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ABSTRACT 

This thesis addresses optimal control of a helicopter unmanned aerial vehicle 

(UAV). Helicopter UAVs may be widely used for both military and civilian operations. 

Because these helicopters are underactuated nonlinear mechanical systems, high-

performance controller design for them presents a challenge. This thesis presents an 

optimal controller design via both state and output feedback for trajectory tracking of a 

helicopter UAV using a neural network (NN). The state and output-feedback control 

system utilizes the backstepping methodology, employing kinematic and dynamic 

controllers while the output feedback approach uses an observer in addition to these 

controllers. The online approximator-based dynamic controller learns the Hamilton-

Jacobi-Bellman (HJB) equation in continuous time and calculates the corresponding 

optimal control input to minimize the HJB equation forward-in-time. Optimal tracking is 

accomplished with a single NN utilized for cost function approximation. The overall 

closed-loop system stability is demonstrated using Lyapunov analysis.  

Simulation results are provided to demonstrate the effectiveness of the proposed 

control design for trajectory tracking. A description of the hardware for confirming the 

theoretical approach, and a discussion of material pertaining to the algorithms used and 

methods employed specific to the hardware implementation is also included. Additional 

attention is devoted to challenges in implementation as well as to opportunities for further 

research in this field.  This thesis is presented in the form of two papers.  
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1. INTRODUCTION 

1.1. BACKGROUND 

        Control of helicopter UAVs is a significant challenge facing a number of 

researchers and organizations today [1]-[8]. There are many applications for helicopter 

UAVs, ranging from search-and-rescue operations, interdiction efforts, and 

reconnaissance and surveillance to aerial transport and forest fire monitoring. Helicopter 

UAVs have the advantage of lower cost and weight and fewer safety concerns than 

conventional helicopters and are useful for many tasks that would be unsafe or 

inconvenient for a human pilot.  

 

 

 

 
Figure 1.1. Helicopter UAV Built from Modified Align Trex 500 Airframe 
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One key role for helicopter UAVs is counter-explosive operations [17]. Key 

operational activities for helicopter UAVs include [17]: “Preventing an adversary from 

conducting activities that result in the emplacement of IEDs [Improvised Explosive 

Devices], thus thwarting an attack: this is likely to require use of the full spectrum of 

Joint capabilities to defeat or disrupt the adversary….” As well as “Detecting IED 

materiel and components, including stored HME [Home-made Explosives] and smuggled 

components, as well as emplaced devices themselves. This requires a combination of ISR  

[Intelligence, Surveillance, and Reconnaissance] capability, together with responsive 

processes and effective training, to ensure that potential IED activity detected is analyzed 

and the results disseminated to all those who need to be aware of it, in order that 

appropriate action can be taken as swiftly as possible.” 

There are a number of specific ways that Helicopter UAVs can counter threats 

[17]. “In simple terms, A & S [Air & Space] Power is capable of defeating emplaced 

IEDs by detecting devices and by neutralizing and mitigating their effects, as follows: 

Detecting devices using dedicated airborne and Space-based ISR and airborne Non-

Traditional ISR (NTISR), exploiting existing capabilities and capitalizing on 

technological enhancements, including those offered by CCD technology.” These devices 

can be neutralized or have their effects mitigated through “Airborne EW [Electronic 

Warfare] capabilities, including Electronic Attack (EA), by employing ECM [Electronic 

Counter-Measures] to disrupt or detonate RCIEDs [Radio-controlled IEDs], the initiation 

or disruption of IEDs using kinetic targeting via airborne (or potentially Space) platform-

based weapon systems, including by direct fire, and by the physical avoidance of 

emplaced IEDs using Air Mobility, utilizing Fixed-Wing (FW) and Rotary-Wing (RW) 
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intra-theatre airlift, including the use of air dispatch capabilities.” Another helpful feature 

is that “A UAV, which minimizes risk to human life may be preferable because it can 

provide long endurance and is difficult to detect in the air” [17]. For applications such as 

counter-explosive operations, where low-speed and hovering capabilities are useful, a 

helicopter UAV may become the tool of choice. In addition, helicopter UAVs can deliver 

supplies to positions which cannot be safely supplied from the ground. For example [18], 

“Supplying small forward operating bases using trucks requires escorting forces, and 

exposes [military] convoys to the threat of mines. The standard solution is helicopter 

drop-off, but every force in theater is short of helicopters….” These are just some of the 

current defense applications of helicopter UAVs. 

 

 

 

 
 

Figure 1.2. Helicopter UAV with Antenna for Threat Detection 
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The objective of controlling helicopter UAVs is to manipulate their position and 

orientation such that they can take-off, hover and fly along a desired trajectory between 

waypoints, and land autonomously. For control of a helicopter [1], it is necessary to 

produce moments and forces on the vehicle with two goals: first, to position the 

helicopter in equilibrium such that the desired trim state is achieved, and second, to 

control the helicopter's velocity, position and orientation such that it hovers as desired 

with minimum error. 

Unfortunately, helicopter dynamics are complex and very nonlinear [13]. The 

dynamics of the helicopter UAV are not only nonlinear but also coupled with each other 

and under-actuated, which makes the UAV difficult to control. In addition, there is a 

significant amount of interaction among the control inputs as well in the physical 

dynamics of the system [13], particularly as a result of the swashplate mechanical 

linkages and the torques created by drag against the rotors. 

A helicopter has six degrees of freedom (able to move in three dimensions and 

change orientation about three orthogonal axes), but can only apply four control inputs – 

thrust and roll, pitch, and yaw torques. Although a helicopter may have more than four 

hardware inputs, these inputs reduce to the four just mentioned, meaning that helicopters 

are underactuated systems.  

Helicopter UAVs, with their low weight compared to larger helicopters, are also 

very quick and agile, and respond to control inputs rapidly. This combination of features 

results in a difficult controls problem. To address this problem, a number of approaches 

have been developed [1]-[8], [11]-[14]. In [1] and [2], a controller is developed for flight 

control and modeling is performed with experimental verification, but the control design 
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does not accommodate coupling in the dynamics. In [3], the controller accommodates the 

coupling in the dynamics but requires feedback linearization, with the observer 

estimating the feedback-linearized states rather than the actual states. Pseudo-control 

hedging has been employed [5] for nonlinear control of a helicopter UAV along with 

nonlinear backstepping-based control [6], but optimal control is not a part of these works.  

Neural networks have been employed [7] with a cost function, along with a 

neural-network-based controller that can operate without full knowledge of the dynamics 

[8], but nonlinear optimal control for a range of flight trajectories is unavailable. 

Complete control systems have been designed and implemented in [9], [10], and [11], but 

without proof of optimality. Optimal control has been performed for a helicopter UAV, 

but the optimal controller is linear, rather than nonlinear [12]. A very interesting 

contribution to the area of nonlinear controllers for helicopter UAVs was provided in 

[13], but no attempt was made at optimality. Separately, an observer for output feedback 

was introduced in [14], with potential for application to helicopters. Nonlinear online 

optimal control has been shown in discrete time [15] and continuous time [16], but was 

provided for a general theoretical case. This thesis builds on previous work to provide a 

nonlinear online optimal control scheme for state feedback as well as for output feedback 

of helicopter UAVs. 

 

1.2. OBJECTIVE 

The objective of this thesis is to develop and verify optimal control schemes for 

both state and output feedback control of unmanned, underactuated helicopters, forward-

in-time, with the helicopter dynamics expressed in a form appropriate for backstepping 
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control. The control schemes apply to both hovering and trajectory tracking, and the 

controller tuning is independent of the trajectory. The control scheme is fully online and 

is demonstrated to be stable. 

 

1.3. ORGANIZATION 

This thesis begins with this introductory section followed by the first paper, 

“Neural Network-based Optimal Output Feedback Control for Trajectory Tracking of a 

Helicopter UAV,” which develops the controls approach with output feedback. The 

second paper, “Neural-Network-Based Optimal Control of a Helicopter Unmanned Aerial 

Vehicle (UAV) with Hardware Implementation,” is introduced next and develops the 

controls approach with state feedback. The second paper is augmented by a section 

describing the hardware for experimental verification of the theoretical contributions. The 

advantage of state feedback is that it does not require an observer and the angular 

velocity (which makes up part of the states) may be directly measured for the hardware 

implementation with a 3-axis gyro. The disadvantage is that the translational velocity 

(which makes up the rest of the states) must be obtained indirectly from a Global 

Positioning System (GPS) unit and the ultrasonic range finder. The advantage of output 

feedback is that it can directly measure the position (part of the outputs) using GPS and 

an ultrasonic range finder. The disadvantage is that this approach requires that the 

orientation (which makes up the rest of the outputs) must be obtained by integrating the 

angular velocity (which introduces error), and an observer is needed. Because each 

approach has advantages and disadvantages, both approaches are developed. 
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After the second paper, a final section concludes the thesis discussing the work 

that has been completed and opportunities for future research. The block diagram below 

visually shows the organization of the body of the thesis: 

 

 

 

 

Figure 1.3 Thesis Organization 

 

 

1.4. CONTRIBUTIONS 

The primary contribution of this thesis is the development of nonlinear online 

optimal control schemes for state feedback as well as for output feedback of helicopter 

UAVs. The optimal controller in this work has been previously developed for 

backstepping systems, but has not yet been applied to rotary-wing aircraft. This optimal 

controller previously required that (0) 0f  , but the virtual controller in this work 

obviates the need for that requirement. The optimal controller and the virtual controller 

together constitute a novel dynamic controller, which is able to track a variety of 
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trajectories with a single set of fixed gains. In other words, the controller tuning is 

independent of the desired trajectory. 

Lyapunov-based closed-loop stability proofs are provided along with simulation 

results for theoretical verification, and show the proposed control scheme’s convergence. 

Hardware implementation is also described to show how the theoretical contribution is 

implemented. 
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PAPER 

 

 

1. NEURAL NETWORK-BASED OPTIMAL OUTPUT FEEDBACK 

CONTROL FOR TRAJECTORY TRACKING OF A 

 HELICOPTER UAV 

 

 

1.1. ABSTRACT 

Helicopter unmanned aerial vehicles (UAVs) may be widely used for both 

military and civilian operations. Because these helicopters are underactuated nonlinear 

mechanical systems, high-performance controller design for them presents a challenge. 

This paper presents an optimal controller design via output feedback for trajectory 

tracking of a helicopter UAV using a neural network (NN). The output-feedback control 

system utilizes the backstepping methodology, employing kinematic and dynamic 

controllers and an observer. The online approximator-based dynamic controller learns the 

infinite-horizon Hamilton-Jacobi-Bellman (HJB) equation in continuous time and 

calculates the corresponding optimal control input to minimize the HJB equation 

forward-in-time. Optimal tracking is accomplished with a single NN utilized for cost 

function approximation. The overall closed-loop system stability is demonstrated using 

Lyapunov analysis. Finally, simulation results are provided to demonstrate the 

effectiveness of the proposed control design for trajectory tracking. 

 

1.2. INTRODUCTION 

           Unmanned helicopters are unmanned aerial vehicles (UAVs) which are capable of 

independent flight. Due to their versatility and maneuverability, unmanned helicopters 

are invaluable for both civilian and military applications where human intervention may 
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be restricted. For unmanned helicopter control [1], it is essential to produce moments and 

forces on the UAV to position the helicopter such that the desired regulated state is 

achieved, and to control the helicopter's velocity, position, and orientation such that it 

tracks a desired trajectory. The dynamics of the helicopter UAV are not only nonlinear, 

but are also coupled with each other and underactuated, which makes the control design 

challenging. Both inputs and dynamics are coupled on a helicopter, particularly as a 

result of the swashplate mechanical linkages and the torques created by drag against the 

rotors. A helicopter has six degrees of freedom (DOF) which must be controlled with 

only four control inputs in order to manipulate the thrust and the three rotational torques. 

 In order to develop the controllers for such unmanned helicopters, Koo and Sastry 

[1] have utilized an approximate linearization-based control [1] that transforms the 

system into linear form. Mettler et al. [2] have introduced a model for the helicopter 

independent of an accompanying control scheme [2]. Hovakimyan et al. [3] have 

implemented an output feedback control scheme with a neural network (NN)-based 

controller using feedback linearization [3]. Johnson and Kannan [4] have employed an 

inner and outer loop control using pseudo-control hedging [4], and Ahmed et al. [5] have 

introduced a backstepping-based controller for the helicopter [5]. Frazzoli [6] and 

Mahoney [7] have both generated control schemes for Lyapunov-based control of 

helicopter UAVs. However, none of these works [1]-[7] presents an optimal control 

scheme for an unmanned helicopter.  

 Optimal control of linear systems accompanied by quadratic cost functions can be 

achieved by solving the Riccati equation [8]. In contrast, the optimal control of nonlinear 

continuous or discrete-time systems is a much more challenging task that often requires 
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solving the nonlinear Hamilton-Jacobi-Bellman (HJB) equation, which does not have a 

closed-form solution. 

Therefore, Enns and Si [9] have used neural network dynamic programming 

(NDP)-based optimal control of a helicopter UAV [9] using offline training. Lee et al. 

[10] introduced a robust command augmentation system using a NN, but inversion errors 

can lead to problems [10]. 

In the recent NDP literature, Dierks and Jagannathan [11] introduced an optimal 

regulation and tracking controller for nonlinear discrete-time systems in affine form. 

Here, the discrete-time Hamilton-Jacobi-Bellman equation is solved online and forward-

in-time. An online approximator (OLA) is tuned to learn the HJB equation, with a second 

OLA utilized to minimize the cost function [11]. Dierks and Jagannathan [12] have 

extended this NDP scheme to continuous-time systems in affine form by using a single 

online approximator (SOLA) [12]. However, such NDP-based optimal control schemes 

are not available to nonlinear systems that require the backstepping approach. 

Therefore, a SOLA-based scheme for the optimal tracking control of a 

helicopter's nonlinear continuous-time feedback system is considered in this paper via a 

backstepping approach. A kinematic controller generates the desired velocities. The 

dynamic controller learns the continuous-time HJB equation and then calculates the 

corresponding optimal control input to minimize the HJB equation forward-in-time by 

assuming known system dynamics. The proposed tracking controller includes a single 

NN for approximating the cost function with the NN weights tuned online. A NN 

observer is employed to obtain the states from the outputs. Lyapunov analysis is utilized 
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to demonstrate the stability of the closed-loop system. Simulation results are included for 

both hovering and following a desired maneuver. 

 The main contribution of this paper includes the development of an optimal 

controller for tracking a trajectory of an unmanned underactuated helicopter, forward in 

time, where the helicopter system is expressed in a form appropriate for backstepping 

control. The controller tuning is independent of the trajectory. A NN-based OLA is 

utilized to approximate the cost function and the overall stability is guaranteed. The 

optimal controller has been previously developed for backstepping systems, but has not 

yet been applied to rotary-wing aircraft. This optimal controller previously required that 

(0) 0f  , but the virtual controller in this work obviates the need for that requirement. In 

addition, this controller is extended for application to an output feedback system. The 

observer for this has been developed for a quadrotor [14], but the present application to a 

helicopter is novel, and is not accompanied by the virtual and kinematic controllers 

employed in [14]. The current work builds on [7], [12], and [14], from the fields of 

helicopter, optimal, and quadrotor control, respectively; however, this work both uses 

previous developments for a new application and adds to these three works with a closed-

loop stability proof demonstrating the proposed control scheme’s convergence with 

output feedback, rather than with state feedback. 

