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ABSTRACT 

Hypertension affects 50 million Americans and remains the second leading cause of renal 

failure in the United States. Current pharmacological and non-pharmacological approaches to 

treat hypertension have proven effective, but the complexities of the disease and its renal effects 

warrant the need for new treatments. The hypothesis of this dissertation was that 

pharmacological or non-pharmacological approaches to reducing inflammation and oxidative 

stress would prevent hypertension-induced renal injury in the spontaneously hypertensive rat 

(SHR).  

In the first study, we blocked the inflammatory transcription factor, nuclear factor-kappa 

B (NF-ĸB), with pyrrolidine dithiocarbamate in the SHR kidney. In treated SHR, blood pressure 

decreased, renal hemodynamics were preserved, and oxidative stress and inflammation were 

attenuated at both the cytosolic and mitochondrial levels; suggesting a role for NF-ĸB in 

potentiating hypertension-induced renal injury.  

In the second study, we examined the effects of aerobic exercise training on renal 

oxidative stress and inflammation. Exercised SHR exhibited normalized blood pressure and renal 

hemodynamics. These effects were attributed to lower NF-ĸB activity and decreased oxidative 

stress in the SHR kidney. In the third and fourth studies, we examined the effects of diet 

modification by use of blueberry-enriched diets, since blueberries have one of the highest 

antioxidant capacities of any fruit or vegetable tested to date.  

In the third study, we fed stroke-prone SHR high salt and a blueberry-enriched diet for 2 

days, 6 weeks, or 12 weeks, and examined renal parameters. The SHR fed the blueberry diet for 

the 6- or 12-week periods demonstrated lower oxidative stress, lower blood pressure, and 

preservation of renal hemodynamics. These effects were likely due to a hormetic effect of the 
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blueberries themselves, since rats fed blueberries for 2 days demonstrated higher oxidative stress.  

In the final study, we added blueberries to a stroke-permissive diet, which accelerates renal 

damage in SHR. Rats were fed diets for 10 weeks. Rats fed the control diet had severe 

hypertension, severe oxidative stress, and severe inflammation as evidenced by NF-ĸB 

activation, and exhibited signs of renal failure. Rats fed the blueberry supplemented diet 

exhibited decreases in blood pressure, oxidative stress, and inflammation, and also had preserved 

renal structure and function. 
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CHAPTER 1 
 

REVIEW OF LITERATURE 
 
Arterial Pressure  

Blood pressure is the force exerted by circulating blood on the walls of the arteries and 

veins. Venous pressure is commonly very low and does not significantly factor into the 

determination of blood pressure; therefore, the term ‘arterial pressure (AP)’ is often used.  With 

each heartbeat, the AP varies between systolic and diastolic pressures. Systolic pressure is the 

peak pressure in the arteries, which occurs near the end of the cardiac cycle when the ventricles 

are contracting to eject blood. Diastolic pressure is the minimum pressure in the arteries, which 

occurs near the beginning of the cardiac cycle when the ventricles are filled with blood.  

Maintenance of AP at a homeostatic level - one that allows for adequate blood supply to 

the body tissues - is critical to the survival of mammals.   Several mechanisms exist that maintain 

homeostatic AP, even in situations that are stressful to the body, including: alterations in salt and 

water intake, and hemorrhage [1]. Some mechanisms function rapidly and are responsible for 

minute-to-minute regulation of AP, while others are responsible for regulating AP over longer 

time periods.  Other mechanisms are involved in both short- and long-term regulation of AP.  

The involvement of hormonal and neural factors in determining and maintaining AP is well-

established; however, the kidney’s dominance of the long-term regulation of AP is clear.  Guyton 

and colleagues first proposed the theory that AP is sustained at a ‘set-point’ required by the 

kidneys to maintain a balance between intake and excretion of sodium and water [1].   
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Hypertension 
 
Overview and Prevalence 
 
Hypertension (HTN), or persistently high AP, is the most common primary diagnosis in the 

United States [2]. Current estimates indicate that approximately 73.6 million (one in three) 

Americans presently suffer from HTN, and that 22% of these individuals are undiagnosed [2]. 

Hypertension is often called the “silent killer”, due to the considerable damage it inflicts while 

the patient remains asymptomatic. The devastating effects of HTN are not limited to a single 

tissue; rather, they adversely affect most organs and organ systems [2]. Hypertension is a major 

contributing factor to atherosclerosis, which causes an increase in the relative workload for the 

heart, which must pump blood under greater peripheral resistance. Over time, the greater 

workload may result in myocardial infarction and/or heart failure. The brain and its delicate 

arteries can also be affected by HTN. Over time, these vessels may rupture, resulting in brain 

hemorrhage or cerebrovascular accident (stroke). Finally, and arguably most importantly, HTN 

can result in thickening or disease of the arteries and arterioles of the kidneys, thereby decreasing 

glomerular filtration rate and renal blood flow. In response to these alterations, the kidneys may 

secrete renin, which elevates AP further and perpetuates this positive feedback cycle. 

