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ABSTRACT 

 Cardiovascular disease is the leading cause of death in the US, and circulating free fatty 

acids (FFAs) are known risk factors associated with cardiovascular inflammation. The influence 

of 14 dietary FFAs (including saturated, mono-, poly-unsaturated and trans), on the expression 

of inflammatory markers in human coronary arterial smooth muscle (HACSM) and endothelial 

(HCAEC) cells using a cell culture model was investigated.  HACSM and HCAEC cell cultures were 

incubated with 200 µM of each FFA for 8 or 24 h respectively at 37 °C in a 5% CO2 humidified 

incubator. Inflammatory biomarkers were assessed by ELISA or Western Blot in the supernatant 

or cell lysates respectively. Results showed significant differences in the expression of 

inflammatory biomarkers among the fatty acid treatments and the control, with myristic and 

palmitic acids being identified as the most and linoleic acid as the least pro-inflammatory. This 

confirms that FFAs can induce low-grade inflammation in human coronary arterial cells and 

provides more information on mode of action. 
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CHAPTER 1 
LITERATURE REVIEW 

1 

1.1 INTRODUCTION 

Digestion and absorption of fat primarily involves emulsification and hydrolysis in the 

gastrointestinal tract, absorption as free fatty acids or monoglycerides and re-synthesis of new 

triglycerides in the liver that are carried as lipoproteins (mainly VLDL and chylomicrons) in the 

blood.1   Free fatty acids (FFAs) are released into the bloodstream by the action of hormone-

sensitive lipase on the adipose tissue or endothelium lipoprotein lipase on circulating 

lipoproteins. The FFAs are bound to serum albumin and transported to peripheral tissues.2-5 

Postprandial spikes in dietary fatty acids can occur from 4 to 8 hours after eating occasions. FFA 

levels and the time curves in serum are dependent on the fatty acid profile of the meal and the 

individual’s daily diet.6,7 FFAs in plasma in healthy adults (fasting-postprandial) range from 350-

550 μmol/l, but are elevated due to several conditions including obesity (410-730 μmol/l), 

insulin resistance (560-570 μmol/l), and type 2 diabetes mellitus (690-770 μmol/l), and can 

increase up to 1 mmol/l after a high fat meal.2,8-12
 Plasma FFAs are elevated in obese individuals 

due to the release of FFAs by the enlarged adipose tissue and consequent reduction of FFA 

clearance from the blood; FFA elevation further results in the inhibition of the anti-lipolytic 

action of insulin, which increases the FFA release into the bloodstream from chylomicrons and 

the adipose tissue.13  Elevation of circulating FFAs has been shown to induce proinflammatory 

changes and oxidative stress,14 impair endothelial and vascular function,12 inhibit immune 

response,4 and even promote insulin resistance.10 Elevated FFAs are thus now considered an 
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indicator of cardiometabolic stress and a risk factor for cardiovascular disease (CVD)15 including 

ischemic heart disease16  and sudden cardiovascular death.17,18 

 It has been suggested that fatty acid composition of the diet influences the overall 

inflammatory state, endothelial function, risk of type 2 diabetes and cardiovascular disease. 

Studies have mainly focused on trans fatty acids and indicate that they are directly related to 

increased health risks.19-22 However, the mechanism by which not only trans but overall 

increased free fatty acids induce inflammation is not well understood. Furthermore, an 

assessment of inflammatory response to individual fatty acids has not yet been performed. 

 The purpose of this study was to evaluate the effect of 14 dietary relevant FFAs 

including saturated, mono-, poly-unsaturated and trans, on the expression of inflammation 

markers in human coronary arterial smooth muscle (HACSM) and endothelial (HCAEC) cells 

using a cell culture model. Evaluation of inflammatory biomarkers in cell culture supernatant as 

well as in the cell cytoplasm will allow for a better understanding of the mechanism by which 

FFAs promote inflammation and resulting undesirable cardiovascular risks. 

