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ABSTRACT 

 

Hot water conditioning of in-shell pecans is one common practice followed by industries to 

facilitate shelling.  It also acts as a preventive control for potential microbiological contamination 

that might occur during pre- and post-harvest processes. However, heat treatment may have an 

effect on the eating quality of nuts. The main objectives of the study were to develop a post-harvest 

hot water treatment intervention as a kill step to destroy foodborne pathogens on in-shell pecans 

and evaluate the effect of treatments on physicochemical properties, consumer acceptance and 

purchase intent of dehulled and roasted pecans. The time (1-5 min) and temperature (70, 80, and 

90 ºC) treatments to achieve a 5-log reduction of Salmonella enterica, E. coli O157:H7 and Listeria 

monocytogenes as well as non-pathogenic Enterococcus faecium were studied. The D-value of 

organisms showed that Salmonella and Listeria were the most and least resistant pathogens, 

respectively, and Enterococcus faecium was found to be the suitable surrogate for Salmonella 

enterica. As calculated from the D-value, hot water treatment for 8.6, 6.6 and 4.6 min at 70, 80 

and 90°C, respectively, gave 5 log CFU/g reduction of the most heat resistant pathogen. In-shell 

nuts were subjected to these treatments, shelled and roasted at 160°C for 10 mins. The effect of 

hot water treatment on the physicochemical properties (% moisture content, water activity, color, 

and texture) of the roasted pecans was determined. Sensory evaluation studies using a 9-point 

hedonic scale were performed by serving the samples of roasted pecans to consumers (N=112). 

Hot water treatment alone had no significant effect on the physicochemical properties of shelled 

pecans. However, roasting the treated pecans decreased the moisture content (P<0.05), water 

activity (P<0.05) and hardness values (P>0.05). Hot water treated pecans became darker on 

roasting which was liked by consumers; pecan hot water treated at 90°C was the darkest with  
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lowest L* value (P<0.05). Pecans hot water treated at 70°C for 8.6 min followed by roasting were 

most liked by the consumers (liking >6.3 for all attributes). Thus, hot water conditioning of pecans 

is an effective method as it improves its microbial safety, quality and sensory liking. 
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1. INTRODUCTION 
 

Pecans are one of the tree nuts that are native to North America with a history dating back 

to 5000 year (Beuchat & Pegg, 2013). It is scientifically known as Carya illinoinensis (Wangenh.) 

K. Koch  and is a member of hickory family (Juglandaceae) (Maness, 2016). Pecan production 

increased from 184 million in 1980 to an estimated 255 million pounds in 2015 (USDA, 2016). 

And, on an average, production of pecans contributes  approximately $12 million to Louisiana’s 

economy each year (LSU AgCenter, 2017).  

 Contamination on in-shell pecans and nutmeats can occur in pre-harvest, during harvesting 

and throughout post-harvest handling and processing(Beuchat & Pegg, 2013). Pecan harvesting 

includes shaking the tree or naturally allowing the pecans to drop on the ground which rests there 

for several days until collected(Beuchat & Mann, 2010b; Brar, Strawn, & Danyluk, 2016). Pecans  

absorb moisture from soil that can be potentially contaminated with food-borne pathogens from 

wild and domestic animal feces, inadequately composted manure, irrigation or run-off water from 

land grazed by livestocks (Beuchat & Mann, 2010b). Cattle grazing in the orchards is still practiced 

in some parts of the U.S.(Beuchat & Pegg, 2013) and cattle manure has been found to be the main 

source of foodborne pathogens such as E. coli O157:H7, Salmonella spp. and Listeria 

monocytogenes (Alam & Zurek, 2006; Pell, 1997). To date there have not been any outbreaks 

associated with pecans but it has been associated with frequent recalls for potential Salmonella 

contamination (Beuchat & Mann, 2010b; Brar et al., 2016). 

 A conditioning step is one of the essential pecan processing steps as it is carried out to 

reduce kernel breakage and improve shelling efficiency. Hot water soaking (3-5 mins at 85°C, 

holding 12-24 hr before cracking) is one of several  ways  it can be carried out (Santerre, 1994c). 

In addition, hot water conditioning can also aid in the decontamination of pecans (Beuchat & 
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Mann, 2011a). Treating the in-shell pecans with hot water at 82 or 93°C for 2 mins was unable to 

eliminate the Salmonella Senftenberg 775W inoculated at 5.8 log CFU/g, it was only reduced by 

3.5 log CFU/g (Beuchat & Heaton, 1975). Recent studies on the effect of conditioning on 

inactivation of surface-inoculated Salmonella on pecans showed that the treatment at 90 or 95°C 

for 80 s was able to achieve a reduction of ≥6.42 log CFU/g. However, treatment at 95°C for 5 

mins could reduce the immersion-inoculated load by only ≥4.82 log CFU/g but prolonging the 

treatment to ≥10 mins at 75 to 95°C gave reduction >5.12 log CFU/g (Beuchat & Mann, 2011a). 

This showed that inoculation methods affected the level of reductions achieved. There are studies 

carried out to evaluate the efficacy of hot water treatment on inactivation of Salmonella on various 

nuts like almonds and pecans. However, its efficacy against other potential pathogens as E. coli 

O157:H7 and Listeria monocytogenes are yet to be studied.  

 Even though hot water treatment is advantageous in numerous ways, application of heat on 

nuts can cause degradation of its quality by bringing change in its physicochemical and sensory 

properties. Thus, developing new technologies and processing parameters that improve microbial 

safety of nuts without affecting the quality of raw products is essential. A study on hot water 

treatment (85°C for 40s) of almonds demonstrated that even though the moisture content increased 

after hot water treatment, there was no significant difference in the color. However, non-treated 

almonds were firmer than hot water treated but the overall quality for both treated and non-treated 

was within acceptable limits(Bari et al., 2009). There are limited studies determining the 

physicochemical changes pertaining to hot water treatment of pecans and its consumer acceptance.  

 Thus, the objectives of the research were: (i) to determine optimum hot water treatment 

conditions to achieve a 5 log reduction of several foodborne pathogens/surrogates, (ii) to determine 

the rate of thermal lethality of tested organisms, (iii) to determine the effect of heat treatment of 
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pecans on physico-chemical properties, and iv) to evaluate consumer acceptability and purchase 

intent of the treated pecans. 
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2. LITERATURE REVIEW 

2.1 General Introduction 

2.1.1 Pecans  

Pecans [Carya illinoinensis (Wangenh.) K. Koch], a member of hickory family 

(Juglandaceae) (Maness, 2016) are native to North America with a history dating back 5000 years 

(Beuchat & Pegg, 2013). Pecan production increased from 184 million in 1980 to an estimated 

255 million pounds in 2015 (USDA, 2016)  . According to the annual 2016 Agricultural survey by 

USDA, the major states producing pecans in 2015 were Georgia (89 million pounds), New Mexico 

(72 million pounds), Texas (28 million pounds), Arizona (22.5 million pounds), Oklahoma (20 

million pounds) and Louisiana (11 million pounds)(USDA, 2016b). And, on an average, 

production of pecans contributes to approximately $12 million to Louisiana’s economy each year 

(LSU AgCenter, 2017).  

Major pecan cultivars that are commercially produced are ‘Western’, ‘Desirable’, ‘Stuart’, 

‘Wichita’ and ‘Pawnee’. Pecan trees are mechanically shaken and the nuts are harvested from the 

orchard floor during late fall and early winter. On maturation of seed, the shuck that surrounds the 

edible seed opens where pecan halves are covered by the shell. The color of the pecan kernels 

range from yellow-golden to light-brown. Nuts become brittle if the moisture content is <2% 

thereby causing breakage of kernel during handling and storage. This induces cracking of testa 

which results in oxygen permeation and thus supports rancidity in nuts. So, it should be dried to a 

moisture of <4% so as to avoid mold development and check development of rancidity.  Pecan 

nuts are considered to be matured when the accumulation of oil is complete and shucks 

split.(Maness, 2016).  
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In general, a mature pecan kernel composes of 70% oil (ranges from 55-75%), 10% protein 

(varies from 8-18%), 10% easily available carbohydrate, 2.5% water and 7.5% fiber and 

ash(Santerre, 1994b). The oil content of pecan kernels range from 55-75% and as the oil content 

increases there is decrease in shelf-life and vice-versa and the amount of oil varies as per the 

variety, location and the year grown (Wells & McMean, 1978). Kernel oil is composed mainly of 

16 and 18 carbon chain fatty acids with 0-3 double bonds(Santerre, 1994b). High amount of mono 

unsaturated fatty acids (MUFAs) and low amount of saturated fatty acids in kernel oils are linked 

with reduction in risk of heart diseases (Beuchat & Pegg, 2013; Rajaram, Burke, Connell, Myint, 

& Sabate´, 2001). Pecans  also  have a high antioxidant capacity against free radicals due to the 

presence of phenolic compounds, condensed tannins and hydrolysable tannins  (FloresCordova et 

al., 2017). Studies have shown the potential of phenolics to lower the frequency of several chronic 

diseases like cancer, Alzheimer’s disease, Parkinson’s disease and other degenerative diseases 

(Mertens-Talcott & Percival, 2005; Tam et al., 2006). 

2.1.2 Food safety risks: potential on-farm sources of contamination  
 

Pecans are highly valued and nutritious nuts, however, contamination on in-shell pecans 

and nutmeats can occur in pre-harvest, during harvesting and throughout post-harvest handling 

and processing (Beuchat & Pegg, 2013). Pecan harvesting includes shaking the tree or naturally 

allowing the pecans to drop on the ground which rests there for several days until collected 

(Beuchat & Mann, 2010b; Brar et al., 2016). Pecans can absorb moisture from soil that can be 

potentially contaminated with food-borne pathogens from wild and domestic animal feces, 

inadequately composted manure, irrigation or run-off water from land grazed by livestock 

(Beuchat & Mann, 2010b).  
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Even though there is raised awareness of potential risk of food-borne pathogen to the nuts 

from grazing cattle in the orchards, the practice is still prevalent in some regions of U.S. (Beuchat 

& Pegg, 2013). It is one of the most common forms of ground cover management in native pecan 

groves. The advantages of cattle grazing are it provides a second source of income from the same 

parcel of land (i.e. pecans and beef as meat source) and a significant reduction in orchard mowing 

costs. However, cattle manure is the main source of foodborne pathogens such as E. coli O157:H7, 

Salmonella spp. and Listeria monocytogenes (Alam & Zurek, 2006; Pell, 1997). In an almond 

associated outbreak in 2000-2001, the orchard floor was found to be one of the potential sources 

for Salmonella contamination (Brar et al., 2016). It is recommended that the pecan orchards be 

kept free from grazing domesticated animals, clean and free of debris as much as possible 

(Santerre, 1994a). A study done by Marcus and Amling (1973) found that higher levels of   E. coli 

on pecans samples from a cattle-grazed farm than non-grazed farm. Reportedly, 23% of pecans 

from grazed orchards and 4% from non-grazed orchard were positive for E. coli. 

During rainfall, shucks along with pecans get wet and thus can be one of the potential 

sources for microbial growth. Studies have shown that Salmonella survived on the surface of high-

moisture shucks owing to higher amount of sugar, protein, oil and suitable pH (6.08) in it favoring 

microbial growth. When the nuts mature, four shucks surrounding the in-shell pecans dry and 

eventually fall on the ground. Salmonella has been found to survive on dry soil for up to 18 weeks 

posing a potential risk of contamination. During heavy rainfall, shuck components can leach out 

and get mixed in the soil. Studies have shown that when almond hull extract was added on orchard 

soil it promoted the growth of Salmonella. But, pecan shuck extracts on soil showed an opposite 

effect on the pathogen which could be because of low concentrations of water-soluble nutrients, 

an acidic pH, higher concentration of poly-phenolic compounds and antimicrobials in the extract. 
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Likewise, studies have also shown the growth of Salmonella on high moisture nutmeats, in-shell 

pecans and shells(Beuchat & Mann, 2010b). Thus, pecans should be minimally exposed to water 

in pre-harvest and post-harvest environments and should be dried rapidly to appropriate moisture 

content to prevent bacterial, mold growth and rancidity.  