Risk Factors for Hypertension 

The risk factors for HTN can be classified into two categories: non-controllable and 

controllable.  Non-controllable risk factors for HTN include age, gender, genetic predisposition, 

and ethnicity.  Controllable risk factors are those that can be altered, such as high salt or high fat 

diet, excess body weight, smoking, and lack of exercise.  In the United States, African-

Americans have a higher prevalence of HTN than do non-Hispanic whites [3, 4]. The morbidity 

associated with HTN is also more severe among African-Americans and is thought to develop 
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earlier in life [5].  Age is another important factor in the development of HTN.  Longitudinal 

research studies have found increases in AP with age, with diastolic pressure peaking around age 

50 and systolic pressure rising throughout life [6-8]. Recently, an increased prevalence of HTN 

has been noted among adolescents as a result of obesity, diet, and a sedentary lifestyle [9].  If 

these cases remain uncontrolled, morbidity and mortality may result for these individuals at 

significantly earlier ages. Gender also influences the onset of hypertension [9]. Hypertension is 

less prevalent in women in early adulthood; however, the incidence of HTN increases rapidly in 

women above the age of 40. The prevalence of hypertension in females equals or possibly 

exceeds that in men by age 50 [9]. 

Classification 

Hypertension can be classified as primary (essential) or secondary [4].  The term essential 

hypertension encompasses about 90-95% of all diagnosed cases, and is clinically defined as an 

elevation in AP of unknown etiology [4].  Secondary hypertension represents about 5-10 % of 

al1 diagnosed cases and can generally be reversed with correction of the underlying cause [10]. 

Despite the extensive research efforts of recent years and the current knowledge of the 

physiology of AP regulation, the basis of essential HTN in most patients remains elusive.  

Patients are categorized, based on systolic and diastolic AP readings, as either normotensive, 

prehypertensive, or hypertensive [4, 9]. The National Heart, Lung and Blood Institute further 

divides the hypertension classification into two stages (Table 1.1), with stage two being the more 

severe stage. 

 

 



4 

 

Table 1.1  Classification of hypertension, based on the Seventh Report of the Joint National 
Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure [2]. 
Category Systolic Blood Pressure 

(mmHg) 
 Diastolic Blood Pressure  

(mmHg) 
Normal <120 and <80 
Prehypertensive 120-139 or 80-89 
Hypertension (Stage 1) 140-159 or 90-99 
Hypertension (Stage 2) ≥160 or ≥100 

 

Kidney Redox Mechanisms in Hypertension 

 Hypertension-induced kidney disease is a significant cause of morbidity and mortality in 

hypertensive patients [11].  Current anti-hypertensive treatments are mostly effective in reducing 

the severity of hypertensive renal disease; however, the progressive clinical course of the disease 

underscores the need for additional novel therapies. The progression of hypertensive kidney 

involves increased pro-inflammatory cytokine (PIC) and reactive oxygen species (ROS) 

production, and on nuclear factor-kappa B (NF-κB) activation [12, 13].   

Renal Inflammation and Hypertension   

Increasing evidence supports a role for inflammatory molecules in the pathogenesis of 

hypertension [14]. In the kidney, tubulointerstitial inflammation is accompanied by activation of 

NF-κB [15, 16] which is the general transcriptional factor for many proinflammatory cytokines, 

chemokines, and adhesion molecules. A role for renal inflammation in the pathogenesis of 

hypertension is demonstrated by a number of animal studies that have shown attenuation of 

hypertension with anti-inflammatory compounds, including mycophenolate mofetil and NF-

kappa B inhibitors [17-20].  We recently reported decreased plasma concentrations and renal 

gene and protein expression of the proinflammatory cytokines tumor necrosis factor-alpha (TNF-

α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) in spontaneously hypertensive rats (SHR) 

treated with pyrrolidine dithiocarbamate (PDTC) [21].  Those animals also had decreased 
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glomerular desmin expression when compared to untreated SHR, which is indicative of less 

glomerular damage in these animals, presumably due to a decrease in the inflammatory 

condition. 

Vascular inflammation also affects the kidney during hypertension. A major factor 

underlying this type of inflammation is modulation of proinflammatory gene expression via 

redox-sensitive transcription factors [20, 22]. Angiotensin II (AngII) has an important role in 

modulating expression of pro-inflammatory molecules in the vasculature [14]. AngII induced the 

release of IL-6, which caused the recruitment of inflammatory cells from human vascular smooth 

muscle cells into the vessel media; this release required the production of ROS and activation of 

NF-κB [23]. Also involved in pro-inflammatory gene transcription are the Janus kinase/signal 

transducers and activators of transcription factors (JAK/STAT) pathways.  These pathways can 

be activated by exogenous hydrogen peroxide, other ROS, and AngII [24, 25].   

A number of the pathways responsible for adhesion molecule expression in the kidney 

are also redox-sensitive [26]. In the double transgenic rat, a model of overactive renin-

angiotensin system (RAS) and oxidative stress, vascular cell adhesion molecule-1 (VCAM-1) 

and intracellular adhesion molecule-1 (ICAM-1) expression are elevated in the small renal 

vessels [27]. Further, ICAM-1, VCAM-1, and monocyte chemoattractant protein-1 expression 

levels were all reduced in a salt-sensitive hypertension rat model after blockade of TNF-α [28]. 

AngII-infused hypertensive rats also demonstrate increased VCAM-1 expression due to NF-κB-

mediated transcriptional events [29].  

