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ABSTRACT 

Conventional three-dimensional integrated circuits (3D ICs) stack multiple dies 

vertically for higher integration density, shorter wirelength, smaller footprint, faster speed 

and lower power consumption. Due to the large through-silicon-via (TSV) sizes, 3D 

design partitioning is typically done at the architecture-level With the emerging 

monolithic 3D technology, TSVs can be made much smaller, which enables potential 

block-level partitioning. However, it is still unclear how much benefit can be obtained by 

block-level partitioning, which is affected by the number of tiers and the sizes of TSVs. 

In this thesis, an 8-bit ripple carry adder was used as an example to explore the impact of 

TSV size and tier number on various tradeoffs between power, delay, footprint and noise.  

With TSMC 0.18um technology, the study indicates that when the TSV size is below 

100nm, it can be beneficial to perform block-level partitioning for smaller footprint with 

minimum power, delay and noise overhead. 
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1. INTRODUCTION 

While the semiconductor industry is making every effort to make chips smaller 

and faster, further scaling of the current 22nm technology has become prohibitively 

expensive. Accordingly, there has been a groundswell of interest in technologies that 

offer a path beyond the limits of device scaling. Among all the possible alternatives, the 

3D IC is generally considered to be the most promising one, at least in the next decade, 

for its compatibility with the current technology. Instead of making transistors smaller, it 

makes use of the vertical dimension for higher integration density, shorter wirelength, 

smaller footprint, higher speed and lower power consumption. A critical enabling 

technique in 3D ICs is the TSV, which forms vertical signal, power and thermal paths. 

Depending on the methods to build chips vertically, there are in general two types of 3D 

ICs: die stacking and monolithic integration. 

  Die stacking simply stacks multiple two-dimensional dies fabricated through 

conventional processes. Despite its full compatibility with existing technologies, due to 

technology constraints, TSVs in die stacking have to be made large in size (typically 5-

50um), which are 5-10x the sizes of standard cells in 32mn technology. This ratio is 

predicted to increase drastically with the technology scaling in the future by International 

Technology Roadmap for Semiconductors (ITRS) [1]. The large TSV-to-cell ratio 

significantly cuts down the benefit that can be achieved by 3D integration. Another issue 

related to die stacking is heat dissipation. Stacked dies result in higher power density, yet 

the underfill between adjacent tiers generally has very low thermal conductivity, making 

vertical heat dissipation a severe problem. Those two issues significantly limit the 

application of 3D ICs.  
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Alternatively, monolithic 3D integration involves the direct construction of 

multiple device layers with ultra-dense vertical connectivity. The biggest advantage of 

monolithic integration is the miniaturization of TSVs, which can be smaller than 50nm. 

These high vertical connection densities result in a large number of wires routed in the 

third dimension, thereby reducing average wirelength. This, in turn, reduces the chip 

footprint and power. In addition, extremely high bandwidth can be achieved for 

communication between different tiers. Furthermore, without underfill, much better heat 

dissipation is achieved. While monolithic 3D ICs can bring significant benefits, they have 

not been widely adopted in industry so far due to the big challenge in its fabrication 

process.  

Recently, MonolithIC 3D Inc. announced several techniques that leverage an 

innovative memory technology to fabricate monolithic 3D ICs. They pave the road for 

large volume production with low cost.  

Despite the technology readiness, however, no systematic design flow is available 

for monolithic 3D designs as of today. Most existing 3D design tools target at die 

stacking based integration: they partition the design into multiple tiers at architecture 

level (e.g. memory on logic) during design planning stage, and then apply 2D design 

flows to handle each tier. While they work fine for die stacking based 3D ICs where 

TSVs are large in size, they cannot make full use of monolithic 3D integration.  

Specifically, TSV miniaturization suggests a possible design paradigm shift, from 

the current architecture level 3D partition to a potential block level partition for more 

footprint reduction and performance enhancement. However it is still not clear, in 

general, what are the tradeoffs in terms of power, delay, noise and footprint if a 
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functional block is implemented in 3D, and how such tradeoffs are affected by the TSV 

size and number of tiers. The tradeoffs will eventually decide whether an architecture-

level or a block-level 3D partitioning should be adopted. The impact of TSV size and tier 

number on wirelength and footprint has been studied in literature [24], but only for large-

scale circuit placement. The conclusions do not apply to block-level implementation.  

