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Abstract 

 

Arthropod-borne viruses (arboviruses) are among the most common agents of human 

febrile illnesses worldwide. As crucially important emerging pathogens, they have caused 

multiple, notable epidemics of human disease and unnoticed epizootics over recent decades. 

Despite the public health relevance, very little is known about the geographic distribution of the 

agents and vectors, relative impact, and risk factors associated to the arboviral infection in many 

regions of the world and in the tropics in particular. Presented in this dissertation is an 

experimental study that explores the serology screening of serum samples from 151 patients 

whom were diagnosed with undifferentiated febrile illness in Sierra Leone, after ruling out 

endemic malaria and Lassa fever. Related to the laboratory results of the testing, three 

exploratory experiments on Koutango virus were developed. The experiment directed special 

interest into the vector mosquito Aedes aegypti and its ability to uptake, disseminate, and 

transmit the virus. The study of the early events occurring during the interaction between the 

virus and cells performed in the laboratory was another area of interest with the objective to 

predict the disease outcome. In order to explore the vertebrate viremia profile, we attempted to 

develop a suitable animal model for the Koutango virus study in the laboratory. The overall 

hypothesis of this research is that arboviruses circulating in West Africa are the cause of 

undiagnosed febrile illnesses.  To investigate the hypothesis, this research explores the poorly 

understood epidemiological features and geographic range of certain endemic arboviruses, 

particularly the Koutango virus, and whether or not they circulate in the region with the Aedes 

aegypti mosquito being the competent vector that transmits the virus. 
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The research in this dissertation contributes to the understanding of the epidemiological 

features and the actual expanding geographical range of many arboviruses. It describes the gold 

standard laboratory technique for the serology diagnostic of diverse arboviral diseases. In 

addition, it explores  novel laboratory research techniques that may serve as an important tool for 

the implementation of effective surveillance programs necessary to explore and control the 

circulation of diverse arboviruses, particularly those associated with human illnesses in West 

Africa. 
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Introduction 

Arthropod-borne viruses (arboviruses) are enveloped RNA viruses that are transmitted by 

blood-sucking arthropods (mosquitoes, sand flies, fleas, ticks, and lice) to vertebrates. The most 

common mode of transmission is biological involving factors that enhance encounters between 

virus, competent vector, and susceptible vertebrate host. Over the past few decades there has 

been a worldwide emergence of arthropod-borne viral pathogens (arboviruses) [1, 2], particularly 

those transmitted by mosquitoes. Despite the public health importance, the geographic range of 

the pathogens, their relative impact, and the epidemiologic characteristics linked to arbovirus 

infection are poorly defined in many regions of the world [1]. Arboviruses are a heterogeneous 

group, but the medically relevant ones belong to a few virus genera, including Flavivirus and 

Alphavirus. Examples of emerging arboviruses include West Nile virus (WNV; Flavivirus) in 

North America, Japanese encephalitis virus (JEV; Flavivirus) in Asia, chikungunya virus 

(CHIKV; Alphavirus) in the Indian Ocean region and dengue viruses (DENV; Flavivirus) 

globally. One shared characteristic of many emergent arboviruses is the ability to expand host 

and geographical range, due in part to the plasticity of the RNA genome [3]. Some arboviruses 

have developed the ability to colonize humans as their primary reservoir, while others depend on 

birds or peridomestic animals, with human infection resultant from spill-over from zoonotic 

replication cycles. The increase in activities on forested areas worldwide is likely to increase 

human exposure to sylvatic or forest arbovirus cycles. Tropical areas in particular, with the year 

round hot and humid conditions, are well suited for maintenance of arboviruses that have the 

potential to emerge as significant human pathogens [4]. In the neotropics alone, greater than 145 

distinct arbovirus species have been recognized [4].  
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Arboviruses are known to circulate in the human population in Africa. In the 1980s, for 

example, there was an increase in urban DENV activity in Nigeria, Senegal, and Republic of 

Guinea  [5-7]; in the 1990s, DENV 1, 2, and 4 were isolated from mosquitoes and humans [6, 8-

12] in Guinea and other neighboring West African countries [13]. In addition, there has been 

historical and recent evidence of a sylvatic cycle of DENV in Senegal and the Republic of 

Guinea. Further there was evidence that dengue had reached the human populations, as 

neutralizing antibody for DENV was detected in both humans and monkeys [11, 14-16]. 

Koutango virus (KOUTV), like Yellow Fever (YF) and DENV, belongs to the family 

Flaviviridae and was first isolated from gerbils caught in Senegal in 1968 [13]. The virus is 

ecologically associated with rodents, and Aedes aegypti mosquitoes were experimentally shown 

to be competent vectors of this virus, though field reports also implicate other Aedes spp. in the 

transmission cycle [17].  

YF is transmitted in its urban cycle by Ae. aegypti mosquitoes and is the cause of the 

almost 200,000 cases and 30,000 deaths annually with nearly 90% of cases occurring in sub-

Saharan Africa [18]. Since 2000, YF has been a recurring problem for neighboring Guinea with 

reported outbreaks in 2001 and 2005. In September 2003 and December 2008, there were 

laboratory confirmed cases of YF reported from Sierra Leone, and a mass vaccination campaign 

was put in place [19].  

 

Yellow Fever 

Yellow fever is a viral hemorrhagic fever which infects 200,000 people and causes 

30,000 deaths globally per year [20]. There are three different epidemiological patterns of 

Yellow Fever virus (YFV) transmission: the sylvatic pattern, the urban cycle,
 
and an intermediate 
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cycle that bridges these two patterns [21]. The main vector of the urban cycle YF is the female 

Aedes aegypti [22-26]. In the sylvatic cycle of YFV monkeys and humans are the primary and 

accidental hosts, respectively; humans become infected with sylvatic YFV when bitten by the 

primary mosquito vector, Ae. africanus, Ae. bromeliae or one of several other mosquito species. 

Most of these mosquitoes breed and live in holes and cracks in the upper part of the trees in the 

forest [22, 24-26]. In South America, YF is an occupational disease found in the forestry industry 

workers [26]. Intermediate epidemics are a mixture of human-to-human and monkey-to-human 

transmission characterized by focal outbreaks separated by areas without human cases [27]. 

Patients that recover from an infection by YF develop a solid, long-lasting immunity against 

reinfection [28].  

In humans, the incubation period for the disease is generally three to six days after the 

bite from an infected mosquito. The patient is infectious to mosquitoes for the first three to four 

days after the onset of symptoms [24] characterized by a sudden onset of fever, headache, 

backache, general muscle pain, nausea, vomiting, and [29] bradycardia in relation to the increase 

in temperature (Faget‟s sign) [30, 31]. About 15% of those infected develop a serious illness 

with acute, remission, and toxic phases. The acute phase lasts about three days with the sudden 

onset of fever, headache, myalgia, nausea, and vomiting; then, remission for up to 24 hours 

(characteristic “saddle-back” fever) [31] followed by a toxic phase of jaundice and vomiting 

(black vomitus) in which hemorrhaging of the gums and nose, hematuria, albuminuria, and 

oliguria (reduction of urine production) may occur. At least half of the individuals who reach the 

toxic phase do not survive and die between the seventh and tenth day after onset [24, 26, 27, 32].  

Malaria and YF may coexist in a region [33],
 
and malaria usually shows clinical 

symptoms nearly identical with those of the early stages of YF. In the beginning during the acute 
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febrile phase of an infection, there is little to distinguish the illness from a number of other 

febrile conditions such as typhoid fever, rickettsial infections, influenza, leptospirosis, viral 

hepatitis, infectious mononucleosis, and other arboviral fevers like DEN, Lassa fever and 

chikungunya [21, 24, 33]. The definitive diagnosis of YF is made by serology or virus isolation, 

which requires trained health care personnel, proper laboratory equipment, and special reagents 

for the interpretation of the test results [27, 33].  

In the 34 countries of Africa with a combined population of 468 million, YF is endemic. 

Luckily the YF vaccine has proven safe and efficacious, [23] but must be transported and stored 

frozen [24]. However, once a vial is opened, the vial must be kept cold and used within one 

immunization session and it must be discarded after that (in this case, one immunization session 

is considered to be six hours) [34]. In 95% of persons vaccinated, one dose of YF vaccine 

provides immune protection for at least 10 years and possibly life-long [35, 36].  

The strategies to better monitor YF in Africa are epidemic control, mass immunization, 

routine childhood immunization, and surveillance [24, 37]. Emergency vaccination takes place as 

soon as an outbreak has been confirmed, in an attempt to limit the spread of infection by 

immunizing the population in the focus, regardless of their immune status. Active surveillance is 

essential in at-risk countries for the early detection of cases allowing for fast action to control an 

outbreak. Often it has proved difficult to identify early, isolated cases before they trigger an 

epidemic because of the difficulties of distinguishing YF from diseases with similar symptoms 

(e.g. malaria) [36]. Due to a small risk of adverse reactions, YF vaccine should not be 

administered to children less than six months of age; therefore it is usually administered at the 

time of the measles vaccination at nine months of age. Older children should also be vaccinated 

routinely in areas at high risk for YF epidemics [35, 36, 38]. 
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Since the late 1980s, there has been a dramatic resurgence of YF. Vaccination activities 

in many of the countries at risk, which include the poorest in the world, are generally weak. 

Outbreaks were reported in several countries in West Africa in 1994 and in 1995. Only five of 34 

African countries at risk reported YF vaccine coverage data in 1996.  

History 

The first account of a sickness presented itself as a fever aboard a vessel off the coast of 

Senegal in 1768, commonly accepted as the first report of YF in Africa. Although there was not 

a clinical description of the fever, evidence suggests its occurrence first in men who had been 

ashore, followed with propagation aboard the ship. The tropical and subtropical Americas were 

devastated with epidemics of YF for more than 200 years and serious outbreaks occurred as far 

north as Spain, France, England, and Italy. In the United States, 20, 15, 8, and 7 epidemics were 

reported in Philadelphia, New York City, Boston, and Baltimore, respectively, decimating 

populations and paralyzing the economy [28].  

In 1848, American Josiah Clark Nott was the first to suggest that YF was spread by 

mosquitoes [39], but it was the Cuban physician C. J. Finlay who, in 1881, circulated the first 

really serious theory of mosquito transmission of YF. During the Spanish-American war, the YF 

Commission with Walter Reed, concluded that the mosquito was the vector of YF. Furthermore, 

it was determined that YF could be produced experimentally by the subcutaneous injection of 

blood taken from the general circulation of a YF patient during the first and second days of his 

illness and that YF was not conveyed by fomites [28, 40]. The Commission also demonstrated 

for the first time that a virus was the causative agent of the disease [28]. 

In former French Africa, cases of YF were apparently rare between 1906 and 1922 

increasing during 1922 and 1927 with numerous small, disconnected outbreaks reported in West 
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Africa [41]. From 1927 to 1931, disease incidence decreased markedly seemingly disappearing 

from one colony after another; however, in 1931 YF reappeared. The almost simultaneous 

reappearance in cases of YF, without any connection between them, in many places throughout 

West Africa and in countries where the disease had not been reported at all for several years, 

explained the persistence of latent YF foci in these countries [42].  

In laboratory diagnostics, the number of serological studies increased considerably after Theiler 

discovered that mice could be used instead of monkeys Macacus rhesus, for protection tests [41]. 

The results of these tests were positive in West African countries such as Sierra Leone, Nigeria, 

Senegal, and along the former Upper Volta Territory (Burkina Faso) [41]. Positive results were 

also obtained in East African Sudan, Uganda, Kenya, Tanganyika, and Northern Rhodesia [41]. 

By 1928, certain eminent epidemiological features of YF had evolved indicating that the disease 

followed the trade routes such as rivers, roads, and railways; was pre-eminently urban; however, 

outbreaks often occurred in isolated spots in the jungle; almost inevitably, outbreaks followed the 

arrival of large numbers of non-immunes; newcomers to endemic foci suffered disease almost 

exclusively, with high attack rates in non-immunes, while the locals presented a high level of 

immunity, and attack rates were higher when infected localities were visited at night [43]. 

Vaccination Program 

Typical epidemics of YF occurred in Nigeria, Ghana, and Gambia in 1925, 1926, and 

1934, respectively, before mass immunization campaigns started in French Africa south of the 

Sahara. The first large-scale vaccination involved live-attenuated YF vaccines, the neurotropic 

vaccine from human virus passaged in mouse brain and the 17D vaccine from human virus 

passaged in embryonated chicken eggs, developed in the 1930s. Over 38 million doses were 

administered during the period from 1939 to 1952 in West African countries, and the incidence 
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of YF declined dramatically; however, in 1961, the neurotropic vaccine was no longer 

administered to children under 10 years due to a high incidence of encephalitic reactions. 

Production of this vaccine ceased in 1980. Today, 17D is the only type of YF vaccine produced 

because of its mild side effects 5 to 8 days post vaccination. Currently in Africa, 34 countries are 

at risk for the disease, but only 17 have set up an immunization policy. In the years 2003 and 

2008, laboratory confirmation of YF cases where reported in Sierra Leone prompting mass 

immunization campaigns to begin [26].  

Epidemiology 

In tropical areas of Africa and South America, YF is prevalent; however areas of the 

Americas and Europe infested by the mosquito Ae. aegypti are still at risk of introduction and 

spread of the disease [22]. The reservoir of YFV is the susceptible vector mosquito species that 

remains infected throughout life and transmits the virus transovarially  [27]. With nonhuman 

primates responsible for maintaining the infection, YF can persist as a zoonosis in tropical areas 

of Africa and America [27]. Man and monkey play the role of amplifiers of the amount of virus 

available for the infection of mosquitoes [27]. 

The causative agent of YF is an arbovirus from the Flavivirus genus of the family 

Flaviviridae. It is a single-stranded virus with a positive polarity RNA genome. Viral particles 

are 43 nm in size made up of a ribonucleoprotein core and a lipoprotein envelope [27]. Although, 

there is very little evidence for differences in virulence between wild strains of YF virus, 

considerable heterogeneity between isolates from Africa and South America has been observed 

[44].  

The fundamental understanding is that there are only two genotypes of YF in Africa, one 

represented by West African viruses and the other by Central and East African strains [45], and 
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one or possibly two in South America, found by sequencing wild-type YFV strains of different 

geographic origin. The YFV database includes the entire genome sequences of the Asibi and 

French viscerotropic viruses (Ghana and Senegal, 1927), partial sequences of the E gene, the 5‟ 

and 3‟ termini, and of the NS4a-NS4b region of multiple isolates from South America and Africa 

isolated over a 60-year period. South American viruses fall into one major phylogenetic group 

with respect to the E gene sequence. In contrast to the situation in Africa, the two South 

American genotypes do not segregate into discrete geographic distributions [45].  

 

 

Figure 1.1 Countries at risk for Yellow Fever and having reported at least one outbreak 

from 1985-1998. Yellow Fever is endemic in 34 countries of Africa with a combined population 

of 468 million. (WHO/EPI/GEN/98.11 Yellow Fever) 
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Transmission Cycles 

Vertical Transmission in Mosquito Vector 

In the 1980s, vertical transmission of the YFV in Haemagogus equinus and Ae. aegypti 

was demonstrated [46], as well as the recovery of YFV from male Aedes furcifer in Senegal [47]. 

These evidences of vertical transmission might explain YFV survival in nature without the need 

for alternate vectors, prolonged survival, retarded transmission by long-lived, drought-resistant, 

adult female mosquitos, persistent infections of vertebrates, or reintroduction of virus from 

distant enzootic foci [26]. Recently, natural YFV vertical transmission has been demonstrated in 

Ae. aegypti in Senegal. It was thought that vertical transmission played a major role in the spread 

of the epidemic [48]. Its efficiency is increased by the possibility of venereal infection of females 

by males [49]. In this way, the vector maintains the virus for very long periods suggestive of a 

true reservoir [50]. Epidemiological implications of vertical transmission are evidenced by the 

virus being transmitted early after the emergence of Ae. aegypti females persisting inside 

infected eggs laid in peridomestic breeding sites until the next rainy season [48]. 

