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Abstract 
Norovirus (NoV) is the principal cause of viral gastroenteritis in the United States. It has 

been linked to filter-feeding molluscan shellfish, that bioaccumulate the virus from 

contaminated surrounding waters. The consumption of raw or undercooked contaminated 

oysters may result in acute gastroenteritis. We investigated the occurrence of NoV GI and GII 

and microbial indicators of fecal contamination in oysters and harvesting water from areas 

along the Louisiana Gulf Coast. We developed a filtration and concentration method for the 

detection of NoV from oyster harvesting waters. Lastly, this body of work compares commonly 

used molecular techniques (RT-PCR) and a commercial enzyme immunoassay for the 

detection of NoV. One oyster sample was positive for norovirus GII at 3.5 ± 0.2 log10 genomic 

equivalent copies/g digestive tissues, however the surrounding water tested negative for NoV. 

Zeolite granules were used for the filtration of norovirus-seeded waters. Beef Extract (10%) in 

McIlvaine’s buffer was the optimal elution buffer resulting in an average percent recovery of 

41.76 + 0.07 (p<0.05). Artificial and environmental waters with 20ppt salt had an observed 

average percent recovery of 40.79 + 0.19 and 18.95 + 0.24, respectively which was 

significantly higher than 0, 5, 10, 15, and 25ppt (p<0.05). The observed percent recoveries for 

artificial and environmental waters were 44.03 + 0.20 and 34.36 + 0.02, respectively. The 

percent recovery for artificial and environmental water using TaqMan® Fast Virus 1-Step RT-

qPCR was 38.85% + 0.27 and 19.77% + 0.07, respectively. In comparison, SuperScript® III 

Platinum One-Step qRT-PCR exhibited an average percent recovery of 11.12% + 0.183 and 

15.55% + 0.225 for artificial and environmental waters. The EIA assay assay was not sensitive 

enough to detect NoV in the elution samples despite RT-qPCR methods quantifying the virus 

concentration between 104 and 105 genomic copies/ml. As such, it is not an effective method 

for the detection of NoV from environmental water matrices without RT-qPCR as a secondary 
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validation method. This body of work provides an effective method to detect norovirus in oyster 

harvesting waters. Our results emphasize the need for regular monitoring of pathogenic 

viruses in oyster harvesting areas to reduce viral gastroenteritis incidences. 
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Chapter 1 Review of Literature 
1.1 NoV taxonomy, nomenclature, and genetic diversity: Gastroenteritis, often referred to 

as the ‘stomach flu’, is the inflammation of the stomach and intestines due to a bacterial, 

parasitic, or viral etiologic agent. Bacterial agents often responsible for gastroenteritis include: 

Campylobacter jejuni, Escherichia coli, Salmonella spps., Shigella, Yersina, and 

Staphlyococcus spps. Viral contamination in food and water matrices is significantly more 

prevalent than bacterial contamination. Subsequently, viral contamination is the predominate 

cause of gastroenteritis worldwide.  Viruses often known to be etiological agents for 

gastroenteritis include: Rotaviruses, Astroviruses, Adenoviruses, and most common, 

Caliciviruses (1-6). Because it is caused by bacterial or viral agents, gastroenteritis results in 

varying degrees of diarrhea, nausea, and vomiting. Fevers are not typically associated with the 

illness. However, a low-grade fever is possible if the causative agent is a bacterial pathogen.  

Although death is not typically associated with gastroenteritis, it can occur when dehydration is 

induced due to untreated profuse diarrhea and vomiting. Diarrhea diseases are the cause of 

approximately 2.5 million deaths per year, with a disproportionately high occurrence in 

developing countries (7-9). Deaths due to diarrhea diseases, such as gastroenteritis, most 

often affect children and infants. In 1982, a published review calculated an annual mortality 

rate of 14 per thousand in children under 5 years of age and 23 per thousand in infants under 

1 year of age (9). Although a staggering statistic, the same review determined that 4.5 million 

deaths per year were due to diarrhea-specific illnesses. However, a more recent study found 

that value to be significantly lower; at 2.5 million per year (8). Undoubtedly, there is a  decline 

in the mortality rate caused by diarrhea-specific illnesses but an increase has been observed 

in the associated morbidity rates, especially among children in developing countries (8).  
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As aforementioned, there are several viruses known as causative agents of 

gastroenteritis. Viral gastroenteritis occurs sporadically and exhibits an acute onset. Viruses in 

the Calicivirdae family, specifically Norovirus, are most often associated with epidemic 

occurrences of viral gastroenteritis. However, endemic spreads have been known to occur. 

Calicivirdae is a family of small round structured positive viruses that are class IV members of 

the Baltimore Classification System. The prefix “calici” is derived from the Latin word “calyx” 

which translates to cup or chalice. Appropriately named, Calicivirdae viruses have 

characteristic cup-shaped depressions on their capsid surfaces (10). Vesicular exanthema, 

caused by vesicular exanthema of swine virus (VESV) was the first illness associated with 

Caliciviridae viruses (11). Due to its shape and size, VESV was originally classified in the 

picornaviridae family of viruses. However, it was later determined that the replication 

mechanism and structure of VESV differed from that of the typical genera of picornaviridae(12, 

13). Three  distinguishable characteristics  separate viruses classified as picornaviridae  from 

those classified as caliciviridae. First, viruses in the caliciviridae family have segmented open 

reading frames (ORF)  while picornaviruses have one large ORF. This difference supports the 

theory that viruses in these two families have different replication mechanisms (14). 

Caliciviridae viruses do not have a methylated cap on the 5’ end of their RNA strand.  There is, 

instead, a small viral protein covalently linked to the RNA (15). This small protein is not 

included in picornaviruses nor is it required for their infectivity. Due to the key differences 

between newly discovered viruses such as VESV and those classified in the picornaviridae 

family, the International Committee on Taxonomy of Viruses published a new family of positive 

viruses named Caliciviridae (16). Viruses classified in the Caliciviridae family are comprised of 
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a single-stranded, polyadenylated, positive-sense RNA genome (17). Furthermore, this family 

of viruses has one major structural protein that encodes the icosahedral viral capsid.  

In viral taxonomy, viral families are further arranged into genera. Initially, caliciviridae 

was subdivided based on the hosts different viruses infected (18). However, as more studies 

were published, it became increasingly evident that similar viruses infected a wide range of 

hosts resulting in the need for a more specific classification method. As a result of the need for 

a new classification method, the definition of genus in the caliciviridae was redefined as 

‘genetically distinct clades of viruses’ (18). Two phylogenic methods determined that there 

were four major genera within caliciviridae: Lagoviruses, Noroviruses, Sapoviruses, and 

Vesiviruses (Figure 1) (19, 20). In 2006, Oliver et al., determined that Neboviruses have two 

ORFs but are genetically distinct and should be listed as a new clade within the Caliciviridae 

family (21). In 2009, Neboviruses were classified as a new genera within Caliciviridae (22).  

 

Figure 1 Phylogeny of Caliciviridae. Source: Green et al. (18) 
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Each of the five genera within Caliciviridae infects different hosts. However, only Noroviruses 

and Sapoviruses infect humans and are etiological agents for viral gastroenteritis (5, 23).  

Until 1972, etiological agents responsible for nonbacterial gastroenteritis had been 

elusive. Viruses were widely thought to be responsible for the widespread illness as bacteria 

was not always present in stool filtrates during outbreaks. In addition, stool filtrates free of 

bacteria still resulted in gastroenteritis (24). In 1972, Norovirus (NoV), formerly referred to as 

‘Norwalk-like virus,’ was first visualized using immune electron microscopy and determined to 

be the causative agent of the 1968 acute gastroenteritis outbreak in Norwalk, Ohio (25-27). 

Often referred to by common names such as ‘Snow Mountain virus’, NoV nomenclature is 

detailed. NoV strains are named based on the species infected, genus, virus name, strain, 

year of isolation, and country of isolation (6). Similarly, to the use of common names, NoV is 

often written with its associated common name and the genogroup and cluster as an 

associated suffix. For example, Snow Mountain virus is a common name that is used to refer 

to Hu/NLV/184-01388/1990/US (6). NoV is the principal cause of viral gastroenteritis and is  

responsible for the majority of foodborne illness in the United States (28). NoV is also the 

leading cause of all deaths due to gastroenteritis at a rate of approximately 797 deaths per 

year (29). NoV is comprised of 5 genogroups and 32 genotypes (also referred to as clusters) of 

which only genogroups I, II, and IV infect humans (Figure 2) (30, 31). Genogroup I, II, and IV 

contain over half of the 32 clusters with each having 8, 19, and 1 respectively (30, 32). 

New strains of NoV are categorized into genogroups based on their capsid protein 

characteristics and the sequence of genes encoding viral RdRp (30). Strains with similar 

genome sequences and capsid properties are classified together. The large amount of 
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genotypes associated with NoV can be attributed to constant mutation within the hypervariable 

region of the protruding domain (P2) on the major structural protein VP1.  

 

Figure 2. NoV genogroups based on VP1 amino acid sequence diversity. Source: Vinje (33) 

Noroviruses within genogroups exhibit 45-61% difference between their associated VP1 

genes. Similarly, within genotypes there is approximately 14-44% differences and 0-14% 

differences within strains (30). New genotypes are developed when there are significant  

differences in the VP1 sequence of a new NoV strain compared to those within established 

genotypes (34). The difference between the new strain and existing viruses in established 

clusters should exceed 44%. If the new viral strain exceeds the difference range for every 

cluster, then a new one is formed. NoV GII.4 is the predominate cause of gastroenteritis 

pandemics with a new strain of GII.4 emerging every 2 to 3 years (35, 36). Studies have 

shown that NoV GII.4 evolves at a rate 1.7 times faster than all other genogroups, thus 
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resulting in a more rapid rate of antigenic drift (36). In addition, there is approximately 5% 

difference in the VP1 sequences between different GII.4 variants (37).  

1.2 NoV genome, virion structure, and proteins: NoV has a compact, positive-sense, single 

stranded, non-segmented RNA genome. It is 7.5kbp in length and is poyladenylated at the 3’ 

terminal (38, 39). NoV genome is organized into three open reading frames (ORF) with the 

exception of murine NoV genogroup V, which has a fourth ORF that overlaps ORF 2 (Figure 3) 

(30, 40). NoV ORFs encode the nonstructural and structural viral proteins. ORF 1 encodes a 

polyprotein that is cleaved by viral 3C protease (NS6) into 6 nonstructural proteins including 

RNA-dependent RNA-polymerase (RdRp) and NS6 (41, 42). ORF 2 and 3 encode the major 

and minor structural proteins VP1 and VP2, respectively.  

 

Figure 3. NoV ORFs and associated proteins. Source: Hyde et al., (43) 

Caliciviridae viruses have a unique feature in that their nonstructural proteins are located at the 

5’ end of RNA before the structural proteins which are found at the 3’ terminus (17, 44, 45). In 

addition, NoV does not have methylated caps at the 5’ end of its RNA genome rather it is 

covalently linked to viral protein VPg which is thought to play a role in translation initiation (15, 

39, 46, 47). Furthermore, studies have shown that caliciviruses void of VPg at the 5’ terminus 

are noninfectious (15).  
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Stem-loops and hairpin secondary structures have been located respectively at the 5’ 

and 3’ ends of NoV RNA genomes (48, 49). The function of NoV secondary structures is poorly 

understood, however theories as to their mechanism and role have been published. The 3’ 

terminal hairpin structure has characteristics similar to cis-acting replication elements (cre) in 

picornaviruses (48). NoV 5’ terminal stem loops are thought to play a significant role in viral 

translation due to the shortcomings of the untranslated regions (UTR) of the NoV genome. 

Short UTRs are found at the 5’ and 3’ terminals of the NoV RNA genome (50, 51). UTRs play a 

significant role in viral translation, replication, pathogenesis by interacting with cell translation 

machinery and viral replicase (48, 52, 53). UTRs are typically long, enabling them to function. 

However, NoV UTRs are short.  The secondary stem loop structures are believed to function 

similarly to UTRs and initiate translation (48).  

Each of NoV ORF encodes one or more proteins. Subgenomic RNA containing ORF 2 

encodes major structural protein (SP) VP1. VP1 is approximately 58 to 60kDA and 530 to 555 

amino acids in length (54). Due to the lack of cell line propagation for NoV, the structure and 

function of VP1 has often been characterized using virus-like particles (VLPs); particles that 

are similar in structure to native virus particles but lack RNA (55, 56). VP1 provides the 

icosahedral capsid surrounding NoV. In 1994, Prasad et al., first viewed the NoV capsid using 

x-ray crystallography (57). The capsid was determined to be 38 nm in diameter, exhibit a T=3 

icosahedral symmetry, and be comprised of 90 dimers of VP1 (56). In addition, cup-like 

depressions characteristic of the Calicivirdae family were present at the 3-fold and 5-fold axis 

of symmetry (56, 57).  The VP1 structural protein can be divided into two domains: the N-

terminal shell (S) and C-terminal protruding (P), each playing a significant role in the viral 

capsid formation (Figure 4).  
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Figure 4. NoV major structural protein VP1. Source: Hardy et al. and Prasad et al. (54, 57) 

The S domain is a highly conserved region that contains all of the material necessary 

for the initiation of capsid assembly (57). The P domain has a conserved and  hypervariable 

region respectively within its subdomains P1 and P2 (57). Characteristics of the P domain 

make it likely that its function is to provide stability to the viral capsid (57). The S and P domain 

interact to form dimeric VP1 protrusions that can be observed using an electron microscope. 

The structure of VP1 is such that two well-conserved regions (S and P1) border the 

hypervariable P2 region with P2 being a 127 amino acid insertion in the P1 subdomain (Figure 

4).  Although an insertion in P1, the surface of the P2 subdomain is exposed as it forms the 

outer tip of the viral protrusions (Figure 5) (56). As such P2 may play a significant role in 

carbohydrate antigen interactions and receptor binding, however a true receptor cannot be 

determined until NoV is cultured with a cell line (58).  

