that when data are not normally distributed, the sample mean and standard deviation are not 

appropriate descriptive statistics of a population with a differently shaped distribution. A 

nonparametric alternative to the mean, i.e., the median, describes the center of a population. 

Because equal number of values lay below and above the median, the shape of the distribution 

loses importance.  

Records of non-parametric statistics applications go back to the early 18th century with the 

use of a sign test. However, mathematical approaches to assess the occurrence of an event, which 

were the foundation for the initial non-parametric tests date back to the renaissance (Bradley, 

1968). Savage (1953) pointed to the year 1936 as the formal border between the use of certain tests 

of nonparametric resemblance and an understanding among statisticians that tests independent 

from the shape of a distribution should be available. One of the most important tests published 

after 1936 is the 2-way distribution-free ANOVA (Friedman, 1937).  Since 1936 many parametric 
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alternative tests have been developed covering alternatives for one sample t test, two sample t test, 

one-way ANOVA, two-way ANOVA, correlation and regression, among many others (Hollander  

and others 2013). 

2.1.7 Use of non-parametric statistics vs ANOVA  

Comparing both classes of statistics can be difficult. Non-parametric advocates point out 

the advantages of non-parametric statistics; giving little credit to the robustness of parametric 

methods to deviations from normality.  The advantages of non-parametric methods listed by 

Conover (1999) include: 1) less complex models; 2) fast and easy computation; 3) given that the 

development of non-parametric methods rarely used complex mathematics beyond algebra; 

someone able to understand the method is less likely to apply it when it is not required; 4) because 

of better use of information, non-parametric are more powerful than parametric statistics if the 

assumptions (or preconditions) of the latter class are not met. Nowadays with the use of statistical 

software, the second advantage becomes less important.  

In addition, Hollander and others (2013) stated that the fast-paced advancement of 

nonparametric methods is also rooted in the following characteristics: 1) the ability to produce 

exact P values in tests, exact confidence intervals or   confidence bands   and exact error rates for 

multiple comparison procedures; 2) parametric methods are only slightly more powerful than non-

parametric methods in conditions of normality; 3) resistance of outliers; 4) nonparametric methods 

can fit more data scales e.g., ranked data might not require original continuous data, such as in a 

ranking test of sensory evaluation; 5) availability of Bayesian non-parametric methods (Ferguson, 

1973).  

The study of handling non-normality is not exempt from contradictions; often related to 

the “robustness” of the parametric tests to deviations from normality. Bradley (1968) stated that 
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any deviation from normality produces a “non-exact result”. The impact of the inexactitude will 

depend not only on the degree of non-normality, but also on other aspects including: area of 

rejection, shape of the sample distribution, variance size, variance homogeneity, an alpha level, 

sample size, relative characteristics of other samples etc.   Originally, according to Bradley (1968), 

when sampling data were analyzed, contradictions occurred, for example: in several specific cases, 

smaller sample sizes showed less deviation from normality; less homogeneous variances yielded 

higher “normality”.  At that time, a sample size of n > 4096 was suggested to assure that deviations 

from normality delivered close to exact results, clearly not the current standards. Later, Bradley 

(1978) addressed that other authors (Boneau, 1960; Scheffé, 1959) not only failed to provide a 

numeric measure of “robustness”, but promoted the term as an excuse for ignoring non-normality. 

More recently, the robustness of parametric tests to handle deviations from normality 

received higher support.  The approval was generally achieved with at least 10,000 simulated runs 

and for specific research fields; for example, in psychology (Rasch and Guiard, 2004); whereas, 

other studies, discuss specific alternatives. The Kruskal and Wallis (1952) and ANOVA tests 

represent one-way multiple-sample competitors. Khan and Rayner (2003) recommended ANOVA 

for small sample sizes (n ≤ 5) even in non-normal conditions, whereas the Kruskal-Wallis 

outperformed ANOVA at large sample sizes and high Kurtosis. Additionally, Lantz (2013) 

recommended Kruskal-Wallis over ANOVA analysis when analyzing non-normal samples. Other 

options such as rank transformations and analysis under a parametric F distribution were also 

recommended by Conover and Iman (1981); however, specific restrictions apply regarding the 

distributional characteristics required. The selection of the appropriate class of statistics depends 

on many factors, including degree of non-normality, sample size, distributional shape, and 

kurtosis, number of treatments or tails. The literature is diverse and to avoid mistakes without 
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overcomplicating a choice it is important to research statistical method applications in the area of 

interest. Aside from non-parametric methods, generalized linear mixed models can help treat 

continuous, non- normal samples, adapting several distributions, but with ordinal data from low 

number of samples (products), non-parametric rank based tests are still the standard. 

2.1.8 Tests of normality 

Although the popularity of nonparametric tests has increased, Bradley (1968) claimed that 

the term “preconditions” fits better than “assumptions,” which led to overuse of parametric 

statistics. For some researchers, “assumptions” implied that it should be assumed that in most 

cases, data are approximately normal or possess homogeneous variance, etc. Around that time, 

Bradley (1968) criticized the use of parametric statistics on sampled data that did not meet the 

“preconditions” of normal analysis. Shapiro and Wilk (1965) and Shapiro and others (1968) 

published a test for normality. The test is based on a correlation between the distribution of the 

data obtained and the scores of a normal distribution. It is considered the most powerful among 

normality tests (Steinskog and others, 2007; Ghasemi and Zahediasl, 2012).  The proposed test 

uses the following null hypothesis (Ho): deviations from normality are not significant. If the test 

yields a rejection of the null hypothesis, Shapiro and Wilk (1965) suggested either to inspect the 

data of influential observations, data transformations or applying distribution-free methods. 

Other than the test developed by Shapiro and Wilk (1965), Razali and Wah (2011) 

suggested that the tests by Kolmogorov and Smirnov (1933), Lilliefors (1967) or Anderson and 

Darling (1954) are also preferred over the sole use of graphical methods.  Regarding power, these 

tests do not perform adequately for reduced sample sizes (30 or less), but for a larger sample size 

the Shapiro-Wilk’s test is recommended (Razali and Wah, 2011; Yap and Sim, 2011). Over the 

years, generalizations of the normality tests for multivariate data also became available such as 
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those of  Doornik and Hansen (2008) which can also perform with sample sizes as low as 10; 

Royston (1983); Villasenor-Alva and Estrada (2009), to name a few.  Some attempts were done to 

improve the power of the Kolmogorov and Smirnov (1933) test by adjusting the proportions of the 

normal shape against which the data are compared (Drezner and others, 2010). The diversity of 

tests developed for normality evaluation indicates the growing emphasis of applying parametric 

tests only if the deviations from normality are not considered influential.  

2.1.9 Friedman’s test, the non-parametric RBD-ANOVA 

Data from sensory multiple ranking tests rarely resemble normal distributions. Non-

parametric techniques based on ranks serve to analyze original ordinal data sets and interval or 

continuous data with rank transformations (Kramer and others, 1974). The test by Friedman (1937) 

is the most widely recommended statistical analysis for ranked sensory data (Joanes, 1985; 

Chambers and Wolf, 1996; Meilgaard and others, 2006; Lawless and Heymann, 2010).  The 

analysis tests the global null hypothesis (Ho: All T1 = T2 = … Tk, in preference or intensity) for 

more than k = 2 samples in a randomized block design (RBD) without block*sample interaction. 

Because the interaction effect is not tested (Hollander and others, 2013), factorial design effects 

are excluded. In RBD designs, panelists represent blocks; thus, requiring the two-way structure of 

the Friedman (1937) test. The analysis does not require previous interval data allowing the use of 

original ordinal ranked data from adults or children. Children can successfully perform preference 

(since age 3) and intensity (since age 4) rankings on multiple samples. On the other hand, intensity 

scaling is not recommended until age “6” (Guinard, 2000).   

Rayner and Best (1990) recommended the test by Friedman (1937) over other 2-way 

nonparametric tests such as the Pearson (Cochran, 1952), Page (1963) and Anderson (1959) tests 

for taste testing data. The Friedman test is based on a two-way layout with model: Xij: = µ + βi + 

τj + εij, without interaction where: µ is the overall mean (unknown); βi   is the effect of the i th block 



16 

and τj is the effect of the j th treatment or sample. The ε’s are the mutually independent error 

variables originated from one continuous population (Hollander and Wolfe, 1973).  

In multiple-sample ranking without ties, each panelist receives all “k” samples at once; 

assigning a unique rank (R [Xij]) value from 1 to k for each sample (Lawless and Heyman, 2010). 

The assigned values represent the order of attribute intensity or preference for the samples. The 

sum of the individual ranks from each sample, assigned by all the panelists (n) represents one of 

k-rank sums (Conover, 1971): 𝑅𝑗 =  ∑ 𝑅 (𝑋𝑖𝑗)𝑛
𝑖=1  .  With degrees of freedom = k-1, the test for the 

Null Hypotheses Ho is: 𝐹𝑟
χ2 

𝑑𝑓=𝑘−1,𝛼

= (
12

𝑘𝑛(𝑘+1)
) [∑ 𝑅𝑗

2𝑘
𝑗=1 ] − 3𝑛(𝑘 + 1)  

The null hypothesis is rejected if the statistic obtained is larger than the chi-squared critical 

value at α, and degrees of freedom k-1. The Friedman equation yields an asymptotically chi-

squared statistic using the complete permutation structure of the rank scores assigned to a product 

by all panelists. For each data set, it subtracts the observed rank sums of each treatment to a mean 

rank sum followed by a sum of the squared differences (Joanes, 1985; Hollander and others, 2013).  

2.1.10 Multiple comparison procedures for RBD designs 

After rejecting the null hypothesis; multiple comparisons test paired differences between 

treatments. According to Lawless and Heymann (2010), either a non-parametric Tukey or LSD 

test are recommended. Additional critical value tables comparing corresponding values to both 

tests are discussed later.   Hollander and Wolfe (1973) recommended the Tukey HSD analog, based 

on an experiment-wise error rate critical value rather than in the paired one used in the LSD. 

Conversely, Best (1990) claimed that the HSD method is highly conservative, proposing the use 

of the LSD non-parametric analog. However, he acknowledged that the HSD method avoids 

rejecting the null hypotheses with false differences. Both equations are shown below.  

LSD = t α/2 ∞ * √nk (k+1)/6 = LSD = z α/2 * √nk (k+1)/6                HSD = q α, k, ∞ * √nk (k+1)/12 
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Where n = a number of panelists, k = a number of samples, Z α/2 ∞  is a score from a standard 

normal distribution corresponding to one half of α for a two tailed comparison,    𝑞𝛼,𝑘 is the αth 

distribution percentile for all “k” sample independent and normal variables 

Other alternatives for multiple comparisons of the two-way layout exist. McDonald and 

Thompson (1967) provided tables of critical values; however, this method was not recommended 

for anything other than an experiment-wise error rate comparison (Church and Wike, 1979). In the 

same Monte Carlo study with k= 3, 5 or 7 and n = 8, 11 or 15, it is also recommended to avoid the 

test by Rhyne and Steel (1976) due to poor error rates performance. Among the other options, the 

Wilcoxon (1945) signed ranks test and a “stepped down” sign test obtained better error rates 

(Church and Wike, 1976). 

2.1.11 Tables of critical values 

In addition to tests that generate a statistic that leads to a P value, the analysis of sensory 

ranked data can be achieved through tables of critical values. These methods represent a quick 

alternative analysis to computing a non-parametric test. The tables show critical values for 

hypothesis rejection at a specific number of panelists “n” and a number of samples or treatments 

“k”. The first set of tables was developed by Kramer (1956), based on the determination of all the 

possible rank sums, arranged in order from largest to smallest. All the rank sum values contained 

in the highest “1-αth” percentile represented the rank sums that are significantly higher than the 

rest. All the rank sums contained in the lowest “αth” percentile represented the rank sums that were 

significantly lower than the rest.  The conservative nature of the tables, the lack of multiple 

comparisons inference, and the incorrect assumption of independence between the rank sums 

(Joanes 1985) motivated Newell and McFarlane, (1887) and Basker (1988) to create new tables. 

They simulated 10,000 panels for various n*k combinations, then obtained the highest rank sum 

difference form each panel to determine the largest absolute differences contained in a specific 
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“αth” percentile on a contingency table.  This method accounted for the dependence between 

samples given the inclusion of all the rank sum differences from al panelists. Nonetheless, 

Christensen and others (2006) declared such tables to be too conservative for multiple 

comparisons, but adequate for global hypothesis testing. They developed a new set of tables based 

not on the largest difference but on all the differences from each of the 10,000 simulated panels to 

construct the contingency tables that serve for obtaining the critical values for each “α”, “n”, and 

“k” values. 

2.2 Replicated preference and difference tests 

In sensory evaluation, the use of replicated preference and discrimination (difference) tests 

has mostly aimed to compare two original samples even if more samples are served to compare 

them, e.g., Triangle test. The study of replicated testing and analysis on multiple-samples tests 

such as ranking has received less attention. When properly analyzed, the use of replications in 

preference and discrimination testing is promoted to maximize the use of available panelists, 

reduce costs and improve statistical power (Lawless and Heymann, 2010). In addition, replication 

helps control intra-panelist variations, forcing panelists to re-assure decisions that could have 

arisen from randomness, and not from true perceptual difference (Stone and others, 2012). For 

such tests, the main concern has been the statistical analysis of data from the replications. 

According to Lawless and Heymann (2010), simple approaches include the analysis of replications 

separately, and based on diverse criteria, e.g., requiring both complete replications to be 

significantly different to declare a difference. Also, tabulate which panelists provided correct 

responses for all the replications performed and analyze the data based on a Z score test with an 

adjusted guessing probability for a specific test.  
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The need for extended information and less conservative analysis promoted analyses, 

which evaluated independence and/or over-dispersion of the set of data between the replicates, to 

assess if data from replicates can be pooled into one set. Smith (1981) described a method to test 

independence with a binomial test; in which if independence was achieved, i.e., overdispersion 

approaching zero, it would allow pooling the data form the replicates for analysis with a binomial 

test. This method could test independence but not the occurrence of patterns of agreement or 

disagreement between the replications within the data (Lawless & Heymann, 2010). If patterns 

exist they could inflate the variation for an originally binomial distribution expectation causing 

over-dispersion (Anderson, 1988).  The beta-binomial model measures the occurrence of over-

dispersion, and provides an adjustment for different levels, gaining increased popularity in 

discrimination testing (Harries and Smith, 1982; Ennis and Bi, 1998). The latest widely accepted 

adjustment to replicated discrimination testing is the corrected beta-binomial model (Brockhoff, 

2003). Replicated testing is also recommended for descriptive tests (Stone and others, 2012), 

whereas duplications have also shown improvement in discrimination and reliability for product 

characterization with Check All That Apply (CATA) profiling and product spaces from projective 

mapping (Vidal and others, 2016). The last example used a long period (one week) between the 

duplicate assessments but they suggested that it could be done in a single session with a break after 

to minimize sensory fatigue.  

2.2.1   Independence between and within panelists in ranking tests 

Independence between blocks is a concern in both non-parametric and parametric statistical 

analysis (Mooijart and Bentler, 1991). In multiple-samples sensory ranking, each panelist should 

be independent and receive all “k” variables or samples to rank at once. Per Conover (1971), the 

blocks (b) in the Friedman (1937) test should be mutually independent; each composed of “k” 
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random variables representing the samples. Independence between blocks means that one block 

should not influence another block. When a panelist repeats a k-variate set of samples, and is 

accounted as another block, a high level of influence or dependence occurs. Stone and others 

(2012) stated that complete independence of judgments is utopic, but the risk of such dependence 

in parametric testing has not been clearly measured. The dependence between the judgements of a 

subject in a single ranking test without replications, and analyzed with the Friedman’s test, is not 

undesirable and is accounted by a new assumption. Such assumption states that the scores for each 

sample evaluated should be equally likely under the null hypothesis, that is, when differences do 

not exist.  

2.2.2 The Mack-Skillings test 

Mack and Skillings (1980) proposed a non-parametric test alternative to the two-way 

ANOVA for one or more observations per block*sample combination (panelist*sample). The 

authors stated that the test is more powerful than an F test without a standard normal distribution, 

and almost as efficient under normality. The test is designed for an equal number of replications 

per cell or panelist*sample combination.  Oron and Hoff (2006) affirmed that the Mack-Skillings 

(1980) test is a straightforward extension to the Friedman (1937), but it is much less known outside 

professionals of non-parametric statistics. With the Mack-Skillings test the new assumption 

persists, also requiring that all the scores regardless of replication should be equally likely 

(Hollander and others, 2013). The model of the test for a two-way with factors: α (rows or 

panelists) and θ (columns or samples) without interaction is: 

𝑌𝑖𝑗𝑘 =  µ +  𝛼𝑖 +  𝜃𝑗 +  𝐸𝑖𝑗𝑙 

i=1, j =1, and k = 1…cij ≥ 1.   Let: 𝑁 =  ∑ ∑ 𝑐𝑖𝑗𝑘
𝑗=1

𝑛
𝑖=1 = 𝑛𝑐𝑘, where: ∑ 𝛼𝑖  𝑛

𝑖=1 =  ∑ 𝜃𝑗
𝑘
𝑗=1 = 0, 

Eijk’s are independent random variables, each with the same distribution function.  
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Based on that model, Hollander and others (2013) simplified the computation of Mack Skillings 

(M-S) statistic to: 𝑀 − 𝑆χ2 
𝑑𝑓=𝑘−1,𝛼

= (
12

𝑘(𝑁+𝑛)
) [∑ 𝑅𝑗

∗2𝑘
𝑗=1 ] − 3(𝑁 + 𝑛) 

Where, n= number of blocks (panelists in sensory evaluation), k = number of samples, c = 

number of complete replications for all n*k cells.  𝑅𝑗
∗ =  ∑ [∑

𝑟𝑖𝑗𝑙
𝑐⁄𝑐

𝑙=1 ]𝑛
𝑖=1  = by-product rank sums 

(averaged from replications) of the within-block rankings which include all rank scores obtained 

from “nc” samples per panelist.  

Table 2.1 Comparison of the Mack-Skilling and Friedman’s test equations, parameters and 

multiple comparisons (MC)* 

Characteristic  Friedman Mack- Skillings  

Number of Samples  k k 

Number of Panelists n n 

Number of replications Not available c 

Total observations n*k N= k*c*n 

Samples ranked per 

panelist (vector size) 1 to k 1 to c*k 

By sample rank sums  
𝑅𝑗 =  ∑ 𝑅 (𝑋𝑖𝑗)

𝑛

𝑖=1

 𝑅𝑗
∗ =  ∑ [∑

𝑟𝑖𝑗𝑙
𝑐⁄

𝑐

𝑙=1

]

𝑛

𝑖=1

 

Test equation 

(
12

𝑘𝑏(𝑘 + 1)
) [∑ 𝑅𝑗

2

𝑘

𝑗=1

] − 3𝑏(𝑘 + 1) (
12

𝑘(𝑁 + 𝑛)
) [∑ 𝑅𝑗

∗2

𝑘

𝑗=1

] − 3(𝑁 + 𝑛) 

Experiment-wise MC 
𝑅𝐴 − 𝑅𝐵  ≥ 𝑞𝛼,𝑘 ∗ √

𝑛𝑘(𝑘 + 1)

12

2

 𝑅𝐴
∗ − 𝑅𝐵

∗  ≥ 𝑞𝛼,𝑘 ∗ √
𝑘 (𝑁 + 𝑛)

12

2

 

 

 

Paired-wise MC 

 

𝑅𝐴 − 𝑅𝐵  ≥ 𝑡𝛼,𝑘,∞ ∗ √
𝑛𝑘(𝑘 + 1)

6

2

 
Not available 

*j = the jth sample, i = the ith panelist and l = the lth replication. 

Table 2.1 compares the parameters and characteristics of the M-S computation to those of 

the Friedman test. The M-S statistic asymptotically follows a Chi squared (χ2) distribution with 

degrees of freedom (df) = k – 1. Nevertheless, a Monte Carlo simulation with 10,000 runs or an 

exact test was recommended by Hollander and others (2013) for less than 4 replications. With 

more replications, the Chi squared approximations yields slightly more conservative results. A 
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guide of R software codes for analysis of duplicated ranked data with a Monte Carlo simulation is 

available (Carabante and others, 2016). 

