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ABSTRACT 

  Many programs aimed at airborne mine and minefield detection are being pursued 

and different algorithms are being developed and evaluated to achieve performance 

specifications. Thus far, no single algorithm or detection architecture has been able to 

fulfill the performance specifications for different mine and minefield detection 

scenarios. The reasons for this are numerous. The environment and the operating 

conditions under which an airborne sensor is expected to perform are highly varied. Also, 

the performance of airborne sensors and algorithms is highly dependent on the type of 

targets and environments. Research has been aimed to make the algorithms more robust 

under these varying conditions, but the studies have been only partially successful. A 

large amount of data needs to be collected and analyzed to gain insight into detection 

algorithms and their performance under different operating conditions. Data collection on 

this scale is time consuming, and costly. Due to this reason, a need exist for a simulation-

based approach. One such simulation system is developed and evaluated in this thesis. 

The factors affecting the performance of an airborne detection system include physical 

parameters (type of background, time of day), data collection parameters (swath width, 

number of steps, in-step and in-flight overlap), and minefield scenarios. Data collection 

parameters are included in the simulation tool. False alarms and mine statistics are 

modeled based on the available data collected as a part of the developmental programs. 

Various mine and minefield detection algorithms are modeled and evaluated. Simulations 

are run, and Receiver Operating Characteristic (ROC) curves are used to evaluate the 

performance at both the mine and minefield levels. Analytical models for minefield 

detection performance are formulated and used to validate the simulated performance. 
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1. INTRODUCTION 

Solutions to landmine and minefield detections have been sought for more than 75 

years. A number of different sensors, algorithms and technologies have been proposed 

and are now being pursued for landmine detection. All mine detection technologies can 

be classified into two major categories: ground-based mine detection and airborne 

minefield detection. Ground-based technologies consist of handheld and vehicular mine 

detection in which either a human or a vehicle carrying a mine detection device scans the 

neighborhood for mines. However, these techniques suffer with a number of obvious 

drawbacks. First of all, due to the presence of humans; the risk of fatal errors always 

exists. It is estimated that for every 2000 mines cleared, a fatal human error occurs 

[Ghaffari et al., 2004]. Second, ground-based methods are slow because one person 

clearing mines by hand can clear up to 20 to 50 square meters per day, and a vehicle can 

cover about 15,000 square meters per day, which is often considered to be very slow 

[Dincerler, 1995]. Third, mines are available in different materials as well as, different 

sizes and shapes. This imposes limitations in the equipment and technologies used for the 

landmine detection.  

Because of the fatal errors, slow clearing of mines of ground based minefield 

detection system, and for tactical reasons in counter mine operations, airborne 

mine/minefield detection using unmanned airborne vehicles (UAV) have gained 

popularity in recent years. Some of the recent airborne minefield detection programs in 

this research area include the Airborne Far IR Minefield Imaging System (AFIRMIS) 

[Simrad and Mathieu, 1998], Remote Minefield Detection System (REMIDS) [1999], 

Cobra Reconnaissance and Analysis System (COBRA) [Witherspoon et al., 1995], and 

Lightweight Airborne Multi-spectral Minefield Detection System [LAMD] [Haskett and 

Reago, 2001]. Visual, near-infrared, and mid-wave infrared images of a minefield taken 

from an airborne platform are processed at a ground station to determine the likely 

presence of minefields and other obstacles. The data are collected using a sensor mounted 

on a gimbal in either a push broom or step stair manner. The detection process typically 

follows a sequential paradigm based on the detection of mine-like anomalies followed by 

the detection of minefield-like patterns.  
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A huge amount of data is being collected and analyzed to gain insight into the 

actual mine and minefield detection algorithms and their performance. Various anomaly 

detections algorithms such as RX [Reed and Yu, 1990], radial anomaly detector [Menon 

and Agarwal, 2003], cluster based anomaly detection [Carlotto, 2005], signal subspace 

processing [Ranney, 2006], support vector data description [Banerjee et al., 2006], and 

false alarm reduction methods such as, gray-scale moments [Sriram et al., 2002], 

circularity [Menon et al., 2004], and reflection symmetry [Menon et al., 2004; Kiryati and 

Gofman, 1996] have been used to identify mine like targets. Various minefield detection 

algorithms have been similarly proposed such as the empty boxes test algorithm [Lake et 

al., 1997], linear pattern detection [Malloy, 2003; Muise and Smith, 1995], Hough line 

transforms [Carlson et al., 1994], Scatter Number [Earp, 2000b] and Scatter Log 

weighted [Earp et al., 1995]. 

Apart from the algorithm choices, the performance of the system depends on 

various other factors, including minefield scenarios (such as scattered or patterned), and 

data collection parameters such as swath width, side step overlap, and the size of the field 

of regard (FoR). Mine and minefield detection algorithms need to be evaluated for 

different backgrounds like arid and temperate. To evaluate the performance of the sensors 

and detection algorithms for different scenarios and algorithm choices, an enormous 

amount of data collection is required. This collection and subsequent analysis of data is 

one of the most expensive aspects in the process of system development and evaluation. 

Moreover, it is impossible to collect the data for all possible variations in mine and 

minefield detection scenarios and other data collection parameters. However, it is quite 

possible to generate reasonably accurate simulation data under different sensors, 

minefield layout scenarios, and mission-specific constraints. The simulated data can 

subsequently be used to evaluate the performance of different choices of algorithms and 

data collection models under different scenarios. This thesis describes the design of a 

simulation tool to evaluate mine and minefield level performances based on simulated 

data under different sensors and mission profile parameters. Mine and minefield level 

performances obtained using simulated data are verified using analytical results and 

available data. 
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This thesis is organized as follows. Section 2 starts with the basic airborne 

minefield detection system and explains its various blocks with the help of actual data. 

Section 3 explains the simulation system, which is developed to simulate the minefield 

detection system and also describe the flexibility incorporated in the simulated systems. 

This system evaluates the performance for a particular choice of data collection 

parameters, minefield scenarios, and mine and minefield detection and thresholding 

algorithm.  

Section 4 presents a detailed explanation of the RX anomaly detector. The RX 

detection values are then modeled using standard probabilistic models. The modeling 

results for different times of day and, different background types are provided. The 

performance of these models for different datasets is tested using the chi square test. 

 Section 5 deals with spatial distributions that are used to model the spatial 

locations of the false alarms. Complete spatial random processes, their tests and 

generation methods are discussed in some detail. Preliminary results for spatial 

distribution of mines and false alarms are also presented. 

Section 6 deals with analytical models for different minefields detection methods. 

It also explains the choice of minefield detection algorithms used for detecting the 

presence of a minefield. Minefield scoring techniques are also explained in this section. 

Section 7 shows simulation results for a particular set of parameters. Simulation results 

are generated showing the effect of various parameters including swath width, signal to 

clutter ratio, constant false alarm rate, and segment overlap. This thesis concludes with 

Section 8, which discusses the general conclusions and future work in this area. 

Some of the supporting concepts and derivations are included in four Appendices. 

Appendix A lists various spectral vegetation indices. It also shows the capability of these 

indices to differentiate between vegetation and non-vegetation (rock, soil, etc.). Appendix 

B discusses the EM algorithm and its mathematical formulation. It also derives the 

formulation of the update equation and finally parameter estimation for RX statistics. 

Convergence properties of the EM algorithm are also discussed. Appendix C explores the 

method of moments to estimate the initial parameters for RX distribution to be used for 

the EM estimation. Appendix D discusses different tests to evaluate the goodness of fit 

for the probability model obtained. 
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2. PROBLEM DESCRIPTION 

This section describes the basic airborne minefield detection system and the role 

different parameters play in determining detection performance. A typical airborne 

minefield detection system can be described in the form of the block diagram in Figure 

2.1. It consists of three different stages, each represented by a single block. The first stage 

involves data collection, which deals with various factors such as platform data, sensor 

data, minefield layout, and background data. Once the data are collected, they are 

processed in the mine level detection block to provide a list of anomalies, which are 

different for different backgrounds and depend on the anomaly detection algorithm used 

for the processing. The anomaly values are then thresholded and passed to minefield level 

detection block where the thresholded anomaly values are processed along with their 

spatial locations to provide a confidence metric pertaining to the presence of a minefield. 

Minefield level scoring is used to evaluate the performance of the airborne minefield 

system in terms of Receiver Operating Characteristic (ROC) curves.  

 

 

 
Figure 2.1. Block Diagram for a Typical Airborne Minefield Detection System 

 

 

Different data collection scenarios, as well as mine detection and minefield 

detection algorithms, are the main drivers of the performance of this airborne minefield 

detection system. Each of these blocks is discussed briefly in the following section and 

elaborated further in later sections.  
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2.1.  DATA COLLECTION SCENARIOS 

The airborne data are collected in the form of a sequence of image frames 

captured as the sensor is flown over the minefield. In a typical system, the airborne 

sensor is flown over the minefield area at a predefined altitude and speed, with a gimbal 

to collect frames of images in a specified pattern. The image data collected from one 

flight are called a run. A specified number of frames create a segment/field of regard 

(FoR), and a set of segments constitutes a run. The geo-locations of each frame along 

with other information constitute Meta data (data of data) collected using onboard GPS 

and IMU. These Meta data and any available image overlap are used to reconstruct the 

ground image for the FoR. Minefield decision is based on the detection statistics 

calculated over this FoR. Various factors of data collections that may affect the minefield 

detection performance are discussed below. 

2.1.1. Background Data. Background data play an important role in performance 

evaluation. Background refers to the ground terrain in which mines are being laid. The 

background may be vegetation, soil, road, or a combination of two or more of these areas. 

Vegetation can be either thick forest or tall grass, and soil can be either rough clay or 

smooth desert terrain among others. Apart from natural background there may be 

cultured sources of clutter in the background like soft drink cans among others. In order 

to capture the impact of these on the detection performance, both natural and cultured 

sources of clutter should be modeled appropriately. 

2.1.2. Minefield Layout. Mines are distributed in a predefined pattern that 

includes both patterned and scattered distribution. Each minefield will exhibit different 

performance due to different types of mines (metal, plastic, etc.), different sizes of mines, 

and different types of spatial distributions of mines. These layouts of the minefields are 

dictated primarily by the mechanism by which mines are laid in the minefield and tactical 

scenarios. The mines can be laid manually, by ground vehicle, or by helicopter. The 

mines can be surface laid or buried and can be of different sizes varying from small to 

large. Mines can also be classified based on the composition, i.e., they can be made up of 

either metal or plastic. Figure 2.2 shows the distribution of mines. Figure 2.2(a) shows 

typical distribution of mines for the case of scattered and Figure 2.2(b) shows typical 

distribution of mines for patterned minefields. Detection of mines depends greatly on the 
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type of mine (plastic or metal), size (large, medium or small), and color of mines (tan, 

green). Apart from these factors, number of other factors such as background terrain, time 

of day also influences the performance.  

 

 

  
                (a) Scattered Minefield                                        (b) Patterned Minefield  
  

Figure 2.2. Typical Distribution of Mines in Scattered and Patterned Minefield 
 

 

2.1.3. Platform Data. Platform data comprises a number of parameters such as 

the altitude at which the UAV is flying, flight speed, flight angle, and start position of the 

UAV. The flight altitude decides the ground sample distance (GSD) along with other 

parameters for the images, whereas the flight speed determines the frame rate for the 

image data to be collected and the in-flight overlap between the frames. In the real 

environment, these platform parameters are not constant and change across the frames 

and segments due to various reasons. Various distributions can be used to model these 

parameters. The variability of the start position and the start angle relate to how the run 

encounters the minefield front.  

The flight speed and a number of other factors including the wind angle, roll, 

yaw, and pitch of the vehicle are also not constant throughout the whole run. Even the 

altitude of the flight changes over the run due to changes in the terrain relief, which 

eventually change the image resolution for a particular frame. Sensor parameters such as 

side-step overlap also vary due to wobbling in the platform and gimbal pointing error. 
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Figure 2.3 shows variations in the flight altitude, flight speed, and heading angle for four 

consecutive segments (84 frames) corresponding to the same run of the airborne data. 

Table 2.1 shows various parameters and corresponding statistics for a particular run.  

 

 

 
Figure 2.3. Variation in Flight Altitude, Speed, and Heading Angle for Four Segments 

from Airborne Data 
 

 

2.1.4. Sensor Data. Sensor data deal with the parameters of the sensor used for 

the collection of data. For current purposes, the sensors are basically imaging sensors that 

operate over various frequency bands of the EM spectrum. Many sensors operate in the 

mid-wave infra red (MWIR) frequency range because this frequency band is sensitive to 

the thermal contrast as well as reflectance and has desirable spatial resolution. Significant 

thermal contrast can be found between metallic and non-metallic mines and typical 

backgrounds for surface as well as buried mines, making the imaging more convenient 

than other modalities. The MWIR provides useful data during both day time and night 
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time imaging. Multi spectral imaging (MSI) sensors in visual and near infrared are also 

used for the image capture. These sensors facilitate the dual purpose of creating a colored 

image from the individual bands as well as showing features in visual and near infrared 

bands that may not be prominent in any one of the single band.  

 

 

Table 2.1. Various Parameters and Segment Information for a Particular Run 

 
Date  8-May-05     
Time 14.51.12 Afternoon Time Data   

No. of IR segments 57     
No. of MSI segments 57     

  Mean Standard Deviation Units 
Altitude 2073.00 149.59 feet 

Flight Speed 72.77 3.29 knots 
Segment Width 59.95 9.40 meters 
Segment Length 172.48 10.74 meters 

 

 

 Figure 2.4 shows an example of the tiled image for the daytime MWIR image 

segment.  Figure 2.5 shows a single frame for red, green, blue, and NIR bands of the MSI 

sensor. The MSI sensor, however, is unavailable at night time due to the lack of 

illumination. Figure 2.6 shows the tiled image for the night time MWIR image segment. 

For the comparison sake, the area covered in night time and day time IR segment is the 

same. Because MWIR data shows a mix of reflection and thermal signature in contrast to 

MSI data, which is primary based on reflected data, it is useful even in the night time.   

2.1.5. Reconstruction/Registration. The individual overlapping image frames 

for the FoR obtained using the gimbal needs to be stitched together to create mosaic 

image of the FoR. This method is called registration. Figures 2.7 and 2.8 show an 

example for the daytime MWIR and MSI image segments, respectively, for the same 

segment whose tiled image is shown in Figure 2.4. The colored image in Figure 2.7 and 

elsewhere are generated using the red, green, and blue bands. Figure 2.9 shows the 

corresponding night time data for MWIR. One of the same terrain features is indicated by 

a red circle in all three images for easy comparison.    
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Figure 2.4. Tiled Image Segment for MWIR Data 

 

 

  
(a) Frame for a Red Band                 (b) Frame for a Green Band 

  
(c) Frame for a Blue Band       (d) Frame for a NIR Band 

 
Figure 2.5. Red, Green, Blue, and NIR Frames for an MSI Image Segment 
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Figure 2.6. Tiled Image Segment for Night Time MWIR Data 

 

 

 
Figure 2.7. Afternoon Time MSI Registered Image Segment  

 

 

The registration is possible due to the availability of Meta data as well as in-step 

and in-flight overlap between image frames. Due to the computation complexity of image 

based registration, it is desirable if part of processing can be done with registration based 

only on the geolocation in Metadata. However, the registration/reconstruction error will 

be worse in those cases when the overlap between image frames is not enough or cannot 

be used due to computational costs. The resulting larger registration error has bearing on 

minefield performance especially for patterned minefields since the detected mines may 

loose their linearity.   
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Figure 2.8. Afternoon Time MWIR Registered Image Segment 

 

 

 
Figure 2.9. Night Time Segment for MWIR Data 

 

 

Mine level detection of the mine like targets, can either be performed at the frame 

level or at segment level. However, some prejudice might be associated at the frame level 

calculation due to duplication of the false alarms in adjacent (both in-step and in-swath) 

frames resulting in biased performance because contribution from one false alarm may be 

recorded multiple times. Because of this reason, good registration is important in order to 

accurately transform these individual frames in a single coordinate system. Thus 
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reconstruction is also the method by which the anomaly detections of individual frames 

are resolved to identify unique detections in FoR. 

