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ABSTRACT 

Berry fruits are rich sources of polyphenolic compounds (PCs), which can 

promote health benefits. Anthocyanin concentrations of red raspberry (RR)(Rubus 

idaeus) extracts were determined to be a total of 887.6  ± 262.8 μg/g cyanidin-3-

sophoroside  (C3S) equivalents with C3S being the most prevalent. Ellagitannin 

analysis by MALDI-TOF indicated sanguiin H-6 and lambertianin C were the major 

ellagitannins present in RR. To explore the efficacy of RR in modulating diabetes, 

seven  type 2 diabetes mellitus (T2DM) and two pre-diabetic patients  were given  

drinks delivering one RR serving (123 g) per day in a smoothie for two weeks.   

Blood samples were drawn at baseline (BSL) and post-feeding (PF) days.  The 

samples were analyzed for phenolic metabolites, and for both inflammation and 

insulin resistance biomarkers. Two urolithin conjugates, i.e. urolithin A glucuronide 

(Uro-A glur) and urolithin A sulfate (Uro-A sulf) were found in 7 of the 9 patients’ 

plasma samples at nanomolar concentrations on PF day whereas anthocyanin-

derived metabolites such as protocatechuic acid (PCA) and 3,4-

dihydroxyphenylacetic acid (DOPAC) were present at higher but not statistically 

significant  levels on both groups at PF day  when compared to BSL. Results 

indicated significant reductions in hsCRP (p= 0.01), and on insulin resistance where 

a statistical trend on HOMA-IR (p=0.0584) for T2DM patients was seen. DOPAC, a 

metabolite from anthocyanin and quercetin consumption in RR, when incubated at 1-

100 µM did not stimulate insulin secretion in INS-1 rat pancreatic cells. Increases 

and decreases were observed on the cytokines analyzed by multiplex assay, yet, 

none was significant on either group. This study demonstrates the potential of RR to 

modulate levels of biomarkers of inflammation and insulin resistance in diabetic 

prediabetic patients .
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CHAPTER 1.  LITERATURE REVIEW 

1.1. Diabetes Overview 

  The prevalence of type 2 diabetes globally is a concern and a significant 

burden due to its many health complications [1]. Diabetes is one of the most 

common chronic conditions and was the seventh leading cause of death in the 

United States (US) as of 2015 [2]. According to the International Diabetes 

Federation, 382 million people were affected by this disease in 2013 and the 

prevalence of the disease is expected to rise to 592 million by 2035 [3].  The World 

Health Organization (WHO) on its 2015 report discloses that cardiovascular diseases 

(CVD) are the main cause of death globally and prevalence of diabetes among 

adults over 18 years of age has increased from 4.7% in 1980 to 8.5 % in 2014. 

Projections indicate diabetes will still be the 7th leading cause of death in 2030 [4].   

In the US, recent data indicate that 30.3 million people of all ages had the condition 

in 2015  (~ 9.4 % of the population) of which 30.2 million were adults aged 18 or 

older and of which 7.2 million were not aware or did not report they had diabetes [2].  

An additional 84.1 million adults aged 18 years or older had prediabetes and nearly 

half (48.3%) of the adults aged 65 or older were prediabetics [2]. Regardless of 

technical and technological progress achieved to date, which has evolved with 

therapeutic tools and public health plans, it has not been possible to stop the 

progression of diabetes along with its complications [5]. Cardiovascular diseases are 

the major cause of death and disability among diabetic patients [6]. Diabetic vascular 

complications constitute a serious problem in diabetes which leads to additional 

functional decline of different organs and cause micro- and macro-angiopathy [7].      
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Diabetes as a disease has been recognized for several thousand years in 

various medical systems and cultures ranging from ancient Egypt, to classical India, 

China, Greece and Rome. Its meaning in Sanskrit: Madhumedha, shares the 

descriptive denotation as its Latin version, diabetes mellitus, which is sweet urine. In 

India, for instance, a classical diagnostic test was performed by pouring the patient’s 

urine on the ground close to an ant colony and  if ants swarmed the urine, the patient 

was deemed a diabetic [8]. 

1.1.1. Diabetes Types, Etiology, and Symptoms 

Diabetes mellitus is a metabolic disorder marked by elevated levels of blood 

glucose  (hyperglycemia) with disturbances on carbohydrate, fat and protein 

metabolism as a result of  insufficient or inefficient insulin secretion, action, or both 

[9, 10]. Characteristic symptoms that accompany the disease are thirst, polyuria, 

blurred vision, and weight loss with severe symptoms leading to ketoacidosis or non-

ketotic hyperosmolar state which can derive in stupor, coma or even death when not 

treated properly [10]. Based on the pathogenesis or etiology of the disease, diabetes  

can be classified in type 1 diabetes mellitus (T1DM), type 2 diabetes mellitus 

(T2DM), other specific types of diabetes and gestational diabetes. T1DM makes up 

5-10% of the diabetic patients [11]. It is a less common form of the disease and is 

associated with autoimmune destruction of the pancreatic β-cells and therefore 

complete or near-total insulin deficiency.  T1DM has been further sub-classified as 

Type 1A and Type 1B. Type 1A or autoimmune diabetes can sometimes be 

associated with other autoimmune conditions that include Hashimoto’s thyroiditis, 

Addison’s disease, vitiligo and others [12].  Because genetic factors alone do not   

predict the development of type 1 diabetes, therefore, environmental factors that 

may be involved  include viral infections, toxins from food, cow milk intake during 
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childhood (instead of breast feeding) or vitamin D deficiency [13]. Type 1B or 

idiopathic diabetes on the other side, does not present an autoimmune basis to β-cell 

destruction and patients who suffer this type of diabetes are mainly of African or 

Asian ancestry [11]. T2DM, on the other hand, accounts for 90-95% of diabetic 

patients and its onset is dictated by a typically relative, not absolute, β-cell failure to 

produce insulin. This production becomes insufficient and leads to insulin resistance. 

Individuals with T1DM or T2DM have an increased risk of developing a number of 

chronic diseases, which affect the heart and blood vessels, eyes, kidneys and 

nerves often referred as microvascular complications. Furthermore, effects on the 

heart and blood vessels can cause fatal complications such as coronary artery 

disease and stroke which constitute the macrovascular complications that 

accompany the disease, with cardiovascular disease being the number one cause of 

death in people with diabetes mellitus [14].  

Other specific types of diabetes include maturity-onset diabetes of the young 

(MODY) which is characterized by early age (< 25 yrs.) onset and autosomal 

dominant mode of inheritance. The cause of hyperglycemia in MODY is due to 

mutations in certain genes yet insulin resistance appears to be extremely rare [15]. 

Six types of MODY have been described and affect specific genes such as HNF-4α, 

Glucokinase, HNF-1α, IPF-1, HNF-1β, NeuroDI or BETA2 and this modality of 

diabetes can encompass 2-5 % of all T2DM cases [13].       

Other types of diabetes can occur due to genetic defects of insulin action, due 

to diseases of the exocrine pancreas (pancreatitis, small pancreatic carcinomas) and 

in patients with cystic fibrosis, diabetes is the most common comorbidity occurring in 

20% of adolescents and 40–50% of adults [16]. Endocrinopathies on which 

excessive production of certain hormones such as cortisol, glucagon and 
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catecholamines is present, the use of certain drugs and chemicals, i.e. rat poison, 

pentamidine, glucocorticoids and infections with viruses like rubella, are among other 

reasons that may cause diabetes [17, 18].     

Gestational diabetes mellitus (GDM) is also a fairly common form of this 

disease and it is defined as a clinical condition observed in pregnant women as a 

result of insulin resistance and subsequent high blood glucose levels but also due to 

prevalence of overweight and obesity in women of childbearing age [19]. This state 

develops as a result of insulin action being blocked, presumably by placental 

hormones [20, 21].  

Normally, gestational diabetes ends after the baby is born; however, women 

with gestational diabetes are at high risk of having the same condition in following 

pregnancies and are at higher risk of developing T2DM later in life but risk for T1DM 

is also present [22].   

1.1.2. Disease Diagnosis 

Several criteria can be used to diagnose whether an individual suffers from 

diabetes. One of them is through hemoglobin A1c (HbA1C). HbA1C is a test that 

reflects long-term blood glucose [23]. Hemolysates of red blood cells can be 

chromatographed, resulting in three or more small peaks named hemoglobin A1a, 

A1b, and A1c. These peaks (referred to as “fast” peaks) are eluted before the main 

hemoglobin A peak, and are formed by the irreversible attachment of glucose to     

hemoglobin in a two-step reaction [24]. The percentage of hemoglobin glycosylated  

depends on the average glucose concentration the red cell is exposed to over time, 

and due to the average 4-month life of a red cell, the percentage of glycosylated 

hemoglobin indicates accurately the degree of blood sugar control over the 

preceding weeks. Hemoglobin A1c is quantifiably the largest peak so that it is mostly 
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selectively measured, but occasionally all “fast" hemoglobins can be measured. An 

HbA1C ≥ 6.5 % will deem a positive diagnostic for diabetes. Another way is through 

plasma glucose criteria by measurement of either fasting plasma glucose (FPG) or 

the 2-h plasma glucose (2-h PG) value by means of an oral glucose tolerance test 

(OGTT) after taking a 75-g glucose containing drink. FPG ≥126 mg/dL (7.0 mmol/L) 

or 2-h PG ≥200 mg/dL (11.1 mmol/L) during an OGTT will also indicate the person 

being evaluated is indeed a diabetic [25]. 

 “Prediabetes” is the term used for individuals with impaired fasting glucose 

(IFG, defined as FPG levels 100–125 mg/dL or 5.6–6.9 mmol/L) and/or impaired 

glucose tolerance (IGT, defined as 2-h PG after 75-g OGTT levels 140–199 mg/dL or 

7.8–11.0 mmol/L). These conditions indicate pre-disposition for future development 

of diabetes. IFG and IGT should be considered risk factors for diabetes and CVD, 

and are associated with obesity, dyslipidemia (high triglycerides and/or low HDL 

cholesterol), and hypertension [25], a cluster of conditions similar as those observed 

on the metabolic syndrome (MS) [26]. Besides IFG and/or IGT, individuals with an 

A1C of 5.7–6.4% are considered at increased risk for diabetes and CVD and should 

adopt effective strategies to lower their risks [25].  

1.2. Reactive Oxygen Species and Insulin Resistance 

  Oxidative stress and oxidative damage to tissues are a habitual result of 

chronic diseases such as atherosclerosis, diabetes and rheumatoid arthritis [27].  

Oxidative stress denotes an imbalance between cellular reactive oxygen species 

(ROS) and antioxidants, where the former have an advantage. Examples of ROS 

include the superoxide anion (•-O2), hydrogen peroxide (H2O2), hydroxyl radical 

(OH), singlet oxygen (1O2) and ozone (O3). Growing evidence suggests that 

oxidative stress has a causative role in insulin resistance [28]. To illustrate this, a 
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reduction on mitochondrial hydrogen peroxide emission when treating rats with a 

mitochondrial-targeted antioxidant or by overexpression of catalase in mouse 

skeletal muscle aided on preserving insulin sensitivity [29]. 

  Highly reactive molecules include ROS and reactive nitrogen species (RNS). 

Among these reactive molecules superoxide (•O-
2), nitric oxide (•NO), and 

peroxynitrite (ONOO-) are the most widely studied and are relevant in the diabetic 

cardiovascular complications. Superoxide (•O-
2) is produced by one electron 

reduction of oxygen by different oxidases such as dihydro-nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase (NOX), xanthine oxidases, 

cyclooxygenase and also by mitochondrial electron transport chain during normal 

oxidative phosphorylation, a fundamental process for generation of  adenosine 

triphosphate (ATP) [30]. Five major pathways become activated because of 

increased production of superoxide, all of which are involved in the pathogenesis of 

diabetic complications: the polyol pathway flux, increased formation of advanced 

glycation end-products (AGEs), increased expression of the receptor for AGEs and 

its activating ligands, activation of protein kinase C (PKC) isoforms and over activity 

of the hexosamine pathway [31].   