Renal Oxidative Stress and Hypertension 

In normal conditions, mammalian cells reduce molecular oxygen to water during aerobic 

respiration. During this process, ROS are generated that include superoxide, hydroxyl radicals, 
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and hydrogen peroxide; these highly reactive species may interact with proteins, lipids, and 

deoxyribonucleic acids (DNA) [30, 31].  Normally, the in vivo antioxidant defense is sufficient 

to metabolize these ROS; however, in conditions of persistent oxidative stress, antioxidant 

molecules and enzymes can be depleted and inactivated, thereby impairing the overall 

antioxidant defense system [31].  Excessive ROS production causes oxidative damage and is 

associated with hypertension [32, 33] and other diseases.  The major producers of these ROS 

include plasma membrane-bound nicotinamide adenine dinucleotide phosphate (NADPH) 

oxidases and mitochondria [21].   

ROS also have an important role in the inactivation of nitric oxide (NO) [34, 35]. When 

oxidative stress occurs, endothelial dysfunction and reduced NO bioavailability will result, 

usually from superoxide binding to NO to form peroxynitrite [34, 36]. This reduced NO 

bioavailability leads to several processes that contribute to hypertension: inflammation with 

increased proinflammatory cytokine production, lipid peroxidation, and increased vascular 

contractility [37].  We have demonstrated increases in production rates of superoxide, total ROS, 

and peroxynitrite in the kidneys of spontaneously hypertensive rats; these increases were 

attenuated with the administration of the antioxidant and NF-κB inhibitor, PDTC [21]. 

Oxidative stress contributes to hypertension, endothelial/vascular dysfunction, and brain 

disorders in animals with chronic kidney diseases. This is partly due to the up regulation of 

NADPH oxidase and the down-regulation of superoxide dismutase (SOD) [15, 22, 30]. Several 

studies, including one from our lab, support the hypothesis that uremia in renal disease is 

associated strongly with oxidative stress. We demonstrated increased plasma creatinine (Cr) and 

blood urea nitrogen (BUN) levels, along with decreases in glomerular filtration rate (GFR) and 

renal blood flow (RBF), in SHR (a model of increased oxidative stress) [21].  Oxidative stress is 
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also known to exacerbate renal injury.  In patients with end stage renal disease, hemodialysis or 

peritoneal dialysis treatment for longer than two years can lead to further reduction of 

antioxidant levels and increased oxidant levels, thereby perpetuating the oxidative stress seen in 

these patients. Further, there is a greatly decreased potential for scavenging of oxygen radicals 

after about seven years of hemodialysis in patients [38].  Therefore, the treatments for renal 

failure can also aggravate the oxidative stress that initially contributed to the disorder. 

The Relationship Between Oxidative Stress and Inflammation in the Kidney 

The relationship between inflammation and oxidative stress is notable. Oxidative stress 

can  activate NF-κB [31, 39] and activator protein-1 [31], stimulating production of chemokines, 

cytokines, and adhesion molecules, as well as activation and proliferation of lymphocytes. 

Immune cell activation, adhesion, and infiltration result from these events. Conversely, 

inflammation can result in oxidative stress, since ROS production is an inherent property of 

activated immune cells.  Renal inflammation is thought to be a key mediator in the development 

and progression of hypertension, and compelling evidence suggests that ROS overproduction and 

NF-κB activation promote glomerular and tubulointerstitial inflammation in rat models of 

hypertension [40, 41].  Blockade of NF-κB or of ROS has demonstrated both anti-hypertensive 

and anti-inflammatory effects in rats [17, 42, 43]. Further, immune cells infiltrating the kidney 

have been shown to produce ROS in hypertensive animals and humans [30]. Thus, oxidative 

stress and inflammation seem to be involved in a vicious, self-perpetuating positive feedback 

cycle.   

Role of Kidney RAS in Inflammation and Oxidative Stress 

Angiotensin II stimulates salt retention directly in the proximal tubule and indirectly via 

aldosterone in the distal tubule, and also causes vasoconstriction [44]. In addition to these 
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common physiological effects, AngII also activates the angiotensin II type 1 (AT-1) receptor, 

resulting in renal ROS generation via the up regulation of NADPH oxidases [44-46].  The ROS 

produced by increased NADPH oxidase expression and activity can activate NF-κB [45].   

Angiotensin II can also directly activate NF-κB in various renal cells, including mesangial and 

endothelial cells, which leads to inflammation in these tissues [47, 48].  Inflammation can also 

increase the expression of several components of renal RAS, including AngII, renin, and AT-1 

receptor [49, 50].   A variety of animal studies have shown marked up regulations of RAS 

components in the kidneys of hypertensive animals [49, 51-53].  In renal damage associated with 

activated RAS, increased renal NF-κB activity was diminished by angiotensin converting 

enzyme (ACE) inhibition [54-56]. We and others have demonstrated that the blockade of NF-κB 

can improve renal tissue damage and renal hemodynamics [21, 57].   In vivo, systemic infusion 

of AngII into normal rats increases NF-κB activity in the vasculature and the kidney [58]. 

Therefore, the RAS and NF-κB appear to be involved in another vicious cycle that contributes to 

hypertension, inflammation, and renal damage. 

