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ABSTRACT 
 

Catfish skin (CS) contains considerable amount of protein that may be hydrolyzed enzymatically 

to generate hydrolysates (CSH) which may have antioxidant and antimicrobial properties. The 

generation of natural compounds with these properties is of special interest to the food industry. 

The objective of this study was to develop and characterize CSH including antioxidant and 

antimicrobial properties. CSH were produced from different enzymatic reaction periods using 

alkaline protease, and their characterization, antioxidant, antimicrobial, and some functional 

properties were evaluated. A selected CSH was analyzed for peptide composition and partial 

amino acid sequences. The color analysis showed that darker, more yellow, and redder CSH 

were generated throughout the time of hydrolysis. CSH at 4, 5, and 6 h of hydrolysis showed 

considerable antioxidant activity and antimicrobial properties in-vitro, high emulsion stability, 

and low oil holding capacity influenced by the time of hydrolysis. Low-molecular weight 

peptides with positive charges were suggested as responsible for the antimicrobial activity. CSH 

were developed and characterized. Further research is suggested, especially on identification, 

isolation, and synthesis of specific peptides from CSH with both antioxidant and antimicrobial 

activity. 
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CHAPTER 1. INTRODUCTION 

Catfish is one of the most consumed fish in the United States. According to Hanson and Sites 

(2015) the average catfish per capita consumption during the period 2000-2013 in the U.S. was 

0.41 kg. At the end of that period, catfish was the 8
th

 most consumed seafood in the country. The 

National Marine Fisheries Services (NMFS) reports that in 2013, estimated freshwater U.S. 

aquaculture production was 653 million pounds valued at $1.38 billion with catfish leading the 

list with 358 million pounds (NMFS 2014). Two years later, 138,000 metric tons (MT) were 

processed in U.S. facilities according to the National Agricultural Statistics Service (NASS 

2016). The processing of catfish generates considerable amount of by-products from which skin 

usually represents 6 % of fish’s alive weight (Yin and others 2010) meaning that approximately 

8,300 MT of skin were generated as a by-product. Catfish skin protein content and quality are 

similar to edible fish meat (Himaya and Kim 2014) which suggests that products made from 

them may be suitable for consumption by humans and thus constitutes an opportunity for 

producing valuable products through catfish skin processing. 

Protein hydrolysates are mixture of peptides of different sizes produced by protein denaturation 

by the action of acids, alkalis, fermentation, or enzymes (Sarmadi and Ismail 2010; Chalamaiah 

and others 2012). On a lab scale, enzymatic hydrolysis has been widely reported as capable of 

producing protein hydrolysates with functional properties (ex. antioxidant, emulsifying, 

antimicrobial) from underutilized fish species (Amarowicz and Shahidi 1997; Klompong and 

others 2007; Thiansilakul and others 2007; You and others 2009; Jemil and others 2014) and fish 

by-products (Benjakul and Morrissey 1997; Šližytė and others 2005; Sathivel and others 2008; 

Yin and others 2010; Ketnawa and others 2016). The findings reported by these authors suggest 
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that protein hydrolysates may have the potential of being used as natural food preservatives 

which could meet current demand in the food market for “all natural” and “clean label” products.  

Food quality degradation may come from enzymatic autolysis, oxidation, and microbial growth 

(Ghaly and others 2010). The short shelf life of fresh foods, in addition to the consumer demand 

for reduction or complete elimination of chemically synthesized preservatives from foods, have 

reactivated the interest for developing natural shelf life extensors (Roller 1995). Catfish skin 

hydrolysates may contain peptides with considerable antioxidant and antimicrobial properties; 

however, there is a lack of information about the catfish skin hydrolysates produced by the 

alkaline protease and the antioxidant and antimicrobial properties of these hydrolysates in in-

vitro conditions. 

The objective of this study was to develop and characterize CSH including antioxidant and 

antimicrobial properties.  
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CHAPTER 2. LITERATURE REVIEW 

2.1 Catfish production and processing 

Channel catfish (Ictalurus punctatus) is a fresh-water fish whose production and processing 

started in Alabama around 1950s, and 40 years later, the production reached more than 200 

metric tons only from Mississippi, Alabama, Arkansas, and Louisiana (Smitherman and Dunham 

1993).  Now, there are more than 69,910 acres of water intended for catfish production, and the 

states with the highest number of acres are Alabama, Arkansas, and Mississippi (Hanson and 

Sites 2015). 

The National Agricultural Statistics Service (NASS) indicates that 2015 live catfish’s sales were 

$361 million in the US with Mississippi, Alabama, Arkansas, and Texas accounting for 96 % of 

the sales (NASS 2016). The US demand of catfish is covered by both imported and local raised 

catfish, and from the latter 36% is commercialized as fresh, and 64% as frozen (NASS 2013). 

Catfish processing is intended to produce whole dressed fish (19%), fillet (60%), and steaks, 

nuggets and value added products (21 %) (Silva and Dean 2001). Whole dressed yield (fish 

weight without head, viscera, and skin) is generally 60 % (Clement and Lovell 1994) This value 

could change depending on fish age, sex, and genetics. Female fish tend to give both higher 

whole dressed and fillet yields (58.4 and 43.6 % respectively) than male fish (57.9 and 43.0 %), 

and hybrids can reach more than 60% and 45% for whole dressed and fillet yield respectively 

(Argue and others 2003). However, even at the highest yields, processing generates a 

considerable amount of by-products such as heads, frames, viscera, and skin.  

2.2 Catfish skin  

Fish skin contains collagen, a protein formed by a triple helix structure linked by hydrogen and 

covalent bonds which may break if exposed to hot water (Himaya and Kim 2014). Every third 

residue in the three parallel polypeptide strands is most of the time glycine (Gly) resulting in a 
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repeating XYGly amino acid sequence, where X and Y can be any amino acid (Shoulders and 

Raines 2009). 

Collagen properties are associated with gelling and surface behavior (Gómez-Guillén and others 

2011); however, research has shown more alternative uses. Collagen and gelatin have been 

extracted from fish skin using alkali and acid methods generating considerable yields (Yang and 

others 2008; Jamilah and others 2011). Edible films have been produced with extracted gelatin 

(Zhang and others 2007) and by proteolysis producing protein hydrolysates with considerable 

activity as emulsifiers and antioxidants (Yin and others 2010; Ketnawa and others 2016), and 

able to reduce the negative effects of UVA-irradiation on 3-D human skin model (Kato and 

others 2011). Due to the importance of these properties, the soluble and insoluble fractions of 

hydrolyzed catfish skin have been studied and described by Yin and others (2010). The results 

from these authors suggest that protein in catfish skin could be used as substrate for production 

of hydrolysates with functional properties of interest in the food industry. 

2.3 Protein hydrolysis 

Protein hydrolysis has been widely applied for fish by-products’ processing. It involves the use 

of acids, alkalis, or enzymes for breaking down parent proteins into protein fractions, peptides, 

and free amino acids (Kristinsson and Rasco 2000b). The use of acids and alkalis may entail 

important disadvantages. Acid hydrolysis utilizes strong acids (ex. hydrochloric, sulfuric) that 

destroy tryptophan; moreover, after hydrolysis, sodium hydroxide is used for neutralizing the 

solution. This addition of acid and base makes the hydrolysates unpalatable. On the other hand, 

alkaline protein hydrolysis tends to produce D-amino acids making them indigestible for humans 

(Anwar and Saleemuddin 1998); furthermore, this type of hydrolysis may generate toxic 

compounds (ex. lysinoalanine) which are undesirable for human consumption (Himaya and Kim 
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2014; Kristinsson and Rasco 2000b). Therefore, enzymatic protein hydrolysis seems to be a good 

alternative for catfish skin protein hydrolysis. 

Proteolytic enzymes can cleave peptides bonds acting in two different ways which allows their 

classification in two groups: exopeptidases and endopeptidases (Damodaran and others 2007). 

Exopeptidases require amino or carboxyl termini to cleave peptide bonds removing one, two, or 

three amino acid residues at a time from the N terminus, or one or two at a time from the C 

terminus. In contrast, endopeptidases do not accept substrates with charged amino or carboxyl 

termini cleaving peptide bonds deeper in the protein structure generating peptides of different 

sizes (McDonald 1985; Panyam and Kilara 1996). Bringing out peptides from the native protein 

structure allows them to exhibit their functionality as bioactive molecules (Di Bernardini and 

others 2011; Korhonen and Pihlanto 2006) which makes selection of the enzyme a key step of 

the process. 

Alkalines are a sub-group of endopeptidases that have been widely used for producing fish skin 

protein hydrolysates, and their utilization has also allowed high protein recovery hydrolysates 

with low lipid content, high nutritional value, and considerable functional properties (Kristinsson 

and Rasco 2000b). It has been used for the production of giant catfish skin hydrolysates 

(Ketnawa and others 2016), channel catfish skin hydrolysates (Yin and others 2010), and Pollock 

skin hydrolysates (Sathivel and others 2008) proving to be a suitable enzyme for hydrolysates 

production. Furthermore, this group of enzymes has proven to produce hydrolysates with better 

antioxidant activity at low degrees of hydrolysis compared to other enzymes (Klompong and 

others 2007). 

