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ABSTRACT 

Use of pesticide has become part of modern day agricultural practice. Some pesticides 

can remain in the environment for decades and contaminate surface water that is used for 

irrigation of produce. Two studies were conducted- first to examine possible pesticide residue in 

surface water and some fruits, vegetables and cereals in Louisiana; and second was to alleviate 

possible pesticide residues in the water using zeolite filtration. Samples of 8 foods (tomato, corn, 

rice, blueberry, cucumber, cabbage, wheat and melon) and 35 surface waters were studied using 

a QuEChERS extraction method for food samples and an EPA method for the water samples. 

Gas chromatography-mass spectrometry was used to analyze water and food samples. 

Alleviation of pesticide residues was attempted for 10 water samples using a natural zeolite 

filtration. One water sample was filtered through a surfactant (HDTMA-Cl)-modified-zeolite. 

Eighteen pesticides were detected in the surface water samples and 5 in the food samples. 

Pesticides detected were below FDA limit but 0.18 ppm cypermethrin found in tomato was 90 % 

close to the FDA limit (0.2 ppm). Alleviation was achieved in 9 water samples out of 10 samples 

that were filtered through zeolite. The highest removal of pesticides from water with zeolite was 

100 % in bifenthrin in CLC sample, followed by 99.1 % in atrazine in the same sample. 

Minimum reduction of 10.9 % was in metolachlor in sample BRH. Further reduction of pesticide 

residues up to 50 % was recorded in the SMZ treatment as the concentrations of 4 out of 8 

pesticide residues were reduced. This study suggests the need to intermittently monitor pesticide 

contamination in our food and water. 
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CHAPTER 1 

INTRODUCTION 

The importance of food and water to maintain life cannot be overemphasized. In order to 

maintain a healthy nutritional diet, food and water must be consumed without contamination 

from pollution.   

Food and water contaminates are an undesirable event at the terrestrial and/or aquatic 

terrains as it causes ill health and ultimately could lead to death of the affected organisms. Major 

source of contaminants include sewage, fertilizer and pesticides. Of all the pollutants, the most 

common are pesticides (Fenik et al., 2011). Pesticides are chemicals used in controlling menaces 

like insect, disease, or weed that are considered impediments to healthy growth of plants; be it 

horticultural or food crops. Targets of chemical treatments usually include the soil, crop plants, 

weeds or insects. In farms and gardens, common pesticides used are either insecticides, 

fungicides or herbicides.  

Leaching is a form of environmental pollution which is a phenomenon whereby 

chemicals drain away from the treated region to non-targeted environments. By this, surface 

waters have the potential of getting contaminated when irrigation water that has passed over 

pesticide-treated plants and/or the environment drain or leach into the surface waters (Starner et 

al., 2005). Storms could sometime result in spontaneous flow of contaminated water into surface 

water (Boithias et al., 2014). Another source of pollution is drift that occurs if a pesticide spray 

misses its targets having been deflected by the wind or resulting from the error of missing the 

intended, thereby landing on a non-targeted farm area.  When the level of the pesticide 

contamination reaches a critical level in food, ground waters, lakes, rivers or ponds, it becomes 

an issue that could lead to illness or death in the organisms that depend on such.  
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Water plays a central role in human life. Asides from the basic routine drinking of water, 

it is used in irrigation of crops, and serves as home for aquatic lives. Most aquatic organisms are 

edible to humans and are rich in important food substances like protein, oil and vitamins D and E 

(Sidhu, 2003); most of which are required for a balanced diet in humans. Omega 3 oil is found in 

some fishes (Artham et al., 2008) and is part of every cell compositions in human body. Zinc is 

required for healthy skin, muscles and fertility in humans. Oysters, marine fish, and croakers are 

good source of Zn as they uptake an ample of it from the sea deposits (Chipman et al., 1958). 

Dietary guidelines of most nations worldwide recommend fish along with other seafood for 

human consumption (WHO, 2003). Crawfish, sometimes also referred to as crayfish, is a good 

source of low-fat protein, 36-45 % of crude protein, and vitamins A and D, minerals such as 

calcium, potassium, copper, zinc and iodine (Ibironke et al., 2014). Louisiana has the largest 

crawfish production in the United States of America, accounting for 90% of the total USA 

production. Its total annual shipments of crawfish between the years 2006 and 2011 had doubled 

to $195.8 million (The New York Times, 2012). It is an important component of Louisiana 

economy and that of the United States in general. Given that crawfish have minimal tolerance to 

pollutants, every trace of pollution in Louisiana waters pose a big threat to her lucrative crawfish 

industry. 

Cereals, fruits and vegetables are among the most commonly grown foods in many parts 

of the world. In the United States of America, especially in the State of Louisiana, mostly grown 

in this category includes Wheat (Triticum aestivum), Tomato (Solanum lycopersicum), Blueberry 

(Cynococcus), Corn (sweet corn- Zea Mays), Cucumber (cucumis sativus), Cabbage (Brassica 

oleracea), Honeydew (melon- cucumis melo) and Rice (Oryza sativa). Wheat, rice and corn are 

cereal grain crops. In year 2013, wheat (713 million tons) is the third largest produced crop 
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world over following rice (745 million tons) as the second and corn (1,016 million tons) the first. 

Wheat contains about 8-15% protein and therefore serves as a good source of vegetable protein 

(Shewry, 2009). It is the main ingredient in many bakeries and fast food menus world-wide. Rice 

is rich in dietary fiber and some vitamin complexes like nicotinic acid (niacin), riboflavin and 

thiamin (FAO, 2004). Corn serves as a good source of dietary fiber.  Processed sweet corn has 

been confirmed to have a higher anti-oxidant activity compared to fresh ones. Thermal 

processing of sweet corn could increase its anti-oxidant activity by 44% (Dewanto, 2002). 

Tomato, Cucumber, Cabbage and Honeydew are vegetables; and are generally edible as 

ingredients in dishes, sauces, salads and stews. Tomato is the most consumed canned vegetable 

in America; and it is the fourth most consumed fresh vegetable following onions, head lettuce 

and potatoes as first, second and third most consumed respectively (Canene-Adams et al., 2005). 

Tomato contains a phytochemical called lycopene which has been found to be associated with 

decreased risk of prostate cancer and cardiovascular disease (Wilkinson and Chodak, 2003; 

Cohen, 2002). 

Cucumber contains vitamins C and A and therefore is therapeutic as these vitamins are 

required in the body to fight ailments. Vitamin A is usefuk in enhancing vision in human while 

vitamin C helps in blood clotting. It is used in skin treatments like cooling, healing and recovery 

of irritated skin, wrinkles, and sunburn (Akhtar et al, 2011). Cucumber contains curbitacin D and 

23, 24-dihydrocucurbitacin D which help in prevention of tyrosinase and melanin synthesis (Jian 

et al., 2005). Cabbage is nutritive as it has glucosinolates, a group of secondary metabolites 

which convert to isothiocyanates that has an anticarcinogenic potential (Oerlemans et al., 2006; 

Verkerk and Dekker, 2004; Craig, 1997). According to Gene Lester (1997), honeydew melon is 

rich in vitamin C, potassium, vitamin B-6 and fibers. Vitamin C acts as an anti-oxidant, that is, a 
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neutralizer of beneficial free radicals that might in turn be hazardous to our body cells if not 

neutralized. Our hearts, muscles, blood vessels and nerves need potassium for normal 

functioning. Vitamin B-6 serves as co-enzyme in the body. Fibers help in digestive system. 

Blueberries provide vitamins C and E, and also have anthocyanin and polyphenolic antioxidants 

(Wu et al., 2004).  They are sources of dietary fiber and manganese (McLeay, 2012). Dietary 

fiber is good in heart disease prevention and also make the stomach feel full thereby preventing 

the risk of excess weight resulting from overeating (Slavin, 2013). Manganese is required to help 

process carbohydrates, proteins and cholesterols in the body (Muhammad et al., 2012).  

A naturally occurring chemical compound commonly referred to as zeolite could be used 

to filter out contaminates such as pesticides from water. About 40 zeolites are found commonly 

in nature as a volcanic mineral, while some 150 others have been artificially synthesized. They 

are chemically made up of hydrated alumina (AlO4) and silica (SiO4) in an interlinked 

tetrahedron. Elements of zeolite are aluminum, silicon and oxygen. Zeolites are very stable in 

nature as they do not react with most elements neither do they undergo oxidation. They are hard 

solid that do not burn nor melt easily. Its melting point is over 1000 
0
C (Woodford, 2014). They 

withstand high pressures and do not dissolve in water or other inorganic solvents. Zeolites have 

open-frame like structure and special ability to trap molecules inside them. An average pore size 

of a natural zeolite like clinoptilolite is 0.3 – 2 nm. In its natural state, it is safe to handle but may 

become unsafe when in fibrous form especially to skin or if inhaled. Among many uses of zeolite 

is its use is in water softening by binding to the calcium and magnesium in the water thereby 

replacing them with its own sodium (Woodford, 2014). In Frankston, Australia (Zeolite in 

Agriculture, 2015), zeolite has been reported to have enhanced carrot yield up to 10%, reduced 
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leaching, increased fertilizer usage, early ripening, reduced nitrate and improved vitamin levels 

when compared with same carrot grown without zeolite.  

Zeolite could be used for removal of pesticides in farmland soils or waters. Zeolite has a 

negatively charged surface that allows attraction to cation exchange. They act as molecular 

sieves by binding to molecules such as ammonium and other active ingredients of pesticides 

(Lemic et al., 2006). Removal of pesticides (belonging to the chemical families of atrazine, 

lindane and diazinone) from waste water have been demonstrated using organo-zeolite modified 

by stearyldimethylbenzylammoniumchloride (SDBAC) (Jovan Lemic et al., 2006). Erdem et al. 

(2004) demonstrated the potential of natural zeolites in removal of heavy metal cations from 

industrial waste water.  

Human diets depend on food for their protein, vitamins and minerals in order to maintain 

a balanced diet. Anything hindering production of these foods is directly or indirectly hindering 

human well-being. The need for a remedial measure against contaminations of these foods with 

pesticides can therefore not be overemphasized at this stage. After harvesting produce are 

washed in water before they are delivered for sale. Zeolite-filtered water could be used to remove 

pesticides from fruits and vegetable wash water in order to prevent the possible residue of 

pesticide in produce. This study therefore aims at keeping track of the possible pesticide 

contamination in fruit and vegetable crops as well as irrigation waters across Louisiana. The 

effect of zeolite in reducing the possible pesticide residues in surface waters will also be 

addressed in the course of this research study. 
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Tracking pesticide residues in water and crops in the state of Louisiana as well as developing 

technique for removal of pesticides from water using zeolite filtration system will be the two 

main focus of this study. The specific objectives of this research will therefore include: 

1. Detect pesticide residues in selected cereals, fruits, vegetables and water in the State of 

Louisiana. 

2. Develop a zeolite filtration system for removal of pesticides from water. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Pesticides 

Pesticides can be chemicals that are used for repelling, controlling or killing pests, 

pesticides could be an herbicide used to control weeds; fungicides against fungi; insecticides 

(e.g. nematicide, termiticide, repellant, etc.) in combating insects or rodenticides against rodents. 

The herbicide, insecticide, rodenticide and/or fungicide required depend on the type of 

agriculture in play. Some pesticides like the organochlorine family are being banned in many 

nations of the world since 2007 due to their toxicity and persistent nature in the environment 

(Ulenik et al., 2013). Lindane, an organochlorine insecticide is still in use in some parts of the 

USA as it is kept as a secondary treatment against lice and scabies (WHO, 2005; Engler, 2009). 

2.2 Louisiana Agriculture 

The income generated from Louisiana agriculture comes majorly from crops up to 60% 

while the remaining 40 % comes from livestock.  Leading food and/or cash crops in Louisiana 

amongst which sugarcane is the first include rice, soybeans, cotton, and corn. Top vegetable 

crops are sweet potatoes and tomatoes, while leading fruit crops are peaches, strawberries and 

melon (Louisiana, 2016a). 

2.3 Use of Pesticides in Louisiana  

According to Louisiana (2016b), based on the crops grown, the types of pesticides 

commonly used in Louisiana are as highlighted in Table 1.1. The insecticides are in the families 

of organophosphate, carbamate, pyrethrins / pyrethroids and organochlorines. Herbicides used 

are mostly in the families of triazine, phenoxy, chlorophenoxy, organophosphorus and pyridine. 

Fungicides are benimidazole, dithiocarbamate, organochlorine and phthalimide. The rodenticides 
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are mostly coumarin family. Amongst these chemical families of pesticides, the most heavily 

used in the USA is the Triazine; and the two primary triazine herbicides predominant are atrazine 

and simazine (Walther, 2003).  

 

Table 2.1 Common Pesticides used in Louisiana. 

Chemical Family    Pesticide Type  

     Insecticide    

Organophosphate   Chlorpyrifos, diazinon, malathion, methyl parathion 

Carbamate   Aldicarb, carbaryl 

Pyrethrins / pyrethroids Cypermethrin, λ-cyhalothrin, permethrin, bifenthrin, pyrethrin 

Organochlorine  Endosulfan, lindane 

     Herbicide   

Triazine   Atrazine 

Phenoxy   2,4 - Dichlorophenoxy acetic acid (2,4-D) 

Chlorophenoxy  Dicamba 

Organophosphorus  Glyphosate 

Pyridine   Triclopyr 

Fungicide 

Benzimidazole  Benomyl 

Dithiocarbamate  Mancozeb 

Organochlorine  Chlorothalonil 

Phthalimide   Captan   

Rodenticide 

Coumarin   Bromadiolone, brodifacoum 
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2.4 Insecticides 

2.4.1 Organophosphate. Pesticides belonging to this group are very strong insecticides and are 

being discouraged from being used around residential area due to their adverse effect on humans 

that get exposed to them (Louisiana, 2016b). It affects the nervous system, and can cause 

shortness of breath, abnormal salivation, vomiting, headache, dizziness and chest complications 

including convulsion and paralysis that could cause death. Diazinon for instance, inhibits an 

enzyme that inactivates the neurotransmitter acetycholine in any organisms exposed to a harmful 

amount of it (Ecobichon and Joy, 1994; Pesando et al., 2003). Chlorpyrifos is widely used in 

cotton and corn (Williams et al., 1999). The dose of a chemical that becomes lethal in 50% 

population of experimental animals studied is called acute oral lethal dose fifty, simply put as 

LD50. The acute dermal LD50 of chlorpyrifos is 202 mg/kg (Gaines, 1969). 

2.4.2 Carbamate. This family comprise of insecticides with broad spectrum of activity as they 

are applied to vegetables, fruits and cereal crops. They are usually applied towards the maturity 

of crop implying higher risk of exposure is likely being the time growers visit their farm most 

regularly (Rowayshed et al., 2013).   Carbamate is used against mites, houseflies among others 

(El-Saeid, 2003; Randhawa et al., 2007). Symptoms resulting from exposure to carbamate are 

similar to those in organophosphate poisoning. They include headache, dizziness, extreme 

weakness, twitching or tremor, slow heartbeat, sensation of swelling or tightness in the chest, 

sweating and nausea. Carbaryl (sevin) is used by tomato growers in Louisiana. The oral acute 

LD50 for carbaryl is 500 - 850 mg/kg (Kidd and James, 1987). 

2.4.3 Pyrethrins / pyrethroids. These insecticide have been used since 1900s (Metcalf, 2000). 

They are considered not very toxic, recommended for home use, and are usually labeled as low 
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toxicity pesticides (Bradberry, 2005). They hinder detoxification in insect resulting in its 

mortality. These are used against cabbage looper and cucumber beetle (Caldwell et al., 2013). 

Bifenthrin is used against termites in gardens and house environment. The oral rat LD50 for 

bifenthrin is greater than 5,000 mg/kg and is considered relatively non-toxic (Talstar, 2008). 

2.4.4 Organochlorines. The pesticides in this group are very toxic. Prolonged exposure could 

lead to depressed nervous system activity, and seizures. They inhibit chloride flow into an 

insect’s nerve (Coats, 1990). Endosulfan and lindane are toxic to humans and aquatic organisms 

resulting in acute and chronic symptoms even if exposed to a low level of them (Guerin 2001; 

UNEP 2009; Zucchini-Pascal et al. 2009). Both lindane and endosulfan have been banned but 

selected few nations still use them (Herna´ndez-Rodrı´guez et al. 2006; Hussain et al. 2007; 

Rivero et al. 2012). Lindane oral acute LD50 in rats is 88-190 mg/kg (Smith, 1991). 

2.5 Herbicides  

2.5.1 Triazine. This is one of the oldest weed controlling chemicals dating back to early 1950s. 

Some are selective while others are non-selective in their herbicidal activities. Selective are 

targeted against certain weeds while the non-selective is all encompassing. Most commonly used 

among others in this group include atrazine and metribuzin. Atrazine is used as selective 

herbicide in sweet corn and sugarcane. They inhibit electron transport in photosynthesis reaction 

in plants. Exposure to triazine results in eye, skin and respiratory tract irritations (Fishel, 2015). 

Atrazine is considered moderately toxic with an LD50 of 1300 mg/kg (Bachman and Patterson, 

1999). 

2.5.2 Phenoxy. 2,4-Dichlorophenoxy acetic acid (2,4-D) is a plant growth hormone in the class 

of auxins. It is the most commonly used phenoxy herbicides. It came into play in 1946. It is used 
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in killing broad leaf plants. In monocots like wheat or corn farming, it serves as selective 

herbicide against broad-leaf weeds by enhancing their uncontrollable growth unto mortality. 

According to Fraser et al., 1984, the LD50 for 2, 4-D is 750 mg/kg. 

2.5.3 Chlorophenoxy. Dicamba is a popular chlorophenoxy herbicide. It is a selective herbicide 

as it targets broadleaf and woody plants considered as weeds. Dicamba is an auxin, and its mode 

of action in plant is synonymous to that of 2,4-D as they induce overgrowth in an uncontrollably 

fashion until the weeds die. They are used in farms, gardens and homes.  Though dicamba is low 

in toxicity but inhalation, ingestion or any form of exposure to harmful dose of dicamba may 

result in vomiting, loss of appetite, diarrhea, shortness of breath, excess saliva (NPIC, 2012). The 

LD50 for dicamba is 1028 mg/kg (Fraser et al., 1984).  