 

1.2 REVIEW OF LITERATURE RELEVANT TO THIS APPLICATION 

1.2.1 Atherosclerosis 

Cardiovascular disease (CVD) is a group of disorders of the heart and blood vessels and 

the number one cause of death in the United States accounting for 25% of US deaths.23-25 

Atherosclerosis, a type of of CVD, is a process in which fat, cholesterol, cellular waste, and 

calcium build up in the inner lining of an artery forming smooth muscle cell-capped plaque. The 

rupture of plaque causes the release of tissue factor and formation blood clots that may block 
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blood flow to the heart, brain, or limbs.26 It is now widely recognized that atherosclerosis is not 

a “plumbing” problem, where plaque eventually blocks blood flow by itself. Research has 

revealed that atherosclerosis is a process in which proinflammatory stimuli trigger the 

expression of adhesion molecules and chemoattractant proteins that allow the infiltration of 

leukocytes to the intima and the differentiation of monocytes into macrophages.27,28 

Macrophages transform into foam cells by engulfing modified lipoproteins, and the 

inflammatory response is amplified by other macrophages and T cells. Eventually, inflammatory 

proteins weaken the smooth muscle cell fibrous cap and make it prone to rupture, tissue factor 

is released, and a thrombus is formed.27 

1.2.2 Free Fatty Acids, Inflammation, and CVD 

Research shows that increased circulating free fatty acids (FFA) induce inflammation and 

are a risk factor for CVD.12,14,15 Obesity results in elevated plasma FFAs due to the lipolysis of 

the enlarged adipose tissue, which results in reduction of FFA clearance from the blood; 

additionally, FFA elevation results in the inhibition of the anti-lipolytic action of insulin, which 

increases the FFA release into the bloodstream.13  This phenomenon is usually accompanied by 

impaired insulin signaling due to increased gluconeogenesis in the liver and reduced glucose 

disposal in muscle, which also results in an impaired suppression of insulin-sensitive lipase in 

the adipose tissue and impaired removal of FFA from plasma.29,30 

An increase in plasma FFA concentrations induces proinflammatory changes and 

oxidative stress including an increase in nuclear factor-κB (NF-κB) binding activity and p65 

expression without changes in inhibitor κB (IκB) in circulating mono-nuclear cells (MNCs). 

Reactive oxygen species (ROS) are generated by MNCs and polymorphonuclear leukocytes 
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(PMNs) from subjects with elevated FFAs.12 An increase in macrophage migration inhibitory 

factor (MIF), a proinflammatory cytokine, and an impairment of the endothelium-dependent 

flow-mediated vasodilation was also observed as a result of plasma FFA increase.12 Elevation of 

FFA in healthy subjects to physiological levels similar to those found in obese individuals results 

in the expression of markers characteristic of vascular inflammation (myeloperoxidase), 

endothelial activation (ICAM-1, VCAM-1 and E-selectin), and thrombosis (total plasminogen 

inhibitor-1).31  

In vitro, FFAs (palmitic, oleic, and linoleic) impair nitric oxide production in aortic 

endothelial cells by activating IκB kinase-β (IKK-β), which ultimately results in activation of NF-

κB, as one of the underlying mechanisms of inflammation and endothelial dysfunction.32 

Additionally, treatment of RAW 264.7 macrophage-like cells with saturated fatty acids lauric 

and palmitic strongly induced COX-2, iNOS, and IL-1α through the activation of NF-κB through a 

possible upstream activation of TLR4. In a similar way, palmitic and stearic acid promote 

apoptosis of human coronary endothelial cells through NF-κB activation.33 

Early animal studies carried out with dogs and swine showed that increased plasma FFA 

may extend the area of coronary ischemia and impair cardiac function due to increased oxygen 

requirements for FFA oxidation by the myocardium.34,35 In non-ischemic dogs, myocardial 

function and oxygen consumption also increased with increasing FFA uptake although there 

were no changes in mechanical activity of the heart.36 

Feeding studies have demonstrated that the ingestion of a single high-fat meal 

promotes inflammation and endothelial activation by increasing the circulating levels of 

inflammatory cytokines TNF-α, IL-6 and IL-17, plasma endotoxin, and adhesion molecules ICAM-
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1 and VCAM-1.37-39 A study based on the Nurse’s Health Study also revealed that consumption 

of trans fatty acids (18:1 and 18:2) was positively related with plasma levels of soluble TNF-α 

receptors, and with levels of IL-6 and CRP in women with high BMI.40 

Various authors have identified a relationship between FFA, inflammation and CVD risk. 

