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ABSTRACT

Signal identification based on different sensing systems like microwaves, infra-

red, x-rays and terahertz waves is one of the classic problems in signal processing.

Earlier methods had relied mainly on the amplitude spectrum obtained by these sens-

ing techniques mainly due to non-availability of the phase information for the signals.

Most of them are based on techniques like absorbance spectrum that requires a ref-

erence material’s signal for the test material’s identification. They are also sensitive

to noise and highly dependent on the peak detection algorithms.

Modern equipments with both amplitude and phase information provide an

opportunity for time-domain signal based methods that had not been used earlier. In

this thesis, the information available through time-domain signals is utilized by the use

of different wavelet transform based methods. The methods have been tested for data

obtained through the terahertz time-domain spectroscopy (THz-TDS), particularly

because of their ability to capture the distinguishing features of the material.

The methods presented here are based on the Continuous and the Discrete

Wavelet Transforms. The wavelet transforms have been used to calculate time-

frequency energy density in the scale-shift domain. These energy densities have then

been used to identify the features described as maxima lines and ridges that are used

as features for the purpose of material identification. The methods are found to be

useful in the presence of noise require no pre-filtering of the signals as required in

most conventional material identification techniques. They also provide a scalable

method for increasing accuracy based on the computational power available. All the

simulations have been done on MATLAB.
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1 INTRODUCTION

There has been an increasing number of incidents involving the use of Improvised

Explosive Devices (IED’s) all around the globe in recent years. IED’s are difficult to

identify using any of the available techniques such as x-rays, infra-red rays, nuclear

imaging alone. They are not able to provide an easily identifiable signature for the

components. In contrast, terahertz waves, covering the frequency spectrum from 0.1

to 10 terahertz (wavelengths ranging from 30 micrometers to 3 millimeters), are able

to provide a unique signature of the material, [1] . This particular property arises

as terahertz signal energies lie in the range of molecular energies of the explosive

materials, giving rise to phonon resonance. Similar phenomenon has been exhibited

by narcotic drugs on exposure to terahertz waves, providing a way to identify their

presence even in concealed form. Moreover, there are a number of other advantages

offered by terahertz signals.

• Terahertz waves are non-ionizing, unlike x-rays. This poses minimal health risks

to both the person being scanned and the operator.

• Terahertz waves are able to provide high contrast in dielectric materials that

are transparent to visible light and have low contrast to x-rays.

• Terahertz imaging uses short femto-second pulses which help in 3-D imaging

beneath the soil and other covering materials like plastics, clothes, paper, non

polar liquids, etc.

• Microwave imaging and thermal radiation do not provide enough spatial res-

olution (too high or too low). On the other hand, terahertz waves provide

sub-millimeter to millimeter spatial resolution.

• Ground penetrating radars, infra-red rays and x-rays do not have stand-off

capabilities and require the user to go near the threat. They also have high

false positive rates.

• Optical (Raman Spectroscopy) devices are unable to detect threats concealed

under covers.
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Conventional metal detectors are usually limited in capability to detecting metal

targets, such as ordinary handguns and knives, but not explosive materials. Hence,

terahertz waves seem to be a good choice for identification of IEDs. In [2] and [3],

the results of terahertz TDS have been compared with the already established Fourier

transform infra-red (FTIR) spectroscopy for one of the explosive materials (i.e. RDX)

and found to be similar. Moreover, Terahertz TDS has been found useful over a wider

range of frequencies (upto 6 THz) over FTIR for a number of explosive materials like

RDX, TNT, HMX and PETN in [4]. These materials have been discussed in the

appendix.

Most of the material identification techniques using terahertz signals are based

on frequency domain analysis [5]. In most of these, the approach has been to find out

the dominant frequencies with high absorption peaks and use them as classification

features, [4]. Other approaches involve the determination of first derivative absorption

spectrum, absorption coefficient and refractive index for purpose of classification, [3].

Parameter analogous to absorption coefficient has also been used in [6] to distinguish

between materials using terahertz signals.

Methods involving the use of blind source separation techniques such as In-

dependent Component Analysis (ICA) and constrained ICA (cICA) have also been

proposed to find out the proportion of the target material present in a mixture, [7].

However, such techniques require a signal for calibration and are very sensitive to

noise. The methods presented in this thesis try to overcome those disadvantages by

the use of wavelet transforms.

Mittleman et al. in [8] had proposed that terahertz waveforms share similari-

ties like limited bandwidth and localization in time and frequency, that might prove

wavelet analysis as an important analysis tool for terahertz waveforms. Their work

also suggests that a wavelet multi-resolution analysis may be a fast and efficient tech-

nique to distinguish between different materials. In [6], Shopov et al. mentioned that

a non-stationary signal like the terahertz signal often has short lived high frequency

feature and long lived low frequency features, which requires an analysis tool to re-

solve high frequency content in time and as well as low frequency content in frequency.

A wavelet-based analysis offers exactly the same advantages.
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In [9] and [10], a wavelet denoising technique is used for preprocessing the raw

data in order to improve the classification accuracy. In [6], a wide band cross ambi-

guity function similar to wavelet transform is used to distinguish between materials.

Continuous Wavelets Transforms (CWT) have also been used in mass spectroscopy

for improved peak detection for the purpose of material identification, [11]. In [12],

a Discrete Wavelet Transform (DWT) based approach is used to derive attributes

(features) for material classification based on ultrasonic echo signals.

Fewer efforts have been put for using the CWT and the DWT for the purpose

of material identification even though the DWT has been used in the preprocessing

stages. This thesis presents methods to derive features from the CWT and the DWT

coefficients that could be used to classify materials from the time domain signals ob-

tained through the terahertz imaging. The CWT is a non-orthogonal and redundant

transform that offers additional properties of shift-invariance and provides better per-

formance than the shift-variant DWT. The identification process has been applied to

signals obtained from pure target materials.

The merits of the methods suggested in this thesis are (a) applicability to time

domain signals obtained from different sensor systems/hardware (b) applicability to

narrow-band as well as wide-band signals.

Section 2 comprises of the wavelet transform related concepts, for both con-

tinuous and discrete-parameter wavelet transforms as well as the discrete wavelet

transform. The advantages of wavelet transforms over the Fourier transforms and

the short-time Fourier transforms have been discussed. The section also describes

the properties of the wavelets and the wavelet transforms. Different wavelet families

available for analysis have also been listed with short descriptions.

Section 3 starts with the problem of material identification and the classic meth-

ods that have been used in the past. This section presents the methods using CWTs

that have been used to extract features based on the maxima lines and ridges. These

features are found out using local maxima points based on time-frequency energy

distribution which have not been reported earlier. The classification of the materials

using the extracted features has also been discussed.

Section 4 discusses the material identification based on earlier DWT methods

as well as the developed methods. The presented method uses all the frequency
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sub-bands (group of frequency bands) decomposed at a given level, and derives the

features from those signals after rearranging the sub-band data in a operable manner.

Section 5 depicts the results obtained after the application of the developed

methods applied to the terahertz signals. Section 5.2 discusses the identification based

on features derived using CWTs considering both non-shifted and shifted versions of

the time signals. Section 5.3 discusses the identification based on the features derived

using DWTs. Shifted versions of DWTs are inapplicable because of the shift variant

nature of the DWT transform.

