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ABSTRACT 

The bioactive compound vitamin E is essential for human health. It has been reported to 

reduce the risk of cancer, cardiovascular disease, diabetes and aging. One of the main concerns 

about the availability of vitamin E is the stability, or lack thereof, associated with the processing 

and storage of it. Degradation could occur when vitamin E is exposed to light, temperature or 

oxygen, which results in the loss of efficacy. Also, the application of vitamin E is limited 

because of its poor solubility in aqueous media. Among the tocopherols contained in the vitamin 

E family, α-tocopherol (α -TOC) has the highest biological activity. Thus, development of a 

suitable delivery system for α -TOC which overcomes problems of solubility and stability is 

meaningful.  

In the present study, development of a highly protective delivery system for α-tocopherol 

was conducted. The delivery system contemplated was based on soluble dietary fiber (SDF) 

based nanofibers. The first step in the development was fabrication of the nanofibers. They were 

fabricated by using electrospinning. Homogenous, smooth and bead-free nanofibers were 

electrospun from spinning solutions containing 3% SDF. SDF based nanofibers with an average 

diameter of 171.45 nm were observed. Then, α -TOC was encapsulated into SDF based 

nanofibers either by emulsion electrospinning or loading α -TOC into particles and subsequent 

incorporation into SDF nanofibers. High encapsulation efficiency and slow release of α-TOC in 

vitro were obtained for both loading forms of α-TOC in nanofibers. Stability tests of 

encapsulated α-TOC as a function of heat, UV irradiation and storage time were conducted. The 

SDF based nanofiber carrier protected α-TOC from degradation and maintained the most α-TOC 

during storage. The effect of SDF based nanofiber carried α-TOC on the lifespan of C. elegans 

was investigated. Increased lifespan was observed for both N2 and TK22 strains. Also, 
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significant increases of pharyngeal pumping rates were exhibited by TK22. The results suggested 

SDF based nanofiber delivery system not only protected α-TOC from severe conditions, but also 

enhanced its bioavailability.  
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CHAPTER 1 INTRODUCTION 

Vitamin E is an important hydrophobic antioxidant which interacts with peroxyl radicals 

in cell membranes to prevent the propagation of free radical reactions. It has been reported that 

the consumption of vitamin E can help reduce the risk of several diseases, such as cancer, 

cardiovascular disease, diabetes and aging (Herrera and Barbas 2001). Natural vitamin E 

includes four tocopherols (α, β, γ, and δ) and corresponding tocotrienols (α, β, γ, and δ) of which 

α-tocopherol (α-TOC) has the highest biological activity (Herrera and Barbas 2001). Thus, daily 

supplementation of vitamin E is necessary. However, α-TOC has poor water solubility and is 

biologically unstable. α-TOC may be exposed to light, temperature, and/or oxygen during 

processing and storage, which results in degradation or isomerization and loss of its beneficial 

effects on human health.  

Nanotechnology is an emerging technology that shows great potential in nutritional and 

functional foods production (Chen, Weiss and Shahidi 2006). Nano scale materials have 

numerous benefits such as faster intestinal absorption, higher cellular uptake, targeted delivery, 

and maximized in vivo effect. Nano-encapsulation is a significant technology that can preserve 

sensitive bioactive compounds by entrapping nutrients in a core structure within a protective 

shell. The nano-encapsulation of bioactive compounds not only protects them from severe 

processing and storage conditions, but can also achieve controlled release of encapsulated 

nutrients to a specific site (Luo et al. 2011).  

Nanofibers are fibers with diameter ranging from 5 to 500 nm (Deitzel et al. 2001). 

Nanofibers have high surface area to volume ratio, tunable porosity, and malleability to form a 

variety structures for desired properties and applications (Sadri et al. 2012, Xu et al. 2012). They 

have been widely used for filtration, drug delivery, food texture alterations, encapsulation of 
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food additives, wound dressings and tissue engineering (Torres-Giner, Gimenez and Lagarona 

2008). As a protective carrier, nanofibers shield from environmental oxygen, heat, and light. This 

could increase the stability of entrapped nutrients. Moreover, a bioactive compound can easily be 

loaded into nanofibers through an electrospinning process without severely influencing the 

compound’s bioactivity. Also, the release profile can be precisely controlled through modulating 

the morphology, porosity and composition of the nanofibers.  

Various materials including natural and synthetic polymers have been studied for use in 

the fabrication of nanofibers. Due to the biocompatible, biodegradable, and non-toxic property, 

biopolymers like food proteins and polysaccharides are ideal materials for nano-encapsulation of 

bioactive compounds for food applications. Polysaccharides have a wide variety of sources in 

nature. They are stable, non-toxic, and can be easily modified to produce a variety of derivatives. 

What’s more, hydrophilic groups such as hydroxyl, carboxyl and amino groups contained in 

polysaccharides could interact with biological tissue, for example, in bio adhesion with epithelia 

and mucous membranes and thus increase the absorbance of encapsulated bioactive compounds 

(Liu et al. 2008).  

Soluble dietary fiber is soluble in water. It includes pectin, β-glucan, guar gum and 

psyllium, which can be separated into viscous and non-viscous fibers. Abundant epidemiological 

studies have shown that high soluble dietary fiber intake could effectively reduce serum 

cholesterol and thus reduce the risk of cardiovascular disease. Soluble rice bran fiber (SDF) 

extracted from defatted rice bran with dilute alkali retains cholesterol lowering activity (Aoe et 

al. 1993a). The main components of hemicelluloses extracted from rice bran are arabinose and 

xylose with small amounts of galactose and glucose (Aoe et al. 1993a, Scheller and Ulvskov 
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2010). Hemicelluloses as coating materials have exhibited low oxygen permeability (Wan et al. 

2011). These characteristics make SDF an ideal delivery system for bioactive nutrients.   

In order to fabricate SDF nanofibers with sufficient protection, effective absorption and 

controlled release of encapsulated nutrients, cospinning polymers is required for nanofiber 

formation. Polyethylene oxide (PEO) is the simplest hydrophilic polymer. Due to the balanced 

hydrophobic and hydrophilic interactions of its chemical structure, it is soluble in water over a 

broad range of temperature (Branca et al. 2013). Because of its biocompatibility, non-

immunogenicity and low toxicity, PEO has been widely used in the biomedical field (Bianco, 

Calderone and Cacciotti 2013). Besides,  PEO is permitted by FDA as a food additive for direct 

addition to food for human consumption (FDA 2012). 

The overall goal of this dissertation was to develop a highly protective and safe delivery 

system for α-TOC. A SDF based nanofiber delivery system should not only improve α-TOC 

stability but also enhance the bioavailability and controlled release property of α-TOC in vivo. 

Dietary fiber with its concurrent health benefits will also be consumed with the consumption of 

the α-TOC supplement. The SDF based nanofiber delivery system will not only be applied to α-

TOC, but also can be applied to other hydrophobic nutraceuticals.  
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CHAPTER 2 LITERATURE REVIEW 

2.1 Encapsulation and Nanotechnology 

Encapsulation as a novel technology has gained increased interest in recent years. 

Encapsulation is the technology that incorporates core material into wall material. Core materials 

such as bioactive compounds, nutrients, and drugs are immobilized in a wall material or shell 

material such as polymers to achieve the desired purpose, i.e., protection or enhanced 

bioavailability. A number of encapsulation studies have been conducted in pharmaceutical and 

medical research for drug delivery, cancer treatments, and gene therapy. Encapsulation has 

shown a protective effect of encapsulated bioactive materials against changes in the 

environment, enzyme activity, extreme pHs, temperatures, and ionic strengths (Mozafari et al. 

2008). The application of encapsulation technology in the food area has become popular in 

recent times. Sensitive bioactive components such as proteins, enzymes, vitamins, antioxidants 

and flavors are protected from severe environmental conditions or extreme processing 

conditions. The stability can be increased during processing and storage, and undesired 

interactions with the food matrix can also be prevented. More importantly, a controlled release of 

bioactive compounds can be achieved by specifically designed wall materials and to enhance 

bioavailability.  

Nanotechnology as an emerging technology shows great potential in its application for 

production of nutritional and functional foods (Chen et al. 2006). Nano scale food materials 

prepared by physical and chemical energy have increased surface area to volume ratio, and are 

endowed with new outstanding characteristics that bulk materials do not have (Zhu et al. 2010). 

Compared with bulk materials, nano materials have tremendous advantages such as faster 

intestinal absorption, higher cellular uptake, target delivery and increased bioavailability (Feng et 

al. 2009). 
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2.2 Nanofiber Delivery System 

Generally, the delivery system for encapsulated bioactive components can be solid or 

liquid, spherical or non-spherical particles, fibers or tubes and networks with gel-like or sponge-

like characteristics (Arecchi, Mannino and Weiss 2010). Due to the unique properties, nanofiber 

delivery systems have attracted an increasing interest in recent years.   

Several factors should be considered when creating a delivery system for nutrients for 

food applications: 1) all ingredients must be non-toxic with low cost; 2) the delivery system must 

be stable during processing and storage under different temperatures, light, oxygen, and 

mechanical forces; 3) the addition of a delivery system should not affect the characteristics of 

food products, such as appearance, texture, and flavor; and 4) controlled release of incorporated 

bioactive compounds (Ziani, Fang and McClements 2012).  

2.2.1 Introduction of Nanofiber 

Nanofibers are continuous filaments with a diameter ranging from several nanometers to 

one micrometer. They have very high surface area-to-volume ratios, high porosity, and are easy 

to use to fabricate different structures. Due to their unique properties, nanofibers have been 

widely used in the biomedical field for drug delivery, tissue engineering, wound dressing, as a 

biocatalysis and for biosensing (Xie, Li and Xia 2008), environmental protection such as 

filtration, metal ion adsorption and recovery, carriers for catalysts and enzymes, sensors, energy 

harvesting and storage (Fang 2011). As a delivery system, the release rate of encapsulated drugs 

or bioactive compounds can be controlled by modifying the structure, porosity, diameter and 

composition of nanofibers, as well as loading dosage and incorporation method of drugs or 

bioactive components (Qi et al. 2010).    
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2.2.2 Electrospinning for Nanofibers Production 

Different methods have been developed to fabricate nanofibers, such as drawing, 

template synthesis, self-assembly, phase separation, melt-blowing, and electrospinning. 

Electrospinning is the simplest, most cost-effective and most capable method for large scale 

production of nanofibers (Fang 2011, Baba et al. 2013). Electrospinning technique was started in 

1897, patented in 1934, and received much attention in the early 1990s (Kriegel et al. 2008). A 

basic set-up of electrospinning includes a high voltage power supply, a syringe pump, a syringe 

with a flat-end metal needle, and an electrically conductive collector (Figure 2.1). Spinning 

solutions are stored in a syringe and fed by a syringe pump. A needle is fixed to a bracket with 

adjustable height. An electrode of power supply is connected to the needle, and another one is 

attached to the grounded collector. During electrospinning, a DC voltage is applied on the needle 

containing the spinning solution, and the surface of the spinning solution is charged. Mutual 

charge repulsion and the contraction of the surface charges to the counter electrode cause an 

opposite force to the surface tension (Huang et al. 2003). The increase in intensity of the electric 

field, a conical shape known as the Taylor cone is formed on the surface of a drop at the needle 

tip in order to balance the repulsion and the surface tension of the drop. A liquid jet of solution is 

generated from the cone tip once the critical voltage is achieved, and the jet is accelerated 

towards the grounded collector by electrical potential in a whipping motion to form continuous 

thin fibers (Fung, Yuen and Liong 2011). Solvent is evaporated during the process and leaves 

behind a charged fiber.  
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Figure 2.1 Schematic diagram of a basic set-up of electrospinning system 

 
Spinning solution properties and processing parameters affect the electrospinning process 

(Yu 2009, Kriegel et al. 2008), with molecular weight, structure of polymer such as branched or 

linear, viscosity, conductivity, dielectric constant and surface tension as main factors that 

influence the electrospinning process. Viscosity of the polymer solution as a key parameter in 

electrospinning has a significant effect on the morphology of nanofibers. On one hand, low 

viscosity means low concentration of the polymer, in which finer nanofibers may result. On the 

other hand, lower viscosity means lower viscoelastic force, where the jet is more likely to break 

up and form droplets. Thus the viscosity of polymer solution should be high enough to prevent 

the jet from breaking apart into droplets. For processing parameters, voltage, distance between 

the tip and collector, temperature, humidity and air velocity in the chamber, and the flow rate, 

impact the electrospinning, which voltage as the most important factor. A high voltage is 

required to form a stable Taylor cone, thus the jet can be ejected. Also, the nanofiber diameter is 

affected by the voltage (Kriegel et al. 2008). When the solution conditions and the process 

Taylor cone 

+ 
+ 
+ + 

+ 
+ 
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conditions are not ideal, the jet may break apart into little droplets and particles will be collected 

in the collector rather than fibers. 

Electrospinning techniques, including conventional, coaxial and emulsion 

electrospinning, have been used for bioactive components entrapped nanofibers production. For 

conventional electrospinning, bioactive components are entrapped within using polymers, and 

for coaxial and emulsion electrospinning, bioactive components and drugs are encapsulated 

within nanofibers. Conventional electrospinning is easier than coaxial and emulsion 

electrospinning due to the preparation process of spinning solutions. However, an apparent initial 

burst release of embedded drugs or bioactive compounds is formed (Qi et al. 2010). Coaxial 

electrospinning is used to fabricate core-sheath nanofibers (Ji et al. 2013, Maleki et al. 2013, 

Chang et al. 2013, Huang et al. 2013, Thuy et al. 2012, Kriel, Sanderson and Smit 2012, 

Pakravan, Heuzey and Ajji 2012). Even though the initial burst release can be reduced in core-

sheath nanofibers, the electrospinning setup is complicated and the process is challenged. In 

coaxial electrospinning, there are two different solutions, one is supplied to the inner capillary 

and another is supplied to the outer capillary. Thus, a double-compartment syringe with a core-

shell nozzle or two separate syringe pumps for supplying two polymer solutions and pipelines 

leading to a core-shell nozzle are required. In order to synthesize high quality nanofibers, the 

solvent for the inner solution and the electrospinning conditions should be optimized. Emulsion 

electrospinning is developed to fabricate core-sheath nanofibers with a conventional 

elestrospinning setup (Xu et al. 2006). Emulsion electrsospinning differs from conventional 

electrospinning, an emulsion is used as electrospinning solution instead of polymer/nutrient 

blend.  
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2.2.3 Application of Nanofiber in Nutraceutical Delivery 

The application of nanofiber for biomedicine and drug delivery has attracted substantial 

interest and has been summarized in recent reviews (Goh, Shakir and Hussain 2013, Sridhar et 

al. 2013, Pillay et al. 2013, Leung and Ko 2011, Cui, Zhou and Chang 2010, Chakraborty et al. 

2009, Yoo, Kim and Park 2009, Li, Mauck and Tuan 2005, Xie et al. 2008). Due to their unique 

properties, the application of nanofibers for nutraceutical delivery and food science is getting 

popular recently.  

Food ingredients such as vitamins, probiotics, functional lipids and amino acids serving 

as bioactive components play an important role in human health. Even though they have 

functional ability, they are sensitive and unstable when expose to extreme environments. 

Utilization of nanotechnology on nutraceuticals can protect them during processing, storage and 

gastrointestinal transit before they reach the target. Nanofibers can be used for nutrients delivery 

and to protect encapsulated bioactive compounds against heat, pH, moisture and light (Konwarh, 

Karak and Misra 2013). Also, controlled release can be achieved and the bioavailability of 

nutraceuticals can be improved. The application of nanofibers as carriers of bioactive nutrients 

was summarized below.    

2.2.3.1 Polyphenol 

Curcumin was incorporated into electrospun cellulose acetate fibers with average 

diameters ranging from 314 to 340 nm (Suwantong et al. 2007). The release assay of curcumin 

showed that almost all of the curcumin incorporated in nanofibers was released into the medium. 

Curcumin retained its antioxidant activity after electrospinning with a high electrical potential. 

Other studies of incorporation of curcumin into electrospun fibers have been conducted 

(Suwantong, Ruktanonchai and Supaphol 2010, Brahatheeswaran et al. 2012).   
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In the study by Li et al. (2009), an electrospun zein nanofiber was used as a carrier for tea 

polyphenol (-)-epigallocatechin gallate (EGCG) to improve its stability. They found that EGCG 

loaded nanofiber, after aging at 0% relative humidity for at least 1 day, had better protection and 

recovery (>98%) of polyphenol than freshly spun nanofibers (82% recovery).   

Raspberry extract was incorporated into electrospun soy protein isolate-based fibers 

(Wang et al. 2013). The study showed that the addition of anthocyanin-rich red raspberry extract 

(ARRE) affected the electrical conductivity of electrospinning solutions, which decreased with 

increasing ARRE. ARRE addition did not change the fibers morphology significantly. Also, the 

spinning solution had a higher level of anthocyanins when ARRE was added after soy protein 

isolate denaturation, and a greater antibacterial activity was observed in ARRE loaded 

electrospun fibers.    

2.2.3.2 Vitamin 

Fernandez et al. (2009) successfully encapsulated light sensitive antioxidant β-carotene in 

zein electrospun fibers. The cross-section diameter of β-carotene encapsulated zein fibers ranged 

from the micro to nano scale. β-carotene was widely dispersed inside the fibers and was stable. 

Also, the encapsulated β-carotene had a significantly increased light stability when exposed to 

UV-vis irradiation.  

Electrospun cellulose acetate nanofibers were used as delivery carriers for Vitamin A and 

vitamin E to the skin (Taepaiboon, Rungsardthong and Supaphol 2007). Smooth fibers with 

average diameters ranging from 247 to 265 nm were obtained. Compared with vitamin loaded 

cast films, vitamin loaded electrospun fibers exhibited a gradual increase without a burst release 

of vitamins.  
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2.2.3.3 Enzyme 

Electrospun fibers can be used as a delivery system for enzymes. Superoxide dismutase 

(SOD) was loaded into PLLA electrospun fibers and its antioxidant activity was investigated 

(Chen et al. 2010). The study reported that no obvious initial burst release of SOD from 

electrospun fibers was observed. The antioxidant activity of SOD remained stable during 

electrospinning and the release process, and the released SOD had high antioxidant activity.      

2.2.3.4 Probiotics 

Probiotic B. animalis Bb12 was encapsulated into poly(vinyl alcohol) electrospun 

nanofibers by coaxial electrospinning (Lopez-Rubio et al. 2009). The electrospun fibers had an 

average diameter of 150 nm. It was reported that the melting point and crystallinity of nanofibers 

decreased and the glass transition temperature was increased with the incorporation of probiotics. 

Encapsulated B. animalis Bb12 remained viable for 40 d at room temperature and 130 d at 4 °C, 

while a significant decrease was observed in non-encapsulated bacteria.     

2.2.3.5 Other functional compounds 

    The extracts from the fruit hull of mangosteen was successfully incorporated into 

electrospun poly (vinyl alcohol) fibers (Opanasopit et al. 2008). The average diameter of extract-

loaded fibers was 197.3 nm with clear and smooth surfaces. An initial burst release of extracts 

was observed on extracts-loaded fibers compared with extracts-loaded cast films.   

Antioxidant ferulic acid was also encapsulated in zein fibers using coacial 

electrospinning (Yang et al. 2013). A higher quality of ferulic acid loaded fibers with a rounder 

morphology, more homogeneous structures, smaller diameters and narrow size distribution were 

obtained compared to fibers prepared by the single-fluid electrospinning process. Ferulic acid 

was encapsulated into zein fibers by hydrogen bonding and presented in an amorphous state. The 

in vitro release tests showed that ferulic acid encapsulated in zein fibers produced by coaxial 
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electrospinning had better sustained release profiles with a smaller initial burst effect and less 

tailing-off release than those fabricated by the single process.        

Gallic acid, a naturally antioxidant, was encapsulated into zein nanofibers with cross-

section diameters ranging from 327 to 387 nm (Neo et al. 2013). It was reported that gallic acid 

had retained DPPH scavenging activity before and after incorporation in zein nanofibers. A 

different thermal stability of gallic acid loaded zein fibers was shown because of the 

incorporation of gallic acid. The incorporation of gallic acid into ploy(L-lactic acid) electrospun 

fibers was also studied (Chuysinuan et al. 2009).         

Electrospun nanofibers can be a carrier for emulsions containing lipophilic bioactive 

compounds. An antimicrobial phytophenol (eugenol) was encapsulated into poly (vinyl alcohol) 

nanofibers and the mean diameter of fiber ranged from 57 to 126 nm with a broad distribution 

(Kriegel et al. 2009). The diameter of nanofibers decreased with increased surfactant content and 

decreased eugenol concentration. Eugenol droplets were homogenously dispersed in the 

nanofibers.  