  The polyol pathway is a pathway of glucose metabolism regarded as a key 

component in the pathogenesis of diabetic retinopathy, refractive changes and 

cataract formation  in diabetic patients [32].The enzyme aldose reductase (AR) plays 

an important role in the polyol pathway as it reduces toxic aldehydes in the cell to 

inactive alcohols [33].  However, when intracellular glucose concentration becomes 

too high, sorbitol reduction from glucose by AR occurs as well and does this by using 

NADPH as a cofactor. NADPH is an important cofactor for the regeneration of 

antioxidants, and becomes reduced to glutathione (GSSG). A second enzyme, 
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sorbitol dehydrogenase oxidizes sorbitol to fructose, using nicotinamide adenine 

dinucleotide (NAD+) as a cofactor [32]. Sorbitol is an alcohol that is polyhydroxylated  

and strongly hydrophilic, and therefore does not diffuse easily through cell 

membranes leading to intracellular accumulation with possible osmotic 

repercussions[34]. 

Advanced glycation end products (AGEs) or glycotoxins, are highly oxidant 

compounds which can lead to diabetes and several other chronic diseases [35-37]. 

AGEs form by a nonenzymatic reaction between reducing sugars and free amino 

groups of proteins, lipids, or nucleic acids, a reaction also known as the Maillard or 

browning reaction [38]. Normal metabolism results in the formation of AGEs, 

however, when levels become too high in tissues and the circulation, they promote  

pathogenic effects through oxidative stress and inflammation. Modern diets with 

abundant heat-processing result in high levels of AGEs. Dietary advanced glycation 

end products (dAGEs) are recognized as a source of increased oxidant stress and 

inflammation, which are directly related to the recent epidemics of diabetes and 

cardiovascular disease [39]. A study with 21 patients on a high-AGE diet for 1 week 

resulted in weight gain and impaired insulin sensitivity [40]. These effects happen 

due to the binding of AGEs with cell surface receptors (such as the receptor of AGE, 

RAGE) or cross-linking which results in a disruption of the molecular conformation of 

proteins, lipids and nucleic acids and can lead to altered function [41]. Examples of 

widely studied AGEs are Nε-carboxymethyllysine (CML) [42] and the very reactive 

derivatives of methyl-glyoxal (MG) (i.e. hydroimidazolone) [43].  

The diacylglycerol (DAG)-PKC pathway is one of the most studied pathways 

in cellular signaling induced by diabetes [44]. The protein kinase C (PKC) molecule 
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belongs to the serine/threonine kinase family, which catalyzes phosphorylation of 

proteins involved in signal transduction. Conventional and novel PKC isoforms are  

upregulated by (DAG) [45]. In diabetes, total DAG levels are elevated in vascular 

tissues such as those of retina, aorta, heart and renal glomeruli, and in nonvascular 

tissues such as liver and skeletal muscles, yet this is not the case in the central 

nervous system and peripheral nerves [46]. In vitro studies demonstrate DAG levels 

increase in a time-dependent manner as glucose levels rise from 5.5 to 22 mM in 

aortic endothelial cells, retinal pericytes, smooth muscle cells and renal mesangial 

cells [46]. 

PKC has been linked to vascular alterations which include increases in 

contractility, endothelial permeability, extracellular matrix synthesis, angiogenesis, 

cell growth and apoptosis, and cytokine activation and inhibition as well as leukocyte 

adhesion[47].   

Several groups have proposed that flux through the hexosamine synthesis 

pathway (HSP) could have a role as a cellular nutrient sensor and be involved in the 

development of insulin resistance and the vascular complications of diabetes [48]. 

The HSP is a somewhat small component of the glycolytic pathway, accounting for ~ 

3% of total glucose utilized [49]. The mode of action seems to be transcriptional 

regulation, possibly regulated by  N-acetylglucosamine in O-linkage (O-GlcNAc) 

modification of transcription factors [48]. Incubation in high glucose, or with GlcNAc 

or overexpression of the first and rate limiting enzyme in HSP, glutamine: fructose-6-

phosphate (F-6-P) amidotransferase (GFAT), enhanced the activation of the 

plasminogen activator inhibitor 1 (PAI-1) promoter, as well as stimulated the cytokine  

transforming growth factor beta (TGF-β) expression in mesangial cells or aortic 

endothelial cells [50, 51]. 
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Beta cells have a high metabolic activity due to glucose oxidation-dependent 

stimulus secretion coupling, which derives in formation of ROS. With low expression 

of anti-oxidative enzymes such as catalase, super oxide dismutase (SOD) and 

glutathione peroxidase[52], β-cells are vulnerable to ROS and in both T1DM and 

T2DM, increased ROS formation results in β-cell loss [53].  ROS involvement in the 

progression of insulin resistance as well as pancreatic β-cell dysfunction has been  

demonstrated [54] and it was previously reported that ROS disrupted insulin-induced  

cellular redistribution of insulin receptor substrate-1 (IRS-1) and phosphatidylinositol 

3-kinase (PI3-K), and thus impaired insulin-induced glucose transporter type 4 

(GLUT4) translocation in 3T3-L1 adipocytes [55, 56].  Treatment with antioxidants 

such as N-acetyl L-cysteine and taurine appeared to prevent hyperglycemia-induced 

insulin resistance in vivo [57]. Acute and chronic administrations of the antioxidant α-

lipoic acid improved insulin resistance in T2DM patients, advocating a role for ROS 

in the development of insulin resistance [58, 59].     

1.3. Inflammation and Diabetes     

Chronic inflammation is a crucial factor in the development of insulin 

resistance and T2DM (6). The presence of inflammation in metabolic disorders like 

diabetes mellitus has been studied in recent years and the inflammatory reaction is 

mediated by acute phase proteins and cytokines. The acute phase response is a 

systemic reaction to tissue injury and infection. This response leads to macrophage 

release of cytokines interleukin-1 (IL-1), interleukin-6 (IL-6) and tumor necrosis factor 

(TNF) which reach the liver and stimulate this organ to produce acute phase proteins 

(APPs) [60] . The two main APPs are C-reactive protein (CRP) and serum amyloid A 

(SAA) [61]. The term cytokine refers to an abundant number of cellular proteins that 

mediate pleiotropic (stimulation of numerous functions on many cell types) pro-
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inflammatory and anti-inflammatory effects. In the case of diabetes, the release of 

such APPs and cytokines can have either diabetes-preventing or diabetes-promoting 

effects [62]. 

A distinctive feature of T2DM is the combination of both insulin resistance and 

pancreatic β-cell dysfunction, which leads to hyperglycemia at various levels. Some  

mechanisms identified to contribute to this condition include oxidative stress, nuclear  

factor kappa β (NF-κB) dependent production of pro-inflammatory cytokines, Toll-like 

receptors {TLR (Figure 1.1.)]) expression, and inflammasome [1][63-65]. T2DM has 

a genetic element but other factors such as over-nutrition (excessive food intake), 

lack of physical activity, but also exogenous factors such as medications, can 

intervene. Inflammatory pathways are a mean for T2DM to develop and as such, 

provide an important setting to develop treatments to prevent or control diabetes. 

NF-κB is considered the main control regulating the synthesis of many proteins 

critical for the activation and maintenance of inflammation [9]. IL-1 is a pleiotropic 

cytokine whose biologic effects include upregulated expression of adhesion 

molecules, cytokines and arachidonic acid metabolites as well as enhanced 

neutrophil accumulation, fibroblast proliferation and angiogenesis. The IL-1 family 

consists of two pro-inflammatory cytokines: IL-1α, IL-1β and a naturally occurring 

anti-inflammatory agent, the IL-1receptor antagonist (IL-1RA). IL-1β induces intra 

islet inflammation which in turn diminishes β-cell function and survival and more 

specifically, IL-1β plays a significant role on T2DM onset and insulin resistance [66]. 

TNF-α and IL-1β act as inducers of NF-kB activation producing elevated reactive 

oxygen species (ROS) levels. This suggests the involvement of ROS as common 

mediators of NF-kB activation [67]. Mature IL-1β is associated with the NOD 

(nucleotide oligomerization domain) -like receptor pyrin domain containing protein 3 
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(NLRP3) inflammasome subunit [1][68, 69]. NLRP3 is present in the pathogenesis of 

T2DM, Alzheimer’s and amyotrophic lateral sclerosis [39].  

Inflammation is a protective response of the host to infections and tissue 

damages and includes a series of reactions such as vasodilation and recruitment of 

immune cells and plasma proteins to the site of infection or injury. Reactive oxygen 

species (ROS) generated from deteriorated mitochondria activate NLRP3 

inflammasome [70], and the latter promotes other inflammatory cytokines such as IL-

18 and IL-33 which are involved in the pathogenesis of diabetes [71].  

1.4. Insulin Resistance and β-cell Apoptosis 

Increased insulin resistance (IR) is considered to be the major 

pathophysiological cause for T2DM in patients. In healthy individuals, insulin 

increases glycogen production in the liver, lipid synthesis by adipose tissue, and 

glucose uptake in muscle [72].  

 

Figure 1.1. The pro-inflammatory response of islet macrophages in type 2 diabetes.  
(fig. cont’d) 
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“TLR2-and TLR4-activating PAMPs (LPS, lipoproteins) and DAMPs (HSP60, HSP70,  
HMGB1, hyaluronan, saturated fatty acids) are increased systemically in type 2 
diabetes. Local islet-derived TLR2 and/or TLR4 DAMPs may also be increased and 
may include HMGB1, necrotic cell debris and IAPP deposits. These ligands may act 
on islet macrophages via TLR2 and/or TLR4, upregulating cytokine secretion (IL-6, 
TNF-α), with deleterious effects on β-cell insulin secretion and α-cell glucagon 
secretion. Islet-derived (IAPP, endocannabinoids) or systemically elevated (glucose, 
saturated fatty acids) NLRP3 stimuli also act on macrophages to facilitate cleavage 
of proIL-1β to mature IL-1β and secretion of IL-1β. IL-1β then acts in a paracrine 
manner, together with elevated IL-6 and TNF-α, to impair β-cell insulin secretion and 
cause dysregulated α-cell glucagon secretion. A potential role for macrophage-
derived IL-1α also exists but has not been studied. AP-1, activator protein 1; DC, 

dendritic cell” [65].    
 
  IR is many times the result of reduced sensitivity of the insulin receptor that is 

composed of two insulin-binding α-subunits and two β-subunits [73]. A reduction of 

40 % β-cell mass in young adults is enough to induce hyperglycemia, a hallmark of 

diabetes [74]. Problems with insulin secretion and action derive in numerous 

abnormalities in T2DM such as hyperglycemia due to disruption of insulin-stimulated 

glucose uptake, uncontrolled hepatic glucose production and dyslipidemia where 

impaired homeostasis of fatty acids, triglycerides and lipoproteins are usually 

observed [75].    

Significant evidence suggests that obesity activates inflammatory signaling 

pathway and can induce endoplasmic reticulum (ER) stress with particular activation 

of serine/threonine kinases IκB kinase (IKK) and c-jun amino terminal kinase (JNK) 

[76]. Figure 1.2., shows how IKK and JNK pathways are activated in response to 

stimuli during metabolic dysregulation. This includes ligands for TNF-α, IL-1, Toll, 

RAGE, ROS and ER stress, ceramide, as well as several PKC isoforms [9].  JNK 

plays a central role in the cell stress response and recent evidence points at JNK1 

and JNK2 isoforms as promoters of obesity and insulin resistance, whereas JNK3  

activity seems to protect from excessive adiposity. Moreover, evidence indicates that  
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JNK activity can promote cell tolerance to the stress associated with obesity and 

type-2 diabetes in certain cell types at specific disease stages [77]. Even though IR  

is characteristic of T2DM, disease progression depends on insufficient insulin 

production, in all probability as result of reduced β-cell mass due to apoptosis [78].  

