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ABSTRACT 

This thesis is composed of two papers which investigate the optimal dispatch for 

distributed energy resources. In the first paper, an economic dispatch problem for a 

community microgrid is studied. In this microgrid, each agent pursues an economic 

dispatch for its personal resources. In addition, each agent is capable of trading electricity 

with other agents through a local energy market. In this paper, a simple market structure 

is introduced as a framework for energy trades in a small community microgrid such as 

the Solar Village. It was found that both sellers and buyers benefited by participating in 

this market. In the second paper, Semidefinite Programming (SDP) for convex relaxation 

of power flow equations is used for optimal active and reactive dispatch for Distributed 

Energy Resources (DER). Various objective functions including voltage regulation, 

reduced transmission line power losses, and minimized reactive power charges for a 

microgrid are introduced. Combinations of these goals are attained by solving a multi-

objective optimization for the proposed ORPD problem. Also, both centralized and 

distributed versions of this optimal dispatch are investigated. It was found that SDP made 

the optimal dispatch faster and distributed solution allowed for scalability. 
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1. INTRODUCTION 

This thesis introduces two papers including economic dispatch for an agent based 

community microgrid and multi-objective optimal dispatch of Distributed Energy 

Resources (DER). Both papers address microgrids which incorporate distributed energy 

resources. Migration to microgrids provides new opportunities in energy planning and 

load flow management in Electric Power Systems (EPS). With respect to available 

resources, a microgrid can dynamically optimize its energy resources for various criteria 

such as maximum reliability, minimum cost of operation, and minimum CO2 emissions. 

In traditional microgrids, a central entity is responsible for monitoring, energy planning, 

and control of the microgrid. For large numbers of energy resources within a microgrid, a 

centralized approach is not feasible due to the excessive requirements for memory and 

processing power.  

In markets, agents can participate to sell their excess resources by providing bids 

without completely disclosing their planning information. This approach reduces the 

computational burden of a centralized economic dispatch and provides more flexibility to 

individual agents in operating their resources. In the first paper, a simple solution 

involving dynamic economic dispatch is provided that can be incorporated by residential 

agents in the energy planning and bidding mechanism. The interest is on a closed 

electricity market which is available to members of a community microgrid. In this 

market, bids are only submitted by the suppliers (active) and not by the demand 

(demanding agents act passive). The focus is on the members of a local community who 

share their resources to minimize the total cost of acquiring their demand or getting profit 

from their excess resources. The main challenge in this market is the presence of the 
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utility grid with a pre-determined rate for electricity. For this reason, if the clearing price 

of this market exceeds the regional price of electricity, then the grid will dominate the 

market. Hence, unlike a traditional market, in a distribution level community market, 

lower and upper bounds limit the spot price of the market. This microgrid does not have a 

single owner nor a central control system. Within this microgrid, each node has full 

control over its local energy resources and can participate in microgrid energy planning 

based on its own personal benefits and without any obligations (hence, the set of 

providers can vary with time). The incentive for the proposed definition is the structure of 

the community microgrid installed at Missouri University of Science and Technology 

(S&T) where the users can trade power without any interference from the utility grid. In 

the experimental community microgrid, a dynamic economic dispatch method for each 

agent is reviewed which will be used to derive the bids.  

The second paper characterizes proper power control within a distribution 

network that provides a better voltage profile regulation, increased voltage stability, and 

reduced active power losses on the distribution lines. DER is performed by solving a 

multi-objective semi definite programming optimization problem for distribution level 

networks. Conventionally, in many power systems with DER such as wind or solar 

resources, these DERs are not allowed to participate in grid voltage regulation 

procedures. This is mainly enforced to prevent voltage instabilities and oscillations in the 

power system. However, power grids with a high number of DERs have a potential for 

injecting sufficient active and reactive power to regulate the voltage of the network and 

control the power flow. In this paper, the goal is to provide a centralized and distributed 

framework for an optimal DER dispatch to provide combinatorial goals including voltage 
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regulation, transmission loss minimization, and voltage stability maximization. The 

dispatch is performed at a set of time steps and considering the expected load and 

generation within the network for the upcoming time period. Both Optimal Power Flow 

(OPF) and Optimal Reactive Power Dispatch (ORPD) are considered to determine both 

active and reactive power flow injections. Optimal Power Flow is concerned with finding 

the optimal minimal cost for generating active power.  Optimal Reactive Power Dispatch 

problem as a sub-problem of the OPF is a very important optimization problem in power 

systems as proper management of reactive power injection into the system can minimize 

real power loss and voltage profile deviations and improve voltage stability.  

ORPD is particularly useful in smart micro grids where the renewables also 

known as distributed energy resources DER are connected in a distribution network. It is 

widely known that the ORPD problem is nonconvex in nature. ORPD is concerned with 

commanding the renewables to generate fixed reactive power to control voltage. One 

objective of ORPD is to find the optimal reactive power to be injected by the renewables 

in order to keep the power system bus voltages as close to one per unit (p.u) as possible. 

Another objective that can be achieved is the minimization of the active power losses in 

the power system. The non-convexity of the ORPD problem is as a result of the 

nonlinearity of the voltages and active and reactive powers injected at each bus of the 

power system. The nonlinear power flow equations pose a technical challenge in solving 

the optimization problem under a low computational burden. This burden is reduced by 

converting the multi-objective optimal dispatch problem into a Semi-Definite 

Programming (SDP) Problem. This enables the nonconvex rank constraint to be 

eliminated. 
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I. Economic Dispatch for an Agent-Based Community Microgrid

Ayomide Longe††, Student member, IEEE, Pourya Shamsi†, Member, IEEE,

Hauiqi Xie‡, Student member, IEEE, and Jhi-Young Joo,‡‡, Member, IEEE

Abstract

In this paper an economic dispatch problem for a community microgrid

is studied. In this microgrid, each agent pursues an economic dispatch for its

personal resources. In addition, each agent is capable of trading electricity

with other agents through a local energy market. In this paper, an energy

market operating in the presence of the grid is introduced. The proposed market

is mainly developed for an experimental community microgrid at Missouri

University of Science and Technology (S&T) and can be applied to other

distribution level microgrids. To develop the algorithm, first, the microgrid

is modeled and a dynamic economic dispatch algorithm for each agent is

developed. Afterwards, an algorithm for handling the market is introduced.

Lastly, simulation results are provided to demonstrate the proposed community

market and show the effectiveness of the market in reducing the operation costs

of passive and active agents.

†† Ayomide Longe is currently a M.Sc. student at Missouri University of Science and

Technology, Rolla, Missouri 65409 USA (email: al6v5@mst.edu).
† Pourya Shamsi is currently with Missouri University of Science and Technology,

Rolla, Missouri 65409 USA (email: shamsip@mst.edu).
‡ Huaiqi Xie is currently a PhD student at Missouri University of Science and

Technology, Rolla, Missouri 65409 USA (email: hxdbd@mst.edu).
‡‡ Jhi-Young Joo is currently with Missouri University of Science and Technology,

Rolla, Missouri 65409 USA (email: joojh@mst.edu).
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NOMENCLATURE
bi i-th agent / busbar i

Ri i-th intermittent resource

Di i-th dispatchable resource

Si i-th storage system

t Time

Di Set of Dispatchable Resources (DR) of node i

D̄i Set of Intermittent Resources (IR) of node i

Pgi(t) Power injected at time t: grid to node i

Pli(t) Power consumed by the agent bi at time t

Pdij
(t) Power injected at time t: DR ij to node i

Prij
(t) Power injected at time t: IR ij to node i

Pbij
(t) Power injected at time t: battery ij to node i

Pmax
k Max (or min) bounds of the k-th resource

Eij(t) Energy level at time t: battery j at node i

Emax
k Max (or min) levels of the k-th battery

∆t Time period of each dispatch cycle

Ti Dynamic dispatch horizon of agent i

Ck Cost/kWh associated with the resource k

Estp Discretized energy-level step-size for DP

Ĉi
g(t) Market spot price estimation at iteration i

P̂ i
g(t) Trade opportunity estimation at iteration i

I. INTRODUCTION

Migration to microgrids provides new opportunities in energy planning and load flow

management in Electric Power Systems (EPS). With respect to available resources, a

microgrid can dynamically optimize its energy resources for various criteria such as

maximum reliability, minimum cost of operation, and minimum CO2 emissions.

Economic dispatch (ED) problem in a power system is a well-known process and has

been studied since the formation of power grids. In general, ED can be divided into three

categories: static economic dispatch [1], dynamic economic dispatch [2]–[4], and dynamic

economic dispatch with unit commitment [2], [5]. Various algorithms for ED are available
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in the literature. In traditional microgrids, a central entity is responsible for monitoring,

energy planning, and control of the microgrid [5]–[7]. For large numbers of energy

resources within a microgrid, a centralized approach is not feasible due to the excessive

requirements for memory and processing power. Furthermore, in a practical system,

independent owners of distributed generation are participating in the electricity market

for a personal benefit and may not wish to completely share their pricing and planning

policies. In markets, agents can participate to sell their excess resources by providing bids

and without completely disclosing their planning information. This approach reduces the

computational burden of a centralized economic dispatch and provides more flexibility

to individual agents in operating their resources. Various research has studied aspects

of distributed planning and markets in power systems [8]–[10]. Distributed agents can

participate in energy planning in different ways. Various market structures, game theoretic

methods, and bidding policies have been applied to power systems [11]–[14]. Majority of

electricity markets are competitive [15], [16]. In such markets, each participant provides

a bid and the spot price is determined based on the ascending list of bids and the total

demand. In many markets, auctions are closed and no information on submitted offers/bids

are available to other agents. Even if offers/bids are openly announced, various techniques

are required to gather information on inner states of competitors to generate a successful

bid [17]. In this paper, the interest is not to investigate such methods. However, a simple

solution is provided that can be incorporated by residential agents in the energy planning

and bidding mechanism.

