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ABSTRACT

Artificial immune systems (AIS) are new computational intelligence methods 

inspired by various mechanisms of the biological immune system. AIS are adaptive 

systems inspired by theoretical immunology and its functions, principles and models. The 

work depicted in this thesis centers on the applications of AIS based algorithms for 

optimization and self-tuning control in power systems. The optimization is carried out 

using an algorithm based on the clonal selection principle and the self-tuning 

characteristics of control for parameters are inspired by the humoral immune response of 

the human body. The work in this thesis is written in two papers as follows:

Paper 1 - CSA is used to design multiple optimal power system stabilizers (PSS). 

The proper tuning of PSSs has a significant influence on its effectiveness in providing the 

required damping under different operating conditions and disturbances. CSA is used to

determine the optimal parameters of four PSSs in a two area multi-machine power 

system. CSA optimized PSSs efficiently damp out the oscillations introduced in the 

system and its damping performance is slightly better than that of particle swarm 

optimization (PSO) optimized PSSs. The main contribution of CSA is that it converges 

faster and requires fewer computations than the standard PSO algorithm.

Paper 2 - CSA is used for optimization of four benchmark functions in literature. 

It is then used to design an optimal synchronous machine excitation controller which 

reduces oscillations introduced in the terminal voltage during disturbances. Immune 

feedback law is used to incorporate self-tuning characteristics in the optimal controller. 

The self-tuning optimal excitation controller reduces overshoot and settling time of 

oscillations. It also reduces power losses in the field circuit, thus, enhancing its life.
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PAPER 1

A MODIFIED CLONAL SELECTION ALGORITHM FOR SIMULTANEOUS 

DESIGN OF MULTIPLE OPTIMAL POWER SYSTEM STABILIZERS 

Mani Hunjan, Student Member, IEEE and 

Ganesh K. Venayagamoorthy, Senior Member, IEEE

Abstract— Power system stabilizers (PSSs) are added to enhance damping of power 

system oscillations in order to extend power transfer limits of the system and 

maintain reliable operation of the grid. They damp both inter-area and intra-area 

oscillations. The proper tuning of PSSs has a significant influence on its effectiveness 

in providing the required damping under different operating conditions and 

disturbances. This paper presents application of a modified clonal selection 

algorithm (CSA) to tune PSSs in the two-area four-machine benchmark power 

system. The modified CSA mutates the cells such that they are driven towards the 

antibody with the least fitness and hence, converges to the global optimum faster 

than the basic CSA. The optimal PSSs efficiently damp system oscillations during 

small and large disturbances. They exhibit good damping capabilities and 

oscillatory stability. The effectiveness and robustness of the CSA optimized PSSs is 

shown by comparing it with the particle swarm optimization (PSO) optimized PSSs 

and Conventional PSS for different disturbances and loading conditions.

Index Terms – Clonal selection algorithm, multi-machine power system, power 

system stabilizers.
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I. INTRODUCTION

Electrical power oscillations can occur on power systems that contain generators 

equipped with fast acting excitation systems. These oscillations occur when a large 

amount of power is transmitted over long transmission lines. Power oscillations of small 

magnitude and low frequency often persist for long periods of time. In some cases, this 

presents a limitation on the amount of power that can be transmitted within the system. 

Power System Stabilizers (PSSs) have been developed to aid in the damping of these 

power oscillations by modulating the excitation applied to the generator. They provide 

effective supplementary control by supplying auxiliary control signals to the excitation 

system of the generators. 

In recent years, considerable effort has been placed on the design of multi-

machine power system stabilizers. PSSs have been widely used to increase the damping 

ratios of electromechanical modes to suppress low frequency oscillations and increase 

oscillatory stability. These oscillations come into existence when rotors of generators 

oscillate with respect to each other using transmission line between them to exchange 

power. Depending on their location in the system, some generators participate in only one 

oscillation mode, while others participate in more than one mode. The conventional PSS 

used the lead-lag theory of phase compensation in the frequency domain and adjusted 

time of its correction signal (to change excitation) to oppose oscillations it detected in the 

generator rotor. It is tuned based on the linear model of the power system. 

Recently, a number of approaches have been used to design and tune the

parameters of the conventional PSS in order to obtain the optimal dynamic stability 

characteristics. These approaches are based on genetic algorithm [1-2], neural networks 
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[3-4], gradient descent methods [5], tabu search [6], simulated annealing [7], fuzzy logic 

[8], evolutionary programming [9], and particle swarm optimization [10]. These 

approaches however fail when dealing with epistatic objective functions (i.e. where 

parameters being optimized are highly correlated). Hence, an optimal PSS design is 

required which provides effective and rapid damping over a wide range of operating 

conditions.

An optimal PSS design using a modified clonal selection algorithm (CSA) is 

presented in this paper. The CSA is applied to determine the optimal parameters of the 

four PSSs in the two-area benchmark system. The response for the CSA optimized PSS is 

then compared with that obtained for the PSS optimized using particle swarm 

optimization (PSO).

This paper is organized as follows: Section II presents the two area multi-machine 

power system used in this study; Section III describes a modified CSA; Section IV

describes the PSO algorithm; Section V describes the design of the optimal PSS; Section 

VI compares the performance of the CSA optimized and PSO optimized PSS; Section 

VII presents the simulation results obtained for the two area power system. Finally, 

conclusion and future work are given in Section VIII.

II. MULTI-MACHINE POWER SYSTEM

In spite of being a small test system, the two-area power system very closely mimics 

the behavior of typical systems in actual operation and is useful to study inter area 

oscillations, like those seen in large interconnected power systems [11]. The two area 
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power system shown in Fig. 1 consists of two fully symmetrical areas linked together by 

two transmission lines. Each area is equipped with two identical synchronous generators 

rated 20kV/900 MVA. All generators are equipped with identical speed governors and 

turbines, exciters and AVRs. All the four generators are also equipped with the PSS 

shown in Fig. 2. Load is represented as constant impedances and split between the areas 

in such a way that area 1 is exporting about 413 MW to area 2, under normal operating 

conditions [12].

Fig. 1. Two area multi-machine power system.

Three electro-mechanical modes of oscillation are present in this system; two inter-

plant (or intra-area) modes, one in each area, and one inter-area low frequency mode, in 

which the generating units in one area oscillate against those in the other area. Intra-area 

(0.8-2 Hz) oscillations are inherent in large interconnected power systems and they occur 

between two electrically close generation plants. Inter-area oscillations (0.2-0.8 Hz) are 

low frequency electromechanical oscillations. They are associated with groups of
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generators in one geographical region swinging with respect to other groups in a different 

region interconnected through tie-lines. Adequate damping of these oscillations is a pre-

requisite for secure operation of the system.

The PSSs detect the variation in the rotor speed (ΔωGn), and provide an additional 

input signal (Vpss) to the excitation system of the generator to reduce the power swings in 

the system rapidly. A typical PSS block diagram is shown in Fig. 2. It consists of an 

amplifier block of gain constant K, a block having a washout time constant TW and two 

lead lag compensators with time constants T1 to T4.

Fig. 2. Block diagram of a power system stabilizer.

III. CLONAL SELECTION ALORITHM

The clonal selection theory was introduced by F. M. Burnet in 1958 [13]. The 

clonal selection principle describes the response of the immune system to antigen [14]. Its 

principle is based on the fact that only certain T and B cells are selected for destruction of 

specific antigens invading the body. The selected T and B cells then proliferate to 

eliminate the antigen. The main features of the current clonal selection theory are that:
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 Stimulation of certain T and B cells by antigens causes proliferation and 

differentiation.

 Non-stimulated cells are suppressed.

 The new cells generated are mutated clones of the parents (affinity maturation) 

representing a generation with random genetic changes. The mutation rate is 

proportional to the cell affinity.

 Newly differentiated lymphocytes which carry self reactive or low-affinity 

antigenic receptors are eliminated.

The core of the biological immune response is the clonal selection principle or the 

clonal selection theory. When B cells encounter antigens, they are activated to produce 

antibody molecules. B cells are lymphocytes and bear antigen receptors of a single 

specificity. Each B cell can produce only one kind of specific antibody molecules capable 

of recognizing and binding to this specific antigen. And it is this binding that stimulates

the B cell to reproduce a cell or cells and later differentiate into plasma cells. This 

asexual proliferation generates daughter cells or clone cells. Therefore, only those cells 

that recognize the antigen proliferate, thus being selected against those that do not. 

Clonal selection principle or algorithm has found applications in pattern 

recognition and optimization. The clonal selection algorithm basically consists of two 

populations; a set of antigens (Ag) and a set of antibodies (Ab). The basic CSA [15] is

slightly modified by mutating the cloned population such that the new set of antibodies 

generated after maturation drive the algorithm towards the global optimum. The modified 

CSA used for optimization can be described as follows and its flowchart is depicted in 

Fig. 3.
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STOP

Start with N Antibodies

Evaluate objective function for each of the N antibody. The objective function 
needs to be minimized and is inversely proportional to the affinity.

Arrange antibodies according to decreasing affinity

Select C antibodies with highest affinity and clone them. 
Antibody with highest affinity is set to Abbest

Make NC clones of each of the C antibodies/cells

Affinity maturation process of cloned antibodies:
C* = C + α (randn1) (C) + α (randn2) (C - Abbest)

Termination condition 
met?

START

Evaluate objective function (affinity) for each matured antibodies

Reselect N antibodies with highest affinity from the combined initial population of 
antibodies (N) and matured antibodies (C*). 

Yes

No

STOPSTOP

Start with N Antibodies

Evaluate objective function for each of the N antibody. The objective function 
needs to be minimized and is inversely proportional to the affinity.

Arrange antibodies according to decreasing affinity

Select C antibodies with highest affinity and clone them. 
Antibody with highest affinity is set to Abbest

Make NC clones of each of the C antibodies/cells

Affinity maturation process of cloned antibodies:
C* = C + α (randn1) (C) + α (randn2) (C - Abbest)

Termination condition 
met?

START

Evaluate objective function (affinity) for each matured antibodies

Reselect N antibodies with highest affinity from the combined initial population of 
antibodies (N) and matured antibodies (C*). 

Yes

No

Fig. 3. Flowchart for the modified clonal selection algorithm.
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1) Randomly generate a population of N antibodies.

2) Determine affinity of Ag to all the N antibodies. For optimization problems the 

affinity could be directly proportional or inversely proportional to the objective 

function that needs to be maximized or minimized.

3) Select C antibodies with highest affinity.

4) Clone the C selected antibodies (In the biological immune system B cells clone and 

produce antibodies). The number of clones generated for each of the antibodies can 

be given by

 NroundN C .                                  (1)

where Nc is number of clones generated for each antibody, β is a multiplying factor, N 

is the total number of antibodies, and round ( ) is an operator which rounds its 

argument to the closest integer.

5) Store the antibody with the greatest affinity as Abbest.