Horizontal Transmission by Mosquito Vector 

Horizontal transmission may occur in maintenance or amplification cycles depending on 

ecological factors that affect the level of contact with susceptible hosts (Figure 1. 2) [49]. The 

maintenance cycle is characterized by a relatively stable prevalence of infection in which the 

vector-vertebrate contact is loose; whereas in the amplification cycle, an increase in the amount 

of circulating virus is noted, due in part to close vector-vertebrate contact. In the former cycle, 

YF appears in enzootic or endemic form, while appearing epizootic or epidemic in the latter. The 

ecological factors that may affect horizontal transmission are dependent on the degree of contact 
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between vectors and susceptible vertebrate hosts; therefore the mode of transmission hinges on 

the amount of virus, the abundance of vectors and vertebrates [49].  

 

 (A) Sylvatic , Urban, and Intermediate Yellow Fever in Africa 

 

(B) Sylvatic and Urban Yellow Fever in South America 

   

Figure 1.2 Transmission Cycles of Yellow Fever (WHO/EPI/GEN/98.11 Yellow Fever) 

 

Distribution in Africa 

The distribution of YF in Africa is best understood in terms of vegetation zones which 

reflect rainfall patterns and determine the abundance and distribution of mosquito vectors and 

vertebrate hosts. The vegetation zones are the equatorial rain forest, the humid/semi-humid 

savannah, and the dry savannah. Typically, year-round enzootic YF transmission between 

monkeys and Ae. africanus occurs in the Equatorial rain forest (mainly sylvatic) zone. The virus 
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activity is generally at a low level and sporadic cases or focal outbreaks have been observed, in a 

manner similar to sylvatic YF in South America. Transmission is predominantly monkey-to-

monkey, and human infection is sporadic. The humid/semi-humid savannah with either monkey-

to-monkey or monkey-to-human transmission is a major area of risk especially during the rainy 

seasons where it is prone to repeated emergence of YF activity, which may occur at a high rate 

of transmission due to the presence of vector and host populations. Sylvatic Aedes (e.g., Ae. 

furcifer, Ae. luteocephalus, Ae. vittatus) reach very high densities during the rainy season, and 

are responsible for cyclic epizootics in monkey populations and epidemics with inter-human 

transmission [51]. This zone is also known as the intermediate zone of transmission. Vertical 

transmission in these mosquitoes assures virus survival and continuation of epizootic waves. It is 

in this vegetation zone that most epidemics of YF have occurred. In the dry savannah zones the 

sylvatic vector populations are too low or active for too short of a period to sustain an epizootic 

mainly human-to-human transmission occurs with the potential for epidemics. The virus may 

nonetheless be introduced into a cycle of inter-human transmission by Ae. aegypti, either if an 

epizootic extends from the humid savannah, or if infected individuals move to villages with the 

domestic vector in the dry savannah. If the virus is introduced into urban or very dry savannah 

regions where the human population stores water and lives in association with domestic Ae. 

aegypti, explosive outbreaks of Ae. aegypti-borne YF (urban-type transmission) may result [26].  

The Mosquito Vector in Africa 

The main vectors of YF in Africa are mosquitos of the genus Aedes, subgenera Stegomyia 

and Diceromyia. Seven species, divided into 3 groups according to the contact with humans, are 

believed to play an important role in nature: the domestic vector Aedes (Stegomyia) aegypti co-

habiting around the household, the semi-domestic wild vectors that can acquire domestic habits 
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Ae. (Stegomyia) africanus, Ae. (Stegomyia) luteocephalus, and Ae. (Diceromyia) furcifer, and the 

wild vector Ae. (Stegomyia) opok, Ae. (Stegomyia) simpsoni group, and Ae. (Diceromyia) taylori 

[49].  Vectors lay eggs resistant to desiccation that remain dormant during the dry season and 

hatch only when rain fills the breeding places. In savannah areas there are no adults during the 

dry season and transmission is discontinuous. While primates are implicated in the natural 

transmission cycle of YF, monkeys remain the main vertebrate hosts involved in the circulation 

of YF virus in Africa, but galagoes (bush babies) may also play an important role. The viraemia 

in the monkeys is a period of two to five days, with a maximum of nine days [52], developing 

into life-long immunity after infection, thus preventing becoming virus reservoirs [49]. Monkeys 

that inhabit the top of the forest trees are the main vertebrate hosts in the wild cycle (e.g. 

Cercopithecus mitis), while those which come to ground level (Cercocebus) or leave the forest to 

enter plantations (Cercopithecus aethiops) are the link between the wild cycle and humans. In 

savannah areas, monkeys usually live at ground level, but sleep in trees where they are exposed 

to mosquito bites. There, monkeys such as patas or baboons easily disseminate the virus because 

their territory is very large [49].  

 

Dengue Fever/Dengue Hemorrhagic Fever  

Dengue fever/dengue hemorrhagic fever/dengue shock syndrome (DF/DHF/DSS) is 

caused by an infection with one of four dengue virus serotypes, DEN-1, DEN-2, DEN-3 and 

DEN-4, that are antigenically closely related to each other [53].  However, these serotypes are 

serologically distinct so that infection with one serotype provides life-long protective immunity 

against the homolog serotype, but does not provide cross-protective immunity against the others; 
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thus, persons living in an endemic area can be infected with each of the four dengue serotypes 

during their lifetime [54]. This leads to extensive cross-reactivity in serological tests. 

Epidemic DF has been known clinically for over 200 years [55], but the etiology of the disease 

was not discovered until 1944. It was characterized during most of its history by periodic, often 

infrequent, epidemics. In the past 17 years, however, there has been a dramatic re-emergence of 

epidemic DF activity in the tropics worldwide. This amplified epidemic activity caused by all 

four virus serotypes has been linked with the geographical expansion of the mosquito vector and 

the virus, the expansion of hyperendemicity (the co-circulation of multiple virus serotypes in an 

area), and the emergence of DHF. Hyperendemicity is the most persistent factor associated with 

the evolution of epidemic DHF in a geographical area [54].  

Transmission Cycle 

DENV uses the sylvatic cycle pattern characterized by the interaction between the lower 

primates and forest Aedes species, a transition pattern connecting humans and peridomestic 

Aedes species, and an urban cycle involving humans and domesticated Aedes species [16, 56, 

57]. There may be some overlap between each of these cycles, in accordance to where they occur 

and the mosquito species involved.  

Humans become infected with DEN viruses by the bite of an infected mosquito [58]. Ae. 

aegypti, the principal DENV vector, is a small, black-and-white, extremely domesticated tropical 

mosquito which prefers to lay the eggs in man-made containers usually found in and around 

households, such as the flower vases, old automobile tires, buckets that collect rainwater and 

coconut shells. These containers used for water storage, are crucial in generating large numbers 

of adult mosquitoes in close vicinity to human residences. The adult mosquitoes rest preferably 

indoors and choose to feed on humans at the daylight hours with intense biting activities early in 
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the morning for 2 to 3 hours and in the afternoon for several hours before dark. However, these 

mosquitoes will feed throughout the day if indoors. Female mosquitoes are very anxious blood 

feeders, with a discontinuous feeding process in reaction to the slightest movement, returning to 

the same or to a different person to continue the feeding process later. This behavior enables Ae. 

aegypti females to feed on several persons during a single blood meal transmitting DENV to 

multiple persons in a short time [59-62].  This feeding behavior enables several members of the 

same household to become ill with DF in a short 24-to-36 hour time period and proves Ae. 

aegypti to be an efficient epidemic vector [63]. 

Studies in Nigeria in the 1970s, involving humans who were living in areas where Ae. 

aegypti was not established and monkeys from a lowland rain forest and a gallery forest that had 

DEN neutralizing antibody provided the first evidence of a forest enzootic cycle of DEN in 

Africa [64, 65]. Recently in the 1980s, [66, 67] the forest enzootic cycle was confirmed by 

isolation of over 300 DENV-2 viruses from five species of wild-caught mosquitoes in West 

Africa: Ae. africanus, Ae. leuteocephalus, Ae. opok, Ae. taylori, and Ae. furcifer. Moreover, two 

isolates collected from pools of male Ae. furcifer-taylori mosquitoes in the forests of the Ivory 

Coast [67]  and Senegal, proposed transovarial transmission in the natural maintenance of 

DENV. The major mosquito vectors of DEN, Ae. aegypti and Ae. albopictus, have been 

comprehensively studied in the laboratory incriminating Ae. albopictus as a highly susceptible 

and more efficient host for DENV than Ae. aegypti [68-71]. However, there is a little doubt that 

Ae. aegypti is the most important epidemic vector of DEN and DHF globally, largely because of 

its domesticated habits and close association with humans. Ae. aegypti must feed on persons with 

high viraemia to become infected and only those viruses associated with high viraemia can be 

transmitted by this species, while those viruses producing low viraemia are not able to be 
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transmitted [68, 72]. In contrast, viruses in semi-rural, rural, and forested areas can be 

maintained by more efficient vector species of Aedes in a cycle combining transovarial 

transmission with periodic amplification in humans and monkeys. Field evidence from Africa 

and Malaysia involves lower primates in forest maintenance cycles of DENVs. Likewise, 

chimpanzees, gibbons, and macaque monkeys are laboratory predisposed to infection with 

DENVs developing detectable viraemia in absence of clinical illness [66, 73-76].  

Clinical Presentation 

DENV infection in humans causes a spectrum of illness ranging from unapparent or mild 

febrile illness to severe and fatal hemorrhagic disease. Clinical presentation in both children and 

adults may vary in severity, depending on the strain and serotypes of the infecting virus, and the 

immune status, age, and the genetic background of the patient. In dengue endemic areas, acute 

DEN infections are often clinically nonspecific, especially in children, with signs and symptoms 

of a viral syndrome. Classical DF is primarily a disease of older children and adults, 

characterized by a sudden onset of fever and one or more of non-specific signs and symptoms 

such as frontal headache, retro-orbital pain, myalgias, arthralgias, nausea and vomiting, 

weakness, and rash. DF is generally self-limiting and rarely fatal, the acute illness lasting 3 to 7 

days. Convalescence, however, may be prolonged for weeks with weakness and depression. No 

permanent sequelae are known, and immunity for the infecting virus serotype is lifelong [58, 77, 

78].  

DHF is primarily a disease of children under 15 years of age, although it may occur in 

older children and adults as well. Similar to DF, it is characterized by a rapid onset of fever and 

non-specific signs and symptoms, and is difficult to discriminate from DF and other illnesses 

during the acute phase. The critical stage in DHF occurs at the time of defervescence when the 
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patient develops a capillary-leak syndrome, with signs of circulatory failure and hemorrhagic 

manifestations, primarily skin hemorrhages. DHF can be a very dramatic disease with the 

patient‟s condition worsening very rapidly with the onset of shock and resulting in death if the 

plasma leakage is not detected and corrected with fluid replacement treatment. Risk factors for 

developing severe hemorrhagic disease are not entirely understood but include the DENV strain 

and serotype, the patient immune status, age, and genetic background [79]. 

Methods for Assay 

DENV belong to the most difficult arboviruses to isolate and propagate. They do not 

grow well in any of the laboratory animals or mammalian cell cultures normally used in virology 

laboratories requiring adaptation of the virus to the cell culture [80]. The development of the 

mosquito inoculation technique provided a highly sensitive and relatively rapid method for 

isolation and assay of DENVs [81]. The direct fluorescent antibody test provides a simple 

technique to determine DENV infection in the mosquito [82]. Mosquito cell lines are highly 

susceptible to DENV infection and immunofluorescence has been used to detect virus infection 

in these cells because cytopathic effect (CPE) is not reliable to detect all DENVs. 

The studies on the levels of virus-neutralizing antibodies on DENV were confirmed with 

non-human primates [83-86]. To measure virus-neutralizing and protective antibodies, the plaque 

reduction neutralization test (PRNT) is the most commonly accepted method. Mediated by 

antibody, virus neutralization is a result of the inactivation of the virus in such a way that is no 

longer able to infect and replicate in cell cultures or animals. The flaviviral E glycoprotein is a 

fusion protein of a Class II [87] responsible for viral attachment to host-cell receptors and virus-

mediated cell membrane fusion. It is the most important viral protein for viral infectivity, 

eliciting all virus-specific neutralizing antibodies. In the current PRNT, it is the anti-E 
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glycoprotein antibody that is investigated. The non-E glycoprotein specific antibodies (e.g., anti-

NS1 antibody) can produce virus protective effects in vivo in small animal models; however 

these effects are not facilitated by virus-antibody interactions [88-90]. 

Great progress in understanding the structure and function of the flaviviral E glycoprotein 

has recently been made [91-95]. The E glycoprotein is 90 “head-to-tail” homodimers on the 

virion surface. The E glycoprotein monomer is divided into three structural domains: DI, DII, 

and DIII. The DII (the dimerization domain) is a long finger-like structure containing the 

hydrophobic membrane-fusion sequence at its tip. The fusion tip is protected during replication 

by a combination of DIII of the associated monomer, E protein glycosylation, and the prM 

protein [96]. The DIII has been shown to be involved in virus attachment to Vero cells in culture 

[97]. The DI contains the E glycoprotein molecular hinge. The E glycoprotein undergoes an acid-

catalyzed oligomeric reorganization to a fusogenic homotrimer [98-101]. This event occurs in 

the endosome, permitting the viral nucleocapsid to escape into the cytoplasm and initiate the 

viral RNA and protein synthesis. Similarly, the prM protein participates as a chaperone protein 

for the E glycoprotein during viral maturation, helping to maintain the E glycoprotein structure 

until viral morphogenesis is complete and the virion escapes the acidic exocytic vesicles [87]. 

The virus is neutralized by the antibodies to both DII and DIII however; the anti-DIII antibodies 

tend to be powerful neutralizing antibodies, and more virus-type specific. Anti-DII antibodies are 

more virus cross-reactive, and although they can neutralize virus infectivity, they are less potent 

than anti-DIII antibodies [102]. The known mechanisms of flaviviral neutralization, the blocking 

attachment of virus to cells, and the blocking of the virus fusion process were identified [97, 103] 

however; it is not known how many antibody molecules are needed to neutralize the infectivity 

of a single virion. Studies suggest that the prM protein may also cause virus-neutralizing 
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antibodies. The ability of anti-prM antibodies to attach to the virion is directly related to the 

extent of “prM M” processing, that is cell-type specific and is mediated by furin-like cell-

associated enzymes. The prM protein does not function as an attachment protein [104]. 

The adaptive immune response to DENV infection is determined by the presence or 

absence of neutralizing antibodies to the virus and T-cell responses participating by helping 

antibody synthesis. After infection, DENV stimulates for the IgM, IgG, and IgA antibody 

responses being Immunoglobulin M (IgM) response early, often before onset of symptoms. IgM 

can be detectable in serologic assays seven to eight days after the onset of symptoms [105]. IgA 

antibodies can also be detectable and have half-lives similar to IgM [106]. IgG antibodies are 

detectable soon after infection and maintain at the high neutralizing level for years [107]. 

Infection with any specified DENV serotype develops immunity to that particular serotype; 

however there is no long-term protection against infection with the other three DEN serotype 

viruses [108]. Although, re-infection of individuals with a distinct second or third serotype of 

DENV may result in DF or a more severe infection, DHF and/or dengue shock syndrome (DSS).  