2.2.4 Nanofiber Materials 

Polymers, including synthetic and natural, have been successfully electrospun into 

nanofibers. Synthetic polymers, such as polylactide (Zhang et al. 2012), polyglycolide acid 

(PGA) (You et al. 2005), and polycaprolactone (PCL) (Song et al. 2013), polyglycolic acid 

(PGA) (Aghdam et al. 2012), polylactic acid (PLA) (Hu et al. 2013a), polyethylene oxide (PEO) 

(Jacobs, Patanaik and Anandjiwala 2011), and polyvinylacetate (PVA) (Park, Lee and Bea 2008) 

are commonly used for nanofiber fabrication because of their low cost, high availability, and 

they have more choices of well-defined molecular and functional characteristics. Biopolymers 

have gained increased interest especially in the application of nanofibers in the food industry due 

to the safety concern. They are biocompatible, biodegradable, nontoxic and renewable. What’s 
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more, additional value is added when using biopolymers as raw material for nanofiber 

fabrication. Polysaccharides and proteins are two large groups of biopolymers that are used for 

nanofibers fabrication, they are generally recognized as safe (GRAS). Many biopolymers have 

been investigated for nanofiber production. For instance, polysaccharides include chitosan 

(Dogan et al. 2013), alginates (Bonino et al. 2012), cellulose and cellulose derivatives (Xiang et 

al. 2013, Konwarh et al. 2013), and dextran (Unnithan et al. 2012); proteins include collagen 

(Kobayashi et al. 2013), gelatin (Hu et al. 2013b), casein (Xie and Hsieh 2003), wheat protein 

(Woerdeman et al. 2005), zein (Yao, Li and Song 2009), eggshell membrane proteins (Xiong et 

al. 2012), egg albumen (Rathna, Jog and Gaikwad 2011), bovine serum albumin (Zhang et al. 

2006), and silk fibroin (Sheng et al. 2013).  

However, the fabrication of nanofibers from biopolymers is limited by the properties of 

polymers. Usually, the preparation of biopolymers is time consuming, and sometimes 

purification is required, which is high-cost. Also, since they have a relatively high level of 

crystallinity or polarity, biopolymers have low solubility in most organic solvents. What’s more, 

because of the strong hydrogen bonds, many biopolymer solutions may have a high viscosity or 

form gel, which may not be good for electrospinning. The poor mechanical properties of 

biopolymer fibers is also one concern (Kriegel et al. 2008). Thus, synthetic polymers are usually 

used together with natural polymers to overcome the limitations. It is considered that synthetic 

polymers have more flexible chains, which can wrap themselves around the more rigid 

biopolymers, therefore the required linkages and entanglements are provided and the blend 

solution can be successfully electrospun into nanofibers (Duan et al. 2004). In addition, the 

biocompatibility of nanofibers can be improved and good mechanical properties can be reached 

when blending biopolymers and synthetic polymers for nanofiber production (He et al. 2005).   
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2.3 Soluble Rice Bran Dietary Fiber  

2.3.1 Dietary Fiber 

According to American Association of Cereal Chemists (AACC 2001), dietary fiber is 

the edible parts of plants or analogous carbohydrates that are resistant to digestion and absorption 

in the human small intestine with complete or partial fermentation in the large intestine. It 

includes polysaccharides such as cellulose and hemicellulose, oligosaccharides, lignin, and 

associated plant substances such as waxes, cutin, and suberin. Epidemiological studies have 

shown that high dietary fiber intake effectively prevents colon cancer (Fechner, Fenske and 

Jahreis 2013), breast cancer (Li et al. 2013), atherosclerosis (Eussen et al. 2011) and 

development of non-insulin dependent diabetes mellitus (Moore, Park and Tsuda 1998, Cho et al. 

2013), as well as reduces serum cholesterol and thus reduces the risk of cardiovascular disease 

(Hu and Yu 2013, Viuda-Martos et al. 2010).  

Dietary fiber can be divided into soluble and insoluble fibers. Soluble dietary fiber is 

soluble in water (Doleyres, Fliss and Lacroix 2002). It includes some hemicellulose, pectin, β-

glucan, gums, psyllium and storage polysaccharides, which can be separated into viscous and 

non-viscous fibers. For soluble viscous but relatively non-fermentable fibers, a gel is formed that 

binds bile acids in the small intestine and thus increases their excretion in the feces. For soluble 

non-viscous fibers, fermentation takes place in the caecum and colon to produce short chain fatty 

acids (e.g. acetate, propionate, and butyrate), which may indirectly reduce blood cholesterol 

through inhibition of hepatic cholesterol synthesis (Gunness and Gidley 2010). 

2.3.2 Soluble Rice Bran Dietary Fiber  

Dietary fiber can be obtained from cereals, legumes, fruits, vegetables, nuts, and seeds. 

Cereals as a primary source of dietary fiber contribute 50% of the fiber intake in western 

countries (Lambo, Oste and Nyman 2005). Rice bran is a by-product during rice milling, and 
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consists of 10% of the grain composition together with germs. Rice bran can be a good source of 

dietary fiber (Randall et al. 1985). Rice bran contains high amounts of dietary fiber ranging from 

25.5% to 40%, and soluble dietary fiber ranging from 2.3 to 4.3% (Aoe et al. 1993a, Abdul-

Hamid and Luan 2000, Sudha, Vetrimani and Leelavathi 2007). 

Soluble rice bran fiber (SDF) is extracted from defatted rice bran with dilute alkali 

solution. SDF primarily contains hemicelluloses, which are a heterogeneous group of 

polysaccharides with β- (1     4)-linked backbones. The main monosaccharide components of 

soluble hemicelluloses extracted from rice bran are arabinose and xylose with small amounts of 

galactose and glucose (Aoe et al. 1993a, Scheller and Ulvskov 2010, Wan, Prudente and Sathivel 

2012). 

2.3.3 Health Benefits of Soluble Rice Bran Fiber 

SDF extracted from rice bran exhibited health benefits, such as antioxidant activity, 

cholesterol lowering capacity, immune modulation and antitumor properties, which are 

summarized below. 

2.3.3.1 Antioxidant activity 

It has been reported that polysaccharides from rice bran have strong antioxidant 

properties. Zha et al. (2009b) tested the antioxidant properties of polysaccharide extract from rice 

bran with hot-water. They found that the polysaccharides composed of 54.1% of Glu, 10.5% of 

Man, 21.7% of Gal, 7.4% of Rib and 6.3% of Ara had good capability of scavenging superoxide 

radical, hydroxyl free radical and anti-lipid peroxidation at concentration of 1.0 mg/mL. They 

also compared the antioxidant activity of water extracted polysaccharides and NaOH extracted 

polysaccharides (Zha et al. 2009a). The results showed that 5% (w/v) NaOH extracted 

polysaccharides had higher hydroxyl free radical scavenging capability of 84.8% than water at a 

with the concentration of 1.0 mg/mL. 
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The antioxidant activity of xylo-oligosaccharides (XO) obtained from rice bran was also 

evaluated (Veenashri and Muralikrishna 2011). This study showed that XO from rice bran had 

antioxidant activity of 60% with XO concentration of 1000 µg/mL by DPPH and ferric reducing 

anti-oxidant power (FRAP) assays, and had a better antioxidant activity co-efficient compared 

with XO from ragi, maize and wheat brans. Another study was also conducted by the same 

authors on the antioxidant activities of soluble hemicellulosic saccharides extracted from rice 

bran (Rivas et al. 2013). The results demonstrated that hemicellulose-derived saccharides had 

radical scavenging capacity and protected the emulsion against oxidation, and these capacities 

were dependent on the concentration.   

2.3.3.2 Antitumor activity 

Antitumor activity is another health benefit of SDF. Takeshita et al. (1992) examined the 

antitumor activity of rice bran polysaccharides, and reported that they prevented the reduction in 

immunocompetence, suppressed carcinogenesis and prolonged the survival rate of rats with 

gastrointestinal cancer. Aoe et al. (1993b) examined the effect of rice bran hemicellulose on 

intestinal carcinogenesis of rats, and found that hemicellulose fed rats had significantly lower 

incidence and number of colon tumors than those fed with the basal control diet. Wang et al. 

(2009) evaluated the antitumor activities of polysaccharides obtained from defatted rice bran. 

They reported that sulfated polysaccharides showed strong antitumor activities in vitro. Even 

though antitumor activities of soluble rice bran fiber are reported, the relationship between the 

structure and activity still needs to be verified.      

2.3.3.3 Cholesterol lowering capacity 

Many studies have verified the cholesterol lowering and bile acid binding capacity of rice 

bran in vitro/vivo over the last two decades (Newman et al. 1992, Kahlon et al. 1992, Rouanet, 

Laurent and Besancon 1993, Kahlon et al. 1993, Gerhardt and Gallo 1998, Kahlon and Woodruff 
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2003, Cheng et al. 2010). Water soluble fiber or water soluble hemicellulose plays an important 

role in lowering cholesterol capacity. It is reported that feeding dietary fibers rich in soluble fiber 

produces lower serum and liver cholesterol concentrations than does feeding commonly water-

insoluble fiber (Anderson, Jones and Riddellmason 1994). Similar results were reported by Hu et 

al. (2013), they investigated the cholesterol and bile acid scavenging ability of rice bran 

hemicellulose. This study confirmed that rice bran hemicellulose has high cholesterol and bile 

acid binding capacity, while insoluble dietary fiber has poor binding ability. Soluble rice bran 

fiber extraction does not influence its functional capacities. It also confirmed that SDF extracted 

from defatted rice bran with dilute alkali retains cholesterol lowering activity (Aoe et al. 1993a).  

2.3.4 Application of SDF in Food Field 

Due to the health benefits, SDF can be added to various food products as a functional 

ingredient. Besides physiological functions, water-holding capacity, viscosity, gel-forming 

ability and fat-binding capacity of dietary fiber can be provided to foods. Thus, food properties 

are improved (Abdul-Hamid and Luan 2000, Sudha et al. 2007). The application of dietary fiber 

in food products has been reviewed (Kim and Paik 2012, O'Shea, Arendt and Gallagher 2012, 

Havrlentova et al. 2011). SDF can be explored as a novel potential antioxidant and for protecting 

sensitive compounds against oxidation. Wan et al. (2011) applied SDF on microencapsulation of 

fish oil, and the study demonstrated that SDF effectively inhibited fish oil oxidation.  

2.4 Vitamin E 

2.4.1 Introduction of Vitamin E  

Vitamin E is an important hydrophobic antioxidant in the human body, which interacts 

with peroxyl radicals in cell membranes to prevent the propagation of free radical reactions. It 

has been reported that the consumption of vitamin E can help people reduce the risk of several 

diseases, such as cancer, cardiovascular disease, diabetes and aging (Herrera and Barbas 2001). 
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Natural vitamin E includes four tocopherols (α, β, γ, and δ) and corresponding tocotrienols (α, β, 

γ, and δ), and the structures are shown in Figure 2.2 (Sabliov et al. 2009). α-tocopherol (α-TOC) 

has the highest biological activity (Herrera and Barbas 2001), one α-TOC molecule can trap two 

peroxyl radicals.  

α-TOC is light yellow oil that is soluble in oils, fats, and organic solvents, including 

acetone, ether, alcohol and chloroform. α-TOC are abundant in wheat germ, sunflower seeds, 

extra virgin olive oil, peanut oil, corn oil and soybean oils (Sabliov et al. 2009). Although the 

deficiency of vitamin E is rare in humans, the susceptibility to free radical damage could be 

increased due to the minute deficiency, especially in premature infants and hypercholesterolemic 

individuals, which results in neuromuscular abnormalities, myophthies, and neurological 

diseases (Luo et al. 2011). The daily recommended intake of α-TOC is 22.7 mg/day for adults, 

and 600-800 mg/day for patients with cancer, artherosclerosis and coronary heart diseases 

(Shukat, Bourgaux and Relkin 2012). Thus, daily supplementation of vitamin E is necessary.  

However, α-TOC is not soluble in water and is biologically unstable. When α-TOC is 

exposed to light, temperature, and oxygen during processing and storage, it may degrade and 

thus lose its health benefits. Sabliov et al. (2009) reported that the free form of α-TOC had the 

highest degradation rate when heated at 180 °C, but no degradation happened when it was 

exposed to UV light for 6 hours. The dissolved form of α-TOC in both methanol and hexane 

degraded significantly after being exposed to UV light, but a smaller degradation rate was 

observed than the free form at high temperatures. Since α-TOC has poor water solubility, it is 

very difficult to mix in aqueous media and it limits the application of VE in a food system. So it 

is important to select an ideal delivery system for α-TOC. Different delivery systems have been 

studied for vitamin E and are discussed below. 
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Figure 2.2 Structure of vitamin E. Source: Sabliov et al. (2009) 

2.4.2 Delivery Systems for Vitamin E  

2.4.2.1 Emulsion delivery system 

For lipophilic bioactive compounds, the commercial way is to incorporate them into an 

aqueous matrix which is suitable for oral consumption. An emulsion delivery system is a 

convenient way to do this. Feng et al. (2009) used oil-in-water microemulsions as delivery 

systems for vitamin E. They reported that vitamin E had a lower release ratio in a microemulsion 

system compared with free vitamin E solutions, and no cell toxicity was observed.  

A nanoemulsion system was also evaluated for vitamin E delivery. Laouini et al. (2012) 

prepared a nanoemulsion delivery system for α-TOC by the membrane emulsification method. 

They selected Tween80 and Brij35 (polyoxyethylene glycol dodecyl ether) as surfactants and 

medium chain triglyceride (MCT) as the oil phase due to the solubility of α-TOC. The results 
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showed that stable nanoemulsions (zeta potential = -22.9 mV) were produced using a 0.9 μm 

SPG membrane with 1400 rpm stirring speed at 25 °C. Encapsulation efficiency reached 99.7 

±0.4%. Another study is conducted by Saberi et al. (2013), they prepared a vitamin E 

nanoemulsion delivery system by the spontaneous emulsification method. VE was mixed with 

medium chain triglyceride (MCT) oil first to get different compositions of the oil phase. The 

results showed that 10% oil phase containing 8% VE mixed with 10% Tween80 and 80% 

aqueous phase resulted in the smallest droplets with a diameter around 55 nm, but 

nanoemulsions with droplets of 158 nm were formed when the oil phase containing 10% VE. 

The effect of surfactant type and concentration on particle size also was tested. In contrast to 

Tween 20, 40, 60, and 85, smallest droplets with narrow distribution (55nm, PDI=0.12) were 

formed by using 10% of Tween 80. Preparation conditions, including temperature and stirring 

speed, were tested for small droplet size formation. Higher temperature was reported to facilitate 

the formation of smaller droplets, and stirring may provide mechanical energy to breke down 

droplets. The stability test showed that the droplet size was increased after two months due to 

flocculation, coalescence and Ostwald ripening.  

A water/oil/water double emulsion system was also investigated. Li et al. (2011) studied 

water/oil/water double emulsion system prepared from whey protein isolate (WPI) and 

polysaccharides (Ps) guar gum (GG) or gum arabic (GA) as a delivery system of α-tocopherol 

(VE) and riboflavin (VB2). They found that WPI-GG system had higher VE encapsulation 

efficiency (EE) (88%) than in the WPI-GA system when they had the same ratio (5:0.5). The 

particle size of the WPI-GG system was bigger than the WPI-GA system. The in vitro release 

study of VE showed that the release rate in the WPI-GG (5:0.5) system was slower than in the 

WPI-GA (5:0.5) system at pH 1.2 w/without pepsin and pH 7.4, but there was a slight difference 
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between WPI-GA and WPI-GG systems at pH 7.4 with pancreatin. Similar phenomena were 

observed for the VB2 in vitro release process. This study showed that the WPI-GG system had 

better protective ability for VE for simulated gastric conditions. Another delivery system 

prepared by whey protein isolate/polysaccharide (low methoxyl pectin (LMP)/κ-carrageenan 

(KCG)) complexes was also evaluated by the same authors (2012).  The study showed that the 

WPI-LMP system had higher encapsulation efficiency (93%) for vitamin E than the WPI-KCG 

system (80%) when the weight ratio of WPI to LMP was more than 5:0.1. Similar results were 

observed for vitamin B2. The droplet size varied from 18.8 to 83.4 μm with the ratio of WPI to 

LMP ranging from 5:0 to 5:0.5. The droplet size increased from 18.8 to 69.8 μm with the 

increased ratio of WPI to KCG from 5:0 to 5:0.5. Controlled release of incorporated vitamins 

was observed in both WPI-LMP and WPI-KCG complex delivery system under simulated gastric 

conditions. The study demonstrated that LMP had better synergistic effects than KCG with WPI.    

Oil-in-water emulsion system was also used for vitamin E acetate delivery (Yang and 

McClements 2013a). The emulsion formation characteristics of a natural emulsifier Q-Naturale 

which was extracted from the bark of the Quillaja saponaria Molina tree was studied and 

compared with synthetic food-grade surfactant Tween 80. Vitamin E acetate was mixed with 

medium chain triglyceride (MCT) oil to reduce the viscosity and form small droplets. Oil-in-

water emulsions were formed by both Q-Naturale and Tween 80 with small droplet sizes (<400 

nm). The droplet size was decreased with decreased vitamin E acetate contents. Compared with 

Tween 80, Q-Naturale could form relatively small droplets when the oil phase contained high 

vitamin levels (60 -80%). This study demonstrated that Q-Naturale could be used for the 

formation of vitamin E delivery systems which can be applied in the food field.  
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The effect of surfactant type on the vitamin emulsion was investigated as well. Ziani et 

al. (2012) studied the effect of surfactant type on the formation and properties of vitamin oil 

emulsions. They found that there was no significant difference between food-grade nonionic 

surfactants Tween 20, Tween 60 and Tween 80 on vitamin oil emulsions formation, and the 

emulsions were relatively stable once they were formed.   

2.4.2.2 Liposome delivery system 

Liposomes are closed, continuous vesicles composed of lipid bilayer with abilities to 

dissolve, protect, and deliver hydrophilic, lipophilic or amphiphilic materials. The application of 

liposomes on vitamin E delivery has been investigated. Xie et al. (2008) encapsulated VE and 

Vitamin C (VC) into methyl linoleate small unilamellar vesicle (SUV) liposomes and reported 

that the antioxidant activity of vitamins was increased when VE and VC were co-encapsulated in 

liposomes. The result also means VE and VC can be used against lipid oxidation of liposomes. 

Another study on encapsulated VE and VC was conducted by Marsanasco et al. (2011b) in 

which liposomes were known to maintain antioxidant activity of encapsulated VE and VC in 

orange juice during pasteurization. The liposome particle size ranged between 0.5 to 400 μm. In 

addition, the addition of liposomes in orange juice did not change the appearance of products.  

Zhao et al. (2011) investigated a polyethylene glycol (PEG) coated liposome delivery 

system for VE. VE containing liposome was produced by the thin-film evaporation method and 

then lyophilized. The results showed that PEG coating increased encapsulation efficiency of 

liposomes from 87.53 to 91.03%, and the zeta potential was decreased from -25.9 to -35.8 mV. 

The particle size of VE loaded liposome was increased from 96.7 nm to 111.3 nm after coating. 

After freeze drying, the size was increased to 164.2 nm. Higher VE retention (78.94%) was 

observed in PEG coated liposomes than conventional liposomes (62.05) after exposure to UV 

irradiation for 60 min. Also, lower storage temperature (4 °C) resulted in higher VE retention 
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than higher temperatures (25 and 40 °C) after 15 days. Controlled release (17.4% released after 6 

h) of VE was observed on PEG coated liposomes, while 80% of VE was released from free 

samples during the first 2 h in simulated intestinal fluid (SIF). In phosphate buffered saline 

(PBS) solution (pH 6.8), only 35.6% of VE was released from PEG coated liposomes after 6 h, 

but 42% of VE was released from uncoated liposomes.  

Laouini et al. (2013) prepared liposomes using an ethanol injection method and applied it 

to vitamin E encapsulation. Liposomes preparation conditions were optimized and the mean 

particle size of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholinee) liposomes was 59 

nm, and Lipoid E80 liposomes had mean size of 84 nm. After encapsulation of vitamin E, the 

mean size was increased to 96 nm with a zeta potential around -28 mV. High encapsulation 

efficiency of vitamin E was observed in Lipoid E80 liposomes, which was 99.87 ±1.14%. The 

stability test showed that vitamin E loaded liposomes were very stable, and there was no 

significant decrease in the encapsulation efficiency, which was changed from 99.87±1.14% to 

98.81±1.20% after 2 months of storage at 5±3 °C.   

2.4.2.3 Nanoparticle delivery system 

Varied nanoparticles have been developed for vitamin E delivery. Trombino et al. (2009) 

tested the ability of stearyl ferulate-based solid lipid nanoparticles (SF-SLNs) as a carrier for α-

tocopherol and β-carotene. Results showed that α-tocopherol loaded SF-SLNs had an average 

diameter of 175.7 nm and β-carotene loaded nanoparticles had average diameter of 169.8 nm. 

Antioxidants encapsulated in SF-SLNs were very stable during 3 months storage when exposed 

to sunlight and showed strong antioxidant capacity. 

Luo et al. (2011) used chitosan-zein as a carrier for α-TOC. Zein concentration, 

zein/chitosan weight ratio, and α-TOC content were investigated. Nanoparticles with an average 

size of 200 to 800 nm were produced. They reported that zein/chitosan encapsulated α-TOC had 
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prolonged release in a simulated gastrointestinal tract (SGI) compared with control (without 

chitosan coating). Higher zein concentration (20 mg/ml), higher α-TOC loading percentage 

(30%), and lower zein/chitosan weight ratio (5/1) reduced initial burst effect and prolonged 

release process in PBS medium. Similar results were observed for the release profile of 

encapsulated α-TOC in SGI. However, the authors reported that much less α-TOC was released 

in SIF compared with the release content in SGF. They proposed that zein was hydrolyzed and 

adsorbed to TOC droplets which resulted in slow release of α-TOC in SIF.     