Some common electricity markets are studied in [18]. Markets can be formed by

independent agents and a utility or as a group of agents trading their resources [19]. In

a simple auction market, operator clears the market by finding the intersection of the

ascending supply and the demand [20], [21]. In this paper, the interest is on a close

electricity market which is available to members of a community microgrid. In this

market, bids are only submitted by the suppliers and not by the demand (demanding

agents act passive). The focus is on the members of a local community who share their

resources to minimize the total cost of acquiring their demand or to get profit from their

excess resources. This process is also compatible with a demand responsive framework

[22], [23] where the demand varies with the price. The main challenge in this market is
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the presence of the utility grid with a pre-determined rate for electricity. For this reason,

if the clearing price of this market exceeds the regional price of electricity, then the

grid will dominate the market. Hence, unlike a traditional market, in a distribution level

community market, lower and upper bounds limit the spot price of the market.

In this paper, a community microgrid is defined as a microgrid that supports a

community of residents. This microgrid does not have a single owner nor a central

control system (it might have a central monitoring system). Within this microgrid, each

node has full control over its local energy resources and can participate in microgrid

energy planning based on its own personal benefits and without any obligations (hence,

the set of providers can vary with time). The incentive for the proposed definition is the

structure of the community microgrid installed at Missouri University of Science and

Technology (S&T) where the users can trade power without any interference from the

utility grid. Although the algorithm does not depend on the size of the system, expansion

of this algorithm to other communities has a fundamental requirement: there should be no

utility meter inside the boundaries of the microgrid. The utility meter should be placed at

the Point of Common Coupling (PCC). This is to prohibit the local electric cooperative

from monitoring the flow of power within the microgrid. Otherwise, the price of selling

and purchasing energy will be set by the electric cooperative.

The structure of this paper is as follows: after introduction of this experimental

community microgrid, a dynamic economic dispatch method for each agent is reviewed

which will be used to derive the bids. Then the market is introduced and the overall

algorithm is provided. Simulation results are provided to demonstrate the behavior of

this system and cost reduction due to internal trades.

II. A COMMUNITY MICROGRID: GREEN COMMUNITY

The selected microgrid is based on Solar Village microgrid at Missouri S&T. This

microgrid consists of four houses with their individual access to solar energy resources

and storage systems. Also, a central 60kWh battery storage system with a 50kW bidirec-

tional inverter and a 5kW Fuel Cell (FC) Distributed Energy Resource (DER) are shared

among these houses and are managed by a central microgrid controller. The physical

microgrid is shown in Fig. 1a. The schematic of this system is illustrated in Fig. 1b.
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In this figure, bus b0 is the central bus for shared resources. This bus is the Point of

Common Coupling with the utility grid. b1 through b4 are the available solar houses and

R1 through R4 represent their individual solar resources, respectively. Similarly, each

house i has its local load Li.

(a)

S1
FC

b0

b1

b2

b3

b4

L1

L2

L3

L4

Boundaries of SolarVillage

R1

R2

R3

R4

(b)

Fig. 1. (a) Solar Village at Missouri S&T, (b) schematic of Solar Village phase I.

The overall microgrid is a property of S&T and the local utility provider, Rolla

Municipal Utility, has no information on the power flow within this microgrid (which is

part of S&T’s agreement). Currently, the university is paying for the electricity usage of

all tenants through the installed smart meter shown with a black circle in Fig. 1b.

In the second phase of this project which is called the Green Community, several

houses and local businesses will form a microgrid. This microgrid is shown in Fig. 2.

Currently, this system is under construction and a market structure for energy trades within

this community microgrid is developed. In Fig. 2, Ri, Si, and Di represent renewable

energy resources, storage systems, and dispatchable generation systems, respectively.

In this system, each house or business will pay for their individual electricity usage.

However, this payment will be in the form of a cost share on the single electricity bill

for the overall microgrid which is recorded by the utility meter at the PCC. Electricity

usage of each house is recorded by the microgrid controller using multiple smart meters

(shown in green). In this expansion, instead of having a common bus (i.e. bus b0)

as the shared DER and storage system, each resident will acquire their own energy

systems. Furthermore, flow of power within the microgrid will remain under control of

this community and outside of the utility power grid. Interconnection with the utility grid
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is through the utility meter at the point of common coupling located after bus 0. From

this point, microgrid can disconnect from the main grid and operate autonomously.

b0

b1

b2

b3a

b4

S1 L1

L2

L3

L4

Boundaries of the Green Community 

G

R1

R2

R3

D2

S2

R4

FC
D1 D

D3

b3b

Fig. 2. Schematic of Solar Village phase II which is called the Green Community.

In this market, the goal is to find the spot price of electricity based on available

bids on offered energy resources. At each time step (usually an hour), each agent will

announce whether it demands energy or sells excess energy. Hence, the list of bidders will

change at each time step (in this sense, the market is dynamic). If an agent is a buyer,

it announces the amount to be purchased (buyers are passive). If an agent is a seller,

it announces available power levels with their corresponding price. A seller can have

multiple bids for its energy resources. A simple market clearing process is performed

based on the intersection of the supply and the demand. In this paper, the iterative bidding

where an agent can modify its bid is not considered. However, the same algorithm will

work for that case with a constraint on the maximum number of iterations. After clearing

the market, the price for the upcoming time step is set.

Sorting of the bids is based on the ascending price rates of electricity. Hence, the

market operator will aggregate the received bids as shown in Fig. 3. Then solve for the

spot price by intersecting the demand and the ascending plot of the bids. A difference

between this market and an ordinary market is the presence of the utility grid. With

respect to the power levels of the microgrid, utility grid has no limit in offering power at

its set price. Therefore, if any offer is higher than the price of electricity from the grid, the

offer is naturally neglected and the required demand is purchased from the grid. For this

reason, we do not consider any bids above the price of the grid. Also, there can be a case

where large incentives are in place for utilization of distributed resources. Hence, grid



10

Price

Power

Lowest offer

Aggregation of the 
first two low offers

Clearing point

Price offered by 
the utility grid

This area is 
not feasible 
for buyers

Demand

This area is not 
feasible for sellers

Buy back rate 
offered by the 

utility grid

Fig. 3. Aggregation of the bids.

can buy electricity at a higher price than what it sells. This scenario is not suitable for a

microgrid with multiple nodes and one PCC as the sum of the power will pass through

the PCC. So even if the sellers want to sell their energy to the utility grid, they first need

to supply the local demand. Therefore, first, they need to sell their electricity at a lower

clearance price of the market, and then sell the excess energy to the grid at the higher

rate of the incentives. In this scenario, users with large distributed resources will not

benefit from being a member of the microgrid and they might seek their own connection

to the grid. Fortunately, this is not the case for the microgrid located at Missouri S&T.

In this region, the buy back rate is at most $0.04/kWh which is about 2 times lower than

the cost of purchasing electricity. Hence, sellers will profit if they sell power locally at

a higher price than selling it back to the grid. There are two possible outcomes for this

market.

1. There is more total demand than the total offer: In this case, to meet the demand,

power has to be purchased from the grid. Hence, the intersection of the demand and the

offer occurs on the price level of the grid. Therefore, in this case, the spot price will be

equal to the price of the electricity from the utility grid and the bidders will receive this

rate.

2. The total offer is more than the demand: In this case, first, the market is cleared

by meeting the local demand using the ascending price curve. Afterwards, the flow of

power can be outwards at the point of PCC and the sellers can sell their power back to

the utility grid. Usually this process occurs at a lower rate as it was mentioned that the

average rate for our geographical location is $0.04/kWh.
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III. ECONOMIC DISPATCH FOR A SINGLE ENTITY

The problem of Economic Dispatch (ED) is to minimize the total cost of energy within

a window of optimization. Di = {gi, di1 , di2 ,· · · , bi1 , bi2 ,· · ·} is the set of dispatchable

resources at node i (each agent can posses multiple resources of a same kind), D̄i =

{ri1 , ri2 ,· · ·} is the set of intermittent resource, and Pli is the load. Eij(t) is the energy

stored in the j-th battery resource at node i. The economic dispatch problem for agent

i ∈ {1, 2, ..., N} is formulated as

min
Pk|k∈Di

C =

Ti∑
t=1

∑
k∈Di

Ck.Pk(t) (1a)

s.t.
∑
k∈Di

pk(t) +
∑
k∈D̄i

pk(t) = pli(t) (1b)

pmin
k ≤ pk(t) ≤ pmax

k , k ∈ Di (1c)

Emin
ij
≤ Eij(t) ≤ Emax

ij
, j ∈ {1,· · · , n} (1d)

Eij(t) = Eij(t− 1) + Pbij
(t).∆t (1e)

where Ti is the length of the dispatch window (optimization horizon). This value is usually

selected to be 24-hours to support a day of dispatch. Larger values of this dispatch window

results in a better sub-optimal solution at a higher computational costs. ∆t is the time

period between two consequent dispatch steps. n is the number of batteries at node i.

Power balance equation is calculated in (1b). Each energy resource has power limitations

which are considered in (1c).