6) The cloned set of antibodies next undergoes affinity maturation. This affinity 

maturation is inversely proportional to the antigenic affinity. The higher the antigenic 

affinity, the lower the mutation rate. The affinity maturation of the cloned antibodies 

is calculated using 

))(()( 21
*

bestAbCrandCrandCC                                    (2) 

where C* is the set of population obtained after cloning and affinity maturation of the 

C antibodies, α is calculated using 

)exp( f                                                       (3)

where f is the normalized fitness or objective function of the antibody being mutated. 

rand1 and rand2 are random numbers in a uniform distribution between 0 and 1. The 
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affinity maturation of the cloned antibodies tends to drive the next set of antibodies 

towards the global optimum by taking into consideration the antibody with the 

greatest affinity (Abbest). 

7) Determine the antigenic affinity of the matured antibodies. 

8) Reselect N antibodies with the highest affinity and repeat step 3 until some 

termination condition is satisfied.

The modified CSA summarized above has been used for optimization of PSS 

parameters for the two-area system.

IV. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) combines social psychology principles in 

socio-cognition human agents and evolutionary computations. The beauty of PSO lies in 

its ability to explore and exploit the search space by varying the parameters of the PSO 

according to its velocity and position update equations. This unique feature of the 

algorithm overcomes the premature convergence problem and enhances the search 

capability. Hence, it is a suitable optimization tool. PSO is a form of evolutionary 

computation technique (a search method based on natural systems) developed by 

Kennedy and Eberhart [16]-[18]. PSO like GA is a population (swarm) based   

optimization   tool. However, unlike in GA, individuals are not eliminated from the 

population from one generation to the next. One major difference between particle swarm 

and traditional evolutionary computation methods is that particles’ velocities are 
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adjusted, while evolutionary individuals’ positions are acted upon; it is as if the “fate” is 

altered rather than the “state” of the particle swarm individuals [19].

The system initially has a population of random solutions. Each potential solution, 

called particle, is given a random velocity and is flown through the problem space. The 

particles have memory and each particle keeps track of previous best position and 

corresponding fitness. The previous best value is called the pbest of the particle and 

represented as pid. Thus, pid is related only to a particular particle i. The best value of all 

the particles’ pbests in the swarm is called the gbest and is represented as pgd. The basic 

concept of PSO technique lies in accelerating each particle towards its pid and the pgd

locations at each time step. The amount of acceleration with respect to both pid and pgd

locations is given random weighting.  

The following steps explain the procedure in the standard PSO algorithm.

1) Initialize a population of particles with random positions and velocities in d 

dimensions of the problem space.

2) For each particle, evaluate the desired optimization fitness function.

3) Compare every particle’s fitness evaluation with its pbest value, pid. If current value is 

better than pid, then set pid value equal to the current value and the pid location equal to 

the current location in d-dimensional space.

4) Compare the updated pbest values with the population’s previous gbest value, pgd. If 

any of pbest values is better than pgd, then update pgd and its parameters.

5) Compute the new velocities and positions of the particles according to (4) and (5)

respectively. vid and xid represent the velocity and position of ith particle in dth

dimension respectively and, rand1 and rand2 are two uniform random functions.
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                        (4)

                 ididid xvx                                                                                 (5)

6) Repeat from step 2 until a specified terminal condition is met, usually a sufficiently 

good fitness or a maximum number of iterations.

The PSO parameter in (4), w is called the inertia weight, which controls the 

exploration and exploitation of the search space. Local minima are avoided by small local 

neighborhood, but faster convergence is obtained by larger global neighborhood and in 

general, global neighborhood is preferred. c1 and c2 termed as cognition and social 

components respectively are the acceleration constants which changes the velocity of a 

particle towards pid and pgd.

V. OPTIMAL PSS DESIGN

The PSS has five parameters; one gain (K) and four lead-lag compensator time 

constants (T1, T2, T3 and T4). Proper tuning of a PSS has significant influence on its 

effectiveness in providing the required damping under different operating conditions. The 

optimal parameters for the four PSS in the two area system are obtained using CSA and 

PSO. The objective function is designed so as to minimize overshoot and settling time of 

system oscillations. An eigenvalue based objective function reflecting damping factor of 

each of the electromechanical eigenvalues at a number of different operating conditions is 

formulated. The optimization algorithm must minimize the cost function given by:
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a is the weighing factor taken to be 0.1 for this study. NP is the number of operating 

points considered in the design.  σi.j is the real part of the ith eigenvalue under jth operating 

condition considered. The value of σo determines the relative stability in terms of 

damping factor margin provided for constraining the placement of eigenvalues during the 

process of optimization. The closed loop eigenvalues are placed in the region to the left 

of the line as shown in Fig. 4 (a) if only M1 is to be taken as the objective function. 

Similarly if M2 is to be taken as the objective function then it limits the maximum 

overshoot of the eigenvalues as shown in Fig. 4 (b). In case of M2, ζ0 is the minimum 

damping factor to be achieved for all of the eigenvalues. When the cost function is as 

given by (6), it takes into account both damping and overshoot, and the eigenvalues are 

restricted within the D-shaped area as shown in Fig. 4 (c).

Limits are placed on the PSSs parameters to keep the system within the stability 

margin during optimization. The range of the parameters chosen in this study is selected 

keeping Kundur’s settings [12] in mind. The maximum and the minimum values of these 

parameters are chosen such that the system does not lose its stability when the PSSs 

parameters attain any of these limits. The limits used are : 5  ≤  K  ≤  30, 0.01 ≤ T1 ≤  5.0, 

0.01  ≤  T2 ≤  5.0, 0.1  ≤  T3  ≤  10 , 0.1  ≤  T4  ≤  10.
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Fig. 4. Regions of location of eigenvalues for different objective functions.

VI. PERFORMANCE COMPARISON

The performance of the CSA and PSO optimized PSS is compared with Kundur’s 

PSS [12] for the four operating conditions given in Table I.

Table I
Operating Conditions

Condition
Power 

Transfer
(MW)

Load in  
Area  1
(MW)

Load in  
Area 2
 (MW)

I 246 1120 1180
II 398 967 1767
III 446 920 1380
IV 476 890 1410

The following subsections compare the computational complexities of the CSA 

and PSO algorithms and the oscillatory modes obtained based on eigenvalue analysis, 
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and transient energy analysis of the damping response of the CSA and PSO algorithm 

optimized PSSs.

A. Computational Complexities

The number of fitness evaluations in PSO is n for a single iteration, where n is the 

number of particles. Similarly for CSA, the number of fitness evaluations is m for a 

single generation, where m is the number of antibodies. Table II provides us with the 

information of the computational complexity involved in CSA and PSO. The number of 

fitness evaluations in PSO is more than that of CSA.  For 20 trials CSA on an average 

required lesser number of iterations to converge to zero than PSO. The average iterations 

PSO required to converge are 16.05 iterations whereas CSA required only 10.45 

iterations to converge to zero.  For the same number of particles employed, the fitness 

evaluation comparison can be seen in Table II. The number of additions and 

multiplications in comparison to PSO are both reduced by 47.82 %, respectively, while 

the number of fitness evaluations is reduced by 34.78 %.

Both of the algorithms are further compared in terms of their convergence speed 

with respect to the number of fitness evaluations. The average fitness of both CSA and 

PSO over the number of fitness evaluations are plotted as shown in Fig. 5. Average 

fitness of the particle in case of CSA takes lesser number of evaluations to converge to 

zero. Hence in a condition where computational complexity will be a priority, CSA will 

have an upper hand over PSO.
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Table II

Comparison of Computational Complexity of PSO & CSA For PSS Design

(d = Number of dimensions)

Algorithms Number of

Fitness Evaluations

Number of 

Additions

Number of 

Multiplications

PSO –

n particles

( n=20, d=5)

n × number of 

iterations

(460)

5 × n× d× number of 

iterations

(115,000)

5 × n× d× number of 

iterations

(115,000)

CSA –

m  antibodies 

( m=20, d=5)

m × number of 

iterations

(300)

4 × m× d× number 

of iterations

(6,000)

4 × m× d× number of 

iterations

(6,000)
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Fig. 5. Average fitness of the best particle/antibody over 20 trials.
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B. Eigenvalue Analysis

Eigenvalue analysis is carried out on the system for different operating points. 

The system is optimized in such a fashion that the eigenvalues between the frequency 

range of 0.4-1.2 Hz must have damping greater than 0.4 and their real parts lie to the left 

of the -1.0 in the s-plane. The frequency range is chosen keeping in view the modal 

oscillations which lie in the low frequency range. The optimization techniques after 

certain number of iterations converges to zero indicating the no availability of the weakly 

damped modes in the system between the desired frequency range. This means that the 

eigenvalues lie in the D-shaped region as shown in Fig. 4. The electromechanical modes 

and the dampings are given in Tables III-VI for operating conditions I-IV.  The optimal 

PSS parameters using CSA and PSO are determined over 20 trails. The best sets of 

optimal parameters for the PSS are given in Table A.1. in the Appendix. Tables III-VI 

also give the standard deviation and the minimum and maximum damping obtained for 

the different operating conditions.

It is seen that the system damping effect is enhanced and the dynamic 

characteristics are improved when using optimal PSSs. The location of the real parts of 

the electromechanical modes of interest for the CSA optimized PSSs are more towards 

the left of the -1.0 line than the PSO optimized PSSs or Kundur’s PSS [12]. The CSA 

optimized PSSs are the best damping providers for all the four operating conditions. The 

novelty of the optimization techniques can be further seen as the local modes of 

oscillations of the generators are absent in the system with the PSO and CSA optimized 

PSSs.
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Table III

Oscillatory Modes of the System- Operating Condition I

Parameters Eigenvalue Freq

(Hz)

Damping

(%) 

Dominant 

States

Kundur -0.96 ± j 4.22

-6.28 ± j 7.08

-5.64 ± j 7.26

0.67

1.12

1.15

22.2

66.3

61.3

Inter Area 

Mode

Local Mode

Local Mode

PSO -1.73 ± j 3.66 0.58 41.67 ± 0.7163

(40.75, 42.75)

Inter Area 

Mode

CSA -1.75± j 3.62 0.57 42.31 ± 1.1031

(40.72,  43.89)

Inter Area 

Mode

Table IV

Oscillatory Modes of the System- Operating Condition II

Parameters Eigenvalue Freq

(Hz)

Damping

(%) 

Dominant 

States

Kundur -0.95 ± j 4.05 

-6.27 ± j 7.12 

-5.43 ± j 7.38 

0.64

1.13

1.17

22.9

66.8

59.2

Inter Area 

Mode

Local Mode

Local Mode

PSO -1.72 ± j 3.53 0.56 42.76 ± 0.7352

(41.83, 43.87)

Inter Area 

Mode

CSA -1.74 ± j 3.48 0.55 43.31 ± 0.9212

(41.94, 44.73)