Degree of hydrolysis (DH) is defined as the percentage of cleaved peptide bonds, and calculated 

by dividing number of hydrolyzed bonds by the total bonds times one hundred (Nielsen and 
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others 2001). It is known that DH starts with a high rate that decreases rapidly over time and is 

influenced by inhibition by hydrolysis products which could explain the curve shape (Valencia 

and others 2014). This typical shape seems to play an important role in the development of 

functional properties of protein hydrolysates. Enzymatic hydrolysis of proteins produces three 

main effects: reduction of molecular weight (MW), increase in number of ionizable groups, and 

the exposure of hydrophobic groups originally found at the interior of the native proteins 

structure (Panyam and Kilara 1996). It has been reported that the higher the degree of hydrolysis, 

the lower the MW of protein/peptides produced (Severin and Xia 2006).  Change in MW affect 

hydrolysates functional properties showing that high MW peptides (low DH) have better 

emulsion capacity, emulsion stability, and fat absorption, and hydrolysates produced with further 

hydrolysis (high DH) tend to have better solubility in water (Gbogouri and others 2004; Sathivel 

and others 2008; Severin and Xia 2006; Klompong and others 2007). Hydrolysates with low 

molecular size tend to diffuse and absorb rapidly to the interface in emulsions, but they cannot 

unfold and reorient at that point like large peptides limiting the emulsion capacity and stability 

(Gbogouri and others 2004). 

2.4 Bioactive peptides 

Bioactive compounds are defined by Biesalski and others (2009) as “essential and non-essential 

compounds (e.g., vitamins or polyphenols) that occur in nature, are part of the food chain, and 

can be shown to have an effect on human health”, and as mentioned in advance, some peptides 

have shown potential as bioactive compounds especially the ones with low-molecular weight. In 

fact, molecular weight is one of the most important factors determining peptides’ 

physicochemical and biological activities (Najafian and Babji 2012; Sarmadi and Ismail 2010). 

Hydrolysates with large portions (>50%) of peptides under 3 kDa have been previously linked to 

antimicrobial activity, and short peptides with MW less than 3 kDa were linked to high 
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angiotensin-converting enzyme (ACE) inhibitory effect (Jang and others 2008; Jang and Lee 

2005) and strong antioxidant activity (Ngo and others 2010; Je and others 2007; Je and others 

2005; Rajapakse and others 2005; Wu and others 2003). 

2.5 Hydrolysates as antioxidants 

Antioxidant properties have been related to fish protein hydrolysates (Di Bernardini and others 

2011; Valencia and others 2014). These properties are related to the interaction between the 

functional groups of amino acids conforming the peptide sequence (-NH2, -SH, -OH, and –

COOH) with hydroperoxides or pro-oxidants during lipid oxidation (Zayas 1997) reducing the 

oxidation reaction rate, especially during the propagation stage.  

Peptides can act as antioxidants by three mechanisms: metal chelation, radical scavenging, and 

physical hindrance (Nikoo and Benjakul 2015). These mechanisms are represented in Figure 1. 

 

Fig. 1. Schematic representation of chemical and physical mechanisms of antioxidant peptides to 

inhibit oxidative process. (1) Metal chelation; (2) radical scavenging; (3) physical hindrance 

(shielding; repulsion). Source: (Nikoo and Benjakul 2015).  1 
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Metal chelation and radical scavenging are both chemical mechanisms that involves the donation 

of an electron from the peptide to a metal or to a radical respectively (Huang and others 2005). 

On the other hand, the physical hindrance occurs by physical repulsion between positive amino 

acids’ functional groups and positively charged metals. Lipid oxidation may be retarded by 

neutralizing the radicals that cause oxidation itself or by chelating metal ions that accelerate lipid 

oxidation (Damodaran and others 2007). 

Hydrolysates with considerable antioxidant activity have been obtained from different protein 

sources. These sources include hearing by-products (Sathivel and others 2003), pollock skin 

(Sathivel and others 2008) and frame (Je and others 2005), giant catfish skin (Ketnawa and 

others 2016), loach (You and others 2009), yellow stripe trevally (Klompong and others 2007) 

and fresh water carp (Elavarasan and others 2014). Factors such as DH, the type of enzyme, and 

the peptide amino acid composition influence protein hydrolysates’ antioxidant capacity. Results 

reported by Klompong and others (2007) suggest an increase in the antioxidant capacity while 

DH increases until a certain point; however, further hydrolyzation tends to produce large 

quantity of short peptides and free amino acids that reduce antioxidant activity (Wu and others 

2003; You and others 2009). Higher antioxidant activity at the same DH (5%) has been reported 

for yellow stripe trevally hydrolysates that were hydrolyzed using Alcalase compare to 

hydrolysates produced with Flavourzy. Nevertheless, the opposite enzyme effect was observed 

on round scad hydrolysates at higher DH (20,40, and 60%) (Thiansilakul and others 2007) 

suggesting that not only the type of enzyme affects antioxidant capacity, but also the substrate 

used as the source of protein for hydrolysis.  

Amino acid composition has been linked to the antioxidant capacity of hydrolysates too. 

Tyrosine, glycine, aspartic acid, and glutamate have been reported as radical scavengers due to 
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the capacity to serve as hydrogen donors (Di Bernardini and others 2011; Qian and others 2008). 

Non-polar (alanine, valine, leucine, and proline) amino acids have high reactivity with 

hydrophobic polyunsaturated fatty acids, and aromatic amino acids (tyrosine, histidine, 

tryptophan, and phenylalanine) can stabilize reactive oxygen species (ROS) through direct 

electron transfer (Qian and others 2008). The concentration of tyrosine, methionine, histidine, 

lysine, and tryptophan residues on hydrolysates also has generated a positive antioxidant effect 

which could be due to the chelating and lipid radical scavenging ability of imidazole ring on 

histidine (Chen and others 1996) and proton donation to radicals by the aromatic amino acids 

(You and others 2009). Glycine, histidine, and tryptophan have shown potential antioxidant 

activity at pH between 6 to 7 in linoleic acid emulsions with phosphate addition (0.1 mol) 

(Marcuse 1962). Free radical scavengers could inhibit lipid oxidation by reacting faster with free 

radicals than unsaturated fatty acids do (Damodaran and others 2007). 

2.6 Hydrolysates as Emulsifiers 

Emulsions are systems involving two liquids that are by nature immiscible, one dispersed 

(dispersed phase) into the other (continuous phase) generating oil in water (O/W) or water in oil 

(W/O) emulsions. This system involves oil, water, an emulsifier, and energy where the oil or 

water will form continuous or dispersed phase, the energy will deform and break up droplets 

usually bigger than 2 µm, and the emulsifier will prevent coalescence of the dispersed droplets 

(Damodaran and others 2007). According to Amarowicz (2010) evaluation of food protein 

emulsifying properties may include any of the following parameters: emulsion activity 

(maximum interfacial area per unit mass of protein in a stabilized solution), emulsion capacity 

(maximum amount of oil emulsified under specified conditions by unit of mass of protein), and 
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emulsion stability (capacity of a protein to form an emulsion that remains unchanged for a 

certain time period at given temperature and gravitational field).  

Protein hydrolysates’ emulsifying properties are influenced by different factors. Hydrolysates’ 

amphiphilic nature and water solubility  promote the formation of O/W emulsions (Kristinsson 

and Rasco 2000b). It is also known that higher protein effective hydrophobicity generates a 

stronger affinity to the non-polar phase, causes a greater decrease in interfacial tensions, and 

produces a better emulsifying activity (Kato and Nakai 1980). Furthermore, unfolded structures 

improves emulsifying properties increasing the protein/hydrolysate capacity to form a protective 

layer around fat globules in the emulsion system stabilizing it (Zayas 1997).  

The degree of hydrolysis plays an important role in emulsifying properties. Proteins with low 

DH have shown better EC and ES than those with larger DH (Šližytė and others 2005). Turgeon 

and others (1991) suggested that for hydrolysates EC tends to decrease while DH increases due 

to the fact that to small peptides cannot unfold and spread like proteins or higher MW 

polypeptides at the interface reducing their efficiency in decreasing surface tension. In fact, 

surface-active compounds need to adsorb rapidly to the interface, unfold, orientate its 

hydrophobic groups toward the dispersed phase and its polar groups toward the continuous phase 

for reducing free energy, and form strong and elastic films by the interaction with neighboring 

molecules (Kato and Nakai 1980; Zayas 1997; Damodaran and others 2007). 

2.7 Hydrolysates and their oil holding capacity 

Knowing that fat is able to improve the quality of foods through texture, appearance, and flavor 

enhancement (Damodaran and others 2007), the retention of it into the food product structure 

requires special attention. For that reason, fat/oil holding capacity (OHC) of protein hydrolysates 

may be of interest for the food industry. This ability of proteins to hold fat has been linked 
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mainly to oil’s physical entrapment where protein-lipid interactions include electrostatic, 

hydrophobic, non-covalent and hydrogen bonds (Zayas 1997).  

Different factors may affect the OHC. Low dispersibility, controlled denaturation, and high 

hydrophobicity seems to favor OHC in proteins (Li‐Chan and others 1985). Protein degradation 

to oligopeptides by enzymes during fermentation also has improved this property (Yu and others 

2007).  

The capacity of protein hydrolysates for holding fat has been reported by other authors. 

Sardinelle, zebra blenny, globy, and ray protein hydrolysates OHC were reported by Jemil and 

others (2014). Li‐Chan and others (1985) reported OHC for beef top round and rockfish fillet 

hydrolysates. Fat absorption values of herring by-products and capelin hydrolysates were 

reported by Sathivel and others (2003) and Shahidi and others (1995) respectively. However, 

there is limited available information about catfish skin hydrolysates oil holding capacity in the 

literature.  

2.8 Hydrolysates as antimicrobials 

Antimicrobial activity of peptides from meat and byproducts’ hydrolysates (Di Bernardini and 

others 2011) and fish sources (Najafian and Babji 2012) has been attributed to positively charged 

peptides able to form an amphipathic secondary structure in a membrane environment (Dathe 

and others 1997). These peptides bind to negatively charged molecules and substances in the cell 

membrane of pathogens (Yeaman and Yount 2003). 

