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ABSTRACT 

Early life heart rate (HR) and heart rate variability (HRV) reflect autonomic maturation. 

Intervention with n-3 long chain polyunsaturated fatty acids (LCPUFAs) during pregnancy 

favorably affects fetal HR and HRV; similar observations have been reported with infant n-3 

LCPUFA intake. Infant HR and HRV have not been assessed in relation to maternal fatty acid 

status during pregnancy. Further, exposure to intrauterine inflammation may underlie these 

observations, although this hypothesis has not been tested. The aim of this observational study 

was to explore associations between maternal fatty acid and inflammatory status during 

pregnancy and infant HR and HRV. Simple linear and multiple regression were used to describe 

relationships for infant HR and HRV at 2 weeks, 4 months, and 6 months of age and: 1) maternal 

erythrocyte n-6 and n-3 fatty acids, 2) maternal plasma n-6 and n-3 endocannabinoids, and 3) 

maternal serum cytokines (interleukin-6, tumor necrosis factor-α), adipokine (adiponectin), and 

acute phase reactant (C-reactive protein) at 20, 24, 32, and 36 gestational weeks. Higher maternal 

n-3 fatty acid status, especially DHA, during pregnancy was inversely related to infant HR and 

positively related to HRV; the inverse was observed for n-6 fatty acids. Maternal n-3 

endocannabinoids during pregnancy were inversely related with infant HR and positively related 

to infant HRV. Conversely, when the n-6:n-3 endocannabinoid ratio more heavily favored the n-

6 endocannabinoid series, there was a positive and inverse association with infant HR and HRV, 

respectively. Limited associations between the other inflammatory biomarkers (interleukin-6, 

tumor necrosis factor-α, adiponectin, C-reactive protein) and infant HR/HRV were observed. As 

such, we cannot definitively conclude there is a link between intrauterine exposure to these 

biomarkers and infant autonomic development. These data build on existing literature evidencing 

a role for n-3 fatty acids in accelerating fetal and infant autonomic development and may 
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indicate an anti-inflammatory role for n-3 endocannabinoids. This study is the first to examine 

potential relationships between maternal fatty acid status, maternal inflammation, and infant 

autonomic development. Further, this study is the first to examine endocannabinoids in relation 

to HR and HRV in any population.
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CHAPTER 1. LITERATURE REVIEW 

1.1 Biological significance of essential fatty acids 

1.1.1 Fatty acid characteristics 

 Fatty acids are hydrocarbon chains varying in length from 2 to 30-plus carbons with a 

methyl group at one end of the chain and a carboxyl group at the other. Structurally, fatty acids 

differ in number, type, and position of double bonds, as well as chain length. The molecular 

structure of various fatty acid classes is depicted in Figure 1.1.  

Stearic acid, an example of a saturated fatty acid, contains 18 carbons and no double 

bonds. The term “saturated” refers to the hydrogen molecules, as all carbons in the chain, 

excepting that in the carboxyl group, are linked to as many hydrogen atoms as possible. Fatty 

acids with at least one double bond between adjacent carbon atoms are “unsaturated”. Degree of 

unsaturation varies; fatty acids with only one double bond are monounsaturated fatty acids, while 

fatty acids with two or more double bonds are polyunsaturated fatty acids (PUFA). Double bonds 

can exist in cis- or trans- conformation and may occur in different positions within the 

hydrocarbon chain, as demonstrated in Figure 1.1.  

Double bonds (=) are counted from the methyl end (CH3) of the molecule and denoted by n-x 

or ω-x, where n- or ω- denotes the terminal carbon and x is the position of the first double 

bond. 

 

Stearic acid (18:0) 

CH3-(CH2)16-COOH 

 

Oleic acid (18:1n-9) 

CH3-(CH2)7-CH=CH-(CH2)7-COOH 

 

Linoleic acid (18:2n-6) 

CH3-(CH2)4-CH=CH-CH2-CH=CH-(CH2)7-COOH 

 

Linolenic acid (18:3n-3) 

CH3-CH2-CH=CH-CH2-CH=CH-CH2-CH=CH-(CH2)7-COOH 

Figure 1.1 Molecular structure and nomenclature of fatty acids 
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1.1.2 Fatty acid nomenclature 

In naming unsaturated fatty acids as a biologist, double bonds are counted from the 

methyl end of the molecule and are denoted by “n-x” or “ω-x”, where “x” is the position of the 

double bond and “n-” or “ω-” represents the terminal carbon, or the methyl end. For example, 

stearic acid, a saturated fatty acid, is designated as 18:0, as it contains 18 carbons and no double 

bonds. Oleic acid, a monounsaturated fatty acid containing 18 carbons, is denoted as 18:1n-9 or 

18:1ω-9, with “1” indicating the presence of a single double bond and “n-9” or “ω-9” indicating 

where the double bond occurs, between carbon 9 and 10 from the terminal methyl, in this case.  

A fatty acid containing 18 carbons and 3 double bonds with the first double bond 

occurring between the third and fourth carbons from the terminal methyl would be written as 

18:3n-3 or 18:3ω-3 and termed an “n-3” fatty acid. Conversely, a fatty acid with two double 

bonds, the first of which occurs between the sixth and seventh carbons from the methyl end, 

would be written as 18:2n-6, and termed an “n-6” fatty acid.  

1.1.3 Essential fatty acids 

 Most fatty acids can be synthesized de novo; however, human and mammalian cells lack 

enzymes required to synthesize linoleic acid (LA), the n-6 series precursor, and α-linolenic acid 

(α-LA), the n-3 series precursor (Simopoulos, 2002a). Therefore, these fatty acids must be 

obtained through the diet and are, therefore, “essential fatty acids” for humans. 

Essential fatty acids are ubiquitous components of cell membranes and dictate membrane 

fluidity and membrane-bound enzyme/receptor activity. Essential fatty acids have various 

functions in the body; most of these functions require conversion to eicosanoids or other 

products but the fatty acids themselves can be functionally active (ie., platelet aggregation, 

leukocyte stimulation) and directly influence membrane fluidity (Simopoulos, 2002a). 
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1.1.4 Metabolism of essential fatty acids 

The n-3 and n-6 fatty acid families share an enzymatic pathway and are metabolically 

competitive (reviewed by Simopoulos, 2002a). LA (18:2n-6) is converted to γ-LA (18:3n-6) by 

Δ6 desaturase, then elongated to form dihomo-γ-LA (DGLA; 20:3n-6), which can be converted to 

arachidonic acid (ARA, 20:4n-6) via Δ5 desaturase. In the n-3 series, α-LA (18:3n-3) is converted 

to eicosapentaenoic acid (EPA, 20:5n-3) by a series of Δ5- and Δ6-desaturases and elongase. An 

additional desaturase (Δ4) and elongase converts EPA to docosahexaenoic acid (DHA, 22:6n-3). 

Retroconversion of DHA to EPA can occur with DHA supplementation, albeit at low basal rates 

(Brossard et al., 1996). The preferred substrate for Δ5- and Δ6-desaturases and elongases is α-LA; 

however, in the case of excess dietary LA, shared enzymes are saturated, preventing significant 

conversion of α-LA to longer chain n-3 metabolites (Kris-Etherton et al., 2000). Clinically, less 

than 8% of dietary α-LA is metabolized to EPA while conversion rate of α-LA to DHA is even 

lower, 0.02 – 4% (Burdge et al., 2002).  

Dietary essential fatty acid deficiency is uncommon in developed countries. Optimal LA 

to α-LA intake is estimated to be 4:1, but dietary intake in Western countries approaches or 

exceeds 15:1, reflecting consumption of LA-rich vegetable oils (Wall et al., 2010) and a negative 

net effect on α-LA conversion. Therefore, intake of preformed α-LA and the longer chain 

metabolites EPA and DHA, known as n-3 long chain polyunsaturated fatty acids (LCPUFA), 

EPA and DHA, is recommended. 

1.1.5 Dietary sources of n-3 LCPUFA 

The primary dietary sources of EPA and DHA, along with their respective n-3 LCPUFA 

content per serving, are listed in Table 1.1. In general, deep water fish from colder temperatures 

(tuna, salmon, mackerel) have the highest content of EPA and DHA. As demonstrated in Table 
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1.1, fatty acid content and profile varies considerably according to fish species, geographical 

location, and method of harvesting/farming. As such, reported fatty acid content should be taken 

as rough estimates with the understanding that content also varies with cooking method. 

 

 

 

Table 1.1 DHA and EPA content of major dietary sources of n-3 LCPUFA1,2 

 DHA, 

mg/4 oz. 

EPA,  

mg/4 oz. 

# 4 oz. servings to 

provide 250 mg 

 n-3 LCPUFA3 

Oz. to provide 250 mg 

n-3 LCPUFA 

Bass     

   Sea 492 183 0.37 1.48 

   Striped 663 192 0.29 1.17 

Catfish     

   Farmed 64 19 3.02 12.10 

   Wild 265 147 0.61 2.43 

Cod     

   Atlantic 136 72 1.20 4.81 

   Pacific 109 39 1.69 6.76 

Herring     

   Atlantic 977 804 0.14 0.56 

   Pacific 781 1099 0.13 0.53 

Flounder 123 155 0.90 3.61 

Salmon     

   Atlantic, farmed 1251 977 0.11 0.45 

   Atlantic, wild 1264 364 0.15 0.61 

   Pink 377 207 0.43 1.71 

   Sockeye 1797 395 0.11 0.46 

Tilapia 97 5 2.44 9.74 

Trout 599 229 0.30 1.21 

Tuna     

   Bluefin 1009 321 0.19 0.75 

   Light, canned in water 223 32 0.98 3.93 

   Yellowfin 100 13 2.21 8.82 

   White, canned in water 713 264 0.26 1.02 
1Adapted from the USDA National Nutrient Database for Standard Reference, Release 28 and Drewery et al., 2016; 

DHA: docosahexaenoic acid; EPA: eicosapentaenoic acid; LCPUFA = long chain polyunsaturated fatty acid 
2Nutrient values are estimates and depend on species of fish, total fat content of fish, geographical location, method of 

raising/harvesting, and cooking. All values are for raw portions. 
3# of servings (4 oz.) were calculated to meet 250 mg of n-3 LCPUFA per day, as recommended for pregnant women 

by the Dietary Guidelines for Americans (2015-2020). 
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1.1.6 PUFA status and inflammation 

 Inflammation is an immunological response of tissue to injury or infection. The 

inflammatory response is a normal, protective mechanism to remove harmful stimuli and initiate 

the healing process. However, persistent or excessive inflammation can lead to development of 

acute and chronic diseases characterized by production of cytokines, eicosanoids, and other 

inflammatory factors.  

Inflammation and PUFA status are biologically interrelated. Essential fatty acids are 

precursors of eicosanoids, and these modulate the intensity and duration of an inflammatory 

response, dictating overall pathophysiological outcome (reviewed by Calder, 2006). Eicosanoids 

derived from 20-carbon PUFAs (DGLA, ARA, EPA) include prostaglandins, thromboxanes, 

leukotrienes, hydroperoxyeicosatetraenoic acids (HPETE), and hydroxyeicosatetraenoic acids 

(HETE).  

In response to inflammation, phospholipase A2 releases a 20-carbon fatty acid from the 

lipid pool within the cell membrane. The fatty acid is converted to an eicosanoid by 

cyclooxygenase (COX), lipoxygenase (LOX), or cytochrome P450 enzymes; COX enzymes 

produce prostaglandins and thromboxanes, LOX enzymes produce leukotrienes, and cytochrome 

P450 enzymes produce HPETE and HETE (reviewed by Calder, 2013). There are two isoforms 

of the COX enzyme; COX-1 is a constitutive enzyme and COX-2 is specific to immune cells. 

While the same COX and LOX pathways metabolize each 20-carbon PUFA, the eicosanoids 

produced from each PUFA precursor vary in potency and differ structurally and physiologically 

(Lee et al., 1984a).  
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1.1.7 Inflammatory events directed by PUFA 

Pro-inflammatory events are initiated and exacerbated by eicosanoids derived from ARA, 

whereas equivalent products from EPA tend to nullify and reverse the inflammatory response. 

The 2 series of prostaglandins and thromboxanes (PGE2, PGF2, PGD2, and TXA2) are 

synthesized from ARA by the COX pathway. These prostaglandins have various physiological 

effects, including increased vascular permeability, vascular dilation, neutrophil chemotaxis, and 

stimulation of smooth muscle cell migration and proliferation (Richard et al., 2000). The 2-series 

of thromboxanes are involved in platelet aggregation and blood vessel constriction (Sellers and 

Stallone, 2008). Metabolism of ARA by 5-LOX produces hydroxy- and hydroperoxy-derivatives 

(5-HETE and 5-HPETE) and the 4-series of leukotrienes (LTC4, LTB4, LTD4, and LTE4). These 

leukotrienes are involved in induction of smooth-muscle contraction and act as chemoattractants 

of neutrophils (Peters-Golden et al., 2005).  

 The n-3 derived prostaglandins (PGD3, PGF3, and PGE3), thromboxanes (TXA3), and 

leukotrienes (LTB5, LTC5, LTD5, and LTE5) have weaker bioactivity than their respective n-6 

derived metabolites (reviewed by Calder, 2006). For example, LTB5 is 10- to 100-fold less 

potent as a neutrophil chemoattractant than LTB4 (Goldman et al., 1983; Lee et al., 1984b). 

Similarly, PGE2 stimulates COX-2 in fibroblasts, up-regulating its own production and inducing 

pro-inflammatory cytokine production by macrophages; EPA-derived PGE3 is a less potent 

inducer of these pathways (Bagga et al., 2003).  

Biological activity and potency is related to affinity of cellular eicosanoid receptors. 

These receptors have greater affinity for n-6 derived eicosanoids than those derived from n-3. 

Thus, collective actions of n-3 produced eicosanoids are weak (Wada et al., 2007). 
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The type and amount of PUFA released in response to inflammatory stimuli depends on 

fatty acid content of the cell membrane phospholipid pool. When cell membranes contain large 

amounts of ARA relative to DGLA or EPA, which characterizes a typical Western diet, ARA is 

the primary substrate for eicosanoid synthesis (reviewed by Calder, 2006). Eicosanoids from n-6 

are biologically active in small quantities and play an important modulatory role in the immune 

response by stimulating leukocytes (reviewed by Simopoulos, 2002b). However, if ARA-derived 

eicosanoids are present in large quantities, damage to host tissues can ensue and contribute to 

inflammatory disorders (Kinsella et al., 1990).  

Supplementation with fish oil, a source of EPA and DHA, displaces ARA from cell 

membrane phospholipid pools, modulating the inflammatory response. This occurs especially in 

membranes of erythrocytes, neutrophils, monocytes, and liver cells (reviewed by Simopoulos, 

2003; reviewed by Calder, 2006). In addition to competing for metabolic enzymes, EPA also 

competes with ARA for active sites of COX- and LOX-enzymes, suppressing generation of n-6 

derived eicosanoids, further dampening the ARA-mediated pro-inflammatory response (James et 

al., 2000; reviewed by Calder, 2006).  

Increased fish oil intake and subsequent EPA-induced suppression of n-6 derived 

eicosanoids is reflected in an elevation of n-3 derived eicosanoids. Fish oil supplementation 

decreases inflammatory cell production of PGE2, LTB4, TXB2, LTE4, and 5-HETE while 

increasing production of the less inflammatory LTB4, LTE5, and 5-HEPE (Sperling et al., 1993; 

von Schacky et al., 1993; Caughey et al., 1996).  

Potent anti-inflammatory mediators, resolvins and protectins, are also generated from 

EPA and DHA (Serhan et al., 2008). The E-series resolvins are generated from EPA and the D-

series resolvins, docosatrienes and neuroprotectins, are generated from DHA by COX-2 and 
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LOX-initiated pathways (Serhan et al., 2002). Both the D- and E-series of resolvins exert anti-

inflammatory and immunoregulatory actions, including suppression of neutrophil chemotaxis, 

regulation of cytokines, and elimination of endothelial production of reactive oxygen species 

(Serhan et al., 2000; Serhan et al., 2002; Hong et al., 2003; Mukherjee et al., 2004). 

Anti-inflammatory actions of n-3 LCPUFA are not strictly eicosanoid-dependent. Fish oil 

supplementation also reduces generation of pro-inflammatory cytokines (Lo et al., 1999; Zhao et 

al., 2004; Bhattacharya et al., 2006) by altering inflammatory gene expression via transcription 

factors, nuclear factor kappa B (NFκB) and peroxisome proliferator-activated receptors (PPARs) 

(reviewed by Calder, 2002; reviewed by Calder, 2006). NFκB is involved in up-regulation of 

several cytokines and enzymes implicated in the pathogenesis of chronic inflammatory diseases. 

In its inactive form, NFκB is a cytosolic trimer. Once activated by extracellular inflammatory 

stimuli, the inhibitory subunit (IκB) is phosphorylated and dissociates, allowing the remaining 

NFκB dimer to translocate to the nucleus and bind motifs in the promoter regions of pro-

inflammatory genes (Hayden et al., 2006; Perkins, 2007). 

There are several mechanisms by which n-3 LCPUFA interfere with NFκB activation: i) 

induction and activation of PPARγ, which physically blocks NFκB nuclear translocation; ii) 

disruption of membrane lipid rafts that initiate inflammatory signaling and activate NFκB; and 

iii) promotion of a cell surface G-protein coupled receptor which initiates an anti-inflammatory 

signaling cascade and inhibits signaling of NFκB activation (Lee et al., 2001; Van den Berghe et 

al., 2003; Oh et al., 2010).  

Although infection resolution depends on cytokines, over-production has implications in 

pathological responses which can lead to inflammation. Specifically, cytokines induce fever, 

activate B- and T-lymphocytes, and regulate the acute phase response (reviewed by Simopoulos, 
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2002b). Cytokines with relevancy in inflammation are the interleukins (IL), especially IL-1, IL-

6, IL-1β, and tumor necrosis factor (TNF)-α.  

Clinically, DHA and EPA supplementation has been documented to decrease production 

of pro-inflammatory cytokines (Meydani et al., 1991; Endres et al., 1993; Gallai et al., 1993; 

Caughey et al., 1996), while null effects have also been reported (Yaqoob et al., 2000; Schmidt 

et al., 2010). Decreased production of pro-inflammatory cytokines translates to interest in n-3 

LCPUFA as therapeutic agents in chronic inflammatory diseases, including rheumatoid arthritis, 

asthma, and inflammatory bowel disease. Evidence for the effectiveness of n-3 LCPUFA in 

improving clinical conditions and biochemical factors of these diseases has been reviewed 

(Simopoulos et al., 2002b). Overall, significant benefits are associated with n-3 LCPUFA 

supplementation, including decreased disease activity and lowered use of anti-inflammatory 

drugs (Simopoulos et al., 2002b). These observations underline the importance of incorporating 

DHA and EPA in the diet and shifting essential fatty acid intake (LA:α-LA) to favor the n-3 

series. 

1.2 Metabolic status and pregnancy as a state of inflammation 

 

1.2.1 Inflammation as a natural state during pregnancy 

 

 Pregnancy is a natural state of inflammation characterized by distinct physiological 

changes (Sacks et al., 2004). In early pregnancy, maternal pancreatic β-cells undergo 

hyperplasia, resulting in increased insulin secretion and heightened insulin sensitivity (reviewed 

by Butte, 2000). As gestational age advances, secretion of diabetogenic hormones, including 

human placental lactogen, growth hormone, cortisol, and progesterone, markedly reduce insulin 

sensitivity by interfering with insulin receptor signaling at peripheral tissues (Newbern and 

Freemark, 2011). As insulin becomes less effective at suppressing lipid catabolism, there is a 
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shift from lipogenesis, which promotes accumulation of maternal fat stores in early and mid-

pregnancy, to lipolysis in late pregnancy (Elliot, 1975; reviewed by Butte, 2000). 

Cytokine production further stimulates lipolysis and inhibits lipoprotein lipase activity, 

with a net result of adipose tissue mobilization (Feingold and Grunfield, 1992). Maternal 

hyperlipidemia occurs and basal circulating triglyceride and cholesterol concentrations increase 

2- to 3-fold (Knopp et al., 1980). Together, these hormonal alterations and hyperlipidemia result 

in a state of insulin resistance that peaks during the third trimester (Catalano et al., 1991).  

Women with normal glucose tolerance prior to pregnancy have 50 – 70% decreased 

insulin sensitivity by the third trimester (Catalono et al., 1991; reviewed by Butte, 2000). 

Further, during the third trimester, lipoprotein lipase activity is redistributed from maternal 

tissues to the placenta, increasing placental capacity for fatty acid uptake (Herrera et al., 1988; 

reviewed by Haggarty, 2004). The progression of a normal pregnancy depends on these 

processes as they: i) provide an energy source for maternal needs in late gestation, ii) support 

enhanced nutrient transport across the placenta to the fetus, and iii) ensure a continuous supply of 

nutrients to the fetus despite intermittent maternal food intake (Swislocki and Kraemer, 1989; 

reviewed by Butte, 2000). The mother is able to preferentially use fat for fuel, preserving 

available glucose and amino acids for the fetus and minimizing protein catabolism (reviewed by 

Butte, 2000; Soma-Pillay et al., 2016). These physiological responses coincide with a time of 

significant energy demands from the mother and fetus. Maternal energy needs are greatest during 

the third trimester (reviewed by Catalano, 2010) and 90% of fetal fat deposition occurs after 30 

weeks of gestation (reviewed by Haggarty, 2002). 

 Beyond the effects on maternal metabolism, physiological changes during pregnancy also 

prevent rejection of the placenta/fetus and are necessary for delivery (reviewed by Challis et al., 
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2009). With advancing gestational age, inflammatory responsiveness increases. Pro-

inflammatory cytokines actively remodel the cervix which weakens until fetal membranes 

rupture, activating uterine contractions (Young et al., 2002; Osman et al., 2003; King et al., 

2007). T lymphocytes regulate this immunological response by producing cytokines. T 

lymphocytes can be divided into two functional groups that produce different cytokines: i) Th1, 

which promote cell-mediated immune responses, and ii) Th2, which are involved in humoral 

immunity (reviewed by Challis et al., 2009). The major sites of Th2 cytokine production are non-

lymphoid tissues, including placental and decidual tissues (Chaouat, 1999). During normal 

pregnancy, the balance of Th1/Th2 activity is shifted to Th2, which plays a protective role in the 

feto-maternal relationship (reviewed by Challis et al., 2009).  