Inter Area 

Mode
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Table V

Oscillatory Modes of the System- Operating Condition III

Parameters Eigenvalue Freq

(Hz)

Damping

(%) 

Dominant 

States

Kundur -0.92 ± j 4.14 

-6.26 ± j 7.13 

-5.62 ± j 7.26 

0.65

1.13

1.15

21.6

65.9

61.2

Inter Area 

Mode

Local Mode

Local Mode

PSO -1.67 ± j 3.62 0.57 40.98 ± 0.7195

(40.00, 42.05)

Inter Area

Mode

CSA -1.70 ± j 3.57 0.57 41.60 ± 1.0553

(40.00, 43.13)

Inter Area 

Mode

Table VI

Oscillatory Modes of the System- Operating Condition IV

Parameters Eigenvalue Freq

(Hz)

Damping

(%) 

Dominant 

States

Kundur -0.91 ± j 4.12 

-6.25 ± j 7.14 

-5.61 ± j 7.26 

0.65

1.13

1.15

21.5

65.8

61.1

Inter Area 

Mode

Local Mode

Local Mode

PSO -1.66 ± j 3.61 0.57 40.90 ± 0.7161

(40.00, 41.97)

Inter Area 

Mode 

CSA -1.69 ± j 3.56 0.56 41.55 ± 1.0473

(40.00, 43.15)

Inter Area 

Mode 
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C. Transient Energy Analysis of Damping Response

This section compares the optimized PSSs with Kundur’s PSSs [12] based on a

performance index. Transient energy is the energy existing in the oscillations of the 

generators rotor after a disturbance. The transient energy of each of the generator for the 

first 3 seconds after the fault has been calculated using equation (8)

  
  3 2

2

1 flt

fltii

t
t iGenGen

dtHTE                                     (9)

where i is the generator number, HGen is the inertia constant of the generator, and tflt is the 

time the fault is triggered. The performance index (P.I.), given in (10), is a measure of 

how the system has performed under the given conditions with the different set of PSS 

parameters. The higher the performance indices the better the controller damping 

performance.

Performance Index (P.I.) =1/ TE                                       (10)

Tables VII-X presents the normalized performance indices of Area 1 and Area 2 for the 

system subjected to two disturbances for four operating scenario mentioned in Table I. 

Table XI gives the overall normalized performance index for the four operating 

conditions. The tables show the normalized P.I.s of the areas. Normalized P.I.s are 

obtained by dividing the P.I.s by the P.I. of Kundur’s in that row. Tables VII-XI show 

that the P.I. of the CSA optimized PSSs are the best in each row. The robustness of the 

optimization technique can be ascertained by observing the P.I.s in cases of a line outage, 

short circuit and overall performance. System having CSA optimized PSSs provide better 

damping to the oscillations as the P.I.s in those cases are improved in comparison to a 

system having Kundur’s PSSs or PSO optimized PSS in all operating conditions.



20

Table VII

Normalized Performance Index for Operating Condition I

Disturbances Areas Kundur PSO CSA

Area 1 1.0 1.7196 1.8358

Short Circuit Area 2 1.0 2.3201 2.3752

Area 1 1.0 1.541 1.5822

Line Outage Area 2 1.0 1.4643 1.5061

Area 1 1.0 1.6303 1.718Overall Performance

Area 2 1.0 1.8992 1.9406

Table VIII

Normalized Performance Index for Operating Condition II

Disturbances Areas Kundur PSO CSA

Area 1 1.0 2.0699 2.1417

Short Circuit Area 2 1.0 1.9892 2.0068

Area 1 1.0 1.3693 1.4076

Line Outage Area 2 1.0 1.3798 1.4238

Area 1 1.0 1.7196 1.7746Overall Performance

Area 2 1.0 1.6845 1.7153

Table IX

Normalized Performance Index for Operating Condition III

Disturbances Areas Kundur PSO CSA

Area 1 1.0 1.9747 2.0959

Short Circuit Area 2 1.0 2.1668 2.1958

Area 1 1.0 1.3764 1.416

Line Outage Area 2 1.0 1.3821 1.4255

Area 1 1.0 1.6755 1.7559Overall Performance

Area 2 1.0 1.7744 1.8106
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Table X

Normalized Performance Index for Operating Condition IV

Disturbances Areas Kundur PSO CSA

Area 1 1.0 2.0292 2.1376

Short Circuit Area 2 1.0 2.1294 2.1514

Area 1 1.0 1.3808 1.4202

Line Outage Area 2 1.0 1.3755 1.4186

Area 1 1.0 1.705 1.7789Overall Performance

Area 2 1.0 1.7524 1.7850

Table XI

Overall Normalized Performance Index 

Operating Condition Areas Kundur PSO CSA

Area 1 1.0 1.6303 1.718I

Area 2 1.0 1.8992 1.9406

Area 1 1.0 1.7196 1.7746II

Area 2 1.0 1.6845 1.7153

Area 1 1.0 1.6755 1.7559III

Area 2 1.0 1.7744 1.8106

Area 1 1.0 1.705 1.7789IV

Area 2 1.0 1.7524 1.7850

Area 1 1.0 1.6826 1.7568Overall Performance

Area 2 1.0 1.7601 1.8128

VII. SIMULATION RESULTS

The effectiveness of the CSA and PSO optimized PSS is evaluated for the two-

area multi-machine power system. The PSSs are tuned using CSA and PSO from the 
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frequency domain information. The objective function used for the optimization of PSS 

parameters is given by (6). The optimization is carried out by simultaneously taking into 

consideration the four operating conditions given in Table I. The optimal values are 

determined over 20 trials. Two tests are carried out for each of the operating conditions 

given in Table I: a 150 ms short circuit at bus 8, and permanent line outage between 

buses 7 and 8. The response of the generator speed, PSS output and tie line power 

transfer are shown for CSA and compared with PSO optimized and Kundur’s PSS 

parameters [12]. The optimal PSS parameters using CSA and PSO are determined over 

20 trials and the best set of optimal PSS parameters obtained are given in Table A.1 in the 

Appendix.

A.   Test 1

A three phase short circuit of duration 150 ms is applied at bus 8 of the two area 

system given in Fig. 1. The short circuit is in the middle of the tie lines connecting the 

two areas of the system. 

1) Operating Condition I :

The rotor speed responses of two generators in the system (one in each area), G1 

and G3 are shown in Fig. 6. Similar responses were observed for generators G2 and G4.

It is seen that the responses of PSO optimized PSS and CSA optimized PSS are better 

than that obtained using Kundur’s parameters. The CSA optimized PSS damps out the 

oscillations effectively and attains the steady state value faster than Kundur’s PSS and 

comparable to PSO optimized PSS. 
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The corresponding PSS output for PSS1 and PSS3 are shown in Fig. 7. The PSS 

outputs indicate that PSO and CSA optimized PSSs provide better control by better 

modulation of the excitation supplied to the generator. The power exported from area 1 to 

area 2 in Fig.1 is 246 MW. When there is any fault in the system this power transfer 

across the tie line is affected. Fig. 8 shows the oscillations in the tie line power (between

area 1 and area 2) for a 150 ms short circuit at bus 8 for operating condition I. It can be 

seen that the oscillations are less for the CSA and PSO optimized PSS. This means that a 

steady power transfer between the two areas is restored faster for CSA optimized PSS as 

compared to Kundur’s PSS. The performance of CSA and PSO optimized PSS is 

comparable.
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Fig. 6. Speed response of generators G1 and G3 for a 150 ms three phase short circuit at 
bus 8 for operating condition I.
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2) Operating Condition II:

The generator speed response (for generators G2 and G4), corresponding PSSs 

output (PSS2 and PSS4) and tie line power flow for operating condition II are given in 

Figs. 9 to 11, respectively. From Fig. 9, it is seen that the CSA and PSO optimized PSSs 

exhibit the better response in terms of damping the oscillations introduced in the speed 

response of the generators of the system as compared to Kundur’s PSS. The CSA and 

PSO optimized PSS parameters are shown to minimize the overshoot and damp the 

oscillations quickly and efficiently. The PSS outputs in Fig. 10 show that the optimal 

PSSs provide better modulation of the generator in comparison to Kundur’s PSS. Fig.11 

shows that the power transfer between the two areas is restored faster for CSA and PSO 

optimized PSS as compared to Kundur’s PSS.
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Fig. 9. Speed response of generators G2 and G4 for a 150 ms three phase short circuit at 
bus 8 for operating condition II.
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3) Operating Condition III:

Various responses are observed for PSSs with optimized parameters for operating 

condition III. The generator speed responses, corresponding PSS output and the tie-line 

power flow are shown in Figs. 12 to 14 respectively.

It is seen that CSA and PSO optimized PSSs damp out the oscillations in the 

generator speed efficiently. The generator rotor speed settles to its steady state value 

much faster than with Kundur’s PSS. The PSS outputs show that PSSs with CSA and 

PSO optimized parameters provide better auxiliary signals to the excitation system of the 

generator to damp the oscillations introduced due to the short circuit. Fig. 14 gives the tie 

line power flow oscillations after the short circuit. It is seen that the optimal PSSs bring 

about faster damping of power oscillations in the tie line as compared to Kundur’s PSS.
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Fig. 12. Speed response of generators G1 and G3 for a 150 ms three phase short circuit at 
bus 8 for operating condition III.
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Fig. 13. Corresponding PSS outputs for PSS1 and PSS3 for a 150 ms three phase short 
circuit at bus 8 for operating condition III.
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4) Operating Condition IV:

Various responses are observed for PSSs with optimized parameters for operating 

condition IV. The generator speed responses, corresponding PSS output and the tie-line 

power flow are shown in Figs. 15 to 17, respectively.

As can be seen in Fig. 15, CSA and PSO optimized PSS damp the oscillations in 

the generator speed efficiently. The settling time of the generator speed response is 

significantly reduced for the optimal PSSs. The PSSs output in Fig. 16 show that the CSA 

and PSO optimized PSS make considerable effort to provide modulation of excitation 

supplied to the generators. The tie line power transfer in Fig. 17 shows that the 

oscillations in tie line power are greatly reduced for optimized PSS parameters as 

compared to the Kundur’s PSS parameters. 
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Fig. 15. Speed response of generators G2 and G4 for a 150 ms three phase short circuit at 
bus 8 for operating condition IV.
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Fig. 16. Corresponding PSS outputs for PSS2 and PSS4 for a 150 ms three phase short 
circuit at bus 8 for operating condition IV.
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B. Test 2

A permanent line outage is applied between buses 7 and 8 of the two area system 

given in Fig. 1. Various responses are studied for the four operating conditions given in 

Table I for the permanent line outage. 