The mode of action of antimicrobial peptide varies depending of the host nature. In gram 

negative bacteria, the antimicrobial activity of peptides goes through three stages: binding of the 

peptide to the bacteria’s surface, insertion, and destabilization of the cell membrane (Dathe and 

others 2001). The binding stage seems to be due to electrostatic attractions (Yeaman and Yount 

2003), and the penetration and the destabilization of the cell membrane seems to be caused by 
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the interaction of the hydrophobic helix surface of the peptide with the phospholipid layer in the 

cell membrane (Dathe and others 2001).  

Different mechanisms have been proposed for explaining the mode of action of the antimicrobial 

peptides. Brogden (2005) explains 3 models. The barrel-stave model (Fig. 2 A) suggests that 

peptides orient perpendicularly to the cell membrane and insert into the bilayer phospholipid 

membrane by the interaction between the hydrophobic areas of the peptides with the lipid region 

of the cell membrane.  

 

Fig. 2. Mechanism of antimicrobial peptides against gram positive and gram negative bacteria 

Source: (Wang and others 2015). 1 

The toroidal-pore model (Fig. 2 B) suggests the bending of the phospholipid’s polar region 

toward the peptides’ polar region perpendicularly aligned to the cell membrane surface. The 

carpet model (Fig. 2 C) suggests the parallel aggregation of peptides over the cell lipid bilayer 

through the interaction of hydrophilic regions of both peptides and phospholipid by electrostatic 

forces. In these 3 models, the peptides generate pores in the cell membrane and the bacteria will 

die due to cell lysis. On the other hand, the gram positive bacteria are affected on different ways. 



13 
 

The peptides bind to the cell surface by electrostatic interactions and affect the bacteria by 

altering enzymes responsible for the cell membrane synthesis (Fig. 2 D), maltose ABC receptors 

(Fig. 2 E), or causing an over-production of autolysin (Fig. 2 F) which deteriorates the cell 

membrane. In addition, antimicrobial peptides can alter the DNA transcription (Fig. 2 G) or the 

protein production (Fig. 2 H) in both gram positive and gram negative microorganisms causing 

the cell death (Wang and others 2015).     

Specificity of antimicrobial peptides toward pathogenic bacteria instead of human cells has been 

related (in part) to cell membrane composition. Most pathogenic bacteria have highly 

electronegative phospholipids (phosphatidylglycerol, cardiolipin, and phosphatidylserine) on the 

cell membrane compared to mammalian cytoplasmic membranes that usually have more neutral 

net charge phospholipids (phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin) 

(Yeaman and Yount 2003).  This characteristic may promote higher electrostatic attraction 

between bacteria’s cell membrane and cationic peptides.  

The role of electrostatic attraction in the antimicrobial effect of peptides makes it logical to 

hypothesize that the number of peptides’ net positive charges may influence the attraction. In 

fact, most of the antimicrobial peptides reported on the literature have a net charge between +2 to 

+9 (Yeaman and Yount 2003). Findings reported by Dathe and others (2001) suggest that 

increasing the positive net charges of cationic peptides (from +3 to +5) can make some peptides 

more active and selective against pathogenic bacteria rather than human cells as antimicrobials; 

however, the addition of more positive charges may cause the opposite effect probably due to the 

fixation of the peptide to the lipid head group of phospholipids inhibiting insertion and 

disturbance of the cell membrane (Yeaman and Yount 2003). These findings suggest that 

identification of peptide charges is highly important.      
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CHAPTER 3. MATERIALS AND METHODS. 

3.1 Materials  

Fresh catfish skin (CS) was obtained from a local seafood plant in Baton Rouge, LA, and 

transported to the pilot plant of the School of Nutrition and Food Sciences at LSU in an ice chest 

with ice. The CS was immediately vacuum packaged (Koch UV-550, Kansas City, MO, USA), 

frozen in an air-blast freezer at -20 °C, and kept at that temperature until used (no more than 2 

weeks). Food grade enzyme alkaline protease 380 MG (380,000 DAPU/g) was obtained from 

Enzyme Development Corporation (New York, NY). Unless otherwise specified, buffers, stains, 

and equipment used for SDS-PAGE analysis were Bio-Rad products (Bio-Rad Laboratories, 

Hercules, CA, USA). The media for bacteria growth was obtained from Neogen ® Corporation 

(Lansing, MI, USA). Gram positive and gram negative bacteria were obtained from the LSU 

AgCenter Food Safety and Microbiology lab (Baton Rouge, LA). Unless otherwise specified, all 

other chemicals used for analysis were obtained from Sigma-Aldrich ® (St. Louis, MO, USA).    

3.2 Methods 

3.2.1 Hydrolysates production 

Catfish skin hydrolysates were prepared according to the method described by Sathivel and 

others (2003) with modification of the centrifuge g force. CS was thawed overnight at 5 °C, 

cleaned, and ground using a Koch grinder (C/E6B0N, Kansas City, MO, USA) with a plate of 10 

mm diameter and holes of 0.3 mm diameter. Seven independent samples were prepared by 

homogenizing. For each sample, 100 g of ground CS were mixed with 100 mL distilled water 

using a Waring commercial blender (model 51BL32 700, Waring Laboratory, Torrington, CO) 

for 2 min. The homogenized sample was poured into an Erlenmeyer flask 500 mL capacity, and 

the temperature was increased to 60 °C using a hot plate stirrer with constant agitation. At 60 °C, 

alkaline protease enzyme (380,000 DAPU/g) was added at 0.5 % w/w protein of catfish skin 
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(0.104 g enzyme/100 g CS). The sample was placed in a shaker at 60 °C with constant agitation 

at 150 rpm. Each of the seven samples was removed from the shaker at different reaction times 

(0.5, 1, 2, 3, 4, 5 and 6 h). The enzyme was inactivated by increasing and keeping the sample’s 

temperature at 86 ± 0.5 °C for 20 min in a water bath.  The degree of hydrolysis was measured as 

described below. Then, the sample was centrifuged at 3110 x g (model J2-HC, Beckman 

Instruments, Inc., Palo Alto, CA) for 15 min. The supernatant, that in fact constitutes the catfish 

skin hydrolysate, was removed carefully and filtered through a double layer of cheese cloth. The 

CSH production was replicated 3 times using 3 independent batches of catfish skin, and after the 

filtering step the color and the pH of each CSH were measured by using the methods described 

in the section 3.2.2. For the measurement of other properties, the CSH were frozen at -40 °C 

using a cabinet-type cryogenic freezer with liquid nitrogen (Air Liquide, Houston, TX, USA) and 

subsequently freeze-dried in a pilot lyophilizer (Genesis 35XL, VirTis, Gardiner, NY, USA). 

Dried samples were kept into Whirl-pac ® bags in a desiccator until analyzed. The nomenclature 

“CSH #” was used to describe “catfish skin hydrolysate generated at # h of hydrolysis time.” 

3.2.2 Degree of hydrolysis (DH), color, and pH of fresh CSH 

The DH was evaluated following the method described by Nielsen and others (2001). O-

phthaldialdehyde (OPA) reactant solution was prepared by diluting 7.62 g sodium tetraborate 

decahydrate and 0.20 g of sodium-dodecyl-sulfate in 150 mL of distilled water in a 400 mL 

flask. Four mL of ethanol (95%) was used to dilute 0.16 g of o-phthaldialdehyde, and it was 

added to the previous mixture. The OPA-reactant solution was completed by adding 0.176 g 

dithiothreitol (DTT) and distilled water to make 200 mL of solution. A serine standard solution 

(0.9516 serine-NH2 meqv/L) was prepared by diluting 0.05 g of serine in 500 mL distilled water. 

After enzyme inactivation, an aliquot of 0.1 to 1 g of the sample was diluted by adding distilled 
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water up to make a total of 100 mL. Three mL of OPA-reactant solution were mixed with 400 

µL of the diluted sample. After 2 min standing at room temperature, the absorbance (Abs) of the 

OPA reactant–sample mixture was read using a Thermo Scientific Genesys® 20 

spectrophotometer at 340 nm. Four hundred µL of the serine standard solution (standard) were 

mixed with 3 mL OPA-reactant and analyzed in the same way as the sample. For the blank, 400 

µL of distilled water were used for reacting with OPA-reactant solution and analyzed as 

previously described. Equation 1 was used to calculate the serine-NH2 milliequivalents (meqv) 

per gram of protein found in the hydrolyzed sample after enzyme inactivation. 

             (
                    

                      )        
    

 
     

   

   
              

Where serine-NH2= meqv of serine per gram of protein; 0.1= total volume of the diluted 

sample in liters; X= g of aliquot (range from 0.1 to 1 g); 0.9516 meqv/L= serine-NH2 

concentration (milliequivalents per liter) in the serine standard solution; P= is the protein content 

(%) of the sample. Thus, 100/(X*P) = grams of protein.  

The serine-NH2 meqv/g protein result was used for calculating h (equivalent of cleaved 

peptide bonds) (eq. 2). The values of α and β in equation 2 come from a linear equation reported 

by Adler-Nissen (1986) that explains the relationship between h and serine-NH2 during fish 

protein hydrolysis using alcalase protease. Serine-NH2 is a predictor of h. Constant values of 

1.00 and 0.40 for α and β respectively assist to explain the linear relationship of Serine-NH2 and 

h during the hydrolysis of fish protein using alcalase protease.  

   
             

 
              

The DH (%) was calculated (Eq. 3) by dividing h by htot times 100. The denominator htot is the 

total peptide bonds equivalents found in the native protein under evaluation. That value is based 
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on the amino acid composition reported in the literature for the evaluated protein (Adler-Nissen 

1986). The htot value for fish protein is 8.6. 