2.5.4 Organophosphorus. Glyphosate is a widely used organophosphorus; and most widely 

used herbicide globally with 11% global herbicide sales (Powels et al., 1997). Glyphosate is non-

selective and its approach is hindering of synthesis of enzyme needed for normal growth in 

plants (Kools et al., 2005). Being non-selective, glyphosate is used mostly in farms where crop 

varieties that have resistance to glyphosate are grown. Examples are roundup ready corn and 

soybean varieties.  It is used in farms and homes. It is low in toxicity. Exposure to glyphosate 

can cause eye, nose, throat or skin irritation, vomiting, diarrhea or excessive saliva. The acute 

oral LD50 for glyphosate in rat is 5,600 mg/kg (National Library of Medicine, 1992).  

2.5.5 Pyridine. Commonly used in this group is trichlopyr. It was first registered in 1979. It is a 

herbicide popularly applied in rice field and lawns for the control of woody and herbaceous 

weeds. Pyridine is selective in its herbicidal action and mode of action is synonymous to that of 

phytohormones like 2,4-D and dicamba whereby inducing an uncontrollable overgrowth in the 
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unwanted plants. It is corrosive to skin and eye upon contact with harmful dose. The oral LD50 

of trichlopyr in rats is 630-729 mg/kg and 2000 -3000 mg/kg depending on the formulated 

products as they vary (Extoxnet, 1992). 

2.6 Fungicides  

2.6.1 Benzimidazole. Benomyl is a fungicide in this group. Benzimidazole is known for treating 

nematode and trematode infections in pet animals like dog and cat. It is used in controlling 

roundworms, tapeworms, and adult flukes. Its mode of action is by binding to the fungal 

microtubules and stopping hyphal growth; also binds to spindle microtubules and blocks nuclear 

division. This is a safe pesticide, as it does not bind to the tubulin of the cells of the animal being 

treated but rather to the cells of the target parasite. LD50 of benomyl in rats is greater than 

10,000 mg/kg and greater than 3,400 mg/kg in rabbits confirming its low risk of acute toxicity 

(Kidd and James, 1991). 

2.6.2 Dithiocarbamate. Mancozeb is a dithiocarbamate chemical used as fungicide in tomato 

against early and late blights, anthracnose, leaf mould, grey leaf spot and phoma rot; lettuce 

against downy mildew, anthracnose, and septoria leaf spot (Primefacts 223, 2006). The LD50 for 

mancozeb in rats is 4,500-11,200 mg/kg. Dermal LD50 in rabbit (when applied to its skin) is 

5,000-15,000 mg/kg (EPA, 1987), meaning that it is a mild skin irritant. 

2.6.3 Organochlorine. Is used as fungicide in peanut, potato and tomato farms. It is used on 

lawns and golf courses. Its mode of action is by hindering enzymatic reactions in fungi leading to 

their deaths (Ronald, 1973). Chlorathalonil is toxic and could cause eye irritation, and kidney 

damage. The oral LD50 is greater than 10,000 mg/kg in rats (Kidd and James, 1991; US National 

Library of Medicine, 1995). 
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2.6.4 Phthalimide. Captan is a phthalimide fungicide used in controlling fungi diseases in fruits 

and vegetables. It is less toxic and therefore can be used in the field and at homes. However, a 

prolonged high dose could be cytotoxic. It is non-toxic to birds but toxic to fish (Kidd et al., 

1991). Oral LD50 of captan in rat is 8400-15,000 mg/kg confirming its low acute toxicity 

(Chemical Information System, 1988). 

2.7 Rodenticide 

2.7.1 Coumarin. Is an anticoagulant in its rodenticidal action. It inhibits enzyme, and vitamin K 

epoxide reductase. This results to death due to a decrease in vitamin K in the blood system 

causing inability of the rodent’s blood to clot. Brodifacoum, a registered coumarin, has been in 

use since 1970s (British Crop Protection Council, 2000). According to the World Health 

Organisation (1995), one of the most abundant brown rats – R. norvegicus has an oral LD50 of 

brodifacoum as 0.26 mg/kg and its half-life in soil is 157 days. 

2.8 Pesticides in Food and Water 

 Pesticides used in field crops belong to either organic or inorganic group. 

Organophosphorus, organochlorine and organonitrogen pesticides are groups of pesticides under 

which most organic pesticides used in field crops belong. Among these, the most widely used in 

the USA and especially in Louisiana agriculture is organonitrogen that includes triazine family 

where herbicide atrazine belongs (Walther, 2003). Contrary to expectation of pesticides to 

control menaces like weed, fungi, bugs, and rodents, and disappear from the plants, its produce 

and environment without any trace of harmful residues left behind, there are cases where it is 

either applied at an overdose rate or added by erosion or storm resulting in such pesticide 

remaining in food or water as residues (Fenik et al, 2011).  
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2.9 Detection of Pesticides in Food and Water 

Analytical methods such as gas chromatography (GC) and high-performance liquid 

chromatography (HPLC) have been used in the past but were not confirmatory in their output 

results considering matrix interference, probably due to the type of detectors (electron capture- 

ECD, flame photometric – FPD, and nitrogen-phosphorus-NPD) used in the GC (Schachterle et 

al., 1996). However, mass spectrometry (MS) has succeeded in this aspect even though MS full 

scan sometimes fails to provide adequate sensitivity in real samples in selected ion monitoring 

(SIM) mode giving room to false positives due to reduced qualitative data (Arrebola et al., 

1999). The modern use of the combination of gas chromatography and mass spectrometry (GC-

MS) has solved the problem of shortfalls inherent in the singular use of GC and/or MS. The 

combination of GC-MS provides analysis of trace amounts of pesticide residues in diverse 

samples ranging from biological fluids (Vidal et al., 1998; Frias et al., 2001; Uroz et al., 2001), 

waters (Pablo-Espada et al., 1999; Vidal et al., 2000) or fruits and vegetables (Arrebola et al., 

2001; Gamon et al., 2001).  

Walther (2003) reported the presence of triazines particularly atrazine and simazine in 

Upper Terrebonne basin of Louisiana surface waters.  

2.10 Removal of Pesticides in Water 

The use of clinoptilolite - a natural zeolite, in removing organic contamination 

(pesticides) from surface waters was reported. The success of this method was said to be a 

function of pH, initial concentrations of humic acid and ammonia, temperature and contact 

duration (Mergeta et al., 2013). Removal of ammonia and humic acid was best with zeolite at the 
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pH value close to waters’ natural pH (Moussavia et al., 2011).  Removal of Fe and Mn ions from 

underground water samples using natural and modified zeolite confirmed 22-90% and 61-100 % 

success for natural zeolite (Inglezakis et al., 2002). Lemic et al. (2006) detected atrazine in 

ground water and with SDBAC SMZ were able to remove atrazine from the water (Lemic et al., 

2007). 

2.11 Development of Zeolite for Removal of Pesticides in Water 

Zeolite could be tailored according to the type of contaminants to which it will be 

subjected by modifying its surface properties. Modification of a zeolite enhances its adsorption 

capacity, that is, its ability to remove contaminants from water. Surfactants, organic molecules 

with high functionality in filtration capacity could be cationic in its polarity, with certain level of 

CEC (cation exchange capacity) depending on the type of surfactant used.  The compound 

targeted to be isolated in a pesticide residue determines the kind of surfactant that will be 

developed to modify the zeolite. Removal of atrazine, lindane, diazinone group of pesticides will 

require stearyldimethylbenzylammoniumchloride (SDBAC 80%, 19% propan-2-ol, 1% water) 

surfactant modified zeolite (Lemic et al., 2006, Roxana Apreutesei et al., 2008). Removal of 4-

chlorophenol according to Haggerty and Bowman (1994) and Apreutesei et al., (2008), requires 

hexadecyltrimethylammonium bromide or chloride (HDTMA-Br 57.6 ml/32 g zeolite); Removal 

of chromate and perchloroethylene from distilled water and waters from Elizabeth City and Oak 

Ridge, TN respectively (Bowman, 2005). 
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CHAPTER 3 

DETECTION OF PESTICIDES IN FOOD AND WATER 

3.1 Introduction 

 Pesticides are very useful tools in agriculture, for instance, removal of weeds, insects and 

infections/diseases controls are the main reasons why the use of pesticides will likely continued 

to be used by farmers. Apart from the risk involved in exceeding recommended application rates, 

persistence of some pesticides in the environment heightens the need for regular monitoring of 

food and water. Detection of pesticides in food and water is advantageous in terms of economic 

measures. The inherent loss in case of consumption of contaminated food and/or water in terms 

of health hazards when it comes to cost of treatment, irreparable loss, etc., is much greater 

compared to the cost of efforts in the detection process. 

 Many detection methods for pesticides used in the past could be summarized under three 

headings such as multiresidue methods (MRMs), single residue methods (SRMs) and 

semiquantitative and qualitative methods (US Congress, 1988). However, none of these 

combines the best features in an analytical condition such as: high recovery rate (>85%); 

accuracy; high sample throughput (say 20 samples in half an hour); efficiency (in terms of use of 

solvent, labware needed, and bench space); adaptability (single person with little training can 

handle); rugged (having allowance to cleanup fatty acids and other organic acids commonly 

found in foods); safe (in that solvent- acetonitrile is dispensed through an auto-dispenser 

minimizing risk of spillage/contact);  mobile lab (with chopper, balance and centrifuge, the 

bench space is ready for use) (Lehotay et al., 2005). MRM can detect residue and also is 

applicable to monitoring multiple residues as the name implies, but unable to identify the 

pesticide residue. SRM may be less sensitive than MRM in terms of detection of pesticides and 
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also confined to monitoring single residues, but it does a better job monitoring some pesticides 

that are very hazardous. SRM is less efficient in monitoring multi residues as it requires much 

glassware, evaporative apparatus, chromatography and detectors, etc., whereas MRM uses the 

same apparatus to run multiple residues. Semiqualitative and quantitative methods will not 

provide the qualitative and quantitative information required in details. A semiqualitative method 

provides the range of pesticide found while quantitative will only indicate whether the detected 

amount is over or within the tolerance threshold. Following the need for a new method, 

QuEChERS (quick, easy, cheap, effective, rugged and safe), is an analytical method that is 

recent and closest to fulfilling the required analytical conditions used in the detection of 

pesticides in matrix samples due to its high recoveries, accuracy, high thoroughput etc. 

(Braganca et al., 2012; Wilkowska and Bizuik, 2011) is used in the detection of pesticides in 

food especially fruits and vegetables (Salvia et al., 2012). QuEChERS is therefore the extraction 

methodology used for the food samples during this study. 

 This study was conducted to determine if pesticide residues are in food and water 

collected from different locations in Louisiana.  

3.2 Materials and Methods 

3.2.1 Food and Water Sample Storage and Preparation. Surface water and food samples were 

collected at different locations in Louisiana. These were sourced from the pool of samples being 

routinely submitted to the Pesticide Laboratory of the Agricultural Chemistry department, 

Louisiana State University through the Louisiana State Department of Agriculture and Forestry 

(LDAF). Food samples as shown in Figure 3.1, A through 3.1, H include wheat, tomato, 

blueberry, corn, cucumber, cabbage, honeydew and rice. The food samples were obtained form 
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different parishes in Louisiana. As outlined in Table 3.1, there were 6 tomato samples obtained- 

2 from Amite and one each from Boyce, OakGrove, Epps and Coushatta. Sweet corn consists of 

3 samples, each from Alexandria, Winsboro and Dixie. One melon came from Breau Bridge; and 

2 blueberries with 1 each from Franklinton and Ringgold. Two wheat samples were both from 

Deridder. Cucumber, cabbage and rice contained 1 sample each and were from Pollock, 

Lafayette and Eunice respectively. All the food samples were received in June 2015 except rice 

that was delivered in August 2015. All the 35 waters were received in May 2015. 

 

Table 3.1 Food samples 

Food   Amount  Source 

Tomato  6   Amite(2), Boyce, OakGrove, Epps, Coushatta 

Corn   3   Alexandria, Winsboro, Dixie 

Melon   1   Breau Bridge 

Blueberries  2   Franklinton, Ringgold 

Cucumber  1   Pollock 

Cabbage  1   Lafayette 

Wheat   2   Deridder (2) 

Rice   1   Eunice 

 

Water samples and their sources were as listed in Table 3.2. Each sample was labeled 

after its source by abbreviating the name of the source. For instance, sample BPH was obtained 

from Bayou Pierre, Hwy 1 S of Powha; sample CRH from Cane River, Hwy 1, 1 mile N. gal; 

CLC from Chatlin Lake Canal, Hwy 457 T2N etc. All water samples were stored at 4 
0
C and 
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food samples stored at -20 
0
C until each was analyzed. Each food sample was retrieved from the 

freezer and kept overnight in the cooler (4 
0
C) to allow for thawing. Few samples were blended 

completely, for instance, tomato, melon, cucumber, corn, and cabbage. Food samples like wheat, 

rice and blueberry were shuffled before selection for grinding. The grains were ground whole. 

Juicy samples like tomato, blueberry, corn, cucumber, cabbage, and honeydew were blended into 

puree (Fig. 3.2, A) using Robot Coupe (Fig. 3.2, C). Rice and wheat, being grains was each 

blended into powder (Fig. 3.2, B) using a Majic blender (Fig. 3.2, D).  Each prepared sample was 

labeled separately, poured into glass quart jars, and stored at -20 
0
C until ready to analyze.  

 

Table 3.2 Water Samples  

Water     Source      

BPH   Bayou Pierre, Hwy 1 S of Powha  (*WM-S-A-01)  

CRH   Cane River, Hwy 1, 1 mile N. Gal  (WM-S-A-02)   

CLC   Chatlin Lake Canal, Hwy 457 T2N (WM-S-A-04)  

CDG   Coulee Des Grues, hwy 115-SW (WM-S-A-05)    

BCH   Big Creek Hwy 80 at Holly Ridge (WM-S-M-03)     

LTC   Little Turkey Creek, Hwy 128 T1 (WM-S-M-05)    

LBT   Lake Bruin T12N R12E S29 (WM-S-M-06)     

TRH2   Tensas River Hwy 15 at Clayon (WM-S-M-07)  

CBS   Cross Bayou-S of Hwy 84 T7N R8E (WM-S-M-08)     

BTI   Bayou Teche I-10 at Breaux Brid (WM-S-O-06)  

BPI   Bayou Portage I-10 at Henderson (WM-S-O-07)  

BDP   Bayou Du Portage Hwy 679 T10S R (WM-S-O-08)  
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(Table 3.2 Continued) 

Water     Source      

LCH   Lasalle Coulee Hwy 182 at Cade (WM-S-O-09)  

VRH   Vermillon River Hwy 14 at Abbev (WM-S-O-10)  

BTH   Bayou Tech Hwy 87 at Olivier (WM-S-O-11)  

BGT   Bayou Grosse Tete at Frisco Hwy (WM-S-B-01)  

BGT2   Bayou Grosse Tete at I-10 at GR (WM-S-B-04)  

BTH2   Bayou Tigre Hwy  404 T11S-RSE (WM-S-B-05)  

BRH2   Blind River Hwy 61 T11S-RSE (WM-S-B-06)  

HRH   Houston River Hwy 27, 2 MI N.O (WM-S-C-02)  

BDC   Bayou De Cannes, Hwy 98 2 MI, W (WM-S-C-03)  

BPH   Bayou Plaquemine Hwy 98 4 MI (WM-S-C-04)  

EBL   East Bayou Lacassine ½ Mile W (WM-S-C-05)  

MRH   Mermentau River Hwy 90 at Merme (WM-S-C-06)  

BLH   Bayou Lacassine Hwy 14 T11S R5 (WM-S-C-07)  

BSM   Bayou Serpent at Manuel Road (WM-S-C-09)  

BBH   Black Bayou, Hwy 530 2 MI. E. of Foley AL 36535  (WM-S-S-01)   

BPH2   Bayou Pierre, Hwy 530 2 MI. E. of Foley AL 36535 (WM-S-S-03)   

BRH   Boeuf River, Hwy 2 T2 IN R8E S25 Eunice LA (WM-S-M-01)  

BMH   Bayou Macon, Hwy 134 Poverty POI Eunice, LA (WM-S-M-02)   

TRH   Tensas River Hwy 80 at Tendal, Eunice, LA (WM-S-M-04) 

BQD   Bayou Queue De Turtue Hwy 13 T Metairie (WM-S-C-08)  

GBH   Grand Bayou Hwy 70 T12S-R13E Washgton (WM-S-B-07)  
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(Table 3.2 Continued) 

Water     Source      

BLR   Bayou Lafourche at Raceland T1 Port Barre (WM-S-B-08)  

BTG   Bayou Terrebonne at Gray T16S-Port Barre (WM-S-B-09)  

*WM = Water monitoring. 

 

      

       

           

Figure 3.1 (A) tomato, (B) blueberry, (C) corn, (D) cucumber, (E) cabbage, (F) honeydew.  

(G) wheat and (H) rice.  
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Figure 3.2 (A) Purees of tomato, blueberry, corn, cucumber, cabbage and honeydew. (B) 

Powders of wheat and rice. (C) Robot Coupe. (D) Majic blender.  

 

3.2.2 Pesticide Residue Extraction in Fresh Surface Water. Sodium sulfate was poured to 

almost fill a large ceramic filter funnel (1 liter size) with a rubber stopper on the stem. This was 

attached to the top of a 2-liter filter flask. The flask was attached to a vacuum source and rinsed 

with pet ether three times. The sodium sulfate was dried by spreading on aluminum foil under a 

hood. Dried sodium sulfate was packaged in a clean dry container, labeled and dated.  