Problem (1) can be also solved using Dynamic Programming (DP). In this way, the

problem can be reduced to subproblems which are solved independently. If a node i

owns d dispatchable resources including b < d battery storage systems, by using DP, a

Ti× d/∆t dimensional problem will be reduced to Nstp1 ×· · ·×Nstpb ×Ti/∆t problems

of (d− b) dimensions where Nstpj is the number of steps selected for the dispatch of the

j-th battery system.

To do so, the possible levels of energy in each battery system is discretized to a set

of levels with a step size of Estp. The optimization is performed every ∆t (usually an

hour). Therefore, the dispatch level of each battery is no longer an independent variable

and is calculated as Pbik
(t) = (Eik(t+ 1)− Eik(t))/∆t. Feasible dispatch levels for the
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battery should comply with (1d) and (1e), otherwise, the cost of transition from Eik(t)

to Eik(t+ 1) is infinity.

After solving each sub-problem, a graph of all possible transitions is formed. In this

graph, nodes are possible energy levels in battery resources at a time tk. Hence, set of

graph columns are defined as N = {N1, ...,NTi
}, Nk = {Emin

ij
, Emin

ij
+ Ek

stp, ..., E
max
ij
}

while the set of directed transitions (arcs) are defined as W = {w1, ..., wTi
} and wk ∈

Nk × Nk+1 (k ∈ {1,· · · , Ti − 1}). Fig. 4 illustrates the transition graph for this DP by

illustrating the directed graph (N ,W).

t=tk

E1

E2

E3

t=tk+1

E3

EN

t=tk+2

E2

EN

t=tk+3

E1

E3

EN

p0,c0

p0,c0

E1 E1

EN

E2

E3

E2

Fig. 4. Dynamic programing graph of the ED problem.

Based on the arc weights, the shortest path (lowest sum of weights) from the last

column (i.e. ETi
end) to the starting energy level (i.e. E1

start) is calculated using dynamic

programming. This calculation will not only define the shortest path, but also will define

the final energy level. It is assumed that the starting energy level is known which is the

level at t = t0.

The energy level in the battery systems will create a dependency between the optimal

solution of the dispatch at each time step. Hence, the economic dispatch problem is in

fact an infinite horizon optimization problem where the starting point is known and the

optimal path can be calculated using the extended bellman method. However, there is no

significant point in solving the solution for an infinite horizon case as the true stochastic

variations of loads, intermittent resources, and policies selected by other agents are not

known. Therefore, for long optimization windows, the covariance of stochastic process

will become large and the optimization cannot provide any practical benefit compared
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to a smaller time window. For this reason, in many applications, the time window for a

dynamic economic dispatch is selected as an integer multiple of days such as Ti = 24h or

48h. Also, since the problem is now a sub-optimal solution of the original infinite horizon

problem, it is sufficient to find the best solution without any concerns for upcoming

windows. Therefore, by knowing the starting energy level for the battery system, one can

find the shortest path to t = t0 + Ti without enforcing any constraints on the final state

of the battery. In the simulations provided, each agent will have a different optimization

window.

The importance of a DP approach will be described in the next section. Using this

method, each agent can reduce the dispatch problem to a much smaller set of problems by

re-utilizing the DP graph from the previous steps and only updating the required elements.

This can significantly reduce the computational burden of the market procedures on each

individual agent.

IV. ELECTRICITY MARKET IN A COMMUNITY MICROGRID

A. Announcing the Bids

The proposed method is mainly developed for linear cost functions. Recently a non-

linear non-convex auction based method has been introduced which considers transmis-

sion losses [10]. In this work, a set of bids for various power levels is generated by each

agent and transmitted to the neighboring agents. This algorithm is based on consensus

between agents. Due to non-convexity of the problem, each agent requires to provide

a set of feasible operation points. Instead, in this method, the cost functions are linear

and agents need to provide a list of bids including the rating of their resources and the

price of each resource. If a resource has a non-linear but a convex cost function (such

as a second order function), then the agent can break its operation region into a set of

linearized cost functions. Afterwards, the agent provide bids regarding the capacity of

each linearized section and the corresponding price.

In order to solve the ED problem, an agent needs the cost function of the grid Cg

in (1). For positive acquires from the grid, this value is at most the price of electricity

offered by the electric cooperative. However, this value can be lower as the clearance

price of the market depends on available offers. Hence, an agent can have a price estimate
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of the grid for this time period as Ĉg(t). First, this agent can assume Ĉg(t) is equal to

the price offered by the local electric cooperative. Eventually, this agent can train a price

model based on the observations of the price at each market cycle. For instance, a simple

learning mechanism as Ĉ(i+1)
g (t) = Ĉi

g(t) + γ(Cg(t)− Ĉi
g(t)) where Ĉi

g(t) is the estimate

of the spot price at time t during the i-th cycle of the market procedure. Cg(t) is the

clearing price of the market at the time t during the i-th cycle of operation of the market.

γ is the learning (filtering) rate.

At a time t, using the vector of price estimates for each optimization step and for a

Ti window of time in the future, each agent solves the optimization problem and derives

the optimal dispatch. Based on the dispatch, if Pgi(t) ≥ 0, then this agent is a buyer

and acts passively in the market. This agent will only announce the required amount of

power. If Pgi < 0, then it is optimal for the agent to sell power back to the grid. Agent

will generate the ascending cost plot of its resources. Lower cost resources will be used

to supply the internal demand (i.e. Pli(t)). The remainder of the plot is announced to the

market as a set of available capacity and the price of each capacity.

B. Clearing the Market

At this point, the market has received all the demands and offers for the time step

t. If the demand is higher than the available capacity, then the remainder of the power

has to come from the utility grid. Since the grid is an infinite capacity market (with

respect to the nominal rating of the microgrid), the price of the grid will become the

dominant price as the intersection of the demand and the bids occur on the price of the

grid. Therefore, for the case where
∑

k Pgk > 0, the clearing price of the market is price

of the grid and every seller will receive this rate. If
∑

k Pgk < 0, then there are more

offers than the demand and the market can clear without considering the grid. As it was

shown in Fig. 3, the clearance price of the market should remain between the price at

which the utility grid sells power and the rate at which it buys back power.

If the spot price is higher than the grid’s price, buyers would complain and will

demand their individual connection to the utility grid. If the spot price is lower than the

grid’s buyback rate, then the sellers would seek direct connection to the grid. Hence, for

feasible operation of the microgrid, the spot price is bounded within these two margins.
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Therefore, the market will intersect the ascending offers and the demand to find the

spot price. The spot price is limited to the rate at which the grid sells power at, and the

rate at which the grid buys back power at. The results are announced to the agents. At

this time, the demand is fulfilled. However, some of the bids are not used. Based on the

preferences of the remaining bidders, their capacity can be sold to the grid. However,

this rate is the low buyback price rate of the grid and agents should verify if it is still in

their benefit to do so.

After clearing the market, the price is announced to agents and the system will redo

this process for the next time step. Here, it was assumed that the market is static and

modifications of bids are not applicable. However, one can simply allow for modification

of the bids and agents can compete further by modifying their bids. In this case, a

maximum limit on the number of iterations is necessary to ensure a final settlement

before the dispatch period begins.

C. Post Market Procedures

At this time, the dispatch levels and the spot price of the electricity for the time

step t are derived. Agents will use the information regarding the amount of power that

was traded as well as the spot price to form an estimation for the similar time period in

upcoming days. In a simple approach, each agent can track the spot price using a learning

mechanism such as Ĉ(i+1)
g (t) = Ĉi

g(t) + γ1(Cg(t)− Ĉi
g(t)) and track the demand level as

P̂
(i+1)
g (t) = P̂ i

g + γ2(P i
g(t)− P̂ i

g(t)). Tracking the demand is important for the sellers as

the local demand is cleared at a higher rate than what the grid pays for electricity. So

an agent needs to know how much power can be sold at a rate of the market and the

remainder will be sold at the rate of the grid.

The importance of the dynamic programing appears in the post market step. If an

agent updates the price and demand estimates only for a similar time period, there is

no change in the DP graph of upcoming hours. Therefore, the agent can simply update

the DP graph by calculating the affected sub-problems without re-calculating the whole

graph. Whether agents use DP or not, they need to recalculate their optimal dispatch for

the upcoming hours and announce their bids for the next cycle of the market.
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Algorithm 1 A community energy market

Initialize a 24h vector of Ĉg(t) and P̂g(t) with a prior assumption based on the location.

Set t = 0. 1 i=1:#(Agents) {Announcing bids}

Solve (1) for t = {t+ 1, t+ 2,· · · , t+ Ti}. Pgi(t+ 1) > 0

Announce the total demand Pgi(t+ 1).

Announce the total offer |Pgi(t+ 1)|.

Breakdown resources used to form Pgi(t+ 1):

Per resource, announce the capacity/price rate.

Do not announce any resource with a price rate

higher than grid’s rate at t+ 1.

Place all bids in O = [o]j = [pj, cj] where pj is the

capacity of the j-th bid and cj is the corresponding rate. Demand > total bids {Clearing

the market}

Set Cg(t+ 1) = grid’s rate at time t+ 1.

Use all bidders, buy the remaining demand from

the utility grid.

Sort O and find the intersection of the cumulative

bids and the demand. Set this bid as Cg(t+ 1).

Limit: grid’s buyback rate ≤ Cg(t+ 1).

Pay the selected bidders at the rate Cg(t+ 1).

Remainder of the bids can be sold back to the utility

grid at a rate C ′
g(t+ 1) = grid’s buyback rate.