A number of hypotheses explaining the severe manifestation of disease following 

secondary DENV infections have been presented. It is thought that pre-existing DENV-reactive 

antibody might be one factor involved in mediating DHF/DSS [109-113]. The antibodies that are 

most likely involved are those that cross-react with, but do not neutralize diverse serotypes of 

DENV. Non-neutralized DENV-antibody complexes can be escorted into DENV-susceptible 

cells via surface expressed Fc-receptors [114-116]. This occurrence known as antibody-

dependent enhancement (ADE) of DENV replication has been studied for a number of years. It is 

known that antibodies produced by DIII of the E glycoprotein are more virus-type specific and 

neutralizing. However, antibodies produced by either DI or DII are more cross-reactive among 
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viruses, and exhibit lower or no virus-neutralizing ability. Recently, it was proven that the West 

Nile virus (WNV) primarily infected humans, whose lymphocytes were used to make human 

monoclonal antibodies, showing that the early antibody response may be engaged towards DII 

[117]. By applying this hypothesis to the early antibody response in DENV, then the primary 

humoral response will probably consist of cross-reactive non-neutralizing antibodies. It is also 

possible that after secondary infection with a diverse DENV serotype, there will be a fast 

memory response that consists of DENV-cross reactive antibodies as explained by the shared 

epitopes between DENV serotypes and the abundance of memory B-cells specific for DI/DII 

cross-reactive epitopes [83, 84, 118, 119]. 

There are a diverse number of serological tests for the measurement of anti-flaviviral 

antibody. These tests measuring different antibody activities are as follows: hemagglutination-

inhibition test, complement fixation test, fluorescent antibody test, enzyme-linked 

immunosorbent assay (ELISA), and PRNT. The only test that measures the biological parameter 

of in vitro virus neutralization is PRNT, the most serologically virus-specific test between 

flaviviruses, and serotype-specific test between dengue viruses. PRNT correlates well to serum 

levels of protection from virus infection [120] and remains the laboratory standard against which 

other newer tests will need to be validated.  

PRNT allows for virus-antibody contact to happen in a test tube or plate, and then 

measures the antibody effects on viral infection by plating the mixture on virus-susceptible cells. 

These cells are overlaid with a semi-solid media that acts on restriction of the spread of progeny 

virus. Each virus that initiates a productive infection makes a distinguished area of infection, a 

plaque, which can be detected in many ways. During the direct staining of cells, the plaques are 

visualized in such a way that the cells are colored with vital dyes that permits observation of the 
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progress of viral plaques as uncolored holes in the cell monolayer. Neutral red is cytotoxic at 

high concentrations and light sensitive; therefore the dye concentration in the overlay is 

necessarily limited, and plates stained with neutral red should be kept in light-tight containers or 

incubators. Plaques are frequently counted manually and for the direct staining of cells, the 

plaques are counted 24 hours after the second overlay. The number of plaques formed is 

compared to the initial virus concentration to determine the percent reduction in total virus 

infectivity. In addition, many diverse computer analysis packages exist (e.g., SPSS or GraphPad 

Prism), and the reliability in the analysis technique is as vital as the selected method for analysis. 

To validate a particular test, the sample must meet the criteria: the integrity of the uninfected cell 

monolayer control (negative control), the appropriate plaque counts per well as determined by 

back-titration of input virus, little or no decrease in plaque counts with negative serum control, 

the appropriate PRNT titer of positive control sera, and no serum toxicity noticed in low serum 

dilutions [120, 121]. 

PRNT is calculated in a way that end-point titers are considered reciprocal of the last 

serum dilution, showing the desired percent reduction in plaque counts. The PRNT50 titer should 

be calculated based on a 50% or greater reduction in plaque counts and PRNT80 should be 

calculated on 80% or greater reduction in plaque counts. The PRNT50 titer is preferred over the 

ones with higher cut-offs (PRNT90) however, the PRNT50 titers are more variable. The PRNT80 

titers use higher cut-offs though provide more precise results from the linear portion of the 

titration curve. The more rigorous PRNT80 titers are more useful in DENV endemic areas for 

epidemiological studies or diagnostic purposes, by decreasing the background serum cross-

reactivities among flaviviruses. A drawback of the PRNT is that it is labor intensive, making it 

difficult to use for large-scale investigation and vaccine trials [120].  
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  Figure 1.3 World distribution map of dengue and Ae. aegypti in 2006. In blue are the 

areas infested with the mosquito vector Ae. aegypti and in red are areas with Ae. aegypti and 

dengue epidemic activity [122].  

  

Geographical Distribution and Incidence  

Dengue fever and Ae. aegypti mosquitoes have a worldwide distribution in the tropical 

areas of the world, with over 2.5 billion people living in DEN endemic areas [123-125].  With an 

estimated 50 to 100 million cases of DF and several hundred thousand cases of DHF occurring 

each year, depending on epidemic activity, DF/DHF is recognized as the most important 

arboviral disease of humans [123, 126, 127]. Currently, DHF is a leading cause of hospitalization 

and death among children in many southeast Asian countries where epidemics first occurred in 

the 1950s [128].  

DEN was reported in Africa in the late 19th and early 20th centuries. The epidemic in 

South Africa was confirmed by retrospective neutralizing antibody testing in the mid-1950s, but 

the other reported epidemics were not laboratory confirmed and therefore may not have been 
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DEN. During the 50 years from 1960 to 2010, twenty laboratories confirmed DEN outbreaks in 

15 countries in Africa, the majority in eastern Africa. DENV was first isolated in Nigeria in the 

1960s [129]. Subsequently, all 4 DENV serotypes have been isolated in Africa [130, 131]. 

DENV-2 has been reported to cause most epidemics, followed by DENV-1 [131]. Available data 

strongly suggest that DENV transmission is endemic to 34 countries in all regions of Africa. Of 

these countries, 22 have reported local disease transmission, 20 have reported laboratory 

confirmed cases, and 2 have reported only clinical cases that were not laboratory confirmed. In 

the remaining 12 countries, DEN was diagnosed only for travelers returning to countries to 

which DEN was not endemic;  DEN was never reported as occurring locally in these 12 

countries [130]. 

Reports of epidemic DF have increased dramatically since 1980 and surveillance for 

DEN in Africa has poorly improved during this century. Limited outbreaks have occurred in 

West Africa (Angola, 1986 and Senegal, 1990), but the most recent epidemic activity occurred in 

East Africa and the Middle East, including Seychelles (1977), Kenya (1982), Mozambique 

(1985), Sudan (1985), Djibouti (1991), Somalia (1982, 1993), and Saudi Arabia (1994) [130]. 

All four DEN serotypes have been involved. Sporadic cases of the disease clinically compatible 

with DHF have been reported from Mozambique, Djibouti, and Saudi Arabia [54, 130]. 

However, very recently a report described an imported DHF case caused by a DENV-2 West 

African sylvatic strain in a healthy man returning to Madrid from Guinea Bissau through 

Senegal. The patient was classified as experiencing grade II DHF with a risk of developing into 

grade III [132]. As indicated through the IgG avidity test, the patient responded with high avidity 

antibodies suggesting a secondary flavivirus infection.  
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Factors responsible for global resurgence 

The dramatic re-emergence of epidemic DF/DHF in the 20th century is very complex and 

not completely understood [123, 133]. The scientific community associates the re-emergence 

with the demographic and societal changes that have occurred over the last 50 years [54, 134]. 

The first factor identified is the major global demographic changes coupled with the exceptional 

population growth primarily in tropical developing countries. Likewise, unrestrained and 

unplanned urbanization, which has resulted in large and congested human agglomerations near 

urban centers in deficient housing with inadequate water, canalization, and disposal organization 

systems, favors the increased transmission of mosquito-, rodent- and water-borne infectious 

diseases. The second factor is caused by the plastic or cellophane materials that are non-

biodegradable; discarded into the environment, they collect rain-water and serve as ideal larval 

habitats for the vector mosquito. Moreover, in the past 20 years, used automobile tires and 

coconut shell refuse have increased dramatically making ideal larval habitats. All of these factors 

have participated in the expansion of the geographical distribution and of the increased 

population densities of the main mosquito vector Ae. aegypti. Effective Ae. aegypti mosquito 

control is practically nonexistent in the majority of the dengue-endemic countries. Over the past 

25 years, ultra-low-volume space insecticide sprays for adult mosquito control [54, 63]
 
have been 

emphasized, but shown to be ineffective [54, 63, 135]. Thus, hundreds of millions of people in 

urban centers of the tropics are living in intimate association with large populations of an 

efficient epidemic mosquito vector of DENVs. 
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A) The distribution of dengue serotypes in the year 1970. 

 

B) The distribution of dengue serotypes in the year 2004. 

 

Figure 1.4 The change in distribution in dengue serotypes [136]. 

One factor with a huge impact on the emergence of DF/DHF is the increase in air travel. 

The frequent epidemics and increased transmission of DEN that successively occurred in the 

American tropics, Asia, and the Pacific provided increased opportunity for the viruses to move 
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between countries and regions. Improvements in airplane design, incubating the virus, offer an 

ideal way of transporting DENVs between population agglomerates of the tropics resulting in a 

permanent exchange of DENVs and other arboviruses.  

As a final point, the public health infrastructure that is needed to deal with epidemic 

vector-borne infectious diseases has in the past 30 years in many countries been destroyed. 

Added limited financial and human resources have resulted in a „crisis of mentality‟ between the 

public health workers where there is emphasis on the implementation of emergency control 

measures in response to epidemics instead of developing programs to prevent epidemic 

transmission [54].  These have had detrimental effects on DEN prevention and control measures 

already lacking due to the poor surveillance system of the countries. This passive surveillance 

system relies upon reports by local physicians, who often have a low guide of suspicion and do 

not consider DEN in their differential diagnosis of DEN-like illness. As a result, the epidemic 

has often spread before detection and emergency control events are executed, with no impact on 

the course of the epidemic [54].  

Prospects for the future 

There is currently no vaccine for DF/DHF. Although live, attenuated vaccine candidates 

for all four virus serotypes have been developed [137], prediction for reversing the trend of 

increased epidemic DF/DHF must rely on mosquito control. New DENV strains and serotypes 

will likely continue to move between areas where Ae. aegypti occurs in infected air travelers, 

resulting in continued hyperendemicity, increased frequency of epidemic activity and increased 

incidence of DHF, if effective prevention programs are not implemented.  

Effective, sustainable prevention programs for DF/DHF must have several components 

[138]
 
such as an active, laboratory-based surveillance system, a rapid-response contingency plan 
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for prevention, education of the medical community and community-based, integrated 

Ae. aegypti control.  

 

Other Arboviruses of Potential Interest in Africa  

 Zika Virus 

Zika virus (ZIKV) is an enveloped, icosahedral virus with a non-segmented, positive 

sense, and single-stranded RNA genome. It is one of the two viruses of the Spondweni virus 

clade very closely related to the Spondweni virus within the mosquito-borne cluster of flavivirus. 

ZIKVvirus is a member of Flaviviridae family which includes DENV, YFV, West Nile virus 

(WNV), and Japanese encephalitis virus (JEV).  

The virus, first isolated in 1947, was found in the serum of the rhesus monkey in the Zika 

Forest of Uganda [139], and in 1948 was isolated from Ae. africanus mosquitoes in the same 

forest [140]. While the first well-documented case of ZIKV was in 1964, the virus was isolated 

for the first time from humans in 1968 and subsequently in 1971-1975 in Nigeria; 40% of 

persons tested had neutralizing antibody to ZIKV [141]. During the period from 1951 to 1981 

reports point to evidence of human infection by the virus in the African countries of Central 

African Republic, Uganda, Egypt, Tanzania, Sierra Leone, and Gabon. In Asia, there is evidence 

of human infection by ZIKV in Malaysia, India, the Philippines, Thailand, Indonesia, and 

Vietnam [142-146]. The virus was additionally isolated from Ae. aegypti mosquitoes in Malaysia 

and the Ivory Coast and from a human in Senegal [147]. 

ZIKV was isolated in nature from the Aedes mosquitoes from the genus as follows: Ae. 

aegypti an urban cycle vector, Ae. africanus a sylvatic cycle vector and from intermediate cycle 

vectors Ae. furcifer, Ae. vittatus, Ae. apicoargenteus, and Ae. luteocephalus [147-150]. To date 
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there is no solid evidence of a non-primate reservoir of ZIKV; however in one study, antibody to 

ZIKV was found in rodents [151]. The vertebrate hosts of the virus include monkeys in the 

sylvatic and humans in the urban cycles. It was proven in 2009 that ZIKV can be sexually 

transmitted among humans. Professor Brian Foy, a biologist from the Colorado State University, 

contracted Zika fever (ZF) through mosquito bites during a mosquito research trip to Senegal. A 

few days after his return to the USA and after having sexual intercourse with his wife, he and his 

wife fell ill with ZIKV, causing him and his wife a ZF, along with extreme sensitivity to light. 

Foy became the first person known to have transmitted an insect-borne virus to another human 

by sexual contact [152].  

The virus first infects dendritic cells near the site of inoculation, spreading to lymph 

nodes, and the bloodstream [153]. Even though, flaviviruses replicate in the cytoplasm, one 

study suggested that ZIKV antigens might be found within the infected cell nuclei [154]. ZIKV 

antigens have been found in human blood the day of the onset of illness and were isolated from  

monkey serum nine days after the onset. 

The common symptoms of ZIKV infection registered from the patients begin with mild 

headache, followed by maculopapular rash, fever, malaise, conjunctivitis, and arthralgia. Two 

days after the beginning of the first symptoms, the rash starts disappearing, and within 3 days the 

fever disappears and only the rash remains [155]. ZF is a relatively mild disease with 49 

confirmed cases and 59 unconfirmed cases. There is no death and no hospitalizations reported 

[156].
 
 So far, it presents as a mild febrile disease but with true potential as a virus and as an 

agent of unknown disease. Currently, there is no vaccine or any drug for ZIKV, and the only 

treatment is symptomatic. 
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In April 2007, outside of the African and Asian continent, the first outbreak of the disease 

was documented in the island of Yap in the Federated States of Micronesia. Originally it was 

assumed that the disease was DEN, CHIK or Ross River. However, serum samples from patients 

in the acute phase of illness contained RNA of ZIKV. ZIKV illness has been, to date, minor and 

self-limiting but WNV was before considered a relatively innocuous pathogen until large 

outbreaks with neuroinvasive disease were reported from Romania and North America. ZIKV 

might be considered an emerging pathogen because of the first confirmed infection outside its 

traditional geographic range of Africa and Asia in 2007 [156, 157]. The spread of ZIKV in the 

pacific could be problematic to detect because of cross-reactivity in the serological diagnostic 

assays. ZIKV can be easily confused with DEN and might contribute to illness during DEN 

outbreaks. The recognition of the virus requires collaboration between public health 

professionals, clinicians, and high-quality reference laboratories [155]. 

 Usutu Virus 

Usutu virus (USUV) is an African mosquito-borne virus of the family Flaviviridae, genus 

Flavivirus and belongs to the Japanese encephalitis serocomplex [158]. Flaviviral species, 

USUV and West Nile virus (WNV) in Africa, Asia and Europe; Japanese encephalitis virus 

(JEV) in Asia; Murray Valley encephalitis virus in Australia and Saint Louis encephalitis virus in 

the American continent developed from an ancestral flavivirus with a bird/mosquito natural 

cycle. Originally, in 1959 in South Africa, USUV was isolated from a mosquito vector Culex 

neavei. Later in subsequent years, USUV strains were identified from different bird and 

mosquito species in Africa, but only once has the disease presenting with rash and fever, been 

reported in humans in the Central African Republic [159, 160]. In the past, USUV was not seen 

as a potential risk for humans; the virus had never been related to severe or fatal diseases in 
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animals or humans, and it had never before been detected outside tropical and subtropical Africa 

[159]. 