        
 

    
                      

The color of fresh and freeze-dried CSH was determined with a colorimeter (LabScan XE, 

Hunter Associates Laboratory, Inc., Reston, VA, USA). White and black tiles were using to 

standardize the colorimeter. Four mL (fresh) or 0.1 to 1 g (freeze-dried) of CSH obtained at the 

different times of hydrolysis were poured into a plastic tray and placed under the colorimeter 

lens for reading the color. The color was obtained in a Lab scale where L=0 is black, L=100 is 

white, a= “+” value is redness or “-” value is greenness, and b= “+” value is yellowness or “-” 

value is blueness.   

The pH of the fresh CSH was measured by using a SympHony pH-meter (SB70P, VWR, 

Radnor, PA, USA) by directly placing the electrode into a CSH solution (200 mg/mL) prepared 

for each of the hydrolysates obtained after different times of hydrolysis with alkaline protease. 

3.2.3 Proximate composition  

Moisture determination of freeze-dried CSH was done by using a CEM moisture analyzer (Smart 

System 5, CEM Corporation, Matthews, NC, USA). Protein content was estimated as 5.82 times 

the nitrogen content (Sosulski and Imafidon 1990) determined by Dumas combustion in a 

TruSpec nitrogen analyzer (Leco, MI, USA) at the Soil Testing and Plant Analysis Lab., LSU 

AgCenter. Lipid content was determined by the Soxhlet extraction method AOAC 960.39 

(AOAC 1995) using petroleum ether as the solvent. The ash content was determined using a 

muffle furnace at 500 °C overnight. Carbohydrate content was estimated by difference between 

total solids and the determinations of fat, protein, and ash.    
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3.2.4 Free Radical Scavenging activity (FRSA) 

FRSA was analyzed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method described by 

Elavarasan and others (2014) with some modifications. DPPH is a free radical of purple color 

whose intensity can be read with a spectrophotometer at 517 nm. When DPPH reacts with an 

antioxidant, the DPPH is scavenged and the color intensity is reduced. The reaction between 

DPPH and any antioxidant solution should take place in the dark because the color intensity of 

DPPH is light sensitive.  A DPPH solution was prepared by diluting 0.0039 g of DPPH in 100 

mL ethanol (purity 95%) for a final DPPH concentration of 0.1 mM. Trolox stock solution was 

made by diluting 0.020 g of trolox in 100 mL ethanol (purity 95 %) for a final trolox 

concentration of 800 µM. Subsequently, 1.5 mL of this stock solution was diluted in 18.5 mL 

ethanol (purity 95%) in order to prepare the working solution at 60 µM trolox concentration. A 

stock solution for each CSH produced at the different hydrolysis times was made by diluting 

1.25 g freeze-dried CSH in 5 mL distilled water for a final concentration of 250 mg CSH/mL. 

Four solutions at different CSH concentrations (50, 100, 150, and 200 mg/mL) were made by 

diluting the stock solution of each CSH with distilled water. The resultant solutions and the stock 

solution of each CSH were diluted by a factor of 10. From each of the resultant diluted solutions, 

1.5 mL was mixed in a test tube with 1.5 mL of DPPH solution using a vortex at 2200 rpm for 1 

min and the resultant mixture’s reaction took place in the dark for 30 min at room temperature 

(22 °C). Absorbance of the mixtures was measured at 517 nm using a Thermo Scientific 

Genesys® 20 spectrophotometer. The trolox working solution was diluted in concentrations 

ranging from 0 to 60 µM using distilled water. The resultant trolox solutions were mixed with 

DPPH solution and analyzed following the same procedure as explained for the CSH samples. A 

standard curve was prepared from the results of absorbance from the reaction between DPPH 
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solution and the different concentrations of trolox working solution. A linear equation (Eq. 4) 

was obtained (R
2
≥0.95) for the absorbance as a function of trolox concentration. This equation 

was used for calculating the FRSA, expressed as millimol trolox equivalent per liter (mMol 

Teq/L) from the absorbance obtained after the reaction between DPPH solution and each of the 

CSH produced at different hydrolysis times (0.5, 1, 2, 3, 4, 5, and 6 h) at the different 

concentrations (50, 100, 150, 200, and 250 mg CSH/mL). The result was multiplied by 10 to 

account for the dilution made in advance. 

                    R
2
=0.9661 (Eq. 4) 

Where X= mMol Teq/L; Y= absorbance generated after 30 min of reaction between CSH and 

DPPH in dark; -0.5026 and -0.0087= constants for the slope and intercept of the line. 

3.2.5 Emulsion stability (ES) 

The capacity of CSH to keep an emulsion stable was evaluated according to the method of 

Kristinsson and Rasco (2000a). A sample of 0.500 g CSH was weighed and placed in a beaker 

(50 mL capacity). Approximately 35 mL of a 0.1 M NaCl solution was added to the beaker, and 

the CSH was diluted with constant agitation with a stirrer plate for 2 min. The resulting solution 

was transferred to a volumetric flask and additional NaCl solution was added until a total volume 

of 50 mL was obtained. The resulting CSH solution and an equal volume of soybean oil were 

blended in a commercial blender (model 51BL32 700, Waring Laboratory, Torrington, CO) for 2 

min to obtain 100 mL of oil in water (O/W) emulsion. Immediately, three 25 mL aliquots of the 

resulting O/W emulsion were poured into graduated cylinders (25 mL capacity), and after 15 min 

of rest at ambient temperature (22 °C) the aqueous volume was read on the cylinder scale (mL). 

ES was calculated with equation 5. 

                        
     

  
       (Eq. 5) 
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Where Tv is total volume (mL) of the emulsion initially poured into the graduated 

cylinder and Av is the aqueous volume observed after 15 min of rest. The difference 

between Tv and Av represent the volume of emulsion that remained stable after 15 min of 

rest. 

3.2.6 Micro-structure of the stable phase 

Transmission electron microscopy (TEM) was used in an endeavor to look at the interfacial 

characteristics and micro-structure of the oil contained in the stable phase of the emulsions from 

the ES analysis. Five mL were taken from an emulsion made following the procedure used for 

ES analysis using CSH at 0.5 and 6 h of hydrolysis time (the ones that possessed the lowest and 

highest ES respectively). No colorant was added to the oil. From the resulting sample, 5 µL were 

placed over a glow discharge carbon filmed grid (CF300-Cu, Electron Microscopy Sciences, 

Hatfield, PA, USA) followed by 2 min of stabilization. Excess sample was removed by carefully 

placing the carbon grid on a filter paper (Whatman # 1). The grid containing the sample was 

stained with a solution of 2% aqueous uranyl acetate (Electron Microscopy Sciences, Hatfield, 

PA, USA) by placing the grid for 1 min over 50 µL of the staining solution previously poured on 

a parafilm wax paper. After that, the carbon grid was removed from the surface of the staining 

solution, and the excess of staining solution was removed by placing the carbon grid on a filter 

paper (Whatman # 1). These carbon grids containing the stained sample were placed into a Jeol-

USA TEM (JEM-1400, Peabody, MA, USA). Pictures were obtained using a US1000XP 2 

camera at 6000x magnification and beam energy of 120 kV. An emulsion of 10 mL soybean oil 

and 90 mL 0.1 M NaCl was made by adding 1.125% of commercial Tween 20 emulsifier. A 

TEM picture of this last emulsion was used as a control for microstructure comparison. 
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3.2.7 Oil holding capacity (OHC) 

The effect of DH on OHC of CSH was evaluated according to the method of Šližytė and others 

(2005) with some modifications. Ten mL of soybean oil were added to 0.500 g of freeze-dried 

CSH in an Eppendorf tube (pre-weighed) at room temperature (22 °C). The mixture was kept at 

room temperature for 30 min and stirred with a small spatula every 10 min during this period. 

After that, the samples were centrifuged at 2,450 x g for 25 min while holding the temperature in 

a range of 20 to 25 °C. After pouring off the supernatant (non-retained oil), the weight of the tube 

containing the CSH plus the retained oil was measured. The amount of oil retained by 0.5 g CSH 

was calculated by weight difference between the latter weight and the sum of the weight of the 

empty tube plus the weight of the CSH sample. Because some oil attached to the Eppendorf tube 

wall, a correction was determined by measuring the weight of the residual oil after adding and 

pouring 10 mL of oil in an Eppendorf tube. This factor was subtracted from all the values of 

retained oil/0.5 g CSH. OHC was calculated by multiplying the value of retained oil/ 0.5 g CSH 

by 2, and the result was reported as g retained oil/g of CSH. The density of the oil was 

determined by weighing 6 replicates of 10 mL soybean oil samples.   

3.2.8 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

MW profiles of the CSH samples produced at different hydrolysis reaction times were generated 

through an SDS-PAGE analysis method according to Yin and others (2010) with some 

modifications. A CSH solution (2 mg CSH/mL) was made using distilled water for each of the 

CSH samples. From the resulting solutions and for each sample, ten µL were mixed with the 

same volume of tricine sample buffer and boiled at 95 °C for 5 min in a dry bath (AccuBlock ™ 

digital dry bath, Labnet International, Inc., Edison, NJ). After 1 min of rest at room temperature 

(22 °C), the samples were centrifuged for 10 s (Eppendorf Centrifuge 5415 D, Hamburg, DK). A 
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precast polyacrylamide gel (10-20% Mini-protean tris-tricine gel) with wells for loading 10 

individual samples was placed in a single sided vertical gel electrophoresis system filled with 

10% running buffer solution (10x Tris/Tricine/SDS) until the gel was completely covered. 