 

Figure 1.2. “The insulin action can be inhibited by inflammatory signaling pathways. 
Inflammation and stressful stimuli activates c-jun amino terminal kinase (JNK), IκB 
kinase (IKK), and protein kinase Cθ (PKC-θ) which result in inhibition of insulin 
signaling. The activation of sterol regulatory element binding protein-1c (SREBP-1C), 
upstream stimulatory factor 1 (USF1), and liver X receptor (LXR) induces fatty acid 
synthesis”[9]. 
 

Himsworth and Kerr were the first to recognize the relation between insulin 

resistance and diabetes in 1939 based on blood glucose responses to exogenous 

insulin [79]. They demonstrated that obese patients with diabetes could be classified 

into two categories: those who were insulin-sensitive (T1DM) and those who were 

insulin-resistant (T2DM) [79].Current information advocates at IR being an acquired 

issue vastly related to unhealthy lifestyles with impaired insulin secretion being the 

major genetic factor [80].  
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     Overweight and obesity increase risk for diabetes and CVD, mainly through IR 

[81]. Weight loss has been proven beneficial in obese individuals with IR, yet, the 

same benefits have not been observed in overweight individuals [81]. McLaughlin et 

al. [81] administered a hypocaloric diet for 14 weeks and 2 weeks of weight 

maintenance to a group of healthy volunteers with BMI 25-29.9 kg/m2. They 

performed detailed metabolic phenotyping which included insulin-mediated-glucose 

disposal and fasting/daylong glucose, among others. To gauge adipose cell size on 

the individuals, subcutaneous fat biopsies were performed as well. The metabolic 

phenotype provides a description of the metabolic state of an individual and derives 

from the genetic and environmental (diet, lifestyle, gut microbial activity) 

contributions under a specific set of circumstances [82]. The researchers found the 

patients had weight loss (4.3 kg) which yielded significant improvements in insulin 

resistance and all cardiovascular risk markers except glucose, HDL-C, and LDL-C. 

They reported that insulin sensitivity was greater among those with < 2 vs > 2 

cardiovascular risk factors at baseline. Decrease in adipose cell size and waist 

circumference, but not weight or body fat, independently predicted improvement in  

insulin resistance [81]. Their results suggested that IR overweight individuals, 

regardless of the absence of potential established CVD risk markers, can yield 

benefits from dietary weight loss, and that both,  reduction in adipose cell size and 

waist circumference, are better predictors of metabolic response than weight loss per 

se [81]. 

      There is controversy on regards to the role of factors such as obesity, insulin 

resistance, insulin secretory dysfunction, and excess hepatic glucose production in 

the development of T2DM. Lilioja et al. [83]  conducted a prospective study to 

determine which of these factors predicted the development of the disease in a 
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group of Pima Indians. The Pima Indians, a Native American population in Arizona, 

have the highest reported prevalence of diabetes of any population in the world [84].  

Researchers assessed potential development of the disease through oral and 

intravenous glucose-tolerance tests, and a hyperinsulinemic-euglycemic clamp 

study. These were performed in 200 nondiabetic Pima Indians (87 women and 113 

men; mean [±SD] age, 26 ±6 years). The subjects were followed yearly thereafter for 

an average of 5.3 years. Their results showed the development of diabetes in 38 

subjects during follow-up. Obesity, insulin resistance (independent of obesity), and 

low acute plasma insulin response to intravenous glucose (with the degree of obesity 

and insulin resistance taken into account) were predictors of T2DM. The six-year 

cumulative incidence of T2DM was 39 percent in persons with values below the 

median for both insulin action and acute insulin response, 27 percent in those with  

values below the median for insulin action but above that for acute insulin response,  

13 percent in those with values above the median for insulin action and below that  

for acute insulin response, and 0 in those with values originally above the median for 

both characteristics. Through these results, the researchers concluded IR was a 

major risk factor for the development of T2DM with low acute insulin response to 

glucose being an additional but weaker risk factor [83]. 

     Besides being a storage place for fat, adipocytes perform an important 

endocrine role by secreting several relatively recently identified hormones and 

cytokines [80]. These molecules are hypothesized to play relevant functions in 

insulin action and metabolism of glucose and fat. The factor resistin, for instance, is 

an adipocyte-secreted peptide hormone that has been observed to impair glucose 

homeostasis and insulin action in rodents [85]. Work done previously shows 

circulating resistin levels are increased in diabetic rodent models and that the 
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administration of antiresistin antibody improves blood glucose and insulin sensitivity 

[85].  

     Thiazolidinediones that improve insulin sensitivity reduce resistin production 

[86] yet, the role of resistin in humans is not clear since reports of resistin protein 

levels and gene expression in obese humans remain inconsistent [87-89]. 

     The hormone adiponectin is another promising and interesting bridge between 

IR and increased fat tissue. Studies show adiponectin plasma levels decrease 

proportionally with the accumulation of adipose tissue, especially visceral one [90] as 

well as with the development of insulin resistance and T2DM. Administration of 

adiponectin to mice enhanced insulin sensitivity and glucose tolerance, reduced food  

intake, lowered plasma glucose and triglyceride levels, and increased free fatty acids 

(FFA) oxidation in muscle [91-93]. 

      Predisposition of some individuals to IR and T2DM from birth due to 

consistent IR has been found in first degree relatives and offspring of patients with 

T2DM. Hence, the underlying view is that IR is at least partially determined by a role 

played by genetic traits [94].  Warram et al. [95]  reported that IR predicts the 

development of type 2 diabetes in the offspring of diabetic parents. This is reflected 

in young and healthy offspring of diabetic parents who exhibit IR and impaired 

muscle insulin signaling and glycogen synthesis many years before onset of evident 

T2DM [96]. Recent large-scale genome-wide association (GWA) studies, however, 

have failed to detect  polymorphisms of genes involved in insulin action or insulin 

signaling which contribute to the development of T2DM [97]. Contrary to that, several 

genes thought to be involved in the control of insulin secretion have shown 

polymorphisms that grant minor but statistically significant increased susceptibility to 

T2DM [97]. Therefore, reports lead to speculate that IR in offspring of diabetic 
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mothers to some unknown degree may obey to the presence of obesity and/or mild 

glucose intolerance during pregnancy itself, and not necessarily to genetics [98]. 

Vaag [98] suggests that even though many genes involved in the development of 

T2DM remain to be discovered, the chance of ‘genetic insulin resistance’ due to 

intrauterine programming should remain open. 

      Data from several sources points out that insulin-like growth factor-1 (IGF-1) 

seems to play a role in progressive decline in insulin sensitivity observed in T2DM 

[99]. Obese individuals display abnormalities in the growth hormone (GH)/IGF-1 axis  

resulting in low basal GH levels and reduced IGF-1 levels compared with nonobese 

individuals. These levels are improved when weight loss is attained [100, 101]. 

In higher organisms, GH controls growth by regulating IGF-1 concentrations, but 

another major function of GH is to provide a mechanism for surviving periods of food 

deprivation. GH stimulates lipolysis, providing FFAs and glycerol as substrates for 

energy metabolism, and also inhibits insulin-induced suppression of hepatic 

gluconeogenesis. These effects counteract insulin action and reduce the need for a 

dietary source of carbohydrate [102]. 

     IGF-1 shares 48% amino acid sequence identity with proinsulin. IGF-1 

enhances insulin sensitivity in both experimental animals and human subjects and its 

primary insulin-sensitizing action is believed to be mediated through skeletal muscle 

[103]. A problem, however, when interpreting human studies of IGF-1 has been that, 

in addition to enhancing insulin action, it also suppresses GH secretion.   This fact 

has made difficult to determine the relative roles of the direct actions of IGF-1along 

with those mediated by suppression of GH [103]. 
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     Besides IR, defects in pancreatic β-cell function constitute one of two major 

pathophysiologic abnormalities that lie behind most cases of T2DM [104]. Genetic 

and epigenetic components have been identified. 

     While the epigenome may change due to environmental exposure, variations 

may also be stable and inherited, making epigenetics a hypothetical important 

pathogenic mechanism. Impaired intrauterine environment from an environment that 

may alter the pancreatic islet epigenome and possibly affect β-cell function and 

diabetes pathogenesis is shown in human and animal studies. Resulting low birth 

weight, increased risk for postnatal metabolic disease, decreases in β-cell 

proliferation mass, and insulin secretion are some documented epigenetic 

modifications occurring at key β-cell genes [105, 106]. Epigenetic mechanisms 

include DNA methylation and histone modifications which can be active during fetal, 

postnatal and adult life [107].  

Many physiologic stressors may influence β-cell function in the environment of 

metabolic overload and IR commonly found in human obesity-linked T2DM. 

Pathologic conditions associated with beta cell demise include ER stress, metabolic 

and oxidative stress, amyloid plaques, inflammation and disruption of islet 

integrity/organization (Figure 1.3.) [104]. 
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Figure 1.3. Stressors on the β-cell in the pathogenesis of T2DM [104]. 

     Apoptosis or programmed cell death, is a complex biological process where 

events such as cell shrinkage, chromatin condensation, DNA fragmentation and 

finally disassembly into vesicles called apoptotic bodies are manifested [108].  

Deposits of amyloid are characteristic of  islets in T2DM [109] . These deposits are 

derived from  amylin or  islet amyloid polypeptide (IAPP) [110]. Excess nitric oxide 

(NO) production, when obtained through inducible nitric oxide synthase (iNOS), has 

implications in insulin resistance, markedly when obesity is present [111].  This may 

be explained by hyperglycemia and hyperlipidemia, as both conditions are common  

to T2DM, and can induce iNOS expression in islet tissue in healthy animals [112]. 

1.5. INS-1 Cells and Insulin Secretion 

       Glucose represents the main physiological stimulus for the secretion of insulin 

from pancreatic β-cells. As glucose enters the cells through glucose transporter 2 
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(GLUT2), it becomes phosphorylated to glucose-6-phosphate by the enzyme 

glucokinase and is then metabolized to generate ATP. Production of ATP induces 

the closure of ATP-sensitive K+ channels (KATP) which induces membrane 

depolarization and the opening of voltage-dependent Ca2+ channels (VDCCs). This 

results in an increase in cellular Ca2+ influx and serves as a primary driver of the 

insulin secretory mechanism [113, 114]. 

 Insulinoma-derived INS-1 and INS-1E cells are trustworthy beta-cell 

surrogates which display electrophysiological properties, secretagogue-induced 

electrophysiological activity, Ca2+ signaling, stimulus-secretion coupling and 

sulfonylurea and diazoxide-sensitivities similar to those found in native islets [115]. 

Glucose stimulated insulin secretion (GSIS) is important for the control of metabolic 

fuel homeostasis and defective GSIS is a critical part of β-cell failure that leads to 

T2DM [116]. Geniposide, an iridoid glucoside derived from Gardenia jasminoides or 

gardenia fruit [117] was found to enhance GSIS in response to the stimulation of low 

or moderately high concentrations of glucose, and promoted glucose uptake and 

intracellular ATP levels in INS-1 cells. Experiments performed by Liu et al. [109] 

demonstrated that geniposide modulated pyruvate carboxylase expression and the 

production of intermediates of glucose metabolism suggesting this compound has 

potential to improve insulin secretion in β-cells challenged by high glucose 

concentrations. Kittl et al. when using quercetin to test insulin secretion on INS-1 

cells [108], concluded that quercetin acutely stimulated insulin release, presumably 

by short-term KATP channel inhibition and simultaneous short-term stimulation of 

voltage-sensitive Ca2+ channels. 