In the summer 2001, several species of resident birds, especially of the order 

Passeriformes, were major victims of the emergence of USUV in Austria [161-163]. In the years 

that followed, the virus was isolated from dead birds and/or from mosquitoes in several 

European countries, including Hungary in 2005 [164], Switzerland in 2006 [165], Italy in 2009 

[166], and Spain in 2006 and 2009 [167, 168]. In wild birds, USUV infection has been 

serologically isolated in England (2001–2002) [169], Spain (2003–2006) [170], Czech Republic 

(2005) [171], Poland (2006) [172], Switzerland (2006) [165], Germany (2007) [173], and Italy 

(2007) [174]. The recurrence of the virus over several years in Austria (2001–2006), Hungary 

(2003–2006), Italy (2006–2008), and Spain (2006, 2009) suggests frequent reintroduction of the 

virus or, more probable, persistence of transmission in the affected areas, most possibly by the 

overwintering mosquitoes. Findings supported by partial nucleotide sequence analysis found 

>99% identity between the viruses that emerged in Vienna in 2001, in Budapest in 2005, and in 

Zurich and Milan in 2006. The one-time invasion of USUV from Africa to Europe (Vienna) is 

highly agreeable, and this particular strain has since then been spreading in Central Europe [165]. 

However, in Italy a serological and virological study monitoring the USUV circulation proposes 

a different setting. This study carried out with sentinel horses and chickens, wild birds, and 

mosquitoes in 2008 and 2009 [175] proved that the virus had circulated in Italy in these two 

years. In addition, the data confirmed USUV infection in horses for the first time in Europe. The 

sequence assessment of USUV detected from different species in different counties indicated that 

there were two different strains of USUV circulating in Italy in 2008 and 2009, and these strains 

adapted to new hosts and vectors to become established in new areas [175]. 



31 
 

In the summer of 2009, the virus was associated with neurological disorders of two 

immunocompromised patients that received blood transfusions in Italy [176, 177] and was 

isolated from the serum obtained from one of the patients during the acute phase of the disease. 

The two infections could occur with local transmission, either directly by a mosquito bite or 

indirectly by an infected donor. The two patients were the first reported human cases worldwide 

of USUV with neuroinvasive illness. The common clinical symptoms were persistent fever, 

headache, and impaired neurological functions. One patient developed hepatitis, a rare organ 

damage case described previously in WNV infection [178, 179]. The clinical picture showed a 

clear involvement of the central nervous system, similar to the related WNV neuroinvasive 

disease. Whether this new tropism was associated with a new inoculation route by transfusion, 

and/or to the fundamental diseases of the patients, remains unclear, but these findings support 

further investigations. In recent sequencing studies of USUV strains obtained in Italy in 2009 

from mosquitoes, birds and humans, the sequences obtained from humans matched with the 

sequences obtained from birds, indicating  an endemic distribution of USUV in Europe [175]. 

USUV infection requires that the laboratory confirmation distinguish between direct 

methods detecting the virus by cell culture or genomic amplification and indirect methods that 

detect the antibody response to the infection. Serological diagnosis of USUV infections in 

humans requires a similar approach to the one used for WNV. Because of the lack of experience 

with USUV infection in humans, it is estimated that the incubation period spans from two to 14 

days, but the exact time frame is unknown; USUV can be in the initial stage of the disease 

noticeable in CSF and serum. The IgM antibody appears five days after onset of fever and 

persists in serum for many months after infection [180]. Diagnosis of USUV will be 

complicated, particularly due to flavivirus cross-reactions, especially in the case of WNV and 
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tick-borne encephalitis virus (TBEV) in several European countries [181]. It is also believed that 

cross-reactivity will be higher for IgG than for IgM detection; hence, improvement of tests for 

USUV-specific IgM is needed. As an available alternative, the seroconversion test of IgG 

antibodies for the acute and convalescent sera using in-house or commercial ELISA tests based 

on WNV antigens should be used. Serum is tested by the low specific hemagglutination 

inhibition [182] or ELISA tests [174]. However, PRNT must be performed to confirm positive 

sera, and is complex, costly, time-consuming and not accessible for laboratories lacking high 

bio-containment facilities. 

In Europe there is a risk that potential emerging infectious diseases caused by WNV or 

USUV will not be recognized in time by existing surveillance infrastructures of the various 

European countries [183]. The circulation of USUV in consecutive years in Austria, Hungary, 

Italy, and Spain, the seroconversion in sentinel animals, and the virus detection in wild birds 

makes these regions appropriate to sustain USUV circulation between vectors and vertebrate 

hosts, , establishing the endemic cycles. This illustrates a need for active surveillance measures 

and early warning systems to detect WNV and USUV activity, and to assess the risk for public 

health. A multidisciplinary methodology for the assessment of risk of USUV and WNV 

transmission, and the impact of the diverse components (mosquitoes, birds, horses, and humans) 

must always be carefully considered.  

 Koutango Virus 

Koutango Virus (KOUTV) is an arbovirus from the family Flaviviridae, genus Flavivirus. 

It is a single-stranded virus with a positive sense RNA genome. Viral particles are around 40-70 

nm in diameter comprised of a ribonucleoprotein core, with icosahedral nucleocapsid, and 

lipoprotein envelope. The virus belongs to group B at the WNV group [132]. While searching for 
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an evolutionary relationship of the WNV viral strains between Africa, the Middle East, and 

Europe, Charrel et al. (2003) considered the whole genomes of three WNV strains from France 

(horse-2000), Tunisia (human-1997), and Kenya (mosquito-1998), and the envelope, NS3 and 

NS5 genes of KOUTV. The phylogenetic analyses, including all accessible full-length 

sequences, discovered that KOUTV is a distant variant of WNV, the three characterized strains 

belong to lineage 1, clade 1a, and the Tunisian strain is the origin of the lineage of viruses 

introduced in North America [132].  

The most comprehensive phylogenetic analyses of flaviviruses, based on NS5 sequences 

[158, 184], demonstrated that the West Nile/Kunjin group belongs to the evolutionary lineage of 

Japanese encephalitis viruses, together with KOUTV and other viruses, such as the Murray 

Valley encephalitis and St. Louis encephalitis viruses. This is also supported by a recent analysis 

of envelope and NS5 sequences [158, 184]. Distances between KOUTV and lineage 1 and 2 

viruses are 25%, while distances between Japanese encephalitis virus and other viruses are 

30%. This shows that KOUTV is more closely related to the West Nile/Kunjin virus than to 

Japanese encephalitis virus, and may be considered as a distant variant of WNV. It is of note that 

no human case of KOUTV infection in nature has been reported to date. Although its capacity 

for infecting humans is not known, a single infection was confirmed in humans from a laboratory 

accident of a worker [17] who presented with a mild febrile illness. The disease caused by 

KOUTV results in flu-like symptoms such as two-day fever accompanied by achiness and retro-

bulbar headache, to erythematous eruption on the flanks [17].  
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Figure1.5 Phylogenetic tree illustrating the genetic relationship between representatives 

of Japanese encephalitis virus and selected WNV strains based on partial genome sequences of 

the NS5 protein gene. Bar on the left demonstrates the genetic distance [164].  

   

                           

Figure 1.6 Phylogenetic tree illustrating the common ancestor of various arboviruses 

demonstrating that KOUTV is a distant ancestor of WNV [163]. 
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KOUTV was first isolated in 1968 from the blood of the wild rodent reservoir Tatera 

kempi in Senegal in the Koutango region and from the rodent Mastomys in Central African 

Republic; in 1974 the virus was also isolated from gerbils in Somalia [5]. The virus is 

transmitted in nature by the mosquito vector Aedes spp. Intra-cerebral inoculation of the virus to 

suckling mice causes death on days 3 to 4 post infection [17]. It was confirmed from the infected 

field isolates that Aedes spp. mosquitoes are implicated in the KOUTV transmission cycle [17, 

185] and the Aedes aegypti mosquito is a competent vector during the KOUTV transmission 

cycle in the laboratory [17].  

The particular emphasis to arboviruses in general and KOUTV in particular is based on 

the worldwide re-emergence of arthropod-borne viral pathogens and the ability of the emergent 

arboviruses to expand host and geographical range, partly due to the plasticity of the RNA 

genome [3]. We are inclined to pay special attention to the increase in activities in forested areas 

worldwide with consequential human exposure to sylvatic arbovirus cycles. Likewise, year 

round hot and humid conditions in the tropics suits well for arboviral maintenance with the 

potential to emerge as significant human pathogens [4], and the recognition of hundreds of 

distinct arbovirus species with many of them being associated with humans. In West Africa, there 

have been reports of increased arboviral activities coupled with the isolation of diverse 

arboviruses since the 1980s and registered outbreaks followed by the mass vaccination 

campaigns [8, 13].  The recent and important evidence of a sylvatic cycle of DEN in human 

populations in Senegal and the Republic of Guinea added to the vertical transmission of Aedes 

aegypti and the ability to persistently infect vertebrates was reinforced by inadequate 

surveillance and substandard reporting on arboviral illnesses in Africa.  
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 Objective and Rationale 

Even though arboviruses are known to exist in the region, lack of efficient surveillance 

systems prohibit definite diagnosis of arboviruses that may have circulated for many years. It is 

therefore possible that malaria and typhoid fever are over-diagnosed, because of this lack of 

more sophisticated equipment, reliable testing machinery, and well trained personnel. In 2006, 

malaria and Lassa fever (LF) were first ruled out as causative agents of patients who presented to 

the hospital in Sierra Leone, with acute febrile illnesses. Patients were subsequently diagnosed 

with a fever of unknown origin. We propose that arboviruses may contribute considerably to the 

numbers of undiagnosed febrile illnesses in Sierra Leone. 

From a Tulane University Health Care team, 151 serum samples of patients with acute febrile 

illness, ruled out to have malaria or LF (endemic diseases of the West Africa), were collected 

from Kenema hospital in Sierra Leone and sent to our laboratory at Louisiana State University, 

USA. To determine the exact cause of the febrile disease of unknown etiology circulating in 

Sierra Leone, our laboratory first attempted a virus cultivation assay from serum samples whose 

RT-PCR was negative. Later, the sera were tested for IgM/IgG antibody levels against DENV, a 

presumable flavivirus potentially circulating in West Africa and may be the cause of febrile 

illnesses to humans. 
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Introduction 

Over the last few decades, there has been a worldwide re-emergence of arthropod-borne 

viral pathogens (arboviruses) [1, 2], particularly those transmitted by mosquitoes. Despite the 

public health importance, the geographic range of the pathogens and their relative impact, the 

epidemiologic characteristics linked to the arbovirus infection, are poorly defined in many 

regions of the world. Arboviruses are a heterogeneous group, but the medical relevant ones 

belong to a few virus genera, including Flavivirus, Alphavirus, and Orthobunyavirus. Examples 

of emerging arboviruses include West Nile virus (WNV; Flavivirus) in North America, Japanese 

encephalitis virus (JEV; Flavivirus) in Asia, chikungunya virus (CHIKV; Alphavirus) in the 

Indian Ocean region and dengue viruses (DENV; Flavivirus) globally.  

One shared characteristic of many emergent arboviruses is the ability to expand host and 

geographical range, due in part to the plasticity of the RNA genome [3]. Some arboviruses have 

developed the ability to colonize humans as their primary reservoir, while others depend on birds 

or peridomestic animals, with human infection resultant from spillover from zoonotic replication 

cycles. The increase in activities on forested areas worldwide is likely to increase human 

exposure to sylvatic arbovirus cycles; at particular risk are year round hot and humid regions 

found mainly in tropical areas, which provide suitable grounds for arboviral maintenance and 

potential for emergence as significant human pathogens [4]. In the neotropics alone, greater than 

145 distinct arbovirus species have been recognized [4], many of them have already been 

associated with human illnesses.  

The limitation of implementing surveillance for arboviral diseases is the generic nature of 

disease presentation. Whereas severe disease can result, such as hemorrhagic manifestations 

(DENV and YFV) or neurological disease (WNV, JEV, and VEEV), arbovirus infection usually 
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manifests itself with mild to moderate febrile illness [2, 5, 6]. In early stages of disease 

development, patients very often present with unrecognized febrile illness [5, 7] making the 

clinical diagnosis erratic [8]. For example, in DENV-endemic areas, diseases caused by co-

circulating arboviral pathogens have often been misdiagnosed [8, 9]. With similar clinical 

presentation and a variety of potential etiologic agents, laboratory support has become an integral 

part of effective surveillance programs. The impact on human health in endemic regions and the 

potential for the spread of disease emphasize the importance of improving understanding of 

arbovirus transmission.  

Currently, the epidemiological features and geographic range for many endemic 

arboviruses in West Africa are poorly understood. Malaria, YF, LF, DEN and many yet 

undiagnosed arboviral illnesses may coexist in a region [10]. The definitive diagnosis made by 

serology or virus isolation requires trained health care personnel, proper laboratory equipment, 

and special reagents for the interpretation of results. To begin to address this gap, we conducted a 

laboratory-supported clinical-based study to identify certain etiologic agents associated with 

undifferentiated febrile illness in Sierra Leone. Herein, we describe the serological testing of 

blood samples on arboviruses and their relative contribution to human febrile illness. 

 

Materials and Methods 

Blood Samples 

The enrollment of patients in the study and collection of blood was conducted under the 

approved study by the Tulane University Internal Review Board and the Ethics Committee of 

Sierra Leone Ministry of Health. Blood samples were collected at the Kenema District hospital 

in Sierra Leone from patients in an acute stage of the disease and on subsequent days 7 (late 
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acute) and 28 (convalescence), if available. At every visit, 5 ml of blood was drawn by 

venipuncture and collected in red-top Vacutainer® tubes. Because of Lassa virus endemnicity to 

the area, precautions were taken to make potential LF infected serum non-infectious. Thus, all 

samples were inactivated by heating (56 ºC for 30 min) before manipulation [11]. The serum was 

then separated from the clot by centrifugation and stored at approximately -11
º
C in labeled 

cryovials in a solar-powered freezer until testing. Serum samples were then transported on cold-

packs by road to Côte d’Ivoire, where they were shipped on dry ice to Tulane University in New 

Orleans, LA. Finally, they were transferred to the School of Veterinary Medicine at Louisiana 

State University (SVM-LSU). These patients were determined not to have malaria or LF 

infections by the methods outlined in Moody, et al. and Bausch et al., respectively [11, 12]. 

Cells and Viruses 

African monkey kidney-derived Vero cells were propagated in 1X M199 Earle’s 

supplemented with fetal bovine serum (FBS) and Penicillin, Streptomycin, and Fungisome 

(P/S/F). Vero cells were grown at 37
º
C in a 5.1% CO2 environment. We first attempted to isolate 

the virus by inoculating Vero cell culture with 100 μl of serum. However, detection of the live 

virus by either visualization of cytopathic effects or RT-PCR and qRT-PCR of the cell culture 

supernatant was unsuccessful.  

We then used the sera to determine immune reactivity to DENV, which would indicate 

the presence of antibody against these viruses in the human population of Sierra Leone. 

Serological IgM/IgG testing using a PRNT50 protocol was utilized [13]. We tested serum for 

neutralization using stock representatives of DENV (Table 2.1). Further, we utilized a more 

stringent, cross-neutralization assay to differentiate from flaviviruses: WNV, YFV, KOUTV, 
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ZIKV, and USUV. Viruses were tested for viral concentration by plaque assay to determine what 

dilution of stock virus would yield 100 plaque forming units per 100 μl.  