 

1.3. HELICOPTER DYNAMIC MODEL 

Consider the helicopter shown in Figure 2.1 with six degrees of freedom (DOF) 

defined in the inertial coordinate frame  aQ , where its position coordinates are given by 

  ax y z Q    and its orientation described as yaw, pitch, and roll, respectively, is 
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given by Euler angles   aQ     .  The equations of motion are expressed in 

the body fixed frame bQ  which is associated with the helicopter's center of mass. The 
b
x-

axis is defined parallel to the helicopter's direction of travel and the 
b
y-axis is defined 

perpendicular to the helicopter's direction of travel, while the 
b
z-axis is defined as 

projecting orthogonally downwards from the xy-plane of the helicopter. The dynamics of 

the helicopter is given by the Newton-Euler equation in the body fixed coordinate system 

and can be written as in [7] but in the form provided in [14] as 

  
3 1

3 1

2

( )0

0
d

v G R
M S U

N
 







    
        

                         

(1)  

where the mass-inertia matrix M  is defined as                          6 6 M diag mI  , 

m  is a positive scalar denoting the mass of the helicopter, 3 3I   is the identity 

matrix, 
3 3  is the positive-definite inertia matrix,   3 10

T

S        , 

3 1

2N   represents the nonlinear aerodynamic effects,    3 1

3G R mge    represents 

the gravity vector with g  the gravitational acceleration, and 
1 2

T
T T

d d d       represents 

unknown bounded disturbances such that d M   for all time t , with M  a known 

positive constant. Also, 3 1

x y zv v v v      and 3 1

x y z         represent 

the translational velocity and angular velocity vectors, respectively. The kinematics of the 

helicopter are given by   

  Rv             (2) 

 and  

  1T             (3) 
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Figure 1.1. Helicopter Dynamics 

 

 

The translational rotation matrix used to relate a vector in body fixed frame to the 

inertial coordinate frame is defined as [14]

       

  

c c s s c c s c s c s s

R c s s s s c c c s s s c

s s c c c

           

           

    

  
 

    
  

         (4) 

 

with maxF
R R  for a known constant maxR   and 1 TR R  , where s  and c  denote the 

 sin   and  cos   functions, respectively. The transformation matrix from the angular 

velocity to the derivative of the orientation is  

        

0
1

0

s c

T c c c s
c

c s s s c

 

   



    

 
 

   
 
 

          (5) 

 

and is bounded according to maxF
T T  for a known constant maxT , provided 

2 2      and 2 2      such that the helicopter trajectory does not pass 

through any singularities [1], with t  used to represent  tan  . Throughout this work,   
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denotes a Euclidean norm and 
F

  denotes a Frobenius norm. Note also that    denotes 

the vector cross product. The nonlinear aerodynamic effects taken into consideration for 

modeling of the helicopter are given by 
2 3 2M TN Q e Q e  , with MQ  and 

TQ   

aerodynamic constants for which values are given in the simulation section, and 

originally found in [7]. Note that 1e , 
2e , and 

3e  are unit vectors directed along the x-, y-, 

and z-axes, respectively, in the inertial reference frame. The vector 6 1U   is given by 

 

3 3
13

3 1
211 22 33

3

0

0 ([     ])

b

u

wE
U

wdiag p p p

w





 
 

 
   
  
 
 

          (6) 

 

where the control vector  1 2 3vu u w w w , with u  providing the thrust in the z-

direction, 
1 2,w w

 
and 3w  providing the rotational torques in the x-, y-, and z-directions, 

respectively, iip  positive definite constants that make up a gain array, and 
3 [0 01  ]TbE  . 

Defining the new augmented variables 6 1[   ]  T T TX      and 6 1[   ]  T T TV v    , (1) 

can be rewritten in a form suitable for backstepping as  

  X AV              (7) 

  1( )V f V M U             (8) 

where 1 3 1

2( ) ( ( ) [0   ] )Tf V M S G     with 1 3 1 6 1( )[ 0 ]   G M G R    , and 6 1      

is the bounded sensor measurement noise such that M ‖ ‖  for a known constant M . 

Equation (8) is in the body reference frame, while equation (7) is in the earth reference 

frame. Note that these last two equations take the form 

  1 1 1 1 1 2( ) ( )x f x g x x               (9) 
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2 2 2 2 2( ) ( )x f x g x u           (10) 

with 
1 1( ) 0.f x   This system is a candidate for backstepping control [13]. The dynamic 

controller operates in the body reference frame, with equation (7) necessary to bring these 

results back to the earth reference frame. Also,   1 6 6A diag R T      . Writing  

explicitly, ( )f V  yields   

                  

01 0 0 0 0 0 0 0

00 1 0 0 0 0 0 0

00 0 1 0 0 0 0
( )

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

x x xx

y y yy T

z Mz z z

m

m

m mg
f V

Q

Q

 

 

 

       
       
       
       
         
        

         
       
              

      (11) 

 

In this section, the dynamic model of the helicopter with six degrees of freedom 

has been presented. The control methodology is addressed next. 

 

1.4. METHODOLOGY 

1.4.1. Nonlinear Optimal Tracking of the Unmanned Helicopter. The overall 

control objective for the unmanned helicopter is to track a desired trajectory ( )dX t  and a 

desired heading (yaw) while maintaining stable flight. Full knowledge of the helicopter 

states is required to achieve the control objective. Therefore, a NN observer is designed 

to estimate the states from the outputs. In Figure 2, the entire NN-based output feedback 

control scheme for optimal tracking of the desired trajectory by the helicopter is 

illustrated. Note that the dynamic controller is comprised of the items within the dashed 

boundary. This output feedback control scheme consists of a kinematic controller to 
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generate the desired velocity for the dynamic controller, a virtual controller to provide a 

feedforward term 
du , an optimal controller to generate the NN-based optimal feedback 

term *ˆ
eu , and an observer to estimate the states. Summing the control terms from the 

virtual and optimal (SOLA-based) controllers yields the NN-based control input for the 

helicopter dynamics ˆ
vu , which is an estimate of the desired control input 

vu . The details 

are provided next. 

 

 

 

 
 

Figure 1.2. Output Feedback Control Scheme 
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1.4.2. Kinematic Controller. To design the kinematic controller for the 

unmanned helicopter, define the position tracking error as   

  
1 d                        (12) 

The observer’s velocity estimate v̂  may be used to obtain the desired velocity, 
dv  as in 

[7] 

  
1

1
ˆ

dv v
m
           (13) 

Note that the  notation  ̂  is used here to denote an estimate. In addition, it is important 

to note that there exist desired trajectories which may reach unstable operating regions as 

the orientation about the x- and y- axes approaches 2 . It is possible to avoid these 

singularities by redefining Euler angles or with an alternative approach employing 

quaternions, but there are still physical constraints to be considered. In other words, if the 

main rotor blades move into a plane perpendicular to the ground, the helicopter becomes 

unstable. This is a consequence of the physical limitations of helicopters. Therefore, 

trajectories requiring that these orientations be maintained should not be assigned to the 

helicopter. 

          1.4.3. Observer Design. The following section extends the work in [14] by Dierks 

and Jagannathan to a helicopter system. An observer is used to estimate the system states 

based on the system model and outputs. The helicopter states to be estimated are given by 

V  with the observer’s estimate of these states given by V̂  with the state estimation error 

given by ˆV V V  . The output is X , with the integrated observer’s estimate of the 

output given by X̂ , and the error between the actual output and the integrated observer’s 

estimate of the output given by X , with ˆX X X  . 
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 The observer is NN-based, and functions by estimating the output and comparing 

the estimate to the actual output. Referring back to (7) and (8), if A  and   are known, 

then X  may be easily obtained by integrating X , and rearranging and solving yields V . 

But since X  is known, A  may be accurately obtained, meaning that   and the NN 

approximation error 
o  are the only sources of error in determining V .  

To begin, a neural network basis vector 
ox  is selected such that 

ˆ ˆˆ 1
T

T T

ox X V X 
 

, with the NN estimate given by  1
ˆ ˆ ˆT T

o o o of W V x . For this 

neural network estimate,     represents the activation function and oW  and oV  are the 

weights, with ˆ
oW  an estimate of oW , which has an upper bound o MoF

W W . Similarly to 

the estimates of the states and outputs and their errors, the observer weight error is 

defined such that ˆ
o o oW W W  . In addition, positive gains 1 2 3, ,o o oK K K  are selected 

such that 1 3o oK K , 3 12o o oK N  , and  2 3 1 3o o o oK K K K  , where oN  is the number 

of hidden layer neurons.  

The NN estimate is then used to calculate the observer’s estimate of the states as 

  
1

1 2
ˆˆ
o oZ f K A X           (14) 

which is promptly used in addition to the output error to calculate the estimate of the 

output by using the dynamic equation 

  1
ˆ ˆ

oX AZ K X                      (15) 

At this point, the states may be estimated as 

  
1

3
ˆ ˆ

oV Z K A X                      (16) 
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The weight update law is then used to update the weights as below 

   1
ˆ ˆT T

o o o o o o oW F V x X F W            (17) 

with 0T

o oF F   and 
1 0o   tunable gains. The NN approximation error 

o  is bounded 

such that o Mo  , with 
Mo  a known constant. The observer NN weights are randomly 

initialized. The observer error dynamics are 

                     
1 3

1 1 1

3 1 2 3

( )

ˆ( ( ) ) ( )

o o

T T

o o o o o

X AV K K X

Z f A K A X f K A X A K A X



  

   

      
       (18) 

and the observer estimation error dynamics are 

                         
1

3 1 2 3 1 3 1( ( )) T

o o o o o oV K V f A K K K K X A X                           (19) 

with 1  a vector of positive constants containing a number of error terms. In (18), note 

that 1A  denotes the derivative of 1A  rather than the inverse of A . These equations are 

useful for proving Theorem 1, which is now introduced. 

Theorem 1 (Boundedness of observer estimation errors). Given the observer 

defined in (14), (15), and (16), with NN weight update law as given in (17), then there are 

positive gains 1 2 3, ,o o oK K K  for which 1 3o oK K , 3 12o o oK N  ,  2 3 1 3o o o oK K K K  , 

where oN  is the number of hidden layer neurons, such that the observer estimation error 

X , as well as V  and 
oW  are UUB, with bounds 

1 3

2 o

o o

X
K K





or 3

12
o o

o

o

K N
V 



 
  

 
or 12o o o

F
W   . In addition, selecting 

the values of 1 2 3, ,o o oK K K  and 1o  allows the bound on the errors to be made arbitrarily 

small. Proof is provided in the appendix. 
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          1.4.4. Virtual Controller. The next step is to design the virtual controller, which is 

used to obtain the virtual control ouput or desired input 
1 2 3[       ]T

d d d du w w w . This process 

is performed by first defining a set of error terms. The first, 1 d    , was introduced 

with the kinematic controller. The second error term to be minimized is 2
ˆ ˆ( )dm v v   , 

with 2̂  a velocity tracking error that incorporates the helicopter’s mass. The third and 

fourth errors to be considered are 3 d    and 
4 d   , with d  the desired 

heading, which consider the error in the helicopter’s heading and the rate at which this 

error is changing. A fifth error term considers the error in the thrust and may be 

expressed as  

 
3 3 2 1 3

1ˆ ˆ ( )dmge mv R e
m

                 (20) 

with all of the variables in (20) as previously defined. For convenience, a term        

 
2 3 3 2 1

1ˆ ˆ ˆ( )d d

d
Y mge mv

dt m
                (21) 

 

is introduced prior to the final error term necessary for this development, which allows 

this final error term to be written as
   

 4 3 3
ˆ ˆ( ( ) ( ) ( ) )dY R e R skew e                (22) 

The choice of these particular error terms is analyzed in further detail in [7]. Selecting
   

                 3 3 3 4 3
ˆ ˆ ˆ( ) ( ) ( ) 2 ( ) ( )d dR e R skew e w Y R skew e                             (23) 

to be solved for control of the main rotor thrust, pitch, and roll, and  

  3 4d             (24) 
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to be solved for control of the yaw [7], a solution for both equations is      

 

1

1

2 3 3 4

0 0

ˆ ˆˆ0 0 ( ) ( 2 ( ) ( ) )

0 0 1

d

T

d d

w

w R Y R skew e



    





   
   

      
   
      

       (25) 

from which 1dw , 2dw , and   may be obtained (with   obtained recursively). This 

solution was obtained by making use of the property 3 3 3( ) ( )d d dskew e w e w skew w e    , 

and rearranging and rewriting (23). Defining the relationship between the angular 

velocity and the orientation as  

 1

0
1

ˆ ˆ0
cos( )

s c

c c c s T

c s s s c

 

   

    

 




 
 

    
 
 

        (26) 

it is now possible to rearrange (8) in terms of ̂  and set ˆ
dw  , while considering only 

the virtual control inputs.  Doing this yields 

1 1 1 1

3 2
ˆ ˆ

d M T de ew Q PQ w         Taking the derivative of (26), 

rearranging, and considering only the yaw (first element in orientation vector) results in 

 1 1

1 2 3

1
ˆ ( )T

d de T TT s w c w
c

 



              (27) 

Then, employing both (24) and (27) and rearranging allows 3dw  to be obtained as 

 

1 1

3 4 3 1 2
ˆ( )T

d dd

sc
w e T TT w

c c



 

              (28) 

Now the real inputs are obtained. To do this, first restate a portion of the dynamics to 

obtain dw  from (8) as 1

3 2
ˆ ˆ( )d d M Tw P w Q e Q e     

 
with 

11 22 33([     ] )TP diag p p p  a 

set of gains, and then obtain   by double-integrating from    by using the value that 
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has just been obtained for  . Combining the preceding results allows one to obtain the 

feedforward portion of the control input as 

         
1 2 3[       ]T

d d d du w w w                     (29) 

from the values that have just been obtained for  , 1dw , 
2dw , and 3dw . Proof that the 

inputs generated by these equations assures convergence is provided in the Appendix. 

1.4.5. Hamilton-Jacobi-Bellman Equation. In this section, based on the 

information provided by the kinematic controller, the optimal control input *

eu  is 

designed to ensure that the unmanned helicopter system in (1) tracks a desired trajectory 

( )dX t  in an optimal manner. This work extends that of [12] to output feedback control. 