A study based on the Atherosclerosis Risk in Communities Study showed that FFA levels were 

positively associated with an inflammation score quantifying levels of six systemic inflammation 

markers (interleukin-6, C-reactive protein, orosomucoid, sialic acid, white cell count, and 

fibrinogen).41 Additionally, a study carried out in Paris involving 5250 middle-aged men 

identified circulating FFA as an independent risk factor for sudden cardiovascular death (SCD) 

mainly attributed to proarrhythmic mechanisms.18  A similar study performed in Germany with 

3315 participants also identified elevated FFA as an independent risk factor for SCD.17 A recent 

study carried out in the US has further demonstrated that FFAs positively correlate with insulin 

resistance in teens and young adults and with CVD risk factors in older adults, suggesting an 

effect of low-grade chronic inflammation.42  

1.2.3 Selected Markers of Inflammation 

1.2.3.1 Interleukin 6 (IL-6) 

Interleukin 6 (IL-6) is a multifunctional cytokine secreted mainly by monocytes but also 

produced by many other cells including endothelial and smooth muscle cells. Its functions 

include induction of antibody production, and B cell, T cell, and macrophage differentiation.43 

IL-6 production is induced by TNF-α and IL-1 through PKC activation or adenylate cyclase, while 

being a strong regulator of TNF-α. IL-6 can also regulate the hepatic synthesis of CRP and 

promotes atherogenesis by mechanisms including increasing macrophage uptake of lipids.44 Its 
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regulation is controlled by NF-κB and its dysregulation plays a central role in chronic 

inflammation including diseases such as obesity and insulin resistance.45 

1.2.3.2 Interleukin 8 (IL-8) 

Interleukin 8 (IL-8) is a chemoattractant cytokine (chemokine) that is chemotactic for 

lymphocytes, particularly neutrophils, and that plays an important role in inflammation and 

angiogenesis.46,47 IL-8 binds to receptors CXCR1 and CXCR2, and in atherogenesis it triggers the 

adhesion of monocytes to the vascular endothelium.48 Mechanical stress, hypoxia, and ischemia 

may induce the production of IL-8 by cells including leukocytes, endothelial cells, and cardiac 

muscle through stimulation by LPS, IL-1, and TNFα.49,50 

1.2.3.3 Monocyte chemoattractant protein 1 (MCP-1) 

Also a chemokine, monocyte chemoattractant protein-1 (MCP-1) and its receptor (CCR2) 

mediate vascular inflammation by potently acting as chemotactic to monocytes.51 MCP-1 is 

produced by various types of cells including activated monocytes, lymphocytes, and vascular 

endothelial and smooth muscle cells induced by oxidative stress, oxidized fat, and transcription 

of NF-κB, AP-1 and Angiotensin II.52,53 MCP-1 is an important mediator in the progression and 

destabilization of established atherosclerotic lesions by also triggering the adhesion of 

monocytes to the vascular endothelium and promoting the production of tissue factor by 

arterial smooth muscle cells.48,53-55 

1.2.3.4 Cyclooxygenase 2 (COX-2) 

Cyclooxygenase 2 (COX-2) is a bifunctional heme-containing enzyme that catalyzes the 

production of PGH2 from arachidonic acid to then form prostaglandins.56 COX-2 expression is 
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exacerbated at sites of inflammation and its synthesis can be up-regulated by pro-inflammatory 

stimuli such as tumor promoters and cytokines such as IL-1β through the p38 MAPK 

pathway.56,57 PGE2, a prostaglandin derived from the action of COX-2 plays an important role 

including the development of the three major hallmarks of inflammation: swelling, pain, and 

fever.56 Authors have also suggested a role of COX-2 in the resolution of inflammation through 

the production of prostanoids other than PGE2 (such as PGD2 and 15deoxyΔ12-14PGJ2) which bind 

and activate peroxisome proliferator activated receptor (PPAR)-γ.56-58 
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CHAPTER 2 
MATERIALS AND METHODS 

 

2.1 MATERIALS  

Fatty acids certified >99% purity (butyric, lauric, myristic, palmitic, stearic, oleic, linoleic, 

linolenic, arachidonic, EPA, DHA, elaidic, trans vaccenic, and conjugated linoleic acid)  were 

purchased from Nu-Chek Prep (Elysian, MN). Sterile Dulbecco’s PBS was purchased from 

Invitrogen (Grand Island, NY). Fatty acid free bovine serum albumin (BSA) was obtained from 