NoV ORF 3 encodes minor structural protein VP2 which is 208 to 268 amino acids in 

length. Although believed to be extremely basic in function and structure, much of the 

information regarding VP2 is elusive. Only one to two dimers of VP2 are associated with each 

NoV virion and there is a high amount of variability in the VP2 sequence between different 

virus strains (59). Research has shown that VP2 is not necessary for VLP assembly thus 
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further supporting theories that it is a minor structural protein that merely stabilizes VP1 in the 

NoV capsid (60, 61). However, in the absence of VP2, feline calicivirus (FCV) was no longer 

infectious; potentially indicating a more significant role for VP2 in NoV (61).  

 

Figure 5. NoV capsid structure. Source: Huston et al., (62) 

Currently, the exact location of VP2 in the NoV structure is unknown. However, studies have 

shown that VP1 and VP2 interact in the S domain of the N-terminal, inside the NoV capsid.  

This indicates that VP2 may function in viral capsid assembly (63). 

 Human Norovirus cannot be propagated in immortal cells.  Information regarding gene 

expression and protein function is derived from culturable NoVs such as Murine Norovirus 

(MNV) (50). In addition, valuable information regarding protein expression is gained using 

immortalized cell lines (64-66). As previously mentioned, ORF1 is a polyprotein that is cleaved 

by PRO, commonly called 3C-like protease (referred to as NS6 in MNV)  producing six 

nonstructural proteins (NP) (Figure 6) (5, 43, 67).  
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Figure 6 MNV ORF cleavage sites and nonstructural proteins. Source: Sosnovtsev et al., (42) 

Sosnovtsev et al., determined there are five dipeptide cleavage sites in MNV ORF1: 341E/G342, 

705Q/N706, 870E/G871, 994E/A995, and 1177Q/G1178 (42). ORF1 is coded from the N to the C 

terminus as sequence conservation is greater toward the latter (54). Similarly the N terminus 

amino acid sequence and length is considerably different between NoV genotypes I and II 

(54). The six NP of NoV are encoded as follows in ORF1: p48, NTPase, p22, VPg, Pro, and 

Pol/3Dpol (42, 54). The latter encoded proteins found in the C terminus of ORF1 are the most 

conserved and characterized of the NP (42). NoV nonstructural and structural proteins differ 

greatly in function. Structural proteins, both minor and major encompass all of the information 

necessary to initiation capsid formation and provide structure stability. In comparison, 

nonstructural proteins function in the genetic mechanisms of NoV occurring both within the 

capsid and host cell. Each of the nonstructural proteins has individual functions and some work 

in conjunction with one another.  

NoV p48 also referred to a N-term (NS1/2 in MNV) does not exhibit similar 

characteristics with any other viral protein except parachoviruses (54). Parachoviruses viral 

proteins have a Hbox/NC sequence that functions in cell proliferation. There is an observed 
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Hbox/NC sequence in p48 as such it is believed to have similar function to that of the 

parachovirus protein with the analogous sequence feature (54, 68).  In addition to having a role 

in cell proliferation, p48 is believed to function in the formation of membrane replication 

complexes and Golgi disassembly (5, 54, 69, 70).  

NTPase, commonly referred to as p41 (NS3 in MNV) is believed to be an RNA helicase 

homologous to poliovirus 2C (referred to at ATPase) and HCV NS3 (54, 71, 72). There are 3 

identified motifs (A, B, and C) on NTPase categorizing it in the Superfamily III of RNA 

helicases. It is believed that NTPase hydrolyzes ATP and unwinds viral nucleic acids (72, 73). 

Studies have shown that despite its ability to hydrolyze ATP, NTPase lacks the ability to 

unwind synthetic RNA:DNA complexes (54). Although similar to ATPase and HCV NS3, 

proteins with confirmed unwinding abilities, NTPase may potentially lack the functionality of 

other RNA helicase. A significant amount of information is needed to fully characterize NTPase 

in NoV, however studies have reported that when NTPase is inhibited viral RNA synthesis 

does not occur (71). 

Several of NoV nonstructural proteins’ functions are vague including p22 often referred 

to as 3A-like (NS4 in MNV). The common name 3A-like used interchangeably with p22 is 

derived from the similar location p22 in NoV shares with 3A in picornaviruses. Much of the 

information regarding NoV replication complex has been elusive. It was not until recently that 

researchers observed the potential role p22 plays in NoV replication complex formation (74). 

Prior to this newly discovered role, p22 was simply one of several protein precursors in a 

proteolytic pathway (41). Researchers theorized that p22 could function similarly to 3A in 

picornaviruses in the localization of replication complexes and inhibition of protein secretion 

(75). Studies published in 2010 and 2012 determined p22 functions in the membrane 
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localization of the replication complex and inhibits protein secretion (74, 76). NS4 in MNV, a 

p22 homologue was observed to play a role in the formation of the replication complex, Golgi 

disassembly, and inhibition of cellular protein secretion (74). Similarly, p22 serves the same 

roles as NS4, however it uses different mechanisms. Nonstructural protein p22 contains an 

Endoplasmic Reticulum export signal (ERES). There is a theorized interaction between p22 

ERES and COPII protein that results in the direct uptake of p22 by COPII vesicles. This 

potential interaction results in COPII vesicles bypassing the Golgi during localization thus 

causing Golgi disassembly and inhibition of protein secretion (76). Unlike p22, NS4 lacks an 

ERES. As such, although similar in function p22 and NS4 fulfill their viral roles using different 

mechanisms. 

 VPg is a viral nonstructural protein covalently linked to the 5’ end of caliciviruses (39). 

Little information is known regarding the function of VPg, however the use of MNV has proven 

beneficial in gaining knowledge of the protein structure and potential interactions. In 2013, 

Leen et al., observed the structure of VPG in FCV and MNV using nuclear magnetic resonance 

spectroscopy (77). VPg was found to have a compact helical core comprised of hydrophobic 

and salt-bridge interactions that is bordered with flexible N and C terminal regions. Due to a 

Tyr residue within the helical core of VPg seemingly renders it unable to bind viral polymerase; 

however studies have proven the ability of VPg to unwind exposing its tyrosine residue. 

Despite the valuable structural information gained about VPg, no relationship was found 

between the viral protein function and structure (77). Several studies have provided evidence 

that suggest VPg functions in the recruitment of translational machinery. These studies have 

shown VPg interacts with viral eIF4F a translation initiation factor and eIF3 (78, 79). The 

characterization of VPg is still poorly developed. However, it is clear that the viral protein’s 
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interaction with translation initiation complexes is not limited to those required for translation to 

occur. Chaundry et al., determined eIF3 is not required for the initiation of translation in 

caliciviruses (79). VPg is required for caliciviruses to be infectious; however it is not required 

for translation to occur. Suitable substitutes such as m7G have been observed to function in 

the same capacity as VPg (80). Similarly, when VPg was removed from caliciviruses 

translation was still initiatied, however there was a significant reduction in viral proteins (39).  

Pro (NS6 in MNV) is a well characterized nonstructural protein that similar to 3C 

proteases in picornaviruses (5). Pro functions in the proteolysis of ORF1 and cleaves poly(A) 

binding proteins that inhibit cellular translation (59, 66). The structure of Pro was reported by 

Nakamura et al., and determined to have chymotrypsin folds and an active site stabilized by 

Hydrogen bonds (81). Similar to chymotrypsin-like proteases, Proactive site consists of a 

catalytic triad required for proteolysis activity. Cys139, His30, and Glu54 form the catalytic triad 

in Pro, however studies have shown Glu54 is not required for Pro to function rather it functions 

in increasing proteolysis activity (81, 82). Pro has two enzyme substrate binding sites (S1 and 

S2) that bind substrate P1 and P2 in NoV ORF1. S1 contains His157, a specificity site that 

senses and cleaves P1 at the glutamine or glutamic acid residue. Similarly, the hydrophobic 

S2 interacts with the sidechain of the amino acid residue on P2. Interestingly, studies have 

shown that that mutation of His157 does not eliminate Pro proteolytic activity, however a 

drastic reduction is observed.  

Second to PRO, Pol/3DPol’s (NS7 in MNV) structure and function is well-characterized. 

Pol/3DPol is the viral RNA-dependent RNA polymerase (RdRp) which synthesizes the 

negative sense RNA intermediate used as the template strand during genome replication (48). 

Pol/3DPol structure and function is similar to that of the viral RdRp found in rabbit hemorrhagic 
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disease virus. Both viral RdRp have structural features commonly found among RdRp such as 

fingers, palm, and thumb domains (83, 84). Norovirus Pol/3DPol contains a C terminal located 

in the active site which is near an aspartic acid residue (38, 54). As reviewed by Hardy et al., 

this unique characteristic of Norovirus RdRp may result in structural similarities to the thumb 

insertion of Hepatitis C which functions in the stabilization of primers during the initiation of 

RNA synthesis (54). 

1.3 NoV translation, replication, and pathogenesis: Several viruses in the calicivirdae 

family bind to carbohydrate structures. For example, RHBV and MNV have been shown to bind 

to H-antigens and sialic acid, respectively (85). Similarly, human noroviruses (HuNoV) and 

Sapoviruses are observed to bind human histo-blood group antigens (HBGA) and Lewis 

antigens (Le), carbohydrate antigens commonly found on red blood cells, saliva, and tissue 

such as the intestines (86). Due to the numerous caliciviruses which contain carbohydrate 

receptors, its has been proposed that the ancestor of caliciviruses also formed a binding-

complex with carbohydrates (85). NoV recognition and binding to HBGAs is strain-specific. 

Different strains of NoV bind either A and/or B, and H antigens or Le, and H antigens. Only one 

NoV strain: Farmington Hills 2002 has been found to bind both A and Le antigens (87). Both GI 

and GII contain strains of NoV that bind either AB strains or Le strains with GII.4 binding the 

most groups of HBGAs (88). Mutational studies have shown that altering genes such as FUT2 

(fucosyltransferase) knocks out the expression of H type 1 or Lewis B antigens in the small 

intestine resulting in resistance to NoV GI.1 infection (89). In addition, Shirato et al., reported 

that NoV VLPs tend to bind more tightly to type 1 carbohydrates which are commonly found on 

the surface of the small intestine, indicating the possibility for NoV tissue specificity (88). 

Although studies have provided an understanding of what binds to NoV, the binding interaction 
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is widely theorized as no culture method for NoV exists. NoV is believed to bind to HBGAs on 

the surface of epithelial cells in the gastroduodenal junction (90). The highly variable and 

surface-exposed P2 domain of the capsid protein contains the binding-site for HBGAs. The 

binding of HBGAs within the P2 domain results in specific and nonspecific interactions. Within 

the P2 domain site 1 and site 2 amino acids form a binding pocket and stabilize the interaction 

(58). Site 1 within P2 interacts with the fucose of HBGAs via hydrogen bonds. Site 2 forms 

additional interaction bonds, however they too are weak. Due to the weak nature of the bonds 

researchers have theorized that long-distance non-specific binding may occur to aid in 

stabilizing the HBGA and P2 interaction (91, 92). The internalization of NoV by host cells 

remains a mystery, however binding to an unidentified receptor is required. Studies have 

shown that MNV entry into murine macrophages does not occur via clathrin and caveolin-

mediated endocytosis. Furthermore, MNV uptake by host cells requires host cholesterol and 

dynamin II, a protein involved in endocytosis (93, 94). Despite the elusive nature of norovirus 

propagation in an immortalized cell line information regarding entry into host cells can be 

gleaned from MNV entry mechanisms.  

The major and minor structural proteins of NoV play a significant role in attachment and 

entry into host permissive cells. Upon release into the host cell cytoplasm, the viral genome is 

uncoated and initial translation proceeds from the 5’ to 3’ terminus (ORF1 to ORF3). NoV is a 

positive-sense single-stranded RNA and thusly serves as the mRNA template for initial 

translation round. As previously described, RNA-binding protein VPg is attached at the 5’ 

terminus of all calicivirdae viruses and is required for infectivity, but not translation. Although 

translation will proceed in the absence of VPg, it does function in recruiting host cell translation 

machinery. The host cell translation initiation factor recognizes and interacts with VPg. Direct 
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interactions between VPg and components of the translation initiation factor complex, 

specifically eIF4E and eIF3 have been observed.  During and after the translation of ORF1 it is 

processed by Pro, a viral protease which cleaves ORF1 into six nonstructural proteins which 

play a role in the formation of the replication complex. Translation proceeds from ORF1 to 

ORF3. Unlike the nonstructural proteins, VP1 and VP2 are translated from polycistronic 

subgenomic RNA and do not function in viral replication (95).  

Post-translation of parental RNA, NoV replication proceeds resulting in the proliferation 

of positive-sense genomic and subgenomic RNA. NoV replication is not fully understood as no 

suitable cell culture method has been proposed for NoV propagation in an immortal cell line. 

As such, a sizeable amount of information regarding NoV replication has been gleaned from 

MNV studies. NoV is a Class IV member of the Baltimore Classification meaning its viral 

genome can serve as mRNA and encode viral proteins. Prior to replication occurring, the 

replication complex forms in the perinuclear region of the host cell. The replication complex is 

composed of several host membranes (ER, endosomes, and trans-golgi complex) and is 

formed via initiation and recruitment by nonstructural proteins p48 and p22. Formation of the 

replication complex has yet to be studies in cells infected with HuNoV RNA. NoV replication 

occurs via a (-) sense intermediate synthesize using viral RdRp. The NoV parental genome 

strand is (+) sense and mechanism for initiation by the viral RdRp to synthesize (-) RNA is not 

fully understood. Thorne et al., provides a well-rounded overview of the two proposed 

mechanisms for viral RdRp initiation (5). Viral RdRp initiates the synthesis of the (-) sense 

intermediate by two proposed methods: de novo and VPg (65). As previously discussed, VPg 

plays a role in the initiation of translation, however a link between VPg and (-) sense NoV RNA 

has yet to be proven. In comparison, loop sequences found in the S domain of VP1 interact 
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with the viral RdRp supporting the theory that initiation occurs via de novo mechanisms (64). 