 

2.2. MINE DETECTION 

The purpose of mine detection block is to detect the location of potential mines 

once the anomaly values are assigned to each pixel. Mine detection step is intermediate 

step before the minefield detection that provides the information about the detection of 

mine like targets along with certain inevitable false alarms. Mine detection depends on a 

slew of factors including the type of sensor(s), target signature (signal to clutter ratio), 

size of the target, resolution of the sensor, type of the background, and the algorithm 

(anomaly detection, false alarm mitigation methods) used.  

In the proposed simulation system, only a set of potential mine locations and 

potential false alarm locations are simulated. Thus it is important to assign an appropriate 

anomaly detection statistics to the mine and false alarm points. Different models for the 

distribution of anomaly detection statistics can be used which depend on the detection 

algorithm. One of the popular algorithms used for anomaly detection is RX [Reed and 

Yu, 1990]. The corresponding detection statistics under the white Gaussian background 

follow the central F-distribution. However, the distribution of RX detection statistics can 

be quite different for a more general background due to cultured clutter and spatial 

correlation in the background data that influences the system performance. One of the 

major reasons for deviation from the ideal behavior is the assumption of a white Gaussian 

background, that is not always true due to the presence of different classes of terrains 

[Stein et al., 2002], and the presence of multi resolution feature spaces [Noiboar and 

Cohen, 2007]. A number of other distributions for anomaly detectors are proposed based 

on different features which are discussed in Section 4.5.  

 The performance of the sensor at the mine level detection is parameterized in 

terms of the probability of detection (PD) and corresponding false alarm rate (FAR) 

(false alarms per m2). A mine level ROC (Receiver Operating Characteristic) curve is 

drawn showing the mine level performance in terms of PD and FAR. The issue in this 

case of mine detection performance modeling is to develop a model for the selected mine 

detection algorithm to assign proper test statistics to mine and false alarm detections and  
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estimate mine level performance (in terms of PD and FAR) for a given sensor, target, and 

background under reasonable assumptions.  

 

2.3. THRESHOLDING AND TARGET SELECTION 

The anomaly detection algorithm assigns a confidence value or some other metric 

to a point being a likely mine. The next step is to threshold the list of these locations to 

obtain the set of valid anomalies that are statistically distinct from the neighboring 

background and highly prospective mines. These sets of anomalies are then passed for the 

minefield level processing. Another reason for the performing thresholding operation is 

to effectively reduce the number of targets that will be passed for the minefield detection. 

Thresholding algorithms used for the selection of targets affect the minefield detection 

performance.  Three different thresholding schemes are discussed in section 3.3. False 

alarm mitigation (FAM) techniques can also be applied before passing the thresholded 

targets for the minefield level processing. FAM techniques try to reduce false alarms by 

exploiting the shape, photometric, polarity, spectral and other properties of the mine 

targets to reject likely false alarms. Detailed FAM techniques are discussed in [Menon 

2005]. However for present implementation, these techniques are not modeled. 

 

2.4. MINEFIELD DETECTION 

Locations of targets obtained after target selection and thresholding are then used 

to detect the presence of the minefield and eventually evaluate the minefield confidence 

metric for the given FoR. The minefield detection performance depends on the type of 

minefield, characteristics of the background, mine level performance and the minefield 

algorithm. In a typical implementation separate algorithms are used for patterned and 

scattered minefields. Numerous algorithms are available in the literature for these two 

types of minefields. The empty boxes test (EBT) algorithm [Lake et al., 1997], linear 

pattern detection [Malloy, 2003; Muise and Smith, 1995], robust mine detection 

algorithm [Robins and Robinson, 1995], and Hough line transforms [Carlson et al., 1994] 

are some of the patterned minefield detection algorithms available in the literature. 

Scatter Number [Earp, 2000b] and Scatter Log weighted [Earp et al., 1995] are some of 

the techniques used for scattered minefield detection.  
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The performance of the system at the minefield detection level is defined in terms 

of the minefield probability of detection and the corresponding false alarm rate (false 

alarms per km2). The system specifications are often defined in terms of the operating 

point on this curve. Another factor that may impact the evaluation of minefield 

performance is the minefield scoring method used. Two possible scoring methods are 

also discussed in Section 3.4. 
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3. SIMULATION SYSTEM 

 This section presents an overview of the simulation system which is being used to 

simulate and evaluate the performance of a typical airborne minefield detection system. 

A graphical user interface called "SimulAMFD" is developed to facilitate this evaluation 

[Agarwal and Agarwal, 2006]. The GUI provides an input interface between the user and 

the modeling software and allows the user to specify different design parameters, 

evaluate mine and minefield level performance, and analyze individual mine and 

minefield detection algorithms. This simulation system estimates airborne mine and 

minefield performance under different sensor and minefield layout scenarios. The 

methodologies and models used for data collection, mine detection, and minefield 

detection are discussed below separately. The simulation system allows estimating mine 

and minefield level performance for a particular choice of data collection parameters and 

algorithms. It is also possible to compare analytical and simulation-based results for 

selected detection scenarios for validation purposes. The simulation system also has the 

flexibility to conduct design trade-off by comparing performance between different 

choices of sensor-related parameters. 

 

3.1. DATA SIMULATION 

Data collection is the first step for any minefield detection system. The data for 

the simulation are generated in a manner that closely resembles the data collection in 

various airborne minefield detection programs. A large number of parameters are 

involved in the simulation of data for an airborne minefield detection system. Most of 

these parameters are used to model the flight path over the simulated background and 

minefield scenario. Table 3.1 gives a list of the parameters needed for modeling and 

analysis of data collection scenarios. The parameters shown in Table 3.1 are directly 

provided to the simulation system. A number of other parameters are also used, which are 

derived using these parameters. The input and derived parameters are discussed in the 

following subsections in more detail. 

 

 



 

 

16

Table 3.1. Data Collection Parameters for Simulation 

DATA COLLECTION PARAMETERS 

Platform Data Sensor and Gimbal Data Background 
Data 

Minefield 
Data 

Nominal Flight 
Speed (V) Camera Resolution (NxM) Length Minefield 

Layout 
Variation in 
Flight Speed Camera Orientation Breadth Minefield 

Distribution 
Nominal Flight 

Altitude (A) FOV (FOVx , FOVy) 
Background 

Anomaly Density 
Minefield 
Position 

Variation in 
Flight Altitude Frame rate  (H) Spatial 

Distribution 
 Mine Size 

and Material

Flight Angle Number of Steps per FoR (s) Anomaly 
Statistics 

 Mine 
Statistics 

Flight Position Side step Overlap (λy)     
  Number of Swath per FoR (S)     

 

 

3.1.1. Platform Data. The flight speed (knots) and corresponding variation are 

provided directly in the simulation tool. Similarly, the flight altitude (feet) and its 

corresponding variation are also predefined. The flight angle in degrees is the heading 

angle of the flight with respect to the X axis on the ground. The flight angle can be a 

fixed number or may have some variation. The variations in flight speed, flight altitude, 

and flight angle can be modeled using Uniform or Gaussian distribution. For this, 

appropriate inputs (minimum and maximum values for Uniform distribution and mean, 

standard deviation values for Gaussian distribution) are provided to the simulation 

system. The flight position is the position where the flight path for a given run will start. 

Similar to the flight angle, the position can be a fixed X and Y locations or it can be 

distributed according to Uniform distribution for which the start and end positions for 

both the X and Y directions will be provided.  

3.1.2. Sensor and Gimbal Data. The field of view, number of rows and columns, 

and altitude define the GSD, which in turn defines the target size. Camera Orientation 

defines the orientation for the data collection. It can be either 0 degree, which is the 

default orientation for step–stare data collection (in which the columns of an image frame 

are in the in-flight direction and the rows of an image frame are in the across- flight 
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direction), or 90 degrees, which is the default orientation for push broom data collection. 

The number of rows and columns define the size of an image frame. If the image size is 

given by NxM in pixels and xFOV  and yFOV  are the field of view in 'x' and 'y' 

direction, then resolution/ground sample distance (GSD) of the sensor (in inches), r  is 

given as  

 

                                   
N
FOVA

M
FOVAr yx

15
**

15
** ππ

==  (inch)                         (3.1) 

 

where altitude A is in feet and xFOV  and  yFOV  are in degrees. 

Now, the length (X) and width (Y) of the image (in meters) for the step-stare mode 

is given by 

 

                                              rMX 0254.0= , rNY 0254.0=                                        (3.2)                        

 

and for the push broom mode is given by 

 

                                               rMYrNX 0254.0    ,0254.0 ==                                      (3.3) 

 

The frame rate is defined as the number of image frames per second and it is 

provided in Hz. The number of steps depends on the mode of the data collection. For the 

push broom mode, the number of steps is equal to one, whereas for the step stare mode, 

the number of steps is greater then one and is derived based on the requirements of swath 

width. Side step overlap λy can be controlled by the gimbal, and it is taken as an 

independent variable. A positive value of λy represents the corresponding fraction of 

overlap between images in the direction perpendicular to the flight, and a negative value 

represents a holiday (or a gap) between frames. The number of steps and side step 

overlap along with other parameters define the swath width which determines the width 

of the minefield encountered in the run and has bearing on the minefield detection. The 

swath per FoR is predefined number that dictates the length of the FoR. 
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In-flight overlap depends on the frame rate of the sensor, the flight speed, and the 

frame length. The in-flight overlap xλ is given by 

 

                                                   
XH

Vs
x 94384.1

1−=λ                                                    (3.4) 

 

where V  is the flight speed in knots, s  is the number of steps per swath, and H is the 

frame rate of the sensor in Hz. The swath width W and length L  of an FoR is then 

calculated as 

                                 YsYW yy λλ +−= )1( , XSXL xx λλ +−= )1(                               (3.5) 

 

where S is the number of swaths per FoR. 

 3.1.3. Background Data. Background data such as length, breadth (meters), and 

anomaly density (per meter square) are directly provided to the simulation system. 

Length and breadth define the size of the simulated background area. A set of parameters 

is needed to be provided to define distribution of anomaly statistics. Different anomaly 

detection (AD) algorithms can be used to generate AD values for the simulation. The 

anomaly statistics are dictated by the AD algorithms. AD algorithms calculate the test 

statistics at all the pixel locations on the image to find those pixels which are statistically 

different from the background. This test statistics depends on number of factors such as 

background type, AD algorithm used, time of the day, etc.  This test statistics can then be 

modeled using various statistical distributions. RX is one of the most popular AD 

algorithms, whose test statistics can be modeled by Beta distribution or Gamma 

distribution as explained in [Ganju, 2006]. Another distribution that can be used to model 

the RX anomaly values is central F distribution which is used in this thesis and discussed 

in Section 4.3. Distributions, other than these can also be used to model the test statistics. 

Thus, for modeling the anomaly values, input parameters corresponding to a particular 

distribution are provided as inputs to the simulation system. The parameters can be 

degrees of freedom (numerator, denominator) for a central F distribution, shape 

parameters for a two-parameter Beta distribution, and a shape parameter and scale 
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parameter for a two-parameter Gamma distribution. Spatial distribution deals with 

statistical models that can be used to model the spatial locations of these anomaly values. 

Similar to anomaly statistics, spatial distribution requires inputs for some mathematical 

(or statistical) models used to model the spatial locations of the background anomaly 

values. Poisson distribution is currently implemented to model the spatial distribution of 

background anomaly. 

3.1.4. Minefield Data. In the present tool, nine from many possible minefield 

templates used in minefield deployment [FM 20-32, 1998] have been implemented. 

Among these, scattered and patterned minefields are the two most commonly used 

templates. Figures 3.1 and 3.2 show representative spatial distributions of the two 

minefield templates, respectively. For patterned minefield, mines are arranged in a three 

rows that are not necessarily straight or linear.  

 

 

                                                   
Figure 3.1. Minefield Template Used for Generating a Scattered Minefield 

 

 

                          
Figure 3.2. Minefield Template Used for Generating a Patterned Minefield 
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The minefield position provides information about the locations where a 

minefield is placed in the simulated background. Mine statistics describe various 

statistical models that are used to model the anomaly detection statistics at the locations 

of mines. Similar to the false alarm statistics, a set of parameters is needed to be provided 

for the distribution of mine statistics. One such model is discussed in section 4.1. 

 Figures 3.3 and 3.4 represent simulated runs. Figure 3.3 shows a simulated run in 

which the segment passes over the minefield completely and thus constitutes a minefield 

segment, whereas in Figure 3.4 the run completely misses the minefield. The flight angle 

is assumed to be uniformly distributed with the minimum and maximum flight angle 

( )θ±Δ  specified as ±100. The altitude and flight speed is assumed to be constant and kept 

at 2050 ft and 75 knots, respectively. The flight position is also assumed to be uniformly 

distributed along the 'x' direction (minefield depth) and kept constant along the 'y' 

direction (minefield front). The background point locations are simulated as Poisson 

distribution with a specified density. A part of these background points constitute the 

mine level false alarm for the background. In the current simulation, a density of 0.01 

background points per meter square is used because in most cases the highest false alarm 

rate considered at the mine level is 0.01 FA/m2. The minefield layout of a patterned or 

scattered minefield is designed according to specified templates. In all simulations, the 

flight path is taken to be approximately perpendicular to the minefield front. However, a 

variation of approximately 150 is allowed. Green dots (.) represent the background 

clutter, and red diamonds represent the mines. Represented segments and frames are also 

highlighted along with the flight start position and flight angle. 

 

3.2. EVALUATING MINE LEVEL PERFORMANCE 

Once the data are generated corresponding to the provided parameters, the next 

step is to evaluate the mine level performance. Mine level performance depends on the 

AD algorithm (such as RX etc.) which is captured by the Figure 2.1. The anomaly values 

obtained from the AD algorithm are thresholded and for each threshold, the probability of 

detection (PD) of a mine and corresponding false alarm rate (FAR) are calculated. The 

PD and FAR depend on the distribution of the anomaly values for the false alarm and 

mine targets. Mine level ROC curves are then drawn to plot the PD against the FAR.  
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Figure 3.3. Simulated Run Passing Over the Minefield Completely 

 

 

 
Figure 3.4. Simulated Run Missing the Minefield Completely 
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3.3. THRESHOLDING SCHEMES 

The anomaly detection values are thresholded to obtain the set of most likely 

anomalies which are statistically distinct from the neighboring background. The threshold 

plays a significant role because the targets selected at this level participate in the 

minefield level detection. The selected targets should be such that a reasonable number of 

false alarms are passed while selecting certain levels of mines for effective minefield 

detection. A number of thresholding schemes for this purpose can be used. Each 

thresholding scheme affects the probability of minefield detection and corresponding 

false alarm rate in a different manner. Three different thresholding methods are discussed 

in this section.  