For optimal tracking, the desired dynamics are defined as  

  *( )d d vV f V gu           (30) 

where 6 1( )df V   is the internal dynamics of the helicopter system rewritten in terms of 

the desired state 6 1   dV  , g  is  bounded satisfying min F maxg g g ‖ ‖ , and * 6 1 vu   is 

the desired control input corresponding to the desired states. For reference,  g  is provided 

here explicitly as 

 

3 3

1 3

3 1

11 22 33

0

0 ([     ])

bE
g M

diag p p p







 
  

 
        (31) 

 

 For this system, 0e   is a unique equilibrium point on compact set 6 1      with 

(0) 0f  . By adding the feedforward term as will be presented later in this paper, 

however, it is possible to neglect the (0) 0f   requirement. Under these conditions, the 
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optimal control input for the unmanned helicopter system given in (30) can be 

determined [8]. Next, the state tracking error is defined as  

                                                ˆ
de V V                                                              (32) 

Now, taking the derivative of (32), considering the estimated dynamics ˆ ˆ( ) vV f V gu  , 

and including (30), the tracking error dynamics in (32) can be written as  

                               ˆ( ) v d e ee f V gu V f e gu                                              (33) 

where ˆ( ) ( ) ( )e df e f V f V   and *

e v vu u u  . The dynamics ( )ef e  and g  are assumed to 

be known throughout this paper; however, this assumption may be relaxed if the 

uncertainties are estimated online using NNs. In order to control (33) in an optimal 

manner, the control policy eu  should be selected such that it minimizes the cost function 

given by  

                                    
( ( )) ( ( ), ( ))T e

t
W e t r e u d  



                                            (34) 

where ( ( ), ( )) ( ) T

e e er e u Q e u Bu   
 
and ( ) 0Q e   is the penalty on the states, with 

6 6 B   a positive semi-definite matrix. After this, the Hamiltonian for the HJB tracking 

problem is defined as  

                              
( , ) ( , ) ( )( ( ) )T

T e e Te e eH e u r e u W e f e gu                                    (35) 

where ( )TeW e  is the gradient of ( )TW e  with respect to e . The basis function used for the 

neural network is 

2 3( ) sin( ) sin(2 ) tanh( ) tanh(2 )
T

e e e e e e e e           , with system 

errors bounded such that   Me   and   '

e Me   , which is true for any real 
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helicopter as long as the observer error is bounded, and is true for any physically 

realizable trajectory. Now, applying stationarity condition ( , ) / 0e eH e u u   , the optimal 

control input is found to be  

                                    * 1 *( ) ( ) / 2T

e Teu e B g W e                                                   (36) 

with * 4( )eu e  . Substituting the optimal control input from (36) into the Hamiltonian 

(35) generates the HJB equation for the tracking problem as  

 
* * 1 *0 ( ) ( ) ( ) ( ) ( ) / 4T T T

e Te e Te TeQ e W e f e W e gB g W e  
                               

 (37) 

with *(0)TW . The control input must be selected such that the cost function in (34) is 

finite, and it is assumed that there is an admissible controller [12]. At this point, Lemma 2 

is introduced. 

Lemma 2 (Boundedness of system state errors) [12]. Given the unmanned 

helicopter system with cost function (34) and optimal control input (36), let 
1( )J e  be a 

continuously differentiable, radially unbounded Lyapunov candidate function such that 

*

1 1 1( ) ( ) ( )( ( ) ) 0T T

e e e eJ e J e e J e f e gu     with 1 ( )eJ e  the partial derivative of 1( )J e . In 

addition, let 6 6( )   Q e   be a positive definite matrix satisfying ( ) 0Q e ‖ ‖  only if 

0e ‖ ‖  and ( )min maxQ Q e Q ‖ ‖  for min maxe e e ‖ ‖  for positive constants 
minQ , 

maxQ , 

mine , and maxe . Also, let ( )Q e  satisfy lim ( )
e

Q e


   as well as  

                                   
* * * *

1( )     ( , )    ( )T T

e ee e eW Q e J r e u Q e u Bu                                  (38) 

 then the following relation is true  

                                         
*

1 1 1( ( ) ) ( )T T

e e e e eJ f e gu J Q e J  
                              

     (39) 

Proof for Lemma 2 is provided in the Appendix.  
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Next, it is apparent that an expression including the optimally augmented control 

input in (36) can be written as  

                                        
1 * ( ) / 2T

V d Teu u B g W e 
                                          

  (40) 

with the desired feedforward control input 
du  obtained from the virtual controller in the 

previous section. Next, the SOLA is introduced. 

1.4.6. Single Online Approximator (SOLA)-Based Optimal Control of   

Helicopter. Usually, in adaptive-critic based techniques, two OLAs [12] are used for 

optimal control, with one used to approximate the cost function while the other is used to 

generate the control action. In this paper, the adaptive critic for optimal control of a 

helicopter is realized online using a single OLA. For the SOLA to learn the cost function, 

the cost function is rewritten using the OLA representation as  

                                                 ( ) ( )TW e e                                                  (41) 

where    is the constant target OLA vector, ( )e  is a linearly independent basis vector 

that satisfies ( ) 0e  , and   is the OLA reconstruction error. The basis vector used in 

this case is the same as in the previous section. The target OLA vector and reconstruction 

errors are assumed to be upper bounded according to M  ‖ ‖  and M ‖ ‖ , 

respectively [15]. The gradient of the OLA cost function in (41) is written as  

                                               
( ) / ( ) ( )T

e e eW e e W e e                                      (42) 

Using (42), the optimal control input in (36) and the HJB equation in (37) can be written 

as                                           

            

* 1 1

*

( ) / 2 / 2

( , ) ( ) ( ) ( ) ( ) ( ) / 4 0

T T T

e e e

T T T

e e e e HJB

u B g e B g

H e Q e e f e e C e





       

            
             (43) 
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where 1 0TC gB g   is bounded such that 
min maxC C C ‖ ‖  for known constants minC  

and 
maxC  and 

                          
*

1 1
( ( ) ( ( ) ))  

2 4

1
( ( ) )

4

T T T

HJB e e e e e e

T T

e e e e e

f e C e C

f e gu C

    

  

       

    



                  (44) 

 

is the OLA reconstruction error. The OLA estimate of (41) is  

                                                
ˆ ˆ( ) ( )TW e e                                                       (45) 

with ̂  the OLA estimate of the target vector  . In the same way, the estimate for the 

optimal control input based on (43) in terms of ̂  can be expressed as  

                                          
* 1 ˆˆ ( ) / 2T T

e eu B g e                                                (46)      

The overall control input 

                                                                  ˆ ˆ
V d eu u u                                            (47) 

 is therefore now based on the NN estimate. 

Lyapunov analysis performed in the appendix to this work shows that the 

estimated control inputs approach the optimal control inputs with a bounded error. 

Employing (43) and (45), the approximate Hamiltonian may now be written as      

                 
*ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( ) ( ) ( ) / 4T T T

e e e eH e Q e e f e e C e                                    (48) 

Considering the definition of the OLA approximation of the cost function (45) and the 

Hamiltonian function (48), it is clear that both converge to zero when 0e ‖ ‖ . 

Consequently, once the system state errors have converged to zero, the cost function 

approximation is no longer updated [15]. Recollecting the HJB equation in (35), the OLA 

estimate ̂  should be tuned to minimize *ˆ ˆ( , )H e  . However, merely tuning ̂  to 
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minimize *ˆ ˆ( , )H e   does not ensure the stability of the nonlinear helicopter system during 

the OLA learning process. 

Therefore, the OLA tuning algorithm [12] is designed to minimize (48) while 

considering the system stability and is given below  

                           
1 2

*

2 1

ˆ
ˆ ˆ( ( ) ( ) ( )

ˆ ˆ( 1)

ˆ ˆ ˆ( ) ( ) / 4) ( , )0.5 ( ) ( )

T

e eT

T T

e e e e e

Q e e f e

e C e e u e CJ e




 



     


        

                  (49) 

where ˆ ˆ( ) ( ) ( ) ( ) / 2T

e e e ee f e e C e        , 1 0   and 2 0   are design constants, 

1 ( )eJ e  is defined in Lemma 2, and the operator *ˆ( , )ee u  is given by  

                                     

1 1

* 1

if    ( ) ( )
0

ˆˆ( , ) ( ( ) ( ) / 2)   0

1 otherwise

T T

e e

T T
e e e

J e e J e

e u f e gB g e

 


       



                         (50) 

Note that the weight update law is different than that in [12] as it is based on the 

observer’s estimate of the states, rather than on the actual states themselves. The first 

term in (49) is the portion of the tuning law which minimizes (48) and is derived using a 

normalized gradient descent scheme with the auxiliary HJB error defined as below  

                                                   
* 2ˆ ˆ( ( , )) / 2HJBE H e                                         (51) 

The second term in the OLA tuning law in (49) ensures that the system states remain 

bounded while the SOLA scheme learns the optimal cost function. 

The dynamics of the OLA parameter estimation error is considered as ˆ   . 

Since this yields ( ) ( ) ( ) ( ) ( ) / 4T T T

e e e e HJBQ e e f e e C e             from (43), the 

approximate HJB equation in (48) can be expressed in terms of   as  
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1ˆ ˆ( , ) ( ) ( ) ( ) ( )
2

1
( ) ( )

4

T T T

e e e e

T T

e e HJB

H e e f e e C e

e C e 

           

      

                  (52) 

Then, since ˆ    and
*ˆ ( )( / 2) ( ) ( ) / 2T

e e e ee e C e C e          , where 

( )e ee f e gu  , the error dynamics of (49) are  

                               

*1
12

1

*

1

* 12
1

( ) ( )
( )

2 2

( ) ( )
( )

2 2

ˆ( , ) ( ) ( )
2

T

e e e
e

T T
T e e e

e HJB

T

e e e

C e C e
e e

C e C e
e e

e u e gB g J e








 

       
       

  

        
       

  

  

      (53) 

where 1
ˆ ˆ( 1)T    . Next, it is necessary to examine the stability of the SOLA-based 

adaptive scheme for optimal control along with the stability of the helicopter system. 

1.4.7. Stability Analysis. The proofs to be introduced shortly are built on the 

basis of the work of [7] and [12]. It is found that the control input consists of a 

predetermined feedforward term and an optimal feedback term that is a function of the 

gradient of the optimal cost function. In order to implement the optimal control in (34), 

the SOLA based control law is used to learn the optimal feedback tracking control after 

necessary modifications, such that the OLA tuning algorithm is able to minimize the 

Hamiltonian while maintaining the stability of the helicopter system. 

Lemma 2 has been introduced already and gives the boundedness of 1|| ||eJ  and 

therefore the system state errors, which is necessary for Theorem 3. First, however, a 

definition is needed. 



31 

 

Definition: An equilibrium point 
ee  is said to be uniformly ultimately bounded 

(UUB) if there exists a compact set nS   such that for every 0    e S  there exists a 

bound D  and time 
0( , )T D e  such that ( )    ee t e D ‖ ‖  for all 

0t t T  . 

This definition will be used for Theorem 3, which will be provided shortly. 

Theorem 3 reveals that the SOLA convergence to the HJB function is UUB for tracking 

of the states and will establish the optimality of the SOLA-based adaptive critic controller 

feedback term. Lemma 4 will then be provided because it provides a stability condition 

needed for the proof for Theorem 5. Theorem 5 establishes the feedforward term stability 

and the stability of the entire resulting system. 

Theorem 3 (Optimality and convergence of the SOLA-based adaptive critic 

controller feedback term and boundedness of tracking error resulting from optimal 

control input [12]. Given the nonlinear helicopter UAV system defined in (1), with target 

HJB equation (37), let the SOLA tuning law be given by (49). Let the control input be 

given by (46). Then the velocity tracking error and NN parameter estimation errors of the 

cost function term are UUB for all 0    t t T  , and the tracking error feedback system is 

controlled in a near optimal manner. That is, * *ˆ
e e uu u  ‖ ‖  for a small positive constant  

u . 

Theorem 3 is proven in identically the same way as the first two steps of Theorem 

5, with proof to follow shortly for Theorem 5. For the proof of Theorem 5, Lemma 4 is 

needed. 
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Lemma 4 (Stability condition). If an affine nonlinear system is asymptotically 

stable and the cost function given in [12] is smooth, then the closed-loop dynamics are 

asymptotically stable [12]. 

Theorem 5 (Overall system stability). Given the unmanned helicopter system with 

target HJB equation (37), let the tuning law for the SOLA be given by (49), and let the 

feedforward control input be as in (29). Then there exist constants 
Jeb  and b  such that 

the OLA approximation error   and 1 ( )eJ e‖ ‖  are UUB for all 0t t T   with ultimate 

bounds given by 1 ( )e JeJ e b‖ ‖  and  b ‖ ‖ . Further, OLA reconstruction error 

*

1
ˆ

rW W  ‖ ‖  and * *

2
ˆ

v rvu u  ‖ ‖  for small positive constants 1r  and 2r . Note that a 

logical extension of Theorem 5 is that because * *

2
ˆ

v rvu u  ‖ ‖ , it is also the case that 

3rd VV  ‖ ‖ , for a positive constant 
3r . This is true because the system has known 

dynamics, with the optimal control input *

vu  generating the desired states dV , and the 

neural-network-based estimate of the optimal control input *ˆ
vu  generating the actual states 

V . 

 

1.5. SIMULATION RESULTS 

Simulation results for the unmanned helicopter are presented in this section. All 

simulations are performed in Simulink and demonstrate the performance of the proposed 

control scheme when the helicopter is hovering, landing, and tracking trajectories. The 

simulations take into account the aerodynamic features presented as part of the helicopter 

model earlier in this paper. The constants used for simulation are 29.8 /g m s , 

9.6m kg , ([1.1 1.1 1.1] )Tp diag 2([0.4 0.56 0.29] ) ·Tdiag kg m , 1 100  , 
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2 1  , 1.2tl m  (x-axis dimension from the helicopter's center of gravity to the tail 

rotor), 0.27ml m , 0.002MQ  , and 0.0002TQ  . The optimal controller used seven 

hidden layer neurons for all simulations in this section, with gains 

([0.10.10.10.001] )TB diag . The NN basis function is as given previously. All NN 

weights are initialized to zero except for the observer’s weights, which are randomly 

initialized. The observer NN uses five hidden layer neurons, with gains 1 22oK  , 

2 121oK  , and 3 11oK  , 10oF   and 1 1o  , and a basis function as previously given. 