Sigma-Aldrich (St. Louis, MO). Human Primary Coronary Artery Endothelial (HCAE) and Smooth 

Muscle (HCASM) Cell cultures were purchased from ATCC (Manassas, VA). IL-6, IL-8, and MCP-1 

ELISA kits were purchased from PeproTech (Rocky Hill, NJ). Goat anti-COX-2 polyclonal antibody 

was obtained from Santa Cruz Biotechnology (Santa Cruz, CA). Electrophoresis gels and 

Western Blot kits (WesternBreeze) were purchased from Invitrogen (Carlsbad, CA).  All other 

reagents were of analytical grade and obtained from Fisher Scientific (Waltham, MA). Water 

was Milli Q (Millipore Corporation, MA) for all the studies. 

 

2.2 PREPARATION OF FATTY ACID SOLUTIONS 

 Fatty acids were conjugated to BSA based on the methods developed by McIntosh, 

Toborek and Henning, and van Greevenbroek el al.59-62 Briefly, for each 1ml of 10 mM solution, 

10 μmoles of fatty acid were aseptically weighed in a sterile tube and dissolved in 90 μl hexane 

in a laminar flow hood. A 1N KOH solution was then added equimolar to the fatty acid and the 

mixture was vortexed for 10 seconds. The salt was dried under nitrogen until it had a white, 

chalky appearance. The salt was immediately diluted in 90 μl of warm (<50 °C) distilled 
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deionized water and mixed with 910 μl of a 25% BSA solution (25% BSA in DPBS+HEPES, pH 7.2, 

sterile filtered). The pH was checked and adjusted as necessary with 1N KOH. The conjugated 

fatty acid solutions were aliquoted, flushed with argon, and frozen at -80 °C. Aliquots of the BSA 

solution were stored similarly to be used as control.  Conjugation of all mono- or 

polyunsaturated fatty acids was carried out under argon flow. For oxidized solutions the same 

procedure was followed except that fatty acid dilution in hexane was followed by a 30 minute 

incubation at 80 °C under oxygen. 

 

2.3 CELL CULTURE 

HCASM and HCAE cells were grown using Cascade Medium 231 or 200 (Gibco, Portland, 

OR), respectively. Cells were fed every other day until 80% confluence and split at 1 to 3 or 1 to 

2. Trypsin solution from Cascade was applied to lift the cells; trypsin was then neutralized with 

CMF-PBS. Cells were spun down and resuspended at a density of 10,500 cells/cm2 in their 

corresponding media using 6-well plates. For the different treatments, cells were incubated at 

37 °C and 5% CO2 in a humidified incubator (Sanyo Biomedical, Wood Dale, IL). 

 

2.4 INDUCTION OF INFLAMMATION 

 Cells were treated with fatty acids at a final concentration of 200 μM in the media. A 

BSA control was included in each experiment. BSA never exceeded 0.5% in the media. Cells 

were incubated for 8 h (HCAE) or 20 h (HCASM). Following incubation, cell culture supernatant 

was removed and analyzed by ELISA for IL-6, IL-8, and MCP-1. Cells were washed once with PBS, 

scraped, and treated with RIPA lysis buffer [50 mM Tris-HCLHCl, ph 7.4, 150 mM NaCl, 0.1% 
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Nonidet P-40, 0.5% sodium deoxycholate, 0.1% SDS] supplemented with protease inhibitor 

mixture, 1 mM PMSF, and 2mM sodium orthovanadate; followed by incubation at 4 °C for 30 

minutes. The cell lysates were then centrifuged at 14,000 xg and 4 °C for 30 min to remove 

impurities. Protein concentration in the cytoplasmic extracts was determined with the Bio-Rad 

DC Protein Assay Kit (Hercules, CA). Supernatants and lysates were analyzed immediately or 

aliquoted and stored at -80 °C until further analyses. Cell viability was assayed using the MTT 

CellTiter 96® Non-Radioactive Cell Proliferation Assay from Promega (Madison, WI) 

COX-2 was analyzed in selected treatments by Western Blot. Briefly, equal protein levels 

(50 μg) of the cytoplasmic extracts were separated using electrophoresis with 12% Bis-Tris gels 

and transferring to PVDF membranes. Membranes were blocked with 5% BSA in TPBS 

(PBS+Tween 20 at 0.5%), followed by an incubation with primary goat anti COX-2 antibody 

1:200 with 5% BSA in TTBS. The bound antibody was visualized by probing with horseradish 

peroxidase-conjugated secondary antibody (rabbit anti-goat 1:2000) followed by exposure to 

chemiluminescent substrate (SuperSignal West Pico, Thermo Scientific, Rockford, IL) with X-ray 

film (Kodak X-omat 1000A processor). Densitometry of Western Blot bands was performed with 

Quantity One® 1-D Analysis Software version 4.6.5 (Bio-Rad Laboratories, USA). 