Positive-sense single stranded genomic and subgenomic RNA is synthesized from the double-

stranded RNA and is VPg-dependent. Nucleotidylation, also referred to as guanylation is the 

formation of a phosphodiester bond between the guaninine of RdRp and tyrosine of VPg. This 

interaction is required for NoV infectivity; as such VPg is required for NoV infectivity. Although 

nucleotidylation is required for the synthesis of both genomic and subgenomic RNA, several 

downstream mechanisms have been proposed for subgenomic RNA synthesis. As described 

in Thorne et al., early termination during (-) RNA synthesis may result in (-) RNA serving as the 

template for (+) sense subgenomic RNA synthesis (5). Studies have also theorized that 

secondary structures such as stem-loops found upstream from ORF2 in (-) sense RNA may 

promote the synthesis of subgenomic (+) sense RNA (48). Post-replication genomic RNA 

localizes to the assembly site due to the localization signal in ORF1. The exact location and 

mechanism for assembly, encapsulation, and exit for NoV virions is unknown, however 

members of caliciviridae induce host cell apoptosis as an exit strategy.  

According to the Center for Disease Control and Prevention (CDC), annually, Human 

Norovirus (HuNoV) is the cause of approximately 20 million cases of nonbacterial acute 

gastroenteritis, 70,000 hospitalizations, and nearly 800 deaths among young children and 

elderly patients. In general, waterborne human enteric viruses pose a greater health risk than 

enteric bacteria due to the low infectious dose; which may be as little as one virion (96). NoV is 

easily transmitted and often found in closed, small communities such as schools, cruise ships, 

nursing homes, and hospitals. NoV is transmitted through direct contact with a contaminated 

source such as faeces and vomit. Any exposed individual can become infected with NoV but 

severe and prolonged symptoms are most often associated with infants, young children, 
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immunocompromised individuals, and the elderly. Symptoms of NoV occur 12 to 48 hours after 

exposure with the infection, typically lasting 12 to 72 hours. Infected individuals experience 

symptoms common for gastroenteritis such as nausea, vomiting, diarrhea, and at times 

dehydration; some of which have been associated with the pathophysiological effects caused 

by NoV infection.  Although NoV exhibits a rapid onset and resolution, infected individuals are 

capable of shedding the virus for an extended period of time; even after symptoms disappear 

which further contributes to the high transmission rate (97, 98).  

NoV infections result in pathophysiological changes within the intestines of infected 

individuals. In addition, specific short-lived immune responses have been observed. Intestinal 

biopsies from infected human volunteers show significant changes such as: broadening villi, 

enlarged and pale mitochondria, intercellular edema, abnormal epithelial cells, and lesions (99-

102). Although abnormal, the intestinal epithelial cells remain intact post-infection and the 

lesions resolve within two weeks. NoV infection is believed to occur within the epithelial cells of 

the intestine. However, research has shown that apoptosis of enterocytes occurs in infected 

individuals (103). It remains unclear whether the observed apoptosis is due to direct or distant 

interactions with NoV virions. However, it has been theorized that an increase in CD8+ 

lymphocytes results in the release of perforin, thus inducing apoptosis. The pathophysiological 

changes associated with NoV infection contribute to the associated symptoms. The shortening 

microvilli and slow gastric emptying are responsible for malabsorption and vomiting, 

respectively.  

In addition to pathophysiological changes, short-lived immune responses occur in the 

presence of NoV infections. Adaptive immunity has been proven to play a significant role in the 

immune systems response to NoV. In the absence of B and T-cells high levels of MNV-1 was 
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observed in mice (31). Cytotoxic T-cells in the duodenum have been observed 0-6 days post-

onset of NoV symptoms (103). Immune responses in infected individuals are short-lived and 

due to the high mutation rate within the variable region of the P2 domain, little immunological 

memory exists in patients when exposed to NoV on a repeated basis.  

1.4 NoV in oyster harvesting waters: Seawater surrounding the oysters can become 

contaminated with HuNoV through various sources such as direct discharge of human or 

animal waste into the body of water (104). In addition, bivalve molluscan shellfish are known to 

actively concentrate microorganisms and viruses. Therefore, seafood can concentrate HuNoV 

and cause foodborne viral illness if consumed raw. Infected individuals may shed as many as 

106 to 1010 infectious virons per gram of faeces, and raw sewage can contain anywhere from 

103 to 105 infectious virons per liter. While there are over 100 different enteric viruses that have 

been observed in human faeces, Hepatitis A virus (HAV) and HuNoV are the ones most 

commonly implicated in seafood-borne outbreaks. Due to its low infectious dose and high 

transmission rate, HuNov is a public health concern. 

There are numerous filtration and concentration techniques to detect the presence of 

HuNoV, however none of the current techniques are optimal or available for use with a range 

of contaminate sources. Several methods often used for concentrating enteric viruses include 

adsorption/elution, electronegative and electropositive membranes, and ultrafiltration. The 

adsorption elution method, commonly referred to as VIRADEL (105) involves the adsorption of 

viral particles to a filter by charge interaction. The viral particles are then eluted from the 

membrane by a pH- adjusted solution. The most common elution buffer is beef extract, 

however in recent years beef extract is no longer used as it has inhibitory effects on PCR (106, 

107). Two different types of filters can be used for the viradel method: an electronegative or 
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electropositive filter. Several studies have shown that the recovery of viruses from seawater 

using a positively charged membrane is quite poor (108), however the presence of multivalent 

salts help facilitate the binding of the virus to a negatively charged membrane (107). Viruses in 

water typically have a negative surface charge, thus the water sample pH must be conditioned 

to change the charge on the viral particles (109). An electronegative filter in conjunction with 

aluminum or magnesium proved successful in recovering human norovirus from various water 

matrixes, not including seawater (110). Results from several studies (111-113) conclude that 

the presence of salt is necessary for optimum viral adsorption to a membrane filter (108). 

Typically there is a wide range in percent recovery rates, some studies reporting percent 

recovery rates as high as 16 to 84% in mineral and river water and 3 to 14% in seawater for 

HuNoV using electronegative membranes  (114).  These vast differences in virus recovery 

may be due to virus type rather than filter type, water matrix, or sample volume (109). Granular 

zeolites are known as molecular filters, and are widely used in industry for water purification 

due to low cost, strong ion-exchange property and large adsorption capacity  (115). Zeolites 

are hydrated crystalline tectoaluminosilicate that have the ability to organize molecules similar 

to their uniform pore size (116). Some zeolites contain microporous hydrated aluminosilicates 

crystals with well-defined structures containing AlO4 and SiO4 tetrahedral linked through the 

common oxygen atoms and have a strong affinity for ammonia (117). Various studies 

suggested the ability of zeolite to adsorb virus and remove contaminants from water. In several 

studies zeolite was documented to remove 99% of viruses and 100% of E. coli from the water, 

and adsorb up to 5 logs of viruses in less than 1 minute (118-121). The adsorption capacity of 

zeolite rendered it suitability in concentration of viruses from seawater. In order to increase the 

recovery rate of viruses from water a secondary concentration step is needed. Beyond primary 
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concentration several studies conduct a secondary concentration step using a Centriprep YM-

50 centrifugation unit to reduce the final volume of the concentrate (107, 122, 123). Although 

effective the use of a Centriprep YM-50 device is an unnecessary expense. Currently, policies 

set in place by governing authorities’ mandates regular monitoring of oyster harvesting waters 

for microbial contamination, they do not regulate the method of detection. Furthermore, 

policies only require harvesting site closures when microbial loads are above a certain 

threshold. Policies do not require harvesting sites to be closed during occurrences of 

suspected NoV outbreaks. In addition to the lack of regulations regarding detection methods, 

no policies require harvesting water testing for viral contamination. As such, harvesting waters 

in the LA area are not directly tested for the presence of viral contaminates during suspected 

outbreaks. Due to the lack of regular testing and the difficulty associated with analyzing 

environmental water samples there is little data on virus occurrences in marine water, 

especially in Louisiana. In order to gain valuable information regarding the prevalence of viral 

contaminates in marine waters researchers must conduct a survey over an extended period of 

time or regularly monitor viral contamination as is done with bacterial loads.  

1.5 Justification: Louisiana is located in the southern part of the United States in an area 

commonly known as the “Gulf Region.” The Gulf Region is comprised of southern states that 

share a boarder with the Gulf of Mexico. Gulf States, including Louisiana play a major role in 

the commercial fishing industry in the United States. According to the “Fisheries of the United 

States 2012” report released by the National Oceanic and Atmospheric Organization, 

commercial fishery accounted for 11.6 billion pounds of seafood in the United States with 

Louisiana contributing 1.2 billion pounds. In 2012, approximately 33.1 million pounds of oysters 

were harvested in the United States accounting for 155.1 million dollars. The Gulf Coast region 
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accounted for 62% (20.4 million pounds) of the 33.1 million pounds of oysters harvested (124). 

Louisiana is widely known for its diverse aquaculture, however it continuously leads the nation 

in oyster harvesting providing 8 to 12 million pounds per year accounting for nearly 1/3 of the 

oyster supply within the United States (125).   

In 1998, the Food and Drug Administration (FDA) released a risk assessment in which 

33.6% of all Louisiana residents who consumed oysters did so raw. This figure was drastically 

smaller in other Gulf States such as Texas (16.5%), Florida (11.4%), and southern California 

(11.2%). A survey of 4,860 participants released in 2003 by the Interstate Shellfish Sanitation 

Conference (ISSC) found that of the population within LA, TX, FLA, and CA those who 

consume oysters raw are typically 40 years old, Caucasian, and males. In addition, the results 

of the survey showed that 4% of those who consume raw oysters are at risk for bacterial or 

viral illnesses due to weakened immune systems (126).  

Bivalve molluscan shellfish are known to actively concentrate microorganisms and 

viruses. As such, oysters can concentrate norovirus and cause foodborne viral illness if 

consumed raw or undercooked. Due to a high percentage of consumers, who prefer to eat raw 

oysters, safety measures must be in place to reduce the public health risk. Throughout the 

world, numerous norovirus outbreaks have been linked to contaminated shellfish (127-132). 

Over the past decade, several norovirus outbreaks (predominately genotypes I and II) in the 

Louisiana area have been linked to the consumption of raw oysters from local harvesting sites 

(Table 1). On average the number of ill individuals is relatively low indicating the rapid 

investigation and recall of food products by Louisiana officials. 
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Table 1: NoV Outbreaks in Louisiana Linked to Louisiana Oyster Harvesting Beds from 2005-
2015 

Date Location Number 
Ill Harvesting Area 

March 2010 Restaurant 14 1 

March 2010 Restaurant 19 7 

March 2010 Restaurant 9 7 

April 2012 Restaurant 14 23 

December 2012 Other 9 30 

Data based on Norovirus Annual Report 2010 by Louisiana Office of Public Health- Infectious 
Disease Epidemiology Section 

Current policy set forth by the Environmental Protection Agency (EPA) recommends 

quantifying fecal coliforms and Escherichia coli in waters as microbial measures indicating the 

presence of human enteric viruses. In accordance, the Louisiana Department of Health and 

Hospitals (LDHH) Oysters Division uses microbial indicator levels as the determining factor in 

closing molluscan shellfish harvesting areas. The use of microbial indicators as a means for 

closing harvesting sites has several gaps that result in an increased likelihood for NoV 

outbreaks to occur. This method is not reliable, as bacterial indicators do not efficiently reflect 

the occurrence of enteric viruses (133). The closure of Louisiana oyster harvesting sites due to 

possible NoV contamination is economically inefficient. Harvesting sites may be closed for 

prolonged periods of time for suspected NoV potentially costing LA 13.5 to 23 million dollars a 

year in revenue loss (125). Although only a small percentage of the total revenue generated by 

LA oysters (approximately 11 to 20 percent), the financial loss accumulates with each closure 

resulting in a significant profit loss. As such, there were several goals for this research project. 

The first objective for this dissertation was to determine the utility of direct detection of HuNoV 

contamination in molluscan shellfish harvesting waters relative to traditional and novel fecal 
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indicators, as a means by which to predict human virus contamination in this important food 

commodity. This was successfully achieved through the performance of monthly surveys of 

selected shellfish harvesting waters for the presence and levels of: traditional fecal indicators 

(i.e., aerobic plate count, generic E. coli, and enterococci), novel indicators (male-specific and 

somatic coliphages), and NoV contamination (genotypes I and II). The second objective for this 

body of work was to develop and optimize a primary filtration and concentration method for the 

rapid and efficient detection of NoV GII in molluscan shellfish harvesting waters. In addition, 

immunomagnetic separation (IMS) was developed and employed for the secondary 

concentration of NoV GII to further removed potential inhibitors. The final objective for this 

body of work was to compare the newly developed filtration and concentration method to 

several established methods often used when detecting NoV in environmental water samples. 

The results of this project provide a new rapid and sensitive primary and secondary 

concentration method for the detection of NoV GII contamination in molluscan shellfish 

harvesting waters. The findings in this study suggest that testing directly for viruses in 

harvestings waters should be regulated closely like bacterial indicators. In doing so, there will 

be a reduction in the risk associated with NoV outbreaks caused by oysters and an increase in 

the protection of public health. The methods described in this research project are easily 

adaptable, cost effective, and when employed have the potential to reduce the profit loss bared 

by Louisiana due to oyster harvesting site closures caused by suspected NoV outbreaks.  
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Chapter 2 Surveillance of Enteric Viruses and Microbial Indicators in Eastern Oysters 
and Harvest Waters Along the Louisiana Gulf Coast 

2.1 Introduction: Noroviruses (NoV) are the leading cause of acute and epidemic 

gastroenteritis in humans. The Centers for Disease Control and Prevention (CDC) estimated 

that approximately 16.1% of the norovirus outbreaks in the U.S. with known transmission 

routes are foodborne (1). NoV belong to Caliciviridae family, and consist of a single stranded, 

positive sense RNA genome. To date, six genogroups of NoV (GI to GVI) have been identified, 

and are comprised of more than 38 genotypes. A tentative GVII has been recently proposed 

(2, 3). Genogroups I, II, and IV infect humans, and the rest are isolated from other species (4, 

5). Despite the extensive genetically divergent nature of noroviruses, the GII.4 strains remain 

the predominant cause of the NoV outbreaks worldwide (6). 

Pathogenic enteric virus particles are shed in large numbers into the faeces or vomit of 

infected individuals and enter the environmental waters by direct discharge or the release of 

wastewater. The viruses are either suspended or precipitated, and can survive for weeks to 

months while retaining their infectivity (7-9). As a result, filter-feeding mollusks inhabiting 

contaminated waters bioaccumulate naturally occurring or anthropogenic microbial pathogens, 

and if consumed either raw or inadequately cooked, transmit them to humans  (7, 10). 