2.1.3 Outbreaks in nuts  
 

Low water activity foods are an unsuitable growth medium for bacteria, however, they 

have been frequently linked with recalls and outbreaks(Zhang et al., 2017). Recalls of low water 

activity foods by U.S. Food and Drug Administration from 2004-2011 showed that 43.6% of the 

total recalls was nut, seeds or nut products. Various nuts that were recalled included almonds, 

hazelnuts, peanuts, pecans, pine nuts, pistachios and walnuts (Beuchat, Mann, & Alali, 2013). 

Salmonella was detected in pecans, peanuts, almonds (Center for Disease Control and Prevention, 

2004; Isaacs et al., 2005), pistachios, walnuts and pine nuts(Center for Disease Control and 

Prevention, 2011b), Escherichia coli O157:H7 in peanuts, pecans, hazel nuts (Center for Disease 

Control and Prevention, 2011a), cashew nuts and walnuts, and Listeria monocytogenes in peanuts, 

pecans and mixed nuts(Beuchat et al., 2013; Brar, Proano, Friedrich, Harris, & Danyluk, 2015; 

Zhang et al., 2017). Nut outbreaks are most commonly associated with pathogens like Salmonella, 

E. coli O157:H7 and Listeria monocytogenes (Zhang et al., 2017). Among all, Salmonella has been 

found to be the major recurring organism for outbreaks and recalls  and many of the outbreaks 

have lasted for months (Brar et al., 2015).  

 Currently there have been no outbreaks of food borne illness associated with pecans 

however, pecans have been recalled for potential Salmonella contamination(Beuchat & Mann, 

2010b; Brar et al., 2016). There were 25 recalls issued in 2015 in United States because of 
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Salmonella contamination where pecans was one among walnuts, macadamia nuts, pine nuts, 

almonds and hazel nuts(Zhang et al., 2017). 

Various outbreaks associated with nuts and nut products and the organisms associated for 

the disease are: raw shelled and in-shell walnuts (E. coli O157:H7), peanut butter (Salmonella 

Bredeney, Salmonella Typhimurium,Clostridium botulinum, Salmonella Tennessee), almonds 

(Salmonella spp.), raw, roasted pistachios (Salmonella Montevideo). There have been various 

recalls for hazelnuts and mixed nut products (Salmonella spp., E. coli O157:H7), shelled walnuts 

(Salmonella spp.)(Farakos & Frank, 2014). 

2.1.4 Prevalence/persistence of microbial pathogens 
 

2.1.4.1 Prevalence of pathogens in nuts  
 

From a survey conducted over 4 harvest years (2011-2014) on prevalence of Salmonella 

on North American in-shell pecans, 44 samples among 4641 samples were positive for Salmonella 

on initial screening from which 31 serotypes were isolated. Most of the serotypes isolated from 

pecans were found to be resistant to the antibiotics streptomycin and tetracycline, thus raising 

public health concerns. Thus, the presence of Salmonella cells on high fat content and low water 

activity foods possess likely chances of outbreaks (Brar et al., 2016). Likewise, peanuts from 

various growing regions (southwest, southeast, Virginia-Carolina) had 2.33% (22 out of 944) of 

its samples positive for Salmonella as collected for 3 harvest years (2008 to 2010)(Calhoun, Post, 

Warren, Thompson, & Bontempo, 2013). As for a study on almonds in California for 5 years 

(2001-2005) 35 serotypes were identified from 81 Salmonella-positive samples and 23 serotypes 

from 53 Salmonella-positive samples(Danyluk et al., 2007). These results show there is a high 

probability of occurrence of bacterial pathogens in nuts, which necessitates efficient processing 

steps for its inactivation. 
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2.1.4.2 Shelf-life  
 

The shelf life of pecans is affected by the initial moisture content in the nut as well as 

humidity and temperature of storage. As it is high in fat content it can undergo oxidation if not 

stored well and thus degradation of quality might occur. Growers or pecan handlers usually store 

bulk raw products at controlled conditions in order to maintain the quality(Brar et al., 2015). On 

storage at -10°C, 0°C, 10°C and 20°C in-shell pecans stay for 24, 18, 9 and 4 months respectively. 

Whereas, pecan kernels when stored at -10°C, 0°C and 20°C can stay until 18, 10 and 3 months 

respectively. In-shell nuts have 25-50% longer shelf-life than kernels depending on the type of 

packaging material used against moisture and oxygen or on the nut type. Also, intact nutmeats stay 

twice as long as nutmeat pieces and, roasted nuts have a shelf-life of about 1/4th of raw 

nutmeats(Cantwell, 2014). The common storage temperature and storage times for pecans (in-shell 

and nutmeats) are -18°C (up to 6-8 years), 1-5°C (approx. 1 year) or ambient (up to 6 

months)(Picha & Pyzner, 2017).  

2.1.4.3 Survival of pathogens in nuts  
 

Generally, Salmonella survives better than E. coli O157:H7 and Listeria monocytogenes 

on nuts and without significant decline at lower temperatures of storage (i.e. refrigeration or freezer 

conditions) however, there is significant but slow reduction when stored at ambient temperatures 

(21-25°C) (Harris, Uesugi, Abd, & McCarthy, 2012; Kimber, Kaur, Wang, Danyluk, & Harris, 

2012).  

Pathogens (Salmonella, E. coli O157:H7 and Listeria monocytogenes) inoculated on 

pecans stored under refrigerated and frozen conditions were stable, however, Listeria 

monocytogenes showed a slight reduction over a 365 day time period (0.03 log CFU/g/30 days at 

4±2°C)(Brar et al., 2015). A study on the survival of Salmonella on the surface of dry in-shell 
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pecans stored at -20, -18, -7, 4, 21 and 37°C showed it could persist for up to 78 weeks, however, 

bacterial populations were stable at lower temperatures and it declined significantly when at 

ambient temperature (21 and 37°C) (Beuchat & Heaton, 1975; Beuchat & Mann, 2010a). Studies 

have also shown that Salmonella can survive on surface of high-moisture (aw 0.96-0.99) pecan 

nutmeats, in-shell pecans, shucks and shells, however, it gets inactivated in the middle septum and 

shuck extract owing to presence and leaching out of antimicrobial compounds(Beuchat & Mann, 

2010b). 

Similar studies on various nuts observed that, Salmonella on peanuts showed stability at -

24 and 4°C however, E. coli O157:H7 and Listeria monocytogenes declined at a rate of 0.03 to 

0.12 log CFU/g/30 days. Slower decline rates of pathogens were observed on pecans than on 

peanuts, likewise pathogens were more persistent on pistachios than on almonds (Brar et al., 2015) 

suggesting that the decline rate of pathogens is dependent on nuts’ physical structure or their shell 

structure. A survival study of Salmonella, E. coli O157:H7 and Listeria monocytogenes on other 

nuts showed these organisms survived for 365 to 550 days at -19,4,24 and 35°C on almonds 

(Kimber et al., 2012), for at least 365 days at -19,4 and 24°C on pistachios (Kimber et al., 2012)  

and for at least 365 days at -20,4 and 23°C  on walnut kernels (Blessington, Mitcham, & Harris, 

2012). Thus, pecans, if contaminated during harvesting, can possess various pathogens which 

survive during the storage conditions and persists over a year or more. Thus, effective post-

harvesting processing treatments are necessary.   

2.1.5 Pecan processing (Post-harvest treatments) 
 

A general flow diagram of pecan processing is shown in Fig 2.1. The primary objective of 

a grower is to remove pecans as soon as possible from the orchard floor, to reduce moisture, and 

prevent molds and rancid flavor development. Pecans dried on trees or mechanically harvested 
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pecans can have a moisture content as high as 8-30%, thus it is generally advised to dry the pecans 

right after harvest to less than 4.5% (w.b.) so as to maintain its quality.  

2.1.5.1 Storage of in-shell pecans 
 

After drying, in-shell pecans are stored at a temperature controlled facility in order to 

prevent mold growth, insect damage, discoloration, rancid flavor development and absorption of 

volatiles. Discoloration can occur when nuts are exposed to UV lights, migration of color from 

shells to kernels or oxidation of iron containing pigments in testa. Likewise, a high lipid content 

in pecans helps in absorption of lipophilic compounds thus causing absorption of volatiles. Flavor 

of pecans are adversely affected when rancidity initiates in the nuts by oxidative reactions. Thus, 

in-shell pecans can be stored for 6 months (at 22°C), 9 months (8°C), 18 months (0-3°C), 30 

months (-6 to -4°C) and 6-10 years (-18°C) without significant loss in quality. Care should be 

taken while removing pecans from the extreme cold storage temperatures as it is prone to 

mechanical damage because of its brittleness. After storage at cold temperature, pecans should be 

placed sequentially at rooms with proper air flow, humidity and temperatures of 5-16°C for several 

days to prevent condensation (Santerre, 1994c). 

2.1.5.2 Conditioning  
 

The conditioning step is one of the essential steps in the process as it is carried out to reduce 

kernel breakage and improve shelling efficiency. Before shelling, pecans nutmeats are moistened 

by water or steam which is absorbed through the vascular system at the base and apex and 

eventually enters through the middle partition to the kernel. The kernel moisture increases from 4 

to 8% which makes it more flexible and reduces kernel breakage while cracking the nut(Santerre, 

1994c). Different techniques of conditioning includes: hot water soaking (3-5 mins at 85°C, 

holding 12-24 hr before cracking), steam processing (atmospheric steam for 3 min, holding for 20  
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mins before cracking), cold water soaking, immersing or spraying chlorinated water (1000ppm for 

1-2 hr, holding for 12-24 hr before cracking) or moisture equilibration in a humidity controlled 

storage room(Beuchat & Pegg, 2013; Forbus & Senter, 1976; Santerre, 1994c). Apart from 

facilitating the cracking process, conditioning is also one of the decontamination steps for pecans. 

2.1.5.3 Shelling   
 

Commercially, shellers or nut cracking equipment are used where pecans are fed through 

a hopper to rotating feed that orients the position of pecans correctly to receive an impulse force 

striking at each end of pecans. The so broken or cracked nuts are passed into sheller (a rotating 

drum with cylindrical rings to assist separation of shells and nuts). After shelling, pecans should 

be dried to a moisture content of 3-4% for a good quality for consumers.  Excessive drying causes 

the lipids to come to the surface and become less stable to oxidative reactions thus causing 

shortened shelf-life(Santerre, 1994c). 

2.1.5.4 Storage of pecan nutmeats 
 

Temperature control of storage rooms are one of the best ways to extend shelf-life of pecans 

however, other techniques are also necessary. Pecan nutmeats are less stable than pecans in shell 

thus shelled pecans can only be stored for 3-4 months (22°C), 6 months (8°C), 12 months (0-3°C), 

18-24 months (-6 to -4°C) and 6-10 years (-18°C). Apart from temperature, moisture levels should 

also be controlled for prevention of mold and bacterial growth and rancidity. Additionally, the 

migration of tannin is also likely to occur due to moisture migration from the shell lining to the 

kernel resulting in darkening of nutmeats. Pecans should also be stored away from sunlight as UV 

light initiates lipid oxidation and affects the color quality. As for the packaging materials, it is 

suggested that packaging materials with oxygen transmission rates above 0.08 cc O2 100 cm-1 24 

hr-1 is suitable to use for pecan storage(Santerre, 1994c). 
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Figure 2.1. General steps in harvesting and processing of pecans  

2.2 Post-harvest intervention methods  
 

2.2.1 Hot water treatment   
 

As described earlier, hot water treatment is one of the ways of conditioning pecans for ease of 

kernel separation but it also facilitates in the inactivation of pathogens. Various studies have tested 

the efficacy of hot water treatment to decontaminate nuts. Reduction of Salmonella due to 

conditioning treatments are found to be dependent on inoculation techniques (less effective on 

immersion-inoculation than surface inoculation) and if it has been exposed to stress conditions like 

drying between inoculation to treatment phase. Inoculation techniques simulate contamination of 

nuts as a result of its contact with any source with pathogens such as immersion in water containing 

Salmonella in pre or post-harvest conditions or during storage or cleaning (Beuchat & Mann, 

2011a). Treating the in-shell pecans with hot water at 82 or 93°C for 2 mins was unable to eliminate 

the Salmonella Senftenberg 775W inoculated at 5.8 log CFU/g, it was only reduced by 3.5 log 

CFU/g (Beuchat & Heaton, 1975). Recent studies on the effect of conditioning on inactivation of 



15 

 

surface-inoculated Salmonella on pecans showed the treatment at 90 or 95°C for 80 s was able to 

achieve a reduction of ≥6.42 log CFU/g. However, treatment at 95°C for 5 mins could reduce the 

immersion-inoculated load by only ≥4.82 log CFU/g but prolonging the treatment to ≥10 mins at 

75 to 95°C gave reduction >5.12 log CFU/g. Likewise, hot water treatment of pecans and the 

sequential treatment of pecans with chlorinated water, soak water followed by hot water showed 

similar reductions of the inoculated Salmonella cocktail. Stressed Salmonella (exposed to 

dessicated conditions) were found to show greater resistance to heat treatment i.e. conditioning 

treatments  (Beuchat & Mann, 2011a). 