Khayata et al. (2012a) produced VE loaded nanocapsules by the nanoprecipitation 

method and scaled up the production from lab scale to pilot scale. The formulation was 

optimized at the lab scale, and the size and encapsulation efficiency of nanocapsules did not 

change too much after being scaled up to pilot scale. The results were 165 nm and 98% for lab 

scale, 172 nm and 97% for pilot scale, respectively. The stability of VE loaded nanocapsules 

prepared at either lab scale or pilot scale was also investigated (Khayata et al. 2012b). After 

different storage times (3 and 6 months) at high temperature (40 ±2 °C) and relative humidity 

(75±5%) conditions, the encapsulation efficiency of lab made nanocapsules was decreased from 

98% to 96% after 3 months and 89% after 6 months of storage. Pilot scale made VE loaded 

nanocapsules had significant change in encapsulation efficiency, which decreased from 97% to 

59% after 6 months of storage. The effect of lyophilization on nanocapsules was evaluated as 

well. The authors found that sucrose could be an ideal cryoprotectant to avoid aggregation of 

nanocapsules.      

2.4.2.4 Nanofibers delivery system 

The application of nanofiber as a delivery system for vitamin E in the food field is still 

lacking in the literature. There only two reported studies are delivering VE as photoprotection 

dressing. Taepaiboon et al. (2007) produced a cellulose acetate nanofibers delivery system for 
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vitamin E and vitamin A. Vitamin E loaded nanofibers had an average diameter of 253±41 nm, 

and Retin-A load nanofibers had a mean diameter of 247±31 nm. Around 78-83% of vitamin E 

was loaded into nanofibers, which was higher than that of Retin-A (45-53%). VE in nanofibers 

had very high stability, no significantly change (97% of VE was retained) was observed after 24 

h incubation in B/T/M releasing media (acetate buffer solution containing 0.5 vol % Tween 80 

and 10 vol % methanol) at 37 °C. The release test of entrapped vitamins was conducted in 

B/T/M media at 37 °C. Initial burst release was observed on cast-film samples during the first 20 

min, while VE loaded nanofiber samples exhibited controlled release during the 24 h testing 

period. In B/T/M media, VE loaded nanofibers showed gradual release and reached 95% after 24 

h.       

Wu et al. (2011) produced both α-tocopherol acetate (α-TAc) and magnesium L-ascorbic 

acid 2-phophate (MAAP) incorpotated polyacrylonitrile (PAN) nanofibers by coaxial 

electrospinning method. PAN and poly(lactic-co-glycolic acid) (PLGA) were shell and core 

carrying materials, respectively. Results showed that α-TAc and MAAP were successfully 

incorporated into PAN nanofibers with smooth and uniform structure (average diameter was 

200±15 nm) that spun from 8% PAN spin solution. Compared to PAN nanofibers that produced 

by normal electrospinning, nanofibers produced by the coaxial spinning method had controlled 

in vitro release. The initial burst release of entrapped α-TAc and MAAP from core-shell PAN 

nanofibers was alleviated and sustainable release was provided.     

2.4.2.5 Hydrogel delivery system 

Hydrogen is another delivery system for vitamin E. The ability of hydrogel β-

lactoglobulin (BLG) and hen egg white protein (HEW) were examined as a delivery system for 

α-TOC (Somchue et al. 2009). The study found that salt played an important role in TOC 

encapsulation. α-TOC could not be entrapped in BLG aggregates without addition of CaCl2, but 
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it was encapsulated in HEW particles without the addition of ZnCl2. Besides inducing protein gel 

formation, salts were hardening agents for the alginate coating to achieve controlled release 

goals. The authors also reported that the encapsulation efficiency of α-TOC in BLG and HEW 

was increased with increased concentration of α-TOC in protein solutions, but it was limited by 

the amount of BLG and HEW. Release profiles of encapsulated α-TOC were determined under 

simulated gastric and intestinal digestion conditions. The authors found that BLG and HEW 

themselves as carriers were not enough to achieve controlled release of α-TOC, since 86.4% and 

93.4% of entrapped α-TOC were released in SGF from BLG and HEW carriers, respectively. 

However, with the alginate coating, both BLG and HEW showed controlled release rate in SIF, 

as well as increased encapsulation efficiency of α-TOC (from 32% increased to 85% in HEW).       

 

 

 

 

 

 

 

 

26 



 

CHAPTER 3 FABRICATION OF SOLUBLE DIETRY FIBER BASED 
NANOFIBER BY ELECTROSPINNING 

3.1 Introduction 

Nanotechnology as an emerging technology has attracted many attentions in recent 

decades. Nanofibers are fibers with cross section diameter ranging from 5 to 500 nm and length 

for several micro meters (Deitzel et al. 2001). Nanofibers have high ratios of surface area to 

volume, tunable porosity, and malleability to form a variety of structures for desired properties 

and applications (Sadri et al. 2012, Xu et al. 2012). Nanofibers have been widely used in the 

field of filtration, drug delivery, food texture alterations, encapsulation of food additives, active 

and bioactive packaging elements, separation membranes, reinforcement in composite materials, 

biomaterials for wound dressings and scaffolds for tissue engineering (Torres-Giner et al. 2008). 

Fabrication methods, for instance, drawing, template synthesis, phase separation, self-

assembly and electrospinning, have been used to produce nanofibers (Huang et al. 2003). 

Electrospinning is the most common technology for nanofibers fabrication. Compared to 

electrospinning, the other methods have a number of disadvantages: time-consuming, 

complicated processing procedures,  requiring equipments, and limitation on nanofiber materials 

(Yu 2009). Electrospinning is simple, versatile and capable to form nanofibers from various 

polymers (Tong, Zhang and Wang 2012). Polymer blends can be co-processed and cross-linked 

during electrospinning process, therefore, the chemical composition of nanofibers can be 

controlled. In addition, other particles or fillers can be encapsulated into nanofibers for various 

purposes (Yu 2009).  

In a typical electrospinning process, a high power direct current (DC) voltage is applied 

to a polymer spinning solution. Upon charging, a conical shape known as the Taylor cone is 

formed on the surface of a drop at the needle tip in order to balance the repulsive force and the 
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surface tension of the drop. A stable jet of solution is generated from the cone tip when the 

critical voltage is achieved, and the jet travels to the grounded collector by electrical potential in 

a whipping motion to form continuous fibers (Fung et al. 2011).   

Various materials including natural and synthetic polymers have been studied for 

nanofiber fabrication. Synthesized polymers, e.g., polyethylene oxide, polyacrylonitrile, 

polyvinyl alcohol, polyvinyl acetate, polyacrylamide, polystyrene, and so on, have been used to 

produce nanofibers (Crespy, Friedemann and Popa 2012). Due to the biocompatible, 

biodegradable, and non-toxic property, biobased materials and food hydrocolloids, such as DNA, 

cellulose, chitin, chitosan, alginate, dextran, collagen, gelatin, silk, casein, wheat protein and 

zein, showed a potential in nanofiber fabrication and grabbed most research interests in recent 

years (Xu et al. 2012). Polysaccharides contain hydrophilic groups such as hydroxyl, carboxyl 

and amino groups, they can interact with biological tissues such as in bio adhesion with epithelia 

and mucous membranes, and thus increase the absorbance of encapsulated bioactive compounds 

(Liu et al. 2008). However, the formation of nanofibers not only depends on parameters such as 

electric potential, distance between the tip of needle and the collecting plate, flow rate of 

polymer solution, but also on viscosity, elasticity, conductivity, and surface tension of the 

polymer solution (Doshi and Reneker 1995). Due to the limitation of biopolymers, synthesized 

polymers are usually used together with biopolymers for helping nanofiber fabrication (Dogan et 

al. 2013, Aliabadi et al. 2013, Yao et al. 2009). Flexible chains of synthetic polymers wrap 

themselves around rigid biopolymers to provide required linkage and entanglement for spinning 

solution, thus electrospun nanofibers can be produced successfully (Duan et al. 2004). The 

improved biocompatibility and mechanical properties of nanofibers can be obtained (He et al. 

2005).   
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Dietary fibers are non-starch plant polysaccharides and are resistant to digestion and 

absorption in the human gastrointestinal tract (Brennan, Tudorica and Kuri 2002). Extensive 

epidemiological studies have shown that high dietary fiber intake effectively prevents colon 

cancer, breast cancer, atherosclerosis and development if non-insulin dependent diabetes mellitus 

(Moore et al. 1998). Soluble dietary fiber is soluble in water (Doleyres et al. 2002). It includes 

pectins, β-glucan, gums and storage polysaccharides, which can lower absorption of nutrients in 

intestine which results in a consequent decrease in insulin levels (Moore et al. 1998). Some 

research reported that soluble dietary fiber has antioxidant capacity, immune-modulation and 

anti-tumor activities (Aoe et al. 1993a, Wan et al. 2011, Saunders 1990, Cummings et al. 1992, 

Wang et al. 2008, Zha et al. 2009b). Soluble dietary fiber as a functional ingredient has been 

added to various food products to improve their biological activity and physical properties (Kim 

and Paik 2012, O'Shea et al. 2012, Havrlentova et al. 2011, Abdul-Hamid and Luan 2000, Sudha 

et al. 2007).  

Soluble dietary fiber has the potential to produce nanofibers. However, only few study is 

reported to used soluble dietary fiber for nanofiber fabrication (Fung, Yuen and Liong 2010). In 

addition, little is known about the concentration of dietary fiber in spinning solutions, and how 

the dietary fiber affects the formation is still lacking in the literature.  

Soluble dietary fiber (SDF) extracted from purple rice bran was selected to fabricate a 

novel type of electrospun nanofibers in this study due to its functional properties. In order to 

fabricate SDF nanofibers with sufficient protection, effective absorption and controlled release of 

encapsulated nutrients, cospinning polymer is used for nanofiber formation. Polyethylene oxide 

(PEO) is the simplest hydrophilic polymer. Due to the balanced hydrophobic and hydrophilic 

interactions of its chemical structure, it is soluble in water over a broad range of temperature 
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(Branca et al. 2013). Because of its biocompatibility, non-immunogenicity and low toxicity, PEO 

has been widely used in the biomedical field, agricultural engineering, the pharmaceutical and 

food industries (Bianco et al. 2013). Besides,  PEO is permitted by FDA as a food additive for 

direct addition to food for human consumption (FDA 2012). 

The objective of this chapter was to develop SDF based functional nanofibers. The effect 

of SDF concentrations on nanofibers fabrication was investigated. Characterizes, e.g., size, 

morphology, and thermal analysis of SDF based nanofibers were evaluated. The chemical 

interaction of SDF and PEO in nanofibers was studied as well.        

3.2 Materials and Methods 

3.2.1 Extraction of Soluble Dietary Fiber from Purple Rice Bran 

SDF was extracted from purple rice bran by a modified method (Wan et al. 2011) of Aoe 

et al. (1993a). Fifty grams of defatted purple rice bran was mixed with 500 mL of distilled water 

and 0.5 mL of heat stable α-amylase solution (13083 units/mL, Sigma-Aldrich, St Louis, MO, 

USA) was added to the mixture. pH of the mixture was adjusted to 6.9 and the starch was 

digested for 15 min at 90 °C. Then starch-free defatted purple rice bran was separated by 

centrifugation at 12,000 g and washed with distilled water four times. For soluble dietary fiber 

extraction, a solution with 3% Ca(OH)2 was added to starch-free defatted rice bran at a ratio of 

30:1 (V/W) and was stirred for 1 h at 84 °C by a Talboys laboratory 134-1 stirrer (Troemner 

LLC, Thorofare, NJ). The extract was separated from the solid fraction by centrifugation 

(Beckman J2-HC centrifuge, GMI, Inc., Ramsey, MN, USA) at 12,000 g for 30 min at 4 °C, and 

then the soluble fraction was neutralized with concentrated acetic acid (99.85%). Furthermore, 

the neutralized soluble fraction was purified by a Millipore stirred ultrafiltration cell unit (Model 

8400, Millipore Co., Bedford, MA) with 10 kDa molecular weight cut-off (MWCO) membrane 
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(Millipore Corp, Bedford, USA) at 100 kPa Nitrogen gas pressure. The resulting purified SDF 

retained on the ultrafiltration cell unit was freeze dried and stored at 4 °C. 

3.2.2 Fabrication of Nanofiber from SDF 

The effect of SDF concentrations on the nanofiber formation was examined using 3 

different concentrations. Spinning solutions were prepared by dissolving 0.1, 0.3, or 0.5 g of 

SDF powder and 0.5 g of polyethylene oxide (PEO, 400,000MW; Sigma-Aldrich, St. Louis, MO, 

United States) in deionized water and stirred by a magnetic stirrer until homogeneous. The finial 

concentration of SDF in the spinning solutions were 1%, 3%, and 5%, respectively. And a 5% 

PEO was kept consistent in each spinning solution based on the preliminary test, which showed 

that a low PEO content (≤4%) in spinning solutions was ineffective for nanofiber production. A 

5% of PEO spinning solution that prepared by dissolving 0.5 g of PEO powder in 9.5 g deionized 

water without SDF adding was used as a control. The formulations of spinning solution were 

listed on Table 3.1. The freshly prepared spinning solutions were characterized by determining 

their flow properties and electrical conductivities. Flow properties of spinning solutions were 

measured by an AR 2000 ex Rheometer (TA Instruments, New Castle, De, USA) with 40 mm 

diameter steel plate, where a gap of 200 μm was used and shear rate was from 10 to 200 s-1 at 25 

°C. The viscosity at 200 s-1 was reported. The powder law (Equation 3.1) was used to 

characterize the flow properties of the spinning solutions. 

                                          σ = Kγ
.

n                                       (3.1) 

where σ = shear stress (Pa), γ
.

 = shear rate (s-1), K = consistency index  (Pa•sn), and n = flow 

behavior index.  
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Electrical conductivities of spinning solutions were measured using an Orion 4-Star 

pH/Conductivity meter (Thermo Scientific, Beverly, MA, United States) with 013605MD 

conductivity cell at 25°C.  

Table 3.1 Formulations of spinning solution containing SDF 

Spinning solutions SDF (%) PEO (%) Deionized water 
(%) 

A1 1 5 94 
A2 3 5 92 
A3 5 5 90 

A4 (Control) 0 5 95 
 

The solutions were electrospun from a 3 mL syringe with a 23 gauge (0.35 mm) needle at 

room temperature. A 30A24-P30 single output high voltage power supply (Ultravolt, 

Ronkonkoma, NY, United States) was used, and flow rate was controlled by a KDS-100 syringe 

pump (KD Scientific, Hayward, CA, United States). Electrospinning conditions were set as 

follows: flow rate of 0.2 mL/h, voltage of 20 kV, and the distance between tip and collector was 

15 cm. Aluminum foil was used as a collector. The electrospun fibers were dried in a vacuum 

oven at room temperature for 24 h to remove residual moisture and then were stored in 

desiccators for further analyses.     

3.2.3 Characterization of Nanofibers 

3.2.3.1 Morphology and size distribution of nanofiber 

The morphology of nanofiber was observed using scanning electron microscopy (SEM). 

Nanofiber sample was placed on a SEM stub and coated with platinum for 4 min using an EMS 

550X sputter coating machine (Electron Microscopy Sciences, Hatfield, PA, United States). 

Then the morphology of sample was observed by a JSM-6610LV scanning electron microscope 

(SEM, JEOL, Peabody, MA, United States). Size distribution of nanofibers was calculated 

through measuring the diameter of 200 randomly selected nanofibers. 
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3.2.3.2 Thermal properties of nanofiber 

Thermal properties of four nanofiber samples, pure PEO powder, and SDF powder were 

determined using differential scanning calorimetry (DSC) and thermogravimetric analysis 

(TGA). For TGA measurements, five micrograms of samples were heated in a Hi-Res Modulated 

TGA 2050 Thermogravimetric Analyzer (TA Instruments, New Castle, DE, United States) to 

600 °C at a rate of 10 °C/ min in a N2 atmosphere to evaluate the thermal stability of SDF 

containing nanofibers. The degradation time were obtained from TG curves. For DSC 

measurements, five micrograms of samples were heated in a DSC 2920 Modulated DSC (TA 

Instruments, New Castle, DE, United States) from -30 °C to 120 °C at a rate of 10 °C/ min, and 

then was cooled down to -30 °C at a rate of 5 °C/min. After maintaining the temperature for 5 

min, the sample was reheated from -30 °C to 120 °C at a rate of 10 °C/ min and the data were 

collected.  

3.2.3.3 Molecular interaction of nanofiber 

The molecular interaction between SDF and PEO in nanofibers was evaluated by 

attenuated total reflectance infrared spectroscopy (ATR-FTIR). Samples were placed on a 

diamond ATR cell and measured by ALPHA Platinum ATR QuickSnap (Bruker, Billerica, MA, 

United States). The spectra were recorded at 600-4000 cm-1 with the resolution of 4 cm-1, and 8 

scans were used. The spectra data were collected and analyzed using OPUS 7.2 data collection 

program.   

3.2.4 Statistical Analysis 

Mean values and standard deviation of triplicate measurements were reported. Analysis 

of variance (ANOVA) was conducted to test the significant differences (p<0.05) among different 

treatments using the SAS safeware (SAS Inst. Inc., Cary, N.C., USA.).  
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3.3 Results and Discussion 

3.3.1 Characteristics of Spinning Solutions 

The rheology properties of spinning solutions containing SDF were shown in Table 3.2. 

Apparent viscosity of the control spinning solution (A4) was significantly lower compared to 

solutions A1, A2 and A3, which indicated that the addition of SDF increased the apparent 

viscosity of spinning solutions. Solution A3 (containing 5% SDF) had a significantly higher 

apparent viscosity (2.34 Pa.s) compared to A1 (1.60 Pa.s) and A2 (1.61 Pa.s), which indicated 

the concentration of SDF in spinning solution affected the apparent viscosity, a higher SDF 

concentration resulted in a higher apparent viscosity in the spinning solution. The flow behavior 

index n values were less than 1.0, which indicated that the spinning solutions A1, A2, A3 and A4 

were non-Newtonian fluids (shearing thinning). The consistency index K value of A4 was 

significantly lower than those of spinning solutions A1, A2 and A3 containing SDF.  

Table 3.2 Electric conductivity and flow properties of PEO spinning solutions containing SDF 

Spinning 
solutions 

Electrical conductivity 
(mS/cm) 

Apparent viscosity 
(Pa.s) n K (Pa. sn) 

A1 1.91±0.01C 1.60±0.01B 0.62±0.00B 12.29±0.15B 
A2 5.09±0.01B 1.61±0.00B 0.63±0.00B 11.74±0.12B 
A3 6.25±0.03A 2.34±0.01A    0.62±0.00B 18.54±0.15A 

A4 (Control) 0.092±0.00D 1.323±0.01C 0.73±0.02A 6.29±0.54C 
Values are means ± SD of triplicate determinations. ABCDmeans with the same letter in the 
columns are not significantly different (P>0.05). n=flow behavior index; K=consistency index. 
 

Viscosity is an important determinant of the size and quality of nanofibers. It is related to 

the extent of polymer molecule chain entanglement within the solution, which is critical to 

nanofiber formation (Kriegel et al. 2008). Viscosity is required to be high enough, so nanofibers 

can be formed without beads. Otherwise, the jet breaks up into droplets or beads rather than 

fibers in a low viscosity polymer solution due to the limited entanglement of polymers (Deitzel 

et al. 2001). Therefore, an increase in polymer concentration is beneficial for nanofiber 
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formation. Viscosity impacts the diameter of nanofibers as well. Thus, it is necessary to 

determine the suitable polymer concentration. Different polymer solutions have different 

required viscosities for nanofiber fabrication. The apparent viscosity of spinning solution A3 was 

2.34 Pa.s in this study, which was higher than the reported viscosity range of PEO solution by 

Fong, Chun and Reneker (1999). Authors reported that ethanol/water PEO solution with 

viscosities ranging from 0.1 to 2 Pa.s could be used for nanofibers formation, while the 

electrospinning was unsuccessful once the viscosity was over 2 Pa.s or less than 0.1 Pa.s (Fong, 

Chun and Reneker 1999).  

Spinning solutions A1, A2 and A3 had significantly higher electrical conductivities than 

the control spinning solution A4, which were 1.91, 5.09, 6.25 and 0.092 mS/cm, respectively 

(Table 3.2). The higher the SDF concentration, the higher the electrical conductivity in the 

spinning solution. This may be due to the minerals in the SDF, since minerals including calcium 

and iron can be extracted out and stay in SDF portion (Fung et al. 2010). Also, calcium 

hydroxide was used to extract SDF in this study, and 6.85% of calcium was contained in SDF 

powder, which was the main source of calcium. Electrical conductivity is another factor that 

impacts nanofiber formation. Higher conductivity of spinning solution results in enough electric 

force to stretch the jet from the Taylor cone and form thinner fibers. Thus inorganic salts are 

used to generate a high electrical conductivity of spinning solution (Barakat et al. 2009).  