3.3.1. Fixed Threshold. This is a straightforward scoring approach in which only 

the targets with detection statistics above the specified threshold are allowed to take part 

in scoring. The threshold is provided by the user in the modeling tool. This scoring 

approach provides reasonable performance for the cases where the non-maximal 

suppressed anomaly values follow almost the same statistical distribution for all FoRs. 

Thus, this scoring scheme can yield very good minefield detection performance if the 

background is homogeneous. It is, however, often impossible a priori to select an 

appropriate value of threshold because a desired value of the threshold may differ from 

terrain to terrain due to differences in the background data. The threshold will also 

depend on the time of day due to shadows and other effects. Moreover, due to the 

difference in background features from one FoR to another, the number of detections may 

be very large in some FoR and very small in other FoR. 

3.3.2. Constant Target Rate. The constant target rate (CTR) implies that in each 

FoR, a fixed number of target locations with the highest detection statistics are selected. 

Number of targets is provided as an input in the modeling tool. Effectively the detection 

threshold changes from one FoR to another FoR in this case, depending on the selected 

target rate per FoR. The minefield level performance becomes subjective for this 

thresholding scenario because the number of false alarms selected per FoR remains same 

irrespective of the type of terrain. The minefield detection in this case should rely on a 

metric different then the number of detections. The detection of mines for this 

thresholding scheme may result in poor performance in a non-homogeneous background 
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because the probability of selecting some fixed number of mine targets in a highly 

cluttered area will be less than the probability of detecting the same number of mine 

targets in a low cluttered area. Moreover, if the number of targets is not selected 

appropriately, then it may result in poor minefield performance as well. Thus, this 

scheme can be used effectively for homogeneous background, but not for non-

homogeneous background due to the above stated reasons.   

3.3.3. Constant False Alarm Rate. In CFAR case, the detection statistics are 

modeled by appropriate distribution and a threshold is selected for a desired false alarm 

rate. The false alarm rate per square meter ( Bρ ) is specified. In this thresholding scheme, 

the expected number of false alarms in a selected area is a constant which depends on the 

type of distribution that is used to model the detection statistics and the goodness of fit of 

the model. For each segment, the detection statistics are modeled by an appropriate 

distribution and the threshold is selected adaptively as shown in [Ramachandran, 2004].  

A particular false alarm rate can be used depending on the type of background and 

terrain. If the background is highly cluttered then it can be anticipated that for a higher 

detection of mine targets, the false alarm rate should be higher. In contrast, for areas with 

low natural clutter, a lower false alarm rate can be used to achieve higher detection of 

mine targets. Thus, CFAR is a very effective scheme for thresholding mine targets, 

resulting in possibly better mine and minefield detection performance.  

 

3.4. EVALUATING MINEFIELD LEVEL PERFORMANCE 

This is the final step in a typical airborne minefield detection system. The 

minefield level performance depends on the minefield detection algorithm, mine level 

performance, thresholding scheme, and the minefield scoring method used. Because most 

of the mines are either scattered or laid in a pattern in a minefield, most of the minefield 

detection algorithms provide an indication of presence in the form of a minefield 

confidence metric, which is a quantitative measure of the confidence level for the 

presence or absence of a minefield in that area. The thresholded anomaly values, along 

with their spatial locations, are provided as an input to these minefield detection 

algorithms over which the minefield confidence metric is derived. Various algorithms 

that are currently being implemented are pattern linear, pattern regular for a patterned 
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minefield, and scatter number and scatter log weighted for a scattered minefield. These 

algorithms are explained in detail in Section 7.  

Once the minefield level confidence values are obtained the next and final step is 

to score the minefield for its performance evaluation in terms of an ROC curve. This 

ROC curve will then represents the probability of detection against the probability of 

false alarm for a minefield. The minefield confidence statistics effectively represent the 

likelihood that a minefield is present in this FoR or the likelihood that the given FoR is 

collected over an actual minefield. These FoRs may be non-overlapping, or a sliding 

window approach is used to define an overlapping FoR. Scoring can be done either for a 

segment/FoR or a complete run. Both of these scoring methods are currently 

implemented in the simulation system.  

 In scoring the detection performance, the simplest approach is to identify FoRs 

that are actually over the minefield to establish the ground truth. Once this ground truth is 

established, each FoR can be scored as a detection or false alarm, and an ROC curve can 

be drawn. For FoR-wise minefield scoring, one input is required in the simulation system. 

If the input is between 0 and 1(inclusive), then the ratio of the area occupied by the mines 

to the area of the FoR should be greater than the input to be called a minefield FoR. 

However, if the number is greater than 1, then that many mines should be detected in a 

FoR for it to be called a valid minefield FoR. The main problem with this approach is that 

at times an FoR may only be partially over the minefield. In such cases one would have 

to make an arbitrary choice of when to call a given FoR as belonging to a minefield and 

when not to do so. The evaluated performance is significantly dependent on this choice. 

Moreover, the resulting ROC curves give the probability of correct classification of the 

FoR and not the probability of detection of the minefield.  

 An alternative, slightly complicated, but more representative approach is to score 

the runs and not the individual FoR. In this case the scoring is based on actual geo-

locations of a minefield. The minefield is defined by its location and extent. Any run that 

intercepts the minefield suitably is said to be a minefield run. In practice, one run can 

have more than one minefield, which would be evaluated as independent minefields. A 

minefield is said to be detected if any FoR that falls over the minefield is flagged as 

containing a minefield. Multiple detections over the same minefield location are 
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neglected. A similar approach is followed for false alarms. Any FoR that does not 

intercept a minefield is a likely candidate for a false alarm. However, multiple false 

alarms that hit in the same area of the field are neglected. Thus, once an FoR is called a 

false alarm, any other FoR within a specified distance from this FoR will not be counted 

as a false alarm. It is important to note that the length of this distance over which further 

false alarms are neglected does not affect the measured false alarm rate; it only limits the 

maximum false alarm rate that could be reported.  Any reasonable size such as 100m or 

200m can be used. However, the size should be at least as long as the length of an FoR. If 

the scoring is done over the complete run, then any FoR having more than zero mine 

targets can be defined as a valid minefield segment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

26

4. ANOMALY DETECTION — MODELING RX STATISTICS 

AD algorithm calculates the detection statistics at all the pixel locations on the 

image to find the pixels that are statistically different from the background. This section 

discusses the modeling of the statistics for an Anomaly Detection (AD) algorithm. RX is 

one of the most popular algorithms for anomaly detection [Reed and Yu, 1990; Holmes, 

1995]. Modeling of the detection statistics for RX algorithm is discussed in this section. 

Further processing such as False Alarm Mitigation (FAM) can then be used to segregate 

the possible mine targets from the false alarm depending on various feature classification 

algorithms such as circularity, radial symmetry, and gray scale moments [Menon et al., 

2004]. For the present discussion, the RX algorithm is used to detect the possible mine 

targets from the background anomaly. False alarm mitigation has not been currently 

implemented. 

 

4.1. MODELING RX ANOMALY DETECTOR 

Various anomaly detection algorithms are proposed for mine level detection in the 

literature such as RX [Reed and Yu, 1990; Holmes, 1995], and Unmixing Component 

Analysis [Yanfeng et al., 2006]. An optimal matched response based on a locally 

estimated first-order Gauss-Markov model for the background and known mine template 

has been proposed by Liao et al. for anomaly detection [Liao et al., 2001]. For the current 

discussion, the anomaly detection algorithm considered is RX. The RX algorithm has 

become the de-facto baseline anomaly detector. This algorithm assumes the available 

images to be zero mean, uncorrelated, and Gaussian distributed. This assumption is fair 

enough for most of the low-resolution electro-optical sensors (although many images are 

not truly Gaussian distributed). By definition, images are not zero mean; however, real 

images can often be assumed to have a slowly varying mean value. A non-stationary 

local mean can be subtracted from the image to generate a locally zero mean image, 

which is then passed through the RX anomaly detector. The RX detector then provides 

the statistical measure for the presence of an anomaly at each pixel location in the image. 

However, all pixel RX values are not used because local neighborhood values are often 

correlated in case of high resolution images. Instead the local maximum in the 
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neighborhood can be considered as viable anomalies. This is achieved by non-max 

suppression, which can be viewed as a filter process that only allows the maximum value 

in a given neighborhood to pass while suppressing all the other RX values. A detailed 

explanation of the RX anomaly detector and the working of non-max suppression can be 

found in [Ramachandran, 2004]. This section presents a brief overview of the RX 

algorithm and outlines its functional working. 

The RX algorithm involves three sets of masks: the target mask, the blanking 

mask, and the demeaning mask. Figure 4.1 shows the geometry of the three masks used 

in the current implementation. Square or rectangular mask can also be used. The target 

radius )( Tr  defines the target mask (WT), which defines the size of the target signature, 

which is assumed to be circular in shape. The annular region between the target radius 

and blanking radius (rB) defines the blanking mask and specifies the region that is 

omitted from the estimation process. This region is excluded because it may typically 

contain shadows and other reflective effects of the target. Inclusion of this region can 

distort the target and clutter estimates. The third mask is the clutter mask, which is 

defined as the annular region between blanking radius (rB) and demeaning radius )( Dr , 

which defines the extent of the background that is used to compute the background 

covariance. This demeaning radius also defines the demeaning mask, which is used to 

compute the local mean for local demeaning of the raw image.  

 

 

 

Figure 4.1. Geometry of Masks in RX Anomaly Detection 
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The target radius and demeaning radius are independent of each other and provide 

a good estimate of the target statistics and background statistics, respectively. Effectively 

this RX algorithm accepts the raw image as an input and calculates the convolution with 

the set of the above three masks. Thus, what is being computed is effectively the signal to 

clutter ratio for each pixel in the image. The RX output provides an image equal in size to 

the size of the actual image.  

The RX algorithm is generally applicable for multi-band images with zero mean 

and uncorrelated Gaussian background [Reed and Yu, 1990]. For an image 

pixel lIjiI =),( , the RX statistics r  for a J band image is given by 

 

                                                            S
T
S Mr μμ 1−=                                                     (4.1) 

 

where M is the scaled local covariance matrix and Sμ  is the target signature given by 
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where  )( 22
BDC rrN −= π  and 2

TT rN π=  are the number of clutter and target pixels used in 

estimating M and Sμ  respectively. 

The scaling of RX statistics presented here is slightly different from that used in 

other literature [Menon, 2005; Ganju, 2006] to ensure consistency with the origin RX 

paper [Reed and Yu, 1991]. The difference arises because of the way M and Sμ  is 

defined. The RX statistics ‘r’ used here can be written as                                                

 

                                                ( ) XCT rNNr =                                               

where Xr  is the RX statistics defined in [Menon, 2005; Ganju, 2006].  
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Under the assumption of zero-mean uncorrelated Gaussian variable, the probability 

density functions obtained by Reed and Yu [Reed and Yu, 1990] for the RX statistic for 

the background location and the target location is given by, 
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where ( )0  Hrf  is the probability density function for x given that it is not a mine target 

(null–hypothesis) and ( )1  Hrf  is the probability density function given that the pixel 

location belongs to a mine (non-null hypothesis). );;(1 zyxF  is the confluent 

hypergeometric function, cN denotes the number of pixels in the clutter template in the 

neighborhood, J represents the number of bands, and );( ηγB  denotes the beta density 

function. The generalized signal to noise ratio (GSNR) or scale factor ' a ' is given by    
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where μ  is the mean target signature,σ is the standard deviation of the background area, 

and TN is the number of pixels in the target template.  
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 The RX statistics for background location and target location given by Equation 

(4.2) and Equation (4.3) can also be modeled by the central F and non-central F 

distribution. The central F distribution is defined as the ratio of two central chi squared 

variates and non-central F distribution is defined as ratio between non-central chi square 

and central chi square variates. Central F and non-central F distributions are defined as 

[Johnson et al.,1995]: 
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where 1v  is the numerator degrees of freedom (and denominator degrees of freedom 

(DOFN) and 2v  is the denominator degrees of freedom (DOFD) and a is the GSNR. 

Comparing Equations (4.2) and (4.6), the RX distribution under a null hypothesis can be 

easily transformed into central F distribution with transformation 

 

                                                                          
1

2

v
vrx =                                                 (4.8) 

 

where 1v  =  J  and 2v  = JNC −  and ( )2,2 21 vvB  is the complete Beta function.  

Thus, RX detection statistics can be modeled into an F distribution by scaling the 

detection statistics by )( JNJ C − . However, due to a non-ideal environment and with 

different terrain types and local correlation in the background data, the statistics in 
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Equation (4.7) often does not follow F distribution. However it is postulated that a scaled 

RX statistics is defined as 

 

                                                       r
v
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1

2=                                                     (4.9) 

 

may actually follow F distribution. This scale factor ‘k’ is very similar to the scale factor 

‘λ ’ used in [Ramachandran, 2004]. This scale factor ‘k’ also needs to be estimated. For 

the present case, the scaling is derived using the statistical method as described in 

Appendix C.  Figure 4.2 shows some F distributions with different DOFN and DOFD . 

 

 

 
Figure 4.2. PDF for a Central F Distribution with Different Values of DOFN and DOFD  

 

 

4.2. MODELING NON-MAX SUPPRESSION 

The signal to clutter image obtained from the RX algorithm is subjected to non-

max suppression to obtain the list of anomaly values which are highlighted by the 
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anomaly detector. Non-maximal suppression is a processing algorithm that suppresses 

(makes zero) all the targets in a specific neighborhood (R-pixel radius) except the local 

maximum. The target list so obtained is effectively the list of row and column 

coordinates of the potential targets along with the AD values at respective row and 

column values. The operation of non-maximal suppression can be explained with the help 

of Figure 4.3. Let the target location be specified by l(i,j) (marked by ‘X’ in the figure) 

and let R be the radius of the local neighborhood. Only the RX values inside the radius R 

will be considered for the non–maximal operation. The RX value at the central location l 

is set to zero if its value is not the maximum in this R pixel neighborhood; otherwise it is 

left as it is and will be a potential target. The same operation is repeated for each pixel 

location in the image and all local maxima are selected.  

 

 

 

Figure 4.3. R -pixel Neighborhood Showing Potential Targets 
 

 

Let the function g(l) represent the mapping function performed by the non-max 

operation, and let rB  be the R-pixel neighborhood. Thus, 
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If )|( 0Hxf  is the probability density function (PDF) under a null hypothesis, 

then the probability density function used to model the background clutter statistics after 

non-max suppression is given by [Ramachandran, 2004]: 
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where AN θ=  is the expected (average) number of independent targets present in the 

neighborhood rB , A  is the area of the neighborhood rB , θ  is the density of targets, and 

( )xF0  is the cumulative distribution function (CDF) for )|( 0Hxf  defined as, 
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Similarly, the probability density function used to model the mine target statistics 

after non-max suppression is given by: 
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where )|( 1Hxf  is the PDF under non null hypothesis. 

Figure 4.4 shows the post non-max F distribution for various values of DOFN, 

DOFD and N. As seen from the Figure 4.4, the distribution can take different shapes 

depending on the values of DOFN and DOFD. Also, a larger value of N has the effect of 

pushing the distribution towards larger values.  
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Figure 4.4. Post Non-max PDF for an F Distribution with Various DOFN, DOFD, and N  

 

Figure 4.5 shows a simulated PDF of the background and mine RX statistics for different 

GSNR values after non-max suppression. As shown in the PDF, the detected number of 

mines and detected anomalies are different for a given threshold. The PDF for 

background RX values is drawn using Equation (4.10) and corresponding mine RX 

values is drawn using Equation (4.11). The background and mine RX values are assumed 

to be modeled as central F and noncentral F distribution, respectively. GSNR is 

responsible for the statistical difference in the background RX (blue) and mine RX (red, 

magenta and black) values, which is evident from the Figure 4.5. 