When almonds were treated with hot water at 85 and 88°C for 40 and 20s respectively it was 

successful in eliminating Salmonella by 5.73 log CFU/g with no significant effect on its quality 

(color and firmness)(Bari et al., 2009). However, at 70, 80 and 88°C showed only a reduction of 

1.1, 2.9 and 4.7 log CFU/g respectively within 30s (Harris et al., 2012). Thus, hot water treatment 

of nuts has been found to be an effective decontamination step against Salmonella but studies on 

efficacy of hot water treatment for inactivation of various other pathogens is also important.  

2.2.2 Cold water dip 
 

Dipping pecans in the water for 20 mins did not show significant reduction of Salmonella; 

reduction increased as exposure of pecan nutmeats in the water (21°C) was prolonged achieving a 

maximum reduction of 1.03 log CFU/g. The reduction is believed to be due to removal of 

Salmonella from nutmeat surface rather than water being lethal to cells on surface(Beuchat et al., 

2013).  

2.2.3 Chlorine and other sanitizer solutions 
 

Chlorine treatment is another common way to reduce surface contamination of pathogens 

on the produce. In-shell pecans when treated with 1000µg/ml chlorine for 20 mins reduced 
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Salmonella population  by 2.8  log CFU/g (Beuchat, Mann, & Alali, 2012). Pecans immersion-

inoculated with Salmonella and dipped in chlorinated water (400µg/ml) could only reduce the 

pathogen by 1.6 log CFU/g. Infiltrated Salmonella into the undamaged in-shell pecans survives 

for longer time once it reaches the kernel. Nuts when soaked in chlorine water will also infiltrate 

the water into the undamaged in-shell pecans but lethality of chlorine gets reduced because of 

change in its form (Beuchat & Mann, 2011a). Also, reduction is increased when pecans are pre-

cleaned before sanitizer treatment. When nuts are harvested it contains various materials high in 

organic content attached to the nut surface like soil, dust. Thus, free chlorine in cleaning water 

decreases sharply on interaction with these organic compounds on repeated use, necessitating 

frequent stocking up of cleaning water(Beuchat & Pegg, 2013).  This makes usage of chlorine 

water a less effective decontamination method for nuts since it hasn’t been found to give reductions 

as higher as 4-5 log CFU/g. However, if it is paired with hot water treatment, dipping in chlorine 

solution 400 µg/ml for 1 min, soaking in water for 2 h at 21°C followed by hot water treatment at 

85°C for 10min,  it could reduce Salmonella by >5.1 log CFU/g(Beuchat & Mann, 2011a). 

 Other sanitizers like levulinic acid or 2% lactic acid reduces Salmonella by 3.3 and 2.1 log 

CFU/g on in-shell pecans; while the addition of other sanitizers like 0.05% sodium dodecyl sulfate 

(SDS)  gave greater reductions (3.7 and 3.4 log CFU/g respectively)(Beuchat et al., 2012). Similar 

potential for reduction were observed when SDS was paired with lactic acid or levulinic acid for 

the treatment of nutmeats. Regardless of sanitizer concentration and treatment time only 1.1 log 

CFU/g reduction of Salmonella  was observed in immersion-inoculated pecan pieces/halves 

whereas it ranged from 0.7 to 3.6 log CFU/g for surface-inoculated ones (Beuchat et al., 2013).  

Thus, dipping heavily contaminated pecans in chlorine solution cannot be an effective process for 

inactivation of pathogens unless paired with other sanitizer or processes. 
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2.2.4 Steam treatment 
 

Apart from improving the whole kernel extraction, steam conditioning has also been shown 

to preserve the sensory quality of pecans during storage. Dielectric heating is an alternative heating 

method where pecans are placed in between parallel electrodes attached to dielectric heater (43 

MHz) for 1-3 minutes(Santerre, 1994c). Dielectric heating and steam treating pecans were found 

to retain a pleasing flavor even better than the raw pecans. Steam treatments darkened the kernel 

color however, dielectric heating (at about 90-156°C) did not show any effect on color change. 

Moreover, they were also found to reduce rancidity problems as confirmed by PV value on storage 

(21°C, 65% RH)(Nelson, Senter, & Forbus, 1985; Senter, Forbus, Nelson, & Horvat, 1984).  Steam 

treatment was effective in reducing Salmonella Enteritidis on almonds by 4-5.7 log depending on 

the variety of almonds used when exposed for 65 s(S. Lee et al., 2006) whereas, it took only 25 s 

to achieve a 5-log reduction of Salmonella PT 30 on almonds without any loss of visual 

quality(Chang, Han, Reyes-De-Corcuera, Powers, & Kang, 2010). Although literature is available 

on quality changes due to steam treatment there haven’t been many studies on inactivation of 

pathogens by steam treatment on pecans.  

2.2.5 Irradiation  
 

Irradiation of food is one of the effective methods in reducing the post-harvest food losses 

and ensuring food safety. It is found to be effective on most of the food pathogens like 

Salmonella(Prakash, Lim, Duong, Caporaso, & Foley, 2010). High amounts of unsaturated fatty 

acids in nuts make it susceptible to lipid oxidation and irradiation can be one of the inducers. 

Higher irradiation doses caused high peroxide values (PV), increase in rancidity and decreased 

sensory quality. Treating the almonds with ionizing radiation showed that it required a dose of 5 

KGy for 4 log CFU/g reduction of Salmonella while a dose of 2.98-5.25 KGy caused unacceptable 
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changes in the sensory quality of the nut(Prakash et al., 2010). This shows that even though 

irradiation is an effective method for decontamination, it severely affects the sensory quality giving 

a negative impression on consumers’ taste. 

2.3 Effects on quality 
 

Until now it is seen that conditioning of nuts is a crucial step in inactivating pathogens. 

However, application of heat on nuts can cause degradation of its quality by bringing change in its 

color, texture, moisture content, water activity and sensory properties. Thus, developing new 

technologies and processing parameters that improve microbial safety of nuts without affecting 

the quality of raw products is essential.  

A study done on hot water treatment (85°C for 40s) of almonds showed that even though 

the moisture content increased on hot water treatment, there was no significant difference in the 

color. However, non-treated almonds were firmer than hot water treated but the overall quality for 

both treated and non-treated was within acceptable limits(Bari et al., 2009). Thus it is necessary to 

evaluate physico-chemical characteristics and sensory quality of pecans when treated with hot 

water.  

2.3.1 Color  
 

Heat treatments enhance the color, flavor, texture and appearance of the product while 

severe ones can have negative effect too. Roasting, a form of heat treatment, changes color, flavor 

and texture by inducing non-enzymatic browning like Maillard reaction, caramelization, chemical 

oxidation of phenols and others (Kalkan, Gariepy, & Raghavan, 2016). The L* value measures 

lightness (0=black and 100=white); a positive a* value represents redness and a negative a* 

represents greenness; a positive b* value represents yellow and a negative b* value represents 

blue. The hue angle (tan-1 (b*/a*) represents an actual color, and chroma (a*2+b*2)1/2 evaluates 
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purity or intensity of the color which are calculated based on L*, a*, and b* values (Moncada-

Reyes, 2013). Roasting of hazel nuts at increasing temperatures gave a darker color due to 

decreased L* values in the range of 36.46 – 47.09 (Kalkan et al., 2016). However, on hot water 

treating almonds it resulted in almost similar L* (49.9, 50), a* (15.3, 15.2) and b* (31, 29.7) values 

of control and treated samples respectively (Bari et al., 2009). 

2.3.2 Moisture and water activity 
 

Moisture content in pecan nutmeats plays an important role in mold development, rancidity 

and bacterial contamination. A good quality pecan kernel of 4.3-4.5% moisture will have water 

activity in the range of 0.65-0.70 (Santerre, 1994a). Following  hot water treatment of almonds, 

moisture content was found to significantly (P<0.05) increase from 5% (w.b.) to 6.4% (w.b.)(Bari 

et al., 2009). 

Water activity (aw) is defined as Aw = p/po where p is vapor pressure of water in the 

substance, and po is vapor pressure of pure water at the same temperature (Rockland & Beuchat, 

1987). 

2.3.3 Texture  
 

Texture properties of nuts like hardness, compression energy, chewiness, cohesiveness, 

resilience, springiness and fracturability can be measured with the help of texture analyzers 

(Anzaldúa-Morales, Brusewitz, & Anderson, 1999). Usually the cutting force, which is related to 

the hardness of the nuts, is an empirical indicator of the force needed to cut a particular food 

(Hojjati, Noguera-Artiaga, Wojdyło, & Carbonell-Barrachina, 2015). It was found that on hot 

water treatment of almonds, firmness of non-treated nuts was significantly (p<0.05) higher than 

the hot water treated almonds (Bari et al., 2009). This indicates that hot water treatment affects the 

textural quality of nuts.  
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2.4 Knowledge gaps 
 

Pecans are highly nutritious nuts with high MUFAs, particularly, oleic acid and low 

saturated fatty acids which contributes positively to a good heart health and blood lipids. It also 

consists of antioxidants, vitamins, minerals and bioactives like flavonoids, stilbenes, and 

phytosterols that have numerous health benefits (Beuchat & Pegg, 2013). Louisiana is one of the 

top pecan producing states and these nuts contribute greatly to the state’s economy. Although it is 

an important crop, pecans have been recalled by U.S Food and Drug Administration for potential 

contamination of pathogens (Brar et al., 2016) thus potentially causing economic loss to growers. 

Still, at some places, pecan farming includes grazing of cattle on the orchard which possess a 

severe risk of contamination of Salmonella, E. coli O157:H7 and Listeria monocytogenes through 

cattle manure (Alam & Zurek, 2006; Pell, 1997; Santerre, 1994a).  

 Conditioning the pecans is basically done for ease of separation of kernels but it is also one 

of the decontamination steps which when administered at optimum time and temperature can lead 

to efficient inactivation of the pathogens of public concern. Currently, studies on inactivation of 

Salmonella on pecan nutmeats, nut pieces and in-shell pecans through hot water treatment have 

been carried out but evaluation of the behavior of all three potential pathogens (Salmonella, E. coli 

O157:H7 and Listeria monocytogenes) when subjected to hot water treatment is yet to be done. 

Thus it is necessary to evaluate the time-temperature of hot water treatment required for 

inactivation of all three pathogens. Heat treatment is one of the decontamination steps but it also 

affects the quality of food products thereby hampering the consumers’ perception. This 

necessitates the evaluation of quality and liking of hot water treated pecans and its’ purchase intent 

for development of successful processing parameters. 
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3. EFFICACY OF HOT WATER TREATMENT ON IN-SHELL PECANS 

TO DESTROY E. coli O157:H7, Salmonella spp., Listeria monocytogenes, 

AND Enterococcus faecium 
 

3.1 Introduction 

In general, low-moisture foods such as tree-nuts with water activity lower than 0.7 are 

presumed to be associated with lower risk of pathogen contamination (Blessington, Theofel, & 

Harris, 2013; Harris, 2012). However, in the past few years tree nuts such as pecans, almonds, 

walnuts, pine nuts, pistachios, mixed nuts as well as peanuts have been frequently associated with 

various recalls and outbreaks due to recurrent contamination with foodborne pathogens such as 

Salmonella, Escherichia coli O157:H7 and Listeria monocytogenes (Zhang et al., 2017). 