1.2.2 Exaggerated response to excess maternal weight 

 In the United States, over two-thirds of women of reproductive ages have a body mass 

index (BMI) classified as overweight or obese (≥25.0 kg/m2; Flegal et al., 2010). Maternal 

overweight and obesity are associated with increased risk of adverse obstetric outcome(s); 

antenatal risks include gestational diabetes and hypertension (Sebire et al., 2001; Bhattacharya et 

al., 2007; Denison et al., 2008) while peripartal risks include induction of labor and unplanned 

operative delivery (Sebire et al., 2001; Denison et al., 2008; Galán et al., 2011).  

Heightened inflammation, which accompanies excess maternal weight, alters the 

Th1/Th2 balance, causing a shift to Th1 predominance (reviewed by Challis et al., 2009). This 

shift initiates and intensifies the cascade of pro-inflammatory cytokine production implicated in 

spontaneous abortion, preterm delivery, and gestational diabetes mellitus (reviewed by Challis et 

al., 2009). Compared to normal weight pregnant women, obese pregnant women have elevated 

circulating levels of pro-inflammatory cytokines (Challier et al., 2008; reviewed by Catalano et 
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al., 2009; Basu et al., 2011; Roberts et al., 2011; Aye et al., 2014), including TNF-α and IL-6, 

both of which are implicated in insulin resistance (Borst, 2004; Kershaw and Flier, 2004). The 

source of these cytokines are likely T lymphocytes (reviewed by Challis et al., 2009), maternal 

adipose tissue (Denison et al., 2010; Aye et al., 2014), and the placenta (Denison et al., 2010). 

Adipose tissue is an endocrine organ and a significant source of cytokines (Kershaw and 

Flier, 2004). Table 1.2 outlines pro-inflammatory cytokines that are expressed and secreted by 

adipose tissue and the effects of obesity on that expression. Obesity is defined by massive 

expansion of adipose tissue. mRNA expression of monocyte chemoattractant protein (MCP)-1 

and TNF-α, pro-inflammatory molecules, is increased 2- to 5-fold in adipose tissue and placenta 

of obese pregnant women as compared to normal weight pregnant women (Basu et al, 2011; 

Roberts et al., 2011). Further, macrophages infiltrate adipose tissue of obese pregnant women 

(Denison et al., 2010).  

The placenta can be described as an inflammatory organ. Obese pregnant women have a 

2- to 3-fold increase in placental macrophages compared to normal weight or overweight women 

(Challier et al., 2008). Further, these macrophages are associated with increased expression of 

pro-inflammatory cytokines (Challier et al., 2008). These findings are consistent with animal 

studies which highlight a difference in placental production of inflammatory markers 

(carboxypeptidase E and resistin) between obese and non-obese pregnant populations (Singh et 

al., 2006; Zhou et al., 2006). It has also been reported that obese pregnant women have increased 

placental mRNA expression of IL-1β, IL-8, MCP-1, and CXCR2 (IL-8 receptor) versus normal 

weight pregnant women (Roberts et al., 2011). Overall, these findings support a role of the 

placenta in inflammation and indicate an up-regulation of placental inflammatory activities 

associated with maternal overweight and/or obesity. 
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Table 1.2 Pro-inflammatory factors expressed and secreted by adipose tissue 

Factor1 Obesity-induced changes Functional effect(s) Reference 

TNF-α Increased circulating Downregulates anti-inflammatory 

pathway 

Stimulates lipolysis 

Increases insulin resistance 

Kern et al., 2001 

Cartier et al., 2008 

MCP-1 Increased expression Promotes monocyte recruitment Christiansen et al., 2005 

Di Gregorio et al., 2005 

IL-6 Increased circulating Increases hepatic insulin resistance Kern et al., 2001 

IL-8 Increased circulating Acts as a potent chemoattractant Straczkowski et al., 2002 

IL-1β Increased expression Impairs insulin signaling Juge-Aubry et al., 2003 
1TNF-α: tumor necrosis factor α; MCP-1: monocyte chemoattractant protein; IL: interleukin  

 

Obesity, especially when visceral in nature, is associated with glucose intolerance and 

insulin resistance (Ramsay et al., 2002). Greater abdominal visceral adiposity in the first 

trimester is associated with a positive glucose challenge test between 24 and 28 gestational 

weeks (Martin et al., 2009). Thus, women entering pregnancy with excess weight or gain 

significant weight during pregnancy have increased susceptibility to developing gestational 

diabetes mellitus compared to women who enter pregnancy with a normal BMI (Denison et al., 

2010).  

While increased susceptibility to gestational diabetes mellitus could be attributed to 

exaggerated pro-inflammatory cytokine production, it has been estimated that C-reactive protein 

(CRP) concentrations, an acute phase protein synthesized in response to pro-inflammatory 

cytokines (Sheldon et al., 1993), and circulating triglycerides explain only 30% of the risk of 

increased BMI on gestational hypertension (Bodnar et al., 2005). Colomiere et al. (2009) 

reported defects in the insulin signaling cascade in adipose tissue and skeletal muscle of pregnant 

obese women with normal glucose tolerance. This report points to another factor which may 

contribute to susceptibility of obese women to gestational diabetes mellitus. These observations 

(Challier et al., 2008; Denison et al., 2010; Basu et al., 2011) suggest that T lymphocytes, 
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maternal adipose tissue, and the placenta contribute to local inflammation which is exaggerated 

by pregavid overweight/obesity. Thus, exaggerated inflammation during pregnancy may be a 

factor in increased risk of adverse obstetric outcome(s) in overweight and obese pregnant 

women. 

1.2.3 Implications for fetal exposure to inflammation 

Maternal overweight and obesity also pose significant health risks to the infant. Increased 

risk for adverse neonatal outcome, including congenital anomalies, asphyxia, death, and 

hypoglycemia are associated with pre-pregnancy overweight and obesity (Kalk et al., 2009; 

Stothard et al., 2009; Galán et al., 2012; Cresswell et al., 2012). Infants born to overweight and 

obese mothers are more likely to be large for gestational age, macrosomic, and insulin resistant 

(Catalano et al., 2009; Sewell et al., 2006; Yu et al., 2013). There is also an association between 

maternal obesity and increased disease risk in later life for the infant, including impaired 

neurodevelopment, cardiovascular, and/or metabolic diseases (Whitaker, 2004; Boney et al., 

2005; Drake and Reynolds, 2010; Van Lieshout et al. 2011; Khandaker et al., 2012). 

 While maternal insulin resistance ensures redirection of nutrients for fetal growth and 

development, the degree of insulin sensitivity is a governing factor determining optimal fetal 

growth versus adiposity (Boney et al., 2005). The natural state of insulin resistance during 

pregnancy is exaggerated by pregavid obesity (Ramsay et al., 2002; Martin et al., 2009; Denison 

et al., 2010). Further, decreased maternal insulin sensitivity is associated with an increase in 

infant adiposity (Jansson and Powell, 2007) which is likely a result of fetal exposure to over-

nutrition in the form of hyperglycemia and hyperlipidemia.  

Infants born to overweight or obese women with normal glucose tolerance have a 2% 

increase in body fat compared to those born to normal weight women with normal glucose 
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tolerance (Sewell et al., 2006). Thus, inflammation accompanying excess maternal weight 

contributes to infant adiposity independently of maternal insulin resistance. The observation that 

maternal obesity activates placental inflammatory signaling without affecting cytokine levels in 

fetal circulation (Aye et al., 2014) indicates that obesity-related inflammation impacts the fetus 

by altering placental function rather than by direct fetal exposure to elevated concentrations of 

pro-inflammatory cytokines. However, increased IL-6 has been found in the umbilical cord 

plasma of fetuses born to obese versus lean women (Catalano et al., 2009). 

Regardless of the pathway by which it exerts its effects, obesity-related inflammation can 

be mitigated, in part, by altering maternal nutrition. Supplementation of n-3 LCPUFA reduces 

inflammation associated with excess weight (Makhoul et al., 2011), although this has not been 

studied during pregnancy in relation to improving adverse obstetric, fetal, or infant outcome 

associated with pregavid overweight and/or obesity, to the authors’ knowledge. The role of n-3 

LCPUFA in reducing inflammation is covered in Section 1.1, benefits of maternal and/or infant 

n-3 LCPUFA intake during the perinatal period are covered in Section 1.3, and a more in-depth 

discussion of the implications of fetal exposure to inflammation, with specificity to the 

autonomic nervous system, are covered in Section 1.4. 

1.3 n-3 and n-6 LCPUFA in development 

1.3.1 The developing brain  

 Development of the human brain begins shortly after conception with neural tube 

formation. During the embryonic phase, before 7 weeks of gestation, brain structure is defined. 

Functional development occurs during the fetal phase, after 8 weeks of gestation (Fitzgerald and 

Folan-Curran, 2002; Larsen et al., 2011).  
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Neural proliferation and apoptosis occur during the first half of pregnancy. Once neurons 

are formed, they migrate to their final destination (Graaf-Peters and Hadders-Algra, 2006). This 

migratory period is accompanied by neuronal differentiation, encompassing processes including 

dendritic formation, axonal formation, and production of neurotransmitters and synapses. The 

number of cortical neurons peaks at 28 weeks of gestation, then declines by 70% to reach a 

stable number by birth (Rabinowicz et al., 1996).  

Beginning during the third trimester and extending to 18 months of age, the brain 

undergoes exponential growth, increasing 10-fold in size (Dobbing and Sands, 1973). This 

period is characterized by synaptogenesis, myelination, axonal and dendritic differentiation, axon 

elimination, and glial cell proliferation, providing a neuronal base for the fetus/neonate to learn 

(Reiss, 1996; reviewed by Georgieff, 2007). At birth, the brain is only 25% of its final volume 

with 70% of cell division complete, but reaches 80% of final adult weight by the end of the 

“growth spurt”, in the first year of life (Crawford, 1993; Helland et al., 2003).  

1.3.2 Importance of n-3 and n-6 LCPUFA to the developing brain 

N-3 and n-6 LCPUFAs are important components of tissue lipids. Specifically, their 

structural and functional roles are centered in cell membranes where they are integrated into 

phospholipids (Neuringer et al., 1988; reviewed by Kidd, 2007). While ARA, the primary n-6 

LCPUFA, is present in all biological membranes and comprises 5 – 15% of total fatty acids in 

most tissue phospholipids, DHA, the primary n-3 LCPUFA, is highly concentrated in the 

cerebral cortex and retina (Neuringer et al., 1988). Specifically, DHA is enriched in brain gray 

matter as 10 – 16% of total fatty acids and rod and cone outer segment membranes of the retina 

as 35% of total fatty acids (Sastry, 1985; Guisto et al., 2002; reviewed by Wall et al., 2010). 

Overall, approximately 64% of total lipids in the adult brain are LCPUFAs, virtually all of which 
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are structural and unavailable for energy metabolism (Yehuda et al., 1999). These concentrations 

are consistent across mammalian species, despite disparities in dietary intake, suggesting a 

functional role for ARA and DHA in brain tissue (Crawford et al., 1976).  

At term, the infant brain contains relatively more ARA than DHA, but higher DHA 

accretion persists after birth, resulting in DHA as the predominant LCPUFA in the adult brain 

(Farquharson et al., 1992; Martinez, 1992a; Martinez and Mougan, 1998). Accrual of brain ARA 

and DHA increases 3 – 5 times in the last trimester of pregnancy and continues throughout the 

first 18 months of life, though at a slower rate (Neuringer et al., 1988; reviewed by Colombo, 

2011). The rate at which ARA and DHA are incorporated into the brain during early postnatal 

life is 10 times faster than that of their respective precursors, LA and α-LA (Greiner et al., 1997).  

 The developing brain is sensitive to environmental insults, including nutritional deficits. 

Critical periods of vulnerability occur during the perinatal period, when development of 

underlying neuronal circuitry is more susceptible to perturbations than at any other time (Anand 

and Scalzo, 2000). This critical period corresponds to peak rates of brain growth, myelination, 

and accelerated production of synaptic sites (Rakic, 1998).  

Neuronal cell growth and development are dependent on all nutrients, but are especially 

responsive to LCPUFA. Deficiency of these fatty acids during fetal or neonatal life can result in 

detrimental global- and/or circuit-specific effects, based on timing and degree of the deficit 

(reviewed by Georgieff, 2007). The developing brain is plastic and amenable to repair after 

nutrient repletion. However, vulnerability to insult likely outweighs plasticity as early nutritional 

deficits manifest themselves as brain dysfunction during the deficit with continued dysfunction 

after nutrient repletion (reviewed by Georgieff, 2007). 
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ARA is involved in cell signaling pathways and is a precursor to eicosanoids that 

participate in cellular processes; however, the specific functional role(s) of DHA in the brain are 

not as well defined (Bhattacharya et al., 1989). Several roles for DHA in the excitable 

membranes of the nervous system and retina have been proposed: i) high polyunsaturation of 

DHA influences biophysical properties of membranes, such as molecule shape and fluidity; ii) 

DHA modulates aspects of lipid-protein interactions, such as activities of membrane-bound 

enzymes and receptors; and iii) DHA is a precursor for functionally important eicosanoid 

products (Spector and Yorek, 1985; Neuringer et al., 1988). 

1.3.3 Accretion of fetal ARA and DHA, as related to the developing brain 

The fetus accumulates approximately 212 mg/kg ARA and 45 mg/kg DHA per day 

during the last trimester of pregnancy (Lapillone and Jensen, 2009). The primary determinant of 

availability and delivery of a fatty acid to the fetus is the concentration of that fatty acid in 

maternal circulation, which is closely related to maternal intake (Haggarty et al., 1999).  

Tracer studies indicate rate of fetal ARA synthesis is significantly greater than that of 

DHA, suggesting the fetus has a greater ability to regulate ARA supply by de novo synthesis 

from LA or placental re-uptake. Thus, it has been proposed that exogenously derived DHA may 

be more critical than ARA during fetal life (reviewed by Haggarty, 2004). However, Western 

diets are notoriously low in DHA. Therefore, maternal stores may be insufficient to meet fetal 

DHA demands for optimal development. This hypothesis remains untested, however, as data on 

DHA accumulation in human placenta and other pregnancy-related tissues, or losses in turnover, 

are not available, making it difficult to quantify DHA requirements of the fetus (reviewed by 

Innis, 2009). 



19 

 

Unique biological processes, termed “progressive biomagnification” direct DHA and 

ARA from maternal liver to the placenta, fetal liver and, ultimately, fetal brain. Clinically, 

biomagnification is evident by comparing circulating maternal fatty acid concentrations with 

cord venous concentrations, which represent fetal circulation, at delivery. ARA and DHA are 

enriched in cord erythrocyte phospholipids relative to maternal erythrocyte phospholipids (30 – 

35% increase, by weight), although precursor fatty acids are greater in maternal circulation 

(Wijendran et al., 2000). These processes ensure LCPUFAs are selectively supplied to the fetus 

and subsequently incorporated into the brain (Neuringer et al., 1988). 

1.3.4 Accretion of postnatal ARA and DHA, as related to the developing brain 

The importance of DHA extends to postnatal life, as the brain is still developing. 

Postnatally, accretion of infant ARA and DHA depend on the diet and, to a limited extent, 

endogenous synthesis (Birch et al., 2007).  

Brenna et al. (2007) estimated that, worldwide, human breast milk contains an average of 

0.32% of fatty acids as DHA. In United States populations, however, human breast milk contains 

an average of 0.15 – 0.19% of fatty acids as DHA (Auestad et al., 2001; Jensen et al., 2000; 

Yuhas et al., 2006). Breast milk fatty acids are derived from maternal body stores and diet 

(Demmelmair et al., 1998). Thus, lower n-3 LCPUFAs in breast milk from United States 

populations reflects consumption of the n-6 PUFA-saturated Western Diet.  

Infants fed formula without DHA have lower brain cortex and erythrocyte DHA 

concentrations than breast-fed infants (Makrides et al., 1994). Similarly, unsupplemented 

formula-fed infants have 11 – 40% lower DHA concentrations in brain gray matter than breast-

fed infants (Farquharson et al., 1992; Jamieson et al., 1999). It is important to note these studies 
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were conducted when commercial infant formulas were not fortified with DHA. Thus, these 

observations illustrate that diet can modify DHA composition of the developing human brain.  

As in fetal life, neonatal synthesis of ARA is significantly greater than that of DHA 

(reviewed by Haggarty, 2002). It has been estimated that DHA requirements are not addressed 

by endogenous synthesis in a significant capacity until 16 weeks after term delivery (Uauy et al., 

2000; Carnielli et al., 2007); this time frame would presumably be greater in a preterm infant. 

After birth, acylated DHA in liver and adipose tissue decrease, mirroring an increase of acylated 

DHA in the brain and retina. This finding suggests that the liver and adipose tissues sequester 

DHA in utero to provide a reservoir during early neonatal life (Martinez, 1992b). 

1.3.5 Deficits and benefits of ARA and DHA in preterm infants 

Preterm infants (<37 gestational weeks) are more vulnerable to DHA deficits than term 

infants as they are not exposed to maternal fatty acid stores for the entirety of the third trimester 

and have an extremely limited ability to synthesize DHA from the precursor fatty acid (reviewed 

by Kidd, 2007). Consequences for these deficits include increased risk for compromised 

cognitive ability and behavioral impairment at school age. Degree of risk is directly proportional 

to level of immaturity at birth (Bhutta et al., 2002).  

Preterm (and term) infants fed formulas enriched with DHA have similar erythrocyte 

DHA concentrations as breast-fed infants (Carlson et al., 1987; Makrides et al., 1994). By 

improving DHA status, visual acuity of term and preterm infants improves, with greater 

improvements in preterm infants due to less mature visual acuity at study onset (Carlson et al., 

1993). 
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1.3.6 Maternal DHA supplementation and term infant outcome  

 Studies evaluating the effect of maternal DHA supplementation on infant outcome, as 

presented in Table 1.3, largely support the “fetal origins hypothesis”, the theory that fetal 

exposure to in utero conditions, including nutrition deficits or abundances, is related to risk for 

chronic diseases in later life (Barker, 1992). The “fetal origins hypothesis” is discussed in greater 

depth in Section 1.4. 

Table 1.3 Effects of DHA supplementation during pregnancy on infant outcome 

Observations vs placebo Dose per day Duration of suppl. Reference 

Cognitive/central nervous system maturity1 

Improved performance on 

Mental Processing 

Composite of KABC at 4 y 

0.118 g DHA GW 18 – 3 mo Helland et al., 2003 

Less distractibility at 12 – 

24 mo 

0.135 g DHA GW 24/28 - delivery Colombo et al., 2004 

Improved problem solving 

at 9 mo 

0.214 g DHA GW 24 – delivery Judge et al., 2007a 

Improved hand eye 

coordination on GMDS at 

2.5 y 

2.200 g DHA GW 20 – delivery Dunstan et al., 2008 

Improved sleep organization 

at 1 and 2 d 

0.214 g DHA GW 24 – delivery Judge et al., 2012 

Visual acuity 

Improved visual acuity at 4 

mo 

0.214 g DHA  GW 24 – delivery Judge et al., 2007b 

Improved visual acuity at 2 

mo 

0.400 g DHA GW 16 – delivery Innis and Friesen, 2008 

Body composition 

Decreased BMI at 21 mo 0.200 g DHA  GW 21 – 3 mo Bergmann et al., 2007 

Decreased ponderal index at 

birth 

0.214 g DHA  GW 21 – delivery Courville et al., 2011 

1DHA: docosahexaenoic acid; GW: gestational week; KABC: Kaufman Assessment Battery for Children; 

GMDS: Griffiths Mental Developmental Scales 

 

Supplemental DHA during pregnancy improves infant central nervous system maturity, 

assessed as cognitive performance, as early as 9 months and out to 4 years of age (Helland et al., 

2003; Colombo et al., 2004; Dunstan et al., 2006; Judge et al., 2007a). These observations have 
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been reported with a range of DHA intakes (120 – 220 mg per day), at different intervention 

times (16 – 24 weeks of gestation throughout term delivery), and with various validated, age-

appropriate assessment tools (Kaufman Assessment Battery for Children, Griffiths Mental 

Developmental Scales, problem solving tasks). Using aggregation analysis, Cohen et al. (2005) 

estimated that for every increase in maternal intake of 100 mg DHA per day during pregnancy, 

child IQ increases by 0.13 points, with an average maximum benefit of 1.3 IQ points.  

Infants whose mothers received 210 – 400 mg DHA per day during pregnancy have 

improved visual acuity at 2- and 4-months of age as compared to infants born to women 

receiving no supplemental DHA (Judge et al., 2007b; Innis and Friesen, 2008). A similar dose of 

DHA (approximately 200 mg per day) consumed from 21 weeks of gestation to delivery has also 

been linked to improved infant body composition (lower ponderal index and BMI) at delivery 

(Courville et al., 2011) and 21 months of age (Bergmann et al., 2007). 

1.3.7 Postnatal DHA supplementation and term infant outcome 

Significant work, focused on the effects of postnatal DHA supplementation, has been 

conducted and is presented in Table 1.4. Generally, infants receiving supplemental DHA from 

birth to 3 – 4 months of age perform similarly to breast-fed infants on cognitive assessments, 

with both groups performing better than infants not receiving supplemental DHA (Agostoni et 

al., 1995; Birch et al., 2000; Jensen et al., 2005; Jensen et al., 2010; Colombo et al., 2011). 