In this thesis, an 8-bit ripple carry adder will be used as an example and 

implement it in 2D and 3D with 2, 3, and 4 tiers. For the 3D designs,  the TSV diameter 

was swept from 50nm to 5um and simulate the designs for power, footprint, delay and 

noise. Many interesting conclusions are drawn based on the data obtained. Specifically, 

our preliminary study convincingly demonstrates that when the TSV size is smaller than 

100nm, it is indeed beneficial to partition functional blocks in monolithic 3D ICs, as the 

footprint can be significantly reduced with minimum power, delay and noise overhead.  

This thesis is organized as follows.  In Section 1, background is given concerning 

TSVs, what they are, how they are crafted, and other such details.  In Section 2, a 

comprehensive literature review is provided.  Section 3 explains the motivation of our 

work, and Section 4 presents the results on an 8-bit ripple carry adder. Concluding 

remarks are given in Section 5. 
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2. LITERATURE REVIEW 

According to the International Technology Road for Semiconductors (ITRS) [1], 

the device feature size is predicted to be 16nm by year 2018. However, the cost 

associated with the aggressive device scaling also increases drastically.  

P. Batude et al. [9] shows that 3D process integration improves density and 

performance.  This work states that the 3D integration technique proposed improves 

density by 30%. P. Batude et al. [8] goes further to show that the  3D integration can 

improve gate stack and inter-layer dielectric thickness properties. [7], another work by P. 

Batude et al. shows that, as technology gets below 22nm, it becomes beneficial to use 3D 

integration.  It is also shown that the top layer can be made without any sheet resistance 

degradation of the bottom layer.  In [3], by P. Batude et al, a 3D monolithic TSV 

integration method is discussed at length. Figure 2.1 shows the process proposed by 

which monolithic TSVs are laid out on 

wafer, and a circuit is crafted using this 

new technology.  It then goes on to show 

two such circuits that were created using 

this design process, namely, an inverter, 

and an SRAM unit.    

In [4], S. Wong et al. shows how an 

FPGA is crafted using the monolithic TSV.  

They show that the increase in complexity 

is not as much of a factor as the footprint 
Figure 2.1. Monolithic TSV 

Integration Design Flow[3] 
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and critical path reduction. The benefits of 3D IC and the feasibility of its design were 

shown by P. Coudrain et al. [5] through the use of submicron pixel creation.  According 

to this work, the 3D approach will increase the photodiode area by 44%.  This paper uses 

a low temperature approach to maintain stability of the lowest layers.  [6], also by P. 

Coudrain et al. seeks to further improve on the idea begun in [5], this time with higher 

temperatures, direct bonding on SOI, and lower noise margins.  In [10] by N. Golshami et 

al, a fabrication case study was done using 6T SRAM cells and a photodiode array with 

monolithic TSV. O. Thomas et al[11] shows another case study that shows the potential 

of monolithic TSV in a 6T SRAM cell.  It shows a 20% area improvement.   

J. Davis et al[14] brings up all the problems faced by sub-50nm 2D technology 

such as crosstalk and quantum phenomena,  and again iterates that 3D is the way to go 

and that for the 50nm technologies, a 145% interconnect performance jump happens with 

the inclusion of TSV.  

A method for determining density and size of TSVs was proposed by D. H. Kim 

and S. K. Lim [16]. This work also shows that there is an upper bound to how many 

TSVs can be placed in a design and also goes on to explain that 3D may not always 

shorten the wirelength.  It all depends on the technology and the size of the TSV.   

In [23], by J. Cong and G. Luo, a systematic design flow for 3D circuits is proposed 

called 3D-Craft.  The idea proposed in [12] by Hai Wei et al. uses carbon nanotubes and 

carbon nanotube FETs instead of CMOS (or similar to CMOS) to do monolithic 

integration.  This has the benefit of lower process temperatures.  Y. T. Lin et al[13] seems 

to claim that reducing the interlayer dielectric oxide thickness can dramatically lower the 
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recrystallization temperature to help with keeping the substrate intact after the laser is 

used to drill the TSV hole.   