Figure 2.3 demonstrates the helicopter's ability to follow a trajectory in two 

dimensions while hovering. Figure 2.4 shows the helicopter's ability to track a trajectory 

in three dimensions. For the two plots in Figure 2.5 and Figure 2.6, the heading is 

changed mid-maneuver from 1 radian to -1 radian. Figure 2.5 provides a 3-D view of the 

helicopter performing a landing maneuver, showing both the position and orientation as 

the helicopter lands. Figure 2.6 provides a 3-D view of the helicopter performing a 

landing maneuver, but in this case shows the actual versus desired trajectories throughout 

the maneuver. Figure 2.7 and Figure 2.8 show the observer performance for tracking the 

system states in Figure 2.7 as well as for tracking the system outputs in Figure 2.8. 
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Figure 1.3. 3-D Perspective of Position during Take-off and Circular Maneuver 
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Figure 1.4. Helicopter Position Vs. Time for Tracking 
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Figure 1.5. 3-D Perspective of Position and Orientation during Landing 
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Figure 1.6. 3-D Perspective of Position during Landing 
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Figure 1.7. Observer State Estimation Error 
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Figure 1.8. Observer Output Estimation Error 
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1.6. CONCLUSION 

A NN-based optimal control law has been proposed which uses a single online 

approximator for optimal regulation and tracking control of an unmanned helicopter with 

known dynamics having a dynamic model in strict-feedback form. The SOLA-based 

adaptive approach is designed to learn the infinite horizon continuous-time HJB equation, 

and the corresponding optimal control input that minimizes the HJB equation is 

calculated forward-in-time. A feedforward controller has been introduced to compensate 

for the helicopter's weight and requirement for rotor thrust when in hover, and to permit 

trajectory tracking. Furthermore, it has been shown that the estimated control input 

approaches the target optimal control input with a small bounded error. A kinematic 

control structure has been used to obtain the desired velocity such that the desired 

position is achieved. A NN-based observer has been employed for obtaining the states 

from the outputs. The stability of the system has been analyzed, and simulation results 

confirm that the unmanned helicopter is capable of regulation and trajectory tracking. 
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1.8. APPENDIX 

Proof of Theorem 1: Begin with the Lyapunov candidate function 

  10.5 0.5 0.5T T T

o o o oJ X X V V tr W F W                     (54) 

Taking the derivative,  

  10.5 0.5 0.5T T T

o o o oJ X X V V tr W F W          (55) 

Substituting the error dynamics from (18) and (19) along with the weight update law (17) 

into the derivative of the Lyapunov candidate function yields    

                               

   

1 3 3 1

1 1

2 3 1 3 1

1

1

( ( ) ) (

( ) )

ˆ

T T

o o o o o

T

o o o o

T T T

o o o o o o o o

J X AV K K X V K V f

A K X A K K K X A X

tr W F F V x X F W





 

 



      

    

  

       (56) 

Defining  ˆ ˆT

o o oV x   and expanding (56) results in  

        

  

1

1 3 3 1 2

1 1

3 1 3 1 1

( )

ˆˆ( )

T T T T T T

o o o o o o

T T T T T T

o o o o o o o o o o

J X AV X K K X X V K V V f V A K X

V A K K K X V A X V tr W F F X F W



  



 

      

      
      (57) 

Noting that 2 3 1 3( )o o o oK K K K   and cancelling out the two terms TX AV  and T TV A X  

as well as 1

2

T

oV A K X  and 1

3 1 3( )T

o o oV A K K K X   reveals a simplified form of (57)  

                               
  

1 3 3 1

1

1 1

( )

ˆˆ

T T T T

o o o o o

T T T

o o o o o o o

J X K K X X V K V V f

V tr W F F X F W



  

     

   
           (58) 

Using the fact that 1
ˆ ˆ( )T T T

o o o o o of W V x W    allows a term to be moved inside the trace 

function so that  

        
  

1 3 3

1 1

( )

ˆ ˆ

T T T

o o o o

T T T T

o o o o o

J X K K X X V K V

V tr W X V W



   

    

   
                              (59) 
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Next, bounds may be applied such that ˆ
o oN  , o MoF

W W , and 

 
2

( )T

o o o o Mo o
F F

tr W W W W W W   , M  , and 1 1M  . This allows (59) to be 

upper-bounded such that 

                 

2 2 2

1 3 3 1 1

1

( )o o o M o M o o
F

o o o o o o Mo
F F F

J K K X X K V V W

W X N W V N W W

  



      

  
                  (60) 

Rewriting the first two terms of (60) 

   
2 2 2

1 3 1 3
1 3

1 3

2( ) ( )
( )

2 2

Mo o o o
o o M

o o

XK K K K
K K X X X X

K K




  
       
 
 

      (61)

Completing the square with respect to X  results in 

                                      

2 2
1 3

1 3

2
2

1 3

1 3 1 3

( )
( )

2

( )

2 2( )

o o
o o M

o o M M

o o o o

K K
K K X X X

K K
X

K K K K



 


     

 
  

  

                  (62) 

Repeating the process with the third and fourth terms of (60) 

                              
2 2 2 13 3

3 1

3

2

2 2

Mo o
o M

o

VK K
K V V V V

K




 
      
 
 

                  (63) 

Completing the square with respect to V  results in 

                                         

2
2

2
3 3 1 1

3 32 2 2

o o M M

o o

K K
V V

K K

  
    

 
                              (64) 

Then, rewriting the last four terms of (60) 
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 

2

1 1

2 2
1 1

1

2
1

4

2 4

4
4

o o o o o o o o Mo
F F F F

o o
o o F

o o o o
F F F

o

o
o Mo o

F F

W W X N W V N W W

W V N
W W X N W

W W W

 

 





   

 
     
 
 

 

              (65) 

Completing the squares with respect to o
F

W  allows the four terms in (65) to be 

rewritten as  

                        

 

2

2
1 1

1

2

2
21

1

1

2

2 4

2
4

oo o
o o o o

F F F
o

o o
o Mo o Mo

F
o

V N
W W X N W

V N
W W W

 








 
    
 
 

   

      (66) 

Combining the above results in equations (62), (64), and (66) yields 

 

2
2

2 2
1 3 1 3 3

1 3 1 3

2
2

2
2

3 1 11 1

3 3 1

2

2
21

1

1

( ) ( )

2 2 2( ) 2

2

2 2 2 4

2
4

o o o o oM M
o

o o o o

oo o oM M
o o o o

F F F
o o o

o o
o Mo o Mo

F
o

K K K K K
J X X V

K K K K

V NK
V W W X N W

K K

V N
W W W

 

  








  
      

  

  
        
    

   

    (67) 

A new positive-definite term o  will be defined, such that 

    2 2 2

1 3 1 1 32 2( )o M o o Mo M o oK W K K       . This allows (67) to be rewritten as 
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 

2
2 2

1 3 1 3 3

1 3

2
2

2
3 1 11

3 1

2

2
1

1

( ) ( )

2 2 2

2

2 2 4

2
4

o o o o oM
o

o o

oo o oM
o o o o

F F F
o o

o o
o Mo o

F
o

K K K K K
J X X V

K K

V NK
V W W X N W

K

V N
W W



 








  
     

 

  
       
    

   

      (68) 

The terms 

2

1 3

1 3

( )

2

o o M

o o

K K
X

K K

 
  

 
, 

2

3 1

32

o M

o

K
V

K

 
  

 
, 

2

1

1

2

4

oo
o

F
o

V N
W





 
  
 
 

, and 

 
2

1 2
4

o
o Mo

F
W W


   will be negative given proper selection of the gains, with the 

selection criteria as previously given. In addition, the term o o
F

W X N  will be 

negative, regardless of the observer tuning.  Because these terms cannot cause instability, 

they may be omitted from the remainder of the analysis. This allows (68) to be simplified 

and expressed as 

                            

2

2 2 2
1 3 3 1

1

( )

2 2 2

oo o o o
o o o

F
o

V NK K K
J X V W







            (69) 

Factoring terms and rearranging (69) results in  

                              
2 2 2

1 3 3 1

1

( )

2 2 2

o o o o o
o o o

F
o

K K K N
J X V W






 
      

 
                  (70) 

Given 1 3o oK K  and 3 12 /o o oK N   and  

                        
1 3

2 o

o o

X
K K





                                          (71) 

or   
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3

12

o

o o

o

V
K N






 

 
 

                              (72) 

or 12o o o
F

W   , (70) will be negative definite, resulting in the conclusion that the 

observer estimation error X , as well as V  and 
oW  are UUB. In addition, selecting the 

values of 1 2 3, ,o o oK K K  and 1o  allows the bound on the errors to be made arbitrarily 

small.  

Proof of Lemma 2: Applying the optimal control input to an affine nonlinear 

system, the cost function becomes  

                          * * * * * *( ) ( ) ( )( ( ) ) ( )T T T

e e e e e e eW e W e e W e f e gu Q e u uB                        (73) 

Since  

                                        * * * *

1( ) ( , ) ( )T T

e e e e e e eW Q e J r e u Q e u uB                                 (74)   

one may obtain  

                                

* * * 1 * * *

* * 1 * *

1 1

( ( ) ) ( ) ( ( ) )

( ) ( ) ( )

T T

e e e e e e e e

T T

e e e e e e e e

f e gu W W W Q e u Bu

W W W W Q e J Q e J





    

  
                          (75) 

from which one then has  

                                                *

1 1 1( ( ) ) ( )T T

e e e e e eJ f e gu J Q e J                                 (76)   

concluding the proof for Lemma 2.  

Theorem 3 is proved in the same manner as the first two steps of Theorem 5, 

which will be proved shortly. The proof of Lemma 4 is provided in [12]. 

Proof of Theorem 5: First, begin with the positive definite Lyapunov function 

candidate         
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 

2 1 1 1 2 2 3 3 3 3

4 4 4 4

1

ˆ ˆ ˆ ˆ( ) / 2 2 2 22

2ˆ ˆ 2 2 52 0.

T T T T T

T T T T T

o o oX X V V tr W F

J

W

J e      

  

 

  

     

 
                (77) 

The proof may then be divided into steps, with the first part of the Lyapunov function 

candidate considered first. 

Step 1: consider the optimal control Lyapunov function candidate 
                                            

                                                         
2 1( ) / 2T

HJBJ J e                                             (78)   

Differentiating, one obtains                                                

                                                          
2 1 ( )T T

HJB eJ J e e                                  (79) 

With 1( )J e  and 1 ( )eJ e  as previously given. If || || 0e  , ( ) / 2T

HJBJ e    , ( ) 0HJBJ e  , 

and || ||  remains a bounded constant. For online learning, however, it is the case that 

|| || 0e  . For convenience, define * *

1 ( )e ee f e gu  . Then, using the affine nonlinear 

system, the optimal control input, and the tuning law's error dynamics along with the 

derivative of the Lyapunov candidate function HJBJ , one arrives at  

 

   

 

1 2 * 2

2 1 1 1

2 2 2 *

1 1 1

*1
12

2

1

ˆ( )( ( ) 0.5 ( ) ) ( ( )( 0.5 ))

8 ( ( ) ( ) ) ( )( 0.5 )

3
( )( ) ( ) ( )

4 2

2 ( ) (

T T T T

HJB e e e e e

T T T

e e e e HJB

T T Te
e e e

T T

e e

J J e f e gB g e e e C

e C e e e C

C
e e e C e

e C

   

     





 

          

            


          

      1

2 1
ˆ) ( , )0.5 ( ) ( )T T T

HJB e e ee e u e gB g J e      

      

(80) 

For convenience, all terms excluding the first and last in (80) will be considered first: 

 2 *

2 1 1

*

1

( ( )( 0.5 ) 0.25 ( ) ( )

0.5 ( ) ( ))( ( )( 0.5 )

)T T T

e e e e

T T

e e

B

e

HJ

e

J e e C e C e

e C e e e C

   



             

         
      (81) 

Multiplying through the T  term in (81) yields 
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 2 *

2 1 1

*

1

( ( )( 0.5 ) 0.5 ( ) ( ))

( ( )( 0.5 ) 0.25 ( )) ( ) H

T T T

e

J

e e e

T T

e e B

T

e e

J e e C e C e

e e C e C e

  

 

            

           
      (82) 

Expanding (82) results in 

   

 

   

2 * 2 2 2

2 1 1 1

2 *

1 1
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



  

             

           

            

      (83) 

Completing the squares with respect to *

1( )( 0.5 )T

e ee e C       and 

( ) ( )T T

e ee C e       allows (83) to be rewritten as 

   

   

   
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

 
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   

 

             

            

       

      2) 4 )HJB 

      (84) 

Now, because the terms  2 * 2

1 12 ( ( )( 0.5 ) )T

e e HJBe e C           and  

 2 2

1 16 ( ( ) ( ) 4 )T

e H

T

e JBe C e          are negative definite, they will not cause 

instability and will therefore be neglected from the remainder of the analysis. Rewriting 

(84) without these two terms yields

  
   

   

 

2 * 2 2 2

2 1 1 1

2 * 2

1 1 1

2
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2
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e HJBe e
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B

J e e C e C e

e e C e C e



 



   

   

 

             

            



       (85) 

Completing the square with respect to ( ) ( )T T

e ee C e       in (85) results in  
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   
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1 1 1

2 ( ( )( 0.5 )) 32 ( ( ) ( ) )
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e
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      

      (86) 

Because the fourth term in (86) is negative semi-definite, it will not cause instability and 

will therefore be neglected from the remainder of the analysis. In addition, the first and 

fifth terms in (86) will be summed before rewriting (86) as  

                            

 
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1 1

2

1
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                  (87) 

Taking bounds on (87) results in 
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                  (88) 

Completing the square with respect to 
2

( )T

e e    in (88) results in  

   

 

4
2 2 2

2 1 1 min

2
2

2
2 4

* 2 2 *1 min
1 1 min 12 2

min

23 2 64 ( )

( ) 16
0.5 256 0.5

8

H

T

e

T

e

e e

JBJ e C

eC
e C C e C

C

   











    

   
       
 
 

      (89) 

Because the fourth term in (89) is negative semi-definite, it will not cause instability and 

will therefore be neglected from the remainder of the analysis. Rewriting (89) 
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                  (90)

Applying the Pythagorean Theorem, noting that '

M  is an upper bound such that 
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'

Me   , and employing the relationship 
' '2

max( )HJB M Me C      with  

1

*4( ) ( )eJe K e  , with *K  a constant,  allows (90) to be rewritten as  
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By virtue of the fact that 
2 2 2

x y x y   . Now using the fact that 

 4 4 2 2
2x y x y   allows (91) to be rewritten as 

              

   

  

'4 4 '4 2

ma

4
2 2 2

2 1 1 min

2
2 22 2 *

1 min 1

x3 2 ( 64 ( )

256 2 2 0.5

( ) ) T

e

e

M MJ e C

C e C

e C   







    

  

 

      (92) 

The last term in (92) may be rewritten as a result of the property that 

                                   
   

   

2
2 2 4 4 2 2

4 4 4 4 4 4

2 2 4 2

4 8

x y x y x y

x y x y x y

   

     

                              (93) 

 as                                              

                 
   

  

4
2 2 2

2 1 1 min

4 42

'4 4 '4 2

max

2 *

1 min 1

3 2 ( 64 ( )

2

( )

04 0.

)

8 5

T

M M e

e

J e C

C e

e C

C

    





 

   



 

 
           (94) 

Making use of the fact that *

1( )e e   and with 
'

Me  
 
an upper bound on the OLA 

reconstruction error, (94) may be written as 

                                     1

4
2 2 4 2

2 1 1 1 2( ) ( )J e                               (95) 
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With 4 2

1 min min 64C  ,  2

2 min2048 3 2C   , and 

  '4 4 2 '4 '4 2

max min max( ) 128 3 2M M MC C C       . Now, looking back at (80), it is necessary 

to consider the case 
1 ( ) 0eJ e e   and ˆ( , ) 0ee u  :  

                                     
4

41 1 1 21
2 1 2 2 2

|| ( )
( )

(|| )HJB e eJ J e e
    

 



                        (96) 

This result may be rewritten taking a bound on e  as 

                                         
 

   

2

2 1 min 1

4
2 2

1 1 21 1

*

|| ( ) ||

( )

( )HJB e

eK

J J e e

J e

   

    

  

  
                              (97) 

Combining terms results in 

                                        
 

   

2

1 2 min 1

*

2

4
2 2

1 1 1

|| ( ) || ( )

( )

HJB e KJ J e e   

    

  

  
                              (98) 

This is negative definite provided that *

2 1 2 minK e  
 
and  

2 *

1 1 2 1 2 0|| ( ) || ( ) ( )e min JeJ e e K b        , or 4
1 0|| || ( ) b      . Therefore, 

1 ( )eJ e , || || , and e  are UUB. 