Cognitive improvements are apparent as early as 4 months of age, extend to 2.5 years of age, and 

have been documented using age-appropriate assessments, including the Brunet-Lézine 

Psychomotor Development Test and Bailey Scales of Infant Development.  
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Table 1.4 Effects of postnatal DHA supplementation on infant outcome 

Observations vs placebo Dose Duration of suppl. Reference 

Cognitive/central nervous system maturity1 

Better performance on 

BLPDT for breast-fed and 

formula + DHA at 4 mo 

Breast-fed, formula 

(no DHA), formula 

+ 0.30% FA as DHA 

Birth – 4 mo Agostoni et al., 1995 

Improved performance on 

mental developmental index 

of BSID-II at 18 mo 

Formula (no DHA), 

formula + 0.35% FA 

as DHA 

Birth – 4.25 mo Birch et al., 2000 

Improved performance on 

psychomotor development 

index of BSID at 30 mo 

Breast-feeding 

mothers 

supplemented 0 or 

200 mg DHA/d 

Birth – 4 mo Jensen et al., 2005 

Improved performance on 

the sustained attention 

subscale of the LIPS 

Breast-feeding 

mothers 

supplemented 0 or 

200 mg DHA/d 

Birth – 4 mo Jensen et al., 2010 

Increased sustained attention 

for 0.32 and 0.64% at 4, 6, 

and 9 mo 

0.0, 0.32, 0.64, 

0.92% FA in 

formula as DHA 

Birth – 3 mo Colombo et al., 2011 

Improved information 

processing at 6 y 

Formula (no DHA), 

formula + 0.21% FA 

as DHA  

Birth – 4 mo Willatts et al., 2013 

Visual acuity2 

Higher grating acuity on 

TACP at 2 mo for formula + 

DHA and breast-milk 

Formula (no DHA), 

formula + 0.10% FA 

as DHA, breast-milk 

Birth -  2 mo Carlson et al., 1996 

Better sweep VEP acuity at 

6, 17, and 52 wks for 

formula + DHA 

Formula (no DHA), 

formula + 0.35% FA 

as DHA 

Birth – 17 wks Birch et al., 1998 

Higher VEP acuity at 1 y Formula (no DHA), 

formula + 0.36% FA 

as DHA 

5 – 12 mo Hoffman et al., 2003 

Improved visual acuity at 4 y Formula (no DHA), 

formula + 0.35% FA 

as DHA 

Birth – 17 wks Birch et al., 2007 
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Table 1.4, continued Effects of postnatal DHA supplementation on infant outcome 

Observations vs placebo Dose Duration of suppl. Reference 

Autonomic nervous system3 

Decreased mean- and 

diastolic-BP for formula + 

DHA at 6 y 

Formula (no 

DHA), formula + 

0.20% FA as DHA 

Birth – 4 mo Forsyth et al., 2003 

Decreased systolic BP; 

increased plasma total- and 

LDL-cholesterol for 

formula + DHA at 12 mo 

Formula (no 

DHA), formula + 

DHA (0.37 g 

DHA/d)  

9 – 12 mo Damsgaard et al., 2006 

1DHA: docosahexaenoic acid; FA: fatty acid; BLPDT: Brunet-Lézine Psychomotor Development Test; BSID: 

Bayley Scales of Infant Development; LIPS: Leiter International Performance Scale 
2TACP: Teller Acuity Card Procedure; VEP: visual evoked potential 
3Studies assessing heart rate and heart rate variability, autonomic indices, are covered in Section 1.4 and not 

included here; BP: blood pressure 

 

Although the amount of DHA consumed in the aforementioned studies varied and, in 

some cases, was impossible to calculate due to non-reporting of volume consumed, the 

concentration commonly supplemented (0.30% of total fatty acids) is similar to the worldwide 

average DHA concentration in human breast milk (0.32% of total fatty acids; Brenna et al., 

2007). Cohen et al. (2005) estimated that for every 1% increase in breast milk or formula DHA 

phospholipids, child IQ increases by 4.6 points. This impact on child IQ was greater than that 

when the same amount of DHA was consumed by the mother during pregnancy. Complementing 

observations from maternal DHA supplementation during pregnancy, it has been reported that 

infants receiving DHA as formula or breast-milk have better visual acuity than those fed standard 

formula not enriched with DHA (Carlson et al., 1996; Birch et al., 1998). These group 

differences manifested themselves by 6 weeks and remained present at 52 weeks of age. 

Postnatal DHA plays a role in autonomic development. Forsyth et al. (2003) observed a 

decrease in mean- and diastolic-blood pressure for children at 6 years of age who were 

supplemented with DHA (0.20% of fatty acids) from delivery to 4 months of age. Studies 



25 

 

focused on the relationship between postnatal DHA and infant HR and HRV, autonomic indices, 

are covered in depth in Section 1.4. 

1.3.8 Association between DHA status and term infant outcome  

 Observational studies also point to a relationship between indices of DHA status and 

positive infant outcomes, as presented in Table 1.5. There is a positive association between cord 

plasma phospholipid DHA concentrations and newborn cerebral maturation (Helland et al., 

2001), infant novelty preference at 6 months (Jacobson et al., 2008), performance on mental- and 

psychomotor-development indices at 11 months (Jacobson et al., 2008), and improved motor 

function at 7 years of age (Bakker et al., 2009). Higher DHA concentrations in maternal plasma 

phospholipids at delivery are positively related to more mature sleep patterning, a measure of 

functional central nervous system integrity, at 2 days of age (Cheruku et al., 2002). In terms of  

Table 1.5 Associations between DHA status and infant outcome1 

Associated with increased DHA status Index of DHA status Reference 

Cognitive/central nervous system maturity2 

More mature EEG function at 2 d Cord plasma PL Helland et al., 2001 

More mature sleep patterning at 2 d Maternal plasma PL at 

delivery 

Cheruku et al., 2002 

Greater novelty preference on FTII at 6 mo; 

improved performance on mental- and 

psychomotor-development indices of BSID-II 

at 11 mo 

Cord plasma PL  Jacobson et al., 2008 

Improved motor function at 7 y, assessed by 

MMT 

Cord plasma PL Bakker et al., 2009 

Visual acuity3 

Improved visual acuity at 2- and 12-mo Infant erythrocyte 

phosphatidylethanolamine  

Innis et al., 2001 

More mature retinal development at 1 wk, 

assessed by scotopic ERG 

Cord erythrocyte  Malcolm et al., 2003 

Improved visual acuity at 6 mo Cord plasma PL Jacobson et al., 2008 
1DHA: docosahexaenoic acid 
2PL: phospholipid; EEG: electroencephalography; FTII: Fagan Test of Infant Intelligence; BSID: Bayley Scales of 

Infant Development; MMT: Maastricht’s Motor Test 
3ERG: electroretinogram 
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visual acuity and retinal development, improved measures are positively associated with DHA in 

cord and infant blood and are clinically apparent from 1 week to 12 months of age (Innis et al., 

2001; Malcolm et al., 2003; Jacobson et al., 2008).  

1.3.9 Recommended ARA and DHA intake during pregnancy and infancy 

A committee tasked with determining optimal fat intake during pregnancy and lactation 

concluded that the only fatty acid requiring alteration, in terms of intake, in the diet of pregnant 

women was DHA (Koletzko et al., 2007). The committee recommended pregnant women 

consume 200 mg DHA per day, but recognized intakes up to 1000 mg DHA per day are without 

adverse outcome. Taken together with amounts supplemented and corresponding observations 

cited in the studies discussed above (Tables 1.3, 1.4, and 1.5), 200 mg DHA per day is 

conservative and will likely fulfill absolute maternal and fetal/infant requirements, but not result 

in “optimal” outcome (ie., infant IQ would continue to increase with > 200 mg DHA; Janssen 

and Kiliaan, 2014). 

Recommendations for preterm and term infants differ, as preterm infants are not exposed 

to maternal fatty acid stores during critical periods of development and, thus, require more 

LCPUFA to accelerate maturation of underdeveloped systems. Recommended DHA and ARA 

concentrations for preterm infants are 0.35 – 1% and 0.40 – 0.80% of total formula fatty acids, 

respectively (Koletzko et al., 2001; Koletzko et al., 2007; Hadders-Algra, 2011; Simmer et al., 

2011; Lapillone et al., 2013). For term infants, it is advised that DHA concentrations are 0.20 – 

0.32% and ARA concentrations are 0.35% of total formula fatty acids. Again, these 

recommendations may be conservative and are estimated to fulfill absolute infant requirement, as 

opposed to “optimize” outcome. However, the recommended DHA concentration clearly exceeds 

that of breast milk from the United States (Auestad et al., 2001; Jensen et al., 2001; Yuhas et al., 
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2006) and is more similar to that of the worldwide average (0.32%) as estimated by Brenna et al 

(2007).  

1.4 Mechanism underlying n-3 LCPUFA effects on heart rate and heart rate variability 

1.4.1 The autonomic nervous system 

The autonomic nervous system contains two antagonistic divisions, the sympathetic and 

parasympathetic (vagal) nervous systems (reviewed by Berntson et al., 1997). Autonomic output 

is mediated through preganglionic sympathetic and parasympathetic neurons which innervate the 

heart via the stellate ganglia and vagus nerve, respectively (reviewed by Benarroch, 1993). The 

interaction between these inputs and the sinoatrial (SA) node reflect spontaneous changes in 

autonomic activity which are apparent in HR and HRV measures (Massin and von Bernuth, 

1997). 

1.4.2 Autonomic innervation of the sinoatrial node 

Autonomic innervation lowers resting HR by 30% of its intrinsic value (reviewed by 

Thomas, 2011). Greater parasympathetic influence further reduces HR, with the opposite 

occurring for greater sympathetic influence (reviewed by Thomas, 2011). Sympathetic 

stimulation, via β-adrenergic receptors and release of norepinephrine, increases SA node 

automaticity and atrioventricular (AV) node conduction, increasing HR (reviewed by Berntson et 

al., 1997; reviewed by Sztajzel, 2004; reviewed by Thomas, 2011). Sympathetic stimulation 

increases the probability pacemaker channels will be open, allowing greater ion flow, increasing 

the steepness of the slope required for depolarization (reviewed by Lilly, 2007; reviewed by 

Thomas, 2011). As a result, nodal cells reach threshold and spontaneously depolarize earlier than 

normal. With greater sympathetic influence, there is also a greater probability that Ca channels 

will be open; this shifts the threshold required for an action potential to more negative voltages, 
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resulting in a lower threshold potential for diastolic depolarization (Trautwein and Kameyama, 

1986; reviewed by Lilly, 2007). 

Parasympathetic stimulation, via muscarinic cholinergic receptors and release of 

acetylcholine (ACh), the primary parasympathetic neurotransmitter, reduces intrinsic firing rate 

of the SA node and slows conduction in the AV node, reducing intrinsic HR (reviewed by 

Berntson et al., 1997; reviewed by Sztajzel, 2004; reviewed by Thomas, 2011). Parasympathetic 

influence decreases the probability pacemaker channels will be open, reducing flow and the 

slope of depolarization. Furthermore, the probability of Ca channels being open decreases in the 

face of parasympathetic stimulation, increasing the action potential threshold to a more positive 

voltage (Noma and Trautwein, 1978). Parasympathetic stimulation also increases the probability 

transmembrane ACh-sensitive K channels will be open at rest, resulting in a more negative 

maximum diastolic potential (Sakmann et al., 1983; reviewed by Lilly, 2007).  

1.4.3 Autonomic influence on circulating cytokines and catecholamines 

Innervation of the SA node is a direct mechanism by which the autonomic nervous 

system controls HR and HRV. A separate, indirect autonomic mechanism also exists. By 

modulating circulating inflammatory factors (i.e., cytokines) and catecholamines, the autonomic 

nervous system indirectly affects HR and HRV. 

Electrical or mechanical stimulation of the vagus nerve and the resulting increase in 

parasympathetic tone reduces cytokine production (Borovikova et al., 2000). Further, peripheral 

release of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-18), but not anti-inflammatory 

cytokines (IL-10), is attenuated by ACh (Borovikova et al., 2000). The interaction between ACh 

and the α-7 nicotinic ACh receptor subunit, expressed on cytokine-producing cells, is the 

molecular basis for this anti-inflammatory circuit (Wang et al., 2002).  
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This relationship has been observed in vivo; CRP levels are inversely related to surrogate 

measures of vagus nerve activity in healthy individuals (Sloan et al., 2007) and individuals with 

coronary heart disease (Frasure-Smith et al., 2009). Further, IL-6 levels in individuals with 

coronary heart disease are inversely related to HRV measures before covariate adjustment 

(Frasure-Smith et al., 2009). 

The sympathetic nervous system also indirectly modulates HR by increased 

catecholamine release and pro-inflammatory cytokine production (reviewed by Lilly, 2007; 

Nance and Sanders, 2007). Stimulation of β-adrenoreceptor (a target of sympathetic-derived 

catecholamines) increases gene expression and protein production of pro-inflammatory cytokines 

(TNF-α, IL-1β, IL-6) in myocardial cells (Murray et al., 2000) and β-blockade reduces plasma 

IL-6 in patients with congestive heart failure (Mayer et al., 2005). Further, stress-induced 

activation of NFκB, a mediator of TNF-α responses (Beg and Baltimore, 1996), is dependent on 

the primary sympathetic neurotransmitter, norepinephrine, and this activation can be abrogated 

by α1-adrenoreceptor blockade (Bierhaus et al., 2003).  

1.4.4 Autonomic maturation and age-dependence of heart rate and variability 

 Autonomic control is affected by age, especially during the perinatal period. These age-

related autonomic changes are characterized by differences in the sympathetic:parasympathetic 

(sympathovagal) balance (Chatow et al., 1995; Massin and von Bernuth, 1997).  

Heart rate decreases with increasing age (Finley and Nugent, 1995; Umetani et al., 1998); 

however, HRV changes through life are not linear or as clear. The sympathetic nervous system 

matures earlier than the parasympathetic nervous system and is predominant in early fetal life 

(Assali et al., 1978; Siimes et al., 1990; Chatow et al., 1995). At approximately 35 – 36 weeks of 

gestation, there is a pronounced increase in parasympathetic tone (Ramet et al., 1991). This 
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becomes clinically apparent during the third trimester. Fetal HRV differences among groups can 

be observed as early as 32 – 34 weeks of gestation (Groome et al.,1999; Gustafson et al., 2013) 

and remain age-dependent throughout the lifespan (Finley and Nugent, 1995).  

Infants exhibit the most profound changes in HR and HRV of any life stage (Finley and 

Nugent, 1995), and this is at least partially attributable to the significant degree of autonomic 

maturation that occurs during this time (Massin and von Bernuth, 1997). Individual differences 

in HRV originate in utero and persist postnatally (DiPietro et al., 2007; van Leeuwen et al., 

2013), suggesting HRV is established during development and related to postnatal values. 

 In general, low HR and high HRV are hallmarks of health (Stein et al., 2005), although 

there is a threshold beyond which greater decreases in HR and/or increases in HRV would 

indicate abnormal functioning (Simopoulos, 1991). Heart rate and HRV are easily assessed in 

populations across the age continuum (Massin and von Bernuth, 1997), and these measures may 

indirectly reflect cardiac health and cardiac-autonomic integration. 

1.4.5 Relationship between n-3 LCPUFA, heart rate, and variability in different populations 

Dietary fats are ubiquitous components of cell membranes, including those of the 

cardiovascular system (reviewed by Simopoulos, 1991). Fatty acid composition of cell 

membranes reflects that of the diet (reviewed by Simopoulos, 1991), implying that dietary 

interventions may affect cardiac health, reflected as alterations in HR and HRV. Further, HR and 

HRV are modulated by the autonomic nervous system, which may also be impacted by dietary 

fat intake.  

The LCPUFA of the n-3 family, EPA and DHA, have been studied extensively with 

regard to human health. There is interest in exploring if these fatty acids affect HR and HRV. 

Similar to the age-dependence of HR and HRV (Finley and Nugent, 1995), which is largely 
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dictated by autonomic control, the effect of n-3 LCPUFA supplementation depends on the 

population. 

1.4.6 Effect of n-3 LCPUFA on heart rate and variability: fetuses and infants 

 The perinatal period is a sensitive time during which nutrition may have programming 

effects on later infant health and outcome (Barker et al., 1993; reviewed by Das, 2004). In 

fetuses and infants, HRV is considered a developmental expression of maturation, thought to be 

linked to parasympathetic activity and the integrity of the developing autonomic nervous system 

(Richards and Cameron, 1989; Massin and von Bernuth, 1997; Longin et al., 2005; Gustafson et 

al., 2013). The autonomic nervous system significantly matures during perinatal life (Massin and 

von Bernuth, 1997); therefore, provision or deficits of nutrients during this time may exert long-

term effects (reviewed by Christensen, 2011).  

Colombo et al. (2011) administered 3 levels of DHA (0.32, 0.64, and 0.92% of fatty acids 

as DHA) to term infants from birth to 12 months of age and measured HR at 4, 6, and 9 months. 

Groups receiving supplemental DHA had lower HR than the control group receiving no DHA; 

this effect was not dose-dependent. Similarly, term infants who were breast-fed, fed DHA-

enriched milk formula, or fed DHA-enriched soy formula had lower HR and higher HRV than 

infants fed a DHA-deficient soy formula (Pivik et al., 2009). These effects were documented 

from 4 to 12 months of age. In another study (Lauritzen et al., 2008), male infants receiving 924 

mg fish oil, a source of n-3 LCPUFA, per day from 9 to 12 months of age had lower HR than 

those receiving no supplemental fish oil; no effect was observed in female infants. There was a 

positive association between the changes in HR and erythrocyte n-3 PUFA content, regardless of 

gender (Lauritzen et al., 2008) 
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Gustafson et al. (2013) explored if maternal supplementation of n-3 LCPUFA during 

pregnancy affected the developing fetus. Pregnant women were supplemented with 600 mg DHA 

per day or a placebo from gestational week 14.4 to term delivery. Fetal HR and HRV were 

assessed at 24, 32, and 36 weeks of gestation with magnetocardiography. There was a trend for 

lower fetal HR and higher indices of HRV, assessed as time-domain metrics.  

1.4.7 Effect of n-3 LCPUFA on heart rate and variability: healthy adults 

 In healthy adults, HR and HRV are prognostic markers for later cardiovascular morbidity 

and mortality (Tibblin et al., 1974; Mølgaard et al., 1991; Gillman et al., 1993; Dekker et al., 

1997; Hjalmarson, 1998; Curtis and O’Keefe, Jr., 2002). Low HRV indicates the autonomic 

nervous system has been strained by chronic excessive sympathetic tone and/or diminishment of 

parasympathetic tone (Curtis and O’Keefe, Jr., 2002). Interventions that shift autonomic balance 

to favor parasympathetic dominance and minimize sympathetic regulation improve disease 

prognosis (Curtis and O’Keefe, Jr., 2002). 

 In a meta-analysis of intervention trials including healthy adult populations (n = 16) and 

populations of adults with at least 1 chronic condition (n = 22), n-3 LCPUFA intake significantly 

reduced HR by 1.6 beats per minute (bpm) versus a placebo, with no effect of intake amount 

(Mozaffarian et al., 2005). When examining only those trials conducted in healthy adults, there 

was still a reduction in HR with n-3 LCPUFA intake, albeit a smaller effect, 1.4 bpm 

(Mozaffarian et al., 2005). Although the meta-analysis evidenced an overall HR-lowering effect 

in accordance with n-3 LCPUFA intervention in healthy adults (Mills et al., 1989; Vandogen et 

al., 1993; Conquer and Holub, 1998; Christensen et al., 1999; Dyerberg et al., 2004; Stark and 

Holub, 2004; Mozaffarian et al., 2005; Ninio et al., 2008), a HR-raising effect (Mills et al., 1990; 
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Geelen et al., 2003; Monahan et al., 2004), and mixed effects (Desylpere, 1992; Grimsgaard et 

al., 1998) have also been reported. 

 The relationship between n-3 LCPUFA and HRV in healthy populations is inconsistent. 

A cross-sectional study in Inuit adults, a population known for significant fish and marine 

mammal consumption, indicates a positive association between n-3 LCPUFA levels in 

erythrocyte membranes and HRV indices for females, but not males (Valera et al., 2011). In 

contrast, a positive association between blood n-3 LCPUFA levels and HRV has been observed 

in males (Christensen et al., 1999; Brouwer et al., 2002; Dallongeville et al., 2003). 

In intervention trials, n-3 LCPUFA supplementation has been found to increase (Ninio et 

al., 2008) and decrease (Geelen et al., 2003; Dyerberg et al., 2004) HRV in healthy adults, while 

others have found no effect of intervention (Christensen et al., 1999). Using spectral analysis to 

assess HRV, Sjoberg et al. (2010) observed a shift in the low to high frequency ratio with 

increasing doses of fish oil, indicating a shift toward parasympathetic regulation. 

Inconsistent findings could be due to heterogeneous populations and differences in 

sample design (intervention time, duration, and/or dosage), but could also be attributed to the 

analysis and interpretation of HR and HRV. Heart rate and HRV data can be derived from 

recordings ranging from 5 minutes to 24 hours. Further, HRV can be analyzed using time- or 

frequency (spectral)-domain metrics. Thus, it is difficult to conclude with certainty if, and to 

what extent, n-3 LCPUFA intake affects HR and HRV in healthy adults. 

1.4.8 Effect of n-3 LCPUFA on heart rate and variability: cardiovascular diseases 

 The extent to which n-3 LCPUFA intake decreases HR is more dramatic in diseased 

populations than healthy adults. N-3 LCPUFA intervention has a HR-lowering effect of 2.7 bpm 
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in adults with coronary artery disease versus a reduction of 1.3 bpm in healthy adults 

(Mozaffarian et al., 2005). 

 Individuals at risk for a subsequent cardiac event commonly have blunted HRV (Zipes 

and Wellens, 1998). There is a positive association between n-3 LCPUFA consumption and 

HRV in adults who have previously suffered a myocardial infarction and have left ventricular 

dysfunction (Christensen et al., 1997). A similar association has been observed in individuals 

who are suspected to have ischemic heart disease (Christensen et al., 2001). In comparison with a 

placebo, n-3 LCPUFA increase indices of HRV in adults with cardiovascular disease 

(Christensen et al., 1996; O’Keefe, Jr. et al., 2006; Nodari et al., 2009; Carney et al., 2010). In 

contrast, Hammad et al. (2006) noted a HRV-lowering effect of n-3 LCPUFA in adults with 

coronary artery disease. 

1.4.9 Potential mechanisms by which n-3 LCPUFA modulate heart rate and variability 

In summary, n-3 LCPUFA intake is associated with decreased HR and increased HRV 

indices across the lifespan and for different health conditions (Christensen et al., 1999; Holguin 

et al., 2005; Mozaffarian et al., 2005; Mozaffarian et al., 2008; Sjoberg et al., 2010), although 

contradictory findings have also been reported for HR (Mills et al., 1990; Desylpere, 1992; 

Grimsgaard et al., 1998; Geelen et al., 2003; Monahan et al., 2004) and HRV (Christensen et al., 

1999; Geelen et al., 2003; Dyerberg et al., 2004). The mechanism behind this association 

remains a source of controversy. Common hypotheses are that n-3 LCPUFA intake affect HR 

and HRV by: i) autonomic modulation (Hibbeln et al., 2006; Gustafson et al., 2008), ii) changes 

in cardiac electrophysiology (Harris et al., 2006; Mozaffarian et al., 2006; Kang, 2012), and/or 

iii) autonomic modulation of circulating cytokines and catecholamines (Berntson et al., 1997). 