 

Table 2.1 Viral strains used to conduct the PRNT 

Virus type Strain 

DENV - 1 West Pacific 74 

DENV - 2 16803 Thailand 

DENV - 3 CH 55 

DENV - 4 LN 634441 human Malaysia, 1988 

KOUTANGO DAK Ar D 5443 Suckling mouse 8 (30525), May 21, 1989 

WNV  WN02 

YELLOW FEVER 17D Vaccine TVP-9447 Vero1, Sept.21, 2004 

USUTU  TVP-10675 DAK PM173269 Vero 1 Sep 14 2007 

ZIKA TVP-1565 - C6/36, 1 Dec. 1987 

 

Plaque Reduction Neutralization Test (PRNT) 

Using the PRNT, samples were screened for reaction to DENV by utilizing Vero cell 

culture grown on 6-well plates for a period of 2-4 days until the confluence reached at least 80%. 

After the media was removed from the 6-well plates leaving the attached cell sheet, 100 μl of a 

virus-serum mixture, previously incubated for an hour at 37
º
C, was gently pipetted into each 

well. The plates were incubated for an hour at 37
º
C in a 5.1% CO2 environment, and gently 

rocked every 15 min. The first overlay was prepared using 2X M199 Earle’s, FBS, P/S/F, and 

agar powder dissolved in distilled water. The agar mixture was poured into the media mixture or 

vice-versa and swirled for approximately 2 min; then 3 ml was overlaid onto each well of a 6-

well plate with care taken not to burn the cell sheet.  

After the first overlay, the second overlay was added on day 4 for WNV, ZIKV, and 

KOUTV, day 5 for YF and USU, and day 6 for all DENVs. The second overlay was prepared 

with the same media and agar preparations as in the first overlay, with the addition of neutral red 
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stain and 0.5% NaCl. After mixing, 1.5 ml was overlaid onto each well of a 6-well plate, which 

was then stored overnight at 37
º
C in a 5.1% CO2 environment. Plaque formation was determined 

24 hours after the second overlay. 

Owing to the great deal of cross reactivity of flaviviruses, we increased the specificity of 

the PRNT testing to determine which DENV serotype reaction was occurring in these patients 

[14-16]. Thus, an endpoint titration and cross-neutralization reaction study of the PRNT50 DENV 

positive samples was performed.  Samples were serially diluted to 1:10, 1:20, 1:40, 1:80, 1:160, 

and 1:320 with serum:BA1 diluent (Hank’s M-199 salts, 1% bovine serum albumin, 350 mg/l 

sodium bicarbonate, 100 units/ml penicillin, 100 mg/l streptomycin, 1mg/l amphotericin B in 

0.05 M, Tris, pH 7.6). Samples were then serologically tested against the uniform viral 

concentration of DENV 1, 2, 3, and 4, as well as ZIK, KOUT, USU, YF, and WN viruses.  

The plaque reduction neutralization was interpreted as follows: Three positive control wells were 

made per viruses. The cell sheets were pipetted with virus only and were checked and counted 

for the average number of plaques formed by the virus.  Wells that had been treated for testing 

were pipetted with serum/virus mixtures and were read and plaques counted. Plaque reduction by 

patient antibodies to virus was expressed as the proportion of plaques formed in the serum/virus 

samples divided by the average number of plaques in the positive controls. This proportion was 

then expressed as a percent reduction. Reduction percentage values equal to or greater than 50% 

(PRNT50) were considered to have a positive result according to standard methods; those with 

values of 80% (PRNT80) were considered highly neutralizing [17].  
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Results  

Dengue virus screening with PRNT50 

We tested 151 human serum samples from Sierra Leone for reaction to DENV. Of the 

151 samples tested, 118 (78.15%) had at least a 50% reduction in plaque formation.  Forty-seven 

samples (39.83%) showed neutralization to a single DENV at the PRNT50 level: 13 (8.61%) each 

to DENV-1 and DENV-4; 20 (13.25%) to DENV-2 only, and 1 to DENV-3 only (0.66%). Thirty 

samples (25.42%) neutralized a combination of two DENV serotypes, 33 samples (27.97%) 

neutralized a combination of three DENV serotypes, and 8 samples (6.78%) neutralized all four 

DENV serotypes. 33 serum samples did not neutralized any of the DENV serotype. 

 

      

Figure 2.1 Overall PRNT50 results based on the combination of positivity of serum samples to 

dengue virus serotypes. The highest percentage (39.83%) of samples neutralized DENV by one 

serotype of DENV-1, DENV-2, DENV-3, and DENV-4 followed by 27.97% of samples 

neutralizing three out of four serotypes of DENV; More than a quarter (25.42%) of samples 

neutralized two combinations and 6.78% neutralized all four DENV serotypes. 
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Figure 2.2 PRNT50 neutralization profile of 47 samples that reduced the plaque formation of 

single dengue virus serotypes. 

 

 

Figure 2.3 PRNT50 results of diverse DENV serotypes neutralized by the 118 serum samples. 
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The PRNT assay is considered a standard serological test for detecting antibody [18, 19]. 

However, the cross-reactivity of antibodies to antigenic epitopes common to all flaviviruses is an 

important constraint in serological diagnoses [20-22]. In order to increase the specificity of the 

PRNT against DENV serotypes and possibly other flaviviruses, endpoint titration reactions were 

performed on a total of 52 of the 118 PRNT50 positive samples.  

 Endpoint titration 

Patients with serum available for further testing after the DENV screening were then 

tested for levels of antibody to all four DENV, YFV, ZIKV, WNV, USUV, and KOUTV.  Serum 

was considered to be moderately neutralizing if it reduced plaques by 50-79% and highly 

neutralizing if it reduced plaques by greater than or equal to 80%. In figure 2.4, we report the 

qualifying neutralization at the highest level of dilution. 

Nine patients had moderate or strong neutralizing antibody to DENV-1, and seven of 

those had highly neutralizing antibody in diluted serum. Twelve patients had neutralizing 

antibody to DENV-2 in diluted serum, seven with high levels of neutralization.  Four patients 

neutralized DENV-3, two with high levels of neutralization; seven neutralized DENV-4 with five 

at the PRNT80 level. 

Twelve patients had neutralizing antibody to YF from which three highly neutralizing.  

Interestingly, nine patients had neutralizing antibody to KOUTV, an arbovirus previously 

undetected in the human population; six of these patients had strong neutralizing antibody to 

KOUTV, and one patient had a moderate level of neutralizing antibody to ZIKV, which has also 

been unreported in this region.  There was no neutralization to either WNV or USUV. 

Fourteen patients had endpoint titrations that indicated moderate (PRNT50) and/or high 

(PRNT80) neutralization to more than one flavivirus.  
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Figure 2.4 PRNT80 endpoint titration of serum samples to diverse arboviral serotypes circulating 

in West Africa. 

 

 
 

Figure 2.5 PRNT80 and PRNT50 endpoint titration of serum samples to diverse arboviral 

serotypes circulating in West Africa. Blue denotes (PRNT80) high level of neutralization and red 

represents (PRNT50) moderate plaque formation reduction. 
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Table 2.2 PRNT80 neutralization titers to arboviruses. 

 

Sample # DENV-1 DENV-2 DENV-3 DENV-4 KOUTV YFV WNV ZIKV 

G – 105
-1

 ≥ 1/320               

G – 151
-1

 ≥ 1/320               

G – 216
-1

 ≥ 1/320               

G – 224
-1

 ≥ 1/320               

G – 116
-1

   ≥ 1/320             

G – 137
-1

   ≥ 1/320             

G – 140
-1

   ≥ 1/320             

G – 179
-2

   ≥ 1/320             

G – 190
-1

   ≥ 1/320             

G – 056
-1

     ≥ 1/320           

G – 204
-1

     ≥ 1/320           

G – 084
-12

       ≥ 1/320         

G – 143
-1

       ≥ 1/320         

G – 186
-1

       ≥ 1/320         

G – 201
-1

       ≥ 1/320         

G – 077
-1

         ≥ 1/320       

 

Table 2.3 PRNT50 neutralization titers to arboviruses. 

 

Sample # DENV-1 DENV-2 DENV-3 DENV-4 KOUT YF WNV ZIK 

G – 152
-1

 ≥ 1/320               

G – 232
-1

 ≥ 1/320               

G –  142
-1

     ≥ 1/320           

G – 110
-1

         ≥ 1/320       

G – 055
-1

         ≥ 1/320       

G – 049
-1

         ≥ 1/320       

G – 061
-1

             ≥ 1/320   

G – 108
-1

             ≥ 1/320   

G – 119
-1

             ≥ 1/320   

G - 154
-1

        ≥ 1/320 
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Table 2.4 PRNT80 (*) and PRNT50 (**) neutralization titers to arboviruses 

Sample # DENV-1 DENV-2 DENV-3 DENV-4 KOUT YF WNV ZIK 

G – 163
-1

 ≥ 1/320*         ≥ 1/320**    

G – 205
-1

 ≥ 1/320*         ≥ 1/320**    

G –  213
-1

 ≥ 1/320*         ≥ 1/320**    

G – 129
-2

   ≥ 1/320*   ≥ 1/320**        

G – 155
-1

   ≥ 1/320*       ≥ 1/320**    

G – 173
-2

       ≥ 1/320*   ≥ 1/320**    

G – 037
-1

   ≥ 1/320**     ≥ 1/320*      

G – 062
-1

   ≥ 1/320**     ≥ 1/320*      

G – 130
-1

   ≥ 1/320**     ≥ 1/320*      

G – 144
-1

     ≥ 1/320**   ≥ 1/320*      

G – 121
-1

         ≥ 1/320* ≥ 1/320**    

G – 047
-1

   ≥ 1/320**       ≥ 1/320*    

G – 181
-1

       ≥ 1/320**   ≥ 1/320*    

G – 174
-2

   ≥ 1/320**       ≥ 1/320*    

 

Table 2.5 Summary of PRNT endpoint high neutralization titers to arboviruses. 

  DENV-1 DENV-2 DENV-3 DENV-4 KOUT YF WNV ZIK 

PRNT80 7 7 2 5 6 3 - - 

PRNT50 2 5 2 2 3 9 - 1 

TOTAL 9 12 4 7 9 12 - 1 

 

 

Discussion 

Arboviruses have been isolated from arthropod vectors and vertebrates such as bats, 

birds, and non-human primates in West Africa where outbreaks of arboviral diseases have been 

reported [23-28]. Often, patients present with late stages of febrile illness and, since isolation of 

virus is difficult at this stage, malaria and typhoid fever may be over-diagnosed in the absence of 

other etiologic agents [29]. Patients presenting to the Mano River Union-Lassa Fever Network 
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(MRU-LFN) health care facility were tested for malaria and Lassa fever and, when those agents 

were ruled out, were given a diagnosis of fever of unknown origin. 

Our initial screening of patient serum at the PRNT50 level indicated that any of the four 

serotypes of DENV was likely underdiagnosed and could be an etiologic agent of these fevers of 

unknown origin.  Due to the cross reaction of antibodies, we performed the endpoint titration test 

to get a more specific description of the immune status of these patients.  Interestingly, we found 

evidence that not only are the four serotypes of DENV co-circulating in this area, but KOUT and 

YF viruses are likely circulating as well.  While KOUT has been reported in other vertebrates, 

this is the first report of transmission to the human population.  The number of patients with 

strong neutralizing antibody (>80%) further indicates that transmission of KOUT is occurring in 

this region and that PRNT results are not due to cross-neutralization. 

One patient was found to have moderate neutralizing antibody to ZIKV.  Although the 

level was only moderate (>50%, but < 80%), there was no cross reaction in any of the other 

patients’ serum samples, leading us to conclude that this is actual neutralization and not cross-

reactivity of antibodies.  However, the number of patients with neutralizing antibody to YFV 

may overemphasize the relative importance of YF in the area, as vaccination to YF is widely 

used, and antibody titers are known to persist. 

Our study is not without limitations. Power outages in Africa posed a challenge to 

maintaining frozen sera and proper storage of specimens and reagents. This potential obstacle 

could have resulted in the deterioration of antibodies, which raises the possibility that even our 

report underestimates the frequency of infection in patients [29]. While the PRNT does not 

differentiate IgM from IgG antibody, there is speculation that the infections by these flaviviruses 

caused the febrile illness, demonstrating the importance of arbovirus surveillance in the areas. 



65 
 

Reports suggest that arboviruses circulate frequently in Sub-Saharan Africa [29]. 

Through PRNT assay confirmation, we have provided evidence that neutralizing antibodies to 

DENV, YFV, ZIKV, and KOUTV exist in patients in Sierra Leone. Endpoint titrations 

confirmed high levels of antibodies neutralizing DENV 1, 2, and 4, YFV and KOUTV, and 

moderate levels to DENV-3 and ZIKV (Figure 2.4).  

The PRNT50 DENVs results from the laboratory added to the report of DENV circulation in 

West Africa. By taking into consideration the cross-reactivity of serum antibodies to multiple 

flaviviruses [14], we determined that a  PRNT80 endpoint titration gave more specific results, 

especially important in the context of multi-serotype viruses such as DENV and the general 

cross-reactivity of flaviviruses. Our endpoint PRNT80 results of the patients from Kenema 

Hospital in Sierra Leone suggests that the flaviviruses DEN, YF, and KOUT viruses circulate in 

the region and are likely the etiological agent of at least some of these fevers of unknown origin. 

Additionally, we are the first to confirm the circulation of a human serum neutralization of 

KOUT virus, a previously understudied and undiagnosed arbovirus of medical importance. More 

detailed study of the arbovirus presence in this region is needed to detect the possibility of 

transmission of these and other arboviruses into the human populations. 
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Chapter 3: Flow Cytometry-based Assay for Titrating Koutango virus and Immuno-
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Introduction  

The serological testing of blood samples on arboviruses determines the PRNT. As the 

gold standard for measuring the biological parameter of in vitro DENV neutralization, the PRNT 

data can be correlated to determine serum levels of protection from virus infection [1]. However, 

this process is very laborious, poorly automatable, and requires several hours to several days to 

complete. Additionally, some virus isolates do not form a solid cytopathic effect on cell 

monolayers presenting difficulties for cells growing in suspension [2].  

The early events that occur during the interaction between the virus and the cell can have 

reflective influence on the disease outcome. Defining the factors that effect this interaction could 

lead to improved understanding of disease pathogenesis and influence strategies for vaccine or 

therapeutic development. Although different methods have been developed to calculate the 

amount of diverse infectious viruses in a variety of samples, specific advancements for this 

particular interaction would be valuable. Recent marked improvements in fluorophores 

development [3-5] and imaging technology [6] have helped visualize and basically understand 

the KOUTV-target cell interaction, leading to a reduction in millions of infections of unknown 

etiology that occur annually. 

Many of the techniques implemented in Flow Cytometry-based Assay (FACS) are 

centered on the identification of infected cells at the single cell level using immunodetection of 

structural viral proteins (glycoproteins) [7-10]. The KOUTV external scaffold consists of 

envelope glycoprotein (E) dimers protecting the nucleocapsid shell containing a positive sense 

single-strand RNA genome [11]. These protein subunits on the virus surface can thus be labeled 

with an amine reactive dye and detected by the FACS machine or pictured through immuno-

fluorescent microscopy by a simple method of labeling of KOUTV with Alexa Fluor 488. Flow 
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cytometry can be used to estimate the degree of labeling for fluorophores that can be excited and 

detected by the FACS machine. Alexa Fluor dyes have high photostability and are less pH-

sensitive than the common dyes, the fluorescein and rhodamine [4], making them perfect for 

studies on cellular uptake and endosomal transport of the virus. The conjugation of Alexa Fluor 

dye did not affect the recognition of labeled KOUTV by virus-specific antibody and its putative 

receptors in the host cells [12]. Such titration procedures have already been developed for many 

other viruses such as influenza viruses, adenoviruses, HIV-1, SV40, human coronaviruses, 

hepatitis A virus, as well as for recombinant and/or virus-like particles [7, 9, 10, 13-21].  

Basically, the FACS technique calculates the virus titer from the proportion of infected 

cells (i.e. positively labeled) after exposure of a given number of indicator cells to a given virus 

suspension volume. The hypothesis is that a single virus particle infects one single cell. 