Moreover, relatively high amount of fats in the nuts may protect the organisms from the highly 

acidic condition of stomach thereby helping live organisms pass to the intestine and cause illness 

even at low numbers  (Harris, 2012). Thus, nuts when contaminated with microbial pathogens pose 

a higher risk of foodborne illness.  

Pecans are one among the several most favored tree nuts consumed worldwide in different 

forms. However, pecans are susceptible to pre and post-harvest microbial contamination (Beuchat 

& Pegg, 2013). Usually pecan harvesting involves shaking the trees to let the mature nuts fall on 

the orchard ground. This action may pose potential risk of contamination of pecans from the soil.  

In addition, cattle grazing in the pecan orchards is  still prevalent in some parts of the 

United States which is one of the potential sources of pathogen contamination (Beuchat & Pegg, 

2013; Maness, 2016; Worley, 1994). In an almond associated outbreak in 2000-2001, the orchard 

floor was found to be one of the potential sources for Salmonella contamination (Brar et al., 2016). 

Marcus and Amling (1973) reported higher levels of   E. coli on pecans samples from a cattle-

grazed farm than non-grazed farm. Field studies conducted by our group detected the presence of 
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E.coli O157:H7 and Listeria spp. on in-shell pecans collected from the pecan orchards that were 

also used for cattle grazing (Unpublished).  

Post-harvest processing of in-shell pecans is one way to mitigate the risk associated with 

pre-harvest contamination. Conditioning of pecans aid in kernel separation, minimize kernel 

breakage and increase the shelling efficiency (Santerre, 1994) as well as aid in decontamination of 

pecans (Beuchat & Pegg, 2013). Common methods used for conditioning are either soaking in hot 

water at 85°C  for 3-5 minutes or immersing in 1000 ppm of chlorinated water for 1-2 hours 

followed by 12-24 hours holding before shelling; or steam processing in an atmospheric steam in 

retort for 3-4 minutes. (Forbus & Senter, 1976).   

Several studies by Beuchat et al (2011, 2012, and 2013) concluded that individual treatment 

of in-shell pecans to inactivate Salmonella with hot water at 90 or 95ºC for 80 sec (>5 log CFU/g), 

chlorinated water at 1000µg/ml (2.8 log CFU/g), lactic and levulinic acids at 2% concentration 

with or without sodium dodecyl sulfate (2.1-3.7 log CFU/g) resulted in different degrees of 

reduction. While sequential treatment with chlorinated water and hot water or hot water alone did 

not show significant difference (Beuchat and Mann 2011). Similarly, almonds treated with hot 

water at 88°C for 1.6 and 2 min showed a 4 and 5 log reduction of Salmonella serovars, 

respectively. (Harris et al., 2012). These studies demonstrated that hot water treatment of nuts such 

as pecans and almonds are effective in reducing the levels of Salmonella. However, determination 

of optimum time-temperature treatment conditions to achieve a minimum of 5-log reduction of 

several potential pathogenic bacteria on in-shell pecans is critical for the post-harvest process 

development and validation as an efficient kill-step. Hence the main objectives of this study are 

to: (i) determine hot water treatment conditions to achieve a 5 log reduction of several foodborne 

pathogens/surrogates, and (ii) determine the rate of thermal lethality of tested organisms.  
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3.2 Materials and methods  

3.2.1 Selection of pecans 

 Raw in-shell pecans (Carya illinoinensis) harvested from several Louisiana orchards 

during the October/November season of 2015-2016 were stored at 4°C until they were used in 

experiments. 

3.2.2 Selection of bacteria 

  Several different out-break strains of Salmonella, E. coli O157:H7, Listeria monocytogenes 

as well as non-pathogenic strains of Enterococcus spp. were used in this study (Table 3.1). These 

pathogenic strains were provided by Dr. Michelle D. Danyluk at University of Florida and were 

similar to those used by Brar et. al. (2015) for their study on peanuts and pecan kernels. 

Enterococcus faecium ATCC 8459, a non-pathogenic organism, was used as a surrogate organism 

for Salmonella enterica. Mutant strain of Enterococcus faecium resistant to nalidixic acid was 

developed according to the protocol used by Parnell et al (2005). Frozen culture of Enterococcus 

faecium were sub-cultured twice in tryptic soy broth (TSB) followed by incubation at 37°C for 24 

h. Then, 100 µl of the overnight culture was spread onto plate count agar (PCA) containing 0-50 

µg/ml nalidixic acid and incubated at 37°C for 24 h. The isolated colonies seen on the plate with 

the highest concentration of the antibiotic was selected and cultured overnight in TSB. The process 

was repeated until colonies resistant to 50µg/ml nalidixic acid were obtained. The isolates were 

stored in TSBN supplemented with 20% glycerol at -20°C. 
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Table 3.1. Bacterial strains used in the study  

 

Pathogen  Strains Source 

Salmonella enterica 

Anatum, strain 1715 isolated from an almond 

survey 

Enteritidis PT 30, strain ATCC 

BAA-1045 

isolated from raw almonds 

associated with an 

outbreak 

Enteritidis PT 9c, strain RM4635 a clinical isolate from an 

almond-associated 

outbreak 

Tennessee, strain K4643  a clinical isolate from a 

peanut butter- associated 

outbreak 

E. coli O157:H7 

Odwalla strain 223  Clinical isolate from apple 

juice associated outbreak  

CDC 658  

 

Clinical isolate from 

cantaloupe associated 

outbreak 

H1730  Clinical isolate from 

lettuce associated outbreak 

F4546  Clinical isolate alfalfa 

associated outbreak 

EC4042  Clinical isolate from 

spinach associated 

outbreak 

Listeria monocytogenes 

101M (serotype 4b) isolated from beef from a 

beef-associated outbreak 

Scott A (serotype 4b) clinical isolate from a milk-

associated 

outbreak 

V7 (serotype 1/2a) isolated from milk 

associated with an 

outbreak 

LCDC 81-861 (serotype 4b) Isolated from raw cabbage 

associated with an 

outbreak 

Enterococcus faecium  

ATCC 8459 ATCC ; mutant strain 

resistant to nalidixic acid 

was developed  
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3.2.3 Inoculum preparation 

 Frozen cultures of Salmonella enterica, E. coli O157:H7, Listeria monocytogenes and 

Enterococcus faecium that were nalidixic acid resistant were subcultured twice in TSB or TSBY 

(TSB with 0.6% yeast extract for Listeria monocytogenes) supplemented with nalidixic acid 

(TSBN) at 50µg/ml with incubation at 37°C for 24 h. Then, 1 ml of the each overnight bacterial 

culture was plated on tryptic soy agar supplemented with 50µg/ml nalidixic acid (TSAN) and 

incubated at 37°C for 24 h.  The inoculum was grown on agar plates to develop increased stress 

resistance of the bacteria as suggested by Useugi et. al. (2006). Each strain of the pathogens 

Salmonella enterica and E. coli O157:H7 were grown in two TSAN plates, Listeria monocytogenes 

in three TSAN plates while Enterococcus faecium was plated in eight TSAN plates. The resultant 

lawn of bacteria on TSAN was loosened with the help of a sterile glass rod using 7 ml of 0.1% 

sterile peptone water. For each strain, a total of 5 ml was collected from each plate thereby making 

the final volume of each organism’s inocula as 100 ml using 0.1% sterile peptone water. The 

bacterial cocktail was collected and mixed in a 400ml stomacher® bag (Control Numero 5, 

Seward, UK) 

3.2.4 Inoculation of pecans 

Whole, undamaged in-shell pecans were selected and kept overnight inside the bio-safety 

cabinet to dry and bring it to room temperature prior to running the experiment. Approximately 28 

pecans weighing 310±10 g were added into the stomacher bag containing 100 ml of test bacterial 

suspension. The bag was shaken to facilitate wetting of all the pecans in the bacterial suspension 

and hand massaged for a minute ensuring complete coating of pecans with the inoculum. The 

pecans in the bag were allowed to stay immersed in the inoculum for 1 hour with frequent mixing 

and hand massaging. This process was carried out for each pathogen cocktail separately. The 
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immersed pecans were aseptically transferred to large petri dishes (150 by 15 mm) with the help 

of sterile spoon and allowed to dry for 20 minutes inside the bio-safety hood. After the drying 

time, 2 pecans were placed in each teabag (t-sac tea filter bags, 1601) making a total of 14 bags 

for 28 pecans and sealed. Organisms were inoculated at initial load of 6.60-7.96 log CFU/g in the 

in-shell pecans. 

3.2.5 Hot water treatment of inoculated in-shell pecans 

Pecans were subjected to hot water treatment in a water bath maintained at 70, 80 and 

90±1°C for 1, 2, 3, 4 and 5 minutes. Five sterile wide mouthed glass bottles of 500 ml capacity 

completely filled with sterile distilled water were placed in a 12 L water bath (VWR, Radnor, PA, 

U.S.A.). The water bath was set to a temperature of either 70, 80, or 90+1.5 °C in order to reach 

desired test temperatures of 70, 80 and 90ºC for water in the bottles. Individual groups of four 

inoculated pecans were dipped in hot water and treated at 70, 80, and 90°C for 1, 2, 3, 4 and 5 

minutes, respectively. The temperature inside the bottles was monitored continuously during the 

treatment.  

3.2.6 Enumeration 

To enumerate the organism in the cocktail, appropriate serial dilutions were prepared in 

0.1% peptone water and spread plated on selective media- Xylose Lysine Deoxycholate agar 

containing nalidixic acid at 50µg/ml (XLDN) for Salmonella enterica, Cefixime-Tellurite Sorbitol 

MacConkey Agar containing nalidixic acid at 50µg/ml (CT-SMACN) for E. coli O157:H7, Oxford 

Listeria Agar base containing nalidixic acid at 50µg/ml for Listeria monocytogenes and non-

selective media TSAN for Enterococcus faecium followed by incubation at 37°C for 24-48 h. 

To enumerate the bacterial cells on pecans, two tea bags with 4 treated/untreated pecans 

was taken in a puncture resistant stomacher® bag (Control Numero 5, Seward, UK) and crushed 
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by the use of a sterile pestle. This procedure was followed for each pathogen or surrogate cocktail 

except for Listeria monocytogenes where whole in-shell pecans, without crushing, were directly 

eluted to enumerate attached cells. This is because our preliminary studies indicated potential 

bioactive compounds in pecan interfering with the viability of Listeria. The resultant suspension 

of treated was immediately placed in an ice bath to lower the temperature. After that the pecan 

samples in the bag were hand massaged and shaken for 1 minute to dislodge the organisms. 

Appropriate serial dilutions of the samples were prepared and enumerated survived organisms as 

described earlier. 

3.2.7 Determination of D and Z-values  

Log reduction charts for each organism was plotted with its respective log reduction at 3 

different treatment temperatures on y-axis against treatment time on x-axis. The decimal reduction 

time (D-value) is defined as the time required for 90% reduction or 1 log reduction of initial 

bacterial population at a particular temperature. D-values were calculated at each test temperature 

for each organism by taking the inverse of the slope of linear regression line from the log reduction 

graph and expressed in minutes. Similarly, Z-value is defined as temperature change necessary to 

bring about a 10-fold change in the D-value. A negative inverse slope of the linear regression line 

obtained from the graph of log D-values over range of treatment temperatures gave z-vales for 

each test organisms. 