These potential mechanisms, along with existing evidence for each, are presented here. 
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1.4.10 n-3 LCPUFA affect heart rate and variability by autonomic modulation: evidence  

The mechanism linking n-3 LCPUFA intake and direct autonomic effects on HR and 

HRV is possibly two-fold and rooted in ACh, the primary vagal neurotransmitter. Firstly, in 

animal models, dietary n-3 LCPUFA modulates hippocampal and cerebral ACh levels (Minami 

et al., 1997; Favreliere et al., 2003; Aïd et al., 2005) without affecting ACh-esterase activity (Aïd 

et al., 2005; Shahdat et al., 2004), leading to an overall increase in ACh. Secondly, α-LA, the 

precursor of EPA and DHA, induces a long-term enhancement of ACh receptors (Nishizaki et 

al., 1997). This is mediated by activation followed by phosphorylation of the receptor’s protein 

kinase (Nishizaki et al., 1997) and would presumably occur with the longer chain n-3 derivatives 

of α-LA, as well, although this interaction has not been explored, to the authors’ knowledge.  

It is noteworthy that, in the study by Nishizaki et al. (1997) the n-6 PUFA precursor, LA, 

had the same effect on ACh receptors as α-LA. Further, these findings were reported using 

nicotinic receptors in Xenopus oocytes, which may not be consistent with neuronal nicotinic ACh 

receptors in vivo. Nevertheless, an increase in brain ACh levels with n-3 LCPUFA intake has 

been reported in several animal models (Minami et al., 1997; Favreliere et al., 2003; Aïd et al., 

2005), although it remains unclear if this is at least partially due to an enhancement in ACh 

receptors. An increase in brain ACh increases parasympathetic tone with corresponding 

decreases and increases in HR and HRV, respectively. 

1.4.11 n-3 LCPUFA affect heart rate and variability by modulating cardiac electrophysiology: 

evidence 

 

Another mechanism by which n-3 LCPUFA potentially alter HR is by directly 

influencing myocardial voltage-gated ion channels. Harris et al. (2006) investigated the effects of 

n-3 LCPUFA on HR in heart transplant recipients, the hearts of whom were functionally 

denervated and, thus, void of direct autonomic control. The reduction in HR after 4 – 6 months 
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of n-3 LCPUFA supplementation was similar for denervated and innervated individuals. The 

authors asserted the observed effects involve electrophysiological alterations to the myocardium 

and suggested the autonomic nervous system is not essential to lower HR. 

 Using cell culture, it was demonstrated that n-3 LCPUFA directly affect cardiac cell 

membrane electrical excitability (Kang and Leaf, 1994; Kang et al., 1995; Xiao et al., 1995; 

Kang and Leaf, 1996; Leaf, 2001). These findings, along with those of Harris et al. (2006) 

prompted the hypothesis that n-3 LCPUFAs lower HR by altering intrinsic HR at the level of the 

myocardium. 

 Using isolated neonatal rat cardiac myocytes, which beat independently of neural or 

hormonal inputs, Kang and Leaf (1994) observed that treatment with n-3 LCPUFA reduced 

myocyte contraction rate without affecting amplitude. To further demonstrate that n-3 LCPUFA 

can suppress the automaticity of cardiac contraction, the researchers investigated the response of 

cardiac myocytes to electrical pacing by pairing a series of stimulating impulses with addition of 

n-3 LCPUFA to cell media (Kang and Leaf, 1996). Exposure of cardiac myocytes to n-3 

LCPUFA slowed, then maintained a reduced contraction rate, which returned to its previous 

value after treatment removal.  

Using a patch-clamp technique in cardiac myocytes treated with n-3 LCPUFA, Kang et 

al. (1995) induced an action potential and measured the required strength of the current. In the 

presence of n-3 LCPUFA, a greater depolarizing current was necessary to induce an action 

potential as the result of a threshold increase and more negative resting membrane potential. 

Finally, the effects of n-3 LCPUFA on single ion channel activity was observed. Using 

the neonatal rat cardiac myocyte model, addition of n-3 LCPUFA to cell media inhibited Na 

currents (Xiao et al., 1995), which is in line with similar work demonstrating an effect on Na and 
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Ca channels (Leaf, 2001). The depolarizing stimulus required to induce an action potential was 

increased by 40 – 50% and the refractory period was prolonged three-fold (Leaf, 2001). 

Thus, by modulating conductance of the myocardial Na and Ca channels, n-3 LCPUFA 

increase the depolarizing current required to elicit an action potential and prolong the refractory 

period, resulting in an overall reduction in HR. Together, these studies provide a basis for the 

hypothesis that the mechanism by which n-3 LCPUFA reduce HR is electrophysiological. There 

is no evidence exploring this mechanism with specificity to HRV, to the authors’ knowledge. 

1.4.12 n-3 LCPUFA affect heart rate and variability by modulating circulating factors: evidence 

Section 1.4.3 documents evidence of autonomic-directed alterations in circulating 

cytokines and catecholamines. As n-3 LCPUFA shift sympathovagal balance to favor increased 

parasympathetic tone (Pluess et al., 2007; Sjoberg et al., 2010) and are documented in their 

ability to alter circulating cytokines (Meydani et al., 1991; Gallai et al., 1993; Caughey et al., 

1996), these fatty acids can presumably indirectly affect HR and HRV via modulation of 

circulating factors.  

In individuals exposed to an endotoxin challenge, those receiving an intravenous fish oil 

emulsion before exposure had enhanced parasympathetic activity (assessed with frequency-

domain HRV), suppressed plasma norepinephrine, and reduced circulating TNF-α versus the 

untreated group (Pluess et al., 2007). Supplementation with n-3 LCPUFA shifts plasma 

catecholamine concentrations to a more favorable epinephrine to norepinephrine ratio (Pluess et 

al., 2007; Hamazaki et al., 2005), indicating a suppression of sympathetic tone.  

N-3 LCPUFA directly affect cytokine production and release by various methods, 

including competition with n-6 fatty acids for shared enzymatic pathways and altered expression 

of inflammatory genes via transcription factors (reviewed by Calder, 2002; reviewed by Calder, 
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2006), covered in full in Section 1.1. This suggests n-3 LCPUFA can also affect circulating 

inflammatory factors independent of autonomic modulation which, in turn, may affect HR and 

HRV. 

1.4.13 Hypothesis 

 The mechanism by which n-3 LCPUFA affect HR and HRV is not fully elucidated. 

However, there are three potential mechanisms, presented above. These are not the only 

mechanisms proposed, however, they are commonly cited and have recently received attention.  

While n-3 LCPUFA can directly influence the automaticity of cardiac myocytes, when 

PUFA are consumed, they bind albumin and other proteins and are unlikely to directly affect the 

myocardium unless they are incorporated into the phospholipid fraction of the myocardial cell 

membrane pool (reviewed by Das, 2000). Thus, those studies utilizing cardiac myocytes (Kang 

and Leaf, 1994; Kang et al., 1995; Xiao et al., 1995; Kang and Leaf, 1996; Leaf, 2001) may not 

be applicable for, or have limited relevance to, an in vivo model.  

 Harris et al. (2006) noted a reduction in HR in cardiac transplant patients given capsules 

containing n-3 LCPUFA for 4 – 6 months and attributed their findings to modification of 

myocardial electrophysiological properties by n-3 LCPUFA. However, in denervated 

individuals, the sympathetic and parasympathetic nervous systems can modulate HR and HRV 

indirectly by release of catecholamines and cytokines (Berntson et al., 1997). There is also 

potential for n-3 LCPUFA to affect HR and HRV via cytokine production and release, 

independent of autonomic modulation. These circulating factors would impart their effects 

despite cardiac denervation (Lilly, 2007).  

Harris et al. (2006) noted significant effects on the QRS complex but not the QTc-

interval in cardiac transplant patients after n-3 LCPUFA treatment. The QT interval and QRS 
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complex are both affected by the autonomic nervous system but are also influenced by 

circulating catecholamines (Bexton et al., 1986; Nakagawa et al., 2000), which can be altered by 

n-3 LCPUFA (Hamazaki et al., 2005; Pluess et al., 2007). Similar research indicates that, 

following cardiac denervation, a reduction in HR characteristic of sleep occurs, albeit not as 

great of a reduction as would be observed in normal subjects (Baust and Bohnert, 1969). This 

effect may possibly be attributed to the circadian rhythm of endogenously derived circulating 

catecholamines (Baust and Bohnert, 1969; Barnes et al., 1980; Bexton et al., 1986; Nakagawa et 

al., 2000). Thus, the n-3 LCPUFA effect on the QRS complex reported by Harris et al. (2006) 

may be explained, in part, by alterations in circulating catecholamines as regulated by the 

sympathetic nervous system. 

 In conclusion, there is evidence n-3 LCPUFA affect HR and HRV: 1) directly by 

increasing brain ACh and, thereby, parasympathetic tone, and 2) indirectly by modulating 

circulating factors, dependently and independently of the autonomic branches. Modulation of HR 

and HRV is complicated and could involve other processes, but these mechanisms appear to be 

major contributors to the observed effects, based on evidence presented in the literature. 

Although the hypothesis that n-3 LCPUFA affect HR and HRV via alterations in cardiac 

electrophysiology should not be dismissed, current evidence needs strengthening. Future studies 

assessing the relationship between dietary n-3 LCPUFA, HR, and HRV should also consider 

circulating factors, such as catecholamines and cytokines. 
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CHAPTER 2. MATERNAL FATTY ACID STATUS DURING PREGNANCY IS 

RELATED TO INFANT HEART RATE AND HEART RATE VARIABILITY 

 

2.1 Introduction 

Heart rate (HR) and heart rate variability (HRV) are early life developmental expressions 

of autonomic maturation, reflecting autonomic integrity and cardiac-autonomic integration 

(Massin and von Bernuth, 1997; Richards and Cameron, 1989; Longin et al., 2005; Gustafson et 

al., 2013). Further, individual differences in HRV originate in utero and persist postnatally 

(DiPietro et al., 2007; van Leeuwen et al., 2013), suggesting HRV is established during fetal life 

and related to postnatal measures. 

Consumption of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), n-3 long 

chain polyunsaturated fatty acids (LCPUFAs), impacts HRV across the lifespan and in healthy 

and diseased states, as reviewed by Christensen (2011). There is a positive association between 

cellular n-3 LCPUFA content and HRV (Brouwer et al., 2002; Christensen et al., 1997; 

Christensen et al., 1999; Christensen et al., 2001). Further, n-3 LCPUFA supplementation 

reduces HR (Ninio et al., 2008; Carney et al., 2010) and increases HRV (Christensen et al., 1996; 

Holguin et al., 2005; Ninio et al., 2008; Carney et al., 2010). Autonomic modulation by n-3 

LCPUFAs is hypothesized to be the mechanism underlying these observations (Hibbeln et al., 

2006; Gustafson et al., 2008). The relationship between n-3 LCPUFAs, HR, and HRV during 

early life mirrors that of adults (Christensen, 2011). 

Male infants receiving 924 mg fish oil, a concentrated source of n-3 LCPUFA, per day 

from 9 to 12 months of age had lower HR than those receiving no supplemental fish oil 

(Lauritzen et al., 2008). Further, there was a positive association between changes in HR and 

erythrocyte n-3 PUFA content for male and females (Lauritzen et al., 2008). Building on these 

observations, Pivik et al. (2009) demonstrated that term infants who were breast-fed, fed DHA-
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enriched milk formula, or fed DHA-enriched soy formula had lower HR and higher HRV from 4 

to 6 months of age than infants fed a DHA-deficient soy formula. Further, term infants 

supplemented with DHA (0.32, 0.64, and 0.92% of fatty acids) from birth to 12 months of age 

had lower HR at 4, 6, and 9 months of age compared to infants who were not supplemented with 

DHA (Colombo et al., 2011). In a randomized clinical trial, Gustafson et al. (2013) demonstrated 

that fetuses of pregnant women supplemented with 600 mg of DHA per day beginning at 14.4 

gestational weeks trended towards lower HR and had higher HRV at 24, 32, and 36 gestational 

weeks than fetuses of mothers receiving a placebo.  

The autonomic nervous system, especially the parasympathetic (vagal) nervous system, 

matures significantly during the third trimester (Porges and Furman, 2011). Therefore, provision 

or deficits of nutrients during this vulnerable developmental period may exert long-term 

programming effects (Christensen, 2011). The fetus inefficiently converts DHA from precursors 

(Carnielli et al., 1996; Salem et al., 1996), thus, the primary determinant of fetal availability and 

delivery of n-3 LCPUFAs is the concentration in maternal circulation (Haggarty, 1999). 

The studies outlined above examine the effects of maternal n-3 LCPUFA 

supplementation on fetal HR and HRV (Gustafson et al., 2013) and of postnatal n-3 LCPUFA 

supplementation on infant HR and HRV (Lauritzen et al., 2008; Pivik et al., 2009; Colombo et 

al., 2011). However, to the best of our knowledge, the relationship between maternal fatty acid 

status during pregnancy and infant HR and HRV have not previously been explored. 

 The aim of the current trial was to assess the relationship between maternal fatty acid 

status during pregnancy and infant HR and HRV during the first 6 months of life. Fatty acids of 

specific interest were LCPUFA of the n-3 series, DHA and EPA, and of the n-6 series, 
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arachidonic acid (ARA), along with their respective precursors, as these fatty acid families share 

an enzymatic pathway and are, therefore, metabolically competitive.  

2.2 Methods 

All procedures involving human subjects were approved by the Louisiana State 

University AgCenter, Woman’s Hospital, and Pennington Biomedical Research Center 

Institutional Review Boards.  

2.2.1 Participants 

 Participants enrolled in a larger study (LA Moms and Babies Study [LAMBS] for 

Nutrition and Growth) were invited to enroll in the current study. For the larger study, women 

were recruited from an obstetrics and gynecology clinic, Associates in Women’s Health, 

Woman’s Hospital in Baton Rouge, LA. Women were invited to participate in the study if they: 

were 18 – 35 years of age, had a singleton pregnancy, were between 17 and 20 gestational 

weeks, and had a pre-pregnancy body mass index of 25.0 – 29.9. Exclusion criteria included: 

history or current diagnosis of high blood pressure, high blood lipids, kidney disease, liver 

disease, polycystic ovarian syndrome, HIV, or diabetes mellitus (type 1, type 2, or gestational); a 

first degree relative diagnosed with diabetes mellitus (type 1 or type 2); uncontrolled thyroid 

disorder; smoking in the past 6 months; parity > 5; pre-term birth (≤ 37 gestational weeks); 

positive test for group B streptococcus, syphilis, or Hepatitis B; and pregnant or lactating within 

the previous 6 months.  

From the LAMBS study, 17 women were approached between 37 gestational weeks and 

1 week after delivery and invited to participate in the current study. Overall, 13 mother-infant 

pairs completed informed consent; one mother-infant pair was excluded from analysis due to 

infant diagnosis of congenital heart defects at 6 months of age and one mother-infant pair was 
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excluded from the study for failure to comply with study protocol. Maternal and infant 

characteristics (n = 11) are presented in Table 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.2 Blood collection and analysis 

Blood collections occurred prior to informed consent for the current study. However, in 

the LAMBS study, informed consent contained an optional clause for collected blood samples to 

Table 2.1 Maternal and infant characteristics, n = 111 

Maternal age (y)  26.7 ± 3.72 

Pregavid BMI (kg/m2) 26.9 ± 1.4 

Race (n)  

     White 4 

     African American 7 

Parity  

     0 4 

     1 5 

     3 2 

Length of gestation (wk) 39.9 ± 1.0 

Birth type (n)  

     Vaginal 9 

     Cesarean 2 

Infant birth weight (kg) 3.4 ± 0.4 

Infant sex (n)  

     Male 2 

     Female 9 

Infant birth length (cm) 7.9 ± 0.3 

Infant head circumference (cm) 5.4 ± 0.3 

1-min Apgar score3 7.8 ± 0.6 

5-min Apgar score3 7.9 ± 0.3 

Breastfed (n)  

     2 wk of age 9 

     4 mo of age 5 

     6 mo of age 3 
1Total number of subjects included in analyses unless otherwise 

noted 
2𝑥̅ ± SD 
3n = 10 
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be used in future, ancillary studies; all women approached for the current study consented to the 

clause. Maternal blood samples were collected at 17-20, 24, 32, and 36 gestational weeks. Blood 

(~10 mL) was sampled from the antecubital vein and collected in EDTA-containing tubes. 

Erythrocytes were separated from plasma by centrifugation (2600 × g at 4°C for 10 min), washed 

in 0.9% saline, portioned, and immediately stored at -80°C until analysis. 

 Erythrocytes were prepared for fatty acid analysis using a direct methylation procedure. 

Prior to methylation, heptadecanoic acid (17:0) was added as an internal standard for calculation 

of relative weight percentages (wt%) of erythrocyte fatty acids. Fatty acid methyl esters (FAME) 

were separated with a Hewlett-Packard 6890 series gas chromatograph (Agilent Technologies, 

Santa Clara, CA) equipped with a flame ionization detector (FID) and an Omegawax® 250 fused 

silica capillary column (30 m × 0.25 mm × 0.25 µm; Sigma-Aldrich, St. Louis, MO). The oven 

temperature was programmed from 180 – 210°C at a rate of 2°C/min with a final hold of 33 min. 

The FID temperature was set at 280°C. Helium was used as the carrier gas and flow was 

maintained at 1.2 mL/min. External standards (FIM-FAME; Matreya, LLC, State College, PA) 

were run with each set of samples. Samples were injected in duplicate. Erythrocyte FAMEs were 

identified by comparison with external standards and expressed as relative wt%. 

2.2.3 Infant heart rate and heart rate variability analysis 

 Continuous ambulatory electrocardiograph monitoring was conducted in infants for a 24 

h period at 2 weeks, 4 months, and 6 months of age with Holter monitors (DigiTrak XT; Philips, 

Amsterdam, NL). Recordings were conducted in the participant’s home. Mothers were 

encouraged to allow infants to engage in normal activities, advised to dress infants in a tight-

fitting onesie to minimize choking hazard, and cautioned against immersing infants in water 

during the recording period. Recordings were analyzed by a certified technician with aid of a 
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diagnostic software program (Philips Zymed Holter 1810 Series, Version 2.9.4) to identify and 

label each QRS complex as normal or abnormal based on morphology and timing. Only QRS 

complexes with normal morphology were used in calculating HR and HRV measures. All 

recordings contained ≥ 23.5 h of analyzable data. 

 Mean HR was calculated as the average of all filtered RR intervals over the 24 h 

recording period. Three time-domain measures reflecting HRV were calculated: 1) SDNN, the 

standard deviation of filtered RR intervals over the 24 h recording period; 2) SDANN, the 

standard deviation of the means of all filtered RR intervals for all 5 min segments of the analysis; 

and 3) ASDNN (also known as SDNN-index), the mean of the standard deviations of all filtered 

RR intervals for all 5 min segments of the analysis.  

Interpretation and application of each time-domain HRV index are outlined in Task 

Force, 1996; Stein and Kleiger, 1999; and Sztajzel, 2004. Each time-domain index is highly 

correlated (r2 ≥ 0.89) to a frequency-domain metric (Bigger Jr. et al., 1992). Time-domain 

analysis quantitates variability while frequency-domain analysis addresses the underlying 

rhythms responsible for that variability (Stein et al., 1994).  

When assessed over a 24 h period, SDNN is an overall metric of HRV which is 

correlated to total power (r2 = 0.96) and reflects all cyclic components contributing to variation, 

including short-term high frequency variations and long-term low frequency components (Task 

Force, 1996; Sztajzel, 2004). Total power, the total variance in the signal, is calculated as the 

summation of high frequency, low frequency, very-low frequency, and ultra-low frequency 

metrics (Stein and Kleiger, 1999). As such, SDNN encompasses parasympathetic- and 

sympathetically-modulated variations in HR. SDANN, which is strongly correlated to the ultra-

low frequency metric (r2 = 0.96), is an estimate of long-term components of HRV and represents 
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variation due to low frequency activities, such as physical activity, postural changes, and 

circadian rhythm (Bigger Jr. et al., 1992; Task Force, 1996; Sztajzel, 2004). ASDNN is 

correlated to very-low frequency (r2 = 0.90) and low frequency metrics (r2 = 0.89) and, thus, 

represents variations related to the thermoregulatory, peripheral vasomotor, and/or renin 

angiotensin systems, as well as oscillatory rhythms of the baroreceptor system (Bigger Jr. et al., 

1992; Stein and Kleiger, 1999).  

2.2.4 Statistical analyses and calculations 

 Statistical analyses were performed using SAS, by SAS Institute, Inc., version 9.4 (Cary, 

NC). For all measures, level of significance was set at ≤ 0.05 and trends were ≤ 0.10. Repeated 

measures of HR and HRV at 2 weeks, 4 months, and 6 months of infant age were analyzed using 

a randomized block design with factors infant (blocking factor) and time. Individual one-tailed t-

tests were used to describe changes in HR and HRV between timepoints (2 weeks to 4 months; 4 

months to 6 months; 2 weeks to 6 months).  

Simple linear and multiple backward stepwise regression analyses were performed to 

explore associations between maternal erythrocyte fatty acids (independent or predictor 

variables) during pregnancy and infant HR and HRV (dependent variables). In most cases, it was 

impossible to assess HR/HRV at exactly 2 weeks, 4 months, or 6 months of infant age. This, 

combined with HR and HRV changes that are a natural reflection of advancing age during the 

first 6 months of life (Finley and Nugent, 1995), prompted the inclusion of exact infant age at 

HR/HRV assessment as an independent variable in regression analyses to explore if timing of 

assessment factored into our findings. 