          Next, it is necessary to consider the case 1 ( ) 0eJ e e   and ˆ( , ) 1ee u  : 

                                    

                                   

     

2 1

4
2 2 2 4

1 1 2

1

11

2

(

ˆ( )( ( ) 0.5 ( ) )

0.5

) (

( (

)

) )

T T

HJB e e e

T T

e e

J J e f e C e

e CJ e

e  



       



    

   

   

                     (99) 

The term 
2 10.5 ( ) ( ( ) )T T

e e eJ e C e     will be added and subtracted from (99) to obtain 
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 

 

 

2

2 1 1 2 1

4
2

1 2 1

2 4

2 1 1 2

1

ˆ( )( ( ) 0.5 ( ) ) 0.5 ( ) ( )

0.5 ( ) ( ( ) )

0.5 ( ) ( ( )

( )

( ))

T T T T

HJB e e e e e

T T

e e e

T T

e e e

J J e f e C e e CJ e

J e

e e

C e

J C e

   

 

 





 

    

         

     

    

          (100) 

Which may be expanded and rewritten from (100) as 

                             

 
4

* 2 1
2 1 1 2

1 2
2 1

1

12

*

( )( ( ) )

( ) 0 )

(

.5 (

)T

HJB e e e

T

e e e

J J e f e gu

J e J eK C


  



 










    

  

                (101) 

Now, using the relationship for ( )Q e  given in (39), taking the bounds on ( )Q e , C , and 

e  and the norm on 
1 ( )T

eJ e  allows (101) to be rewritten as 

                                  
   

 

42
2 2

2 min 1 1 1

2 '

1 2 1 2 1 m

1

a

*

x

( )

( ) 0.5 (

( )

)

T

HJB e

T

e e M

J Q J e

J e J e CK

      

    

   

 
                (102) 

This last equation  may be rewritten as below  

                      

2
'

max1 2 min 1
12 2

min min 2

2
'

4 2max2 min 1 1 min
2 12 2

m

*

in min 2

2

*

2 1

( )
2 2

( )
2 2

(

2

) M
HJB e

M
e

CQ
J J e

Q Q

CQ Q
J e

Q

K

Q

K

  

  

  


 

 









  
      

  

 
     

 

    (103) 

Lemma 4 yields  

                                

2 4 2

2 1 1 1

2 2 '2 2 2 *2 4

1 2 1 2 2

0.5 || ( ) || || ||

( ) (4 ) ( )

HJB min e

max M min min

J Q J e

C Q K Q

   

        

   

  
                (104) 

with 0 || ( ) ||minQ Q e  . This is negative definite provided that 

2 '2 2

1 max min 1|| ( ) || 2e M JeJ e C Q b   and    2 *24
1 1 2 1 2 min 1|| || ( ) K Q b          . 

Therefore, 1 ( )eJ e , || || , and e  are UUB. In addition, defining the bounds 
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min max( )e     and 
'

maxe   , *

max 1
ˆ ( ) M M rW W e b          ‖ ‖  

and  * 1 ' 1 '

max max max 2
ˆ 1 2 ( ) ( )e e M M M ru u B g b B g    

    ‖ ‖ , with 1

max ( )B   denoting 

the maximum eigenvalues of 1B . The second part of the Lyapunov candidate function 

will be considered next. 

Step 2: consider the feedforward control Lyapunov function candidate  

                                                
1 2 3 4feedforwardJ S S S S                                            (105) 

 

with 
1 1 10.5 TS   , 2 2 2

ˆ ˆ0.5 TS   , 3 3 3 3 3
ˆ ˆ0.5 0.5T TS    , and 4 4 4 4 4

ˆ ˆ0.5 0.5T TS    . It 

has been shown that this selection of Lyapunov candidate will guarantee stability in [7]. 

Applying elements integral to (29) gives the derivative of the Lyapunov function  

          
. . . .

1 2 3 4 1 1 2 2 3 3 4 4 3 3 4 4
ˆ ˆ ˆ ˆ ˆ ˆ1 T T T T T T

feedforwardJ S S S S m                       (106) 

so 0feedforwardJ  . To quickly review the elements in this stability analysis, 1  is used for 

the error in the tracking along with 3 , 2̂  regulates the translational velocity, 3̂  and 4̂  

take roll and pitch angles into consideration, and 3  and 4  are used for the error in the 

orientation (yaw) and corresponding rotational velocity. 

Step 3: consider the stability of the entire system. Combining 

       

 

2 2 '24
2 , 1 21 1 1

2 2

,

2 2 *2

1 2
1 1 2 2 3 3 4 4 3 3 4 4

2 ,

1

4

|| ( ) || || || ( )

2 (4 )

ˆ ˆ ˆ ˆ

0.5 0.5 0.5

ˆ ˆ1
( )

e min e max M
HJB feedforward

e min

T T T T T T

e

o

T T T

o o o

min

Q J e C
J J

Q

K

J

X X V V

m
Q

tr W F W

     

 

 
       

 




     

    













     (107) 

Lemma 2 and Lemma 4 will then ensure 0HJBJ   given that  
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2 '2 2

1 , 1'|| ( ) || / (2 )e max M e min JeJ e C Q b 
                             

  (108) 

and  

                                       
2 *24

1 1 2 1 2 , 1|| || ( ) / / ( )e minK Q b         
                    

  (109) 

if ˆ( , ) 1ee u  , or  

                                                              *

2 1 2 minK e                                           (110) 

and 

                                         
2 *

1 1 2 1 2 0|| ( ) || ( ) ( )e min JeJ e e K b                        (111) 

or 

              4
1 0|| || ( ) b                                              (112) 

if ˆ( , ) 0ee u  . In addition, it is also necessary that
 

            1 32 o o oX K K                                          (113) 

or  

                                                               3 10.5o o o oV K N                               (114) 

or 

                                                            12o o o
F

W                                           (115) 

which allows the conclusion that 
*

1
ˆ|| ( ) ( ) || || |||| ( ) || M M M rW e W e e b            

and 

                * 1 ' 1 '

2
ˆ|| ( ) ( ) || ( ) / 2 ( ) / 2e e max M M max M M ru e u e B g b B g    

                  (116) 
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Then 0HJB feedforwar od JJ J    provided that the conditions in (108) - (115) hold. In other 

words, the overall system is UUB with the bounds from (108) and (109), completing the 

proof.  

The dynamics presented at the beginning of the paper provide 

3 1( ) 0
T

S        . Actually, however, this is a simplification of the real 

dynamics, which include an additional coupling term such that 

( ) [ ( )  ]T

dS R Kw      , with  

                                       

0 1 0
1

1 0 1

0 0 0

t

M

K l
l

 
 

 
 
  

                                                 (117) 

This coupling term is relatively small, but the robustness against neglecting the term has 

been demonstrated using a nonlinear controller and is available for the interested reader 

in [7] for the case of state feedback. The case for output feedback will be given below, 

following the approach given in [7]. Initially,   14

1 1 2 3 4 3 4
ˆ ˆ ˆ, , , , ,      is defined as a 

vector that includes a set of errors that have previously been introduced. The error 

dynamics for the complete system model may then be given as  

 
3 1

3 3 3 3 3 3 3 3 1 1 1 1

3 3 3 3 3 3 3 3 1 1 1 1

3 3 3 3 3 3 3 3 1 1 1 1

3 3 3 3 3 3 3 3 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

01 1
0 0 0 0

1
0 0 0

0 0 0

0 0 0 0

0 0 0 0 1 1

0 0 0 0 1 1

d

I I
m m R Kw

mI I I
m

I I I

I I

 



     

     

     

     

     

     

 
  
 

  
 
    
  
 

 
   

 

 
2

2

3 1

3 1

1

2 2 1

0

0

d

d

R Kw
m

m m
R Kw

m





 
 
 
 

 
 

  
 

 
 
 
 

    (118) 
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The norms of the errors may then be taken and described as 

  6

1 2 3 4 3 4
ˆ ˆ ˆ, , , , ,      . Then, rewriting the feedforward Lyapunov candidate 

terms, 
2

0.5feedforwardJ  . Taking the derivative, 
T

feedforwardJ     , with 

  6 61 ,1,1,1,1,1diag m    . Bounding the magnitude of the small body forces results 

in 

        
   

    

2 3

2

4 0

1ˆ ˆ

ˆ2 1

T

feedforward d d

T T

d d

m
J R Kw R Kw

m

m m m R Kw w

   

     


      

       

                (119) 

with     2 2

0 0,1, 1 , 2 1 ,0,0m m m m m      and   21 2 2 1M T T Tl l l l K     , 

where K  corresponds to the offset between the main rotor shaft and the helicopter’s 

center of gravity. This yields the result that the small body forces cannot exceed a given 

bound, with a requirement for stability that  0

T T

dw      . Next, it is necessary to 

determine the bound resulting in tracking with UUB stability. Since 3 3P I  , 
1

1P

 . 

Next, defining 0 3 3c I   and 0 M Tw Q Q  , the equation 

3 2
ˆ ˆ

Td d MP w Q e Qw e      , may be rewritten as 
2

0 0 0
ˆ

d dw c c w w   . 

Now, 1 1 cos 2W 

    and 2W    since  

                                        1

0
1

ˆ ˆ0

s c

c c c s W
c

c s s s c

 

   



    

 



 
 

    
 
 

                            (120) 

Then, referencing    1 1

3 4 3 1 2
ˆ ˆ( )T

d dw e W W W s c w c c     

       and 

recognizing natural bounds such that 2 2      and 2 2     , 
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3 2 2

1 1
ˆ, , 4 2d dw w         with   the trajectory such that 

 (3) (4) 5, , , ,d d d d d       , with  1 0,0,0,0, 2
T

   and 

 1 0,0,0,0, 2, 2
T

  . Using the notation  (1,2) 1 2,d d dw w w  and employing (25) yields  

           (1,2)

3 3 3 3 4
ˆ ˆˆ( ) 2 ( (1,1,0)) ( ) ( )

T

d dw skew e R Y diag skew e skew e             (121) 

which is upper-bounded such that (1,2)

2
ˆ2 ,d dw Y       , with 

 2 0,0,1,1,0,0
T

  . This results in  

                         

  

(1,2) 3 (1,2) 2 2

1 1

(1,2) 2

1 1

ˆ, , 4 2

ˆ1 2 , , 4

d d d d d

d

w w w w w

w

    

      

      

    
                (122) 

Then, bounding 
dY  results in 

2 3 2, ,d dY c w        with  2 0,0, ,0,0
T

m  , 

 2

2 2 2 1c m m m   , and 
3

3 3 3

2 1 2 1 2( 1) 2 1
, , , ,0,0

T

m m m m m

m m m m


     
  
 

. It is also 

possible to bound 3̂  such that 3 2

3 4
ˆ ˆ , ,        , with  3 0,0,0, 2,0

T

   and 

4 1  . With these steps, (1,2)

3 4
ˆ ˆ2 , ,         and 

4 5 3, , dc w       , with  4 0, ,0,0,0m  ,   2

3 1c m m  , (1,2) 1 2ˆ ˆ ˆ( , )   , 

and     2

5 1 ,1 , 2 1 ,1,0,0m m m m m    . If the preceding results are combined, one 

may arrive at  1 1 4
ˆ ( ), ( ), dq p c w          for a bound on the angular 

velocity, with 1 4 3( ) 2q      , 1 5 4( ) 2p      , and 4 32c c . The control input 

torques may also then be bounded such that  
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2 2 5

2

1 0

ˆ( ), ( ), 21

ˆ

d

d

q p c w
w

d w

      

   

   
 
   

                (123) 

with  2 2 1( ) 1 2q       ,  2 3 1 2( ) 1 2p         , 1 04d c  , and 
5 2c c .  

The control input governing the main rotor thrust may then be bounded such that 

5 6 5 6, , , ,mg mg             
 
with  5 ,0,0,0,0

T
m 

 
and 

 6 1 ,1,1,0,0,0
T

m  . Setting bounds 
0k , 

1k , and 
2k  such that 2

0(0)feedforwardJ k (which 

is true since (0) 0feedforwardJ  ), 1
ˆ(0) k  , and  0 2M Tw Q Q k   , with constants  

   0

3 1 2 3 1 1 4 1 1 51 2 2 1p mg mgd k k d          
, 

1

3 1 1 1 4p d k  
,
 

   0

3 1 2 1 1 3 1 1 41 2 2 1q mg mgd k k d        
, 

1

3 1 1 1 3q d k   , and 

6 5 1 3 1 1 42c c k c d k c   , and defining two bounds for the trajectory, 1B  and 2B  such that   

             
      

  

1 0

0 2 0 0 3 0 6 3 0

1 0 1 0 0

3 3 3 3

1 /
( )

k mg k k p c p
B

p p q q

     



     
  

 
    (124) 

and  2 6 0 5( )B k   

 

with 

                
   

 * 1 2

0 4 0 5 1 0

argsup
min ( ), ( )

( 2 )
B B

mg k c k  

 
          

    (125) 

and  

                  
   

 * 1 2

0 4 0 5 1 0

sup
min ( ), ( )

( 2 )
B B B

mg k c k  
       

    (126)    

then if *B  , the closed-loop system is locally UUB.  Expressing part of this result 

mathematically, 2

0( )feedforwardJ t k , 1 0 0 4 * 0 1 *
ˆ( ) ( ) ( )t k k mg q B        , and 
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*mg   . This locally UUB result may be obtained by guaranteeing that trajectory 

bounds
1B  and 

2B  are positive, control input   is lower bounded, and the angular 

velocity ˆ ( )t  is upper bounded. To do this it is first necessary to define 

3 2 1 4 1 1 1( ) ( ) 2 ( )q q k d k q       and 
3 2 1 5 1 1 1( ) ( ) 2 ( )p p k d k p      , while 

recognizing that * *mg mg    .  These results may then be bounded such that 

0 1 0 1

3 * 3 3 3 * 3( )p p p p p     and 0 1 0 1

3 * 3 3 3 * 3( )q q q q q    , with the condition that 

* 0 4 0 5 1 0( ( 2 ) / )mg k c k      . Then, since 1B  and 2B  are bounded, the following 

three conditions may be specified: 

                        
ˆ * 0 0 4 0 5

0 4 * 0 5 *

ˆ (0) (1/ ( ) )( ( 2 )

( ) )

K mg k c

k mg B

    

  

   

  
                            (127) 

                *

6 0 3 0 3 3 * * 2 0

( )

( ( ) (1/ )( ( ) ( ) ( ) ))

mg

c p k p q B mg k


    




   
    (128) 

and 

                                                   6 0 5 * *k B                                                         (129) 

All three of the bounds for the locally UUB result are valid at time t=0. If the first of the 

bounds for the locally UUB result is not valid for all time, and with the assumption that 