The multiple comparison’s procedure is based on an experiment-wise error rate, analog to 

a two-tailed HSD Tukey’s test or Studentized range procedure for replicated data, with null 

hypothesis: H0 = Sample A’s rank sum (RA) = Sample B’s rank sum (RB). Rejection of the Null 

hypothesis (H0) is achieved when:  𝑅𝐴
∗ − 𝑅𝐵

∗  ≥ 𝑞𝛼,𝑘 ∗ √
𝑘 (𝑁+𝑛)

12

2
 , where, 𝑞𝛼,𝑘 is the αth distribution 

percentile for all “k” sample independent and normal variables (Mack and Skillings 1980).  The 

Mack-Skillings test has also been evaluated on duplicated consumer preference ranked data, 

showing higher consistency than evaluating duplicates individually with the Friedman test and 

higher sensitivity than obtaining the medians of the replications (Carabante and others, 2016). 

2.3 Factors affecting sequential sensory preference and difference tests 

Given the active nature of real world perception and the variability of the human as an 

active instrument of measurement, biases or errors are unavoidable. Stone and others (2012) 

suggested that the straightforward approach to handle such factors and errors is to minimize them 

and balance their effect across all samples through awareness and design. The factors influencing 

sensory verdicts or judgement of panelists are mainly classified into: psychological and 

physiological. Very early physiological factors were considered errors (Guilford, 1954; Lawless 

and Heymann, 2010) and physiological factors are better defined by processes. The physiological 

processes affecting judgments included carryover (usually mitigated with randomized and 

balanced designing), sensory adaptation (O’Mahony, 1986), and memory (Amerine and others, 

1965). In relationship with duplicated sensory ranking tests, this processes gains relevance if the 

duplicate sets of samples are served in the same joint ranking sessions. Whereas, with separate 

duplicates the “break” or inter duplicates time could also be affected. 
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2.3.1 Sensory adaptation 

According to O’Mahony (1986), the human brain uses feature extraction and adaptation 

for protection from an overload of information. The first process involves removal of information, 

whereas adaptation attenuates the sensitivity of a sense to repetitive and redundant stimuli, also 

affecting subsequent stimuli over time (Wark and others, 2007).  Sensory measurements are 

affected by adaptation when an input or stimulus remains constant, e.g., an odor or flavor. This 

sensation would generally vanish from the initial exposure and subsequent samples of the same 

general stimulus in multiple evaluation will be perceived as weaker in intensity (O’Mahony, 1986). 

This principle aids the notion that sensory evaluation of taste, smell and possibly vision, can benefit 

from a reduced number of evaluations by a panelist. In addition, adaptation requires less time to 

recover than fatigue since it is a sensory not a muscular process, gaining benefits from inter-trial 

breaks and rinsing to eliminate remaining stimulus. Nevertheless the occurrence of adaptation with 

a higher number of samples depends on the nature of the test and stimuli since initiation and 

duration are highly dependent on the stimulus (Köster, 2003), whereas other processes can also 

reduce sensitivity in analysis and interact with adaptation (O’Mahony, 1986). 

2.3.2 Visual adaptation  

The quickness of a ranking test can be beneficial for visual evaluations of a larger number 

of samples (Chambers and Wolf, 1996). Nevertheless, factors such as adaptation can impact a 

large sample set or a duplicated joint test. The most basic classification of adaptation mechanisms 

in visual perception describes mechanisms for chromatic, light and dark adaptation. According to 

Fairchild (2013), light adaptation is the decrease in sensitivity to changes in lightness due to high 

environmental illumination. For example, it is easier to see the stars at night than in the day when 

the sky illumination is several orders higher. Dark adaptation is the opposite response mechanism, 
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i.e., increasing visual sensitivity with higher environmental darkness, but it occurs slower than 

light adaptation (Kalloniatis and Luu, 2007). 

Chromatic adaptation occurs with repeated exposure to a specific wavelength by the cones 

in the retina reducing sensitivity over time due to a lingering effect of the previous stimulus 

(Werner, 2014). It represents the changes in responsiveness of the three types of cone 

photoreceptors individually. The light and dark adaptation involves changes in all three types of 

receptors at once. Visual adaptation occurs through different mechanisms ranging from sensory 

exclusive, reflex-like or exclusively cognitive (Fairchild, 2013). Other forms of adaptation known 

as high level adaptation mechanisms are: spatial, frequency, contrast, motion adaptation, blur 

adaptation, noise adaptation, face adaptation and the McCollough effect (Clifford and Rhodes, 

2005; Adams and others, 2010). Per Lawless and Heymann (2010), adaptation mechanisms must 

be considered when designing sensory tests and experiments, therefore visual adaptation must be 

considered for the design of replicated appearance and color evaluations of foods. 

2.3.3 Memory implications in sensory testing 

The impact of the memory of evaluators on the sensitivity to differences in sequential 

testing has been a subject of attention for both preference and discrimination tests.  Ideal 

comparison in discrimination testing requires that the memory of the previous sample remains 

unaltered or undeteriorated when the subsequent samples are evaluated (Cubero and others, 1995). 

That is, when the panelist is still using immediate memory for the perception of the previous food, 

thus remarking the importance of inter-trial time reduction on memory decay. Nevertheless, it is 

important to consider that such inter-trial time reduction could be counterproductive preventing 

adaptation. Mantonakis and others, (2009) studied the sensitivity to differences in preference 

affected by the number of samples evaluated in the sequence (2 to 5). With a larger number of 
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samples, other factors rather than the wines themselves, showed higher effect on differences, e.g., 

position. They hypothesized that memory load and memory interference caused the reduction in 

preference sensitivity with more samples since, naive consumers tend to competitively analyze all 

samples to the previous favorite, resembling paired comparisons. With more samples tried, each 

new sample inserts interference through a new comparison. 

 When comparing the sensitivity of specific discrimination tests for testing perceived 

differences between two samples, Rousseau and others (1998) found that triadic tests or tests 

requiring the evaluation of three samples from two original treatment levels were less sensitive 

than a same different test which only requires two evaluations. The authors adjudicated the 

decrease in differentiation performance on memory decay given the longer time required for triadic 

tests with one more evaluation.  Lau and others (2004) studied the specific impacts of memory 

decay (increased with longer inter-trial time) and memory interference (induced with the addition 

of additional samples or stimuli). Their results showed that memory interference was the more 

detrimental factor, but both can play roles in sensitivity reduction. Additional research on forced 

choice discrimination tests suggests that three sample tests (3AFC) were less sensitive than (2AFC) 

tests partly because of higher memory requirements (Dessirier and others, 1998; Roseau and 

O’Mahony (1997). In summary, the compendium of research suggests that memory is an important 

factor affecting sensitivity in difference or preference tests that require a larger number of samples 

and inter-trial rising. 

2.4 Limitations of the ranking procedure 

Some limitations of ranking tests include (Stone and Sidel, 1993): 

 Typically, all products in a set of products must be evaluated before a judgment is made.  

This maximizes the potential for sensory fatigue and increases the likelihood of a loss in 
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differentiation among products.  This problem is obvious when dealing with a large number 

of products or products with a lingering flavor/odor or greasiness or products with relatively 

small differences.  Although ranking tests have wide applications, but with sample sets above 

three, they do not discriminate as well as tests based on the use of scales (Meilgaard and 

others, 2016). 

 Because the ranking tests are directional, it is necessary to specify the characteristics and 

direction for the ranking.  A problem occurs with untrained subjects, because they may not 

understand the specific characteristics (e.g., flavor intensity of earthy, muddy, musty from 

off-flavor catfish). 

 Data provide no indication of the overall location of products on the attribute rated and no 

measure of the magnitude of differences between products. 

2.5 Conclusion 

The scientific discipline of sensory and consumer studies has expanded rapidly and now is 

equipped with new testing from improvements in discrimination methods, temporal perception, 

rapid descriptive methods, equivalence testing, measurement of emotions and wellness, impact of 

concepts, statements and sensory cues, applications on foods from insects, face recognition, eye 

tracking, noninvasive physiological methods among many others. During such evolution, the gap 

of duplicated ranking testing was not filled. Thus, postponing a possible improvement to one of 

the most straightforward methods of consumer presence and difference evaluation. The Mack-

Skillings test suits the dependency between the samples and duplicates in a duplicated ranking, 

solidifying the foundation for testing. New studies (Carabante and others, 2016) suggest 

duplicating ranking tests in preference can potentially improve the consistency of the information 

and reduce the number of judges required. 
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CHAPTER 3.   ANALYSIS OF DUPLICATED MULTIPLE-SAMPLES RANK 

DATA USING THE MACK–SKILLINGS TEST 

3.1   Introduction 

A multiple-samples ranking test is a simple and essential tool for sensory discrimination in 

terms of preference and/or attribute intensity. It is simple, quick, and friendly to untrained 

consumers (Lawless and Heymann 2010). Rank data are inherently ordinal; hence they should be 

analyzed by nonparametric statistical analysis (Bi 2006). The Friedman rank sum test is perhaps 

the most commonly used method for analysis of rank preference data. Replicated preference test 

may increasingly gain relevance because it increases the number of replications per sample and 

hence reduces cost of sensory testing. When there is more than one replication within a block, and 

the number of replications is equal for all samples, the Mack–Skillings test can be used for the 

global null hypothesis testing of no differences among samples. The testing of the global null 

ranking hypothesis (H0: all samples are not different or H0: t1 = t2 = … = tk) normally takes two 

main routes: nonparametric (distribution-free) analysis of variance (ANOVA) or ready-to-use 

tables of critical values which provide hypothesis test conclusions but not a degree of significance 

via a P value. The tables of critical values for rank analysis were first developed by Kramer (1956). 

Based on those tables, other versions and extensions were developed by Bradley and Kramer 

(1957), Kramer (1960, 1963), and Kahan and others (1973). Kramer’s method cannot provide 

multiple paired comparisons among samples, only determining if each individual sample is 

categorized into either “significantly lower,” “significantly higher,” or “not different from the 

rest.” This limitation is explained by the nature of the tables which categorizes rank sums using 

the permutation distribution of all possible rank permutations {(k)n}, where k is the number of 

treatments and n is the number of panelists, and determines a critical value cutoff at α. 

___________________________ 
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To determine the “significantly lower” group, cut-off rank sums are selected after locating 

the highest absolute rank sum value that falls within 0 and α. The selected critical value for the 

“significantly higher” group is the lowest rank sum found between (1 − α) and 1. This construction 

incorrectly assumes that sample’s rank sums are independent, which is a reason to motivate 

different alternatives (Joanes 1985). Newell and MacFarlane (1987) created, whereas Basker 

(1988) expanded critical value tables using the highest simulated (n = 10000 simulations) absolute 

rank sum difference for fixed sets of samples and block (panel) sizes at α = 0.1, 0.05, and 0.01. 

Later, Christensen and others (2006) suggested that the Basker’s method originally created for 

multiple comparisons was better suited for global hypothesis testing given its conservative 

approach. 

They created new table sets for multiple comparisons (that is, the LSD Test), using only 

simulated paired differences instead of the range. Among the distribution-free tests, the Friedman’s 

test for several related samples is a 2-way ANOVA analog (Friedman 1937; Conover 1971; 

Hollander and Wolfe 1973), where, in sensory research, panelists represent complete blocks (RBD 

design without treatment × panelist interaction). The test is recommended for ranked preference 

analysis by Joanes (1985), Meilgaard and others (2006), and Lawless and Heymann (2010). A 

preference test with replications involves panelists participating more than once in the same study, 

evaluating the exact same set of samples. These tests require special statistical analyses that 

account for the nonindependence of the data. For laboratory or central location test (CLT), 

replicated preference tests are not common, but using replications correctly can reduce the cost of 

recruiting, screening, and transportation of panelists (Lawless and Heymann 2010). Consumer 

responses can change from one replication to another, and accounting for this intrapanelist 

variation is necessary. In a nonreplicated paired preference test, Cochrane and others (2005) stated 
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that it is difficult to determine if consumer response is based on true preference or the inherent 

randomness of the forced decision when a truly preferred product is not found by a panelist. Hence, 

they recommended replicated paired preference testing to be done.  

In sensory evaluation, data from some replicated sensory tests including discriminative and 

paired preference tests are analyzed with β-binomial (Ennis and Bi 1998) or corrected β-binomial 

models (Brockhoff 2003). Both tests included the overdispersion between replications (Anderson 

1988) to increase testing power (Bi 2006). When evaluating the suitability of a distribution-free 

method to fit the researcher’s needs, several aspects are considered. Important evaluations using 

Bootstrap and Monte Carlo simulations of power and asymptotic relative efficiency (Pitman 1936) 

are without question valuable and help sensory scientists decide between statistical tests. Practical 

applications of statistical methods in real-life situations, including actual consumers from feasible 

panel sizes, can also help determine method selections. According to Brockhoff and Schlich 

(1998), researchers compensate the lack of panelists by having them replicate the discrimination 

test several times. However, suitable data analysis for the replicated multiple-samples rank data is 

less known and applied. The Mack–Skillings procedure (Mack and Skillings 1980) based on 

proportional frequencies represents an extension to the Friedman’s distribution-free test to analyze 

more than 1 replication per treatment–panelist (block) combination. Each repetition of the 

complete ranking test by a panelist represents 1 additional data cell for each treatment-panelist 

combination. The method is also explained by Hollander and others (2013), and multiple 

comparison procedures are provided in both sources (Mack and Skillings 1980; Hollander and 

others 2013).  

The Mack–Skillings (1980) test has not received sufficient consideration in sensory and 

consumer sciences. The description and application of this test can help researchers make more 



36 
 

informed decisions. Therefore, the objectives of this study were to explore the use of the Mack–

Skillings test for analysis of duplicated multiple-samples preference rank data, and to compare the 

results with those analyzed by the Friedman’s test. Furthermore, the analysis was done to 

demonstrate effects of degree of product divergence (different-sample vs. similar-sample sets) and 

sample size (n = 10 to 125). In addition, to explain the Mack–Skillings computation, a brief 

example was described in the section “Materials and Methods.” 

3.2   Materials and methods 

3.2.1   Sample description 

Two sets of 3 orange juice samples each were designed to produce a different-samples set 

(Set 1), which was expected to give higher absolute differences among the 3 samples than a 

similar-samples set (Set 2). Both sets included one sample of 100% orange juice without pulp 

(Tropicana Products, Inc., Chicago, Ill., U.S.A.). Set 1 was completed with 2 dilutions of 100% 

Tropicana orange juice with purified spring water (w/w) to obtain 70% and 40% orange juices. 

Similarly, Set 2 was completed with 2 samples containing 95% and 90% orange juices. 

3.2.2   Multiple-samples ranking tests 

The research protocol for this study was approved (IRB# HE 15 to 9) by the Louisiana 

State Univ. (LSU) Agricultural Center Institutional Review Board. A group of 125 panelists was 

recruited from a pool of faculty, staff, and students at the LSU campus. The criteria for recruitment 

were: availability and no allergy for orange juice. Those who self-indicated sensory deficits 

(ageusia and/or anosmia) were excluded from this study. They were asked to rank 3 samples 

without giving ties (1 = most preferred and 3 = least preferred). All panelists completed the 

duplicated preference ranking test of both sample sets (S1 on 1 day and S2 on another day). They 

took a 15-min mandatory break between the 2 replications. They were asked to step out of the 
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sensory partitioned booth room, wait in the reception area, and then repeat the test on a biological 

replication of the set (different aliquots of the same orange juice products). Different random 3-

digit sample codes were used to avoid biases between the 2 replications and the 2 sample sets. For 

all 4 individual ranking tests (2 sample sets × 2 replications), samples were presented in a counter-

balanced arrangement. Panelist identifications were recorded to ensure the matching of the 

replications data analysis. The test room was illuminated with cool, natural, and fluorescent lights. 

Crackers, water, and expectoration cups were provided to consumers to use to minimize any 

residual effects between samples. The Compusense® 5 release 5.6 (Compusense Inc., Guelph, 

ON, Canada) software was used to develop the questionnaire and collect the data. 

3.2.3   Ranking statistical analysis alternatives 

The planned data structure (k= 3 treatments, n =125 panelists and c= 2 replications) allowed 

several alternative analyses varying in data handling or the test used. All the analysis performed 

asymptotically followed a chi-square distribution with degrees of freedom (df) = k-1 = 2, enabling 

direct contrast or comparison of chi-square statistics. The four approaches of data analysis used in 

this study are described as follows: 

1. Averaging the rank sums of both replications followed by the Friedman’s test at several 

sample sizes (n = 10-125 panelists).  Hollander and others (2013) pointed out that using the 

Friedman’s (1937) test after obtaining the median of rank scores from the replications is a 

more conservative alternative non-parametric analysis of replicated rank data. In this study 

in which c = 2 replications, the averaged rank sums of the replications (of “n” panelists) by 

sample equals the sum of the median scores of the replications by sample. 

2. Data analysis involved individual replications separately analyzed using the Friedman’s test. 

3. The Mack-Skillings procedure was applied on both replications jointly. 
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4. The Friedman’s test was performed on data pooled from both replications, transforming “n” 

into “2n = n non-independent blocks” to emulate an analysis that violates the assumption of 

independence between blocks (ranks from the same panelist are used as individual blocks). 

3.2.4   On the Mack-Skillings test 

The distribution-free Mack-Skillings (1980) test is an asymptotically chi-squared test for 

general hypothesis testing of the RBD design with more than one observation per cell (block-

treatment combination). In a traditional Friedman’s test data arrangement, the treatments represent 

columns (j), and the panelists or blocks represent rows (i), restricting to one observation per each 

cell. In the Mack-Skillings test, each block contains all rank data from all replications; this test is 

exemplified by Hollander and others (2013). While its asymptotic relative efficiency was praised 

by Rinaman Jr (1983) in terms of power, a higher asymptotic relative efficiency means more power 

when cell size is fixed and the number of blocks become large or vice versa.  The Mack-Skillings 

chi-square statistic is calculated as follows:  

MS =(
12

𝑘(𝑁+𝑛)
) ∑ (𝑅𝑗

𝑁+𝑛

2
)

2
𝑘
𝑗=1  = (

12

𝑘(𝑁+𝑛)
) [∑ 𝑅𝑗

2𝑘
𝑗=1 ] − 3(𝑁 + 𝑛) , where “n” = the 

number of panelists, “k” = the number of treatments, “c” = the number of complete ranking 

replications, “N = nkc” and Rj = the by-product rank sums (averaged from replications) of the 

within-block rankings which include all rank scores obtained from “nc” samples per panelist. 

An experiment-wise multiple comparisons procedure is also available for the Mack-

Skillings test (Mack and Skillings 1980; Hollander and others 2013) with a null hypothesis: H0 = 

Sample A’s rank sum (RA) = Sample B’s rank sum (RB). Reject H0 if: 

𝑅𝐴 − 𝑅𝐵  ≥ 𝑞𝛼,𝑘 ∗ √
𝑘 (𝑁+𝑛)

12

2
 , 
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Where, 𝑞𝛼,𝑘 represents the αth distribution percentile for all “k” sample independent and 

normal variables (Mack and Skillings 1980).  This test relies on an experiment-wise error rate, i.e., 

the HSD analog procedure. Although this method was recommended by Hollander and others 

(2013), they also provided a conservative multiple comparisons test based on the Scheffé 

approximation. According to this procedure, two samples are significantly different if their 

absolute deference is greater than or equal to the critical value, as follows: 

|𝑅𝐴 − 𝑅𝐵 | ≥  √[𝑘(𝑁 + 𝑛)𝑚𝑠𝛼 /6] 

Where, msα is the variable upper tail critical value given the number of panelists, 

replications and test samples. The R codes for calculating critical values and the Mack-Skillings 

statistic are available in Figure 3.1. 

3.2.5   Assumption of independence between blocks and sensory fatigue 

Although the research on “non-independence” in the Friedman’s test is sparse, this specific 

assumption “independence between blocks” is of importance for accurate analysis (Rigdon 1999). 

Applying the Mack-Skillings test to analyze replicated preference rank data helps to avoid a 

violation to this assumption; however, a new point of consideration arises.  Both Friedman’s and 

Mack-Skillings tests replace their within-blocks independence assumption by an assumption (null 

hypothesis) that all (k!)n rank matrix configurations composed of all individual rank scores are 

equally likely for the Friedman’s test, while all [(ck)!]n rank scores configurations are equally 

possible for the Mack-Skillings test (Hollander and others 2013). 