 

 



21 
 

1.6. Economic Burden of Diabetes 

Diabetes along with its complications represents a substantial economic loss 

to not only people who suffer from it, but also to their families, health systems and 

national economies through medical costs and loss of work and wages [118]. Recent 

systematic reviews estimate the world’s annual cost of diabetes to be more than US 

$827 billion [119, 120]. The International Diabetes Federation (IDF) estimates that 

total global health-care spending on diabetes more than tripled between 2003 to 

2013 as a result of increases in the number of people with the disease and increases 

in per capita diabetes spending [121].  The medical costs associated with T2DM 

continue to increase and there is a dire need for new options to treat the disease. 

1.7. Therapeutic Approach 

       The major classes of oral antidiabetic medications include biguanides such as  

metformin, sulfonylureas, meglitinide, thiazolidinediones (TZD), dipeptidyl peptidase 

4 (DPP-4) inhibitors, sodium-glucose cotransporter (SGLT2) inhibitors, and α-

glucosidase inhibitors [122]. Even though they can be effective in ameliorating 

symptoms present in diabetes, a downside to these agents is that they may cause a  

myriad of disturbances or side effects. These disturbances include gastrointestinal 

ones such as diarrhea, nausea, and dyspepsia and may also be contraindicated in 

patients with renal failure [64].  

1.8. Dietary Approach 

       An important recommendation by the American Association of Clinical 

Endocrinologists consists of consuming a plant-based diet which is high in fiber, low  

in carbohydrates and calories, and high in phytochemicals/antioxidants [123].      

       Phenolics encompass a numerous group of natural and anthropogenic 

compounds. Most natural phenolic compounds are secondary metabolites in plants 
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and trees, therefore, being present in foods but are also used as supplements, 

additives and nutraceuticals. Chinese physicians, for instance, have been using plant 

phenolics for many years to treat various diseases and disorders. Currently, more 

than 8,000 phytochemicals are known of which more than 5,000 are flavonoids.   

       These phytochemicals can be divided into at least 10 types depending on 

their basic structure and those are: phenols, phenolic acids, hydroxycinnamic acids, 

coumarins/isocoumarins, naphthoquinones, xanthones, stilbenes, anthroquinones, 

flavonoids and lignins [124]. Flavonoids can further be divided into flavones, 

flavonols, flavanones, flavan-3-ols, anthocyanidins and isoflavones. Phenolics are 

able to act as antioxidants through several routes.  

      The hydroxyl groups present in phenolics are good hydrogen donors: 

hydrogen-donating antioxidants, which can react with both reactive oxygen and 

reactive nitrogen species [125-128]. A variety of assays can be employed to 

measure the potential antioxidant and free radical scavenging capacity of 

polyphenolic containing foods. Those assays include:  i) oxygen radical absorbance 

capacity or ORAC, which is based on hydrogen-transfer ability  ii) trolox equivalent 

antioxidant capacity (TEAC) a method based on the scavenging ability of 

antioxidants to the long-life radical anion ABTS•+ and results from test compounds 

are expressed relative to trolox, a water soluble analog of vitamin E and iii) ferric 

reducing antioxidant power (FRAP) based on the ability of a compound  which 

measures reduction of ferric 2,4,6-tripyridyl-s-triazine (TPTZ) to a colored product 

[129]. 

1.8.1. Dietary Flavonoids  

     Flavonoids represent a large class of phenolic compounds found in numerous 

food products such as fruits, vegetables, cocoa, chocolate, tea, red wine, as well as 
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other plant food and beverage products [130].  The Mediterranean Diet (MD) is a diet 

characterized by an abundance of vegetable foods (bread, pasta, vegetables, 

legumes, fruits and nuts) where flavonoids are considered to be important bioactive 

compounds which impart health benefits [131]. In terms of glucose homeostasis, 

experiments performed at both in vitro and in vivo levels demonstrate they can 

regulate carbohydrate digestion, insulin secretion, insulin signaling, and glucose 

uptake in insulin-sensitive tissues by means of several intracellular signaling 

pathways [132]. 

     Regardless of the significant progress obtained in the fields of flavonoid 

bioavailability and their effect at the cellular level, this topic remains a complex one. 

Part of the problem arises from the fact that these dietary compounds are not drugs 

that possess clear pharmacokinetics and pharmacological targets [133]. 

     Flavonoids are only moderately bioavailable and highly metabolized by 

intestinal, hepatic and bacterial cells and considered to be fairly reactive due to their 

phenolic nuclei which grants them a reducing character as well as affinity for 

proteins[133]. 

      After the ingestion of red raspberries (RR), for instance, the polyphenols are 

at least partially bioavailable to systemic organs, through absorption, distribution, 

metabolism and excretion (ADME) [134]. Anthocyanins are widely reported to have 

low bioavailability, with most of the studies recording peak plasma concentrations 

(Cmax) ranging from 1 to 120 nmol/L [135] and urinary recoveries < 2% of intake 

[136] [137]. Yet, a recent study shows extensive colonic microbiota mediated 

degradation of 13C5-labeled cyanidin-3-O-glucoside which resulted in the production 

of many phenolic metabolites over a 0-48 h period. The relative bioavailability of the 
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13C5-labeled was 6.9 % in breath as CO2, 5.4 % in urine and 32% in feces in the form 

of 13C5-labeled phenolic and aromatic compounds [138] [139].  

     Regarding ellagitannins and ellagic acid, also very significant polyphenolics in 

RR, their bioavailability is considered to be very low. These molecules are subject to 

extensive metabolism by the gut microbiota to produce urolithins that are much 

better absorbed. Urolithins circulate in plasma as glucuronide and sulfate conjugates 

at concentrations usually ranging from  0.2–20 µM [140]. Hence, it can be implied 

that the health effects of ellagitannin-containing products can be associated with 

these gut-produced urolithins, therefore, evaluation of the biological effects of these 

metabolites is essential [140]. 

      Berries are distinguished from other fruits and vegetables containing 

phenolics by having high concentrations of anthocyanins, with strong antioxidant 

capacities, up to 4 times greater than non-berry fruits and 40 times that of cereals 

[141]. Berries can be considered as small fruits that can be eaten whole and include 

true berries such as black currant, red currant and gooseberry whereas false or 

epigenous berries include cranberry and blueberry.  RR falls within the aggregate 

berries, which also include blackberry and hybrid boysenberry and the multiple berry 

mulberry. 

       RR are becoming more appreciated due to their culinary versatility and 

multiple applications [35] and are singular among berries due to their attractive red 

color, low glycemic index, low caloric value, high dietary fiber, good flavor, and high 

concentrations of hydrolysable and condensed tannins, flavonoids, phenolic acids, 

carotenoids including lutein and zeaxanthin, choline, potassium, and vitamin C and 

K1 [142]. Raspberries place very high when performing assays such as ORAC, 

TEAC and FRAP on the ranking of antioxidant fruits and vegetables. This allows 
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raspberries to be considered as one of the richest sources of dietary antioxidants 

overall [143]. The antioxidant capacity of raspberries is believed to derive from their 

vitamin C (~20%), anthocyanins (~25%)  and ellagitannins (more than 50%) content 

[143]. 

     RR are native to northern North America and Eurasia. Raspberries can be 

easily grown in numerous areas around the world and are relevant in both the fresh 

fruit market and for processing into frozen products, juices or dried fruit. Fruits of the 

raspberry tree are typically red colored but can also be black or yellow. Cultivated 

RR were introduced into the United States as long ago as 1771. RR are the third 

most consumed fresh berries in US households, accounting for ~ 3-4 % of total berry 

production and are considered delicacies which are cultivated to deliver more than 

70 million pounds per year in leading producing regions such as Washington, 

Oregon and California. Raspberries can be consumed raw or as a processed 

(frozen, pureed) ingredient in a number of dishes, sauces, salads, and drinks [35].  

1.8.2. Phytochemical Profile of Red Raspberry 

      Phenolic phytochemicals are abundant in plants and serve a plethora of 

biological functions such as roles in growth and development of the plant and in 

defense mechanisms to counter insects and UV radiation. The phenolic profile in RR 

consists mainly of anthocyanins and hydrolysable tannins.  A serving of fresh RR 

contained the following biologically active compounds [43]: 

(A) Ellagitannins: Sanguiin H-6 and lambertianin C [144] are the major ones. 

Ellagitannins (ETs) are hydrolysable tannins (HTs) which when compared to 

condensed tannins are more stable [43]. Berries are considered to be the major 

contributors to the ET intake in westernized countries [145]. ETs are known to be 
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present in large amounts in berry fruits. Sanguiin H-6 (Figure 1.4.) is the main ET in 

raspberry and strawberry [146]. 

     Ellagitannins are capable of expressing exceptional biological activities such 

as the potentiation of antibacterial activity, the inhibition of mutagenicity off 

carcinogens and tumor promotion, host-mediated antitumor and highly potent 

antiviral effects [147, 148].   

    However, the therapeutic potential of ellagitannins remains unexploited in 

conventional (occidental) pharmaceutical approaches [149, 150] . In vitro, sanguiin 

H-6 has been found to inhibit cell viability in a concentration-dependent manner and 

it increased the rates at which MCF-7 and MDA-MB-231 human breast cancer cells 

underwent apoptosis [151]. An in vitro enzymatic study by McDougall et al. [152] 

strongly suggested that ellagitannins in raspberry were the main active components 

for amylase inhibition, an approach considered to have the potential to be used as a 

therapeutic agent to control non-insulin dependent diabetes mellitus or T2DM. 

     Ellagitannins are not absorbed per se but rather are subjected to the action of 

colonic microbiota which yields ellagic acid which is further converted to urolithins 

and the latter are absorbed into the circulatory system mainly as sulfate and 

glucuronide phase II metabolites [153] [154]. Urolithins and pyrogallol deter the 

formation of advanced glycation end products (AGEs) [155] which are highly 

responsible for diabetes and its complications [156].  
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(B) Proanthocyanidins: Also known as condensed tannins, proanthocyanidins (PA) 

are oligomeric and polymeric flavan-3-ols [157].  

(C) Anthocyanins (ACN):  C3S (Figure 1.5.) and cyanidin-3-glucosyl rutinoside are 

the major ones [158] with some RR varieties having cyanidin-3-glucoside in 

significant amounts.  In general, anthocyanins with more hydroxyl groups or less 

sugar moieties are considered to have greater antioxidant capacity. Alzaid et al. 

[159] performed an in vitro study, which showed that acute exposure (15 min) to 

berry extract (derived from blueberry, bilberry, cranberry, elderberry, raspberry seeds 

and strawberry- 0.125%, w/v- the ACN content consists of cyanidins 44.5%; 

delphinidins 26.1%; petunidins 14.4%; malvidins 8.9%) significantly decreased both 

sodium-dependent (total uptake) and sodium-independent (facilitated uptake) [3H]-

D-glucose uptake in human intestinal Caco-2 cells. 

      In vivo in humans, raspberry ACN are metabolized into phenolic acids such as  

hippuric acid, 4’-hydroxyphenylacetic acid, 3’4’-dihydroxyphenylacetic acid (DOPAC)  

[160] and 4’-hydroxyhippuric acid [161]. Analyses of fecal samples collected over 24 

h in human patients showed that after ingesting 140 µM of cyanidin-3-glucoside 

(C3G), amounts recovered for C3G and protocatechuic acid (PCA)  were 0.28 and 

41.6 µmol, respectively [162].     

Figure 1.4. Chemical structure of the ellagitannin Sanguiin-H6. 
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Figure 1.5. Chemical structure of the anthocyanin cyanidin-3-sophoroside (C3S). 
 