Water sample was allowed to warm up to room temperature having been stored in a 

cooler at 4 
0
C. Into a graduated cylinder, 500 ml of surface water samples were measured and 

B

                       
C D            

A
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transferred to a 1-liter separatory funnel. With a 100 ml graduated cylinder, 75 ml of methylene 

chloride was measured and added to the surface water sample. The surface water samples were 

vented to prevent breakage of glass due to pressure. The surface water samples were capped and 

shaken for 1.5 minutes, with occasional release of pressure every 15-20 seconds. A large funnel 

was prepared for each sample by plugging the stem with a small amount of rinsed glass wool in 

the bowl and filling approximately a quarter full with sodium sulfate. The bottom layer was 

drained from the separatory funnel through the prepared funnel into a 400 ml beaker. As carried 

out earlier, an addition of methylene chloride, subsequent shaking / pressure release every 15-20 

sec, and draining the bottom layer from the separatory funnel were repeated two more times with 

the bottom layer drained. The drained sample was placed in a 400 ml beaker in a water bath at 

40-50 
0
C, and was evaporated to about 1 ml volume. With a pipette, 2-3 ml of hexane was 

measured and added into the evaporated sample, and returned to the water bath for further 

evaporation until about 1 ml volume remained. Hexane was added until 12 ml volume was 

reached. A small funnel was prepared with a small amount of glass wool added in order to plug 

its drain. A funnel was placed on a 15 ml graduated test tube in a rack. Sodium sulfate was 

poured into the funnel bowl until almost the one-third full mark. The sample was transferred 

from the beaker into the 15ml tube by pouring through the small prepared funnel and a clean 

stopper cork was placed on the tube containing the sample.  

The sample tube was placed in a water bath that was set to 35 
0
C. While the samples were 

in the water bath, nitrogen was blowing on individual samples through a vent connected to a 

Pasteur pipette into each sample tube. With occasional adjustment of the nitrogen vent, sample 

tubes were left in the water bath until the sample volume was concentrated to slightly below 1 

ml. Hexane was added to make the final sample volume to the 1 ml mark using a Pasteur pipette 
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and a dropper. Surface water samples, positive and negative controls were prepared in vials for 

GC-MS (gas chromatography-mass spectrometry) analysis.   

3.2.3 Pesticide Residue Extraction in Food Samples. The extraction technique used was the 

quick, effective, cheap, easy and safe (QuEChERS) method. The stages involved in QuEChERS 

used in the extraction of food samples toward the detection of pesticide in this study comprised 

of sample homogenization (blending for vegetables and fruits, or grinding for grains), weighing, 

spiking (addition of standard solution for measuring extraction efficiency and quantitation of 

analytes), addition of extraction solvent, buffering and drying (addition of extraction salt), 

separation of organic layer from the sample (centrifuge), Clean-up (with dispersive Solid Phase 

Extraction (dSPE) which contains carbon black (carbon 12- C12 and graphitized carbon black- 

GCB), primary secondary amine (PSA) and magnesium sulphate to remove matrix compounds 

like chlorophyll, proteins, fats), separation of supernatant from dSPE junk (centrifuge), sample 

vial preparation for GC-MS analysis. Magnessium sulphate as a salt enhances the ionic strength 

of the extraction solution that increases the amount of analytes suspended by the sorbents, that is, 

C12 and GCB. Unwanted dirts and debris like chlorophyll are removed by the PSA. The 

extraction solvent acetonitrile (ACN) eventually extracts the suspended analytes from the 

sorbents and also separates the organic layer that contains the analytes at the upper layer away 

from the lower layer which contains the unwanted debris from the matrix sample. The analytes 

are concentrated by placing the tube in a water bath at 35 
0
C with nitrogen gas blowing through a 

vent in the analyte solution.  

3.2.3.1 Tomato. Six tomato samples labeled 3x, 5x, 7x, 10x, 11x, and 14x were extracted 

towards possible pesticide residue detection. On a weighing balance, 10 g of tomato puree of 
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each of the 6 varieties was measured into 50 ml plastic centrifuge tube. A reagent blank sample, 

which was the negative control, was prepared by pipetting 10 ml of milliQ water into a 50 ml 

centrifuge tube. Immediately after weighing, spike samples, which were the positive controls, 

were sorted out, labeled separately and spikes added to each of them accordingly. There was a 

low and a medium spike each for variety 3x, a medium and a high spike each for variety 5x, a 

medium spike for 7x, a low spike for 10x and a low spike for 14x.  All spiked samples were 

vortexed and allowed to wait for 30 minutes. With an auto dispenser, 10 ml of solvent 

(acetonitrile) was added to each of the samples. Samples were shaken using elbow and shoulder 

than the wrists, and once again vortexed. One pack of an extraction salt of QuEChERS 

containing 1200 mg magnesium sulphate (MgSO4), 400 mg primary and secondary amine (PSA), 

400 mg carbon 18 (C18) and 400 mg graphitized carbon black (GCB) was added to each sample. 

MgSO4 helps enhance the ionic strength of the extraction solution thereby increasing the 

attraction of analytes towards sorbents C18 and GCB. PSA helps to remove matrix junks like the 

chlorophyll. Elbows and shoulders were once again used to shake the salted samples, after which 

they were centrifuged for 10 minutes at 3500 rpm for 15 minutes. Coming out of the centrifuge, 

separate layers were formed distinctly, and the upper layer (acetonitrile extract) was carefully 

pipetted into 15 ml centrifuge tube containing dSPE 150 MgSO4, 50 mg PSA, 50 mg C18 and 50 

mg GCB. These were vortexed and centrifuged for 1 minute at 3500 rpm. Sample vials were 

prepared for GC-MS. A total of 28 sample vials comprising of 1 solvent (acetonitrile), 3 ACN 

standards, 4 matrix standards, 3 solvent standards, 1 reagent blank, 3x, low spike 3x, medium 

spike 3x, 5x, 5x duplicate, medium spike 5x, high spike 5x, 7x, 7x duplicate, 7x medium spike, 

14x, 14x duplicate, 14x low spike, 10x, 10x low spike, and 11x were prepared and ran. All 

samples were loaded into the GC/MS analyzer and the machine operated as earlier outlined. 
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Details of preparation of standard samples, matrix samples, and solvent samples are as outlined 

in appendix 1. Sequences of the runs were as outlined in appendix 2. 

3.2.3.2 Corn.  Whole grains from 5 cobs of corn from each sample were scraped into the 

blender. As shown in the sequence in appendix 3, three corn samples 6x, 8x and 13x were 

prepared as explained in section 3.2.3.1 for tomato. A total of fourteen samples were prepared 

from the 3 samples including the reagent blank and solvent standard, making a total of 4 samples 

from each of the varieties.  6x matrix standard, 6x spike, 6x, 6x duplicate were from variety 6x. 

Four samples from variety 8x were 8x matrix standard, 8x spike, 8x, and 8x duplicate. The four 

from 13x were 13x matrix standard, 13x spike, 13x, and 13 duplicate. All these 14 samples were 

loaded into the GC-MS in 3 replicates.  

3.2.3.3 Blueberry. About 50 pieces of blueberry fruits were ground for each sample. Extraction 

of two samples of blueberries namely 4x and 12x was done as stated for tomato in section 

3.2.3.1. Ten samples with reagent blank inclusive (4x, 4x duplicate, 4x low spike, 4x medium 

spike, 12x, 12x duplicate, 12x low spike, 12x medium spike and 12x high spike) were prepared 

and ran in the chromatography for both samples.  

3.2.3.4 Cucumber. Four cucumbers were sliced and blended. The same extraction process carried 

out for tomato in section 3.2.3.1 was done for cucumber sample 9x. Four standards were 

prepared – 2 matrix standards and 2 solvent standards. In addition to the standards, 5 samples 

were prepared as 9x, 9x duplicate, 9x low spike, 9x medium spike and 9x high spike. Samples 

were ran in the GC-MS as duplicate in replication.  
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3.2.3.5 Melon (honeydew). One whole melon of sample 15x was extracted as done for tomato 

(section 3.2.3.1). The matrix standards prepared were two as well as 2 solvent standards. Other 

samples prepared and ran along with the standards includes 15x, 15x duplicate, 15x low spike, 

and 15x high spike. Samples were replicated twice as loaded and ran in the GC-MS.   

3.2.3.6 Cabbage. Sample extraction as carried out on tomato (section 3.2.3.1) was repeated for 1 

whole piece of cabbage. Two solvent standards, 2 matrix standards, 16x, 16 duplicate, 16 low 

spike and 16x medium spike were the samples prepared and run for cabbage. 

3.2.3.7 Wheat. About 100 g of whole grains of wheat was measured into the majic blender for 

each of samples 1x and 2x. The two wheat samples 1x and 2x were extracted as outlined for 

tomato in section 3.2.3.1. Seventeen samples were prepared for both varieties. Reagent blank, 

two matrix standards for each of the varieties, 2 solvent standards for each of the samples 

making 8 standards followed by 1x, 1x duplicate, 1x low spike, 1x high spike, 2x, 2x duplicate, 

2x low spike, and 2x medium spike. The 16 samples were replicated twice during run in the GC-

MS machine. 

3.2.3.8 Rice. About 100 g of rice sample 17x was measured and blended into powder. Rice 

sample was extracted in the same way as done for tomato (section 3.2.3.1). Reagent blank, two 

solvent standards, two matrix standards, 17x, 17 duplicate, 17x low spike, 17x medium spike and 

17x high spike were samples prepared followed by replicating twice during machine run. 

3.2.4 Gas Chromatography-Mass Spectrometry. Both gas chromatography and mass 

spectrometry combined in one as GC-MS were from Agilent company. The GC component was 

Agilent 6890 while the MS was Agilent 5975 quadrupole. The series autosampler 6890 series 
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was used to inject sample extracts and standards into the GC-MS. The column was a Restek 35 

MS-GC column of 30 m length, 0.25 mm internal diameter and 0.25 µm film thickness. For the 

instrument control and quantitative data analysis, software was required and the software used 

was Agilent ChemStation. Injection volume was 2 µl with pulsed spitless at 20 psi pressure pulse 

for 0.74 minutes. Injector temperature was 250 
0
C and a transfer line temperature of 280 

0
C. 

Helium gas was the carrier mobile phase with a constant flow at 1.5 ml/min. The temperature of 

the system was programmed with an initial temperature set to 120 
0
C and held for 2 min after 

which it was elevated to 340 
0
C at 30 

0
C/min rate prior to the final hold of 2 minutes. The total 

run based on these settings was 12.33 minutes. The mode at which the MS was operated was 

electron impact ionization (EI) with MS ion source at 230 
0
C and the quadrupole at 150 

0
C. 

Electron nultiplier was set at 200 V above the calibration standard PFTBA 

(Perfluorotributylamine) autotuned setting. Selected ion monitoring (SIM) mode was used for 

screening and quantitative analysis of targeted pesticides.  The initial identification of a pesticide 

in the sample was based on the detection of its characteristic ion peaks and their relative 

abundances as well as the comparison of its retention time with those observed in the analytical 

standard. The particular retention times and quantitation ions for the SIM mode analysis of the 

pesticides is as shown in Table 3.3. Full-scan (50-450m/z) MS analyses were conducted to 

confirm the pesticide’s detection by comparison to mass spectral libraries from both commercial 

sources and internally generated spectra. This comparison was automated using the NIST 

(National Institute of Standards and Technology) AMDIS (Automated Mass spectral 

Deconvolution and Identification System) software.  Retention time confirmation against the 

analytical standard in full-scan MS mode was also required for confirmation. Pesticides with 

multiple peaks are summed for quantification. 
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3.2.5 Trends of Some Pesticide Residues in the Surface Water Samples. From the database of 

the pesticide lab of agricultural chemistry dept. of LSU, data for the recent past 4 years (2012-

2015) from the results of analysis of pesticide residues in some surface waters was accessed. 

Water samples collected each year was done in summer in the month of May. In order to show 

the trends of either an increase or reduction in the levels of pesticide residues detected from the 

same sources year-in year-out, selected water samples studied included BPH, CLC, BBH, BRH, 

BCH, TRH2, BPI and CDG. 

 

Table 3.3 Retention time and quantitation ion for target compounds and their degradation 

products involved in this study 

Compound  tR (min) Qion (m/z) Compound tR (min) Qion (m/z) 

  

Carbofuran deg. 4.08  164  Metribuzin 7.18  198 

Eptam   4.24  128  Malathion 7.20  173   

Etridiazole  5.04  183  Metolachlor 7.22  162 

Trifluralin  5.60  306  Chlorpyrifos 7.26  197 

Molinate (Ordram) 5.57  126  MB45950fm 7.29  420  

Captan deg.  5.67  79  Fipronil 7.35  367 

Tefluthrin  6.17  177  Pendameth 7.50  252 

Thimet   6.17  75  Bromacil 7.50  207 

DesEthylAtrazine 6.24  172  Cyanazine 7.57  225 

DesIsopropylAtz 6.28  173  MB46136fm 7.80  383 

Prometone  6.34  225  Captan  7.80  79 

Terbufos  6.40  231  Propicon1 8.56  259 
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(Table 3.3 continued) 

Compound  tR (min) Qion (m/z) Compound tR (min) Qion (m/z) 

  

Diazinon  6.40  137  Bifenthrin 8.57  181 

Tebupirimiphos 6.42  261  Propicon2 8.59  259 

Atrazine  6.50  200  Norflurazon 8.76  303 

Clomazone  6.53  125  λ-cyhalot1 8.91  181 

Carbofuran  6.65  164  λ-cyhalot 8.99  197 

MB46513,Fip. met. 6.76  388  Hexazinone 9.01  171 

Acetochlor  6.87  223  Cyfluthrin 1 9.69  206 

Dimethenamid  6.91  154  Cypermet1 9.88  181 

Terbacil  6.93  161  Cyfluthrin 3 9.76  206   

Alachlor  6.95  188  Cypermet2 9.95  181 

Prometryn  7.05  241  Esfenvalera1 10.36  167  

Propanil  7.10  161  Esfenvalerate 10.45  167 

Metalaxyl  7.10  249  Azoxystrobin 11.51  344 

Methyl Parathion 7.16  263  Carbaryl 5.84  144 

Acephate  5.62  136  Methamido 4.45  141 

Endosulfan I  8.18  237  Endosulfan II 8.79  195 

Endosulfan SO4 9.08  272  Permethrin I 9.53  163 

Permethrin 2  9.57  163 

λ = lambda; DesIsopropylAtz = desethylatrazine; MB46136fm = MB46136, Fip. met.; MB45950 

= MB45950, Fip. met. Pendameth = Pendamethalin; Propicon2 = Propiconazole 2; Propicon1 = 

Propiconazole 1; λ-cyhalot1 = Lambda-cyhalothrin 1; λ-cyhalot = Lambda-cyhalothrin; 

Cypermethrin 1 = Cypermet1; Cypermethrin 2 = Cypermet2; Esfenvalerate 1 = Esfenvalera1; 

Methamido = Methamidiphos.   
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3.3 Statistical Analysis 

Six calcualtions were required in computing the results obtained in the chromatographic 

analysis of both the water and food samples. These calculations are as outlined as follows:  

1. Calculate the on column conc. of the sample:  

This equaltion 1 solves for “x” (x will be the same unit as the standard conc.) 

Std. conc. µg/ml/std. area = on column conc. “x” µg/ml/sample area 

(The assumption of this formula is that the injection vol. of the std. & sample are the same value: 

e.g. 10 µl). 

2. On column concentration “x” is calculated in terms of the amount of sample it actually 

signifies: 

On column conc. “x” (µg/ml)/sample wt (g) X vol of extract solvent(ml) X final vol (ml)/original 

vol (ml) = amount reported found in the sample (ppm or µg/g) 

3. The spiking rate was calculated: 

The spiking rate does not depend on the volume of extraction neither on any dilutions nor 

concentrations. 

Vol of std added (ml) X std con (µg/ml) /wt of sample (g) = spiking rate (ppm) 

4. The efficiency of the methodology was confirmed through the value of the spike recovery: 

Amount reported in the sample (ppm) /spiking rate (ppm) X 100 = % Recovery 
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5. The on column concentration expected from a spike was calculated and it provides a clue as  

per where matrix standard is needed to be in order to use it to calculate the recovery rate. 

Volume of standard added (ml) x standard conc. (µg/ml) / volume of extraction solvent (ml) x 

original volume (ml) / final volume (ml) = spike conc. on column (µg/ml). 

6. The amount of sample represented in the liquid injected onto column was calculated. This  

represents the amount that could be be written on the worksheet as final dilution. This also stands 

for the sample aount that gets to the detector. Note that the more sample to the detector, the 

lower the limit of detection and the dirtier the injection will be: 

weight of sample (g) / vol. of extraction solvent (ml) x original vol. (ml) / final vol. (ml) = 

sample amount to the detector (g/ml) 

This makes a factor out of equation 2 above (on column concentration “x” adjustment for the 

amount of sample it signifies): 

“x” (µg/ml) / sample amount to the detector (g/ml) = amount reported found in the sample in 

ppm (µg/g). 

3.4 Results 

3.4.1 Pesticide in Surface Waters. Chromatographic analysis of the 35 water samples analyzed 

indicated that different pesticides were found in them. As outlined in Tables 3.4a through 3.4e, 

the total number of pesticides that were detected across the 35 surface waters was 17. Since there 

is no threshold set for pesticide residues in surface water, the closest way to interpret the possible 

impact of the pesticide levels detected in this study is to compare them with the threshold set for 
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potable waters by the EPA (United States Environmental Protection Agency). However, the EPA 

has thresholds published for selected pesticides like atrazine, glyphosate and 2,4-D. The limits 

are for atrazine 0.003 ppm, 0.07 ppm for 2,4-D and 0.7 ppm for glyphosate. In comparison to 

these standards, 4 waters (0.00648 ppm in CLC, 0.0062 ppm in BRH, 0.00624 ppm in BCH, and 

0.01188 ppm in CBS) gone above the atrazine limit.  

 

Table 3.4a Pesticide residues detected in surface waters (ppm). 

 BPH CRH CLC CDG BBH BPH2 BRH Stdev    

Atrazine 0.0002 0.00033 0.00648 0.00068 0.00178 0.00052 0.0062 0.003 

AM PA 0.35 0.35 0.35 0.35 ND ND 0.35 0.00 

Glyphosate 0.35 0.35 0.35 0.35 ND ND 0.35 0.00 

Quinclorac ND 0.0002 ND ND ND ND 0.0043 0.003 

Desethatz ND ND 0.00074 ND ND ND 0.00062 8.5E-05 

Metolachlor ND ND 0.00108 0.00084 0.00116 0.00042 0.0172 0.007 

Fluometuron ND ND ND ND ND 0.00075 0.0014 4.6E-04 

Diuron ND ND ND ND ND 0.0002 ND ND 

Acetochlor ND ND ND ND ND ND ND ND 

Clomazone ND ND ND ND ND ND 0.0024 ND 

Metribuzin ND ND ND ND ND ND 0.00034 ND 

Trifluralin ND ND ND ND ND ND ND ND 

Triclopyr ND ND ND ND ND ND ND ND 

Dicamba ND ND ND ND ND ND ND ND 

Bromacil ND ND ND ND ND ND ND ND 
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(Table 3.4a continued) 

 BPH CRH CLC CDG BBH BPH2 BRH Stdev    

2,4-D ND ND ND ND ND ND ND ND 

Acifluorfen ND ND ND ND ND ND 0.00022 ND 

Each water sample was labeled as abbreviation of the name of its source as outlined in Table 3.2; 

ND = Not detected. Desethatz = Desethylatrazine. 