 

4.3. PARAMETER ESTIMATION FOR RX DETECTIONS 

Modeling of detection statistics is very useful because it provides valuable 

information about the spatial correlation and non-homogeneity in the data. In order to 

compare the performance of the RX anomaly detector for various terrains (sparsely 

vegetated, densely vegetated, and/or dirt) and for different times of day (morning time, 

afternoon time), it is very important to model the RX statistics using probabilistic models.  
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Figure 4.5. PDF for a Post Non-Max Background Anomaly and Mine Anomaly Statistic 

Value for Different GSNR Values 
 

 

Previously, RX detection statistics have been successfully modeled using Beta 

and Gamma distributions [Ganju, 2006; Webb, 2000; Copsey and Webb, 2001; Huiyan et 

al., 2005]. In this section, the RX detection statistics will be modeled with a central F 

distribution. The model estimation for the central F distribution is done using the EM 

(Expectation Maximization) technique. Various statistical tests are applied to check the 

goodness of fit of the modeled distribution with the actual data.  

As explained in Section 4.1, the background RX statistics can be modeled by an F 

distribution i.e.,  
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where 1v  = J (number of spectral bands) and 2v  = JNC − (number of pixels in clutter 

template – number of spectral bands).  
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Once the non-max suppression is performed, the post non-max RX statistics 

becomes  
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where )(rF  is the CDF of  )(rf  and N is the number of pixels in the local 

neighborhood.  

The EM algorithm is used to estimate the three parameters ( 1v , 2v , and N ) for the 

post non-max central F distribution. Initial parameters that are used to start the EM 

algorithm are very important and must be carefully chosen. Method of moments is 

currently used to derive the initial parameters. If there are ‘p’ parameters to estimate, then 

the first ‘p’ sample moments are equated to the actual moments of the distribution, given 

that the actual moments are functions of the parameters of interest. Other details and 

actual derivation for the initial parameters is discussed in Appendix C. 

Estimation is carried out in two steps. The first step deals with the formulation of 

an update equation for the central F distribution and the second step explains the use of 

that update equation in estimating the parameters. Appendix B explains the EM algorithm 

with its mathematical formulation and update equation for estimating the parameters for 

RX modeling. Once the estimation is completed, various statistical tests are used to 

measure the goodness of fit of the estimated parameters. These tests are described in 

detail in Appendix D. The confidence level for the current results is taken to be 0.97. If 

the chi square test statistics for a particular segment is less than the threshold, then the 

segment is said to pass the test; otherwise the segment is said to fail the test. Here passing 

the test implies that a reasonable model is obtained for the RX statistics for the given 

segment. Thus depending on the confidence level, for the present case it is expected that 

97% (because the confidence level is set to 0.97) of the segments for a given dataset will 

pass the test and 3% will fail. If the percentage of failure is much higher than 3%, then 

the modeling is bad; otherwise it is good.  
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4.4. MODELING RESULTS 

As mentioned before, in the past RX statistics have been modeled using Beta and 

Gamma parameters. However in all previous work, frame-wise modeling has been used. 

For the present case, an attempt has been made at segment wise modeling of the RX 

statistics with a central F distribution. Estimation using Beta and Gamma distributions is 

still possible but has not been implemented here. 

After the non-max operation there are about 350 samples in each frame. With 21 

frames per segment, there are approximately 7000 samples per segment. However, all 

these samples are not used for modeling, instead, all the samples within 20 pixels of the 

four edges of the frames are ignored so as to remove the bias caused by corresponding 

edge pixels. This will reduce the total number of samples used for estimation. 

The modeling is done for eight different types of datasets depending on the time 

of day (morning background segments, afternoon background segments) and background 

type (sparse vegetation background segments, dense vegetation background segments). 

Morning segments are chosen between 8:00 am and 9:00 am, and afternoon segments are 

chosen between 2:00 pm and 3:00 pm. For comparison between the background and 

minefield segments, both background only and minefield segments are used for the 

modeling.  

For the background segments, all 21 frames (corresponding to seven swath and 

three steps) are used for the modeling. However, only clean frames (without any fiducial 

or manmade artifact) are used for modeling in case of the minefield segments. The 

minefield segments are visually inspected to ignore any frame with fiducials and other 

artifacts for the modeling purposes. Approximately 50 segments (equivalent to 1050 

frames) are being used to generate the modeling results for all eight cases. Three different 

target radiuses )( Tr  of zero, one, and two are used for comparison.  

Modeling is done for both single band and multiband data. An individual MSI 

band 4 (NIR) is used to represent the single band data, and RGB colored band as well as 

all four MSI bands are used for the multiband modeling. Table 4.1 shows the number of 

segments and the exact number of frames corresponding to each dataset used for the 

modeling. Thus, a total of 24 sets (eight datasets and three target radii for each dataset) 

are being modeled and the fit is checked for the central F distribution.  
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Table 4.1. Data Type with Number of Segments and Frames Used for Modeling 

  Number of Segments Used Total Number of 
frames used 

Morning Background 
Segments 40 40x21 = 840 

Morning Minefield 
Segments 45 687 

Afternoon Background 
Segments 40 40x21 = 840 

Afternoon Minefield 
Segments 47 736 

Sparse Vegetation 
Background Segments 80 80x21 = 1680 

Sparse Vegetation 
Minefield Segments 50 790 

Dense Vegetation 
Background Segments 59 59x21 = 1239 

Dense Vegetation 
Minefield Segments 68 886 

 

 

Figure 4.6 shows a representative segment from sparse vegetation background. 

The corresponding distribution fit for inverse CDF, and PDF is shown in Figure 4.7, for 

RGB colored registered segment and target radius, 2=Tr . The sample values for the F 

distribution are plotted on the ‘x’ axis, and corresponding CDF and PDF values are 

plotted on the ‘y’ axis. First subplot shows the inverse CDF for the actual RX values 

(blue) and the estimated values (broken red) and corresponding PDF is shown in the 

second subplot. Third subplot shows the chi square bin error values. Estimated and initial 

parameters for the EM algorithm are shown in the title of the second subplot of Figure 

4.7. The initial ‘v1’ and ‘v2’ are derived using the method of moments as discussed in 

Appendix C. An initial value of N is chosen to be 100.  The pass or fail value (one or 

zero, respectively) is also shown in the title of the third subplot of Figure 4.7.  

Figure 4.8 shows a representative segment for a dense vegetation minefield 

segment and Figure 4.9 shows corresponding distribution fit for inverse CDF, and PDF 

for the actual and estimated samples along with the chi square bin error. The RGB 

colored segment with 2=Tr  is used for the distribution fit in this case also. 
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Figure 4.6. Sparse Vegetation Background Segment 

 

 

 
Figure 4.7. Distribution Fit for a Sparse Vegetation Background Segment 

 

 

Tables 4.2 - 4.9 show the pass percentages for sparse vegetation background 

segments, dense vegetation background segments, sparse vegetation minefield segments, 

dense vegetation minefield segments, morning background segments, afternoon 

background segments, morning minefield segments, and afternoon minefield segments, 

respectively.  
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The frames with fiducials are ignored through visual inspection of the frames for 

the modeling purposes in the case of minefield segments to prevent any biasing caused 

due to the fiducials.  

 

 

 
Figure 4.8. Dense Vegetation Background Segment 

 

 

 
Figure 4.9. Distribution Fit for Dense Vegetation Background Segment 
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Table 4.2. Pass Percentages for Sparse Vegetation Background Segments 

Sparse Vegetation Background Segments 
Pass Percentages (%) for 97% confidence level, RX Band Target Radius 0 Target Radius 1 Target Radius 2

NIR 83.75 85.00 90.00 
RGB Colored 90.00 88.75 96.25 

All 4 MSI Bands 81.00 95.00 97.50 
 

 

Table 4.3. Pass Percentages for Dense Vegetation Background Segments 

Dense Vegetation Background Segments 
Pass Percentages (%) for 97% confidence level, RX Band 

Target Radius 0 Target Radius 1 Target Radius 2
NIR  66.10 83.05 92.98 

RGB Colored 81.36 100.00 96.61 
All 4 MSI Bands 81.03 87.70 98.30 
 

 

Table 4.4. Pass Percentages for Sparse Vegetation Minefield Segments 

Sparse Vegetation Minefield Segments 
Pass Percentages (%) for 97% confidence level, RX Band Target Radius 0 Target Radius 1 Target Radius 2

NIR  80.00 96.00 98.00 
RGB Colored 92.00 98.00 100.00 

All 4 MSI Bands 90.00 94.00 98.00 
 

 

Table 4.5. Pass Percentages for Dense Vegetation Minefield Segments 

Dense Vegetation Minefield Segments 
Pass Percentages (%) for 97% confidence level, RX Band 

Target Radius 0 Target Radius 1 Target Radius 2
NIR  91.10 94.11 95.59 

RGB Colored 92.60 98.00 98.53 
All 4 MSI Bands 100.00 97.00 97.02 
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Table 4.6. Pass Percentages for Morning Time Background Segments 

Morning Time Background Segments 
Pass Percentages (%) for 97% confidence level, RX Band Target Radius 0 Target Radius 1 Target Radius 2

NIR  65.00 77.50 90.00 
RGB Colored 75.00 95.00 97.50 

All 4 MSI Bands 70.00 92.50 97.44 
 

 

Table 4.7. Pass Percentages for Afternoon Time Background Segments 

Afternoon Time Background Segments 
Pass Percentages (%) for 97% confidence level, RX Band Target Radius 0 Target Radius 1 Target Radius 2

NIR  72.50 85.00 95.00 
RGB Colored 75.00 95.00 97.50 

All 4 MSI Bands 72.50 87.50 90.00 
 

 

Table 4.8. Pass Percentages for Morning Time Minefield Segments 

Morning Time Minefield Segments 
Pass Percentages (%) for 97% confidence level, RX Band Target Radius 0 Target Radius 1 Target Radius 2

NIR  75.56 100.00 100.00 
RGB Colored 82.22 97.78 97.78 

All 4 MSI Bands 75.56 95.46 95.56 
 

 

Table 4.9. Pass Percentages for Afternoon Time Minefield Segments 

Afternoon Time Minefield Segments 
Pass Percentages (%) for 97% confidence level, RX Band Target Radius 0 Target Radius 1 Target Radius 2

NIR  72.34 95.75 97.83 
RGB Colored 87.23 97.87 97.87 

All 4 MSI Bands 81.82 97.67 97.78 
 

 

As shown from Tables 4.2 - 4.9, the pass percentages improve with an increase in 

the target radius. Moreover, as can be recalled from Section 4.3, at least 97% of the 

segments should pass the chi square test to expect good modeling. Modeling seems to be 
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poor for target radius of zero for most of the datasets. Reason for this behavior could be 

high propensity of single pixel outliers in the image data. However, in most of the 

practical applications, a target radius of 0 is not used so it can be ignored. However, as 

the target radius increases, the percentage of the segments passing the chi square test 

improves with some exceptions. For target radii of one and two, the pass percentages for 

most of the datasets is near 97% and hence modeling can be considered good. This is also 

expected because with higher target radius and hence lower effective resolution, the 

image is effectively independent Gaussian.  

Table 4.10 shows the distribution of segments among different datasets in 

accordance with the confidence level. The total number of segments for each case of 

different target radii among all the datasets is also mentioned in brackets. As noted 

earlier, the confidence level is set to 0.97 and hence the segments are characterized 

accordingly into four major categories:  

Category 1 (threshold < 0.95): This category represents those segments that easily 

passed the chi square test; 

Category 2 (0.95 < threshold < 0.97): This category represents those segments that 

barely passed the chi square test; 

Category 3 (0.97 < threshold < 0.99): This category represents those segments that 

barely failed the chi square test and;  

Category 4 (threshold > 0.99): This category represents those segments that easily failed 

the chi square test. 

Category 4 consists mainly of those segments that are highly non-homogeneous. 

Examples of these segments are shown in Figures 4.10 and 4.14, which represent the 

non-homogeneity of the background.  

Also for a small target radius, the tail of the distribution is heavy compared with a 

larger target radius especially for the cases when most of the frames are dirt frames. This 

is demonstrated, in Figure 4.10 which displays the dirt only frame. Figure 4.11 shows 

both the actual as well as estimated PDF for the same FoR (NIR band only) with target 

radii of 0 and 2. It can also be seen that as the target radius increases, the heaviness of the 

tail decreases. However, for both the target radii, this segment passes the chi square test. 

 



 

 

44 

Table 4.10. Distribution of the Segments Modeled by Central F According to the Confidence Level 
    NIR Band RGB Band All 4 MSI Bands 

Dataset 
Name 

Threshold 
Range  

Target 
Radius = 0 

Target 
Radius = 1 

Target 
Radius = 2 

Target 
Radius = 0 

Target 
Radius = 1 

Target 
Radius = 2 

Target 
Radius = 0 

Target 
Radius = 1 

Target 
Radius = 2 

< 0.95 37(59) 48(59) 52(57) 47(59) 56(59) 55(59) 46(58) 48(57) 58(59) 
0.95 to 0.97 2 1 1 1 3 2 1 2 0 
0.97 to 0.99 5 3 1 4 0 1 3 3 1 

Dense 
Veg. Bkg. 

(59) 
> 0.99 15 7 3 7 0 1 8 4 0 
< 0.95 59(68) 63(68) 61(68) 63(68) 66(68) 67(68) 64(65) 64(67) 64(67) 

0.95 to 0.97 3 1 4 0 1 0 1 1 1 
0.97 to 0.99 2 1 1 4 1 1 0 1 1 

Dense 
Veg. MF.  

(68) 
> 0.99 4 3 2 1 0 0 0 1 1 
< 0.95 64(80) 64(80) 71(80) 69(80) 68(80) 75(80) 59(80) 72(80) 76(80) 

0.95 to 0.97 3 4 1 3 3 2 7 4 2 
0.97 to 0.99 3 4 2 6 4 2 3 3 2 

Sparse  
Veg. Bkg. 

(80) 
> 0.99 10 8 6 2 5 1 11 1 0 
< 0.95 39(50) 47(50) 48(50) 44(50) 48(50) 47(50) 43(50) 46(50) 49(50) 

0.95 to 0.97 1 1 1 2 1 3 2 1 0 
0.97 to 0.99 5 1 0 3 0 0 1 2 0 

Sparse 
Veg. MF. 

(50) 
> 0.99 5 1 1 1 1 0 4 1 1 
< 0.95 19(40) 31(40) 34(40) 31(40) 36(40) 39(40) 24(40) 37(40) 38(39) 

0.95 to 0.97 7 0 2 1 2 0 4 0 0 
0.97 to 0.99 4 2 2 2 2 0 5 0 0 

Morning 
Time Bkg. 

(40) 
> 0.99 10 7 2 6 0 1 7 3 1 
< 0.95 32(45) 40(45) 45(45) 33(45) 44(45) 43(45) 32(45) 42(45) 42(44) 

0.95 to 0.97 2 5 0 4 0 1 2 1 0 
0.97 to 0.99 4 0 0 2 0 1 3 0 1 

Morning 
Time MF.  

(45) 
> 0.99 7 0 0 6 1 0 8 2 1 
< 0.95 27(40) 34(40) 36(40) 28(40) 36(40) 39(40) 29(40) 31(40) 34(40) 

0.95 to 0.97 2 2 2 2 2 0 0 4 2 
0.97 to 0.99 2 3 0 2 1 0 7 0 1 

Afternoon 
Time Bkg. 