Finally, Section 6 ends with the concluding remarks about the results and the

suitability of the developed methods under different conditions.
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2 WAVELET TRANSFORM

The advantages offered by wavelet transforms over the Fourier transform (FT)

and the short time Fourier transform (STFT) are discussed in this section. The

concepts of the STFT are extended to wavelet transform. The continuous wavelet

transform, the discrete parameter wavelet transform as well as the discrete wavelet

transform are described. Important properties of wavelets as well as wavelet trans-

forms are discussed. Lastly, a brief description of some wavelet families is given.

2.1 BACKGROUND OF WAVELET TRANSFORMS

The conventional methods for material identification have involved the use of

Fourier transform for analysis. The Fourier transform helps in the resolution of the

signals in the frequency domain. However, the time/shift information is totally lost

in such a transform, that otherwise could be useful. An approach to overcome this

shortcoming is to use a windowing function on the time signal and then apply the

Fourier transform methods. Such a technique is called the short time Fourier trans-

form or windowed Fourier transform (WFT). Since all the time frequency transforms

are limited by the Heisenberg’s uncertainty principle, this approach may only give a

fixed time-frequency resolution.

A wavelet transform gives an advantage over both the FT and the STFT that

the resolution window can be changed through the variation of parameters called

scaling factor (or scale) and the shift. A scaling factor serves the purpose of com-

pressing/expanding the windowing function. This process allows small scales (cor-

responding to smaller windows) to capture high frequency components within the

window. Larger scales on the other hand extend over a relatively large portion of

the signal being analyzed and tend to capture the low frequency characteristics. The

windowing function in this case is called a wavelet. Some of the important properties

of wavelets are as given below.

1. Zero average value: The average value of a wavelet ψ (t) over time is zero.

∫

∞

−∞

ψ (t) dt = 0. (2.1)
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2. Square Integrability: The wavelet function is square integrable.

∫

∞

−∞

|ψ (t)|2 dt < +∞. (2.2)

2.2 CONTINUOUS WAVELET TRANSFORM

The continuous wavelet transform function Wψ
(a,b) for a time signal x(t) using a

wavelet function ψ (t) is given by

Wψ
(a,b) =

1√
a

∫

∞

−∞

x(t)ψ∗

(

t− b

a

)

dt ∀a, b ∈ R, (2.3)

where a is the scale variable, b is the shift variable and R is the set of real numbers.

Here ψ∗ (t) is the conjugate of the wavelet function ψ (t). For real-valued wavelets,

ψ∗ (t) = ψ (t).

The function ψ (t) in Equation 2.3 is called the mother wavelet and corresponds

to an undilated (uncompressed) windowing function. A daughter wavelet can be

created by the compression/expansion as well as shifting of the mother wavelet. The

mathematical expression for a daughter wavelet ψ(a,b)(t) is described by

ψ(a,b)(t) =
1√
a
ψ

(

t− b

a

)

. (2.4)

The reconstruction of the time signal back from the wavelet coefficients is subject to

the following admissibility condition

Cψ =

∫

∞

0

∣

∣ψ̂ (ω)
∣

∣

2

ω
dω < +∞, (2.5)

where Cψ is a constant that is fixed for a particular wavelet ψ(t), ψ̂ (ω) is the Fourier

transform of the wavelet ψ (t) and ω is the frequency. The existence of admissibility

condition allows the reconstruction of the original signal, such that

x(t) =
1

Cψ

∫

∞

a=0

∫

∞

b=−∞

(

1

|a|2
)

Wψ
(a,b) ψ(a,b)(t) db da. (2.6)
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Some important properties of the continuous wavelet transform are given [13]

in the next section.

2.3 CONTINUOUS WAVELET TRANSFORM PROPERTIES

1. Linearity: The continuous wavelet transform follows the property of linearity,

i.e.

Wψ
(a,b)

(

αx1(t) + βx2(t)
)

= α
(

Wψ
(a,b)x1(t)

)

+ β
(

Wψ
(a,b)x2(t)

)

(2.7)

where Wψ
(a,b) is the CWT function calculated for the parameters a and b with

the wavelet ψ (t), and α and β are scalars.

2. Translation: The CWT operator is translation (shift) invariant. This property

implies that the CWT of a time-shifted signal is the same as that of the original

signal, but shifted along the shift (b) axis. This property has been utilized in

Section 3 where both the shifted and non-shifted versions of the signals have

been used.

Wψ
(a,b)

(

x(t− τ)
)

= Wψ
(a,b−τ)

(

x(t)
)

. (2.8)

3. Energy density in time-scale domain: The energy density in time -scale

domain of a time domain signal obtained though the CWT is a three dimensional

surface that varies as a function of the shift and the scale parameters. These

surfaces are a measure of the distribution of energy present in the signal as time

and frequency vary. The energy density in time-scale domain using a wavelet

ψ(t) is given by

ξψ(a,b) =

∣

∣

∣
Wψ

(a,b)

∣

∣

∣

2

Cψ |a|2
. (2.9)

where Cψ is defined in Equation 2.5.

4. Maxima lines: The CWTs have the advantage that they can be used to find

out the regions in a signal where the signal or its derivatives display abrupt
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changes. This can be done by analyzing some special lines where the modulus

of the CWT is concentrated as pointed by Haase et al. in [14]. Such lines

are referred as the maxima lines. Maxima lines are obtained from the partial

derivative of the CWT function along the direction of the shift parameter.

5. Ridges: Another feature of the CWT is its ability to decompose vibrations into

their natural frequency components. If the FT of the analyzing signal concen-

trates near a fixed frequency, the modulus of the CWT tends to concentrate near

a series of curves called ridges. Ridges are obtained by partial differentiation of

the CWT function along the direction of the scale parameter.

Determination of Maxima lines and Ridges: The calculation of the max-

ima lines and ridges is performed by first evaluating the CWT for a discrete set of

mesh points (ai, bj) where i, j are integers. Local maxima are next determined either

for a constant scale ai or a constant time bj . An additional chaining algorithm is then

used to connect the points of interest.

2.4 DISCRETE PARAMETER WAVELET TRANSFORM (DPWT)

In Equation 2.3, both the shift and the scale are continuous variables. This

process clearly results in a redundancy in the CWT representation. It is possible to

completely reconstruct the signal x(t) if the wavelet transform coefficients have been

sampled densely enough, [15] . The sampling is done through a discretization process,

such that the signals are still continuous in time, but the scale and the shift variables

are discretized.

For a = am0 and b = nb0a
m
0 , where m and n are integers, the DPWT coefficients

are given by [16]

Pψ
(m,n) =

∫

∞

−∞

x(t)ψm,n(t) dt (2.10)

where ψm,n(t) = a
−m/2
0 ψ(a−m0 t− nb0) and a0, b0 are the constants that determine the

sampling intervals.
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The signal x(t) can now be reconstructed from the basis functions ψm,n(t)

through the reconstruction formula

x(t) = cψ
∑

m

∑

n

Pψ
(m,n)ψm,n(t) (2.11)

where cψ is some constant dependent only on ψ(t). The perfect reconstruction and

orthogonality of the DPWT is subject to proper choices of a0 and b0.

2.5 DISCRETE WAVELET TRANSFORM (DWT)

The discrete wavelet transform is orthogonal unlike the continuous wavelet

transform. The CWT serves as an analysis tool and can be seen as a redundant

transform in continuous time with continuous scale and shift parameters with dilated

and shifted wavelets as the basis functions. The DWT on the other hand is an orthog-

onal transform with discrete (dyadic) scales and shifts. The basis functions for this

transform are the scaled and dilated versions of the wavelet functions (ψ(t)) and scal-

ing function (φ(t)). The scaling function helps determine the signal approximation

coefficients. These functions are characteristics only to the orthogonal wavelets, [12].