 

Table 3.4b Pesticide residues detected in surface waters (ppm). 

 TRH LTC LBT TRH2 CBS BTI BPI Stdev 

Atrazine 0.00274 0.00246 0.0006 0.00038 0.01188 0.00038 0.00072 0.004 

AM PA ND 0.35 0.35 0.35 0.35 0.35 0.35 6.1E-17 

Glyphosate 0.35 0.35 0.35 0.35 0.35 0.35 0.35 6.0E-17 

Quinclorac ND ND ND ND ND ND ND ND 

Desethatz  ND ND ND ND 0.00122 ND 0.0002 7.2E-04 

Metolachlor 0.01204 0.00106 0.00036 0.0034 0.00396 0.00049 0.00074 0.004 

Fluometuron ND ND ND ND ND ND ND ND 

Diuron ND 0.0023 ND 0.00106 ND ND ND 8.8E-04 

Acetochlor ND ND ND 0.00022 ND ND ND ND 

Clomazone ND ND ND ND ND 0.0002 ND ND 

Metribuzin 0.00086 ND ND 0.0003 ND ND 0.00028 3.3E-04 

Trifluralin ND ND ND ND ND ND ND ND 

Triclopyr ND ND ND ND ND ND ND ND 

Dicamba ND ND ND ND ND ND ND ND 

Bromacil ND ND ND ND ND ND ND ND 

2,4-D ND  ND ND ND ND ND ND ND 
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(Table 3.4b continued) 

 TRH LTC LBT TRH2 CBS BTI BPI Stdev 

Acifluorfen  ND  ND  ND    ND    ND    ND      ND     ND 

Each water sample was labeled as abbreviation of the name of its source as outlined in Table 3.2; 

ND = Not detected. Desethatz = Desethylatrazine. 

 

Table 3.4c Pesticide residues detected in surface waters (ppm). 

 VRH BTH BGT BGT2 BTH2 BRH2 GBH Stdev 

Atrazine 0.00026 ND ND ND ND 0.00032 ND 4.3E-05 

AM PA 0.35 0.35 ND ND ND ND ND 0.00 

Glyphosate 0.35 0.35 ND ND ND ND ND 0.00 

Quinclorac ND ND ND ND ND ND ND ND 

Desethatz  ND ND ND ND ND ND ND ND 

Metolachlor 0.0002 ND ND ND 0.00038 ND ND 1.3E-04 

Fluometuron ND ND ND ND  ND ND ND ND 

Diuron ND ND ND ND 0.00037 0.00054 ND 1.2E-04 

Acetochlor ND ND ND ND ND ND ND ND 

Clomazone ND ND ND ND ND ND ND ND 

Metribuzin 0.0002 0.00068 0.00238 0.00054 0.00024 0.00023 0.0017 8.5E-04 

Trifluralin ND ND ND ND ND ND ND ND 

Triclopyr ND ND ND ND ND ND 0.0002 ND 

Dicamba ND ND ND ND ND ND ND ND 

Bromacil ND ND ND ND ND ND ND ND 

2,4-D ND ND ND ND ND ND ND ND 
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(Table 3.4c continued) 

 VRH BTH BGT BGT2 BTH2 BRH2 GBH Stdev 

Acifluorfen ND ND ND ND ND ND ND ND 

Each water sample was labeled as abbreviation of the name of its source as outlined in Table 3.2; 

ND = Not detected. Desethatz = Desethylatrazine. 

 

Table 3.4d Pesticide residues detected in surface waters (ppm). 

 HRH BDC BPH EBL MRH BLH BQD Stdev 

Atrazine ND ND ND ND ND ND ND ND 

AM PA ND ND ND ND ND ND ND ND 

Glyphosate ND ND ND ND ND  ND ND ND 

Quinclorac ND 0.00058 0.0003 0.00142 0.0004 ND 0.0002 4.9E-04 

Desethatz ND ND ND ND  ND ND ND ND 

Metolachlor ND ND 0.00032 ND ND ND 0.00182 1.1E-03 

Fluometuron ND ND ND ND ND ND ND ND 

Diuron ND 0.00029 ND 0.0002 ND ND ND 6.4E-05 

Acetochlor ND ND ND ND ND ND ND ND 

Clomazone ND 0.0003 0.00032 0.00058 0.00022 0.0002 0.0002 1.5E-04 

Metribuzin ND ND ND ND ND ND 0.00036 ND 

Trifluralin ND ND ND ND ND ND ND ND 

Triclopyr ND ND ND 0.0003 ND ND ND ND 

Dicamba ND ND ND ND ND ND ND ND 

Bromacil ND 0.00042 ND ND ND ND ND ND 
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(Table 3.4d continued) 

 HRH BDC BPH EBL MRH BLH BQD Stdev 

2,4-D 0.00036 ND ND ND ND ND ND ND 

Acifluorfen ND ND ND ND ND ND ND ND  

Each water sample was labeled as abbreviation of the name of its source as outlined in Table 3.2; 

ND = Not detected. Desethatz = Desethylatrazine. 

 

Table 3.4e Pesticide residues detected in surface waters (ppm). 

 BMH BCH     BDP LCH BLR BTG BSM Stdev    

Atrazine 0.0018 0.00624 ND 0.00054 ND ND ND 0.003 

AM PA 0.35 0.35 0.35 0.35 ND ND ND 0.00 

Glyphosate 0.35 0.35 0.35 0.35 ND ND ND 0.00 

Quinclorac ND ND ND ND ND ND 0.00054 ND 

Desethatz  0.00058 0.00054 ND ND ND ND ND 2.8E-05 

Metolachlor 0.0006 0.0039 ND ND 0.00034 ND ND 2.0E-03 

Fluometuron ND ND ND ND ND ND ND ND 

Diuron ND ND ND 0.00056 ND 0.00075 ND 1.3E-04 

Acetochlor ND 0.00028 ND ND ND ND ND ND 

Clomazone ND ND ND ND ND ND 0.00042 ND 

Metribuzin 0.00266 0.00036 0.00172 0.00036 0.0006 ND ND 1.0E-03 

Trifluralin ND ND 0.00028 ND ND ND ND ND 

Triclopyr ND ND ND ND ND ND 0.00028 ND 

Dicamba ND ND ND ND 0.00104 ND ND ND 

Bromacil ND ND ND ND ND 0.00034 ND ND 
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(Table 3.4e continued) 

 BMH BCH     BDP LCH BLR BTG BSM Stdev    

2,4-D ND ND ND ND ND ND ND ND 

Acifluorfen ND ND   ND   ND ND ND ND ND 

Each water sample was labeled as abbreviation of the name of its source as outlined in Table 3.2; 

ND = Not detected. Desethatz = Desethylatrazine. 

 

As outlined in Table 3.4, the lowest among the 4 samples that over the threshold was 

sample BRH and was 107 % higher than the EPA limit for potable waters. The highest above 

threshold sample was recorded in CBS at 296 % above the limit.    

 

Table 3.5 Percentage of Atrazine above Limit (comparing surface water with EPA potable water 

limit). 

Sample Surface water  Potable water Difference % above limit 

Atrazine Detected EPA Limit 

CLC  0.0065   0.003  0.00348 116 

BRH  0.0062   0.003  0.00320 107 

BCH  0.0062   0.003  0.00324 108 

CBS  0.0119   0.003  0.00890 296 

 

3.4.2 Pesticide in Food. Tomato, melon and rice were found with pesticides as shown in Table 

3.5. Corn, blueberry, cucumber and cabbage showed no pesticide residues. Out of the 6 varieties 

of tomatoes analyzed, 3 of them – samples 2, 4 and 6 respectively showed presence of sevin 
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(carbaryl), cypermethrin and cyfluthrin. Concentration of the carbaryl found was 0.110 ppm, 

while that of cypermethrin and cyfluthrin were 0.180 and 0.110 ppm respectively. The FDA 

tolerance threshold in tomatoes was 5.000, 0.200 and 0.200 ppm for carbaryl, cypermethrin and 

cyfluthrin respectively. 

Azoxystrobin was found in melon at the level of 0.057 ppm. The FDA tolerance rate was 

0.300 ppm in melon. The rice variety contained 0.031 ppm propiconazole and 0.027 ppm 

azoxystrobin. Tolerance rate in rice as provided by the FDA was 7 ppm for propiconazole and 5 

ppm for azoxystrobin. 

 

Table 3.6 Pesticides found in food. 

Food  Sample Sample Pesticide  Amount       Tolerance  

sample  number name  detected  (ppm)   (ppm) 

Tomato  1 3x  None   -   - 

Tomato  2 5x  Sevin   0.110   5.000 

Tomato  3 7x  None   -   - 

Tomato  4 10x  Cypermethrin  0.180   0.200 

Tomato  5 11x  None   -   - 

Tomato  6 14x  Cyfluthrin  0.110   0.200 

Corn   1 6x  None   -   - 

Corn   2 8x  None   -   - 

Corn   3 13x  None   -   - 

Blueberry  1 4x  None   -   - 

Blueberry  2 12x  None   -   - 

Cucumber  1 9x  None   -   - 
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(Table 3.6 continued) 

Food  Sample Sample Pesticide  Amount       Tolerance  

sample  number name  detected  (ppm)   (ppm) 

Melon (Honeydew) 1 15x  Azoxystrobin  0.057   0.300 

Cabbage  1 16x  None   -   - 

Wheat   1 1x  None   -   - 

Wheat   2 2x  None   -   - 

Rice   1 17x  Propiconazole  0.031   7.000 

Rice   1 17x  Azoxystrobin  0.027   5.000 

 

3.4.3 Trends of Some Pesticide Residues in the Surface Water Samples. Data gathered for the 

recent past 4 years (2012-2015) from the results of analysis of pesticide residues in some surface 

waters was accessed. Data from selected water samples BPH, CLC, BBH, BRH, BCH, TRH2, 

BPI and CDG were plotted into graphs (Figures 3.3a through 3.3l) in order to show the trends of 

either an increase or reduction in the levels of pesticide residues detected from the same source 

year-in year-out. Figure 3.3a showed a decline in atrazine level.  Year 2012 and 2013 data 

showed no atrazine was detected in sample BPH but comparing year 2014 and 2015 revealed a 

fall in atrazine level from 1.72 ppb in 2014 to 0.16 ppb in 2015.   

 Figure 3.2b showed a steady increase in atrazine level in the sample CLC as record 

confirmed 0.4 ppb in 2012, 2.26 ppb in 2013, 4.62 ppb in 2014 and 6.48 ppb in 2015.  In sample 

BBH, atrazine content also is on the increase (Figure 3.3c) starting at 0.2 ppb in 2012, 0.66 ppb 

in 2-13, ND (no detection) in 2014 and finally 1.78 in 2015. In Figure 3.3d, atrazine level in 
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2012 in BRH sample was at 2.36 ppb; while there was ND in both 2013 and 2014, year 2015 

experienced an increase to 6.2 ppb. 

 

Figure 3.3a Atrazine in BPH sample from 2012 through 2015. 

 

 

Figure 3.3b Atrazine in CLC sample from 2012 through 2015. 
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Figure 3.3c Atrazine in BBH sample from 2012 through 2015. 

 

 

Figure 3.3d Atrazine in BRH sample from 2012 through 2015. 
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as seen in Figure 3.3g, was in atrazine level that was 1.16 in 2012, dropped to 0.7 in 2013, 

increased to 2.32 in 2014 and dropped back to 0.72 in 2015.   

 

Figure 3.3e Atrazine in BCH sample from 2012 through 2015. 

 

 

Figure 3.3f Atrazine in TRH2 sample from 2012 through 2015. 
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Figure 3.3g Atrazine in BPI sample from 2012 through 2015. 
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Figure 3.3h Metolachlor in BPH sample from 2012 through 2015. 
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Figure 3.3i Metolachlor in CDG sample from 2012 through 2015. 
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there was no detection in consecutive years 2013 and 2014. Metolachlor also fluctuated greatly 

in sample BRH (Figure 3.3k) was at 3.26 level in 2012, increased to 40  in 2013, went down to 

4.56 in 2014 and rose to 17.2 in 2015. 

 

 

Figure 3.3j Metolachlor in BBH sample from 2012 through 2015. 
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Figure 3.3k Metolachlor in BRH sample from 2012 through 2015. 

 

The last Figure 3.3l shows some mild fluctuations as clomazone was 3.96 ppb in 2012, dropped 

to 2.48 in 2013, drpped further to 1.96 in 2014 but on the increase in 2015 as it went up to 2.4 

ppb.  

 

 

Figure 3.3l Clomazone in BRH sample from 2012 through 2015. 
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3.5 Discussion 

 Results obtained in this study are similar to reports of earlier works conducted in this 

field as some of the pesticides detected in foods and waters studied have been detected by some 

authors. Walther (2003) detected 0.0375 ppm atrazine in Iberville water district surface water in 

Upper Terrebonne Basin of Louisiana. This was 1150 % above tolerance limit of 0.003 ppm. 

This is far above the range value obtained in this study for high concentrations of atrazine. This 

is about 4 times more than the highest value of 296% obtained in sample CBS in this study. 

Atrazine in ground water was reported by Lemic et al (2006). Atrazine was found in ground 

water in the United Kingdom to have exceeded potable water limit (0.0001 ppm) in more than 

10% of the analyzed samples (Comber, 1999).       

 The 3 pesticides detected in tomato namely carbaryl, cypermethrin (Ahmed et al., 2015; 

Alamgir et al., 2013) and cyfluthrin (Dikshit et al., 2003) are insecticides used in its cultivation. 

Sevin is used to control cutworm, stinkbugs and thrips; Cypermethrin is used to control 

hornworm; and Cyfluthrin is used against thrips, leafminer and stinkbug (Masabni, 2015). 

Cypermethrin level of 0.180 ppm detected in tomato is very close to its 0.200 ppm ceiling level 

as set by the FDA. However, cypermethrin is acid-labile as it degrades with increasing level of 

acidity. According to Lin et al (2005), cypermethrin level in tomato decreases by 30 % within 12 

days at 5 
0
C in tomato paste pH of 4.3. The degradative product of cypermethrin is 3-

Phenoxybenzaldehyde whose health effect is yet unknown but an in-vitro study carried out by 

Lin et al (2005) confirmed some endocrine activity associated with cypermethrin breakdown. 

This may explain part of the reasons why the exposure of tomato consumers to this insecticide 

may, or may not remain, less of a risk. Azoxystrobin and propiconazole are fungicides. 
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Azoxystrobin detected in melon and rice in this study is used in melon to control gummy stem 

blight (Stevenson et al., 2004), and in rice to control sheath blight (Groth, 2005). Propiconazole 

serves the same purpose of controlling sheath blight in rice farming (Jones et al., 1987). 

While pesticides found in the foods products were below tolerance limits as set by the 

EPA, those levels detected in surface waters were above the tolerance for atrazine in 4 samples. 

Since the amount of pesticide residue in water is a function of its usage (Lemic et al., 2006), in 

addition to our results, the ground water samples and produce from those 4 locations should be 

monitored for atrazine after which the respective authorities and the users of atrazine in the 

regions could be advised to take caution.  

Trends observed in the atrazine, metolachlor and clomazone in those water samples could 

be reliably considered since the samplings were done at the same month of May from 2012 

through 2015. Since the agricultural activities that characterize this period of the year did not 

change, it will not be much of a factor but rather some other factors like weather anomalies 

resulting to storm and erosion may be part of the reasons for such fluctuations. 

  

3.6 References 

Alamgir M.Z. Chowdury, Shubhra Bhattacharjee, A.N.M. Fakhruddin, M. Nazrul Islam and M.  

Khorshed Alam. 2013. Determination of cypermethrin, chlorpyrifos and diazinon 

residues in tomato and reduction of cypermethrin residues in tomato using rice bran. 

World Journal of Agricultural research 1(2), pg 30-35. 

http://pubs.sciepub.com/wjar/1/2/2/ 

 

Ahmed I.A., Kutama A.S., Umma M., Hassan K.Y. and Ibrahim M. 2015. Control of tomato  

fruitworm (Helicoverpaarmigera H.) on tomato using cypermethrin, dimethoate and neem 

extracts in Samaru, Zaria, Nigeria. Journal of Agricultural Science Vol. 42, pg. 113-117. 

 

 

http://pubs.sciepub.com/wjar/1/2/2/


57 

 

Braganca Idalina, Alexandra Placido, Paula Paiga, Valentina F. Dominigues, Cristina Delerue- 

Matos. 2012. QuEChERS: A new sample preparation approach for the determination of 

ibuprofen and its metabolites in soils. Science of the Total Environment 433, 281-289.  

 

Dikshit A.K., D.C. Pachauri and T. Jindal. 2003. Maximum residue limit and risk assessment of  

beta-cyfluthrin and imidacloprid on tomato (lycopersicon esculentum Mill). Bulletin of 

Environmental Contamination and Toxicology, 70: 1143-1150. 

 

Grith D.E. 2005. Azoxystrobin rate and timing effects on rice sheath blight incidence and  

severity and rice grain and milling yields. Plant Disease Vol. 89 No. 11. DOI: 10. 

1094/PD-89-1171. 

 

Jones R.K, S.B. Belmar and M.J. Jeger. 1987. Evaluation of benomyl and propiconazole for  

controlling sheath blight of rice caused by Rhizoctonia solani. Plant Disease Vol. 71 No. 

3. 

 

Walther John S. 2003. Surface Water Pesticide Contamination in the Upper Terrebonne Basin of  

Louisiana. A Thesis submitted to the graduate faculty of the Louisiana State University 

and Agricultural and Mechanical College in partial fulfillment of the requirements for the 

degree of master of science in the department of environmental studies. 

 

Lehotay J. Steven, Andre de Kok, Maurice Hiemsta and Peter Van Bodegraven. 2005. Validation  

of a fast and easy method for the determination of residues from 229 pesticides in fruits 

and vegetables using gas and liquid chromatography and mass spectrometric detection. 