Pharmacological Treatment of Hypertension 

 Substantial clinical trial outcome data exist to support the use of several classes of 

pharmaceuticals to reduce hypertension and its associated complications [59-63].  Commonly 

used classes of drugs include: thiazide-type diuretics, ACE inhibitors, angiotensin receptor 

blockers (ARBs), calcium channel blockers (CCBs), and beta blockers [9].   Thiazide-type 

diuretics have long been the basis of antihypertensive therapy.  In most clinical trials, including 

the Antihypertensive and Lipid Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) 

[64], diuretics have gone unsurpassed in preventing the cardiovascular complications of 
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hypertension, and can also enhance the antihypertensive efficacy of combination drug regimens, 

and are more affordable than other antihypertensive agents [64]. 

In the last decade, several large trials comparing the newer antihypertensive agents, 

including CCBs, ACE inhibitors, and an ARB, with commonly prescribed diuretics and/or beta 

blockers have been completed [60, 61, 63, 64].  Most of these studies demonstrated that these 

newer antihypertensives were neither superior nor inferior to the older drugs in terms of efficacy. 

However, more than two-thirds of hypertensive individuals will require two or more 

antihypertensive agents selected from different drug classes for adequate treatment of 

hypertension [60, 61, 65]. 

Non-Pharmacological Treatment of Hypertension 

Extensive published evidence supports the concept that non-pharmacological 

interventions (also referred to as lifestyle modifications), can substantially reduce blood pressure 

(BP) in individuals with established hypertension or with prehypertension. Epidemiological data 

has implicated several dietary and other lifestyle-related factors in contributing to the 

development of hypertension.  These factors include: habitual high sodium intake, low potassium 

intake, decreased physical activity, high body mass index, and excess alcohol intake [66, 67]. 

Aerobic Exercise Training 
 

A sedentary lifestyle is a well-established independent risk factor for cardiovascular 

diseases. Epidemiological evidence suggests that a greater level of physical fitness is associated 

with lower BP and a reduction in morbidity and mortality from cardiovascular events [68].  

Regular physical activity can reduce the risk of developing hypertension by 30-50 % [68].  

Further, regular moderate physical activity has been shown to decrease systolic BP by 6-10 

millimeters of mercury (mmHg) and diastolic BP by 4-8 mmHg in patients with essential 
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hypertension [69].  In a meta-analysis of 54 randomized controlled trials with a sample size of 

approximately 2400, aerobic exercise training (ExT) was associated with a statistically 

significant reduction in BP [70]. This BP reduction was similar in normotensive and 

hypertensive participants. Perhaps most importantly, mean BP reduction was not associated with 

changes in body weight, and BP was reduced significantly, even in participants that did not lose 

weight.    The mechanisms surrounding BP reduction with aerobic exercise training remain 

unclear; however, a reduction in vascular resistance is thought to be a major effect. Decreased 

oxidative stress is also thought to play a role in BP reduction in response to ExT [69].   

Six weeks of moderate intensity ExT was found to preserve renal function (as indicated 

by increased natriuresis and decreased proteinuria) by decreasing oxidative stress and improving 

antioxidant defense in the aged rat kidney [71].  A recent study in obese rats found that five 

weeks of ExT prevented albuminuria and oxidative stress and decreased nuclear translocation of 

NF-ĸB in the kidney [72].  Interestingly, ExT can also improve oxidative stress from renal injury 

prior to the renal injury occurring.  Normotensive rats were subjected to ExT for eight weeks and 

then underwent 5/6 nephrectomy to induce chronic kidney disease.  When compared to 

nephrectomized sedentary rats, the nephrectomized rats subjected to ExT had decreased 

superoxide production and oxidative insult but no significant improvement in renal function [73].   

Further, basal urinary nitrate/nitrite excretion increases with increasing levels of physical activity 

and these levels are also significantly increased after ExT in patients with coronary artery disease 

[74].   

Diet Modification 
 
 In addition to weight loss and regular physical activity, reduction of sodium intake and 

consumption of a diet rich in low fat dairy products, fruits, and vegetables (and therefore high in 
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vitamins, minerals, and antioxidants) have been shown to improve BP [75].  The most recent 

guidelines set forth by the Joint National Committee on Prevention, Detection, Evaluation, and 

Treatment of High Blood Pressure recommend the adoption of this type of diet [9, 75], which 

was formulated for the  Dietary Approaches to Stop Hypertension (DASH) study.   

The DASH study tested the effects of an overall healthy diet on BP in participants with 

prehypertension or stage I hypertension [67].  A total of 459 adults with BP <160/80–95 mmHg 

were randomly assigned for 8 weeks to one of the following diet groups: 1) control diet = low in 

fruits, vegetables, dairy products with a fat content typical of the average American diet, and 

with potassium, magnesium, and calcium levels close to the 25th percentile of consumption; 2) 

fruit and vegetable diet = potassium and magnesium at 75th percentile and high in fiber; or 3) 

combination diet = rich in fruits, vegetables, and low-fat dairy, with reduced saturated fat, total 

fat, and cholesterol, and potassium, magnesium, and calcium at the 75th percentile of 

consumption [67, 75]. Study diets each had a sodium content of approximately 3 grams per day.  

Interestingly, the combination diet group experienced the most significant decrease in BP; this 

reduction began during the second week of the diet.  Further, the combination diet was found to 

be as effective in reducing BP as some drug monotherapies.  It was therefore concluded that the 

DASH combination diet might be an effective alternative to pharmacotherapy in patients with 

stage I hypertension and may provide an opportunity to those patients to delay the start of an 

antihypertensive drug regimen [67, 75]. 