From a frequency domain perspective, wavelets tend to serve as high pass filters

and the scaling function tends to act as a low pass filter. The net effect of these

properties is that the scaling function and the wavelet function end up spanning the

complete spectrum of frequencies.

The DWT serves to decompose the signals into sub-bands. An important feature

of the DWT is that it can be implemented using digital filter banks rather than using

the basic definition of the wavelet transform. Digital filter banks for wavelets are a

set of four filters that can be used to analyze and reconstruct the signals. Two of

these filters are used for analysis and consist of a pair of low-pass and high pass filters.

Correspondingly, there is a pair of low-pass and high -pass filters for the reconstruction

of the signals. These filters are called quadrature-mirror filters (QMFs). An important

property of these filters is that they satisfy the perfect reconstruction condition. In

other words, when a signal is passed through a set of QMFs, it can be reconstructed

without any loss of information.
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The equivalence of the implementation of the discrete wavelet transform and

use of quadrature-mirror filters for signal analysis is derived through the concepts

of Frames and Multi-Resolution Analysis (MRA). The theory of frames is a gener-

alization of the orthonormal decomposition principle and plays an important role in

determining the orthogonal nature of the wavelet transform.

The idea of multi-resolution analysis is similar to sub-band decomposition where

a signal is divided into a set of frequency bands. The low-pass and high-pass filters

along with decimation decompose the signal into its sub-band components. There can

be multiple topologies for the sub-band decomposition. Some of the most common

are the binary tree and the logarithmic tree decomposition. Figure 2.1 illustrates the

use of filter banks for the decomposition of a band limited signal.

Another concept connecting the wavelets and filter banks is that multiple it-

erations of the low-pass filter leads to the scaling function. Similarly, the multiple

iterations of the high-pass filter leads to the wavelet function, [17]. As a result, the

discrete wavelet transform can be implemented efficiently through the use of filter

banks.

Figure 2.1. Sub-band decomposition view of discrete wavelet transform using filter
banks.
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2.6 ADDITIONAL PROPERTIES OF WAVELETS

The choice of a particular wavelet for an application depends on the following

properties of the wavelets, [5].

1. Support width: The support of a wavelet is the range of values for which

the wavelet function is non zero. Compact support (finite support width) for a

wavelet means that whenever the function is not defined, it will have a value of

zero. Compact support is a measure of the temporal localization of the wavelet.

2. Number of vanishing moments: A wavelet ψ (t) has p vanishing moments

if

∫

∞

−∞

tkψ (t) dt = 0 for 0 ≤ k < p. (2.12)

This property implies that the wavelet is orthogonal to any polynomial of degree

p− 1. A wavelet with many vanishing moments gives small coefficients when it

is used to analyze low frequencies. The number of vanishing moments is related

to the number of oscillations of the wavelet; the more the number of vanishing

moments, the more the wave oscillates. If a wavelet has p vanishing moments,

then its support must be at least 2p− 1, and increasing the size of the wavelet

increases the number of computations.

3. Regularity: The order of regularity of a wavelet is the number of its continuous

derivatives. To have a regularity greater than k, a wavelet must have at least

(k + 1) vanishing moments. A high order of regularity is required to encode

smooth signals. The regularity condition requires the mother wavelet to be

locally smooth and concentrated in both time and frequency.

4. Orthogonality: Orthogonality of the wavelet functions brings conciseness and

speed to the analysis at the cost of shift invariance. In the context of the dis-

crete wavelet transforms, this implies orthogonality of the analysis and synthesis

filter banks. Orthogonality is particularly important for signal compression. Or-

thogonality in the wavelet transform is similar to the sampling theorem. With

orthogonal wavelets, it is possible to critically decompose the signals and still

be able to reconstruct the signal perfectly. Orthogonal wavelets give the most
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compact representation of the signal and provide a way to implement wavelet

transforms using filter banks. Orthogonal wavelets give orthogonal matrices

and perfect reconstruction, [17].

5. Bi-orthogonality: Biorthogonality of wavelets provides both symmetry and

compact support though two sets of wavelets, one for analysis and another

for synthesis. Symmetry is incompatible with orthogonality which might be

required for linear phase. Symmetry is useful in avoiding dephasing, especially

in image processing. In terms of digital filter banks, this means that the analysis

and synthesis filter-banks are not the transposes of each other. Biorthogonal

wavelets give invertible matrices and perfect reconstruction, [17].

6. Complex or Real: Complex wavelets are useful when analysis of the phase of

time signals is important. For most applications, real wavelets are sufficient for

analysis.

2.7 FAMILIES OF WAVELETS

Based on the above listed properties, different families of wavelets have been

described. A brief description about these is given below:

1. Haar wavelets: The Haar family of wavelets is the simplest of all wavelets.

The Haar wavelet function is the only wavelet function which is both linear

phase characteristics and orthogonality.

2. Daubechies wavelets: These are compactly supported wavelets with extremal

phase and the highest number of vanishing moments for a given support width.

Associated scaling filters are minimum-phase filters. They do not have any

analytic form.

3. Coiflets: These are compactly supported wavelets with the highest number of

vanishing moments for both the wavelet and the scaling functions for a given

support width. They do not have any analytic form.
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4. Bi-orthogonal wavelet: Bi-orthogonal wavelets have two sets of wavelets;

one for analysis and another for reconstruction. These wavelets provide both

symmetry and orthogonality.

5. Symlets: These are compactly supported wavelets with the least asymmetry

and the highest number of vanishing moments for a given support width. The

associated scaling filters are near linear-phase filters. These wavelets are ob-

tained by modifying the Daubechies wavelets. They do not have any analytic

form.

6. Meyer wavelet: Meyer wavelet is defined in the frequency domain. This

wavelet does not have finite support but approaches to zero as time approaches

to infinity and decays faster than any inverse polynomial. Meyer wavelet is

infinitely differentiable. This wavelet ensures orthogonal analysis.

7. Morlet: The mother wavelet function is given by

ψ(t) = Ce−t
2/2 cos(5t)

for some constant C. This wavelet has infinite support, but its effective region

is the closed interval [-4,4]. It is usually implemented using IIR filters as op-

posed to FIR filters for orthogonal wavelets. This wavelet does not satisfy the

admissibility condition.

8. Mexican hat wavelet: This wavelet is proportional to the second derivative

of the Gaussian probability density function. It has infinite support width,

but its effective region is the closed interval [-5,5]. This wavelet is also usually

implemented using IIR filters.

9. Gaussian Derivatives: This wavelet family is given by the pth derivative of

the Gaussian function.

ψ(t) = Cpe
−t2

where Cp is such that norm of the pth derivative is 1.

10. Complex Gaussian wavelets: This wavelet family is given by the pth deriva-

tive of the complex Gaussian function

ψ(t) = Cpe
−ite−t

2

where Cp is such that norm of the pth derivative is unity.
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3 MATERIAL IDENTIFICATION METHODS USING CWT

The methods for material identification based on the continuous wavelet trans-

form have been discussed in this section.

3.1 THE PROBLEM OF MATERIAL CLASSIFICATION

In general, the steps for material identification data acquisition (signal mea-

surement), preprocessing, feature extraction and classification, [5]. Each of these

have been discussed below.

3.1.1 Signal Measurement. For THz signal measurements, two of the

common methods are to get the data through the THz-TDS or Fourier transform

spectroscopy, [18]. The data used here have been based on the THz-TDS. THz-TDS

offers the additional advantage of providing the phase information along with the

amplitude information, which is not possible in the Fourier transform based techniques

like FTIR, [2]. FTS based detectors measure power instead of electric field and lack

the phase information. An additional advantage of TDS is that the power level for

TDS are higher than those available with FTS, [18]. The additional phase information

that is available in the TDS has been exploited in the wavelet transform methods for

material identification.