3.2.8 Statistical analysis 

All experiments were replicated three times and data were analyzed by ANOVA using SAS 

software (Version 9.1, SAS institute Inc., Cary, NC). The Fisher’s least significant difference test 

was used to determine the significant differences in mean value with significance considered at 

P<0.05.  
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3.3 Results and discussion 

3.3.1 Effect of hot water treatment on Salmonella 

The effect of hot water treatment of pecans on the reduction of Salmonella is shown in 

Figure 3.1. At 70°C, increasing the treatment time from 1 to 4 min increased the reduction from 

1.79±0.52 to 2.92±0.13log CFU/g with no significant difference (P˃0.05). However a sharp and 

significant (P<0.05) rise in reduction (4.39±0.38 log CFU/g) was seen on further heating from 4 

min to 5 min at 70°C. Treatment at 80°C increased reduction from 2.25±0.5 (1 min) to 4.88±1.8 

(4 min) log CFU/g and 90°C showed 2.95±0.03 (1 min) to 5.60±0.19 (4 min) log CFU/g reduction. 

Furthermore heating to 5 min showed reduction of 4.98±1.87 log CFU/g at 80°C and 6.59±0.95 

log CFU/g at 90°C. There was no significant (P>0.05) difference observed in the reduction 

between 4 and 5 min at both 80 and 90°C. This indicates that a minimum of 5 min at 80°C and 4 

min at 90°C is required to achieve a 5 log reduction of Salmonella. These results can be attributed 

to the sensitivity of Salmonella to higher treatment temperatures in the range of 70 to 90°C. A 

study conducted by Beuchat and Mann (2011) on the inactivation of Salmonella on in-shell pecans 

during various conditioning treatments reported that hot water treatment could reduce Salmonella 

that were surface-inoculated on in-shell pecans by > 5 log CFU/g within 1 min 20 s at 90 or 95°C 

and within 4 min at 85°C. Conversely, the results from our study indicate that treatment at 90°C 

required a longer time (4 min) to achieve a minimum of 5 log- reduction level. Likewise, a hot 

water treatment study on almonds required 3.75 and 1.95 min time to achieve a 5 log reduction of 

Salmonella PT 30 at 80 and 88°C, respectively as predicted from the calculated D-value (Harris et 

al., 2012), which is lower than the time required for 5 log reduction in our study. This can be due 

to exposure of pecans in the inoculums for longer time in our study (1 hour) in comparison to the 

other study (1 minute) that might have resulted in entry of pathogen through shells to the nutmeats. 
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It is seen from the heat treatment study on pecans and almonds that movement of organisms from 

the inoculum to the nutmeat through cracks in the shell and poor heat penetration through shells 

influence the effectiveness of heat treatment (Beuchat & Heaton, 1975; Harris et al., 2012) The 

other reasons could also be, because of differences in the pecan varieties used,  their shell surface 

characteristics, or the strains of Salmonella used in the study.  

 
 

Figure 3.1. Reduction (log CFU/g) of Salmonella enteritidis observed in in-shell pecans when 

treated with hot water at 70, 80 and 90°C for  5 minutes (p<0.05)  

 

Beuchat and Mann (2011) reported that Salmonella exposed to stressed conditions (like 

dessication) were found to be more resistant to conditioning treatment. For example, surface 

inoculated in-shell pecans that were dried and stored required a minimum of 5 min of hot water 

treatment at 80 and 90°C to achieve >5 log reduction, longer than the time required for inactivation 

of non-stressed Salmonella in the same study (Beuchat & Mann, 2011a). However, time required 

for inactivation of non-stressed Salmonella in our study was similar to that for stressed Salmonella 

in the previous study. This indicates that both the stressed as well as not stressed Salmonella in in-
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shell pecans were resistant to the hot water treatment requiring longer treatment times to achieve 

significant reductions.  

3.3.2 Effect of hot water treatment on E. coli O157:H7 

Inactivation of E. coli O157:H7 due to heat treatment at different time and temperature is 

shown in Figure. 3.2. Hot water treatment of pecans with 7.70±0.07 log CFU/g of E. coli O157:H7 

was able to achieve a reduction from 0.89 (at 70°C for 1 min) log CFU/g to 7.1 (at 90°C for 5 min) 

log CFU/g.  

 

Figure 3.2. Reduction (log CFU/g) of E. coli O157:H7 observed in in-shell pecans when treated 

with hot water at 70, 80 and 90°C for  5 minutes (p<0.05)   

 

Treatment of pecans with hot water at 70°C for 2 min showed a reduction of 1.81±0.45 log 

CFU/g. Increasing the treatment time to 3 min increased the reduction to 3.05±0.6 log CFU/g. 

Further increasing the treatment time to 5 min showed no significant difference (P>0.05) in the 

reduction. Similarly, at 80°C E. coli were reduced from 1.08±0.11 (1 min) to 4.76±0.20 (4 min) 

and 5.43±0.38 (5 min) log CFU/g. Increasing the treatment from 4 to 5 minutes at 80°C  showed 

no significant difference (P>0.05) in reduction. Further increasing the hot water treatment 

temperature to 90°C showed a significant increase in the reduction 4±0.07 log CFU/g , 5.16±0.11, 
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7.02±1.22 log CFU/g  at 2, 3, and 4 min respectively. However, there was no significant difference 

(P>0.05) between 4 and 5 minutes of treatment. Our results showed that treatment of pecans at 

80°C for 5 min or 90°C for 3 min can achieve a 5 log reduction of E. coli O157:H7.  

As compared to Salmonella, E. coli O157:H7 has not been frequently related with food-

borne illness outbreaks associated with low water activity foods (He, Guo, Yang, Tortorello, & 

Zhang, 2011). However, it has been found that pecans could be a possible carrier of the pathogen 

from the orchard floor and pose risk of cross-contamination to shelling equipment in processing 

plant if not inactivated to a desired level. Marcus and Amling (1973) reported  there were six times 

more E. coli contaminated pecan samples collected from a cattle grazed farm than from a non-

grazed farm necessitating effective conditioning steps during post-harvest treatment. They also 

suggested that E. coli does not contaminate the unbroken shells of pecan but it enters through 

cracks on the shell, that can occur by water absorption as it sits on the orchard floor or during 

mechanical harvesting (Marcus & Amling, 1973). Furthermore, it was found that moisture 

absorption in in-shell pecans takes place through fibro-vascular bundles at its base and suture 

separations at its apex which act as routes for pathogen entry in the nut (Beuchat & Heaton, 1975). 

A survival study of pathogens in pecan halves showed that E. coli O157:H7 can survive on pecan 

halves at -24, 4 and 22°C where there was no significant decline in population when the  

contaminated nuts were stored at first two temperatures however at 22°C there was a reduction by 

4.3 log CFU/g over 365 days (Brar et al., 2015). This shows that pecans can be contaminated with 

pathogenic E. coli due to poor pre-harvest practices and can maintain viability for longer storage 

periods without proper post-harvest intervention. The findings of our study indicate that the 

pathogenic E. coli on in-shell pecans can be destroyed using hot water conditioning treatment prior 
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to shelling. Hot treatment at 90°C for 3 min was found to be effective in achieving significant 

reduction. However, the effects of hot water treatment on the quality of nuts need to be determined.  

3.3.3 Effect of hot water treatment on Listeria monocytogenes 

Among all three tested pathogens in the study Listeria monocytogenes was found to be 

most susceptible to heat. Reduction of the organism in response to hot water treatment at different 

time and temperature is shown in Figure 3.3. Reduction of Listeria monocytogenes at three tested 

temperatures were found to be significantly different (P<0.05).  

 

Figure 3.3. Reduction (log CFU/g) of Listeria monocytogenes observed in in-shell pecans when 

treated with water for 5 minutes (P<0.05)   

 

The in-shell pecans were inoculated at a level of 7.58±0.26 log CFU/g. Treatment at 70°C 

showed reduction from 0.58 log CFU/g (1 min) to 4.60 log CFU/g (5 min). Treatments at 70°C 

until 3 min were not significantly different (P>0.05). However, on further treatment, reductions at 

4 and 5 min varied significantly (P<0.05). Increasing the temperature to 80°C reduced the pathogen 

level by 4.93 log CFU/g within 3 min of treatment and ≥5.49 log reduction was achieved within 4 

min. However the difference was not significant between 3 and 4 min or 4 and 5 min (P˃0.05). 
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Unlike other organisms, reduction of Listeria monocytogenes was greatly reduced (> 5 log CFU/g) 

within 1 minute at 90°C. Furthermore, there was no significant difference (P>0.05) in the 

reduction (≥ 7.18 log CFU/g) for treatment ≥ 2 min at 90°C. Brar, Proano et al. (2015) reported 

that inoculated Listeria monocytogenes on pecans were stable at -24°C and 4°C; however, at 22°C 

population fell below the limit of detection by the end of 365 days storage.  

In our study, breaking the hot water treated pecans to enumerate Listeria attached on the 

shell and those infiltrated inside nutmeat did not show viability of cells based on the growth on 

selective and non-selective media. Broken pecans release excess oil in the diluents which when 

spread plated on to the agar plates makes it slippery and wet. This causes colonies to be smeared.  

Additionally, inhibitory effect of antimicrobial compounds present in the nut might have had a 

major effect on the viability of Listeria.  Pecan shells are believed to contain 5-20 times more 

polyphenols than kernels that possess antimicrobial effect(Rosa, Alvarez-Parrilla, & Shahidi, 

2011). Various studies have shown that pecan shell extracts have been more effective against gram 

positive than gram negatives.  A study by Prado et. al. (2014) found that pecan shell extracts were 

highly effective against Listeria monocytogenes due to the effect of epicatechin gallate extracted 

from the shell. Similar results were  observed when extracts were used against minimally processed 

lettuce leaves stored at refrigerated conditions where the efficacy was highest on Listeria and 

Salmonella but  not on E. coli (Caxambu et al., 2016). In another study on the effect of pecan shell 

extracts against Listeria spp. when inoculated on poultry skin found that it was able to achieve 

around 2 log reduction of inoculated cocktail of Listeria spp., and >4 log reduction of the native 

spoilage organism present in the skin (Babu, Crandall, Johnson, O’Bryan, & Ricke, 2014). Thus, 

when pecans were broken after the hot water treatment phenolic compounds being water soluble 

in nature must have infused in the diluent from the shell thereby showing inhibitory effect against 
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Listeria monocytogenes. However, our revised protocol for the organism i.e. enumeration of 

Listeria without breaking the pecans allowed minimal infusion of bioactive compounds in the 

diluents giving us the reduction results as only affected by hot water treatment.   

3.3.4 Effect of hot water treatment on Enterococcus faecium 

As shown in Figure 3.4 inactivation of Enterococcus faecium significantly (P<0.05) 

increased with increasing the temperature from 70, 80 and 90°C. Enterococcus was found to be 

the most resistant to hot water treatment among all the tested organisms in the study.  

The lowest reduction of E. faecium was achieved at 70°C which ranged from 0.95±0.4 (1 

min) to 2.95±0.10 log CFU/g (5 min) whereas at 80°C it ranged from 1.2±0.56 (1 min) to 

4.072±0.21 log CFU/g (5 min). Neither of the temperatures was able to achieve a 5 log CFU/g 

reduction of the organism.  A resemblance in the reduction pattern was observed between 

Enterococcus and E. coli O157:H7 until 2 minutes treatment at 70 and 80°C. Further increasing 

the temperature to 90° gave a minimum reduction of 2.39±0.48 log CFU/g (1 min) which peaked 

to 3.96±0.16, 5.29±0.15 and 5.61±0.31 log CFU/g at 3, 4 and 5 min respectively where, reduction 

at 4 and 5 min didn’t differ significantly (P>0.05). Our results concluded that a minimum of 4 min 

at 90°C was required for 5 log inactivation of Enterococcus faecium and no other treatment 

combination used in the study was able to achieve the desired level of reduction. The Almond 

Board of California requires treatment processes to achieve 4 log reduction of Salmonella in 

almonds and recommends to use Enterococcus faecium as a surrogate organism in validation of 

effectiveness of processing equipment (ABC, 2014). Enterococcus faecium NRRL B-2354 (ATCC 

8459) has been shown to be just as resistant as Salmonella PT 30 (Shah, Asa, Sherwood, & Graber, 

2017) and it has been considered safe to be used as a surrogate organism in thermal process 

validation in the food manufacturing areas (Kopit, Kim, Siezen, Harris, & Marcoa, 2014). 
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However, it is recommended to validate if the organism can be used as a surrogate for products 

other than almonds (ABC, 2014) and there have been many studies determining the heat resistance 

of Enterococcus faecium in other foods. A study by Shah et. al. (2017) reported that vacuum steam 

pasteurization of flaxseed, quinoa and sunflower kernels showed that Enterococcus faecium was 

the most heat resistant among Enterococcus faecium, Salmonella PT 30 and E. coli O157:H7 and 

it could be used as an effective surrogate for both of the pathogens. Similar results were shown in 

a study by Bianchini et. al. (2014) on balanced carbohydrate-protein meal where 5 log reduction 

was achieved at a minimum of 73.7 and 60.6°C for Enterococcus faecium and Salmonella 

respectively showing that Enterococcus faecium could be used for validation studies for the  

product during extrusion  (Bianchini et al., 2014). Our findings are similar to the previous studies 

showing that Enterococcus faecium was just as resistant as Salmonella enterica and more resistant 

than all pathogens during the heat treatment of in-shell pecans.  