Maternal n-6 and n-3 families were included as independent variables. Fatty acids 

included in the n-6 series were γ-linolenic acid (GLA), dihomo-γ-linolenic acid (DGLA), linoleic 
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acid (LA), and ARA. Fatty acids included in the n-3 series were α-linolenic acid (α-LA), EPA, 

and DHA. Percent change in HR and HRV from 2 weeks to 4 and 6 months of infant age was 

calculated and included in analyses as a dependent variable. Example calculation: [((HR at 6 

months of age – HR at 2 weeks of age)/HR at 2 weeks of age)*100].  

2.3 Results 

2.3.1 Fatty acid analysis 

 Table 2.2 provides relative wt% of n-6 and n-3 fatty acids in maternal erythrocytes at 

each timepoint during pregnancy (20, 24, 32, and 36 gestational weeks).  

 

2.3.2 Heart rate and heart rate variability changes over time 

 Infant HR and HRV during the first 6 months of life and changes between assessments (2 

weeks to 4 months, 4 months to 6 months, and 2 weeks to 6 months) are presented in Table 2.3. 

There was a significant decrease in HR from 2 weeks to 4 month (P ≤ 0.01), 4 month to 6 month 

(P ≤ 0.01), and 2 week to 6 month assessment (P ≤ 0.01) for an overall reduction of 17 bpm. The 

increase in SDNN was significant from 2 week to 4 month (P ≤ 0.01), trended from 4 month to 6 

Table 2.2 Relative wt% of n-6 and n-3 fatty acids in maternal erythrocytes during pregnancy1 

 20 GW2 24 GW 32 GW        36 GW 

n-6 fatty acids3     

     GLA  0.17 ± 0.03 0.17 ± 0.04   0.14 ± 0.02      0.15 ± 0.02 

     DGLA       1.61 ± 0.22 1.58 ± 0.23   1.59 ± 0.27      1.60 ± 0.26 

     LA     11.20 ± 1.78    10.83 ± 1.16 10.72 ± 0.87    10.06 ± 1.00 

     ARA     15.43 ± 1.28    14.98 ± 0.91 14.66 ± 0.72    14.11 ± 1.27 

n-3 fatty acids     

     α-LA  0.14 ± 0.05 0.14 ± 0.04   0.17 ± 0.04      0.17 ± 0.03 

     EPA  0.21 ± 0.10 0.29 ± 0.17   0.33 ± 0.25      0.31 ± 0.23 

     DHA  8.57 ± 1.12 8.53 ± 1.22   9.46 ± 1.51      9.51 ± 1.27 
1Fatty acids expressed as relative weight percentage (wt%); values are 𝑥̅ ± SD (n = 11) 
2GW: gestational weeks 
3GLA: γ-linolenic acid; DGLA: dihomo-γ-linolenic acid; LA: linoleic acid; ARA: arachidonic acid; α-LA: α-

linolenic acid: EPA: eicosapentaenoic acid; DHA: docosahexaenoic acid 
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month (P = 0.08), and was significant from 2 week to 6 month assessment (P ≤ 0.01) for an 

overall increase of 16 ms. The increase in ASDNN from 2 week to 4 month (P = 0.18) and 4 

month to 6 month assessment (P = 0.19) was not significant, but the overall increase (4 ms) from 

2 week to 6 month assessment reached statistical significance (P = 0.01). The increase in 

SDANN was significant from 2 week to 4 month (P ≤ 0.01), trended from 4 month to 6 month (P 

= 0.08), and was significant from 2 week to 6 month assessment (P ≤ 0.01) for an overall 

increase of 18 ms. 

 

 

2.3.3 Maternal fatty acid status and infant heart rate: simple linear regression 

 Significant and trending simple linear regression models describing the relationship 

between individual maternal n-6 and n-3 fatty acids during pregnancy and infant HR at the 2 

week, 4 month, and 6 month assessment are presented in Table 2.4.  

 Maternal DGLA at 20, 24, 32, and 36 gestational weeks was a positive predictor of 

infant HR at the 2 weeks assessment (r2 ≥ 0.42, P ≤ 0.03). Infant age at 2 week HR assessment 

was also significantly related to infant HR at 2 weeks (P = 0.04). At 24, 32, and 36 gestational  

Table 2.3 Infant heart rate and heart rate variability in the first 6 months of life1,2,3 

 HR, bpm SDNN, ms ASDNN, ms SDANN, ms 

2 weeks 146 ± 8     45 ± 11 25 ± 6  35 ± 10 

4 months 135 ± 5     56 ± 7 27 ± 4       47 ± 6 

6 months 128 ± 7  61 ± 10 29 ± 4 53 ±10 

 ------ Difference between timepoints ------ 

2 weeks to 4 months   -10 ± 24 10 ± 34   2 ± 2  12 ± 34 

4 months to 6 months     -7 ± 24  6 ± 3   2 ± 2   6 ± 3 

2 weeks to 6 months   -17 ± 24 16 ± 34    4 ± 24  18 ± 34 

1Values are 𝑥̅ ± SD (n = 11) 
2HR: heart rate; bpm: beats per min; SDNN: standard deviation of filtered RR intervals over 24-h 

period; ms: milliseconds; ASDNN: mean of standard deviations of filtered RR intervals for all 5 

min segments of analysis; SDANN: standard deviation of means of filtered RR intervals for all 5 

min segments of analysis 
3HR, SDNN, ASDNN, and SDANN were significantly different (P ≤ 0.05) among participants  
4Significant difference (P ≤ 0.05) between timepoints 
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Table 2.4 Relationships for individual maternal erythrocyte n-6 and n-3 

fatty acids and infant heart rate: simple linear regression, n = 111,2,3  

  Infant heart rate, beats per min 

  2 week assessment 

Gestational week  β ± SE r2 P 

20 weeks     

     DGLA  23.8 ± 9.3 0.43    0.03 

24 weeks     

     DGLA  22.4 ± 8.9 0.42    0.03 

32 weeks     

     DGLA  20.5 ± 7.5 0.45    0.02 

36 weeks     

     DGLA  22.5 ± 7.2 0.52 ≤ 0.01 

Infant age4    1.4 ± 0.6 0.39    0.04 

  4 month assessment 

20 weeks      

     DHA  -2.7 ± 1.2 0.37     0.05 

24 weeks     

     ARA        3.5 ± 1.4 0.42     0.03 

     EPA   -20.4 ± 6.6 0.51  ≤ 0.01 

     DHA   -2.1 ± 1.2 0.28     0.09 

32 weeks     

     ARA    5.3 ± 1.5 0.59  ≤ 0.01 

     EPA   -14.7 ± 4.6 0.53  ≤ 0.01 

     DHA   -2.2 ± 0.8 0.45     0.02 

36 weeks     

     DGLA  11.9 ± 4.9 0.40     0.04 

     ARA    2.8 ± 0.9 0.45     0.02 

     EPA   -17.4 ± 4.0 0.68  ≤ 0.01 

     DHA   -2.8 ± 0.9 0.51  ≤ 0.01 

  6 month assessment 

20 weeks      

     DGLA  18.8 ± 8.2 0.37    0.05 

24 weeks     

     DGLA    17.6 ± 7.8 0.36    0.05 

     EPA  -24.0 ± 10.4 0.37    0.05 

32 weeks     

     DGLA  18.7 ± 5.8 0.53 ≤ 0.01 

36 weeks     

     GLA  186.2 ± 79.0 0.38    0.04 

     DGLA  20.3 ± 5.5 0.60 ≤ 0.01 

Infant age  -0.6 ± 0.3 0.31    0.08 
1Only observations reaching statistical significance (P ≤ 0.05) or trend (P ≤ 0.10) reported 
2DGLA: dihomo-γ-linolenic acid; DHA: docosahexaenoic acid; ARA: arachidonic acid; 

EPA: eicosapentaenoic acid; GLA: γ-linolenic acid 
3DGLA, GLA, ARA: n-6 fatty acids; EPA, DHA: n-3 fatty acids 
4Exact infant age (days) at heart rate assessment 
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weeks, maternal ARA was a positive predictor of infant HR at the 4 month assessment (r2 ≥ 0.42, 

P ≤ 0.03). There was an inverse relationship between maternal EPA at 24, 32, and 36 weeks and 

infant HR at the 4 month assessment (r2 ≥ 0.51, P ≤ 0.01). Maternal DHA at each timepoint (20, 

24, 32, 36 gestational weeks) was inversely related to infant HR at the 4 month assessment (r2 ≥ 

0.28); this relationship was trending at 24 weeks (P = 0.09) and significant at 20, 32, and 36 

weeks (P ≤ 0.05). Maternal DGLA at 36 gestational weeks was also positively related to 4 month 

infant HR (r2 = 0.40, P ≤ 0.04). Significant predictors of infant HR at 6 months mirrored those 

related to HR at 2 weeks. At every timepoint (20, 24, 32, and 36 gestational weeks), maternal 

DGLA was positively related to infant HR at 6 months (r2 ≥ 0.36, P ≤ 0.05). At 36 gestational 

weeks, maternal GLA was positively related to infant HR at 6 months (r2 = 0.38, P = 0.04). 

Maternal EPA at 24 gestational weeks was an inverse predictor of 6 month infant HR (r2 = 0.37, 

P = 0.05). Infant age at 6 month assessment was also related to infant HR at 6 months (P = 0.08).  

2.3.4 Maternal fatty acid families, ratios, and infant heart rate: simple linear regression  

 Significant and trending simple linear regression models describing the relationship 

between maternal n-6 and n-3 fatty acid families, fatty acid ratios, and infant HR at 4 months of 

life are presented in Table 2.5. Maternal n-3 family at 20, 24, 32, and 36 gestational weeks 

(inverse; r2 ≥ 0.35, P ≤ 0.01), and maternal n-6:n-3 ratio (positive; r2 ≥ 0.27, P ≤ 0.10) were 

related to infant HR at the 4 month assessment. For both relationships, the greatest significance 

was observed at the 36 week timepoint (P ≤ 0.03). Maternal ratio of ARA:DHA at 24, 32, and 36 

gestational weeks was positively related to infant HR at the 4 month assessment (r2 ≥ 0.38, P ≤ 

0.05).  
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2.3.5 Maternal fatty acid status and infant heart rate: multiple regression 

  Significant and trending multiple regression models describing the relationship between 

individual maternal n-6 and n-3 fatty acids during pregnancy and infant HR at 2 weeks, 4 

months, and 6 months of life are presented in Table 2.6. Infant age at assessment was included in 

all multiple regression models for infant HR at 2 weeks and 6 months as it was a significant or 

trending variable (P = 0.04 and P = 0.08, respectively) in simple linear regression.  

 Maternal LA and DGLA at 24 gestational weeks and infant age were positively related to 

infant HR at the 2 week assessment (r2 ≥ 0.73, P = 0.02). Maternal DGLA and ARA at 24, 32, 

and 36 gestational weeks were inverse predictors of infant HR at the 4 month assessment (r2 ≥ 

0.59, P ≤ 0.03). Maternal EPA and ARA at 24 gestational weeks were significantly related to 

infant HR at 4 months (r2 ≥ 0.81, P ≤ 0.01) such that EPA was an inverse and ARA was a  

Table 2.5 Relationships for maternal erythrocyte n-6 and n-3 fatty acid families, 

fatty acid ratios, and infant heart rate: simple linear regression, n = 111 

  Infant heart rate, beats per min 

  4 month assessment 

Gestational week  β ± SE r2 P 

20 weeks     

     n-3 family2    -2.6 ± 1.1 0.37 0.05 

     n-6:n-3 families  4.6 ± 2.5 0.28 0.09 

24 weeks     

     n-3 family    -2.3 ± 1.0 0.35 0.06 

     n-6:n-3 families   4.5 ± 2.5 0.27 0.10 

     ARA:DHA   8.2 ± 3.6 0.38 0.05 

32 weeks     

     n-3 family  -2.1 ± 0.7 0.49                 0.02 

     n-6:n-3 family   5.7 ± 2.2 0.41                 0.03 

     ARA:DHA    10.7 ± 3.5 0.51              ≤ 0.01 

36 weeks     

     n-3 family  -2.5 ± 0.8 0.54              ≤ 0.01 

     n-6:n-3 families    6.7 ± 2.6 0.42 0.03 

     ARA:DHA  11.1 ± 3.7 0.50 0.02 
1Only observations reaching statistical significance (P ≤ 0.05) or trend (P ≤ 0.10) are reported 
2n-3 family = α-linolenic acid + eicosapentaenoic acid + docosahexaenoic acid (DHA); n-6 

family = γ-linolenic acid + dihomo-γ-linolenic acid + linoleic acid + arachidonic acid (ARA) 
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Table 2.6 Relationships for individual maternal erythrocyte n-6 and n-3 fatty acids and 

infant heart rate: multiple regression, n = 111 

  Infant heart rate, beats per min 

  2 week assessment 

  Parameters2  Parameter estimates  Model estimates 

Gestational week    β ± SE P  r2 P 

24 weeks  LA  3.1 ± 1.5 0.07  0.73   0.02 

  DGLA  19.7 ± 8.1 0.04    

  Infant age3  1.0 ± 0.5 0.09    

  4 month assessment 

24 weeks  ARA  3.0 ± 0.9  ≤ 0.01  0.81 ≤ 0.01 

  EPA  -18.0 ± 4.5  ≤ 0.01    

  DGLA  8.7 ± 4.9 0.10  0.59   0.03 

  ARA  3.3 ± 1.3 0.03    

32 weeks  DGLA  7.3 ± 3.3 0.06  0.75 ≤ 0.01 

  ARA  5.3 ± 1.2  ≤ 0.01    

36 weeks  DGLA  11.5 ± 2.5  ≤ 0.01  0.87 ≤ 0.01 

  ARA  2.7 ± 0.5  ≤ 0.01    

  6 month assessment 

20 weeks  DGLA  16.5 ± 7.1 0.05  0.59   0.03 

  Infant age  -0.5 ± 0.3 0.07    

24 weeks  DGLA  14.9 ± 4.5  ≤ 0.01  0.84 ≤ 0.01 

  ARA  4.3 ± 1.5 0.02    

  Infant age  -0.1 ± 0.2  ≤ 0.01    

32 weeks  DGLA  15.8 ± 2.6  ≤ 0.01  0.93 ≤ 0.01 

  ARA  4.6 ± 1.0  ≤ 0.01    

  Infant age  -0.7 ± 0.1  ≤ 0.01    

36 weeks  DGLA  17. 6 ± 3.5  ≤ 0.01  0.88 ≤ 0.01 

  ARA  1.7 ± 0.7 0.05    

  Infant age  -0.6 ± 0.2  ≤ 0.01    

  EPA  -15.9 ± 6.5 0.04  0.61   0.02 

  Infant age  -0.66 ± 0.3 0.03    
1Only observations reaching statistical significance (P ≤ 0.05) or trend (P ≤ 0.10) are reported 
2LA: linoleic acid; DGLA: dihomo-γ-linolenic acid; ARA: arachidonic acid; EPA: eicosapentaenoic acid 
3LA, DGLA, ARA: n-6 fatty acids; EPA: n-3 fatty acid 
4Exact infant age (days) at assessment was included in all multiple regression models for infant heart rate at 2 

weeks  

and 6 months as it was a significant or trending variable (P = 0.04 and P = 0.08, respectively) in simple linear 

regression  
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positive predictor. Maternal DGLA and ARA at 24, 32, and 36 gestational weeks and infant age 

at assessment were associated with infant HR at the 6 month assessment (r2 ≥ 0.59, P ≤ 0.01); 

the association was positive for DGLA and ARA and inverse for age. Maternal EPA at 36 

gestational weeks and infant age at assessment were inversely related to infant HR at the 6 month 

assessment (r2 = 0.61, P = 0.02). 

2.3.6 Maternal fatty acid status and infant heart rate variability: simple linear regression  

 Significant and trending simple linear regression models describing the relationship 

between individual n-6 and n-3 maternal fatty acids and infant HRV during the first 6 months of 

life are presented in Tables 2.7 and 2.8, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Table 2.7 Relationships for individual maternal erythrocyte n-6 and 

n-3 fatty acids and infant SDNN: simple linear regression, n = 111,2,3  

  Infant SDNN, ms 

  2 week assessment 

Gestational week  β ± SE r2 P 

32 weeks     

     DGLA  -26.1 ± 11.0 0.38 0.04 

36 weeks     

     DGLA  -24.9 ± 11.7 0.34 0.06 

  4 month assessment 

24 weeks     

     α-LA     103.4 ± 46.6 0.35 0.05 

32 weeks     

     GLA  -285.1 ± 126.1 0.36 0.05 

     α-LA    105.4 ± 42.6 0.41 0.04 

36 weeks     

     LA  -3.8 ± 1.9 0.30 0.08 

  6 month assessment 

20 weeks     

     LA      -3.8 ± 1.3 0.49 0.02 

32 weeks     

     DGLA    -22.9 ± 9.2 0.41 0.03 

36 weeks     

     DGLA    -21.1 ± 9.9 0.33 0.06 
1Only observations reaching statistical significance (P ≤ 0.05) or trend (P ≤ 0.10) 

are reported 
2SDNN: standard deviation of filtered RR intervals over 24-h period; DGLA: 

dihomo-γ-linolenic acid; GLA: γ-linolenic acid; α-LA: α-linolenic acid; LA: 

linoleic acid 
3DGLA, LA: n-6 fatty acids; α-LA: n-3 fatty acid 
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There was an inverse relationship between maternal DGLA at 32 and 36 gestational 

weeks and infant SDNN at the 2 week assessment (r2 ≥ 0.34, P ≤ 0.06). Maternal DGLA at 24, 

32, and 36 gestational weeks was inversely associated with ASDNN at the 2 week assessment (r2 

≥ 0.27, P ≤ 0.09). 

Table 2.8 Relationships for individual and families of maternal 

erythrocyte n-6 and n-3 fatty acids and infant ASDNN: simple linear 

regression, n = 111,2 

  Infant ASDNN, ms 

  2 week assessment 

Gestational week  β ± SE r2 P 

24 weeks     

     DGLA  -13.6 ± 7.4 0.27 0.09 

32 weeks     

     DGLA  -13.9 ± 5.5 0.41 0.04 

36 weeks     

     DGLA  -11.6 ± 6.3 0.27 0.09 

  4 month assessment 

32 weeks     

     n-6 family3    -2.8 ± 1.3 0.34 0.06 

36 weeks     

     EPA   10.2 ± 4.9 0.32 0.07 

     DHA     2.0 ± 0.9 0.35 0.05 

     n-3 family     1.7 ± 0.8 0.35 0.05 

     n-6 family    -2.1 ± 1.0 0.32 0.07 

     n-6:n-3 families    -5.2 ± 2.4 0.35 0.06 

  6 month assessment 

20 weeks     

     α-LA       1.4 ± 0.65 0.35 0.06 

24 weeks     

     DGLA    -9.8 ± 5.2 0.28 0.09 

     EPA   14.1 ± 6.8 0.33 0.07 

32 weeks     

     DGLA  -10.6 ± 4.0 0.43 0.03 

36 weeks     

     EPA   10.1 ± 5.1 0.30 0.08 
1Only observations reaching statistical significance (P ≤ 0.05) or trend (P ≤ 0.10) 

are reported 
2ASDNN: mean of standard deviations of filtered RR intervals for all 5 min 

segments of analysis; DGLA: dihomo-γ-linolenic acid; EPA: eicosapentaenoic 

acid; DHA: docosahexaenoic acid; α-LA: α-linolenic acid 
3n-6 family = γ-linolenic acid + DGLA + linoleic acid + arachidonic acid; n-3 

family = α-LA + EPA + DHA 
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At the 4 month assessment, infant SDNN was positively related to maternal α-LA at 24 

and 32 gestational weeks (r2 ≥ 0.35, P ≤ 0.05). Maternal GLA at 32 gestational weeks and LA at 

36 gestational weeks were significant (r2 = 0.36, P = 0.05) and trending inverse predictors (r2 = 

0.30, P = 0.08) of infant SDNN at the 4 month assessment, respectively. Maternal n-6 family at 

32 and 36 gestational weeks was a trending inverse predictor of infant ASDNN at the 4 month 

assessment (r2 ≥ 0.32, P ≤ 0.07). Maternal DHA, EPA, and n-3 family at 36 gestational weeks 

were all positively related to ASDNN at the 4 month assessment (r2 ≥ 0.32, P ≤ 0.07). Maternal 

n-6:n-3 ratio at 36 gestational weeks predicted infant ASDNN at the 4 month assessment 

(inverse; r2 = 0.35, P = 0.06). 

 Maternal LA and DGLA were inversely and α-LA was positively related to infant SDNN 

and ASDNN at the 6 month assessment; these relationships were observed at 20, 24, 32, and 36 

gestational weeks. There was a trending, positive relationship for maternal DGLA at 32 and 36 

gestational weeks and infant SDANN at the 6 month assessment (data not shown; r2 ≥ 0.29, P ≤ 

0.08). Maternal EPA at 24 and 36 gestational weeks was inversely associated with infant 

ASDNN at the 6 month assessment (r2 ≥ 0.28, P ≤ 0.07). 

2.3.7 Maternal fatty acid status and infant heart rate variability: multiple regression  

 Significant and trending multiple regression models describing the relationship between 

individual maternal n-6 and n-3 fatty acids during pregnancy and infant HRV during the first 6 

months of life are presented in Table 2.9. 

 A model including maternal LA and DGLA consistently had predictive value for infant 

HRV (r2 ≥ 0.49, P ≤ 0.04). This was observed at different timepoints (32 and 36 gestational 

weeks), at various HRV assessments (2 week and 6 month), and across HRV indices (SDNN, 

ASDNN, and SDANN). In each instance, LA and DGLA were both inversely related to the 
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respective HRV index. α-LA and DHA at 20 gestational weeks were also related to infant 

ASDNN at 6 months (r2 = 0.57, P = 0.04); both variables in the model were positive predictors. 

 

2.3.8 Maternal fatty acid status and percent change in infant heart rate and heart rate variability: 

simple linear regression  

 

 Significant and trending simple linear regression models describing the relationship 

between individual n-6 and n-3 fatty acids, families, and ratios and percent change in HR and 

HRV (SDANN) from the 2 week to the 4 and 6 month assessment are presented in Table 2.10.  