3.1.2 Preprocessing. Measurement of the signals in the real world brings in

artifacts like the effects of measuring system characteristics and noise. The combined

effect of these two is the addition of noise to the convolution of the desired sample

signals with the system transfer function. The goal of preprocessing is to remove

the effect of noise and the system characteristics. The methods used to get the

original signal have been noise removal followed by deconvolution. The noise removal

methods that could be employed for noise removal are filtering, wavelet-denoising,

etc. Deconvolution usually involves dividing the spectra of the sample signal by the

spectra of the reference signal, [5]. However, the process of deconvolution is extremely

sensitive to noise and can result in undesirable features that might lead into misleading

features in the feature extraction stage.
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3.1.3 Feature Extraction. One of the most common approaches for feature

extraction has been the use of absorbance peaks (material absorption). The material

absorption (α) is given by the following expression [4]

α = −2

d
ln

(

Esignal(v)

Ereference(v)

)

where d is the thickness of the pellet and Esignal(v) and Ereference(v) are the signal and

reference frequency domain amplitudes, respectively.

The absorption spectra obtained by the above method results in a spectrum

specific to the material, with peaks and valleys. In the terahertz range, each material

tends to absorb a particular range of frequencies that cause the phonon resonance in

the material, which in turn is attributed to the crystal structure of the material. This

results in peaks in the absorption spectra at those specific frequencies, that provide

a signature of the material. A signal with remnant noise in either of the reference

material or the measured signal with test material can result in false peaks in the

absorption spectrum. Sometimes Wiener filters are used to overcome this problem.

Shen et al. in [3] has used the refractive index for the identification of the RDX.

They also showed that the first derivative of the spectrum measured in reflection

mode is the same as that measured in transmission mode. One more feature that

has been suggested is a parameter similar to absorption coefficient that is calculated

based on the use of the wide-band cross ambiguity function defined as

WBCAFx1x2(τ, σ) =
1√
σ

∫

∞

−∞

x2(t)x
∗

1

(

t− τ

σ

)

dt ∀σ, τ ∈ R (3.1)

where x1(t) is the reference waveform and x2(t) is the attenuated sample waveform.

The absorption parameter in this approach has been defined as
maxτ (WBCAFf1

f2[τ,σ])

maxτ (WBCAFf1
f1[τ,σ])

This ratio corresponds to a measure of relative transmission and hence can be used

as a measure similar to absorption coefficient.

3.1.4 Classification. Various classification schemes like Mahalanobis dis-

tance, K-Nearest Neighbor, Nearest Mean, Neural Networks, Correlation Coefficients

etc. can be used for classification purposes.
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The above mentioned methods describe how the material classification has been

dealt. Next, the methods used for the material detection in this thesis work will be

discussed.

3.2 COMMON STEPS FOR ALL THE CWT BASED METHODS

Following are the steps common to all the four methods for material identifica-

tion based on continuous wavelet transform discussed in this section.

Step 1: Determine the CWT coefficients for the test signal. The con-

tinuous wavelet transform coefficients for the test signal are calculated using the

Equation (2.3). The parameters to be chosen are the wavelet for analysis and range

of scales to cover the complete signal over the length of time it persists. The re-

sult is a 3-dimensional surface with scales and shifts as the variable. Such a 3-

dimensional surface for the continuous wavelet transform coefficients calculated using

one of Daubechies wavelets is shown in Figure 3.1.

Figure 3.1. Continuous wavelet transform coefficients using Daubechies wavelet of
order 6 and scales from 1 to 350.
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Step 2: Determine the energy density in the time scale domain for

the signal using the CWT coefficients. Equation (2.9) is used to calculate the

energy density in the time scale domain. This step can be accomplished by dividing

all the coefficients by their respective scales squared. The results of this is a smoother

surface decaying faster than the CWT surface because of the normalization by large

values of scales towards high scale region. One such surface for the signal is shown in

Figure 3.2.

Step 3: Remove the noisy portion of the time energy density by

determining the partial derivatives along the scales. The partial derivative of

the CWT function is calculated. The values of function at small scales (corresponding

to high frequencies) usually have very high values due to noisy nature of the signal.

As a result, the coefficients’ amplitude varies widely at small scales. One scheme

to remove these noisy components is to calculate the values of derivatives along the

direction of shifts and retain only those coefficients that correspond to a derivative

Figure 3.2. Energy density in the time scale domain for time signal using Daubechies
wavelet of order 6 and scales from 1 to 350.
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smaller than a threshold. This threshold is chosen as the maximum value of the

derivative found out for a noiseless signal. This step is similar to the preprocessing

stage in Section 2.

Step 4: Find out the maxima lines using the energy density coeffi-

cients. This step is accomplished by finding the local maxima in a neighborhood

(decided by the chosen frames size) for a particular scale. Time energy density coeffi-

cients that correspond to an energy level less than 5% of the peak energy are discarded

to overcome the effect of noise and utilize only the high energy portion of the signal

for identification. The same procedure is repeated for all the scales. The collection

of such maxima points will serve as the maxima lines. Figure 3.3 shows the maxima

lines for one of the test signals.

Step 5: Find out the ridge lines (ridges) using the energy density co-

efficients. This step is accomplished by finding the local maxima in a neighborhood

(decided by the frames size chosen) for a particular shift rather than scale as in Step

4. Time-energy density coefficients which correspond to an energy level less than 5%

of the peak energy are discarded to overcome the effect of noise and utilize only the

high energy portion of the signal for identification. The same procedure is repeated

for all the shifts. The collection of such maxima points will serve as the ridge lines.

Figure 3.4 shows the ridge lines for one of the test signals.

Figure 3.3. Maxima lines for the time-energy density coefficients for a sample time
signal using Daubechies wavelet of order 3 and scales from 1 to 350.
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After going through the above steps, one of the following four methods can be

used for the stage purpose of material identification.

3.2.1 Combination of Maxima Lines and Ridges with Shift. The

maxima lines and ridges found out in Steps 4 and 5 above are sufficient to be used as

features for the material identification. The coordinates of these two features can be

used to create binary images. A measure of the correlation between the test binary

image and similar images that are available off-line can be done. This would give a

measure of the correlation between the two images that could be compared against a

pre-decided threshold value to serve as a match indicator. This method does not take

into account the shift that the test signal might have undergone. Thus, it assumes

that both the absolute and the relative location of peaks are important for the signal

determination. Figure 3.5 shows the combined maxima lines and ridges obtained by

combining data points from Steps 4 and 5.

3.2.2 Combination of Maxima Lines and Ridges without Shift. This

method of identification considers the shift of the signal in the time domain. Thus,

it addresses the issue that the test signals obtained through signal measurement

techniques might be time shifted versions of the signal present in the library of signals.

Effectively, it reduces the burden of storing time-shifted versions of the signal in the

library. For finding the coefficient of correlation, the binary images are moved along

Figure 3.4. Ridge lines (ridges) for the time-energy density coefficients for a sample
time signal using Daubechies wavelet of order 3 and scales from 1 to 350.
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Figure 3.5. Maxima lines and ridges combined for the time-energy density coefficients
for a sample time signal using Daubechies wavelet of order 3 and scales
from 1 to 350.

the shift axis giving a sequence of correlation coefficients for all the shifts. The

maximum value of the correlation coefficient is then chosen to be compared with the

threshold value. This method assumes that only the relative location of peaks are

important for the signal determination, but not the absolute locations.