However, at an extremely high multiplicity of infection (MOI) such an hypothesis becomes 

inaccurate, leading to an underestimation of virus titers. Certainly, the higher the MOI, the higher 

the probability of multiple viruses infecting a single cell becomes. Similarly, during the assay 

secondary infections of cells by newly formed viruses lead to overestimation of the virus titer. 

We have monitored the conditions for the use of flow cytometry for virus quantification 

with a specific focus on DENV-2 and KOUTV, while taking into consideration the subsequent 

parameters: (i) cells infected by a particular virus must be easily distinguished from the 

uninfected cells by the emitted fluorescent signal above the auto-fluorescence background; (ii) in 

order to avoid secondary infection, the measurement should be best conducted at, or just before 

to, the conclusion of the first viral replication cycle. The assay could be optimized to end near 

the duration of a single replication cycle [16]. This method was validated by the correlation 

found in the DENV-2 and KOUTV FACS results.  
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In a favorable comparison, this assay was concluded in one day or less compared with the 

nearly one week period for PRNT methods in use for DENV and KOUTV serological assays. In 

order to validate this rapid assay for DEN and KOUT virus titrations, visualization confirmation 

of viral particles by Indirect Immuno-fluorescence Assay (IFA) to the corresponding viruses was 

accomplished. An increasing amount of virus samples quantified in correlation with the 

cumulative time-point technique showed a strong connection, indicating the accuracy of the 

novel method. This technique was applicable using MOI 0.1 for both viruses.  

Although plaque assays for titrating KOUTV are suitable for analyzing the DAK 

ArD5443 Suckling mouse 8 (30525) strain three days post inoculation (dpi), flow cytometry is 

an innovative improvement that follows the infection at the early stage and determines the viral 

titer [9, 22-25]. The flow cytometry-based assay can also be used to detect KOUTV in clinical 

samples and to measure the ability of the virus to infect a diverse number of cell types [26-31]. 

The PRNT and the viral neutralization assay are being replaced by FACS for many arboviruses 

and could be introduced to KOUTV infection testing as well. Here, we report on an in vitro 

technique with FACS for titrating KOUTVs and on IFA confirming the early interaction event 

between the virus and cells. 

 

Materials and Methods 

Cells and Viruses  

African Green monkey kidney cells were maintained in 1X M199 Earle’s supplemented 

with 10% FBS and 2% P/S/F at 37
º
C in a 5% CO2 environment. 

The stock viruses KOUTV DAK Ar D 5443 Suckling mouse 8 (30525), May 21, 1989, 

and DENV-2 16803 Thailand were used for the FACS experiment. The KOUTV was obtained 
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from Robert B.Tesh, M.D. from the Center for Biodefense and Emerging Infectious Diseases, 

University of Texas Medical Branch (CBEID-UTMB).  

Antisera and Fc Blocking Reagent  

The mouse anti-flavivirus group antigen monoclonal antibody 4G2 (IgG2a) (Millipore, 

Temecula, CA) was used as the primary antibody. Alexa Fluor 488 goat anti-mouse IgG 

(Millipore, Temecula, CA) was used as the secondary antibody. The IgG antibody is labeled with 

a fluorescent Alexa Fluor 488 dye which reacts with IgG heavy chains in all classes of 

immunoglobulin light chain from the mouse. Human Fc Blocking reagent supplied in the buffer 

containing stabilizer and 0.05% sodium azide was purchased from Miltrnyi Biotec GmbH. 

FACS Titration Assay 

Infection of Vero Cells 

Vero cell culture was seeded onto a 75 ml flask and incubated at 37
º
C in a 5% CO2 

environment until cells were approximately 90 to 95% confluent. Cells were harvested by 

aspirating the medium after the addition of 10 ml of PBS (1%; pH7.2). Cells were gently swirled 

to rinse the cell monolayer and the fluid was aspirated. This procedure was repeated two to three 

more times. The 0.1 MOI KOUTV concentration diluted in BA-1 diluent (Hank’s M-199 salts, 

1% bovine serum albumin, 350 mg/l sodium bicarbonate, 100 units/ml penicillin, 100 mg/l 

streptomycin, 1mg/l amphotericin B in 0.05 M, Tris, pH 7.6) to a final volume of 100 µl was 

added to the cells. The virus-cell complex was incubated at 37
 º 
C for 1 h, and plates were rocked 

every 15 min. The medium was removed, and cells were washed in phosphate-buffered saline 

(PBS). With 10% FBS and 2% P/S/F, 10 ml of 1X M199 was added to the flask, and the virus-

cell complex was incubated for further labeling and visualization after 6, 12, 18, and 24 h at 37
º
C 

in a 5% CO2 environment. 
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FACS Procedures on Vero Cells 

After 6, 12, 18, and 24 h, the medium was aspirated and the cells were washed and 

trypsinized (detached from the bottom of flask) and re-suspended into PBS. An aliquot of cells 

was counted in Trypan blue using a hemocytometer. The remaining cells were centrifuged at 400 

rcf for 5 min and re-suspended, fixed and permeabilized in 250 µl of 1:10 cytofix/cytoperm 

solution (BD Biosciences, San Jose, CA) diluted in dH2O and set on ice for 20 min. The cells 

were centrifuged at 400 rcf for 5 min and washed twice before re-suspending in 100 µl of wash 

buffer that was added to 5 µl of  mouse anti-flavivirus group antigen monoclonal antibody 4G2  

primary antibody (1:20) and set for 20 min on ice. The cells were again centrifuged at 400 rcf for 

5 min, washed twice, and later re-suspended in the wash buffer solution before 100µl of the 

1:500 diluted goat anti-mouse Alexa Fluor 488 secondary antibody (BD Co.) was added. Then, 

the cells were set for 20 min on ice in darkness. The cells were later centrifuged at 400 rcf for 5 

min, washed twice and a final 450µl of PBS was added to the tubes, vortexed, and transferred 

into 48-well plates for testing in the FACScan flow cytometry analysis. For each sample, at least 

10,000 events were recorded. 

Infection of U937Monocytic Cells  

Cell cultures were counted in Trypan blue and suspended into a RPMI 1640 medium with 

10% FBS and 2% P/S to a concentration of 2 x 10
6
 cells per well.  A volume of 0.1 MOI 

KOUTV was inoculated onto the suspended cells and incubated at 37
 º 
C for 2 h in a 5% CO2 

environment. After centrifugation for 5 min at 400 rcf, the supernatant was discarded and the 

pellet was re-suspended in wash buffer. The cells were washed twice. Then, 10 ml of RPMI 1640 

medium with 10% FBS and 2% P/S were added to the tube, and the cells were incubated for 24, 

48, 72, 96, and 144 h at 37
 º 
C in a 5% CO2 environment. 
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FACS Procedures on U937 Monocytic Cells  

This procedure is similar to the vero cells titration assay except with longer incubation 

times (24, 48, 72, 96, and 144 h) and the addition of 10 µl of human FcR Blocking reagent after 

the fixation and permeabilization procedure. Incubation with FcR Blocking reagent increases the 

specificity of antibody labeling, thus improving the purity of target cells by blocking the binding 

of antibodies to the Fc receptor of human Fc receptor-expressing cells. 

Indirect Immuno-Fluorescence assay (IFA) 

Infection of vero and monocytic cells with KOUTV and DENV-2 followed the same 

procedures as the FACS titration assay. 

IFA Procedures on Vero Cells 

A volume of 5 µl of vero cells infected with KOUTV and DENV were washed, 

trypsinized, and dispensed onto Teflon-coated, 12-well slides. The slides were air dried under the 

hood for 30 min, then fixed in chilled acetone for 15 min. After removing the slides from the 

acetone bath and air drying for approximately 30 s, the wells were overlaid with 10 µl of mouse 

anti-flavivirus group antigen monoclonal antibody 4G2 primary antibody (1:50 dilution). The 

slides were incubated in a moist thermomixer chamber at 37
 º 

C for 30 min followed with three 

washes in PBS. The bound antibody was detected in the dark with 10 µl of goat anti-mouse 

Alexa Fluor 488 secondary antibody (1:100 dilution), incubated in a moist thermomixer chamber 

at 37
º
C for 20 min, and washed three times in PBS. To stain the nuclear material, mounting 

medium containing DAPI fluorescent was added to each well and covered with a 22x50 mm 

cover slip (BioMerieux). After overnight solidification of the mounting medium, the slide was 

examined under a confocal microscope. 
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IFA Procedures on U937 Monocytic Cells  

This procedure is similar to the vero cells IFA except that 10 µl of Human FcR Blocking 

reagent are added before the mouse anti-flavivirus group antigen monoclonal antibody 4G2 

primary antibody.  

 

Results 

A prompt, improved, precise, and consistent technique for titration of KOUTV was 

developed based on the detection of virus infected cells by flow cytometry. The kinetics of the 

method delineate the number of infected cells in defined time points allowing for the estimation 

of the duration of the replication cycle, and therefore, the ideal infection time. The assay was 

developed to quantify DENV and KOUTV using antibody labeling of viral glycoprotein.  

FACS  

In order to correlate fluorescence reactions with biological events during virus 

replication, KOUTV-infected vero cells and U937 cells were harvested as described and reacted 

with mouse anti-flavivirus group antigen monoclonal antibody (4G2) and visualized with goat 

anti-mouse Alexa Fluor 488.  

As seen in Figure 3.1, the vero cell line monoclonal antibody detected KOUTV antigens 

by 6, 12, 18, and 24 hours post infection (hpi) with 1%, 11.5%, 21.6%, and 80% infection rates, 

respectively. DENV antigens in the vero cell line were detected also by 6, 12, 18, and 24 hpi 

with infection rates of 1%, 9.6%, 21.6%, and 80%, respectively (Figure 3.2). The U937 

monocytic cells detected KOUTV antigens by 96, 120, and 144 hpi with infection rates of 1%, 

94% and 96% after respectively (Figure 3.3). 
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                6 hpi                                12 hpi                             18 hpi                            24 hpi 

 

 

 

 

 

        1%                      11.5%                  21.6%                80% 

Figure 3.1 Koutango virus FACS on vero cells. The graphs illustrate the replication cycle 

kinetics of KOUTV on vero cells showing kinetic similarities to DENV replication cycle. 
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  1%                           9.6%               21.6%                  80% 

Figure 3.2 Dengue virus FACS on vero cells. The graphs illustrate the replication cycle kinetics 

of KOUTV on vero cells. 
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Figure 3.3 Koutango virus FACS replication cycle kinetics on U937 cells. 
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IFA 

The KOUTV and DENV infection was confirmed by inoculation in vero cells and in 

U937 cells. The cytopathic effect (CPE) of KOUTV in vero cells appeared between 1 to 3 dpi. 

The cells became round and enlarged, then small aggregates appeared; after several hours to 

days, multinucleated giant cells, syncytia, and many degenerated cells and cell debris were 

identified. Some cells showed necrosis and became detached from the cell culture at later stages 

of infection. The KOUTV in U937 was characterized by the ability of these cells to enlarge and 

twist, increasing the number of viral particles within and outside the cells after 3 to 5 dpi.  

 

Figure 3.4 IFA of KOUTV on vero and U937 cells after incubation for 24 h and 144 h, 

respectively. Stained blue is the cell nucleus after DAPI fluorescent of mounting medium. 

Stained green is the cytoplasmic viral fluorescence. The bar scale applies to all assays.  

A = KOUTV after 24 h incubation in vero cells,   B = Vero cell negative control,                     

C = KOUTV after 144 h incubation in U937 cells, and D = U937 cell negative control.  
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Infected cells were harvested and tested by IFA using the mouse anti-flavivirus group 

antigen monoclonal antibody 4G2 primary antibody (1:50 dilution), goat anti-mouse Alexa Fluor 

488 secondary antibody (1:100 dilution), and covered by DAPI stain for nuclear visualization. 

Positive cultures exhibit clear positive viral cytoplasmic fluorescence.  

With IFA stain in vero cells, KOUTV and DENV were detected at MOI 0.1 by goat anti-

mouse Alexa Fluor 488 after 6, 12, 18, and 24 hpi. In U937 cells, KOUTV was detected after 96, 

120, and 144 h. It was found that with the increasing in the number of days that the number of 

infected cells was greater. These results indicate that both the primary and the secondary 

antibodies can be used in the early detection of KOUT and DEN virus-infected vero and 

KOUTV-infected U937 cells.  

  

Discussion 

As presented, the assay takes only 24 hours to complete for the DENV and KOUTV 

strains. The step-by-step FACS procedure used can be applicable to accurately quantify any 

other virus of similar importance, including the viral genetic product being confirmed by IFA. In 

order to compare and validate the KOUTV FACS and IFA testing, we simultaneously tested 

DENV and KOUTV. 

Early laboratory confirmation of the interaction between the suspected KOUTV and the 

cells facilitates identification and control of KOUTV circulation in West Africa as well as other 

arboviruses that still go unnoticed, limiting the spread of other related febrile illnesses and 

reducing the incidence of outbreaks. Virus isolation is crucial, especially in early viraemia [32, 

33], in not only providing information concerning the virus demarcation but also preserving the 

virus isolates derived from different clinical manifestations for future virological and molecular 
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epidemiological studies [29]. Detection of virus antigens is generally faster and 2-to-10 fold 

more sensitive than the quantification of infectious virions by using a plaque assay [34].  

We have demonstrated in this study that the FACS testing methodology can successfully 

be used in the early detection of virus-infected vero cells from virus stock preparations and from 

patient serum samples using both the IFA staining and flow cytometry. Flow cytometry and IFA, 

which detects viral antigens either on the surface or within infected cells, has been successfully 

used in the rapid detection of herpes simplex virus and rotavirus in clinical samples after virus 

amplification in tissue culture [24, 25]. Two major factors, the permeabilization method using 

cytoperm and cytofix and the selection of directly or indirectly stained monoclonal antibodies 

(MABs), are involved in the detection of intracellular virus using flow cytometry. We developed 

the IFA and flow cytometry methods to detect the KOUTV antigen at the higher percentage of 

KOUT virus antigen-positive vero cells within the less time course. This was consistent with the 

findings of the flow cytometry on vero and U937 cells using panflavivirus 4G2 as primary 

antibody and the Alexa Fluor 488 as secondary antibody. 
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Introduction 

Aedes aegypti mosquitoes, the main DENV vector, originated from Africa. In the 17th 

and 18th centuries, the virus spread to many countries in Africa and other tropical areas 

worldwide [1, 2]. Several other Aedes mosquito species, including Ae. albopictus, Ae. africanus, 

and Ae. luteocephalus, found in Africa, are potential vectors of diverse arboviral infections. 

Urbanization is a major element enabling the increase of Aedes spp. mosquito populations [1]. 

Since the 1950s, a three-fold increase in urban human population density has occurred in Africa, 

larger increases have occurred in Asia and the Americas [3]. With these demographic changes 

and subsequent increases in Aedes spp. populations, biting rates seem sufficient to result in 

outbreaks in Africa [4] and for the reemergence of diverse arboviral infections as well as the 

spread of other arboviral diseases throughout the tropics and sub-tropics globally [4].  

In 1968, KOUTV was first isolated in Senegal in an unnamed Aedes species whereby 

implicating mosquitoes in the KOUT virus transmission cycle. Utilizing this previous research, 

we hypothesize the pan-tropically distributed Ae. aegypti mosquito (the major vector involved in 

the transmission of other flaviviruses) as the competent vector for KOUTV as well. In order to 

better characterize the potential for this emerging virus to be transmitted in the same sylvatic, 

urban or/and intermediate cycle as DEN and YF, we tested the Ae. aegypti mosquito vector 

competence for KOUTV. 