3.3.2 Morphology of Nanofibers 

Nanofibers were smooth without visible beads (Figure 3.1). Defects such as junctions 

were found on nanofibers produced from solution A4. The junctions did not appear on 

nanofibers produced from spinning solutions A1, A2 and A3, which contained 6%, 8% and 10% 

of SDF/PEO polymers, respectively. These polymer solution concentrations were higher than the 

reported PEO polymer concentration (5%) by Deitzel et al. (2001). The presence of junctions in 
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nanofibers was due to the slow solidification effect of polymer fibers that produced from low 

polymer concentration spinning solution.  

   

  

Figure 3.1 SEM of nanofibers  
(a) A1, 1% SDF+5% PEO; (b) A2, 3% SDF+5%PEO; (c) A3, 5% SDF+5% PEO; and (d) A4, 
5% PEO. 
 

With increased SDF content, the average diameters of nanofibers were increased (Table 

3.3). Nanofibers that produced from spinning solution A3 had the highest average diameter of 

198.19 nm, and the lowest average diameter (155.05 nm) was found in nanofibers that produced 

from spinning solution A4. The nanofiber average diameter was kept consistent with the result of 

viscosity, the higher spinning solution concentration, the higher viscosity, and the larger 

nanofiber diameter. The nanofiber size found in this study was lower than the reported nanofiber 

diameter (5 µm) by Doshi and Reneker (1995), which was produced from 7% PEO solution. 

a b 

d c 
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Also, it was lower than the previous reported nanofiber average diameter (250 nm) by Fong et al. 

(1999), which was produced from 4.5% PEO solution.  

Table 3.3 Cross section diameter of nanofibers 

Spinning solutions Nanofiber average diameter (nm) 
A1 174.54 ± 26.92 
A2 171.45 ± 37.19 
A3 198.19 ± 41.82 
A4 155.05 ± 24.49 

 
The size distribution of diameters in nanofibers was shown in Figure 3.2. Nanofibers 

produced from spinning solution A1 has a narrow cross section diameter distribution ranging 

from 102 to 280 nm. Nanofibers electrospun from A2 and A3 had broad diameter distributions, 

which ranged from 102 to 328 nm and from 122 to 365 nm, respectively. A4 had a narrow cross 

section diameter distribution which ranged from 100 to 253 nm. These values were lower than 

the size distribution of diameters in nanofibers produced from 7% PEO solution, which ranged 

from 130 to 430 nm (Deitzel et al. 2001). Deitzel et al. (2001) also reported that bimodal 

diameter distribution was exhibited in nanofibers electrospun from PEO solutions with 

concentration over 7%. The similar result was reported by Xu et al. (2012), they found branching 

was significant in nanofibers that produced from high concentration spinning solution containing 

8% soy protein isolate and 0.5% PEO. However, no obvious bimodal diameter distribution was 

found in all four nanofiber samples in this study, which indicated the spinning solution was 

homogenous and the charge was evenly distributed on the jet during electrospinning, and thus 

resulted in the smooth and uniform nanofibers. It also indicated that the concentration of SDF 

had minor effect on nanofiber fabrication.  
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Figure 3.2 Size distribution of diameters in nanofibers 
Nanofibers produced from (a) A1 (1% SDF+5% PEO), (b) A2 (3% SDF+5%PEO), (c) A3 (5% 
SDF+5% PEO), and (d) A4 (5% PEO).  
 
3.3.3 Thermal Properties of SDF Based Nanofiber 

TGA thermogram of nanofibers was shown in Figure 3.3. Pure PEO powder had a Tonset 

of 372.04 °C, and nanofibers produced from 5% PEO had a Tonset of 376.13 °C. Two regions of 

weight loss were observed in SDF based nanofibers. SDF had one weight loss at 243.0 °C. Tonset 

of nanofibers with the addition of SDF decreased with increased content of SDF. Nanofibers 

produced from solutions A1 had two onset temperatures around 240.8 °C and 386.2 °C. 

Nanofibers produced from A2 and A3 solutions had onset temperatures at 241.5 and 388.7 °C, 

and 234.5 and 387.1 °C, respectively. The first weight loss may be caused by the decomposition 

of SDF, and the second resulted from the decomposition of PEO.  
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Figure 3.3 TGA curve of SDF based nanofibers  
 

DSC scans of pure PEO powder, SDF powder, PEO nanofibers, and nanofibers 

containing SDF were shown in Figure 3.4. Pure PEO powder showed a melting peak at 72.6 °C 

with an enthalpy of 168.3 kJ/kg (Table 3.4). The A4 nanofibers had slightly lower melting peak 

at 71.9 °C with an enthalpy of 165.8 kJ/kg than that of pure PEO powder. The addition of SDF 

decreased melting peaks of nanofibers. However, A2 and A3 nanofibers had significantly hihger 

crystallinity than A1 and A4 nanofibers. These results were different from previous reports that 

low crystallinity was observed in nanofibers produced from polymer solutions (Xu et al. 2012, 

Deitzel et al. 2001), which indicated the addition of SDF increased the overall crystallinity in 
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nanofibers. Because of the increased crystallinity, more energy is needed to break down the 

molecular order. Thus, SDF based nanofibers may be heat stable.     
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Figure 3.4 DSC thermograms of nanofibers and ingredients 

Table 3.4 Summary of DSC curves of SDF based nanofibers  

Sample Tm (°C) ΔHm (kJ/kg) χc 
A1 67.5±0.1C 144.7±6.8B 0.59±0.03D 
A2 63.9±0.1D 128.1±0.7C 1.01±0.00B 
A3 62.2±0.1E 111.3±1.4D 1.10±0.01A 
A4 71.9±0.1B 165.8±0.9A 0.81±0.00C 

Pure PEO powder 72.6±0.1A 168.3±1.0A 0.82±0.00C 
SDF powder ND ND ND 

Values are means ± SD of triplicate determinations. ABCDEmeans with the same letter in the 
columns are not significantly different (P>0.05).Tm (°C) is the melting peak; ΔHm (kJ/kg) is the 
melting enthalpy; χc is the degree of crystallinity; χc =ΔHm/( ΔHm

0*w), ΔHm
0 is the melting heat 

of 100% crystalline PEO, which is reported as 203 kJ/kg (Fan et al. 2002); w is the weight 
fraction of PEO in nanofibers. ND means not detected in the test temperature region.   
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There was no melting peak appeared on SDF powder in the test temperature region, but 

an endothermic process was occurred around 105 °C. That may be caused by the evaporation of 

bound water, since polymer has a strong affinity with water (Luo, Teng and Wang 2012). It also 

may be the glass transition region of SDF powder.     

3.3.4 FTIR   

The intermolecular interaction of SDF based nanofibers was evaluated by ATR-FTIR. 

The spectra of each ingredient and nanofibers were shown in Figure 3.5.  

  

Figure 3.5 FTIR spectra of ingredients and nanofibers  
 

There was a triplet peak at 1146 cm-1, 1098 cm-1 and 1060 cm-1 in PEO powder with the 

highest absorption at 1098 cm-1. This was because of the stretching vibrational mode of the C-O-

C bond in PEO, an indication of a crystalline phase (Bianco et al. 2013, Li and Hsu 1984). The 

conformational structures will be modified if the intensity, shape and postion of the C-O-C peak 

change. The peak at 1235 cm-1 was assigned to the helical conformation and was observed in 

PEO powder, decreased in PEO nanofibers, which indicated the electrospinning process has 

promoted the planar conformation of PEO (Kim et al. 2005, Aluigi et al. 2007). The peak at 1060 

cm-1, which was attributed to the H structure of PEO, was weakened in nanofibers. This meant 
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the PEO chains were more aligned in the fiber direction due to the high extensional force caused 

by electrospinning, and T conformation structure was formed (Kim et al. 2005). 

In SDF powder and SDF/PEO nanofibers, a broad band between 3000 and 3700 cm-1 

may be assigned to O-H stretching from the polysaccharide molecules and intermolecular 

hydrogen bonds formed between SDF and PEO (Fung et al. 2011, Aliabadi et al. 2013). The 

peaks observed between 2850 and 2960 cm-1 were due to the C-H stretching from alkane groups. 

The peak at 1648 cm-1 in the SDF was usually associated with the absorbed water molecules in 

the fiber (Sain and Panthapulakkal 2006). Another peak at 1548 cm-1 were shown in the spectra 

of SDF powder and at 1557 cm-1 in the spectra of SDF/PEO nanofibers, which were attributed to 

the N-H bending from amine groups. The possible reason may because of the traces of protein 

that were contained in SDF. The peak at 1096 cm-1 indicated C-O stretching and O-H bending in 

PEO. In addition, peaks at 1466, 1342, 1279, and 1242 cm-1 represented C-H, O-H, or CH2 

bending (Himmelsbach, Khalili and Akin 2002).         

3.4 Conclusions 

SDF based nanofibers were successfully electrospun from the soluble dietary fiber 

extracted from purple rice bran. SDF based nanofibers (prepared by 3% SDF+5% PEO) had a 

uniform size distribution with an average diameter of 171.45 nm and no defects of either beads 

or junctions. It was selected for further study. DSC results showed that the melting point of SDF 

based nanofibers was slightly decreased compared to the control nanofibers. The crystallinity of 

SDF nanofibers increased with the increasing content of SDF. Compared to the control 

nanofibers, SDF based nanofibers had two weight losses during heat processing. The SDF 

showed good potential for fabrication of nanofibers, and it may interact with PEO by hydrogen 

bonds. Nanofibers produced by SDF are expected to have both characteristics of nanofibers and 

functional properties from SDF.  
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CHAPTER 4 ENCAPSULATION OF ALPHA-TOCOPHEROL IN 
SOLUBLE DIETARY FIBER BASED NANOFIBER DELIVERY 

SYSTEM 

4.1 Introduction   

Nanofibers are fine threads with cross sectional diameters ranging from a few nanometers 

to one micrometer, and the length is over several micrometers. Due to the specific properties of 

nanofibers, for example, a very high surface area to volume ratio and diverse structures, it has 

been widely used in biomedical fields like drug delivery, wound dressing, tissue enginnering and 

so on (Xie et al. 2008). The structure of nanofibers can be modified by adjusting the composition 

of the electrospinning solution, and changes in electrospinning conditions, such as voltage, flow 

rate and the distance between the tip of needle and collector, results in various diameters. 

Through controlling the structure and diameter of nanofibers, a controlled release of 

encapsulated components may be achieved. Also, the target delivery may be attained by 

modifying the surface properties of nanofibers. Nanofiber delivery systems for bioactive 

components are getting popular in recent years. Bioactive compounds, such as vitamins, 

probiotics, proteins and functional lipids, can be incorporated into nanofibers for required 

delivery purposes (Fernandez et al. 2009, Chen et al. 2010, Lopez-Rubio et al. 2009, Opanasopit 

et al. 2008). The functionality of incorporated materials in nanofibers can be potentially 

improved and enhanced due to the nano-scale effects (Shen et al. 2011). 

Vitamin E is a hydrophobic antioxidant which has several important health benefits, for 

instance, it reduces the risk of cancer, cardiovascular disease, diabetes and aging (Herrera and 

Barbas 2001). Natural vitamin E includes four tocopherols (α, β, γ, and δ) and corresponding 

tocotrienols (α, β, γ, and δ) of which α-tocopherol (α-TOC) has the greatest biological activity 

(Herrera and Barbas 2001). It interacts with peroxy radicals in cell membranes to prevent the 
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propagation of free radical reactions. Therefore, vitamin E is commonly used as a dietary 

supplement. Vitamin E cannot dissolve in aqueous phase and has lower stability when exposed 

to extreme conditions such as heat, light, and oxygen during processing and storage (Miquel et 

al. 2004). Micro-/nano-emulsion systems have been developed for vitamin E to improve the 

stability and achieve controlled release (Feng et al. 2009, Laouini et al. 2012, Saberi et al. 2013, 

Li et al. 2011), as well as liposome systems (Xie and Ji 2008, Marsanasco et al. 2011a, Zhao et 

al. 2011, Laouini et al. 2013) and nanoparticle systems (Trombino et al. 2009, Luo et al. 2011, 

Khayata et al. 2012a, Khayata et al. 2012b). The application of nanofiber systems on vitamin E 

in the food field is few reported in the literature. Also, it was suggested that the bioavailability of 

vitamin E may be increased when it is delivered in nano-scale form rather than in bulk form 

(Feng et al. 2009). 

Soluble dietary fiber (SDF) extracted from rice bran maintains its functional abilities, 

such as antioxidant activity (Zha et al. 2009a, Rivas et al. 2013), antitumor activity (Takeshita et 

al. 1992, Aoe et al. 1993b, Wang et al. 2009), and cholesterol lowering capacity (Anderson et al. 

1994, Hu and Yu 2013, Aoe et al. 1993a). Due to the functional properties of soluble dietary 

fiber, the application in delivery systems for bioactive components has become popular recently. 

Wan et al. (2011) have incorporated soluble rice bran fiber into shell material and applied it in 

fish oil encapsulation, which protected fish oil from oxidation. Fung et al. (2010) fabricated 

nanofibers by using soluble dietary fiber from oil palm, and then applied those nanofibers as a 

carrier to encapsulate probiotics (Fung et al. 2011). However, less is known about the effect of 

SDF on α-TOC. In our previous study (Chapter 3), SDF extracted from defatted purple rice bran 

fiber was successfully fabricated into nanofibers by electrospinning. SDF based nanofibers not 
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only have the unique characteristics of nanofibers, but also have the combined healthy benefits 

of α-TOC and SDF.  

The objective of this study was to encapsulate α-TOC into SDF based nanofibers for 

enhancing its stability and achieving controlled release. Due to the insolubility of α-TOC in 

water, two loading forms of α-TOC were used in this study for comparison: α-TOC O/W 

emulsion droplets and α-TOC entrapped zein particles. The characteristics include morphology, 

diameter, and encapsulation efficiency of α-TOC in nanofibers were evaluated. The molecular 

interactions and thermal properties of nanofibers were investigated by Fourier transform infrared 

spectroscopy (FTIR) and differential scanning calorimetry (DSC), respectively. The release 

profiles of α-TOC from SDF based nanofibers in vitro were studied as well.  

4.2 Materials and Methods 

4.2.1 Electrospinning Solutions Prepared with Emulsions 

4.2.1.1 Preparation of α-TOC emulsion  

Ten percent α-TOC oil/water (O/W) emulsion was prepared as described below. Two 

percent of surfactant solution was prepared by dissolving 2 g of Tween 80 in 98 g of deionized 

water. α-TOC emulsion was prepared by adding 1 g of α-TOC (Fluka, Sigma-Aldrich, St. Louis, 

MO, USA) to 9 g of surfactant solution and emulsifying with a homogenizer (Power Gen 500, 

Thermo Fisher Scientific Inc., Pittsburgh, PA) at 9500 rpm for 5 min. The emulsion was 

ultrasonicated in an ice bath at 500 W for 2 min with 50% amplitude (Ultrasonic Processor, Cole 

Parmer, Vernon Hills, IL). The concentration of α-TOC in emulsion was 10%.  

4.2.1.2 Extraction of SDF from purple rice bran  

SDF was extracted from purple rice bran using a modified method of Wan et al. (2011). 

Fifty grams of defatted purple rice bran was mixed with 500 mL of distilled water and 0.5 mL of 

heat stable α-amylase solution (13083 units/mL, Sigma-Aldrich, St Louis, MO, USA) was added 
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to the mixture. The pH of mixture was adjusted to 6.9 to digest starches at 90 °C for 15 min. 

Then the starch-free defatted purple rice bran was separated by centrifugation at 12,000 g and 

washed with distilled water four times. For soluble dietary fiber extraction, 3% of Ca(OH)2 

solution was added to starch-free defatted rice bran at a ratio of 30:1 (V/W) and was stirred for 1 

h at 84 °C by a Talboys laboratory 134-1 stirrer (Troemner LLC, Thorofare, NJ). The extract was 

separated from the solid fraction by centrifugation (Beckman J2-HC centrifuge, GMI, Inc., 

Ramsey, MN, USA) at 12,000 g for 30 min at 4 °C, and then the soluble fraction was neutralized 

with concentrated acetic acid (99.85%). Furthermore, the neutralized soluble fraction was 

purified by a Millipore stirred ultrafiltration cell unit (Model 8400, Millipore Co., Bedford, MA) 

with 10 kDa molecular weight cut-off (MWCO) membrane (Millipore Corp, Bedford, USA) at 

100 kPa Nitrogen gas pressure. The resulting purified SDF retained on the ultrafiltration cell unit 

was freeze dried and stored at 4 °C. 

4.2.1.3 Electrospinning solutions preparation 

Six spinning solutions containing α-TOC emulsion were prepared and the formulations 

were shown in Table 4.1. Poly (ethylene oxide) (PEO, 400,000MW; Sigma-Aldrich, St. Louis, 

MO, United States) was used as a cospinning polymer to help the fabrication of nanofibers. The 

nanofiber wall material polymer solution was prepared by dissolving SDF powder in distilled 

water, and then adding PEO powder to SDF solution and stirring overnight at room temperature. 

α-TOC emulsion was gradually added to the SDF/PEO polymer solution and stirred at room 

temperature for 2 h to obtain homogenous spinning solutions. Solution A1 without SDF adding 

was used as a control. The spinning solutions were characterized for flow properties. Flow 

property of spinning solutions was measured by a AR 2000 ex Rheometer (TA Instruments, New 

Castle, De, United State) with 40 mm diameter steel plate, where a gap of 200 μm was used and 

the shear rate was from 10 to 200 s-1 at 25 °C. The apparent viscosity at 200 s-1 was reported.  
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                           σ = Kγ
.

n                                        (4.1) 

where σ = shear stress (Pa), γ
.

 = shear rate (s-1), K = consistency index  (Pa•sn), and n = flow 

behavior index.  

Table 4.1 Composition of spinning solutions containing α-TOC emulsion 

Spinning solutions α-TOC (wt%)  SDF (wt%) PEO (wt%) Surfactant (wt%) 
A1 3  0 5 0.54 
A2 1  3 5 0.18 
A3 2  3 5 0.36 
A4 3  3 5 0.54 
A5 4  3 5 0.72 
A6 5  3 5 0.9 

A1: control sample (without SDF adding).  
 
4.2.2 Electrospinning Solutions Prepared with Zein Particles 

Electrospinning solutions containing zein encapsulated α-TOC particles were prepared 

and the formulations for the electrospinning solution were shown in Table 4.2. Zein (Sigma 

Aldrich, St. Louis, MO., USA) was used to encapsulate α-TOC first. A 30% zein stock solution 

was prepared by dissolving zein power in 75% ethanol solution. Fifty percent of α-TOC stock 

solution was prepared by dissolving α-TOC in pure ethanol. PEO and SDF were separately 

prepared by dissolving them in deionized water. α-TOC entrapped zein nanoparticles were 

prepared by gradually adding α-TOC solution into zein solution with stirring for 30 min. Then 

the α-TOC entrapped zein solution was mixed with 0.5 g of 10% Tween 80 with 30 min stirring. 

The final concentration of Tween 80 was 0.5%. PEO solution was added into the above mixture 

with stirring for 1 h. Then SDF solution was added and stirred for another 30 min till 

homogeneous. Flow properties of spinning solutions were measured as described section 4.2.1.3. 

The apparent viscosity at 200 s-1 was reported.  
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Table 4.2 Composition of spinning solutions with zein encapsulated α-TOC  

Spinning 
solutions Zein (wt%) α-TOC (wt%, relative 

to zein mass) SDF (wt%) PEO (wt%) 

B1 8 30 3 5 
B2 4 30 3 5 
B3 6 30 3 5 
B4 6 20 3 5 
B5 6 50 3 5 
B6 6 40 3 5 
B7 6 30 0 5 

B7: control sample (without SDF adding).  
 
4.2.3 Electrospinning 

The spinning solutions were separately electrospun in an electrospinning setup to 

produced nanofibers. The electrospinning setup included a high DC voltage power supply 

(Model: FC30R4, Glassman High Voltage, INC., High Bridge, NJ, USA), a KDS-100 syringe 

pump (KD Scientific, Hayward, CA, USA), and a 3 mL syringe with a 23 gauge (0.35 mm) 

needle. Aluminum foil was used as the collector. Electrospinning conditions were set as follows: 

flow rate was 0.2 mL/h, voltage was 20 kV, and the distance between the tip and collector was 

15 cm. The electrospun nanofibers were dried in a vacuum oven at room temperature overnight 

and then stored at -20 ºC for further analysis.  

4.2.4 Morphology and Diameter of Nanofibers 

The morphology of nanofiber was observed in a scanning electron microscopy (SEM). 

Nanofiber sample was placed on the SEM stub and coated with platinum for 4 min using EMS 

550X sputter coating machine (Electron Microscopy Sciences, Hatfield, PA, United States). The 

morphology of sample was observed by a JSM-6610LV scanning electron microscope (SEM, 

JEOL, Peabody, MA, United States). The average size of nanofibers was calculated through 

measuring the diameter of 200 nanofibers from 10 images. 
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4.2.5 Chemical and Physical Properties of Nanofibers 

The chemical interaction of nanofibers was measured by fourier transform infrared 

spectroscopy (FTIR) using ALPHA Platinum ATR QuickSnap (Bruker, Billerica, MA, United 

States) with a diamond ATR cell. The spectra were recorded at 600-4000 cm-1 with the 

resolution of 4 cm-1, and 8 scans were used. The spectra data were collected and analyzed using 

OPUS 7.2 data collection program.  