Enforce the dispatch. t = t+ 1.

Update the estimations: {Post-market process}

Each agent can track the settled Cg(t) and update Ĉg(t).

Each agent can track the demand.

Each agent can track its estimated share of the market.

The overall process for the proposed algorithm is shown in Fig. 5. It should be

noted that the decision making policies and the estimation methods are not discussed in

details in this paper. The main objective of this paper is to provide a market procedure



17

TABLE I

SIMULATED RESOURCES/COSTS BASED ON FIG. 2

Node Resource Power [kW] Energy [kWh] Price

(id.) min. max. min. max. $/kWh

b1

Solar PV (R1) 0 1 - - 0.00

Battery (S1) -1 1 0.5 2 0.00

Fuel Cell (D1) 0 2 - - 0.07

b2 Solar PV (R2) 0 0.8 - - 0.00

b3

Solar PV (R3) 0 0.6 - - 0.00

Diesel gen. (D2) 0 2 - - 0.08

Gas gen. (D3) 0 1 - - 0.06

b4

Solar PV (R1) 0 0.5 - - 0.00

Battery (S2) -2 2 1 4 0.00

for a microgrid in presence of the utility grid. However, the simple recursive estimation

methods provided can effectively handle the ED for residential agents as it is shown

later in the simulation results. The summary of the proposed method can be described

as Algorithm 1.

Market

Agent i

Price estimation

Optimal 
dispatch

Demand estimation

Fig. 5. The proposed community economic dispatch scheme.

V. CASE STUDY

In this section, several case studies are provided for the microgrid shown in Fig.

2. With respect to this figure, parameters of each load and resource are presented in
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Table I. In this scenario, it is assumed that the price of buying energy from, and selling

energy back to the grid are given by Fig. 6. To solve the problem for each agent, (1)

was used. For each node of the DP graph, linear programing was used to find the cost of

the transition based on the dispatch level of the battery. Lastly, the overall optimal path

was found by finding the shortest path on th DP graph. Using a standard 4-core Intel

4-th generation i-7 laptop and MATLAB, the 48 hour optimal dispatch for agent b1 was

solved in 50ms.

In a real-world implementation, each agent will solve the ED and will update his/her

estimates of the market behavior locally. However, all the stages of Algorithm 1 were

solved using this MATLAB model. The overall processing time for 1 cycle of the market

including ED of the 4 agents as well as the clearing process and post-market updates is

0.1s. It should be noted that agents b2 and b3 have an optimization window of 1 hour due

to the lack of storage systems and agent b1 has an optimization window T4 = 36 hours

to maintain generality.
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Fig. 6. The 24h price of energy to and from the grid.

Load located at each bus are presented in Fig. 7. Solar production profile is depicted

in Fig. 8. It should be noted that due to the close proximity of houses, their solar profile

is similar and only varies in amplitude.

Buses b1 and b4 have energy storage systems. Therefore, to perform an ED, these buses

need to consider an optimization over a window of time. As it was mentioned before,

the selection of the window itself is a trade-off between optimality and computational

complexity. In many low power applications, a 24-hour window is selected for ED.

Without a loss of generality, b1 selects its optimization window to be 48h and b4 selects

36h. Also, the algorithm is started with an assumption that the price of electricity is
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Fig. 7. The 24h load profile of each bus.
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Fig. 8. The 24h solar production profile of each bus.

$0.07/kWh at each time step. Each bus assumes that it is possible to sell 1kWh to the

market (at a higher rate than what the utility buys back at). These are starting assumptions

and based on each agent’s learning mechanism, the agent will soon find a better estimate

of each of these parameters as is shown later. With the above assumptions, the system is

simulated for 48 hours or equivalently, 48 market cycles for dispatch windows of 1 hour

each. Currently, the market is not settled for the 48-th hour. Therefore, up to the hour

47, the price of the market is known and energy has been traded. The time instance of

hour 48 when each agent has calculated its optimal bid [demand] to [from] the market is

looked at. At this time step, agent b1 has calculated an ED with an optimization window

of 48h in the future. Fig. 9 illustrates the dispatch performed by b1 through time.

Figure 9 illustrates the evolution of the optimal dispatch through time. It can be

observed that as the number of market cycles increased, the ED solution is changing.

During the first day, for 24h, there is no correct estimation of the price of the grid/market.

Therefore, this agent is assuming $0.07/kWh as the price of the electricity from the grid

(which is a fair assumption throughout the U.S.). Also, this agent assumes that there is
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Fig. 9. ED performed by b1, hours 48-96 are the optimal dispatch in the future.

a chance of selling 1kW to the neighboring agents at any time. In the second day when

there are prior knowledge of the trades which took place in the first day, this agent has

a better understanding of the possible spot prices of the market at each market cycle. It

can be observed that the battery storage system is optimally charged at times with lower

cost of electricity and is sold to other agents during the peak usage times. The period

between 48h to 96h shows the ED for a 48h window in the future. However, this agent

will update this dispatch after every market cycle to maintain its optimality based on the

settling price of the market and based on the microgrid demand.

Similar to this agent, other agents dynamically solve the ED problem and participate

in the market. The agent at node b3 has no energy storage system. Hence, for this agent,

there is no need to solve a dynamic ED in time and derivation of the ED for only one

cycle in the future will suffice. Fig. 10 illustrates the dispatch for this agent. Based on

the price of each resource provided in Table I and the starting assumption for the price

of electricity to be sold to the grid, during the first day, this agent tends to use its gas

generator to sell power to the microgrid. This resource is only $0.06/kWh and can easily

compete in the market. As more information is collected in the first day, on the second

day, ED involves a significant dispatch for this gas resource. However, it can be observed

that it takes one additional day for this agent to get a sufficiently accurate estimate for

the settling price of the market to start using its diesel resource at a rate of $0.08/kWh.

To observe the evolution of the market and growth of the benefits for each agent, the

value function of the ED of agent b1 is considered. At t = 1, this agent has no realistic

estimate of the market. Hence, it is calculating the ED based on the prior assumptions and
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Fig. 10. ED performed by b2 during the first 5 days.

without high expectations of profits. Fig. 11 illustrates the plot of the cumulative value

functions for the dynamic ED of agent b1 with its 48h dispatch window. Each green curve

in this figure represents the growth of a the value function of the optimization period

t = to to t = to + T1 where T1 = 48h is the dynamic ED window for agent b1. Each

value function starts from zero and grows based on the expected cost of energy during

the upcoming 48h. At t = to + T1, the final value of the total expected cost of energy

is achieved. These final points are connected using a blue line with small squares. It is

observed that the expected final cost of a 48-hour operation is decreasing as the agent

gains more knowledge about the operation of the market and can integrate more accurate

pricing in its ED. In addition to profits for agents with storage systems, other agents can

benefit from this market. For instance, Fig. 12 illustrates the daily cost of energy paid

by agent b3. It can be observed that the total is higher for this agent during the first two

days of operation. However, as this agent acquires an estimate of the price/demand of

the market, it can utilize its gas and diesel resources to reduce its costs of operation.

Lastly, the evolution of the spot price of the market is observed. As it was mentioned

before, this price is limited to the price of electricity from the grid and buy back price

of the grid. On the first day, agents start with an assumption of $0.07/kWh. However,

as the market operates, new prices are settled and agents update their estimation. To

reduce the number of days required, large learning factor for both cost estimation and

demand estimation are used (γ1 = γ2 = 0.3). In Fig. 13, red line-dot illustrates the price

settlement of the market for each cycle. It can be observed that during the daytime, the

market price is settled to a lower value than the offer from the grid. This shows that
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Fig. 12. Daily cost of energy for b3 for the first ten days of operation.

the microgrid has enough capacity to support its demand and agents with distributed

resources are able to compete in a local community market to sell their excess energy

(due to the large number of solar resources). Also, since the spot price is lower than the

regular price of electricity from the grid, agents who buy energy are benefiting as well.

The blue line-dash curve illustrates the estimation of the price used by agent b1. It is

shown that agent b1 is improving its price estimation. For the 48 hours of dispatch after

the current time t = 360h, this agent is utilizing the shown curve as the cost model for the

market which is much more accurate than the stating constant assumption of $0.07/kWh.

VI. CONCLUSION

In this paper, a market for economic dispatch in a community microgrid was intro-

duced. This market was based on a standard auction market with passive buyers where

sellers provide bids by announcing their available capacity and its linear cost model.
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Market was cleared by intersecting the demand and the ascending list of offers. It was

shown that in such community markets, agents can estimate the operation of the market

and effectively dispatch their resources. Since the spot price of the market is always

lower or equal to that of the grid and higher or equal to the buyback price of the grid,

both sellers and buyers will always benefit from participating in this market.
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II. Multi-objective Semidefinite Optimal Dispatch of Distributed Energy Resources

Ayomide Longe†, Pourya Shamsi††

Abstract

Proper power flow control within a distribution network provides a better

voltage profile regulation, lower operation costs, and reduced active power

losses. In such networks, due to the large impedance of lines, dispatch problems

for active and reactive power have to be solved simultaneously to achieve

optimal results. In this paper, optimal dispatch of Distributed Energy Resources

(DER) is performed by solving a convex multi-objective optimization prob-

lem to calculate the optimal dispatch levels of active and reactive power for

a distribution network. Convexification is performed by deriving the power

flow equations in the form of semidefinite constraints and neglecting the rank

constraint. After formulating the problem, various objective functions including

voltage regulation, minimum network power losses, minimum cost of operation,

and minimum curtailment of renewable energy resources are introduced. Lastly,

linear and nonlinear combination of these objective functions are incorporated to

form the multi-objective dispatch problem. In addition, a distributed solution for

this multi-objective optimization is introduced. Afterwards, simulation results

are provided to analyze the behavior of the developed framework.
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I. INTRODUCTION

Various power systems do not allow Distributed Energy Resources (DER) such as

wind or solar resources to participate in reactive power control and grid voltage regulation

procedures. This is mainly enforced to prevent voltage instabilities and oscillations. In

the U.S., limitations induced by IEEE 1547 standard enforces small DERs (in particular,

Renewable Energy Resources (RER)) to operate at the unity power factor. However,

power grids with a large number of DERs have a good potential for reactive power

injections as well as optimal curtailment of RERs to regulate the voltage of the network

and control the power flow. Additionally, optimal reactive power injections will reduce

the total cost of operation by minimizing losses over the network.