3.2.3 Intersection Points with Weights with Shift. Instead of using

all the set of points obtained using maxima lines and ridges as features, only their

points of intersection can be treated as classifying features as well. This can be

accomplished by assigning weights to these points by using a geometric shape with

area proportional to the energy levels at those points that are calculated already

in Step 2. Then their correlation (without shifting) with the same features of the

previously computed library materials can be determined. This method assumes that

both the absolute and the relative location of intersection points are important for the

signal identification. Figure 3.6 shows the intersection point locations for a sample

time signal.

3.2.4 Intersection Points with Weights without Shift. This method is

similar to the previous method, but with the shift taken into account. As in Section

3.2.3, for finding the coefficient of correlation, the binary images are moved along the

shift axis giving a sequence of correlation coefficients for all the shifts. The maximum
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Figure 3.6. Intersection points of maxima lines and ridges for time-energy density
coefficients for a sample time signal.

value of the correlation coefficient is then chosen to be compared to the threshold

value. This method assumes that only the relative location of points of intersection

is important for the signal determination, but not the absolute locations.

The implementation of these methods and the results obtained are discussed in

Section 5.
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4 MATERIAL IDENTIFICATION METHODS USING DWT

The methods of material identification used earlier as well as the proposed

method based on the discrete wavelet transform have been discussed in this section.

Since the discrete wavelet transform is inherently shift variant, no methods based on

shifting properties have been discussed.

4.1 EARLIER EFFORTS FOR IDENTIFICATION USING DWT

The discrete wavelet transform had been used earlier mainly for the purpose

of de-noising the signals. Efforts have been done to de-noise the signals using the

process of soft-thresholding in [10] and [5]. This method involves the use of filter-

banks in a recursive manner to calculate the discrete wavelet transform coefficients

and particularly suitable for non-stationary pulse like signals.

In soft-thresholding, the sample variance of the coefficients in a band is calcu-

lated and the threshold is set to some multiple of the standard deviation. The wavelet

coefficients are suppressed to zero if their values are below the threshold or left un-

altered otherwise, [13]. The result of this processing is that small energy coefficients

representing noise are filtered out while the coefficients greater than or equal to the

threshold, which in fact represent the high energy content portion of the signal, are

retained.

Handley et al. in [5] had used the discrete wavelet transform to find optimal

wavelets through experimentation. Noise was added to the original signals and a

de-noising algorithm applied using different wavelets. The criterion for choosing the

optimal wavelet was based on obtaining the best signal to noise ratio (SNR) after the

application of the set of wavelets.

Shopov et al. in [12] had used the ultrasonic echo signal returned after reflection

from the target explosive material for explosive material classification. This method

involved processing the reflected signal using the discrete wavelet transform to de-

compose the signals to level 7 and 8 and use the approximation coefficients as the

recognition attributes (features). The system was trained using multiple data sets

and classified using the K-nearest neighbor classification scheme.
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4.2 PROPOSED DWT METHOD

The test data used for testing this method is the same as the data used earlier

in the CWT methods. As described in Section 2, the signal can be divided into

sub bands using the orthogonal DWT by continuous filtering and down-sampling.

Each step of filtering and down-sampling through a pair of low-pass and high-pass

filters results in two sub-sequences corresponding to the lower and higher frequency

band, each with dimensions approximately half of the original signal. The size of the

filtered sequence depends on the size of the filter chosen, which in turn depends on

the wavelet chosen for analysis. Each of the resultant sub-sequences is then further

passed through the same procedure. If the process is continued k many times, the

original signal is decomposed to level k and the result is a set of 2k sub-band sequences

of equal bandwidths and dimensions reduced by a factor of 2k. The lowest sub-band

comprises of the frequencies starting from DC to (π/2k). The next higher band is of

the same bandwidth but starting from the higher cut-off frequency of the upper band

and so on.

Naturally, these sub-bands are of equal size since they are at the same level

of decomposition. Denoting L as the length of the sequence at level k, these sub-

bands are placed parallel to each other resulting in a matrix of dimension 2k by

L. The absolute values of these sequences are placed in increasing order of their

frequency contents, so that the first corresponds to the lowest sub-band and the last

row to highest sub-band. This arrangement is similar in a sense to the CWT matrix

in Section 3, but a linear increase in scaling factor is substituted by a grouping

of scale ranges. Thus, this new matrix arrangement has sub-bands along one axis

and the corresponding sequence index along the other. The third dimension is the

absolute value of the DWT coefficient, which is a measure of the energy content in

that particular band.

4.3 COMMON STEPS FOR ALL THE DWT BASED METHODS

The steps common to all the four methods for material identification based on

the discrete wavelet transforms discussed in this section are given below.

Step 1: Determine the discrete wavelet transform coefficients using

filter-banks to a fixed level of decomposition. The discrete wavelet transform
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coefficients for the test signal are calculated using the filter-banks through iteratively

filtering the sub-bands for a given level (k) of decomposition until 2k sub-band se-

quences are obtained. The set of filter-banks is dependent on the orthogonal wavelet

chosen for analysis.

Step 2: Arrange the sub-band sequences to form a 2-dimensional

matrix. As mentioned in the previous section, the sub-bands are arranged to form a

matrix. Absolute values of the coefficients are then used for further operations. The

surface formed by such a matrix is shown in Figure 4.1. Once the matrix is obtained,

one of the following algorithms can be used for the identification.

4.3.1 Maxima Lines/Points. The maxima lines in the context of discrete

wavelet transform can be redefined as a function of sub-band number and the index of

the coefficient in the sub-band instead of the shift and the scale variables. This is in a

way similar to the continuous wavelet transform method because choosing a particular

sub-band is equivalent to choosing a range of scales; but in a non-redundant way.

The maxima lines/points are found for the test and the library materials and then

converted to corresponding binary images. The correlation between the corresponding

binary images is then computed. The material yielding the coefficient of correlation

greater than a pre-decided threshold value with the test material is then declared

as the target material. A binary image showing the maxima points obtained for

0
5

10
15

0
5

10
15

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Index in sub−band sequenceSub−band Number

A
m

pl
itu

de
 o

f D
W

T
 c

oe
ffi

ci
en

t

(a) Actual values

0
5

10
15

0
5

10
15

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Index in sub−band sequenceSub−band Number

A
bs

ol
ut

e 
va

lu
es

 o
f D

W
T

 c
oe

ffi
ci

en
ts

(b) Absolute values

Figure 4.1. Sub-band sequences arranged in matrix form.
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a library signal is given in Figure 4.2. The orthogonality of the discrete wavelet

transform results in a minimum number of coefficients, which makes it difficult to have

continuity of points like the one obtained in continuous wavelet transform methods.

4.3.2 Ridge Lines/Points. This method is the same as identification using

maxima lines except that ridges instead of maxima lines are used for identification

purpose. A binary image showing the ridge points obtained for a library signal is

given in Figure 4.2.

4.3.3 Combination of Maxima Lines and Ridge Lines. This method

combines the pixels identified by both the maxima points and the ridges and uses the

combined features for identification. A binary image showing the maxima points and

ridge points obtained for a library signal is given in Figure 4.3.

(a) Maxima points (b) Ridge points

Figure 4.2. Binary image for maxima and ridge points using sub-band sequences ob-
tained through DWT.

4.3.4 Intersection Points of the Maxima Lines and Ridges. This

method uses the intersection points of the maxima lines and the ridges as features for

identification. A binary image showing the intersection of maxima points and ridge

points obtained for a library signal is given in Figure 4.3.
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(a) Maxima points and ridge points
combined.