The Spontaneously Hypertensive Rat  

 The spontaneously hypertensive rat (SHR) is a rat strain developed by Okamoto and Aoki 

in the 1960s by selectively breeding male rats from the Wistar-Kyoto (WKY) strain with BP 

persistently in the range of 150 – 175 mmHg with WKY females with BP of 130-140 mmHg 
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[76].  Selective breeding continued until a strain was developed where males develop chronic 

essential hypertension beginning at approximately 8 weeks of age, with systolic BP often 

exceeding 200 mmHg [76].  This genetically hypertensive strain is also known to exhibit 

increased sympathetic nervous system activity, increased RAS activity, and increased oxidative 

stress [77].  The SHR is a widely used model of human hypertension because it develops many 

features of hypertensive end-organ damage, including cardiac hypertrophy, cardiac failure, and 

renal dysfunction [77].  Because the SHR was developed from the WKY rat, the WKY is often 

used as the normotensive control for this strain. 

Blueberries (Vaccinium Species) 

Constituents and Bioactive Components 

North American blueberry (BB) species include highbush blueberry (V. corymbosum) 

and lowbush blueberry (V. angustifolium).  Highbush BB are cultivated as unique varieties, while 

lowbush BB grow in the wild.  The antioxidant capacity of BB is among the highest of fruits and 

vegetables [78, 79]. Although BB are rich in vitamins and minerals [80], the contribution of 

these micronutrients to the antioxidant capacity of BB is minimal [81].  Blueberries contain high 

levels of flavonoids and polyphenols [81], and are especially high in anthocyanidins.  Six 

anthocyanidins are commonly found in nature, and BB contain five of these anthocyanidins [82]. 

Malvidin, delphinidin, cyanidin, petunidin, and peonidin are found in all Vaccinium species, and 

are usually found in the form of anthocyanidin glycosides, which are referred to as anthocyanins 

(from the Greek words “anthos” = flower and “kyanos” = blue) and are responsible for giving 

BB their unique coloring [82]. Anthocyanins play a vital role in the skin of the blueberry by 

protecting the fruit’s flesh from overexposure to ultraviolet light.  
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Significant differences exist in both the types of anthocyanins and total anthocyanin 

content among Vaccinium subspecies [83]. North American wild lowbush BB have higher total 

anthocyanin levels per 100g of fresh weight than do highbush BB; this is because the majority of 

anthocyanins are present in the skin of the berry and lowbush BB have a greater amount of 

surface area per volume of fruit [83]. However, highbush BB are generally the only variety of 

blueberry available as a whole, relatively unprocessed fruit (either fresh or frozen) in grocery 

stores. Lowbush BB are used predominantly in processed foods and in flavored yogurt [84, 85]. 

Processing significantly affects the antioxidant capacity of BB and blueberry products [84, 85]. 

Although freezing is a form of processing and does result in loss of antioxidant capacity, frozen 

BB and fresh BB purees retained higher levels of unoxidized anthocyanins than all other forms 

of processed BB and BB products measured in a study by Kalt and colleagues [85]. 

Blueberries and Chronic Disease 

Many studies have demonstrated the anti-hypertensive benefits associated with 

consuming diets high in fruits and vegetables; yet there have been very few studies examining 

the relationship between BB consumption and hypertension, and no studies examining the effects 

of BB on renal function. However, many recent studies have demonstrated the benefits of BB 

consumption on brain function [86-90]. A study by Joseph and colleagues examined whether 

foods with high antioxidant activity, including BB, could reverse age-related declines in neural 

and behavioral functions. Forty 19-month old male rats were assigned to one of four treatment 

groups: control, 1.48% strawberry, 0.91% spinach, or 1.86% BB [89]. The percentages of each 

of these foods in the diets were based on oxygen radical absorbance capacity (ORAC), to ensure 

that each diet provided an equivalent amount of antioxidants. Diets were fed to rats for eight 

weeks before neural and psychomotor behavior testing. All foods tested prevented age-related 
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neuronal and behavioral dysfunction, with BB supplementation showing the greatest effect on 

reversing the deleterious effects of aging on calcium homeostasis. Further, the BB-fed rats were 

the only animals that exhibited reversals in motor behavioral deficits [89]. The feeding of a 

14.3% BB diet to male Long-Evans rats for six weeks before carotid artery ligation (to induce 

stroke) was found to be protective against ischemia-induced hippocampal injury [90]. One week 

after carotid ligation, rats on the BB diet had only a 17% loss of neurons to the ischemic 

hippocampus compared to a 40% loss in the control group, suggesting that blueberries can 

protect against ischemic brain injury [90].  

One recent study by Ahmet and colleagues examined the effects of BB consumption on 

ischemic injury in the heart [91].   Fischer rats were fed a control diet or a BB-enriched diet for 3 

months.  Mitochondrial permeability transition of cardiomyocytes was assessed in seven rats 

from each group after the 3-month feeding period, and those animals fed a BB-enriched diet 

demonstrated a 24% increase in mitochondrial permeability transition threshold, indicating an 

improvement in mitochondrial integrity with BB feeding.  Animals from each group were also 

subjected to myocardial ischemia by coronary artery ligation, and resulting infarct size was 22% 

less in rats fed the BB-enriched diet, suggesting an overall cardioprotective effect of blueberries 

[91].   