(40) 
> 0.99 9 1 2 8 1 1 4 5 3 
< 0.95 31(47) 44(47) 45(46) 41(47) 45(47) 46(47) 35(44) 40(43) 40(45) 

0.95 to 0.97 2 1 0 0 1 0 1 2 4 
0.97 to 0.99 4 0 0 2 1 1 1 0 0 

Afternoon 
Time MF. 

(47) 
> 0.99 10 2 1 4 0 0 7 1 1 
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Figure 4.10. Sparse Vegetation Background Segment Predominantly Dirt  

 

 

 
Figure 4.11. Actual and Estimated PDF for the NIR Band for Target Radii Zero and Two  

 

 

Another interesting case is for the segment, which consists of various 

backgrounds. For these mixtures of backgrounds, the EM algorithm fails to provide an 
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accurate fit for the F distribution in accordance with the chi square test. An example for 

this mixture of backgrounds is shown in the Figures 4.12 and 4.14. Figure 4.12 shows the 

sparse vegetation segment with two different backgrounds. As shown from the segment, 

some of the frames (Frames 13 – 21) represent a bright path (encircled in broken cyan) in 

contrast to other non-bright frames (Frames 1 – 12). For this bright background, the EM 

algorithm fails to find an accurate fit. However, for the rest of the frames (non-bright), 

the distribution passes the chi square test. This is common behavior for these types of 

background mixtures in which a whole segment is punished due to a non-homogeneous 

background. Figure 4.13 shows the actual and estimated PDF and inverse CDF for bright 

and non bright background. Figure 4.13(a) shows the actual and estimated PDF, and 

Figure 4.13(b) shows the corresponding inverse CDF.  

 

 

 
Figure 4.12. Segment Showing the Non-Homogeneous Dirt Background   

 

 

 It is worthwhile to note that EM modeling fails for the bright area, whereas it 

passes for the rest of the segment. This is also visible from Figure 4.13 (b) in which the 

actual inverse CDF (blue) and estimated inverse CDF (broken red) are quite off, which 

results in failure. Also, the actual PDF for the bright area (solid blue) is noisier than the 

actual PDF for the rest of the segment (broken green).  

 The presence of different and non-homogeneous backgrounds is one of the main 

reasons for the failure in distribution fit. In this case, the background is either dirt or 
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dense vegetation. If the segment is bifurcated on the basis of the background, i.e., if the 

frames for the dirt and vegetation from the same segment are separated and then passed 

separately for the modeling then it is evident that for the vegetative frames, the fit passes 

the chi square test but fails for the dirt frames. Also, the tail for the dirt RX samples is 

heavier than for the vegetative RX samples. A segment with two different backgrounds 

(dirt and dense vegetation) is shown in Figure 4.14. Figure 4.15 shows the actual and 

estimated PDF and inverse CDF for two backgrounds. Figure 4.15(a) shows the actual 

and estimated PDF, and Figure 4.15(b) shows the corresponding inverse CDF. 

 

 

     
      (a) Actual and Estimated PDF                         (b) Actual and Estimated Inverse CDF 
 

Figure 4.13. Actual and Estimated PDF and Inverse CDF for Bright and Non-Bright 
Background 

 

 

As evident from Figure 4.15, for both backgrounds the sample RX values are very 

different. For vegetation, the actual and estimated PDF are very much on top of each 

other and hence pass the chi square test; however, for a dirt background, the RX values 

are quite different and noisier. Also, in contrast to the vegetation frames, the dirt PDF 

shows a heavy tail. Moreover, for the dirt, the actual and inverse PDF does not have a 

good fit, which causes the dirt background RX values to fail the chi square test. The 

difference between the two backgrounds is also visible in the inverse CDFs.   
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Figure 4.14. Segment Showing Different (Dirt and Vegetation) Background 

 

 

      
       (a) Actual and Estimated PDF                         (b) Actual and Estimated Inverse CDF 
 
Figure 4.15. Actual and Estimated PDF and Inverse CDF for Dirt and Dense Vegetation 

Background 
 

 

4.5. OTHER ANOMALY DETECTION TECHNIQUES 

The RX anomaly detector is one of the most popular techniques used for anomaly 

detection. Some derivatives of the RX detector such as the normalized RX detector and 

modified RX detector are also available [Chang and Chiang, 2002]. Number of other 

anomaly detection algorithms have been proposed and used depending on the situation 

and other factors. Some of these are unmixing component analysis [Yanfeng et al., 2006], 

kernel principal component analysis [Gu et al., 2006], cluster-based anomaly detection 

[Carlotto, 2005], signal subspace processing [Ranney, 2006], support vector data 
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description [Banerjee et al., 2006], and anomaly detection based on multi resolution 

features [Shadhan and Cohen, 2006].  

False alarm mitigation (FAM) techniques are other general techniques that can be 

used for anomaly detection. In general, FAM aims to reduce false alarms based on the 

shape, photometric, polarity, spectral, and other properties of the mine targets to reject 

likely false alarms. FAM techniques are dependent on a number of factors such as the 

time of day, size and nature of the mine target, nature of the terrain, and nature of the 

local background of the target. Moreover, FAM techniques exploit the characteristics of 

likely mine signatures to reduce false alarms. Thus, FAM serve the dual purpose of 

providing a measure of mine level detection performance as well as other features that 

can be used to understand the nature of mine targets and false alarms [Menon et al., 

2004].  Circularity, radial symmetry, and gray scale moments are some of the false alarm 

techniques that can be used as false alarm mitigation techniques. Detailed description of 

these techniques can be found in [Menon et al., 2004].  

Spectral vegetation indices can also be used to detect the presence of live green 

vegetation and hence for false alarm mitigation. These indices are generated by 

combining data from multiple spectral bands into a single value. More about these indices 

is discussed in Appendix A. 
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5. SPATIAL DISTRIBUTION 

This section discusses the spatial distribution of the targets obtained after the 

anomaly detection. The spatial characteristics (physical locations) of these RX detections 

can be studied and a spatial distribution can be modeled to fit the spatial location of 

potential mine detections. Once the modeling for the spatial distribution is successful, the 

model can be incorporated into simulation.   

 

5.1. SPATIAL POINT PROCESSES 

A collection of points each representing the location of an event in space can be 

termed the spatial point process [Møller and Waagepetersen, 2006].  Mathematically, the 

spatial point process is defined in the following manner [Cressie, 1991].  

Let dR∈s be a generic data location in a d-dimensional Euclidean space, and 

suppose the potential datum Z(s) at spatial location s is a random variable. Now let s vary 

over index set dRD ⊂ , then the generated multivariate random field or random process 

 

                                               }{ D∈s:Z(s)                                                        (5.1) 

  

is termed the random point process. Realization of such a process is called the spatial 

point pattern [Møller and Waagepetersen, 2006], z of n points such that,  

 

                                            },.....,,{ 21 nzzz=z , 0≥n points contained in D                 (5.2) 

 

For the current discussion, the point processes are limited to 2D space domains 

(R2). If the datum Z(s) represent only the location of point, it is called ‘simple’ point 

process and if it contains some other markings like color, it is called ‘marked’ point 

process. Important inferences about the spatial occurrences of events can be drawn from 

the simple point process Z(s), where each point in such a random process represents the 

location of some event. A large variety of events are possible, however, for the purpose 

of the current discussion, the event is the occurrence of landmines or a false alarm.  
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 Spatial point patterns play a vital role in a wide variety of scientific and 

engineering problems such as ecology, telecommunication, forestry, biostatistics, 

geology, and economics. These patterns have also found applications in fields as diverse 

as archeology, cosmology, and seismology. However, the application of spatial point 

processes in the field of minefield detection is different from many other applications in a 

way that for minefield detection, the spatial locations are a mixture of different processes 

(the presence of a minefield and presence of false alarm/clutter). Also the exact identity 

of the process associated with each event is unknown. In some cases it’s advantageous to 

model such process using the framework of marked point process [Trang et al., 2007]. 

The current discussion is however limited to simple point processes.  

Spatial patterns can be broadly classified as three distinct spatial distributions: 

random, aggregated, and regular [Kummamuru, 2002; Reich, 2007] as described next. 

5.1.1. Random Point Process. A point pattern is said to be random if the 

presence and absence of any other location does not affect the relative location of any 

point. In other words, each point’s location is independent of the location of any other 

point. Checking the spatial randomness of the spatial point process is often the first step 

in the analysis of spatial point processes. Reliable approach should be used to quantify 

the randomness because for some observers, random processes can also appear to be 

clustered. Scale is very important and should be clearly indicated because purely random 

processes may appear clustered at a larger scale.  

5.1.2. Aggregated Point Process. This is the most common type of point 

processes in real world. As the name indicates, in the aggregated point process, the points 

occur in lumps of different densities. In this case, the location of any point is not 

independent of the location of other points but instead the occurrence of one point 

actually favors the occurrence of other points in its neighborhood resulting in the cluster 

formation.  

5.1.3. Regular Point Process. Point processes in which the points are evenly 

distributed over a given area approximately forming vertices of regular shapes such as 

lines, rectangles, squares and triangles are called regular point patterns. In case of regular 

point process, occurrence of one point disfavors the occurrence of another point in its 

neighborhood. Both aggregation and regular point processes are the extreme cases for 
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random point processes. An example resulting in a regular point process is shown by 

walnut trees [Reich, 2007]. The roots and leaves of a walnut tree produce toxic 

substances that inhibit the growth of other trees within the immediate vicinity resulting in 

a regular or uniform spatial pattern. In case of minefield, patterned minefield form an 

approximate regular point process. 

 
5.2. COMPLETE SPATIAL RANDOMNESS 

Complete Spatial Randomness (CSR) is the standard against which spatial point 

patterns are often compared. The hypothesis of CSR for a spatial point pattern asserts that 

[Diggle, 2003]:  

1. Number of events in any planar region A follows a Poisson distribution with 

mean || Aλ  where |A| is the area of A and λ  is the intensity that does not vary 

over the region, and, 

2. Events are equally likely to occur anywhere within area A and no interactions 

occur between the events either repulsively (regular point process) or 

attractively (aggregated point process). 

 

This process has the property that, conditional on )(AN , the number of events in a 

bounded region dRA⊂ , the events of the process are independently and uniformly 

distributed over A, i.e., given )(AN  = n, the ordered n tuple of events ( nss ,...,1 ) in An 

satisfies the following identity [Cressie,1991] 

 

                ∏
=

=∈∈
n

i
inn ABBsBs

1
11 |),|/|(|),...,Pr(        ,,...,1 ABB n ⊂             (5.3) 

 

Figure 5.1 shows the CSR process with the total area of the region under study, |A| 

= 1000X1000 m2, and λ  = 0.001/m2.  

 

5.3. MEASURES OF COMPLETE SPATIAL RANDOMNESS 

Various approaches have been used to quantify various types of spatial point 

patterns against the CSR process. The most common methods are the quadrat method and 
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distance method. The quadrat method is based on sampling of the area under 

consideration using small regions called quadrats. A number of statistics have been 

proposed in the literature based on these quadrat methods. The second type of measures 

is based on a set of distance measurements made from an event to its kth nearest neighbor 

or from a randomly selected sample point to its kth nearest neighbor.  

5.3.1. Quadrat Measures. This method is one of the very first to be proposed to 

measure the spatial randomness in point processes. It involves collecting counts of the 

number of events in subsets of the study region A. Traditionally these subsets are 

rectangular, although any shape is possible. Quadrats may be placed either randomly or 

laid out contiguously in A. The number of events in each quadrat is collected, and these 

numbers are tabulated as a frequency distribution and are called quadrat counts. Several 

types of statistics are applied on these quadrat counts to calculate the test statistics. A 

detailed description and implementation of these statistics based on quadrat measure has 

been investigated in [Kummamuru, 2002] and more details can be found in [Cressie, 

1991]. 

For a CSR process shown in Figure 5.1, square quadrat ( iA ) of size 100x100 m2 

are selected. Now, for each subset iA (100X100m2 square) of study region A, the number 

of events is collected. For the CSR process, these events should be samples from Poisson 

distribution with mean || iAλ  (= 10 in this case) where | iA | is the area of subset iA . 

Figure 5.2 shows the distribution of the number of events in each quadrat (quadrat 

counts) and corresponding theoretical (Poisson) distribution with mean || iAλ . As shown 

in Figure 5.2, the two distributions are in complete agreement. 

5.3.2. Nearest Neighbor Distance Measures. In these methods, event to event or 

point to event distances are computed and summarized. Distances can be calculated 

between events and nearest neighboring events or between sample points and nearest 

events. Sample points are placed in the study area randomly or systematically. These 

distances are used as test statistics, and various statistical models are being used to 

simulate the event to event nearest neighbor distances.  
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Figure 5.1. Complete Spatial Random Process with Density = 0.001/m2 
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Figure 5.2. Distribution of the Quadrat Counts 
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 For the CSR process, the distribution for event to event nearest neighbor statistics 

can be derived as below [Corcoran, 2004]. Let λ  be the mean number of points per unit 

area and let D  be the distance between an event and its nearest neighbor, and let x be the 

radius of a circle around the event. The probability that the nearest neighbor of the event 

lies in the circle of radius x  is given by 

 

                                                    )(1)( xDPxDP >−=≤                                              (5.4) 

   

 Because the process is CSR, the probability of finding no point within radius x (> 

0) is given by 

                                             
22

!0)( 0 xx eexDP λπλπ λ −− ==>                                            (5.5) 

 

Thus Equation (5.4) reduces to  

 

                                                 
2

1)()( x
D exDPxF λπ−−=≤=                                          (5.6) 

 

where )(xFD  is the cumulative distribution function for the nearest neighbor.  

 Thus, the probability distribution function for the nearest neighbor can be found 

by differentiating equation (5.5) with respect to x; i.e.,  

 

                                
22

2)1()()( xx
DD xee

dx
dxF

dx
dxf λπλπ λπ −− =−== , x > 0                   (5.7) 

 

Equation (5.7) represents the probability density function for the nearest neighbor 

distance x. The above derivation can be extended for the kth nearest neighbor also. The 

PDF for the kth nearest- neighbor distance xk  is given as [Cressie, 1991] 

 

                                   0        ,)!1()(2)(
212 >−= −−

k
xk

k
k

kD xkexxf kλπλπ                  (5.8) 

 

where xk  is the kth nearest neighbor distance form an arbitrary event.  
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Figure 5.3 shows the actual PDF (blue) and theoretical (Equation (5.7)) PDF 

(broken red) for first nearest neighbor distances for the CSR process shown in Figure 5.1. 

As shown in Figure 5.3, there is good agreement between the actual and theoretical PDF. 

For an aggregated process, the actual PDF will be shifted toward the left side because in 

that case, the nearest neighbor distances will be less as compared to nearest neighbor 

distances for a CSR point process whose example is shown in Figure 5.1. Also the 

distribution is shifted toward the right for a regular point process. 
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Figure 5.3. Actual and Theoretical PDF for the First NN Distances for CSR Process 

 

 

5.4. SPATIAL DISTRIBUTION OF MINES AND FALSE ALARMS 

This section discusses the nearest neighbor distances for the actual scattered and 

patterned minefields and false alarms. Corresponding theoretical PDF for these are also 

drawn and comparisons between actual and theoretical PDF are made. 

Figure 5.4 shows the distribution of mines and corresponding nearest neighbor 

distances PDF for the scattered minefield for probability of detection of 100% and 50%. 