1 *( )t   , 2

0( )feedforwardJ t k  as well as ˆ
ˆ( )t K   for  10,t t , then  1 *t mg   , 

and the bound on   is not the first bound to be broken. If the second of the bounds is not 

valid for all time, and with the assumption that  1 *( )t   , 2

0( )feedforwardJ t k  as well as 

ˆ
ˆ( )t K   for  10,t t , then ˆ

ˆ K    and 
2

ˆ
ˆ ˆK  . Using the previous results 

for a bound on the rotational torque inputs allows one to arrive at 
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    3 3 * 0 * 6( ), ( ),dw q p mg w mg c          From the second 

condition on the trajectory bounds,  

                                        * 6 0 3 0( )mg c p a                                  (130) 

with 0 0a  , it follows that * 6 0mg c   , and inserting this result into the initial 

requirement on the Lyapunov candidate function to ensure stability in the presence of 

small-body forces, 

  * 6 3 0 0 3 * 0 0( ( ) ( ) ( ) )T T T T T Tmg c p q mg w                        (131) 

Noting that 2

0( )feedforwardJ t k , *B  , and 0 2w k , the resulting constraint on   is 

equivalent to the second condition on the trajectory bounds, and the bound 

2

0( )feedforwardJ t k  is also not the first bound to be broken. From the third condition on the 

trajectory bounds, with the assumption that *( )t mg   , 2

0( )feedforwardJ t k  as well as 

ˆ1
ˆ( )t K   for  10,t t , and since  

                                1 1 4 *
ˆ ( ( ), ( ), )dq p c w mg                         (132) 

substituting the bound for dw  yields 

  
 

  

1 1

* 4
3 3 * 0

* 6

( ), ( ),

ˆ 1
( ), ( ),

q p

mg c
q p mg w

mg c

   

 
   



  
 

      
   

    (133)

so the bound ˆ1
ˆ( )t K   is not the first to be broken either. Because none of the bounds 

required for the locally UUB result may be broken before any other, it follows that all 

three bounds hold for all time and the closed-loop system is locally UUB. 
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2.  NEURAL-NETWORK-BASED OPTIMAL CONTROL OF A HELICOPTER 

UNMANNED AERIAL VEHICLE (UAV) WITH HARDWARE 

IMPLEMENTATION 

 

 

2.1. ABSTRACT 

Helicopter UAVs can be extensively used for military missions as well as in civil 

operations, ranging from multi-role combat support and search and rescue, to border 

surveillance and forest fire monitoring. Helicopter UAVs are underactuated nonlinear 

mechanical systems with correspondingly challenging controller designs. This paper 

presents an optimal controller design for tracking of an underactuated helicopter using an 

adaptive critic neural network (NN) framework. The online approximator-based 

controller learns the infinite-horizon continuous-time Hamilton-Jacobi-Bellman (HJB) 

equation and then calculates the corresponding optimal control input that minimizes the 

HJB equation forward-in-time without using value and policy iterations. In the proposed 

technique, optimal tracking is accomplished by a single neural network (NN), which is 

tuned online using a novel weight update law. Stability analysis is performed and 

simulation results demonstrate the proposed control design. 

 

2.2. INTRODUCTION 

Helicopter UAVs can play a key role in numerous military applications, including 

counter-explosive operations [1]. Key operational activities for helicopter UAVs include 

[1]: “Preventing an adversary from conducting activities that result in the emplacement of 

IEDs [Improvised Explosive Devices], thus thwarting an attack: this is likely to require 

use of the full spectrum of Joint capabilities to defeat or disrupt the adversary….” As well 

as “Detecting IED materiel and components, including stored HME [Home-made 
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Explosives] and smuggled components, as well as emplaced devices themselves. This 

requires a combination of ISR  [Intelligence, Surveillance, and Reconnaissance] 

capability, together with responsive processes and effective training, to ensure that 

potential IED activity detected is analyzed and the results disseminated to all those who 

need to be aware of it, in order that appropriate action can be taken as swiftly as 

possible.” 

There are a number of specific ways that Helicopter UAVs can counter threats 

[1]. “In simple terms, A & S [Air & Space] Power is capable of defeating emplaced IEDs 

by detecting devices and by neutralizing and mitigating their effects, as follows: 

Detecting devices using dedicated airborne and Space-based ISR and airborne Non-

Traditional ISR (NTISR), exploiting existing capabilities and capitalizing on 

technological enhancements, including those offered by CCD technology.” These devices 

can be neutralized or have their effects mitigated through “Airborne EW [Electronic 

Warfare] capabilities, including Electronic Attack (EA), by employing ECM [Electronic 

Counter-Measures] to disrupt or detonate RCIEDs [Radio-controlled IEDs], the initiation 

or disruption of IEDs using kinetic targeting via airborne (or potentially Space) platform-

based weapon systems, including by direct fire, and by the physical avoidance of 

emplaced IEDs using Air Mobility, utilizing Fixed-Wing (FW) and Rotary-Wing (RW) 

intra-theatre airlift, including the use of air dispatch capabilities.” Another helpful feature 

is that “A UAV, which minimizes risk to human life may be preferable because it can 

provide long endurance and is difficult to detect in the air” [1]. For applications such as 

counter-explosive operations, where low-speed and hovering capabilities are useful, a 

helicopter UAV may become the tool of choice. In addition, helicopter UAVs can deliver 
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supplies to positions which cannot be safely supplied from the ground. For example [2], 

“Supplying small forward operating bases using trucks requires escorting forces, and 

exposes [military] convoys to the threat of mines. The standard solution is helicopter 

drop-off, but every force in theater is short of helicopters….” These are just some of the 

current defense applications of helicopter UAVs. 

Helicopter UAVs have many capabilities such as vertical take-off, hovering and 

trajectory tracking, and landing. For control of a helicopter
 
[3], it is necessary to produce 

moments and forces on the vehicle with two goals: first, to position the helicopter in 

equilibrium such that the desired trim state is achieved, and second, to control the 

helicopter's velocity, position and orientation such that it hovers as desired with minimum 

error. The dynamics of the helicopter UAV are not only nonlinear but also coupled with 

each other and under actuated, which makes the UAV difficult to control. Both inputs and 

dynamics are coupled on a helicopter particularly as a result of the swashplate 

mechanical linkages and the torques created by drag against the rotors. The helicopter has 

six degrees of freedom (DOF) which must be controlled with only four control inputs – a 

single thrust and three torques inputs. 

To solve the problem of controlling a rotary-wing UAV, several techniques have 

been proposed [3]-[9] employing model-based control. It has been shown [3] that the 

multivariable nonlinear helicopter model cannot be converted into a controllable linear 

system via exact state space linearization. In addition, for certain output functions, exact 

input-output linearization results in unstable zero dynamics [10]. Based on Newton-Euler 

equations, a dynamic model has been derived [3] considering the helicopter as a rigid 

body with input forces and torques applied to the center of mass. Previous researchers 
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have considered adaptive output feedback control of uncertain nonlinear systems with 

unknown dynamics and dimensions, and a controller for autonomous helicopter flight. 

Here the control problem [5] is separated into inner loop attitude control and outer loop 

trajectory control. A drawback of these controllers [4]-[6] is that the coupling between 

rolling (pitching) moments and lateral (longitudinal) accelerations is neglected. A 

backstepping-based controller has been presented in [7] for autonomously landing a 

helicopter. This controller also holds good for full flight control. The nonlinear controller 

computes the desired thrusts and flapping angles to get the commanded position and then 

computes the control inputs which achieve the desired thrust and flapping angles. 

Controllers which are properly designed for offline adaptation are often robust to 

small variations in the system, but fail to adapt to larger changes in the system. Further, 

an offline scheme alone does not allow a neural network (NN) to learn any new dynamics 

it encounters during a new maneuver.  The NN approaches [4] have been proposed to 

learn the dynamics of the unmanned helicopter online, but the observer used in this case 

estimates only the states of the feedback-linearized system and not the actual states of the 

helicopter dynamics. A nonlinear controller for a quadrotor unmanned aerial vehicle has 

been proposed in [9] by employing output feedback and NNs. This scheme addresses the 

problem of rotary-wing UAV control, but does not attempt optimal control. A single 

online approximator (SOLA)-based scheme has been introduced [11] to solve the optimal 

tracking control problem for affine nonlinear continuous-time systems with known 

dynamics. The SOLA-based adaptive approach has been designed to learn the infinite 

horizon continuous-time HJB equation, and the corresponding optimal control input that 

minimizes the HJB equation has been calculated forward-in-time. 
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However, optimal controller design for tracking an underactuated helicopter using 

NN has not yet been attempted, to the best of the authors’ knowledge. Following a 

previous approach [11], in this paper the SOLA-based scheme for optimal tracking of a 

nonlinear continuous-time strict feedback system with known dynamics is considered. 

The online approximator-based dynamic controller learns the continuous-time Hamilton-

Jacobi-Bellman (HJB) equation and then calculates the corresponding optimal control 

input that minimizes the HJB equation forward-in-time. This SOLA-based optimal 

control scheme is then extended for optimal tracking of a helicopter UAV with known 

dynamics. The proposed controller consists of a NN-based optimal controller and a 

virtual controller to supplement the optimal controller. The virtual controller generates a 

feedforward term needed by the optimal controller. The NN is tuned online using a novel 

weight update law. 

The main contribution of this paper includes the development of an optimal 

controller for tracking the trajectory of an underactuated helicopter UAV, forward in 

time, where the helicopter system is expressed in a form appropriate for backstepping 

control. The controller tuning is independent of the trajectory in contrast with [9]. A NN-

based OLA is utilized to approximate the cost function and the overall stability is 

guaranteed. The optimal controller has been previously developed for backstepping 

systems, but has not yet been applied to rotary-wing aircraft. This optimal controller 

previously required that (0) 0f  , but the virtual controller in this work obviates the need 

for that requirement. The current work builds on [11] and [7] from the fields of optimal 

and helicopter control; however, this work both uses previous developments for a new 

application and adds to these works with a closed-loop stability proof demonstrating the 
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proposed control scheme’s convergence with state feedback. The closed-loop proof is not 

direct but involved, and is included near the end of the paper.  

The paper begins by presenting the nonlinear model of the helicopter in the next 

section. Section 3 addresses the kinematic controller, the virtual controller, the 

continuous-time nonlinear optimal HJB tracking problem, and the solution of the HJB 

equation forward-in-time, making use of a single online approximator-based optimal 

controller. Section 2.4 concludes with stability analysis of the closed-loop system. The 

final sections include simulation results and concluding remarks. 

 

2.3. DYNAMIC MODEL OF THE HELICOPTER 

Consider a helicopter with six degrees of freedom (DOF) defined in the inertial 

coordinate frame 
a

, where its position coordinates are given by [ , , ]    T ax y z    and 

its orientation described as roll, pitch and yaw respectively, are given by 

[ , , ]    T a     . The equations of motion can be expressed in the body fixed frame 

b
 which has as its origin the center of mass of the helicopter. The 

b
x-axis is defined 

parallel to the helicopter's direction of travel and the 
b
y-axis is defined perpendicular to 

the helicopter's direction of travel, while the 
b
z-axis is defined as projecting orthogonally 

downwards from the xy-plane of the helicopter.  In addition, the following variables are 

used for the presentation of the dynamics: 

   m  is the helicopter’s mass, 

3 1   F   is the body force applied to the helicopter's center of mass, 

3 1      is the body torque applied about the helicopter's center of mass, 

3 1[ , , ]    T

x y zv v v v    is the translational velocity vector, 
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3 1[ , , ]    T

x y z       is the angular velocity vector, 

3 3   I   is the identity matrix, 

3 3      is the positive-definite inertia matrix. 

The kinematics of the helicopter are given as in equation (1) in Dierks [9] and 

equation (21) in Mahoney [7] as Rv   and 1T  , along with the translational 

rotation matrix inverse 1T   used to relate a vector in body fixed frame to the inertial 

coordinate frame 

   1

0
1

0

s c

T c c c s
c

c s s s c

 

   



    



 
 

   
 
 

           (1)          

and the rotational transformation matrix R  used to relate a vector in body fixed frame to 

the inertial coordinate frame   

  

c c s s c c s c s c s s

R c s s s s c c c s s s c

s s c c c

           

           

    

  
 

    
  

         (2)         

The transformation matrix is bounded according to 
F maxT T‖ ‖  for a known constant 

maxT  provided / 2 / 2      and / 2 / 2      such that the helicopter trajectory 

does not pass through any singularities [3]; also,    F maxR R‖ ‖  for a known constant maxR  

and 1 TR R  . Throughout this work,   denotes a Euclidean norm, 
F

  denotes a 

Frobenius norm, and s , c , and t  
denote the  sin  ,  cos  , and  tan   functions, 

respectively. 
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Let the mass-inertia matrix be { , }M diag mI  and the skew-symmetric matrix 

be 3 1( ) [0 , ]TS      . The dynamics of the helicopter are given by the Newton-

Euler equation in the body fixed frame and can be written as [3], [9]                               

 
3 1

3 1

( ) 0
( )

0
d

v v G R
M S U 

 





      
          

       
         (3)         

where 
3 2M TQ e Q e  , with 

MQ  and 
TQ   aerodynamic constants for which values are 

given in the simulation section, and originally found in [7], 3 1( )   G R   represents the 

gravity vector and is defined as 3( )G R mge , 1 2,e e , and 3e , are unit vectors directed 

along the x-, y-, and z-axes, respectively, in the inertial reference frame, g denotes 

gravity, and 

                  

3 3 3 3
13 3

3 1 3 1
211 22 33 11 22 33

3

0 0

0 ([     ]) 0 ([     ])
v

b b

u

wE E
U u

wdiag p p p diag p p p

w

 

 

 
 

   
     
    
 
 

        (4)

 

 

is the control input vector [7], with vu  the control vector composed of u  which provides 

the thrust in the z-direction, and 1w , 2w  and 3w  which provide the rotational torques in 

the x , y   and z   directions respectively. In addition, 
3

bE  is a unit vector in the 

positive z-direction, and 11 22 33[     ]p p p  is a gain array. Because the matrix containing this 

gain array and 
3

bE  is in the set 6 4  and the input vector 4 1 vu   is a four-element 

vector, U  becomes a six element column vector, making the input vector U  the correct 

size for (3). Also, 
1 2[ , ]T T T

d d d    represents unknown bounded disturbances such that 

d M ‖ ‖  for all time t , with M  a known positive constant. The system dynamics are 
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state-strict, which means that backstepping control can be applied. Defining 

6 1[   ]  T T TX      and 6 1[   ]  T T TV v    , one can write  

  X AV              (5) 

              1( )V f V M U             (6) 

where  1 3 1( ) ( ) 0
T

f V M S G       with 1 3 1 6 1( ) 0    
T

G M G R      , 

with 6 1      the bounded sensor measurement noise such that 
M ‖ ‖  for a known 

constant 
M , and

3 3

3 3

0

0 x

R
A

R





 
  

 
, where xR  denotes a skew-symmetric representation 

of the rotation matrix. Writing ( )f V  explicitly yields 

                 

01 0 0 0 0 0 0 0

00 1 0 0 0 0 0 0

00 0 1 0 0 0 0
( )

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

x x xx

y y yy T

z Mz z z

m

m

m mg
f V

Q

Q

 

 

 

       
       
       
       
         
        

         
       
              

        (7) 

Writing (6) explicitly yields 

                                       

1
3 33 3

3

3 13 3

11 22 33

00
( )

0 ([     ])0

b

v

EmI
V f V u

diag p p p






  
    

   
         (8) 

In this section, the dynamic model of the helicopter with six degrees-of-freedom (DOF) 

and four inputs has been presented.  The inputs are functions of main rotor thrust MRT , tail 

rotor thrust TRT , the longitudinal tilt  , and the lateral tilt   of the main rotor path plane 

with respect to the shaft. The remaining two control inputs in U  are a function of these 

four actual control inputs. 
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2.4. NONLINEAR OPTIMAL TRACKING OF THE HELICOPTER UAV 

In this section, the optimal control framework for selection of 
vu  is provided. Due 

to the NN approximating the cost function, an approximate optimal-based input ˆ
vu  will 

be generated. The first part of this section introduces the kinematic controller, which 

generates the desired velocity for the dynamic controller. After the kinematic controller, 

the virtual controller is introduced in Subsection 0 to provide a feedforward term 
du  for 

the dynamic controller. Subsection 0 addresses the Hamilton-Jacobi-Bellman equation, 

providing the foundation for a NN-based optimal controller, which is discussed in 

Subsection 0 and provides the optimal control term *ˆ
eu  used for the combined NN-based 

input to the helicopter dynamics, ˆ
vu . 