(b) Intersection of maxima points
and ridge points combined.

Figure 4.3. Binary image for maxima points and ridge points combined and their
intersection points using sub-band sequences obtained through the DWT.

The implementation of these methods will be discussed in Section 5.
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5 TARGET MATERIAL DETECTION USING WAVELET
TRANSFORM

In this section, the application of the methods described in Sections 3 and 4 as

applied to signals obtained through the terahertz time-domain spectroscopy have been

discussed. The suitability and the robustness of each of the methods has been tested

under different noise conditions (i.e. different signal to noise ratios) with different

wavelets. Criteria for choosing wavelets that best classify the test data available have

also been suggested.

5.1 TEST DATA

The test data has been obtained from the same source that was used in [4]. The

signals consisted of 945 samples for each of the materials HMX, PETN, RDX and

TNT, where the material descriptions are discussed in the Appendix. The sampling

rate for the signals was 75 tera-samples per second. The data was obtained using

the THz-TDS obtained in transmission mode. The target materials were crystal-

lized from solvent form, followed by drying, weighing, and grounding. The grounded

material was then pressed into pellets with a polyethylene (PE) binder with 3.5–4.5

micrometers mean particle size.

The methods described in Sections 3 and 4 have been tested by adding different

levels of white Gaussian noise to the pure target materials. Figure 5.1 shows a pure

terahertz signal and the same signal with additive noise.

To give an idea to the reader of the effect of noise of various levels, 100 of noise

added signals with a specific noise level have been added on the top of each other

along with the original signal in Figure 5.2.

5.2 RESULTS FOR CWT METHODS APPLIED TO TEST DATA

The data source claims that the useful range of frequencies is upto 6 THz. This

implies a useful range of scales starting at 12.5 (=75THz/6THz) and beyond from

the perspective of the CWT. It turns out that the number of peaks generated by a

particular wavelet depends on the number of maxima and minima in the signal, as
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Figure 5.1. Pure and noise added time domain signals obtained through terahertz
time-domain spectroscopy.

well as the regularity of the wavelet. The more regular a wavelet is, the more number

of times it oscillates up and down within its support width. Thus, increasing the order

of the wavelet results in the increase in the number of peaks and correspondingly the

number of maxima lines and the intersection points.

All the steps (1 though 5) described in Section 3 were carried out in sequence,

resulting in preprocessed coefficients available for feature determination. Figures 5.3

and 5.4 show the CWT function values before and after the noise removal, respectively.

The effect of the noise removal process is clearly visible.

5.2.1 Using Maxima Lines and Ridges with Shift. Once the above

steps have been carried out, the correlation of the test image is carried out with the

library materials with the lateral shift and the maximum of the correlation coefficient.

The reason both the maxima lines and the ridges have been used in this method is

because for the set of test data, both the ridges and maxima lines are different and

provide unique features.
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Figure 5.2. Time domain signals with the band created by a number of noise signals
of SNR 12dB and 15dB added to pure HMX signal.

Figure 5.3. Time energy density coefficients with SNR 12dB before noise removal.
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Figure 5.4. Time energy density coefficients with SNR 12dB after noise removal.

The method was tested for different levels of signal to noise ratio using additive

white Gaussian noise. Table 5.1 shows the results for such simulations for 50 different

cycles of same noise level corresponding to the four materials in the library.

5.2.2 Using Maxima Lines and Ridges without Shift. The method

is similar to the previous method without the signal shift. This method gives better

results than the above method with shift and was able to identify the materials with

a threshold set to 0.5. Figure 5.5 shows the confusion matrix represented as a 3-

dimensional bar graph for the four test materials with an SNR of 12dB as well as

an additional signal. The confusion matrix here represents a degree of correlation

among the different materials. So, a test material obtained by adding noise to a pure

material will show a higher correlation against the pure material, than against the

other library materials. The brown bars represent the correlation coefficient of the

test material against the materials in the library. Clearly, the test material has very

low correlation against all the library materials (less than the decided threshold of

0.5).
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Table 5.1. Detection accuracy using maxima lines and ridges with shift for the library
materials using wavelet db10.

Test Signal to noise Percentage Minimum coefficient
Material ratio in dB accuracy of correlation
HMX 14 4 0.37
HMX 15 80 0.45
HMX 16 88 0.47
HMX 17 100 0.52
PETN 14 6 0.37
PETN 15 36 0.38
PETN 16 70 0.47
PETN 17 98 0.49
PETN 18 100 0.53
RDX 14 2 0.35
RDX 15 12 0.40
RDX 16 66 0.45
RDX 17 92 0.47
RDX 18 100 0.53
TNT 14 0 0.35
TNT 15 24 0.37
TNT 16 84 0.43
TNT 17 100 0.51

The innermost orange bar in second row represents the correlation between the

material 4 (TNT) with and without noise. This bar is higher than the correlation

coefficient bars against other library materials (the other 3 orange bars). Similarly,

RDX (material 3), PETN (material 2) and HMX (material 1) have the highest cor-

relation coefficient at the diagonals, showing highest correlation of the noise added

material with the pure material rather than with any other library material.

The method was tested for different levels of signal to noise ratios using additive

white Gaussian noise. Table 5.2 shows the results for such simulations for 50 different

cycles of the same noise level corresponding to the four materials in the library. As

evident from the table, the detection accuracy increases with better signal to noise

ratio.
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Figure 5.5. Correlation coefficients with library materials and a non-library material.

5.2.3 Using Intersection Points with Weights with Shift. In this

method, a weight (effectively an area in a binary image with a geometric shape) is

assigned to the intersection points. The shape chosen is similar to the plus symbol

with the area of the shape proportional to the time-energy density coefficient. This

ensures that high energy coefficients are given more importance over others. Figure 5.6

shows such a weight allocation scheme.

A better way to decide the geometric shape is to add noise to the pure signal

and look for the displacement of the intersection points for a number of test signals.

One such simulation for 100 noisy signals with 20dB noise is shown in Figure 5.7.

Clearly, the exact geometric shape requires an intricate shape customized for each

point. Implementation of such shapes would greatly increase the accuracy of the

identification.

The method was tested for different levels of signal to noise ratio using additive

white Gaussian noise. Table 5.3 shows the results for such simulations for 50 different

cycles of the same noise level corresponding to the four materials in the library.
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Table 5.2. Detection accuracy using maxima lines and ridges without shift for the
library materials using wavelet db10.

Test Signal to noise Percentage Minimum coefficient
Material ratio in dB accuracy of correlation
HMX 14 46 0.37
HMX 15 46 0.43
HMX 16 86 0.45
HMX 17 100 0.52
PETN 14 0 0.39
PETN 15 22 0.42
PETN 16 78 0.46
PETN 17 94 0.47
PETN 18 100 0.52
RDX 14 2 0.38
RDX 15 10 0.42
RDX 16 68 0.45
RDX 16 94 0.49
RDX 17 100 0.52
TNT 14 2 0.35
TNT 15 28 0.39
TNT 16 88 0.48
TNT 17 100 0.51

5.2.4 Using Intersection Points with Weights without Shift. This

method is similar to the previous method, but without shift. The method was tested

for different levels of signal to noise ratio using additive white Gaussian noise. Ta-

ble 5.4 shows the results for such simulations for 50 different cycles of same noise level

corresponding to the four materials in the library.

5.3 RESULTS FOR DWT METHODS APPLIED TO TEST DATA

For testing the methods using the DWT, similar methods were employed for

adding noise to the pure signal and then testing them against the library signals.