Differential scanning calorimetry (DSC) measurements of nanofibers were conducted 

using a DSC 2920 Modulated DSC (TA Instruments, New Castle, DE, United States). Five 

micrograms of nanofiber sample were accurately weighted, and then placed in a standard 

aluminum pan and sealed with the lid. Sample was heated from -30 °C to 120 °C at a heating rate 

of 10 °C/min under nitrogen, and then was cooled down to -30 °C at a rate of 5 °C/min. After 5 

min maintenance, the sample was reheated from -30 °C to 120 °C at a rate of 10 °C/ min and the 

data was collected.  

4.2.6 Encapsulation Efficiency of α-TOC in Nanofibers 

Encapsulation efficiency of α-TOC was measured using a modified method of Liu et al. 

(2005). Ten milligrams of α-TOC entrapped nanofibers were washed with 1 mL of ethyl acetate 

for three times. The eluent containing free α-TOC was dried by N2 and then extracted by hexane 

for α-TOC content measurement. The surface α-TOC content was measured by UV/vis 

spectrophotometer at 297 nm. Encapsulation efficiency (EE) of α-TOC in nanofibers was 

determined by following Equation 4.2.  

 
 
                                                                                                                                                  (4.2) 
where total α-TOC content was the added α-TOC in spinning solution.  
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4.2.7 In Vitro Release of α-TOC from Nanofibers 

Nanofiber samples were cut into a 25×25 mm square shape with an average thickness of 

0.30 mm and the mass of the nanofiber sample was about 35 mg. Each sample was separately 

suspended in 10 mL of PBS (phosphate buffer saline) medium which containing 0.5% of Tween 

80 for increasing the solubility of α-TOC. The release study was performed in an incubator 

shaker (Model 3525, LAB-LINE Instruments Inc., Melrose Park, IL) at 37 ºC with 100 rpm for 6 

h. One milliliter of solution was removed for measuring α-TOC content and 1 mL of fresh PBS 

was replenished at each time interval (1, 2, 3, 4, 5 and 6 h). The supernatant containing released 

α-TOC was separated by centrifugation at 12,000 g for 10 min (Eppendorf centrifuge 5417c, 

Eppendorf North America, Hauppauge, NY, USA), and the solid fraction was transferred back to 

the release system. The supernatant was dried by nitrogen with a Zanntel Analytical Evaporator 

(Zip Vap, Glas-Col, LLC, Terre Haute, IN) at 30 ºC and then α-TOC was extracted with hexane 

as described by Luo et al. (2011). α-TOC content was measured by UV/vis spectrophotometer 

(Genesys 2, Thermo Fisher Scientific Inc., Rochester, NY) at 297 nm and determined using a 

standard curve of α-TOC in hexane (R2=0.9998). 

The in vitro release profile of α-TOC from nanofibers under simulated gastric and 

intestinal environments was determined according to the method of Somchue et al. (2009) with 

some modification. Simulated gastric fluid (SGF, pH 1.2) was prepared by dissolving 2.0 g of 

NaCl and 3.2 g of pepsin (from porcine gastric mucosa, with an activity of 800 to 2500 units per 

mg of protein) (Sigma Chemical Co., St. Louis, MO, USA) in distilled water and 7.0 mL of HCl, 

and then the solution was diluted to 1 L with distilled water. Simulated intestinal fluid (SIF) was 

prepared by dissolving 6.8 g of monobasic potassium phosphate in 250 mL of distilled water, 

then mixed with 77 mL of 0.2 N NaOH solution and 500 mL of distilled water. Ten grams of 

pancreatin (sigma USP, Sigma Chemical Co., St. Louis, MO, USA) was mixed with the above 
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mentioned solution and the pH was adjusted with 0.2 N NaOH to 6.8. Distilled water was added 

to reach a final volume of 1 L. A square shape of nanofiber sample was cut from the whole mat 

and exactly weighed. Then it was incubated in 10 mL of SGF at 37 ºC with 100 rpm under an 

incubator shaker for 2 h. The supernatant was separated from the solid part by centrifugation at 

12,000 g for 10 min. One milliliter of supernatant that containing released α-TOC was dried by 

nitrogen and then the released α-TOC was extracted by 2 mL of hexane solution and measured 

using UV/vis spectrophotometer at 297 nm. The solid portion was digested by 10 mL of SIF 

under an incubator shaker at 37 ºC with 100 rpm for 4 h. The released α-TOC in SIF was 

extracted with hexane solution and measured at 297 nm. The percentages of released α-TOC in 

SGF and SIF conditions were reported as %RSGF and %RSIF, respectively.    

4.2.8 Statistical Analysis 

Mean values and standard deviation of triplicate determinations are reported. Analysis of 

variance (ANOVA) was conducted to test the significant differences (P<0.05) among the 

different treatments using SAS system (Version 9.3, SAS Inst. Inc., Cary, N.C., USA.).  

4.3 Results and Discussion 

4.3.1  Flow Properties of Electrospinning Solutions with Emulsions 

The flow properties of spinning solutions containing α-TOC emulsion droplets were 

shown in Table 4.3. As α-TOC content increased from 1 to 5%, apparent viscosity of 

electrospinning solution significantly increased from 1.53 to 2.05 Pa.s, which might be due to the 

interactions of polymer - polymer and polymer - α-TOC droplets in the solution. A greater 

degree of the polymer chain entanglements within the solution results in higher viscosities, while 

lower apparent viscosity is related to the lower degree of polymer molecule chain entanglement 

(Kriegel et al. 2008). The addition of α-TOC to polymer solution increased the apparent 

viscosity. One reason was because of the high apparent viscosity that α-TOC had. It was reported 
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that 10% w/w VE-in-water emulsion has a viscosity of 0.3 Pa.s (Ziani et al. 2012). Also, the 

addition of α-TOC droplets in a polymer solution could increase the polymer chain entanglement 

with droplets. More droplets indicate a higher degree of chain entanglements, which results in a 

higher apparent viscosity. Generally, high viscosity is required for the formation of nanofibers 

without beads defects (Duan et al. 2004). The flow behavior index n value decreased with 

increasing α-TOC concentration in spinning solution. Spinning solutions A1 (control, no α-TOC 

adding) and A2 (containing 1% α-TOC) had significantly higher n value, and a lower n value 

was observed in A4, A5 and A6, which containing 3%, 4% and 5% α-TOC, respectively. Due to 

the shear-thinning liquid properties (n<1), spinning solutions appeared homogenous, and 

emulsion droplets might orient themselves in the direction of spinning flow during 

electrospinning process and thus be incorporated into nanofibers (Singh 2009). Different from n 

value, a higher consistency index K value was shown in A5 and A6, while A1 and A2 had the 

lower K values.  

Table 4.3 Flow properties of α-TOC emulsion droplets loaded spinning solutions, diameter of 
electrospun nanofibers, and encapsulation efficiency of α-TOC  

 
Spinning 
solutions* 

Apparent 
viscosity (Pa.s) n K Average 

diameter (nm) EE (%) 

A1 1.47±0.00e 0.631±0.000ab 10.87±0.01d 199.0±26.1 41.53±0.29e 
A2 1.53±0.00d 0.641±0.009a 10.79±0.45d 200.3±37.4 54.83±0.35d 
A3 1.76±0.01c 0.625±0.002b 13.44±0.22c 228.7±29.4 60.22±0.05c 
A4  1.83±0.03b 0.603±0.001c 15.69±0.30b 224.4±34.9 70.67±1.01b 
A5 2.03±0.00a 0.617±0.001bc 16.10±0.10ab 249.0±22.4 87.75±0.66a 
A6 2.05±0.00a 0.609±0.000c 16.95±0.07a 283.0±65.3 86.97±0.59a 

* Refer to Table 4.1 for the abbreviation of each spinning solution. Values are expressed as mean 
± standard error. abcdemeans with the same letter in the columns are not significantly different 
(P>0.05). n=flow behavior index; K=consistency index. 
 
4.3.2 Diameter and Morphology of Nanofibers with Emulsions 

The addition of α-TOC droplets influenced the size of nanofibers. The average diameter 

of nanofibers (cross section) was increased from 200.3 nm to 283 nm with α-TOC concentration 
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ranging from 1 to 5% (Table 4.3). A1 nanofibers had the lowest average diameter of 199 nm, and 

nanofibers produced from A5 and A6 had the highest average diameter of 249.0 nm and 283 nm, 

respectively. These results kept consistent with the results of apparent viscosities, since solutions 

A5 and A6 had the highest viscosities than other solutions. Apparent viscosity of spinning 

solutions was increased along with the increased concentration of α-TOC, which favored the 

formation of beads-free nanofibers. However, higher viscosity brought in increased diameters 

(Table 4.3).  

α-TOC emulsion in polymer spinning solutions were observed under optical microscope 

(Figure 4.1A). The diameter of droplets ranged from 166.2 nm to 4 µm. Most droplets size was 

below 1 µm, while a very few were larger than 1 µm. α-TOC droplets separated from each other 

in spinning solution without coalescence. Since all spinning solutions were shearing-thinning 

flows (n<1), they appeared homogenous. The contained α-TOC emulsion droplets could be 

stretched along with the elongation of polymers and therefore be incorporated into fibers due to 

the repulsion during the electrospinning process. What’s more, big size droplets can be broken 

up into small droplets and incorporated into fibers (Angeles, Cheng and Velankar 2008). Even 

though the droplets deformed during electrospinning, some droplets maintained their original 

round shape and size with a thin layer cover of polymers, and resulted in bead-like or dotted 

structures, as well as the increased nanofiber diameters (Choi et al. 2011, Arecchi et al. 2010). 

The morphology of α-TOC incorporated nanofibers was shown in Figure 4.1B-G. With increased 

of α-TOC concentration in spinning solutions, nanofibers were no longer uniform, and the bigger 

diameters were observed in nanofibers produced from A5 and A6 (Figure 4.1F, G). Also, small 

diameter nanofibers were generated from the big diameter nanofibers, which indicated the high 

concentration of spinning solutions (Table 4.3). 
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Figure 4.1 Optical microscope (OM) and scanning electron microscope (SEM) images   

(A) spinning solution containing α-TOC O/W emulsion, (B)-(G) nanofibers produced from 
spinning solutions A1-A6, respectively. 

A B 

C D 

F E 

G 
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4.3.3 Encapsulation Efficiency of α-TOC in Nanofibers Containing α-TOC Droplets 

The encapsulation efficiency of α-TOC in nanofibers varied from 41.53% to 86.97% with 

α-TOC concentration in spinning solutions ranging from 1 to 5% (Table 4.3). Nanofibers 

produced from spinning solutions A5 and A6 had encapsulation efficiencies of 87.75% and 

86.97%, respectively, which were higher than that in nanofibers produced from spinning 

solutions A2 (54.83%), A3 (60.22%) and A4 (70.67%). These results were lower than the results 

reported by Zigoneanu et al. (2008), they found that the encapsulation efficiency was increased 

from 89.63 to 95.59% when initial α-TOC loading was increased from 8 to 16%. The increased 

encapsulation efficiency of α-TOC in nanofibers could be explained by the polymer chain 

entanglement. At the lower concentration in spinning solutions, α-TOC droplets attached to the 

polymer surface with less polymer chain entanglement. By increasing the concentration of α-

TOC in spinning solutions, more chain entanglement occurred and SDF/PEO polymers were 

over α-TOC, and more α-TOC was incorporated deep into the polymer matrix. Thus more α-

TOC was entrapped into the center of nanofibers during the electrospinning process. The lowest 

encapsulation efficiency of α-TOC was observed in A1 nanofiber, which was electrospun from 

5% PEO spinning solution containing 3% α-TOC. The possible reason was due to the overloaded 

α-TOC and low content of polymers. α-TOC was incompletely encapsulated by polymers, and 

resulted in low encapsulation efficiency. 

4.3.4 In Vitro Release Profile of α-TOC from Nanofibers with Emulsions 

4.3.4.1 Release profile of α-TOC in PBS medium 

The release profiles of α-TOC from the SDF/PEO nanofibers were investigated in PBS 

medium. The release profile showed an initial burst during the first hour, followed by a slow 

release of α-TOC in all samples (Figure 4.2). The burst effect was higher for nanofibers 

produced from spinning solutions A2, A3, A4, and A5, where 83.69, 75.65, 73.47, and 62.85% 
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of α-TOC was released in the first hour, respectively. Nanofibers produced from A6 had a lower 

burst effect compared with other samples, which was 42.51% in the first hour followed by a 

constant release. This value was significantly lower than the reported release rate of α-TOC by 

Zigoneanu et al. (2008), which 86% was released from nanoparticles in first hour with 8% α-

TOC loading. These results indicated that the higher the α-TOC content, the lower the initial 

release.  

 
 

Figure 4.2 Release profile of α-TOC from SDF based nanofibers in PBS media 
A1: control nanofibers without α-TOC; A2: nanofibers produced from 1% α-TOC spinning 
solution; A3: nanofibers produced from 2% α-TOC spinning solution; A4: nanofibers produced 
from 3% α-TOC spinning solution; A5: nanofibers produced from 4% α-TOC spinning solution; 
A6: nanofibers produced from 5% α-TOC spinning solution. 
 

This phenomenon was attributed to the higher encapsulation efficiency of α-TOC in 

nanofibers. Un-entrapped α-TOC or free α-TOC that attached on the surface of nanofibers 

released rapidly and formed a burst release effect. While encapsulated α-TOC in nanofiber 

matrix diffused slowly from nanofiber inside to outside and resulted in a constant release profile. 

Other factors, including penetration of the release medium and polymer matrix degradation, as 

well as molecule diffusion mentioned above, are three mechanisms of release profile (Sansdrap 
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and Moës 1997). There was no difference in release profile between nanofibers produced from 

A1 and A4, which indicated that SDF/PEO nanofiber had a similar characteristic to PEO as a 

delivery system for α-TOC.       

4.3.4.2 In simulated gastric and intestinal environments  

The release profiles of α-TOC from nanofibers under SGF and SIF were shown in Figure 

4.3. After treatment in SGF for 2 h, the released α-TOC in A1 (21.27%), A2 (20.69%), and A3 

(21.12%) nanofibers was significantly lower than that in A5 (32.23%) and A6 (33.83%) 

nanofibers. There was no significant difference in released α-TOC percentage among A1, A2 and 

A3 nanofibers. A5 and A6 nanofibers had the highest released α-TOC percentages, which 

indicated that higher α-TOC concentration resulted in higher release in SGF. The release of α-

TOC in SGF was mainly due to the diffusion of α-TOC from nanofibers to the medium. Since 

there were no solubilizing agents present in SGF, for instance, Tween 80, the release of α-TOC 

was very slow until enough α-TOC was released and formed transport vehicles by associating 

with each other (Murugeshu et al. 2011). After 4 h of treatment in SIF, only 6.48% of α-TOC 

was released from A6 nanofiber. Nanofiber produced from A1 (17.59%) had the highest released 

percentage of α-TOC in SIF (Figure 4.3) due to its highest surface area to volume ratio. Thus the 

shortest time was needed for α-TOC to diffuse from the inside to the outside of the nanofibers. 

The release of α-TOC in SIF was slower than that in SGF. This might be due to the emulsion 

droplets form of α-TOC in SIF. The surfactant coated on α-TOC droplets served as a barrier and 

increased the resistance of digestion in SIF. Also, the environment pH may be another reason. 

Low pH value (1.2) in SGF may cause the degradation of nanofibers, thus more α-TOC are 

released compared with that in neutral SIF (pH 6.8). 
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Figure 4.3 Gastrointestinal release of α-TOC from SDF/PEO nanofibers 

A1: control nanofibers without α-TOC; A2: nanofibers produced from 1% α-TOC spinning 
solution; A3: nanofibers produced from 2% α-TOC spinning solution; A4: nanofibers produced 
from 3% α-TOC spinning solution; A5: nanofibers produced from 4% α-TOC spinning solution; 
A6: nanofibers produced from 5% α-TOC spinning solution. ABC: same letter means there was 
no significant difference in the release of α-TOC in SGF between different samples (P>0.05); 
abcd: same letter means there was no significant difference in the release of α-TOC in SIF 
between different samples (P>0.05). 
 
4.3.5 Nanofiber Containing Zein Encapsulated α-TOC Particles  

4.3.5.1 Flow properties 

The apparent viscosity of electrospinning solution containing zein encapsulated α-TOC 

particles was shown in Table 4.4. The viscosity of spinning solutions (from B1 to B3) was 

significantly increased with increased concentration of zein, where B1 containing 8% of zein had 

the highest viscosity of 3.63 Pa.s and B2 with 4% of zein had the lowest viscosity of 2.63 Pa.s. 

That was because of the increased amount of polymer in the spinning solution. The concentration 

of α-TOC also affected the viscosity of spinning solutions. With consistent zein concentration at 

6%, B4 had the lowest viscosity due to the lowest α-TOC content of 20% (relative to zein mass). 

Interestingly, the highest viscosity was observed in B3 and B6, which contained 30% and 40% α-

TOC, respectively. B5 had the highest α-TOC concentration (50%, relative to zein mass), but the 
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viscosity was 2.88 Pa.s. That may be because α-TOC molecules attach on the surfaces of zein 

particles when the concentration of α-TOC is low (Luo et al. 2011). Thus the polymer chain 

entanglement with both zein and α-TOC increased and resulted in high viscosity. With increased 

α-TOC concentration, α-TOC may migrate to zein particles and reduce the polymer chain 

entanglement, therefore gave the spinning solution a low viscosity. There was no significant 

difference in viscosity between control solution B7 and B3, which had the same content of α-

TOC and zein. 

Table 4.4 Flow properties of electrospinning solutions containing zein encapsulated α-TOC, and 
diameter and encapsulation efficiency of corresponded nanofibers 

 
Spinning 
solutions* 

Apparent 
viscosity (Pa.s) n K Diameter (nm) Encapsulation 

efficiency (%) 
B1 3.63±0.08a 0.495±0.003c 55.55±0.09a 324.6±10.0 68.28±0.10c 
B2 2.63±0.02d 0.539±0.003a 31.59±0.25e 283.1±23.2 74.50±0.41a 
B3 3.04±0.00b 0.523±0.002b 39.83±0.55b 307.4±33.3 70.61±0.37b 
B4 2.64±0.01d 0.538±0.004a 32.09±0.76e 279.3±23.9 63.48±0.33d 
B5 2.88±0.02c 0.532±0.002ab 36.03±0.30d 291.3±36.6 74.51±0.18a 
B6 2.95±0.02b 0.532±0.001ab 36.38±0.50cd 290.2±46.9 56.94±0.22e 
B7 2.97±0.03b 0.535±0.006ab 37.74±0.01c 294.5±36.1 63.16±0.24d 

* Refer to Table 4.2 for the abbreviation of each spinning solution. Values are expressed as mean 
± standard error. abcdemeans with the same letter in the columns are not significantly different 
(P>0.05). n=flow behavior index; K=consistency index. 
 

The flow behavior index n values for all spinning solutions were less than 1.0, which 

indicated the shear thinning properties of spinning solutions. Because of the shear thinning flow 

properties, spinning solutions were homogenous, and zein particles could be incorporated into 

nanofibers by deforming and elongating during electrospinning. The significantly high K value 

was shown in B1 spinning solution, which containing 8% of zein with 30% of α-TOC. And the 

low K values were observed in B2 and B4 spinning solutions, which containing 4% of zein with 

30% α-TOC and 6% zein with 20% α-TOC, respectively.   
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4.3.5.2 Morphology and naofiber size 

α-TOC loaded zein particles were observed under optical microscope and were shown in 

Figure 4.4A. The zein particles separated from each other and exhibited spherical structures with 

a smooth surface, and the diameter was less than 1 µm. α-TOC was incorporated into self-

assembled zein particles by both ionic and hydrophobic interactions between α-TOC and zein 

molecules (Luo et al. 2011). When SDF/PEO polymer solution was added to α-TOC/zein 

solution, polymer chains entangled with α-TOC/zein particles and coated the surface. Therefore 

α-TOC/zein particles were incorporated into nanofibers during the electrospinning process. The 

morphology of nanofibers was shown in Figure 4.4B-H. Bead-free nanofibers containing α-

TOC/zein particles were produced with a cross-section average diameter ranging from 279.3 to 

324.6 nm (Table 4.4). With same α-TOC loading percentage (30% relative to zein mass) in 

spinning solutions, B1 (324.6 nm) nanofiber had higher average diameter than B2 (283.1 nm) 

and B3 (307.4 nm) nanofibers. With the same zein concentration (6%) in spinning solutions, B4 

nanofiber had the lower average diameter of 279.3 nm compared with B3 (307.4 nm), B5 (291.3 

nm), B6 (290.2 nm) and B7 (294.5 nm) nanofibers. The results of the average diameter of 

nanofibers were consistent with the results of the viscosities of spinning solutions. Even though 

the spinning solutions had high zein and α-TOC concentration, there was no significant 

branching of nanofibers observed in each nanofiber sample, and the diameter distribution was 

narrow (Table 4.4). This indicated that the charge was uniformly distributed on the jet, and the 

spinning solution was homogeneous.    
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Figure 4.4 Optical microscope (OM) and scanning electron microscope (SEM)  

(A) α-TOC loaded zein particles; (B)-(H) nanofibers produced from spinning solutions B1-B7, 
respectively. 
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4.3.5.3 Encapsulation efficiency 

Encapsulation efficiency of α-TOC in nanofibers was demonstrated in Table 4.4. 