 

2.5 STATISTICAL ANALYSIS 

Biomarker levels were normalized based on the non-treated control and adjusted for 

cell viability, where biomarker levels for BSA control were set to 1.0. All results are presented as 

mean ± SD of triplicate analyses. Statistical analysis was performed using one-way analysis of 
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variance (ANOVA). Separation of means was performed by the Tuckey’s Studentized Test (SAS®, 

version 9.2). Differences were considered statistically significant at P<0.05.
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CHAPTER 3 
RESULTS AND DISCUSSION 

 

The effect of carbon chain length on levels of inflammatory markers was evident in both 

endothelial and smooth muscle cells. As seen in Figure 2.1, levels of IL-6 were directly related 

with carbon chain length for fully saturated fatty acids of 4-14 carbons on HCAE and all fatty 

acids on HCASM. The longest saturated fatty acids tested on SM, myristic (14:0), palmitic (16:0) 

and stearic (18:0), induced IL-6 levels significantly higher than the control. A similar chain length 

effect was observed in the levels of IL-8 for fatty acids of 4-14 carbons on HCAE and fatty acids 

of 12-16 carbons on HCASM. Palmitic acid (16:0) was the only fatty acid that increased IL-8 

levels higher than control on both cell lines.  MCP-1 levels also increased with increasing fatty 

acid chain length up to 16 carbons, however significant differences from control were only 

observed for palmitic acid on HCASM. Interestingly, MCP-1 levels decreased in cells treated 

with stearic (18:0) acid, and levels were significantly lower than control in SM cells treated with 

saturated fatty acids with 12, 14, and 18 carbons in the main chain. Overall, myristic and 

palmitic acid were the most pro-inflammatory of the fully saturated fatty acids. 

The effect of cis double bonds on biomarker levels was evident in both cell lines (Figure 

2.2). When treated with 18-carbon fatty acids, levels of IL-6 in both cell lines decreased as 

amount of double bonds increased from zero to two, and then slightly increased with 3 double 

bonds. This slight increase may have been due to oxidation during sample preparation. Levels 

of IL-6 decreased in cells treated with 20-carbon fatty acids. These longer unsaturated fatty 

acids also exhibited decreases in inflammatory markers with increasing unsaturation from 4 to 

5 double bonds, but the effect was only evident in HCAE (Figure 2.2, see A). Similarly, IL-8 levels 
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in HCASM cells decreased with increasing unsaturation only for 20-carbon chain fatty acids 

(Figure 2.2, see B). MCP-1 levels in HCASM (Figure 2.2, see B) were equal or lower (18:0, 18:2) 

than control for all treatments, with no apparent relation to degree of unsaturation. IL-8 and 

MCP-1 levels remained unchanged for all treatments in HCAE (not shown). 

Figure 2.1. Effect of fatty acid chain length on levels of IL-6, IL-8, and MCP-1 in HCAE (A) and 
HCASM (B) cells. * Treatment is different from control. Different letters indicate differences 
between treatments. 

 

Figure 2.2. Effect of fatty acid unsaturation on levels of IL-6, IL-8, and MCP-1 in HCAE (A) and 
HCASM (B) cells. * Treatment is different from control. Different letters within treatments 
involving fatty acids with the same carbon chain length indicate differences between 
treatments. 
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The effect of trans double bonds was evaluated in the 18-carbon fatty acids oleic (18:1), 

elaidic (18:1 trans 9), and trans vaccenic (18:1 trans 11). Significant increases in IL-6 and MCP-1 

levels were observed only in HCASM cells for trans vaccenic and elaidic acid, respectively 

(Figure 2.3, see B). All other treatments were not different from the control or from each other 

(not shown). 