The only study to examine the effects of blueberry consumption on blood pressure was 

conducted by Shaughnessy and colleagues in the stroke-prone spontaneously hypertensive rat 

[92].  Stroke-prone SHR and normotensive control rats were fed a control diet or a 3% BB diet 

for 8 weeks.  Systolic blood pressure was 19% lower after 4 weeks in SHR fed the BB diet, and 

was 30% lower after 8 weeks.  Proteinuria and kidney nitrites were also lower in these animals, 
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suggesting that BB may prevent oxidative damage in the kidney [92].  However, no detailed 

measurements of renal structure or function were performed in that study. 

Statement of the Problem and Specific Aims 

  Increased oxidative stress and inflammation perpetuate a vicious positive feedback cycle 

that can exacerbate the hypertensive condition and, if left unchecked, can lead to damage of 

organs such as the kidney.  The redox-responsive transcription factor, NF-ĸB has been shown to 

contribute to the deleterious effects of reactive species and inflammatory molecules on kidney 

structure and function.  Although obvious putative roles exist for oxidative stress and NF-ĸB in 

the development and progression of hypertension-induced renal disease, the exact signaling 

mechanisms that perpetuate their effects on the hypertensive kidney remain unclear.  The overall 

hypothesis of this dissertation was that pharmacological or non-pharmacological approaches to 

reducing both inflammation and oxidative stress would prevent or delay hypertension-induced 

renal injury in the spontaneously hypertensive rat (SHR), a model for human essential 

hypertension. We performed a series of in vivo experiments, integrated with various 

physiological and molecular techniques, to fulfill the following aims: 

Aim 1: Determine the benefits of pharmacological NF-ĸB blockade on hypertension-

induced renal injury in SHR. 

Aim 2: Determine the benefits of exercise training as a non-pharmacological modality 

for prevention or treatment of hypertension-induced renal injury in SHR. 

Aim 3: Examine the short-term and long-term effects of a blueberry-enriched diet on 

hypertension induced renal injury in stroke-prone SHR. 

Aim 4:  Examine the effects of a blueberry-enriched stroke-permissive diet on 

hypertension and hypertension-induced renal injury in salt-loaded stroke-prone SHR. 
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CHAPTER 2 
 

CHRONIC NF-κB BLOCKADE REDUCES CYTOSOLIC AND MITOCHONDRIAL 
OXIDATIVE STRESS AND ATTENUATES RENAL INJURY AND HYPERTENSION 

IN SHR* 
 

Introduction 

 Hypertension-induced kidney disease is a significant cause of morbidity and mortality in 

hypertensive patients [93].  Current anti-hypertensive treatments are mostly effective in reducing 

the severity of hypertensive renal disease; however, the progressive clinical course of the disease 

underscores the need for additional novel therapies. The progression of hypertensive kidney 

disease depends not only on neurohormones, such as norepinephrine and aldosterone, but also on 

increased proinflammatory cytokine (PIC) and reactive oxygen species (ROS) production, and 

on nuclear factor-kappa B (NF-κB) activation [94, 95].  Increased production of ROS, which 

include superoxide and hydrogen peroxide, is a particularly detrimental aspect of renal disease 

progression [95].  The major producers of these ROS include plasma membrane-bound 

NAD(P)H oxidases and mitochondria.   

 Mitochondria are critical modulators of ATP generation and redox-dependent 

intracellular signaling.  The mitochondrial respiratory chain continuously releases ROS during 

oxidative phosphorylation. Approximately 90% of the cellular oxidative burden is attributed to 

mitochondrial ROS, thus signifying the role of mitochondria in cellular ROS production [96].  In 

normal physiological conditions, small amounts of ROS are needed for critical cellular 

processes; however, excessive ROS production causes oxidative damage and is associated with 

hypertension [97, 98] and other diseases.  The contributions of ROS to the regulation of 

                                                            
*Reprinted with permission of the American Journal of Physiology-Renal Physiology. 
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intracellular signaling pathways, including NF-κB activation, are already known. Excess ROS 

activate the redox-sensitive transcription factor NF-κB, causing increases in its activity and 

expression [99, 100].  Increased activity and expression of NF-κB induces gene transcription for 

PIC, such as tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and IL-6, to 

increase their production [99, 101].  Increased levels of PIC, along with adhesion molecules, lead 

to macrophage infiltration of the tubulointerstitium and inflammation of renal tissue [102, 103].   

However, the roles of NF-κB and of ROS in modulating renal function and tissue injury in 

hypertensive renal damage have not yet been examined. 

  Evidence from our laboratory indicates that peripheral TNF-α administration increases 

ROS production in rat myocardial tissue and mitochondria [104].  Findings from other labs also 

indicate that TNF-α augments ROS production in liver mitochondria and endothelial cells [105, 

106]. IL-6-dependent ROS production has been noted in fibroblasts and in endothelial cells [107, 

108]; and fibroblasts have previously been shown to release ROS in response to IL-1β and TNF-

α [109]. Taken together, these data support a role for NF-ĸB-regulated PIC in cytosolic and 

mitochondrial ROS production in a variety of tissues. Therefore, it is plausible to suggest that 

NF-κB blockade (and, therefore, blockade of PIC gene transcription) may improve the redox 

status of hypertensive renal cortical tissue and mitochondria.  