Cases and outbreak incidences of NoV infections due to the consumption of 

contaminated raw or partially cooked shellfish are frequently reported worldwide (11-14). 

According to the CDC, mollusks accounted for 19% of foodborne NoV outbreaks in the U.S. 

from 2009-2012 (15). Bacteriological standards have been developed by the U.S. FDA and 

Interstate Shellfish Sanitation Conference (ISSC), namely National Shellfish Sanitation 

Program (NSSP), on using total or fecal coliforms densities for the regular monitoring and 

classification of harvest waters to assure sanitary quality of shellfish (16), where as in the E.U., 
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the regulations have focused on fecal coliforms in oyster tissues (10). These measures 

effectively enhanced the health of the shellfish consumers against diseases of bacterial origin 

(11); however, pathogenic viruses in oysters have been detected even when levels of microbial 

indicators in oyster or harvest waters remained low (17, 18). 

Coliphages are viruses that infect E. coli and are naturally present in the intestinal tract 

of animals. Male-specific coliphages (FRNA bacteriophages), a subset of coliphages, 

resembles size and genome characteristics of many enteric viruses and have been proposed 

as a suitable viral indicator of fecal contamination and human enteric virus (including NoV) in 

oysters and water but their effectiveness has not been studied intensively in Louisiana oysters 

(17, 19-22). 

This study is the first report on the surveillance of NoV GI and GII and microbial 

indicators of fecal contamination both in oysters and harvest waters along the Louisiana Gulf 

Coast. In addition, we assessed the effectiveness of fecal indicators as determining factors for 

the viral safety of Louisiana oysters with regard to noroviruses.  

2.2 Materials and Methods:  
2.2.1 Sample collection: Biweekly samples of Eastern oysters (Crassostrea virginica) and 

harvest waters were collected from five commercially open shellfish harvesting areas along 

Louisiana Gulf Coast within a period of January to November 2013. For each sampling, 

harvest waters were grab sampled above the oyster beds followed by dredging oysters within 

approximately 65 m2 of each sampling location. Data obtained from the analyses of the 

samples from the sampling areas 9 to 11 (Plaquemines Parish) and areas 12 to 13 (Jefferson, 

Plaquemines and Lafourche Parishes) were clustered as sites A and B, respectively (Figure 7). 

Oysters were double bagged in polyethylene bags, along with the water samples were kept on 

ice, and processed within 24 h of collection.  
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Figure 7: Sampling locations. Triangles denote sampling sites “A” and circles denote sampling 

area “B” 

2.2.2 Oyster processing: Upon sample arrival, oysters were washed using cold tap water, 

and shucked under sterile conditions. For enumeration of microbial indicators, 10-12 whole 

viable oysters (without abductor muscles) including liquor were homogenized and analyzed 

immediately. For the virological analyses, digestive tissues (digestive diverticula and stomach) 

of 10-12 viable oysters were dissected, homogenized, and undergone virus extraction protocol 

as follows.  

2.2.3 Microbial indicators: Standard membrane filtration technique using 47-mm mixed 

cellulose ester membrane filters (EMD Millipore, Billerica, MA) was utilized to quantify viable 

bacterial indicators of fecal contamination in the water samples. Fecal coliforms were 

enumerated using m-FC agar (Difco, Sparks, MD) according to EPA Method 9222. E. coli 

colonies were enumerated on modified membrane-thermotolerant Escherichia coli agar 

(Modified mTEC, Difco) following EPA Method 1603 (23). Enterococci were quantified using 

enterococcus indoxyl-β-D-glucoside agar (mEI, Difco) based on US EPA Method 1600 (24). 

Coliphages were quantified using a single agar layer method according to the U.S. EPA 

Method 1602 (25) which E. coli HS(pFamp)R (ATCC 700891) and E. coli CN-13 (ATCC 

700609) were utilized as host strains for male-specific and somatic coliphages, respectively. 
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The plaque forming units (PFU) were enumerated, and reported as log10 PFU/100mL of water 

sample. 

For the bacterial enumeration of oyster samples, a 1:2 suspension (w/v) of oyster 

homogenate and subsequent decimal dilutions in phosphate-buffered saline (PBS, 0.02 mM 

NaH2PO4, 0.02 M Na2HPO4, 0.15 M NaCl, pH 7.0) were prepared. Aerobic plate counts (APC) 

were counted using pour-plating technique on standard plate count agar (Neogen, Lansing, 

MI) following incubation for 48 h at 35 °C. To enumerate fecal coliforms and E. coli, multiple 

tube fermentation technique (5 tube-3 dilutions) was used as described by American Public 

Health Association for the examination of shellfish (26).The data were reported as log10 most 

probable numbers (MPN)/100 g oyster. Male-specific coliphages (MSC) and somatic 

coliphages (SC) were enumerated from 15 mL (eq. 15 g) whole oysters using a modified 

double-agar-overlay method developed for the analysis of oysters. The data were reported as 

log10 PFU/100g oyster. 

2.2.4 Virus concentration and RNA extraction: Viruses were concentrated from 1 L of the 

duplicate water samples using the adsorption-elution method as described by Katayama and 

others (27) and modified by Fong and others (28). RNA was extracted from 200 µl of the viral 

concentrate using the RNeasy Mini Kit (Qiagen, Germantown, MD). For the oyster samples, an 

adsorption-elution method by incorporating ultracentrifuge was utilized for extraction of enteric 

viruses from 4 g of digestive tissues following the U.S. FDA Gulf Coast Seafood Laboratory 

protocol (Woods and Burkhardt III 2011). In this method, virus concentrates (200 µL) were 

extracted for RNA, utilizing 6 M guanidine thiocyanate (Fisher Scientific, Fair Lawn, NJ) for the 

virus lysis, and RNeasy Mini Kit (Qiagen, Germantown, MD) following the manufacturer’s 
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instruction with minor modifications, in which 15 min hold time was given after adding the 

washing buffers. Extracted RNA were immediately analyzed, or stored at -80 °C until required.  

2.2.5 Detection and quantification of enteric viruses: TaqMan quantitative real-time 

Reverse Transcription-Polymerase Chain Reaction (RT-qPCR) was used for the detection and 

quantification of NoV GI and GII by targeting the most conserved, sensitive and broadly 

reactive ORF1-ORF2 junctions in NoV, as described by Kageyama and others (29) and 

Jothikumar and others (30). For the oysters, pathogenic enteroviruses (EV) that is, Poliovirus, 

Echovirus, Human Coxackievirus, Human Rhinovirus, and Human Enterovirus were also 

analyzed by coamplifying the 5’ untranslated region of the enteroviral genome with a 

panenterovirus primer set utilizing primer and probes developed by Donaldson and others 

(2002). Cepheid SmartCycler® II system (Sunnyvale, CA) was used for all the RT-qPCR 

analyses. 

Detection and quantification of NoV GI and GII in the harvest water were followed 

according to Gentry and others (31). The reaction mixture used a SuperScript® III Platinum 

One-Step qRT-PCR kit (Invitrogen, Carlsbad, CA) in a 25 µL reaction mixture and 2.5 µL RNA 

template. A homogenous internal amplification control (IAC) was incorporated in all reactions 

to evaluate PCR inhibition (Jennifer Gentry-Shields, North Carolina State University, personal 

communication). Reverse-transcription was carried out at 50°C for 15 min, followed by enzyme 

activation for 2 min at 95 °C, and 45 cycles of 15 s at 94 °C, 15 s at 55 °C and 20 s at 72 °C 

(threshold = 30).  

Analyzing enteric viruses in oysters digestive tissues followed a multiplex RT-qPCR 

assay for simultaneous detection and quantification of NoV GI, GII, and EV along with a 

heterogeneous IAC as optimized by Burkhardt and others (32) and Nordstrom and others (33). 
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Reaction mixture used Qiagen® OneStep RT-PCR kit (Valencia, CA) for a total volume of 25 

µL per reaction and 3.0 µL of RNA template. The templates were reverse-transcribed at 50 °C 

for 50 min, and then the HotStarTaq DNA polymerase was activated at 95 °C for 15 min, 

followed by thermal cycling for 10 s at 95 °C, 25 s at 53 °C, and 70 s at 62 °C for a total of 50 

cycles, and a final extension at 72 °C for 10 min (threshold = 10). Reactions considered 

positive when the emission intensities exceeded the threshold during the first 46 cycles. All the 

reactions were carried out in duplicate. NoV GI and GII RNA standards (109 Genomic 

Equivalent Copies (GEC)/µL) were kindly provided by Dr. Christian Moe’s laboratory at Emory 

University (Atlanta, GA), and Human Poliovirus 3 stock (attenuated Sabin strain) kindly 

provided by Dr. William Burkhardt at the U.S. FDA Gulf Coast Seafood Laboratory (Dauphin 

Island, AL), and were utilized as positive controls and for RNA quantification.  

2.2.6 Outbreak sample: The Molluscan Shellfish Program - Louisiana Department of Health 

and Hospitals in January 4, 2013, reported a norovirus outbreak in Cameron Parish due to 

possible consumption of contaminated oysters. Oyster and water samples were collected from 

the suspected area (located in Cameron Parish, basin 3, area 30: 29.85139, -93.37995) on 

January 17, 2013, and analyzed along with a stool specimen, which was sent to LSU/AgCenter 

Food Microbiology Laboratory approximately 14 days after the onset of the acute 

gastroenteritis symptoms from one of the affected individuals known to have consumed raw 

oysters from the suspected area and exhibited gastrointestinal symptoms typical of norovirus. 

A 20% suspension of stool specimen was clarified by centrifugation at 12,400 ×g for 5 min. 

The RNA was extracted from 150 µL of the suspension and analyzed accordingly. 

2.2.7 Sequencing and genotyping: Sequencing was performed either by direct sequencing 

of M13-tailed RT-qPCR products (34) or sequencing the amplified junction region between 
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ORF1 and ORF2 (Region C) of the viral genome (35, 36) cloned into a pCR2.1-TOPO TA 

vector using TOPO® TA Cloning® Kit, with TOP10 E. coli (Life Technologies). Sequences 

were read on an ABI Prism 3130 Genetic Analyzer (Life Technologies), and processed on 

4Peaks (version 1.7.2, Nucleobytes Inc., Amsterdam, Netherlands) and CLC Sequence Viewer 

(version 7.5, CLC Bio, Aarhus, Denmark). The query sequences were aligned against the 

nucleotide database representing different taxonomic groups available at The National Center 

for Biotechnology Information (NCBI) by utilizing The Basic Local Alignment Search Tool 

(BLAST) (37). Phylogenic analysis of the sequences was inferred by using the Maximum 

Likelihood method based on Tamura-Nei model (38) by employing MEGA (version 6.0), a 

molecular evolutionary genetics analysis tool developed by Tamura and others (2013). The 

sequences of the reference strains were retrieved from the GenBank sequence database 

deposited at NCBI (2, 39). 

2.2.8 Statistical analysis: All the analyses were carried out in duplicates and reported as 

mean ± standard error. Significant differences among mean ranks and multiple comparisons 

were evaluated using Kruskal Wallis test at α = 0.05. Pearson product-moment correlation 

coefficients (r) were used to assess dependency and correlation among variables, 

respectively. Software RStudio (version 0.98.1028, RStudio Inc., Boston, MA) was used for the 

statistical analyses and visualization. Data of water surface temperature used in this study was 

obtained from the Giovanni online data system, developed and maintained by NASA Goddard 

Earth Sciences Data and Information Services Center (GES DISC); a threshold of 24 °C was 

considered to categorize the data to warm months (May through October) against cold months 

(November through April). 
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2.3 Results and Discussion: All the sampling locations (areas 9 through 13) were among the 

most active commercial oyster harvesting along the Louisiana Gulf Coast and remained open 

during the sampling period; however, due to adverse weather conditions (heavy rain, 

fogginess, storm, or water level) sample collection from some specific areas or times was not 

possible. Figure 8 shows monthly sea surface temperature of the sampling areas along 

Louisiana Gulf Coast in 2013. Due to the lack of a reliable cell culture system, RT-qPCR has 

been the most widely utilized method for the detection and quantification of NoV in complex 

food and environmental samples where the level of virus contamination is usually low. In this 

study, protocols previously optimized for the analysis of oysters and harvest waters were used 

(17, 18, 40, 41).  

 
Figure 8. Monthly temperature (°C) of sea surface in Louisiana Gulf Coast in 2013. The 

horizontal line denotes the 24 °C threshold to distinguish cold and warm months. 

2.3.1 Microbial indicators: Microbial indicators in both oysters and harvest waters were 

relatively low with no significant difference across sampling sites (p > 0.05, Tables 2-3). Mean 

density of APC in oysters was 5.47 ± 0.13 log10 CFU/100g, and lower than 6.5 log/100g as 

previously reported in Gulf Coast oysters (17). Enterococci along with other fecal indicators 

can be used to evaluate sanitary condition of shellfish harvest water (42). This group of 

bacteria is accumulated in oyster tissues  



 
45 

(43); however they have not yet been considered as a sanitary monitoring criterion in oysters 

(16). In our study, enterococci were analyzed only in harvest water, and present in all the 

samples at 0.50 ± 0.08 log10 CFU/100mL. 

Shellfish harvest areas in the U.S. are classified based on the sanitary survey of water 

and monitoring the concentration of fecal or total coliforms in the surface water (16). Both fecal 

coliforms and E. coli were detected in all the water samples with average concentrations of 

0.69 ± 0.07 and 0.38 ± 0.05 log10 CFU/100mL, respectively. According to the NSSP, the mean 

concentration of fecal coliforms in “approved” classification of shellfish growing water should 

not exceed 1.15 log10 CFU/100mL for mTEC test, with 10% of the samples not exceeding 1.49 

log10 CFU/100mL (16). In our study, fecal coliforms in the water samples were present within 

the acceptable limits.  