Linoleic acid (18:2) conjugation did not have a clear effect as compared to its non-

conjugated counterpart (Figure 2.3). Levels of IL-6 did not differ amongst both forms of linoleic 

acid, but were equal or lower than control in both cell lines (Figure 2.3). MCP-1 levels 

marginally increased with conjugation in HCASM cells, where MCP-1 for linoleic acid was lower 

than control. IL-8 levels remained unchanged for both treatments and cell lines (not shown). 

Overall, linoleic acid proved to be the least pro-inflammatory fatty acid on both cell lines.  

The effect of fatty acid oxidation on biomarker levels was evaluated using linolenic acid 

(18:3) and DHA (22:6), both omega-3 fatty acids (Figure 2.3). Oxidation of linolenic acid did not 

result in changes of inflammatory biomarkers on either cell line, as all levels did not differ from 

control or from the non-oxidized treatment. In contrast, oxidation of DHA resulted in a 

reduction of IL-6 for both cell lines to levels lower than control. Notably, IL-6 levels for HCASM 

treated with non-oxidized DHA were significantly higher than control.  Levels of MCP-1 in 

HCASM did not differ for cells treated with oxidized DHA, as compared to its non-oxidized 

counterpart, however the levels were higher than control in both cases. IL-8 levels in both cell 

lines treated with DHA and oxidized DHA did not differ from control or from each other (not 

shown). 
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Figure 2.3. Effect of trans (t) fatty acids, conjugation (CLA), and oxidation (Ox) on levels of IL-6 
and MCP-1 in HCAE (A) and HCASM (B) cells. * Treatment is different from control. Different 
letters indicate differences between the treatment and its corresponding non-trans, non-
conjugated, or non-oxidized counterpart. 

COX-2 analysis (Figure 2.4) revealed a stimulation of this biomarker by oxidized linolenic 

acid and DHA in HCAE and by palmitic acid in HCASM. No major differences were observed 

between oxidized and non-oxidized omega-3 fatty acid treatments, except for HCAE cells 

treated with non-oxidized DHA (22:6), which yielded COX-2 levels higher than control. In 

contrast, COX-2 levels in HCASM cells treated with DHA or oxidized DHA were consistently 

lower than control.  
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Figure 2.4. Changes in levels of COX-2 in the cytoplasm of  HCAE (A) and HCASM (B) cells as 
influenced by treatment with selected fatty acids. 

Increases in levels of secreted cytokines may be due to the production of mitochondrial 

reactive oxygen species (ROS) deriving from fatty acid β-oxidation in the cells, a phenomenon 

previously observed in kidney damage in diabetes.63 Studies have also shown that increased 

oxidation of FFAs in aortic endothelial cells without added insulin results in an increase in 

production of superoxide in the mitochondria, which in turn activates the proinflammatory 

signal cascade and inactivates prostacyclin synthase and eNOS, important antiatherogenic 

enzymes.64 

Reductions in IL-6 and MCP-1 observed with increasing double bonds in endothelial and 

smooth muscle cells (Figure 2.2, see A and B) may be due to reduction in cell activation, as 

previously observed in endothelial cells, where a greater number of double bonds (not 

necessarily the position of the last double bond) was critical for the greater activity of ω-3 as 

compared to ω-6 fatty acids in the inhibition of endothelial activation. This activation refers to 

the ability of the cell to promote monocyte migration, and both IL-6 and MCP-1 are important 

signaling proteins in this process.65 

Table 2.1 illustrates the fatty acid composition of common fats and oils. Although a 

breakdown of trans- fatty acids is not shown, naturally occurring trans- fatty acids are present 
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in small amounts in ruminant fats and include trans-vaccenic acid and conjugated linoleic acid 

(CLA).66 Partially hydrogenated vegetable oils may contain trans- fatty acids, mainly elaidic acid, 

at levels ranging 10-40%.67 Major dietary sources of arachidonic acid (20:4) are meat, poultry, 

and game followed by fish and seafood. Dietary sources of EPA (20:5) and DHA (22:6) are 

mainly fish and seafood.68 Shellfish fat may contain up to 4.5% arachidonic acid (sea scallops) 

21.5% EPA (pacific oyster) and 22.6% DHA (sea scallops). Marine and fresh water fish oils may 

also contain up to 3.9% ARA, 13.5% EPA and 21.9% DHA.69 

Table 2.1. Fatty acid composition of common fats and oils. Adapted from ISEO, 2006.70 

 

 Several studies have shown that plasma fatty acid composition is a good indicator of 

and can be modified by the fatty acid composition of the diet.71-73 Based on the results of our 

study, the fatty acids with higher pro-inflammatory potential are myristic and palmitic acids. 