 

 

 

 
 

Figure 2.1. Control Scheme for Optimal Tracking of Helicopter 
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2.4.1 Kinematic Controller. The kinematic controller generates the desired 

velocity for the dynamic controller. To design the kinematic controller for the unmanned 

helicopter, the tracking error for the position must first be defined. The position tracking 

error is given by  

  
1 d               (9) 

Also, it is essential to define v  , which then yields the desired velocity, 
dv  as in [7] as 

           
1

1
dv v

m
                       (10) 

In addition, it is important to note that there exist desired trajectories which may reach 

unstable operating regions as the orientation about the x- and y- axes approaches 2 . 

This is a consequence of the physical limitations of helicopters. Therefore, trajectories 

requiring that these orientations be maintained should not be assigned to the helicopter. 

2.4.2. Virtual Controller. The next step is to design the virtual controller, which 

is used to obtain the virtual control ouput or desired input 
1 2 3[       ]T

d d d du w w w . This 

process is performed by first defining a set of error terms. The first, 
1 d    , was 

introduced with the kinematic controller. The second error term to be minimized is 

2 ( )dm v v   , with 
2  a velocity tracking error that incorporates the helicopter’s mass.  

The third and fourth errors to be considered are 3 d    and 
4 d   , which 

consider the error in the helicopter’s heading and the rate at which this error is changing. 

A fifth error term considers the error in the thrust and may be expressed as  

 
3 3 2 1 3

1
( )dmge mv R e

m
                                  (11) 

with all of the variables in (11) as previously defined. For convenience, a term  
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2 3 3 2 1

1
( )d d

d
Y mge mv

dt m
        

 

is introduced prior to the final error term necessary for this development, which allows 

this final error term to be written as
 

                                          
4 3 3( ( ) ( ) ( ) )dY R e R skew e          

The choice of these particular error terms is analyzed in further detail in [7].  

Selecting
  

                          3 3 3 3 4( ) ( ) ( ) 2 ( ) ( )d dR e R skew e w Y R skew e                   (12) 

to be solved for control of the main rotor thrust, pitch, and roll, and  

       3 4
ˆ                        (13) 

to be solved for control of the yaw [7], a solution for both equations is given by 

          

1

1

2 3 3 4

0 0

0 0 ( ) ( 2 ( ) ( ) )

0 0 1

d

T

d d

w

w R Y R skew e



    





   
   

      
   
      

                  (14) 

From which 1dw , 2dw , and   are obtained (with   obtained recursively). This solution 

was obtained by making use of the property 3 3 3( ) ( )d d dskew e w e w skew w e    , and 

rearranging and rewriting (12). Defining the relationship between the angular velocity 

and the orientation (from Section 2.3) as  

 1

0
1

0
cos( )

s c

c c c s T

c s s s c

 

   

    

 




 
 

    
 
 

                   (15) 

it is now possible to rearrange (6) in terms of   and set dw  , while considering only 

the virtual control inputs.  Doing this yields                                  
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1 1 1 1

3 2M dd Tew e PwQ Q                           (16) 

Taking the derivative of (15), rearranging, and considering only the yaw (first element in 

orientation vector) results in 

                                             1 1

1 2 3

1
( )T

d de T TT s w c w
c

 



              (17) 

Then, employing both (13) and (17) and rearranging allows 
3dw  to be obtained as 

     

1 1

3 4 3 1 2
ˆ( )T

d d

sc
w e T TT w

c c



 

        

Now the real inputs are obtained. To do this, first restate a portion of the dynamics to 

obtain 
dw  from (6) as  

1

3 2( )d d M Tw P w Q e Q e       with 
11 22 33([     ] )TP diag p p p  a set of gains, and 

then obtain   by double-integrating from  

             (18) 

by using the value that has just been obtained for  . Combining the preceding results 

allows one to arrive at the feedforward portion of the control input as 

   
1 2 3[       ]T

d d d du w w w          (19) 

from the values that have just been obtained for  , 1dw , 2dw , and 3dw . Proof that the 

inputs generated by these equations assures convergence is provided in detail in [7]. 

2.4.3. Hamilton-Jacobi-Bellman Equation. In this section, the optimal control 

input is designed based on the dynamics of the helicopter given in (5)  and (6) with the 

intention of minimizing the control input errors. The ideal dynamics (3) are of the form 

     *( )d d vV f V gu           (20) 
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where 6 1   dV  , 6 1( )   df V  , 6 6   g   is bounded such that 
min F maxg g g ‖ ‖  and 

* 6 1   vu   is the desired control input. For reference,  g  is provided here explicitly as 

 

3 3

1 3

3 1

11 22 33

0

0 ([     ])

bE
g M

diag p p p







 
  

 
        (21) 

It has been assumed that the system is observable and controllable, with 0V   a unique 

equilibrium point on compact set 6 1      with (0) 0f   [11].  The addition of a term 

from the virtual controller to be introduced later in this paper makes it possible to neglect 

the (0) 0f   requirement. With these assumptions, the optimal control input for the 

unmanned helicopter system given in (20) can be determined [8]. It is important to note 

that the dynamics ( )f V  and g  are assumed to be known. However, this assumption may 

be relaxed if some of the unknown parameters are estimated by using NNs. The tracking 

error de V V   may be combined with the actual system dynamics ( ) vV f V gu   to 

obtain the tracking error dynamics  ( ) v d e ee f V gu V f e gu   , with 

  ( ) ( )e df e f V f V   and *

e v vu u u   is the feedback portion of the control input and vu  

is the actual control input.  

The infinite horizon HJB cost function for (20) is now given below in terms of the 

tracking error as 

         ( ( )) ( ( ), ( ))e
t

W e t r e u d  


          (22) 

with ( ( ), ( )) ( ) T

e e er e t u t Q e u Bu  , ( ) 0Q e   the positive definite penalty on the states and 

6 6   B   denoting a positive semi-definite matrix. The control input must be selected 
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such that the cost function in (22) is finite, or  
eu  must be admissible [11]. Next, the 

Hamiltonian for the cost function in (22) with control input 
eu  is defined as 

   ( , ) ( , ) ( )( ( ) )T

e e e eH e u r e u W e f e gu           (23) 

with ( )eW e  the gradient of ( )W e  with respect to e . The optimal control input *

eu  which 

minimizes the cost function in (22) also minimizes the Hamiltonian in (23). Thus the 

optimal control input can be obtained by solving the stationary condition 

( , ) / 0e eH e u u    and is found to be 

                 * 1 *( ) ( ) / 2T

e eu e B g W e          (24) 

Substituting the optimal control input from (24) into the Hamiltonian (23) while 

retaining * *( , , ( )) 0e eH e u W e   gives the HJB equation and the necessary and sufficient 

condition for optimal control to be [8] 

 * * 1 *0 ( ) ( ) ( ) ( ) ( ) / 4T T T

e e eQ e W e f e W e gB g W e          (25) 

with *(0) 0W  . It is also known that the following relation is applicable [11] 

          *

1 1 1( ( ) ) ( )( )T T

e e e eeJ f e gu J Q e J           (26) 

where 1eJ  is the cost function. Tracking results are possible by modifying (24) to obtain 

an expression for the overall control input as 
 

           *( )v d eu u u e           (26) 

with the feedforward control input du  as previously given. 
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2.4.4. Single Online Approximator (SOLA)-Based Optimal Control of  

Helicopter. Usually, in adaptive critic based techniques, two OLAs [11] are used for 

optimal control, since one is used to approximate the cost function and the other is used 

to generate the control action. In this paper, the adaptive critic for optimal control of a 

helicopter is accomplished using only one OLA [11]. For the SOLA to learn the cost 

function, the cost function is rewritten using the OLA representation as given below 

  ( ) ( )TW e e               (27) 

with      the constant target OLA vector, ( ) : n Le   a linearly independent basis 

vector such that ( ) 0e  , with   the OLA reconstruction error. The target OLA vector 

and reconstruction errors are assumed to be upper bounded, with 
M  ‖ ‖  and 

M ‖ ‖ [12]. The OLA cost function gradient in (27) is 

 ( ) / ( ) ( )T

e e eW e e W e e               (28) 

Using (28), the optimal control input in (24) and the HJB equation in (25) can be 

expressed as 

 * 1 1( ) ( ) / 2 / 2T T T

e e eu e B g e B g                (29) 

            *( , ) ( ) ( ) ( ) ( ) ( ) / 4 0T T T

e e e HJBH e Q e e f e e C e                    (30) 

where 1 0TC gB g   is bounded with ( )min maxC C e C ‖ ‖  for minC  and maxC  and  

                     

1 1

*

1 1
( ( ) ( ( ) ))  

2 4

1
( ( ) )  

4

T T T T T

HJB e e e e e

T T

e e e e

f e gB g e gB g

f e gu C

    

  

        

    



           (31) 

 is the OLA residual reconstruction error. The OLA estimate of (27) is given by 

  ˆ ˆ( ) ( )TW e e            (32) 
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with ̂  the OLA estimate of the target vector  . In the same way the estimate for the 

optimal control input in (29) can be expressed as 
* 1 ˆˆ ( ) ( ) / 2T T

e eu e B g e     . With this 

input, the overall input to the unmanned helicopter system is modified from (26) to 

accommodate the NN-based optimal control input and may be written as 

  *ˆ ˆ ( )v d eu u u e           (33) 

An initial stabilizing control is not required to implement this proposed SOLA-based 

scheme. The estimate-based Hamiltonian is 

                         
*ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( ) ( ) ( ) / 4T T T

e e eH e Q e e f e e C e                  (34) 

From the definition of the OLA cost function approximation (32) and the Hamiltonian 

function (34), it is clear that both become zero when 0e ‖ ‖ . Recollecting the HJB 

equation in (23), the OLA estimate ̂  should be tuned such that *ˆ ˆ( , ) 0H e   .  

Unfortunately, only tuning ̂  to minimize *ˆ ˆ( , )H e    does not guarantee the stability of 

the nonlinear helicopter system (20) throughout the OLA learning process. Consequently, 

the OLA tuning algorithm is designed to minimize (34) while maintaining the stability of 

(20) is given as [11] 

             
1 2

12
1

ˆ
ˆ ˆ ˆ ˆ( ( ) ( ) ( ) ( ) ( ) / 4)

ˆ ˆ( 1)

ˆ( , ) ( ) ( ) ( )
2

T T T

e e eT

T

e e e

Q e e f e e C e

e u e gB g e J e




 

 

           


  

      (35) 

with ˆ ˆ( ) ( ) ( ) ( ) / 2T

e e ee f e e C e        , 1 0   and 2 0   design constants, 

1 ( )eJ e  as defined previously, and the operator ˆ( , )ee u  given by 

                      

1

1 1
ˆ0 if    ( ) ( )( ( ) ( ) / 2)   0

ˆ( , )
1 otherwise

T T T T

e e e
e

J e e J e f e gB g e
e u

      
  


      (36) 
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The first term in (35) minimizes (34) and has been derived using a normalized 

gradient descent scheme with the auxiliary HJB error defined as 
* 2ˆ ˆ( ( , )) / 2HJBE H e  .  

The second term in the OLA tuning law in (35) ensures that the system states remain 

bounded while the SOLA scheme learns the optimal cost  function. The basis function is 

given by 2 3( ) [       ( )  (2 )  ( )  (2 )]T

e e e e e e ee e e e sin e sin e tanh e tanh e         . The SOLA-

based HJB tracking design for an unmanned helicopter is illustrated in Figure 1. 

2.4.5. Stability Analysis. The proofs to be introduced shortly are built on the 

basis of the work of [7] and [11]. It is found that the control input consists of a 

predetermined virtual control or feedforward term,
du , and an optimal feedback term that 

is a function of the gradient of the optimal cost function. In order to implement the 

optimal control in (22), the SOLA based control law is used to learn the optimal feedback 

tracking control after necessary modifications, such that the OLA tuning algorithm is able 

to minimize the Hamiltonian while maintaining the stability of the helicopter system. 

The boundedness of 1|| ||eJ  and therefore the system state errors, which are 

necessary for Theorem 1, may be found in [11].  Theorem 1, which is provided next, 

establishes the optimality of the single network adaptive critic controller feedback term. 

Lemma 2 is then provided because it provides a stability condition needed for the proof 

for Theorem 3. Theorem 3 establishes the virtual control term stability and the stability of 

the entire resulting system. 

Theorem 1 (Optimality and convergence of the single network adaptive critic 

controller feedback term). Given the nonlinear helicopter UAV system defined in (3), 

with target HJB equation (25), let the SOLA tuning law be given by (35). Let the control 

input be given by (24). Then the velocity tracking error and NN parameter estimation 
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errors of the cost function term are UUB for all 
0    t t T  , and the tracking error feedback 

system is controlled in a near optimal manner. That is, * ˆ
e e uu u  ‖ ‖  for a small positive 

constant 
u . 

The proof is performed in terms of state error e  in order to begin the stability 

analysis of the optimal controller. But first, the Lyapunov candidate function is given by  

              
4 2( ) / 2T

HJBJ J e                          (37) 

where its first derivative is expressed as  

               
4 2( )T T

HJB eJ J e e                                                     (38) 

The proof is performed in the same manner as the proof for the first step of Theorem 3, 

which will be introduced shortly. For the proof of Theorem 3, Lemma 2 is needed. 

Lemma 2 (Stability condition). If an affine nonlinear system is asymptotically 

stable and the cost function given in [11] is smooth, then the closed-loop dynamics are 

asymptotically stable [11]. 

Theorem 3 (Overall system stability). Given the unmanned helicopter system with 

target HJB equation  (25), let the tuning law for the SOLA be given by (35), and let the 

virtual control input be as in (19). Then there exist constants Jeb  and b  such that the 

OLA approximation error   and 1 ( )eJ e‖ ‖  are UUB for all 0t t T   with ultimate 

bounds given by 1 ( )e JeJ e b‖ ‖  and  b ‖ ‖ . Further, OLA reconstruction error 

*

1
ˆ

rW W  ‖ ‖  and 2
ˆ

vv ru u  ‖ ‖  for small positive constants 1r  and 2r . 