     PCA may help to reduce diabetes development because it can upregulate 

adiponectin and GLUT4 and exert insulin-like activity by activating PPAR-γ in human 

omental adipocytes [163]. When supplementing to mice at 2 % of the diet PCA 

lowered levels of several markers of the disease (plasma C-reactive protein, TNF-α) 

reducing diabetic complications [164].  

(D) Phenolic acids:  Gallic acid (GA) is the major phenolic acid in the group and is a 

trihydroxybenzoic acid. Studies show GA decreases ROS in isolated mitochondria 

[165] and increases antioxidant enzyme activity in a rat kidney model using diazinon 

to induce renal toxicity[166]. Such enzymes include superoxide dismutases, 

glutathione peroxidase (GPx), catalase, glutathione-s-transferase and reduced 

glutathione (GSH). These highlights remark the potential of GA as a redox regulator. 

(E) Quercetin. A flavonol being one of the most abundant polyphenols present in 

fruits and vegetables [167]. The major microbial metabolite of quercetin is 3,4-

dihydroxyphenylacetic acid or DOPAC (Figure 1.6.)   which possesses strong  

antioxidant activity. DOPAC has been shown to have the highest free radical 

scavenging activity when tested in vitro along with other flavonoid metabolites and it 

might also reduce plasma lipid peroxidation in vivo [168, 169]. In a study using Min6 

pancreatic β cells, DOPAC increased Nrf2 translocation to the nucleus and protected 

pancreatic β cells against impaired insulin secretion induced by cholesterol through  
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prevention of oxidative stress, apoptosis and mitochondrial dysfunction. Their 

findings suggest that DOPAC is a promising drug target for the prevention of 

development from a prediabetic to a diabetic state [170].  

 

Figure 1.6.  Chemical structure of 3,4-dihydroxyphenylacetic acid or DOPAC. 
 
(F) RR also contain  rheosmin or raspberry ketone (4-(4-hydroxyphenyl)-2-butanone) 

which is the key flavor of raspberries and has been extensively used by the food 

industry as flavoring agent and for other purposes in perfumery and cosmetics [171]. 

1.9. Research Objective and Specific Aims 

      The main objective of the clinical study proposed in this project is to 

investigate the protective effect of whole red raspberries (RR) (Rubus idaeus) 

against insulin resistance, oxidative stress, and biomarkers of inflammation in 

prediabetic and type 2 diabetic patients. The in vitro studies will elucidate how 

metabolites from the fruit can effect insulin resistance, oxidative stress and loss of 

cell function. We hypothesized that regular consumption of whole RR will be effective 

in improving insulin sensitivity and reducing islet cell toxicity and inflammation in 

T2DM patients which often accompany this condition.  

     The specific aims were: (1) to determine the efficacy of whole RR against insulin 

resistance and inflammation in prediabetic and T2DM patients. (2) To determine the 

molecular mechanism(s) by which whole RR prevent the destruction of pancreatic β-

cells. 
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CHAPTER 2. EFFECTS OF RED RASPBERRY POLYPHENOLS AND 
METABOLITES ON BIOMARKERS OF INFLAMMATION AND 
INSULIN RESISTANCE IN PREDIABETES AND TYPE 2 DIABETES  
 
2.1 Introduction  

     Berry fruits are excellent sources of various polyphenolic compounds, 

which exhibit anti-oxidative, anti-inflammatory and anti-carcinogenic activities 

[172]. Anthocyanins and ellagitannins are the most abundant polyphenolics 

found in red raspberries (RR) (Rubus idaeus) [2].  RR fruits also contain other 

beneficial compounds such as vitamin C, fiber, phenolic acids and carotenoids 

[172]. Anthocyanins which are responsible for the blue, purple and red color of 

many plants make up the largest and probably the most important group of 

water-soluble plant pigments [173]. Anthocyanins occur naturally in plants as 

glycosides of the anthocyanidin molecule [174]. Multiple health-promoting 

properties are attributed to anthocyanidins including antioxidant activity, anti-

inflammatory activity and anticarcinogenic properties, as well as protection 

against heart disease, and reduction in the risk of diabetes and cognitive 

function disorders [5]. Similar attributes to those of anthocyanidins have been 

observed in ellagitannins and ellagic acid (a tannin and tannin derivative, 

respectively) as well [175]. 

     Diabetes mellitus (DM) which includes type 1 (T1DM) and type 2 

(T2DM) is a noncommunicable and severe endocrine metabolic disorder which 

reduces the ability of cells to uptake glucose and as a result induces serious 

complications in various organs. Diabetes Mellitus is characterized by an 

increase in blood glucose levels due to either deficiency of insulin secretion by 

pancreatic β-cells or inefficiency of cells to use insulin against glucose. Type 2 

diabetes (T2DM) is a serious health threat with global impact that results from 
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a combination of risk factors such as genetic, environmental, and behavioral 

risk factors (diet, lack of exercise) [176]. Type 2 diabetes is considered  a 

chronic inflammatory disease which results in high circulating levels of tumor 

necrosis factor (TNF), interleukins, and adipokines which are released from 

adipose tissue [177]. Additionally, insulin resistance and dysfunctions of 

pancreatic beta cells are primary characteristics of T2DM [178]. IL-1β, a key 

inflammatory mediator during T2DM, promotes insulin resistance, impairs β-

cells function, and causes apoptosis. Reactive oxygen species (ROS) play a 

pivotal role in a variety of processes such as cell proliferation, inflammation, 

apoptosis, immune system and maintenance of redox balance [179]. Over 

accumulation of free radicals and ROS is implicated in the development of 

age-related diseases and chronic disorders such as DM, cancer, 

atherosclerosis, and neurodegenerative disorders [180-182]. In a study 

involving 1997 females from the United Kingdom, higher intake of 

anthocyanins was associated with significantly lower concentrations of high-

sensitivity C-reactive protein (hsCRP), a marker of obesity and diabetes [183].          

      Moreover, a large cohort study of 200,994 health professionals from the 

United States revealed that consumption of anthocyanin-rich foods were 

inversely correlated with the risk of diabetes [184]. Alzaid et al. (2013) [159] 

found that acute exposure to the anthocyanin-rich extract from berry fruits 

significantly decreased both Na+-dependent and Na+-independent glucose 

uptake in Caco-2 cells. 
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     Anthocyanins are widely reported to have low bioavailability, with most 

of the studies recording peak plasma concentrations (Cmax) ranging from 1 to 

120 nmol/L [135] and urinary recoveries < 2% of intake [136] [137]. After the 

ingestion of red raspberries, the polyphenols are partially bioavailable to 

systemic organs, through absorption, distribution, metabolism and excretion 

(ADME) [17].  A recent study shows extensive colonic microbiota mediated 

degradation of 13C5-labeled cyanidin-3-O-glucoside, which resulted in the 

production of many phenolic metabolites over a 0-48 h period. The relative 

bioavailability of the 13C5-labeled was 6.9 % in breath as CO2, 5.4 % in urine 

and 32% in feces in the form of 13C5-labeled phenolic and aromatic 

compounds [138] [139].  Ellagitannins and ellagic acid also exhibit low 

bioavailability. These molecules are subject to extensive metabolism by the 

gut microbiota to produce urolithins that are much more efficiently absorbed.  

     Urolithins circulate in plasma as glucuronide and sulfate conjugates at 

concentrations usually ranging from  0.2–20 µM [140]. Hence, it can be implied 

that the health effects of ellagitannin-containing products can be associated 

with the gut-produced urolithins, therefore, evaluation of the biological effects 

of these metabolites is essential [140]. 

     The aim of the present work was to determine the anthocyanin profile of 

mixed puree containing Meeker, Wakefield and Chemainus red raspberries, to 

measure the level of metabolites in the plasma of T2DM and prediabetic 

patients before and after 2 weeks of RR smoothie consumption, as well as to  

measure the levels of insulin, and glucose intolerance. DOPAC, a metabolite 

of quercetin and anthocyanins, was evaluated in vitro to try to elucidate 

whether it can promote insulin secretion. Pro-inflammatory and anti-
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inflammatory cytokines and biomarkers in the serum of the same group of 

T2DM patients were measured both before and after 2 weeks consuming the 

fruit. 

2.2. Materials and Methods 

2.2.1. Materials  

     Whole raspberries were provided by the National Processed Raspberry 

Council (Lynden, WA). Cyanidin-3-sophoroside (C3S) standard was 

purchased from Indofine (Hillsborough, NJ). HCYTOMAG panels for 13-plex 

Luminex assay were purchased from EMD Millipore (Billerica, MA). Rat insulin 

ELISA kits and oxLDL were purchased from Mercodia (Uppsala, Sweden). 

     Urolithin A glucuronide (Uro-A glur), isourolithin A (IsoUro-A glur), 

urolithin B glucuronide (Uro-B glur), isourolithin A (IsoUro-A), urolithin A (Uro-

A), urolithin B (Uro-B), were chemically synthesized and purified by 

Villapharma Research S.L. (Parque Tecnológico de Fuente Alamo, Murcia, 

Spain). Ellagic acid (EA), 3,4-Dihydroxyphenylacetic acid (DOPAC) and 

protocatechuic acid (PCA)  were purchased from Sigma-Aldrich (St. Louis, 

MO, USA). Urolithin A sulfate and urolithin B sulfate were obtained as 

described elsewhere [185]. Stock solutions were prepared in methanol to a 

final concentration of 2000 ppm (11.2 mM). All solutions were stored at −20 

°C. Methanol (MeOH) and acetonitrile were purchased from J. T. Baker 

(Deventer, The Netherlands). Formic acid and acetic acid were from Panreac 

(Barcelona, Spain). Milli-Q system (Millipore Corp., Bedford, MA) ultrapure 

water was used throughout this experiment. All chemicals and reagents were 

of analytical grade. 
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2.2.2. Cell Culture 

     Rat pancreatic β-cells (INS-1), courtesy of Dr. Henrique Cheng at the 

LSU School of Veterinary Science, were used for this study. Cells were 

cultured in RPMI-1640 medium (11 mM glucose and supplemented with 10% 

fetal bovine serum (FBS), 2 mM L-glutamine, 1 mM sodium pyruvate and 50 

µM 2-mercaptoethanol. The cells were maintained in a humidified atmosphere 

(5 % CO2 at 37 ⁰C) and the experiments performed with cells between 

passages 80 and 82. 

2.2.3. HPLC-PDA-MS Analysis of Anthocyanins  

    To determine the profile and concentration of anthocyanins and 

ellagitannins in liquefied RR, the method of Ludwig et al 2015 (2) was used. 

Briefly, 5 g of thawed RR were homogenized with 15 ml of MeOH/H2O/formic 

acid at 75:25:1 v/v/v and ultrasonicated for 1 h at 5 ºC. Samples were then 

centrifuged for 10 min at 4000 x g and 20 µl of the supernatant were analyzed. 

Anthocyanins were evaluated by reverse phase chromatography using a 

Shimadzu UHPLC-PDA (Nexera-i LC-2040C 3D system) coupled to a 

Shimadzu MS (triple-quadrupole LCMS-8040, LC-MS/MS), a Shimadzu C18 

(50 x 2.1 mm, 1.9 μm) column and solvents A: 4.5% formic acid acidified water 

and B: acetonitrile. Separation was achieved with a flow rate of 0.4 mL/min 

and a gradient of 2% B for 0-1 min, 2-22% B from 1-11 min, 22-40% 11-12 min 

at 40 °C. Twenty μL of each sample was injected for analysis. Spectral data 

was collected using a photodiode array detector from 250-700 nm. Mass 

spectrometry was performed under positive ion mode; data were monitored 

using Q3 total ion scan (SCAN, from m/z 100-1100), and selected ion 

monitoring was conducted for m/z 271, 287, 301, 303, and 331, representing 



35 
 

common anthocyanidins [186]. This analysis was performed at The Ohio State 

University (Columbus, OH). 