 

Figure 3.4. Reduction (log CFU/g) of Enterococcus faecium observed in in-shell pecans when 

treated with hot water at 70, 80 and 90°C for 5 minutes (p<0.05)  
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3.3.5 Heat resistance of organisms 

D-value (min) and Z-value (°C) obtained from the log reduction graph for each of the 

organisms is presented in Table 3.2. As calculated from the D-value table, time required for 5 log 

reduction is 6.8, 6.25 and 4.25 min for Salmonella enterica and 8.6, 5.95 and 4.6 min for 

Enterococcus faecium at 70, 80 and 90°C respectively. Our results indicated that Enterococcus 

faecium was the most heat resistant organism of all at 70 and 90°C whereas at 80°C, Salmonella 

showed higher resistance. However, there was no significant difference (P>0.05) in the heat 

resistance shown by Enterococcus faecium, Salmonella spp. and E. coli O157:H7 at each 

temperature. This result suggests that Enterococcus faecium is as resistant as or even more resistant 

than the pathogens of concern in the heat treatment of pecans and can be a potential surrogate 

organism for hot water treatment validation studies in pecan processing areas. Similar results have 

been shown by various researchers for the heat resistance of Enterococcus. In a study where 

almonds were heat treated with moist-air, Enterococccus faecium had lower reductions and 30% 

higher D-values in comparison to Salmonella enteritidis PT 30(Jeong, Marks, & Ryser, 2011). 

Likewise, in a hot water treatment study on almonds, Salmonella Senftenberg 775 W, Salmonella 

Enteritidis PT 30 and Enterococcus faecalis ATCC 29212 required similar time to achieve 4-5 log 

reduction. D-values (min) reported for Salmonella enteritidis PT 30 at 70, 80 and 88°C were 1.2, 

0.75 and 0.39 respectively (Harris et al., 2012) which were slightly lower than what we observed 

in our study. This may be due to the difference in the nuts’ physical structures and heat penetration 

properties through the surface of almonds and pecans.  

In our study, Salmonella has been found to be the most heat resistant pathogen. In a  study 

on heat inactivation of Salmonella, E. coli O157:H7 and Listeria monocytogenes in fruit juices, E. 

coli O157:H7 was the most heat resistant among all the pathogens followed by Listeria and 
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Salmonella being the least(Mazzotta, 2001). The higher heat resistivity of Salmonella in our study 

can be attributed to the development of heat resistance by the organism in low water activity food 

matrices. For example, Salmonella enterica achieved lower reduction and was found to be more 

resistant than E. coli O157:H7 in peanut butter(He et al., 2011). In addition, vacuum steam 

pasteurization at 75°C for 1 s of low moisture foods (flaxseed, quinoa and sunflower kernels) 

showed that  microbial reduction levels were highest for E. coli O157:H7 followed  by Salmonella 

and Enterococcus faecium (Shah et al., 2017).  

Although Enterococcus faecium showed the highest resistance to heat treatment, 

Salmonella had the maximum z-value of all tested organisms. Higher z-value indicates that at 

increased temperature organisms behave differently and become more heat resistant at that 

temperature. It was evident from the D-values (Table 3.2) that at 80°C Salmonella required a 

longer time to get reduced. Among all the organisms, Listeria monocytogenes was found to be the 

least resistant with lowest z-value (4.51°C±0.51) during hot water treatment of in-shell pecans. A 

metaanalysis study on heat resistance of organisms in liquid growth media calculated z-value (°C) 

of  Enterococcus faecium (10.2±3.3), Salmonella spp. (5.1 ± 1.6), Salmonella senftenberg 775 W 

(6.2±1.1), E. coli (5.4±1.5) and  Listeria monocytogenes (6.2±1.1) (Sorqvist, 2003) which were 

similar to the observed values in the study except for Salmonella which was higher in our study. 

This is thought to be due to the organism’s resistivity to heat treatment in low water activity food 

matrix.  
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Table 3.2. Calculation of D and Z-values from log reduction graphs 

Organisms 

D-values (min) 

Z- value (°C) 

70°C 80°C 90°C 

Enterococcus faecium 1.72±0.16a 1.19±0.12 bcd 0.92±0.02 cde 7.62±1.36 

Salmonella enterica 1.36±0.19 ab 1.25±0.66 bc 0.85±0.09 de 10.18±1.9 

E. coli O157:H7 1.38±0.09ab 0.87±0.07 cde 0.73±0.18 ef 5.80±0.61 

Listeria monocytogenes 1.15±0.09 bcde 0.83±0.02 cdef 0.41±0.01 f 4.51±0.51 

 

Table 3.2 represents D-value of organisms at each temperature and z-value of organisms (P<0.05). 

Experiments were run in triplicates. The superscripts represent the significant difference between 

organisms at each temperature and between different temperatures. 

 

3.4 Conclusion  

Five log reduction was achieved for Salmonella spp. (5 min at 80°C or 4 min at 90°C), E. 

coli O157:H7 (5 min at 80°C or 3 min at 90°C), Listeria monocytogenes (4 min at 80°C or 1 min 

at 90°C) and Enterococcus faecium (4 min at 90°C) upon hot water conditioning of in-shell pecans. 

Among all the tested organisms, Enterococcus faecium was found to be the most heat resistant, 

and among the tested pathogens, Salmonella enterica was the most resistant to heat treatment. 

However, the highest z-value (°C) was observed for Salmonella enterica (10.18±1.9°C) and lowest 

for Listeria monocytogenes (4.51±0.51). As calculated from the D-value table, 5 log reduction of 

all pathogens can be achieved with hot water treatment for 8.6 min at 70°C, 6.6 min at 80°C and 

4.6 min at 90°C. Thus, the hot water treatment was found to be an effective kill-step for different 

potential pathogens in pecans. 
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4. EVALUATION OF PHYSICO-CHEMICAL PROPERTIES AND 

CONSUMER ACCEPTABILITY OF ROASTED PECANS SUBJECTED TO 

VARIOUS DEGREES OF HOT WATER PRE-TREATMENT 

4.1 Introduction 

Pecans are commercially important nut crop that add to agricultural economy of U.S. 

(Lombardini, Zajicek, Waliczek, & Harris, 2008) and are one of the most favored tree nuts 

consumed worldwide in different forms. Additionally, they are also nutritionally rich and can be 

effective against various diseases (Beuchat & Pegg, 2013; Santerre, 1994b). Pecans are found to 

have a high antioxidant capacity against free radicals due to presence of phenolic compounds, 

condensed tannins and hydrolysable tannins  (FloresCordova et al., 2017). Studies have shown the 

potential of phenolics to lower the frequency of several chronic diseases like cancer, Alzheimer’s 

disease, Parkinson’s disease and other degenerative diseases (Mertens-Talcott & Percival, 2005; 

Tam et al., 2006). Also, the high amount of monounsaturated fatty acid in pecans plays a crucial 

role in lowering the LDL cholesterol and minimizing the risk of heart disease (Rajaram et al., 

2001).  

However, pecans are susceptible to pre and post-harvest microbial contamination (Beuchat 

& Pegg, 2013) thus making them prone to causing foodborne diseases. Usually pecan harvesting 

involves shaking the trees to let the mature nuts fall on the orchard ground. This action may pose 

potential risk of contamination of pecans from the soil. In the past few years tree nuts such as 

pecans, almonds, walnuts, pine nuts, pistachios, mixed nuts as well as peanuts have been frequently 

associated with various recalls and outbreaks due to recurrent contamination with foodborne 

pathogens such as Salmonella, Escherichia coli O157:H7 and Listeria monocytogenes (Beuchat & 

Pegg, 2013; Zhang et al., 2017). Post-harvest processing of in-shell pecans is one way to mitigate 

the risk associated with pre-harvest contamination. Hot water conditioning of pecans aid in kernel 
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separation, minimize kernel breakage and increase the shelling efficiency (Santerre, 1994) as well 

as aid in decontamination of pecans (Beuchat & Pegg, 2013). Our previous studies indicate that 

hot water treatment of in-shell pecans at 70°C for 8.6 min, or at 80°C for 6.6 min, or at 90°C for 

4.6 min can successfully achieve a minimum of 5-log reduction of various bacterial pathogens of 

public concern such as Salmonella enterica, E. coli O157:H7, Listeria monocytogenes((Kharel, 

Yemmireddy, Karki, Graham, & Adhikari, 2017, Unpublished). 

Nevertheless, heat treatment can also affect the quality of nuts apart from effectively 

eliminating pathogens. Blanching and roasting can bring significant changes in color, flavor and 

texture of nuts where, blanching can lead to softening of nut texture whereas roasting can change 

flavor and skin color (Harris, 2013). A study done by Forbus and Senter (1976) found that in-shell 

pecans exposed to conditioning treatments gained darker color with steam exposed pecans being 

the darkest of all. However, it did not hamper the quality except that it was found to gain a slightly 

cooked flavor. Fried potatoes that were prior subjected to blanching showed more appealing color 

with increased L* value  and improved texture (Agblor & Scanlon, 2000). It is critical to 

understand quality and consumer acceptability of roasted pecans subjected to hot water 

pretreatment for the practical implementation.  Hence, the main objectives of this study are: i) to 

determine the effect of heat treatment of pecans on physico-chemical properties ii) to evaluate 

consumer acceptability and purchase intent of the treated pecans. 

4.2 Materials and methods 

 

4.2.1 Selection of pecans 

 

Raw in-shell ‘Sumner’ pecans (Carya illinoinensis) were obtained from Little Eva Pecan 

Company LLC, Cloutierville, Louisiana. The pecans were stored for a month at 4°C until they 

were used for analysis.  
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4.2.2 Hot water treatment of pecans 

 

A 2 kg of undamaged in-shell pecans were first weighed using a balance (Mettler Toledo 

PG 5001-S, Columbus, OH) for each treatment. A skillet containing water was heated up to 

temperatures of either 70, 80, or 90±2ºC. The weighed in-shell pecans were placed in stainless 

steel strainers and dipped in the hot water maintained at respective treatment temperatures for 8.6 

(70°C), 6.6 (80°C) and 4.6 (90°C) min, respectively. Temperature of skillet surface, water and the 

nuts was continuously measured using a data logger (ExTech SDL200, Nashua, NH) with K-type 

thermocouples attached to it. The time-temperature combinations were calculated from our 

previous study on hot water conditioning of in-shell pecans so as to inactivate potential pathogens. 

The treatment conditions obtained from D-value table in the previous study could achieve 5 log 

reduction of the most heat resistant pathogen i.e. Salmonella enterica.  

4.2.3 Roasting of pecan 

 

Roasting of pecans was selected as a processing step so as to present samples to consumers. 

Hot water treated in-shell pecans were allowed to air dry and cool down to room temperature 

(21°C) on metal trays for 1 hour. After that, the hot water treated and control (raw) pecans were 

de-shelled using nut crackers and were spread on the oven trays. A mini rotating rack convection 

oven (Baxter, Orting, WA) was preheated to 160±3°C and the trays containing shelled pecans were 

roasted for 10 minutes at 160°C. These roasting conditions were selected based on one of the 

treatment combinations used in the study for hot air roasting of pecans (Beuchat & Mann, 2011b). 