In [17] by Z. Or-Bach et al, two methods for monolithic fab are proposed, one 

which allows for higher density, shown in Figure 2.2, which involves using Recessed 

Channel Transistors (RCATs) which can be fabricated at low temperature.  The other 

achieves fabrication at a low temperature, and without much masking difference using 

State of the Art (SOA) transistors with a replacement gate process is shown in Figure 2.3.  
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 Figure 2.3. State-of-the-Art (SOA) Replacement-Gate Transistor Stacking[17] 

Figure 2.2. Transistor Cover Above Copper Interconnects at < 400°C [17] 
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3. IMPACT OF TSV SIZE ON DESIGN PARTITIONING 

As suggested by several researchers[5-13], a direct impact of miniaturization of 

TSV is the wirelength and footprint reduction. In addition, another advantage brought by 

the block level partition is the hierarchical uniformity. As pointed out in [24], in 

conventional design flows where only architecture level partitioning is allowed, the 

physical hierarchy does not always follow the logic hierarchy, where the logic hierarchy 

is the hierarchy of logic modules written by the front-end designers, and the physical 

hierarchy is the physical proximity of the placeable objects viewed in a top-down fashion 

by the back-end chip architects. As such, if the design is planned strictly following the 

logic hierarchy, the planning result is usually suboptimal, because a logic module does 

not necessarily form a physical cluster of placeable objects in the physical hierarchy. Yet 

this problem does not exist in monolithic 3D integration: with block level partitioning, 

the two hierarchies can be unified.  To verify this, 3D Craft [23] was used to study the 

wirelength and footprint comparison for the AES_DES circuit from the IWLS 

benchmarks. The circuit contains 388 I/O pads, 30K standard cells, and 30K nets.   The 

design was partitioned at block level into 2, 3 and 5 tiers, with various TSV diameters.  

With such partition, logic blocks are allowed to spread on multiple tiers. The 

results are shown in Figures 3.1, 3.2, and 3.3. From the figures two observations can be 

made: First, both footprint and wirelength reduce rapidly with the decrease of TSV size. 

Second, only when the TSV diameter is below 1um is there significant improvement over 

2D implementation (1-tier), which directly explains why die stacking based 3D 

integration today does not adopt such partitions. Note that similar results are also reported 

in [25]. 
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(a) 2-tier Implementation (b) 3-tier implementation 

 

(c) 5-tier implementation 

Figure 3.1.  Different Implementations of AES_DES (with 1um TSV Diameter) 

 

 

 

Figure 3.2. Wirelength w.r.t. TSV Diameters 
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Figure 3.3.  Footprint w.r.t. TSV Diameters 
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4. A CASE STUDY ON AN 8 BIT RIPPLE CARRY ADDER 

An 8-bit ripple carry adder was used to study the tradeoffs between delay, 

footprint, power and noise for block-level partitioning, and how they would be affected 

by the TSV size and the number of tiers. The fast transmission-gate full adder (TGA) 

structure, as described in [20] and shown in Figure 4.1, was used to build each single-bit 

adder.  The layout for this design is shown in Figure 4.2.  For comparison, four different 

versions of the design were implemented: a conventional 2D design, two-tier, three-tier 

and four-tier designs.   There are a total of 4 symbols used pictured in Figure 4.3.  (a) is 

the adder, which has already been explained.  (b) is the through silicon via which is 

presented in [20] and whose schematic is shown in Figure 4.4.  Note that the TSV 

described in [20] is for two signals and the one depicted is for three.  The major 

difference is the center.  The resistance and inductance connected to SigIn and SigOut 

and the capacitors connected to the center are all divided by four instead of by two.  (c) 

and (d) are both RC circuits.  (d) represents the RC values for the wires in-between two 

adders on the same tier. (c) is equivalent to the RC values of the wire between the TSV 

and the tiers.  A table in Appendix A will show the values for (c and d) and explain how 

they were calculated, and Appendix B will show the RLC values used in Figure 4.4. 
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 Figure 4.1. TGA Full Adder Schematic 
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 Figure 4.2. TGA Full Adder Layout 
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Figure 4.3. Symbols (a) Full Adder (b) TSV (c) RC-2 (d) RC-1 
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Figure 4.4. TSV Model 
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4.1 2D DESIGN 

The 2D 8-bit full-adder schematic is shown as Figure 4.5, and there are, in total, 8 

one-bit full adders. Just as mentioned above, each adder is with simple TGA structure, 

and they are connected together, and the carry-out of one adder feeds into the carry-in of 

the next.  The layout design is given in Figure 4.6.    