Figure 5.4(a) shows the distribution of mines in a typical scattered minefield scenario 
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with density (0.0127mine/m2) displayed in the title. Figure 5.4(b) shows the comparison 

between the actual and theoretical (based on CSR assumption) PDF for the nearest 

neighbor distance (NN Distance) for the same case.  Figure 5.4(c) shows the comparison 

between the actual and theoretical (based on CSR assumption) PDF for the NN distance 

when only 50% of mines are randomly selected. The actual and theoretical PDF shows 

good agreement for both the cases, which would suggest that the above scattered 

minefield can be modeled as CSR process and random detection does not affect the 

spatial characteristics of nearest neighbor distances for the minefield.  

 

  

  
(a) CSR process – Scattered Minefield          (b) Actual and Theoretical PDF for first                       
                                                                            nearest neighbor distances 
 

 
(c) Actual and Theoretical PDF for first nearest neighbor for PD = 0.5 

 
Figure 5.4. CSR Scattered Minefield and Corresponding NN Distribution 
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For patterned minefield, the nearest neighbor distance is fairly constant with small 

variation due to placement which can be modeled as a Gaussian distribution. The 

distribution of nearest neighbor distances (x) can be defined as: 

 

                                       
2

2
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=                                              (5.9) 

 

where S is the separation between mines in a row and 2
Sσ  is the variance in this  

separation.  

For the random detection of mines with probability of detection, pd, the 

distribution of nearest neighbor distances can be derived as: 
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Figure 5.5 shows the distribution of mines and corresponding nearest neighbor 

PDF for the patterned minefield for PD of 100% and 50%. Figure 5.5(a) shows the 

distribution of mines in a typical patterned minefield scenario. Figure 5.5(b) shows the 

comparison between the measured PDF, theoretical PDF (based on Equation 5.10) and 

one based on CSR assumption for the nearest neighbor distance (NN Distance) for the 

case of 100% detection. Figure 5.5(c) shows the comparison between the measured PDF, 

theoretical PDF and one based on CSR assumption for the NN distance for the 

probability of mine detection of 50%.  

As shown in Figures 5.5(b) and 5.5(c), the actual PDF is regular since the nearest 

neighbor distances has a prominent peak at the separation distance (4m) for 100% 

detection of mines. Moreover, for random detection of 50% of mines, the peaks in the 

PDF are likely to occur at integer multiple of the separation between mines, which is 

shown in the Figure 5.5(c). 
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         (a) Patterned Minefield                           (b) Actual and Theoretical PDF for first                       
                                                                            nearest neighbor distances 

 

 
(c) Actual and Theoretical PDF for first nearest neighbor for PD = 0.5 

 
Figure 5.5. Patterned Minefield and Corresponding NN Distribution 

 

 

Figure 5.6 shows the location of false alarms detected by RX algorithm in one 

background segment. As is evident from the figure, the false alarms are not distributed 

randomly but, form clusters (enclosed in broken yellow).  

Figure 5.7 shows the distribution of NN distances based on 15 background 

segments. Blue curve shows the distribution of NN distances for actual false alarms and 

red curve shows the distribution for Poisson CSR process with the same false alarm rate 

drawn using Equation (5.7). The false alarm density is equal to 0.01 FA/ m2.  
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Figure 5.6. Location of False Alarms in a Background Segment 

 

 

 
Figure 5.7. Actual and Theoretical Distribution for NN Distances for False Alarms 
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 As shown from Figure 5.7, unlike the NN distances for scattered minefield, the 

NN distances for the false alarm are not distributed corresponding to CSR process. The 

false alarms are clustered as shown in Figure 5.6. This can also be interpreted from the 

Figure 5.7, as the PDF for NN distances for actual false alarms is also biased toward left 

indicating more false alarms in comparatively small vicinity, like an aggregated process. 

Thus it becomes necessary to study other spatial distributions to model the spatial 

locations for the false alarms. This aspect is however not be addressed in this thesis and is 

left for future work. 
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6. MINEFIELD DETECTION AND ANALYTICAL MODELS 

Once the mine level detection is complete, the next step is to detect the presence 

of minefields using the information from the mine level results. Minefield detection is 

dependent on the thresholded mine level detection statistics derived in the previous 

section. The target locations identified after the non-max suppression and mine level 

thresholding for each FoR are used for detecting the minefield and eventually evaluating 

the minefield level confidence metric. Various minefield level detection algorithms are 

applied on the anomaly detections to derive a metric that provides confidence level for 

the presence or absence of minefields in that area. As discussed in Section 3, minefield 

can be either scattered or patterned depending on the position of mines in the minefield 

and the tactical scenarios. A number of minefield detection schemes are available in 

literature to detect the presence of patterned or scattered minefields. Discussions on some 

of these algorithms are presented in this section. This section also explains the analytical 

and statistical models that are developed and used to estimate the performance for the 

minefield detection. Separate analytical models are developed for both patterned and 

scattered minefield for validation. 

 

6.1. PATTERNED MINEFIELD 

This section discusses the detection algorithm and analytical model for patterned 

minefield. 

6.1.1. Detection Algorithm. Pattern linear algorithm is one of the algorithm that 

is used for evaluating the minefield level confidence values for the patterned minefield in 

which mines are arranged in rows. This algorithm uses the Hough line detector [Carlson 

et al., 1994] to detect the presence of mines in a linear fashion. The Hough line detector is 

a powerful and extensive feature detection method well suited for the detection of lines in 

the presence of noise. It is used to evaluate the maximum number of targets that fall on a 

line. Hough transform projects each point on a higher dimension parametric space of 

lines given by: 

 

                            ),(),2/,2/(,sincos LLPyxP −∈−∈+= ππθθθ               (6.1) 
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where P  represents the length of normal from the origin and θ  is the orientation of P  

with respect to the X axis. Figure 6.1 shows an example for the Hough transform. Figure 

6.1(a) shows the five points in the spatial domain. Hough parameter space corresponding 

to five points on the line is also shown in Figure 6.1(b). 

 

 

   
   (a) Five data points in spatial domain and a     (b) Hough parameter space showing five    
    line through them                        sinusoids corresponding to 5 data points 

 
Figure 6.1. Hough Transform Pair Representing the Data Points in Spatial 

Domain and Corresponding Sinusoids in the Hough Parameter Space 
 

 

It can be shown that Equation. 6.1 is equivalent to  
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xyxP 122 tansin θ                                       (6.2) 

 

Thus, mapping in this Hough parameter space ( ],[ θP ) results in a sinusoid with 

an amplitude and phase dependent on the spatial coordinates ( x , y ) of the point, i.e., 

each point in the ( x , y ) space corresponds to a single sinusoid in the Hough parameter 

space. Therefore, the set ],[ θP  that satisfies the above equation represents all lines that 

can pass through line ' P .' These values of P  and θ  are then collected into a number of 

bins called accumulators depending on the number of sectors in which a segment area is 

P  

θ
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divided. The number of points in each bin represents the number of points that are 

collinear on the line present at a distance of P from the origin and angleθ . The 

accumulator bins can be further evaluated to identify targets on parallel lines by summing 

targets along the same θ  index to accumulate targets. 

Another algorithm which can be used is pattern regular. This algorithm is the 

same as the pattern linear with an exception that it enforces regularity between the targets 

falling on a line [Lake et al., 1997; Malloy, 2003]. Thus, two detections that are too close 

together or too far apart are neglected. 

6.1.2. Analytical Model. Analytical model for linear pattern for patterned 

minefield detection algorithm is described next which is applicable for pattern linear 

detection algorithm. The analytical approach is based on the theoretical estimation of 

minefield detection performance under certain assumptions.  Patterned minefields have 

mines arranged in some specific pattern, often linear. These can be in the form of a 

number of rows with some predefined spacing between the rows and between individual 

mines in each row. Let R  denote the number of rows of mines in the patterned minefield 

with M  mines in each row. The detection of mines is assumed to be binomial so that if 

dp is the probability of the detection of mines, then the probability of detection of 

n mines in a row is given by   

 

                                              nM
d

n
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The false alarm detection is assumed to be Poisson with density Bρ . Thus, when 

the minefield is not present, the probability of detection in an interrogation area of 

size SA is given by 

                                         SB A
k
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]only Background| [                             (6.4) 

 

The size of the interrogation area SA  depends on the linearity of the minefield.  In 

a linear minefield, this area can be a thin strip. When a minefield is present, the total 
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detections is given by the sum of mines and false alarms. Thus the probability of the 

detection of k targets in area SA when a minefield is present is given by: 
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In a FoR with area A , there are [ ]SAAQ / round=  independent measurements 

from an interrogation area of size SA . Similarly for R rows of mines in the FoR, there are 

R independent measurements for mine statistics. The final minefield confidence can be 

taken as the maximum of these independent measurements in the FoR. The probability of 

detection )(kPd  and the probability of false alarm )(kPfa  at any threshold k  in this case 

is given by 
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The false alarm rate at threshold ‘k’ can be written as  

 

                                                  FAR (k) = 
A

kPfa

610)( FA/km2                                     (6.8)                    

 

Pd(k) and FAR(k) in Equation (6.6) and (6.7) can be used to draw the ROC curve for 

analytical performance. 

Figure 6.2 shows an analytical ROC curve for patterned minefield with three rows 

of mines and different distance between mines. Distance of 4m, 5m and 6m is used 

between mines. For a minefield FAR of 0.5 FA/km2, corresponding PD are 0.95, 0.72 and 

0.57 for case of 4m, 5m, and 6m of separation, respectively. As can be seen from the 
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figure, minefield performance improves as the separation between mines decreases. This 

is expected since the number of mines in the minefield increases as the separation 

between mines is reduced.  

 

 

 
Figure 6.2. Analytical ROC Curve for Patterned Minefield with Different Distance 

between Mines 
 

 

Alternatively, R rows of detection (mines) can be scored in which case probability 

of the detection of mines and of false alarms is given by 
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The probability of detection )(kPd  and the probability of false alarm )(kPfa at 

any threshold k  is given by 
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FAR(k) can be obtained as defined in Equation (6.8) and )(kPd  and FAR(k) can be used to 

draw the analytical ROC curves.  

Figure 6.3 shows an analytical ROC curve for patterned minefield with different 

number of rows in the minefield. Distance between the mines is kept constant and is 

equal to 5m. For a minefield FAR of 0.5 FA/km2, corresponding PD of 0.35, 0.85 and 

0.98 is obtained for 1, 2, and 3 rows of mine. The minefield performance improves 

significantly as the number of rows is increased. This is expected since more number of 

rows of mines in a minefield increases the number of mines available for minefield 

detection. 

 

6.2. SCATTERED MINEFIELD 

Various minefield level detection algorithms and analytical model for scattered 

minefield are discussed below. 

6.2.1. Detection Algorithm. Scatter number is the basic algorithm for evaluating 

the minefield confidence value for each FoR for a scattered minefield. In this algorithm, 

the number of detections from the interrogation patch is taken as the confidence value for 

the minefield. Thus, confidence value SNλ  for a FoR is given as 

 
                                                                  }{DNSN =λ                                                 (6.13) 

 

where }{DN  represent the number of detections obtained from the FoR. The statistics are 

applicable to the CFAR type of thresholding scheme for target detection.  



 

 

68

 
Figure 6.3. Analytical ROC Curve for Patterned Minefield with Different Number of 

Rows of Mine 
 

 

The test statistics in Equation (6.13) can be shown to be optimal when both the 

mines and false alarms follow a CSR distribution and no other information is available to 

differentiate mines from the false alarms [Earp, 2000b]. This detection scheme is quite 

popular and used due to quick analysis of scattered minefield. 

 Scattered log weighted is another algorithm which is similar to the scattered 

number except that the decision statistics are defined as the average of the log of the 

detection statistics for all valid detection as proposed by Earp [Earp et al., 1995]. A 

minefield test statistics obtained based on likelihood ratio is defined as: 

  

                                                          ∑
=

=Λ
N

k
kxLl

N 1
minefield )(1                                        (6.14) 

 

where )(xLl is the log-likelihood ratio for the AD values of xi and N is the number of 

targets in the FoR.  
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Using empirical result Earp [Earp, 1995] proposed a log function in place of 

)(xLl so that the test statistics is defined as: 

 

                                                  ∑
=

=Λ
N

k
kx

N 1
minefield )log(1                                               (6.15) 

 

This statistics is applicable to constant target rate (CTR) as well as to constant 

false alarm rate (CFAR) type target detection. This value represents the minefield 

confidence value for that segment.  

6.2.2. Analytical Model. For a scattered minefield, it is assumed that the mines 

are laid randomly over an area. Because the deployment of mines within the minefield is 

random, a suitable model for the distribution can be assumed to be a “completely 

random” Poisson point process [Earp, 2000a and 2000b]. In this case, the probability of 

encountering a mine in an area is independent of the probability of encountering a mine 

in any other area. The false detections are also assumed to be Poisson with a different 

intensity parameter Bρ . The probability of getting k false alarm detections from the 

background in an area A of the FoR can be modeled as 

 

                                     A
k

B Be
k
AkP ρρ −=
!

)(]only Background|[                                  (6.16) 

 

Let Tρ  be the density of mines (in mines per unit area) in the minefield and dp  

be the rate of detections. Then the probability of getting k  mine detections in an area A  

is given by  

 

                     AAp
k

BTd BTde
k

AAp
kP ρρρρ +−+

=
!

)(
]MineField| [                         (6.17) 

 

representing Poisson detection of both the mines and false alarms. 
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The probability of detection )(kPd , probability of false alarm )(kPfa , and FAR at 

any threshold k is given by 
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                                        FAR (k) = 
A

kPfa

610)( FA/km2                                        (6.20) 

 

)(kPd  and FAR (k) can be used to draw the analytical ROC curves. Note that an 

implicit assumption in the model is that the size of FoR is smaller than the minefield and 

that the FoR is fully over the minefield. Figure 6.4 shows an analytical ROC curve for 

scattered minefield with different mine densities.  

 

 

 
Figure 6.4. Analytical ROC Curve for Scattered Minefield with Different Mine Density 
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Mine level PD at the FAR of 0.001 FA/m2 is 0.34. Mine density of 0.002 

mines/m2, 0.004 mines/m2 and 0.006 mines/m2 are used. Minefield level PD values of 

0.145, 0.567 and 0.882 are obtained corresponding to false alarm rate of 0.5 FA/km2. PD 

and FAR are calculated using Equation 6.18 and 6.20, respectively. The minefield 

performance improves as the mine density increases. 
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7. SIMULATION RESULTS 

This section presents mine and minefield detection results for the simulated 

parameters. Several variables are used for generating the simulated data, which are 

tabulated in Table 7.1. Results are generated for both patterned and scattered minefields 

with different parameters. Parameters whose effects are considered include signal to 

clutter ratio (SCR), constant false alarm rate (CFAR), swath width, holidays, and segment 

overlap. Each of these parameters is discussed in the following subsections.  