2.2.4. MALDI/MS Analysis of Ellagitannins 

    For sanguiin H-6, the method of Kahkonen et al., 2012 [187] was used with 

slight variations. Briefly, 100 g of RR was thawed, homogenized, and then mixed 

with 833 ml of 70 % aqueous acetone solution. This mixture was then centrifuged at 

3000 RPM for 15 min. A final volume of ~ 1,666 ml was recovered and placed on a 

rotovapor at 40 ºC to evaporate the acetone portion. A ~ 540 ml volume was 

recovered and freeze-dried. The ellagitannin extract was further purified using 

Amberlite XAD-7 (Fischer Sci, Hampton, NH) column chromatography with 100 ml of  

6% CH3CN (CH3CN:TFA:H2O 6:0.5:93.5 V/V/V) to wash out  free sugars and organic 

and phenolic acids.  

      Elution was continued with CH3CN (CH3CN: TFA 99.5:0.5) to obtain a fraction 

containing flavonols, anthocyanins, and ellagitannins. To separate ellagitannins, a 

column of similar size and packed with Sephadex LH-20 (GE Healthcare, Little  

Chalfont, UK) (3 g) was used. The sample was introduced into the column, and 

flavonols and anthocyanins were eluted with 50% MeOH. Finally, ellagitannins were 

eluted with aqueous acetone (70:30 V/V). A fraction of this was used to do MALDI-

MS analysis.  

2.2.5. Clinical Study Design 

      Seven type 2 diabetic (T2DM) and 2 pre-diabetic subjects on no current 

diabetic treatment between the age of 18 and 70 who were not pregnant or 

nursing a child were enrolled in this study at Pennington Biomedical Research 

Center (PBRC). Subjects taking a medication that affects insulin sensitivity 

were excluded from the study. Subjects taking any anti-inflammatory 
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medications such as naproxen, aspirin, or ibuprofen less than 2 weeks prior to 

first blood test and for duration of study were excluded. Subjects with an 

inflammatory disease were excluded from the study. A finger stick was done to 

confirm fasting blood glucose was between 109 and 200 mg/dL to qualify, or 

have a recorded post-prandial glucose greater than 200 mg/dL. The subjects 

returned on day one (BSL) for an oral glucose tolerance test in which insulin 

and glucose were measured at all-time points (OGTT) (0, 30, 60, 120, and 180 

min), and C-reactive protein (hsCRP) levels were measured at baseline. 

Insulin and hsCRP were measured from serum by chemiluminescent assays  

using an Immulite® 2000 Immunoassay System (Siemens, Munich, Germany). 

In an OGTT, the blood sugar rises and then returns to baseline. People with 

diabetes show a slower return to baseline than people without diabetes. At 

time 0 of the OGTT, 10 cc of blood were drawn and plasma frozen at -70 ºC 

for analysis of metabolites. In addition, blood was drawn for a multiplex 

magnetic bead-based immunoassay. The subjects returned the following day 

for a blood draw. The participants were asked to come to the clinic every day 

for two weeks including weekends to drink one serving (123 g) of a raspberry 

smoothie containing 9.67 % erythritol as sweetener.  Other than the smoothie, 

no dietary changes were made. At the end of the two week feeding (PF), the 

participants underwent another identical OGTT.  

2.2.6. Metabolite Analysis in Plasma  

    Plasma samples were obtained by centrifuging whole blood at 800 x g 

for 10 min at room temperature and was collected and separated into 1 ml 

aliquots and placed at -80 ᵒC until use. Plasma samples were defrosted, 

vortexed and 200 µL were thawed and extracted with 600 µL 
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acetonitrile:formic acid (98:2, v/v) by vortexing for 2 min and ultrasonic bath for 

10 min. Next, the mixture was centrifuged at 14000 x g for 10 min, and the 

supernatant was lyophilized.  

     The lyophilized residue was redissolved in 100 µL of MeOH and filtered 

through a 0.22 µm PVDF filter before analysis by ultra-performance liquid 

chromatography quadrupole time of flight mass spectrometry using 

electrospray ionization (UPLC-ESI-QTOF-MS/MS). This analysis was 

performed at CEBAS-CSIC center in Murcia, Spain. 

      Plasma samples were analyzed using an Agilent 1290 Infinity UPLC 

system coupled to the 6550 Accurate-Mass Quadrupole Time-Of-Flight 

(QTOF) mass spectrometer (Agilent Technologies, Waldbronn, Germany) 

through an electrospray interface with Jet Stream technology. Separation was 

achieved as previously reported [188]. Briefly, a reverse phase column 

Poroshell 120 EC-C18 column (3 × 100 mm, 2.7 µm) (Agilent) operating at 30 

°C was used. The mobile phases were water:formic acid (99.9:0.1 v/v; Phase 

A) and acetonitrile:formic acid (99.9:0.1 v/v; Phase B). Gradient was as 

follows: 0–3 min, 5–15% B; 3–11 min, 15–30%; 11–15 min, 30–50%, 15–21 

min, 50–90%. The flow rate was set constant at 0.4 mL/min and the injection 

volume was 3 µL. The optimal conditions of the electrospray interface were as 

follows: Gas temperature 280 °C; drying gas 9 L/min, nebulizer 45 psi, sheath 

gas temperature 400 °C, sheath gas flow 12 L/min. Spectra were acquired in 

the m/z range of 100–1100, in a negative mode and with an acquisition rate of 

1.5 spectra/s. Internal mass calibration by simultaneous acquisition of 

reference ions and mass drift compensation was used to obtain low mass 
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errors. Data were processed using the Mass Hunter Qualitative Analysis 

software (version B.06.00, Agilent). 

     A target screening strategy was applied to all plasma samples searching 

for a list of target compounds after MS full-acquisition as well as the direct 

comparison with authentic standards was performed. The quantification of 

ellagitannins derived metabolites as well as DOPAC and PCA were 

determined in plasma by interpolation in the calibration curve obtained with 

their own available standards in the plasma matrix. All metabolites were 

quantified in MS by peak area integration of its extracted ion chromatograms. 

2.2.7. Effect of DOPAC on Insulin Secretion 

     INS-1 cells, an insulinoma cell line, were cultured following Suantawee 

et al. [189] method. In brief, cells were cultured on 24-well plates at a density 

of 5 X 105 cells/well. When confluency was achieved following ~ 72 h, the cells 

were incubated for 30 min in modified Krebs-Ringer bicarbonate buffer (KRB) 

containing 136 mM NaCl, 4.8 mM KCl, 2.5 mM CaCl2, 1.2 mM KH2PO4, 1.2 

mM MgSO4, 5 mM NaHCO3, 10 mM HEPES, 4 mM glucose, and 0.1 % bovine 

serum albumin (BSA), pH 7.4. A second incubation was performed for 30 min 

with KRB containing DOPAC at different concentrations (1-100 µM) or 20 mM 

KCl (positive control). After incubation, the supernatant was collected and 

stored frozen at -80 ⁰C for insulin determination with ELISA. 

2.2.8. Analysis of Levels of Inflammatory Cytokines in Serum 

      The levels of pro-inflammatory and anti-inflammatory cytokines in 

serum including interleukin1 beta (IL-1β), interleukin 2 (IL-2), interleukin 4 (IL-

4), interleukin 6 (IL-6), interleukin 8 (IL-8), interleukin 10 (IL-10), interleukin 

12p70 (IL-12p70), interleukin 13 (IL-13), interferon gamma (IFN-γ), 
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granulocyte-macrophage colony-stimulating factor (GM-CSF), monocyte 

chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-1 alpha 

(MIP-1A), tumor necrosis factor alpha (TNF-α), and plasminogen activator 

inhibitor-1 (PAI-1) were measured by a multiplex magnetic bead-based 

immunoassay (Luminex®) system. This analysis was performed at PBRC 

using a Luminex 200 (Luminex Co., Austin, TX).  Oxidized Low density 

lipoprotein (oxLDL) was measured by ELISA using plasma. 

2.2.9. Statistics 

     Results are expressed as means ± SD with the exception of AUC 

curves for diabetics which were expressed using standard error of the mean 

(S.E.M). Differences between weeks were analyzed by paired t-test whereas 

levels of inflammatory cytokines in serum were analyzed using Wilcoxon 

signed rank test using SAS 9.4 (SAS Institute, Cary, NC). Results for insulin 

secretion were expressed as mean ± S.E.M from two independent 

experiments, each experiment having n=6. Basal control and the different 

DOPAC concentrations were compared using unpaired student t-test using 

GraphPad Prism v8.0 (GraphPad Software, San Diego, CA). Significance was 

taken at p < 0.05. 

2.3. Results 

2.3.1. Quantitative Analysis of Cyanidin-3-Sophoroside (C3S) in Raspberry 
Purée 
 
      C3S, an anthocyanin and one of the bioactive compounds of interest 

was analyzed to determine anthocyanin profile by UHPLC-PDA-MS. C3S with 

79% area under the peak (AUP), cyanidin-3-glucoside (15% AUP), and 

cyanidin-3-sambubioside (4% AUP) were the major anthocyanins identified by 

PDA/MS-MS  data and by comparison to literature at  520 nm  ([190] [191]) 
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(Figure 2.1.). Small traces of additional anthocyanin derivatives, tentatively 

assigned identities of pelargonidin, peonidin and malvidin, accounted for the 

remaining percentage area under the peak of the pigments, but were not 

clearly identified due to presence of co-eluting compounds (Table 2.2.). These 

peaks were assigned aglycone identities based on select ion monitoring. 

     Quantitative values of the anthocyanins in the extracts were calculated 

after production of a standard curve using a standard of C3S as a reference 

material. The curve showed a good fit by linear regression (R2 = 0.9964) with 

injections of C3S amounts of 0.1 – 10 μg. Anthocyanin concentrations of the 

extracts were determined to be a total of 887.6 ± 262.8 μg/g C3S equivalents, 

as determined by a HPLC calibration curve (detection at 520 nm, Table 2.2.). 

The most prevalent anthocyanin of the extracts was C3S (626.0 ± 179.8 µg/g), 

accounting for the majority of the total anthocyanins. 

2.3.2. Qualitative Analysis of Ellagitannins in RR 

      Raspberry extraction of ellagitannin compounds including casuarictin (936.64 

M.W.), sanguiin H-6 (1871.27 M.W.) and lambertianin C (2,805.81 M.W.) was 

performed. These polyphenols are responsible for some of the beneficial health 

effects in raspberry [192-194], and were analyzed by MALDI-MS. Results showed 

strong peaks for two of these compounds which corresponded to sanguiin H-6 

(1893.22 M.W.) being the highest followed by lambertianin C (2,827.25 M.W.) 

(Figure 2.2.). Quantification of these compounds in the extract was not performed 

due to lack of a standard for sanguiin H-6, therefore this analysis covered the 

qualitative aspect only. 
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Figure 2.1. UHPLC chromatogram of RR extract compounds, detection at 520 
nm with the six peaks identified and 260-700 nm (max plot). 
 