Journal of AOAC International Vol. 88, No. 2. 

Lemic J., Tomasevic-Canovic M., Kovacevic D., Stanic T., Pfend R. 2006. Removal of atrazine,  

lindane and diazinone from water by organozeolites, Water Research, 40, 1079-1085.  

Lin, H.M., J.A. Gerrard and I.C. Shaw. 2005. Stability of the insecticide cypermethrin during  

tomato processing and implication for endocrine activity. Food Additives and 

Contaminants, 22(1): 15-22. 

Masabni Joe. Unknown date of publ. Tomato Texas AgriLife Extension Service, Texas A&M  

System. http://aggie-horticulture.tamu.edu/vegetable/files/2011/10/tomato.pdf  

Accessed March 2016. 

 

Salvia Marie-Virginie, Emmanuel Vulliet, Laure Wiest, Robert Baudot and Cecille Cren-Olive.  

2012. Development of a multi-residue method using acetonitrile extraction followed by 

liquid chromatography-tandem mass spectrometry for the analysis of steroids and 

veterinary and human drugs at trace levels in soil. Journal of Chromatography A.  

Volume 1245, Pg 122-133. 

 

 

 

http://aggie-horticulture.tamu.edu/vegetable/files/2011/10/tomato.pdf


58 

 

Stevenson Katherine L., David B. Langston Jr., and Kenneth W. Seebold. 2004. Resistance to  

Azoxystrobin in the Gummy Stem Blight pathogen documented in Georgia. Online. Plant 

Health Progress doi:10.1094/PHP-2004-1207-01-RS. 

https://www.plantmanagementnetwork.org/pub/php/research/2004/gummy/ 

 

U.S. Congress, Office of Technology Assessment. 1988. Pesticide Residues in Food:  

Technologies for Detection. OTA-F-398 (Washington, DC: US Government Printing 

Office. October 1988). 

Wilkowska Angelika and Marek Bizuik. 2011. Determination of pesticide residues in food  

matrices using the QuEChERS methodology. Food Chemistry  Volume 125, Issue 3, 

Pages 803-812. 

  

https://www.plantmanagementnetwork.org/pub/php/research/2004/gummy/


59 

 

CHAPTER 4 

ALLEVIATION OF PESTICIDES  

4.1 Introduction 

Alleviation of pesticide residues in surface water is a step towards water purification as it 

describes the removal or reduction of pesticides in water. Considering the multi-purpose use of 

water in food production, from irrigation of crops to postharvest cleaning of farm produce the 

use of clean water is desired. Detrimental effect of pesticides on human health is one reason why 

we need to have a method for keeping our food and water pesticide-free. Carson (1958) asserted 

how lack of caution in pesticide handling could make an environment vulnerable and desolate, as 

some pesticides, once applied, take ages to degrade thereby constituting an impediment to life 

and subsequent agricultural practice in such environment. The persistent nature of pesticides in 

our environments, demands a method of getting rid of unwanted pesticide residues in the soil, 

waters and atmospheric air around us. 

 Some of the past efforts made in removing pesticide residues in water include the use of 

clay (Li et al., 2003; Lemic et al 2006), activated carbon (Boussahel et al., 2000; Ogata et al 

2011) and ozonization (Boussahel et al., 2000). Use of clay is limited by its adsorption capacity 

due to its shrink-swell behavior and zeolites are free of such flaws (Tarasevich and Polyakov, 

1995). Saturation of carbon filters resulting in cost of replacement; and a decrease in the 

efficiency of activated carbon with increased organic contaminants are limitations in the use of 

activated carbon (Welte et al., 1996). Formation of byproducts like peroxides, ozonides, 

organobromine and bromate are associated with the use of ozonization (Welte et al., 1996).   
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 A natural zeolite like clipnotilolite is high in its cation exchange capacity due to its net 

negative charge on the outer surface. When a natural zeolite is further fortified with an overall 

positive charge on its surface by modification with surfactant(s), its affinity for cation changes to 

anion and it entraps negatively charged organic ions. These unique attributes of a zeolite are both 

utilized in this study as we seek to alleviate pesticide residues in surface waters across Louisiana.  

4.2 Materials and Methods 

4.2.1 Water Filtration through Natural Zeolite- Clinoptilolite. Ten samples -BPH, CLC, 

CDG, BBH, BRH, BCH, LBT, TRH, BPI, and BDC, were selected from the original pool of 35 

samples of surface water studied for detection of pesticide residues as reported in Chapter 3 of 

this dissertation. The criterion used in selecting those 10 samples was the water samples that had 

the most pesticide residues based on the results obtained in Chapter 3 of this dissertation. 

 As shown in Figure 4.1, A, the water filtration system used to filter surface water samples 

from top to bottom contained 20 g each of gravel, sand and Zeolite. A funnel was placed on the 

topmost column and filtration was initiated. The filtrate was collected into a 1 liter amber color 

bottle as shown in Figure 4.1, B. For each water sample, a total of 1000 ml was filtered per 20 g 

of zeolite after which the filtration system was dismantled, cleaned by hot wash in soap, rinsed in 

running potable water thrice and allowed to dry before re-assembled and re-used. Fresh zeolite 

was used for each sample.  
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Figure 4.1 (A) Water filtration system (B) Filtration of surface water through natural zeolite and 

HDTMA-Cl SMZ.  

 

4.2.2 Preparation of HDTMA-Cl (Hexadecyltrimethylammonium chloride)-Surface-

Modified Zeolite. As described by Bowman (2005), 0.056 M surfactant –HDTMA-Cl was 

prepared to treat the natural zeolite used in the earlier section 4.2.1. With a weighing balance, 

1.43 g HDTMA-Cl was measured into a 125 ml beaker containing 70 ml of milliQ water. With a 

gentle swirl until all surfactant dissolved, solution was poured into 100 ml graduated cylinder 

and milliQ water added up to 80.5 ml final volume. With a weighing balance, 20 g of natural 

zeolite was measured and dispersed in the 80.5 ml of 0.056 M surfactant for 2 hours. The 

supernatant was drained away after 2 hours and the surface-modified zeolite (SMZ) was spread 

out on a clean aluminum foil to air dry overnight.    

4.2.3 Water Filtration through HDTMA-Cl (Hexadecyltrimethylammonium chloride)-

Surface-Modified Zeolite. The water sample BRH was selected based on the same criterion 

(highest volume of pesticide residue content) as used in the earlier section 4.2.1. The filtration 

A
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system for SMZ consisted of 3 columns in layers. The upper layer was empty followed by a 

middle layer of natural zeolite and base layer of column of HDTMA-Cl-SMZ.  

4.2.4 Pesticide Residue Extractions in both Zeolite-filtered, and SMZ-filtered Waters. As 

listed in Table 4.1, ten zeolite-filtered water samples were extracted for pesticide residues. The 

same extraction method used in pesticide residue extraction in fresh surface water in Section 

3.2.2 of Chapter 3 was repeated for both sets of samples- 10 zeolite-filtered samples and 1 SMZ-

filtered sample. In each case, the same volume of 1000 ml of water was run through the natural 

zeolite and the SMZ. Sample vials for the GC-MS were prepared and analysis ran.  

4.3 Statistical Analysis 

Six calcualtions were required in computing the results obtained in the analysis of the 

water samples as computed for food and water samples analyzed in Chapter 3 with equations 

outlined in section 3.3. Statistical analytical system (SAS) was employed to run paired student t-

test in order to compare the concentration of pesticide residues in the water samples before and 

after zeolite treatments. The alpha value was set at P = 0.05. That is, when the calculated P-value 

is less than 0.05 then a statistical difference can be declared; at this stage we say we fail to accept 

the null hypothesis Ho (the null hypothesis says there is no significant difference between the 

pesticide residue concentrations before and after the zeolite treatment while the converse 

describes the alternative hypothesis Ha that will in this case adviocates that the pesticide levels 

before and after zeolite treatments are statistically different). Statistical significance at P< 0.05 

implies that there is 95 out of 100 chances of repeating the sampling and chromatographic 

analysis of the water sample of arriving at the same concentration rate of the pesticide residues 
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detected and reported. This also means that the chance that our detected rates were due to error 

was 5 in 100.  

4.4 Results 

4.4.1 Role of Natural Zeolite in Pesticide Alleviation. Reduction in pesticide residues was 

observed in 9 zeolite-filtered surface waters out of the 10 samples analyzed (Table 4.1). Low 

standard deviation of the pesticide residue value showed that the recorded values agree meaning 

there were not disparities amongst the first and second readings.  

 

Table 4.1 Effect of Zeolite treatment on pesticide residue in Surface water  

Sample pH 

 

           Pesticide Residue  (ppb) 

 

 

  

                           

Before 
After 

 

   

   

1
st
 2

nd
   Mean+sd n 

BPH 7.7 Atrazine 0.2 

     

 

Metolachlor 0.16 0.1 0.14 0.12±0.03 2 

 

 
   

   CLC 7.7 Atrazine 6.48 0.06 0.06 0.06±0.00 2 

 

 

*Desethatz 0.74 0.54 0.56 0.55±0.01 2 

 

 

Metolachlor 1.08 

     

 

Bifenthrin 0.02 

 

0 

 

1 

 

 
  

    CDG 7.2 Atrazine 0.68 

     

 

Metolachlor 0.84 0.72 0.74 0.73±0.01 2 

 

 
   

   BBH 7.2 Atrazine 1.78 1.34 1.18 1.26±0.11 2 

 

 

Metolachlor 1.16 0.92 1.1 1.01±0.13 2 

 

 

Acetochlor 0.06 

     

 

Azoxystrobin 0.02 

     

 
  

    BRH 7.3 Atrazine 6.2 0.86 0.42 0.64±0.31 2 

 

 

Clomazone 2.4 

 

1.54 

 

1 
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(Table 4.1 continued)  

Sample pH 

 

           Pesticide Residue  (ppb) 

 

 

  

                           

Before 
After 

 

   

   

1
st
 2

nd
   Mean+sd n 

 

 

Desethatz 0.62 

 

0.38  1 

 

 

Metribuzin 0.34 

 

0.17  1 

 

 

Metolachlor 17.2 

 

15.32  1 

 

 

Propanil 0.08 0.04 0.02 0.03±0.01 2 

 

 

Metalaxyl 0.08 

 

0.06  1 

 

 

Dimethenamid 0.16 

 

0.12  1 

 

 
  

    LBT 7.7 Desethatz 0.22 0.18 0.16 0.17±0.01 2 

 

 

Atrazine 0.6 

     

 

Metolachlor 0.36 

    

 

 

Glyphosate 
                                  

ND 

    

 

 

AMPA 
                                  

ND 

     

 
  

    BCH 7.1 Atrazine 6.24 2.7 0.1 1.4±1.84 2 

 

 

Desethatz 0.54 

     

 

Acetochlor 0.28 

     

 

Metribuzin 0.36 

     

 

Metolachlor 3.9 

     

 

Clomazone 0.04 

     

 
  

    TRH2 7.2 Atrazine 0.38 0.12 0.2 0.16±0.06 2 

 

 

Desethatz 0.26 

 

0.06  1 

 

 

Metribuzin 0.30 

  

 

  

 

Metolachlor 3.40 

  

 

  

 

Clomazone 0.18 

  

 

  

 

Azoxystrobin 0.06 

 

0.02  1 

 

 
  

  

 

 BPI 7.2 Atrazine 0.72 

 

0.22  1 

 

 

Desethatz 0.2 

  

 

  

 

Metribuzin 0.28 

  

 

  

 

Metolachlor 0.74 

  

 

  

 

Metalaxyl 0.12 

 

0.1  1 

 

 

Clomazone 0.04 
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(Table 4.1 continued)  

Sample pH 

 

           Pesticide Residue  (ppb) 

 

 

  

                           

Before 
After 

 

   

   

1
st
 2

nd
   Mean+sd n 

 

 

Azoxystobin 0.06 

 

0.04  1 

 

 
  

    BDC 6.8 Clomazone 0.3 

     

 

Bromacil 0.42 

     

 

Metalaxyl 0.04 

   

 

 

 

Metolachlor 0.06 

     

 

Propiconazole 0.12 

    *Desethatz = Desethylatrazine. 

 

As explained and shown in Table 4.2 that is outlined on the next page, reduction in 

pesticide residue levels ranged from the minimum of 10.9 % to a maximum of 100 %. Minimum 

reduction was recorded in metolachlor in sample BRH, while the maximum was in bifenthrin in 

sample CLC. A high reduction rate of 99.1% was found in atrazine in the same sample CLC; 

next to this high atrazine found in CLC was recorded in BRH at level 89.7 % making it the third 

highest reduction recorded in this study. Atrazine was also alleviated in sample BRH up to 89.7 

%.  Most high rates of reduction following zeolite filtration were found in atrazine at the rate of 

77.6 % in sample BCH; 57.9 % in sample TRH2; and 69.4% in sample BPI. Alleviations 

recorded above average also included 50 % metribuzin and 62.5 % propanil both in sample 

BRH; and 66.7 % azoxystrobin in sample TRH2. 

 

 

 



66 

 

Table 4.2 Percentage reduction of pesticide residues in zeolite-filtered surface water. 

 

Sample      Original Reduced  Pesticide Before  After Alleviation (%) 

BPH  2 1  Metolachlor 0.16  0.12  25.0 

CLC  4 3  Atrazine 6.48  0.06  99.1 

Desethylatz 0.74  0.55  25.7 

Bifenthrin 0.02  0.00  100.0 

CDG  2 1  Metolachlor 0.84  0.73  13.1 

BBH  4 2  Atrazine 1.78  1.26  29.2 

     Metolachlor 1.16  0.13  12.9 

BRH  8 8  Atrazine 6.20  0.31  89.7 

     Clomazone 2.40  1.54  35.8 

     Desethylatz 0.62  0.38  38.7 

     Metribuzin 0.34  0.17  50.0 

     Metolachlor 17.20  15.32  10.9 

     Propanil 0.08  0.03  62.5 

     Metalaxyl 0.08  0.06  25.0   

     Dimethnamid 0.16  0.12  25.0 

LBT  5 1  Desethylatz 0.22  0.17  22.7 

BCH  6 1  Atrazine 6.24  1.40  77.6 

TRH2  6 3  Atrazine 0.38  0.16  57.9 

     Desethylatz 0.26  0.06  76.9 

     Azoxystrobin 0.06  0.02  66.7 

BPI  7 3  Atrazine 0.72  0.22  69.4 

     Metalaxyl 0.12  0.10  16.7  

     Azoxystrobin 0.06  0.04  33.3 

BDC  5 0  ND  ND             ND  ND 
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In comparing means of the pesticide residue found before and after filtering water 

through natural zeolite a paired student t-test was conducted using SAS software. From the SAS 

outputs shown in Table 4.3 at Pcritical = 0.05, the difference between the atrazine levels before and 

after filtration of water sample CLC through natural zeolite was highly significant (Pcalculated = 

0.0001). Statistical difference (Pcalc = 0.03) was also found between the desethylatrazine levels 

before and after zeolite treatment in the same water sample CLC. The difference between the 

levels of atrazine in sample BRH before and after zeolite treatment was also significant (Pcalc = 

0.03). No significant difference was found the before and after treatment with zeolite for the 

pesticide levels in metholachlor in samples BPH, CDG, BBH and LBT. Similarly, the difference 

found between the pesticide residue concentrations of atrazine before and after zeolite treatment 

in samples BBH, BCH and TRH2 were not statistically different from each other. There was no 

statistical difference between propanil levels before and after zeolite zeolite treatment. 

 

Table 4.3 Paired t-test comparison of pesticide residue means before and after zeolite treatment. 

Sample PR N Mean SD SE Min Max df t value Pr > |t| Sig. 

BPH Metolachlor 2 0.04 0.03 0.02 0.02 0.06 1 2.00 0.30 NS 

CLC Atrazine 2 6.42 0.00 0.00 6.42 6.42 1 Infty .0001 *** 

 Desethatz 2 0.19 0.01 0.01 0.18 0.20 1 19.00 0.03 *  

CDG Metolachlor 2 0.11 0.01 0.01 0.10 0.12 1 11.00 0.06 NS 

BBH Atrazine 2 0.52 0.11 0.08 0.44 0.60 1 6.50 0.10 NS 

 Metolachlor 2 0.15 0.13 0.09 0.06 0.24 1 1.67 0.34 NS 
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(Table 4.3 continued) 

Sample PR N Mean SD SE Min Max df t value Pr > |t| Sig. 

BRH Atrazine 2 5.56 0.31 0.22 5.34 5.78 1 25.27 0.03 * 

 Propanil 2 0.05 0.01 0.01 0.04 0.06 1 5.00 0.13 NS 

LBT Desethatz 2 0.05 0.01 0.01 0.04 0.06 1 5.00 0.13 NS 

BCH Atrazine 2 4.84 1.84 1.30 3.54 6.14 1 3.72 0.17 NS 

TRH2 Atrazine 2 0.22 0.06 0.04 0.18 0.26 1 5.50 0.12 NS 

Sig. = Significance; NS = no significant difference found among the pesticide residue levels 

recorded before and after treatment with natural zeolite clinoptilolite; * & *** = significant 

difference and highly suignificant difference respectively, found among the pesticide residue 

levels recorded before and after treatment with natural zeolite clinoptilolite; SD = standard 

deviation; SE = standard error; PR = pesticide residue; df = degree of freedom; Pr>t = calculated 

P value by SAS; Alpha = 0.05 (critical P value).  

 

4.4.2 Role of Surfactant-Modified-Zeolite (SMZ) in Pesticide Alleviation. As summarized in 

Table 4.4, following SMZ treatment of sample BRH, 6 pesticides were detected out of 8. 

Propanil and dimethenamid were the undetected by the GC-MS as it were after SMZ treatment. 

Low standard deviation confirms lack of disparity between the 1
st
 and 2

nd
 data collected during 

the chromatographic analysis.  