1) Operating Condition I:

The speed of the generators (one in each area), the corresponding PSS outputs and 

the tie line power flow for operating condition I for a permanent line outage is given in 

Figs. 18 to 20, respectively.
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Fig. 18. Speed response of generators G2 and G4 for a permanent line outage between 
buses 7 and 8 for operating condition I.
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Fig. 19. Corresponding PSS outputs for PSS2 and PSS4 for a permanent line outage 
between buses 7 and 8 for operating condition I.
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Fig. 20. Corresponding tie line power flow for a permanent line outage between buses 7 
and 8 for operating condition I.
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The speed response of the generators show that the oscillations are minimized by 

the CSA and PSO optimized PSSs. The overshoot and settling time of the deviations in 

the generator speed are minimized. It is also seen that the power transfer in the tie line is 

restored faster when using CSA and PSO optimized PSS as compared to the Kundur’s 

PSS. The oscillations in tie line power are reduced and the overshoot is minimized 

significantly. The power flow through the tie line after the permanent line outage is 

restored faster for optimal PSSs.

2) Operating Condition II:

Various responses for the different PSSs are studies for operating condition II for 

a permanent line outage. The generator speed responses, corresponding PSS output and 

the tie-line power flow are shown in Figs. 21 to 23, respectively.

Fig. 21 gives the speed response of generator G1 and G3 (one in each area). 

Similar responses are observed for generators G2 and G4. It is seen that the generator 

speed oscillations settle down faster for CSA and PSO optimized PSS as compared to 

Kundur’s PSS. The other two generators G2 and G4 also exhibit similar responses. The 

corresponding output of the PSSs is given in Fig. 22. It is seen that optimal PSSs exert an 

extra effort to provide appropriate modulation of excitation supplied to the generators. 

The tie line power flow shown in Fig. 23 indicates that the tie line power flow after the 

permanent line outage is restored to the required 446 MW faster for the optimal PSSs as 

compared to the Kundur’s PSS. There are minimal oscillations in the tie line power for 

the optimal PSSs, while for Kundur’s PSS the overshoot is high and the settling time is 

large.



34

0 0.5 1 1.5 2 2.5 3 3.5
377

377.2

377.4

Time in seconds

S
p
e
e
d
 o

f 
G

1
 i
n
 r

a
d
/s

e
c

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
376.6

376.8

377

377.2

377.4

377.6

Time in seconds

S
p
e
e
d
 o

f 
G

3
 i
n
 r

a
d
/s

e
c

Kundur's PSS

PSO Optimized PSS
CSA Optimized PSS

Kundur's PSS

PSO Optimized PSS

CSA Optimized PSS

Fig. 21. Speed response of generators G1 and G3 for a permanent line outage between 
buses 7 and 8 for operating condition II.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.01

0.02

Time in seconds

O
u
tp

u
t 

o
f 

P
S

S
1
 i
n
 p

.u
.

0 0.5 1 1.5 2 2.5 3 3.5
-0.02

-0.01

0

0.01

0.02

Time in seconds

O
u
tp

u
t 

o
f 

P
S

S
3
 i
n
 p

.u
.

Kundur's PSS

PSO Optimized PSS
CSA Optimized PSS

Kundur's PSS

PSO Optimized PSS

CSA Optimized PSS

Fig. 22. Corresponding PSS outputs for PSS1 and PSS3 for a permanent line outage 
between buses 7 and 8 for operating condition II.
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Fig. 23. Corresponding tie line power flow for a permanent line outage between buses 7 
and 8 for operating condition II.

3) Operating Condition III:

Various responses are observed for PSSs with optimized parameters for operating 

condition III. The generator speed responses, corresponding PSS output and the tie-line 

power flow are shown in Figs. 24 to 26, respectively.

The speed responses clearly depict the superiority of the CSA and PSO optimized 

PSSs over Kundur’s PSSs. The optimized parameters bring about the oscillations in 

generator speeds to settle down in a few seconds. The oscillations in optimized PSSs 

owing to the control effort taken by them after a disturbance settle down faster. Fig. 25 

shows the tie line power flow in one of the parallel lines between buses 7 and 8. After 

one of the lines is permanently removed from the circuit the entire power flow is diverted 
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to the single path instead of two parallel paths. The oscillations in power settle down 

fastest for the system having optimized PSSs.

4) Operating Condition IV:

Various responses are observed for PSSs with optimized parameters for operating 

condition IV. The generator speed responses, corresponding PSS output and the tie-line 

power flow are shown in Figs. 27 to 29, respectively.

Optimized PSSs exhibit better performance than Kundur’s parameters. The 

settling time and the overshoots in speed and tie line power are reduced when the system 

has optimized PSSs.
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Fig. 24. Speed response of generators G2 and G4 for a permanent line outage between 
buses 7 and 8 for operating condition III.
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Fig. 25. Corresponding PSS outputs for PSS2 and PSS4 for a permanent line outage 
between buses 7 and 8 for operating condition III.
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Fig. 26. Corresponding tie line power flow for a permanent line outage between buses 7 
and 8 for operating condition III.
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Fig. 27. Speed response of generators G2 and G4 for a permanent line outage between 
buses 7 and 8 for operating condition IV.
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Fig. 28. Corresponding PSS outputs for PSS2 and PSS4 for a permanent line outage 
between buses 7 and 8 for operating condition III.
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Fig. 29. Corresponding tie line power flow for a permanent line outage between buses 7 
and 8 for operating condition IV.

VIII. CONCLUSION

CSA and PSO have been successfully implemented for the simultaneous design of 

multiple optimal PSSs for a two area power system. Both CSA and PSO optimized PSSs 

effectively damp out the oscillations introduced in the system. It is seen that the damping 

performance of CSA optimized PSS is comparable to that of PSO optimized PSS. Higher 

performance indices for CSA optimized PSS indicate slightly better damping 

performance than the PSO optimized PSS. The CSA converges faster than the PSO 

algorithm as it requires lesser number of fitness evaluations to converge to zero. Also, 

CSA is less complex computationally as compared to PSO. Hence, CSA can give better 
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performance than the PSO in lesser number of fitness evaluations and involving lesser 

computational complexities.
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Ganesh K. Venayagamoorthy, Senior Member, IEEE

Abstract— Artificial immune systems (AIS) are biologically motivated information

processing systems. Several algorithms have been inspired by various mechanisms 

of the biological immune system. The clonal selection mechanism of the immune 

system is a powerful optimization and recognition technique. This paper presents 

optimization results on four benchmark functions and the design of an optimal 

excitation controller (OEC) for a generator on an electric ship. Clonal selection 

algorithm (CSA) produces better solutions and has fast convergence. The concept of 

adaptive immunity in biological immune systems is extended for the design of a self-

tuning optimal excitation controller (STOEC) to handle high energy loads on an 

electric ship such as electric guns, electromechanical aircraft launchers, high power 

sensors, and directed energy weapons. The STOEC can effectively control the 

output voltage and the reactive power of the generator during pulsed loads, 

stabilizing the terminal voltage quickly with minimal speed deviations. The STOEC 

considerably reduces the field current overshoot and minimizes power losses in the 

field circuit. Simulation results are provided to compare the performance of the 

conventional controller and the STOEC.
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Index Terms -- Adaptive immunity, artificial immune system, clonal selection 

algorithm, excitation control, immune feedback law, pulsed loads.

I. INTRODUCTION

Artificial immune systems (AIS) are inspired by the principles and processes of 

the immune system. AIS algorithms typically exploit the immune systems characteristics 

of learning and memory. Its learning takes place by evolutionary processes. Processes in 

AIS which are investigated and simulated are clonal selection for B cells [1], negative 

selection of T cells [2], affinity maturation [3] and immune network theory [4]. AIS have 

been applied to areas such as optimization [5], robotic systems [6], machine learning [7], 

network intrusion detection [8], anomaly detection [9], fault diagnosis [10], scheduling 

[11], computer security [12], data analysis [13], and many other areas.

Clonal selection algorithm (CSA) is based on the principles of clonal selection 

and affinity maturation of the biological immune system. Clonal selection principle 

explains how an immune response is mounted when an antigen is recognized. It is based 

on a principle that only certain cells are selected for destruction of specific antigens. The 

fundamental concept of CSA is that only the cells that recognize the intruding antigen are 

selected for cloning. CSA has been increasingly used in various areas of engineering and 

research, including applications in pattern recognition [14], machine learning [15] and 

multi-modal optimization [16]. 

In this paper, two studies are carried out using CSA. It is first used for 

optimization of four benchmark functions and the results are compared with those
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obtained using genetic algorithm (GA) and particle swarm optimization (PSO). CSA is 

then used for the design of an optimal excitation controller (OEC) for a future electric 

ship. Further, CSA and adaptive immune algorithm are used in the design of a self-tuning 

optimal excitation controller (STOEC), to specifically handle pulsed loads on the ship. 

Future electric ship power system design should be reliable and survivable [17]. It 

should be able to support new systems that require pulse power levels which are two to 

three times the magnitude of the total power installed onboard the ship. An efficient 

method is required for voltage control of the generator especially during pulsed loads to 

maintain power continuity and regulation. Arcidiacono et al. proposed a concept of a 

shipboard integrated voltage and VAR control method to fulfill the power quality 

requirements of the electric ship in [18]. The pulsed-power loads on an electric ship like 

electric launchers, electric guns, high power sensors, and directed energy weapons cause 

variations in the power demand. During pulsed power load demand there is a small drop 

in the turbine speed and large oscillations are introduced in the generator terminal voltage 

and the propulsion motor speed [19]. The challenge is to provide power continuity and 

regulation after firing of these high energy weapons [20]. The oscillations in the terminal 

voltage are of primary concern for the electric ship power system under pulsed load 

conditions. Hence, a nonlinear controller is required for controlling the terminal voltage 

of the generator and damping out any oscillations in the system. 

This paper is organized as follows: Section II describes the biological immune 

system; Section III describes the CSA used for optimization; Section IV deals with 

optimization of four benchmark functions; Section V discusses the electric ship excitation 

system and explains the design of an immune system based STOEC; Section VI presents 
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simulation results for the immune system based STOEC. Finally, the conclusions and 

future work are given in Section VII.

II. BACKGROUND ON BIOLOGICAL IMMUNE SYSTEM

The artificial immune system is a biologically motivated information processing 

system. It is a parallel and distributive adaptive system which can learn new information, 

recall previously learned information and perform pattern recognition tasks in a 

decentralized fashion. Its learning takes place by evolutionary processes. The powerful 

information processing capabilities of the immune system, such as feature extraction, 

pattern recognition, learning, memory and its distributive nature provide metaphors for its

artificial counterpart [21]. The immune system involves various mechanisms and among 

them a few have been investigated and simulated. These include immune network models 

[22], clonal selection principle [23], and negative selection algorithms [24]. The main 

role of the immune system is to recognize all cells within the body and categorize them as 

self or non-self. The non-self cells are further categorized in order to induce an 

appropriate type of defense mechanism.