2.3.3. Baseline Characteristics of the Study Participants 

    Samples from ten patients who successfully completed the study were 

collected and plasma, serum and PBMCs extracted from peripheral blood, 

however one of them was determined to be a type 1 diabetic and was, 

therefore, excluded from the study. Out of the 9 patients left, 7 were type 2 

diabetic and 2 pre-diabetic based on their fasting glucose values during 

screening. Table 2.3. lists the anthropometrics of the participants and results 

observed between test day 1 (BSL) and test day 2 (PF). Values for HOMA-IR 

and hsCRP decreased on PF for the type 2 diabetics after 2 weeks of feeding 

with the reduction having statistical trend for HOMA-IR (p=0.0584) and 

statistical significance for hsCRP (p=0.01). Values for HOMA-IR and hsCRP 

numerically increased on PF in the pre-diabetic group, but with only 2 subjects 

further studies are needed to judge significance.  Glucose at 0 min on the 

OGTT increased in both groups, but the area under the curve (AUC) was 

1,243 ± 878.97 mg/dl/minute less on PF for the type 2 diabetics and 2,497.5 ± 
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1,766 mg/dl/minute less on the pre-diabetics, yet, neither difference was 

significant (Figures 2.3.A and 2.3.B). AUC analysis for insulin was 1,842.3 ± 

1,302.7 µU/ml/minute less on PF for the type 2 diabetics and 534.8 ± 378.1 

µU/ml/minute more on the pre-diabetics, yet, neither difference  was 

significant, but with a statistical trend at 0 minutes for the diabetic group 

(p=0.0759) (Figures 2.3.C and 2.3.D). In the diabetic group, HOMA-IR and 

hsCRP were calculated with n=7 and n=6, respectively, since one patient had 

an infection and the hsCRP value was a statistical outlier. For the pre-

diabetics, HOMA-IR and hsCRP were calculated with n=2 and n=1, 

respectively, since one of the patients had a high hsCRP value, so statistical 

significance could not be determined.    

2.3.4. Metabolite Analysis in Plasma  

  Two urolithin conjugates, i.e. urolithin A glucuronide (Uro-A glur) and 

urolithin A sulfate (Uro-A sulf) were identified and quantified in 7 patients (n=5 

for diabetics and n=2 for pre-diabetics) at PF but not BSL, indicating they were 

derived from RR smoothie feeding (Table 2.5.). Uro-A glur and Uro-A sulfate 

were quantified after consumption at PF in the range of high and low nM 

range, respectively (Table 2.5.). Uro-A sulfoglucuronide was also identified but 

not quantified, (because no standard was available), in the samples PF of 6 

subjects (n=5, diabetics and n=1, prediabetic).  

      In these patients no other urolithin conjugates such as Uro-B or IsoUro-

A glur were found suggesting a metabolism of ellagitannins according to their 

metabotype A  [195]. Therefore, among 9 patients, IsoUro-A glur and its 

sulfate derivate were identified and quantified in only one of the diabetic 

patients, suggesting metabolism of ellagitannins according to their metabotype 
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B [195]. Uro-B sulfate was also identified in the PF samples of this diabetic 

patient. Finally, no urolithin conjugates were identified in a different diabetic 

patient; however, dimethyl ellagic acid (DMEA) glucuronide was identified but 

not quantified in this patient suggesting a lack of metabolism of ellagitannins 

(metabotype 0). DMEA glucuronide was also found in the PF samples of one 

of the pre-diabetic patients. 

      All urolithin conjugates were quantified above the limits of detection 

(LOD) and quantification (LOQ) previously reported in García-Villalba et al. 

[196]. Moreover, high concentration (low µM range) of DOPAC and PCA were 

identified and quantified in all volunteers of both BSL and PF samples (before 

and after RR intake, respectively). However, no significant differences were 

found over the course of the study. Figure 2.5. shows structures for the 

metabolites found at highest concentrations. 

2.3.5. DOPAC and Insulin Secretion 

      Incubation with KRB containing DOPAC from 1-100 µM did not stimulate 

insulin secretion from INS-1 cells. Decreases were observed on all treatments  

with those at 1 and 3 µM not being significant, yet those at 10, 30 and 100 µM 

had statistically significant decreases (Figure 2.6.). The only significant 

increase was elicited by 20 mM KCl (positive control) with a 2.6-fold increase 

over basal. 

2.3.6. Levels of Inflammatory Cytokines in Serum 

     Table 2.6. lists results for multiplex magnetic bead-based immunoassay. 

Levels on 7 cytokines (IL-1β, IL-2, IL-4, IL-6, IL-12p70, IL-13, and GM-CSF) 

were not determined as they were beneath the LOD. Increases and decreases 
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were observed on the rest of cytokines analyzed on both T2DM and pre-

diabetic patients but none were statistically significant.    

2.4. Discussion 

      The quantification of total ACN in the RR purée extract yielded 88.8 ± 

26.3 mg/100g of fresh fruit of which 91.9% or 81.7 ± 23.7 mg/100 g 

corresponded to cyanidin-based ACN content. This is in agreement with Wu et 

al. [197] who found 90.2 ± 19.2 mg/100 g cyanidin-based ACN content and 

total ACN of 92.1 ± 19.7 mg/100 g when measuring ACNs in 5 different RR 

samples by means of HPLC-DAD-ESI/MS/MS. The high standard deviation 

observed could be explained by potential heterogeneous distribution of the 3 

varieties that constituted the analyzed sample. 

 

Figure 2.2. Results for ellagitannin extract using MALDI-TOF. Major peaks 
corresponded to sanguiin H-6 (1893.22 M.W.) and lambertianin C (2,827.25 M.W.). 

 

 

 
 
 

 Sanguiin H-6 

 Lambertianin C 
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Table 2.1. Concentration (µg/g of C3S equivalent) of anthocyanins in red raspberry 
extract identified and quantified by UHPLC-PDA-QQQ. 
Peak             Identity                       m/z            Mean (µg/g)          Per serving (123 g) 

   1   Cyanidin-3-sophoroside        611/287    626.0 ± 179.8            77.0 ± 22.1 mg                                      

   2   Cyanidin-3-glucoside            449/271    143.2 ± 44.8              17.6 ± 5.5 mg 

   3   Cyanidin-3-sambubioside      581/287      44.1 ± 13.0               5.4 ± 1.6 mg 

   4   Pelargonidin-derivative          595/271     23.8 ± 8.5                  2.9 ± 1.0 mg  

   5   Peonidin-derivative                301             24.2 ± 8.3                  3.0 ± 1.0 mg              

   6   Malvidin-derivative                 301             26.3 ± 8.4                  3.2 ± 1.0 mg        

       Total anthocyanins                                     887.6 ± 262.8         109.1 ± 32.2 mg   

 

Values are means ± SD, n=3                
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Table 2.2. Results for baseline and post-feeding characteristics of the study participants. 

                                                                   Type 2 Diabetics (n=7)                              Prediabetics (n=2) **        

Race (African American/Caucasian) n/n                3/4                                                           1/1                             

Gender (male/female) n/n                                      2/5                                                            0/2 

Age, y                                                                  60.9 ± 9.0                                                   63.0  

Body weight, kg                                                 103.0 ± 16.2                                                101.1      

BMI, kg/m2                                                            37.2 ± 6.3                                                   38.6  

Systolic blood pressure, mm Hg                        132.6 ± 11.3                                                 124.5                            

Diastolic blood pressure, mm Hg                        86.7 ± 8.2                                                     71.0  

Fasting glucose, mg/dL                                      170.0 ± 27.8                                                 109.0  

OGTT glucose (time 0), mg/dL                 BSL: 161.6 ± 32.0   PF: 164.0 ± 38.5                  BSL: 93.0   PF: 100.0  

HOMA-IR                                                  BSL: 13.3 ± 7.3       PF: 9.4 ± 5.4                        BSL: 6.0     PF: 8.5  

hsCRP, mg/L (n=6, T2DM and n=1, PD)  BSL:  4.9 ± 2.0      PF: 4.0 ± 1.6*                        BSL: 5.6     PF: 6.1 

All results are expressed as the mean ± SD. Statistical analyses were performed using a paired t-test to detect differences between 
BSL and PF. OGTT, oral glucose tolerance test; HOMA-IR, homeostasis model of assessment of insulin resistance; hsCRP, high 
sensitivity C-reactive protein. HOMA index was calculated with the formula: HOMA= [serum glucose levels (mg/dl) X insulin levels 
(µU/ml)/22.5. * p = 0.01. ** No statistics done due to small numbers. 
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Figure 2.3. Effects of RR smoothie consumption on blood glucose and insulin levels 
after oral glucose tolerance test on day 1 (BSL) and day 2 (PF). Results are 
expressed as the mean ± S.E.M. Statistical analyses were performed using paired t-
test. (A) Glucose tolerance test curve for T2 diabetic patients (n=7). (B) Glucose 
tolerance test curve for pre-diabetic patients (n=2). (C) Glucose tolerance test curve 
for insulin in T2 diabetic patients (n=7). (D) Glucose tolerance test curve for insulin in 
pre-diabetic patients (n=2). * No statistics done due to small numbers. 
 
     Because PBMCs contain several key inflammatory cells, higher levels of 

insulin resistance and inflammatory biomarkers at the baseline for T2 diabetic 

and pre-diabetic patients were expected to be present.  

      IR constitutes a crucial factor in the development of type 2 diabetes 

along with hypertension  and cardiovascular (CV) disease [198]. Results 

indicated significant (inflammatory biomarker such as hsCRP) and non-significant 

reductions (glucose AUC, insulin resistance through HOMA-IR) after two weeks of 
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RR smoothie consumption. Stull et al. [199] found that consuming a smoothie 

containing blueberries for 6 weeks had a greater increase in insulin sensitivity in 

obese and insulin-resistant adults (prediabetics, accounting for 67%) when 

compared to individuals that consumed a placebo smoothie (41%) and was 

measured by a 10 % or greater favorable change in insulin sensitivity. For this study 

researchers used the hyperinsulinemic-euglycemic clamp (HEC) to assess insulin 

sensitivity. Even though HEC is considered the “gold standard”, HOMA-IR has 

proved to be a powerful proxy to assess IR [200, 201]. In our study, HOMA-IR had a 

p value of 0.0584 resulting in a statistical trend but not statistical significance. AUC 

analysis for both glucose and insulin showed decreases on PF day, but these were 

not statistically significant on either group. Losso et. al [202] reported that one 

feeding of two slices of  fenugreek enriched bread (5%)  to a group of eight T2DM 

patients yielded a significant reduction in AUC for insulin when compared to bread 

with no fenugreek fed to the same group. RR constitutes a high source of fiber 

providing 8 g per 123 g of fruit [145]. Zhao et al. 2018 [203] identified short chain 

fatty acid (SCFA) - producing bacterial strains who were promoted by dietary fibers. 

In their study, most other potential producers were present at either decreasing or 

not changing numbers in patients with T2DM. Researchers found that when the 

fiber-promoted SCFA producers were present in higher number, participants had 

better improvement in hemoglobin A1c levels. This was attributed in part due to 

increased glucagon-like peptide-1 production. SCFAs such as acetate and butyrate 

have demonstrated the ability to improve glucose homeostasis through production of 

glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), which can stimulate insulin 

secretion [204-206].           
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      However, based on the results obtained through HOMA-IR in the present 

study, insulin secretion in patients was reduced favoring an insulin sensitivity effect. 

This finding could indicate this insulin sensitivity effect could be elicited by other 

molecule in the fruit or perhaps, other metabolite(s). 

     Serum concentration of CRP is increased in both impaired glucose tolerance 

(IGT) and T2DM [207, 208]. Based on numerous studies, minor CRP elevation 

(hsCRP) has been shown to be associated with future major CV risk (hsCRP: <1 

mg/L = low risk; 1–3 mg/L = intermediate risk; 3–10 mg/L =high risk; >10 mg/L _= 

unspecific elevation) [209]. A decrease from 4.9 ± 2 on BSL to 4.0 ± 1.6 on PF was 

registered in our study and found to have statistical significance on T2DM patients 

(p= 0.01).   