 

 

Table 7.1. Simulation Parameters for Scattered and Patterned Minefield Data 

 Scattered Patterned   
No. of runs simulated  750 750   

Flight Speed  75 75 knot 
Altitude  2050 2050 feet 

No. of rows, columns 512, 640 512, 640 pixel 
No. of swath, steps 7, variable (1-5) 7, variable (1-5)   
Swath width, FoR 

length  60 – 290 60 – 290 feet 

FoR length 451– 455 451– 455 feet 
Bkg. Anomaly 

distribution  
Central F- distribution   

(J = 4, Nc = 50) 
Central F- distribution            

(J = 4, Nc = 50)   

Bkg. spatial 
distribution 

Poisson with density of 
0.01/m2 Poisson with density of 0.01/m2   

Mine Anomaly 
distribution 

Non Central F- 
distribution        (J = 4, 

Nc = 50, SCR = 0.5) 

Non Central F- distribution       
(J = 4, Nc = 50, SCR = 0.125)   

Mine spatial 
distribution 

Poisson with density of 
0.004/m2 

Linear (distance of 9 meters 
between mines. Three rows with 
distance of 20m between rows) 

  

Mine type SM_A (Small metal) LM_A_B (Large metal Buried)   
Mine size (No. of 

Pixels) 6 (13) 12 (50) inch 

Mine level algorithm  CFAR with FAR of 
0.001 CFAR with FAR of 0.001 FA/m2

Minefield Algorithm Scatter Number Pattern Linear   
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7.1. EFFECT OF SCR  

The SCR for the RX detection is defined as in Equation (3.6)  

 

                                                      2

1

2
2

2

σμ
σ
μ JSCR

J

i
i∑

=

==                                         (7.1) 

 

where μ  is the mean target signature, and σ  is the standard deviation of the background 

area. Figure 7.1 shows the mine level and corresponding minefield level ROC curves for 

different SCR values. Figure 7.1(a) shows the mine level ROC curve for a scatterable 

minefield and Figure 7.1(b) shows the corresponding minefield level ROC curves for 

SCR values of 0.4 (red), 0.5 (blue), and 0.6 (green) for the scatterable minefield with 

three steps (swath width of 175 feet). The corresponding GSNR values are 20.8, 26 and 

31.2, respectively. 

 

 

  
(a) Mine level ROC curve                              (b) Minefield level ROC curve 

 
Figure 7.1. Mine Level ROC Curve and Corresponding Minefield Level ROC Curve for 

Different SCR Values 
 

 

As shown from Figure 7.1, the mine level as well as minefield level performance 

increase with an increase in the SCR value. This is expected because with an increase in 

the SCR values, contrast difference between the mine targets and background clutter 
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increases, which facilitates the detection of mines. The same performance is expected for 

the patterned minefield. The minelevel PDs for the SCR values at the FAR of 

0.001FA/m2 are 0.19, 0.34, and 0.49, respectively, as indicated by the 'x' mark in Figure 

7.1(a). Similarly, minefield PDs at an FAR of 0.5 FA/km2 are 0.30, 0.68, and 0.93, 

respectively.  

 
7.2. EFFECT OF CFAR VALUE 

In this type of mine level thresholding, the false alarm rate per square meter ( Bρ ) 

is specified. At any selected value of Bρ , the expected number of false alarms in FoR is 

constant. Figure 7.2 shows the effect of the CFAR value on the minefield level 

performance. CFAR values of 0.00005 (red), 0.001 (blue), 0.004 (magenta), and 0.008 

(black) are used with scattered minefields with three steps. As shown from Figure 7.2(b), 

as the FAR value increases, the respective minefield performance decreases. This is 

because the density of mines is very small as compared with the density of background 

anomalies (0.004/m2 of mines in contrast with 0.01/m2 of background anomalies). As 

CFAR value increases, the number of detected mines in FoR also increases due to 

increase in PD. However, the increase is lower as compared to the increase in false alarm.   

 

 

 
     (a) Mine level ROC curve                              (b) Minefield level ROC curve 

Figure 7.2. Mine Level ROC Curve and Corresponding Minefield Level ROC Curve for 
Different FAR Values for Scattarable Minefield 
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7.3. EFFECT OF SWATH WIDTH 

Figures 7.3 and 7.4 show the simulation results for a swath width of 1 and 5 

(steps) for patterned and scattered minefields, respectively. Magenta squares and red 

diamonds represent the mines in respective figures. All of the segments are represented 

by different color fills. 

 

 

 
Figure 7.3 Simulated Minefield Layout for a Patterned Minefield with Swath Width of 

One Step 
 

 

Figure 7.5 shows the effect of the swath width on the minefield level performance 

for a patterned minefield with three rows of mine and 20% side step overlap, and Figure 

7.6 shows the effect on a scattered minefield. The number of steps of 1 (red), 2 (blue), 3 

(green), 4 (magenta), and 5 (black) corresponding to a swath width of 63 ft, 119 ft, 175 ft, 

232 ft, and 288 ft, respectively, are used for the results. The mine level FAR is chosen to 

be 0.001 FA/m2 for both the scattered and patterned minefields resulting in a 

corresponding PD of 0.33 for the scattered minefield and 0.51 for the patterned minefield. 
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Figure 7.4. Simulated Minefield Layout for a Scattered Minefield with Swath Width of 
Five Steps 

 

 

 

(a) Simulated minefield performance            (b) Analytical minefield performance  
 

Figure 7.5. Simulated and Analytical Minefield Level ROC Curves for the Patterned 
Minefield for Different Swath Widths 

 

 

As shown from Figures 7.5 and 7.6, a good agreement exists between the 

simulated and analytical results. Also, for both the scattered and patterned minefields, 

performance increases with an increasing swath width. This is expected as the minefield 
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front is wider than the maximum swath width of 288 feet (88 meters). A bigger swath 

width results in more mine targets in the FoR, which results in more reliable detections. 

However, increasing the swath width beyond the size of the minefield front may actually 

result in lower detections. This may happen for smaller tactical scattered minefields.  

 

 

 
        (a) Simulated minefield performance            (b) Analytical minefield performance  
 
Figure 7.6. Mine Level ROC Curve and Corresponding Minefield Level ROC Curve for 

Scattered Minefields with Different Swath Widths 
 

 

7.4. EFFECT OF HOLIDAYS 

Data are collected in the form of frames of images. These frames are then stitched 

together to form an FoR/segment. This transformation of image frames in a single 

coordinate system is called image registration and plays a significant role in the mine and 

minefield level performance evaluation. However, for accurate image registration, it is 

necessary for some portions of the consecutive frames to overlap in order to provide the 

control points for the frame to frame registration. Sufficient overlap should be present in 

both the in-flight and across-flight direction to obtain an accurate and undistorted mosaic 

of frames. If the overlap among frames is insufficient, then holidays will exist between 

the frames. Figures 7.7 and 7.8 show the simulation results for the side-step overlap for -

20% (holiday) and 20% respectively. As seen from Figure 7.7, a negative side-step 

overlap is quite visible resulting in the absence of control points in the in-flight direction. 
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Figure 7.7. Simulated Minefield Layout for a Patterned Minefield with -20% (Holiday) 
Side-Step Overlap 

 

 

 

Figure 7.8. Simulated Minefield Layout for a Scattered Minefield with 20% Side-Step 
Overlap 

 

 

Although the presence of holidays allows for more area to be covered under each 

run, the absence of control points results in poor alignment of detection and eventually in 
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poor minefield performance. This is especially true for patterned minefields due to the 

presence of a linear pattern. Figure 7.9 shows the effect of side-step overlap on the 

minefield level performance for a patterned minefield with three rows of mines and 

scattered minefields. Figure 7.10 shows the corresponding analytical results. Side-step 

overlap of -20% (holiday, red), 0% (blue), and 20% (green) have been used for the 

minefield level detection with no registration error. As shown from Figure 7.9 and 7.10, 

as the side-step overlap decreases, the minefield performance increases. This can be 

expected because with a decrease in the overlap, the effective swath width of the FoR 

increases, which results in more targets to be permitted for the performance evaluation 

for the given mine level FAR. With an increase in the number of allowable targets per 

segment, the minefield confidence value increases for the segment, resulting in better 

minefield performance.  

 

 

 
     (a) Patterned minefield level ROC curve        (b) Scattered minefield level ROC curve 
 

Figure 7.9. Simulated Minefield Level ROC Curves for Patterned and Scattered 
Minefields with Different Side-Step Overlap 

 

 

Figure 7.11 shows the minefield performance when some amount of registration 

error (5m) is present. In this case, the minefield performance for negative overlap case is 

in fact poorer than positive overlap. This is because for the case of negative overlap 

(holiday) or no overlap, the image frames are not stitched in any trustworthy fashion 
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along the steps. Thus, pattern detections suffer because rows or targets that were actually 

in a linear pattern do not appear to be so. This effect on scattered minefield detection is 

less pronounced as the detection statistics are based on count and not their distribution. 

 

 

  
     (a) Patterned minefield level ROC curve        (b) Scattered minefield level ROC curve 
 

Figure 7.10. Analytical Minefield Level ROC Curves for the Patterned and Scattered 
Minefields for Different Side-Step Overlaps 

 

 

 
     (a) Patterned minefield level ROC curve       (b) Scattered minefield level ROC curve 
 
Figure 7.11. Simulated Minefield ROC Curves for Patterned and Scattered Minefields for 

Different Side-Step Overlaps with a Registration Error of Five Meter 
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7.5. EFFECT OF SEGMENT OVERLAP 

Once the inter-segment (frame to frame) registration is complete, the intra-

segment registration must be done so as to reconstruct the complete run. Just like frame 

to frame registration, the segment to segment registration is also dependent on the amount 

of overlap available between the consecutive segments. A segment overlap of zero 

implies that each FoR is disjointed from the others, and an overlap of six implies that 

every new captured swath and the previous six swaths are used for minefield evaluation. 

Examples for the segment overlap of two and segment overlap of four are shown 

in Figures 7.12 and 7.13, respectively, for a scattered and patterned minefields, 

respectively. Figure 7.14 shows the effect of segment overlap on the minefield level 

performance for a patterned minefield with three rows of mine and scattered minefield, 

respectively. Segment overlaps of zero (red) and six (blue) segments have been used for 

the minefield level ROC curve.  

As shown in Figure 7.14, the minefield performance improves slightly for 

overlapping FoRs. This is because with the no overlap case, a minefield may lie partially 

in each of two consecutive FoRs, which implies poor detection in both FoRs, and hence, 

poor performance.  

 

 
Figure 7.12. Simulated Minefield Layout for a Scattered Minefield with a Segment 

Overlap of Two Segments 
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   Figure 7.13. Simulated Minefield Layout for a Patterned Minefield with a Segment 

Overlap of Four Segments 
 
 

  
      (a) Patterned minefield level ROC curve       (b) Scattered minefield level ROC curve  
 

Figure 7.14. Simulated Minefield Level ROC Curves for Patterned and Scattered 
Minefields for Different Segment Overlaps 
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8. CONCLUSION AND FUTURE WORK 

A typical airborne minefield detection system is modeled and mine and minefield 

level performance are evaluated based on simulated data under different data collection 

scenarios. The simulation system created to synthesize representative data under different 

scenarios of interest is discussed. The parameters that drive the system’s performance are 

identified, and the simulated results are evaluated and discussed. The effects of different 

thresholding schemes used for thresholding the anomaly statistics on the airborne data are 

discussed. CFAR seems to be the most effective technique for threshold selection 

because the threshold is selected adaptively depending on the background statistics. A 

fixed threshold and constant target rate suffer with potential limitation of poor 

performance due to non-homogeneity of the background. Non-homogeneity of the 

background has however not been modeled in the simulation tool. 

Central F distribution is successfully used for modeling the RX detection 

statistics. The parameters for modified central F-distribution are obtained using EM 

algorithm and the results for modeling different combinations of MSI bands, and 

different target radii are shown. Eight different data sets are created depending on the 

type of background, time, and for background only and background with minefield for 

which the modeling performs quite well. The modeling results seem to be good especially 

for target radii of 1 and 2. The results for the homogeneous or approximately 

homogeneous background for a complete FoR excel, whereas for mixture of backgrounds 

the modeling is generally poor indicating likely multimodal distribution. Modeling 

performance and fit are shown using both PDF and inverse CDF.  

Various spatial distribution techniques used for modeling the spatial locations of 

the false alarms are discussed. However, a satisfactory match between the actual spatial 

locations and simulated spatial locations for false alarms must be explored further 

because actual spatial locations are clustered and do not follow Poisson distribution. 

Analytical models for both scattered and patterned minefields are effectively derived and 

implemented in the simulation system. They present a good agreement with the proposed 

minefield detection algorithms. Simulation results for a range of different parameters and 
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their effect are discussed in Section 7. The simulated results and analytical results are 

found to be in good agreement. 

The present work has laid the foundation for a simulation-based system capable of 

evaluating the performance of airborne mine and minefield detection structures. In the 

future, this research can be extended on a number of grounds. IR data can also be 

modeled in a similar manner as the MSI data using the EM algorithm. Other anomaly- 

detection techniques, especially FAM techniques, can also be modeled. It is also useful to 

model the spatial distribution for the actual locations of the false alarms and then 

incorporate those values into the simulation system. This will help to complete the 

modeling tool that is capable of modeling not only anomaly values but also spatial 

locations in accordance with actual data. The modeling tool can also be improved to 

include multiple minefields per run. Finally, it is expected to compare the performance of 

the simulated data with actual airborne collected data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX A. 

SPECTRAL VEGETATION INDICES 
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This section explains the indices that are used to classify the frames as vegetation 

or non-vegetation. Several Spectral Vegetation Indices (SVIs) are available in the 

literature that provides a measure of live, green vegetation in an area. These indices are 

designed to enhance the vegetation signal in remotely sensed data. Most of these indices 

use a combination of data from various spectral bands (red, blue, green, and near band 

IR) into a single value. The idea of SVIs is based on the fact that the spectral response of 

green leaves exhibits a jump in the reflectance in the near infrared NIR portion (700 – 

1350 nm) due to the dominant plant pigment, chlorophyll.  This response is often called 

an IR rise [Emch, 2001]. Figure A.1 shows the spectral reflectance curve for dirt (brown), 

rock (black), and vegetation (green). The IR rise phenomenon for the green vegetation is 

quite visible from the figure. As seen in figure, the plants also exhibit pronounced 

absorbance of the bluish (400 - 500 nm) and reddish (600 – 700 nm) wavelengths thus 

appearing green. This absorption of red or blue bands along with IR rise can be exploited 

to provide a unique index for the vegetation cover. Different SVIs are discussed in the 

following Subsections. 

 

 

 
Figure A.1. Spectral Reflectance Curves for Different Land Forms 
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A.1. Simple Ratio or Ratio Vegetation Index (SR or RVI) 

One of the simple SVI metric is a simple ratio between NIR and red bands. Thus,  

 

                                                 SR or RVI = NIR/RED                                           (A.1) 

 

SR values for the bare soil are generally near 1 because for the bare soil, the Red 

and NIR bands have similar reflectance. For the live vegetation, the SR increases. The SR 

values are unbounded and can range from 0 to infinity. Figure A.2 shows an example for 

SR for a dense vegetation frame. The red and NIR bands appears in the top part of the 

figure. The PDF of the SR values is also shown in Figure A.2. On the SR image, red dots 

indicate the pixels having an SR value greater than 3 (representing high likelihood of 

vegetation). From the figure, it can be noted that the SR is quite effective in detecting the 

presence of live vegetation. The red points fall approximately on top of the vegetation 

areas.  The SR values are not estimated for edge pixel of 20 pixels width. 

 

 

 
Figure A.2. Red Band, NIR Band, Simple Ratio (SR) Image and Histogram for the 

Vegetation Frame. The Red Dots Indicate the Pixels Having an SR Value Greater than 3 
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A.2. Normalized Difference Vegetation Index (NDVI) 

NDVI is defined as: 

 

                                              NDVI = (NIR – RED)/ (NIR + RED)                            (A.2) 

   

As shown from Equation (A.2), the difference between the NIR and RED bands is 

divided by their sum. This normalization is used to minimize the effect of variable 

irradiance levels. NDVI is always bounded between -1 and 1. A higher positive value of 

NDVI indicates the presence of green vegetation, whereas a value close to 0 indicates a 

non-vegetation background or dead vegetation. Free-standing water (e.g., oceans, seas, 

lakes, and rivers) which has low reflectance in both NIR as well as visible bands, results 

in very low positive or slightly negative NDVI values, whereas clouds and snowfields 

exhibit negative values for this index.  