 

Materials and Methods  

 Mosquitoes 

The mosquito strain used in the experiment was Ae. aegypti (Linnaeus) Rockefeller from 

SVM-LSU. In the water environment, mosquito nymphs were gathered into cartons at the 
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density of 100 mosquitoes per carton and kept in an incubator at 75-80% humidity, 28
º
C, and a 

16:8 light:dark regime. After the adult mosquitoes emerged, they were fed sugar water until 

blood-feeding time. During the remaining period of the experiment after the blood feeding, 

mosquitoes were supplied with the same sugar-water solution as stated above. 

After separating mosquitoes by sex, 187 female Ae. aegypti mosquitoes were fed a blood 

meal of 10
9 

plaque forming units per ml (pfu/ml) of KOUTV while 128 female Ae. aegypti 

mosquitoes were fed a blood meal of 10
6 

pfu/ml. Both were tested for infection and 

dissemination rates.  

Blood Meal and Mosquito Processing 

After 3 to 5 days post emergence (dpe), mosquitoes were fed an infectious blood meal 

titer of 10
6
 and 10

9
 pfu/ml. The blood meal consisted of bovine blood in Alsevier’s anticoagulant 

(Hemostat, Dixon, CA) mixed in a 2:1 blood-virus proportion in a total volume of approximately 

3 ml per carton at 37
º
C.  It was kept warm via the Hemotek device (Discovery Workshops, 

Arrington, Lanceshire, UK) during the 45 min of blood feeding. 

Mosquito Infection 

Mosquitoes were then sorted and only fully engorged females, identified by the presence 

of red blood in the abdomen visible to the naked eye, were kept for further experiments. All other 

mosquitoes were discarded. Mosquitoes were sampled at 3, 5, 7, 9, and 11 dpe for infection and 

dissemination status.  

The infection rate was the percentage of all mosquitoes tested having infected bodies. 

The dissemination rate was the percentage of mosquitoes with infected bodies that also had 

infected legs. These rates have been used to assess the vector competence of DENV and many 

other arboviruses in mosquito vectors [5-8]. During the dissemination rate study, mosquito legs 
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were separated from the body and put into separate vials containing 900 µl of BA-1 diluent [9]. 

After homogenization at 20 Hz for 2 min using the tissuelyzer (Qiagen), the RNA was extracted 

using the MagMax-96 kit (Ambion) on a King Fisher nucleic acid extraction, according to the 

manufacturer’s instructions (Thermo Scientific). The samples were then tested for the presence 

of KOUT viral RNA via qRT-PCR using the following protocol: RT step (1 cycle) 48
º
C for 2 

min, 95
º
C for 2 min, amplification and data recording step (40 cycles) 95

º
C for 15 sec, 60

º
C for 

30 sec. Primers were designed and obtained via Integrated DNA technologies with 5’ FAM 

fluorophore and 3’ Black-Hole quencher for KOUTV.  

Virus Assays  

The strain utilized in this experiment was the KOUTV DAK Ar D 5443 Suckling mouse 

8 (30525) May 21, 1989 received from Robert B. Tesh, M.D. from the CBEID-UTMB. The low-

passage viral strain was propagated by inoculating 100 µl of viral stock in the T-75 flask of 

confluent Vero cells. After the 45 min incubation, 10 ml of M199-1X medium with 10% FBS and 

2% P/S/F was added. For the harvest of virus at the peak level when more than 90% of cells were 

infected, the T-75 flasks were incubated for four days at 37
º
C in a 5% CO2 environment. A 

plaque assay was developed for the viral standard curves and concentrations; titers were verified 

throughout the experiment, including the qRT-PCR blood-meal testing as previously described 

[10]. The viral stocks were stored at -70
º
C. The SuperScript III One-step qRT-PCR kit 

(Invitrogen, Carlsbad, CA) was the option of choice as per manufacturer. 

Table  4.1 Primer and probe sequences for Koutango virus DAK Ar D 5443. The sequences are 

on 5’3’ direction. 

Strain Forward Primer 

Sequence 

Reverse Primer 

Sequence 

Probe Sequence 

DAK Ar 

D 5443 

accaggaggcaagatttacg cgctttggttatccgtgtg accaggaggcaagatttacgcagaccgctggct

gggacacacggataaccaaagcg 
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Results 

Midgut Infection Dynamics and Legs Disseminated Infection 

The midgut is one of the most important barriers for viral infection, replication, and 

transmission [11]. In order to assess the infection and disseminated rate, the abdomen was 

dissected from the legs. Mosquitoes fed a KOUT viral concentration of 10
9
 pfu/ml of blood 

developed midgut infections of 4.45%, 31.91%, 24.14%, 46.67%, and 83.33% on 3, 5, 7, 9, and 

11 dpe, respectively; while the disseminated infection was assessed at 2.22%, 8.51%, 17.24%, 

10.00%, and 55.56% on 3, 5, 7, 9, and 11 dpe, respectively. Mosquitoes fed a KOUT viral 

concentration of 10
6
 PFU/ml of blood did not develop any infection. 

 

Figure 4.1 Graph of midgut infection rates after 3, 5, 7, 9, and 11 dpe. 

Susceptibility to Infection  

After 11 dpe at 10
9
 pfu, 55.56% of mosquitoes were susceptible to infection; however we 

did not detect virus in any bodies or legs of the Ae. aegypti infected with a viral concentration of 

10
6
 PFU/ml of blood. The patterns of viral dissemination were similar to those for infection 
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rates, with Ae. aegypti mosquitoes having the highest dissemination rates at 11 dpe. This 

variation indicates a moderate midgut escape barrier for KOUTV in this species of mosquito. 

 

 

Figure 4.2 Graph of dissemination rates after 3, 5, 7, 9, and 11 dpe. 

 

Table 4.2 Dissemination rates and sample sizes for Koutango virus at 3,5,7,9, and 11 dpe. 

Strain Origin 
Dissemination rates (sample size) 

3 dpe 5 dpe 7 dpe 9 dpe 11 dpe 

DAK Ar D 5443 Senegal, human 2.22 (45) 8.51 (47) 17.24 (29) 10 (30) 55.56 (36) 

 

Table 4.3 Table of Koutango virus infected and uninfected Aedes aegypti mosquitoes in the 

abdomen and legs after 3, 5, 7, 9, and 11 dpe. 

dpe 
Abdomen Legs 

Total 
uninfected infected uninfected infected 

3 43 2 44 1 45 

5 32 15 43 4 47 

7 22 7 24 5 29 

9 16 14 27 3 30 

11 6 30 15 21 36 

Total 119 68 153 34 187 

 

2.22 
8.51 

17.24 

10.00 

55.56 

3 5 7 9 11

Disseminated Infection Kinetics 

dpe 

% 
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Statistical Analysis 

The data were coded as a binary response using the SAS version 9.1.3. The code “1” was 

used for the mosquito pool that was positive while the code “0” for the mosquito pool that was 

negative. All tests were applied the confidence level of 95%; a stepwise selection process was 

invoked to cull out non-significant effects from the model. 

 

Discussion 

The important role of Ae. aegypti, the vector of flaviviruses: DENV, YFV, and 

presumably KOUTV in West Africa can be explained by the competence of this mosquito species 

in the uptake, development, and transmission of those flaviviruses. This vectorial competence is 

determined by the intrinsic (genetically determined) and extrinsic (vary spatially) factors such as 

the insects physiology, immune defense system, biting and resting habits, and the microclimate 

of its habitat [12]. Mosquito strains of Ae. aegypti in Africa have homogenously revealed low 

susceptibility to all 4 DENV serotypes in laboratory settings [13-15]. In addition, it has been 

documented that there are different predispositions of the vector to different DENV genotypes; 

Ae. aegypti mosquitoes tend to be more predisposed to infection with DENV-2 of the Southeast 

Asian genotype than to the American genotype [16]. Similarly, it has been defined for YFV 

suggesting as an explanation for the absence of YF in Asia because of the reduced vector 

competence of Ae. aegypti mosquitoes strains [17, 18]. The reduced DENV vector competence in 

Africa may explain some of the presumable low prevalence of DENV infection in Africa, even 

though this explanation must be confirmed in appropriate studies. [15, 19, 20]. Experimental 

studies with Ae. albopictus mosquitoes have demonstrated that geographic variations in 

susceptibility to DENV infection occur among different species [14, 15]. Differences in host 
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preferences and reduced vector competence, which decreases the probability of sustained disease 

transmission, make Ae. albopictus mosquitoes appear to be less efficient as epidemic vectors 

[21].  

Related to the vector competence research on WNV Turrel (2006) concluded that the 

ability of the mosquito species to transmit the virus by bite is dependent on transmission rate and 

that the detention of the virus from a mosquito does not confirm the vector competence of WNV. 

Although, the mosquito transmits the virus in the laboratory, the species does not have to 

necessarily play a significant role in nature. The transmission of a virus in nature by arthropod 

vectors depend on factors such as population density of the mosquitoes, susceptibility of 

amplifying hosts, environmental temperature, and the feeding preferences and habits [22]. In 

Sierra Leone, the viral fitness of Ae. aegypti mosquitoes to YF, DEN, and KOUT viruses is an 

important factor in determining if the vector can transmit the virus between hosts. The species, 

Ae. Aegypti, may be an important vector for KOUTV in one particular geographical area but may 

not be so important in other areas. 

In nature, KOUTV circulates in a rodent-mosquito cycle involving an Aedes spp. vector. 

However, Aedes spp. and perhaps the cosmo-tropical mosquito Ae. aegypti, may serve as a 

bridge vector by becoming infected while feeding on non-human primates, toward furthering the 

anthropophilic KOUTV cycle. Indeed, the Ae. aegypti mosquito serves as the most important 

domestic vector of the YF and DEN virus urban cycle [1, 23]. Hence, it is essential to account 

for the vector feeding preference change to humans, depending on season and host availability. 

Reports by Trpis mention coconut holes, rock holes, snail shells, tins, and tires as the more 

common breeding sites for Ae. aegypti mosquitoes in the East African region, particularly in 

Tanzania [24]. This conclusion may apply for Sierra Leone in West Africa, as well. 
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However, to determine the potential of the Ae. aegypti mosquito to become involved in 

transmitting KOUTV, it would be necessary to ponder not only laboratory transmission testing, 

but also its abundance of Ae. aegypti mosquito in Sierra Leone, the reservoir/definitive host-

feeding preference, the association with other viruses of similar transmission cycles, such as YF 

and DEN virus, and whether KOUTV has been isolated from Ae. aegypti species under natural 

conditions [22]. 

In the laboratory, the development of midgut and disseminated infection confirms that the 

midgut and escape barriers [25] are the principal factors for vector competence. The mosquito 

species, Ae. aegypti, were infected by ingestion of a virally loaded blood meal and tested on 3, 5, 

7, 9, and 11 dpe for infection and dissemination rates. Maintaining them for a longer period of 

time at 28
º
C, increases dissemination. Although, we did not test Ae. aegypti transmission rate for 

KOUTV by testing the salivary gland barrier, it is assumed that due to the lack of evidence on 

salivary gland infection barrier, mosquitoes are capable of transmission once the virus has 

disseminated into the hemolymph out of the midgut [5, 8, 25]. 

Blood meals of 10
6
 pfu/ml seem not to infect the mosquito Ae. aegypti or perhaps the 

mosquito immune system successfully clears the infection. Additional studies are needed to 

determine the impact of environmental temperature and reservoir/definitive host availability for 

the Ae. aegypti mosquito ability to transmit KOUTV in the same way as DEN and YF viruses. 

By having an urban cycle vector habit and circulating in a highly unpopulated area of Sierra 

Leone, KOUTV still does not seem to have a massive impact to infect humans and to be 

detected. 
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Chapter 5: Koutango Virus Infection of Interferon Regulatory Factor, IRF 3/7 Double 
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Introduction  

In 1968, KOUTV, an arbovirus, was first isolated from the blood of wild rodent 

reservoirs Tatera kempi and Mastomys from the family Muridae in West, Central, and East Africa 

[1]. The virus is transmitted in nature by the mosquito vector Aedes spp. Although no human 

case of KOUTV infection in nature has been reported to date, a single infection from a laboratory 

accident of a worker was confirmed in humans [2]. Its capacity for infecting humans still needs 

to be investigated. From the accidental infection, it was confirmed that KOUTV causes a mild 

febrile illness in humans presenting as a two-day fever accompanied by achiness, retro-bulbar 

headache, and erythematous eruption on the flanks [2]. Investigating transmission and factors 

that could contribute to the spread of this virus are vital to regulating and understanding virus 

expansion. Modeling of KOUTV infection in vivo may be complicated by the lack of clinical 

manifestation of naturally-infected humans, perhaps adding to the difficulty of the virus in 

successfully establishing infections in immunocompetent mice. Studies involving KOUTV and 

knockout (KO) mice do not exist.  AG129 mice models have most often been used to model 

DEN disease and pathogenesis, especially the severe manifestations [3-5]. Mouse model 

constraints encountered are transient viremia levels or not reaching adequate levels that represent 

DENV infections in humans;  the laboratory adapted virus strains that are necessary to establish 

infection and/or that routes of exposure do not resemble natural routes (i.e. intravenous or 

intracranial inoculations) [6].  

Toll Like Receptors (TLR) trigger the induction of type I IFN (IFN-alpha/beta) by 

providing a crucial mechanism of anti-viral defense [7]. The mechanism of anti-viral defense 

activates two transcription factors belonging to the interferon regulatory factor (IRF) family, 

IRF-3, and IRF-7. TLR-3 and TLR-4 induce IFN-beta by activating IRF-3; TLR-9 induces IFN-

alpha and IFN-beta through IRF-7, at least when engaged by type A CpG oligonucleotides 
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(CpG-A) in plasmacytoid DC (pDC) [8, 9]. It is demonstrated that TLR-9 induces IFN-beta 

when engaged by type B CpG oligonucleotides (CpG-B) in myeloid DC and macrophages. This 

response is independent of IRF-3/7 and requires another IRF family member, IRF-1. IRF-1 is 

recruited by TLR-9 through the adaptor MyD88. Deficiency of the TLR-9IRF-1IFN-beta 

pathway results in compromised anti-viral responses in vitro and in vivo [10]. It demonstrates 

that TLR induces IFN-alpha or IFN-beta responses by activating distinct IRF, depending on the 

TLR ligand and the cell type. These distinct TLR-IRF pathways allow the immune system to 

modify its responses to viral pathogens (Figure 5.1) [11, 12]. 

Although there is only one IFN-β gene, there are many members of the IFN-α gene 

family, including murine and human pseudogenes, which are all located on the same 

chromosome (9p in humans and 4q in mice) [13, 14]. During viral infection, transcriptional 

induction of IFN-α/β genes is accomplished by the activation of two transcription factors of the 

IRF family, IRF-3 and IRF-7 [15-18]. Viral infections lead to the phosphorylation of the 

constitutively expressed IRF-3 at its carboxyl-terminal region, converting then to its active form 

[37, 38]. The phosphorylated IRF-3 then undergoes nuclear translocation interacting with co-

activators CREB binding protein (CBP) and histone acetyltransferase p300, and primarily 

activates the IFN-β promoter [19-23]. Once IFN-β is produced, it leads the cell to activate 

interferon-stimulated gene factor 3 (ISGF3), which in turn induces IRF-7 gene expression by 

binding to an interferon-sensitive response element (ISRE) in the first intron [53]. Subsequently 

the newly produced IRF-7 undergoes virus-induced phosphorylation, similar to IRF-3, and 

activates IFN-α/β promoters [24-27] massively producing IFN-α/β by this positive-feedback 

loop. In the absence of IRF-7, IRF-3 acts on the IFN-β gene, while IRF-7 acts on both IFN-α and 

IFN-β genes by forming homodimers, and both IRF-3 and IRF-7 are necessary, working as 



 

heterodim

[27, 28]. 
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Materials and Methods 

Mice 

The Mice were a gift from Drs. T. Taniguchi and M. Diamond. Deficient in IRF 3 and 7, 

IRF3/7-/--/- double knockout (DKO) mice have a significantly abrogated type I interferon; type II 

interferon and all other immune responses are intact. Cultivated on vero cells, the KOUT virus 

stock was used to infect the IRF 3/7 DKO mice. All experiments met the approval and conditions 

of the LSU Institutional Animal Care and Use Committee (approved protocol # 09-077). 