Table 2: Microbial indicators in oysters harvested from site A and B, mean ± SE 

Acronyms: APC: aerobic plate count, MSC: male-specific coliphages, SC: somatic coliphages.  
Units: APC: log10 CFU/100g; fecal coliforms and E. coli: log10 MPN/100g, MSCand SC: log10 

PFU/100 
 
 
 
 
 
 

  Month 
Microbial 
indicators 

Site March April July September October 

APC   4.70 ± 0.03 4.76 ± 0.16 6.19 ± 0.13 6.11 ± 0.17 5.87 ± 0.01 
Fecal coliforms  0.69 ± 0.00 1.97 ± 0.23 0.69 ± 0.00 0.92 ± 0.23 0.69 ± 0.00 
E. coli A 0.69 ± 0.00 0.92 ± 0.23 0.69 ± 0.00 0.69 ± 0.00 0.69 ± 0.00 
MSC  1.04 ± 0.00 1.04 ± 0.00 1.04 ± 0.00 1.04 ± 0.00 1.04 ± 0.00 
SC  1.04 ± 0.00 1.11 ± 0.07 1.04 ± 0.00 1.04 ± 0.00 1.04 ± 0.00 
  January February June August November 
APC   4.56 ± 0.28 5.55 ± 0.09 6.06 ± 0.32 5.78 ± 0.16 5.37 ± 0.09 
Fecal coliforms  2.24 ± 0.09 1.15 ± 0.46 0.69 ± 0.00 0.69 ± 0.00 0.87 ± 0.17 
E. coli B 0.92 ± 0.23 0.69 ± 0.00 0.69 ± 0.00 0.69 ± 0.00 0.87 ± 0.17 
MSC  1.04 ± 0.00 1.04 ± 0.00 1.15 ± 0.11 1.04 ± 0.00 1.04 ± 0.00 
SC  1.30 ± 0.15 1.04 ± 0.00 1.04 ± 0.00 1.04 ± 0.00 1.12 ± 0.08 
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Table 3: Microbial indicators in harvest waters from site A and B, mean ± SE 

N.A.: missing data due to some technical issues. Acronyms: MSC: male-specific coliphages, 
SC: somatic coliphages. Units: Enterococci, fecal coliforms and E. coli: log10 CFU/100mL, 
MSC and SC: log10 PFU/100mL. 

Eastern oysters growing in estuarine waters of the Gulf Coast bioaccumulate fecal 

coliforms to a concentration of approximately 4.4 times greater than their surrounding water 

(44). In total, 33.3% and 77.8% of oyster samples of sites A and B, respectively, were positive 

for fecal coliforms. Similarly, lower prevalence of E. coli was observed in the site A with 22.2% 

positive samples against 66.7% in site B. The overall means of fecal coliforms and E. coli in 

oysters (sites A and B combined) were 1.08 ± 0.10 and 0.76 ± 0.04 log10 MPN/100g, 

respectively. Both were lower than the safety levels of 2.52 or 2.36 log10 MPN/100g 

respectively in ≥1 or ≥2 out of 5 sub-samples. 

In our study, the prevalence of MSC and SC were remarkably low. Out of 17 water 

samples, only 29.4% (0.09 ± 0.04 log10 PFU/100mL) and 23.5% (0.06 ± 0.03 log10 

PFU/100mL) were positive for MSC and SC, respectively. In oysters, no MSC was detected in 

site A where as approximately 33.3% of the oyster samples from site B were positive for MSC 

averaging 1.05 ± 0.01 log10 PFU/100g. Somatic coliphages were detected in 16.7% of the 

oysters (site A and B) at 1.08 ± 0.02 log10 PFU/100g. Similar concentrations of MSC in U.S. 

  Month 
Microbial 
indicators Site April February July March October September 

Enterococci  0.39 ± 0.16 1.06 ± 0.23 0.16 ± 0.15 0.52 ± 0.10 0.15 ± 0.03 0.31 ± 0.24 
Fecal coliforms  0.68 ± 0.13 N.A. 0.33 ± 0.21 0.54 ± 0.12 N.A. 1.28 ± 0.20 
E. coli A 0.46 ± 0.19 0.83 ± 0.49 0.21 ± 0.15 0.56 ± 0.03 0.55 ± 0.10 0.31 ± 0.24 
MSC  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.54 ± 0.09 0.00 ± 0.00 0.35 ± 0.40 
SC  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.54 ± 0.09 0.00 ± 0.00 0.00 ± 0.00 
  February June August November 
Enterococci  0.89 ± 0.16 0.08 ± 0.09 0.34 ± 0.31 0.93 ± 0.20 
Fecal coliforms  N.A. 0.45 ± 0.05 0.69 ± 0.47 1.01 ± 0.21 
E. coli B 0.89 ± 0.27 0.10 ± 0.19 0.14 ± 0.18 0.51 ± 0.28 
MSC  0.15 ± 0.21 0.00 ± 0.00 0.00 ± 0.00 0.08 ± 0.15 
SC  0.30 ± 0.43 0.08 ± 0.15 0.00 ± 0.00 0.00 ± 0.00 
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market oysters have been reported by DePaola and others (17). However, higher levels of 

MSC (>3 log10 PFU/100g) have been found in oysters from the U.K. commercial harvesting 

areas (45). In general, even though there were no significant difference between site A and B 

in terms of the bacterial indicators (p > 0.05), it was apparent that site B showed higher 

prevalence of fecal contamination.  

2.3.2 Trends and correlations: In previous studies, Eastern oysters (C. virginica) from the 

Gulf Coast showed seasonality for the accumulation of MSC (increasing from late November 

through January) but not in the case of fecal coliforms and E. coli (44). We did not observe any 

distinctive temporal effect on microbial indicators in oysters except for the APC, which was 

significantly (p < 0.05) higher during warm months in agreement with Shieh and others (46). It 

could be due to a increased rate of digestion in oysters at elevated temperatures (47). These 

observations, however, differ from the report of DePaola and others (17) where the 

concentrations of MSC, fecal coliforms, and E. coli in oysters reached their highest levels in 

the summer at 0.9 log10 PFU/100 g, >3.3 log10 PFU/100 g and 2.3 log10 PFU/100 g, respectively 

with no observed seasonal trend for APC (averaged 6.5 log10 CFU/100 g).  

Overall, no strong positive correlation (r < 0.45) was observed between microbial 

indicators in oysters (data not shown). In the case of water samples, enterococci remarkably 

correlated with fecal coliforms (r = 0.63, p = 0.000) and E. coli (r = 0.64, p = 0.000). In the case 

of the coliphages, most of the obtained data from oysters and water samples fell below or 

around the detection limit, therefore, no strong evidence of correlations with bacterial indicators 

were observed (r ≤ 0.45). Campos and others (7) obtained strong correlation between fecal 

coliforms and E. coli, MSC, and APC in shellfish. During our study, the highest correlation 

among microbial indicators between oysters and water samples were observed between fecal 
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coliforms in water and E. coli in oysters (r = 0.36, p = 0.059). Our results are is agreement with 

Wu and others (2011) that the data linking microbial indicators to virus and bacterial pathogen 

contamination in water is equivocal requiring further examination.  

2.3.3 Norovirus detection: Despite low levels of fecal contamination in the open areas for 

oyster and harvesting water collection, NoV GII was detected in oysters collected from area 12 

(site B) in June 2013. NoV GI or GII was not detected in any of the eighteen water samples 

collected. The RT-qPCR cycle threshold (Ct) values of the positive samples were 42.3 ± 0.2 in 

which was corresponded to 3.53 ± 0.20 log10 GEC/g oyster digestive tissues (r2 = 0.99, and 

RT-qPCR efficiency = 96.25%, Figure 9). Secondary extraction of NoV from the oyster 

samples generated a positive signal as well (data not shown).  

Oyster-associated NoV outbreaks often contain multiple genotypes, and comprise total 

of 2-3 log10 GEC/g of digestive tissues (8, 12, 13, 48). However, the association of RNA 

quantity with the risks to human health may depend on the methodology employed for the 

downstream analysis of the viral genome (13). To date, no NoV outbreak has been linked to 

the oysters harvested in June 2013 from the area 12 (site B). The 98-nucleotide NoV GII 

sequence obtained from RT-qPCR analysis of the oyster sample (Figure 10) showed 90% 

query coverage and 98% identity (expected value of 1:1040) with the NoV GII sequences 

deposited at NCBI nucleotide database (data not shown). Even though, this clearly indicates 

that the reaction was true positive for NoV GII, the RT-qPCR targeted sequence (ORF1-ORF2 

junction) is a highly conserved region in NoV GII, and not suitable for genotyping NoV strains 

(29). So far, no alternative conserved PCR primers have been recognized for the confirmation 

of NoV positive RT-qPCR assays (Knight and others 2013). Positive NoV RNA and negative 

reactions all with the internal controls were also incorporated in all the samples analyzed. Due 
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to the low concentration of NoV in the samples (high Ct value), genotyping through the 

amplification and sequence analysis of regions B, C or D of the viral genome was not possible 

(data not shown) as previously reported (17, 35, 41). 

 

 
Figure 9. NoV Calibration curve (the cycle threshold (Ct) from the multiplex RT-qPCR assay as 

a function of NoV GII RNA concentration per reaction. The gray shaded area denotes 
the 95% confidence interval. 

 

	

Figure 10. RT-qPCR amplicons sequence from the NoV GII positive oyster sample (5’ to 3’). 
Note: IUPAC codes used to indicate the degenerate positions resulted from the degeneracy 
of the forward primer, COG2F (Kageyama and others 2003): Y, C or T; R, A or G; B, not A; 

N, any. 

2.3.4 Outbreak samples: Table 4 summarizes densities of the microbial indicators in the 

suspected oysters and harvest water from Cameron Parish (area 30). The concentrations of 

fecal coliforms and E. coli in oysters were slightly higher than the majority of the samples 

analyzed from sites A and B. Higher levels of indicators in oysters and water could be 

indicative of the presence of noroviruses and other pathogenic enteric viruses (18, 20). RT-

qPCR analysis of the suspected oysters harvested from the area 30 (Calcasieu Lake, LA) and 

the overlaying water did not indicate any NoV contamination. However, the stool specimen 
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obtained from the individual who consumed raw oysters from area 30 was positive for GII (8.55 

± 0.00 log10 GEC/g). 

Table 4: Microbial indicators in oysters and harvest waters from Cameron 
Parish (area 30), mean ± SE. 

 
 
 
 
 
 
 
 
 
Acronyms: APC: aerobic plate count, MSC: male-specific coliphages, SC: somatic coliphages. 
Units (harvest waters): Enterococci, fecal coliforms and E. coli: log10 CFU/100mL, MSC and 
SC: log10 PFU/100mL. Units (oysters): APC: log10 CFU/100g, fecal coliforms and E. coli: log10 
MPN/100g, MSC and SC: log10 PFU/100g 

Phylogenic analysis of the NoV viral genome revealed that the strain belonged to the 

GII.4 Sydney, which has been the dominant NoV outbreaks strain in the U.S. during 2013 and 

2014 (2). Other strains (GI.2, GI.3, GI.4, GII.b, GII.e, GII.2, GII.6, GII.12 and GII.13) have been 

identified in the shellfish or clinical specimens obtained from shellfish-associated NoV 

outbreaks, however the NoV genotypes identified in oysters could rarely be linked to the 

outbreak cases (8, 12, 14, 48). The nucleotide sequence of the stool NoV GII determined in 

this study is deposited in GenBank under the accession number KP455650.  

Our assumption for not detecting NoV in the outbreak-suspected oysters would be the 

lack or low concentration of the NoV in the oysters (< 1.7 log10 GEC/g digestive tissues) were 

available in the area on the sampling date, or secondary transmission which masks the 

connection between sources and outbreaks (12). According to the CDC, food handlers have 

been considered as primary source of NoV transmission contributing to about 70% of the NoV 

outbreaks with known sources in the U.S. (15). 

Microbial 
indicators 

Oysters Harvest 
waters 

Enterococci - 1.02 ± 0.03 
APC 4.63 ± 0.01 - 
Fecal coliforms 1.77 ± 0.17 0.57 ± 0.10 
E. coli 1.15 ± 0.46 0.97 ± 0.06 
MSC 1.04 ± 0.00 0.65 ± 0.30 
SC 1.04 ± 0.00 0.83 ± 0.00 
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2.4 Conclusion: This study surveyed noroviruses and microbial indicators of fecal 

contamination in oysters and harvest waters taken from commercial harvesting areas along 

Louisiana Gulf Coasts, and to evaluate the effectiveness of microbial indicators for assessing 

viral safety of oysters. Microbial indicators (fecal coliforms, E. coli and coliphages) detected in 

oysters and harvest waters were used as an indication of fecal contamination. Based on the 

current standards of fecal coliforms in shellfish harvest water in the U.S., all the samples were 

within the acceptable ranges defined by the NSSP, and could not reliably predict the 

occurrence of NoV in the oysters. Whether detecting NoV in the tested oysters can be 

considered a health hazard is rather complicated because no robust tissue culture technique 

has been developed for laboratory growth of norovirus to distinguish between infectious and 

noninfectious noroviruses (40), and current RT-PCR methods are not able correlate molecular 

detection results with the NoV infectivity (35, 40). 

Due to the difference in the rate of depuration among enteric viruses and fecal 

indicators in oysters, incorporating more efficient microbial sanitary indicators of depurated 

shellfish has been suggested (43). Also, postharvest multiplication of fecal coliforms and E. coli 

can occur in oysters that make applying sanitary measures for oysters at the harvest time 

ambiguous (17). Male-specific coliphages have been recently proposed as a better indicator of 

fecal contamination of U.K. market-ready oysters as they showed a seasonality consistent with 

the trend of shellfish-associated gastroenteritis outbreaks (45). In addition, the NSSP set a 

MSC density of 1.70 log10 PFU (or 50 PFU) per 100 gram of oysters as the threshold for the 

closure of sewage contaminated shellfish growing area (16). In our study, the concentrations of 

coliphages in oysters and harvest waters could indicate fecal contamination; however their 

concentrations were very low and barely detectable. As a result, it is unlikely that they can 
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reliably indicate a potential health risk (17, 20). Therefore, monitoring of harvesting waters and 

oysters for pathogenic enteric viruses is crucial (49). Recently, dual criterion of NoV detection 

and elevated MSC (>1.70 log10 PFU/100g) in oysters has been suggested to flag for potential 

public health issues (17). 
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Chapter 3 Novel Method For Rapid Detection Of Human Norovirus GII In Oyster 
Harvesting Waters Using Zeolite Granules Coupled With Immunomagnetic Separation 

3.1 Introduction: Norovirus (NoV), member of the family Caliciviridae is a single strand RNA 

enteric virus that causes acute gastroenteritis in those infected. NoV has seven identified 

genogroups, three of which pose a public health concern: GI, GII, and GIV, and approximately 

40 different genotypes (1). Throughout the years NoV GII.4 has remained the predominate 

cause of NoV outbreaks worldwide (2). According to the Center for Disease Control and 

Prevention (CDC), annually NoV is the cause of approximately 58 percent of all cases of 

nonbacterial acute gastroenteritis (3). The cost associated with NoV is exorbitant averaging 

approximately 2 billion dollars a year, of which 184 million dollars is associated with seafood 

contamination (4).   