Traditionally, Optimal Power Flow (OPF) and Optimal Reactive Power Dispatch

(ORPD) problems were solved separately. There are a variety of method for solving OPF

problem. Recently, OPF has been investigated for dc distribution networks [1] as well

as hybrid ac-dc distribution networks in [2]. For dynamic dispatch problems, dynamic

programing is often incorporated to reduce the computation burden of the problem by

quantizing the dispatch levels of energy storage systems [3], [4]. ORPD is similar to OPF

but for reactive power dispatch and it has significant impacts on the safe and economic

operation of power systems. The nature of the ORPD problem is to allocate reactive power

generation to minimize the line losses and improve the voltage regulation [5]. Unlike OPF

which is solved mainly for the minimum cost (under constraints for transmission limits),

various objective functions can be considered for an ORPD problem. One objective is the

voltage profile improvement in the distribution micro grid [6], [7], another objective is

the maximization of the voltage stability index [8]. These objectives are often combined

to form a multi-objective optimization problem [9]. Also, ORPD and OPF have been

combined as a multi-objective optimization problem [10]–[12].

In the distribution networks, the assumption of a completely reactive power line

impedance is no longer valid. Hence, separation of ORPD and OPF problems is not fea-

sible and to attain the optimal solution, both problems have to be solved simultaneously.

Various research has investigated dispatch of DERs within a distribution network [13].

In recent years, massive integration of RER has introduced new challenges as well as
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new opportunities for the ORPD problem and voltage regulation. High production levels

from RERs can lead to over voltages within distribution networks. To cope with this

problem, curtailment of RER has been used during high production periods. Curtailment

of RER/flexible loads has been integrated with the OPF problem and is investigated

in [14]. On the other hand, the power electronic inverters of RERs can be used as a

distributed reactive power generation fleet.

In general, solving the power flow problem is a technical challenge. For OPF, various

methods have been considered including linear programming [15], successive quadratic

programming [16], mixed-integer linear programming, [17], and many more. In many

applications with binary selection of generators, distribution network losses are neglected

to relax the OPF problem to a mixed integer linear programing. However, if the nonlinear

power flow equations are included, the problem becomes a non-convex NP-hard problem

which cannot be dealt with using many conventional methods. In these conditions,

heuristic optimization methods such as evolutionary algorithms [11], [15], [18] and swarm

optimizations [5], [19] are utilized. Unfortunately, these methods suffer from a high

computational burden and slow convergence.

Convexification of the problem has been used to reduce the computational burden

[20]. A suboptimal approach of sequential convex programing was studied in [21]. A

promising convexification approach is the Semi-Definite Programing (SDP) relaxation

[1], [13], [22], [23]. In this approach, the problem is converted to a SDP and the non-

convex rank constraint is eliminated. The challenge in derivation of the SDP relaxation is

meeting the optimality under the rank one condition [22]. If the rank is higher than one,

the solver has reached a sub-optimal point or the problem is not feasible. Fortunately,

for many practical distribution networks, the SDP relaxation finds the optimal point. In

particular, if the network is radial or is resistive, this method is very effective [24]. Details

on accuracy and feasibility of SDP is studied in [25]. Recently, applications of SDP has

been investigated for mesh networks in addition to the radial distribution networks [22].

To decompose this central problem into a distributed problem, [12] has utilized the

alternating direction method of multipliers (ADMM) which has been used to ensure a

robust decomposition of convex programs [26]. Also, decomposing using Lagrangian dual

problem has been investigated in [27]. Comparison of such methods has been studied
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in [28]. Similarly, this problem can be solved using other methods such as a distributed

consensus formulation [29]. Also, distributed heuristic methods have been incorporated

to solve this problem [30].

In this paper, a semidefinite programing approach is used for optimal dispatch of

energy resources within a distribution network. After introduction of the optimization

problem, various objective functions are introduced to be used in a multi-objective frame-

work for dispatch of these energy resources. Contributions of this paper include intro-

duction of realistic boundaries for power electronic inverters, investigation of multiple

objectives including voltage profile regulation and power loss minimization, introduction

of various growth functions to be used with the multi-objective semi-definite programing,

and investigation of regularization methods for sparsification of the inverter dispatch. The

proposed framework is simulated to analyze the behavior of each objective and growth

function.

II. PROBLEM FORMULATION

The nature of the optimal dispatch problem is to allocate optimal active and reactive

power generation/curtailment to achieve the desired objectives within the electrical region

under study. However, the nonlinear power flow equations pose a technical challenge in

solving the optimization problem under a low computational burden. In this paper, the

goal is to reduce this burden by converting the multi-objective optimal dispatch problem

into a Semi-Definite Programming (SDP).

A. Notations

Before introducing the remainder of the method, a brief review of useful notations

and matrices is provided. In this paper, bold-lower-case letters denote a vector and bold-

upper-case letters denote a matrix. =(·) and <(·) extract the imaginary and real parts

of the input argument, respectively. [A]ij denotes the ij-th element of A. aT denoted

the transpose, a∗ denotes the complex-conjugate, and aT∗ denoted the complex-conjugate

transpose of a. 0 and 1 denote all zero and all one matrices of appropriate dimension,

respectively. I is the unity matrix.
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Diag(a) returns a matrix A where [A]ii = [a]i. If this operator acts on a matrix,

diag(A) returns a vector a where [a]i = [A]ii. Tr(A) is the trace, λmax(A) is the largest

singular value, and Rk(A) is the rank of the matrix A. Lastly, a ◦ b = diag(a)b is the

element-wise (Schur) product of the two matrices.

|·| is the absolute value, ‖ a ‖1=
∑

j |[a]j| is the linear norm, and ‖ a ‖2
2= aT∗a is the

Euclidean norm of a. Additionally, eq, q ∈ {1,· · · ,#N} is the basis of R#N and Eq,w =

eqe
T
w. Also, EEq,q = [Eq,q,0; 0,Eq,q] and EEq,w = [(eq − ew)(eq − ew)T ,0; 0, (eq −

ew)(eq − ew)T ].

Additionally, Schur complement of the block A of the matrix M = [A,B; BT ,C] is

defined as S = C−BTA−1B. If A and M are both positive semidefinite, then S is also

positive semidefinite. This property will be used to reformulate some of the objective

functions.

B. SDP Relaxation of the Optimal Dispatch Problem

Since the proposed method is mainly used for dispatch and voltage regulation of the

distribution networks, for simplicity, the electrical region under study is refereed to as a

Local Distribution System (LDS). In general, an optimal dispatch problem is in the form

of

min
{pg ,qg ,v}

V(v, i,pg,qg) (1a)

s.t. pg + qg − pd − qd = v ◦ i∗ (1b)

i = Yv (1c)

pmin ≤ pg ≤ pmax (1d)

qmin ≤ qg ≤ qmax (1e)

P t
q,w ≤ P t−max

q,w , ∀ q, w ∈ N (1f)

St
q,w ≤ St−max

q,w , ∀ q, w ∈ N (1g)

|vq − vw| ≤ vdrop−max
q,w (1h)

where n ∈ N is the set of nodes within the LDS with a cardinality of #N . pgn and

qgn are the generated power and reactive power at the node n, respectively. Similarly, pdn
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and qdn are the consumed active and reactive power at this node, respectively. pg, pd, qg,

and qd represent the vectors of the generated and consumed active and reactive power

throughout the LDS, respectively. If a bus does not have each of these entities, then

a value of zero is considered for the corresponding vector elements. vq and iq are the

voltage and current of bus q ∈ N , respectively. v and i are the vectors of of voltages and

currents within the LDS, respectively. pmin, qmin, pmax, and qmax are the vectors of the

minimum and maximum limitations on the active and reactive power dispatch levels of

each node, respectively. P t
q,w and St

q,w are the active and complex power flowing between

buses q, and w, respectively. These powers have nominal limits of P t−max
q,w and Stmax

q,w .

Additionally, the voltage drop on this line is limited to vdop−max
q,w .

V(·) is the objective function and is formed as a combination of the objectives

introduced later.