According to the Mack-Skillings test (Hollander and others 2013), when k =3 and c =2, 

there are two practical serving protocols: each panelist ranks all kc = 6 samples in one session, 

resulting in a set of 6 rank scores (1, 2, 3, 4, 5, and 6), and/or each panelist ranks the same k=3 

samples twice (i.e., in two separate sessions) and the combined data for each panelist consist of 
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three sets of ties (i.e., 1, 1, 2, 2, 3, 3), hence averaging within-block rank scores (intermediate ranks 

for two replicates) for each panelist is required prior to data analysis. Regardless of the serving 

protocols, the individual rank scores (1, 2, 3, 4, 5 and 6) or intermediate rank scores will ultimately 

contribute to an average by sample rank sum of “c” replications (𝑅𝑗 
∗ =  ∑ 𝑟[∑ 𝑟𝑖𝑗𝑙

𝑐
𝑙=1 /𝑐]𝑛

𝑖=1 ) 

(Hollander and others 2013), where the averaged rank sum is derived from the sum (up to n) of 

each of the averaged rank scores. Such averaged rank scores are the sum of all scores from the ith 

block for the sample j, divided by c).  

In a typical multiple-samples preference test, panelists rank all samples at once and re-

tasting is permitted (Stone and Sidel 1993).  In a sensory research scenario where panelists serve 

as active instruments without sensory fatigue, two replications (c = 2) could be evaluated jointly 

in a single session. As such, each panelist would rank all “kc” samples served at once (the identity 

of the samples should not be revealed); therefore, under the null hypothesis, each rij rank score is 

equally likely for each i panelist.  However, in a more practical and realistic situation, and from a 

sensory fatigue standpoint, ranking “k” samples twice with a resting period in between is more 

favorable.  Extending c > 3 could also involve sensory fatigue so c should be kept minimal.  Re-

ranking two sets of rank scores from the same sample set and the same panelist could be thought 

of as a rank transformation to a single block. Rank transformation is normally employed when data 

intended for parametric ANOVA analysis do not meet the normality assumption and that deviation 

from normality could not be handled by ANOVA’s robustness. Only in such a case, rank 

transformation offers more sensitivity to treatment effects than ANOVA (Edgington, 1980). In our 

current study, each panelist ranked the same k samples twice with a 15-min mandatory break in 

between, and both sets of rank scores were ordinal and non-normal, and intended to be re-ranked 

jointly within a block as in an RBD-rank transformation. 
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To demonstrate how the Mack-Skillings procedure works, an example is given below.  

When k = 3 and c =2, each panelist will provide a total of six joint rank scores. The following 

example explains the Mack-Skillings procedure when k = 3 (A, B and C), c = 2, and n = 5 panelists, 

including data structure (Table 1). The first half of Table 1 (left side) illustrates a matrix 

arrangement of the original data set from a duplicated ranking test.  

Table 3.1 An example of the Mack-Skillings re-ranked data from n = 5 panelists, c = 2 

replications and k = 3 treatments 

Obtained data (k=3, n=5, c=2) Averaged rank data to accommodate ties 

n A1 A2 B1 B2 C1 C2 n A1 A2 B1 B2 C1 C2 

1 2 1 3 3 1 2 1 3.5 1.5 5.5 5.5 1.5 3.5 

2 1 1 3 3 2 2 2 1.5 1.5 5.5 5.5 3.5 3.5 

3 1 1 3 3 2 2 3 1.5 1.5 5.5 5.5 3.5 3.5 

4 1 1 2 3 3 2 4 1.5 1.5 3.5 5.5 5.5 3.5 

5 3 1 2 2 1 3 5 5.5 1.5 3.5 3.5 1.5 5.5 

A, B, and C are treatments.  1 and 2 indicates replication. 

The first step is to compute the averaged within-block rank scores (intermediate ranks) 

obtained from each of the “kc” presented samples to accommodate ties as seen on the second half 

of Table 1 (right side). Next compute Rj for all 3 products as follows: 

For A, Rj = (3.5+1.5+1.5+1.5+5.5+1.5+1.5+1.5+1.5+1.5)/2 = 10.5 

For B, Rj = (5.5+5.5+5.5+3.5+3.5+5.5+5.5+5.5+5.5+3.5)/2 = 24.5 

For C, Rj = (1.5+3.5+3.5+5.5+1.5+3.5+3.5+3.5+3.5+5.5)/2 = 17.50 

Then plugging in values in the Mack-Skillings chi-square equation as follows: 

 (
12

3(30+5)
) [[10.5]2 + [24.5]2 + [17.5]2] − 3(30 + 5) =  11.2 

With df = k-1 = 2, and a critical value of 5.99; P value = 0.0037. The null hypothesis (Ho: A=B=C) 

is rejected, and in conclusion, at least one pair of samples is different. 

Furthermore, the multiple comparisons are calculated using: |𝑅𝐴 − 𝑅𝐵|  ≥ 𝑞𝛼,𝑘 ∗ √
𝑘 (𝑁+𝑛)

12

2
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The critical value is obtained as follows:   =    𝑞0.05,3 ∗ √
3 (30+5)

12
      

2
  =  3.315 ∗ 2.9584 = 9.8059 

Then, for each paired comparison : 

|𝑅𝐴 − 𝑅𝐶| = 10.5 - 17.5 = -7; |-7| = 7 < 9.8059) = Failure to reject the Null hypothesis (A = C). 

|𝑅𝐵 − 𝑅𝐶  |= 24.5 - 17.5 = 7 < 9.8059) = Failure to reject the Null hypothesis (B = C). 

|𝑅𝐴 − 𝑅𝐵 |= 10.5 - 24.5 = -14; |-14| = 14 ≥ 9.8059) = Reject the Null hypothesis (A ≠ B). 

Therefore, we concluded that A and B were the only significantly different pair of samples. 

3.3   Results 

For both sample sets (S1 and S2), data were analyzed at varying sample sizes (n) from 10 

to 125; the smaller n was created by random selection from n = 125 (Tables 2 and 3). At any given 

“n”, the rank scores from the same randomly selected panelists were analyzed using the four data 

analysis methods mentioned earlier. At all “n” sizes, it was verified that the same panelists 

composed the blocks across replicates and data analysis methods. 

3.3.1   Effect of sample size on chi-square and P values 

With the different-samples set (Table 2), increasing “n” generally increased the chi-square 

values while decreasing the corresponding P values (except one case, where n = 30-35 for the 

individual replication 1). Without exception, the null hypothesis was rejected at all sample sizes 

and data analysis methods. In addition, the P values showed a high degree of significance across 

all analysis methods (P < 0.0002, except one case at n = 10 where P = 0.0055). The Mack-Skillings 

test was relatively more sensitive to the differences (higher chi-square and lower P values) at all 

“n” sizes. Overall, for samples that were very different (less variation in rank data from the two 

replications from each panelist), sample size and data analysis methods may be less critical as they 

provided consistent results of the main effects, when compared with the similar-samples set (Table 

3) as demonstrated in this study. With the similar-samples set (Table 3), more variations in the 
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obtained rank data from the two replications were observed. An increase in “n” did not always 

yield higher chi-square values and lower corresponding P values, especially with the individual 

replications. For instance, for the individual replication 1, an increment of “n” even by 20 blocks 

between 25 and 45 and by 25 blocks from 75 to 100 decreased the chi-square values from 7.28 to 

4.04 and from 9.36 to 8.66, respectively. For the individual replication 2, the chi-square reduction 

pattern (from 11.56 to 4.86) was observed with every “n” increase by 25 blocks between 50 and 

125.  With the averaged, joint or pooled replications, the chi-square values generally increased 

with increased “n”, however, with some fluctuation. Results from both Tables 2 and 3 showed that 

the Mack-Skillings test was relatively more sensitive to the differences (higher chi-square and 

lower corresponding P values) at all “n” sizes, compared to other methods of data analysis 

evaluated in this study. 

Analyzing data from individual replications showed discordant null hypothesis test results 

at n = 25, 30, 40, 45, 100 and 125 all at α = 0.05 (Table 3).  As mentioned above, when increasing 

sample size for averaged, joint, and/or pooled replications, an immediate increase in a chi-square 

value was not always guaranteed. However, in all these replicated statistical alternatives, once a 

null hypothesis was rejected, a failure to reject it was not observed at a higher sample size, a 

characteristic not observed with the individual replications. This result (Table 3) showed that 

accounting for inter-panelist variation in duplicated ranking test can help improve not only 

discrimination capacity but also consistency in results of the null hypothesis testing, particularly 

when more panelists can be added to the analysis and the degree of differences in preference among 

samples is small (Table 3). Therefore, for samples that are similar (more variations in rank data 

from the two replications), a choice of data analysis methods is critical in order to derive valid 

conclusions. 
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Table 3.2 Comparisons of the chi-square values and P values across data analysis methods and sample sizes for the different-samples 

set. 

 Averaged replicationa Replication 1  Replication 2 Joint replicationb  Pooled replicationc 

 Friedman's* Friedman's* Friedman's* Mack-Skillings**  Friedman's* 

n Χ2 P  Χ2 P Χ2 P Χ2 P n Χ2 P 

125 177.86 2.40E-39 177.74 2.50E-39 178.19 2.00E-39 406.53 5.30E-89 250 355.71 5.70E-78 

100 142.82 9.70E-32 147.14 1.10E-32 138.66 7.80E-31 326.45 1.30E-71 200 285.64 9.40E-63 

75 107.46 4.60E-24 109.95 1.30E-24 105.15 1.50E-23 245.62 4.60E-54 150 214.92 2.10E-47 

50 71.04 3.70E-16 75.04 5.10E-17 67.36 2.40E-15 162.38 5.50E-36 100 142.08 1.40E-31 

45 62.34 2.90E-14 65.38 6.40E-15 59.51 1.20E-13 142.5 1.10E-31 90 124.69 8.40E-28 

40 56.71 4.80E-13 57.05 4.10E-13 56.45 5.50E-13 129.63 7.10E-29 80 113.43 2.30E-25 

35 48.74 2.60E-11 50.8 9.30E-12 46.8 6.90E-11 111.41 6.40E-25 70 97.49 6.80E-22 

30 45.87 1.10E-10 51.67 6.00E-12 40.47 1.60E-09 104.84 1.70E-23 60 91.73 1.20E-20 

25 36.86 9.90E-09 42 7.60E-10 32.24 1.00E-07 84.25 5.10E-19 50 73.72 9.80E-17 

10 13.95 0.0009 18.2 0.0001 10.4 0.0055 31.89 1.20E-07 20 27.9 8.70E-07 
a Rank sums were obtained from the averaged rank data of each panelist from the two replications. 
b Averaged rank sums were calculated as (𝑅𝑗 

∗ =  ∑ 𝑟[∑ 𝑟𝑖𝑗𝑞
𝑐
𝑞=1 /𝑐]𝑛

𝑖=1 ), where c = 2. Such averaged rank scores are the sum of all scores 

from the ith block for the sample j, divided by c).  
c Rank sums were obtained from the rank data of all panelists pooled from the two replications at certain “n” value to obtain 2*n = n 

blocks. 

* Data were analyzed by the distribution-free Friedman test (1937). 

** Data were analyzed by the method as described by Hollander and others (2013). 
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Table 3.3 Comparisons of the chi-square values and P values across data analysis methods and sample sizes for the similar-samples set 

 Averaged replicationa Replication 1  Replication 2 Joint replicationb  Pooled replicationc 

 Friedman's* Friedman's* Friedman's* Mack-Skillings**  Friedman's* 

n Χ2 P Χ2 P Χ2 P Χ2 P n Χ2 P 

125 8.18 0.0168 12.35 0.0021 4.86 0.0879 18.69 8.70E-05 250 16.35 0.0003 

100 6.95 0.031 8.66 0.0132 5.42 0.0665 15.87 0.0004 200 13.89 0.001 

75 8.01 0.0183 9.36 0.0093 8.03 0.0181 18.3 0.0001 150 16.01 0.0003 

50 8.32 0.0156 6.76 0.034 11.56 0.0031 19.02 0.0001 100 16.64 0.0002 

45 5.03 0.0807 4.04 0.1324 7.64 0.0219 11.5 0.0032 90 10.07 0.0065 

40 4.84 0.089 3.8 0.1496 6.65 0.036 11.06 0.004 80 9.68 0.0079 

35 4.47 0.1069 4.51 0.1046 4.63 0.0988 10.22 0.006 70 8.94 0.0114 

30 5.22 0.0737 6.47 0.0394 4.27 0.1184 11.92 0.0026 60 10.43 0.0054 

25 5.18 0.075 7.28 0.0263 3.92 0.1409 11.84 0.0027 50 10.36 0.0056 

20 2.93 0.2317 3.7 0.1572 3.1 0.2122 6.69 0.0353 40 5.85 0.0537 

15 1.3 0.522 2.53 0.2818 0.93 0.6271 2.97 0.2263 30 2.6 0.2725 

10 1.55 0.4607 2.6 0.2725 0.8 0.6703 3.54 0.1701 20 3.1 0.2122 
a Rank sums were obtained from the averaged rank data of each panelist from the two replications. 
b Averaged rank sums were calculated as (𝑅𝑗 

∗ =  ∑ 𝑟[∑ 𝑟𝑖𝑗𝑞
𝑐
𝑞=1 /𝑐]𝑛

𝑖=1 ), where c = 2. Such averaged rank scores are the sum of all scores 

from the ith block for the sample j, divided by c).  
c Rank sums were obtained from the rank data of all panelists pooled from the two replications at certain “n” value to obtain 2*n = n 

blocks. 

* Data were analyzed by the distribution-free Friedman test (1937). 

** Data were analyzed by the method as described by Hollander and others (2013). 

Bold and italicized P values indicate acceptance of the null hypothesis (H0: all samples are not different) at α= 0.05. 
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3.3.2   Method selection and sensitivity 

When using individual replications for the null hypothesis testing, rejection of the null 

hypothesis was observed at every “n” size in both replications for the different-samples set with 

high degree of significance (Table 3.2). The highest observed P value was 0.0055 with only 10 

panelists from the second replication (Table 3.2). In contrast, for the similar-samples set, definitive 

“n-based” cutoff of P values lower than 0.05 was not found in either replication. Analyzing data 

from individual replications showed discordant null hypothesis test results at various “n” sizes at 

α = 0.05 (Table 3.3).  This emphasized that analyzing data separately from individual replications 

the Friedman’s test is not recommended. 

Using an average of the rank sums from both replications in the Friedman’s test accounted 

for inter-panelist variation; nonetheless, the P values obtained were higher than those in the Mack-

Skillings test at every comparable “n” size (Table 3.3). Disregarding the between-blocks 

independence and pooling two replications into n = nc = 2n blocks, naturally generated lower P 

values than averaging replications as the Friedman’s test becomes less conservative when “n” 

increases relative to “k” (Boos and Stefansky 2013). However, the P values of pooling (converting) 

replications into blocks were not lower than the Mack-Skillings P values for all “n” sizes, implying 

that the Mack-Skillings test was relatively more sensitive to the difference. 

At “n” ≥ 50, consistent conclusions (the null hypothesis was rejected) were observed 

among the three data analyses from averaged, joint, and/or pooled replications.  However, the null 

hypothesis was rejected at a much lower “n” for joint and pooled replications (starting at 20-25), 

compared to that (n starting at 50) for the averaged replication.  However, it was not the aim of 

this work to establish proper “n” size for duplicated multiple-samples ranking test, and more 

research is needed in this area. 
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3.3.3   Multiple comparison tests 

For the different-samples set, all pairs (AB, AC and BC) of samples were found 

significantly different (data not shown).  Table 3.4 shows the rank sum values obtained at various 

sample sizes between 10 and 125 panelists for the similar-samples set. It is important to remember 

that panelists were instructed to assign a score of “1” to the most preferred sample, “2” to the 

intermediate one, and “3” to the least preferred sample.  

According to Table 3.4, the rank sum values are logical. Without exception across all “n” 

sizes, sample C (90% orange juice) had a higher rank sum score (i.e., tentatively less preferred) 

than samples A or B.  The rank sums of sample A were mainly lower than those of sample B, with 

some exceptions. Following the global null hypothesis tests (Table 3.3), the post-hoc multiple 

comparison procedure was applied on the data arranged in the same structure as shown in Table 

3.5. 

When individual replications were analyzed, discordant conclusions not only for the global 

null hypothesis tests (Table 3.3) but also for the post-hoc multiple comparisons (Table 3.5) were 

observed. Specifically, at n = 50 and 75, there was an agreement in the global null hypothesis 

results in both replications (Table 3.3); however, a disagreement in the post-hoc multiple 

comparison results, i.e., the pairwise difference was observed for BC for replication 1 but for AC 

for replication 2 (Table 3.5). This re-emphasized that analyzing data separately from individual 

replications using the Friedman’s test is not recommended. With the averaged replication, the 

pairwise differences (AC and/or BC) were observed only when “n” reached 50, a much higher “n” 

when compared with the joint and/or pooled replications. 
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Table 3.4 Rank sums* by sample for the similar-samples set 

 Averaged replicationa Replication 1  Replication 2 Joint replicationb  Pooled replicationc 

n A B C A B C A B C A B C n A B C 

12

5 
239 235 276 236 232 282 242 238 270 416 408 490 250 478 470 552 

10

0 
190 188.5 221.5 189 187 224 191 190 219 330 327 393 200 380 377 443 

75 139.5 140.5 170 144 135 171 135 146 169 242 244 303 150 279 281 340 

50 88 96 116 93 92 115 83 100 117 151 167 207 100 176 192 232 

45 80.5 88 101.5 85 84 101 76 92 102 139 154 181 90 161 176 203 

40 71 78.5 90.5 74 76 90 68 81 91 122 137 161 80 142 157 181 

35 62 68.5 79.5 63 67 80 61 70 79 107 120 142 70 124 137 159 

30 52 58.5 69.5 52 57 71 52 60 68 89 102 124 60 104 117 139 

25 43.5 47.5 59 44 45 61 43 50 57 75 83 106 50 87 95 118 

20 35.5 38.5 46 37 36 47 34 41 45 61 67 82 40 71 77 92 

15 27.5 29 33.5 28 27 35 27 31 32 48 51 60 30 55 58 67 

10 17.5 19.5 23 17 19 24 18 20 22 30 34 41 20 35 39 46 
a Rank sums were obtained from the averaged rank data of each panelist from the two replications. 
b Averaged rank sums were calculated as (𝑅𝑗 

∗ =  ∑ 𝑟[∑ 𝑟𝑖𝑗𝑞
𝑐
𝑞=1 /𝑐]𝑛

𝑖=1 ), where c = 2. Such averaged rank scores are the sum of all scores 

from the ith block for the sample j, divided by c).  
c Rank sums were obtained from the rank data of all panelists pooled from the two replications at certain “n” value to obtain 2*n = n 

blocks. 

*A, B, and C are treatments and were ranked without ties (1 = most preferred and 3 = least preferred). 
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Table 3.5 Significantly different sample pairs based on the Tukey’s HSD and/or Mack-Skillings tests for the similar-samples setx 

  

Averaged 

Replication 
Replication 1 Replication 2 

 
Joint replication 

 
Pooled replication 

  by HSD* by HSD* by HSD*  by Mack-Skillings   by HSD* 

n CV† Pairs Pairs Pairs n CV Pairs n** CV Pairs 

125 37.1 BC AC,BC -- 125 49 AC,BC 250 52.4 AC,BC 

100 33.2 BC AC,BC -- 100 43.9 AC,BC 200 46.9 AC,BC 

75 28.7 AC,BC BC AC 75 38 AC,BC 150 40.6 AC,BC 

50 23.4 AC BC AC 50 31 AC,BC 100 33.2 AC,BC 

45 22.2 -- -- AC 45 29.4 AC  90 31.4 AC 

40 21 -- -- AC 40 27.7 AC 80 29.7 AC 

35 19.6 -- -- -- 35 25.9 AC 70 27.7 AC 

30 18.2 -- AC -- 30 24 AC 60 25.7 AC 

25 16.6 -- AC -- 25 21.9 AC,BC 50 23.4 AC 

20 14.8 -- -- -- 20 19.6 AC,BC 40 21 -- 

15 12.8 -- -- -- 15 17 -- 30 18.2 -- 

10 10.5 -- -- -- 10 13.9 -- 20 14.8 -- 

* HSD = Final rank sum pairs were analyzed with the distribution-free experiment wise multiple comparisons procedure.  
** Rank sums were obtained from the rank data of all panelists pooled from the two replications at certain “n” value to obtain 2*n = n 

blocks. 
† CV= Critical value for paired hypothesis rejection (df= k-1 = 2). 
xA, B, and C are treatments and were ranked without ties (1 = most preferred and 3 = least preferred). 
y -- Indicates no significant differences. 
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The post-hoc multiple comparison results for the joint replication analyzed by the Mack 

and Skillings test (1980) vs. the pooled replication analyzed by HSD showed a similar pattern 

(Table 3.5).  Although the rank sums of sample A were mainly lower than those of sample B (with 

some exceptions, Table 3.4), significant differences between A and B were not observed at any 

“n” sizes. The pairwise differences (AC and/or BC) were observed at “n” between 25 and 125.  