 

 

Figure 4.5. 2D Design Schematic 
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Figure 4.6. 2D Design Layout 
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4.2 TWO-TIER DESIGN 

The two-tier design is shown in Figure 4.7, in which, on each tier, there are four 

single-bit full adders. In order to align with 2D design, the same single-bit adders are 

used. The three TSVs are used to deliver power, ground, and signal to the higher tiers. 

The final carry-out signal of lower tier 1 is transferred to upper tier 2 by a TSV, and the 

power supply of upper tier 2 is also from the lower tier. There are two separate layouts 

depending on the size of the TSV.  It was found that for the 3um case and above, it was 

more area efficient to use a TSV-Above-Adder (TAA) Layout instead of a TSV-Beside-

Adder (TBA) Layout.  The 5um case (TAA) and the 1um (TBA) case are shown in 

Figures 4.8 and 4.9, respectively.  These different layouts were done to save on the 

footprint area of the circuit.    Therefore, the performance of the whole design will be 

impacted by the TSVs, and the results will be given in Section 4.5.  
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Figure 4.7. Two-Tier Design 

 



 

 

20

                                                  

Figure 4.9. Two-Tier TBA Layout 

 
Figure 4.8. Two-Tier TAA 

Layout 
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4.3 THREE-TIER DESIGN 

Similar to the two-tier design, the three-tier design is connected as shown in 

Figure 4.10.  Three single-bit adders are placed on tier 1 and tier 3, and the remaining two 

single-bit adders on tier 2 (3-2-3 structure). The power supply and carry-in signals of 

higher tiers are delivered by TSVs.  In Figure 4.11 the TBA layout design is shown for 

the 1um case.  Figure 4.12 shows a different arrangement of the adders into an “L” shape 

for the three-adder tiers that is used to reduce area in the 2.5um case to the 4um case. 

Finally the 5um case is shown in Figure 4.13 by use of the TAA. Also note that the two-

adder layouts will be presented in the next section. 

 

 

Figure 4.10. Three-Tier Design 
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Figure 4.11. Three-Tier TBA Structure 
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Figure 4.12. Three-Tier “L” Structure 
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Figure 4.13. Three-Tier TAA Structure 
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4.4 FOUR-TIER DESIGN 

Similar to the two-tier and three-tier design structures, the four-tier structure is 

depicted in Figure 4.14.  There are two adders per tier, with the usual three TSV’s 

connecting the tiers.  The power supply and carry-in signals are delivered by the TSVs.  

The TBA layout was used, as shown in Figure 4.15, until 2.5um then the TAA layout, 

shown in Figure 4.16. 



 

 

26

 

Figure 4.14. Four-Tier Design 
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Figure 4.15. Four-Tier TBA Layout 
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Figure 4.16. Four-Tier TAA Layout  
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4.5  EXPERIMENTAL RESULTS 

The above designs were implemented in Cadence Virtuoso with TSMC 180nm 

technology library. As the technology library does not contain TSV models, the circuit 

models described in [20] and shown in Figure 4.17 were used and combined with the 

extracted parasitics from the layouts of different tiers with SPICE simulation. Note that in 

the figure, only two TSV’s are shown, but in our model, 3 are used.  This is due to there 

being 3 different signals needing to be passed (Vdd, gnd, and COUT).  The middle TSV 

and everything directly connected to it has all values divided by 4 instead of by 2.   A 3D 

technology with a fixed form factor was assumed, as well as TSV dielectric liner that 

scales with the diameter with the proportions used in [21], and a keep-out-zone from the 

center of the TSV 2D (D is the diameter of the TSV). The TSV diameter is swept from 

5um to 50nm, with 10um height and 0.1um liner thickness at 5um. To capture the power 

supply noise, the lumped package model described in [22] is used. It is worthwhile to 

mention that while the simulation data are technology-specific, the overall trends and the 

conclusions drawn from them are general. The simulations were done with a 5ns period 

on the Cin Bit and a 15ns overall time.  A worst-case input vector was used, i.e., 

A=[00011010] and B=[11100101]. 