NoV is easily transmitted through direct contact with a contaminated source such as 

faeces and vomit. Furthermore, infected individuals can shed the virus for an extended period 

of time in their faeces even after symptoms have disappeared (5-7). Infected individuals may 

shed as many as 109 infectious virions per gram of faeces (5). Similarly, raw sewage can 

contain anywhere from 103 to 105 infectious virons per liter. NoV potentially enters 

environmental waters in several ways. Sewage contamination and boat discharge have been 

extensively studied and are common sources for NoV contamination in shellfish harvesting 

waters (8-12). Once in the environment, NoV is stable to degradation due to environmental 

factors. In surface waters, NoV can survive for weeks to months possibly due to adsorption by 

organic matter and binding to inorganic matter (13-15). In addition to resisting degradation, 

NoV can remain infective while suspended in environmental waters, thus posing a public 

health risk as most waterborne human enteric viruses exhibit a low infectious dose (16). 

Bivalve molluscan shellfish are known to actively concentrate microorganisms and viruses. As 
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such, seafood can concentrate NoV and cause foodborne viral illness if consumed raw or 

undercooked. Several studies have examined the link between NoV contamination in shellfish 

and fecal pollution in harvesting waters (11, 17, 18).  

 In order to reduce the amount of illness due to contact with a NoV contaminated source 

sensitive, rapid, and reliable detection methods are essential. Several methods often used for 

concentrating enteric viruses include adsorption/elution, electronegative and electropositive 

membranes, and ultrafiltration. The adsorption elution method involves the adsorption of viral 

particles to a filter by charge interaction (19). The viral particles are then eluted from the 

membrane by a pH- adjusted solution. The most common elution buffer for NoV recovery from 

filtration membranes is beef extract; however in recent years beef extract is no longer used as 

it has inhibitory effects on several molecular techniques including real-time polymerase chain 

reaction (RT-PCR) (20-22).  

Concentrating human enteric viruses in environmental water samples has proven to be a 

difficult task. There is a need for an improved primary and secondary concentration method 

that makes possible rapid detection while providing a high recovery rate to aid in addressing 

the public health concern. In effort to increase the percent recovery of NoV from environmental 

water matrices and provide rapid detection of NoV in oyster harvesting waters, we employed 

the use of zeolite granules for the primary filtration and concentration of NoV contaminated 

waters. Additionally, we employed immunomagnetic separation(IMS) as a secondary 

concentration step to further reduce the presence of inhibitors in the elution prior to RT-PCR.  

3.2 Materials and Methods: 
3.2.1 Virus stock: NoV positive fecal (GII.4 Sydney) was obtained from the stool of an 

infected individual associated with a NoV outbreak in January 2013 (Cameron Parish, La., 

area 30) (11). Positive fecal samples were confirmed using RT-PCR and sequencing during 
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previous studies (11).  NoV fecal stock solutions were prepared as previously described in 

Haramoto et al., 2009. One milliliter of NoV GII positive fecal sample was diluted in 9ml of 

phosphate buffer saline. The diluted mixture was centrifuged for 10 minutes at 9500 rpm. 

Following centrifugation the supernatant was collected and stored at -80oC and used as 

positive NoV stocks (2x108gec/ml) (23).  

3.2.2 Zeolite: Zeobrite®Xtreme granular zeolite (Zeotech Co., Fortworth, TX) was used for the 

primary filtration and concentration of NoV from various water matrices. The zeolite used 

during this study had an internal negative charge and a positive surface charge enabling it to 

bind both positive and negative ions.  The zeolite granules had a size range of 0.3-1.4 mm in 

diameter and a total surface area of 45-60 m2/g. The porous granules have the ability to 

capture particles ranging in size from 2 to 20 microns.  

3.2.3 Artificial and Environmental Water Samples: Varying volumes of NoV stock were 

inoculated into artificial and environmental oyster harvesting waters. Artificial marine water was 

prepared by adding marine salt to distilled water resulting in a final salinity of 20 parts per 

thousand (ppt). Environmental water samples were collected at Hackberry Bay in Lafourche 

Parish, Louisiana (29.4088324, -90.0303508). Environmental water samples were collected via 

grab-samples below the surface of the water and stored at -20oC until analysis. Salinity, 

temperature, and turbidity were measured at the time of sampling using a YSI 30 Salinity, 

Conductivity, and Temperature reader (YSI Incorporation., Yellow Springs, OH). Prior to 

filtration, environmental waters were thawed at 25oC for 24 hours. Water samples were 

adjusted to the optimal viral binding salinity (20ppt) prior to zeolite filtration. None of the waters 

were pre-filtered or chemically treated.  
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3.2.4 Optimization of elution buffer: Six different groups of elution buffers were tested for 

their ability to elute NoV from the zeolite granules (Table 5). Each buffer varied in chemical and 

physical properties (molarity and pH). The optimal elution buffer was chosen based on the 

highest percent recovery of NoV calculated based on the RT-PCR results. Each buffer was 

tested in 3 replicates and each replicate was duplicated (n=6). We used SAS software to 

determine the difference between the means using Tukey’s HSD (SAS Institute Inc., Cary, 

NC). The optimal buffer was then used to test for the optimal salinity and temperature for the 

elution of NoV off of zeolite granules.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

3.2.5 Virus concentration and elution using zeolite: Artificial and environmental marine 

water (100ml) was seeded with NoV GII.4 Sydney positive virus stock. The seeded water (140 

µl) was aliquot into an eppendorf tube labeled “pre” and stored at 2-8oC until viral RNA 

Table 5: Average percent recovery of NoV from zeolite granules using preliminary 
buffers tested based on chemical and physical properties1 

Molarity 

Buffer Molarity Average Percent Recovery 
EDTA 0.1-1M 4.67+ 0.03 
NaCl 1-6M N.D2 

pH 

Buffer pH Average Percent Recovery 
Phosphate 1-10 N.D 

Glycine 1-10 N.D 
SDS 1-10 N.D 

Percent weight/volume (%w/v) 

Buffer (%w/v) Average Percent Recovery 
Beef Extract 3 53.44+ 0.15 

Beef Extract in FBS 3 7.54 + 0.02 
Beef Extract in MI 3 14.76 + 0.13 

1No. of trials, 3. 
2N.D – Not Detected 
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extraction. In duplicate, 50ml of water was filtered through 2g of pre-soaked zeolite. As 

described by the manufacturer instructions, prior to filtration the zeolite granules were soaked 

in NoV-negative distilled H2O to activate the surface charges. The zeolite was thoroughly dried 

and combined with 1.5ml of 10% beef extract in McIlvaine’s buffer. The mixture was rigorously 

shaken for 15 minutes at 25oC. Finally, 140 µl of the supernatant was aliquot into a tube 

labeled “elu” and used for viral RNA extraction.  

3.2.6 Immunomagnetic beads: Tosylactivated magnetic beads (Dynabeads M-280, 

ThermoFischer Scientific, Waltham, MA) were coupled to Anti-Norovirus GII.4 mouse 

monoclonal antibodies, produced using VLP GII.4 Minerva 2006 as an immunogen (Abcam, 

Cambridge, MA). As instructed on the manufacturer’s website, 5ug of pre-washed M-280 

beads were coupled with 100ug of monoclonal antibodies (1.0mg/ml) in 0.1M borate buffer pH 

9.5. Ammonium sulphate (3M) in borate buffer was added and the mixture was incubated at 

4oC for 48 hours. The antibody-coupled beads were placed on a magnet and the supernatant 

was removed. The beads were incubated at 37oC in phosphate-buffered saline pH 7.4 with 

0.5% (w/v) bovine serum albumin (BSA) for 1 hour. The beads were again placed on the 

magnet and the supernatant was discarded. Phosphate-buffered saline pH 7.4 with 0.1% (w/v) 

BSA was added resulting in a final antibody-coated bead concentration of 20mg/ml. Epoxy 

magnetic beads were coupled to Anti-Norovirus GII.4 mouse monoclonal antibodies (Abcam, 

Cambridge, MA) using the Dynabeads Antibody Coupling Kit (ThermoFischer Scientific, 

Waltham, MA).  

3.2.7 Virus concentration and elution using zeolite coupled with immunomagnetic 

separation: Artificial and environmental marine water (100ml) was seeded with NoV virus 

stock. A sample of the seeded water (140 µl) was aliquot into an eppendorf tube labeled “pre” 
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and stored at 2-8oC until viral RNA extraction. In duplicate, 50ml of the seeded water was 

filtered through 2g of pre-soaked zeolite. Prior to filtration, the zeolite granules were soaked in 

NoV-negative distilled water. The zeolite was thoroughly dried and combined with 1.5ml of 

10% beef extract in McIlvaine’s buffer. The mixture was rigorously shaken for 15 minutes at 

25oC. The eluent was centrifuged twice at 8rpm for 1 minute to remove any excess zeolite. 

After centrifugation, 33uL of M-280 antibody-coated beads were added to the supernatant and 

incubated at 37oC for 1 hour on a rotator. The solution was placed on a magnet and the 

supernatant was removed. The beads were washed twice in PBS pH 7.4. Finally, 140uL of 

PBS was added to the beads and labeled “elu” for viral RNA extraction. 

3.2.8 Viral RNA extraction: All viral RNA extractions were completed using a Qiamp Viral 

RNA Minikit (Qiagen Sciences Inc., Germantown, MD) immediately after NoV elution from the 

zeolite granules. Briefly, 140 µl of the “pre” and “elu” samples were mixed with 560µl of AVL, 

vortexed, and allowed to sit for 10 minutes at room temperature. After viral lysis, 560µl of 99-

100% ethanol was added to the mixture and vortexed for 15 seconds. The sample mixtures 

were added to minispin columns and centrifuged at 8.0rpm for 30 seconds. The columns were 

washed with AW1 and AW2 wash buffers and transferred into new collection tubes. Viral RNA 

was eluted from the minispin columns using 35µl of AVE. Sample eluents were immediately 

placed on ice and analyzed via RT-PCR.  

3.2.9 RT-PCR:  RT-PCR was used for the detection and quantification of NoV GII in the 

various water matrices. RT-PCR was performed in duplicate using a Cepheid SmartCycler II 

(Cepheid, Sunnyvale, CA). Each RT-PCR template tube contained 11.1µl of RNA and 8.9 µl of 

master mix. The master mix included 5 µl of TaqMan® Fast Virus 1-Step Master Mix (Life 

Technologies Co. Carlsbad, CA), 900 µM of each primer (JJV2F and COG2R), and 150 µM of 
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probe (Ring2P). RT-PCR amplification targeted the ORF1-ORF2 junction as described in 

Kageyama et al., 2003 (24). The thermal cycling conditions were as follows: reverse 

transcription was at 50°C for 5 min, initial denaturation at 95°C for 100 s, and 40 cycles of 

amplification (95°C for 15 s, 55°C for 15 s, 72°C for 30 s).  

3.2.10 Standard curve Standard curves were used for the extrapolation of data for unknown 

RNA samples. Ten-fold dilutions were carried out in duplicate starting from known GII RNA 

standards (109 genomic equivalent copies/µl). RT-PCR was conducted on each dilution in 

duplicate and a standard curve was developed. The amplification efficiency (E) was calculated 

using the following equation: E = (10−slope) −1.  

3.3 Results and Discussion: 
3.3.1 Elution Buffer Optimization and Efficiency: Buffer Optimization:  Four of the 60 

preliminary buffers tested were capable of eluting NoV off of zeolite granules (Table 5). The 

four buffers included: 3% Beef Extract, 3% Beef Extract in Fetal Bovine Serum, 3% Beef 

Extract in McIlvaines Buffer, and 0.5M EDTA. However, upon further validation 0.5M EDTA did 

not result in the recovery of NoV from the granules. Each of the five beef extract buffers were 

able to elute NoV from zeolite, however there was a significant difference between the percent 

recoveries of each buffer (p<0.05).  The 10% beef extract in McIlvaines buffer (% w/v) proved 

most efficient in eluting NoV with a recovery range of 34.95 to 54.24% and an average 

recovery of 41.76 + 0.07% (Table 6). Each of the other beef extract elution buffers including: 

3% beef extract, 3 and 10% beef extract in fetal bovine serum, and 3% beef extract in 

McIlvaine’s buffer resulted in an average percent recovery less than 25% in artificial marine 

water.   
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3.3.2 Salinity, Temperature, and Time: The salinity of the seeded water had a significant 

impact on the percent recovery of NoV (Table 7). There was a statistical significant difference 

between the percent recoveries of NoV at the various salinities with 10 and 20ppt proving 

optimal for NoV binding to zeolite granules. 20ppt was statistically different from the other 

salinities tested except 10ppt.  

Table 6: Percent recovery of NoV from zeolite granules using beef extract buffers1 

 Genomic Copies (GC/ml)  

Buffers Inoculated2 Recovered2 Percent Recovery3 

3% BE 3.28x106    (2.64x106-3.92x106) 8.58x105   (1.86x105-3.53x106)  10.54   (5.79-16.47)ab 

3% BE/FBS 4.87x106    (2.99x106-6.99x106) 4.81x105    (3.43x105-5.80x105)   10.58   (6.52-13.78)ab 

10% BE/FBS 2.33x106    (9.54x105-4.42x106) 4.21x106    (1.94x105-1.17x106)   19.92   (7.50-32.88)ab 

3% BE/MI 6.10x106    (2.99x106-1.08x107) 7.35x105    (6.15x105-8.39x105)   15.25  (7.04-23.84)ab 

10% BE/MI 6.35x106    (4.87x106-8.31x106) 2.68x106    (1.72x106-4.51x106)   41.76  (34.95-54.24)a 

1  No. of trials, 6. 
2 Average RNA genomic copies and range. Large variability in range is due to inhibitors in solid 

fecal material  
3 Percent recovery and standard deviation. Superscripts represent mean comparison report 

based on Tukey’s HSD method. Conditions with different connecting letters are significantly 
different (p<0.05). 