Encapsulation efficiency of α-TOC decreased from 74.50 to 68.28% when zein concentration 

increased from 4 to 8%. That may because of overloaded zein particles in a certain amount of 

SDF/PEO polymer solution, thus α-TOC/zein particles were incompletely incorporated into 

SDF/PEO nanofibers. With different concentrations of α-TOC in spinning solutions, the 

encapsulation efficiency also varied. The high EE of α-TOC was observed in B5 nanofiber, and 

the low EE was in B6 nanofiber, which were 74.51 and 56.94%, respectively. The possible 

reason was that the high α-TOC content resulted in the migration of α-TOC from zein particle 

surface to the internal part, and therefore the encapsulation efficiency was increased. Nanofiber 

produced from B7 had a encapsulation efficiency of 63.16%, which might be due to the 

overloaded α-TOC/zein particles.  

4.3.5.4 In vitro release 

Figure 4.5 shows the release profile of zein entrapped α-TOC from nanofibers in PBS 

medium. B2 (containing 4% zein) nanofiber had the highest initial burst, 85.48% of α-TOC was 

released in the first hour, followed by a constant release. With increased zein concentration, the 

burst effect decreased dramatically. B1 nanofiber with 8% of zein had the lowest initial burst, 

where 45.35% of α-TOC was released in the first hour and 61.73% was released after 6 h 

treatment. High zein concentration resulted in bigger nanofiber diameters (Table 4.4), thus the 

diffusion rate of α-TOC was slow, and more time was needed for entrapped α-TOC to diffuse 

from the inside to the outside. The initial α-TOC loading (relative to zein mass) influenced the 

release profile of α-TOC from nanofibers. With the highest loading of 50%, the burst effect was 

61.52% in the first hour (B5 nanofiber). B4 nanofiber with 20% α-TOC had released 79.82% and 

90.14% of α-TOC at 1 h and 6 h, respectively. The initial release percentage of α-TOC was 
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higher than the reported value (30%) by Luo et al. (2011). However, the loaded α-TOC was 

higher (30%) than this study (20%). Luo et al. (2011) also reported that the release percentage of 

α-TOC is increased with lower α-TOC loading percentage.    

 
 
Figure 4.5 Release profile of zein encapsulated α-TOC from SDF based nanofibers in PBS media 
Nanofibers produced from B1: spinning solution containing 8% of zein with 30% of α-TOC; B2: 
spinning solution containing 4% of zein with 30% of α-TOC; B3: spinning solution containing 
6% of zein with 30% of α-TOC; B4: spinning solution containing 6% of zein with 20% of α-
TOC; B5: spinning solution containing 6% of zein with 50% of α-TOC; B6: spinning solution 
containing 6% of zein with 40% of α-TOC; B7: control. 
 

The in vitro release profile of α-TOC in SGI conditions were shown in Figure 4.6. The 

released α-TOC in SGF was decreased with increased zein amount in the nanofibers. Only 

22.29% of α-TOC was released in SGF from B1 nanofiber with 8% zein, while 48.15% of α-

TOC was released from B2 nanofiber with 4% zein loading. Due to the addition of zein, 

degradation of polymer was the main factor for the release profile. With enzymatic hydrolysis of 

zein, entrapped α-TOC was released into SGF. However, nanofibers with higher zein 

concentration had a bigger diameter (Table 4.4), a longer time was taken for pepsin to diffuse 

into the nanofiber and hydrolyze zein, and therefore the diffusion rate for α-TOC was slower. 
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Similar to the release profile of α-TOC in PBS, the cumulative released α-TOC in SGF was 

decreased with increased α-TOC loading.  

 

Figure 4.6 Gastrointestinal release of zein encapsulated α-TOC from SDF/PEO nanofibers 
Nanofibers produced from B1: spinning solution containing 8% of zein with 30% of α-TOC; B2: 
spinning solution containing 4% of zein with 30% of α-TOC; B3: spinning solution containing 
6% of zein with 30% of α-TOC; B4: spinning solution containing 6% of zein with 20% of α-
TOC; B5: spinning solution containing 6% of zein with 50% of α-TOC; B6: spinning solution 
containing 6% of zein with 40% of α-TOC; B7: control. ABC: same letter means there was no 
significant difference in the release of α-TOC in SGF between different samples (P>0.05); abc: 
same letter means there was no significant difference in the release of α-TOC in SIF between 
different samples (P>0.05). 
 

The released α-TOC in SIF was lower than that in SGF after 4 h treatment. The reason 

could be due to the hydrolyzed zein (Liang et al. 2010, Luo et al. 2011). Zein that hydrolyzed in 

SGF by pepsin might serve as an emulsifier and coating on α-TOC droplets. Thus the digestion 

resistance was increased in SIF and slow release occurred.   

4.3.6 Physicochemical Characterization 

4.3.6.1 DSC thermal properties of α-TOC encorporated nanofibers 

The differential scanning calorimetry (DSC) curves of zein, α-TOC emulsion droplets 

loaded nanofibers, and zein encapsulated α-TOC loaded nanofibers were compared in Figure 4.7. 

The melting points of α-TOC-PEO and α-TOC-SDF/PEO nanofibers were at 65.3 and 60.7 °C, 
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respectively. This was due to the melting of the crystalline PEO phase (Kim et al. 2005). The 

melting point of zein was observed at 92.8 °C. That may be due to the evaporation of bound 

water since polymer has a strong affinity with water (Luo et al. 2011). In α-TOC/zein-PEO and 

α-TOC/zein-SDF/PEO nanofibers, only one melting peak was observed at 63.9 and 64.4 °C, 

respectively. No melting peak of zein was detected in those nanofibers. This indicated that α-

TOC entrapped zein particles were dispersed and encapsulated into nanofibers. Previous studies 

have reported that the absence of melting point indicated the encapsulation (Lai and Guo 2011, 

Luo et al. 2012).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.7 DSC thermograms of α-TOC incorporated nanofibers 
 
4.3.6.2 FTIR 

The intermolecular interactions of α-TOC incorporated nanofibers were evaluated by 

FTIR and the results were shown in Figure 4.8. In α-TOCdroplets loaded nanofibers, the triplet 
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peak at 2924, 2867, and 2961 cm-1 in α-TOC decreased to 2885 cm-1 in α-TOC-PEO nanofiber 

and 2878 cm-1 in α-TOC-SDF/PEO nanofibers. That indicated the conformational structures of 

C-H stretching from alkanes were changed. The triplet peak at 1146 cm-1, 1098 cm-1 and 1060 

cm-1 is assigned to the C-O-C stretching from PEO. α-TOC-PEO nanofibers had more intensive 

C-O-C bond than α-TOC-SDF/PEO, which indicated α-TOC-PEO nanofifbers had more 

crystallinity.  

 
 
 

 Figure 4.8 FTIR spectra of α-TOC incorporated nanofibers and the individual components 
 

The broad bands of hydrogen bonds in VE shifted from 3459 cm-1 to 3315 cm-1 in the 

spectra of α-TOC/zein-SDF/PEO nanofibers. This shift may be due to the formation of hydrogen 

bonds (Luo et al. 2011). α-TOC contains hydroxyl groups, which can form hydrogen bonds with 

amide groups in zein. Also, PEO contains hydroxyl groups, and SDF contains both amide and 

hydroxyl groups. The hydrogen bonds could be easily formed between SDF/PEO and zein, 

SDF/PEO and α-TOC. The hydrogen bond was at 3456 cm-1 in α-TOC-PEO nanofibers, at 3441 
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cm-1 in α-TOC/zein-PEO nanofibers, and at 3421 cm-1 in α-TOC-SDF/PEO nanofibers. In 

addition, the hydrophobic attraction may be another force between α-TOC and Zein.  

Two peaks at 1532 and 1650 cm-1 in the spectra of zein powder. Peaks at 1643 and 1559 

cm-1 were shown in α-TOC-SDF/PEO nanofibers. Also, two peaks at 1645 and 1548 cm-1 in α-

TOC/zein-SDF/PEO nanofibers. No peak was observed between 1500 and 1700 cm-1 in α-TOC-

PEO nanofibers. Those peaks were contributed by amide I and amide II groups. Electrostatic 

interactions may be another intermolecular force between α-TOC and zein, α-TOC and SDF, 

zein and SDF (Luo et al. 2011).   

4.4 Conclusions 

In this study, SDF/PEO nanofibers were produced as a carrier for α-TOC delivery. α-

TOC was loaded into nanofibers either by emulsion form or by zein encapsulated particles. The 

molecular interactions in α-TOC-SDF/PEO and α-TOC/zein-SDF/PEO may be hydrogen bonds. 

α-TOC had lower initial release in PBS medium from A6 and B1 nanofibers in the first hour 

compared with that from other nanofibers, and the slow release profile was observed  in both 

PBS and SGI conditions. The results indicated that SDF based nanofibers can be used as delivery 

system for α-TOC. This delivery system may not only improve the stability of α-TOC but also 

enhance the bioavailability and controlled release property of α-TOC. 
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CHAPTER 5 STABILITY STUDY OF ALPHA-TOCOPHEROL 
ENTRAPPED IN SOLUBLE DIETARY FIBER BASED NANOFIBER  

5.1 Introduction 

Because of its antioxidant activities, vitamin E as an essential micronutrient plays a very 

important role in maintaining body health. It can capture free radicals in cell membranes and 

break lipid peroxidation chain reactions, therefore it protects membrane lipids against oxidation 

(Khayata et al. 2012b). It is claimed that vitamin E can inhibit the effects of oxidative stress, 

reduce the risk of cancer, cardiovascular disease, diabetes and aging (Herrera and Barbas 2001).  

Vitamin E can be found in many natural sources and is widely used as functional ingredients in 

food, pharmaceutical, and cosmetic preparations (Yang and McClements 2013b). α-Tocopherol 

is the most biologically active form of vitamin E. One molecule of α-tocopherol can capture two 

peroxyl radicals, and it has been used in fortifying food products and supplements (McClements 

et al. 2009, Yang and Huffman 2011). However, there are also many concerns related to the 

addition of vitamin E in commercial products since it is chemically instable, has poor water 

solubility, as well as the variable bioavailability.     

α-Tocopherol is highly prone to oxidation when is exposed to heat, oxygen and light, thus 

led to lose its bioactivity (Gawrysiak-Witulska, Siger and Nogala-Kalucka 2009, Yoon and Choe 

2009). Oxygen is the main factor that related to the degradation of α-tocopherol. It was reported 

that α-tocopherol is stable at high temperature with the absence of oxygen, while the oxidation 

rate increases under atmospheric conditions with the presence of oxygen, which increases its 

degradation (Shin et al. 1997). High temperature accelerates the degradation of α-tocopherol. 

About 70-80% of vitamin E was lost when heating white flour over 150 °C for 15 min 

(Hakansson and Jagerstad 1990). Another study showed that more α-tocopherol was lost under 

100 °C than under 60 °C with atmospheric pressure, and only 100 h was needed to degrade all α-
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tocopherol in olive oil  (Nissiotis and Tasioula-Margari 2002). Besides aforementioned studies, 

in which α-tocopherol as a component existed in a food matrix, some studies tested the stability 

of free form α-tocopherol. It was reported that the free form of α-tocopherol had the highest 

degradation rate when heated at 180 °C, in which about 55% was degraded after 2 h of heating.  

Photooxidation is another reason that causes the α-tocopherol degradation. Under 

artificial light (λ > 290 nm), α-tocopherol degraded 50% after 500 min, and only 17% remained 

in olive oil after exposure to artificial light for 2500 min (Pirisi et al. 1998). In addition, due to 

the highly lipophilic property, α-tocopherol cannot be directly used in aqueous media 

(Sagalowicz et al. 2006, Velikov and Pelan 2008). Therefore, it is very import to develop a 

system to overcome these deficiencies. The ideal system should protect α-tocopherol from 

chemical degradation and maintain its bioavailability during processing and storage. 

Encapsulation incorporates core materials into wall materials to achieve both protection 

and bioavailability enhancement. Several systems have been developed for encapsulating 

lipophilic nutraceuticals, such as micro/nano-emulsions, nanoparticles, liposomes, and polymer 

particles (Matalanis, Jones and McClements 2011, McClements 2011, Velikov and Pelan 2008, 

Yang and McClements 2013b). After encapsulating into shell materials, the stability and high 

retention of α-tocopherol were maintained after being exposed to high temperatures and UV light 

during storage (Marsanasco et al. 2011a, Zhao et al. 2011, Laouini et al. 2013, Khayata et al. 

2012b).  

However, encapsulation is not enough to prevent the degradation of encapsulated 

bioactive compounds, oxidation happens on core materials during processing and storage if there 

is no antioxidant presence (Wan et al. 2011, Zhao et al. 2011). Especially in nanoencapsulation 

system, oxygen can penetrate through the wall and react with α-tocopherol due to the high 
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surface area to volume ratio, thus cause the loss of bioactivity. Thus, it is necessary to find a 

system that can protect α-tocopherol from degradation and maintain its bioactivity when is 

exposed to severe conditions. In our previous studies, a soluble dietary fiber (SDF) based 

nanofiber delivery system had been successfully developed for α-tocopherol (α-TOC). This study 

focused on investigating the effect of SDF based nanofiber on the stability of entrapped α-TOC. 

Both temperature and UV light were examined for effect on the degradation of encapsulated α-

TOC. Also, the stability of α-TOC was evaluated during storage at room temperature. 

5.2 Materials and Methods 

5.2.1 Production of Nanofiber with α-TOC 

Two samples were prepared for α-TOC stability test and the formulations were shown in 

Table 5.1. Sample A was SDF based nanofibers loaded with α-TOC. Based on the previous study 

(Chapter 4), electrospinning solution with composition of 3% soluble dietary fiber (SDF), 5% 

polyethylene oxide (PEO), 6% zein and 50% of α-tocopherol (α-TOC, relative to zein mass) was 

selected in this study because of its high encapsulation efficiency and its slow release profile of 

α-TOC. Electrospinning solution A was prepared as described below. Thirty percent zein (Sigma 

Aldrich, St. Louis, MO., USA) stock solution and 50% α-TOC stock solution were prepared by 

dissolving zein power in 75% ethanol solution and dissolving pure α-TOC (Fluka, Sigma-

Aldrich, St. Louis, MO, USA) in pure ethanol solution, respectively. SDF and PEO solutions 

were separately prepared by dissolving them in deionized water. α-TOC solution was gradually 

added into zein solution with mild stirring for 30 min to obtain α-TOC loaded zein particles. 

Then 0.5 g of 10% Tween 80 solution was added into α-TOC loaded zein particles solution with 

stirring for 30 min. The final concentration of Tween 80 was 0.5%. PEO solution was added into 

the solution and the solution was vigorous stirred for 1 h. Then SDF solution was added into the 

solution and stirred for another 30 min to obtain homogenous α-TOC loaded spinning solution.  
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Table 5.1 Composition of solutions  

Solutions SDF 
(wt%) 

PEO 
(wt%) 

Zein 
(wt%) α-TOC (wt%)  Tween 80 

(wt%) Nanofiber/Film 

A 3 5 6 50 (releative to 
zein mass) 0.5 Nanofiber A  

B 0 5 6 50 (relative to 
zein mass) 0.5 Nanofiber B  

C 3 5 6 50 (relative to 
zein mass) 0.5 Film C 

D 0 5 0 1 0 Film D 
 
Electrospinning solution B was prepared as described in preparation of solution A but 

without SDF. The spinning solutions A and B were separately electrospun into nanofibers. The 

laboratory scale electrospinning setup consisted of a high DC voltage power supply (Model: 

FC30R4, Glassman High Voltage, INC., High Bridge, NJ, USA), a KDS-100 syringe pump (KD 

Scientific, Hayward, CA, USA), and a 3 mL syringe with a 23 gauge (0.35 mm) needle. 

Aluminum foil was used as the collector. Electrospinning conditions were set as follows: flow 

rate was 0.2 mL/h, voltage was 20 kV, and the distance between tip and collector was 15 cm. 

The collected electrospun nanofibers A and B with α-TOC were dried in a vacuum oven at room 

temperature overnight and were stored at -20 ºC. The thickness of nanofiber mats was controlled 

at 0.30 mm by controlling the spinning time.  

5.2.2 Production of Film with α-TOC 

Two films containing α-TOC were prepared to compare with the electrospun nanofibers.  

Film solution C was prepared as similar to the electrospinning solution A composition (Table 

5.1). The second film solution D was PEO containing α-TOC. Solution D was prepared by 

mixing 1 g of 10% α-TOC solution (dissolved in 100% ethanol) with 5 g of 10% PEO solution 

and 4 g of deionized water to form α-TOC/PEO blend that containing 1% α-TOC and 5% PEO. 

Both solutions C and D were cast onto clean aluminum plates with a diameter of 70 mm and 
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dried at room temperature to obtain cast films with a thickness of 0.30 mm. Resulted two films 

α-TOC/zein-SDF/PEO films and α-TOC-PEO films were dried in a vacuum oven at room 

temperature overnight and were stored at -20 ºC. 

5.2.3 Effect of Temperature on Nanofibers and Films Containing α-TOC  

The stability of α-TOC was measured at a temperature of 40 °C under atmospheric 

pressure. Nanofibers and films that containing α-TOC were cut into 25×25 mm square samples 

with a thickness of 0.30 mm. The weight of each piece was about 35 mg. Each sample was 

transferred to the sealed amber bottles which were placed in a preheated incubator (model 3525, 

LAB-LINE Instruments Inc., Melrose Park, IL). The temperature was maintained at 40 °C. 

Samples were removed after certain times (0, 12, 24, 36, 48, and 72 h) and were analyzed for α-

TOC content.  

The α-TOC content in each sample was determined by a modified method reported by   

Wang, Tian and Chen (2011). Ten microgram of nanofibers was mixed with 2 mL of distilled 

water. The mixture was stirred on a magnetic stirrer (IKA® C-MAG HS7, Wilmington, NC, 

USA) for 5 min to completely dissolve wall materials of nanofibers. Then, 6 ml of pure ethanol 

was added to reach the ethanol final concentration of 75%. The mixture was vigorously shaken 

on a vortex mixer (Mini vortexer MV1, VWR Scientific, IKA® Works, INC., Wilmington, NC, 

USA) for 5 min to dissolve zein particles. Then 5 mL of hexane was added and vigorously 

shaken for 30 min at 1000 rpm. The mixture was centrifuged at 800 g at 4 °C for 5 min 

(Beckman J2-HC centrifuge, GMI, Inc., Ramsey, MN, USA). The absorbance of the top layer 

(hexane layer) that contained α-TOC was measured by a UV/vis spectrophotometer (Genesys 2, 

Thermo Fisher Scientific Inc., Rochester, NY) at 297 nm. Concentrations of α-TOC were 

determined from a standard curve prepared with pure α-TOC in hexane (R2=0.9998).  

The retention of α-TOC was calculated by as follows: 
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Retention (%) =m/m0 *100         (5.1) 

where, m is the α-TOC content in each sample after time t treatment (µg/mg of sample), m0 is the 

initial α-TOC content in each sample (µg/mg of sample). 

5.2.4 Effect of  UV Irradiation on Nanofibers and Films Containing α-TOC 

The photochemical stability of α-TOC was conducted on α-TOC entrapped in nanofibers 

(A and B) and films (C and D). Both nanofibers and films were transferred to uncovered petri 

dishes placed in a light proof cabinet (SG 403A, Baker, Sanford, Maine, USA), and exposed to 

UV light (253.7 nm, 40 W) for up to 8 hours at room temperature. Samples were withdrawn after 

exposure times of 0, 0.5, 1.0, 2.0, 4.0, 6.0 and 8.0 h for α-TOC content measurement as 

described in section 5.2.3. 

5.2.5 Effect of Storage on Nanofibers and Films Containing α-TOC 

The stability of α-TOC during storage was investigated. Samples were separately 

transferred into sealed amber bottles and the bottled samples were placed at room temperature 

for up to 15 d storage. The changes of α-TOC content in each sample were measured at day 0, 1, 

3, 5, 7, 9, 11, 13 and 15 as described in section 5.2.3.  

5.2.6 Statistical Analysis 

All experiments were conducted in triplicate, and the results were reported as mean 

values and their standard deviations. Analysis of variance (ANOVA) was conducted by SAS 

software (Version 9.3, SAS Inst. Inc., Cary, NC, USA.) to test the difference of α-TOC retention 

in each matrix and the difference between treatment time. 

5.3 Results and Discussion 

5.3.1 Effect of Temperature on Nanofibers and Films Containing α-TOC  

α-TOC contents in both nanofibers and films were varied after exposed to treatment at 40 

°C (Figure 5.1).  
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Figure 5.1 Retention of α-TOC under heat treatment 

A: α-TOC entrapped SDF based nanofibers; B: α-TOC entrapped nanofibers without SDF; C: α-
TOC entrapped cast film with SDF adding; D: α-TOC/PEO blend cast films without SDF adding.  
Values are expressed as mean ± standard error. ab: Same letter means there was no significant 
difference in the retention of α-TOC between samples A, B, C and D after a certain period of 
heat treatment (P>0.05); ABCD: same letter means there was no significant difference in the 
retention of α-TOC between different heat treatment times in the same sample (P>0.05).  
 