 Renal inflammation is thought to be a key mediator in the development and progression 

of hypertension, and compelling evidence suggests that ROS overproduction and NF-κB 

activation promote glomerular and tubulointerstitial inflammation in rat models of hypertension 

[110, 111].  Further, blockade of NF-κB or of ROS has demonstrated both anti-hypertensive and 

anti-inflammatory effects in rats [112-114].  However, the effects of NF-κB blockade on 

mitochondrial ROS and the roles of these ROS in modulating renal function and tissue injury in 
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hypertension are unknown. The aim of this study was to examine the effects of long-term NF-κB 

blockade on cortical cytosolic and mitochondrial ROS production and on renal function during 

hypertension, and to investigate the contributions of these ROS to hypertensive renal injury.  We 

hypothesized that long-term NF-κB blockade with pyrrolidine dithiocarbamate (PDTC) would 

decrease both cytosolic and mitochondrial ROS production in the kidney cortex, thereby 

protecting the kidneys from damage, and resulting in improved renal function parameters in 

spontaneously hypertensive rats (SHR).   

Materials and Methods 

All experimental procedures with animals were approved by the Louisiana State 

University Institutional Animal Care and Use Committee, and were performed in accordance 

with the National Institutes of Health Guide for the Care and Use of Laboratory Animals. 

Chemicals and Drugs  

 Inulin (polyfructosan-S; Inutest) was obtained from Fresenius-Kabi (Graz, Austria) and 

para-aminohippurate (PAH) was obtained from Merck, Sharp & Dohme (West Point, PA).  The 

spin probes 1-hydroxy-3-methoxycarbonyl-2, 2, 5, 5-tetramethylpyrrolidine (CMH), 1-hydroxy-

3-carboxypyrrolidine (CPH), and 1-hydroxy-4-phosphono-oxy-2, 2, 6, 6-tetramethylpiperidine 

(PPH); the metal chelators defferoxamine (DF) and diethyldithiocarbamate (DETC); and Krebs-

HEPES buffer (KHB) were obtained from Noxygen Science Transfer and Diagnostics (Elzach, 

Germany).  Polyethylene glycol-conjugated superoxide dismutase (PEG-SOD), thiobutabarbital 

(Inactin), and pyrrolidine dithiocarbamate (PDTC) were obtained from Sigma-Aldrich (St. Louis, 

MO).  All other chemicals and reagents used were of analytical grade and were purchased from 

Sigma-Aldrich unless otherwise specified. 
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Experimental Protocol  

Eight-week old male Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats 

(SHR), obtained from Harlan (Indianapolis, IN), with initial body weights between 200-250 

grams, were used in this study.  Animals were housed in temperature- (23 ± 2°C) and light-

controlled (12-hour light/dark cycle) animal quarters.  Four groups of 6 rats each were used:  

WKY, WKY+PDTC, SHR, and SHR+PDTC.  All animals were allowed ad libitum access to 

standard rodent chow (LabDiet; Purina Mills Inc., St. Louis, MO). Control animals were given 

access to tap water ad libitum; PDTC-treated rats were allowed ad libitum access to tap water 

with PDTC added.  Beginning at 8 weeks of age, the appropriate groups of rats were treated with 

PDTC dissolved daily in drinking water for 15 weeks.  At 8 weeks of age, SHR are still 

normotensive [115], therefore, we initiated treatment for all animals at this age.  For the first 

week of the study, PDTC was added to drinking water at an initial concentration of 50 mg/kg; 

the concentration was increased by 25 mg/kg daily until the final concentration of 150 mg/kg 

was attained; this was done to allow for adaptation to changes in taste.  At the end of week 13, 

rats were placed into metabolic cages for a one-week acclimatization period.  Immediately 

following acclimatization, daily urine output was measured for one week.  Animals were 

sacrificed at the end of week 15, after completion of renal clearance experiments.  Plasma and 

kidney tissues were collected for later analyses.   

Blood Pressure Measurement 

Blood pressures for all animals were measured by the tail-cuff method at baseline and 

every third week using a Coda 6 Blood Pressure System (Kent Scientific, Torrington, CT) for the 

duration of the study as previously described [116].  Animals were habituated to the blood 

pressure system for 3 days prior to starting the experiment. Rats underwent two daily cycles of 
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20 measurements each for a minimum of 3 days per week.  Body temperatures were monitored 

for the duration of each blood pressure measurement.  

Renal Clearance Experiments 

At the end of 15 weeks’ treatment, acute clearance experiments were performed to 

determine renal function in anesthetized (thiobutabarbital, 100 mg/kg; intraperitoneally) rats, as 

described previously [117].  In brief, the right inguinal area was shaved, a small (< 2 cm) 

incision made, and femoral vessels isolated.  The right femoral artery was cannulated with 

heparin-primed (100 U/ml) polyethylene tubing (PE-50) and then connected to a pressure 

transducer (PowerLab data acquisition system; ADInstruments, Colorado Springs, CO) for 

continuous measurement of arterial pressure. The right femoral vein was catheterized with 

heparin-primed PE-50 tubing for infusion of various solutions at a rate of 20 µL/min [117, 118]. 