 

Table 4.4 Effect of surfactant-modified-zeolite (SMZ) on pesticide residue in surface water  

Sample 

 

Pesticide Residue (ppb) 

  

  

Before 
  

After  

   

   

1
st
 2

nd
   Mean n Stdev 

 
  

     BRH Atrazine 6.2 0.34 0.28 0.31±0.04 2 0.04243 

 

Clomazone 2.4 1.12 0.84 0.98±0.20 2 0.19799 



69 

 

(Table 4.4 continued) 

Sample 

 

Pesticide Residue (ppb) 

  

  

Before 
  

After  

   

   

1
st
 2

nd
   Mean n Stdev 

 

Desethylatrazine 0.62 0.5 0.34 0.42±0.11 2 0.11314 

 

Metribuzin 0.34 0.24 0.22 0.23±0.01 2 0.01414 

 

Metolachlor 17.2 10.16 7.82 8.99±1.66 2 1.65463 

 

Propanil 0.08 ND ND 
 

 
 

 

Metalaxyl 0.08 0.04 0.04 0.04±0.00 2 0.00000 

 

Dimethenamid 0.16 ND ND 
    

 

Further reduction of pesticide residues was recorded (Table 4.5) in the sample BRH that 

was filtered through the surfactant-modified-zeolite (SMZ). A 50 % reduction was observed as 4 

out of the 8 residues found were reduced following filtration through SMZ. The 4 compounds 

that were further reduced compared filtration through natural zeolite included atrazine @ 95 % 

compared to 89.7 % reduction with natural zeolite (NZ); 59.2 % clomazone compared with 

35.8% with NZ; 47.7 % metolachlor compared with 10.9 % with NZ and 50 % metalaxyl 

compared with 25 % with NZ.  

 

Table 4.5   Percentage reduction of the pesticide residue in surface water filtered through 

surfactant modified zeolite (SMZ)   

Sample 
 

Before After After Zeolite SMZ 

 

  

Zeolite Zeolite SMZ 

% 

reduction % reduction 

BRH Atrazine 6.2 0.64 0.31 89.7 95.0 

 

 

Clomazone 2.4 1.54 0.98 35.8 59.2 

 

 

DesethylAtrazine 0.62 0.38 0.42 38.7 32.3 
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(Table 4.5 continued)   

Sample 
 

Before After After Zeolite SMZ 

 

  

Zeolite Zeolite SMZ 

% 

reduction % reduction 

 

Metribuzin 0.34 0.17 0.23 50.0 32.4 

 

 

Metolachlor 17.2 15.32 8.99 10.9 47.7 

 

 

Metalaxyl 0.08 0.06 0.04 25.0 50.0 

  

As outlined in Table 4.6, paired t-test comparison of pesticide residue means before and 

after SMZ treatment was conducted. A very significant difference (Pcalc = 0.003) was found in 

atrazine between the pesticide level recorded before and after the SMZ treatment of sample 

BRH. A highly significant difference (Pcalc < 0.0001) was similarly found in metolaxyl levels 

before and after SMZ treatment. In pesticide levels recorded for clomazone, desethylatrazine, 

metribuzin and metolachlor, there was no statistical difference found among them.  

 

Table 4.6 Paired t-test comparison of pesticide residue means before and after SMZ treatment. 

Sample PR N Mean SD SE Min Max df t value Pr > |t| *Sig. 

BRH Atrazine 2 5.89 0.04 0.03 5.86 5.92 1 196.33 0.003 ** 

 Clomazone 2 1.42 0.20 0.14 1.28 1.56 1 10.14 0.06 NS 

Desethatz 2 0.20 0.11 0.08 0.12 0.28 1 2.50 0.24 NS  

 Metribuzin 2 0.11 0.01 0.01 0.10 0.12 1 11.0 0.06 NS 

 Metolachlor 2 8.21 1.66 1.17 7.04 9.38 1 7.02 0.09 NS 

 Metolaxyl 2 0.04 0.00 0.00 0.04 0.04 1 infty <.0001 *** 

*Sig. = Significance; NS = no significant difference found among the pesticide residue levels 

recorded before and after treatment with Hexa decyl trimethyl chloride surfactant-modified-

zeolite clinoptilolite; ** = very significant difference found between the pesticide residue levels 

recorded before and after treatment with HDTM-Cl SMZ; SD = standard deviation; SE = 
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standard error; PR = pesticide residue; df = degree of freedom; Pr>t = calculated P value by 

SAS; Alpha = 0.05 (critical P value). 

 

 Further paired t-test comparison of pesticide levels was conducted between the levels 

recorded after treatment with natural zeolite and the levels recorded after treatment with 

surfactant-modified-zeolite. The outcome of this as outlined in Table 4.7 showed a statistical 

difference in metolaxyl, and the difference observed was highly significant (Pcalc < 0.0001). No 

statistical difference was observed in atrazine, clomazone, desethyatrazine, metribuzin and 

metolachlor. However, negative mean value and t value computed for desethylatrazine and 

metribuzin showed a negative trend because the levels recorded after filtration through the SMZ 

was higher than the levels after filtration through the natural zeolite. As outlined in Table 4.5, 

after filtration through natural zeolite desethyatrazine level was reduced from original 0.62 ppb 

to 0.38 ppb compared to 0.42 ppb at which it was found after filtration through SMZ. After 

filtration through zeolite, metribuzin level was reduced from 0.34 to 0.17 compared to 0.23 ppb 

recorded after filtration through SMZ. 

 

Table 4.7 Paired t-test comparison of levels of PR of zeolite-treated and SMZ-treated sample. 

Sample PR N Mean SD SE Min Max df t value Pr > |t| Sig. 

    (ppb) 

BRH Atrazine 2 0.33 0.04 0.03 0.30 0.36 1 11.0 0.06 NS 

 Clomazone 2 0.56 0.20 0.14 0.42 0.70 1 4.00 0.16 NS 

 Desethatz 2 -0.04 0.11 0.08 -0.12 0.04 1 -0.50 0.71 NS  

 Metribuzin 2 -0.06 0.01 0.01 -0.07 -0.05 1 -6.00 0.11 NS 
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(Table 4.7 continued) 

Sample PR N Mean SD SE Min Max df t value Pr > |t| Sig. 

    (ppb) 

 Metolachlor 2 6.33 1.66 1.17 5.16 7.50 1 5.41 0.12 NS 

 Metolaxyl 2 0.02 0.00 0.00 0.02 0.02 1 infty <.0001 *** 

Sig. = Significance; NS = no significant difference found among the pesticide residue levels 

recorded between zeolite treated and SMZ treated sample BRH; *** = highly suignificant 

difference found among the pesticide residue levels recorded between zeolite treated and SMZ 

treated sample BRH; SD = standard deviation; SE = standard error; PR = pesticide residue; df = 

degree of freedom; Pr>t = calculated P value by SAS; Alpha = 0.05 (critical P value).  

 

4.5 Discussion 

 As obtained in this study, Smedt et al., (2015) reported adsorption of metolaxyl using 

zeolite. Alleviation of atrazine recorded in this study is similar to reports of Lemic et al 2006 and 

2007, even though they used SDBAC as their surfactant to modify the zeolite and we used 

HDTMA-Cl as modifying surfactant. Further reduction of atrazine, clomazone, metolachlor and 

metalaxyl after filtration through SMZ conforms to the theoretical principle of effect of 

exchanging CEC property of clinoptilolite with an anion exchange capacity (AEC), thereby 

enhancing its ability to retain negatively charged organic ions that ordinarily would have 

escaped.  

Differences recorded in the pH of the surface water samples may have impacted on the 

cation exchange capacity of the zeolite. This finding is in agreement with Mergeta et al. (2013) 

where they confirmed that the success of clinoptilolite in removing organic contaminations is a 

function of pH, initial concentrations of humic acid and ammonia, temperature and contact 

duration. Pesticide residues were alleviated in all the samples whose pH ranged between 7.1 
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through 7.7, while the only sample where no pesticide residue was found had pH 6.8. Similar to 

the assertion of Mergeta et al. (2013) that the optimum temperature at which zeolite could reduce 

organic contaminants in water is about room temperature which was the reason while sample 

waters were always allowed to acclimatize to room temperature after retrievied from the cold 

storage; findings in this study may also imply that water samples need to be above neutral pH in 

order for the zeolite to work at its optimum as suggested by Moussavia et al. (2011) that sample 

water needs to be about the pH of natural water for the detection of residues to be at its best.   

. Atrazine results reported in Chapter 3 detection study showed its alarming concentration 

increase in the surface waters of 4 locations in Louisiana. Its adsorption by the natural zeolite 

(clinoptilolite) and SMZ in this section serves as a potential remedy to the concentrations of this 

herbicide in the waters.  

 Propanil and dimethenamid were not detected in the water samples and this could be due 

to low concentration as GC-MS does not detect trace levels. It could also be that they have been 

totally removed from the sample during the SMZ treatment. 

 As opposed to the expected event that enhanced reduction be observed when filtered 

through SMZ, a reversed trend observed in desethylatrazine and metribuzin may imply that they 

have greater affinity a natural zeolite than for modified modified zeolite by hexadecyltrimethyl 

ammonium chloride surfactant.  

 Great affinity of clinoptilolite zeolite for ammonium ion (Mumpton, 1999) is a proof that 

any trace amount of NH4
+
 in any of the 11samples studied in this section must have been 

reduced. However, lack of measurement of NH4
+
 limited us from any information regarding this 

aspect. Part of future work would be to examine water for metal contaminants like arsenic 
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(Sulivan et al., 1998); chromate (Bowman, 2003); Fe and Mn (Inglezakis et al., 2010); Cd and 

Pb (Curkovic et al., 1997) and the cation NH4
+
. 

This study in general serves as a reminder of the need to regularly monitor the pesticide 

residue in our foods and waters.   
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CHAPTER 5 

CONCLUSIONS 

 Agriculture is as important to humans as life as it holds the food baskets. Pesticides on 

their own are as important as agriculture as they both go hand in hand. However, as important as 

pesticides are, their uses must be under control in order to maintain a healthy environment. 

 In this study, all pesticides found in food samples of tomato, blueberry, corn, cucumber, 

cabbage, melon, wheat and rice were below EPA tolerance. Insecticide cypermethrin detected in 

tomato was 90 % close to the tolerance level. However, acid-lability of cypermethrin may remain 

an advantage to consumers of tomato as it will always degrade with increase in acidity level of 

tomato fruit or puree. 

 High atrazine level in the surface waters in certain locations of Louisiana will need to be 

looked into as further study is conducted on those areas. Inclusion of ground waters in those 

areas will be advised in order to know how much infiltration of surface water contamination is 

going into ground waters. 

 Use of natural zeolite cllinoptilolite as demonstrated in this study will go a long way in 

curtailing excess pesticide in surface waters that might be used in irrigation and other purposes. 

Surfactant modified zeolite showed to have more affinity for organic contaminants. Through the 

use of SMZ, zeolite can be tailored towards any organic contaminant of interest per time. 

 Weather anomalies resulting in wild winds, storms, heavy rainfalls, erosion and flood 

may be the main reason why fluctuations are so rampant in the 3 pesticide residue levels 

observed in some water samples across a consecutive period of 4 years. A balance data of a 
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longer period say 10 years will be required in a future surveillance study in order to create a 

more reliable feel of the real situation of things as per trends in the pesticide residue levels. 

 In conclusion, this study is a reminder of the need to regularly quantitate the pesticide 

residue in our food and water and also develop methods of removing pesticide residues in them. 
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APPENDIX 1 

LIST OF REAGENTS, APPARATUS, CHEMICAL STANDARDS AND 

SPIKES RECOVERIES 

Reagents: Hexane, pesticide grade, Fisher #H300-4; methylene chloride, pesticide grade, Fisher 

#D142-4; sodium sulfate, ACS certified; granular, 10-60 mesh, Fisher #S415-1; petroleum ether, 

pesticide grade, Fisher #P480-4; MilliQ water 18.2 mega-ohm; acetonitrile- HPLC grade 

JTBaker 9017-03; acetonitrile- optima grade Fisher A996-4; acetone- pesticide grade, Fischer 

A40-4; RESTEK Cat #2622 QuEChERS 1200 mg MgSO4, 400 mg PSA, 400 mg C18 and 400 

mg GCB (for extraction); RESTEK Q-sep QuEchERS dSPE Cat #26219 containing 150 MgSO4, 

50 mg PSA, 50 mg C18 and 50 mg GCB, 2 ml pack (graphitized carbon black). 

Apparatus: Separatory funnels, glass, 1-liter with PTFE stopcock, Kimble #29048F-1000; 500 

ml graduated cylinder, Kimble #20024D-500; 100 ml graduated cylinder, Kimble #20024D-100; 

400 ml beaker, Kimble #14000-400; 100 mm glass funnel, Corning #6140-100; 35 mm glass 

funnel, Kimble #28950-35; 1 ml volumetric pipette, fisher #13-650B; 15 ml graduated conical 

centrifuge tube, Corning #8080A-15; corks, size 6; VWR #23420-184; large ceramic filter funnel 

Fisher #10-356H; 2000 ml filter flask, Kimble #27060-2000; glass wool, Fisher #11-390; water 

bath, Fisher #15-461-20; aluminum foil, Fisher #01-213-18; Pasteur pipettes, 5 ¾”, Fischer #13-

678-20A; 13 mm PVDF filters, 0.2 um with tip, Fischer #09-910-2; 1 cc syringes, disposable, 

Fisher #14-823-2F; disposable polypropylene centrifuge tubes, 15 ml, with plastic screw cap, 

Fisher #05-538-53D; UPLC autosampler caps, crimp silver aluminum PTFE / silicone / PTPE 

septum, 11 mm Agilent 5183-4499; Vial inserts, 150 ul with plastic spring, waters WAT094171; 

solvent dispenser for dispensing 15 ml of extraction solvent; Analytical balance- Mettler PG 

802-S; Micro-centrifuge, model 5418, Eppendorf  22620304; Allegra 6 Centrifuge, Beckman-
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Coutler; Multi-tube vortexer – set for 50 ml tubes, Fisher 02-215-452; Vortex mixer, Fisher #12-

815-18; Nitrogen gas evaporator, organomation Associates, Inc., N-EVAP 112 with OA-SYS 

heating system. 

Solutions: Pesticide stock solution; intermediate working standard; Working standards; Matrix 

matched standards. 

Wheat and Rice samples 
 

1/25/2016 
   1X,  2X AND 17X(rice) 

      

         SOLVENT STANDARDS 
      PUT in 1425ml of Acetonitrile in autosampler vial 

    ADD the ul of each standard below 
     CAP and VORTEX 

       

         
A Vol used Stock Conc Solvent 

Final 
vov A CONC 

   

 
ul ug/ml  ul ul ug/ml  

   10AGCMS 75 8.00 1425 1500 0.40 
   

         

         
B Vol used A CONC Solvent 

Final 
vov Final Conc 

   

 
ul OF A ug/ml  ul ul ug/ml  

   LOW 
LEVEL 300 0.40 900 1200 0.10 

   

         

                           

95% 
MATRIX STANDARDS USING 
FILTERED MATRIX 

      

         PUT in 1425ml of FILTERED SAMPLE in autosampler vial 
   ADD the ul of each standard below 

     
CAP and VORTEX 

   
140STD/1500TOTAL 

95% 
MTX 

  

      
0.907 0.05 

 

   
FILTERED 
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A Vol used Stock Conc MATRIX 
Final 
vov A CONC 

   

 
ul ug/ml  ul ul ug/ml  

   10AGCMS 75 8.00 1425 1500 0.40 
   

         

         

     
21STD/1200TOTAL 

>95% 
MTX 

  

   
FILTERED 

     
B Vol used A CONC MATRIX 

Final 
vov Final Conc 

   

 
ul OF A ug/ml  ul ul ug/ml  

   LOW 
LEVEL 300 0.40 900 1200 0.10 

   

         

         

         
REPEAT THE MATRIX STANDARD SET A AND B THREE TIMES 

  

  

 - ONCE FOR 1X,  ONCE FOR 2X AND ONCE FOR 17X 
                   

SHOULD END UP WITH 8 VIALS OF STANDARDS 
   SOLV A 0.40 SOLVENT (ACETONITRILE) 

    SOLV B 0.10 SOLVENT (ACETONITRILE) 
    

         1X  A 0.40 9X MTX  CUCUMBER 
     1X  B 0.10 9X MTX  CUCUMBER 
     

         2X  A 0.40 15 MTX  MELON 
     2X  B 0.10 15 MTX  MELON 
     

         17X  A 0.40 16 MTX CABBAGE 
     17X  B 0.10 16 MTX CABBAGE 
     

         

  

 
 

      RICE AND WHEAT SPIKES   
 

1/25/2016 
   

       LOW SPIKE RATE 10x EU RATE   
 

Acetonitrile Sample 
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Conc Used Tot vol Weight On 

 

 
ug/ml ul ml g Column RATE 

10A GC/MS MIX 8.000 125 10 5.00 0.100 0.2 

   
10.125 

 
0.099 

 

     
ACTUAL 

 

       

       MED SPIKE RATE  
  

Acetonitrile Sample 
  

 
Conc Used Tot vol Weight On 

 

 
ug/ml ul ml g Column RATE 

10A GC/MS MIX 8.000 500 10 5.00 0.400 0.8 

   
10.5 

 
0.380952 

 

     
ACTUAL 

 

       

       HIGH SPIKE RATE 
  

Acetonitrile Sample 
  

 
Conc Used Tot vol Weight On 

 

 
ug/ml ul ml g Column RATE 

10A GC/MS MIX 8.000 1250 10 5.00 1.000 1.6 

   
11.25 

 
0.889 

 

     
ACTUAL 

 TOMATO SPIKES % Recovery % Recovery % Recovery % Recovery 

 
3X Tomato 3X Tomato 5X Tomato 5X Tomato 

(Spike Rate ppm) 0.10 ug/ml 0.41 ug/ml 0.41 ug/ml 1.00 ug/ml 

 

 

 

Cucumber, Cabbage, Melon 
  

1/13/2016 
   9X,  15X AND 16X 

      

         SOLVENT STANDARDS 
      PUT in 1390ml of Acetonitrile in autosampler vial 

    ADD the ul of each standard below 
      CAP and VORTEX 

       

         
A Vol used Stock Conc Solvent 

Final 
vov A CONC 
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ul ug/ml  ul ul ug/ml  

   Tomato 35 17.03 1390 1500 0.40 
   10AGCMS 75 8.00 1390 1500 0.40 
   Permethrin 30 20.00 1390 1500 0.40 
   

         

         
B Vol used A CONC Solvent 

Final 
vov Final Conc 

   

 
ul OF A ug/ml  ul ul ug/ml  

   LOW LEVEL 300 0.40 900 1200 0.10 
   

         