Figure A.3 shows the individual red and NIR bands along with the NDVI image 

and the PDF for the NDVI values for a dirt frame. Threshold of 0.4 is used to classify the 

live vegetation with other areas. As shown from Figure A.3, the histogram for the dirt 

only frame is symmetric and has the peak at 0.26. Moreover, for the dirt frame, no pixel 

is chosen for an NDVI value greater than 0.4. Figure A.4 shows the individual red and 

NIR bands along with the NDVI image and the PDF for the NDVI values for a vegetation 

frame.  In this case, for a threshold of 0.4, most of the vegetative region is correctly 

identified as vegetation. This indicates that NDVI can act as a good classifier to 

differentiate between vegetation and non-vegetation features.   

In Figure A.4, some regions with shadow are also detected as vegetation along 

with the actual vegetation. This suggests that although NDVI is a good classifier for the 

vegetation, some false alarms can be produced due to the presence of shadows or the 

misalignment of bands. 
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Figure A.3. Red Band, NIR Band, NDVI Image and Histogram for the Dirt Only Frame 

 

 

 
Figure A.4. Red Band, NIR Band, NDVI Image and Histogram for the Vegetation Frame. 

The Red Dots Indicate the Pixels Having an NDVI Value Greater than 0.4 
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A.3. Normalized Difference Vegetation Index with Blue (NDVIB) 

Because both the red and blue colors are absorbed by chlorophyll in live green 

vegetation, the blue band can also be used to calculate the NDVI. Thus, in that case 

NDVIB is defined as 

 

                            NDVIB = (NIR – BLUE)/ (NIR + BLUE)                             (A.3) 

 

Figure A.5 shows an example for a blue band, NIR band, NDVIB image, and 

NDVIB histogram using a blue band instead of a red band for the same frame used for 

NDVI demonstration. Also, an NDVIB value of 0.6 has been used to threshold the pixels 

as compared with a threshold of 0.4 used in NDVI thresholding in Figure A.4. 

Comparing Figure A.4 and A.5, it can be seen that both metrics are effective for 

classification of vegetation. Most importantly, in the case with blue band, the shadow is 

considerably lower in the NDVIB thresholded image.  

 
 

 
Figure A.5. Blue Band, NIR Band, NDVIB Image and Histogram for the Vegetation 

Frame. The Red Dots Indicate the Pixels Having NDVIB Value Greater than 0.6. 
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Figure A.6 shows the combined NDVI and NDVIB values along with red, blue, 

and NIR bands. It clearly shows that in the NDVIB image, the shadows are not detected 

as vegetation. The vegetation and non-vegetation areas in the frame are also 

differentiated even if they are in the shadow as shown in Figure A.6. The dirt road under 

the shadow (encircled in broken cyan) has lower (appear dark) NDVIB values. However, 

vegetation under the shadow (encircled in broken yellow) has higher (appear bright) 

NDVIB values. Thus NDVIB using the blue and NIR bands is more effective and offers 

more resistance to the areas having considerable shadows as compared with NDVI using 

the red and NIR bands. One of the primary reasons for this improvement could be 

because the blue color is more ambient (due to sky) and hence the areas with shadows 

have higher blue illumination as compared to red illumination.  

As shown in Figures A.2, A.3, A.4, A.6, and A.5 the vegetation indices are easy 

and effective indicators that can be used to analyze the presence of green vegetation in 

the target being observed. This ability is exploited in the current discussion to classify the 

image frames as being densely vegetative or sparsely vegetative. The data are needed to 

be classified as dense vegetation or sparse vegetation for the modeling purposes to 

analyze the effect of vegetation on the RX detection statistics and the distribution of F 

distribution that is used to model them. 
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Figure A.6. Red, Blue, and NIR Bands with NDVI and NDVIB Images. The NDVI and 

NDVIB Value Histograms are Also Shown 
 

 

Dirt road 
under shadow

Vegetation in 
shadow
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THE EM ALGORITHM 
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The EM (Expectation–Maximization) algorithm is a general algorithm for the 

maximum likelihood estimation [Trees, 2007]. It is best employed for incomplete data 

sets or for data sets with missing values. The term "EM" was coined by Dempster et al., 

in a paper in 1976. In this thesis, the EM algorithm is used for parameter estimation to 

model the RX test statistics in the form of a modified F distribution.  

The EM algorithm estimates the parameters of the underlying distribution by 

finding the maximum likelihood function )|( xf Θ for the parameter/parameters Θ given 

the observed samples ' x ' in an iterative fashion starting from an initial guess. Each 

iteration consists of the following two steps [Ganju, 2006; Bilmes, 1998]: 

STEP 1: Expectation Step – This step finds the distribution of the complete data with 

respect to the known values of the observed data and current estimate of the parameters. 

The step involves the formulation of the estimation of the likelihood (or log-likelihood) 

function of the complete data given the observed samples and the current fit of 

parameters.  

STEP 2: Maximization Step – Effectively, this step maximizes the expectation computed 

in the first step; i.e., this step re-estimates the anticipated likelihood parameters under the 

assumption that the distribution found in the first step is correct.  

 Both of the above steps are carried out iteratively until the terminating condition 

is reached. The terminating condition can either be the maximum number of iterations 

reached or else no significant improvement over the previous values of the likelihood. It 

has already been proved in literature that with each successive iteration, the likelihood 

estimate either improves or remains unchanged (attain local maximum) [McLachlan and 

Krishnan, 1997].   

 The mathematical formulation for the EM algorithm can be explored in [Ganju, 

2006; McLachlan and Krishnan, 1997]. 

 

B.1. Formulation of update the equation for the RX statistic 

The above-said EM algorithm is applied on the RX statistics in the following 

manner. Post non-max RX statistics can be written as 
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Uisng the substitution, urNF =)(1  it can be shown that   
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Shown above is a general result applicable to all types of distributions under non-

max suppression.  

 

Now taking the natural logarithm of Equation (B.1) 
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Taking the derivative of Equation (B.6), w.r.t. 1v , 2v , and N , and 

substituting,
)(
)()(),(

yx
yxyxB

+Γ
ΓΓ

= , provide the update equation for the EM algorithm for 

parameter estimation. Taking derivative w.r.t. to 1v  to obtain: 
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where )(xψ  is a digamma function defined as  
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In the similar manner, the derivative of   Equation (B.1), w.r.t. 2v , is obtained as 
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Also taking the derivative wrt N can be obtained as: 
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The derivative of the beta function with respect to 1v  and 2v  is defined as  
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1I  and 2I  can also be simplified using the above equalities as: 
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Equation (B.6), (B.7) and (B.8) are the required update equations corresponding to the 

three parameters to be estimated, which will be used in the next step. 

 

B.3. Parameter Estimation from update equations 

 Once the update equations are obtained, the information matrix is constructed. 

The information matrix, ‘ mI ,’ is a square matrix whose dimensions depend on the 

number of parameters to be estimated. For the current estimation problem, ‘ mI ’ is 

therefore a 3x3 matrix. The information matrix for the current case is approximated as  
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Let kv1 , kv2 , and kN  be the estimates of the parameters in the kth iteration. Then the 

estimate of these parameters in the (k+1)th iteration/step is given by 
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where λ  is the scaling factor. 

 These new estimates of the underlying parameters, ‘ 1
1
+kv ’, ‘ 1

2
+kv ,’ and ‘ 1+kN ,’ are 

then used in three update equations, (B.6), (B.7) and (B.8) to yied a new information 

matrix, mI . Information matrix is used in Equation (B.9) to obtain a new set of parameters 

in the (k+2)th iteration. The process continues until the parameters converge to a steady 

state value. 

  

B.4. EM algorithm – Convergence Properties 

Like any other non-converging optimization problem, it is possible for the 

parameters to converge at a local or a saddle point rather than converging at the global 

minima. This depends mostly on the type of log-likelihood function. If the log-likelihood 

function is unimodal, then the convergence of the likelihood function and the parameters 

is unique. However, in cases when the likelihood function is multimodal, the likelihood 

function and parameters may converge to some saddle point.  

In some cases, if the number of parameters to be estimated in a distribution is 

large, then the parameters are observed to undergo periodic oscillations after a certain 

number of iterations [McLachlan and Krishnan, 1997]. This is because as the number of 

parameters increases, the likelihood surface tends to become flat and thus rather than 

converging to a steady value, the parameters tend to converge to a range. Under this 

phenomenon, the EM is said to converge to a circle rather than a single point. 

 kk kk+1  kk
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Another important factor deciding the convergence of the EM algorithm is the 

initial starting point induced in the EM algorithm. It has been reported that if the log - 

likelihood function has several maxima, minima, or stationary points, than the 

convergence of the EM algorithm to the right point depends on the choice of the starting 

point [Wu, 1983]; i.e., if the starting point is near to some saddle point or local point, then 

it is highly possible that the parameters converge to that saddle point or local point. For 

the present estimation problem, the initial parameters are derived using methods of 

moments explained in detail in Appendix C.  

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX C. 

ESTIMATING INITIAL PARAMETERS FOR RX DISTRIBUTION 
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Initial parameters play an important role for parameter estimation using EM 

approximation. These initial parameters must be carefully chosen so that the parameters 

converge to the right values. For this reason, alternatives have been searched so as to find 

the best way to provide the initial parameters to the EM algorithm. One way that is 

adopted here is based on Method of Moments [Pearson, 1902]. In this method, moments 

for the observed data are used. If there are ‘p’ parameters to estimate, then the first ‘p’ 

sample moments are equated to the actual moments of the distribution, given that the 

actual moments are functions of the parameters of interest.  

For the central F distribution, the probability density function is defined as 
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where ‘ x ’ is the random variable, ‘ 1v ’ is the numerator degrees of freedom, and ‘ 2v ’ is 

the denominator degrees of freedom. 

 

The central F distribution can be transformed into RX statistics as  
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where 
2

1
v
vxr = . 

The RX statistics, 'r' needs to be multiplied by the factor of 'k.' Then the scale 

factor 'k' takes care of other non ideal factors as discussed in section 4.1.  

For the present case the distribution under concern is post non-max RX detection, 

not RX detection itself. However, because moments of  post non-max RX detection 
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statistics do not have a closed form expression, this method cannot be used to estimate 

parameters in that case. But ‘ 1v ,’ ‘ 2v ,’ and ‘ k ’ can be estimated using this method and 

promoted as initial parameters for the EM algorithm of parameter estimation.  

The first three moments about the mean or standardized moments (mean, 

variance, and skewness) for the transformed and scaled central F distribution function are 

defined as follows [Johnson, 1995]: 
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where                                                       }{rE=μ , 

                                                           }){( 22 μσ −= rE ,  

                                                          33 /}){( σμ−= rES . 

 

The value of ‘ 12 vv ’ and 'k' are the scale that is required to be multiplied by the RX 

detections to make it a central F distribution as explained above. As shown from 

Equation (C.5), no scale is included for the skewness calculation because it is a ratio 

between the two scaled quantities.  

 This is now just a linear equation to solve for three unknowns given three 

equations in those unknowns. The solution is derived below in detail: 

 

From C.3,     )2( 21 −= vkv μ                                                   (C.6) 
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Using this value of 1v  and putting it in C.4 and simplifying gives: 
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Substituting Equation (C.7) into (C.6) to obtain 
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Substituting Equations (C.7) and (C.8) into Equation (C.5) and simplifying to get   
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Thus from the observed samples, the mean, variance, and skewness can be easily 

obtained, which can then be used in equations (C.9), (C.8), and (C.7) to derive the 

estimates of  ‘ 2v ’, ‘ 1v ,’ and ‘ k ,’ respectively.  

The RX detections are multiplied by the scale factor ‘ k ’ before passing them into 

the EM algorithm whereas scale factor of ' 12 vv ' is dynamically applied inside the EM 

algorithm. ‘ 1v ’ and ‘ 2v ’ are used as the initial parameter values for the numerator 

degrees of freedom and denominator degrees of freedom, respectively. The initial 

estimate of the third parameter ‘N’ is kept equal to 100 for all the cases of parameter 

estimation. In the future, it may be possible to include 'k' as part of EM update equations 

so that value of 'k' is estimated along with 1v , 2v , and N. 



 

 

 

                                                               

 

 

 

 

 

 

 

 

 

 

APPENDIX D. 

TEST STATISTCS TO MEASURE THE GOODNESS OF FIT 
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Once a set of model parameters is estimated for a given set of observations, a 

metric to define the goodness of fit is of interest. Various statistical test schemes are 

available to measure the goodness of fit between the observed and estimated values of the 

distribution. Some commonly used goodness of fit tests are as follows: 

 

D.1. Cramer Von – Mises (CVM) Test  

   The test statistics for this test is given by [Bain and Engelhardt, 1991]: 
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where,    

n = Number of observations, 

( )θ;:nixF  = CDF of the ordered observations, given θ, 

θ  = Parameter vector of the given distribution. 

Here, an approximate size ‘α’ test of H0 : X ~ F is to reject H0  if CM ≥ CM1- α. 

 

D.2. Kolmogorov – Smirnov (KS) or Kuiper Test  

 With same assumption as D.1., [Bain and Engelhardt, 1991], the statistics ‘D’ is 

given as: 
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The statistic given by ‘D’ is known as the “Kolmogorov-Smirnov” or “KS” 

statistic, and the statistic given by ‘V’ is known as the “Kuiper” statistic. Here also, the 

‘α’ test of H0 : X ~ F is to reject H0  if KS ≥ KS1- α.. 

 

D.3. Chi – Square Test   

The test statistics for the Chi Square test are given by [Bain and Engelhardt, 
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1991]: 
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where, 2χ = Test Statistic, 

 n = Sample size, 

Oi = Number of observation falling into ith cell, and 

Ei = Expected number of observations to fall in the ith cell. 

Here, Hypothesis H0 : X ~ F is rejected if 2
1

2
αχχ −≥ , where α  is the given confidence 

interval. 

  

The chi–square test is the most flexible and general test. The main limitation of 

CVM and KS tests is unavailability of critical values except for a few distributions such 

as exponential, weibull, and Normal required for these tests, though they can be derived 

for other distributions also. For the cases in which the distribution is completely 

specified, these tests perform well. However, if the parameters are estimated from the 

data, then the power of these tests is reduced. This is because new critical values need to 

be formulated and these must be obtained for the specific parametric form that is to be 

tested. For the chi-square test, this does not create any problems because in this test the 

number of degrees of freedom is adjusted in accordance with the parameters that are 

estimated from the data. Because of this flexibility, this test is used for testing the 

modeling results.  

The degrees of freedom for the chi-square test are calculated in the following 

manner. First the samples are grouped in bins such that each bin has a certain number of 

samples. For the present scenario, the samples are grouped together such that each bin 

has 10 samples. If the number of bins is ‘ bn ’ and ‘p’ parameters are estimated from the 

data, then the degree of freedom, ‘ v ,’ is given as 

 

( )1+−= pnv b  
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 The test statistics are calculated for a particular FoR as per Equation (D.1). Once 

the degrees of freedom and test statistics are calculated, the threshold is found for the 

given confidence interval. Since the test statistics follows a chi-square distribution with v 

degrees of freedom, hypothesis H0 : X ~ F is rejected if 2
1

2
αχχ −≥ , where α  is the given 

confidence interval. 
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