Table 2.9 Relationships for maternal erythrocyte n-6 and n-3 fatty acids and infant heart rate 

variability: multiple regression, n = 111 

  Heart rate variability, ms 

  Infant SDNN2, 2 week assessment 

  Parameters3,4  Parameter estimates  Model estimates 

Gestational week    β ± SE P  r2 P 

36 weeks  LA  -6.5 ± 2.6  0.04  0.63    0.02 

  DGLA  -33.9 ± 10.0  ≤ 0.01    

  Infant SDNN, 6 month assessment 

36 weeks  LA  -5.8 ± 2.1  0.03  0.65 ≤ 0.01 

  DGLA    -29.1 ± 8.2  ≤ 0.01    

  Infant ASDNN, 2 week assessment 

32 weeks  LA  -3.7 ± 1.3  0.02  0.72 ≤ 0.01 

  DGLA    -16.3 ± 4.2  ≤ 0.01    

36 weeks  LA  -4.9 ± 0.8  ≤ 0.01  0.89 ≤ 0.01 

  DGLA    -18.3 ± 2.9  ≤ 0.01    

  Infant ASDNN, 6 month assessment 

20 weeks  α-LA    82.9 ± 25.7  ≤ 0.01  0.57   0.04 

  DHA    2.1 ± 1.1  0.10    

36 weeks  LA    -2.1 ± 1.2  0.10  0.49   0.07 

  DGLA  -11.5 ± 4.5  0.03    

  Infant SDANN, 6 month assessment 

36 weeks  LA  -6.1 ± 2.2  0.03  0.63    0.02 

  DGLA  -28.3 ± 8.5  0.01    
1Only observations reaching statistical significance (P ≤ 0.05) or trend (P ≤ 0.10) are reported 
2SDNN: standard deviation of filtered RR intervals over 24-h period; ASDNN: mean of standard deviations of 

filtered RR intervals for all 5 min segments of analysis; SDANN: standard deviation of means of filtered RR 

intervals for all 5 min segments of analysis 
3LA: linoleic acid; DGLA: dihomo-γ-linolenic acid; α-LA: α-linolenic acid 
4LA, DGLA: n-6 fatty acids; α-LA, DHA: n-3 fatty acids 
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Table 2.10 Relationships for individual and families of maternal erythrocyte n-6 and n-3 fatty acids 

and percent change in infant heart rate and heart rate variability: simple linear regression, n = 111,2 

  Infant heart rate, bpm 

  % change from 2 weeks to 4 month assessment 

Gestational week  β ± SE r2 P 

20 weeks     

     n-6:n-3 families3  4.9 ± 2.6 0.28   0.09 

24 weeks     

     ARA  4.5 ± 1.3 0.58                              ≤ 0.01 

32 weeks     

     ARA  5.1 ± 1.8 0.48    0.02 

36 weeks     

     ARA  2.6 ± 1.1 0.38    0.04 

     ARA:DHA  9.5 ± 4.7 0.32    0.07 

  % change from 2 weeks to 6 month assessment 

24 weeks     

     ARA  2.2 ± 1.0 0.36    0.05 

32 weeks     

     ARA  3.4 ± 1.1 0.52                              ≤ 0.01 

36 weeks     

     ARA  1.4 ± 0.8 0.28                                 0.09 

  SDANN, ms4 

  % change from 2 weeks to 4 month assessment 

32 weeks     

     ARA  -31.5 ± 15.0 0.33   0.06 

  % change from 2 weeks to 6 month assessment 

20 weeks     

     DHA  13.0 ± 6.6 0.31    0.08 

     n-3 family  12.4 ± 6.4 0.30    0.08 

     ARA:DHA  -75.3 ± 25.3 0.50    0.02 

24 weeks     

     ARA     -15.3 ± 8.3 0.28    0.09 

32 weeks     

     ARA     -28.4 ± 7.9 0.59                              ≤ 0.01 

     n-6 family     -16.9 ± 8.4 0.31    0.07 

36 weeks     

     ARA     -12.0 ± 5.7 0.33    0.07 

     DHA  11.3 ± 5.9 0.29    0.09 

     ARA:DHA   -47.3 ± 23.1 0.32    0.07 

     n-6 family     -15.2 ± 5.9 0.42    0.03 

     n-3 family    9.8 ± 5.0 0.30    0.08 

     n-6:n-3 families   -32.4 ± 14.9 0.34    0.06 
1Only observations reaching statistical significance (P ≤ 0.05) or trend (P ≤ 0.10) are reported 
2Example percent change calculation: [((6 month heart rate - 2 week heart rate)/2 week heart rate)*100]. 
3n-6 family = γ-linolenic acid + dihomo-γ-linolenic acid + linoleic acid + arachidonic acid (ARA); n-3 family = α-

linolenic acid + eicosapentaenoic acid + docosahexaenoic acid (DHA) 
4SDANN: standard deviation of means of filtered RR intervals for all 5 min segments of analysis 
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Percent change in HR from the 2 week to the 4 month assessment was positively related 

to maternal n-6:n-3 ratio at 20 gestational weeks (r2 = 0.28, P = 0.09). Maternal ARA at 24, 32, 

and 36 gestational weeks was a significant predictor of change in percent HR from the 2 week to 

the 4 month assessment (r2 ≥ 0.38, P ≤ 0.04); the relationship was positive at all timepoints. 

Maternal ARA:DHA ratio at 36 gestational weeks was a positive predictor of percent change in 

HR at the 4 month assessment (r2 ≥ 0.32, P = 0.07). 

 In examining percent change in HR from the 2 week to the 6 month assessment, maternal 

ARA at 24, 32, and 36 gestational weeks was a trending or significant predictor (r2 ≥ 0.36, P ≤ 

0.09). This relationship was positive and most significant at 32 gestational weeks (P = 0.02). 

Percent change in SDANN from the 2 week to the 4 month assessment was inversely associated 

with maternal ARA at 32 gestational weeks (r2 = 0.33, P = 0.06). There was a positive 

relationship between maternal n-6 family at 20 gestational weeks (data not shown; r2 = 0.31, P = 

0.08) and percent change in SDNN at the 4 month assessment. Maternal LA and GLA at 20 

gestational weeks were independent, inverse predictors of percent change in ASDNN at the 4 

month assessment (data not shown; r2 = 0.35, P = 0.05 and r2 = 0.30, P = 0.08, respectively). 

Maternal DHA and n-3 family at 20 gestational weeks were independent, positive 

predictors of percent change in infant SDANN from the 2 week to the 6 month assessment (r2 = 

0.30 – 0.31, P = 0.08). Maternal ARA:DHA at 20 gestational weeks was inversely associated 

with percent change in infant SDANN at 6 months (r2 = 0.50, P = 0.02). Percent change in infant 

SDANN at the 6 month assessment was inversely associated with maternal ARA at 24 (r2 = 0.28, 

P = 0.09) and 32 gestational weeks (r2 = 0.59, P ≤ 0.01) and maternal n-6 family at 32 

gestational weeks (r2 = 0.31, P = 0.07). At 36 gestational weeks, maternal ARA, n-6 family, 

ARA:DHA ratio, and n-6:n-3 family ratio were all inversely related to percent change in infant 
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SDANN from the 2 week to the 6 month assessment (r2 = 0.32 – 0.42, P ≤ 0.07). Maternal DHA 

and the n-3 family were positively related to percent change in SDANN at the 6 month 

assessment (r2 = 0.29 – 0.30, P ≤ 0.09). 

2.4. Discussion 

2.4.1 Infant heart rate and heart rate variability are age-dependent 

 In the current study, HR decreased and HRV increased with advancing infant age, a 

finding which is consistent with previous reports (Finley and Nugent 1995; Massin and von 

Bernuth, 1997). Decreased HR and increased HRV are hallmarks of health, although there are 

certain populations for whom this interpretation is inappropriate (Stein et al., 2005). For the 

current population, decreased HR and increased HRV are healthful attributes. Thus, independent 

variables that are inversely related to HR and/or positively related to HRV may have a role in 

accelerating autonomic maturation. 

2.4.2 Cautions for data interpretation 

Caution should be used when interpreting parameter and model estimates for the current 

data. For example, parameter estimates for maternal DGLA were consistently larger than those 

for maternal ARA. This is likely an artifact of low maternal DGLA relative to ARA. This 

example is also applicable to parameter estimates associated with GLA, α-LA, and EPA. Thus, 

the nature of the relationship (inverse or positive) should be the focus of the current data rather 

than the parameter or model estimate.  

The percent change calculation required the assumption that the 2 week HR and HRV 

assessment was similar among participants, although this assumption was not met. As such, this 

calculation may not accurately represent HR and HRV maturation from 2 weeks to 6 months of 

infant age and should be interpreted with care. 
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2.4.3 Maternal fatty acid status during pregnancy is related to infant autonomic development 

 This observational study is the first to link maternal fatty acid status during pregnancy to 

infant HR and HRV in the first 6 months of life. Previous research examined the effects of 

maternal n-3 LCPUFA supplementation on fetal HR and HRV (Gustafson et al., 2013) and of 

postnatal n-3 LCPUFA supplementation on infant HR and HRV (Lauritzen et al., 2008; Pivik et 

al., 2009; Colombo et al., 2011). Current findings are in line with these reports, which evidenced 

a HR-lowering and HRV-increasing effect of n-3 LCPUFA, especially DHA. Higher maternal n-

3 fatty acid status, especially DHA, was associated with reduced infant HR and increased HRV, 

characteristics of a mature, robust autonomic nervous system. Conversely, higher maternal n-6 

fatty acids and/or n-6:n-3 ratio were related to increased infant HR and reduced HRV. By 

calculating percent change in HR and HRV, we also observed evidence for maternal n-3 fatty 

acid status to accelerate postnatal autonomic development, although there were limitations to this 

calculation, as noted above.  

Interestingly, we observed an unfavorable association between maternal n-6 fatty acids 

infant HR and HRV more often than we observed a beneficial association for n-3 fatty acids. 

Thus, it is likely n-3 LCPUFA intake improves HR and HRV: 1) indirectly, by n-6 fatty acid 

displacement, and 2) directly, by biological actions of n-3 fatty acids in vivo, such as autonomic 

modulation. 

 Infant ASDNN, also known as SDNN-index, was the most sensitive time-domain HRV 

index to maternal fatty acids during pregnancy in the current study. Lauritzen et al. (2008) did 

not observe changes in infant HRV, including ASDNN, after postnatal intervention with fish oil. 

However, Gustafson et al. (2013) reported fetuses whose mothers were supplemented with DHA 

during pregnancy had higher metrics of very-low frequency and low frequency power at 24, 32, 
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and 36 gestational weeks than those whose mothers received a placebo. These frequency-domain 

metrics of HRV are highly, independently correlated (r2 ≥ 0.89) with ASDNN (Bigger Jr. et al., 

1992) and, as such, are consistent with our data. 

 Our data suggests the developing autonomic nervous system is sensitive to maternal fatty 

acid status as early as 20 gestational weeks, although fatty acids at 32 and 36 gestational weeks 

were the most significant predictors of infant HR and HRV. The number of myelinated vagal 

(parasympathetic) fibers rapidly increases around 24 gestational weeks and throughout the first 

postnatal year (Pereyra et al., 1992) with the greatest increases occurring from 30 – 32 

gestational weeks to 6 months of age (Sachis et al., 1982). Thus, significant or trending 

predictors observed at earlier timepoints (20 and 24 gestational weeks) were likely interacting 

with the fetal sympathetic nervous system while those observed at 32 and 36 gestational weeks 

were also a reflection of interactions with the developing parasympathetic nervous system. 

 It has previously been proposed that 3 – 5 months of infant age is an appropriate time to 

assess if n-3 LCPUFAs have a programming effect on cardiovascular outcomes, including HR 

and HRV (Pivik et al., 2009). However, maternally-influenced group differences in HR and 

HRV, including differences resulting from maternal n-3 LCPUFA intervention, have been 

observed in utero (May et al., 2010; Gustafson et al., 2013). In the current study, relationships 

between maternal erythrocyte fatty acids and infant HR and HRV were clinically apparent as 

early as 2 weeks and persisted until 6 months of infant age, indicating programming effects of 

the autonomic nervous system may be observed in neonatal life. 

2.5 Limitations 

 This study was primarily limited by sample size (n = 11). Much of the presented data 

existed as statistical trends. However, patterns and themes were consistently observed and are 
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expected to be stronger in larger samples with more statistical power. Further, sample size 

limited inclusion of factors other than maternal fatty acid concentrations and exact infant age at 

HR/HRV assessment in multiple regression models due to loss of statistical power. However, for 

study enrollment, participants were required to meet strict inclusion and exclusion criteria, 

defined above. These criteria ensured the study participants (mothers) had similar characteristics 

to minimize the influence of external factors on outcomes.  

2.6 Conclusion 

 We have demonstrated that maternal fatty acid status during pregnancy is related to infant 

HR and HRV, reflecting autonomic development and cardiac-autonomic integration. These data 

confirm that the developing autonomic nervous system is sensitive to nutritional programing and 

build upon existing literature evidencing a role for n-3 fatty acids, especially DHA, in 

accelerating autonomic development.  

HR and frequency-domain metrics of HRV at 4 months of age are reliable markers of 

their respective trajectories throughout life, up to 4 years of age (Bar-Haim et al., 2000). 

Accordingly, we speculate that maternal nutrition during pregnancy affects autonomic 

development, which is apparent in infancy and extends to later life measures. Specifically, 

maternal intake of n-3 fatty acids and a lower n-6:n-3 ratio accelerates autonomic maturation. 

While this hypothesis is a bold extrapolation of previous and current data, it has scientific merit 

and is worth testing in future studies. 
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CHAPTER 3. MATERNAL INFLAMMATORY STATUS DURING PREGNANCY IS 

RELATED TO INFANT HEART RATE AND HEART RATE VARIABILITY 

 

3.1 Introduction 

The fetal origins hypothesis is the well-accepted observation that the intrauterine 

environment, especially nutritional status (Rinaudo and Lamb, 2008), can program neonatal 

outcome with lifetime health and developmental consequences (Barker, 1992). Alterations in the 

fetal environment, including a stimulus or an insult during a critical developmental period, can 

result in adaptations, including structural, physiological, and metabolic changes, potentially 

predisposing the fetus to adverse outcomes, including chronic diseases, in later life (Barker, 

1995; Muhlhausler and Ong, 2011). Adults who were prenatally exposed to famine have less 

DNA methylation of certain genes than their unexposed, same-sex siblings (Heijmans et al., 

2008). This study was among the first to provide empirical support for the fetal origins 

hypothesis. 

 The fetal autonomic nervous system is sensitive to programming by maternal factors, 

including nutrition (Gustafson et al., 2013) and exercise (May et al., 2010) during pregnancy. It 

has also been suggested that this developing system can be programmed by inflammatory stress, 

although this is largely speculative (Karrow, 2006). It follows then that fetal autonomic 

sensitivity to inflammation may be a common factor underlying those previous observations.  

Central nervous system function depends on pro- and anti-inflammatory reactions during 

development (Pousset et al., 1997; Zou et al., 1998; Dziegielewska et al., 2000; Vela et al., 2002; 

Farkas et al., 2003). However, some pro-inflammatory molecules can be neurotoxic, depending 

on their concentrations and the developmental stage at which the fetus is exposed (Nelson and 

Willoughby, 2002). Thus, it is plausible that high circulating concentrations of these molecules 

during critical developmental periods could alter the autonomic nervous system (Karrow, 2006).  
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Endocannabinoids, endogenous fatty acid derivatives, are ligands for cannabinoid 

receptors which are densely expressed in the brain (Glass et al., 1997). Endocannabinoids have a 

role in modulating inflammation (De Petrocellis et al., 2000) and autonomic function (reviewed 

by Pertwee, 1997). The relationship between circulating endocannabinoids, the placenta, and the 

fetus prompted the recent hypothesis that endocannabinoids function as a long-distance signaling 

system underlying fetal programming (Keimpema et al., 2013). 

Autonomic activity is readily assessed through analysis of heart rate (HR) and heart rate 

variability (HRV). Currently, there is a body of literature exploring the effects of inflammation, 

assessed as circulating cytokines, on HRV, reviewed by Haensel et al. (2008). The authors 

determined that, in healthy adults and adults with cardiovascular diseases, HRV was inversely 

correlated with inflammatory biomarkers, including interleukin (IL)-6 and C-reactive protein 

(CRP). Studies examining cannabis use (Δ9-tetrahydrocannabinol, THC) evidence a HR-

lowering and HRV-increasing effect (Benowitz and Jones 1981; Kunos et al., 2000; Pacher et al., 

2008; Schmid et al., 2010). Endocannabinoids are endogenously-derived THC counterparts that 

activate cannabinoid receptor type 1 (CB1) and 2 (CB2). HRV effects have not been assessed as 

they relate to endocannabinoid concentrations, to the best of our knowledge.  

The effect of intrauterine exposure to inflammatory mediators on infant HR and HRV has 

not been previously explored. Accordingly, the aim of this observational study was to examine 

the relationship between maternal inflammatory status during pregnancy and infant HR and HRV 

during the first 6 months of life. Inflammatory status was assessed as endocannabinoids, 

cytokines (IL-6, tumor necrosis factor-α [TNF-α]), adipokines (adiponectin), and acute phase 

reactants (CRP).  
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3.2 Methods 

All procedures involving human subjects were approved by the Louisiana State 

University AgCenter, Woman’s Hospital, and Pennington Biomedical Research Center 

Institutional Review Boards.  

3.2.1 Participants 

 Participants enrolled in a larger study (LA Moms and Babies Study [LAMBS] for 

Nutrition and Growth) were invited to enroll in the current study. For the larger study, women 

were recruited from an obstetrics and gynecology clinic, Associates in Women’s Health, at 

Woman’s Hospital in Baton Rouge, LA. Women were invited to participate in the study if they: 

were 18 – 35 years of age, had a singleton pregnancy, were between 17 and 20 gestational 

weeks, and had a pre-pregnancy body mass index of 25.0 – 29.9. Exclusion criteria included: 

history or current diagnosis of high blood pressure, high blood lipids, kidney disease, liver 

disease, polycystic ovarian syndrome, HIV, or diabetes mellitus (type 1, type 2, or gestational); a 

first degree relative diagnosed with diabetes mellitus (type 1 or type 2); uncontrolled thyroid 

disorder; smoking in the past 6 months; parity > 5; pre-term birth (≤ 37 gestational weeks); 

positive test for group B streptococcus, syphilis, or Hepatitis B; or pregnant or lactating within 

the previous 6 months.  

From the LAMBS study, seventeen women were approached between 37 gestational 

weeks and 1 week after delivery and invited to participate in the current study. Overall, thirteen 

mother-infant pairs completed informed consent; one mother-infant pair was excluded from 

analysis due to infant diagnosis of congenital heart defects at 6 months of age and one mother-

infant pair was excluded from the study for failure to comply with study protocol. The final 

sample size was n = 11. Maternal and infant characteristics are presented in Table 2.1. 
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3.2.2 Blood collection 

Blood collections occurred prior to informed consent for the current study. In the 

LAMBS study, informed consent contained an optional clause for collected blood samples to be 

used in future, ancillary studies. All women consented for the current study had consented to the 

clause. Maternal blood samples were collected at 17-20, 24, 32, and 36 gestational weeks. 

Maternal blood (~10 mL) was sampled from the antecubital vein and collected in EDTA-

containing tubes. Umbilical cord blood (~5-10 mL) was sampled from the venous vein into 

EDTA-containing tubes at delivery. Plasma and serum were individually separated from 

erythrocytes by centrifugation (2600 × g at 4°C for 10 min), portioned, and immediately stored at 

-80°C until analysis. 

3.2.3 Endocannabinoid analysis 

As previously described (Williams et al., 2007; Wood et al., 2008), a known amount of 

deuterated internal standard mixture was added to thawed plasma. Plasma proteins were 

precipitated with chilled acetone and PBS (3:1) and internal standard then centrifuged (14,000 × 

g, 5 min, 4°C). Acetone was evaporated from the recovered supernatant under nitrogen. Liquid-

liquid phase extraction was performed on the remaining supernatant with PBS, methanol, and 

chloroform (1:1:2, by volume). The two phases were separated by centrifugation (14,000 × g, 5 

min, 4°C), and the lower organic layer was quantitatively recovered and evaporated to dryness 

under nitrogen. Dried lipid extracts were reconstituted in ethanol, vortexed, sonicated, and 

centrifuged (14,000 × g, 5 min, 4°C). 

Multiple reaction monitoring (MRM) of the endocannabinoid metabolome and the 

corresponding deuterated internal standards was performed as previously described (Williams et 

al., 2006; Williams et al., 2007) using a TSQ Quantum Ultra triple quadrupole mass spectrometer 
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(Thermo Electron, San Jose, CA) with an Agilent 1100 HPLC on the front end (Agilent 

Technologies, Wilmington, DE). Chromatographic separation was achieved using an Agilent 

Zorbax SB-CN column (2.1 × 50 mm, 5 μm) with gradient elution using 10 mM ammonium 

acetate and 100% methanol. Eluted peaks were ionized via atmospheric pressure chemical 

ionization in MRM mode. Deuterated internal standards were used for each analyte’s standard 

curve and their concentrations per mL of plasma were determined.   

3.2.4 Cytokine, adipokine, and acute phase reactant analysis 

Serum was utilized for analysis of cytokines, adipokines, and acute phase reactants. High 

sensitivity CRP was determined by chemiluminescent immunoassay (Immulite 2000TM, Siemens 

Healthcare Diagnostics, Deerfield, IL, USA), TNF-α and IL-6 by immunoassay (Luminex 

100TM, Luminex Corp., Austin, TX, USA), and adiponectin by radioimmunoassay (Linco 

Research Inc., St Charles, MO, USA). 

3.2.5 Infant heart rate and heart rate variability analysis 

 Continuous ambulatory electrocardiograph monitoring was conducted in infants for a 24 

h period at 2 weeks, 4 months, and 6 months of age with Holter monitors (DigiTrak XT; Philips, 

Amsterdam, NL). Recordings were conducted in the participant’s home. Mothers were 

encouraged to allow infants to engage in normal activities, advised to dress infants in a tight-

fitting onesie to minimize choking hazard, and cautioned against immersing infants in water 

during the recording periods. Recordings were analyzed by a certified technician with aid of a 

diagnostic software program (Philips Zymed Holter 1810 Series, Version 2.9.4) to identify and 

label each QRS complex as normal or abnormal based on morphology and timing. Only QRS 

complexes with normal morphology were used in calculating HR and HRV measures. All 

recordings contained ≥ 23.5 h of analyzable data. 
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 Mean HR was calculated as the average of all filtered RR intervals over the 24 h 

recording period. Three time-domain measures reflecting HRV were calculated: 1) SDNN, the 

standard deviation of filtered RR intervals over the 24 h recording period; 2) SDANN, the 

standard deviation of the means of all filtered RR intervals for all 5 min segments of the analysis; 

and 3) ASDNN (also known as SDNN-index), the mean of the standard deviations of all filtered 

RR intervals for all 5 min segments of the analysis.  