The impact of the TSV diameter on propagation delay of the 8-bit ripple carry 

adder as shown in Figure 4.18 was considered first.  For all cases, the delay decreases 

with the TSV diameter, which is natural as the parasitics induced by the TSVs are 

reduced. When the TSV diameter is reduced by 100x, the delay is reduced by 4.7%, 9.6% 

and 14.3% for the two-tier, three-tier and four-tier cases, respectively. When the TSV 

diameter is below 100nm, all designs have no observable difference in delay.   
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It is also interesting to note that the delay actually increases with the tier number. 

When the TSV diameter is 5um, the four-tier case has a 4.3% and 9.1% longer delay 

compared with the three-tier and two-tier cases, respectively.  

 

Figure 4.17. TSV Structure  

 

 

 

Figure 4.18. Maximum Propagation Delay Comparison Between Different Cases. 
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The above observations are contrary to the common belief, and the main reason is 

due to the block-level partitioning: The replacement of short local interconnects with 

TSVs actually result in a longer delay.  To confirm this, a study was done on the RC 

delay of an M1 interconnect with 0.27um width, as well as that of a TSV with 4.5um 

diameter.  The setup is shown in Figure 4.19 for the local interconnect, and 4.20 for the 

TSV. The interconnect length is swept from 4.30um to 4.30mm. The result is depicted in 

Fig. 4.21. From the figure one can clearly see that when the interconnect length exceeds 

2.15mm (global interconnect), it would be beneficial to use TSV to replace it. But when 

the interconnect length gets down to 43um and below (local interconnect), an 18.36% 

delay overhead is introduced if the interconnect is to be replaced by the TSV.  



 

 

32

 

Figure 4.19. Local Interconnect Delay Model 
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Figure 4.20. TSV-as-Interconnect Model 
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Figure 4.21. Comparison Between Wire Delay and TSV Delay 

 

 

The average power consumption and power supply noise of the different cases 

was studied, and the result is shown in Figure 4.22 and Figure 4.23, respectively. Similar 

trends are observed: When the TSV diameter is reduced by 100x, the power is reduced by 

3.9%, 7.9% and 11.8% for the two-tier, three-tier and four-tier cases. It is interesting to 

note that the power actually increases with the increase in tier number. In terms of the 

impact of the number of tiers, when the TSV diameter is 5um, the four-tier case 

consumes 3.6% and 7.6% larger power compared with the three-tier and two-tier cases, 

respectively. On the other hand, when the TSV diameter is below 100nm, no noticeable 

difference is found between the different cases.  
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Figure 4.22. Average Power Comparison Between the Different Cases 
 

.   

 

 

Figure 4.23. Average Noise Ccomparison Between the Different Cases.  

 

 

Finally, the footprint based on our layouts was compared.  The illustration of the 

layout designs can be found in Sections 4.1, 4.2, 4.3, and 4.4 for the 2D, two-tier, three 

tier, and four tier , respectively, and the footprint is measured using Virtuoso Layout L.  
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The result is shown in Figure 4.24. When the TSV diameter exceeds 2.5um, the 

footprint of the three-tier case levels off for a bit representing a change in the layout. As 

can be seen in Figure 4.24, when the 5um TSV diameter mark was reached, the two-tier 

design no longer has an advantage. Whereas when the TSV diameter is below 0.5um, it 

has a minimum impact on the footprint. The two-tier, three-tier and four-tier cases can 

achieve an area reduction of 2.0x, 2.6x and 4.0x, respectively.   