One important point to be noted is that the DWT is shift invariant by nature, which

means that the correlation by shifting the binary images cannot be determined. The

signals were decomposed to level 6 (k = 6), giving a total of 64 sub-band sequences.
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Figure 5.6. Figure showing weights assigned to the intersection points of maxima lines
and ridges.

Figure 5.7. Movement of intersection points with 20dB noise.

The reason for decomposing the signals to such a high level is that the available

test signals are narrow-band signals and only the lowest sub-bands have the majority

of the energy content of the signal. This property was verified from the amplitude

spectrum (FT) of the signals. To be able to observe some variation across the sub-

bands, the signal needs to be decomposed into more levels so that the energy at the

lower frequency sub-bands correspondingly separated.

5.3.1 Using Maxima Lines Alone. The methods suggested in Section 4.3.1

were tested by adding different levels of noise to the pure signals. To a smaller

degree, the addition of noise resulted in some level of energy being transferred to
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Table 5.3. Detection accuracy using intersection of maxima lines and ridges with
weights (with shift) for the library materials using wavelet db3.

Test Signal to noise Percentage Minimum coefficient
Material ratio in dB accuracy of correlation
HMX 12 78 0.29
HMX 13 90 0.39
HMX 14 96 0.33
HMX 15 98 0.44
HMX 16 100 0.54
PETN 12 76 0.27
PETN 13 92 0.26
PETN 14 96 0.42
PETN 15 100 0.52
RDX 12 68 0.30
RDX 13 82 0.31
RDX 14 86 0.35
RDX 15 94 0.37
RDX 16 100 0.51
TNT 12 70 0.32
TNT 13 86 0.28
TNT 14 94 0.33
TNT 15 98 0.46
TNT 16 100 0.50

the higher sub-bands as well. Only the lower 16 sub-bands were retained because

the higher bands still did not have appreciable energies. This also serves to reduce

the computational load for narrow-band signal. The maxima points were then found

out and the correlation coefficients are determined. Figure 5.8 shows the confusion

matrix similar to the ones mentioned in the previous sections with all the four noisy

signals serving as test signals.

The method was tested for different levels of signal to noise ratio using additive

white Gaussian noise. Table 5.5 shows the results for such simulations for 50 different

cycles of same noise level corresponding to the four materials in the library using

wavelet db2 (Daubechies wavelet of order 2).
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Table 5.4. Detection accuracy using maxima lines and ridges with shift for the library
materials with wavelet db3.

Test Signal to noise Percentage Minimum coefficient
Material ratio in dB accuracy of correlation
HMX 14 84 0.34
HMX 15 88 0.45
HMX 16 92 0.48
HMX 17 98 0.44
HMX 18 98 0.45
HMX 19 100 0.52
PETN 13 74 0.25
PETN 14 94 0.42
PETN 15 92 0.47
PETN 16 96 0.47
PETN 17 100 0.52
RDX 14 64 0.31
RDX 15 86 0.37
RDX 16 88 0.42
RDX 17 98 0.47
RDX 18 96 0.39
RDX 19 96 0.45
TNT 14 88 0.43
TNT 15 100 0.55
TNT 16 98 0.38
TNT 17 94 0.42
TNT 18 100 0.53

5.3.2 Using Ridges Alone. The methods suggested in Section 4.3.2 were

tested by adding different levels of noise to the pure signals and procedure similar

to the one followed for maxima points carried out. However, the number of points

obtained were fewer than those for maxima points. Figure 5.9 shows the confusion

matrix with all the four signals added with noise and serving as test signals.

The method was tested for different levels of signal to noise ratio using additive

white Gaussian noise. Table 5.6 shows the results for such simulations for 50 different

cycles of same noise level corresponding to the four materials in the library using

wavelet db2 (Daubechies wavelet of order 2).
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Figure 5.8. Confusion matrix shown as a 3-dimensional bar plot using maxima points
and SNR 15dB using Daubechies order 2 wavelet.

5.3.3 Using Combination of Maxima Lines and Ridges. The methods

suggested in Section 4.3.3 were tested by adding different levels of noise to the pure

signals and a procedure similar to the one followed for maxima points and ridge points

was followed. Figure 5.10 shows the confusion matrix with all the four signals having

been added with noise and serving as test signals. Table 5.7 shows the results for

such simulations for 50 different cycles of same noise level corresponding to the four

materials in the library using wavelet db2 (Daubechies wavelet of order 2).

5.3.4 Using Intersection of Maxima Lines and Ridges. Since the points

of intersection are too few, this might not be a very reliable method. Weights similar

to the ones used in the CWT methods can’t be used because the corresponding rows

are from completely different bands, unlike consecutive scales which are correlated to

each other to some extent.

5.4 CHOICE OF WAVELETS

The wavelets chosen for analysis play an important role for the purpose of

feature identification using both the CWT and the DWT methods. The regularity of
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Table 5.5. Detection accuracy using maxima lines alone for the library materials.

Test Signal to noise Percentage Minimum coefficient
Material ratio in dB accuracy of correlation
HMX 9 40 0.29
HMX 10 54 0.31
HMX 11 76 0.44
HMX 12 90 0.40
HMX 13 100 0.56
PETN 9 98 0.43
PETN 10 96 0.38
PETN 11 98 0.45
PETN 12 100 0.50
PETN 13 100 0.60
RDX 9 86 0.30
RDX 10 94 0.38
RDX 11 96 0.40
RDX 12 100 0.50
RDX 13 98 0.43
RDX 14 100 0.50
TNT 9 48 0.32
TNT 10 72 0.31
TNT 11 100 0.50
TNT 12 100 0.60

a wavelet decides the number of ripples in the wavelet. The regularity of a wavelet

increases with the order of the wavelet and gives more number of peaks in the 3-

dimensional CWT function. The result is an increased number of maxima lines and

ridges. This choice gives an increased number of features for classification, but at

the same time increases the correlation coefficient because of the increased number

of points in the binary image for overlapping.

The ideal wavelet should result in features that give correlation coefficient

greater than the threshold for the desired material affected by noise, but less than

the threshold for the other materials. The choice of threshold and corresponding

wavelets depends on the type of signals and the degree of similarity between among

the library materials. For the given test data, a threshold of 0.5 or lower worked
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Figure 5.9. Confusion matrix shown as a 3-dimensional bar plot using ridge points
and SNR 15dB using Daubechies order 2 wavelet.

well for the CWT based methods without shift with low false detections. For the

shift invariant methods, a threshold of 0.5 was effective, but the false detections were

higher. Lower false detections could be obtained by increasing the threshold for shift

invariant methods. Table 5.8 shows the 100% accuracy of one of the CWT methods

with different order of wavelets for HMX. As observed, higher order wavelets are able

to classify the test signals better in presence of higher noise levels (lower signal to

noise ratio). A disadvantage with the higher order wavelets is that the computational

complexity increases with the increasing order of the wavelet.

For the DWT methods, the choice of wavelets determines the filter banks used.

This decides the roll-off and band-widths of the low-pass and the high-pass filters,

which in turn effects the sub-band sequences. Thus, different wavelets result in dif-

ferent features. Some wavelets tend to give better and unique features with the

materials, which makes the classification process easy. Data obtained from different

hardware would have different frequency components, and correspondingly work well

with different wavelets.
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Table 5.6. Detection accuracy using ridges alone for the library materials.