Interpretation and application of each time-domain HRV index are outlined in Task 

Force, 1996; Stein and Kleiger, 1999; and Sztajzel, 2004. Each time-domain index is highly 

correlated (r2 ≥ 0.89) to a frequency-domain metric (Bigger Jr. et al., 1992). Time-domain 

analysis quantitates variability while frequency-domain analysis addresses the underlying 

rhythms responsible for that variability (Stein et al., 1994).  

When assessed over a 24 h period, SDNN is an overall metric of HRV which is 

correlated to total power (r2 = 0.96) and reflects all cyclic components contributing to variation, 

including short-term high frequency variations and long-term low frequency components (Task 

Force, 1996; Sztajzel, 2004). Total power, the total variance in the signal, is calculated as the 

summation of high frequency, low frequency, very-low frequency, and ultra-low frequency 

metrics (Stein and Kleiger, 1999). As such, SDNN encompasses parasympathetic- and 

sympathetically-modulated variations in HR. SDANN, which is strongly correlated to the ultra-

low frequency metric (r2 = 0.96), is an estimate of long-term components of HRV and represents 

variation due to low frequency activities, such as physical activity, postural changes, and 

circadian rhythm (Bigger Jr. et al., 1992; Task Force, 1996; Sztajzel, 2004). ASDNN is 

correlated to very-low frequency (r2 = 0.90) and low frequency metrics (r2 = 0.89) and, thus, 

represents variations related to the thermoregulatory, peripheral vasomotor, and/or renin 
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angiotensin systems, as well as oscillatory rhythms of the baroreceptor system (Bigger Jr. et al., 

1992; Stein and Kleiger, 1999).  

3.2.6 Statistical analyses and calculations 

Statistical analyses were performed using SAS, by SAS Institute, Inc., version 9.4 (Cary, 

NC). For all measures, level of significance was set at ≤ 0.05 and trends were ≤ 0.10. Repeated 

measures of HR and HRV at the 2 week, 4 month, and 6 month assessment were analyzed using 

a randomized block design with factors infant (blocking factor) and time. Individual one-tailed t-

tests were used to describe changes in HR and HRV between timepoints (2 weeks to 4 months; 4 

months to 6 months; 2 weeks to 6 months).  

Simple linear and multiple (backward stepwise) regression analyses were performed to 

explore associations between maternal erythrocyte fatty acids (independent or predictor 

variables) during pregnancy and infant HR and HRV (dependent variables). In most cases, it was 

impossible to assess infant HR/HRV at exactly 2 weeks, 4 months, or 6 months of age. This, 

combined with HR and HRV changes that are a natural reflection of advancing age during the 

first 6 months of life (Finley and Nugent, 1995), prompted the inclusion of exact infant age at 

HR/HRV assessment as an independent variable in regression analyses to explore if timing of 

assessment factored into our findings. 

Endocannabinoid data are limited to those related to the n-6 (AEA) and n-3 (EEA, EPEA, 

and DHEA) fatty acids. Endocannabinoids related to the n-3 fatty acid family were combined 

and included as an independent variable; this variable is referred to as “n-3 family” and includes 

eicosanoyl ethanolamine (EEA), eicosapentaenoyl ethanolamine (EPEA), and docosahexaenoyl 

ethanolamine (DHEA). 
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3.3 Results 

3.3.1 Endocannabinoid analysis 

 Maternal and venous cord plasma n-6 and n-3 endocannabinoids are presented in Table 

3.1. Eleven N-acyl-ethanolamine and acyl-glycerol species recognized as constituents of the 

endocannabinoid metabolome were simultaneously analyzed by the LC-MS/MS-based 

metabolomics approach (Williams et al., 2007; Wood et al., 2008). Standard curves for each 

analyte were linear with regression values ≥ 0.98. Extraction efficiencies, determined by 

comparing area ratios of each extracted BSA analyte to the un-extracted standards in ethanol 

(Williams et al., 2007), were ≥ 83% except for DHEA and acyl-glycerol species. Of the eleven 

endocannabinoid-related metabolites studied, AEA, PEA, OEA, and DHEA were readily 

detected. EPEA and EEA were moderately detected and the acyl-glycerols were not detected.  

3.3.2 Cytokine, adipokine, and acute phase reactant analysis 

 Maternal and venous cord serum cytokines, adipokine, and acute phase reactant 

concentrations are presented in Table 3.1. Adiponectin and CRP were readily detected and TNF-

α was moderately detected (≥ 82%) in maternal serum at 20, 24, 32, and 36 gestational weeks. 

Maternal serum IL-6 was marginally detected (≤ 28%) at 20, 24, 32, and 36 gestational weeks 

and excluded from statistical analyses. In venous cord serum, adiponectin, TNF-α, and IL-6 were 

moderately detected (≥ 64%). Venous cord serum CRP was marginally detected (≤ 28%) in 

venous cord serum and excluded from statistical analysis. 

3.3.3 Heart rate and heart rate variability changes over time  

Infant HR and HRV during the first 6 months of life and changes between assessments (2 weeks 

to 4 months, 4 months to 6 months, and 2 weeks to 6 months) are presented in Table 2.3. There 

was a significant decrease in HR from the 2 week to 4 month (P ≤ 0.01), 4 month to 6 month 
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 (P ≤ 0.01), and 2 week to 6 month assessment (P ≤ 0.01) for an overall reduction of 17 bpm. 

The increase in SDNN was significant from the 2 week to 4 month (P ≤ 0.01), trended from the 4 

month to 6 month (P = 0.08), and was significant from the 2 week to 6 month assessment (P ≤ 

0.01) for an overall increase of 16 ms. The increase in ASDNN from the 2 week to 4 month (P = 

0.18) and 4 month to 6 month assessment (P = 0.19) was not significant, but the overall increase 

(4 ms) from the 2 week to 6 month assessment reached statistical significance (P = 0.01). The 

increase in SDANN was significant from the 2 week to 4 month (P ≤ 0.01), trended from 4 

month to 6 month (P = 0.08), and was significant from the 2 week to 6 month assessment (P ≤ 

0.01) for an overall increase of 18 ms. 

 

 

Table 3.1 Maternal and venous cord plasma n-6 and n-3 endocannabinoids and serum cytokines, 

adipokines, and acute phase reactants1 

 20 GW2 24 GW 32 GW 36 GW Delivery 

Endocannabinoids, ng/mL3      

     AEA  0.24 ± 0.076 0.17 ± 0.096 0.16 ± 0.08 0.30 ± 0.405 0.42 ± 0.196 

     EEA 0.07 ± 0.03  0.07 ± 0.03 0.10 ± 0.08  0.11 ± 0.14 0.06 ± 0.026 

     EPEA  0.30 ± 0.205 0.27 ± 0.057  0.35 ± 0.336 0.31 ± 0.186 0.33 ± 0.086 

     DHEA 0.41 ± 0.15 0.50 ± 0.287 0.59 ± 0.38  0.66 ± 0.59 0.78 ± 0.226 

Cytokines, pg/mL      

     IL-6 n/a8 n/a n/a n/a 13.8 ± 10.15 

     TNF-α  9.8 ± 4.86 9.4 ± 3.56  8.9 ± 3.56    9.1 ± 3.16    28.3 ± 7.65 

Adipokine, µg/mL      

     Adiponectin 7.8 ± 3.5   6.5 ± 2.4 5.9 ± 2.6    5.9 ± 3.6     28.3 ± 8.54 

Acute phase reactant, mg/L      

     CRP   10.2 ± 6.4  17.9 ± 27.2 9.6 ± 6.7    7.6 ± 4.9 n/a 
1Values are 𝑥̅ ± SD; n = 11, unless otherwise noted 
2GW: gestational weeks; Delivery indicates venous cord plasma/serum collected at birth 
3AEA: anandamide (n-6 related); EEA: eicosanoyl ethanolamine (n-3 related); EPEA: eicosapentaenoyl ethanolamine (n-3 

related); DHEA: docosahexaenoyl ethanolamine (n-3 related); IL-6: interleukin-6; TNF-α: tumor necrosis factor-α; CRP: C-

reactive protein 
4n = 7; 5n = 8; 6n = 9; 7n = 10; 8n/a indicates the analyte was marginally detected (≤ 28%) and excluded from statistical analyses 
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3.3.4 Maternal endocannabinoids and infant heart rate: simple linear regression  

 Significant (P ≤ 0.05) and trending (P ≤ 0.10) simple linear regression models describing 

relationships for individual, families, and ratios of maternal endocannabinoids during pregnancy 

and infant HR in the first 6 months of life are presented in Table 3.2. 

 Maternal EPEA at 24 gestational weeks was related (inverse; r2 = 0.32; P = 0.09) to 

infant HR at the 2 week assessment. Maternal n-3 endocannabinoid family at 24 gestational 

weeks was also inversely related to 2 week infant HR (r2 = 0.38; P = 0.05). Maternal AEA:n-3 

family ratio at 24 gestational weeks was positively related to infant HR at the 2 week assessment 

(r2 = 0.38; P = 0.08). There was a significant relationship between infant age at assessment and 2 

week HR (positive; r2 = 0.39; P = 0.04). 

 At several timepoints in pregnancy (24, 32, 36 gestational weeks) and in cord plasma at 

delivery, EPEA was inversely related to infant HR at 4 months of age; this relationship was 

trending at 36 weeks (r2 = 0.38; P = 0.08) but significant at 24 and 32 gestational weeks and 

delivery (r2 ≥ 0.46; P ≤ 0.03). Maternal DHEA and maternal n-3 endocannabinoid family at 24 

and 32 gestational weeks and at delivery were also inversely related to 4 month infant HR (r2 ≥ 

0.33; P ≤ 0.06 and r2 ≥ 0.33; P ≤ 0.07, respectively). 

 Maternal AEA at 20 gestational weeks (r2: 0.41; P = 0.06) and maternal AEA:DHEA (r2 

= 0.38; P = 0.08) at delivery were positive predictors of infant HR at the 6 month assessment. 

There were inverse relationships for maternal n-3 family at 24, 36 gestational weeks and 6 month 

infant HR (r2 ≥ 0.30; P ≤ 0.08). Maternal EEA and EPEA at 24 and 32 gestational weeks were  
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Table 3.2 Relationships for individual, families, and ratios of maternal n-6 and n-3 

endocannabinoids and infant heart rate: simple linear regression1,2  

  Infant heart rate, beats per min 

  2 week assessment 

Gestational week  n β ± SE r2 P 

24 weeks      

     EPEA  10    -84.8 ± 43.6 0.32 0.09 

     n-3 family  11    -13.7 ± 5.9 0.38 0.05 

     AEA:n-3 family    9     53.4 ± 25.9 0.38 0.08 

Infant age3  11       1.4 ± 0.6 0.39 0.04 

  4 month assessment 

24 weeks      

     EPEA  10    -66.4 ± 25.5 0.46 0.03 

     DHEA  11    -10.1 ± 4.8 0.33 0.06 

     n-3 family  11      -7.8 ± 3.7 0.33 0.07 

32 weeks      

     EPEA    9    -11.6 ± 3.6 0.60 0.02 

     DHEA  10    -11.1 ± 2.7 0.67    ≤ 0.01 

     n-3 family  11      -5.3 ± 1.3 0.64    ≤ 0.01 

36 weeks      

     EPEA    9    -17.8 ± 8.5 0.38 0.08 

Delivery4      

     EPEA    9    -44.9 ± 14.4 0.58 0.02 

     DHEA    9    -18.2 ± 4.7 0.68    ≤ 0.01 

     n-3 family    9    -14.0 ± 3.2 0.73    ≤ 0.01 

  6 month assessment 

20 weeks      

     AEA    9     63.7 ± 28.7 0.41 0.06 

24 weeks      

     EEA  11  -136.1 ± 69.0 0.30 0.08 

     EPEA  10    -92.5 ± 32.0 0.51 0.02 

     n-3 family  11    -10.7 ± 5.1 0.33 0.07 

32 weeks      

     EEA  11    -47.9 ± 21.6 0.35 0.05 

     EPEA    9    -12.4 ± 5.8 0.39 0.07 

36 weeks      

     n-3 family  11      -4.9 ± 2.5 0.30 0.08 

Delivery      

     AEA:DHEA    9      14.9 ± 7.3 0.38 0.08 

Infant age  11      -0.6 ± 0.3 0.31 0.08 
1Only observations reaching statistical significance (P ≤ 0.05) or trend (P ≤ 0.10) are reported 
2EPEA: eicosapentaenoyl ethanolamine; n-3 family: eicosanoyl ethanolamine (EEA) + EPEA + 

docosahexaenoyl ethanolamine (DHEA); AEA: anandamide (n-6 related) 
3Exact infant age (days) at heart rate assessment 
4Venous cord plasma collected at delivery 
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both independent, inverse predictors of infant HR at the 6 month assessment (r2 ≥ 0.30; P ≤ 0.08 

and r2 ≥ 0.39; P ≤ 0.07, respectively). Infant age at assessment was an inverse predictor (r2 =  

0.31; P = 0.08) of 6 month infant HR. 

3.3.5 Maternal endocannabinoids and infant heart rate: multiple regression  

Significant (P ≤ 0.05) and trending (P ≤ 0.10) multiple regression models describing 

relationships between individual, families, and ratios of maternal endocannabinoids during 

pregnancy and infant HR in the first 6 months of life are presented in Table 3.3. Infant age at 

assessment was included in models at 2 weeks and 6 months as it was a significant or trending 

independent variable in simple linear regression. 

Infant HR at 2 weeks was positively related to maternal AEA:DHEA at 24 gestational 

weeks and infant age at assessment (r2 = 0.89; P ≤ 0.01). Both variables in the model were 

positively related to HR. Maternal n-3 family and AEA at 36 gestational weeks predicted infant 

HR at the 4 month assessment (r2 = 0.62; P = 0.09). There was an inverse relationship for the n-3 

family and a positive relationship was observed for AEA; the variables in the model were both 

independently significant (P ≤ 0.05). Maternal EEA at 20 gestational weeks and infant age at 

assessment were both inversely related to 6 month infant HR (r2 = 0.52; P = 0.05). A model 

including infant age at assessment, maternal EEA, and EPEA at 24 gestational weeks was 

inversely related to infant HR at the 6 month assessment (r2 = 0.82; P ≤ 0.01). Further, maternal 

n-3 family at 32 gestational weeks and infant age at assessment were inversely related to 6 month 

infant HR (r2 = 0.74; P ≤ 0.01). Venous cord EPEA and AEA, with infant age at assessment, 

were related to infant HR at 6 months; all variables in the model were inverse (r2 = 0.87; P ≤ 

0.01). 
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3.3.6 Maternal endocannabinoids and infant heart rate variability: simple linear regression  

Significant (P ≤ 0.05) simple linear regression models describing relationships between 

individual, families, and ratios of maternal endocannabinoids during pregnancy and infant HRV 

at the 2 week and 6 month assessments are presented in Tables 3.4 and 3.5, respectively. 

 At 24 gestational weeks, maternal AEA:n-3 family was significantly, inversely related to 

infant SDNN at the 2 week assessment (r2 = 0.44; P = 0.05). Similarly, there was an inverse 

Table 3.3 Relationships for maternal n-6 and n-3 endocannabinoids and infant heart rate: multiple 

regression1 

  Heart rate, beats per min 

  2 week assessment 

  Parameters2  Parameter estimates  Model estimates 

Gestational week    β ± SE P  n r2 P 

24 weeks  AEA:DHEA  20.9 ± 9.6    0.07    9 0.89 ≤ 0.01 

  Infant age3  1.6 ± 0.3 ≤ 0.01     

  4 month assessment 

36 weeks  n-3 family  -10.8 ± 4.2    0.05    8 0.62    0.09 

  AEA  24.5 ± 8.6    0.04     

  6 month assessment 

20 weeks  EEA  -104.6 ± 54.8    0.09  11 0.52    0.05 

  Infant age  -0.8 ± 0.3    0.03     

          

24 weeks  EEA  -61.7 ± 24.8    0.05  10 0.82 ≤ 0.01 

  EPEA  -141.5 ± 49.4    0.03     

  Infant age  -0.5 ± 0.2       0.06     

          

32 weeks  n-3 family  -6.2 ± 1.7 ≤ 0.01  11 0.74 ≤ 0.01 

  Infant age  -0.8 ± 0.2 ≤ 0.01     

          

Delivery4  EPEA  -76.1 ± 14.8 ≤ 0.01  11 0.87 ≤ 0.01 

  AEA     -20.5 ± 7.4    0.04     

  Infant age  -0.9 ± 0.2 ≤ 0.01     
1Only observations reaching statistical significance (P ≤ 0.05) or trend (P ≤ 0.10) are reported 
2AEA: ananamide (n-6 related); DHEA: docosahexaenoyl ethanolamine; n-3 family: eicosanoyl ethanolamine (EEA) + 

EPEA: eicosapentaenoyl ethanolamine + DHEA 
3Exact infant age (days) at heart rate variability assessment 
4Venous cord plasma collected at delivery 
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relationship between maternal AEA:DHEA at 24 gestational weeks and SDNN at the 2 week 

assessment (data not shown; r2 = 0.36; P = 0.09). Maternal DHEA and n-3 family at 36  

gestational weeks were significant, positive predictors of 2 week infant SDNN (r2 = 0.37 – 0.38;  

P ≤ 0.05) while there was also a positive association for maternal EEA at 36 gestational weeks 

(data not shown; r2 = 0.30; P = 0.08). 

 

 Predictors of ASDNN at the 2 week assessment were largely similar to those of SDNN. 

Maternal AEA:n-3 family at 24 gestational weeks was inversely related to infant ASDNN at the 

2 week assessment (r2 = 0.58; P = 0.02) and maternal AEA:DHEA was an inverse predictor 

(data not shown; r2 = 0.42; P = 0.06). Maternal EEA and DHEA at 36 gestational weeks were 

positively related to ASDNN at the 2 week assessment (r2 ≥ 0.43; P ≤ 0.02), as was the maternal 

n-3 family (r2 = 0.57; P ≤ 0.01). Further, AEA at 36 gestational weeks was inversely related to 

Table 3.4 Relationships for individual, families, and ratios of maternal n-6 and n-3 

endocannabinoids and infant heart rate variability at 2 weeks: simple linear regression1  

  Infant heart rate variability2,3 

  2 week SDNN, ms 

Gestational week  N β ± SE r2 P 

24 weeks      

     AEA:n-3 family    9     -86.2 ± 37.1 0.44    0.05 

36 weeks      

     DHEA  11      11.7 ± 5.0 0.37    0.05 

     n-3 family  11        9.2 ± 3.9 0.38    0.04 

  2 week ASDNN, ms 

24 weeks      

     AEA:n-3 family    9     -47.6 ± 15.4 0.58    0.02 

36 weeks      

     EEA  11 27.1 ± 10.3 0.43    0.02 

     DHEA  11 7.2 ± 2.2 0.54 ≤ 0.01 

     n-3 family  11 5.8 ± 1.7 0.57 ≤ 0.01 
1Only observations reaching statistical significance (P ≤ 0.05) are reported 
2SDNN: standard deviation of filtered RR intervals over 24-h period; ASDNN: mean of standard deviations of 

filtered RR intervals for all 5 min segments of analysis; SDANN: standard deviation of means of filtered RR 

intervals for all 5 min segments of analysis 
3AEA: anandamide (n-6 related); n-3 family: eicosanoyl ethanolamine (EEA) + (eicosapentaenoyl ethanolamine) 

EPEA + docosahexaenoyl ethanolamine (DHEA) 
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infant ASDNN at the 2 week assessment (data not shown; r2 = 0.46; P = 0.07). There were no 

significant relationships between maternal individual, families, or ratios of n-6 or n-3 

endocannabinoids and infant SDANN at the 2 week assessment.  

There were few significant (P ≤ 0.05) or trending (P ≤ 0.10) n-6 or n-3 endocannabinoid 

predictors of infant HRV (SDNN, ASDNN, and/or SDANN) at the 4 month assessment. For all 

three HRV indices, cord venous EPEA was positively related to 4 month HRV (data not shown; 

r2 ≥ 0.36; P ≤ 0.09), although significant only for SDNN (P = 0.04). For 4 month ASDNN, 

maternal EPEA at 36 gestational weeks was also positively related (data not shown; r2 ≥ 0.38; P 

= 0.08).  

At 24 gestational weeks, maternal AEA, AEA:DHEA, and AEA:n-3 family were all 

inversely related to infant SDNN at the 6 month assessment (r2 ≥ 0.45; P ≤ 0.05). At 32 

gestational weeks, maternal EPEA was the only predictor of 6 month infant SDNN (positive; r2 

= 0.52; P ≤ 0.03). Maternal EEA, EPEA, and DHEA at 36 gestational weeks were independently 

related to infant SDNN (r2 ≥ 0.43; P ≤ 0.05), as was the combined n-3 family (r2 ≥ 0.72; P ≤ 

0.01); all predictors were positive. 

Infant ASDNN at the 6 month assessment was inversely related to maternal AEA:n-3 

family at 24 gestational weeks (r2 ≥ 0.48; P = 0.04). At 32 gestational weeks, maternal EEA and 

the n-3 endocannabinoid family were trending, positive predictors of 6 month ASDNN (data not 

shown; r2 ≥ 0.28; P = 0.09) and maternal EPEA was significant (positive; r2 = 0.77; P ≤ 0.01). 