Combining this result with previous delay, power and noise analysis, it can be 

concluded that when the TSV diameter is below 100nm, significant area reduction can be 

achieved with little delay, power and noise overhead. In other words, it is indeed 

beneficial to perform block-level partitioning for monolithic 3D ICs, where the TSV 

diameters can be made smaller than 50nm.  

 

Figure 4.24. Footprint Comparison Between Different Cases. 
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5. CONCLUSION 

An 8-bit ripple carry adder was used as an example to explore the impact of TSV 

size and tier number on various tradeoffs between power, delay, footprint and noise for 

monolithic 3D ICs.  Experimental results indicate that when the TSV size is below 

100nm, it can be beneficial to perform block-level partitioning for smaller footprint with 

minimum power, delay and noise overhead.  It was also shown that for interconnect 

lengths of greater than 2.15mm for the 4.5um case, it would be beneficial to use 

monolithic TSV instead. 
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APPENDIX A 

RC VALUES FOR THE RC-2 
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These values used TSV Diameter (D) 

to calculate the sheet resistance (R2) for the 

M1 interconnect and the area capacitance for 

the M1 region.  These values were obtained 

in [26] for the TSMC 180nm library.  The 

schematic for this is given in Figure A.1. Also 

of note is that the C values were divided evenly 

between the two capacitors. 

TSV 

Diameter(D) R2 C2 

0.05 0.014815 5.265E-19 

0.1 0.02963 1.053E-18 

0.2 0.059259 2.106E-18 

0.4 0.118519 4.212E-18 

0.5 0.148148 5.265E-18 

1 0.296296 

1.0530000E-

17 

1.5 0.444444 1.5795E-17 

2 0.592593 2.106E-17 

2.5 0.740741 2.6325E-17 

3 0.888889 3.159E-17 

3.5 1.037037 3.6855E-17 

4 1.185185 4.212E-17 

4.5 1.333333 4.7385E-17 

5 1.481481 5.265E-17 

Table A.1. RC-2 values 

  

 

Figure A.1. RC-1/RC-2 

Schematic 
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APPENDIX B 

RLC VALUES FOR THE TSV 
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This shows the TSV RLC values used.  The equations used are those referenced 

in [20] and the schematic was shown in Figure 4.4. 

 

Table B.1. RLC Values for the TSV Parameters 

 

 

Diameter(m)RT Ltotal LT C1 C2 R0 RSi

5E-08 1.709048 1.09203E-12 1.68E-12 5.52933E-16 2.49117E-17 20 0.068795

1E-07 0.854525 1.1224E-12 1.71E-12 1.10587E-15 4.98234E-17 20 0.068795

2E-07 0.427263 1.18315E-12 1.77E-12 2.21173E-15 9.96468E-17 20 0.068795

4E-07 0.213632 1.30464E-12 1.89E-12 4.42346E-15 1.99294E-16 20 0.068795

5E-07 0.170906 1.36539E-12 1.95E-12 5.52933E-15 2.49117E-16 20 0.068795

0.000001 0.085454 1.66912E-12 2.26E-12 1.10587E-14 4.98234E-16 20 0.068795

1.5E-06 0.05697 1.97285E-12 2.56E-12 1.6588E-14 7.47351E-16 20 0.068795

0.000002 0.042728 2.27658E-12 2.86E-12 2.21173E-14 9.96468E-16 20 0.068795

2.5E-06 0.034182 2.58031E-12 3.17E-12 2.76466E-14 1.24558E-15 20 0.068795

0.000003 0.028485 2.88404E-12 3.47E-12 3.3176E-14 1.4947E-15 20 0.068795

3.5E-06 0.024416 3.18777E-12 3.78E-12 3.87053E-14 1.74382E-15 20 0.068795

0.000004 0.021364 3.4915E-12 4.08E-12 4.42346E-14 1.99294E-15 20 0.068795

4.5E-06 0.018991 3.79523E-12 4.38E-12 4.97639E-14 2.24205E-15 20 0.068795

0.000005 0.017092 4.09896E-12 4.69E-12 5.52933E-14 2.49117E-15 20 0.068795

1.00E-05 0.008547 7.13626E-12 7.72E-12 1.10587E-13 4.98234E-15 20 0.068795
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