Test Signal to noise Percentage Minimum coefficient
Material ratio in dB accuracy of correlation
HMX 9 60 0.26
HMX 10 90 0.36
HMX 11 98 0.45
HMX 12 100 0.56
HMX 13 100 0.71
PETN 9 80 0.27
PETN 10 96 0.38
PETN 11 96 0.43
PETN 12 96 0.38
PETN 13 100 0.50
PETN 14 100 0.60
RDX 9 82 0.33
RDX 10 96 0.40
RDX 11 98 0.40
RDX 12 98 0.40
RDX 12 100 0.50
RDX 12 100 0.60
TNT 9 34 0.25
TNT 10 76 0.28
TNT 11 90 0.40
TNT 12 100 0.55
TNT 13 98 0.46
TNT 14 100 0.60

The best performance for the given data with the CWT methods was obtained

by Daubechies wavelets of order 3 and 10 (db3 and db10). For the DWT based

methods, the best performance was shown by Daubechies wavelet of order 2 and

Symlet of order 10 (db2 and sym10).

5.5 COMPARISON WITH ABSORPTION SPECTROSCOPY

As mentioned in Section 2, the earlier methods used to rely on the peaks of

the absorbance spectrum as identification features. A parallel cannot be drawn be-

tween the two methods because of the nature of the transforms. While absorption
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Figure 5.10. Confusion matrix shown as a 3-dimensional bar plot using both maxima
and ridge points and SNR 15dB using Daubechies order 2 wavelet.

spectroscopy relies on the ratios of the Fourier transforms at different frequencies, the

methods suggested in this thesis rely on the absolute values of the coefficients obtained

through the continuous/disrete wavelet transforms. Each frequency in the absorption

spectrum can be used as a candidate for the feature independent of the other one. But

in the presented CWT based methods, the features have been obtained through max-

ima lines and ridges (locus of points rather than each point alone), which collectively

act as a feature. For the DWT based methods too, the sub-band sequences corre-

spond to a band of frequencies which can’t be compared to the absorbance spectrum

in any way.

The features obtained through proposed methods are highly dependent on the

wavelets chosen for analysis (which also serve as the basis functions), unlike Fourier

transform which has fixed set of basis functions. Thus, a relation cannot be found in

the two methods of analysis.
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Table 5.7. Detection accuracy using combination of maxima lines and ridges for the
library materials.

Test Signal to noise Percentage Minimum coefficient
Material ratio in dB accuracy of correlation
HMX 9 60 0.35
HMX 10 92 0.44
HMX 11 98 0.38
HMX 12 96 0.33
HMX 13 100 0.60
HMX 14 100 0.64
PETN 9 92 0.41
PETN 15 100 0.50
PETN 16 98 0.44
PETN 17 100 0.58
PETN 17 100 0.57
RDX 7 80 0.28
RDX 8 94 0.43
RDX 9 98 0.43
RDX 10 100 0.50
RDX 11 100 0.56
TNT 9 36 0.25
TNT 10 84 0.43
TNT 11 96 0.41
TNT 12 98 0.47
TNT 13 100 0.63
TNT 14 100 0.56

Table 5.8. Improvement of classification with increasing order of wavelets using com-
bination of maxima lines and ridges without weights and without shift.

Signal to noise Percentage Minimum coefficient of Wavelet used for
ratio in dB accuracy correlation obtained analysis

18 100 0.52 db3
17 100 0.51 db6
16 100 0.51 db10
15 100 0.52 db14
15 100 0.51 db18
14 100 0.51 db22
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6 CONCLUSION

Terahertz time-domain signals from multiple target materials were tested for

presence against a library of signals. The accuracy of the methods depends on the

wavelets chosen and the signal to noise ratio. Different wavelets give different features

of the materials, with the trend that a higher order wavelet giving more features than

a lower order wavelet. As apparent from the tables in section 5, the accuracy of

detection increases with the improvement in signal to noise ratio.

The CWT based methods seem to be more suitable for narrow-band signals

as they result in a lesser number of scales (and hence lesser coefficients), but still

providing the desired features. On the other hand, the DWT based methods provide

better results when used with wide-band signals. This is due to the orthogonality of

the DWT. As a result, the maximum number of coefficients used for the representation

is fixed. The features available depend on the relative sub-band strengths. For a

narrow-band signal, only the lower sub-bands will have appreciable energies, making

the higher sub-bands less useful. Wide-band signals on the other hand would have

more uniform energy distribution, thus providing more features in the limited number

of coefficients available for analysis.

CWT analysis has the advantage of increasing the number of features by in-

creasing the regularity of the wavelet, which can be used to increase the accuracy of

results. CWT also provides a shift invariant analysis which may be important for real

world applications. However, in applications where speed of execution is important

and the time signals are not expected to shift, DWT provides a fast and efficient

method for material identification.

Most of the analysis steps after the determination of the coefficients are based

on logical operations (shifting, comparing, ORing, ANDing), which might be easy

and efficient to implement in digital signal processors from a practical point of view.

The method used in this thesis might work better in reflective modes. The

suggested method does not require signal acquisition of the pulse through the reference

pellet. This is an advantage over the conventional absorption spectroscopy because

the reference pellet might not always be available for material detection. Provided
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that the grounded target materials with the same binding materials and pellet size,

and the pulse of the same shape is radiated on the test material. The method would

not require the data acquisition for the reference pellet unlike as in the absorption

spectroscopy.

The disadvantage is that the results might not be consistent for pellets of varied

thickness since the reference pulse gets stretched to a different degree depending on

the width of the material. Consequently, the desired features will now be obtained

at different scales, which will give undesirable results.

Another possible option is to use complex wavelets on the Fourier Transforms of

the materials. Analysis of decibel spectrum (FFT of amplitude spectrum represented

in decibels) by taking yet another Fourier transform is common in signal processing,

and includes tools like cepstrum analysis, quefrency, liftering, etc. These tools are

useful especially in speech processing to find out the periodicity in the amplitude

spectrum. A similar approach would be to use the complex wavelets with the complex

Fourier transform of the signal, which takes advantage of the absorption at particular

frequencies.
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APPENDIX

Description of test materials used

1. TNT is a popular explosive unaffected by ordinary shocks and must be set off by

a detonator, which is favored for munitions and construction [1]. This yellow-

coloured solid is sometimes used as a reagent in chemical synthesis, but it is

best known as a useful explosive material with convenient handling properties.

Chemically, it’s known as Trinitrotoluene [19].The chemical formula is (2,4,6-

trinitrotoluene).

2. PETN is a powerful explosive sensitive to shock or friction with 140% more

power than TNT [1]. Chemically its known as Pentaerythritol tetranitrate.

It is rarely used alone, but primarily used in booster and bursting charges of

small caliber ammunition. PETN is the least stable of the common military

explosives [19].

3. RDX is an explosive compound and chemically known as Cyclo-trimethylene-

trinitramine. As an explosive, it is usually used in mixtures with other explosives

and plasticizers, phlegmatizers or desensitizers. It is stable in storage and is

considered one of the most powerful and brisant of the military high explosives.

[19]. RDX is a white crystalline solid usually used in mixtures with other

explosives, oils, or waxes. It has a high degree of stability in storage and is

the main ingredient in plastic-bonded explosives such as C-4 [1]. The chemical

formula is (1,3,5-trinitroperhydro-1,3,5-triazine).

4. HMX, also called octogen, is a powerful and relatively insensitive nitroamine

high explosive, chemically related to RDX. The chemical formula is (1,3,5,7-

tetranitroperhydro-1,3,5,7-tetrazocine). Because of its high molecular weight,

it is one of the most powerful chemical explosives manufactured [19].
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