Roasted pecans were allowed to cool to room temperature and vacuum packed in bags 

(BOPPT/VMCPP-Biaxially-Oriented Polypropylene-Plastics technology/Cast Polypropylene) 

using a vacuum sealer. The bags were stored at refrigerated conditions (4°C) until used for further 

analysis.  
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4.2.4 Physicochemical analysis 

 

Pecans (25 g) were ground using magic bullet blender (Magic bullet, Los Angeles, CA) for 

the analysis of moisture and water activity of pecans. Moisture content and water activity of pecan 

samples were measured based on using a moisture analyzer (Mettler Toledo MJ33, Switzerland) 

and Novasina Labtouch water activity meter (Neutec Group Inc, NY, USA) respectively. For color 

measurement, 3 pecan halves were placed on the top port of the spectrophotometer (CM-5 Konica 

Minolta, Inc., NJ, USA) and the L* (0=black and 100=white), a*(+a*= redness, -a*=greenness), 

b*(+b* =yellow, -b* =blue) were measured for each treatment sample and the untreated control. 

Readings were taken in triplicates for each sample where samples were rotated at ~90° on the top 

port after each reading. The chroma (a*2+b*2)1/2 and hue angles (tan-1 (b*/a*) were calculated 

based on L*, a*, and b* values. The texture of raw, hot water treated and roasted shelled pecans 

were analyzed using a texture analyzer (TA-XT plus Texture Analyzer, Texture Technologies 

Corp, NY, USA) with a sharp blade (HDP/BS) following the protocol by Lee and Resurreccion 

(2006) for roasted peanuts. The blade was lowered with cross head speed of 250 mm/min and 20 

mm distance from the platform. The mean value of twenty measurements was reported as hardness 

(N). 

4.2.5 Microbiological analysis 

 

Aerobic plate count and yeast and mold count on the roasted shelled pecans were measured 

before conducting sensory analysis using 3MTM PetrifilmsTM (3MTM PetrifilmsTM, St. Paul, MN). 

A 25 gram of pecan halves was taken in a stomacher® bag (Seward, UK) with 225 ml of 0.1% 

peptone water and homogenized in a Bagmixer® 400 blender (Interscience Laboratories Inc., MA,, 

USA). Appropriate serial dilutions were prepared and a 1 ml of sample was placed on the center 

of bottom film of the petrifilm. After spreading the sample evenly on the petrifilm using a spreader, 
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the films were incubated at 35±1°C for 48±3 hrs (for Aerobic Plate Count) and 25±1°C for 3-5 

days (for Yeast and Mold count). Experiment was performed in duplicates. No growths were 

observed in any of the plates except for presence of 4-6 colonies at the zero dilution on aerobic 

plate count for the control.  

4.2.6 Consumer liking and purchase intent 

 

The sensory study was approved by the LSU Institutional Review Board with the IRB 

exempt number of HE 15-9. Consumer test was conducted with 112 panelists (47.3% male and 

52.7% female) who were faculty, staff and students at Louisiana State University, Baton Rouge, 

LA, USA. Sensory booths illuminated with cool, natural, fluorescent lights were used for sensory 

evaluation and questionnaires were developed through Compusense® five (Compusense Inc., 

Guelph, Canada) software. Consumers read and electronically signed a consent form (Appendix 

A) [screening criteria including not allergic to pecans and crackers]. Samples, coded with 3 digit 

random number, were presented using randomized complete block design where each consumer 

was presented with 4 pecan samples (roasted raw pecans and roasted pecans that were hot water 

treated at 70, 80 and 90°C) in 2oz serving size cups in a counterbalanced protocol so as to minimize 

psychological biasness on the order of sample presentation. 

Consumers were instructed to evaluate the acceptability of 5 attributes namely, Appearance 

/color, aroma, texture (crunchiness), flavor and overall liking using a 9-point hedonic scale (1-

dislike extremely, 5=neither like nor dislike, 9=like extremely). After, a purchase intent question 

was asked using a binomial (yes/no) scales. 

Consumers were then informed with a safety disclaimer “The shells of these pecans were 

treated with hot water making them safer for consumption” for hot water treated samples. 
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Consequently, they were again asked to evaluate each sample on their overall liking and purchase 

intent. Unsalted plain crackers and water were provided to cleanse the palate between samples.  

4.2.7 Statistical analysis 

 

The mean difference of physicochemical properties and consumer liking was evaluated 

using analysis of variance (ANOVA) followed by Tukey’s adjustment test for post hoc multiple 

comparisons. Values were considered significantly different at P<0.05. McNemar’s test was 

carried out to analyze significant difference in the percentage change in purchase intent 

before/after (SAS software Version 9.1, SAS institute Inc., Cary, NC).  

4.3 Results and discussion  

 

4.3.1  Moisture and water activity  

 

The effect of heat treatment on physicochemical properties of raw, heat treated and roasted 

pecans are shown in Table 4.1. Statistical analysis of the data indicated that hot water treatments, 

regardless of temperatures, had no significant (P>0.05) effect on the moisture content of pecans 

when compared to its control (i.e. raw pecans). Roasting significantly decreased the moisture 

content of the raw and hot water treated pecans from 6.09-6.97% to 2.06-2.94%; while, the water 

activity significantly dropped from 0.80-0.85 to 0.35-0.44. It could be observed that conditioning 

in-shell pecans with hot water slightly increased water activity of shelled pecans (P>0.05). On 

subsequent roasting, water activity decreased, however, water activity was comparatively higher 

for pecans which had undergone hot water treatments (0.44) than raw pecans (0.35) (P<0.05). This 

asserts that conditioned pecans on roasting will have free water available for microbial growth, 

enzymatic and chemical reactions thus, they are prone to rancidity and bacterial growth.  
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Table 4.1. Physicochemical properties of raw, hot water treated and roasted pecans 

Parameters Control Hot water treated Pecans 

70°C 80°C 90°C 

Raw After 

Roasting 

After hot 

water 

treatment 

After 

Roasting 

After hot 

water 

treatment 

After 

Roasting 

After hot 

water 

treatment 

After 

Roasting 

Moisture 

(%) 

6.45±0.65
a 

2.06±0.24b 6.48±0.22a 2.94±0.34b 6.09±0.40a 2.84±0.09b 6.97±0.83a 2.39±0.1b 

aw 0.81±0.00
b 

0.35±0.01d 0.82±0.01b 0.44±0.02c 0.83±0.00ab 0.44±0.00c 0.85±0.02a 0.44±0.01c 

Texture- 

Hardness 

(N) 

45.70±13.

60a 

35.66±7.16
b 

40.75±9.83ab 40.15±13.05a

b 

40.86±6.21a

b 

38.86±5.69a

b 

43.05±9.42ab 36.14±7.82b 

Color  

L* 47.09±0.2

8a 

47.18±0.30
a 

45.74±0.28ab 44.76±0.07b 45.81±0.30a

b 

44.69±1.08b 47.05±0.48a 41.87±0.69c 

a* 13.06±0.3

8ab 

11.03±0.22
b 

13.13±0.13a 13.87±0.09a 13.30±0.98a 12.16±1.20a

b 

13.75±0.32a 13.01±0.33ab 

b* 25.83±0.9

3ab 

20.97±0.18
c 

27.03±0.72a 26.29±0.20ab 27.56±0.66a 23.99±2.53a

bc 

27.43±1.72a 22.61±2.91bc 

Chroma 28.95±0.6

6abc 

23.69±0.26
d 

30.5±0.59ab 29.72±0.22abc 30.60±1.02a

b 

26.93±2.28b

cd 

30.69±1.39a 26.12±2.49cd 

Hue (°) 63.16±1.5

1a 

62.25±0.26
a 

64.08±0.82a 62.19±0.03a 64.26±1.11a 63.01±3.42a 63.34±1.97a 59.88±3.31a 

Mean Values in the same row by different letters are significantly different (P<0.05). 
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Moisture content of raw pecans observed in our study was higher than the moisture content 

of raw pecans, 3.5-3.76%, found by Resurreccion and Heaton (1987). In a study by Beuchat and 

Mann (2011) pecan nutmeats at 2.8-4.1% moisture reached to around 1-2% on hot air roasting 

(120°C for 10 min). This finding was similar to observed value of moisture for roasted pecans in 

our study.   

Moisture content and water activity are important parameters that affect the shelf-life of 

nuts. A good quality pecan kernel of 4.3-4.5% moisture will have water activity in the range of 

0.65-0.70(Santerre, 1994a). Conditioning increases the moisture of pecan nutmeats from 4 to 8% 

which makes it more flexible and reduces kernel breakage while cracking the nut. However, it is 

advised to dry the conditioned shelled pecans to 3-4% moisture content so as to reduce mold 

development, rancidity, microbial growth and maintain quality that is desired by consumers 

(Santerre, 1994b). 

4.3.2 Texture  

 

Texture of fresh, hot water treated and roasted pecans was measured and expressed as 

hardness (N) (Table 4.1). Hardness is given by peak force that occurs during the compression of 

any material. In our study, raw shelled pecans required the maximum force (45.70±13.60 N) to get 

deformed, followed by shelled pecans hot water treated at 90 (43.05±9.42), 80 (40.86±6.21) and 

70°C (40.75±9.83) respectively. On roasting, hardness of raw shelled pecans (35.66±7.16) and hot 

water treated shelled pecans at 70 (40.15±13.05), 80 (38.86±5.69) and 90°C (36.14±7.82) 

decreased. Roasting significantly (P<0.05) decreased the hardness value in raw pecans but, there 

was no significant difference (P>0.05) in the hardness values among hot water treated and roasted 

samples. Also, hot water treatment or roasting showed no significant effect on the texture of shelled 

pecans when compared to its respective control (i.e. raw pecans and roasted raw pecans). Similar 
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results were reported by  Moghaddam et. al. (2016) on roasted pistachio kernels whose hardness 

ranged from 37.59-82.76 N and as the temperature for roasting increased hardness values 

decreased owing to decrease in moisture content and strength of the kernels. Thus, our study 

showed that heat treatment did not have a pronounced effect on the hardness of pecans; however, 

roasted shelled pecans required less force to get deformed than raw or hot water treated pecans 

owing to its brittle nature due to removal of moisture. 

4.3.3 Color  

 

The effect of heat treatment on color values of pecans is presented in Table 4.1. When raw 

pecans were roasted it slightly increased (P>0.05) the L* value from 47.09±0.28 to 47.18±0.30. 

As the pecans were hot water treated, L* values decreased to 45.74-47.05 but were not significantly 

different than that of raw pecans. This indicated that there was no color change on hot water 

treatment. However, when the pecans were roasted, the L* values of pecans hot water treated at 

70, 80 and  90°C  significantly decreased to 44.76±0.07, 44.69±1.08 and 41.87±0.69, respectively. 

This indicated that hot water treated pecans became darker on roasting. Among all the samples, 

roasted raw pecans was the lightest while roasted pecan that was hot water treated at 90° was the 

darkest.   

The hue angles of pecans ranged from 59.88-64.26° where, on the color wheel, 0° means 

+a* (red) and 90° means +b* (yellow). Hue angles increased as pecans were treated by hot water 

whereas it decreased on roasting however, the values weren’t significantly different (P>0.05). This 

value indicates that color of the pecan kernels were towards the yellowish shade. Also, chroma 

values ranged from 23.69-30.69; with an increase in temperature of hot water treatment the chroma 

values (saturation) of the pecan nutmeat were found to increase but decreased on roasting. Chroma 

value starts at the 0 in the center of the color wheel and is a distance from the lightness axis. 
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Observed chroma value in the study indicates that the pecans had darker yellow shade. Color of 

the food is linked with its’ quality attributes like freshness, sensory, nutritional and defects (visual 

and non-visual). Unwanted changes in color can lead to decreased consumer’s acceptance and its’ 

worth in the market thus is one of the important appearance attributes (Xiao et al., 2017). A sensory 

study on traditionally harvested pecans found the color values of the nut to be 31.58-35.67 (L*), 

10.06-10.77 (a*), 13.61-15.92 (b*) and a hue angle of 51.63-52.72°(Resurreccion & Heaton, 

1987). The values were similar but slightly lower than values observed in our study which can be 

attributed to varietal difference. Thus, color of the shelled pecan (dark yellow) was maintained 

even after hot water treatment and roasting process. However, hot water treatment made the kernels 

look darker on roasting as seen from their lower L* values as compared to roasted raw pecan.  