Important sources of these fatty acids include coconut and palm kernel oil (myristic) and palm 

oil (palmitic). In contrast, the least pro-inflammatory, and perhaps even anti-inflammatory fatty 

Butyric Lauric Myristic Palmitic Stearic Oleic Linoleic Linolenic

4:0 12:0 14:0 16:0 18:0 18:1 18:2 18:3

Beef tallow 3 24 19 43 3 1 1-8

Butterfat 4 3 11 27 12 29 2 1 1-8

Canola 4 2 62 22 10

Cocoa butter 26 34 34 3

Coconut 47 18 9 3 6 2

Corn 11 2 28 58 1

Cottonseed 1 22 3 19 54 1

Lard 2 26 14 44 10

Olive 13 3 71 10 1

Palm kernel 48 16 8 3 15 2

Palm 1 45 4 40 10

Peanut 11 2 48 32

Safflower 7 2 13 78

Soybean 11 4 24 54 7

Sunflower 7 5 19 68 1

Oil or Fat
Fatty Acid %

Trans FAs
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acid was linoleic acid, an omega-3 fatty acid which can be found prominently in safflower, 

sunflower, corn, cottonseed, and soybean oil. Increased consumption of such oils could 

potentially result in reduced cardiovascular risk due to a reduction in inflammatory state. 

Studies have also identified hypercholesterolemic effects of myristic, palmitic and lauric acid 

and cholesterol lowering effects of linoleic acid.74-76 Changes in plasma cholesterol in addition 

to inflammatory effects may further explain how increased FFAs in plasma contribute to an 

elevated risk of CVD.   Although the results of our study do not suggest a clear anti-

inflammatory effect of the omega-3 fatty acids EPA and DHA, consumption of foods and oils 

rich in EPA and DHA should not be discouraged due to other well documented beneficial 

actions that play an important role in cardiovascular health, such as cholesterol-lowering 

effects.77  
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CHAPTER 4 
CONCLUSIONS AND FUTURE STUDIES 

 

4.1 CONCLUSIONS 

 An in vitro model has been developed and utilized to identify the pro-inflammatory 

effect of free fatty acids in human coronary arterial cells. Careful literature review provides 

important background information justifying this study. Circulating free fatty acids have been 

identified as a risk factor for inflammation and resulting cardiovascular disease. Screening of 

various dietary relevant fatty acids in our model allowed for the identification of fatty acids that 

can be used to induce inflammation in human coronary arterial cells. 

 Saturated, unsaturated, trans, and oxidized fatty acids were conjugated to BSA to 

simulate physiological conditions. Cells were incubated with fatty acids and inflammation was 

assessed mainly through the expression of cytokines and chemokines in the supernatants. 

Inflammation increased with increased chain length in fully saturated fatty acids, and decreased 

with unsaturation regardless of the position of the last double bond. Trans double bonds or 

fatty acid oxidation were not strong predictors of inflammation in our study. The study allowed 

us to identify myristic and palmitic acids as pro-inflammatory, while the least pro-inflammatory 

and perhaps even anti-inflammatory fatty acid was linoleic acid, an omega-3 fatty. 

  

4.2 FUTURE STUDIES 

 We propose that a further study is carried out to evaluate the effect of the combination 

of fatty acids on the inflammatory response. This experiment could be carried out in a dietary 

relevant way, such that the evaluated fatty acid combinations would represent the fatty acid 
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profiles of common fats and oils. Focusing on gene expression could also provide valuable 

information as to the mechanism of action of fatty acids in promoting or preventing 

inflammation.  

The fatty acid-induced inflammation model than we have proposed in this dissertation 

could represent a time and cost-efficient approach to explore the anti-inflammatory potential 

of foods. Experiments can be carried out in the intervention or prevention approaches to 

evaluate the effect of food or their extracted bioactives in modulating fatty acid-induced 

inflammation. Due to the widespread availability of palmitic acid in foods, we suggest this fatty 

acid be used in the model for future studies. 
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