The power flow problem relies on the vector “diag(v)Y∗v∗”. In particular, the entry

related to node q can be extracted as vTEq,qY
∗v∗. In order to convert this problem

to a SDP, the rotational property of the trace function is used (i.e. vTEq,qY
∗v∗ =

Tr(vTEq,qY
∗v∗) = Tr(Eq,qY

∗v∗vT )). This approach suggest using a new variable V =

v̄v̄T as the main voltage information where v̄ is the decomposed voltage vector as

v̄ = [<(v) ; =(v)]. Also, ∀ q, w ∈ N , the admittance matrix can be decomposed as

Ȳq,w =
1

2

 (Yq,w + YT
q,w)

∗
(YT

q,w −Yq,w)
∗

(Yq,w −YT
q,w)

∗
(Yq,w + YT

q,w)
∗

 (2)

where Yq,q = Eq,qY and Yq,w = (yCq,w + yq,w)Eq,q − yq,wEq,w where yq,w = [Y]q,w

and yCq,w is the admittance associated with the shunt element of the π-model of the line

between buses q and w. Now, one can define the symmetric matrices

YR
q,w = <(Ȳq,w) (3)

YI
q,w = =(Ȳq,w) (4)

to generate the following relations

pgq − pdq = Tr(YR
q,qV), qgq − qdq = Tr(YI

q,qV) (5)

pq,w = Tr(YR
q,wV), qq,w = Tr(YI

q,wV) (6)

plineq,w = pq,w + pw,q, q
line
q,w = qq,w + qw,q (7)
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|vq|2 = Tr(EEq,qV), |vq − vw|2 = Tr(EEq,wV) (8)

which are useful to derive various objective functions for the optimization. These objective

functions will then be combined to form the multi-objective optimization.

Lastly, (1) can be relaxed into a convex SDP as

min
{pgq ,qgq ,V}

V(V,pg,qg) (9a)

s.t. ∀q, w ∈ N

pgq − pdq = Tr(YR
q,qV), qgq − qdq = Tr(YI

q,qV) (9b)

pmin
q ≤ pgq ≤ pmax

q (9c)

qmin
q ≤ qgq ≤ qmax

q (9d)

{vmin
q }2 ≤ Tr(EEq,qV) ≤ {vmax

q }2 (9e)
(St−max

q,w )
2
Tr(YR

q,wV)Tr(YI
q,wV)

Tr(YR
q,wV)10

Tr(YI
q,wV)01

 � 0 (9f)

−pt−max
q,w ≤ Tr(YR

q,wV) ≤ pt−max
q,w (9g)

Tr(EEq,wV) ≤ {vdop−max
q,w }2 (9h)

V � 0 (9i)

Tr(ERrefV) = 1, Tr(EIrefV) = 0 (9j)

by eliminating a non-convex constraint of Rk(V) = 1.

The power flow constraints are enforced by (9b). (9c) and (9d) set the limits on the

generated active and reactive power for bus q. (9e) limits the square Euclidean norm of

the voltage of bus q based on the grid requirement (such as ANSI C84.1-2011 standard).

(9f) controls the square Euclidean norm of the complex power passing through the line

between buses q and w. Similarly, (9g) and (9h) control the square Euclidean norm of

the total active power passing through this line and the total voltage drop on this line,

respectively. (9i) is the semidefinite constraint on V.

In (9j), ERref = [E1,1,0; 0,0] and EIref = [0,0; 0,E1,1] extract the real and imaginary

parts of the reference bus voltage, respectively. Therefore, this constraint sets the voltage
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of the slack or reference bus of the LDS. If this constraint is eliminated, the optimization

will converge to a wrong feasible point even with the rank constraint satisfied.

C. Extraction of the Optimized Variables

If the above optimization finds a feasible point, vectors pg and qg are readily available.

However, v needs to be extracted from the solution. In a fast and simple approach, one

can select the first column of V to represent v̄ (i.e. v̄ = [V:,1]:). However, this approach

is not accurate.

If the optimization reaches the optimal solution, V is rank 1. To calculate the rank,

one should use a discriminatory methods to eliminate small singular values generated

as a result of numerical errors. To do so, singular value decomposition can be used

to generate V = UΣVT∗ where U and V give the orthogonal basis associated with

singular values. Σ = [σi]ii is a diagonal matrix containing singular values and σi is the

i-th singular value. It is common to sort Σ from the largest singular value to the smallest.

In a dispatch problem such as (9), if σ2 < 0.01%σ1, one can assume the rank 1 condition

is satisfied and calculate v̄ =
√
σ1u1 where u1 is the vector associated with the σ1. Lastly,

v = [v]i = [v̄]i + [v̄](N+i) is the complex voltage vector for the underlying system.

III. MULTI-OBJECTIVE DISPATCH

In this section, various objective functions are introduced and convexified. These

objectives are combined later to form a multi-objective optimization problem. To add

flexibility in combining various objectives, each objective function i will be defined as

an auxiliary variable Oi where o = [O]i is the vector of auxiliary variables defined

to form various objective functions. Using this approach, objectives are enforced using

additional constraints as described in the following sections.

A. Active Power Cost Minimization

The most common objective function is the cost of active power generation. This

function is often in the form of c0q + c1qp
g
q + c2

2q(p
g
q)

2. To make this objective function

suitable for SDP, Schur complement is used as

min
{pgq ,qgq ,V,o}

O1 (10a)
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s.t. (9b)− (9j), ∀q ∈ ND Cq − c1qp
g
q − c0q + κc2qp

g
q

c2qp
g
q1

 � 0, O1 =
∑
q

Cq (10b)

where ND is the set of nodes with fuel consuming resources. κ is a large constant to

ensure Cq−c1qp
g
q−c0q >, otherwise, the correctness conditions for the Schur complement

will not be satisfied.

B. Voltage Regulation

In many industrial applications, voltage regulation is an important objective function

as the performance and life span of equipment is a function of the voltage quality. This

objective function can be achieve using two different approaches. In the first approach,

the voltage amplitude of each bus is regulated to a predefined set point of vrefq . To do

so, O2 can be minimized as

min
{pgq ,qgq ,V,o}

O2 (11a)

s.t. (9b)− (9j), ∀q ∈ N \ {b1}

(vrefq )2 −O2 ≤ Tr(EEq,qV) ≤ (vrefq )2 +O2 (11b)

where b1 is the reference or slack bus. In the second approach, the voltage profile is

smoothened by adding costs to deviations from the average. Therefore, the cost associated

to a voltage deviation is proportional to (vq−
∑

i vi/#N )2. Therefore, in (11b), vrefq can

be updated as vrefq = Tr(V)/#N is the average of the squares of the bus voltage

amplitudes.

C. Line Power Loss Minimization

In some applications, an objective is to minimize the total losses over the distribution

lines. These losses can be simply calculated using (7). Therefore, this objective can be

obtained using

min
{pgq ,qgq ,V,o}

O3 (12a)

s.t. (9b)− (9j), ∀q, w ∈ N

= Tr(YR
q,wV) + Tr(YR

w,qV) ≤ O3 (12b)
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D. Reactive Power Cost Minimization

In various countries, industrial consumers have to pay for the reactive power purchased

from the grid. For this reason, an objective function can be formed to reduce this

acquisition. To do so, the reactive power passing through the Point of Common Coupling

(PCC) has to be minimized. One can notice that this reactive power is infact the total

reactive power generated on the reference bus. Hence,

min
{pgq ,qgq ,V,o}

O4 (13a)

s.t. (9b)− (9j)

−O4 ≤ qg1 ≤ O4 (13b)

E. Minimum Renewable Resource Curtailment

To reduce the total curtailment of renewable energy resources, a cost function can

be associated with the total curtailed power p̂gq − pgq where p̂gq is the expected production

level and pgq is the dispatched production level. Hence, a second order curtailment penalty

function can be considered as

min
{pgq ,qgq ,V,o}

O5 (14a)

s.t. (9b)− (9j), ∀q ∈ NR Cq − c3q(p̂
g
q − pgq) + κc4q(p̂

g
q − pgq)

c4q(p̂
g
q − pgq) 1

 � 0 (14b)

O5 =
∑
q

Cq (14c)

where NR is the set of nodes with renewable energy resources.

F. Inverter Dispatch

This paper has considered the dispatch problem for DER within a LDS. Hence,

the results are readily applicable to power electronic converters within a LDS. In this

section, proper upper and lower generation limits for an inverter are introduced which

can be integrated with the generation limits of (9).
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The power generated by an inverter is limited to the capacity of its energy resource. In

practice, inverters are over-designed for their applications. Hence, the peak power that an

inverter can generate is higher than the limits induced by its resource such as photovoltaic

panels. In this section, the maximum rated power of an inverter is considered at 1 p.u.

without any further assumption on its resource.

Grid ties inverters can generate reactive power. However, their reactive power genera-

tion is controlled to ensure a unity power factor at the inverter terminals. The unity power

factor regulation is enforced by IEEE 1547 standards within the U.S. This is mainly to

maintain the voltage stability of the grid and to prevent voltage oscillations as a result

of excessive number of voltage controllers. In the future, IEEE will relax this regulation

to allow for a controlled dispatch of reactive power by low power DER inverters similar

to some European regulations.

A three-phase inverter, even during a unity power factor operation, needs to generate

sufficient reactive power to cancel the reactive power consumption of its filtering induc-

tors. If the filtering inductor is considered ideal (i.e. RL = 0), the power generated by the

inverter is P = |Vi||Vt|sin(δ)/X where Vi is the internal voltage of the inverter generated

by the modulator and Vt is the terminal voltage. X is the impedance of the inductor and

δ is the power factor of the inverter. Meanwhile, QL = (|Vi|2 + |Vt|2−2|Vi||Vt|cos(δ))/X

is the reactive power consumed in the filtering inductor. This suggests that an inverter is

readily utilizing some of its reactive power generation capacity. This amount is a function

of the generated power (i.e. δ). Later, it is shown in a numerical study of an inverter

boundaries that the graph is shifted towards the reactive power generation. This is mainly

due to the reason discussed above.