Subsequently, 5 µL of a pre-stained protein standard (Precision plus protein ™ Dual Xtra 2-250 

kD) were loaded in the first well of the precast gel, and 10 µL of the centrifuged CSH samples (7 

in total) were loaded in the subsequent wells (one sample per well) following an ascending order 

based on the time of hydrolysis used for producing the CSH. PowerPac Basic ™ equipment was 

used as a source of energy for the anode (- pole) and cathode (+ pole) in the electrophoresis 

system. After 100 min of running, the gel was carefully removed and placed in a case with a 

prepared buffer solution of distilled water, methanol, and acetic acid in a ratio at 5:4:1 for 30 min 

over a bench rocker (S2025B, Labnet international, Inc., Edison, NJ) at 70 RPM. The fixing 

buffer was removed and replaced with Coomassie stain (Bio-Safe™ Coomassie G-250 Stain). 

After 2 h, the stain was replaced by distilled water and the gel was washed overnight. GelDoc ™ 

EZ Imager was used for taking a gel picture and visualizing sample and standard protein bands 

using the Image Lab 4.0.1 program.    

3.2.9 Disk inhibition antimicrobial assay  

Based on the antioxidant activity, 3 CSH were selected (the ones generated at 4, 5, and 6 h of 

hydrolysis) for testing their antimicrobial capacity against Gram positive Bacillus cereus, 

Staphylococcus aureus, and Listeria monocytogenes and Gram negative Escherichia coli 

O157:H7. The agar-disk diffusion method according to Jang and others (2008) with 

modifications was used to determine the effectiveness of the CSH. Muller Hilton Broth (MHB, 

21 g/L of distilled water), regular agar (21 g MHB and 16 g Agar per liter), and soft agar (21 g 

BHI and 8 g agar per liter) were made. Each strain of the bacteria mentioned before was isolated 
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and activated as explained below. A loop of pure bacteria culture was placed into an Eppendorf 

tube (15 mL capacity) containing 10 mL of sterile MHB. After 10 seconds of mixing with a 

vortex at 2200 RPM, MHB tubes containing B. cereus were incubated for 24 h at 30 °C, and the 

tubes containing the other bacteria were incubated for 24 h at 37 °C. Two plates with selective 

media for each bacterium under analysis were inoculated with a loop of incubated MHB using 

the streak technique. These plates were incubated under the same time and conditions previously 

described. Isolated colonies were obtained after the incubation period. One isolated colony of 

each bacterium was placed in an Eppendorf tube containing 10 mL sterile MHB and incubated 

for 7 h at temperatures previously described. The result was an activated culture (AC) for each 

bacterium containing about 10
6
 cells per mL. 

After sterilization, approximately 10 mL of agar was poured into petri dishes and allowed to 

solidify at room temperature. Tubes with 10 mL soft agar were sterilized, inoculated with 100 µL 

of AC, and vortexed for 10 s. The content of each tube was poured into petri dishes with a first 

layer of agar prepared in advance, and the tube contents were solidified at room temperature.  

A solution (5 mL) of each of the 3 selected CSH were made diluting freeze-dried CSH into 

distilled water for a final concentration of 200 mg/mL. Subsequently, the resulting solution was 

filtered using 0.45 µm syringe filters. One set of filtered solutions from the 3 selected CSH was 

sterilized by autoclave. A second set was just filtered using the syringe filter mentioned 

previously. 

A blank sterile paper disk (BBL 
TM

 Becton, Dickinson and Company) 6 mm diameter was 

saturated with 25 µL of a CSH solution (either filtered and autoclaved, or just filtered), and 

immediately placed on the surface of the solidified soft agar. This was done for each of the CSH 

solutions for each of the treatments (filtered and autoclaved or just filtered) and for each 
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bacterium. The Petri dishes were incubated at 30 °C for B. cereus and 37 °C for the other 

bacteria for 24 h. The procedure is summarized in the next figure (Fig 3). 

 

Fig. 3. Disk inhibition assay for testing the antimicrobial capacity of CSH. 1 

The result was graded as positive (+) or negative (-) based on the presence or absence of 

antimicrobial activity respectively. For CSH with antimicrobial activity, an inhibition zone (area 

with no bacteria growth) was observed around the disk after the incubation period.  

3.2.10 Peptide mass profile of CSH 

Peptide masses in CSH after different hydrolysis times and in a control were identified using 

High Performance Liquid Chromatography and Mass Spectroscopy (HPLC-MS). The control 

was CSH produced under the same procedure previously stated except that the enzyme was 

immediately inactivated after its addition to the catfish skin/distilled water homogenate. Freeze-

dried CSH samples were diluted in distilled water (5.7 mg/mL), and 10 µL of the resultant 

solution were injected using an Alliance 2695 HPLC and LCT Premier XE mass spectrometer 

(Waters Corp., Milford, MA, USA) onto a Luna C18 (3 µm, 2x50mm) column operated at 30 °C 
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and 0.3 mL/min flow rate for readout by a photodiode array detector (Waters 996, Waters Corp., 

Milford, MA, USA). A mobile phase with a gradient of 10-30 % Acetonitrile/0.1% formic acid 

over 7 min was used to elute the peptides. The mass spectrometer was equipped with an ESI 

source operated in positive and negative mode scanned from 200-2000 mass/charge (m/z) ratio. 

Results were analyzed with the program MassLynx V4.1 SCN639 (Waters Corp., Milford, MA, 

USA).  

3.2.11 Peptide sequence and charge 

Liquid chromatography and tandem mass spectrometry detection (LC-MS/MS) was used to 

analyze a selected CSH possessing antioxidant and antimicrobial activity. Unless otherwise 

specified, all the equipment used was Agilent technologies brand (Santa Clara, CA, USA). The 

diluted CSH sample (5.7 mg/mL) was filtered through a 0.45 µm filter paper and injected into a 

HPLC (1200 Series) equipped with a large capacity chip as the stationary phase (G4240/62010 

160 nL enrichment, analytical 75 um x 150 mm, Zorbax 300SB-C18 5um) at 4 µL/min flow rate. 

The mobile phase used in the HPLC was composed of a mixture of two solutions: solution A, 0.1 

% Formic acid; and solution B, 90% acetonitrile with 0.1 % formic acid. The composition of the 

mobile phase changed throughout the injection time. From 0 to 2 min injection the mobile phase 

composition was 3% solution B and 97 % solution A; from 2 to 30 min it was 10% B and 90 % 

A; from 30 to 31 min 50% B and 50 % A; from 31 to 36 min 100% B; finally, from 36 to 40 min 

the mobile phase composition was 3% B and 97% A. Stop time was 40 min with a post-time of 

10 min. The flow rate of the sample from the HPLC chip (stationary phase) toward the mass 

spectrometer (6520 Accurate-Mass Q-TOF LC/MS) was 0.40 µL/min. The mass spec was 

operated in a range for peptide molecular weight/charge (m/z) ratio of 200 to 2000. The data 

from the LC-MS/MS was analyzed with the protein identification software Agilent Spectrum 
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Mill. Results included mass (m), charge (z), and partial sequences of the peptides found in the 

analyzed CSH sample. 

3.2.12 Statistical analysis 

Analyses were done in triplicate and the results were statistically analyzed by using Statistical 

Analysis System (SAS, Version 9.2, SAS Institute Inc., Cary, NC., USA). One-way or two-way 

analysis of variance (ANOVA) and Tukey’s mean separation test were used to detect statistical 

differences (α=0.05).  

CHAPTER 4. RESULTS AND DISCUSSION 

4.1 DH, pH, and Color of CSH  

Table 1 shows the degree of hydrolysis (DH), pH, and color of catfish skin hydrolysates as a 

function of duration of hydrolysis.  

Table 1. Degree of hydrolysis (DH), pH, and color of fresh CSH as a function of time of 

hydrolysis with alkaline protease. 1 

Time of 

hydrolysis (h) 
DH (%) pH 

Color 

L a b 

Initial - 7.09±0.02
A 

- - - 

0.5 14.25±0.45
D
 6.80± 0.02

B 
54.12±0.43

AB 
-2.09±0.11

B 
6.11±0.16

D 

1 16.83±1.13
CD

 6.80± 0.02
B 

54.77±1.64
A 

-2.06±0.04
B 

6.08±1.13
D 

2 20.14±0.14
BC

 6.72±0.01
C 

53.63±0.46
AB 

-2.12±0.05
B 

6.95±0.38
D 

3 20.59±2.56
BC

 6.66±0.01
D 

50.96±1.23
C 

-1.99±0.08
B 

9.98±0.89
C 

4 22.78±2.21
AB

 6.62±0.02
D 

52.27±0.51
BC 

-2.49±0.01
C 

12.23±0.74
B 

5 26.63±0.27
A
 6.54±0.02

E 
47.43±0.31

C 
-1.74±0.06

A 
13.77±0.47

B 

6 26.65±1.36
A
 6.48±0.03

F 
47±0.12

D 
-1.72±0.06

A 
17.04±0.18

A 

A-F
Means±SD with no letters in common in the same column are significantly different (P<0.05)
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The highest DH was registered after 5 h of enzymatic reaction with alkaline protease (26.65±1.36 

%). DH after 1 and 2 h in our study (16.83±1.13 and 20.14±0.14 respectively) are in agreement 

with DH generated by alkaline protease on salmon and cod without pH modification (Liaset and 

others 2000). The initial pH of the homogenized catfish skin with distilled water was 7.09±0.02, 

and it decreased through until a pH of 6.48±0.03 was obtained after 6 h of enzymatic hydrolysis. 

Significant changes (P<0.05) compared to the previous pH were observed after 0.5, 2, 3, 5, and 6 

h of hydrolysis showing a tendency toward lower values.  The generation of free protons as a 

result of low protonation of the amino group and high dissociation of the carboxyl group after the 

hydrolysis of peptide bonds may explain the tendency observed in the pH of CSH influenced by 

the duration of the hydrolysis (Adler-Nissen 1986).  