Slight differences in results of both data analysis methods were observed at a lower “n” between 

20 and 25, which may not be adequate to lead to a conclusion that the Mack-Skillings test are more 

sensitive to the differences.  For a non-replicated ranking test, the more sensitive (to the difference) 

method would have lower critical values (CV) at a given k and “n”. The Mack-Skillings multiple 

comparison tests utilize intermediate CV values between HSD and LSD-non-parametric paired-

wise test; however, while allowing an experiment-wise multiple comparison test.  For example, at 

“n” = 50 or n = 100, the CV values for pooled HSD, Mack-Skillings, and pooled LSD would be 

33.2 (Lawless and Heyman 2010), 31, and 28 (Christensen and others 2006), respectively. In this 

study, when considering the CV values (Table 3.5), we can observe that analyzing the same N (= 

nkc) for the Mack-Skillings test or N (= nk) for a pooled HSD test, the former test required a lower 

CV value to analyze equal absolute rank sum differences, implying a more sensitive method.  

3.3.4   Chi-square approximation and exact permutation distributions of the Mack-

Skillings test 
 

Up to this point, the Mack-Skillings chi-square approximation was used to calculate the P 

values of the test (Tables 3.2 and 3.3) to illustrate some advantages of using replications on 

multiple-samples ranking tests and some disadvantages of using the Friedman’s test on replicated 

ranking, i.e., either losing power by only using the median rank scores of the replications or 

violating the assumption of independence between blocks. The Mack-Skillings P values can also 

be obtained from the exact permutation distribution of the test or a Monte Carlo simulation. 
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According to Bi (2009) both options are less conservative compared to the chi-square 

approximation of the Durbin statistic (a Friedman’s test extension for incomplete block designs). 

Moreover, Hollander and others (2013) suggested using the exact test if the number of replications 

is c < 4, especially with a low significance level, e.g., α = 0.01.  

Table 3.6 Comparisons between the Mack-Skillings P values obtained by chi-square 

approximation and exact permutation distributions for the similar-samples set 

n Mack-Skillings (MS)statistic* P value (MS ≥ Χ2) Exact P value P value difference** 

125 18.69 8.70E-05 0.0001 0.000013 

100 15.87 0.0004 0.0002 -0.0002 

75 18.3 0.0001 0.0002 0.0001 

50 19.02 0.0001 1.00E-05 -0.00009 

45 11.5 0.0032 0.0013 -0.0019 

40 11.06 0.004 0.0022 -0.0018 

35 10.22 0.006 0.0028 -0.0032 

30 11.92 0.0026 0.0016 -0.001 

25 11.84 0.0027 0.0014 -0.0013 

20 6.69 0.0353 0.026 -0.0093 

15 2.97 0.2263 0.203 -0.0233 

10 3.54 0.1701 0.1537 -0.0164 

* Both alternatives use the same computed Mack Skillings statistic. 

** P value difference = Exact P - P (MS ≥ Χ2); a negative number indicates a larger P value 

calculated from the chi-square approximation. 

Bold and italicized P values indicate acceptance of the null hypothesis (H0: all samples are not 

different) at α= 0.05. 

 

Comparisons between the Mack-Skillings P values obtained by chi-square approximation 

and exact permutation distributions for the similar-samples set is given in Table 3.6. The P values 

with the exact tests were generally lower (with a couple of exceptions) than those obtained using 

the chi-square approximation. Nevertheless, the largest difference in P values between the two 

methods was 0.023 at n = 15, and as n increased, the difference generally decreased. With the 

degree of differences between samples of the similar-samples set, using the chi-square 
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approximation did not affect the conclusions of the hypothesis testing in this current study. 

However, when possible, an exact test is advised since the degree of differences in preference 

among samples is generally unknown. The function “pMackSkil” of the R package “NSM3,” 

yields P values based on the exact distribution of the Mack-Skillings statistic; although a Monte 

Carlo simulation can also be used if specified. An example of the R codes is shown in Figure 3.1. 

 
Figure 3.1 The R codes for Mack-Skillings global null hypothesis and multiple comparisons 

testing 
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3.4   Discussion 

Collectively, results from Tables 3.2 and 3.3 suggested that, depending on the degree of 

differences among samples, a choice of data analysis methods may be very critical to derive valid 

and consistent conclusions at varying “n” sizes. For the similar-samples set, the most sensitive 

method was obtained when using the joint replication analyzed by the Mack-Skillings test, 

followed by the pooled replication analyzed by the Friedman’s test (Table 3.3). The latter method 

took individual replications per panelists as independent blocks, a violation of the first assumption 

of the ranking test. The observed pattern that the Mack-Skillings test delivered lower P values than 

the Friedman’s test that uses individual replications as independent blocks in this study is 

supported by Conover (1971) who described that the Friedman’s test loses power when only k=3 

samples are evaluated, while power is gained when “k” is increased.  Analyzing data from 

individual replications showed discordant null hypothesis test results at various “n” sizes at α = 

0.05 (Table 3.3), hence should be avoided. Using an averaged rank sums improved agreement of 

conclusions; however, more panelists are required. As Hollander and others (2013) remarked, 

some information is lost when averaged or median (which equal averaged rank sums when c = 2) 

rank sums are used. 

As previously discussed in the Materials and Methods section, instead of ranking c=2 

replicates of “k” samples separately, one joint ranking of ck = 2k presented samples (possibly 

called a double ranking test, or internally replicated ranking test) can be performed if the test does 

not carry sensory fatigue effect.  For example, a visual preference ranking of ck = 6 or 8 total 

samples with different three-digit identification codes from three or four original treatments. A 

non-sensory research example given in Hollander and others (2013) using data from Campbell and 

Pelletier (1962) analyzed with the “R” software with the Mack-Skillings (1980) structured as: c = 
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3 replications, k = 4 treatments (laboratories), and n = 3 blocks (Niacin enrichment levels) can be 

found on the R package “Asbio” described by (Manly and others, 2015).  Figure 3.1 shows two 

alternative R codes for the chi-square approximation of the test, one using the “Asbio” package 

and the other not requiring the package. Additionally, an exact test based on the distribution of the 

Mack-Skillings is shown in Figure 3.1, along with R codes for critical values for a multiple 

comparisons test. This test is less conservative than the chi-square approximation with less than 

four replications (c < 4), especially at a small α level. 

Ongoing research is being performed to compare the effects of sample presentations 

(serving all 6 samples at once vs. serving 3 samples twice) and the complexity of the attributes 

evaluated (color vs. flavor) for both preference and intensity. Descriptions of the Mack-Skillings 

derivation, motivation and proportional frequencies theory are available (Mack and Skillings 1980; 

Hollander and Wolfe 2013). 

In addition to the alternative non-parametric methods for handling replicated rank data as 

recommended by Hollander and others (2013) and demonstrated in this study, Boos and Stefanski 

(2013) advocated a weighed sum for the Wilcoxon rank sum or Kruskal Wallis statistics within 

blocks developed by Van Elteren (1959). The procedure is rather laborious and a multiple 

comparisons method following this approach was not provided.  Boos and Stefanski (2013) also 

suggested that this method was better suited for a larger number of replications. Conover (1971) 

proposed a generalization to the Friedman’s test for the case of c > 1 or in its nomenclature m >1; 

however, multiple comparison procedures were not provided either. Replicated multiple-samples 

ranking tests were also reported in joint analyses with descriptive methods by ranked-scaling; 

alternatively, the replications were handled with ANOVA on the Friedman ranks (Pecore and 

others 2015). Panelists who performed both rating and ranking tests concluded that ranking could 
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be less boring and monotonous while they felt more confident in their responses for preference 

ranking, and ranking regarding willingness to buy food products (Hein and others, 2008). 

3.5   Conclusion 

The Friedman rank sum test is perhaps the most commonly used data analysis of non-

replicated rank preference data.  Replicated preference test may increasingly gain relevance since 

it increases the number of replications per sample and hence reduces cost of sensory testing. This 

study demonstrated analyses of duplicated rank preference data using the Friedman vs. the Mack-

Skillings tests. In addition, the Mack-Skillings computation and hypothesis testing were illustrated 

using the R software for both chi-square approximation and exact distributions. When test samples 

are similar or confusable in their characteristics, hence more variations in rank data from the two 

replications, a choice of data analysis methods is critical in order to derive valid conclusions. 

Analyzing rank data separately by replication yielded inconsistent conclusions across sample sizes, 

and is not recommended.  In this study, when the number of available panelists is reduced, 

replicated tests analyzed with the Mack-Skillings distribution-free method showed improved 

discrimination among samples relative to the Friedman test applied on data from averaged or 

pooled replications.  This study demonstrated that the Mack-Skillings test, which takes into 

account the within-panelist variation, is more sensitive and appropriate for analyzing duplicated 

ranked data.  
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CHAPTER 4.   SERVING PROTOCOLS FOR DUPLICATED SENSORY RANKING 

TESTS: SINGLE SESSION VERSUS DOUBLE SERVING SESSIONS 

4.1   Introduction 

For sensory and consumer sciences, ranking tests can help determine differences in 

preference or intensity among multiple products (Lawless and Heyman, 2010). Preference ranking 

alone has shown more sensitivity to differences than hedonic liking in the elderly (Barylko-

Pikielna and others, 2004), the general population (Villanueva and others, 2000), and children over 

four years old (Kimmel and others, 1994; Delarue and others, 2014). 

In multiple-samples ranking tests, “n” panelists receive a set of “k” samples to rank 

according to an attribute intensity or personal preference. The data are ordinal, and non-parametric-

tests and tables of critical values are widely chosen over traditional ANOVA. The tables of critical 

values are quick and easy to use for testing the null hypothesis; however, they fail to provide an 

estimation of the degree of differences (P value) between samples. Such tables have experienced 

constant evolution since the first set proposed by Kramer (1956). Later, Newell and MacFarlane 

(1987) and Basker (1988) used simulation of the maximum difference between all sets of paired 

comparisons to create critical values. Nonetheless, Christensen and others (2006) declared the 

method to be too conservative, and created new critical values for paired comparisons based on 

simulation of all possible paired differences in 10,000 simulated panels.  

The Friedman (1937) rank-based nonparametric test, asymptotically follows a chi-squared 

distribution (Conover, 1999; Hollander and others., 2013), and the associated P value provides a 

measure of the degree of significance of the overall differences. Among non-parametric methods, 

the Friedman test (1937), detailed by Hollander and Wolfe (1973), is widely recommended for the 

randomized block design (RBD) without panelist*sample interaction used in sensory ranking 

(Joanes, 1985; Rayner and Best, 1990; Meilgaard and others, 2010, Lawless and Heyman, 2013).  



59 
 

Replicated sensory tests can potentially reduce the number of panelists, time and expenses, 

but it is critical to avoid compromising sensitivity. Special statistical tests for replicated studies 

not only account for inter-panelist variations but also adjust for the dependence of the responses 

within panelists. These adjustments limit the impact of disregarding the assumption or 

precondition of independence between blocks. Examples of statistics for replicated studies include 

an overdispersion-based model (Anderson, 1998), the beta-binomial test (Bi and Ennis 1988) and 

the corrected beta-binomial test (Brockhoff, 2003) for sensory discrimination (Bi, 2007). 

For ranked data, the Mack and Skillings (M-S, 1980) test extended the test by Friedman 

(1937) to two or more replications within a block (without missing observations). This test avoids 

the misuse of replications from the same panelist as individual blocks, thus failing to achieve 

independence between blocks. Additionally, it yields the same results as Friedman (1937) for non-

replicated data (Hollander and others, 2013). The procedure requires that all replications of the 

samples are ranked within a single block or panelist. For example, when duplicating a four-samples 

ranking, a panelist evaluates and ranks eight total physical samples if two replications are intended. 

Nonetheless, each ranking eight samples at once creates concerns of fatigue, adaptation, or 

memory interference.  

The rank tests for the two-way layout avoid requiring normally distributed data; however, 

they are not free from assumptions. According to Conover (1971), “k” blocks should be 

independent, without the influence of a block over the scores of another. Most of the researches 

evaluating the impact of violation of the independence assumptions have focused on parametric 

ANOVA (Rigdon, 1999) and not methods such as the Friedman test. In Friedman-type tests, 

dependence can occur in two ways. If a panelist repeats tests and each replicate is considered a 

different block, then a violation of independence between blocks occurs. The other dependence, 
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between the scores provided by a single panelist (within block), does not represent a violation of 

the assumption because Friedman-type tests only require that all samples are ranked fully within 

a block. According to Hollander and others. (2013), the assumption is replaced by the requirement 

that under the null hypothesis, the results for the obtained rank sums come from equally likely 

individual scores. Such scores, in sensory evaluation, are obtained by fully ranking all samples 

from panelist 1 to k. According to Hollander and others (2013), the M-S test also replaces the 

assumption of independence between the samples within a panelist. The new assumption implies 

that all samples from every replication are ranked from 1 to c*k or vice versa within each block. 

With this originally ranked data or ranking transformation from continuous data, all scores 

configurations are equally likely under the null hypothesis.  

In sensory ranking tests, especially in studies using the senses of taste and smell, ranking 

all c*k samples could implicate many samples, thus reducing discriminative efficiency due to 

fatigue, adaptation, memory interference, or memory decay. This problem can be accentuated 

when the number of samples or replications increases. As noted by Dacremont & Sauvageot 

(1997), the objective of replications in sensory testing is to make the maximum use of panelists 

until fatigue is detrimental to discrimination.  

Increasing the number of samples in a taste ranking tests may reduce sensitivity due to 

saturation or memory problems (Valentin and others, 2012). According to O’Mahony (1986) and 

Meilgaard and others (2010) adaptation can negatively impact the sensitivity to all of the senses 

of panelists after exposure to repeated stimuli, affecting the efficiency of sensory tests. Besides 

adaptation, memory interference can reduce the sensitivity of tests with an increased number of 

samples (Lau and others, 2004). Furthermore, Meilgaard and others (2007) suggested that above 

three samples, taste ranking tests could lack the discriminative efficiency; however, other senses 
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such as vision have received less attention. The reduction in sensitivity in tests requiring a higher 

number of samples (3AFC vs. 2FC or triangle vs. the same-different test) has been documented 

for chemical senses due to fatigue or memory loss (Rousseau and O’Mahony, 1997; Rousseau and 

others, 1998; Dessirier and O’Mahony 1999; Rousseau and others., 1999). Although these studies 

emphasized the differences between two samples (discrimination tasting), the fundamentals could 

translate to three or more samples (ranking). 

Color is an important attribute in influencing consumer perceptions of flavor (Spence, 

2010), liking (Zellner and Durlach, 2003; Muggah and McSweeney, 2017), emotions (Gilbert and 

others, 2016), overall perception and purchase intent among other characteristics. Chambers and 

Wolfe (1996) suggested that ranking tests on visual evaluations might be less prone to fatigue than 

taste and aroma tests, possibly favoring a joint ranking session.  Hence, the objective of this study 

was to examine the impact of applying the M-S test on duplicated visual ranked data served either 

with both replications in one serving session (1SS) or in separate replications (2SS) in 

experimental conditions. The ranking tests were performed on yellow color intensity.  

4.2   Materials and methods  

4.2.1   Study rationale 

A previous study (Carabante and others, 2016) demonstrated that the M-S method can be 

used to analyze multiple-sample preference ranked data with two replications. It was also noted 

that accounting for intra-panelist information from two replicates with this method can potentially 

reduce the number of panelists required to detect differences in preference. The reduction in 

required panelists was especially important when samples were similar (confusable) rather than 

extremely different.  
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The aforementioned study required panelists to evaluate replications separately in two 

serving sessions (2SS) with a break period in between. Two separate replications were performed 

for one different and one similar sample set. The M-S analysis of separate replications required 

the 1, 2, and 3 scores from both replications within a set of k = 3 samples to be re-ranked into 

intermediate ranks for each panelist. Each of the six samples evaluated by a panelist obtained a 

score of either 1.5, 3.5, or 5.5, and each score appeared twice in every panelist. For example, a 

random panelist who scored 2, 1, and 3 for samples “A”, “B”, and “C” in the first ranking and 2, 

3, and 1 in the second ranking of the same samples generates two groups of 1, 2, and 3 scores. The 

intermediate rank transformation (a new ranking of all six scores) yields scores of 3.5 and 3.5 for 

sample “A”, 1.5 and 5.5 for sample “B”, and 5.5 and 1.5 for sample “C”. Such intermediate ranks 

were then used in the M-S test.  

On the other hand, instead of performing replications separately, panelists could receive 

both replications in a single multi-sample ranking session (1SS) and rank samples A1, A2, B1, B2, 

C1, and C2 in a counterbalanced design using six unique identification codes. Serving both 

replications at once to each panelist limits the dependency of scores within and between panelists, 

also avoiding observing ties that could reduce the power of the test. The separate replications 

alternative (2SS) eliminates dependency between blocks (panelists) but will always generate ties 

in the intermediate scores; nonetheless, with less influence than taking each replication as a 

separate block.  

Hollander and others. (2013) stated that the M-S test can handle ties, but with a larger 

number of ties, power losses can occur. Obtaining data from a single joint ranking containing all 

replications evaluated once (1SS) will eliminate the ties. However, given the sizeable number of 
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samples to rank increments and a lack of rest period, fatigue, adaptation, and memory interference 

could play a more detrimental role in discrimination. 

4.2.2   Data analysis of replicated ranked data with the M-S test 

The M-S test (Mack and Skillings, 1980; Hollander and others, 2013) is the extension of 

the Friedman (Friedman 1937; Hollander and Wolfe, 1973) test for more than one replication per 

sample*panelist combination. As its non-replicated counterpart, it asymptotically follows a chi-

squared distribution with degrees of freedom (df) = k-1. The computation of both tests requires the 

same parameters: n = a number of panelists and k = a number of samples; however, the M-S test 

includes the parameter “c” for a number of replications. The total number of rank scores or cells 

(in a matrix arrangement, where i denotes the ith panelist, j the jth sample and l the lth replication) 

is now calculated by N = k*n*c. The test also uses rank sums; however, the new “weighted” rank 

sum are calculated as follows: (𝑅𝑗 
∗ =  ∑ 𝑟[∑ 𝑟𝑖𝑗𝑙

𝑐
𝑙=1 /𝑐]𝑛

𝑖=1 ). This calculation requires that all of the 

sample*replication (k*c) combinations are ranked within a panelist. For example, panelist “i7”, 

evaluating three samples in two replicates yields = k*c = 3*2 = 6 mutually dependent scores (from 

1 to 6) from only three original samples. The calculation of the rank sums (𝑅𝑗 
∗) adds all of the 

scores from a single (jth) sample regardless of the replication and then divides by the number of 

replications “c”. Finally, The M-S computation is as follows: 

M-S = (
12

𝑘(𝑁+𝑛)
) ∑ (𝑅𝑗

𝑁+𝑛

2
)

2
𝑘
𝑗=1  = (

12

𝑘(𝑁+𝑛)
) [∑ 𝑅𝑗

2𝑘
𝑗=1 ] − 3(𝑁 + 𝑛) 

The null hypothesis (Ho) stands: all k samples are not different (Ho: R1 = R2 = ... = Rk.) 

 To illustrate the computation of the test statistic (M-S), we analyzed the following example 

data set where three samples (k=3), replicated twice (c=2) by four panelists (n =4), produced the 

rank scores shown on the left half of Figure 4.1.  
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Figure 4.1 Example of averaged intermediate rankings from c = 2 replications, k = 3 samples, and 

n = 4 panelists for Mack-Skillings analysis 

 

The right half shows the calculated joint rank scores from the two individual three-sample 

complete rankings from each panelist (intermediate ranks from two serving sessions). After 

obtaining the intermediate rank scores from the separate datasets, each weighted rank sum (Rj*) 

should be calculated for samples “A”, “B”, and “C”: 

RA = (5.5 + 3.5 +3.5 +1.5 + 3.5 + 3.5 + 3.5 + 5.5) / 2 = 30/2 = 15 

RB = (3.5 + 5.5 + 5.5 + 3.5 + 5.5 + 5.5 + 5.5 + 3.5)/2 = 38/2 = 19 

RC = (1.5 + 1.5 + 1.5 + 5.5 + 1.5 + 1.5 + 1.5 + 1.5)/2 = 16/2 = 8 

Note that all scores obtained from a sample are divided by the number of replications (c = 2).  