After exposure to 40 °C for 12 h, the retention of α-TOC significantly decreased to 

94.89%, 90.26%, 95.21% and 94.15% in nanofiber A, nanofiber B, film C, and film D, 

respectively. All the nanofibers and films had similar α-TOC retention after 36 h at 40 °C. Both 

nanofiber A (84.01%) and film C (87.85%) had significantly higher α-TOC retention than 

nanofiber B (77.16%) and film D (82.95%) after 72 h at 40 °C. The results indicated that SDF 

minimized α-TOC degradation in nanofiber A and film C. SDF extracted from rice bran is 

known to be have antioxidant activity, and it scavenges superoxide radical, hydroxyl free radical 

and reduces lipid peroxidation propagation (Zha et al. 2009b, Rivas et al. 2013). The addition of 

SDF into wall materials is believed to protect lipids from oxidation. Wan et al. (2011) have 

reported that SDF reduces the lipid oxidation in encapsulated fish oils.   

Nanofiber A and film C had similar α-TOC retention after 72 h at 40 °C, which indicated 

that there was no significant difference between nanofiber and film forms in the protection on α-

74 



 

TOC degradation with the presence of SDF. However, film D had higher α-TOC retention than 

nanofiber B after 72 h at 40 °C, which were 82.95% and 77.16%, respectively. This indicated 

that film had better effect on the protection of α-TOC than nanofiber at 40 °C without the 

presence of SDF. In nanofiber B, α-TOC had high surface area to volume and was more 

accessible to oxygen compared with its bulk size. In flim D, α-TOC existed as the free form with 

bulk size, thus its interaction with oxygen was less compared to that in nanofiber B, and more α-

TOC was retained.    

Nanofiber A and film C had α-TOC retention of 84.01% and 87.85%, respectively after 

72 h at 40 °C, which were higher than the reported results by Zhao et al. (2011) that the retention 

percentage of VE in liposome carrier was lower than 70% after 3 days of storage at 40 °C. This 

indicated that SDF nanofiber and SDF film had better effect on protection of α-TOC degradation 

at 40 °C than liposome system.  

5.3.2 Effect of  UV Irradiation on Nanofibers and Films Containing α-TOC 

The stability of α-TOC in both nanofibers and films under UV irradiation was evaluated 

and the results were shown in Figure 5.2. After exposure to UV light for 0.5 h, the retention of α-

TOC in nanofiber A, nanofiber B and film D was significantly decreased compared with the 

initial α-TOC content in each sample, while the α-TOC in film C was not significantly degraded. 

Film C had significantly higher retention of α-TOC when exposure to UV light over 2 h than that 

of nanofiber A, nanofiber B and film D. Both nanofiber A and film C had similar α-TOC 

retention after 8 h of UV exposure, while nanofiber B and film D had significantly lower α-TOC 

retention.  
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Figure 5.2 Retention of α-TOC with UV irradiation 
A: α-TOC entrapped SDF based nanofibers; B: α-TOC entrapped nanofibers without SDF; C: α-
TOC entrapped cast film with SDF adding; D: α-TOC/PEO blend cast films without SDF adding.  
Values are expressed as mean ± standard error. abcd: Same letter means there was no significant 
difference in the retention of α-TOC between Samples A, B, C and D after a certain period of 
UV irradiation (P>0.05); ABCDEF: same letter means there was no significant difference in the 
retention of α-TOC between different UV irradiation times in the same sample (P>0.05).  
 

Film C (90.04%) had significantly higher α-TOC retention than nanofiber A (86.11%) 

when exposed to UV light for 6 h. This indicated that the film had better protection on α-TOC 

degradation during the UV exposure. That may be due to the α-TOC form presented in samples. 

α-TOC in nanofiber A had the smallest size with the highest surface area, thus light could access 

α-TOC molecules rapidly and interact with them, thereby resulting in α-TOC degradation. In 

film C, α-TOC had a low surface area with a bulk size, which might reduce the penetration of 

UV light and delay the photo-oxidation of α-TOC. However, there was no significant difference 

in α-TOC retention between nanofiber A (85.21%) and film C (83.20%) after 8 h of UV 

irradiation. That might be due to the initial lipid oxidation. SDF interacted with free radicals that 

produced during initial lipid oxidation and inhibited the propagation of lipid oxidation.          
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Nanofiber A had significantly higher α-TOC retention than nanofiber B, about 85.21% of 

α-TOC was retained in nanofiber A, while 27% of α-TOC was degraded in nanofiber B after 8 h 

of UV irradiation (Figure 5.2). These results indicated that SDF prevented the degradation of α-

TOC during UV treatment. Also, there only 59.53% of α-TOC was retained in film D after UV 

irradiation for 8 h. That may because of the free bulk form of α-TOC in film D. Due to the 

immiscibility of α-TOC and PEO, a part of α-TOC might distribute on the surface of cast films. 

This portion was exposed to UV light directly without any block, thus it degraded very quick.  

The retention of α-TOC in nanofiber A (85.21%) and film C (83.20%) after 8 h of UV 

irradiation was higher than that of previous reported result of 62.05% (Zhao et al. 2011). This 

indicated that α-TOC degradation from UV irradiation can be inhibited by adding SDF in 

nanofiber and film.    

5.3.3 Effect of Storage on Nanofibers and Films Containing α-TOC 

The stability of α-TOC during storage was examined under room temperature. Figure 5.3 

shows the retention of α-TOC in nanofiber A, nanofiber B, film C, and film D during storage. 

Film D had significantly higher α-TOC retention after 1 d of storage at room temperature than 

nanofiber A, nanofiber B and film C, which were 100.35%, 91.31%, 65.90% and 95.19%, 

respectively. There was no significant degradation of α-TOC in film D after 1 d storage at room 

temperature. That might be due to the bulk form of α-TOC existed in film D. α-TOC 

agglomerated in solution D and formed big oil droplets due to the immiscibility with PEO 

solution. After casting on aluminum plates, a bumpy surface structure formed on the surface of 

the film D during drying (Taepaiboon et al. 2007). This bulk α-TOC was less available for 

oxygen, and exhibited no degradation during short storage period (1 d) at room temperature. 

Nanofiber B had the lowest retention of α-TOC after storage at room temperature for 1 d 

compared with other samples. This may be due to the oxidation of surface α-TOC in nanofiber 
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B. α-TOC had a higher surface area to volume ratio in nanofiber B, thus the interaction between 

surface α-TOC and oxygen was higher than that in film C and film D. Without the presence of 

SDF, oxidation happened on the surface α-TOC in nanofiber B at room temperature rapidly and 

caused degradation of α-TOC. 

 

Figure 5.3 Retention of α-TOC during storage 
A: α-TOC entrapped SDF based nanofibers; B: α-TOC entrapped nanofibers without SDF; C: α-
TOC entrapped cast film with SDF adding; D: α-TOC/PEO blend cast films without SDF adding.  
Values are expressed as mean ± standard error. abcd: Same letter means there was no significant 
difference in the retention of α-TOC between sample A, B, C and D after a certain time of 
storage (P>0.05); ABCDEFGH: same letter means there was no significant difference in the 
retention of α-TOC between different storage times in the same sample (P>0.05).  
 

The similar and significantly higher α-TOC retention was observed in nanofiber A, film 

C and film D after 3 d storage at room temperature than nanofiber B, which were 87.46%, 

85.40%, 84.28%, and 62.49%, respectively. These results indicated that SDF inhibited α-TOC 

degradation in nanofber A and film C during room temperature storage, and bulk form α-TOC in 

film D had slower degradation than nano form α-TOC in nanofiber B without the presence of 

SDF.     

78 



 

After storage at room temperature for 13 d, the losses of α-TOC were 22.43%, 49.7%, 

34.43% and 47.39% for nanofiber A, nanofiber B, film C and film D, respectively. Nanofiber A 

had significantly higher α-TOC retention than film C, film D and nanofiber B. The reason may 

be due to SDF contained in nanofiber A. α-TOC was incorporated in SDF based nanofibers, thus 

SDF served as an antioxidant and provide protection of encapsulated α-TOC from oxidation. 

Film C had significantly higher α-TOC retention than nanofiber B and film D, but the retention 

was lower than that in nanofiber A. This indicated that SDF contained in film C reduced the 

oxidation of α-TOC and resulted in significantly higher retention of α-TOC than that in nanofiber 

B and film D. However, SDF was not uniformly coated on α-TOC in film C, the protection that 

provided by SDF was insufficient to against α-TOC oxidation. Hence higher degradation of α-

TOC was occurred in film C than that in nanofiber A.  

After 15 d of storage, the retention of α-TOC in nanofiber A achieved 73.29%. This value 

was higher than that in other systems, in which was reported that 65% of VE was retained in a 

liposome delivery carrier after storage at 25°C for 15 d (Zhao et al. 2011). Nanofiber B (45.86%) 

and film C (44.86%) had similar α-TOC retention after 15 d storage at room temperature, and 

film D (37.99%) had significantly low α-TOC retention.  

5.4 Conclusions  

In this study, the stability of α-TOC in SDF based nanofiber and film was evaluated by 

measuring the retention of α-TOC after exposure to heat, light and during storage. Heat 

degradation of α-TOC was lower in SDF based nanofiber and film than that in nanofiber and 

film without the addition of SDF. In UV irradiation test, α-TOC had significantly higher 

retention in SDF based nanofiber and film than that in nanofiber and film without the addition of 

SDF. These studies indicated SDF reduced the degradation of α-TOC at 40 °C and in the UV 

irradiation. SDF based nanofiber and film matrix was effective in protecting α-TOC from heat 
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degradation and photooxidation. In storage test, the high retention of α-TOC was observed in 

SDF based nanofiber and film after stored at room temperature for 13 d, while the lowest 

retention of α-TOC was found in film and nanofiber without SDF. Therefore, SDF could 

effectively inhibit the degradation of α-TOC in nanofiber and film. The bioactivity of α-TOC 

could be maintained in nanofiber and film by adding SDF.    
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CHAPTER 6 EFFECT OF ΑLPHA-TOCOPHEROL DELIVERED BY 
SOLUBLE DIETARY FIBER BASED NANOFIBER ON THE 

LIFESPAN OF C. ELEGANS  

6.1 Introduction 

Vitamin E as a major lipophilic antioxidant contains eight substances with a chromanol 

ring and a saturated (tocopherols) or unsaturated (tocotrienols) carbon side chain. These 

compounds are classified as α, β, γ and δ-tocopherols and α, β, γ and δ-tocotrienols according to 

the number and the position of methyl groups attached on the chromanol groups (KamalEldin 

and Appelqvist 1996). α-Tocopherol (α-TOC) has the highest antioxidant ability in lipid 

oxidation in both foods and biological systems, and it is widely used for supplementation. In 

biological systems, α-TOC reacts with fatty acid peroxides through electron transfer and protects 

the membranes from oxidative damage (Traber and Atkinson 2007). In addition, it may regulate 

gene expression (Rimbach et al. 2010).   

Aging is related to the free radicals produced by aerobic metabolism, which causes the 

accumulation of oxidative damage in cell membrane and thus accelerates the aging process 

(Harman 1956). The supplementation of antioxidant is regarded as a potential approach to delay 

aging. Vitamin E has been tested for the influence on lifespan in animal models, including 

rotifers, nematodes , flies, mice and rats (Ernst et al. 2013). Ernst et al. (2013) have reported that 

vitamin E can increase the lifespan in certain organisms but not all the organisms. The 

relationship between vitamin E and lifespan is still unclear. In aforementioned studies, vitamin E 

was fed to organisms in a free form. It is known that vitamin E is sensitive to oxygen, heat and 

light. Its bioactive ability may be lost due to degradation when exposed to these factors. Also, it 

suggests that the bioavailability of vitamin E can increase when it is delivered in nano scale form 

rather than in bulk form (Feng et al. 2009).              
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The nematode Caenorhabditis elegans (C. elegans) is widely used in aging studies. It has 

a short lifespan of a few weeks and uncomplicated morphology with well-differentiated cell 

systems. Meanwhile, it is biologically and genetically well-characterized, as well as easy to 

maintain in the lab (Harrington and Harley 1988, Aan et al. 2013). Also, this organism model is 

inexpensive. Different from the larger and more complicated mammalian and cell culture 

models, no expensive or huge facilities are needed for the culture and maintenance of worms, 

thousands of worms can grow on an agar Petri dish with feeding Escherichia coli (Dexter, 

Caldwell and Caldwell 2012). C. elegans intakes and transports food through the pharyngeal 

movement and relaxation in the terminal bulb of the pharynx (Finley et al. 2013). The aging of 

C. elegans relates with the decreased pharyngeal pumping rate because of sarcopenia (Huang, 

Xiong and Kornfeld 2004). Therefore, the lifespan can be predicted and premature aging can be 

detected through measuring the pharyngeal pumping rate.  

It was reported that environmental stimuli, e.g., hyperthermia, UV light and 

chemotherapeutic agents, can cause disorder in the normal redox balance and make the cells shift 

to a state of oxidative stress, which results in a shorter lifespan (Finkel and Holbrook 2000). 

Increased resistance to oxidative stress relates with increased lifespan of C. elegans (Butov et al. 

2001). Hence, the supplementation of antioxidant could delay aging and extend the lifespan.   

In our previous study (Chapters 4 and 5), α-TOC delivered by soluble dietary fiber (SDF) 

based nanofibers had gradually release profiles in vitro and was more stable when exposed to 

heat, light and oxygen compared with the free form α-TOC. It may have the increased 

bioavailability and may increase the lifespan of C. elegans due to the nano scale, gradually 

release and higher stability compared with free from α-TOC. In this study, the effect of α-TOC 

delivered by SDF based nanofiber on the lifespan of nematode C. elegans was evaluated by 
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counting the live C. elegans. Meanwhile, heat shock was applied to induce an oxidative stress. It 

was assumed that the heat shock group of C. elegans had more oxidative stress, and thus had a 

shorter lifespan compared to the group without heat shock. The effect of encapsulated α-TOC on 

the lifespan of C. elegans with/without heat shock was compared. Also, the pharyngeal pumping 

rate of C. elegans was measured to examine the relationship with lifespan.  

6.2 Materials and Methods 

6.2.1 Nematode Strain and Solutions Preparation  

The wild type C. elegans N2 strain and TK22 strain (mev-1 genetic mutant strain) used in 

this study were generously provided by Pennington Biomedical Research Center at Louisiana 

State University. Potassium phosphate buffer was prepared by dissolving 136 g of KH2PO4 in 

900 mL deionized water, and the pH was adjusted to 6.0 with 5 M KOH. Then deionized water 

was added to the final volume of 1 L and autoclaved (Brinkman, Riverview, FL, USA). Trace 

metal solution was prepared by dissolving 1.86 g of Na2EDTA, 0.69 g of FeSO4.7H2O,  0.20 g of 

MnCl2.4H2O, 0.29 g of ZnSO4.7H2O and 0.016 g of CuSO4 in 1000 mL deionized water and 

then autoclaved. S-basal medium was prepared by mixing 5.9 g of NaCl with 50 mL of 1 M 

potassium phosphate (pH 6.0), then diluted to 1 L with deionized water and autoclaved. One 

milliliter of 5 mg/mL cholesterol ethanol solution was added after the solution was cooled to 

room temperature. Liquid culture medium S-complete was prepared by mixing 977 mL of S-

basal, 10 mL of 1 M potassium citrate pH 6, 10 mL of trace metals solution, 3 mL 1 M CaCl2 

(sterile) and 3 mL of 1M MgSO4 (sterile).  

6.2.2 Preparation of α-TOC Incorporated Soluble Dietary Fiber Based Nanofibers 

α-TOC loaded soluble dietary fiber based nanofibers were prepared by electrospinning. 

α-TOC was mixed with 2% Tween 80 solution and homogenized to form 10% O/W emulsions. 

Then 5 g of 10% α-TOC O/W emulsion was gradually added to 5 g of SDF/PEO polymer 
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solution (containing 6% SDF and 10% PEO) and stirred at room temperature for 2 h to obtain a 

homogenous spinning solution. The spinning solution was electrospun into nanofibers under an 

electrospinning setup, which contained a high DC voltage power supply (Model: FC30R4, 

Glassman High Voltage, INC., High Bridge, NJ, USA), a KDS-100 syringe pump (KD 

Scientific, Hayward, CA, USA), and a 3 mL syringe with a 23 gauge (0.35 mm) needle. 

Aluminum foil was used as the collector. Electrospinning conditions were set as follows: flow 

rate was 0.2 mL/h, voltage was 20 kV, and the distance between tip and collector was 15 cm. α-

TOC loaded SDF based nanofibers were dried in vacuum oven at room temperature overnight 

and then stored at -20 ºC. The α-TOC content in SDF based nanofiber was 359.7 µg/mg. 

SDF/PEO nanofibers without the loading of α-TOC were prepared as control sample. 

6.2.3 Preparation of Stock Solutions  

Twelve stock solutions were prepared as described in Table 6.1. SDF nanofiber stock 

solutions were prepared from SDF nanofiber without α-TOC. The concentrations of nanofiber 

were 356 µg/mL (S1-a), 712.01 µg/mL (S1-b) and 1424.08 µg/mL (S1-c). Three concentrations 

of α-TOC stock solutions were prepared by dissolving 10.0, 20.0 and 40.0 mg of pure α-TOC 

(Fluka, Sigma-Aldrich, St. Louis, MO, USA) in 100% purity ethanol to a total volume of 0.5 

mL, respectively. Then 20 µL of each of above α-TOC solutions was integrated into S-complete 

solution for a total volume of 2 mL (containing 0.5mg/mL Tween 80). The concentration of α-

TOC in these stock solutions were 200, 400 and 800 µg/mL, and they were named as S2-a, S2-b 

and S2-c, respectively. α-TOC loaded SDF nanofiber containing 359.7 µg/mg of α-TOC were 

accurately weighed and dissolved in S-complete to obtain the stock solutions containing 200 

µg/mL (S3-a), 400 µg/mL (S3-b) and 800 µg/mL (S3-c) of encapsulated α-TOC. In these stock 

solutions, the wall material concentration (SDF/PEO) was 356 µg/mL, 712.01 µg/mL and 

1424.08 µg/mL, respectively. Ethanol stock solution S4 was prepared as a solvent control. It was 
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prepared by adding pure ethanol into S-complete solution to obtain concentrations of 9.8 mg/mL 

(S4-a), 9.6 mg/mL (S4-b) and 9.2 mg/mL (S4-c) (containing 0.5% Tween 80).  

Table 6.1 Composition of stock solutions  

Stock 
solutions Description 

α-TOC 
content 
(µg/mL) 

nanofiber 
content 
(µg/mL) 

Ethanol /Tween 
80 content 
(mg/mL) 

S1-a Nanofiber (without α-TOC) 0 356.00 0/0 
S1-b Nanofiber (without α-TOC) 0 712.01 0/0 
S1-c Nanofiber (without α-TOC) 0 1424.08 0/0 
S2-a Pure α-TOC 200 0 9.8/0.5 
S2-b Pure α-TOC 400 0 9.6/0.5 
S2-c Pure α-TOC 800 0 9.2/0.5 

S3-a α-TOC loaded SDF based 
nanofibers 200 356.00 0 

S3-b α-TOC loaded SDF based 
nanofibers 400 712.01 0 

S3-c α-TOC loaded SDF based 
nanofibers 800 1424.08 0 

S4-a Ethanol control 0 0 9.8/0.5 
S4-b Ethanol control 0 0 9.6/0.5 
S4-c Ethanol control 0 0 9.2/0.5 

 
6.2.4 Preparation of Synchronized C. elegans 

Less than 1 week old chunk dishes with good condition (having a large number of gravid 

adults) were chosen to prepare synchronized C. elegans. Worms were washed off plates with 5 

mL of distilled water into a 15 mL conical tube. Then worms were separated from supernatant 

after centrifuging for 2 min in an IEC clinical centrifuge (International Equipment Company, 

Needham Heights, MA, USA). A lysis solution that was prepared by mixing 5 mL of 1 M NaOH 

with 2 mL of fresh bleach was added into worms and vortexed for 3 times in a Roto (miniRoto 

S56, Fisher Scientific, Waltham, MA, USA) to lyse worms (3-4 min). Slow movement of worms 

in lysis solution was observed under microscope (Nikon SMZ1500, Tokyo, Japan), and worms 

were broken and eggs were released after vortexing (a clear solution appeared). Lysis solution 

was centrifuged and the supernatant was removed. Then 5 mL of S-complete was immediately 
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added to deactivate the lysis buffer with vortexing for 30 seconds. The eggs were separated from 

supernatant after centrifugation, and then were washed by S-complete for another 2 times. After 

three washings, 5 mL of S-complete buffer was added into eggs. The conical tube was placed in 

the rocker (VWR Signature TM 3-D Rotator Waver, VWR International Co., Radnor, 

Pennsylvania, USA) overnight and laid on its side to maximize the air exchange.       

6.2.5 Preparation of Feeding Bacteria 

First, feeding bacteria E. coli OP50 was washed from media by 5 mL of distilled water. 