The immune system has two types of responses: innate and adaptive. Innate 

immunity is a non specific defense mechanism. The adaptive immunity is antigen 

specific and adapts to previously unseen molecule. Unlike the innate immune response, it 

becomes more efficient on subsequent exposure to the same antigen. When the antigens 

penetrate the epithelial surface, they encounter cells and molecules that mount an innate 

immune response. Macrophages conduct defense by means of surface receptors that 
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recognize and bind to common constituents of antigen surfaces and engulf the antigen. 

Antigens are also ingested by the immature dendritic cell in the infected tissue. Binding 

of antigen to the receptor stimulates the dendritic cell to engulf the antigen and degrade it 

intracellularly. On activation, the dendritic cells mature into highly effective antigen 

presenting cell (APC) and in turn activate antigen specific lymphocytes (B cells and T 

cells). Lymphocytes bear antigen receptors of a single specificity and are responsible for 

the adaptive immune response of the human body. 

Adaptive immune response is realized by the interplay of various cells in the 

body. Among these cells, the T-cells and the B-cells play the most important roles. B-

cells can secrete antibodies and can perform the nonspecific humoral immunity. T-cells 

are comprised of three subsets; the helper T-cells (TH), the suppressor T-cells (TS) and the 

killer T-cells (TC). The function of the T-cells is to adjust the immune process and 

remove antigens. For adjustment, the T-cells improve and enhance the immune response 

on appearance of an antigen, and inhibit the reproduction of immune cells to restore 

dynamic balance of the system once the number of antigen falls below a certain limit. 

Killer T-cells secrete cytotoxin to kill antigens and perform specific cell-mediated 

immunity [22].

The immune system exhibits two types of responses: T cell mediated cell immune 

response and B cell mediated humoral immune response. For humoral immune response,

the antigen presenting cell (APC) captures the antigen and activates CD4+T cells which 

clone and differentiate into the TS (suppressor) and TH (helper) cells. APC are highly 

specialized cells that can process antigens and present them for T cell activation. The TH

cells activate the B cells which capture the antigen. The B cells are activated both by the 

antigen itself and T cells. TS cells suppress the action of TH cells at later stage [25]. 
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The flowchart in Fig. 1 shows innate and B-cell mediated humoral immune 

response to the presence of antigens in the human body. Stages 1 and 2 correspond to the 

innate immune response and the B-cell based adaptive immune response, respectively.
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Fig. 1. Overview of innate immune and B-cell mediated adaptive immune response.
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Within the immune system, there is a feedback mechanism which simultaneously 

performs two diverse tasks: rapidly responding to the presence of foreign material while 

quickly stabilizing the immune system. This feedback mechanism involves cooperation 

between the inhibitive mechanism (TS cells) and the main feedback mechanism. The 

activation of B-cells in response to antigens is the main feedback mechanism of the 

immune system. The suppressor T-cells and the foreign materials activate the suppressor 

T-cells, and the suppressor T-cells inhibits the activities of all other cells. As a result the 

reaction of the immune system is subdued. This is the inhibitive mechanism [25].

III. CLONAL SELECTION ALGORITHM

The core of the adaptive immune response is the clonal selection principle or the 

clonal selection theory. The clonal selection theory was introduced by F. M. Burnet in 

1958 [26]. The clonal selection principle describes response of the immune system to 

antigens [21]. Its principle is based on the fact that only certain B and T cells are selected 

for destruction of specific antigens invading the body. When B and T cells encounter 

antigens, they are activated to produce antibody molecules. Each B and T cell can 

produce only one kind of specific antibody molecule capable of recognizing and binding 

to this specific antigen. And it is this binding that stimulates the B cell to reproduce itself 

one or more times and later differentiate into plasma cells. This asexual proliferation 

generates daughter cells or clone cells. Therefore, only those cells that recognize the 

antigen proliferate, thus being selected against those that do not. The main features of the 

current clonal selection theory are that:
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 Stimulation of certain B and T cells by antigens causes proliferation and 

differentiation.

 Non-stimulated cells are suppressed.

 The new cells generated are mutated clones of the parents (affinity maturation) 

representing a generation with random genetic changes. The mutation rate is 

proportional to the cell affinity.

 Newly differentiated lymphocytes which carry self-reactive or low-affinity 

antigenic receptors are eliminated.

Clonal selection principle or algorithm has been applied in pattern recognition and 

optimization problems. The clonal selection algorithm basically consists of two 

populations; a set of antigens (Ag) and a set of antibodies (Ab). The basic CSA [27] is 

modified in this paper by mutating the cloned population such that the new set of 

antibodies generated after maturation drive the algorithm towards the global optimum. 

The modified CSA used for optimization is described as follows and its flowchart is 

depicted in Fig. 2.

1) Randomly generate a population of N antibodies.

2) Determine affinity of Ag to all the N antibodies. For optimization problems the 

affinity could be directly proportional or inversely proportional to the objective    

function that needs to be maximized or minimized, respectively.

3) Select C antibodies with highest affinity (C<N).

4) Clone the C selected antibodies. The number of clones generated for each of the 

antibodies can be given by
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Affinity maturation process of cloned antibodies:
C* = C + α (randn1) (C) + α (randn2) (C - Abbest)
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Yes

No

STOPSTOP

Start with N Antibodies

Evaluate objective function for each of the N antibody. The objective function 
needs to be minimized and is inversely proportional to the affinity.

Arrange antibodies according to decreasing affinity

Select C antibodies with highest affinity and clone them. 
Antibody with highest affinity is set to Abbest

Make NC clones of each of the C antibodies/cells

Affinity maturation process of cloned antibodies:
C* = C + α (randn1) (C) + α (randn2) (C - Abbest)

Termination condition 
met?

START

Evaluate objective function (affinity) for each matured antibodies

Reselect N antibodies with highest affinity from the combined initial population of 
antibodies (N) and matured antibodies (C*). 

Yes

No

Fig. 2. Flowchart for the modified clonal selection algorithm.
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 NroundNc .                                              (1)

where Nc is number of clones generated for each antibody, β is a multiplying 

factor, N is the total number of antibodies, and round ( ) is an operator which 

rounds its argument to the closest integer.

5) Store the antibody with the greatest affinity as Abbest.

6) The cloned set of antibodies next undergoes affinity maturation. This affinity 

maturation is inversely proportional to the antigenic affinity. The higher the 

antigenic affinity, the lower the mutation rate. The affinity maturation  of  the  

cloned  antibodies  is  calculated using

))(()(
21

*
best

AbCrandCrandCC                           (2) 

where C* is the set of population obtained after cloning and affinity maturation of the 

C antibodies, α is calculated using 

)exp( f                                                       (3)

where f is the normalized fitness or objective function of the antibody being mutated. 

rand1 and rand2 are random numbers in a uniform distribution between 0 and 1. The 

affinity maturation of the cloned antibodies tends to drive the next set of antibodies 

towards the global optimum by taking into consideration the antibody with the 

greatest affinity (Abbest). 

7) Determine the antigenic affinity of the matured antibodies. Reselect N antibodies 

with the highest affinity and repeat step 3 until some termination condition is 

satisfied.

The modified CSA summarized above is used for optimization of benchmark 

functions and to determine the parameters of the OEC. The modified CSA is also used to 
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determine optimal values of certain parameters required to apply the adaptive immune 

algorithm for self-tuning of the OEC on the electric ship during pulsed loads.

IV. CSA OPTIMIZATION OF BENCHMARK FUNCTIONS

Four nonlinear benchmark functions are optimized using CSA. The optimization 

results are compared with those obtained using GA and PSO. These four benchmark 

functions are given in (4)-(7). 

Sphere:                              

   (4)

Rosenbrock:

(5)

Rastrigrin:

(6)

Griewank:

(7)

Among the four functions given above, the Sphere and Rosenbrock are unimodal 

functions while the Griewank and Rastrigrin are multimodal functions. For comparison 

purposes, the asymmetric initialization method is used for population initialization [28]. 

The initialization ranges for these four functions are listed in Table I.
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Table I

Asymmetric Initialization Ranges for the Benchmark Functions

f0 (50, 100)

f1 (15, 30)

f2 (2.56, 5.12)

f3 (300, 600)

The different optimization techniques are compared for various dimension and 

population sizes. The different dimension sizes are 10, 20, 30, 50, 100 and the 

corresponding maximum number of generations was set to 1000, 1500, 2000, 3000, and 

5000. Different population sizes of 20, 50 and 100 are investigated for each function. The 

average over 50 trials is taken for each experimental setting when determining the mean 

fitness value. Tables II-IV list the mean fitness and standard deviation (std) of the best 

particle/chromosome/antibody obtained for the four benchmark functions for population 

sizes of 20, 50 and 100, respectively. It is seen that CSA has the ability to produce better 

solutions and converges quickly compared to PSO and GA on different dimensions and 

population sizes. A CSA with hyper mutation and spatial clone extension (HSCSA) was 

proposed in [29], and used for optimization of the benchmark functions. The results 

obtained for these benchmark functions using HSCSA [29] are also included for 

comparison purposes (population size of 50 and dimensions of 10, 20 and 30). The 

optimization results for the basic clonal selection algorithm (BCSA) have also been 

included [29]. It is seen that the modified CSA outperforms HSCSA and BCSA as it uses

lesser number of iterations. This can mainly be attributed to the affinity maturation 

process employed, given by (2). 
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The next section describes the design of a STOEC using CSA for finding the 

optimal controller parameters and B cell mediated adaptive immune response for 

incorporation of self-tuning characteristics to the optimal controller.