Proof: First, begin with the positive definite Lyapunov function candidate         

        
2 1 1 1 2 2 3 3 4 4 3 3 4 4

1 1 1 1 1 1
( ) / 2

2 2 2 2 2 2

T T T T T T TJ J e                       (39) 
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The proof may then be divided into steps, with the first part of the Lyapunov function 

candidate considered first. 

Step 1: Consider the optimal control Lyapunov function candidate  

                                                                          
2 1( ) / 2T

HJBJ J e                                 (40) 

Differentiating, one obtains  

                                                               
2 1 ( )T T

HJB eJ J e e                                 (41) 

With 1( )J e  and 1 ( )eJ e  as previously given. If || || 0e  , ( ) / 2T

HJBJ e    , ( ) 0HJBJ e  , and 

|| ||  remains a bounded constant. For online learning, however, it is the case that 

|| || 0e  . Then, using the affine nonlinear system, the optimal control input, and the 

tuning law's error dynamics along with the derivative of the Lyapunov candidate function 

HJBJ , one arrives at  

     

1 * 21
2 1 12

2 *1 1
12 2

*1 1
12 2

1 ˆ( )( ( ) ( ) ) ( ( ))
2 2

3
( ( ) ) ( )( ) ( ) ( )

8 4 2

( )( ) ( ) ( )
2 2

T T T T e
HJB e e e e e

T T T T Te
e e e e e e

T T Te
e HJB e e HJB

C
J J e f e gB g e e

C
C e e e e C e

C
e e e C e






 

 

 
 

 

 
         


                 


           

 12
1

ˆ( , ) ( ) ( )
2

T T T

e e ee u e gB g J e
    

      (42) 

Completing the square, simplifying, and using Cauchy-Schwartz yields  

           

1

2 1

1 4 42 1 1 1
1 1 22 2 2

1 ˆ( )( ( ) ( ) ( ) )
2

ˆ( , ) ( ) ( ) || || ( ) ( )
2

T T T

HJB e e e

T T T

e e e

J J e f e g e B g e

e u e gB g J e e



   
    

  





    

       

      (43)

where 4 2

1 64min minC  , 2

2 1024 1.5minC   , 4' 4 2'2( ) 64 3( ) 2min M M maxC C      ,  



78 

 

'

M  is an upper bound on the OLA reconstruction error, and 0 || ( ) ||min e   .  Now 

it is necessary to consider the case ˆ( , ) 0ee u  :  

                            

4
* 1 1 1

2 1 2 1 2 2

|| || ( )
( ) || ( ) ||HJB min eJ e K J e

   
  

 


                       (44) 

This is less than zero if *

2 1 2 minK e   ,  

                                        *

1 1 2 1 2 0|| ( ) || ( ) ( )e min JeJ e e K b                                     (45) 

or  

                                                          4
1 0|| || ( ) b                                                (46) 

where *K  is a constant.    Next, to consider the case ˆ( , ) 1ee u  :  

42 1 1
2 1 1 12 2

4 * 4 *1 2 1 1 1
2 2 1 1 1 2 12 2 2

( )1
( )( ( ) ( ( ) )) ( ) || ||

2 2

( ) ( )( ( ) ) ( ) || || || ||
2

T T T T

HJB e e e e e e

T T

e e e e e

J J e f e C e J e C

e J e f e gu J e C K J

   
   

 

    
     

  

         

       

   (47) 

Lemma 4 yields  

         

2 2 '24 2 2 *2
2 , 1 21 1 1 1 2

2 2 4

, 2 ,

|| ( ) || || || ( )

2 (4 ) ( )

e min e max M
HJB

e min e min

Q J e C K
J

Q Q

       

   


             (48) 

with ,0 || ( ) ||e min eQ Q e  , which is a uniformly ultimately bounded (UUB) result. The 

second part of the Lyapunov function candidate considered next. 

Step 2: Consider the virtual control Lyapunov function candidate  

                                                    1 2 3 4feedforwardJ S S S S                                  (49) 

 with 
1 1 10.5 TS   , 

2 2 20.5 TS   , 
3 3 3 3 30.5 0.5T TS    , and 

4 4 4 4 40.5 0.5T TS    . It 

has been shown that this selection of Lyapunov candidate guarantees stability in [7]. 

Applying elements integral to (19) gives the derivative of the Lyapunov function  
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. . . .

1 2 3 4 1 1 2 2 3 3 4 4 3 3 4 4

1 T T T T T T

feedforwardJ S S S S
m
                        (50) 

So 0feedforwardJ  , which is an asymptotically stable (AS) result. To quickly review the 

elements in this stability analysis, 
1  is used for the error in the tracking along with 

3
, 

2  regulates the translational velocity, 
3  and 

4  take roll and pitch angles into 

consideration, and 
3
 and 

4
 are used for the error in the orientation (yaw) and 

corresponding rotational velocity. 

Step 3: Consider the stability of the entire system. Combining 

              

2 2 '24
2 , 1 21 1 1

2 2

,

2 2 *2

1 2
1 1 2 2 3 3 4 4 3 3 4 44

2 ,

|| ( ) || || || ( )

2 (4 )

1

( )

e min e max M
HJB feedforward

e min

T T T T T T

e min

Q J e C
J J

Q

K

Q m

     

 

 
       

 


     

      

          (51) 

Lemma 3 then ensures 0HJBJ   given that  

2 '2 2

1 , 1'|| ( ) || / (2 )e max M e min JeJ e C Q b                       (52) 

and  

2 *24
1 1 2 1 2 , 1|| || ( ) / / ( )e minK Q b                            (53) 

which allows the conclusion that 
*

1
ˆ|| ( ) ( ) || || |||| ( ) || M M M rW e W e e b            

and  * 1 ' 1 '

2
ˆ|| ( ) ( ) || ( ) / 2 ( ) / 2e e max M M max M M ru e u e B g b B g    

     . Then 

0HJB feedforwardJ J   provided that (52) and (53) hold. Because the feedforward term is 

asymptotically stable, the resulting bound on the error for the overall control input is 

* 1 ' 1 '

2
ˆ|| || ( ) / 2 ( ) / 2v max M M maxv M M ru u B g b B g    

     , which is the same as the 



80 

 

bound for the SOLA-based control. In other words, the overall system is UUB with the 

bounds from (108) and (109), completing the proof.  

The dynamics presented at the beginning of the paper provide 

3 1( ) 0
T

S J       . Actually, however, this is a simplification of the real 

dynamics, which include an additional coupling term such that 

( ) [ ( )  ]T

dS R Kw J      , with  

                                                      

0 1 0
1

1 0 1

0 0 0

t

M

K l
l

 
 

 
 
  

                                          (54) 

This coupling term is relatively small, but the robustness against neglecting the term has 

been demonstrated using a nonlinear controller and is available for the interested reader 

in [7]. 

 

 

2.5. SIMULATION RESULTS 

Simulation results for the unmanned helicopter are presented in this section. All 

simulations are performed in Simulink and demonstrate the performance of the proposed 

control scheme. The simulations take into account the aerodynamic features previously 

presented as part of the helicopter model. Note that the following gains and constants 

were used:  9.6m kg , 29.8g m s , 2([0.40 0.56 0.29] )Tdiag kg m  , 

([1.11.11.1] )Tp diag , 11 22 33[     ] [1.1 1.1  1.1]p p p  , 1.2tl m , 0.27ml m , 

0.002MQ  , 0.0002TQ  , and   0.1 0.1 0.1 0.001
T

B diag .  The optimal 

controller employs seven hidden layer neurons, with gains set to 1 100   and 2 1  . 
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The helicopter's initial position and orientation are set to zero. Figure 2 displays the 

capabilities of the helicopter when taking off and transitioning to hover. Figure 3 shows 

the helicopter transitioning from hover to landing. Figures 4 and 5 highlight the 

helicopter’s tracking capability. Figures 6-11 show the error convergence, main rotor 

input convergence, velocity convergence, acceleration convergence, and U-vector 

magnitude when taking off and hovering. Figures 12 and 13 provide plots of the cost 

function 2

1 ( ) 0.5eJ e e  for the Take-off case in Figure 2, and Figures 14-16 show three-

dimensional tracking capabilities. It is important to note that the main rotor thrust and tail 

rotor thrust should approach constant values rather than zero in order to keep the 

helicopter in hover, while the main rotor blade roll and pitch angles should approach 

zero. 

 

 

 

 

Figure 2.2. Helicopter Altitude during Take-off 
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Figure 2.3. Helicopter Altitude during Landing 

 

 

 

 

    
Figure 2.4. 2D Helicopter Trajectory Tracking 
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Figure 2.5. 3D Perspective of Helicopter Trajectory Tracking 

 

 

 

 

    
Figure 2.6. Absolute Error in Altitude during Take-off 
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Figure 2.7. Main Rotor Control Input during Take-off 

 

 

 

 

 
Figure 2.8. Vertical Velocity during Take-off 

 

 

 

 

 
Figure 2.9. Absolute Error in Vertical Velocity during Take-off 
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Figure 2.10. Acceleration during Take-off 

 

 

 

 

 
Figure 2.11. Magnitude of U-vector 

 

 

 

 

   
Figure 2.12. Instantaneous Cost during Take-off 
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Figure 2.13. Cumulative Cost during Take-off 

 

 

 

 

 
Figure 2.14. 3D Landing While Changing Heading 

 

 

 

 

 
Figure 2.15. 3D Trajectory Tracking 
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Figure 2.16. Take-off and Circular Hovering 

 

 

 

 

2.6. HARDWARE RESULTS 

The hardware is divided into two parts – the first part consisting of the helicopter 

UAV and its onboard systems, and the second part consisting of the ground control 

station. The helicopter UAV is equipped with a processor board as well as a sensor board, 

with the processor board functioning as the onboard control system. The sensor board has 

an array of sensors and connections to external sensors including GPS, an ultrasonic 

range finder, a three-axis gyro, a three-axis accelerometer, a barometric pressure sensor, 

and a temperature sensor. Some testing was performed with an infrared range finder as 

well. The outputs of the processor board are pulse-width-modulated (PWM) signals 

which drive the motor for the main rotor as well as for four servo motors. Three of the 

servo motors control the swashplate which adjusts the main rotor roll and pitch as well as 

the rotors’ angle of attack. The fourth servo controls the thrust generated by the tail rotor.  

The ground control station is linked to the helicopter UAV by Xbee 

communications modules, which function as wireless transmitter/receivers. A laptop is at 
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the heart of the ground control station. A Matlab program on the ground control station 

reads the incoming data from an external Xbee module via USB port, which it treats as a 

virtual serial communications port. The incoming data is read one byte at a time and 

assembled into complete telemetry messages. The telemetry messages follow the 

international MAVLink communications protocol for small-scale UAVs. After the 

messages have been assembled, they are checked for errors by making use of the 

checksum built into the messages. At this point, the ground control station is also able to 

report the packet loss rate, thereby monitoring the quality of communications. Any 

corrupt messages are discarded. 

The messages are then sorted by message type, and the data is collected from each 

message. The MAVlink messages used for this system primarily contain sensor data. The 

sensor data is then processed and sent to the control system. The control system uses the 

sensor data for the states or the outputs and generates control outputs accordingly. These 

outputs are then packaged into MAVlink messages which are transmitted by Xbee back 

to the helicopter, which reads the actuator commands and controls the motors as 

instructed.  

An Align Trex 500 was selected for the helicopter airframe. This selection was 

made based on the quality of the Align Trex series of helicopters, availability of spare 

parts, and size. The 500 series is small enough to keep costs down and is relatively easy 

to work with, has a reputation for being considerably more stable than the next smallest 

size, the 450 series, and has stability on the order of the larger 600 series helicopters, but 

without the costs associated with larger helicopters. The Align Trex 500 performed very 

well during testing, and is well-crafted with precision-machined metal and carbon-fiber 
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composite components. The processor board and the sensor board were both designed by 

DIY Drones, which is a leader in small-scale autopilots for fixed-wing aircraft. The 

boards have the advantage of being relatively robust, with open-source code, a large 

online support base, and numerous advantages over similar products from other 

companies. At the time of publication, hardware development is continuing. 

 

 

 

 
Figure 2.17. Processor & Sensor Boards 

 

 

 

 

2.7. CONCLUSION 

A NN based optimal control law has been proposed for an unmanned helicopter 

with dynamics written in strict-feedback form. This controller uses a single online 

approximator for optimal tracking. The SOLA-based adaptive approach is designed to 

learn the infinite horizon continuous-time HJB equation, and the corresponding optimal 

control input that minimizes the HJB equation is calculated forward-in-time. Further, 

optimality of the controller has been demonstrated. A virtual control structure was used to 

compensate for a mathematical requirement of the optimal controller. Simulation results 
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confirm that an unmanned helicopter with this control system is capable of tracking. This 

confirms the potential for practical application for a large and expanding set of both 

military and civilian roles. 
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2. CONCLUSIONS AND FUTURE WORK 

2.1 CONCLUSIONS 

This thesis presents optimal control schemes for both state and output feedback 

control of unmanned, underactuated helicopters, forward-in-time, with the helicopter 

dynamics expressed in a form appropriate for backstepping control. The control schemes 

are applied to both hovering and trajectory tracking, and the controller tuning is 

completed independently of the trajectories to be flown. The control scheme is fully 

online in real-time, and stability is demonstrated using Lyapunov analysis. Simulations 

are provided for initial verification of the work and hardware implementation yields 

opportunity for further verification.  

The first paper addresses output feedback control with a neural-network observer 

that has not previously been applied to helicopter UAVs. A method is provided for 

compensating for the requirement that (0) 0f   by introducing a virtual controller to 

work jointly with the optimal controller. The mathematical stability proofs show 

convergence of the observer’s state estimates to the actual states and the convergence of 

the actual states to the desired states, which is driven by the dynamic controller. 

Simulation results provide visual confirmation of the helicopter hovering and trajectory 

tracking, with plots included to show both the overall system performance as well as the 

performance of the observer individually for this application. 

The second paper approaches the same problem but employs state feedback, and 

therefore does not require an observer. Simulation results and stability analysis are 

provided similarly to the first paper, but the second paper is augmented by a section on 
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the hardware implementation. This section includes the hardware used and specific 

technologies and algorithms employed for the hardware. 

 

2.2 FUTURE WORK 

There are many challenges associated with nonlinear control of helicopter UAVs. 

Although many of these challenges are addressed in this work and other challenges have 

been addressed in past works, additional challenges still remain. One area for possible 

future improvement is the development of a superior feedforward controller. Although 

the feedforward controller in this work performs well, better trajectory tracking results 

are theoretically possible. In addition, there is potential for greater robustness to sensor 

noise, as the current approach requires significant filtering of sensor data. 

Another area with potential for future improvements pertains to the hardware 

implementation. Specifically, sensor fusion algorithms for UAVs could still be improved. 

The direction-cosine matrix algorithm used in this thesis outperforms the unscented 

Kalman filter, but the performance remains imperfect and further refinements such as 

replacing the linear feedback loop are possible. An additional area for future 

contributions would be in the development of more sophisticated swash plate mapping 

algorithms.  

The current work maps the control outputs to the actuators in a linear fashion. 

Although some other works devote more attention to actuator dynamics, the author has 

not seen any work that fully addresses this challenge in a satisfactory manner. All of 

these areas present opportunities for future work.  
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