Then OP50 was separated from the supernatant after centrifugation (Servall Legend X1R 

centrifuge, Thermo Scientific, Waltham, MA, USA) at 2200 rpm for 10 min. Then OP50 was 

washed three times using S-complete. The S-complete was added to OP50 to get OP50 solution 

after wash.    

6.2.6 Seed Worms into Plates 

Worms were hatched after 24 hours of synchronization. The concentration of worms was 

determined by counting the number of worms in 10×10 µl drops under microscope (Nikon 

SMZ1500, Tokyo, Japan). S-complete containing feeding bacteria E. coli OP50 was added into 

worms to obtain a final concentration of 100 worms per milliliter. Then 120 µL of worm/OP50 

solution was transferred to each well in a 96-well plate. The plate was sealed using a tape sealer 

to avoid contamination and evaporation. Then it was incubated in a 20 °C incubator (Isotemp®, 

Fisher Scientific, Waltham, MA, USA) for 2 days until worms reach the L4 stage. 

6.2.7 Sterilization Worms Using Fluorodeoxyuridine (FUDR) 

A 30 µL aliquot of a 0.8 mM 5-Fluoro-2’-deoxyuridine (Sigma-Aldrich, St. Louis, MO, 

USA) FUDR stock solution was added into each well for L4 stage worms after 2 days 

incubation. A final volume of 150 µL in each well was reached after this process. Then the plates 

were put back in the 20 °C incubator. 

86 



 

6.2.8 Heat Shock Treatment  

After 1 day of incubation at 20 °C with FUDR, the worms with three days of age were 

divided into two groups with N2 and TK22 contained in both groups. Group 1 was maintained at 

20 °C as a non-heat treatment. Worms in Group 2 were exposed to a heat shock at 35 °C under 

an incubator (VWR 1530, Sheldon Manufacturing Inc., Cornelius, OR, USA) for 4 h and then 

maintained at 20 °C for the remainder of their lives. Four hours heating was selected because the 

preliminary test results showed that over 90% of worms (N2 strain) survived after 4 h heating at 

35 °C, and over 50% of worms were dead if heating longer. After the heat shock, the worms in 

each group was divided into 13 subsidiary groups (each subsidiary group contained 6 wells for 

replicates, n=6). Then 50 µL stock solutions (S1, S2, S3 and S4) were added into each well to 

obtain a final volume of 200 µL (Table 6.2). Thus, the concentration for α-TOC was 50, 100 and 

200 µg/mL. Worms with 50 mL S-complete were used as the blank control.   

Table 6.2 Sample treatments in each group 

Subsidiary group Treatments 
1 S1-a 
2 S1-b 
3 S1-c 
4 S2-a 
5 S2-b 
6 S2-c 
7 S3-a 
8 S3-b 
9 S3-c 
10 S4-a 
11 S4-b 
12 S4-c 
13 Blank control, S-complete 
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6.2.9 Lifespan of Worms  

The number of live and dead nematodes was counted under microscope (Nikon, SMZ-U, 

Kanagawa, Japan). Movement was used to determine whether worms live or not. Starting at day 

three, the numbers of live worms were counted three times per week for each group. 

6.2.10 Pharyngeal Pumping Rate of Worms 

For pharyngeal pumping rate of C. elegans during the lifespan study, worms were 

synchronized under the above described method (6.2.4) with slight modification. Distilled water 

(0.5 mL) was used to wash worms off plates into a 1.5 mL eppendorf tube. Then the mixture was 

centrifuged and the supernatant was removed. A lysis solution consisting of 500 µL of 1 M 

NaOH and 200 µL of fresh bleach was added to the eppendorf and immediately vortexed Ptill 

the solution became clear (the worms were straight and dead under microscope, and eggs were 

released). Then worms/lysis mixture was centrifuged and the lysis solution was removed after 

centrifugation. The eggs were washed by 1 mL of S-complete for three times. Then 1 mL S-

complete was added into washed eggs and the eppendorf was placed in a rocker overnight and 

laid on its side to maximize the air exchange. The hatched worms were mixed with 1.2 mL of 

OP50 solution, and 100 µL of the mixture transferred into each agar plate. The worms in agar 

plates were placed in 20 °C incubator for 3 days, and separated into two groups, non-heat and 

heat groups. Heat group was placed in a 35 °C incubator for 4 h, and non-heat group was placed 

in a 25 °C incubator. The pharyngeal pumping of worms in each group (n=5) was observed 3 

times a week under microscope (Nikon, SMZ-U, Kanagawa, Japan). The pharyngeal pumping 

(oscillating movement of the terminal bulb) times were recorded in a 20 second period, and the 

pumping rate was calculated in times/min. The first generation of worms (at least 30 worms at 

the beginning) were transferred to new agar plates after measurement and fed with 50 µL of 

samples with 10 µL of OP 50. Stock solutions S1-b, S2-b, S3-b and S4-b were used in this test 
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due to their effects on the lifespan of worms. The blank control was the group that fed with 50 

µL S-complete and 10 µL of OP 50. 

6.2.11 Statistical Analysis 

One-way analysis of variance (ANOVA) was conducted to test the significant differences 

(p<0.05) among the different treatments using SAS system (Version 9.3, SAS Inst. Inc., Cary, 

N.C., USA.).   

6.3 Results and Discussion  

6.3.1 Lifespan of Worms 

6.3.1.1 Non-heat shock treatment  

The lifespans for worms N2 without heat shock treatment were shown in Figure 6.1. 

Lifespans of worms N2 treated with S3-a, S3-b increased (survival curves are shifted to the right 

of the control group) (P>0.05). The death rate for worms with treatments of S1-c and S3-c at 

early ages sharply increased (survival curves shifted to the left of the control group). For 

treatment with S1-a and S2-a, the survival rate of worms before day 18 was increasing (survival 

curves shifted to the right of the control group with short distance), and there was no much 

difference in survival rate between worms treated with S1-b and the control worms. Groups fed 

with S2-b, S2-c had slightly increased survival rate. This could be due to the antioxidant ability 

of α-TOC and SDF, both of them can serve as antioxidant to reduce the lipid oxidation happened 

on the cell membrane. Figure 6.1 showed that with higher concentration of α-TOC, the survival 

rate of worms was also slightly higher. For free form α-TOC, it showed that 50 µg/mL α-TOC 

was the optimum concentration to extent the mean lifespan of N2. This concentration was lower 

than that obtained in previous studies, in which 200 µg/mL of α-TOC was used to increase the 

mean lifespan of C. elegans (Harrington and Harley 1988, Zuckerman and Geist 1983). The 

possible reason could be attributed to the differences in the C. elegans strain. A higher 
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concentration of α-TOC may result in a weaker cytotoxic effect, because α-TOC can be 

converted into the pro-oxidants α-TOC semiquinone radical and α-TOC quinone (Minogue and 

Thomas 2004).  

 

 

Figure 6.1 Survival curves of N2 without heat shock treatment  
Worms treated with S1: SDF nanofiber only, no α-TOC contained; S2: α-TOC only; S3: α-TOC 
entrapped SDF based nanofibers; S4: solvent control. abc: three concentrations of stock 
solutions. 
 

The survival rate of N2 decreased when worms were fed with a high concentration of 

SDF (356.02 µg/mL). That might be due to the Ca2+ in the SDF material. The SDF extracted 

from calcium hydroxide was purified by ultrafiltration in our previous study (3.2.1). However, a 

few Ca2+ ions were left in the SDF (containing 6.85% of calcium) and were involved in 

a b 

c d 
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nanofibers. The entry of excess Ca2+ into cells can trigger apoptosis due to the stress response 

(Orrenius, Zhivotovsky and Nicotera 2003).  Importantly, the survival rate of N2 increased when 

worms were fed with α-TOC entrapped in SDF based nanofibers (S3-a and S3-b). The reason 

could be the synergistic effect of α-TOC and SDF. Another possible reason could be the 

increased bioavailability of α-TOC when it was encapsulated in nanofiber carriers. Entrapped α-

TOC was released gradually, which resulted in the decrease of the accumulation of α-TOC in 

worms and the reduced cytotoxic effect of α-TOC. On day 51, N2 had a survival rate of 0.12 on 

groups treated with S3-b, 0.01 on the S2-a treated group, and there were no live worms in other 

groups. This indicated that SDF nanofiber encapsulated α-TOC treatment with a concentration of 

100 µg/mL increased lifespan of N2.  

TK22 exhibited a shorter mean lifespan in all treatment groups than N2 (Figure 6.2). This 

was due to the shorter lifespan of mev-1 strain than the wild type C. elegans (Kondo et al. 2005, 

Ishii et al. 1998). The survival rate of TK22 was decreased in the early age in all treatment 

groups (survival curves are shifted to the left of the control group before the age of 11 days). 

That might be because TK22 is more sensitive than N2 wild type, the addition of sample 

treatment served as a stimuli which caused oxidative stress and resulted in death (Finkel and 

Holbrook 2000). The survival rate in each treatment group was increased in the later age of 

worms (survival curves are shifted to the right of the control group after age of 11 days). At day 

34, a few worms were still alive in groups treated with SDF (S1), pure α-TOC (S2) and nanofiber 

encapsulated α-TOC (S3), but no worms were alive in the blank control group and solvent 

control groups. This result supported the hypothesis that free radical caused oxidative damage is 

linked to aging (Harman 1956), and the presence of antioxidant can protect cells against 

oxidative stress . 
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Figure 6.2 Survival curves of TK22 without heat shock treatment  
Worms treated with S1: SDF nanofiber only, no α-TOC contained; S2: α-TOC only; S3: α-TOC 
entrapped SDF based nanofibers; S4: solvent control. abc: three concentrations of stock 
solutions. 
 

TK22 treated with S3-b had the highest survival rate at day 34 when compared to the 

control group and other treatment groups. This result was consistent with the results in N2. 

Therefore, α-TOC encapsulated in SDF based nanofibers showed enhanced bioavailability in 

both wild type and mev-1 mutant. 

There was no difference in survival rate between N2 solvent control groups (fed with S4) 

and the blank control group, while TK22 solvent control groups had lower survival rate 

compared to the blank control groups. Ethanol had minor effect on the activity of worms, as well 

as Tween 80, DMSO, methanol and acetone, while Tween 20 had huge toxicity for them (Katiki 

a b 

c d 
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et al. 2011). The concentration of ethanol in solvent control groups was less than 3 mg/mL and 

Tween 80 concentration was less than 0.2 mg/mL, which had no effect on the lifespan of N2. 

However, TK22 is more sensitive than N2, thus even the lowest concentration could result in the 

death of worms.   

6.3.1.2 Heat shock treatment  

Heat shock increased the death rate of N2 (Figure 6.3). Similar to the result for N2 group 

without heat shock, high SDF concentration (356.02 µg/mL) increased the death rate of worms at 

the early age. At the later age of worms, higher survival rate was observed in groups treated with 

S1-a, S1-b, S3-b and S3-c. There was no significant difference in survival rate between free α-

TOC treated groups (S2) and the control group, which was different from the result of S2 treated 

N2 strain non-heat shock groups. This might be due to the degradation of α-TOC in S2 treatment 

groups. In contrast, less oxidation might occur in nanofiber encapsulated α-TOC. Due to the 

protective effect of wall materials, entrapped α-TOC maintained its antioxidant ability without 

degradation when exposed to the severe environment. A few worms survived in S3-c treatment 

group at the age of 49 days. This result was different from the result of N2 non-heat shock group. 

The potential reason was more oxidative stress was generated in heat-shock treated worms than 

in no heat shock treatment C. elegans. Hence more antioxidant was required to balance the redox 

in cells. S3-c contained 200 µg/mL of α-TOC and 356.02 µg/mL of SDF, α-TOC together with 

SDF could provide enough antioxidant to prevent the oxidative damage in cells and therefore 

reduce the death rate. In a previous study, the optimized concentration of 400 µg/mL α-TOC was 

reported to increase the lifespan of wild type C. elegans under induced oxidative damage 

treatment (Ishii et al. 2004).  
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Figure 6.3 Survival curves of N2 with heat shock treatment  
Worms treated with S1: SDF nanofiber only, no α-TOC contained; S2: α-TOC only; S3: α-TOC 
entrapped SDF based nanofibers; S4: solvent control. abc: three concentrations of stock 
solutions. 
 

No difference was observed in survival rate between the solvent control groups and the 

blank control group. This result was consistent with the survival rate of N2 no heat shock solvent 

control groups, and reconfirmed that ethanol and Tween 80 had minor effect on C. elegans.   

Interestingly, S1-c treated heat shock group of N2 had a higher survival rate in the early 

age than that in S1-c treated non-heat shock group, which were 0.26 and 0.06 at the age of 9 

days, respectively. Also, the increased lifespan was observed in heat shock group with S1-c 

treatment compared to that in N2 non-heat shock group, which was 30 d and 18 d, respectively. 

The reason was still not clear, it might be because of the activation and modulation effect of Ca2+ 

a b 

c d 
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overload and Ca2+-dependent processes on the execution of a non-apoptotic death program in C. 

elegans (Xu, Tavernarakis and Driscoll 2001).    

There were no worms that survived after heating at 35 °C for 4 h in all treatment groups 

of TK22. The reason may be because stressor heat accelerated the oxidative stress in mev-1 

mutant, and subsequently induced oxidative damage caused quick death of worms.   

6.3.2 Pharyngeal Pumping Rate of Worms 

6.3.2.1 Non-heat shock treatment  

The pharyngeal pumping rate for each treatment was shown in Figure 6.4. In N2 non- 

heat shock groups, there was no significant difference in pumping rate between each treatment at 

the early age of 6 days, which displayed 304.8±4.1 pharyngeal pumps per minute (Figure 6.4a). 

However, an increased pharyngeal pumping rate was observed in all treatment groups when 

compared with the blank control group in day 6. S2-b and S3-b treatment groups had pumping 

rates of 310.2±8.1 and 309±13.9, respectively, while the blank control group had a pumping rate 

of 300±8 in day 6. At the age of 8 days, a significantly higher pumping rate was observed in all 

treatment groups than that in the blank control group. At the age of 10 d, significantly increased 

pumping rate was shown in S2-b and S4-b treatment groups compared to the blank control 

group, which were 265.4±13.5 and 259.5±3.9, respectively. No significant difference in pumping 

rate was observed in S1-b, S3-b and the blank control group, which were 238.8±14.1, 231±16.6 

and 257.4±18.2, respectively. This result was inconsistent with the lifespan result for N2 no heat 

shock group, which showed S3-b treatment subgroup worms had the highest survival rate at the 

age of 51 days and suggested an increased lifespan. This inconsistency may be due to the short 

observation period of pumping rate, it may not represent the whole lifespan. 

In TK22 non-heat shock groups, the mean pumping rate in day 6 was around 292.6±6.0 

(Figure 6.4c). The pumping rate in S1-b, S2-b and S3-b treatment groups in day 6 were 295±1.7, 
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297±6 and 300±3, respectively. A lower pumping rate was observed in the blank control group 

when compared with other groups in day 6, which was 280±17.1. A significantly increased 

pumping rate was observed in S2-b, S3-b and S4-b treatment groups in day 8 compared to the 

blank control group. In contrast to other treatment groups, S3-b treatment group had the 

significantly highest pumping rate during the observation period, which was 203±21.1 in day 17. 

For blank control group, the pumping times were 64±22.1 per minute in day 17. There was no 

significant difference in pumping rate between the solvent control group and the blank control 

group in the later age of worms. This result suggested that nanofiber encapsulated α-TOC 

effectively protected C. elegans against natural accumulated oxidative damage produced by other 

factors.      

6.3.2.2 Heat shock treatment 

For heat shock treatment groups, the observation of pharyngeal pumping rate was started 

in day 6, 2 days recovery time were provided to worms after heat shock in day 3. 

 No significant difference was observed in pumping rate between all treatment groups 

and the blank control group in day 6 for N2 strain (Figure 6.4b), which was 284.3±3.7. This 

value was lower than that in N2 non-heat shock treatment groups in day 6. That meant heat 

shock produced oxidative stress impacted aging in N2 strain. In day 8, S2-b, S3-b and S4-b 

treatment groups had significantly higher pumping rate than the blank control group. S1-b 

treatment group had a higher pumping rate than the blank control group during the whole 

observation period, which indicated SDF could serve as an antioxidant to protect N2 against heat 

shock induced oxidative stress. It was shown that S2-b treatment group containing 100 µg/mL of 

free form α-TOC had lower pumping rate than the blank control group in day 13 and 15. This 

could because the degradation of free form α-TOC during heating process thus resulted in the 

loss of its antioxidant ability.   
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Figure 6.4 Age-related change of pharyngeal pumping rate of C. elegans 

a, N2, without heat shock; b, N2, with heat shock; c, TK22, without heat shock; d, TK22, with 
heat shock. Worms treated with S1: SDF nanofiber only, no α-TOC contained; S2: α-TOC only; 
S3: α-TOC entrapped SDF based nanofibers; S4: solvent control. b: concentration of α-TOC with 
100 µg/mL. 
 

Different from the results of TK22 in liquid media, no death was observed in TK22 after 

heat shock in agar media. The possible reason may because solid media served as a heat insulator 

and provided protection for worms during heating.  

In TK22 heat shock treatment groups, the average pumping rate in day 6 was 294.2 ±3.0 

(Figure 6.4d). There was no significant difference in pumping rate between all the treatment 

groups and the blank control group in day 6. S3-b treatment group had a significantly increased 
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pumping rate during the whole observation period compared to the blank control group. S2-b 

treatment group containing 100 µg/mL of free form α-TOC did not exhibit significant increase in 

the pumping rate of TK22. The pumping rate of S1-b treatment group was increased compared to 

the blank control group (P>0.05). The results demonstrated that nanofiber can protect 

incorporated α-TOC from degradation in severe environments. The α-TOC encapsulated in SDF 

based nanofiber showed increased bioavailability in TK22 heat shock group compared to the 

blank control group.       

6.4 Conclusions 

In this study, SDF nanofibers, free form α-TOC and nanofiber encapsulated α-TOC 

treatments increased the lifespan and pharyngeal pumping rates of both wild type N2 and mev-1 

mutant TK22 (p>0.05). Nanofiber encapsulated α-TOC exhibited enhanced bioavailability in 

protecting C. elegans from oxidative stress and thus increased the lifespan of worms. TK22 was 

heat sensitive, and a higher concentration of nanofiber encapsulated α-TOC was required than 

that for N2 strain. In pharyngeal pumping rate test, S3-b treatment showed significant increases 

in TK22 strain groups with/without heat shock treatment than that in N2 groups. This study 

suggested that α-TOC and SDF nanofibers could increase the lifespan and pumping rate of C. 

elegans, and the enhanced bioavailability could be obtained in encapsulated α-TOC in SDF 

based nanofibers.  
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CHAPTER 7 CONCLUSION 

In this study, soluble dietary fiber (SDF) based nanofiber delivery system was 

successfully developed for α-TOC. First, SDF based nanofibers were electrospun from 

electrospinning solutions that contained 3% SDF and 5% PEO. Nanofibers had an average 

diameter of 171.45 nm with uniform size distribution and smooth surface morphology without 

defects of beads and junctions. The DSC and FTIR results confirmed the presence of SDF and 

PEO in nanofibers. Then, α-TOC was loaded into SDF based nanofiber by electrospun spinning 

solutions containing α-TOC O/W emulsions or α-TOC entrapped zein particles. The results 

showed that spinning solution containing 5% of α-TOC emulsion droplets, and nanofiber wall 

materials of 3% SDF and 5% PEO resulted in α-TOC loaded nanofibers with average cross 

section diameter of 283 nm and encapsulation efficiency of α-TOC was 86.97%. Spinning 

solution containing 3% SDF and 5% PEO of wall materials and 6% of zein particles loaded with 

50% of α-TOC (relative to zein mass) resulted in α-TOC incorporated nanofibers with average 

cross section diameter of 291.3 nm, and the encapsulation efficiency of α-TOC was 74.51%. 

These two ways of adding α-TOC to SDF based nanofibers resulted in slow release of α-TOC 

from nanofibers. The DSC and FTIR results indicated that α-TOC was incorporated in 

nanofibers and may interact with wall materials by hydrogen bonds. In the third part of this 

study, the stability of entrapped α-TOC in SDF based nanofiber and film was evaluated under 

heat, UV irradiation and storage. SDF based nanofiber and film protected α-TOC against 

degradation, and the higher retention of encapsulated α-TOC was obtained compared with that in 

nanofiber and film without the addition of SDF. In the last part of this study, the bioavailability 

of α-TOC delivered by SDF based nanofiber was investigated. C. elegans was selected as animal 

model, and two strains, wild type N2 and mutant TK22, were used for the test. The results 
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showed that 100 µg/mL of α-TOC that was contained in SDF based nanofiber increased the 

survival rate of worms, which indicated the increased lifespan of worms. Also, significantly 

increased pharyngeal pumping rate was observed in TK22, and the effect of nanofiber entrapped 

α-TOC on the pumping rate of N2 was not significant.  

In summary, SDF based nanofibers can be used for α-TOC delivery. This delivery system 

can protect α-TOC from severe conditions during processing and storage. Also, the slow release 

of α-TOC can be obtained. The bioavailability of carried α-TOC can be enhanced as well. The 

SDF based nanofiber delivery system can not only be applied to α-TOC, but also can be applied 

to other hydrophobic nutrients.    
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