4.3.4 Consumer liking  

 

The liking scores for different sensory attributes and purchase intent of roasted pecans is 

presented in Table 4.2. Consumers didn’t find any significant (P>0.05) difference among the 

roasted samples (raw and hot water treated) for all tested sensory attributes.  Except for the color 

and aroma, the mean liking scores for the presented roasted pecan samples had no significant 

difference with control samples. The mean liking scores for the color and aroma of the control 

(roasted pecan without hot water treatment) were 5.2 (P<0.05) and 5.79 (P<0.05) respectively, 

lowest among all the samples indicating that consumers neither liked nor disliked the sample 

(Table 4.2). This lower liking for color can be related to the samples’ L* value which was 

significantly (P<0.05) different and highest than all other roasted pecan samples indicating lighter 

color (Table 4.1). This indicated that consumers liked darker colored pecans. Statistically, 

consumers did not find any significant difference among the colors of the treated samples. 

However, the mean liking scores have slightly increased with increase in the hot water treatment 
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temperature which can also be attributed to its decreasing L* value. This indicates that increasing 

the hot water treatment temperature potentially increased the liking of its color among consumers 

as the kernel color became darker. Likewise, there was an increase in the liking for aroma in the 

same pattern. As for texture, mean liking scores for the roasted pecan samples ranged from 6.49-

6.64 which were not significantly (P>0.05) different to each other. Likewise, the hardness values 

of roasted pecans had no significant difference (P>0.05) when measured by the texture analyzer 

(Table 4.1). Likewise, consumers did not find any significant (P>0.05) effect of hot water 

treatment on the flavor attribute of the pecans with mean scores ranging from 6.17-6.42.  

Although there was no significant (P>0.05) difference among the overall liking scores of 

pecans before the disclaimer and also among the overall liking of the samples after the disclaimer 

was shown, mean overall liking scores were higher for hot water treated pecans.  Also, it was seen 

that the disclaimer about treating pecans with hot water for its safety has shown rise in overall 

liking from 6.42 to 6.53, 6.29 to 6.43 and 6.46 to 6.52 in 70, 80 and 90°C treated pecans 

respectively while there was drop in the overall liking from 6.31 to 6.21 when consumers knew 

about the control pecans. Studies have shown that overall liking increased for products after the 

health benefit statement or safety disclaimer was shown. For example, a consumer liking and 

purchase intent study on sponge cakes showed that overall liking of the product increased after the 

health benefit statement and was one of the important attributes that influenced purchase intent 

(Poonnakasem, Pujols, Chaiwanichsiri, Laohasongkram, & Prinyawiwatkul, 2016). Likewise, 

another study on pomegranate juice and green tea blends found that disclaimer about health 

benefits had positive impact on overall liking of the product(Higa, Koppel, & Chambers IV, 2017). 

Consumers liked the color and aroma of roasted pecans that were hot water treated at 90°C. 

However, in general, consumers liked pecans treated at 70°C for its texture, flavor and overall 
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liking. This indicates that conditioning in-shell pecans with hot water enhanced the color quality, 

maintained the texture and subsequently roasted pecans were liked by consumers over raw pecans. 

Lower temperature for longer time (i.e. 70°C for 8.6 min) was best rated by consumers for its 

texture, flavor and overall liking.    

4.3.5 Purchase intent 

 

A drop in purchase intent was observed after the display of disclaimer even though overall 

liking of hot water treated pecans had increased. The highest purchase intent was observed for the 

roasted pecans that were hot water treated at 90°C which can be likely caused by its higher 

appearance/color, aroma and overall liking (Table 4.2). Still, there was a significant drop in 

purchase intent from 39.29 to 33.04% after the disclaimer was shown. Consumers intended to 

purchase the control pecans, with rise in purchase intent from 37.5% to 43.75%, despite the lower 

overall liking scores after the disclaimer. This showed that disclaimer about hot water treating the 

pecans for its safety had a negative impact on its purchase intent despite consumers’ liking the 

samples. A study on impact of claims on consumer perception about prebiotic enriched breads 

found that even though there was no change in overall liking of the product when the claim was 

presented, there was decrease in the purchase intent by one of the clusters of people who were not 

receptive towards the claims. Consumers found them hard to understand and were skeptical on the 

truth of the claims (Coleman, Miah, Morris, & Morris, 2014).  
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Table 4.2. Consumer acceptability scoresβ and purchase intent before and after of heat treated pecans 

Treatment Appearance/

Color 

Aroma Texture Flavor OLb OLa PIbµ (%) PIaµ (%) 

Control 5.2±1.73b 5.79±1.77b 6.63±1.52a 6.29±1.8a 6.31±1.75a 6.21±1.8a 37.50 43.75 

70°C 6.46±1.45a 6.32±1.47a 6.64±1.57a 6.42±1.7a 6.42±1.58a 6.53±1.5a 33.04 30.36 

80°C 6.70±1.56a 6.37±1.51a 6.49±1.61a 6.17±1.8a 6.29±1.71a 6.43±1.7a 35.71 35.71 

90°C 6.79±1.39a 6.42±1.66a 6.58±1.69a 6.21±1.7a 6.46±1.62a 6.52±1.6a 39.29 33.04 

β Mean and standard deviation from 112 consumer responses based on 9-point hedonic scale. Mean values in the same column by 

different letters are significantly different (P<0.05). 

µStatistically significant p-values in bold print (P<0.05) based on McNemar Exact Probability 

A safety disclaimer “The shells of these pecans were treated with hot water making them safer for consumption” was displayed 

OLb and Ola refers to Overall liking before and after safety disclaimer was displayed 

PIb and PIa refers to Purchase intent before and after safety disclaimer was displayed 
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4.4 Conclusion  

 

As the results of this study, apart from inactivating potential pathogens of public health 

concern, hot water pre-treatment of pecans enhances or maintains the quality of the pecan 

nutmeats. Significantly higher water activity values were observed for roasted hot water treated 

pecans as compared to roasted raw pecans. Heat treatment did not affect the textural quality of 

shelled pecans; however, hardness decreased for roasted samples owing to its brittle nature due to 

loss of moisture. As the temperature of hot water treatment was increased the color of kernels 

darkened. When roasted, L* values was lowest (41.87±0.6) for 90°C treated pecans giving it darker 

in appearance whereas, L* highest for raw pecans indicated a lighter colored kernel. This was seen 

from the consumer’s mean score liking for color (5.2±1.73) of roasted raw pecans which indicated 

that consumers neither liked nor disliked the color. Although the likings were not significantly 

different, with higher values of flavor, texture and overall liking after disclaimer was shown,  

roasted pecans that were prior treated at 70°C was found to be the most liked product of all. A 

disclaimer concerning about the safety of pecans associated with hot water treatment displayed to 

the consumers had positive impact on overall liking which increased its mean scores however, 

there was drop in purchase intent of the hot water treated products. As for roasted raw pecans 

purchase intent increased from 37.5 to 43.75%. Thus, conditioning the in-shell pecans with hot 

water was found to enhance its color on roasting, maintain the texture, enhances the overall quality 

and was preferred over the roasted raw pecans by consumers.  
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5. CONCLUSIONS 
 

Hot water treatment of in-shell pecans at 70, 80 and 90° for 1 through 5 min could achieve 

different levels of reduction on pathogens. A five log reduction was achieved when pecans were 

treated for 5 min at 80°C or 4 min at 90°C for Salmonella, 5 min at 80°C or 3 min at 90°C for E. 

coli O157:H7, 4 min at 80°C or within 1 min at 90°C for Listeria monocytogenes. Likewise, the 

non-pathogenic organism in the study, Enterococcus faecium required 4 min when treated at 90°C 

to achieve desired level of reduction. The D-values (min) at 70, 80 and 90°C were 1.36, 1.25 and 

0.85 for Salmonella, 1.38, 0.87 and 0.73 for E. coli O157:H7, 1.15, 0.83, 0.41 for Listeria 

monocytogenes and 1.72, 1.19 and 0.92 for Enterococcus faecium respectively. Our results 

indicated that Enterococcus faecium was the most heat resistant organism of all at 70 and 90°C 

whereas at 80°C, Salmonella showed higher resistance. However, there was no significant 

difference (P>0.05) in the heat resistance shown by Enterococcus faecium, Salmonella spp. and 

E. coli O157:H7 at each temperature.  Enterococcus faecium possessed similar heat resistance as 

that of Salmonella and thus could be considered safe to be used as a surrogate organism in thermal 

process validation in the pecan manufacturing areas. The z-values (°C) of Enterococcus faecium, 

Salmonella spp., E. coli O157:H7 and Listeria monocytogenes were found to be 7.62±1.36, 

10.18±1.9, 5.80±0.61 and 4.51±0.51 respectively. As calculated from the D-value table, time 

required for 5 log reduction of most heat resistant organisms were 6.8, 6.25 and 4.25 min for 

Salmonella enterica and 8.6, 5.95 and 4.6 min for Enterococcus faecium at 70, 80 and 90°C 

respectively. Thus, the hot water treatment was found to be an effective kill-step for different 

potential pathogens in pecans. 

 As calculated earlier, hot water treatment of in-shell pecans at 70, 80 and 90°C for 8.6, 6.6 

and 4.6 min respectively was found to achieve 5 log reductions of all pathogens in the study. Thus, 
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in-shell pecans that were exposed to the treatments were monitored for any change in quality and 

consumer liking. Hot water treatments had no significant (P>0.05) effect on the moisture content 

and water activity of pecans when compared to its controls (i.e. raw pecans). Roasting significantly 

decreased the moisture content of the raw and hot water treated pecans from 6.09-6.97% to 2.06-

2.94%; while, the water activity significantly dropped from 0.80-0.85 to 0.35-0.44. Heat treatment 

didn not have a pronounced effect on the hardness of pecans; however, roasted shelled pecans 

required less force to get deformed which can be due to its brittle nature due to removal of 

moisture. When in-shell pecans were hot water treated, no effects were observed on the kernel 

color. However, when the pecans were roasted, the L* values of pecans hot water treated at 70, 80 

and  90°C  significantly decreased to 44.76±0.07, 44.69±1.08 and 41.87±0.69 respectively. This 

indicated that hot water treated pecans became darker on roasting. Among all the samples, roasted 

raw pecans was the lightest while roasted pecan that was hot water treated at 90° was the darkest. 

The hue angles of pecans ranged from 59.88-64.26° and chroma values ranged from 23.69-30.69. 

This indicated that pecan kernels had a dark yellow shade on the color wheel.  

The mean liking scores for the color and aroma of the control (roasted raw pecan) were 5.2 

(P<0.05) and 5.79 (P<0.05) respectively, lowest among all the samples indicating that consumers 

neither liked nor disliked the sample. Increasing the hot water treatment temperature increased the 

liking of its color among consumers as the kernel color became darker. Likewise, there was an 

increase in the liking for aroma in the same pattern. Also, it was seen that the disclaimer about 

treating pecans with hot water for its safety has shown a rise in overall liking from 6.42 to 6.53, 

6.29 to 6.43 and 6.46 to 6.52 in 70, 80 and 90°C treated pecans respectively while there was drop 

in the overall liking from 6.31 to 6.21 when consumers knew about the control pecans. Also, a 

drop in the purchase intent of the hot water treated products was seen after display of disclaimer. 
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As for roasted raw pecans purchase intent increased from 37.5 to 43.75%. Lower temperature for 

longer time (i.e. 70°C for 8.6 min) was rated best by consumers for its texture, flavor and overall 

liking. Thus, the hot water treatment not only effectively inactivated potential pathogens in pecans 

but it also enhanced or maintained the quality and sensory liking. 
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APPENDIX: IRB APPROVAL FORM 
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