 
 
 
 

Table 7:  Average percent recovery of NoV from artificial water based on salinity using zeolite granules1 

 Genomic Copies (GC/ml)  

Salinity Inoculated2 Recovered2 Percent Recovery3 

10 8.33x106    (2.53x106-6.46x106) 8.55x105    (4.36x105-1.87x106) 30.00   (9.86-73.84)ab 

15 1.04x107    (3.03x106-6.85x106) 5.85x105    (3.55x105-9.76x105)   13.35    (11.01-15.92)b 

20 6.35x106    (2.26x106-3.75x106) 1.07x106    (5.59x105-1.88x106)  40.79   (17.74-75.80)a 

25 2.45x107    (8.89x106-1.61x107) 7.43x105    (3.32x105-1.41x106) 7.56     (2.53-15.83)b 

1No. of trials, 6.  
2Average RNA genomic copies and range. Large variability in range is due to inhibitors in solid fecal 

material  
3 Percent recovery and standard deviation. Superscripts represent mean comparison report based on 
Tukey’s HSD method. Conditions with different connecting letters are significantly different (p<0.05).  
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Although statistically similar to 10ppt, 20ppt resulted in the highest recovery of NoV with an 

average percent recovery of 40.79 + 0.19. An incubation temperature and time curve for the 

inoculation of NoV with zeolite granules in the elution buffer was developed, however no 

significant difference was observed (data not shown). As such, this study employed 25oC for 

15 minutes as the optimal incubation parameters as NoV recovery was the highest at 35.21%.  

3.3.3 Recovery of NoV GII in artificial and environmental waters: Zeolite filtration: NoV 

seeded in artificial water was recovered off of zeolite granules using the optimal conditions 

previously described. The recovery range for artificial water was 17.74-75.80% with an 

average recovery of 40.79 + 0.19% (Table 8). In comparison, the percent recovery range for 

NoV in environmental waters was 5.63-60.90 with an average recovery of 18.95  0.24% 

(Table 8).  

 

Table 8: Average percent recovery of NoV from artificial and environmental oyster harvesting waters 
using zeolite granules and optimal elution conditions1,2  
  Genomic Copies (GC/ml)  

 Water 
Matrices Inoculated Recovered Percent 

Recovery 

Zeolite3 
Artificial 

Environmental 
2.93x106(2.26x106-3.75x106) 

1.40x106(6.01x105-1.85x106) 

1.19x106 (5.59x105-1.88x106) 

1.83x105 (9.24x104-4.02x105) 

 40.79 + 0.19 

18.95 + 0.24 

Zeolite 
with IMS4 

Artificial 

Environmental 

2.84x106(2.62x106-3.29x106) 

4.49x105(4.40x105-4.56x105) 

1.24x106 (6.24x105-1.90x106) 

1.54x105 (1.41x105-1.61x105) 

 44.03 + 0.20  

34.36 + 0.02  

1 Samples from Hackberry Bay, LA 
2 No. trials = 6 
3 Conditions: BE (10%) in McIlvaines Buffer, 20ppt, 25oC 
4 Conditions: BE (10%) in McIlvaines Buffer, 20ppt, 25oC, IMS using Tosylactivated IMBs 
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3.3.4 Zeolite filtration coupled with Immunomagnetic Separation: Although both epoxy (M-

270) and tosylactivated (M-280) immunomagnetic antibody-coupled beads were able to 

recover NoV from artificial water, the percent recovery of M-280 was significantly higher with 

an average recovery of 35.53% (p<0.05). As such, the zeolite protocol was coupled with 

immunomagnetic separation using M-280 tosylactivated monoclonal antibody-bound beads. 

Removal of NoV RNA from the M-280 beads was more efficient using an AVL lysis buffer 

compared to release via 99oC water bath or incubation at 99oC for 5 minutes in a thermal 

cycler (data not shown). The percent recovery range for artificial water was 23.24-72.23 with 

an average percent recovery of 44.03 + 0.20 (Table 8). In comparison, the percent recovery 

range for environmental water was 30.88-35.62 with an average percent recovery of 34.36 + 

0.02 (Table 8).  

3.3.5 Comparison of NoV Recovery between zeolite without and with IMS: NoV was 

recovered from artificial and environmental oyster harvesting waters using zeolite granules in 

the absence of immunomagnetic separation (IMS) at 40.79 + 0.19 and 18.94 + 0.24%, 

respectively.  Similarly, NoV was recovered from artificial and environmental waters using 

zeolite coupled with IMS as a secondary concentration step. Coupled with IMS, zeolite filtration 

resulted in an increased recovery in both water matrices. Zeolite with IMS resulted in a percent 

recovery of 44.03 + 0.20. In comparison, zeolite coupled with IMS applied to environmental 

waters had a percent recovery of 34.36 + 0.02. The observed percent recovery of NoV in both 

artificial and environmental waters was higher when zeolite was coupled with IMS compared to 

the percent recoveries using zeolite alone (Table 8). In addition, the percent recovery range 

within the 6 trials for both artificial and environmental water was significantly smaller when 

zeolite was coupled with IMS (p<0.05). Although the percent recoveries were higher in the 
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presence of IMS, the average percent recovery was reduced in environmental waters 

compared to artificial waters regardless of the use of IMS. There was approximately a 21% 

reduction between the percent recovery of NoV in artificial waters versus environmental waters 

when zeolite was used. Similarly, a 9% reduction was observed between the two waters when 

zeolite was coupled with IMS. However, the observed reduction in the percent recovery 

between artificial and environmental waters was substantially reduced when zeolite was 

coupled with IMS.  

The percent recovery of NoV from seeded artificial and environmental water was used 

to determine the efficiency of the detection parameters including: salinity, incubation time and 

temperature, elution buffer, and use of IMS. NoV was detected using RT-PCR and quantified 

via extrapolation from a standard curve of known NoV concentration. However, although able 

to detect NoV results from RT-PCR cannot determine whether the NoV is infective as a tissue 

culture method has yet to be developed (25). Granular zeolites have been employed in 

previous studies and are documented to remove 99% of viruses and 100% of E. coli from 

water, and adsorb up to 5 logs of viruses in less than 1 minute (26-29). In addition to its 

antiviral and antimicrobial properties, zeolite has been shown to be effective in the reduction of 

both enveloped and non-enveloped viruses (27). The use of dual-charged zeolite as a filter to 

bind NoV proved effective. Our study found NoV in artificial water had an average recovery of 

40.79 + 0.19 while NoV seeded in environmental oyster harvesting waters had an average 

recovery of 18.95 + 0.23. This difference is largely in part due to the presence of inhibitors in 

environmental waters. In the environment, most enteric viruses, including NoV have a negative 

charged (30-32). The zeolite used in this study had a dual surface charge, as such it is 

suspected that NoV bound to the zeolite via electrostatic interaction. However, due to a higher 
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recovery rate in salt water versus fresh water matrices electrostatic interaction cannot be the 

only interaction binding NoV to the zeolite granules. EDTA (ethylenediaminetetraacetic acid) is 

a chelating agent that has been documented to remove aluminum from zeolite (33). The 

removal of aluminum from the zeolite granules by EDTA did not result in the cessation of the 

NoV-zeolite interaction further proving the existence of interactions beyond electrostatic 

interaction.  

  Salt has the ability to increase electrostatic interactions thereby increasing virus 

adsorption to membranes. River and seawater have an abundance of cations and anions 

including: Na+, Mg2+, Ca2+, K+, Sr2+, and Cl-. The presence of trivalent and divalent cations in 

water has the ability to increase electrostatic interaction between virus particles and adsorption 

membranes (34-38). However, monovalent cations have the ability to increase adsorption of 

NoV to membranes as well. Previous studies have shown that salt is needed for increased 

adsorption of viral particles to filter membranes (31, 34, 35). Although salt has proven to 

increase adsorption, some studies have indicated that too much salt can decrease electrostatic 

interaction resulting in a decrease in viral adsorption (31). In our study, the optimal salinity 

concentration was 20ppt. The environmental waters collected for this study have a natural salt 

content that is predominately NaCl. NaCl is an anti-chaotropic salt thereby having the ability to 

strengthen hydrophobic bonds between NoV and zeolite granules (36). The protein capsid of 

virus typically contains amino acid residues such as glutamic acid, aspartic acid, histidine, and 

tyrosine (39). Salt bridge interaction has been shown to occur between viruses and 

membranes and could increase virus adsorption (35). NoV contains a glutamic acid residue on 

its viral capsid that could potentially form a salt bridge interaction with the zeolite granules 

increasing viral adsorption.   
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  Beef extract has long been used as an alkaline protenacious buffer for the elution of 

NoV from various membranes. Typically, beef extract is used at concentrations between 1 to 

3%, however several studies have indicated its ability to inhibit RT-PCR and other molecular 

protocols used to detect NoV (20). Several studies have attempted to reduce the presence of 

inhibitors in beef extract (22, 40, 41). This study used a higher concentration of beef extract 

compared to others (10 % w/v) as such, we employed immunomagnetic separation to further 

purify the eluent and reduce the presence of inhibitors.  

  Tosylactivated paramagnetic beads are often used when conducting immunomagnetic 

separation to capture NoV(42-45). However, Epoxy beads have the ability to bind to antibodies 

and could potentially be used for IMS. Our study found that Epoxy beads are not as efficient in 

recovering NoV, however they can be used as an alternative to M-280 beads. This difference 

may be due to the random orientation binding exhibited by Epoxy beads. In comparison, 

tosylactivated beads facilitate increased interaction in the Fab region resulting in optimal 

orientation for binding. In addition to an increased recovery, we observed more non-specific 

binding with tosylactivated beads than epoxy.  

  We observed an overall higher recovery of NoV from artificial and environmental water 

using zeolite filtration coupled with immunomagnetic separation indicating that IMS did 

successfully reduce the presence of inhibitors prior to RT-PCR. Zeolite filtration and 

concentration coupled with IMS was capable of detecting NoV in environmental water. The 

percent recovery of NoV in our study was higher than most published adsorption-elution 

methods (23, 37, 46-48).  

3.4 Conclusion: Our study provides a rapid sensitive concentration method for the detection 

of NoV from water matrices particularly oyster harvesting waters. The zeolite filtration method 
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detected NoV in seeded waters with salinities ranging from 10ppt to 25ppt. The newly 

developed zeolite filtration method is easily adaptable to field studies and does not require the 

use of complex machinery. Furthermore, zeolite filtration combined with IMS and RT-PCR was 

rapid taking approximately 2.5 hours and results in relatively high percent recoveries of NoV 

from oyster harvesting waters. Due to its ability to effectively concentrate NoV from marine 

water without the need for pretreatment modification and its rapid analysis, zeolite filtration 

could potentially be used for rapid virus concentration from shellfish growing waters at low 

cost, and be conveniently transported to the lab for analysis. 
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Chapter 4 Comparison of Taqman Quantitative Real Time RT-PCR Methods and A 
Commercial Enzyme Immunoassay for the Detection of Norovirus GII in Artificial and 

Environmental Water Matrices 
4.1 Introduction: In the United States, gastroenteritis caused by foodborne illness is 

responsible for approximately 38.4 million illnesses, 71,878 hospitalizations, and 1,686 deaths 

(1). Norovirus (NoV), the predominate etiological agent of gastroenteritis is commonly 

associated with foodborne outbreaks caused by the consumption of raw or undercooked 

shellfish (2, 3). The cost associated with NoV is exorbitant averaging approximately 2 billion 

dollars a year, of which 184 million dollars is associated with seafood contamination (4).  In 

addition to treatment expenses exceeding 273 million dollars per year, suspected NoV 

contamination results in oyster harvesting site closures for prolonged periods of time costing 

states such as Louisiana 13.5 to 23 million dollars annually in revenue loss (5, 6). Norovirus is 

easily transmitted through direct contact with contaminated sources such as faeces and vomit. 

Oyster harvesting areas located in fresh water such as lakes and rivers are vulnerable to fecal 

contamination by sewage discharges from boats, failing septic systems, runoff from urban 

storm water, and sewer overflows. NoV has yet to be propagated in an immortal cell line, thus 

delaying the development of vaccinations and significantly limiting quantifying detection 

methods (7).  

NoV is comprised of 5 genogroups and 32 genotypes (also referred to as clusters) of 

which only genogroups I, II, and IV infect humans (8, 9). Genogroup I, II, and IV contain over 

half of the 32 clusters with each having 8, 19, and 1 respectively (8, 10). NoV has a compact, 

positive-sense, single stranded, non-segmented RNA genome which is organized into three 

open reading frames (ORFs) (8, 11). Due to the lack of a cell culture or animal model for NoV, 

molecular methods such conventional, multiplex, and Taqman quantitative real-time Reverse-

Transcription polymerase chain reaction (RT-qPCR) are used to detect and quantify NoV from 
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various matrices (12-17). RT-qPCR is considered to be highly sensitive, specific, and cost 

effective (14, 18). Most taqman RT-qPCR methods employed for the detection and 

quantification of NoV use similar primers which most often target the ORF1 and ORF2 junction 

as it is the most reactive and highly conserved region within the NoV genome (19). However, 

RT-qPCR methods may vary in the type of reverse transcriptase and polymerase used thus 

potentially impacting the synthesis of cDNA and the assay specificity, respectively. In effort to 

rapidly and effectively detect NoV in water matrices, we employed the use of zeolite granules 

and immunomagnetic separation (previously discussed in chapter 3) coupled with a 

commercial enzyme immunoassay (EIA), or one of two different RT-qPCR methods in effort to 

determine which method was most sensitive and applicable to environmental matrices.  

4.2 Materials and Methods: 
4.2.1 Virus stock: NoV positive fecal (GII.4) was obtained from the stool of an infected 

individual associated with a NoV outbreak in January 2013 (Cameron Parish, La., area 30) 

(15). Positive fecal samples were confirmed using RT-PCR and sequencing during previous 

studies (15).  NoV fecal stock solutions were prepared as previously described in Haramoto et 

al. (20). One milliliter of NoV GII positive fecal sample was diluted in 9ml of phosphate buffer 

saline. The diluted mixture was centrifuged for 10 minutes at 9500 rpm. Following 

centrifugation the supernatant was collected and stored at -80oC and used as positive NoV 

stocks (2x108gec/ml).  