Table II

Mean Fitness and Standard Deviation of Benchmark Functions for Population Size of 20

Algorithm Dimen-
sion

Itera-
tion

Sphere
Mean 

Fitness ± std

Rosenbrock
Mean 

Fitness ± std

Rastrigrin
Mean 

Fitness ± std

Griewank
Mean 

Fitness ± std

PSO 10 1000 4.8033 x 10-20

±1.3087 x 10-19

5.7796 x 101

±8.3621 x 101

5.9283 x 100

±2.5418 x 100

8.8601 x 10-2

±5.4193 x 10-2

GA 10 1000 5.6574 x 10-1

±1.2474 x 10-1

1.8123 x 102

±5.9371 x 101

1.4503 x 102

±1.6453 x 101

1.3178 x 101

±3.2287 x 100

CSA 10 1000 2.2428 x 10-286

±0

2.8000 x 10-3

±2.5000 x 10-3

0

±0

7.6000 x 10-3

±2.2600x 10-2

PSO 20 1500 6.3389 x 10-11

±1.9160 x 10-10

9.2408 x 102

±8.2693 x 102

1.7659 x 101

±8.5221 x 100

2.6633 x 10-2

±2.2523 x 10-2

GA 20 1500 2.3509 x 100

±2.8241 x 10-1

7.1724 x 102

±1.1305 x 102

4.2243 x 102

±2.9855 x 101

5.3278 x 101

±5.7485 x 100

CSA 20 1500 3.1030 x 10-286

±0

1.8000 x 10-3

±1.5000 x 10-3

0

±0

2.5000 x 10-3

±7.000x 10-3

PSO 30 2000 1.6127 x 10-7

±3.3811 x 10-6

4.4499 x 103

±6.2317 x 102

5.3551 x 101

±1.6669 x 101

1.6832 x 10-2

±1.3945 x 10-2

GA 30 2000 4.4996 x 100

±3.9461 x 10-1

1.4368 x 103

±1.7801 x 102

7.3898 x 102

±3.9557 x 101

1.0344 x 102

±1.0329 x 101

CSA 30 2000 6.9986 x 10-316

±0

1.2000 x 10-3

±1.1000 x 10-3

0

±0

3.1321 x 10-3

±1.1667 x 10-2

PSO 50 3000 1.3000 x 10-3

±2.0000 x 10-3

1.7965 x 104

±1.0326 x 104

1.6893 x 102

±3.8124 x 101

1.0054 x 10-2

±8.6159 x 10-3
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Table II (Cont’d)

Mean Fitness and Standard Deviation of Benchmark Functions for Population Size of 20

Algorithm Dimen-
sion

Itera-
tion

Sphere
Mean 

Fitness ± std

Rosenbrock
Mean 

Fitness ± std

Rastrigrin
 Mean 

Fitness ± std

Griewank
 Mean 

Fitness ± std

GA 50 3000 8.9625 x 100

±6.2765 x 10-1

3.0757 x 103

±3.9806 x 102

1.3828 x 103

±3.8634 x 101

2.1476 x 102

±1.5087 x 101

CSA 50 3000 0

±0

5.7920 x 10-4

±1.8670 x 10-4

0

±0

5.1774 x 10-3

±1.5698 x 10-2

PSO 100 5000 7.7553 x 101

±9.8366 x 101

6.2672 x 104

±3.8911 x 104

4.5969 x 102

±1.0011x 102

1.3142 x 101

±6.0771 x 101

GA 100 5000 8.2252 x 101

±8.7782 x 10-1

7.9183 x 103

±9.1288 x 102

3.1676 x 103

±4.7413 x 101

5.2221 x 102

±2.3425 x 101

CSA 100 5000 0

±0

5.4856 x 10-4

±4.9652 x 10-4

0

±0

4.7179 x 10-3

±1.2532 x 10-2

Table III

Mean Fitness and Standard Deviation of Benchmark Functions for Population Size of 50

Algorithm Dimen
-sion

Itera-
tion

Sphere
Mean 

Fitness ± std

Rosenbrock
Mean 

Fitness ± std

Rastrigrin
 Mean 

Fitness ± std

Griewank
 Mean 

Fitness ± std

PSO 10 1000 5.0737 x 10-25

±1.9522 x 10-24

5.7759 x 100

±6.6032 x 100

1.5199 x 100

±2.2732 x 100

8.3646 x 10-2

±3.7839 x 10-2

GA 10 1000 5.3100 x 10-1

±1.0466 x 10-1

1.9413 x 102

±3.6323 x 101

1.5307 x 102

±1.0652 x 101

1.2872 x 102

±2.8169 x 101

CSA 10 1000 0

±0

1.7895 x 10-4

±1.6158 x 10-4

0

±0

2.3716 x 10-3

±8.0469 x 10-3

BCSA1 10 10000 7.0 x 10-12 5.6 x 10-1 3.98 x 100 2.99 x 10-2

HSCSA1 10 10000 6.0 x 10-13 3.7 x 10-4 1.17 x 10-12 7.4 x 10-3

PSO 20 1500 1.2006 x 10-15

±2.2215 x 10-15

5.1767 x 101

±4.3075 x 101

1.5224 x 101

±7.1939x 100

3.1701 x 10-2

±3.1166 x 10-2

1 Z. Jin and et al. [29].
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Table III (Cont’d)

Mean Fitness and Standard Deviation of Benchmark Functions for Population Size of 50

Algorithm Dimen
-sion

Itera-
tion

Sphere
Mean Fitness 

± std

Rosenbrock
Mean 

Fitness ± std

Rastrigrin
 Mean 

Fitness ± std

Griewank
 Mean 

Fitness ± std
GA 20 1500 2.3831 x 100

±2.1856 x 10-1

8.2558 x 102

±1.3281 x 102

4.1778 x 102

±3.8515 x 101

5.3097 x 101

±6.0004 x 100

CSA 20 1500 0

±0

5.6090 x 10-5

±5.9619 x 10-5

0

±0

3.4058 x 10-3

±1.2112 x 10-2

BCSA1 20 10000 2.0 x 10-12 1.34 x 101 5.17 x 101 1.24 x 10-2

HSCSA1 20 10000 1.6 X 10-13 2.61 X 10-2 1.1 X 10-3 5.1 X 10-5

PSO 30 2000 4.3010 x 10-11

±7.0211 x 10-11

1.7598 x 102

±8.2477 x 101

4.4744 x 101

±9.3397 x 100

1.0923 x 10-2

±1.3808 x 10-2

GA 30 2000 4.3167 x 100

±4.9075 x 10-1

1.8555 x 103

±2.5339 x 102

7.2126 x 102

±3.5999 x 101

1.0099 x 101

±1.1251 x 100

CSA 30 2000 0

±0

5.7026 x 10-5

±5.2079 x 10-5

0

±0

2.7838 x 10-3

±1.0917 x 10-2

BCSA1 30 10000 1.0 x 10-13 2.68 x 101 1.13 x 102 4.31 x 10-2

HSCSA1  30 10000 7.8 X 10-14 4.29 X 10-2 4.15 X 10-2 4.5 X 10-3

PSO 50 3000 1.2003 x 10-6

±1.6389 x 10-6

6.8001 x 102

±3.1901 x 102

1.2101 x 102

±2.7912 x 101

6.8409 x 10-3

±1.2508 x 10-2

GA 50 3000 9.4004 x 100

±4.4393 x 10-1

4.0580 x 103

±3.5573 x 102

1.3579 x 103

±7.9975 x 101

2.1599 x 102

±1.3498 x 101

CSA 50 3000 0

±0

3.9769 x 10-5

±3.5195 x 10-5

0

±0

3.4979 x 10-3

±1.0304 x 10-2

PSO 100 5000 2.0013 x 100

±3.6837 x 100

2.5941 x 103

±1.2979 x 103

4.3674 x 102

±7.5984 x 101

3.5858 x 10-1

±2.5273 x 10-1

GA 100 5000 2.2408 x 101

±6.6576 x 10-1

1.0960 x 104

±9.2866 x 102

3.2118 x 103

±6.5126 x 101

5.2086 x 102

±1.6781 x 101

CSA 100 5000 0

±0

2.2812 x 10-5

±2.0096 x 10-5

0

±0

4.6971 x 10-3

±1.5765 x 10-2
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Table IV

Mean Fitness and Standard Deviation of Benchmark Functions for Population Size of 100

Algorithm Dime
n-sion

Itera-
tion

Sphere
Mean 

Fitness ± std

Rosenbrock
Mean 

Fitness ± std

Rastrigrin
 Mean 

Fitness ± std

Griewank
 Mean 

Fitness ± std

PSO 10 1000 8.5348 x 10-29

±5.0570 x 10-28

1.5612 x 100

±1.8106 x 100

1.2231 x 100

±1.3642 x 100

6.7407 x 10-2

±2.5794 x 10-2

GA 10 1000 5.2071 x 10-1

±1.3566 x 10-1

1.7357 x 102

±5.3820 x 101

1.4001 x 102

±1.7217 x 101

1.3544 x 101

±2.4211 x 100

CSA 10 1000 0

±0

5.5294 x 10-5

±5.2602 x 10-5

0

±0

4.4581 x 10-4

±3.1524 x 10-3

PSO 20 1500 1.4092 x 10-18

±5.2892 x 10-18

2.5588 x 101

±2.5075 x 101

1.4125 x 101

±2.5415 x 101

2.1241 x 10-2

±1.8943 x 10-2

GA 20 1500 2.2214 x 100

±3.8605 x 10-1

8.5984 x 102

±1.3753 x 102

4.1865x 102

±3.0812 x 101

5.4517 x 101

±6.4885 x 100

CSA 20 1500 0

±0

3.2367 x 10-5

±3.1744 x 10-5

0

±0

3.5174 x 10-4

±2.4872 x 10-3

PSO 30 2000 1.0552 x 10-13

±2.5525 x 10-13

4.1822 x 102

±2.4237 x 102

3.5789 x 101

±9.2777 x 100

1.8751 x 10-2

±1.6103 x 10-2

GA 30 2000 4.2358 x 100

±5.3582 x 10-1

1.8183 x 103

±2.0197 x 102

7.0274 x 102

±4.1394 x 101

1.0757 x 102

±8.5052 x 100

CSA 30 2000 0

±0

2.3533 x 10-5

±2.2122 x 10-5

0

±0

6.0015 x 10-4

±3.0128 x 10-3

PSO 50 3000 8.0544 x 10-9

±1.0295 x 10-8

1.4132 x 102

±4.5161 x 101

1.0081 x 102

±1.3302 x 101

8.4013 x 10-3

±1.3877 x 10-2

GA 50 3000 9.0765 x 100

±6.4170 x 10-1

4.1657 x 103

±2.9128 x 102

1.3562 x 103

±6.1185 x 101

2.0651 x 103

±8.8780 x 100

CSA 50 3000 0

±0

1.6198 x 10-5

±1.6649 x 10-5

0

±0

0

±0

PSO 100 5000 1.2031 x 10-1

±4.2129 x 10-1

3.0276 x 102

±1.0954 x 102

4.2378 x 102

±7.0073 x 101

1.9960 x 10-2

±1.7102 x 10-2
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Table IV (Cont’d)

Mean Fitness and Standard Deviation of Benchmark Functions for Population Size of 100

Algorithm Dimen-
sion

Itera-
tion

Sphere
Mean 

Fitness ± std

Rosenbrock
Mean 

Fitness ± std

Rastrigrin
 Mean 

Fitness ± std

Griewank
 Mean 

Fitness ± std

GA 100 5000 2.2930 x 101

±9.3424 x 10-1

1.1534 x 104

±4.9472 x 102

3.1596 x 103

±1.4033 x 102

5.1611 x 102

±2.1046 x 101

CSA 100 5000 0

±0

8.5441 x 10-6

±8.1335 x 10-6

0

±0

0

±0

V. ELECTRIC SHIP EXCITATION CONTROLLER DESIGN

The Navy’s planned DD(X) shipboard power system has four gas turbine-

generator sets, two main and two auxiliary [20]. Fig. 3 shows a typical generation and AC 

propulsion motor shipboard power system setup. The pulsed loads are connected to the 

three phase distribution bus of the system. A number of researchers have investigated the 

pulsed power requirements for the electromagnetic weapons and sensors and impact of 

pulse power loads on the naval power and the ship propulsion systems [30]. This pulse 

energy demand has to be provided by the ship energy sources, while not impacting the 

operation of the rest of the system.