                           

91% 
MATRIX STANDARDS USING FILTERED 
MATRIX 

      

         PUT in 1390ml of FILTERED SAMPLE in autosampler vial 
    ADD the ul of each standard below 

      CAP and VORTEX 
   

140STD/1500TOTAL 91% MTX 

  

      
0.907 

  

   
FILTERED 

     
A Vol used Stock Conc MATRIX 

Final 
vov A CONC 

   

 
ul ug/ml  ul ul ug/ml  

   Tomato 35 17.03 1390 1500 0.40 
   10AGCMS 75 8.00 1390 1500 0.40 
   Permethrin 30 20.00 1390 1500 0.40 
   

         

         

     
21STD/1200TOTAL 98% MTX 

  

   
FILTERED 

  
0.9825 

  
B Vol used A CONC MATRIX 

Final 
vov Final Conc 

   

 
ul OF A ug/ml  ul ul ug/ml  

   LOW LEVEL 300 0.40 900 1200 0.10 
   

         

         

         
REPEAT THE MATRIX STANDARD SET A AND B THREE TIMES 

  

  

 - ONCE FOR 9X,  ONCE FOR 15X AND ONCE FOR 16X 
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SHOULD END UP WITH 8 VIALS OF STANDARDS 
   SOLV A 0.40 SOLVENT (ACETONITRILE) 

    SOLV B 0.10 SOLVENT (ACETONITRILE) 
    

         9X  A 0.40 9X MTX  CUCUMBER 
     9X  B 0.10 9X MTX  CUCUMBER 
     

         15X  A 0.40 15 MTX  MELON 
     15X  B 0.10 15 MTX  MELON 
     

         16X  A 0.40 16 MTX CABBAGE 
     16X  B 0.10 16 MTX CABBAGE 
      

----------------------- 
BLUEBERRY SAMPLES 

  

12/29/2015 
    4X AND 12X 

        

          SOLVENT STANDARDS 
       PUT in 1390ml of Acetonitrile in autosampler vial 

     ADD the ul of each standard below 
       CAP and VORTEX 

        

          

 

Vol 
used Stock Conc Solvent 

Final 
vov Final Conc 

    

 
ul ug/ml  ul ul ug/ml  

    Sevin 35 17.03 1390 1500 0.40 
    10AGCMS 75 8.00 1390 1500 0.40 
    

          

          

 

Vol 
used Stock Conc Solvent 

Final 
vov Final Conc 

    

 
ul ug/ml  ul ul ug/ml  

    LOW LEVEL 300 0.40 900 1200 0.10 
    

          

                            
 93% MATRIX STANDARDS USING FILTERED MATRIX 
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PUT in 1390ml of FILTERED SAMPLE in autosampler vial 
     ADD the ul of each standard below 

       CAP and VORTEX 
        

          

   
FILTERED 

      

 

Vol 
used Stock Conc MATRIX 

Final 
vov Final Conc 

    

 
ul ug/ml  ul ul ug/ml  

    Sevin 35 17.03 1390 1500 0.40 
    10AGCMS 75 8.00 1390 1500 0.40 
    

          

   
FILTERED 

      

 

Vol 
used Stock Conc MATRIX 

Final 
vov Final Conc 

    

 
ul ug/ml  ul ul ug/ml  

    LOW LEVEL 300 0.40 900 1200 0.10 
    

          

          

          REPEAT THE MATRIX STANDARD TWICE - ONCE FOR 4X AND ONCE FOR 12X 
 

                            
 SHOULD END UP WITH 6 VIALS OF STANDARDS 

    

 
0.40 SOLVENT (ACETONITRILE) 

     

 
0.10 SOLVENT (ACETONITRILE) 

     

 
0.40 4X MTX 

       

 
0.10 4X MTX 

       

 
0.40 12 MTX 

       

 
0.10 12 MTX 

        

CUCUMBER ---9X,   CABBAGE----16X,   MELON-----15X 
 

1/13/2016 
 

     
Spike 

 LOW SPIKE RATE 10x EU RATE 
 

Acetonitrile Sample Rate    & 
 

 
Conc Used Tot vol Weight On 

 Tomato Standard ug/ml ul ml g Column 
 Chlorothalonil 03/15 Ace 17.065 60 10 10.00 0.102 0.100 

Acephate 08/14 Ace 17.013 60 10 10.00 0.102 0.100 

Methamidophos 9/03 Ace 16.990 60 10 10.00 0.102 0.100 

Endosulfan I 01/00 Hex 16.982 60 10 10.00 0.102 0.100 
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Endosulfan II 01/00 Hex 16.973 60 10 10.00 0.102 0.100 

Endosulfan SO4 01/00 Hex 17.002 60 10 10.00 0.102 0.100 

       10A GC/MS MIX 8.000 125 10 10.00 0.100 0.098 

       PERMETHRIN 20.000 50 10 10.00 0.100 0.098 

  
235 10.235 

   

       

     
Spike 

 MED SPIKE RATE  
  

Acetonitrile Sample Rate    & 
 

 
Conc Used Tot vol Weight On 

 Tomato Standard ug/ml ul ml g Column 
 Chlorothalonil 03/15 Ace 17.065 240 10 10.00 0.410 0.374 

Acephate 08/14 Ace 17.013 240 10 10.00 0.408 0.373 

Methamidophos 9/03 Ace 16.990 240 10 10.00 0.408 0.373 

Endosulfan I 01/00 Hex 16.982 240 10 10.00 0.408 0.373 

Endosulfan II 01/00 Hex 16.973 240 10 10.00 0.407 0.372 

Endosulfan SO4 01/00 Hex 17.002 240 10 10.00 0.408 0.373 

       10A GC/MS MIX 8.000 500 10 10.00 0.400 0.366 

       PERMETHRIN 20.000 200 10 10.00 0.400 0.366 

  
940 10.94 

   

     
Spike 

 HIGH SPIKE RATE 
  

Acetonitrile Sample Rate    & 
 

 
Conc Used Tot vol Weight On 

 Tomato Standard ug/ml ul ml g Column 
 Chlorothalonil 03/15 Ace 17.065 600 10 10.00 1.024 0.829 

Acephate 08/14 Ace 17.013 600 10 10.00 1.021 0.827 

Methamidophos 9/03 Ace 16.990 600 10 10.00 1.019 0.825 

Endosulfan I 01/00 Hex 16.982 600 10 10.00 1.019 0.825 

Endosulfan II 01/00 Hex 16.973 600 10 10.00 1.018 0.825 

Endosulfan SO4 01/00 Hex 17.002 600 10 10.00 1.020 0.826 

       10A GC/MS MIX 8.000 1250 10 10.00 1.000 0.810 

       PERMETHRIN 20.000 500 10 10.00 1.000 0.810 

CORN                          11/20/2015 
    

     
Spike 

LOW SPIKE RATE 10x EU RATE 
 

Acetonitrile Sample Rate    & 

 
Conc Used Tot vol Weight On 
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ug/ml ul ml g Column 

10A GC/MS MIX 8.000 125 10 10.00 0.100 

      

      

      

     
Spike 

MED SPIKE RATE  
  

Acetonitrile Sample Rate    & 

 
Conc Used Tot vol Weight On 

 
ug/ml ul ml g Column 

10A GC/MS MIX 8.000 500 10 10.00 0.400 

      

      

      

     
Spike 

HIGH SPIKE RATE 
  

Acetonitrile Sample Rate    & 

 
Conc Used Tot vol Weight On 

 
ug/ml ul ml g Column 

10A GC/MS MIX 8.000 1250 10 10.00 1.000 
 
 

SEVIN (Carbaryl) 10/30/2015 
   

       

       STOCK SOLUTION #1502B R 4/15 E 11/19 EPA REPOSITORY 

       
g PURITY VOL CONVERSION 

ug/ml 
(ppm) 

  0.01386 0.996 100 1000000 138.05 
  

 
99.60% EToAc 10 TO 6TH 

   

       

       

       2 ppm Level in Solvent 
    

       
ml  Stock 

Final 
Vol Final Conc 

   0.087 138.04 6 2.00 
   87ul ug/ml ml ug/ml (ppm) 
   

  
EToAc 
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MATRIX STANDARDS USING MATRIX WITHOUT SEVIN PRESENT 
 

       
ul 

ug/ml 
(ppm) 

ul of 
MTX Total ul Final conc 

  100 2.00 400 500 0.40 ug/ml (ppm) 

100 0.40 300 400 0.10 ug/ml (ppm) 

       

       

       SPIKING LEVEL STANDARD 11/5/2015 
  

       
ml  Stock 

Final 
Vol Final Conc 

   0.74 138.05 6 17.03 
    

11/5/2015 
     

     
Spike 

LOW SPIKE RATE 10x EU RATE 
 

Acetonitrile Sample Rate    & 

 
Conc Used Tot vol Weight On 

Tomato Standard ug/ml ul ml g Column 

Chlorothalonil 03/15 Ace 17.065 60 10 10.00 0.102 

Acephate 08/14 Ace 17.013 60 10 10.00 0.102 

Methamidophos 9/03 Ace 16.990 60 10 10.00 0.102 

Endosulfan I 01/00 Hex 16.982 60 10 10.00 0.102 

Endosulfan II 01/00 Hex 16.973 60 10 10.00 0.102 

Endosulfan SO4 01/00 Hex 17.002 60 10 10.00 0.102 

      10A GC/MS MIX 8.000 125 10 10.00 0.100 

      Sevin 10/15 17.026 60 10 10.00 0.102 

      

      

      

      

     
Spike 

MED SPIKE RATE  
  

Acetonitrile Sample Rate    & 

 
Conc Used Tot vol Weight On 

Tomato Standard ug/ml ul ml g Column 

Chlorothalonil 03/15 Ace 17.065 240 10 10.00 0.410 

Acephate 08/14 Ace 17.013 240 10 10.00 0.408 

Methamidophos 9/03 Ace 16.990 240 10 10.00 0.408 
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Endosulfan I 01/00 Hex 16.982 240 10 10.00 0.408 

Endosulfan II 01/00 Hex 16.973 240 10 10.00 0.407 

Endosulfan SO4 01/00 Hex 17.002 240 10 10.00 0.408 

      10A GC/MS MIX 8.000 500 10 10.00 0.400 

      Sevin 10/15 17.026 240 10 10.00 0.409 
 

 

  
2350 12.35   0.809716599 

 
    

ACTUAL ON COLUMN! 
 

      
     

Spike 

LOW SPIKE RATE 10x EU RATE 
 

Acetonitrile Sample Rate    & 

 
Conc Used Tot vol Weight On 

Tomato Standard ug/ml ul ml g Column 

Chlorothalonil 03/15 Ace 17.065 60 10 10.00 0.102 

Acephate 08/14 Ace 17.013 60 10 10.00 0.102 

Methamidophos 9/03 Ace 16.990 60 10 10.00 0.102 

Endosulfan I 01/00 Hex 16.982 60 10 10.00 0.102 

Endosulfan II 01/00 Hex 16.973 60 10 10.00 0.102 

Endosulfan SO4 01/00 Hex 17.002 60 10 10.00 0.102 

      10A GC/MS MIX 8.000 125 10 10.00 0.100 

      

      

      

     
Spike 

MED SPIKE RATE  
  

Acetonitrile Sample Rate    & 

 
Conc Used Tot vol Weight On 

Tomato Standard ug/ml ul ml g Column 

Chlorothalonil 03/15 Ace 17.065 240 10 10.00 0.410 

Acephate 08/14 Ace 17.013 240 10 10.00 0.408 

Methamidophos 9/03 Ace 16.990 240 10 10.00 0.408 

Endosulfan I 01/00 Hex 16.982 240 10 10.00 0.408 

Endosulfan II 01/00 Hex 16.973 240 10 10.00 0.407 

Endosulfan SO4 01/00 Hex 17.002 240 10 10.00 0.408 

      10A GC/MS MIX 8.000 500 10 10.00 0.400 
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Spike 

HIGH SPIKE RATE 
  

Acetonitrile Sample Rate    & 

 
Conc Used Tot vol Weight On 

Tomato Standard ug/ml ul ml g Column 

Chlorothalonil 03/15 Ace 17.065 600 10 10.00 1.024 

Acephate 08/14 Ace 17.013 600 10 10.00 1.021 

Methamidophos 9/03 Ace 16.990 600 10 10.00 1.019 

Endosulfan I 01/00 Hex 16.982 600 10 10.00 1.019 

Endosulfan II 01/00 Hex 16.973 600 10 10.00 1.018 

Endosulfan SO4 01/00 Hex 17.002 600 10 10.00 1.020 

      10A GC/MS MIX 8.000 1250 10 10.00 1.000 

       

TOMATO STANDARD FOR FOOD SAFETY SAMPLES 
          

    
10/28/2015 

         

              

              

              

              MIXED STANDARD Stock Used Tot vol Final conc Target 
        

 
ug/ml ml ml ug/ml ug/ml 

        Chlorothalonil 03/15 Ace 255.97 0.400 6 17.06 17 
        Acephate 08/14 Ace 416.64 0.245 6 17.00 17 
        Methamidophos 9/03 Ace 57.27 1.780 6 16.99 17 
        Endosulfan I 01/00 Hex 115 0.886 6 16.98 17 
        Endosulfan II 01/00 Hex 268 0.380 6 16.97 17 
        Endosulfan SO4 01/00 Hex 46.2 2.208 6 17.00 17 
        

  
5.899 

           

              

  
0.101 added Acetone 

         

              

              

              Injection test 
             

              Tomato Mix 17 MIX Used Tot vol Final conc 
         

 
ug/ml ul ul ug/ml 
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Chlorothalonil 03/15 Ace 17.065 176 1500 2.00 2 
        Acephate 08/14 Ace 17.013 176 1500 2.00 2 
        Methamidophos 9/03 Ace 16.990 176 1500 1.99 2 
        Endosulfan I 01/00 Hex 16.982 176 1500 1.99 2 
        Endosulfan II 01/00 Hex 16.973 176 1500 1.99 2 
        Endosulfan SO4 01/00 Hex 17.002 176 1500 1.99 2 
        

              

  
1324 Acetone 

          

  
1324 Acetonitrile 

         

              

              

              10/29/2015 
             

              

              Solvent Standard @ 0.41 
  

Acetonitrile 
         

 
17 MIX Used Tot vol Final conc 

         

 
ug/ml ul ul ug/ml 

         Chlorothalonil 03/15 Ace 17.065 33 1363 0.413 
         Acephate 08/14 Ace 17.013 33 1363 0.412 
         Methamidophos 9/03 Ace 16.990 33 1363 0.411 
         Endosulfan I 01/00 Hex 16.982 33 1363 0.411 
         Endosulfan II 01/00 Hex 16.973 33 1363 0.411 
         Endosulfan SO4 01/00 Hex 17.002 33 1363 0.412 
         

              

              

              Solvent Standard @ 0.10 
  

Acetonitrile 
         

 
0.41 MIX Used Tot vol Final conc 

         

 
ug/ml ul ul ug/ml 

         Chlorothalonil 03/15 Ace 0.413 300 1200 0.103 
         Acephate 08/14 Ace 0.412 300 1200 0.103 
         Methamidophos 9/03 Ace 0.411 300 1200 0.103 
         Endosulfan I 01/00 Hex 0.411 300 1200 0.103 
         Endosulfan II 01/00 Hex 0.411 300 1200 0.103 
         Endosulfan SO4 01/00 Hex 0.412 300 1200 0.103 

         

              

              

   
3X 

          MATRIX Standard  @ 0.41 
 

TOMATO 
          

 
17 MIX Used Tot vol Final conc 
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ug/ml ul ul ug/ml 

         Chlorothalonil 03/15 Ace 17.065 33 1363 0.413 
         Acephate 08/14 Ace 17.013 33 1363 0.412 
         Methamidophos 9/03 Ace 16.990 33 1363 0.411 
         Endosulfan I 01/00 Hex 16.982 33 1363 0.411 
         Endosulfan II 01/00 Hex 16.973 33 1363 0.411 
         Endosulfan SO4 01/00 Hex 17.002 33 1363 0.412 
         

              

              

              

   
3X 

          MATRIX Standard @ 
0.10 

  
TOMATO 

          

 
0.41 MIX Used Tot vol Final conc 

     
33 

 
0.023639 

 

 
ug/ml ul ul ug/ml 

     
1363 

   Chlorothalonil 03/15 Ace 0.413 300 1200 0.103 
     

1396 
   Acephate 08/14 Ace 0.412 300 1200 0.103 

         Methamidophos 9/03 Ace 0.411 300 1200 0.103 
         Endosulfan I 01/00 Hex 0.411 300 1200 0.103 
         Endosulfan II 01/00 Hex 0.411 300 1200 0.103 
         Endosulfan SO4 01/00 Hex 0.412 300 1200 0.103 
         

               

     

     

     

 

Carbofuran deg 110 105 113 97 

Eptam 140 108 108 94 

Etridiazole 100 108 103 102 

Trifluralin 100 100 108 113 

Molinate 130 100 100 98 

Captan deg 150 115 95 95 

Tefluthrin 100 98 85 92 

Thimet 100 96 113 106 

Desethylatrazine 100 98 103 98 

Desisopropylatrazine 100 86 88 88 

Prometone 100 96 105 100 

Diazinon 100 88 103 98 
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Terbufos 110 98 100 100 

Tebupirimphos 100 98 90 97 

Atrazine 100 90 98 92 

Clomazone 110 100 108 99 

Carbofuran 150 128 130 119 

MB 46513, Fipronil 130 90 123 96 

Acetochlor 100 115 93 107 

Dimethamid 130 98 110 101 

Terbacil 120 100 103 97 

Alachlor 120 98 105 97 

Prometryn 90 100 93 108 

Propanil 60 50 53 64 

Metalaxyl 120 100 108 104 

Methyl Parathion 90 96 85 107 

Metribuzin 110 108 105 113 

Malathion 100 105 103 111 

Metolachlor 110 98 103 100 

Chlorpyrifos 40 35 38 51 

MB4590, Fipronil 110 100 108 110 

Fipronil  110 103 108 107 

Bromacil 40 45 45 70 

Pendamethalin 100 103 95 115 

Cyanazine 100 103 103 105 

MB 46136 Fipronil 100 105 110 109 

Captan 20 65 53 104 

Propiconazole 90 92 92 100 

Bifenthrin 80 70 68 79 

Norflurazon 50 53 53 72 

Lambda-cyhalothrin 85 92 92 106 

Hexazinone 110 103 105 107 

Baythroid 75 84 86 107 

Cypermethrin 95 80 83 97 

Esfenvalerate 75 78 86 102 

Azoxystrobin 70 90 90 118 

 
        