Maternal EEA, EPEA, DHEA, and the combined n-3 family at 36 gestational weeks were 

positive predictors of infant ASDNN at the 6 month assessment (r2 ≥ 0.53; P ≤ 0.08). There were 

positive, independent associations for venous cord EEA, EPEA, DHEA, and n-3 family with 

infant ASDNN at the 6 month assessment (r2 ≥ 0.51; P ≤ 0.03). 
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Table 3.5 Relationships between individual, families, and ratios of maternal n-6 and n-3 

endocannabinoids and infant heart rate variability at 6 months: simple linear regression1  

  Infant heart rate variability2,3 

  6 month SDNN, ms 

Gestational week  N β ± SE r2 P 

24 weeks      

     AEA    9    -66.0 ± 27.8 0.45    0.05 

     AEA:DHEA    9    -65.5 ±17.4 0.67 ≤ 0.01 

     AEA:n-3 family    9    -88.8 ± 20.1 0.74 ≤ 0.01 

32 weeks      

     EPEA    9     18.0 ± 6.6 0.52    0.03 

36 weeks      

     EEA  11     50.6 ± 15.0 0.56 ≤ 0.01 

     EPEA    9     30.6 ± 13.3 0.43    0.05 

     DHEA  11     13.4 ± 3.0 0.68 ≤ 0.01 

     n-3 family  11     10.7 ± 2.3 0.71 ≤ 0.01 

  6 month ASDNN, ms 

24 weeks      

     AEA:n-3 family    9    -28.1 ± 11.1 0.48    0.04 

32 weeks      

     EPEA    9     10.4 ± 2.2 0.77 ≤ 0.01 

36 weeks      

     EEA  11     22.2 ± 7.0 0.53 ≤ 0.01 

     EPEA  11     19.1 ± 3.8 0.78 ≤ 0.01 

     DHEA  11       6.0 ± 1.4 0.68 ≤ 0.01 

     n-3 family  11       5.1 ± 0.8 0.81 ≤ 0.01 

Delivery4      

     EEA    9   142.1 ± 43.8 0.60 ≤ 0.01 

     EPEA    9     44.6 ± 6.6 0.87 ≤ 0.01 

     DHEA    9     12.8 ± 4.7 0.51    0.03 

     n-3 family    9     11.3 ± 2.7 0.72 ≤ 0.01 

  6 month SDANN, ms 

24 weeks      

     AEA    9    -72.8 ± 27.5 0.50    0.03 

     AEA:DHEA    9    -68.7 ± 18.0 0.68 ≤ 0.01 

     AEA:n-3 family    9    -89.4 ± 22.9 0.69 ≤ 0.01 

36 weeks      

     DHEA  11     12.9 ± 3.4 0.62 ≤ 0.01 

     n-3 family  11     10.1 ± 2.6 0.62 ≤ 0.01 
1Only observations reaching statistical significance (P ≤ 0.05) are reported 
2SDNN: standard deviation of filtered RR intervals over 24-h period; ASDNN: mean of standard deviations of 

filtered RR intervals for all 5 min segments of analysis; SDANN: standard deviation of means of filtered RR 

intervals for all 5 min segments of analysis 
3AEA: anandamide (n-6 related); EPEA: eicosapentaenoyl ethanolamine; DHEA: docosahexaenoyl ethanolamine; 

n-3 family: eicosanoyl ethanolamine (EEA) + EPEA + DHEA 
4Venous cord plasma collected at delivery 
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 Maternal AEA, AEA:DHEA, and AEA:n-3 family at 24 gestational weeks were 

independently, inversely associated with infant SDANN at the 6 month assessment (r2 ≥ 0.50; P 

≤ 0.03). Maternal EPEA at 32 gestational weeks was a positive predictor of 6 month SDANN 

(data not shown; r2 = 0.38; P = 0.08). At 36 gestational weeks, maternal DHEA and n-3 family 

were positive, independent predictors of 6 month SDANN (r2 = 0.62; P ≤ 0.01). There was a 

trend for a positive relationship between maternal AEA:n-3 family at 36 gestational weeks and 

infant SDANN at the 6 month assessment (data not shown; r2 = 0.43; P = 0.08). 

3.3.7 Maternal cytokines, adipokine, and acute phase reactant and infant heart rate and heart rate 

variability: multiple regression  

 

Significant (P ≤ 0.05) multiple regression models describing relationships between 

maternal adiponectin, CRP, and TNF-α during pregnancy and infant HR and HRV are presented 

in Table 3.6. Simple linear regression models are not presented as significant or trending 

variables were also significant in and strengthened by multiple regression modeling.  

 Maternal TNF-α at 24 gestational weeks and exact infant age at assessment were 

positively related to infant HR at the 2 week assessment (r2 = 0.82; P ≤ 0.01); both variables in 

the model were independent predictors (P ≤ 0.05). Infant HR at the 6 month assessment was 

predicted by maternal adiponectin at 20 gestational weeks and infant age at assessment (r2 = 

0.65; P = 0.02). Adiponectin was a positive, significant variable in the model (P = 0.02) while 

age was inverse and trending (P = 0.09). A model including maternal adiponectin, CRP, and 

TNF-α at 20 gestational weeks was related to infant SDNN and SDANN at the 6 month 

assessment (r2 ≥ 0.70; P ≤ 0.03); all variables in the model were inversely related to both HRV 

indices and independently significant or trending (P ≤ 0.07).  
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3.4 Discussion 

3.4.1 Infant heart rate and heart rate variability are age-dependent 

With advancing age, infant HR decreased and HRV increased. This was predicted, given 

developmental stage of the population, and is consistent with previous reports (Finley and 

Nugent 1995; Massin and von Bernuth, 1997). In healthy term infants, low HR and high HRV 

indicate accelerated autonomic maturation (Massin and von Bernuth, 1997). Thus, in interpreting 

the current data, maternal circulating factors that are inversely related to HR and/or positively 

related to HRV may have a role in accelerating autonomic development.  

Table 3.6 Relationships for maternal inflammatory biomarkers, infant heart rate, and 

heart rate variability: multiple regression1 

  Parameters2  Parameter estimates  Model estimates 

Gestational week    β ± SE P  n r2 P 

  Infant heart rate, beats per min 

  2 week assessment 

24 weeks  TNF-α  0.9 ± 0.4 0.05  9 0.82  ≤ 0.01 

  Infant age3  2.1 ± 0.4  ≤ 0.01     

  Infant heart rate, beats per min 

  6 month assessment 

20 weeks  Adiponectin  1.2 ± 0.4 0.02  11 0.65    0.02 

  Infant age  -0.5 ± 0.2 0.09     

  Infant SDNN, ms 

  6 month assessment 

20 weeks  Adiponectin  -1.5 ± 0.5 0.03  9 0.85   0.02 

  CRP  -1.1 ± 0.3 0.01     

  TNF-α  -1.3 ± 0.4 0.02     

  Infant SDANN, ms 

  6 month assessment 

20 weeks  Adiponectin  -1.3 ± 0.6 0.07  9 0.70   0.03 

  CRP  -1.0 ± 0.3 0.02     

  TNF-α  -1.4 ± 0.4 0.02     
1Only observations reaching statistical significance (P ≤ 0.05) or trend (P ≤ 0.10) are reported 
2TNF-α: tumor necrosis factor-α; CRP: C-reactive protein 
3Exact infant age (days) at heart rate/heart rate variability assessment 
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3.4.2 Maternal endocannabinoids are associated with infant heart rate and heart rate variability 

To the best of our knowledge, this study is the first to explore and link maternal 

inflammation during pregnancy to infant HR and HRV. Further, this study is the first to assess 

endocannabinoids in relation to HR and HRV in any population. The endocannabinoids related 

to n-6 (AEA) and n-3 (EEA, EPEA, DHEA) fatty acids were of specific interest as the n-6 and n-

3 fatty acid families are metabolically competitive and have contrasting, potent inflammatory 

effects (Calder, 2002; Calder, 2006). Further, the n-6 and n-3 related endocannabinoids 

themselves have divergent roles in modulating inflammation (Yang et al., 2011; Meijerink et al., 

2011) and autonomic function (reviewed by Pertwee, 1997), as discussed below. 

Inflammation-related diseases (i.e., rheumatoid arthritis, coronary heart disease, and 

metabolic syndrome) are characterized by decreased parasympathetic tone and/or HRV (Brunner 

et al., 2002; Hamaad et al., 2005; Goldstein et al., 2007; Bruchfeld et al., 2010). Similarly, in 

otherwise healthy adults, HR increases and HRV reductions are associated with subclinical 

inflammation (Sajadieh et al., 2004).  

Fetal HR and HRV are responsive to maternal nutrition (Gustafson et al., 2013) and 

exercise (May et al., 2010). Maternal inflammation may, in part, underlie these observations. 

Indeed, dietary fatty acid intake (Wood et al., 2010; Balvers et al., 2012; Hansen, 2013; 

Meijerink et al., 2013) and exercise (reviewed by Tantimonaco et al., 2014) modulate the 

endocannabinoid system, supporting this hypothesis.  

We cannot, with certainty, state that anti- and pro-inflammatory properties of 

endocannabinoids underlie our observations. Endocannabinoids have several biological roles in 

vivo, making it difficult to pinpoint causality. Further, endocannabinoid concentrations reflect 

those of their respective fatty acid precursors. Dietary n-3 LCPUFA shifts n-3/n-6 fatty acid 
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balance of membrane lipids, resulting in compensatory increases in n-3 endocannabinoids, EPEA 

and DHEA, and reduced production of AEA (Wood et al., 2010). Beneficial cardiovascular 

effects of n-3 LCUPFA are well-documented, although the mechanism(s) of action have not been 

elucidated (reviewed in Jung et al., 2008; Adkins and Kelly, 2010). Thus, our observations may 

be a consequence of effects mediated by fatty acids from which the endocannabinoids were 

derived. However, given the central role of inflammation in chronic diseases, especially those of 

cardiovascular significance, and similar influences of n-3 LCPUFA and n-3 related 

endocannabinoids on inflammatory processes, it is plausible that endocannabinoids may 

partially: 1) explain underlying mechanisms and 2) be responsible for benefits associated with n-

3 LCPUFA and inflammation (Wainwright and Michel, 2013).  

Endocannabinoids bind CB1 and CB2 receptors (Yang et al., 2011; Anagnostopoulos et 

al., 2010) with AEA preferentially binding CB1 and DHEA having a greater affinity for CB2 

receptors in human inflammatory cells (Yang et al., 2011). CB1 receptors have been implicated 

in pro-inflammatory chemokine secretion (Gaffal et al., 2013) while CB2 receptor activation 

inhibits release of inflammatory mediators associated with pain (Ibrahim et al., 2003). Further, 

DHEA exerts potent anti-inflammatory effects in LPS-stimulated RAW246.7 macrophages 

(Meijerink et al., 2011).  

AEA downregulates autonomic function (reviewed by Pertwee, 1997). Activation of 

prejunctional or presynaptic CB1 receptors by AEA inhibits acetylcholine release (ACh) by the 

parasympathetic nervous system (Coutts and Pertwee, 1996; Gifford and Ashby, 1996) and 

norepinephrine release by the sympathetic nervous system (Ishac et al., 1996). Inhibition of ACh 

release suppresses parasympathetic tone and, thus, HRV. 
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 Our data support conclusions that can be drawn from the above discussion, that n-3 

endocannabinoids displace their n-6 counterparts and dampen pro-inflammatory processes, 

reducing HR and increasing HRV. Using simple linear and multiple regression analysis, we 

consistently observed that individual n-3 endocannabinoids and the combined n-3 

endocannabinoid family (EEA + EPEA + DHEA) in maternal and/or venous cord plasma are 

associated with reduced infant HR and increased HRV. Conversely, our data indicate an 

association between maternal AEA, increased infant HR, and reduced HRV. The ratio of 

maternal AEA:n-3 family and AEA:DHEA also had predictive value such that shifts favoring 

AEA were related to increased infant HR and reduced HRV. We observed an inverse 

relationship between venous cord AEA and infant HR at the 6 month assessment; this was the 

only beneficial association for AEA. Venous cord EPEA was also a significant, inverse predictor 

of 6 month infant HR, however, to a much greater extent. Compared AEA, an increase of equal 

amounts of venous cord plasma EPEA was predicted to result in an approximate 3.7-fold 

reduction in HR. Thus, while these data indicate cord AEA may be associated with accelerated 

HR development, they also point to EPEA as a more potent agent.  

3.4.3 Maternal cytokines, adipokines, and acute phase reactants in relation to infant heart rate 

and heart rate variability: further investigation needed 

 

In the current study, we observed few significant relationships between maternal cytokine 

(TNF-α, IL-6), adipokine (adiponectin), or acute phase reactant (CRP) concentrations and infant 

HR and HRV during the first 6 months of life. We hypothesize this is dually due to sample size 

and low- to moderate-detection of biomarkers in maternal and venous cord serum. IL-6 was not 

included in statistical analyses for any timepoint excepting delivery (venous cord serum) due to 

marginal detectability. As such, many regression models in the current study were limited to <11 

women-infant pairs.  
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In the current study, significant multiple regression models were specific to inflammatory 

biomarkers at earlier timepoints during pregnancy (20 and 24 gestational weeks). The driving 

force behind this observation is unclear, but may reflect direct interactions between 

inflammatory biomarkers and the sympathetic nervous system as parasympathetic influence 

emerges around 30 – 32 gestational weeks (Sachis et al., 1982). This observation may also be 

coincidental and a result of sample size limitations.  

Parasympathetic activity and/or HRV are consistently, inversely associated with CRP 

(Kon et al., 2006; Lanza et al., 2006; Psychari et al. 2007) and TNF-α (Malave et al., 2003; 

Marsland, et al., 2007). Our data are in line with these observations, as CRP and TNF-α were 

both inverse predictors of HRV in multiple regression models.  

Associations between adiponectin, HR, and HRV have been explored (Wakabayashi and 

Aso, 2004; Takahashi et al., 2007; Piestrzeniewicz et al., 2008), albeit, not as extensively as for 

CRP and TNF-α. There were no associations between adiponectin and frequency- or time-

domain HRV indices in males with acute myocardial infarction (Piestrzeniewicz et al., 2008). 

However, low serum adiponectin in type 2 diabetes was associated with sympathetic 

hyperactivity (Wakabayashi and Aso, 2004; Takahashi et al., 2007), which would be clinically 

apparent as increased HR and reduced HRV. In the current study, maternal adiponectin was a 

positive and inverse predictor of infant HR and time-domain indices of HRV, respectively. The 

disconnect between our observations and those of previous studies may reflect the population 

assessed. Pregnancy is characterized by a physiological increase in insulin resistance that ensures 

nutrient delivery to the developing fetus. In the non-pregnant state, adiponectin concentrations 

negatively correlate with insulin sensitivity (Hotta et al., 2000; Weyer et al., 2001). However, in 

a population similar to the current study (pregnant women free of gestational, type 1, or type 2 
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diabetes), adiponectin concentrations did not differ across trimesters (Mazaki-Tovi et al., 2007) 

despite assumed progressive decreases in insulin sensitivity. These observations suggest 

adiponectin regulation may be altered during pregnancy and may explain the inconsistencies 

between previous observations (Wakabayashi and Aso, 2004; Takahashi et al., 2007; 

Piestrzeniewicz et al., 2008) and findings of the current study. 

3.5 Limitations 

This study was limited primarily by sample size (n = 11). Much of the presented data 

existed as statistical trends However, many relationships were highly significant and consistently 

observed, especially with regard to n-3 related endocannabinoids. Further, sample size limited 

inclusion of factors other than maternal inflammatory biomarkers and infant age at HR/HRV 

assessment in multiple regression models due to loss of statistical power. To address this, 

participants were required to meet strict inclusion and exclusion criteria, defined above, for study 

enrollment. These criteria ensured the study participants (mothers) had similar characteristics to 

minimize the influence of external factors on study outcomes.  

3.6 Conclusion 

Alterations in maternal inflammatory status may be the common mechanism underlying 

the previously observed effects of maternal nutrition and exercise on fetal HR and HRV (May et 

al., 2010; Gustafson et al., 2013), as supported by the current study. We have provided 

compelling data evidencing an association between maternal endocannabinoids during 

pregnancy with infant HR and HRV. Although we are unable to definitively conclude these 

observations are a direct consequence of anti-inflammatory actions of n-3 endocannabinoids, we 

provide a discussion supporting this hypothesis and call for future studies to include assessments 

of these novel bioactive fatty acid derivatives. Due to study limitations, we cannot conclusively 
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provide a link between maternal concentrations of adiponectin, CRP, TNF-α, and IL-6 during 

pregnancy and infant HR and HRV. However, these inflammatory biomarkers are worthy of 

future consideration in larger, more robust studies, as supported by our discussion.  
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APPENDIX A. LSU AGCENTER IRB APPROVAL FOR CURRENT STUDY 
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APPENDIX B. CONTINUING IRB APPROVAL FOR THE LAMBS STUDY AT 

PENNINGTON BIOMEDICAL RESEARCH CENTER 
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APPENDIX C. CONTINUING IRB APPROVAL FOR THE LAMBS STUDY AT 

WOMAN’S HOSPITAL 
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APPENDIX D. CHROMATOGRAM USED FOR FATTY ACID IDENTIFICATION 
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APPENDIX D. CHROMATOGRAM USED FOR FATTY ACID IDENTIFICATION 

CONTINUED 
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APPENDIX E. CHROMATOGRAM LABELED WITH REFERENCE TO STANDARD 

CHROMATOGRAM, USED IN FATTY ACID ANALYSIS 
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APPENDIX E. CHROMATOGRAM LABELED WITH REFERENCE TO STANDARD 

CHROMATOGRAM, USED IN FATTY ACID ANALYSIS, CONTINUED 
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APPENDIX F. STRUCTURES OF ENDOCANNABINOID METABOLITES AND THEIR 

INTERNAL STANDARDS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each analyte’s single reaction monitoring transition is listed followed by the specific collision 

energy in brackets. EPEA: eicosapentaenoyl ethanolamide, C22H35NO2; AEA: arachidonyl 

ethanolamide, C22H32O2; DHEA: docosahexaenoyl ethanolamide, C24H37NO2; EEA: eicoseneoyl 

ethanolamide, C22H43NO2  

 

Williams J, Wood J, Pandarinathan L, et al. Quantitative method for the profiling of the 

endocannabinoid metabolome by LC-Atmospheric Pressure Chemical Ionization-MS. Anal Chem 

2007;79:5582-5593. 
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APPENDIX G. CHROMATOGRAMS OF EXTRACTED ENDOCANNABINOID 

METABOLITES IN THE REFERENCE STANDARD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Arrow indicates analytes analyzed by Northeastern University for the current study. EPEA: 

eicosapentaenoyl ethanolamide, C22H35NO2; AEA: arachidonyl ethanolamide, C22H32O2; DHEA: 

docosahexaenoyl ethanolamide, C24H37NO2; EEA: eicoseneoyl ethanolamide, C22H43NO2  

 

Williams J, Wood J, Pandarinathan L, et al. Quantitative method for the profiling of the 

endocannabinoid metabolome by LC-Atmospheric Pressure Chemical Ionization-MS. Anal Chem 

2007;79:5582-5593. 
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APPENDIX H. CHROMATOGRAMS OF NORMALIZED, EXTRACTED 

ENDOCANNABINOID METABOLITES IN RAT FRONTAL CORTEX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Arrow indicates analytes analyzed by Northeastern University for the current study. EPEA: 

eicosapentaenoyl ethanolamide, C22H35NO2; AEA: arachidonyl ethanolamide, C22H32O2; DHEA: 

docosahexaenoyl ethanolamide, C24H37NO2; EEA: eicoseneoyl ethanolamide, C22H43NO2  
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endocannabinoid metabolome by LC-Atmospheric Pressure Chemical Ionization-MS. Anal Chem 
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APPENDIX I. CHROMATOGRAMS OF DEUTERATED INTERNAL STANDARDS 

AND EXTRACTED ENDOCANNABINOID METABOLITES IN THE REFERENCE 

STANDARD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EPEA: eicosapentaenoyl ethanolamide, C22H35NO2; AEA: arachidonyl ethanolamide, C22H32O2; 

DHEA: docosahexaenoyl ethanolamide, C24H37NO2; EEA: eicoseneoyl ethanolamide, 

C22H43NO2. d4- indicates deuterated analyte. 
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AA: 142228

NL: 9.93E5
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 ICIS 33
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TIC F: + c APCI SRM 

ms2 372.290 
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APPENDIX J. CHROMATOGRAMS OF DEUTERATED INTERNAL STANDARDS 

AND EXTRACTED ENDOCANNABINOID METABOLITES IN MATERNAL PLASMA 

DURING PREGNANCY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EPEA: eicosapentaenoyl ethanolamide, C22H35NO2; AEA: arachidonyl ethanolamide, C22H32O2; 

DHEA: docosahexaenoyl ethanolamide, C24H37NO2; EEA: eicoseneoyl ethanolamide, 

C22H43NO2. d4- indicates deuterated analyte 
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AA: 409

NL: 2.39E3

TIC F: + c APCI SRM 

ms2 348.250 

[62.010-62.310]  MS 

 ICIS 92

NL: 5.28E4

TIC F: + c APCI SRM 

ms2 352.250 

[66.050-66.350]  MS 

 ICIS 92

NL: 2.53E4

TIC F: + c APCI SRM 

ms2 300.250 

[62.010-62.310]  MS 

 ICIS 92

NL: 2.53E5

TIC F: + c APCI SRM 

ms2 304.230 

[66.050-66.350]  MS 

 ICIS 92

NL: 4.58E3

TIC F: + c APCI SRM 

ms2 326.230 

[62.010-62.310]  MS 

 ICIS 92

NL: 6.78E4

TIC F: + c APCI SRM 

ms2 330.250 

[66.040-66.340]  MS 

 ICIS 92

NL: 7.24E2

TIC F: + c APCI SRM 

ms2 372.290 
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NL: 2.39E3

TIC F: + c APCI SRM 

ms2 348.250 

[62.010-62.310]  MS 

 ICIS 92

NL: 5.28E4

TIC F: + c APCI SRM 

ms2 352.250 

[66.050-66.350]  MS 

 ICIS 92

NL: 2.53E4

TIC F: + c APCI SRM 

ms2 300.250 

[62.010-62.310]  MS 

 ICIS 92

NL: 2.53E5

TIC F: + c APCI SRM 

ms2 304.230 

[66.050-66.350]  MS 

 ICIS 92

NL: 4.58E3

TIC F: + c APCI SRM 

ms2 326.230 

[62.010-62.310]  MS 

 ICIS 92

NL: 6.78E4

TIC F: + c APCI SRM 

ms2 330.250 

[66.040-66.340]  MS 

 ICIS 92

NL: 7.24E2

TIC F: + c APCI SRM 

ms2 372.290 

[62.030-62.330]  MS 
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TIC F: + c APCI SRM 
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