In addition, thermal limitations are enforced mainly by the switches and not the

filtering elements. The current passing through the switch has a heavily nonlinear equa-

tion which is influenced by the modulation strategy, voltages, currents, and the switch

technology. Hence, derivation of a closed-form equation is not possible as the equation

depends on an exhaustive number of parameters. It is known that as the power factor

of the inverter varies, the share of the current passed through the switches and the free

wheeling diodes will change [31]. For this reason, at low power factors (high ratios of

generated Q/P ), diodes tend to have higher currents.
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This limiting factor will reduce the total reactive power generation capability of

an inverter to lower than the nominal active power. Therefore, assumption of a cir-

cular boundary such as those introduced in synchronous machines is not accurate (i.e.

P 2 + Q2 = 1). This effect is worsened as the active power generation becomes nearly

zero. Meanwhile, the reactive power generation is also influenced by the dc link capacitor

current limits [32]. In three phase inverters, this effect is not comparable to switch

limitations, however, in single phase inverters, this effect is highly influential as the

dc bus capacitor is required to support the second harmonic ripples.

Many manufacturers limit the output of the inverter to a boundary defined by the

inverter power factor. However, this boundary is excessive and a wider region can keep

the inverter in a safe operation area. To get an estimate of this boundary, numerical

simulations of the inverter can be incorporated. In an example, a three-phase 100 kW

inverter with an output voltage of 480 V and a dc bus voltage of 800 V is considered. The

output inductor is design to have 5 % voltage drop at the rated power. This inverter has

a switching frequency of 20 kHz and a space vector modulation (inverse park) pattern.

The modulation is set to maximum efficiency by minimizing the number of switching per

ac cycle (any modification in the switching pattern can influence the generated boundary

[31]). Also, field effect transistors are considered to formulate the switch loss equation.

The results will be different for bipolar transistors such as IGBTs. Under these conditions,

the inverter is simulated and the switch losses are calculated. The boundaries generated

by this inverter is shown in Fig. 1c. The circular boundary is enforced by the inductor

current limits while the remainder of the boundary is set by the switch losses and the

dc link current rating. Figure 1c is not symmetrical as the inverter needs to compensate

for the reactive power consumption of the filtering elements at all times as mentioned

earlier.

To model such behavior as a constraint in the optimization problem, the figure can

be approximated by an ellipse as is shown in Fig. 1a. The parameters of the ellipse can

be calculated numerically for each inverter by the manufacturer. cp and cq represent the

centers for P and Q, respectively.
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Fig. 1. Boundaries for (a) a 1-phase, (b) a 3-phase converter, (c) approximated boundaries.

Similarly, rp and rq represent the radius on the p and q axis, respectively. This new

constraint is added to (9) as 
1(pgq − cpq)(qqq − cqq)

(pgq − cpq)r2
p0

(pgq − cpq)0r2
q

 � 0 (15)

qgq ≤ aqp
g
q , q

g
q ≥ −bqpgq (16)

for all q ∈ NI where NI is the set of nodes with inverters.

G. Regularization

To this point, the framework was addressing the non-convexity induced by the power

flow equation. However, sparsification of the system is another technical challenge in

development of an optimization framework. In many applications, OPF or ORPD has to

be performed on a limited number of generators. To do so, a binary selection variable of

si ∈ {0, 1} is assigned to the i-th generator. If si = 0 the generator is exempt from the

dispatch and if si = 1 the generator is controlled. In general, this variable can be defined

for both active and reactive power as

pmin
q spq ≤ pgq ≤ pmax

q spq (17a)

qmin
q sqq ≤ qgq ≤ qmax

q sqq (17b)
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spq , s
q
q ∈ {0, 1},

∑
j

spj ≤ Sp,
∑
j

sqj ≤ Sq (17c)

where Sp and Sq set the maximum number of generators participating in the active and

reactive power control, respectively. In general, this problem is NP-hard. Therefore, a

treatment to this sparsification problem is required. Instead of the hard sparse norm of

‖ · ‖0, one can use convex norms to relax the optimization problem. In is important to note

that p-norms for p < 1 which are the sparse norms are not feasible for implementation

with the SDP. Instead, regularization norms of `1 and `2 can be incorporated. For `1,

if all the generation levels are positive numbers, one can generate a cost function as

Op
6 =

∑
pgj with minimization over O6 (similarly for the reactive power). In general, one

can use

min
{pgq ,qgq ,V,o}

O5 (18a)

s.t. (9b)− (9j), ∀q ∈ N \ {b1}

−Cqp ≤ pgq ≤ Cqp , −Cqq ≤ qgq ≤ Cqq (18b)

O6 =
∑
k

(γpCpk + γqCqk) (18c)

where γp and γq are the regularization gains for active and reactive powers. Quadratic

regularization is not recommended as a sparsification method. However, if one decides to

use this function, Schur’s complement can be incorporated. Some solvers directly support

minimizing over the `1 norm which is similar to the above optimization.

H. Combining Objectives

In order to form the multi-objective optimization problem, the objective functions

introduced in the previous sections are combined. To do so, various approaches can be

taken. In a variety of applications, linear combination of the objectives is used to form

the multi-objective cost function. In this approach, the optimization problem is formed

as

min
{pg ,qg ,V,o}

∑
i

γiOi (19)

s.t. (9b)− (18c)
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where γi is a linear gain to set the influence of the i-th objective function. Although this

approach is simple, it cannot enforce non-linear preferences between multiple objectives.

To clarify this problem, consider an LDS with multiple voltage sensitive nodes such as

a hospital complex with a variety of safety equipment which require a high quality input

voltage. An objective is to minimize the operation cost of this LDS while maintaining

a good voltage regulation by performing a multi-objective optimization over the energy

assets located within this LDS. As the voltage regulation is enforced further, the strength

of the cost minimization objective is relatively reduced. In the linear approach, linear

gains do not allow for flexibility in the selection of objective functions. However, one

desire to relax the voltage regulation objective by allowing for ±3% regulation to achieve

a better cost optimization over the assets. Outside this boundary, one can enforce a non-

linear growth on the voltage regulation objective to attain a safe operation zone for the

equipment while achieving the best relative dispatch for the energy assets. Therefore, in

this section, various functions are introduced to form the multi-objective optimization

problem.

Assuming that ∀i ∈ {1,· · · ,#o}; 0 ≤ Oi, the first form of growth function is the

linear growth which is extensively used in many applications. This function is a linear

gain of the objective function as γiOi (we define Ōi = Oi). Another useful growth

function is the quadratic form of the cost function. In this approach, Schur complement

can be incorporated to form a growth function as Ōi = (O2
i + c1iOi + c2i) which is often

simplified as Ōi = O2
i (some solvers, directly support f(x) = xp , 1 ≤ p). Higher orders

of the objective functions can be similarly generated using Schur complement. Another

interesting function is a hard limit which is achieved by introducing a new constraint as

Oi ≤ k where k is the desired limit.

Lastly, the multi-objective optimization is formed as

min
{pg ,qg ,V,o}

∑
i

γiŌi (20)

s.t. (9b)− (18c), f(Oi, Ōi), ∀i ∈ {1,· · · ,#o}

where f(·) denotes one of the explored growth functions which are mostly formed using

Schur complements.
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IV. DISTRIBUTED SOLUTION

The previous sections introduced the centralized multi-objective optimization of the

dispatch problem. In this section, a distributed solution is studied to improve the scalabil-

ity of the dispatch problem. The graph of the network G consists of n ∈ N nodes which

are connected with arcs aq,w ∈ N×N . This graph can have r dispatch regions. In this case,

each node is a member of one region n ∈ Ri whereRi ∈ {R1,· · · ,Rr}. In this paper, it is

assumed that each node can be only a member of one region. Also, it is assumed that the

underlying network is a tree and hence, only one path exists between two different nodes.

Under these conditions, the convergence of the distributed solution is guaranteed [33]. The

set of neighboring nodes to region Ri is defined as ∂Ri = {j|ai,j = 1, i ∈ Ri, j /∈ Ri}.

Also, the extended region is defined as R̄i = Ri ∪ ∂Ri.

To perform th distributed optimization, each region i needs to solve the power flow

constraints over its extended regional graph R̄i. Hence, the optimal dispatch for region

i is derived as

min
{pg

i ,q
g
i ,Vi}

f(pg
i ,q

g
i ,Vi) (21a)

s.t. (9b)− (18c)

[Vi]q, w = [Vj]q, w|q, w ∈ R̄i, q, w ∈ R̄j, i 6= j (21b)

where the constraint (22b) ensures that in each regional optimization, the edge nodes have

the same voltage solution. This constraint leads to 16 constraints on Vi at locations Hi =

{(q, q), (q, w), (w, q), (w,w), (q+#R̄i, q),· · · , (w,w+#R̄i), (q+#R̄i, q+#R̄i),· · ·.

In theory, less than half of these constraints are required and the remaining will be

satisfied by the symmetric nature of V. However, to ensure numerical convergence, it is

best to include all 16. To practically implement the distributed optimization, one should

introduce auxiliary variables to satisfy [Vi](q,w)∈Hi
= A in the first optimization and A =

[Vj](q,w)∈Hj
in the second optimization. Using this approach, the distributed optimization

can be solved iteratively using the Alternating Direction Method of Multipliers (ADMM)

[33]. At each iteration k, this method depends on the first and second order norms of

ε = ([Vi]
k
(q,w)−A

k−1
(q,w)) where [Vi]

k
(q,w) is the optimization variable at iteration k and Ak−1

(q,w)

is the average of all optimizations solved by regions containing this element. For instance,
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if these nodes are shared by two regions, Ak−1
q,w = ([Vi]

k−1
(q,w) +[Vj]

k−1
(q,w))/2. Unfortunately,

many optimizers such as CVX do not allow for addressing an individual matrix entry.