Rapid initial hydrolysis was observed followed by a lower rate of hydrolysis. Similar patterns 

have been reported by other authors (Jia and others 2010; Liceaga‐Gesualdo and Li‐Chan 1999; 

Adler-Nissen 1986) . This reduction of hydrolysis rate could be due to enzyme inhibition by 

hydrolysis products (Valencia and others 2014) which also reduces the recovery of soluble 

protein (Shahidi and others 1995).   

The color of the CSH was affected by the extent of the hydrolysis. Longer hydrolysis times 

produced darker hydrolysates. This can be observed by a significant reduction (P<0.05) of the L 

value of the CSH generated at 3 and 6 h of enzymatic hydrolysis. The general tendency of L 

values was towards lower values, excepting the value obtained at 4 h hydrolysis. Darker color in 

CSH may be related to the oxidation of pigments naturally found in the skin such as myoglobin 

and melanin (Benjakul and Morrissey 1997; You and others 2009). A significant reduction 

(p>0.05) of the a value was observed in the hydrolysate obtained at 4 h of enzymatic hydrolysis; 

however, this value increased significantly (p<0.05) at 5 h of enzymatic hydrolysis compared to 
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the hydrolysates obtained at the immediately previous time of hydrolysis. On the other hand, 

opposite behavior was observed for the b value increasing significantly (p<0.05) at 3, 4, and 6 h 

of hydrolysis compared to the hydrolysates obtained at shorter times of hydrolysis. These 

changes in b value indicate the production of more yellow CSH which also was visually 

perceived. 

4.2 Proximate analysis and color of Freeze-dried CSH 

The proximate composition of the freeze-dried samples of CS and CSH generated as a function 

of hydrolysis is shown on Table 2. Compare to the CS composition, all the CSH had significantly 

(P<0.05) higher moisture, lower solids, higher protein, lower fat, and higher ash. The 

carbohydrate content of the CSH at 1 h of hydrolysis was significantly (P<0.05) higher than CS, 

and the rest of CSH were not significantly different (P>0.05) to CS. The moisture content of the 

CSH at 5 h of hydrolysis was significantly higher (P<0.05) than the CSH at 2 h. The opposite 

was observed for the solids content. Solid content of CSH at 2 h was significantly higher 

(P<0.05) than the CSH at 5 h. For both solids and moisture, CSH at 2 h and 5 h were not 

significantly different (P>0.05) to the rest of hydrolysates. CSH obtained at extended time of 

hydrolysis (5 and 6 h) had significantly lower (P<0.05) protein content than CSH at 0.5, 1, 2, and 

4 h, and the CSH at 0.5 had significantly higher (P<0.05) protein content than CSH at 1 and 3 h 

of hydrolysis. It has been suggested that a reduction of the enzyme activity may be the cause of 

lower protein recovery at extended periods of hydrolysis (Valencia and others 2014; Shahidi and 

others 1995). The fat content showed a tendency to increase when the time of hydrolysis 

increased. The fat content of CSH at 2, 3, 5, and 6 h of hydrolysis was significantly higher 

(P<0.05) than the CSH at 0.5 h of hydrolysis; nevertheless, this latter was not significantly 

different (P>0.05) to the CSH at 1 and 4 h. No significant differences (P>0.05) in fat content 

were found among the CSH obtained at 1, 2, 3, 4, and 5 h of hydrolysis. The increase in fat 
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content of CSH throughout the time of hydrolysis could be due (in part) to the generation of 

peptides with better emulsion properties throughout the time of hydrolysis. It’s likely that these 

peptides kept the fat in a stable emulsion which is supported by the emulsion stability results 

reported on section 4.4 of this document. No significant differences (P>0.05) were observed for 

ash and carbohydrate among the CSH at the different times of hydrolysis.
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Table 2. Proximate composition of freeze-dried catfish skin and proximate composition and color of freeze-dried CSH as a function of 

hydrolysis time. 1 

 Measurement Catfish skin 
Time of hydrolysis (h) 

0.5 1 2 3 4 5 6 

Moisture (%) 5.13±0.28
C 

11.02±0.96
AB 

12.20±0.20
AB 

10.39±0.99
B 

11.30±0.26
AB 

10.99±0.61
AB 

13.13±1.79
A 

13.01±1.37
AB 

Solids (%)
1
 94.87±0.28

A 
88.98±0.96

BC 
87.80±0.20

BC 
89.61±0.99

B 
88.70±0.26

BC 
89.01±0.61

BC 
86.87±1.79

C 
86.99±1.37

BC 

Protein (%)
2 

68.99±0.30
F 

84.71±1.29
A 

80.96±0.28
DC 

83.67±1.67
ABC 

81.82±0.39
BCD 

83.74±0.39
AB 

79.07±1.81
DE 

77.73±1.11
E 

Fat (%) 24.71±0.78
A 

0.64±0.42
D 

2.14±0.40
CD 

3.57±1.38
BC 

4.16±0.81
BC 

1.78±1.01
CD 

4.40±0.44
BC 

5.10±1.55
B 

Ash (%) 0.71±0.07
B 

0.85±0.02
A 

0.84±0.06
A 

0.87±0.05
A 

0.84±0.01
A 

0.89±0.01
A 

0.83±0.04
A 

0.82±0.00
A 

Carbohydrate 

(%)
3
 

0.46±0.42
B 

2.77±0.96
AB 

3.86±0.43
A 

1.50±1.42
AB 

1.87±0.77
AB 

2.60±0.94
AB 

2.57±0.68
AB 

3.34±1.75
AB 

Color 

L - 

 

82.57±2.09
A 

81.89±3.04
A 

81.98±0.76
A 

80.47±1.01
AB 

78.83±1.16
AB 

76.34±1.10
B 

71.01±1.34
C 

a - 

 

-0.55±0.05
A 

-0.66±0.07
A 

-0.60±0.03
A 

-0.62±0.05
A 

-0.69±0.05
A 

-0.54±0.05
A 

-0.92±0.09
B 

b - 

 

4.72±0.43
D 

5.23±1.93
D 

5.02±0.17
CD 

5.22±0.40
CD 

6.16±0.32
BC 

5.15±0.05
B 

10.6±0.12
A 

A-F
Means±SD with no letters in common in the same row are significantly different (P<0.05) 

1
Values obtained by the subtraction of the moisture content from 100. 

2
Nitrogen value times 5.82. 

3
Values obtained by the subtraction of the protein, fat, and ash content from the total solids content.  
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The color of freeze-dried CSH showed similar tendency as the color of the CSH in solution. For 

the lightness, the values obtained for the CSH generated at 5 h of hydrolysis were significantly 

lower than those obtained for the CSH at 0.5, 1, and 2 h of hydrolysis. Moreover, the CSH 

obtained at 6 h of hydrolysis was darker than the rest of hydrolysates. As mentioned before, 

oxidation of pigments contributes to darker color of hydrolysates (Benjakul and Morrissey 1997; 

You and others 2009). Additionally, Maillard browning reaction (Wasswa and others 2007; Jemil 

and others 2014) and lipid oxidation (You and others 2009) may contribute to darker protein 

hydrolysates during hydrolysis. The fat content could be responsible (in part) for the increase of 

yellowness (higher “b” value) due to fat soluble pigments such as carotenoids (Walker and others 

1990). Our CSH are lighter, more red, and less yellow (except the CSH at 6 h) compared to the 

CSH reported by Yin and others (2010).  

4.3 Free-Radical Scavenging Activity (FRSA) 

The FRSA of each CSH at 5 different concentrations is shown in Table 3. The results are 

expressed in millimol trolox equivalent per liter (mM Teq/L).  

Negative values of FRSA were obtained at 0.5 h hydrolysis time for CSH concentrations of 50 

mg/mL, at 1 h hydrolysis for concentrations equal of above of 100 mg/mL, and at 2 and 3 h for 

200 and 250 mg/mL. All other values of FRSA were positive. However, the concentrations with 

negative FRSA values produced a visual change in color of the DPPH solution from purple to 

yellow. This change in color is caused by the reduction of the DPPH by antioxidants (Marxen 

and others 2007), but it was not detected in the spectrophotometer at 517 nm wavelength. This 

indicates the presence of compounds in the CSH causing interference in this colorimetric-UV 

method. It is known that antioxidants such as α-tocopherol (Marxen and others 2007) and 

carotenoids (Britton 1995), and  pigments found in plant extracts (Bhandari and others 2010) and 

food (Yamaguchi and others 1998) may interfere with the absorbance of DPPH leading to failure 
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in detection of changes in DPPH absorbance or producing higher values (Marxen and others 

2007). Microscopic algae, which constitute a primary component of the ecosystem in a fish 

production pond (Brunson and others 1994), also contain pigments such as carotenoids that cause 

interference in the DPPH antioxidant analysis (Marxen and others 2007). Channel catfish can 

accumulate carotenoids (ex. lutein, zeaxanthin, canthaxanthin, and astaxanthin) in the skin when 

carotenoids are part of their diet (Li and others 2007), and this could be a possible source of 

interference in our results; however, it was not confirmed. 