Cells 

African monkey kidney-derived Vero cells were propagated in M 199-1X supplemented 

with FBS and P/S/F. Vero cells were grown at 37ºC in a 5.1% CO2 environment. The KOUTV 

stock DAK Ar D 5443 Suckling mouse 8 (30525) May 21, 1989 received from Robert B. Tesh, 

M.D. from Center for Biodefense and Emerging Infectious Diseases, University of Texas  

Medical Branch was the strain utilized in this experiment. The low-passage viral strain was 

propagated by inoculating 100 µl of viral stock in the T-75 flask of confluent Vero cells. After 

the 60 min incubation, 10 ml of M 199-1X medium with 10% FBS and 2% P/S/F was added. A 

protocol consisting of four days of incubation the T-75 flasks at 37ºC in the 5% CO2 environment 

was applied for the harvest of virus at the peak level when more than 90% of cells were infected. 

A plaque assay was developed for the viral standard curves and concentrations to determine the 

dilution of stock virus that yield 100 pfu per 100 μl; titers were verified throughout the 

experiment, including the one-step qRT-PCR kit (Invitrogen, Carlsbad, CA) as per 

manufacturer’s protocol.  
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Virus Inoculation and Serum Collection 

Four 36-week-old IRF 3/7 deficient mice were anesthetized with isofluorane and then 

intraperitoneally (i.p.) infected with 100 μl of supernatant (100 pfu/mouse) DAK Ar D 5443 

Suckling mouse 8 (30525) from the virus-inoculated cell culture. During the observation period, 

mice were normally active and did not show any sign of indifference to the virus infection. Mice 

were bled 3 dpi; blood from two mice was captured via intrathoracic technique (direct from the 

heart) while blood from the remaining two mice was collected from blood clotting within the 

thoracic cavity. Blood was allowed to clot for 30 min on bench top, and then centrifuged at 6 rcf 

for 5 min. Clarified serum was collected and placed into clean tubes for viral quantification 

analysis. 

Virus Detection 

 Viral RNA was extracted using the QIamp Viral RNA kit (Quiagen) as per 

manufacturer’s instructions. The detection of KOUT viral RNA was performed using one-step 

Taqman qRT-PCR (Superscript III) with the same protocol as for the KOUTV Vector 

Competence testing. Primers were designed and obtained via Integrated DNA technologies with 

5’ FAM fluorophore and 3’ Black-Hole quencher for KOUTV. Primers and probes did not cross 

react among them. 

Results 

There were significant differences in viremia intensity detected among the four mice 

infected with KOUTV and the different ways in which the mice were bled. The highest viremia 

level was recorded from the IRF-deficient mice bled intrathoracically, where two mice infected 

with KOUTV 100 pfu/ml developed 3.48 x 109 and 1.46 x 109 viral particles/ml against the virus 
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stock of 2.8 x 108. The mice with intraperitoneally-extracted blood presented lower viremia with 

KOUTV developing 2.76 x 105 and 4.26 x 105 viral load /ml. All four mice did not exhibit 

noticeable morbidity or mortality. Thus, the mice appeared to adapt well to the viral infection 

and no behavioral changes were noted. Mice were bled post i.p. inoculation to assess the antigen 

response to the KOUTV. Mice inoculated with 100 pfu KOUTV produced measurable amounts 

of KOUTV antigens detectable by lightcycler Roche 480 as per manufacturer’s instructions. 

 

Statistical Analysis 

Statistical analysis for this experiment requires a much higher sample size, ranging from 

25 to 40 mice. The sample size we worked with reflects the availability of IRF DKO mice in our 

laboratory. More work to reach the desired conclusions will be done in future. 

 

Discussion 

The development of a suitable animal model for the KOUTV study was made difficult by 

the lack of any change in behavior in response to the viral infection. Although the C57 BL/6 

mice support some level of KOUTV replication, this tested model, after KOUTV infection by 

needle, did not develop any noticeable clinical signs. KOUTV infection in these mice may 

induce limited KOUTV specific pathogenesis with signs of liver damage seen as increased liver 

enzymes and increased white blood cell counts [30-32].  

We have shown that IRF-deficient mice with IFNα and β responses may be susceptible to 

a peripheral infection with KOUTV and can serve as a model for KOUT virus isolation and 

amplification studies in the laboratory. IRF-deficient mice demonstrated 100% survival even 

though the virus amplification in vivo was confirmed. By utilizing this small-animal model, we 
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have shown that the inoculation with KOUTV Ar D 5443 suckling mouse elicited high levels of 

virus particles and did not appear to cause harm to the laboratory animals, allowing for the 

evaluation of KOUTV to replicate in IRF-deficient mice.  

We concluded that blood collected from the intrathoracic KOUTV Ar D 5443 suckling 

mice elicited higher KOUTV antigen titers when compared to the virus stock produced in vero 

cells. These results indicate that in IRF-deficient mice, the KOUTV antigens were able to 

significantly increase the viral load, without causing any noticeable change. Whereas IRF-

deficient mice have deficit-functioning immune systems, it is evident that they would be unable 

to clear the viral infections. The viral amplification response of these mice to KOUTV is of 

interest and, although it is beyond the scope of this study, it should be considered for future 

investigations. This is the first known report of DKO mice for a KOUTV-infection establishment 

study. 
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Introduction 

The most common mode of transmission of arboviruses is by blood-sucking arthropods 

[1, 2]. Arboviruses have the ability to expand host and geographical range, due in part to the 

plasticity of the RNA genome [3]. Some arboviruses have developed to colonize humans; others 

depend on birds or peridomestic animals with human infection resultant from spillover from 

zoonotic replication cycles. Arboviral maintenance in the tropics is well-suited to year round, hot 

and humid conditions allowing for the potential emergence as significant human pathogens [4]. 

In the neotropics alone, greater than 145 distinct arbovirus species have been recognized [4].  

Recently, arboviruses are being confirmed to circulate in the human population in Africa. 

Currently, there is an increase in urban DENV activity, including evidence of a sylvatic cycle of 

DEN in Senegal and the Republic of Guinea, and YF outbreaks in West Africa [5-8]. KOUTV, 

like YF and DENV, might be ecologically associated with Ae. aegypti mosquitoes as vectors of  

human disease. It has been experimentally shown that the Ae. aegypti mosquito is a competent 

vector of KOUTV. Field reports also implicate other Aedes spp. in the transmission cycle of 

KOUTV. Viral perpetuation in nature, without the need for alternate vectors, is evidenced by the 

isolation of YFV from male mosquitoes Ae. furcifer taylori in Senegal; vector competence 

laboratory work proves vertical transmission in Ae. aegypti [9]. In addition, the perpetuation of 

the KOUTV might be facilitated by the reintroduction of the virus from distant enzootic foci [10] 

playing a major role in the spread of the epidemics in West Africa, but being undiagnosed and 

misdiagnosed with other endemic diseases such as malaria, typhoid fever, and Lassa fever [11]. 

There have been cyclic resurgences of epidemic activities in the tropics worldwide linked with 

the geographical expansion of the mosquito vectors and the viruses, leading to the expansion of 

hyperendemicity, and ending in the emergence of more severe diseases. The emergence of 
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arboviral epidemics is linked to demographic changes, with exceptional population growth, 

being the most important factor. Unrestrained and unplanned urbanization causes congested 

human agglomerations in urban centers. Furthermore, man-made larval habitat, particularly non-

biodegradable material, contributes to the development and expansion of the mosquito vector 

coupled with the ineffective Ae. aegypti mosquito control, expanding the geographical 

distribution and increasing population densities of the Aedes mosquito. Increased travel by jet 

plane and the destruction of the public health infrastructure in many countries supports extension 

and increased, undetected viral transmission. 

Table 6.1 Table of the mosquito vector on selected arbovirus diseases. 

Viral Disease  Mosquito Vector 

 Urban Intermediate Sylvatic 

Yellow Fever Ae. aegypti Ae. furcifer, Ae. taylori, Ae. 

luteocephalus, Ae. vittatus, 

Ae. opok, Ae. simpsoni 

Ae. africanus, Ae. 

bromeliae 

Dengue Ae. aegypti & 

Ae. albopictus 

Ae. opok, Ae. furcifer, Ae. taylori, 

Ae. luteocephalus, Ae. 

vittatus, Ae. africanus 

Zika Ae. aegypti Ae. furcifer, Ae. 

luteocephalus, Ae. vittatus, 

Ae. apicoargenteus 

Ae. africanus, 

Koutango ? Ae. aegypti 

(laboratory) 

? Aedes spp. ?Aedes spp. 

Usutu Culex neavei   

 

Summary of the Results 

Implementing surveillance on arboviral diseases is greatly limited by the generic nature 

of disease presentation. Severe disease can result in hemorrhagic manifestations or neurological 

diseases, but arbovirus infection practically presents as mild to moderate unrecognized febrile 

illness [2, 12, 13]. With the lack of undifferentiated clinical presentation and the variety of the 
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etiologic agents such as malaria, YF, LF, DEN, and many other arboviruses, laboratory support 

has become a key part of effective surveillance programs. In the laboratory, we first tested 151 

human serum samples against all four DENV serotypes at the PRNT50 level. In order to increase 

the specificity of the PRNT against DENV serotypes and possibly other flaviviruses, endpoint 

titration reactions to all four DENV, YF, ZIK, WNV, USU, and KOUT viruses were performed 

on a total of 52 positive samples. The highest level of neutralization reduction registered was 7, 

7, 2, and 5 samples for DEN-1, DEN-2, DEN-3, and DEN-4, respectively. In addition, 3 samples 

neutralized  plaque formation of KOUTV and 6 samples neutralized YFV plaque formation. By  

a moderate level of neutralization (PRTN50), 2, 5, 2, and 2 samples neutralized DEN-1, DEN-2, 

DEN-3, and DEN-4, respectively. In addition, 9 samples moderately neutralized the plaque 

formation of KOUTV, 3 samples neutralized the YFV plaque formation and 1 sample 

moderately neutralized ZIKV plaque formation. 

The direct analysis of KOUTV included FACS and IFA on cell cultures, the vector 

competence testing of Aedes aegypti mosquitoes, and in vivo testing of IRF DKO mice. The 

early events that occur during the interaction between the virus and the cell can have reflective 

influence on the disease outcome. As the need for understanding disease pathogenesis increases, 

the development of methods to probe this interaction lead to marked improvements in 

fluorophores progress [14-16] and imaging technology [17] by visualizing and comprehending 

basic virus-target cell interaction, decreasing infections of unknown etiology that occur annually. 

In the FACS and IFA testing of vero cell culture, the virus-cell complex was incubated for further 

labeling and visualization after 6, 12, 18, and 24 h whereas, in the infection of U937 monocytic 

cell cultures, the virus-cells complex was incubated for 48, 72, 96, and 144 h at 37
º
C in a 5% 

CO2 environment with registration of the events occurring within the cells. 
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Based on previous research from the first isolation of KOUTV in Senegal in 1968 

implicating unnamed Aedes species mosquitoes in the transmission cycle, we characterized the 

potential for this emerging virus to be transmitted in the same cycles  as DEN and YF by testing 

Ae. aegypti mosquito vector competence for KOUTV. Mosquitoes infected with a KOUT viral 

concentration of 10
9
 pfu/ml of blood developed midgut infections at rates of 4.55%, 31.91%, 

24.14%, 46.67%, and 83.33% at  3, 5, 7, 9, and 11 dpe, respectively, while the disseminated 

infection was assessed as  2.22%, 8.51%, 17.24%, 10.00%, and 55.56% at 3, 5, 7, 9, and 11 dpe, 

respectively. This variation indicates a moderate midgut escape barrier of this species for 

KOUTV. 

In the testing of IRF DKO mice, there were significant differences in the viremia 

intensity detected among the four mice infected with KOUTV. The highest viremia level was 

registered from the IRF-deficient mice bled intrathoracically, whereas the mice whose blood was 

extracted from a blood clot within the thoracic cavity presented with a lower viremia level 

compared to the stock virus as shown in the qRT-PCR testing. All four mice did not exhibit 

noticeable morbidity or mortality by KOUTV antigens. 

 

Conclusions  

Our initial screening of patient serum at the PRNT50 level indicated that any of the four 

serotypes of DENV was likely underdiagnosed and could be an etiologic agent of these fevers of 

unknown origin in West Africa. We found evidence that not only are the four serotypes of 

DENV co-circulating in this area, but KOUT and YF viruses are likely circulating as well.  This 

is the first report of KOUTV transmission to the human population. The number of patients with 

neutralizing antibody to YF may overemphasize the relative importance of YF in the area, as 
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vaccination to YF is widely used, and antibody titers are known to persist. Our endpoint PRNT80 

results of the patients from Kenema Hospital in Sierra Leone suggest that the flaviviruses DEN, 

YF, and KOUT circulate in the region and are likely the etiological agent of at least some of 

these fevers of unknown origin. 

Originating from Africa, the Ae. aegypti mosquito is the main vector of DENV and YF. 

In addition, several other Aedes mosquito species, including Ae. albopictus, Ae. africanus, and 

Ae. luteocephalus, are found in Africa and are potential vectors of diverse arboviral infections. 

With the demographic changes and subsequent increases in Aedes spp. populations, biting rates 

seem sufficient to result in outbreaks [18] of diverse arboviral infections as well as the global 

spread of other arboviral diseases over Africa, the tropics, and sub-tropics [18]. Although, the 

mosquito transmits the virus in the laboratory, the species does not have to necessarily play a 

significant role in nature. The transmission of a virus in nature by the arthropod vector depends 

on factors such as population density of the mosquitoes, the susceptibility of amplifying hosts, 

the environmental temperature, and the feeding preferences and habits [19]. In Sierra Leone, the 

viral fitness of the Ae. aegypti mosquito to YF, DEN, and KOUT viruses is one of the factors 

important for vector transmittance of the virus between hosts.  The Aedes spp. and perhaps the 

cosmo-tropical mosquito Ae. aegypti may serve as a bridge vector, by becoming infected while 

feeding on non-human primates, for the supposed further anthropophilic cycle of the KOUTV. 

Coconut holes, rock holes, snail shells, tins, and tires are the most common breeding sites for Ae. 

aegypti mosquito in Africa. 

Investigating transmission and factors that could participate in the transmission of 

KOUTV are vital to regulating and understanding the virus expansion. Modeling of KOUTV 

infection in vivo may be complicated by the lack of clinical manifestation of naturally-infected 
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humans and perhaps adding to the difficulty of the virus to successfully establish infections in 

immunocompetent mice. Serving as a model for KOUTV isolation and amplification studies in 

the laboratory, IRF-deficient mice in IFN α and β responses may be susceptible to a peripheral 

infection with KOUTV. Even though virus amplification in vivo was confirmed, IRF-deficient 

mice demonstrated 100% survival. It is evident that IRF-deficient mice, with deficient 

functioning immune systems, are able to clear viral infections. This is the first report of utilizing 

DKO mice for a KOUTV-infection establishment study. 

In summary this dissertation proposes for an active surveillance approach of arbovirus 

diseases in tropics and sub-tropics, with a special focus in the West African region through a 

better understanding of the complexity of the current events in nature. We offered the gold 

standard technique for serology testing and the traditional virus isolation methodology, as well as 

a novel laboratory technique for KOUTV identification added to the use of IRF DKO mouse 

model. 
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