In this case, the matrix V̄k−1
i can be constructed by averaging the 16 desired entries

outside of the optimizer and a selector matrix Sq,w ∈ R#R̄i×#R̄i can be introduced which

contains zeros except for the entry q, w which is one. Then ε = Tr(S(q,w)(V
k
i −V̄k−1

i )T ).

The first order norm of ε is readily available (the constant V̄k−1
i can be dropped from

the first order norm). For the second order norm, Schur complement is used to calculate

the Frobenius norm of the above difference. By introducing Lagrangian multiplier Λi,

one can generate the primal optimization as

min
{pg

i ,q
g
i ,Vi}

f(pg
i ,q

g
i ,Vi) + γ(q̂,ŵ) + Tr(Λk−1

i VT
i ) +

∑
(q,w)∈Hi

βq,w (22a)

s.t. (9b)− (18c), ∀(q, w) ∈ Hi β(q,w) Tr(S(q,w)(Vi − V̄k−1
i )T )

Tr(S(q,w)(Vi − V̄k−1
i )T )2/ρ

 � 0 (22b)

γ(q̂,ŵ) >= g(Tr(YR
(q̂,ŵ)V)), q̂ ∈ Ri, q̂ /∈ Rj, ŵ ∈ Rj, ŵ /∈ Ri (22c)

Where do to the linearity of
∑∑

Tr(Λk−1
i(q,w)

(S(q,w)Vi)
T ), it can be simply replaced with

Tr(Λk−1
i VT

i ). ρ is an arbitrary positive number which is required by the ADMM [33].

It should be noted that (22b) represents 16 constraints per each connection between two

different regions. To make the problem more practical, γq,w assigns a cost function g(·)

to the power flowing between the two regions.

Using this step, a new value for Vi is calculated. At this point, neighboring regions

announce their relevant entries from Vk
i so that each region can construct the new average

V̄k
i . Now, it is time to update the dual variable Λi.

Λk
i = Λk−1

i + 2ρ(Vk
i − V̄k

i ) (23)

where 2ρ(Vk
i −V̄k

i ) is equal to ρ(Vk
i −Vk

j ) which is the standard error in the formulation

of ADMM dual update. This iterative process will continue until the convergence criterion

is met.
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V. CASE STUDY

In this section, several case studies will be performed on the system shown in Fig.

2. This system consists of three regions A, B, and C. First, the centralized optimal

dispatch of this system is studied and later, the distributed optimization over these three

regions will be investigated. Parameters of this system are introduced in Table I. These

parameters are selected to drop the voltage of the region A and increase the voltage of

the region B and C to improve the quality of the case studies. The series impedance of

each transmission line is 0.1 + 0.1.
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Fig. 2. The distribution network under study which consists of three dispatch regions.

In the first scenario, the centralized optimal dispatch is solved using only active power

cost functions. To reduce the effects of numerical errors, one can include a very small cost

for voltage regulations to emphasis the impacts of individual bus bar voltages. Also, one

can include a very small second order cost function for reactive power dispatch to create

a minimum over the reactive dispatch of zero. Although the cost of the reactive power

dispatch is zero, addition of this second order cost function prevents multiple minimums

for the overall problem. With these assumptions, the optimized dispatch of the resources

considering the active generation cost functions is shown in Fig. 3.
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TABLE I

PARAMETERS OF THE UNDERLYING SYSTEM

Node Demand Pmax.
g Pmin.

g Cost model

1 - - - c1Pg

2 0.02 + 0.01 - - -

3 0.005 + 0.005 0 0.01 c0 − c1Pg

4 - - - -

5 0.005 + 0.001 0 0.2 c0 − c1Pg

6 - - - -

7 - 0 0.2 c0 − c1Pg

8 0.01 + 0.001 - - -

9 0.005− 0.005 0 0.1 c1Pg + c2P
2
g

10 0.02− 0.001 0 0.2 c0 − c1Pg

11 0.02 + 0.01 0 0.005 c0 − c1Pg

12 - - - -

13 0.02 + 0.02 0 0.01 c0 − c1Pg

14 0.03 + 0.02 -0.05 0.05 c2P
2
g

15 0.02 + 0.005 - - -

16 0.02 + 0.02 - - -

17 0.02 + 0.02 0 0.2 c1Pg + c2P
2
g

From Fig. 3, it can be observed that the voltage of the wing 2:10 increases due to

the large amount of solar generation. Also, the wing 11:17 observes voltage drop due

to the large demand. To improve the voltage regulation, an objective is formed with

linear combination of the active power generation costs as well as the voltage regulation

cost function. The results of this optimization is shown in Fig. 4. It can be observed

that the voltage regulation is much better compared to the previous scenario. Also, no

significant change in the active power dispatch is detected. The optimizer has utilized

optimal dispatch of reactive power to regulate the voltage of buses.
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Fig. 3. Active power dispatch.
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Fig. 4. Linear combination of the active power dispatch and voltage regulation.

In practical applications, the cost of active power has priority to the voltage regulation.

Hence, linear combination of these objectives might not be feasible. In a second approach,

the voltage regulation can be combined as a quadratic order cost function. Hence, if the

voltage of the bus exceeds from the reference voltage, the cost is increased nonlinearly.

Therefore, this approach promotes a more relaxed voltage regulation constraint for lower

voltage variations and a larger penalty if the variations are large. Results for the scenario

with a quadratic voltage regulation cost function is shown in Fig. 5.

As a result of the quadratic cost function, it can be observed that the larger variations

of the voltage are suppressed. In the next scenario, the cost function for reducing the

transmission losses is linearly added to the previous objective function. Transmission loss

minimization acts similar to a voltage profile regulator. If the adjacent buses have similar

voltages, the current passing through the transmission lines will be reduced and smaller

transmission losses will be attained. Results for this scenario are shown in Fig. 6.
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Fig. 5. Linear combination of the active power dispatch and quadratic voltage regulation.
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Fig. 6. Linear combination with the transmission loss minimization.

In the next scenario, to demonstrate the close relation between the voltage profile

regulation and transmission loss minimization cost functions, voltage regulation cost is

eliminated and the objective function is a linear combination of the generation costs and

transmission losses. Results for this scenario are illustrated in Fig. 7.
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Fig. 7. Linear combination of active power dispatch and transmission loss minimization.
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It can be observed that the transmission loss minimization objective function tends

to keep the voltage of adjacent buses similar. However, this does not guarantee a good

voltage regulation as it can be observed from Fig. 7.

Lastly, it is observed from the Fig. 6 that some reactive power is being purchased

from the grid. In some industrial applications, purchasing reactive power from the utility

grid is costly. Hence, one can linearly add an objective function to reduce this reactive

power purchase. The results for this scenario are shown in Fig. 8.
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Fig. 8. Adding quadratic voltage regulation cost function.

Scenarios with distributed optimization over the three regions of A, B, and C are now

focused on. In the first scenario, the only cost function used is the active power generation

cost. Results for this scenario are shown in Fig. 9. It can be observed that the results

are different compared to the centralized solution of Fig. 3. This is due to the nature

of distributed optimization where each region seeks its regional minimum cost. Results

show inferior voltage regulation. To this end, in the next scenario, voltage regulation cost

functions are added to improve the voltage profile. Results for this scenario are shown

in Fig. 10.

VI. CONCLUSION

In this paper, centralized and distributed formalisms for multi-objective dispatch of

distributed energy resources were introduced. First, this paper investigated semidefinite

relaxation of the power flow equations. Later, various cost functions suitable for distri-

bution network applications were introduced in the semidefinite framework. Afterwards,

combination of these objective functions were investigated. The centralized solution was
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Fig. 9. Distributed active power generation cost optimization.
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Fig. 10. Distributed optimization of the active power generation and voltage regulation.

extended to support distributed optimization using the alternating direction method of

multipliers. In the end, various case studies were provided to demonstrate the behavior

of objective functions.
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SECTION 

2. CONCLUSIONS 

This thesis proposed two papers in which the optimal dispatch for distributed 

energy resources was investigated. In the first paper, an economic dispatch problem for a 

community microgrid was studied. In this microgrid, each agent pursued an economic 

dispatch for its personal resources. In addition, each agent was capable of trading 

electricity with other agents through a local energy market. A simple market structure 

was introduced as a framework for energy trades in a small community microgrid such as 

the Solar Village. It was found that agents were able to estimate the operation of the 

operation of the market and effectively dispatch their resources. Both buyers and sellers 

benefited from participating in the community market. In the second paper, Semidefinite 

Programming (SDP) for convex relaxation of power flow equations was used for optimal 

active and reactive dispatch for Distributed Energy Resources (DER). Because SDP 

drops the rank constraint, it made the optimal dispatch process faster. Various objective 

functions including voltage regulation, reduced transmission line power losses, and 

minimized reactive power charges for a microgrid were introduced. Combinations of 

these goals were attained by solving a multi-objective optimization for the proposed 

ORPD problem. The different combinations allowed objectives to be prioritized. Also, 

both centralized and distributed versions of this optimal dispatch were investigated and 

were utilized depending on privacy concerns. 
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