Using the obtained weighted rank sums, we obtain the following M-S statistic: 

M-S= (
12

3(24+4)
) [[15]2 + [19]2 + [8]2] − 3(24 + 4) =  8.85 

With degrees of freedom = k-1 = 2 and α = 0.05, the rejection critical value is 5.991; then, p (8.85 

> 5.991) = 0.012. The null hypothesis (Ho: A=B=C) is rejected, showing that at least one paired 

comparison yielded significant differences.  

The multiple comparisons procedure is also described by Hollander and Wolfe (2013), and 

its computation is as follows:  𝑅𝐴 − 𝑅𝐵  ≥ 𝑞𝛼,𝑘 ∗ √
𝑘 (𝑁+𝑛)

12

2
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Where 𝑞𝛼,𝑘 represents the αth distribution percentile for all “k” sample independent and 

normal variables (Mack and Skillings, 1980). RA and RB represent the weighed rank sums of 

samples “A” and “B” from a sample set of “k” samples, evaluated by “n” panelists. This 

computation provides multiple comparisons based on experiment wise-error rates. Rinaman 

(1983) compared the asymptotic relative efficiency of the M-S test against several two-way layouts 

(including RBD designs) test alternatives, finding that it held the highest efficiency across several 

distributions. Therefore, he recommended the use of ranks even in scenarios in which the original 

datasets were not ranked data. Comparisons of the M-S test to alternatives exist for relatively large 

sample sizes originating in gene expression experiments with favorable results for many 

replications (Barrera and others, 2004). The M-S test also served as the platform for the rank test 

for multiple factors by Groggel and Skillings (1986). 

4.2.3   Sensory study  

A group of 75 panelists was recruited at the Louisiana State University Agricultural Center 

Campus in Baton Rouge, LA. To participate in the study, panelists should agree with and sign a 

consent form included in the research protocol approved (IRB # HE 15-9) by the Louisiana State 

University (LSU) Agricultural Center Institutional Review Board. Before their initial participation, 

panelists were screened according to the following criteria: availability for repeated visits, no 

allergies or adverse reactions to the ingredients in orange juice, and lack of known sensory deficits 

such as impaired vision or color blindness.  Each panelist performed six yellow color intensity 

complete-multiple ranking tests (Table 4.1). The panelists evaluated two sample sets, including a 

similar sample set (100, 95 and 90% orange juice) and a different sample set (100, 70 and 40% 

orange juice). For each sample set, three ranking tests were performed, including two separate 

replications (2SS) and one ranking of six samples containing both replications (1SS).  Panelists 
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were instructed to assign a score of “1” to the highest yellow color intensity and a 3 to the lowest 

when they ranked two replications separately in two serving sessions (2SS). When panelists ranked 

two joint replications in one serving session (1SS) a score of 6 was assigned to the lowest yellow 

color intensity. The model product used was 100% Minute Maid® orange juice (Minute Maid, 

Chicago, IL), without pulp. The panelists completed all tests within a period of three weeks and 

never performed more than two ranking tests per day, with at least 15 minutes of rest between the 

two tests.  

Table 4.1 Multiple-sample ranking test sessions performed by each panelist 

Degree of  difference* Ranking test** k† Percentage of orange juice per sample 

Similar Samples (Set 1) 

Test  1 3 100 95 90 

Test 2 3 100 95 90 

Test 3 6 100 95 90 100 95 90 

Different samples (Set 2) 

Test 4 3 100 70 40 

Test 5 3 100 40 40 

Test 6 6 100 70 40 100 70 40 

*Relative degree of yellow color divergence between samples of a single ranking test. 

** Panelists completed the six tests in three weeks in a counter balanced arrangement. 

 Tests 1 and 2 are separate replicates of the similar sample set. Tests 4 and 5 are separate 

replicates for the different sample set.  † Number of samples ranked per set. 

 

In each visit, the panelists completed one serving session protocol of either from the 

different or similar sample set. The samples within a session, the serving protocols, and the sample 

sets were presented to the panelists in a counter-balanced system. Unique three-digit codes were 

assigned to each sample regardless of replication to avoid influence from previous tests performed 

by a panelist. The ranking sessions were performed in 15 partition booths equipped with cool 

natural white lights. The data were collected with the software (Compusense release 5.6, 

Compusense Inc., Guelph, Ontario, Canada).  

 

https://en.wikipedia.org/wiki/Dagger_%28typography%29
https://en.wikipedia.org/wiki/Dagger_%28typography%29
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4.2.4   Colorimetric analysis 

A colorimetric analysis was performed to obtain a frame of reference about the magnitude 

of differences between samples and its relationship to the perceived differences in ranking 

alternatives. Color analysis was performed using a CIE-L*a*b* (McLaren, 1976) scaled Minolta 

colorimeter, model BC-10 (Minolta Co., Osaka, Japan). Eight individually prepared 25 mL 

aliquots of each sample served as experimental units (N=24). Each measurement was performed 

in 2-oz. soufflé cups in a sensory partition booth illuminated with the same white light that the 

panelists used. For each recording, the colorimeter lens (protected) was immersed approximately 

3 mm in the orange juice to avoid a biasing headspace.  

4.3   Results and discussion  

4.3.1   Effect of serving protocol and method of analysis  

For simplicity, the set of three samples composed of 100, 95 and 90% orange juice is 

denoted as the similar sample set. Likewise, the set of three samples composed of 100, 70 and 40% 

orange juice is donated as the different sample set. All analyses, follow an asymptotic chi-squared 

distribution with two degrees of freedom (df = k-1 = 3-1 = 2). With the same number of degrees 

of freedom, besides the comparisons of P values, chi-square statistics can be compared. All 

comparisons represent a significance level of 0.05 (α =0.05), but the trends apply to other 

significance levels (data not shown).  

The obtained rank sums and the number of panelists for the similar and different sample 

sets are shown in Table 4.2. Visual appreciation revealed that the rank sums followed the expected 

pattern. In both sets, the rank sums were inversely proportional to the percentage of orange juice. 

For example, the samples with 100% orange juice showed the lowest rank sum (highest yellow 

color intensity), and the samples with 90% orange juice showed the highest rank sums (lowest 
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yellowness intensity). Also, the similar samples set showed relatively lower differences than the 

different sample set, as the range of the rank sums was narrower. The analysis of statistical methods 

revealed that both serving protocols using the M-S test had higher statistics than Friedman on 

median replications (Fr statistic, Table 4.3). Hollander and others (2013) suggested the last method 

as a conservative alternative for handling replications within non-parametric tests. This option 

accounts for between-panelists variation; however, it excludes the use of replication information 

(within-panelists). Higher test statistical values, either M-S or Friedman, reflect a greater degree 

of significance of differences between at least one pair of samples. 

For the different sample sets (Table 4.3), all global null hypothesis tests (Ho: all orange 

juice samples are not different in yellow color intensity) yielded null hypothesis rejections with a 

high degree of significance. The lowest test statistic value was 18.20 for the Friedman test on the 

median of both replications at n = 10 panelists (p = 0.0001). However, at each given “n”, both M-

S variations showed much larger statistic values than the analysis using only their median. These 

differences, nevertheless, have relatively low importance compared to the similar sample set 

(Table 4.4). Thus, the median of the replications also showed high significant differences across 

“n” values in the different sample set.  In the similar sample set (Table 4.4), from the two serving 

protocols of replicated rankings, based on the highest M-S statistical values, the ranking test using 

2SS provided the highest yellow color discrimination. Except for n = 30; the M-S statistics were 

higher in the 2SS protocol than in the 1SS alternative (13 out of 14 total tests, with varying “n”). 

For example, at n = 30, the M-S statistics from 1SS was 42.47 (p = 6x10-10), a slight but futile 

increase over that obtained from M-S on 2SS (41.27 and p = 1.1x10-09). At all other “n” values, 

separating replications yielded higher discrimination between samples, also seen through the total 

differences between rank sums calculated at every n*method combination.  
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Table 4.2 Rank sums* by sample for the different and similar sample set 

  Rank Sums Different Sample Set Rank Sums Similar Sample Set 

 2SSc 1SS  

Median 

Replicationa  2SSc  1SSb  Median Replicationa  

n 1 0.7 0.4 1 0.7 0.4 1 07 0.4 1 0.95 0.9 1 95 0.9 1 0.95 0.9 

75 135.5 258.5 393.5 126 263 398.5 86.5 148 215.5 194.5 278.5 314.5 205.5 284.5 297.5 116 158 176 

70 128 241 366 118.5 245.5 371 81.5 138 200.5 177 261 297 191.5 265.5 278 106 148 166 

65 115.5 224.5 342.5 107 228 347.5 74 128.5 187.5 164.5 240.5 277.5 173 248 261.5 98.5 136.5 155 

60 106 208 316 99.5 210.5 320 68 119 173 152 221 257 158 229.5 242.5 91 125.5 143.5 

55 96.5 190.5 290.5 92 193 292.5 62 109 159 139.5 202.5 235.5 145.5 211 221 83.5 115 131.5 

50 88 174 263 84.5 175.5 265 56.5 99.5 144 123.5 183.5 207.5 130.5 194.5 200 75.5 105.5 119 

45 79.5 156.5 236.5 77 158 237.5 51 89.5 129.5 113.5 166.5 192.5 112.5 176.5 183.5 68 94.5 107.5 

40 72 138 210 69.5 140.5 210 46 79 115 98 151 171 101 157 162 59 85.5 95.5 

35 60.5 120.5 186.5 58 122 187.5 39 69 102 79 133 145 82 140.5 145 49.5 76.5 84 

30 53 103 159 49.5 105.5 160 34 59 87 68 116 131 66.5 122.5 126 41.5 65.5 73 

25 41.5 85.5 135.5 38 88 136.5 27 49 74 53 93 106 57 103 102.5 34 54 62 

20 34 68 108 30.5 70.5 109 22 39 59 44 78 88 46.5 83.5 80 27 44 49 

15 24.5 50.5 82.5 23 53 81.5 16 29 45 34.5 55.5 67.5 38.5 58.5 60.5 21 31.5 37.5 

10 17 33 55 15.5 35.5 54 11 19 30 22 38 45 22.5 40.5 42 13.5 21.5 25 
a Rank sums were obtained from the median rank data of each panelist from the two replications.   
b For each panelist, one ranking session contained two replications (ranking 1 to k*c = 6). Rank sums were calculated as (𝑅𝑗 

∗ =

 ∑ 𝑟[∑ 𝑟𝑖𝑗𝑞
𝑐
𝑞=1 /𝑐]𝑛

𝑖=1 ), where c = 2. 
c Each panelist completed both replications separately, and intermediate scores were calculated by re-ranking both replications within a 

panelist. Rank sums were calculated as (𝑅𝑗 
∗ =  ∑ 𝑟[∑ 𝑟𝑖𝑗𝑞

𝑐
𝑞=1 /𝑐]𝑛

𝑖=1 ), where c = 2. 

*1, 0.95, 0.9 are treatments indicating the proportion of orange used in the similar-samples set and were ranked without ties (1 = 

highest yellow color intensity 3 = least yellow color intensity). 
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Table 4.5 shows the rank sum differences and the total differences between all sample pairs 

by the protocols employed. Each “total” value represents the sum of the rank sum differences 

between the samples containing 100 vs. 95, 95 vs. 90, and 100 vs. 90% orange juice. Greater 

negative values (higher absolute values) represent greater separation between rank sums. With 

2SS, the total differences were higher than in the 1SS protocol, supporting the conclusions based 

on the M-S statistics (except at n = 30). With 1SS, the total differences ranged from -39 at n = 10 

to -184 at n = 75. Whereas, with 2SS, the range of the same “n” values was -46 to -240.  

Table 4.3 Comparisons of the chi-square values (α =0.05) and P values across data analysis 

methods and sample sizes for the different samples set. 

  2SSb 1SSb Median Replicationa 

  Mack-Skillings** Mack-Skillings** Friedman's* 

n MS Stat P > Chi2 Exact P MS Stat P > Chi2 Exact P Fr Stat P > Chi2 

75 253.76 7.88E-56 p<0.0001 282.88 3.74E-62 p<0.0001 111.02 7.80E-25 

70 231.4 5.66E-51 p<0.0001 260.23 3.10E-57 p<0.0001 101.24 1.04E-22 

65 226.62 6.17E-50 p<0.0001 254.25 6.18E-56 p<0.0001 99.15 2.96E-22 

60 210.06 2.44E-46 p<0.0001 231.53 5.30E-51 p<0.0001 91.9 1.11E-20 

55 195.57 3.40E-43 p<0.0001 208.84 4.48E-46 p<0.0001 85.56 2.63E-19 

50 175.02 9.90E-39 p<0.0001 186.18 3.73E-41 p<0.0001 76.57 2.36E-17 

45 156.52 1.03E-34 p<0.0001 163.56 3.04E-36 p<0.0001 68.48 1.35E-15 

40 136.11 2.77E-30 p<0.0001 141.01 2.40E-31 p<0.0001 59.55 1.17E-13 

35 129.7 6.86E-29 p<0.0001 136.91 1.87E-30 p<0.0001 56.74 4.77E-13 

30 107.12 5.47E-24 p<0.0001 116.3 5.58E-26 p<0.0001 46.87 6.65E-11 

25 101.12 1.10E-22 p<0.0001 110.89 8.32E-25 p<0.0001 44.24 2.47E-10 

20 78.4 9.45E-18 p<0.0001 88.04 7.62E-20 p<0.0001 34.3 3.56E-08 

15 64.3 1.09E-14 p<0.0001 65.2 6.95E-15 p<0.0001 28.13 7.78E-07 

10 41.6 9.26E-10 p<0.0001 42.37 6.30E-10 p<0.0001 18.2 0.0001117 
a Rank sums were obtained from the median rank data of each panelist from the two replications. 
b Rank sums were calculated as (𝑅𝑗 

∗ =  ∑ 𝑟[∑ 𝑟𝑖𝑗𝑞
𝑐
𝑞=1 /𝑐]𝑛

𝑖=1 ), where c = 2. 

* Data were analyzed by the distribution-free Friedman test (1937). 

** Source: Hollander and others (2013).  
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Table 4.4 Comparisons of the chi-square values (α =0.05) and P values across data analysis 

methods and sample sizes for the similar samples set. 

  2SSb 1SSb Median a 

  Mack-Skillings** Mack-Skillings** Friedman's* 

n MS Stat P > Chi2 Exact P MS Stat P > Chi2 Exact P Fr Stat P > Chi2 

75 57.78 2.84E-13 <0.0001 37.78 6.27E-09 <0.0001 25.28 3.24E-06 

70 61.91 3.60E-14 <0.0001 35.69 1.78E-08 <0.0001 27.09 1.31E-06 

65 58.36 2.13E-13 <0.0001 39.97 2.09E-09 <0.0001 25.53 2.86E-06 

60 54.23 1.68E-12 <0.0001 39.43 2.74E-09 <0.0001 23.73 7.05E-06 

55 49.43 1.84E-11 <0.0001 34.95 2.58E-08 <0.0001 21.63 2.01E-05 

50 45.33 1.44E-10 <0.0001 34.12 3.90E-08 <0.0001 19.83 4.94E-05 

45 41.17 1.15E-09 <0.0001 38.88 3.60E-09 <0.0001 18.01 0.0001227 

40 40.67 1.48E-09 <0.0001 32.77 7.65E-08 <0.0001 17.79 0.0001372 

35 43 4.59E-10 <0.0001 40.33 1.74E-09 <0.0001 18.81 8.21E-05 

30 41.26 1.10E-09 <0.0001 42.47 6.00E-10 <0.0001 18.05 0.0001204 

25 38.03 5.51E-09 <0.0001 31.9 1.18E-07 <0.0001 16.64 0.0002436 

20 30.4 2.50E-07 <0.0001 23.84 6.65E-06 <0.0001 13.3 0.001294 

15 21.26 2.42E-05 <0.0001 11.28 0.0035596 0.004 9.3 0.0095616 

10 15.86 0.0003552 <0.0001 13.45 0.0011962 0.0012 6.95 0.0309618 
a Rank sums were obtained from the median rank data of each panelist from the two replications. 
b Rank sums were calculated as (𝑅𝑗 

∗ =  ∑ 𝑟[∑ 𝑟𝑖𝑗𝑞
𝑐
𝑞=1 /𝑐]𝑛

𝑖=1 ), where c = 2. 

* Data were analyzed by the distribution-free Friedman test (1937). 

** Source: Hollander and others (2013). 

 

Because the panelists were not instructed to evaluate a sample after another restricting a 

collective perspective of all samples in a ranking session (such as in taste), a panoramic view to 

rank samples provided an almost continuous reference for comparison between all samples. In this 

way, panelists avoided a complete interruption of each stimulus when comparing all samples. On 

this basis, memory interference or decay becomes a less relevant factor, contributing to the loss of 

sensitivity with a higher number of samples than in other proven attributes, e.g., taste (Rousseau 

and others, 2002; Lau and others, 2004). 
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Table 4.5 Rank sum differences and multiple paired comparison tests based on the Tukey’s HSD and/or Mack-Skillings tests for the 

similar samples setx. 

    2SS  1SS   Median Replication  

    by Mack-Skillings by Mack-Skillings   by HSD* 

n CV** X1 X2 X3  Total X1 X2 X3  Total CV X1 X2 X3  Total 

75 38 -84 -36 -120 -240 -79 -13 -92 -184 28.7 -42 -18 -60 -120 

70 36.7 -84 -36 -120 -240 -74 -12.5 -86.5 -173 27.7 -42 -18 -60 -120 

65 35.4 -76 -37 -113 -226 -75 -13.5 -88.5 -177 26.7 -38 -18.5 -56.5 -113 

60 34 -69 -36 -105 -210 -71.5 -13 -84.5 -169 25.7 -34.5 -18 -52.5 -105 

55 32.5 -63 -33 -96 -192 -65.5 -10 -75.5 -151 24.6 -31.5 -16.5 -48 -96 

50 31 -60 -24 -84 -168 -64 -5.5 -69.5 -139 23.4 -30 -13.5 -43.5 -87 

45 29.4 -53 -26 -79 -158 -64 -7 -71 -142 22.2 -26.5 -13 -39.5 -79 

40 27.7 -53 -20 -73 -146 -56 -5 -61 -122 21 -26.5 -10 -36.5 -73 

35 25.9 -54 -12 -66 -132 -58.5 -4.5 -63 -126 19.6 -27 -7.5 -34.5 -69 

30 24 -48 -15 -63 -126 -56 -3.5 -59.5 -119 18.2 -24 -7.5 -31.5 -63 

25 21.9 -40 -13 -53 -106 -46 0.5 -45.5 -91 16.6 -20 -8 -28 -56 

20 19.6 -34 -10 -44 -88 -37 3.5 -33.5 -67 14.8 -17 -5 -22 -44 

15 17 -21 -12 -33 -66 -20 -2 -22 -44 12.8 -10.5 -6 -16.5 -33 

10 13.9 -16 -7 -23 -46 -18 -1.5 -19.5 -39 10.5 -8 -3.5 -11.5 -23 

* HSD = Final rank sum pairs were analyzed with the distribution-free experiment-wise multiple comparisons procedure.  

** CV= Critical value for paired hypothesis rejection (df= k-1 = 2). 

X1 = R100- R95, X2 = R95-R90, X3= R100- 90, and were ranked without ties (1 = highest yellow color intensity and 3 = least yellow 

color intensity). 

The bold values indicate pairwise significant at α = 0.05 

Total = X1 + X2 +X3 for each method. 
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Kinchla and Smyzer (1967) stated that the temporal continuity of visual stimuli reduces 

memory diffusion, aiding in discrimination. However, to the perceived wavelength reflected by 

the orange juice samples (yellow variations, among others), chromatic adaptation imposes a higher 

obstacle on sensitivity. Self-adaptation suggests that the perception of a stimulus is more difficult 

after the same stimulus was previously elicited (i.e., yellowness of the juice) than if the previously 

elicited stimulus was different (Rousseau and others, 1997; O’Mahony, 1986).  