Table 3. FRSA (mM Teq/L) of different concentrations of CSH as a function of hydrolysis time 

(ToH). 1 

ToH 

(h) 

CSH concentration in mg/mL of distilled water 

50 100 150 200 250 

0.5 -64.83±19.94
Cc 

-10.80±22.90
Bb 

10.65±6.74
Bd 

63.14±1.76
Ac 

90.73±17.44
Ab 

1 58.93±12.29
Aa 

-83.98±24.71
Bc 

-134.94±11.08
Ce 

-145.67±19.72
Cf 

-138.39±11.49
Ce 

2 29.43±2.30
Ab 

17.55±6.74
Ab 

35.17±19.64
Ad 

-87.82±35.07
Be 

-170.19±11.51
Cf 

3 63.91±5.01
Ca 

107.59±3.04
Aa 

83.83±11.57
Bc 

-6.21±6.99
Dd 

-72.11±1.76
Ed 

4 59.31±1.99
Da 

107.59±8.05
Ba 

122.91±4.79
Ab 

77.7±1.99
Cc 

17.55±6.54
Ec 

5 61.61±3.45
Da 

131.34±0.66
Ca 

169.66±6.40
Ba 

193.03±4.79
Aa 

162.38±5.43
Ba 

6 54.33±4.65
Dab 

132.11±4.04
Ba 

163.14±19.55
Aa 

133.64±2.89
Bb 

105.29±2.30
Cb 

A-E
Means±SD with no letters in common within rows were significantly different (P<0.05) 

a-f 
Means±SD with no letters in common within columns were significantly different (P<0.05) 

 

The FRSA of the CSH was influenced by the time of hydrolysis. All the results for scavenging 

capacity obtained from CSH hydrolyzed for at least 4 h were positive for all of the 

concentrations. FRSA values were significantly higher (P<0.05) for hydrolyzed for 4 to 6 h than 

for CSH obtained at lower hydrolysis times except for the two lowest concentrations evaluated in 
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this experiment were used (50 and 100 mg CSH/mL distilled water). This is probably due to the 

higher quantity of protons generated during longer hydrolysis times, which is supported by the 

significant (P<0.05) reduction of the pH during the hydrolysis process. These protons could be 

neutralizing the DPPH free radicals during this antioxidant analysis.  

The existence of a peak FRSA after certain time of hydrolysis and the decrease of FRSA after 

this peak has been reported previously for loach (You and others 2009), round scad (Thiansilakul 

and others 2007), and mackerel (Wu and others 2003) hydrolysates. This tendency is due (in 

part) to the hydrolysis of short peptides to a large quantity of free amino acids (Gbogouri and 

others 2004; Wu and others 2003; Benjakul and Morrissey 1997) during extended periods of 

hydrolysis. In the current study, the highest FRSA occurred for CSH with concentrations of 200 

and 250 mg/mL at 5 h enzymatic hydrolysis followed by significantly lower (P<0.05) FRSA 

values at 6 h of hydrolysis. A similar effect (increase, peak, and decrease) was noted for the 

effect of concentration at a given hydrolysis time. The FRSA peak for the CSH generated at 3, 4, 

5, and 6 h was at the concentration of 100, 150, 200, and 150 mg/mL respectively. A negative 

peak was observed at 1 h hydrolysis time for the concentration of 200 mg/mL while for CSH at 

0.5 h increments in the concentration caused significant increments (P<0.05) in the FRSA value 

(excepting from 100 to 150 mg/mL concentration). No specific trend or peak was observed at 2 h 

hydrolysis time.  

FRSA of hydrolysates has been linked to amino acid sequences as well as the constituent amino 

acids (Chen and others 1996). Proton-donation ability of certain amino acids such as histidine 

seems to favor the scavenging capacity of protein hydrolysates (Mendis and others 2005). In 

addition to amino acid composition and sequence, DH also affects the soluble protein recovery 
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which may change the concentration of peptides (Yasumatsu and others 1972) reducing FRSA of 

hydrolysates exposed to longer periods of hydrolysis (Thiansilakul and others 2007).  

4.4 Emulsion stability (ES) and oil holding capacity (OHC)  

Results of ES and OHC of CSH are presented in Table 4. Increased degree of hydrolysis had a 

positive effect on the emulsion stability of CSH.  

Table 4. Emulsion stability (ES) and oil holding capacity (OHC) of catfish skin hydrolysates 

influenced by the degree of hydrolysis. 1 

 Time of 

hydrolysis (h) DH (%) ES (%) 

OHC (g retained oil/g 

CSH) 

0.5 14.25±0.45
D
 51.33±1.15

d
 7.72±0.47

a
 

1 16.83±1.13
CD

 54.00±2.00
d
 7.69±0.39

a
 

2 20.14±0.14
BC

 61.33±1.15
c
 7.30±0.45

ab
 

3 20.59±2.56
BC

 74.67±2.31
b
 6.74±0.52

ab
 

4 22.78±2.21
AB

 76.67±2.31
ab

 6.17±0.24
bc

 

5 26.63±0.27
A
 82.00±2.00

a
 5.54±0.54

cd
 

6 26.65±1.36
A
 77.33±2.31

ab
 4.69±0.32

d
 

a-d
Means±SD with with no letters in common in the same column are significantly different (P<0.05) 

 

Maximum values of ES were 82.00±2.00% obtained after 5 h enzymatic hydrolysis with a DH of 

26.63±0.27%. However, it was not significantly different (P>0.05) from the ES obtained by CSH 

produced at 4 and 6 h of hydrolysis probably influenced by the DH that also did not show 

significant differences (P>0.05) among these CSH. ES produced by the CSH obtained at 0.5, 1, 

and 2 h of hydrolysis was significantly lower (P<0.05) than the ES produced by CSH hydrolyzed 

for longer periods of time. Increases in the time of hydrolysis from 0.5 to 2, 2 to 3, and 3 to 5 h 

generated significant increments on the ES probably due to the generation of peptides of lower 

sizes throughout the time of hydrolysis able to migrate easier toward the interface in the 
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emulsion system. At 14.25±0.45% DH the ES produced by CSH was 51.33±1.15% in agreement 

with the value reported by Kristinsson and Rasco (2000a) (50%), higher than the values reported 

by Klompong and others (2007)  (around 40%), and lower than the values reported by Shahidi 

and others (1995) (92%). Higher ES at lower DH (70% ES at 5 % DH) has been reported 

previously (Klompong and others 2007; Kristinsson and Rasco 2000a) may be due to bigger 

peptide size in the hydrolysate. In our study, 6 h of hydrolysis at a DH of 26.65±1.36 % was not 

significantly different (P>0.05) from the ES generated by the CSH generated at 4 and 5 h of 

hydrolysis with DH of 22.78±2.21% and 26.63±0.27% respectively.  

Reduced ES of the CSH produced at shorter times of hydrolysis could be due (in part) to both 

lower diffusion rate of peptides toward the interface (Conde and Patino 2007) and lower inter-

molecules interaction (Liceaga‐Gesualdo and Li‐Chan 1999). On the other hand, longer periods 

of hydrolysis could reduce the ES due to a reduction in protein recovery at higher DH 

(Yasumatsu and others 1972). It may indicate that hydrolysates produced during the first 5 h of 

enzymatic reaction tend to migrate to the interface in O/W emulsions, unfold partially, re-

orientate their hydrophilic and hydrophobic groups toward continuous and dispersed phase, and 

create a film layer through inter-molecular interactions around fat globules thus retaining 

emulsion stability as postulated by other authors (Lam and Nickerson 2013; Damodaran and 

others 2007; Yasumatsu and others 1972). The microstructure of the emulsion could help in the 

visualization of any difference in peptides at the interphase of the stable phase of this O/W 

emulsion. 

OHC of CSH peaked at 0.5 h of hydrolysis (7.72±0.47 g oil/g CSH our initial data point). There 

was a negative relationship between hydrolysis time and OHC with the lowest value of OHC 

(4.69±0.32) obtained after 6 h (longest hydrolysis time) hydrolysis. This effect is in agreement 
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with the findings of other authors (Diniz and Martin 1997; Kristinsson and Rasco 2000a).  The 

ability of proteins to hold fat has been chiefly linked to the protein’s physical entrapment of oil 

(Zayas 1997). Thus the disruption of the protein network caused by the hydrolytic action of the 

enzyme could be an explanation for the reduction of OHC with hydrolysis time (Don and others 

1991) . 

In a DH range of 10 to 18%, similar OHC has been reported for herring by-products hydrolysates 

(Sathivel and others 2003). Lower OHC was reported for capelin hydrolysates (Shahidi and 

others 1995). It should be noted that Sathivel and others (2003) also determined that, depending 

on the substrate, DH may have different effects on the OHC of a hydrolysate.. 

4.5 Micro-structure of the emulsion’s stable phase 

An attempt to visualize the microstructure of the oil and the CSH at the emulsion’s interface was 

done by using transmission electron microscopy (TEM). Figure 4 contains images of the 

evaluated samples and the control.  

The microstructure of the emulsion when CSH generated at 0.5 and 6 h of hydrolysis was used as 

the emulsifier generated oil drops with diameters around 2 µm. A dense dark layer surrounding 

the oil drops can be observed on Fig. 4 (a). This is due to the accumulation of the peptides 

around the oil drop suggested by the absence of this dark layer in the control (Fig. 4 (c)) and by 

the findings reported by other authors in emulsions where peptides were used as the emulsifier 

agent (Rosenberg and Lee 1993; Heertje and others 1996; Relkin and others 2006). This layer of 

peptides contributed to the stability of the emulsion when CSH at 6 h of hydrolysis time was 

used as the emulsifier. By forming a thick layer, adsorbed proteins (generally charged) can 

stabilize emulsion droplets by both steric repulsion and electrostatic (charge-repulsion) 

mechanisms (Dalgleish 2004). 
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Fig. 4. Micro-structure of the stable phase of the emulsions with highest (a) and lowest (b) 

emulsion stability obtained when using CSH 6 and CSH 0.5 as emulsifiers respectively. Control 

emulsion using Tween ® 20 with no CSH addition (c).  1 

On the other hand, oil drops of bigger diameters are observed on Fig. 4 (b) where CSH at 0.5 h 

of hydrolysis time was used as the emulsifier. As in the previous case, a dark layer is observed 

surrounding the oil drops; however, this layer is not as dense as it is on Fig. 4 (a). The result of 

coalescence of several small and big oil drops is also observed on Fig. 4 (b). The instability of 

the emulsion when the CSH obtained at 0.5 h hydrolysis was used as the emulsifier was probably 

due to a lower migration of the peptides toward the interphase which is supported by the lower 

density of the dark layer surrounding the oil drops. Thicker dark layer surrounding the oil drop 

suggests higher migration of the peptides toward the emulsion interphase when CSH at 6 h of 

hydrolysis time was used as the emulsifier, which could be the explanation (in part) to the higher 

emulsion stability. 