The exciter with a conventional excitation controller is shown in Fig. 3. The 

excitation system is a IEEE Static excitation system # 1   (STA1) [31], where,  EFD is   

the  exciter  output voltage, ILR is the exciter output current limit reference, IFD is limiter 

gain and VT is the generator terminal voltage. The values of the parameters of the 

excitation system are given in Table B.1 in the Appendix [32].
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Fig. 3. Generation-AC propulsion motor shipboard power system.

The excitation controller has three parameters; the gain constant (K), and two time 

constants (T1 and T2).  The optimal values of these parameters are found using modified 

CSA. The concept of the immune feedback mechanism is then applied to this OEC to 

obtain the STOEC. The flowchart in Fig. 4 illustrates the entire steps involved in the 

realization of the STOEC. 

The realization of STOEC basically involves design and operation phases as 

explained in the following subsections. The design of the OEC system corresponds to 

innate immunity i.e. stage  1  and  adaptation  of OEC parameters using immune feedback
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Fig. 4. Flowchart illustrating design and operation phases of the self-tuning optimal 
excitation controller.
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law corresponds to the adaptive immunity i.e. stage 2. Stages 1 and 2 constitute the 

design of the STOEC. The innate and adaptive immunity work simultaneously to 

eliminate any disturbance or oscillation introduced in the system. This corresponds to the 

operation stage in the flowchart. For stage 2 and operation stage, only the B cell mediated 

humoral immune response is considered. 

The following subsections describe various steps involved in the optimal design 

of the excitation control system; OEC (stage 1), the immune system based self-tuning 

control system, STOEC (stage 2), and the operation stage of the STOEC respectively.

A. Design Phase

This phase consists of two stages, as mentioned above, Stage 1 for the optimal 

and Stage 2 for the self-tuning of the excitation control system design respectively.

1) Stage 1 (Optimal Excitation Controller Using Modified CSA):

The optimal parameters of the excitation controller are determined using modified 

CSA. The cost function for the optimization is the integrated transient response area of 

the voltage deviations of the generator during disturbances. The cost function takes into 

consideration the minimization of the overshoot and the settling time of the deviation in 

voltage. The CSA aims to minimize the cost function given by (8). 

21 PLPL
JJJ                                                  (8)

In this study, the optimization is carried out by subjecting the shipboard power

system first to a pulsed load of 750 ms followed by a pulsed load of 500 ms as shown in 

Fig. 5.
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Fig. 5. Transient area under the curve is the cost function minimized for optimization.

The transient area under the generator terminal voltage response for the first 

pulsed load is given by 







ttt

ctt
)t)t-(t(A(t))

T
V

PL1
J c1

/1

1

(                              (9)

where ΔVT(t) is the voltage deviation i.e. deviation of generator terminal voltage from the 

steady state reference value, A is weighting  factor,  tc1 and tt1 are the start and end time 

instants, respectively, considered for the transient area calculation, tc1  is also the time at 

which the fault is cleared, ∆t is the terminal voltage signal sampling period and t is the 

simulation time in seconds.

Similarly, the transient area under the generator terminal voltage response for the 

second pulsed load is given by 
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(                        (10)

where tc2 and tt2 are the start and end time instants respectively, considered for the 

transient area calculation, and tc2 is also the time at which the fault is cleared.

2)  Stage 2 (Immune Based Self-Tuning Controller Using Immune Feedback 

Law):

This stage describes how the optimal parameters of the excitation system 

designed in Stage 1 are self-tuned dynamically during pulsed loads to maximize 

damping. The design here is analogous to the humoral B-cell mediated adaptive immune 

response of the human body. The optimal parameters of the excitation controller obtained 

above are made adaptive (only during transients) using the immune feedback law. The 

amount of foreign materials (antigens) at kth generation can be defined as Ag(k), which in 

this study is the deviation in the generator terminal voltage ΔVT. The output from the 

helper T cells stimulated by the antigen is given by

                      )()( kVmkT
TH           (11)

where m is the stimulation factor whose sign is positive. The response of the helper T 

cells is directly proportional to the antigens present in the system. Suppressor T cells 

inhibit other cell activities and their effect on B cells is given by
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where m' is the positive suppression factor and f(x) is a nonlinear function introduced to 

take into account the effect of the reaction between the antibody (changes in controller 
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parameter behavior) and the antigen (controller input/disturbance). The response of the 

helper T cells is suppressed when the output of function f(x) is large i.e. suppression is 

directly proportional to the function f(x). f(x) is large only when the ratio of the antigen at 

(k) is less as compared to the antigen at (k-1). The function f(x) is defined as 

 2exp)( xxf              (13)

where the output of the function is limited within the interval [0, 1]. The square is 

introduced in f(x) to consider only the magnitude of the deviations in terminal voltage. 

This function is used as it can help to effectively suppress the action of the helper cells if 

the number of antigens is very less. Conversely, if the number of antigens is increased the 

exponential function would be a very small value and the suppressor cells will not be 

activated. 

The total stimulation received by B cells, B(k), is given by (14) and is known as 

the immune feedback law. It is the difference of the stimulation it receives from the 

helper T cells and the inhibition from the suppressor T cells. The changes in the 

controller parameters, B(k), are responsible for fast damping of the deviations in the 

terminal voltage.

)(kVg(k)(k)T-(k)TB(k) TSH                   (14)
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' ( )
( )

( 1)
T

T

V k
g k m m f

V k

 
     

                       (15)

The mechanism of adaptation of parameters for the excitation controller based on 

the immune feedback law is depicted in Fig. 6. The excitation controller has three 
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parameters (K, T1, and T2); therefore three sets of equations, (16) to (18), are required to 

dynamically change these parameters.
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The stimulation factors m = [m1, m3, and m5] control speed of response, and 

suppression factors m' = [m2, m4, and m6] and function f(x) control the stabilization effect 

i.e. settling time. The performance of the immune feedback law greatly depends on how 

these factors are selected. Therefore, the CSA is used to determine the optimal values of 

the stimulation and suppression factors, m = [m1, m3, and m5] and m' = [m2, m4, and m6].

The cost function minimized by CSA is again the integrated transient response area of the 

voltage deviations of the generator during disturbances. But for this optimization, three 

pulsed loads (250 ms, 750 ms and 1 s applied at 5 s, 10 s and 15 s respectively) are 

applied to calculate the cost function as given in (19). This is done to obtain optimal 

values of parameters m1 to m6 for different types of pulsed loads in the system.
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where J’PL1, J’PL2 and J’PL3 are the transient response areas of voltage deviation for the 

three pulsed loads.
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Fig. 6. Self-tuning optimal excitation controller.

B. Operation Phase (Self-Tuning Optimal Excitation Controller)

The operation phase corresponds to the self-tuning optimal excitation control. The 

immune feedback law is implemented using the three equations given in (16) to (18). 

Using the optimal values of the stimulation and suppression factors (m1 to m6) the optimal 
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parameters of the excitation controller (K, T1 and T2) are self-tuned during transients by 

applying the immune feedback law according to (20) to (22)    

         

)()( kKKkK                                                       (20)

              )()(
111

kTTkT                                                 (21)

              )()(
222

kTTkT                                                 (22)

The immune feedback law, changes the values of the optimal parameters 

dynamically with deviation in the generator terminal voltage. Thus, the excitation 

controller parameters are self tuned during pulsed load conditions to minimize the 

oscillations in the system and improve the damping performance.

VI. EXCITATION CONTROLLER SIMULATION RESULTS

The electric ship power system given in Fig. 3 is simulated using the power 

system simulation software PSCAD/ EMTDC [32]. The AIS and the CSA are 

implemented in FORTRAN. The modified CSA used for the optimizations has a

population of 20 antibodies; 5 antibodies with the highest affinity are selected for cloning 

and 4 clones each are generated for the 5 antibodies. Thus, for determining the optimal 

controller parameters and the optimal values of stimulation and suppression factors N = 

20, C = 5, β = 0.2, NC = 4.

Simulation results are presented to compare the performance of OEC with the non 

optimal controller and further comparison of the performance of the OEC controller with 
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that of the STOEC is presented. The following subsections present the responses of the 

OEC and the STOEC for different pulsed loads, respectively.

A. Optimal Excitation Controller

The response of the controller with parameters optimized by the CSA is compared 

with the response of a controller whose parameters are manually tuned [33] to give 

satisfactory performance. The manually tuned parameters obtained for best time response 

for the excitation controller are as follows: K = 250, T1 = 0.2, T2 = 0.05. The cost function 

minimized is the integrated transient response area of the voltage deviations of the 

generator when pulsed loads of 500 ms and 750 ms are applied to the shipboard power 

system and is given in (8). The CSA optimization to determine the generator parameters 

is carried over 10 trials. 

The average fitness (over the 10 trials) during successive iterations of the 

algorithm is shown in Fig. 7. This fitness corresponds to the average fitness of the 

antibody with the highest affinity i.e. average of Abbest of each trial. The optimal values 

obtained for the 10 trials and their corresponding fitness are given in Table B.2 in the 

Appendix. The best optimal values obtained (using modified CSA) for the generator 

excitation controller are:

K = 241.3083, T1 = 0.5273, and T2 = 0.0021.

The limits used for optimization of these parameters are:

10 < K < 500                       0.001 < T1 < 0.75                0.001 < T2 < 0.75. 

The mean fitness and the standard deviation after 40 iterations is 3.5003±0.8259.
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Fig. 7. Fitness over successive iterations for design of the optimal controller.

The response of the excitation controller with modified CSA determined optimal 

parameters (OEC) has been compared with that of an excitation controller with manually 

tuned parameters (non-optimal excitation controller referred as NOEC) below. The 

comparison is made for a pulsed load of duration 750 ms. The plots for the generator 

terminal voltage and generator reactive power, and the field voltage and field current are 

shown in Figs. 8 and 9, respectively.

It is seen that the performance of the OEC is better than that of the NOEC and it 

efficiently restores the system to its steady state.
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Fig. 8. Generator terminal voltage and reactive power for pulsed load of duration 750 ms.
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It can clearly be seen that the controller with the CSA optimized parameters 

shows a better response in terms of damping the oscillations introduced in the system. 

The generator terminal voltage shows less deviations and the overshoot is significantly 

minimized. The generator reactive power also shows similar results. The settling time of 

the field voltage is minimized and consequently the reactive power of the generator 

attains it steady state value quickly. The field current of the excitation controller settles to 

its steady state value faster with OEC as compared to NOEC. Hence, the controller with 

modified CSA optimized parameters has better performance and lesser settling time, than 

a manually tuned controller.