According to Fairchild (2013), repeated exposure of the retinal areas to energy reflecting a 

specific color reduces visual sensitivity. Moreover, evaluating six samples (1SS) takes longer than 

ranking three samples separately twice (2SS), especially with very similar samples, extending the 

exposure of the cones in the retina to the stimuli and increasing chromatic adaptation, which is a 

spatial- and time-dependent phenomena (Werner, 2014).  

Ties from the intermediate rankings were not a relevant problem in reducing sensitivity, as 

the M-S on 2SS was less sensitive than the 1SS alternative only once in 14 tests ( i.e., n = 30) for 

the similar-samples set (Table 4.4). The physiological sensitivity decrease from ranking duplicates 

in 1SS was greater than the impact of ties from intermediate rankings for an intensity test such as 

yellow color with highly similar samples. However, with extremely different samples, the 2SS 

were indeed less sensitive than 1SS.  

There are no records of duplicated color rankings in the literature, but old records of color 

evaluations with ranking exist with panelists evaluating up to 10 samples at once. Nevertheless, 

the objective was measuring preference of green color intensity and not the intensities themselves 

(Buckle and Edwards, 1970). More recently, rankings have also been used to measure visual 

characteristics other than color, e.g., glossiness with six samples of coated Valencia oranges 



74 
 

(Contreras-Oliva, 2011). Also, overall appearance of raw beef steaks and fat appearance in raw 

beef steaks (Torrico, et al., 2014). 

4.3.2   Effect of sample size on test statistics  

When the number of panelists (n = blocks) is increased relative to the number of products 

or random variables, we expected a higher sensitivity to differences (Conover, 1990). To assess 

the influence of the number of panelists, we considered the change in test statistics (Mack-Skillings 

or Friedman) after adding five or 10 panelists. At each “n” value, all the results come from the 

exact same panelists. When differences exist, and are detected by the panelists, it is expected that 

adding more panelists will increase the significance of the differences. With a larger degree of 

differences between samples, reductions in test statistic values after adding panelist responses are 

also less likely given that less confusion yields lower variance.  

With a different sample set (Table 4.3), each addition of only five panelists increased the 

significance of differences in every method. With similar samples (Table 4.4), a different behavior 

was observed. In both the M-S on 2SS and the median analyzed by Friedman, the only increases 

in panelists failing to produce a higher significance occurred from n = 35 to 40 and from 30 to 40, 

respectively. For example, in the test on 2SS at n = 35, the calculated M-S decreased from 43.0 to 

40.67 after adding five panelists. Additionally, 15 more panelists were required to obtain a value 

higher than 43. Regardless, the M-S’s statistic on data from the 1SS experienced several reductions 

after increases of five, 10, or more panelists. For example, the highest statistic appeared at n = 35 

(MS = 42.47), and the highest number of panelists evaluated (75) produced a lower calculated 

statistic: 37.78. The highest number of reductions was in M-S’s statistic on 1SS rather than 2SS, 

as evidenced by the increased difficulty of panelists to rank the six samples in the correct order 
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than in a three-sample ranking in which the variance was lower.  Hence the 2SS protocol was more 

sensitive and consistent in hypothesis testing for the similar-samples set (Table 4.4) 

4.3.3   P value estimates using the exact distributions of the M-S test 

After obtaining the MS statistic, in addition to an asymptotic chi-square approximation, an 

exact P value can also be estimated based on the complete distribution of the M-S or a Monte-

Carlo simulation using the package “NSM3” (Schneider and others., 2016); both computations can 

be obtained from the software R. The function pMackSkil yields an exact computation or a Monte 

Carlo simulation with more than 10,000 iterations if specified. According to Bi (2009) both 

approaches were less conservative than the chi-square asymptotic approximation for the Durbin–

statistic, designed as an extension of the Friedman test for an incomplete block design. Hollander 

and others (2013) also recommend using an exact test with three or fewer replications per block 

and treatment combination.  

Tables 4.3 and 4.4 show that the exact P values obtained from both the similar and the 

different sample sets often are slightly lower than those obtained by chi-square approximation (n 

=20-75), but P values below 0.0001 are not provided by the function. With the color intensities 

evaluated, the option for calculating the P value did not affect the null hypothesis conclusions; 

however, Hollander and others (2013) recommended using the exact P values if the number of 

replication is three or less. If possible, the exact approach should be used, given that, in most cases, 

the degree of product divergence is unknown, and with more confusable samples, the conclusions 

of the null hypothesis test could be affected. For R software commands, for replicated ranking 

scenarios, see Carabante and others (2016), where codes for global test statistics, multiple 

comparisons, and P value estimations on both approaches are available. Additionally, a description 

of other alternative analyses for replicated ranking is compared to the M-S test.  
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4.3.4   Multiple comparisons  

All three possible paired comparisons (X1 = 100 vs. 95%, X2 = 95 vs. 90%, and X3 = 100 

vs. 90% orange juice) were studied among all methods for the similar-samples set (Table 4.5). The 

Friedman test on the median of replications had unique critical values at each panel size obtained 

from the non-parametric HSD analog (experiment-wise multiple comparisons). The M-S test on 

1SS and 2SS replications shared the same critical values obtained from the experiment-wise M-S 

multiple comparisons method. For each method, 42 possible paired differences were evaluated, 

given that each of the three paired comparisons was assessed at the 14 “n” possibilities (from 10 

to 75 at every five-panelist increment). 

With the different sample set (data not shown), all sample paired comparisons were 

significantly different, except for one. At n = 10, using the median of the separate replications, the 

samples with 100 and 70% orange juice showed a non-significant rank sums difference (diff = |-

8|, < CV = |10.5|). The rest of the conclusions were unaffected by the protocol or the method 

selection, indicating less influence with a high degree of sample divergence.  

The evaluation of significance (α = 0.05) of the multiple comparisons method on similar 

samples is shown in Table 4.5. With similar samples, the protocol selection and the method showed 

higher influence in the number of significantly different pairs per n*method combination. This 

influence stems from the several contrasting conclusions obtained depending on the sample size. 

When comparing the two serving protocols analyzed with M-S and the multiple comparisons test, 

both tests yielded significant differences between 100 vs. 95% (X1) and 100 vs. 90% (X3), 

regardless of “n”.  

 The Friedman test on the median of the replications failed to find a significant difference 

between 100 and 95% orange juice at n = 10 and 15, but with more panelists, it yielded the same 
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conclusions on X1 as the other two methods. The main contrast between 1SS and 2SS appeared in 

the comparison between 95 and 90% juice (X2). Neither the Friedman test on the median 

replications nor the M-S test on 1SS showed a single significant difference. Conversely, the M-S 

test on 2SS showed three significant differences, at n = 55, 60, and 65, whereas at n = 70 and 75, 

the differences were closer to statistical significance (Table 4.5). 

Exploring the magnitude of the rank sum differences indicates that the test on 1SS showed 

lower rank sum differences for X3 and X2 than 2SS. With 2SS, X1 and X2, two sample pairs only 

differing in 5% orange juice, the rank sum differences achieved a higher balance than with joint 

rankings. The 1SS protocol tended to unbalance the differences towards X1 (100 vs. 95% orange 

juice), even if all the samples and methods were presented in a counter-balanced arrangement. 

Separating replications (2SS) also showed higher rank sum differences in X3, and the largest 

expected differences were with a 10% juice difference. 

Although in both X1 and X2, the two samples only differed by 5% orange juice, a balanced 

linear difference may or may not necessarily represent the reality of the color difference perceived 

by consumers. Thus, the serving protocol more closely resembling the most accurate color 

difference perception of the panelist can be one showing balanced or unbalanced results between 

X1 and X2. This was considered not to punish the 1SS protocol for showing lower differences in 

X2 and allow the possibility that panelists found the difference harder to detect. Table 4.5 shows 

that joint rankings (ISS) produced less separation between 95 and 90% orange juice than serving 

replications separately with a break period (2SS), which showed fewer unbalanced rank sum 

differences for both pairs differing in 5% orange juice (X1, X2).   
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4.3.5   Instrumental colorimetric analysis  

To investigate the differences between the samples and build a clear expectation of the 

magnitude of differences between samples (especially between X1 and X2), a colorimetric analysis 

conducted using a colorimeter based on a CIE-Lab scale is shown in Table 4.6. The Wilks' lambda 

test for differences between mean vectors showed significant differences between samples at the 

multivariate level (P < 0.0001). One-way ANOVA procedures showed significant differences for 

both the lightness (L*) and yellow/blue values (b*). In both parameters, all pairs of samples were 

significantly different based on a post hoc Tukey’s test (α = 0.05). Samples with less orange juice 

had lower lightness and less yellowness intensity. In yellowness intensity, the magnitude of the 

differences between 100-95 % and 95-90% orange juice showed a slightly higher difference for 

the first pair; however, the differences were relatively balanced (0.662 and 0.638, respectively). 

This balance indicated that if differences were found between 100 and 95% orange juice, findings 

showing differences between 95 and 90% orange juice was a plausible expectation. From the 

ranking data, the 1SS alternative could not reject the null hypothesis of no differences between 95 

and 90% orange juice even with 75 panelists, while with the most balanced differences of the 2SS 

protocol; the difference between the pair in question were significant (α = 0.05) despite requiring 

55 panelists (Table 4.5). These results also showed higher efficiency for detecting expected 

significant differences in intensity rankings if replications were performed separately (2SS) with 

a break period (a break period of at least 15 min in this study). 
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Table 4.6 ANOVA and post hoc Tukey analysis of instrumental color data for the similar sample 

set. 

% Orange juice 

L* a* b* 

F value P >F F value P >F F value P >F 

70.68 <.0001 1.41 0.267 62.89 <.0001 

100 57.925 ± 0.104 A* -1.2875 ± 0.099 A 13.725 ± 0.205 A 

95 57.5 ± 0.120 B -1.225 ± 0.046 A 13.063 ± 0.130 B 

90 56.988 ± 0.223 C -1.213 ± 0.125 A 12.425 ± 0.320 C 

Paired 

comparison 
L* Mean difference a* Mean difference 

b* Mean 

difference 

100-95 0.425 -0.0625 0.662 

95-90 0.512 -0.012 0.638 

100-90 0.937 -0.0745 1.3 

Wilks' Lambda test for multivariate differences, F= 27.46 P > F <0.0001 

*Means with the same letter within a value (column) are not statistically different (P > 0.05) 

4.4   Conclusions 

This study showed that the M-S test was a suitable and efficient non-parametric analysis 

for replicated attribute intensity-ranked data. Regardless of the serving protocol of the replications, 

the M-S test showed higher discrimination than the median of individual replications analyzed 

with the Friedman test. The M-S test uses intra-block information to improve sensitivity to 

differences over averaging individual replications. A model study with two replications and three 

samples showed that when samples are relatively close in color intensity, separating the 

replications in complete individual ranking tests or serving sessions can help to prevent sensitivity 

loss due to fatigue or adaptation that is otherwise experienced when evaluating all replications 

together. These differences in discrimination were observed in both global null tests and multiple 

comparisons. When the samples of a set were extremely different, both serving protocols of 

replicated ranking performed with relatively similar discrimination efficiency.  
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CHAPTER 5.   SERVING DUPLICATES IN A SINGLE SESSION CAN SELECTIVELY 

IMPROVE THE SENSITIVITY OF DUPLICATED INTENSITY 

RANKING TESTS 

5.1   Introduction 

Because of their simplicity and sensitivity, sensory ranking tests with multiple samples are 

important preference and intensity difference tools (Meilgaard and others, 2006; Lawless and 

Heyman, 2010). With this method, “n” panelists have to rank a complete set of “k” samples 

according to the perceived intensity of a specific attribute or their overall preference. Each panelist 

generates an ordinal vector with dependent scores for each sample. Ranking tests are still widely 

used among the food industry with published applications for product screening (Bloom and Lee, 

2016), preference (Mennella and others, 2017), and attribute difference (Urbanus and others, 

2014); the later also involved the use of replications. The ordinal nature and dependency between 

the scores within a vector make the Friedman (1937) test a widely chosen statistical analysis for 

sensory ranked data (Joanes, 1985; Meilgaard and others, 2016; Lawless and Heyman, 2010). 

Other options for analysis include tables for critical values for rapid null hypothesis testing, either 

globally (Basker, 1988; Christensen and others, 2016) or for paired comparisons (Christensen and 

others 2016).  

 Successful sensory evaluation techniques require a high level of sensitivity to differences 

and efficiency with financial and human resources.  Incorporating replications in the test is a viable 

option for optimizing resources when coupled with the appropriate statistical techniques that 

maximize effect information retrieval and restrict violations to independence. Stone and others 

(2012) recommended replications on sensory tests, making specific emphasis on duplications for 

increased power and control of within-panelist variations in discrimination testing rather than just 

increasing the number of panelists.   Examples of replicated analysis, include an over dispersion 
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model (Anderson, 1998), the beta-binomial (Ennis and Bi, 1998) and corrected-beta binomial 

(Brockhoff, 2003) tests in discrimination testing. In ranking tests, the data from two blocks should 

be independent (Conover, 1971). The Mack-Skillings test (1980) extends the Friedman test to “c” 

> 1 replications, and controlling the dependency between the data from the same panelist 

(Hollander and others, 2013). The test requires that all samples are ranked within the same block, 

regardless of replication. Thus, a panelist ranking four samples in duplicates should generate a data 

vector with eight scores instead of two vectors with four scores.  

 Depending on the number of samples and replications intended, the physical serving of 

samples can be accomplished in a single session where a panelist ranks all samples at once; or in 

as many sessions as there are replications to reduce the possible adverse effects of a high number 

of samples. Several studies on the discrimination side of sensory testing suggested that a high 

number of samples is less desirable due to possible reduction in sensitivity to detect differences. 

The loss of sensitivity was mostly associated with adaptation, fatigue, and memory interference 

(O’Mahony, 1986; Rousseau and others, 2002; Lau and others 2004).  

In duplicated ranking, separating the duplicates in two sessions appears as the first choice. 

Nevertheless, the Mack-Skillings test, requires that both data vectors are re-ranked into one, 

through intermediate rankings. With such re-ranking, ties between the data are unavoidable, 

possibly reducing the statistical power. Hollander and others (2013) stated that the M-S test can 

handle ties with relative efficiency; however, serving samples jointly not only eliminates ties, but 

also limits the dependency between the duplicates from a panelist. Increasing the number of 

samples in a test is not always undesirable, i.e., in the tetrad test when the noise imparted by an 

extra sample does not reduce statistical power (Ennis and Jesionka, 2011; Ennis, 2012).  
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With this study we tested two methods for sample serving in multiple samples ranking 

tests, and compared in two attributes dependent of different senses. Yellow color intensity and 

sweetness were evaluated in orange juice model sets varying in degree of difference between 

samples to examine if a joint ranking with duplicates served in the same session generates higher 

differences between samples or if it at least performs comparable to separating the replications 

into more than one session.  Using orange juice models to evaluate color and sweetness instead of 

solutions adds dimensionality and a complexity level to the test (Bloom and Lee, 2016), and is 

better in resembling product testing. The results of this study are important for the development of 

new information in the use of duplicated ranking intensity tests.  

5.2   Materials and methods 

5.2.1   Panelists 

A group of 75 panelists consisting of students, faculty and staff of the Louisiana State 

University were selected after successfully approving the following selection criteria: availability 

for repeated testing, lack of visual or taste impairment, e.g., color blindness or ageusia, overall 

health, sensory awareness and attitude. Before any participation, panelists had to agree with and 

sign a consent form as part of the research protocol approved by the Louisiana State University 

(LSU) Agricultural Center Institutional Review Board (IRB # HE 15-9). 

5.2.2   Samples and sensory study  

Two sample sets were designed with either similar or different samples. The similar sample 

set contained three samples with 100, 95 and 90% (w/w) orange juice. The different sample set 

contained three samples with 100, 70 and 40% (w/w) orange juice (Minute Maid®, Sugar Land, 

TX., U.S.A). Purified spring water was used to dilute the samples not containing 100% orange 

juice. All panelists separately evaluated both sample sets for both attributes (yellow color and 
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sweetness) using both protocols (1SS and 2SS) of duplicated ranking. One protocol required 

panelists to rank six samples jointly from 1 to 6 (1 = highest intensity) in one serving session (1SS), 

without knowing that there was another identical sample for each of the three concentrations. Thus, 

six three-digit random codes were used. With the two serving sessions protocol (2SS) panelists 

ranked the duplicates of a sample set separately (each one from 1 to 3, where 1 is the highest 

intensity), with a 10-minute break period. Six different blinding codes were used to discourage the 

idea of duplicates among panelists. To complete both protocols, a panelist had to perform three 

ranking tests or sessions for each sample set (similar and different sample sets). Both yellow color 

intensity and sweetness were evaluated separately, totaling 12 ranking sessions per panelists. The 

samples within a session, the sessions within a set, and the sample sets evaluated were presented 

in a counter balanced system, to reduce the influence of physiological and psychological effects 

produced by the presentation order. Because retasting or repeated color evaluation was allowed 

for confirmatory information, the counterbalanced system only applied to the first complete 

evaluation when it pertained to the samples in a set (Xia and others, 2016). The data were collected 

over a period of six weeks to fit the schedules of the participants; who never performed more than 

three sessions per day.  The study was performed at the Sensory Services laboratory of the 

Louisiana State University Agricultural Center. The tests were performed using 15 partition 

booths, equipped with the software Compusense 5, release 5.6. (Compusense Inc., Guelph, ON, 

Canada). The booths were illuminated with clear natural lights for color analysis and red lights for 

sweetness.  

5.2.3   Data analysis and the Mack-Skillings test. 

For each sample set and attribute two types of data were collected. For the 1SS protocol, 

each of the 75 panelists generated a data vector of six mutually dependent scores (from 1 to 6). 
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With the 2SS protocol, the data came from two vectors of length = 3, containing 1’s, 2’s, 3’s scores. 

For the 2SS data type, the Mack-Skillings (M-S) test, requires all data from a block (panelist) to 

be ranked jointly in one single vector for that block. With the 1SS protocol, the data fitted that 

requirement since collection, but with the 2SS protocol, intermediate ranking scores from re-

ranking the scores from both replications were calculated.  Re-ranking the two score vectors from 

the separate duplicates of a set evaluated by one panelist gives a score of 1.5 to each of the two 

“1” scores, a score of 3.5 to each of  the two “2” scores and finally assigns “5.5” to the two “3” 

scores. The 75 panelists were randomized to obtain a new order from 1 to 75.   After confirming 

every vector had six scores from the same panelists, the M-S test was applied to test the null 

hypothesis (Ho: There are no differences among samples) at every five-panelist increment from 

10 to 75 panelists. At each increase in “n”, the same panelists from the previous test were kept and 

only five new blocks were added. At a specific “n” value, the data for every attribute, set, protocol 

or session came from the same panelists. Additionally, multiple paired comparison tests were 

performed with the M-S multiple comparisons procedure, at all “n” values. 

The M-S test is an extension of the Friedman Test for a randomized block design without 

treatment*block interaction for c > 1 replications.  The P values based on the M-S statistic can be 

estimated from either a chi-squared approximation with degrees of freedom = k-1, where k is the 

number of treatments or samples.  Also from an exact test or a Monte Carlo simulation where N 

panels of a size (n, k, c) are simulated; then the probability likelihood of such M-S statistic value 

is assessed based on its magnitude compared to the distribution of the simulated data.  The 

computation of the M-S statistic follows: 

M-S = (
12

𝑘(𝑁+𝑛)
) ∑ (𝑅𝑗 

∗ 𝑁+𝑛

2
)

2
𝑘
𝑗=1  = (

12

𝑘(𝑁+𝑛)
) [∑ 𝑅𝑗

2𝑘
𝑗=1 ] − 3(𝑁 + 𝑛) 
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The null hypothesis (Ho) stands: all k samples are not different (Ho: R1 = R2 = ... = Rk.); “k” 

represents the number of samples, “n” is the number of panelists, “c” are the number of complete 

replications. The total number of rank scores is N= k*n*c. R*j represents the weighted rank sum 

from the jth sample; calculated by adding all the scores of a sample from all replications, then 

dividing it by the number of replications (𝑅𝑗 
∗ =  ∑ 𝑟[∑ 𝑟𝑖𝑗𝑙

𝑐
𝑙=1 /𝑐]𝑛

𝑖=1 ). Hollander and others (2013) 

and Mack and Skillings (1980) also provide an experiment-wise multiple comparisons non 

parametric procedure described by: 

𝑅𝐴 − 𝑅𝐵  ≥ 𝑞𝛼,𝑘 ∗ √
𝑘 (𝑁 + 𝑛)

12

2

 

Where 𝑞𝛼,𝑘 is the αth distribution percentile for all “k” sample independent and normal random 

variables (Mack and Skillings, 1980). RA and RB represent the weighed rank sums of samples “A” 

and “B” from a set of “k” samples. For application examples, refer to Hollander and others (2013) 

and Carabante and others (2016).  The M-S statistics and P values were estimated using a Monte 

Carlo simulation with 10,000 iterations using the R software. Code alternatives can be found in a 

previous duplicated ranking introductory article (Carabante and others, 2016). These codes are 

similar in nature to those by Bi (2009) for the Durbin’s tests for incomplete block designs. 