(a) 

(c) 

(b) 
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4.6 SDS-PAGE 

 
 

Fig. 5. SDS-PAGE profile of catfish skin hydrolysates and SDS marker. Where column 1= SDS 

marker; column 2 to 8= CSH after 0.5, 1, 2, 3, 4, 5, and 6 h enzymatic hydrolysis respectively.  1 

Rapid degradation of protein to intermediate peptides occurs during hydrolysis (Adler-Nissen 

and Olsen 1979). This results in molecules (peptides) with different MW in CSH after different 

enzymatic reaction times. Figure 5 shows the presence of high MW molecules after 0.5 h 

enzymatic reaction. Faint bands located around 150 and 250 kDa can be observed at this point, 

and highly marked bands at 15 to 20 kDa indicating that a large quantity of large molecules 

associated with these bands are present in the CSH after 30 min hydrolysis. However, these 

highly marked bands become faint after 3 h of hydrolysis, and they are not observed after 4 h of 

hydrolysis. The last 3 columns on the gel (4, 5, and 6 h) indicate that the protein/polypeptides 

found initially on CS have been hydrolyzed to smaller molecules of around 10 kDa MW or 

below which is in accord with the observations reported by Yin and others (2010). Bands near 

250 and 100 kDa may correspond to β and α collagen chains respectively (Singh and others 
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2011). Some of those collagen chains have been hydrolyzed after 0.5 h, and have disappeared 

after 1 h. Other authors have reported similar fish protein hydrolysates MW profiles (Sathivel 

and others 2008; Kristinsson and Rasco 2000a; Benjakul and Morrissey 1997).  

4.7 Agar-disk diffusion 

Antimicrobial functions of sterilized and non-sterilized solutions (200 mg/mL) of CSH produced 

at 4, 5, and 6 h of hydrolysis were tested for S. aureus, L. monocytogenes, and B. cereus (Gram 

positive) and E. coli 0157: H7 (Gram negative). Results were classified as “+” for CSH with 

antimicrobial effect, “-” for CSH with no antimicrobial effect, and “*” when the CSH 

effectiveness was not clear. The antimicrobial effect was confirmed by the presence of an 

inhibition zone. 

Table 5. Antimicrobial effect of sterilized and non-sterilized CSH obtained at different time of 

hydrolysis over gram positive and gram negative bacteria.  1 

Bacteria 

Time of hydrolysis of CSH (h) 

4 5 6 

S
1
 NS

2
 S

1
 NS

2
 S

1
 NS

2
 

 

Gram 

positive 

S. aureus - - + + + + 

L. monocytogenes * * * * * * 

B. cereus - - + + - - 

Gram 

negative E. coli 0157:H7 + + + + + + 

1Sterilized; 2Non-sterilized; (+)Antimicrobial effect; (-) No antimicrobial effect; (*) Not definitive.  

Our results indicate that the CSH generated at 5 h of hydrolysis had antimicrobial activity against 

3 of the 4 used bacteria, including both Gram positive and Gram negative microorganisms. This 

antimicrobial effect was not eliminated by the sterilization of the CSH solution (121 °C for 15 
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min). The CSH generated at 4 h of did not exhibit antimicrobial activity against gram positive 

bacteria, but it did against E. coli, and similar to the CSH at 5 h of hydrolysis, the sterilization 

process did not eliminate this property for this particular bacterium. The solution of CSH 

generated at 6 h of hydrolysis sterilized and non-sterilized showed antimicrobial activity against 

S. aureus and E. coli, but not against B. cereus. Peptides of low molecular weight (less than 20 

kilo Daltons) have been associated with antimicrobial activity (Gobinath and Ravichandran 

2011; Salampessy and others 2010; Bergsson and others 2005; Robinette and others 1998). As 

explained before, cellular lysis due to the perforation of the bacteria’s membrane by positive 

charged peptides could be the cause of the antimicrobial effect of the hydrolysates (Brogden 

2005; Bessalle and others 1992).  

Figure 6 contains pictures of the disks used for the disk inhibition assay when solutions of 

filtered-non-sterilized CSH at 4, 5, and 6 h of hydrolysis were evaluated as antimicrobials against 

gram positive (B. cereus, S. aureus, and L. monocytogenes) and gram negative (E. coli O157:H7) 

bacteria. Figure 7 contains pictures of the disks of the same analysis when solutions of filtered-

sterilized CSH at 4, 5, and 6 h of hydrolysis were evaluated as antimicrobials against the bacteria 

mentioned before. For both figures, a halo was observed around the disks containing CSH with 

antimicrobial capacity. This halo was generated as result of bacterial growth inhibition. The 

white lines on the pictures of L. monocytogenes are not relevant for our results. These lines 

belong to the surface over which the Petrie dish was placed for taking the picture.  

 

 

 

 



41 
 

  

Fig. 6. Disk inhibition assay of filtered-non-sterilized CSH solutions (250 mg/mL) at 4, 5, and 6 h of hydrolysis as antimicrobials 

against Gram positive
1
 and Gram negative

2
 bacteria.1 
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Fig. 7. Disk inhibition assay of filtered-sterilized CSH solutions (250 mg/mL) at 4, 5, and 6 h of hydrolysis as antimicrobials against 

Gram positive
1
 and Gram negative

2
 bacteria.1 
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4.8 Peptides production during hydrolysis 

 

Fig. 8. Peak area profile of the 10 peptides with largest area generated during CS hydrolysis. 

Numbers in the bars represent the peak area for each peptide. The top gray bar represents the 

second set of 10 peptides and the underlined number is the total peptide peak area for the top 20 

peptides. 1 

The chromatogram in Fig. 8 shows that several peptides were generated after the first period of 

hydrolysis (0.5 h). The control contained mainly only 3 peptides in low quantities. The major 

control peak, with a mass of 2748 Da, increased to its maximum during the first 0.5 h hydrolysis, 

and slowly decreased over the remaining 6 h of hydrolysis, probably due to the proteolytic action 

of the alkaline enzyme, generating several new peaks. This 2748 Da peptide was multiply 

charged (+4), and the other large peptides (3864 and 8364) with multiple charges (+4 and +8, 

respectively) also showed a similar maximum peptide area at 0.5-1 h hydrolysis time. All other 

new peptides were singly charged and increased in area over time, with the maximum area 
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occurring at 2-3 h for masses 634, 1266, 998, 855, and 1410, while masses 699 and 723 were 

continuing to increase in area at the last (6 h) hydrolysis time point.  

The CSH produced at 5 h of hydrolysis was selected for the identification of peptides on its 

composition. The molecular weight, positive charges, and partial sequencing were determined, 

and the results are shown below. In the next section, CSH5 was used for making reference to the 

CSH generated at 5 h of hydrolysis. 

4.9 Peptide molecular weight (MW) distribution, charge profile, and partial sequencing 

Tandem mass spectrometry results showed the presence of 223 peptides of low-molecular weight 

in CSH5.  

Table 6. Molecular weight (MW) distribution of peptides detected in CSH5. 1 

 MW (Daltons) 

# of 

peptides % 

500-1000 35 15.70 

>1000-2000 84 37.67 

>2000-3000 63 28.25 

>3000 41 18.39 

Total 223 100 

 

Table 6 shows that CSH5 had a large quantity of short peptides. More than 80% of the peptides 

found have less than 3 kDa MW. Similar peptide MW distribution was reported by You and 

others (2009) on loach protein hydrolysates at similar DH and Ketnawa and others (2016) on 

gelatin hydrolysates at lower DH. Protein hydrolysates with a large content of short peptides (<3 

kDa) have been reported as being potential antimicrobials (Wald and others 2016). Furthermore, 

isolated peptides from this range of molecular weight have shown strong antimicrobial capacity 

(Mendis and others 2005). 
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The identification of the number of positive charges on the peptides detected on CSH5 reveals 

that more than 95% of CSH5 peptides have charges in a range of +2 to +6, which can be 

observed from Table 7. Dathe and others (2001) and Bessalle and others (1992) have linked 

peptides with charges ≥ +2 to antimicrobial activity and selectivity enhancement. Cationic 

peptides with 2 to 9 positive charges have been linked to antimicrobial activity by Yeaman and 

Yount (2003). Thus, CSH5 is expected to have antimicrobial activity.  

Table 7. Peptides as a function of their net charge in CSH5.  1 

# of positive 

charges in the 

peptide 

# of 

peptides %  

1 10 4.48 

2 115 51.57 

3 63 28.25 

4 26 11.66 

5 8 3.59 

6 1 0.45 

Total 223 100 

 

It was not possible to identify the amino acid sequences of these peptides.  

CHAPTER 5. SUMMARY CONCLUSIONS 

The study was designed to develop and characterize catfish skin hydrolysates including 

antioxidant and antimicrobial properties. The objective was reached with the enzymatic 

treatment of catfish skin for 4, 5, and 6 h using alkaline protease. This process generated 

hydrolysates with both antioxidant and antimicrobial properties. All the CSH generated at 

different time of hydrolysis possessed functional properties such as emulsifying stability and oil 

holding capacity of some extent. These properties were influenced by the time of hydrolysis. 
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Low-molecular weight peptides seem to be responsible for the antimicrobial capacity of the CSH 

at 4, 5, and 6 h of hydrolysis time. These results suggest a potential for CSH as a functional 

product in the food industry.  
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