B. Self-Tuning Optimal Excitation Controller

The adaptation of parameters of an optimal excitation controller using the 

immune feedback law improves the performance of the optimal controller. The immune 

feedback concept takes into consideration the deviation in the generator terminal voltage 

from the steady state value and adapts the excitation controller parameters accordingly. 

The cost function minimized by modified CSA for determining the optimal values of m1 

to m6 is the integrated transient response area of the voltage deviations of the generator 

when three pulsed loads of 250 ms, 750 ms, and 1 s are applied sequentially. This cost 

function is given in (19). The optimal stimulation and suppression factors (m1 to m6) are 

determined using CSA for optimal excitation controller parameters (K, T1, and T2). 

Again, this is done over 10 trials. The optimal values of the stimulation and suppression 

factors obtained for the 10 trials and their corresponding fitness are given in Table B.3 in 

the Appendix. The average fitness (over 10 trials) during successive iterations of the 



72

algorithm is shown in Fig. 10. The average fitness corresponds to the average fitness of 

the antibody with the highest affinity i.e. Abbest for every iteration. The mean fitness and 

the standard deviation over 40 iterations is 1.6415 ± 0.9598. The following are the best 

set of optimal values obtained (using modified CSA) for the stimulation and suppression 

parameters m1 to m6 :

m1 = 0.0378, m2 = 701.3316, m3 = 0.4061, m4 = 0.2976, m5 = 0.0007, m6 = 0.0007.
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Fig. 10. Fitness over successive iterations for design of the self-tuning optimal controller.

The response of the OEC is now compared with that of the immune system based 

STOEC for pulsed loads of 500 ms and 1 s. The generator terminal voltage, generator 

reactive power, field voltage and field current for the two pulsed loads are shown in Figs. 

11 to 14, respectively. The immune feedback law concept is applied using (16)-(18) and 

the parameters of the controller are updated using (20)-(22). 
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Fig. 11. Generator terminal voltage and reactive power for pulsed load of duration 500
ms.
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Fig. 13. Generator terminal voltage and reactive power for pulsed load of duration 1 s.
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In Figs. 11 and 13 it is seen that the oscillations in the generator terminal voltage 

and reactive power are significantly minimized for the STOEC in comparison to the 

OEC. The overshoot for the STOEC is considerably reduced and the steady state value is 

attained quickly after the pulsed load is removed. Figs. 12 and 14 show that the field 

voltage settles down faster for the STOEC as compared to the OEC. During pulsed loads, 

the field current rises to high values for the OEC. But for STOEC, the increase in field 

current during a pulsed load is reduced. Thus, the I2R loss during pulsed load is lower 

with a STOEC. This in turn enhances the life of the field circuit.

Fig. 15 depicts the variations in the excitation controller parameters K, T1 and T2,

for a pulsed load of duration 1 s. The excitation controller parameters of the STOEC vary 

with terminal voltage deviations unlike the parameters of the OEC, which remain 

constant.
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From Figs. 11 to 14, it can be seen that the overall response of the STOEC is 

better than that of the OEC. This is because the excitation controller parameters vary with 

the deviations in generator terminal voltage as can be seen in Fig. 15. The gain of the 

controller almost drops to zero during the pulsed load. This in turn reduces the output of 

the controller fed to the exciter and constraints the field voltage. The time constants T1

and T2 also vary during pulsed loads to improve the damping performance and restore the 

system to its steady state. The time constants T1 and T2 increase during pulsed loads, this 

provides an additional phase lead during transients. 

Adaptation of the controller parameters has resulted in an improved response and 

efficient damping during pulsed load conditions. Table V compares the maximum 

overshoot and the settling time (required for the generator terminal voltage to settle 

within ±2% of its steady state value) of OEC and STOEC for various pulsed loads. The 

settling time is calculated after the pulsed load is removed. Table VI gives the energy loss 

in the field circuit for various pulsed loads. The energy loss is calculated during the 

transients, until the field current first reaches the steady state value. The energy loss is 

given by

tfR
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                                     (23)

where tI and 1tI are the field currents at any time t and t-1, respectively, Rf is the 

resistance in the field circuit, ts1 and ts2 are the time instances when the field current 

deviates from the steady state value and thereafter when it first returns to the steady state 

value, respectively, as shown in Fig. 16. ∆t is the field current signal sampling period.
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Fig. 16. Energy loss calculation during transients. 

Table V

Maximum Overshoot and Settling Time for Different Pulsed Loads

Maximum Overshoot (%) Settling Time (s) Pulsed  Load      

Duration (s) OEC STOEC Improvement 

(%)

OEC STOEC Improvement 

(%)

0.10 6.8 6.3 7.35 0.23 0.17 26.09

0.20 10.7 4.4 58.87 0.28 0.08 71.42

0.30 14.3 3.6 74.82 0.31 0.16 48.38

0.40 17.8 3.6 79.77 0.34 0.16 52.94

0.50 21.5 4.0 81.39 0.37 0.16 56.76

0.60 25.1 5.1 79.68 0.39 0.16 58.97

0.70 28.6 6.2 78.32 0.42 0.17 59.52

0.80 37.9 7.7 79.68 0.45 0.18 60.00

0.90 35.0 9.2 73.71 0.47 0.19 59.57

1.0 37.8 10.3 72.75 0.49 0.20 59.18
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Table VI

Energy Loss in Field Circuit for Different Pulsed Loads

Energy Loss Pulsed  Load 

Duration (s) OEC (kJ) STOEC (kJ) Reduction (%)

0.10 3.6245 3.5939 0.85

0.20 7.1585 6.5916 7.92

0.30 11.0526 9.3955 14.99

0.40 15.3245 12.7091 17.07

0.50 19.9711 14.8329 25.73

0.60 25.0032 17.6851 29.27

0.70 30.3923 20.6787 31.96

0.80 36.0319 23.7921 33.97

0.90 42.0826 27.1124 35.57

1.0 48.3769 30.5475 36.86

It can be seen from Table V that the maximum overshoot is minimized 

considerably for the STOEC as compared to the OEC. As the duration of the pulsed load 

is increased, this drop in the overshoot becomes more significant. This is because the 

innate immunity of the system i.e. the OEC mostly handles pulsed loads of small 

duration. For pulsed loads of longer duration, the adaptive immunity kicks in i.e. STOEC 

and restores the system to its steady state much faster. The settling time is also greatly 

reduced for the STOEC as compared to the OEC. 

Table VI shows that the STOEC can reduce the energy loss in the field circuit up 

to 36.86% i.e. 17.8294 kJ. Hence, the STOEC greatly minimizes the maximum overshoot 

and the settling time of the generator terminal voltage, and reduces the energy loss in the 

field circuit.
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VII. CONCLUSION

AIS based algorithms for optimization and control have been presented in this 

paper. Modified CSA has been used for optimization of four benchmark functions and it 

is seen that modified CSA has the ability to produce better solutions and converges 

quickly as compared to PSO and GA for different dimensions and population sizes. 

Modified CSA is then used for design of an OEC which shows better response in terms of 

damping the oscillations introduced in the system as compared to the non optimal 

controller. It minimizes the overshoot and settling time of oscillations in the generator 

terminal voltage and reactive power. The performance of the OEC is further improved by 

application of the immune feedback law. The design of the STOEC is achieved by 

incorporation of the self-tuning characteristics inspired by the humoral adaptive immune 

response of the human body. The OEC provides innate immunity from system 

oscillations while the adaptation of optimal parameters provides the adaptive immunity. 

The STOEC reduces the overshoot and settling time significantly. The power (I2R) losses 

are considerably reduced (up to 36.86%) when using STOEC as the field current does not 

attain high values even during pulsed load conditions. This in turn enhances the life of the 

field circuit.  STOEC adapts to the deviations in the terminal voltage and minimizes the 

oscillations in the system. Pulsed loads on an electric ship require efficient damping and 

robust functioning to maintain power continuity. This is successfully achieved using the 

STOEC.

Future work involves real time implementation of the STOEC on the real-time 

digital simulator. The STOEC proposed does not include the memory cells to remember 

the response to a particular antigen. Future work will also involve the inclusion of 
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memory cells to store the response to a particular type of antigen for future use when 

similar antigens are encountered. This would result in the improvement of controller’s 

speed of response for previously seen pulsed loads.
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Table A.1

Two Area Power System PSS Parameters

Generator Kundur’s parameters PSO optimized

parameters

CSA optimized

parameters 

G1-G4 K = 20.0, T1 = 0.05,
T2 = 0.02, T3 = 3.0
T4= 5.4

K = 22.397, T1 = 0.059,
T2 = 0.01, T3 = 4.7478,
T4 = 4.4670

K = 23.869, T1 = 0.0626,
T2 = 0.01, T3 = 6.6565,
T4  = 6.4803



85

APPENDIX B.

APPENDIX FOR PAPER 2



86

Table B.1

Values of Parameters in the Conventional Linear Excitation Controller (Fig. 3.)

Conventional Linear Excitation Controller Parameter Value(p.u.)
Exciter output current limit reference, ILR 4.4
Exciter output current limiter gain, KLR 4.54
Maximum regulator output limit, VRmax 999
Minimum regulator output limit, VRmin -999
Maximum limit for the hard limiter 6.0
Minimum limit for the hard limiter -6.0

Table B.2

Optimal Controller Parameters Obtained for 10 Trials

Trials K T1 T2 Fitness

1 241.30833 0.52735 0.00212 2.16347

2 249.53559 0.43690 0.03179 4.33944

3 253.49660 0.42877 0.02831 3.70731

4 255.42591 0.46684 0.01801 2.32979

5 261.58787 0.43458 0.00885 3.20305

6 239.28941 0.55623 0.00868 2.85759

7 261.01969 0.41763 0.02436 3.86520

8 262.25196 0.39393 0.02436 4.53025

9 261.82728 0.40877 0.02464 4.13254

10 261.20890 0.41547 0.02164 3.87461
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Table B.3

Optimal Stimulation and Suppression Factors Obtained for 10 Trials

   Trial m1 m2 m3 m4 m5 m6 Fitness

1 0.0378 701.3316 0.4061 0.2976 0.0007 0.0007 1.0088

2 0.0296 687.542 0.5148 0.3442 0.0009 0.0008 2.6169

3 0.0548 679.782 0.6221 0.1545 0.0015 0.0019 3.6689

4 0.0292 685.145 0.5267 0.3981 0.0009 0.0008 2.6166

5 0.0371 702.4831 0.4120 0.2914 0.0007 0.0007 1.0088

6 0.0376 697.7330 0.5590 0.4098 0.0010 0.0010 1.1185

7 0.0377 699.1490 0.5602 0.4106 0.0010 0.0010 1.1366

8 0.0377 698.4382 0.5596 0.4102 0.0010 0.0010 1.1053

9 0.0493 693.8381 1.5772 0.8557 0.0027 0.0022 1.0295

10 0.0377 698.4922 0.5596 0.4102 0.0010 0.0010 1.1052
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