5.3   Results  

5.3.1   Measured rank sums 

Table 5.1 shows the weighted rank sums for both attributes and both serving protocols. For 

the 2SS protocols, the two data vectors from each panelist were re-ranked into one block through 

intermediate rankings. With the 1SS protocol, the scores in the rank sums were the original scores 

of the data vectors provided by each panelist.  .  
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Table 5.1 Rank sums by sample for the similar and different sample sets. 

Set n 
Yellow Color 2SS Sweetness 2SS Yellow Color 1SS Sweetness 1SS 

100 95 90 100 95 90 100 95 90 100 95 90 

S
im

il
ar

 S
am

p
le

 S
et

 

75 194.5 278.5 314.5 228.5 251.5 307.5 205.5 284.5 297.5 213 264.5 310 

70 177 261 297 215 237 283 191.5 265.5 278 201 245.5 288.5 

65 164.5 240.5 277.5 200.5 221.5 260.5 173 248 261.5 188.5 228.5 265.5 

60 152 221 257 182 204 244 158 229.5 242.5 172.5 210.5 247 

55 139.5 202.5 235.5 166.5 186.5 224.5 145.5 211 221 154 194.5 229 

50 123.5 183.5 207.5 147 174 204 130.5 194.5 200 138 179 208 

45 113.5 166.5 192.5 132.5 159.5 180.5 112.5 176.5 183.5 124 162.5 186 

40 98 151 171 117 139 164 101 157 162 111.5 142.5 166 

35 79 133 145 100.5 120.5 146.5 82 140.5 145 95.5 125 147 

30 68 116 131 83 102 130 66.5 122.5 126 79.5 111 124.5 

25 53 93 106 74.5 83.5 104.5 57 103 102.5 65 91 106.5 

20 44 78 88 59 70 81 46.5 83.5 80 50 71 89 

15 34.5 55.5 67.5 41.5 56.5 59.5 38.5 58.5 60.5 40 52.5 65 

10 22 38 45 24 37 44 22.5 40.5 42 26.5 36 42.5 

Set n 100 70 40 100 70 40 100 70 40 100 70 40 

D
if

fe
re

n
t 

S
am

p
le

 S
et

 

75 135.5 258.5 393.5 127.5 256.5 403.5 126 263 398.5 123.5 260 404 

70 128 241 366 118 241 376 118.5 245.5 371 115.5 243 376.5 

65 115.5 224.5 342.5 110.5 223.5 348.5 107 228 347.5 107 225.5 350 

60 106 208 316 103 206 321 99.5 210.5 320 99.5 208 322.5 

55 96.5 190.5 290.5 95.5 187.5 294.5 92 193 292.5 92 190.5 295 

50 88 174 263 88 170 267 84.5 175.5 265 84.5 173 267.5 

45 79.5 156.5 236.5 79.5 152.5 240.5 77 158 237.5 76 156.5 240 

40 72 138 210 70 137 213 69.5 140.5 210 68.5 139 212.5 

35 60.5 120.5 186.5 61.5 120.5 185.5 58 122 187.5 57 124.5 186 

30 53 103 159 53 104 158 49.5 105.5 160 49.5 107 158.5 

25 41.5 85.5 135.5 45.5 86.5 130.5 38 88 136.5 42 89.5 131 

20 34 68 108 38 69 103 30.5 70.5 109 34.5 72 103.5 

15 24.5 50.5 82.5 25.5 52.5 79.5 23 53 81.5 22.5 55 80 

10 17 33 55 18 35 52 15.5 35.5 54 15 37.5 52.5 

*Indicates  orange  juice % in the samples.    ** Rank values: 1 highest intensity, 3 = lowest intensit
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Visual observation of the rank sums indicated that the data followed the specific logical 

expectations required to continue the study. When the degree of difference between samples was 

larger, the samples with 100 % orange juice obtained lower rank sums than in the similar sample 

set at the exact same “n”, attribute and protocol (Table 5.1). For example, at n= 30, for sweetness 

ranking using the 2SS protocol, the rank sums for 100% orange juice were 53 for the different 

sample set and 83 for the similar sample set, given the wider spread of scores in the different 

sample set. This affirmed that with the similar sample set, the stimuli were more confusable. In 

every protocol, number of panelists, attribute and degree of difference, the sample with 100% 

orange juice obtained the lowest rank sum values, while the sample with less orange juice (90 or 

40%) had the highest values. For example, at n = 40 for yellow color intensity with the 1SS 

protocol in the similar sample set, the rank sum for 100% orange juice was 101, a lower value than 

157 (95%) and 162 (90%). This indicated that although the samples of the similar set were more 

confusable, in general differences could still be perceived.  The following two subsections detail 

the measured degree of difficulty between attributes to assess which one was more difficult to rank 

and the effect of the serving protocols in relationship with the task difficulty 

5.3.2   Evaluation of stimulus difficulty 

A measure of the difficulty of correctly ranking the three samples of orange juice for either 

color or sweetness can be achieved comparing the M-S statistics (Table 5.2 for similar and Table 

5.4 for different samples) or the total sum of paired rank sum differences (Table 5.3 for similar 

and Table 5.5 for different samples). Higher M-S values associate with larger overall differences 

between the samples in all ranking protocols. Tables 5.3 and 5.5 show all the M-S rank sum 

differences and their sum; where, X1 represents 100 – 95 % orange juice; X2 is 95 – 90 % and X3 

is 100 - 90% orange juice. The P values associated with the Mack-Skillings statistic were obtained 
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from a Monte Carlo simulation with 10,000 iterations. This method or an exact test were 

recommended over a Chi Squared approximation   for less than four replications (Hollander and 

others, 2013).  

When the degree of difference between samples was lower (similar samples, Table 5.2), 

the yellow color ranking had higher M-S statistic values than sweetness, in 26 out of 28 

comparisons (14 comparisons per protocol). Thus, panelists were more efficient in correctly 

ranking samples for yellow color than for sweetness. A similar conclusion about the higher 

complexity and degree of difficulty of sweetness can be obtained from the tables of rank sum 

differences (Table 5.3). Except for a few cases, the sum of the three rank sum differences at each 

“n” was higher in color than in sweetness (Table 5.3). The few exceptions where sweetness showed 

higher sum of differences than color occurred in the 1SS protocol (n = 75, 70, 50, 20, 15). Only 

one of these higher sum of differences made the M-S statistic higher for sweetness than color (n = 

15). This could be explained by the more homogenous size of individual paired differences in 

sweetness with 1SS; especially with higher number of panelists. For example, at n = 70, with the 

1SS protocol, the total difference in sweetness was: -175 compared to -173 in color, but in color, 

the difference between 100 and 95% orange juice was much higher than in sweetness (X1 color = 

-74 vs. X1 sweetness = -44.5). Adding this high difference to the large difference found in X3 (100 

– 90% orange juice) increases the M-S stat for color, compared to the more homogenous 

differences in sweetness. With the 2SS protocol, the total differences were always higher in color 

than in sweetness; nevertheless, the comparison between protocols is further discussed in the next 

section. With both comparisons (M-S statistic or the sum of total differences) ranking of yellow 

color intensity showed less complexity (i.e., more sensitivity) than ranking of sweetness regardless 

of protocol; although, the global null hypothesis was rejected at every “n” value for both attributes.    



93 
 

Table 5.2 Comparison of Mack-Skillings statistics across serving protocols and attributes for the 

similar-sample set 

n 

Two Serving Sessions (2SS) One Serving Session (1SS) 

Color  Sweetness Color  Sweetness 

M-S Sta**t Exact P* M-S Stat Exact P M-S Stat Exact P M-S Stat Exact P 

75 57.8 <0.0001 25.2 <0.0001 37.8 <0.0001 35.9 <0.0001 

70 61.9 <0.0001 19.7 <0.0001 35.7 <0.0001 31.3 <0.0001 

65 58.4 <0.0001 16.3 1.00E-04 40 <0.0001 26.1 <0.0001 

60 54.2 <0.0001 18.8 <0.0001 39.4 <0.0001 26.4 <0.0001 

55 49.4 <0.0001 18 1.00E-04 34.9 <0.0001 29.3 <0.0001 

50 45.3 <0.0001 18.6 <0.0001 34.1 <0.0001 28.3 <0.0001 

45 41.2 <0.0001 14.7 4.00E-04 38.9 <0.0001 24.9 <0.0001 

40 40.7 <0.0001 15.8 2.00E-04 32.8 <0.0001 21.4 <0.0001 

35 43 <0.0001 17.4 1.00E-04 40.3 <0.0001 21.8 <0.0001 

30 41.3 <0.0001 21.3 <0.0001 42.5 <0.0001 20.3 <0.0001 

25 38 <0.0001 10.8 0.0031 31.9 <0.0001 20.1 <0.0001 

20 30.4 <0.0001 6.9 0.0259 23.8 <0.0001 21.8 <0.0001 

15 21.3 <0.0001 7.1 0.0191 11.3 0.004 11.9 0.0018 

10 15.9 <0.0001 11.8 0.0013 13.5 0.0012 7.4 0.0245 

*Exact P values were calculated using a Monte Carlo procedure with 10000 iterations. At each 

“n” value, the data for each protocol and attribute came from the exact same panelists. 

** The weighted rank sums used in the M-S statistic were calculated as: 𝑅𝑗 
∗ =  ∑ 𝑟[∑ 𝑟𝑖𝑗𝑙

𝑐
𝑙=1 /𝑛

𝑖=1

𝑐]. The computation involves the sum of all the scores for the jth sample, then divided by “c”. 

With duplicates, c= 2. 
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Table 5.3 Multiple comparisons test including weighted rank sum differences and total 

differences across serving protocols and attributes for the similar-sample set  

**Bolded fonts represent a significant paired difference at α = 0.05. X1 = R (100%)-R (95%), 

X2 = R (95%)-R(90%), X3 = R(100%)-R(90%). 

*The weighted rank sums used in the M-S statistic were calculated as: 𝑅𝑗 
∗ =  ∑ 𝑟[∑ 𝑟𝑖𝑗𝑙

𝑐
𝑙=1 /𝑐]𝑛

𝑖=1 . 

The computation involves the sum of all the scores for the jth sample, then divided by “c”. With 

duplicates, c= 2  

    Two Serving Sessions 2SS   One Serving Session 1SS   

Color   

n CV x1 x2 x3 Sum x1 x2 x3 Sum 

75 38.0 -84 -36 -120 -240 -79 -13 -92 -184 

70 36.7 -84 -36 -120 -240 -74 -12.5 -86.5 -173 

65 35.4 -76 -37 -113 -226 -75 -13.5 -88.5 -177 

60 34.0 -69 -36 -105 -210 -71.5 -13 -84.5 -169 

55 32.5 -63 -33 -96 -192 -65.5 -10 -75.5 -151 

50 31.0 -60 -24 -84 -168 -64 -5.5 -69.5 -139 

45 29.4 -53 -26 -79 -158 -64 -7 -71 -142 

40 27.7 -53 -20 -73 -146 -56 -5 -61 -122 

35 25.9 -54 -12 -66 -132 -58.5 -4.5 -63 -126 

30 24.0 -48 -15 -63 -126 -56 -3.5 -59.5 -119 

25 21.9 -40 -13 -53 -106 -46 0.5 -45.5 -91 

20 19.6 -34 -10 -44 -88 -37 3.5 -33.5 -67 

15 17.0 -21 -12 -33 -66 -20 -2 -22 -44 

10 13.9 -16 -7 -23 -46 -18 -1.5 -19.5 -39 

Sweetness  

n CV x1 x2 x3 Sum x1 x2 x3 Sum 

75 38.0 -23 -56 -79 -158 -51.5 -45.5 -97 -194 

70 36.7 -22 -46 -68 -136 -44.5 -43 -87.5 -175 

65 35.4 -21 -39 -60 -120 -40 -37 -77 -154 

60 34.0 -22 -40 -62 -124 -38 -36.5 -74.5 -149 

55 32.5 -20 -38 -58 -116 -40.5 -34.5 -75 -150 

50 31.0 -27 -30 -57 -114 -41 -29 -70 -140 

45 29.4 -27 -21 -48 -96 -38.5 -23.5 -62 -124 

40 27.7 -22 -25 -47 -94 -31 -23.5 -54.5 -109 

35 25.9 -20 -26 -46 -92 -29.5 -22 -51.5 -103 

30 24.0 -19 -28 -47 -94 -31.5 -13.5 -45 -90 

25 21.9 -9 -21 -30 -60 -26 -15.5 -41.5 -83 

20 19.6 -11 -11 -22 -44 -21 -18 -39 -78 

15 17.0 -15 -3 -18 -36 -12.5 -12.5 -25 -50 

10 13.9 -13 -7 -20 -40 -9.5 -6.5 -16 -32 
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With the different samples set, the panelists did not experience problems ranking the 

intensities in the correct order for color and sweetness. With such degree of difference, the 

complexity of the attributes was barely different numerically and nonexistent for practical terms. 

In general, sweetness was a harder attribute to correctly rank than yellow color intensity, due to 

higher complexity, especially, and more importantly with similar samples.  The higher difficulty 

for sweetness with similar samples was reduced with different sample sets, where both attributes 

had very high and relatively similar M-S values (Table 5.4) and total differences (Table 5.5) due 

to less variation between rankings.  

Table 5.4 Comparison of Mack-Skillings statistics across serving protocols and attributes for the 

different-sample set* 

n 
Two Serving Sessions 2SS** One Serving Session 1SS 

Color Sweetness Color Sweetness 

75 253.8 290.6 282.9 299.8 

70 231.4 271.9 260.2 278.1 

65 226.6 249.2 254.2 259.6 

60 210.1 226.5 231.5 236.9 

55 195.6 206.1 208.8 214.1 

50 175.0 183.5 186.2 191.4 

45 156.5 165.1 163.6 170.8 

40 136.1 146.3 141.0 148.1 

35 129.7 125.6 136.9 135.9 

30 107.1 105.0 116.3 113.3 

25 101.1 82.6 110.9 90.7 

20 78.4 60.4 88.0 68.2 

15 64.3 55.5 65.2 63.3 

10 41.6 33.0 42.4 40.7 

* The weighted rank sums used in the M-S statistic were calculated as:𝑅𝑗 
∗ =  ∑ 𝑟[∑ 𝑟𝑖𝑗𝑙

𝑐
𝑙=1 /𝑐]𝑛

𝑖=1 . 

The computation involves the sum of all the scores for the jth sample, then divided by “c”.With 

duplicates, c= 2. 

** All Exact P values were lower than 0.0001. Therefore, a comparison was not shown. Exact P 

values were calculated using a Monte Carlo procedure with 10000 iterations. At each “n” value, 

the data for each protocol and attribute came from the exact same panelists. 
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Table 5.5 Multiple comparisons test including weighted rank sum differences and total 

differences across serving protocols and attributes for the different-sample set 

    Two Serving Sessions 2SS**   One Serving Session 1SS   

Color  

n CV X1 X2 X3 Sum X1 X2 X3 Sum 

75 38.0 -123 -135 -258 -516 -137 -135.5 -272.5 -545 

70 36.7 -113 -125 -238 -476 -127 -125.5 -252.5 -505 

65 35.4 -109 -118 -227 -454 -121 -119.5 -240.5 -481 

60 34.0 -102 -108 -210 -420 -111 -109.5 -220.5 -441 

55 32.5 -94 -100 -194 -388 -101 -99.5 -200.5 -401 

50 31.0 -86 -89 -175 -350 -91 -89.5 -180.5 -361 

45 29.4 -77 -80 -157 -314 -81 -79.5 -160.5 -321 

40 27.7 -66 -72 -138 -276 -71 -69.5 -140.5 -281 

35 25.9 -60 -66 -126 -252 -64 -65.5 -129.5 -259 

30 24.0 -50 -56 -106 -212 -56 -54.5 -110.5 -221 

25 21.9 -44 -50 -94 -188 -50 -48.5 -98.5 -197 

20 19.6 -34 -40 -74 -148 -40 -38.5 -78.5 -157 

15 17.0 -26 -32 -58 -116 -30 -28.5 -58.5 -117 

10 13.9 -16 -22 -38 -76 -20 -18.5 -38.5 -77 

Sweetness  

n CV x1 x2 x3 Sum x1 x2 x3 Sum 

75 37.978 -129 -147 -276 -552 -136.5 -144 -280.5 -561 

70 36.69 -123 -135 -258 -516 -127.5 -133.5 -261 -522 

65 35.356 -113 -125 -238 -476 -118.5 -124.5 -243 -486 

60 33.969 -103 -115 -218 -436 -108.5 -114.5 -223 -446 

55 32.522 -92 -107 -199 -398 -98.5 -104.5 -203 -406 

50 31.009 -82 -97 -179 -358 -88.5 -94.5 -183 -366 

45 29.418 -73 -88 -161 -322 -80.5 -83.5 -164 -328 

40 27.735 -67 -76 -143 -286 -70.5 -73.5 -144 -288 

35 25.944 -59 -65 -124 -248 -67.5 -61.5 -129 -258 

30 24.019 -51 -54 -105 -210 -57.5 -51.5 -109 -218 

25 21.927 -41 -44 -85 -170 -47.5 -41.5 -89 -178 

20 19.612 -31 -34 -65 -130 -37.5 -31.5 -69 -138 

15 16.984 -27 -27 -54 -108 -32.5 -25 -57.5 -115 

10 13.868 -17 -17 -34 -68 -22.5 -15 -37.5 -75 

*The weighted rank sums used in the M-S statistic were calculated as: 𝑅𝑗 
∗ =  ∑ 𝑟[∑ 𝑟𝑖𝑗𝑙

𝑐
𝑙=1 /𝑐]𝑛

𝑖=1 . 

The computation involves the sum of all the scores for the jth sample, then divided by “c”. With 

duplicates, c= 2 

**All pairs were significantly different (α = 0.05). X1 = R(100%)-R(95%), X2 = R(95%)-

R(90%), X3 = R(100%)-R(90%). 
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5.3.3   Effect of serving protocols for duplicated ranking 

The performance of both protocols in the different sample set was comparable for both 

sweetness and color (measured with M-S statistics in Table 5.4 and rank sum differences in Table 

5.5). Although the M-S values were always larger in the 1SS protocol, they did not impact the 

hypothesis test conclusions given that the lowest M-S value obtained was 33 (P  < 0.0001) with 

10 panelists (sweetness, 2SS). For reference, the Chi-Squared critical value with 2 degrees of 

freedom for a hypothesis test is 5.991. Thus, diminishing the importance of the small differences 

found between protocols. This suggest that when differences are very obvious, the serving protocol 

should not alter the results.  

 With similar samples, the best protocol (the one showing the higher resolution to 

differences) depended on the attribute. For sweetness, more sensitivity was achieved with 1SS 

(higher M-S statistics in 13 out of 14 “n” values). Conversely, the 2SS was more sensitive for 

color, based on higher M-S statistics for all 14 “n” values (Table 5.2). Exploring the M-S statistics 

and the sum of the rank sum differences in sweetness showed that the M-S values with 1SS were 

higher than with 2SS except at n=10, where the M-S statistic of the 1SS protocol was 7.4 (P = 

0.0245) with a total difference of -32, whereas the M-S statistic of the 2SS protocol was 11.8 (p = 

0.0012) with a total difference of -40. As expected, the largest M-S statistics were found at n=75 

and were 35.9 (P < 0.0001) with 1SS and 25.2 (P < 0.0001) with 2SS, confirming higher sensitivity 

with increased number of panelists at the same degrees of freedom. Higher test statistics generate 

lower P values either from exact, simulated or chi-squared approximations.  