4.2.2 Artificial and Environmental Water Samples: Artificial water samples were prepared 

as previously described in Chapter 3. Environmental water samples were collected at 

Hackberry Bay in Lafourche Parish, Louisiana (29.4088324, -90.0303508). Primary and 

secondary NoV concentration was conducted using the optimal conditions validated in Chapter 

3 (publication pending). As previously discussed, zeolite granules were used for the primary 
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filtration of NoV seeded water. NoV was eluted from the granules at 25oC using beef extract 

(10%) in McIlvaines’ buffer. Secondary concentration was conducted using tosylactivated 

immunomagnetic beads coated in NoV monoclonal antibodies. Each downstream assay within 

a trial was based on the same water sample.  

4.2.3 Viral RNA extraction: All viral RNA extractions were completed using a Qiamp Viral 

RNA Minikit (Qiagen Sciences Inc., Germantown, MD) immediately after NoV elution from the 

zeolite granules. Briefly, 140 µl of the “pre” and “elu” samples were mixed with 560µl of AVL, 

vortexed, and allowed to sit for 10 minutes at room temperature. After viral lysis, 560µl of 99-

100% ethanol was added to the mixture and vortexed for 15 seconds. The sample mixtures 

were added to minispin columns and centrifuged at 8.0rpm for 30 seconds. The columns were 

washed with AW1 and AW2 wash buffers and transferred into new collection tubes. Viral RNA 

was eluted from the minispin columns using 35µl of AVE. Sample eluents were immediately 

placed on ice and analyzed via RT-qPCR.  

4.2.4 RT-qPCR: 

4.2.4.1 SuperScript® III Platinum One-Step qRT-PCR: Detection and quantification of 

NoV GII using TaqMan quantitative real-time Reverse Transcription-Polymerase Chain 

Reaction (RT-qPCR) was completed according to Gentry and others (13). The reaction mixture 

used a SuperScript® III Platinum One-Step qRT-PCR kit (Invitrogen, Carlsbad, CA) in a 25 µL 

reaction mixture and 2.5 µL RNA template. A homogenous internal amplification control (IAC) 

was incorporated in all reactions to evaluate PCR inhibition. The primers used targeted the 

most conserved, sensitive and broadly reactive ORF1-ORF2 junctions in NoV (19, 21). 

Reverse-transcription was carried out at 50°C for 15 min, followed by denaturation for 2 min at 
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95 °C, and 45 cycles of 15 s at 94 °C, 15 s at 55 °C and 20 s at 72 °C (threshold = 30) using a 

Cepheid SmartCycler® II system (Sunnyvale, CA).  

4.2.4.2 TaqMan® Fast Virus 1-Step RT-qPCR: RT-qPCR was performed in triplicate 

using a Cepheid SmartCycler II (Cepheid, Sunnyvale, CA). Each RT-qPCR template tube 

contained 11.1µl of RNA and 8.9 µl of master mix. The master mix included 5 µl of TaqMan® 

Fast Virus 1-Step Master Mix (Life Technologies Co. Carlsbad, CA), 900 µM of each primer 

(JJV2F and COG2R), and 150 µM of probe (Ring2P). RT-qPCR amplification targeted the 

ORF1-ORF2 junction as described in Kageyama et al., 2003 (19). The thermal cycling 

conditions were as follows: reverse transcription was at 50°C for 5 min, initial denaturation at 

95°C for 100 s, and 40 cycles of amplification (95°C for 15 s, 55°C for 15 s, 72°C for 30 s).  

4.2.4.3 Standard curve Standard curves were used for the extrapolation of data for 

unknown RNA samples. Ten-fold dilutions were carried out in duplicate starting from known GII 

RNA standards (109 genomic equivalent copies/µl). RT-PCR was conducted on each dilution in 

duplicate and a standard curve was developed. The amplification efficiency (E) was calculated 

using the following equation: E = (10−slope) −1.  

4.2.5 Enzyme Immunoassay (EIA): EIA was conducted using the RIDASCREEN® Norovirus 

3rd generation EIA kit which employs the use of NoV monoclonal antibodies (mAbs). NoV 

seeded water samples were (100µl) was suspended in 500µl of a protein-buffered NaCl 

solution with 0.1% Kathon CG. The suspension was vortexed well and allowed to settle for 10 

minutes. After removing the supernatant from the stool suspension, 100µl was added to 

separate pre-coated microwells. Next, 100µl of anti-NoV biotin-conjugated mAbs were added 

to each well and the plate was incubated at 25oC for 1hour. The liquid from the microwell plate 

was discarded and each well was washed 5 times using a phosphate-buffered NaCl solution 
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containing 0.1% thimerosal. After the wash step, 100µl of streptavidin peroxidase in a protein 

solution was added to each well. The plate was covered and incubated at 25oC for 30 minutes. 

Following incubation, the wash step was repeated and 100µl of a substrate solution with 

hydrogen peroxide in TMB was added. The microwell plate was incubated for 15 minutes at 

25oC in the dark. Lastly, 50µl of 1N sulphuric acid was added to each plate to stop the color 

change reaction. Each OD value was obtained with 10 minutes of adding the 1N sulphuric acid 

using a spectrophotometer at 450nm wavelength. A NoV positive and negative control (diluent 

1) was ran with each assay.  

4.2.5.1 Standard curve: A standard curve was developed for the EIA assay. Briefly, six 

ten-fold dilutions were carried out in duplicate starting from known GII solid fecal standards 

(108 copies/g). In addition to EIA, RT-PCR was conducted on each dilution in duplicate and a 

standard curve was developed.  

4.3 Results and Discussion: The TaqMan® Fast Virus 1-Step RT-qPCR was successful in 

detecting NoV in artificial and environmental marine water. As previously discussed in chapter 

3, the method used has an expected average percent recovery of 44.08% for artificial water 

and 34.36% for environmental matrices (Table 10). The percent recovery for artificial and 

environmental water using TaqMan® Fast Virus 1-Step RT-qPCR was 38.85% + 0.27 and 

19.77% + 0.07, respectively. In comparison, SuperScript® III Platinum One-Step qRT-PCR 

exhibited an average percent recovery of 11.12% + 0.183 and 15.55% + 0.225 for artificial and 

environmental waters (Table 10). SuperScript® III Platinum One-Step qRT-PCR exhibited a 

lower sensitivity than TaqMan® Fast Virus 1-Step RT-qPCR in the detection of NoV (p<0.05).  
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Throughout this study, SuperScript® III Platinum One-Step qRT-PCR was observed to be 

approximately one log lower in its detection of NoV compared to the TaqMan® Fast Virus 

method (data not shown).  

 The EIA assay was not an effective method for the detection of NoV from environmental 

water matrices (Table 9). When the OD value calculation were completed as outlined by the kit 

instructions, none of the samples provided a positive result. When the OD correction value of 

0.150 was removed from calculations the EIA assay did prove successful in detecting NoV in 

the pre-filtration samples. However, this assay was not sensitive enough to detect NoV in the 

elution samples despite RT-qPCR methods quantifying the virus concentration between 104 

and 105 genomic copies/mL.  

Table 9 RIDASCREEN® Norovirus 3rd generation EIA 
Qualitative Results for the Detection of Norovirus GII from 

Artificial and Environmental Waters1,2 

Water Matrices 
Pre-Filtration 

Qualitative Analysis 
and Mean OD Value  

Elution Qualitative 
Analysis and Mean OD 

Value  

Artificial  Positive 
0.1186 + 0.02 

Negative 
0.033 + 0.01 

Environmental Positive 
0.0746 + 0.01 

Negative 
0.013 + 0.09 

 As previously stated an OD correction factor of 0.150 required in the leaflet for the EIA 

assay resulted in a cut off that was too high for our sample analysis. As such, we recalculated 

the cut off value by averaging the negative controls OD values and creating the cut off ten 

percent below the value. The average OD value for the negative controls was 0.036. As such, 

samples were identified as negative if the corresponding OD value was 0.033 or less. If the 

1No. of trials, 6.  
2 OD Values do not reflect the RIDASCREEN® Norovirus 3rd                           
generation EIA correction factor of 0.150 
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sample OD value was 0.0407 or above, it was identified as positive. Lastly, if the sample OD 

value was between 0.033 and 0.0407, it was labeled undetermined which would require it to be 

assayed again. Based on the EIA results using our methodology (Table 9), qualitative enzyme-

linked immunoassays are can be used as a preliminary screen for the detection of NoV in 

environmental matrices, however secondary molecular testing should be used for validation. 

Several studies have examined the use of EIA and found them suitable for the detection of 

NoV from faeces (22-25). Kirby et al., reported a 63% sensitivity for RIDASCREEN EIA when 

used for detecting NoV in the stool of infected individuals (25). Our study neither supports nor 

refutes this claim, however it does prove that the scope of RIDASCREEN EIA may be limited 

to stool samples. Furthermore, several studies have reported that EIA assays do work in 

detecting NoV, however due to their low sensitivity and narrow scope RT-qPCR should be 

used to validate both EIA positive and negative samples (26-29). Due to the high accuracy and 

sensitivity of RT-qPCR compared to EIA assays it is the superior method when detecting NoV 

in environmental matrices.  

SuperScript® III Platinum One-Step qRT-PCR is most commonly employed for the 

detection of NoV in various sample matrices, however the use of TaqMan® Fast Virus 1-Step 

RT-qPCR is rapidly increasingly especially in environmental studies (30-32). The two RT-

qPCR methods used in this study differ in their master mix components, reverse transcriptase, 

DNA polymerase, and cycling times. Unlike SuperScript® III Platinum One-Step, TaqMan® 

Fast Virus 1-Step is a 4X formulation which allows for more target sample and less master mix. 

This is a critical difference as an increase in formula concentration increases assay time while 

decreasing the necessary volume of supplies.  
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In addition to faster results, TaqMan® Fast Virus 1-Step uses a Moloney Murine 

Leukemia Virus Reverse Transcriptase (MMLV) which is most effective in the synthesis of 

cDNA from mRNA greater than 5kb in length.  SuperScript® III Platinum One-Step, uses 

SuperScript® III Reverse Transcriptase which allows for cDNA synthesis at higher 

temperatures and for difficult secondary structures. Norovirus has been shown to have 

stem/loops and hairpin secondary structures at the 5’ and 3’ end of its genome (33, 34). The 

increased sensitivity exhibited by TaqMan® Fast Virus 1-Step may support the theory that the 

role of the secondary structures of NoV is limited to viral protein translation and not viral 

replication. The manufacturer of TaqMan® Fast Virus 1-Step, Life Technologies Co. has 

indicated that their trademark inhibitor (included in their mastermix) is more effective than 

traditional inhibitors such as RNAse Inhibitor. The increased sensitivity of TaqMan® Fast Virus 

1-Step mixture in this study further potentially supports this claim.  

 4.4 Conclusion: This study proves that the use of EIA is not as effective as RT-qPCR for the 

detection of NoV from environmental matrices. It further validates previous studies claims that 

the RIDASCREEN EIA is limited in its scope of application and should not be employed 

without the use of RT-qPCR for confirmatory tests. Our work successfully shows that 

TaqMan® Fast Virus 1-Step can be applied for the detection of NoV in environmental matrices 

and may have increased sensitivity compared to the commonly employed SuperScript® III 

Platinum One-Step method. Lastly, this study, as a continuation of the previous shows that 

zeolite filtration combined with IMS and TaqMan® Fast Virus RT-qPCR effectively 

concentrates and detects NoV from marine water, thus proving its beneficial potential for 

application in shellfish growing waters.  
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Table 10 Comparison of TaqMan® Fast Virus 1-Step and SuperScript® III PlatinumOne-Step For The Detection Of Norovirus 
GII from Artificial and Environmental Water Matrices1 

  Genomic Copies (GC/ml)   

 Water Matrices Inoculated4 Recovered4 Percent 
Recovery 

TaqMan® Fast 
Virus  
1-Step  

RT-qPCR2 

Artificial 

Environmental3 

2.93x106(2.26x106-3.75x106) 

1.40x106(6.01x105-1.85x106) 

4.24x105 (2.23x105-5.85x105) 

5.48x105 (4.37x105-6.24x105) 

  

38.85 + 0.27 

19.77 + 0.07 

 

 
SuperScript® III 

Platinum 
One-Step 
 RT-qPCR 

 

Artificial 

Environmental 

1.77x106(1.20x105-2.96x106) 

1.16x106(1.75x105-2.14x106) 

2.25x104 (9.75x103-3.88x104) 

5.02x104 (3.94x104-7.25x104) 

 

11.12 + 0.183 

15.55 + 0.225 

 

1 No. trials 6 
2 RT-qPCR method employed in chapter 3 
3 Samples from Hackberry Bay, LAConditions: BE (10%) in McIlvaines Buffer, 20ppt, 25oC 
4 Mean genomic copies/ml and range 
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Conclusions 

This body of work takes a well-rounded approach to detecting NoV in Louisiana oyster 

harvesting waters. This study surveyed noroviruses and microbial indicators of fecal 

contamination in oysters and harvest waters taken from commercial harvesting areas along 

Louisiana Gulf Coasts, and to evaluate the effectiveness of microbial indicators for assessing 

viral safety of oysters. Observed levels of microbial indicators detected in harvesting waters 

were within the acceptable ranges defined by the NSSP, however they could not reliably 

predict the occurrence of NoV in the oysters. As such, a rapid and reliable detection method 

was needed. To meet this need, our study provides a rapid sensitive concentration method for 

the detection of NoV from water matrices particularly oyster harvesting waters. Lastly, this 

study compared commonly employed EIA and RT-qPCR detection methods. It proves that the 

use of EIA are not as effective as RT-qPCR for the detection of NoV from environmental 

matrices. In addition, it proves that TaqMan® Fast Virus 1-Step can be applied for the 

detection of NoV in environmental matrices thus providing rapid results. Overall our study 

supports the need for frequent and continued monitoring of harvesting waters for NoV in order 

to reduce the potential public health risk.  
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