    The metabolite analysis found two urolithin conjugates, i.e. urolithin A 

glucuronide (Uro-A glur) and urolithin A sulfate (Uro-A sulf) which were found 

in 7 of the 9 patients’ (both groups) samples, but only for PF indicating they 

were derived from RR smoothie feeding. These were metabolites from the 

ellagitannin portion of the fruit, whereas anthocyanin-derived metabolites such 

as DOPAC and PCA were present at similar concentrations on BSL and PF 

suggesting these metabolites might have come from different dietary sources 

as well. 

     An increase in IL-10 after two weeks of raspberry consumption was 

expected but cytokine analysis by multiplex magnetic bead-based 

immunoassay found the opposite. Increases and decreases were observed on 

the rest of cytokines analyzed, yet, none of these changes were statistically 

significant.  
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     Interpatient variability was observed in plasma metabolite analysis as 

well as for other biomarkers and this could be due to differences in diets, 

individual microbiota or potential effects of erythritol used as non-caloric 

sweetener.  

     From the 9 patients evaluated in the study, six presented a urolithin 

metabotype (UM) A (urolithin A producers only), two (men both) a UM-B 

(production of urolithin A, isourolithin A and/or urolithin B) and one a UM-0 

(urolithin non-producers). Cortés-Martín et al. [210] proposed that aging is the 

main factor affecting the distribution of urolithin metabotypes when they 

evaluated a cohort of n=839, from 5-90 yrs of age. Besides this, the 

researchers described a progressive increase for UM-B parallel to a decrease 

in UM-A, especially for individuals aged 20-40, and when considering a group 

of n=23 patients aged 30-63 who suffered from metabolic syndrome, both UM-

A and UM-B had a similar share.  In the present study, however, the 

dominating UM was UM-A, therefore, it is important to highlight their cohort 

consisted mainly of caucasian individuals only whereas in the present study 

African  Americans constituted 44.4 % of the patients evaluated, the rest 

(56%) being Caucasian. Gonzalez-Sarrías et al.[211] observed that 

overweight–obese individuals with UM-B were at higher CVD risk than those 

with UM-A or UM-0, hence, the UM-A preponderance among the patients from 

our clinical trial could be taken as a positive outcome.   

      Regarding potential mechanisms of anti-diabetic properties of whole RR 

observed in patients from the clinical trial, Edirisinghe & Freeman [212], list two ways 

these can be addressed: insulin dependent and insulin independent. Within insulin 

dependent, an insulin sensitivity enhancement was observed judging by the drop on 
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insulin and hsCRP, an important biomarker of inflammation and CVD risk [213].  

Assessment of the metabolite DOPAC (1-100 µM) to investigate if it could elicit 

insulin secretion on INS-1 cells showed the opposite, an even had a toxic 

effect at higher concentrations. This finding is congruent with what was 

observed on the clinical trial patients as insulin and glucose levels dropped by 

PF day indicating an improvement in insulin sensitivity. Work by other 

researchers has demonstrated stimulation on insulin secretion by compounds 

such as quercetin [115, 214] and cyanidin [189] when used at levels ranging 

from 20-100 µM. These concentrations, however, may not be feasible at 

physiological levels due to metabolic availability and toxicological issues.         

     Researchers described activation of the extracellular signal-regulated 

kinase (ERK) 1/2 pathway and L-type voltage-dependent Ca2+ channel 

(VDCC) in INS-1 cells as responsible for increases in insulin secretion. For the 

insulin independent part, both inhibition of digestive enzymes involved in 

carbohydrate breakdown as well as inhibition of glucose absorption in the GI tract 

can be present, however in the present study a minor increase in glucose from 

OGTT at 0 min on PF was observed yet non-significant reductions on the AUC for 

OGTT on both T2DM and prediabetics were present on PF. Work performed by 

other researchers highlights these findings.  

     Edirisinghe & Freeman, found when overweight adults were fed a 

freeze-dried strawberry powder that it significantly reduced postprandial insulin 

response and reduced  postprandial inflammatory  response (IL-6 and hsCRP) 

when the participants ate a high carbohydrate and high fat meal (P < 0.05) 

[212]. Alzaid et al., 2013 [159] used a berry extract containing raspberry seed 

and were able to significantly decrease both sodium-dependent intestinal cell 
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(total uptake) and sodium-independent [3H]-D-glucose uptake in human 

intestinal Caco-2 cells. Treatment for 16 h showed SGLT1 mRNA and GLUT2 

mRNA expression was significantly reduced (P < 0.05.) Moreover, McDougall 

et al. [215] observed amylase was inhibited when performing an in vitro 

enzymatic study using raspberry. They concluded that ellagitannins in 

raspberry were the main agents for this inhibition, which indicates these 

polyphenols in RR can promote beneficial effects just like the anthocyanin 

fraction does.     

2.5. Conclusion 

     Two urolithin conjugates,   (Uro-A glur and Uro-A sulf) were found in 7 of 

the 9 patients’ plasma samples at nanomolar concentrations (1.3 - 63.2 ± 31.2 

nM, Table 2.5.), whereas anthocyanin-derived metabolites such as 

protocatechuic acid (PCA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were 

present at micromolar concentrations yet at similar levels on BSL (PCA= 0.5 ± 

0.14, DOPAC= 1.4 ± 0.28) and PF (PCA=0.6 ± 0.07, DOPAC= 1.7 ± 0.8). 

Other metabolites were present in only some of the patients, illustrating that 

each individual’s microbiome, ethnicity, age, etc., most likely plays a role on 

the outcome of such metabolites. Results indicated a significant reduction in 

hsCRP (BSL:  4.9 ± 2.0, PF: 4.0 ± 1.6 (p=0.01)) which is a very important 

biomarker of inflammation and heart disease risk. A reduction showed only a 

statistical trend for HOMA-IR when evaluating for IR. DOPAC, a metabolite 

from anthocyanin and quercetin in RR, when incubated at 1-100 µM did not 

stimulate insulin secretion in INS-1 cells. A longer feeding period with a larger 

group is recommended to test if the effects observed can be improved. This 

study demonstrated the potential of RR to modulate levels of biomarkers of 
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inflammation and insulin resistance in T2DM patients most likely through 

antioxidant activity from the polyphenolics present and from anti-diabetic 

effects through insulin dependent mechanisms. 
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Table 2.3. Results from plasma analysis for raspberry metabolites by UPLC-ESI-QTOF-MS/MS 
                                            Uro-A-Glur α     Uro-A-Sulf α     Iso-Uro-A α     Iso-Uro-A Sulf α    Uro-B- Sulf α        PCAb      DOPACb 

Diabetics (n=7) 
 
BSL                                         ---                       ---                 ---                         ---                      ---               0.6 ± 0.4c     1.2 ± 0.5c 

PF                                     63.2 ± 31.2d        7 ± 4.2d            37.4 ± 1.1f        11.1 ± 0.6f             1.6 ± 0.7f        0.6 ± 0.4c      1.1 ± 0.6c          

 

Pre-diabetics (n=2)*                                                                                                

BSL                                            ---                   ---                  ---                       ---                        ---                        0.4e       1.6e                                         

PF                                        10.3e                    1.3e                ---                       ---                        ---                        0.5e       2.2e 

 
All results are expressed as mean ± SD. Uro-A-Glur, urolithin-A-glucuronide; Uro-A-Sulf, urolithin-A-sulfate; Iso-Uro-A, isourolithin-
A-glucuronide; Iso-Uro-A Sulf, isourolithin-A-sulfate; Uro-B- Sulf, urolithin-B-sulfate; PCA, protocatechuic acid (3,4-ihydroxybenzoic 

acid); DOPAC, 3,4-dihydroxyphenyl acetic acid. 
α
, nanomolar; 

b
, micromolar; ---, not detected;

 c
, detected in n=7; 

d
, detected in 

n=5; 
 e

, detected in n=2; 
 f
, detected in n=1. Compounds urolithin-A- sulfoglucuronide (n=5, diabetics and n=1 pre-diabetics] and 

dimethyl ellagic acid (n=1 for both diabetics and pre-diabetics ; both not listed in the  table)  were detected but not quantified on the 
PF day. * No statistics done due to small numbers.                             
     

 

. 
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Table 2.4. Serum and plasma biomarkers results (pg/ml) by multiplex magnetic bead-based immunoassay and ELISA. 

                                        IL-8              IL-10             IFN-γ        TNF-α               MCP-1                MIP-1α            PAI-1             oxLDL β                  

Diabetics (n=7) 
 
BSL                            7.5 ± 2.9       8.1 ± 5.3      7.8 ± 4.3    15.9 ± 1.4    783.7 ± 211.3    3.8 ± 0.7        132.7 ± 20.7      75.4 ± 19.7    

PF                              7.7 ± 2.3        7.5 ± 4.1      7.7 ± 3.3     15.4 ± 1.3    827.6 ± 282.4      4.2 ± 0.7       133.1 ± 32.2      78.1 ± 20.2              

 

Pre-diabetics (n=2)*                                                                                                

BSL                               17.8            8.3                11.9 #             13.4          1148.5                     19                126.7                  43.8     

PF                                14.9             7.9                  8.2 #             11.6          1054.5                     17.8             103.2                  44        

 
 
All results are expressed as mean ± SD. Data was analyzed using Wilcoxon signed rank test. #, n=1; β, oxLDL assay performed 
through ELISA using plasma samples. * No statistics done due to small numbers.                             
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Figure 2.4. Structures of most abundant metabolites from both ellagitannins and 
anthocyanins in RR found in the plasma of clinical trial participants after 2 weeks of 
smoothie feeding. 
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Figure 2.5. Treatment of INS-1 cells with 1-100 uM DOPAC. Results are expressed 
as mean ± S.E.M. from two independent experiments, each experiment having n=6; 
* p < 0.05 when compared with basal. 
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CHAPTER 3. CONCLUSIONS AND FUTURE WORK 

     It has been well established that edible berries are an excellent source of various 

polyphenolic compounds, which exhibit anti-oxidative, anti-inflammatory and 

anticarcinogenic activities [172]. The purpose of this study was to evaluate the potential 

of whole RR to modulate IR and inflammation in T2DM patients. Results from the 

clinical trial showed a significant downregulation of hsCRP, an important biomarker of 

inflammation and CV risk, and an improvement on insulin sensitivity based on HOMA-IR 

results which showed a statistical trend. These results confirm the potential that RR has 

to modulate IR and inflammation and we hypothesize that a longer feeding period  may 

yield better and more representative results that could lead to further downregulation of 

both IR and inflammation biomarkers in T2DM patients. A trial involving more patients is 

recommendable too as a larger sample size would be more representative of the effects 

RR consumption may have and would better evaluate interpatient variability that is 

normally observed in clinical studies of this kind.  Another aim was to determine the 

molecular mechanism(s) by which whole RR prevent the destruction of pancreatic β-

cells. To determine if DOPAC, a metabolite of anthocyanin and quercetin, had insulin 

secretion effects in vitro, an ELISA for insulin secretion using rat pancreatic β-cells (INS- 

1) showed DOPAC did not stimulate insulin secretion at physiologically observed 

concentrations or even at higher non-physiological concentrations. An assay evaluating 

human β-cells is recommended to confirm these results. However, this finding 

complements the insulin sensitivity improvement rather than insulin secretion 

enhancement found in the patients from the clinical trial. It is possible that this effect of 

insulin sensitivity improvement may have derived from other molecules present in RR.  
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   For instance ellagitannins, which were not evaluated in the present study due to 

lack of proper standards for sanguiin H-6, the major ellagitannin present in RR may 

have played a role The major ellagitannin-derived metabolites found in plasma of 

patients such as Uro-A-glur and Uro-A- sulf could have also played a role. 

    Therefore, studies that evaluate the effect(s) of these particular compounds may 

help elucidate the exact mechanism(s) being triggered to yield insulin sensitivity 

improvement through RR consumption.   
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