For color, the opposite results were observed; the highest paired differences and M-S 

statistics were observed using 2SS at every “n”. With the degree of difference of samples elicited 

on panelist perception by the set of 100, 95 and 90 % orange juice, the null hypothesis test 
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conclusions were not affected by the protocol choice at α= 0.05. Although the null hypothesis was 

rejected at all panel sizes in both attributes, the differences in M-S statistics depending on the 

protocols show that when samples are similar, how the duplicates are served can affect the 

sensitivity. Additionally, for a closer degree of difference, it is possible that the hypothesis tests 

conclusions are also affected at α= 0.05.  

With very different samples, the 1SS had higher M-S values in both attributes; however, 

the relative impact is negligible since all the null hypothesis tests concluded a rejection with (P < 

0.0001). The lowest M-S value observed was 33.0 at n = 10 for sweetness using 2SS. While the 

largest value was 299.8 also for sweetness, with 75 panelists using 1SS.  

5.3.4   Multiple comparisons 

Starting with the similar sample set, Table 5.3 shows the weighted (divided by 2 

replications) rank sum differences used in multiple comparisons analysis with the M-S experiment-

wise error rate test. At each “n” the critical value (α = 0.05) is shared by both attributes and 

protocols given that in every hypothesis test, “k” and “c” remained constant.  Rank sum differences 

with bold font represent significant paired differences. With three samples, the three possible 

paired differences between the orange juice samples are represented by X1 = R100%- R95%, X2 

= R95%-90%, and X3= R100%-R90%. 

 In color, all the differences in X1 and X3 were significant regardless of the serving protocol 

(P < 0.05). In X2, the serving protocol had more influence; with 1SS the rank sum differences 

were non-significant, and lower than with 2SS. With 2SS, after increasing the panel to n = 55, 

significant differences were found (X2= -33), also including n= 60 (X2= -36) and 65 (X2= -37); 

whereas, at n= 70 (X2= -36) and 75 (X2= -36), the differences were almost significant. In contrast, 

the highest rank sum difference for X2 using the 1SS protocol with similar samples in color was -
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13.5 (n= 65. It was expected that X3 showed the largest differences given a 10% difference in 

orange juice; but it was less obvious to observe that the 1SS protocol would show very low rank 

sum differences in X2. In general, the 2SS protocol also had lower differences in X1; nevertheless, 

some hypothesis rejections were achieved. In addition, the differences in X2 and in X1 were more 

balanced in the 2SS protocol, and not as skewed towards X1 as in 1SS. Although, not necessarily 

symmetric, similar magnitude of differences was expected between X2 and X1 because both pairs 

had a 5% difference between samples. 

 With sweetness, the pattern observed was reversed. The magnitude of the differences was 

more balanced with the 1SS protocol, whereas the 2SS protocol did not show significant 

differences for X1.  Using 1SS consistently found differences in all pairs starting at n= 15 for X3, 

n= 20 for X1 and n = 55 for X2. Although, the 2SS protocol found a difference in X2 starting at 

n= 30, at n= 40 (X2 Diff = 25 < CV = 27.7), the difference was not significant again until the panel 

was increased to n = 55, which was the lowest number of panelists required to consistently reject 

the null hypothesis after more panelists were added.  

 As in the overall null hypothesis tests, the exploration of difference magnitudes in multiple 

comparisons evidenced that the serving protocol eliciting the largest differences depended on the 

attribute and the human sense associated with it. In addition, more information was gained since 

at certain “n” values where both protocols promoted a rejection of the global null hypothesis, the 

paired comparisons accounting for those differences differed depending on the attribute and 

serving protocol.  

With the different sample set, the 1SS protocol produced higher weighed rank sum 

differences and M-S statistic values than the 2SS. Nevertheless, the increase in total rank sums at 

each attribute was 6.5% at most at n= 15 in sweetness (2SS = -108, and 1SS = -115), and could be 
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as low as 0.83% (2SS = -116, and 1SS = -117), with the same number of panelists in sweetness. 

Additionally, the values of all rank sums for the 2SS protocol were significant in every test. For 

example, even at n= 10, the total sum of differences in color was 76 with the 2SS protocol and 77 

with the 1SS protocol, with the lowest paired difference being 16 with 2SS, a value higher than 

the critical value (13.9). The selection of the protocol did not impact the conclusions of the 

hypothesis tests with different samples as with the similar sample set; although, it could be seen 

an increase of up to 6% in total differences. 

5.4   Discussion  

The initial aim of the study was to evaluate if the two serving sessions protocol (2SS) 

protocol was more adequate for an expectedly more difficult or complex attribute such a sweetness, 

and the one serving session (1SS) alternative could fit a “simpler” yellow color evaluation. It was 

shown that color was in general easier to differentiate than sweetness, but it was the color 

evaluation where the separating the duplicates and allowing a break helped panelists with the 

detection of differences. Whereas in sweetness, (1SS) helped differentiation. This moves the 

explanation from attribute complexity to possible specific reasons behind such findings.   

The notion that the best serving protocol depended on the attribute and the task complexity 

can be explained by several reasons that vary between the attributes. Sensitivity to differences in 

sensory testing using a chemical sense such as taste is affected by the number of physical samples 

evaluated. Most studies on the effect of the number of samples on sensitivity or statistical power 

of sensory tests are focused on discrimination testing and not on ranking. In general, when panelists 

evaluate more samples in discrimination tests of the same cognitive strategy, the sensitivity 

measured by d’ is reduced (Dessirier and O’Mahony, 1998; Rousseau and others, 1998; Rousseau 

and Others, 1999; Dessirier and others, 1999). The sensitivity reduction can be caused by 



101 
 

adaptation (Ennis and O’Mahony, 1995; O’Mahony, 1986), memory interference (Lau and others 

2004) and irritation (Rousseau and O’Mahony, 1999).  In discrimination with orange juice models, 

Cubero and others (1995) found that memory impacts sensitivity more than adaptation, even with 

paired comparison tests where only two samples per test are tasted. On the other hand, irritation 

should not impose a difficulty with increased number of samples.  

In this study, evaluating both replications in a single session (1SS), thus evaluating six 

instead of three samples (2SS) showed the opposite effect in sweetness, increasing the resolution 

of the differences. This was more evident with similar samples than with very different samples.  

The increase in rank sum differences shows that the 1SS protocol can overcome the previously 

mentioned adverse factors for this attribute due to a possible cognitive advantage. Posterior 

interviews with panelists revealed that the closeness and difficulty of some samples (three pairs of 

twins in a six-sample set), helped separate the samples that actually differed in orange juice 

concentration. It is then argued that ranking of six samples composed of three pairs of identical 

samples generated large difficulties to panelists to order the two duplicates of one sample, but 

created a contrast with the two identical pairs of the other two samples, increasing the ranking 

resolution. With the data collected it is difficult to quantify the effect of each adverse factor, but it 

is apparent that harmful effects of increasing the number of samples are less impactful than the 

cognitive advantage gained by tasting three samples duplicated in the same session. This increase 

in rank sum differences magnitude could be of similar nature to the increase in correct responses 

and power gained in the tetrad test over triangle tests when adding an extra sample does not 

excessively increase the noise in perception (Ennis and Jesionka, 2011; Ennis, 2012; Ishii and 

others, 2014).  Carlisle (2014) reported that panelists valued the forth sample in a tetrad as a 

confirmatory sample when compared with a triangle test. In this study, panelists reported that they 



102 
 

obtained more insights from the 1SS protocol to mentally group samples before ranking. With 

three samples and two replications evaluated together (1SS), panelists evaluate two identical 

aliquots for each of the three samples without knowing it, but gaining insight on what represents a 

difference in actual percentage of juice 

 In color, the 2SS protocol exhibited the highest separation between samples. It could be a 

priori hypothesized that a larger number of samples in visual attributes might impart less fatigue 

or adverse effects possibly showing more power (e.g., the 1SS protocol outperforming 2SS in color 

ranking); however, it was not the case in this study. The possible causes of the lower sensitivity 

observed in the 1SS may be linked to chromatic adaptation, a space and time dependent phenomena 

(Rinner and Gegenfurtner, 2000). In this mechanism, the cones in the retina become less sensitive 

to a specific wavelength with longer exposure (Fairchild, 2013; Werner, 2014). Ranking six similar 

samples takes longer time than ranking three samples twice, hence increasing the probability of 

adaptation. Studies suggested that the adaptation mechanism has fast and slow processes that can 

start as early as in seconds from exposure and could reach completion within 1 minute (Fairchild 

and Lennie, 1992; Werner, 2014). On the other hand, memory should not impose a detrimental 

effect for color ranking since all samples were presented together limiting interruptions to the 

continuity in perception, (Kinchla and Smyzer, 1967). This study shows that an attribute such as 

yellow color, in which differences were more easily assessed, panelists can experience negative 

effects with higher number of samples. On the other hand, sweetness, an attribute where 

differences were harder to assess, can gain higher resolution to differences with a protocol that has 

more samples, including both duplicates (1SS). In both evaluations, cognitive and physiological 

factors influence sensitivity, but the predominant influences in sensitivity of the duplicated ranking 

appear to be physiological in color and cognitive in sweetness. 
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5.5   Conclusion  

This study showed that the attribute and the complexity of the differences should be 

considered when selecting a duplicated ranking serving protocol, because different psychological 

and physiological factors play a role in ranking sensitivity. In this study, duplicated ranking on 

sweetness gained higher resolution to detect differences when both replications were served jointly 

in one session (1SS) compared to separately with a break period (2SS). Conversely, color gained 

higher resolution when each duplicate was presented separately showing that increasing the sample 

size in color evaluations might not be as simple as conventional wisdom tells.  The choice of a 

protocol for replicated ranking depends not only on degree of difference between samples but also 

the sense used and stimuli evaluated. Therefore, researchers should test their serving protocols for 

maximum sensitivity before standardizing practices for continuous testing. It is recommended to 

test the 1SS protocol for the product and attribute characteristics and opt for the 2SS duplicated 

ranking only if 1SS does not meet the sensitivity to differences of the 2SS protocol.  
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CHAPTER 6.   SUMMARY AND CONCLUSIONS 

Duplicated multiple samples ranking tests are not common in the sensory evaluation 

discipline in part due to the lack of knowledge of appropriate statistical analysis. The main problem 

with using the traditional Friedman test for analysis of ranking duplicates is a violation of the 

requirement of independence between blocks. Violations occur when one panelist performs 

multiple rankings and each ranking test is considered a separate block. Therefore, the initial step 

in laying the foundation of a duplicated ranking methodology was the evaluation of appropriate 

statistical tests. In the first study titled: analysis of duplicated multiple-samples rank data using the 

Mack–Skillings test (M-S, chapter 3), several options were compared for analysis of duplicated 

preference ranking data, including several alternative analyses with the Friedman test. For 

example, evaluating replications individually or with the median of both duplicates. The analyses 

were performed on data obtained from 125 panelists who ranked orange juice model sets with 

different or similar samples. From that study it was concluded that The Mack-Skillings test can be 

used in duplicated preference ranking test analysis to increase power and reduce the number of 

panelists required. Also, whenever possible, if the number of replications is lower than 4, the exact 

computation or a Monte Carlo simulation approach should be used to estimate P values over the 

chi-squared approximation. 

 In the second study, a new approach of serving samples of duplicated samples was 

evaluated for intensity ranking of yellow color of orange juices. The sensitivity to differences 

elicited on panelists by serving duplicates jointly in one serving session (1SS) was compared with 

serving them in two serving sessions with a break (2SS). Panelists were less sensitive to differences 

among very similar samples with the joint session, showing that the increased number of samples 

produced negative effects.  
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The third study, evaluated both protocols in intensity ranking of sweetness using the same 

orange juice models and the same panelists at a different time. For sweetness, serving samples 

jointly, increased differentiation among very similar samples, showing an opposite conclusion to 

the one for yellow color ranking, and evidencing a possible cognitive advantage overcoming the 

possible fatigue, adaptation, or memory effects of a larger sample set. For different attributes, the 

best protocol was different suggesting that the degree of difference between samples and the 

attribute characteristics influenced the serving protocol which evoked more sensitivity to 

differences in intensity ranking. Thus, preliminary studies should determine which protocol suits 

the attributes and samples of interest for continuous testing. 

Although this research showed potential benefits of specific sample serving protocols for 

yellow color intensity and sweetness, the number of samples of k = 3 was not large. More research 

is needed to understand the effects of larger number of samples (n) in replicated ranking testing. 

Orange juice samples do not cause irritation; the effects of sensory irritation on the best protocols 

for sample serving are worthwhile researching. Additionally, other attributes and products should 

be investigated.  
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APPENDIX A.   ANALYSIS OF DUPLICATED MULTIPLE-SAMPLES RANK DATA 

USING THE MACK–SKILLINGS TEST IN CHAPTER 3 

a. Computer ballot example of preference ranking performed by one panelist on one 

individual duplicate  

 
Welcome to LSU's Sensory Evaluation 

Lab 
 

Press the 'Continue' button below  
to begin the test. 

 
 

 
 
 Research Consent Form 
 
I agree to participate in the research entitled “Sensory characteristics of low sodium roasted peanuts 
containing sodium chloride (NaCl), potassium chloride (KCl) and glycine (Gly)” which is being conducted 
by Witoon Prinyawiwatkul of the School of Nutrition and Food Science at Louisiana State University 
Agricultural Center, (225) 578-5188. 
 
I understand that participation is entirely voluntary and whether or not I participate will not affect how I am 
treated on my job. I can withdraw my consent at any time without penalty or loss of benefits to which I am 
otherwise entitled and have the results of the participation returned to me, removed from the experimental 
records, or destroyed. Two hundred consumers will participate in this research. For this particular 
research, about 5-10 minute participation will be required for each consumer. 
 
The following points have been explained to me: 
1. In any case, it is my responsibility to report prior participation to the investigator any food allergies I 
may have. 
 
2. The reason for the research is to evaluate how consumer liking of low sodium roasted peanuts varies 
with different concentrations of NaCl, KCl, and Gly. The benefit that I may expect from it is a satisfaction 
that I have contributed to solution and evaluation of problems related to such examination. 
 
3. The procedures are as follows: three coded samples will be placed in front of me, and I will evaluate 
them by normal standard methods and indicate my evaluation on score sheets. All procedures are 
standard methods as published by the American Society for Testing and Materials and the Sensory 
Evaluation Division of the Institute of Food Technologists. 
 
4. Participation entails minimal risk: The only risk may be an allergic reaction orange juice, and unsalted 
crackers. However, because it is known to me beforehand that all those foods and ingredients are 
to be tested, the situation can normally be avoided. 
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5. The results of this study will not be released in any individual identifiable form without my prior consent 
unless required by law. 
 
6. The investigator will answer any further questions about the research, either now or during the course 
of the project. 
 
The study has been discussed with me, and all of my questions have been answered. I understand that 
additional questions regarding the study should be directed to the investigator listed above. In addition, I 
understand the research at Louisiana State University AgCenter that involves human participation is 
carried out under the oversight of the Institutional Review Board. Questions or problems regarding these 
activities should be addressed to Dr. Michael Keenan of LSU AgCenter at 578-1708. I agree with the 
terms above. 
  
Question # 1. 
 

Your Name:_____________________________________________________________ 

 
 

You will be performing two ranking tests. 
Before assigning rank (1, 2 or 3) values to the samples please try 
all three the samples and use crackers and water to cleanse your 
palate in between samples.  
  
Question # 2. 
 

Please evaluate all samples and rank them according to your personal 
preference. 
1st click the sample of your highest preference; 2nd, click the sample of 
your intermediate preference and 3rd, click the sample of your lowest 
preference. 
 
  
  Rank  Sample # 
 
  _______  <<Sample1>> 
 
  _______  <<Sample2>> 
 
  _______  <<Sample3>> 
 
 

THANK YOU! 
 

b. Counter balanced presentation design of orange juice samples for an individual duplicate 

Project: SET 2 (Rep 2 of the similar sample set) Design  
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Plan:  

Description:  All Possible Combinations  

Description:  All Possible Combinations  

Type:  Quantitative Descriptive  

Samples:  3  

Presented:  3  

Blocks:  1 [ Base Block]  

X  125 [ Factor ]  

=  125 [ Entire Block]  

Options:  

Blinding Codes:  Constant  

Blinding Codes:  Constant  

Sample Randomization:  Yes  

Block Randomization:  No  

    

Registration:  Panelists Will NOT Register  

Sample Set Distribution  Assign Sample Sets to Panelist on Demand  

    

Sessions:  

Number of Sessions:  1  

Samples:  

Sample 

Number  

Product 

Code  

Product 

Name  

  1  T100.  Tropicana. 100%  

  2  T95  Tropicana 95%  

  3  T90  Tropicana 90%  

Blinding Codes for Session 1  

Sample Number  Blinding Code  Product Code  Product Name  

   1    534  T100.  Tropicana. 100%  
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   2    926  T95  Tropicana 95%  

   3    332  T90  Tropicana 90%  

Layout for Session 1 (Example with n= 10 from n= 125) 

Sample Set    1    2    3  

Sample Set    1    2    3  

   1  2-926  1-534  3-332  

   2  1-534  3-332  2-926  

   3  3-332  2-926  1-534  

   4  3-332  1-534  2-926  

   5  3-332  2-926  1-534  

   6  1-534  3-332  2-926  

   7  3-332  1-534  2-926  

   8  3-332  1-534  2-926  

   9  1-534  3-332  2-926  

  10  3-332  1-534  2-926  
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APPENDIX B.   SERVING PROTOCOLS FOR DUPLICATED SENSORY RANKING 

TESTS: SINGLE VERSUS DOUBLE SERVING SESSIONS IN CHAPTER 5 

a. Computer ballot example of yellow color intensity ranking by one panelist on one joint 

duplicate  using one serving session  

Note: A similar ballot was used to measure sweetness intensity. 

Set 6 
 
 
 Question # 1. 
 

Your Name: _____________________________________________________ 

 

Please observe the yellow color of all 
the juice samples, then click continue. 

  
 Question # 2. 
 
 

First. Click the Juice sample (number) with the most 
intense yellow color.  
Then.  Continue clicking the second most intense juice 
sample, then the third, etc... 
Finally. The least intense sample will be automatically 
selected. 

  
  Rank  Sample # (Random codes automatically assigned) 
 
  _______  <<Sample1>> 
 
  _______  <<Sample2>> 
 
  _______  <<Sample3>> 
 
  _______  <<Sample4>> 
 
  _______  <<Sample5>> 
 
  _______  <<Sample6>> 
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THANK YOU! 
 
 

Do NOT analyze this set again even if you 
see it appear on your screen. 
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b. Counter balanced presentation design of orange juice samples for a joint duplicate  

Project: SET6   Design  

Plan:  

Description:  All Possible Combinations  

Description:  All Possible Combinations  

Type:  Quantitative Descriptive  

Samples:  6  

Presented:  6  

Blocks:  1 [ Base Block]  

X  75 [ Factor ]  

=  75 [ Entire Block]  

Options:  

Blinding Codes:  Constant  

Blinding Codes:  Constant  

Sample Randomization:  Yes  

Block Randomization:  No  

Registration:  Panelists Will NOT Register  

Sample Set Distribution  Assign Sample Sets to Panelist on Demand  

Sessions:  

Number of Sessions:  1  

Samples:  

Sample Number  Product Code  Product  Name  

1  T100  Tropicana. 100%  

2  T70  Tropicana 70%  

3  T40  Tropicana 40%  

4  T100.  Tropicana. 100%  

5  T70.  Tropicana 70%  

6  T40.  Tropicana 40%  
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Blinding Codes for Session 1  

 

Sample Number  

 

Blinding Code  

 

Product Code  

 

Product 

Name  

1  661  T100  Tropicana. 100%  

2  291  T70  Tropicana 70%  

3  365  T40  Tropicana 40%  

4  175  T100.  Tropicana. 100%  

5  677  T70.  Tropicana 70%  

6  706  T40.  Tropicana 40%  

Layout for Session 1 (Example with n= 8 out of n = 75) 

Sample Set    1    2    3    4    5    6  

1  3-365  6-706  5-677  4-175  1-661  2-291  

2  5-677  1-661  4-175  3-365  6-706  2-291  

3  6-706  4-175  5-677  1-661  3-365  2-291  

4  6-706  1-661  3-365  2-291  4-175  5-677  

5  6-706  3-365  5-677  2-291  1-661  4-175  

6  3-365  4-175  6-706  2-291  1-661  5-677  

7  6-706  1-661  4-175  5-677  3-365  2-291  

8  3-365  1-661  4-175  2-291  5-677  6-706  
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