Methamidophos 113 76 96 112 

Acephate 84 83 105 165 

Chlorothalonil 0 0 0 0 
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Endosulfan 1 81 71 91 93 

Endosulfan 2 96 81 108 119 

Endosulfan Sulfate 88 93 96 91 

 

 

TOMATO SPIKES % Recovery % Recovery % Recovery 

 
7X Tomato 10X Tomato 14X Tomato 

(Spike Rate ppm) 0.40 ug/ml 0.10 ug/ml 0.10 ug/ml 

Carbofuran deg 98 110 210 

Eptam 95 100 160 

Etridiazole 88 100 140 

Trifluralin 98 90 110 

Molinate 93 110 130 

Captan deg 103 140 140 

Tefluthrin 90 110 120 

Thimet 93 100 110 

Desethylatrazine 93 100 110 

Desisopropylatrazine 80 90 90 

Prometone 93 90 120 

Diazinon 95 100 100 

Terbufos 95 90 110 

Tebupirimphos 93 100 110 

Atrazine 88 90 110 

Clomazone 90 100 110 

Carbofuran 100 110 130 

MB 46513, Fipronil 95 100 120 

Acetochlor 103 110 130 

Dimethamid 95 100 120 

Terbacil 103 100 120 

Alachlor 93 100 110 

Prometryn 90 100 110 

Propanil 53 50 60 

Metalaxyl 98 110 120 

Methyl Parathion 93 100 90 

Metribuzin 100 110 120 

Malathion 100 100 110 

Metolachlor 98 100 120 
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Chlorpyrifos 45 50 50 

MB4590, Fipronil 103 100 110 

Fipronil  100 100 110 

Bromacil 50 40 50 

Pendamethalin 95 90 130 

Cyanazine 93 100 120 

MB 46136 Fipronil 120 120 100 

Captan 0 0 0 

Propiconazole 89 95 105 

Bifenthrin 75 70 80 

Norflurazon 58 50 60 

Lambda-cyhalothrin 92 120 120 

Hexazinone 98 100 110 

Baythroid 88 65 + 

Cypermethrin 84 + 105 

Esfenvalerate 94 75 100 

Azoxystrobin 95 80 80 

 
      

Methamidophos 83 98 113 

Acephate 75 123 74 

Chlorothalonil 0 0 0 

Endosulfan 1 75 76 84 

Endosulfan 2 88 107 68 

Endosulfan Sulfate 78 93 88 

    Carbaryl (Sevin) 70 73 73 

 

 

CABBAGE SPIKES % Recovery % Recovery 

 
16X Cabbage 16X Cabbage 

(Spike Rate ppm) 0.1 0.4 

Carbofuran deg 94% 87% 

Eptam 86% 109% 

Etridiazole 77% 139% 

Trifluralin 80% 117% 

Molinate 81% 107% 

Captan deg 86% 107% 

Tefluthrin 79% 77% 
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Thimet 84% 107% 

Desethylatrazine 77% 90% 

Desisopropylatrazine 61% 87% 

Prometone 71% 85% 

Diazinon 76% 79% 

Terbufos 74% 104% 

Tebupirimphos 81% 107% 

Atrazine 67% 68% 

Clomazone 86% 112% 

Carbofuran 89% 126% 

MB 46513, Fipronil 79% 104% 

Acetochlor 93% 90% 

Dimethamid 93% 117% 

Terbacil 74% 112% 

Alachlor 78% 93% 

Prometryn 69% 74% 

Propanil 38% 52% 

Metalaxyl NA NA 

Methyl Parathion NA 82% 

Metribuzin 77% 96% 

Malathion 111% 96% 

Metolachlor 75% 90% 

Chlorpyrifos 34% 36% 

MB4590, Fipronil 80% 101% 

Fipronil  76% 96% 

Bromacil 75% 98% 

Pendamethalin 44% 46% 

Cyanazine 99% 96% 

MB 46136 Fipronil 121% 107% 

Captan NA NA 

Propiconazole 70% 87% 

Bifenthrin 59% 66% 

Norflurazon 39% 66% 

Lambda-cyhalothrin 66% 82% 

Hexazinone 87% 115% 

Baythroid 65% 89% 

Cypermethrin 61% 93% 

Esfenvalerate 65% 97% 

Azoxystrobin 84% 123% 
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Methamidophos 0 77 

Acephate 0 0 

Chlorothalonil 0 0 

Endosulfan 1 88 80 

Endosulfan 2 82 88 

Endosulfan Sulfate 118 103 

   Permethrin 54 62 

 

 

CORN SPIKES % Recovery % Recovery % Recovery 

 
6X CORN 8X CORN 13X CORN 

(Spike Rate ppm) 0.10 ug/ml 0.40 ug/ml 1.00 ug/ml 

Carbofuran deg 80 103 85 

Eptam 120 113 80 

Etridiazole 180 115 60 

Trifluralin 110 103 68 

Molinate 120 105 83 

Captan deg 0 0 0 

Tefluthrin 110 103 81 

Thimet 110 98 66 

Desethylatrazine 90 123 87 

Desisopropylatrazine 70 120 69 

Prometone 80 195 84 

Diazinon 140 90 60 

Terbufos 100 98 71 

Tebupirimphos 100 100 75 

Atrazine 80 98 72 

Clomazone 110 105 69 

Carbofuran 140 108 54 

MB 46513, Fipronil 80 218 90 

Acetochlor 90 110 65 

Dimethamid 120 108 84 

Terbacil 100 98 80? 

Alachlor 90 85 69 

Prometryn 100 60 43 

Propanil 100 103 72 
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Metalaxyl 120 113 75 

Methyl Parathion 100 115 74 

Metribuzin 100 108 80 

Malathion 100 110 78 

Metolachlor 90 108 95 

Chlorpyrifos 90 105 52 

MB4590, Fipronil 90 123 255 INTERFERENCE 

Fipronil  110 118 79 

Bromacil 120 69 61 

Pendamethalin 80 90 69 

Cyanazine 100 145 132? 

MB 46136 Fipronil 100 115 78 

Captan 0 0 0 

Propiconazole 105 109 76 

Bifenthrin 90 103 72 

Norflurazon 100 115 74 

Lambda-cyhalothrin 110 110 80 

Hexazinone 90 115 77 

Baythroid 90 109 73 

Cypermethrin 95 96 78 

Esfenvalerate 100 112 71 

Azoxystrobin 90 125 79 

    

 

BLUEBERRY % Recovery % Recovery % Recovery % Recovery % Recovery 

 
4X Blueberry 4X Blueberry 12X Blueberry 12X Blueberry 12X Blueberry 

(Spike Rate ppm) 0.10 ug/ml 0.40ug/ml 0.10 ug/ml 0.40ug/ml 1.00ug/ml 

Carbofuran deg 90 95 58 68 65 

Eptam 80 93 69 68 74 

Etridiazole 80 88 85 65 81 

Trifluralin 70 83 77 70 80 

Molinate 100 95 84 73 71 

Captan deg 150 63 95 62 64 

Tefluthrin 90 80 75 60 66 

Thimet 70 75 70 65 70 

Desethylatrazine 80 75 84 65 70 

Desisopropylatrazine 60 65 55 60 59 

Prometone 60 78 64 78 71 

Diazinon 80 83 67 75 73 
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Terbufos 80 75 66 60 67 

Tebupirimphos 80 85 71 75 66 

Atrazine 60 68 61 63 62 

Clomazone 80 90 68 78 71 

Carbofuran 100 103 84 70 80 

MB 46513, Fipronil 80 100 78 65 62 

Acetochlor 100 95 86 98 81 

Dimethamid 80 88 75 75 71 

Terbacil 80 83 71 73 70 

Alachlor 80 85 74 70 68 

Prometryn 70 73 74 55 59 

Propanil 40 43 40 35 40 

Metalaxyl 90 90 77 75 70 

Methyl Parathion 90 80 48 63 66 

Metribuzin 90 103 77 78 75 

Malathion 80 90 75 73 68 

Metolachlor 80 88 69 73 70 

Chlorpyrifos 40 35 27 38 35 

MB4590, Fipronil 80 98 71 88 73 

Fipronil  80 100 70 83 77 

Bromacil 90 90 75 75 68 

Pendamethalin 30 43 35 35 40 

Cyanazine 80 88 70 82 72 

MB 46136 Fipronil 80 100 85 118 81 

Captan 130 63 280 93 95 

Propiconazole 65 74 57 68 62 

Bifenthrin 60 63 54 63 57 

Norflurazon 40 48 37 48 48 

Lambda-cyhalothrin 95 86 58 85 71 

Hexazinone 70 90 71 80 73 

Baythroid 60 83 65 78 71 

Cypermethrin 90 78 74 79 74 

Esfenvalerate 65 74 58 68 66 

Azoxystrobin 70 78 75 78 77 

Carbaryl (Sevin) 80 86 50 52 50 

 

CUCUMBER SPIKES % Recovery % Recovery % Recovery 

 
9X Cucumber 9X Cucumber 9X Cucumber 

(Spike Rate ppm) 0.1 0.4 1 
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Carbofuran deg 97% 115% 117% 

Eptam 105% 104% 141% 

Etridiazole 102% 107% 170% 

Trifluralin 106% 150% 194% 

Molinate 107% 96% 138% 

Captan deg 126% 139% 154% 

Tefluthrin 104% 68% 102% 

Thimet 98% 128% 162% 

Desethylatrazine 103% 74% 126% 

Desisopropylatrazine 92% 79% 120% 

Prometone 108% 123% 159% 

Diazinon 111% 85% 117% 

Terbufos 105% 126% 174% 

Tebupirimphos 96% 109% 151% 

Atrazine 97% 77% 112% 

Clomazone 108% 128% 170% 

Carbofuran 124% 104% 175% 

MB 46513, Fipronil 107% 156% 204% 

Acetochlor 99% 115% 151% 

Dimethamid 121% 142% 170% 

Terbacil 117% 93% 159% 

Alachlor 101% 150% 158% 

Prometryn 109% 71% 104% 

Propanil 52% 49% 100% 

Metalaxyl NA NA NA 

Methyl Parathion 101% NA 131% 

Metribuzin 108% 96% 123% 

Malathion 124% 112% 121% 

Metolachlor 111% 90% 136% 

Chlorpyrifos 52% 44% 93% 

MB4590, Fipronil 116% 112% 181% 

Fipronil  103% 109% 181% 

Bromacil 106% 109% 156% 

Pendamethalin 51% 77% 119% 

Cyanazine 112% 123% 125% 

MB 46136 Fipronil 113% 139% 138% 

Captan 114% 82% 122% 

Propiconazole 97% 92% 127% 

Bifenthrin 78% 74% 107% 
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Norflurazon 62% 60% 107% 

Lambda-cyhalothrin 101% 98% 116% 

Hexazinone 104% 93% 130% 

Baythroid 90% 85% 115% 

Cypermethrin 98% 77% 112% 

Esfenvalerate 79% 79% 114% 

Azoxystrobin 100% 98% 146% 

Methamidophos 0 85 165 

Acephate 0 0 0 

Chlorothalonil 0 0 38 

Endosulfan 1 69 69 81 

Endosulfan 2 60 110 89 

Endosulfan Sulfate 99 91 103 

Permethrin 78 69 77 

MELON SPIKES % Recovery % Recovery 

15X Melon 15X Melon 

(Spike Rate ppm) 0.1 0.81 

Carbofuran deg 83% 73% 

Eptam 81% 111% 

Etridiazole 80% 126% 

Trifluralin 91% 115% 

Molinate 92% 102% 

Captan deg 95% 112% 

Tefluthrin 83% 90% 

Thimet 82% 104% 

Desethylatrazine 81% 101% 

Desisopropylatrazine 69% 94% 

Prometone 85% 100% 

Diazinon 83% 90% 

Terbufos 81% 106% 

Tebupirimphos 81% 106% 

Atrazine 77% 91% 

Clomazone 83% 111% 

Carbofuran 93% 170% 

MB 46513, Fipronil 94% 102% 

Acetochlor 91% 104% 
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Dimethamid 88% 104% 

Terbacil 90% 117% 

Alachlor 98% 98% 

Prometryn 83% 98% 

Propanil 39% 59% 

Metalaxyl NA NA 

Methyl Parathion NA 104% 

Metribuzin 92% 106% 

Malathion 87% 102% 

Metolachlor 87% 102% 

Chlorpyrifos 37% 46% 

MB4590, Fipronil 90% 102% 

Fipronil  88% 104% 

Bromacil 85% 105% 

Pendamethalin 37% 53% 

Cyanazine 81% 105% 

MB 46136 Fipronil 88% 98% 

Captan 75% 93% 

Propiconazole 76% 94% 

Bifenthrin 61% 69% 

Norflurazon 46% 65% 

Lambda-cyhalothrin 87% 91% 

Hexazinone 88% 107% 

Baythroid 75% 88% 

Cypermethrin 78% 78% 

Esfenvalerate 68% 83% 

Azoxystrobin 72% 88% 

 
    

Methamidophos 0 101 

Acephate 0 0 

Chlorothalonil 0 28 

Endosulfan 1 70 89 

Endosulfan 2 92 89 

Endosulfan Sulfate 104 128 

   Permethrin 60 77 

 

MELON SPIKES % Recovery % Recovery 

 
15X Melon 15X Melon 
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(Spike Rate ppm) 0.1 0.81 

Carbofuran deg 83% 73% 

Eptam 81% 111% 

Etridiazole 80% 126% 

Trifluralin 91% 115% 

Molinate 92% 102% 

Captan deg 95% 112% 

Tefluthrin 83% 90% 

Thimet 82% 104% 

Desethylatrazine 81% 101% 

Desisopropylatrazine 69% 94% 

Prometone 85% 100% 

Diazinon 83% 90% 

Terbufos 81% 106% 

Tebupirimphos 81% 106% 

Atrazine 77% 91% 

Clomazone 83% 111% 

Carbofuran 93% 170% 

MB 46513, Fipronil 94% 102% 

Acetochlor 91% 104% 

Dimethamid 88% 104% 

Terbacil 90% 117% 

Alachlor 98% 98% 

Prometryn 83% 98% 

Propanil 39% 59% 

Metalaxyl NA NA 

Methyl Parathion NA 104% 

Metribuzin 92% 106% 

Malathion 87% 102% 

Metolachlor 87% 102% 

Chlorpyrifos 37% 46% 

MB4590, Fipronil 90% 102% 

Fipronil  88% 104% 

Bromacil 85% 105% 

Pendamethalin 37% 53% 

Cyanazine 81% 105% 

MB 46136 Fipronil 88% 98% 

Captan 75% 93% 

Propiconazole 76% 94% 



103 

 

Bifenthrin 61% 69% 

Norflurazon 46% 65% 

Lambda-cyhalothrin 87% 91% 

Hexazinone 88% 107% 

Baythroid 75% 88% 

Cypermethrin 78% 78% 

Esfenvalerate 68% 83% 

Azoxystrobin 72% 88% 

 
    

Methamidophos 0 101 

Acephate 0 0 

Chlorothalonil 0 28 

Endosulfan 1 70 89 

Endosulfan 2 92 89 

Endosulfan Sulfate 104 128 

   Permethrin 60 77 

 

 

WATER SPIKES % Recovery % Recovery 

 
245 Water MQ WATER 

(Spike Rate ppm) 0.4 0.4  NOT ADDED 

Carbofuran deg 85% 0% 

Eptam 108% 0% 

Etridiazole 118% 0% 

Trifluralin 140% 0% 

Molinate 105% 0% 

Captan deg 93% 0% 

Tefluthrin 105% 0% 

Thimet 123% 0% 

Desethylatrazine +SAMPLE 0% 

Desisopropylatrazine 83% 0% 

Prometone 115% 0% 

Diazinon 110% 0% 

Terbufos 125% 0% 

Tebupirimphos 128% 0% 

Atrazine +SAMPLE 0% 

Clomazone +SAMPLE 0% 
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Carbofuran 240% 0% 

MB 46513, Fipronil 93% 0% 

Acetochlor +SAMPLE 0% 

Dimethamid 118% 0% 

Terbacil 143% 0% 

Alachlor 108% 0% 

Prometryn 150% 0% 

Propanil 118% 0% 

Metalaxyl 73% 0% 

Methyl Parathion 220% 0% 

Metribuzin +SAMPLE 0% 

Malathion 198% 0% 

Metolachlor +SAMPLE 0% 

Chlorpyrifos 128% 0% 

MB4590, Fipronil 123% 0% 

Fipronil  195% 0% 

Bromacil 133% 0% 

Pendamethalin 138% 0% 

Cyanazine 140% 0% 

MB 46136 Fipronil 115% 0% 

Captan 145% 0% 

Propiconazole 113% 0% 

Bifenthrin 88% 0% 

Norflurazon 113% 0% 

Lambda-cyhalothrin 105% 0% 

Hexazinone 115% 0% 

Baythroid 125% 0% 

Cypermethrin 113% 0% 

Esfenvalerate 110% 0% 

Azoxystrobin 123% 0% 
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APPENDIX 2 

SEQUENCE 

Example of Tomato sequence ran in GC-MS in this study: 

1. Sample 1……tomato acetonitrile

2. Sample 2…..tomato std ACN 2ppm

3. sample 3…..tomato std ACN 0.41ppm

4. Sample 4…..tomato std CAN 0.10 ppm

5. Sample 5…tomato MTX 0.41 ppm

6. Sample 6….tomato MTX 0.10 ppm

7. Sample 10 ….tomato RB

8. Sample 11….tomato 3x

9. Sample 12…. 3x tomato Lo spike

10. Sample 13 …….3x tomato Med spike

11. Sample 14……5x tomato

12. Sample 15…..5x tomato Dupl

13. Sample 16…..5x tomato Med spike

14. Sample 17…..5x tomato Hi spike

15. Sample 7……10A 10AGCMS 0.41 solvent

16. Sample 8….10AGCMS 0.10 solvent

17. Sample 9….10GCMS MTX 0.40 ppm
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