An isotonic saline solution containing 6% albumin (EMD Chemicals, Gibbstown, NJ) was 

infused during surgery. After surgery, the infusion fluid was changed to isotonic saline 

containing 2% bovine serum albumin (BSA), 7.5% inulin (Inutest), and 1.5% PAH. The bladder 

was catheterized with a PE-90 tube (with one end flanged) via a suprapubic incision for 

gravimetric urine collection.  After a 15- to 20-minute stabilization period, a 30-minute clearance 

period was conducted to assess values of renal hemodynamic parameters. An arterial blood 

sample was collected at the end of the 30-minute clearance collection period for measurement of 

plasma inulin and PAH concentrations.  Plasma inulin and PAH concentrations were measured 

colorimetrically to determine glomerular filtration rate (GFR) and renal plasma flow (RPF), 

respectively.   Renal blood flow (RBF) was calculated from RPF and hematocrit (Hct) using the 

standard formula: RBF = RPF÷(1-Hct). 
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Biochemical Assays for Urine and Plasma 

Albumin in urine was quantified with a Nephrat II ELISA kit (Exocell, Philadelphia, PA) 

and TNF-α, IL-6, and IL-1β were quantified in plasma samples with ELISA kits from 

Biosource/Invitrogen (Carlsbad, CA). Creatinine and urea were quantified in plasma and urine 

with QuantiChrom Creatinine and Urea Assay Kits (BioAssay Systems, Hayward, CA).   

Blood urea nitrogen (BUN) levels and creatinine clearances (CCr) were calculated using 

standard equations, which are:  BUN = plasma urea÷2.14.  Creatinine clearance (CCr) was 

calculated using the following standard equation: CCr = (UCr x V) ÷ (PCr x tmin); where UCr = urine 

creatinine, V = urine volume, PCr = plasma creatinine, and tmin = time of urine collection in 

minutes.   Time of urine collection was 24 hours for each animal. 

Isolation of Mitochondria and Measurement of Mitochondrial Permeability Transition  

Kidney mitochondria were isolated by differential centrifugation of renal cortical 

homogenates and mitochondrial swelling was measured as described previously [104]. Briefly, 

mitochondrial isolation buffer contained (in mmol/L): 140 D-mannitol, 75 sucrose, 1 EGTA, 10 

MOPS; and 0.4% BSA, pH 7.4, and a mixture of protease inhibitors (Complete; Roche 

Diagnostics, Mannheim, Germany). Mitochondrial protein concentration was determined using a 

DC Protein Assay Kit (Bio-Rad, Hercules, CA).   Mitochondrial purity was determined by 

western blot with an anti-voltage dependent anion channel (VDAC; a mitochondrial marker) 

antibody (Santa Cruz Biotechnology), and by transmission electron microscopy (Figures 2.1A 

and 2.1B). 
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Figure 2.1. Mitochondrial purity as determined by (A) transmission electron microscopy and (B) 
western blotting.  Voltage-dependent anion channel (VDAC) was used as a mitochondrial 
marker. 
 

Measurement of NAD(P)H-Dependent Superoxide Anion Production  

 Lucigenin-enhanced chemiluminescence was used to measure NADPH oxidase activity 

in kidney tissues according to the method of Li et al [119].   

Determination of Catalase Activity  

  Catalase activity was measured by the method of Beers and Sizer, as previously described 

[104, 120]. 

Determination of Glutathione Peroxidase Concentrations  

Glutathione peroxidase concentrations were determined in cortex homogenates and in 

isolated mitochondria by use of a commercially available kit, according to the manufacturer’s 

protocol (Cayman Chemicals, Ann Arbor, MI).  

Measurement of ATP Production  

 Rates of ATP production were quantified in cortical mitochondria using a commercially 

available kit (BioVision, Mountain View, CA). 
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Western Blotting and EMSA 

Protein expression in kidney cortical tissue was analyzed by western blot as previously 

described [116], using anti-p65, anti-p50, anti-IκBα, anti-pIκBα, anti-TNF-α, anti-IL-6, and anti-

IL-1β antibodies (Santa Cruz Biotechnology, Santa Cruz, CA Densitometry analyses were 

performed with Image J software. All membranes were normalized to GAPDH. Data in all 

western blot figures are expressed as the ratio of the protein density to that of GAPDH.  NF-κB 

p65 DNA binding activity was assessed by electrophoretic mobility shift assay (EMSA), as 

previously described [121]. 

RNA Isolation and Real-Time RT-PCR  

 Total RNA extraction, cDNA synthesis, and real-time RT-PCR were performed as 

previously described [116].   

Immunofluorescence  

 Immunofluorescence detection of desmin, TNF-α, NOX2, and NOX4 was performed as 

previously described [122], with minor modifications. For the detection of desmin, NOX2, 

NOX4, and TNF, slides were incubated overnight at 4°C with a 1:100 dilution of goat polyclonal 

anti-desmin (Dako North America, Carpenteria, CA), or rabbit polyclonal anti-NOX2, anti-NOX 

4, or goat polyclonal anti-TNF (Santa Cruz Biotechnology). Lack of nonspecific staining was 

confirmed using no primary antibody controls. Analyses of fluorescence intensities were 

performed using NIH Image J software. In the Image J program, outer borders of glomeruli were 

traced and immunofluorescence was measured only inside the borders drawn.  This method 

allowed for quantification of glomerular immunofluorescence only, and allowed us to exclude 

tubules from our analyses. 
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Electron Paramagnetic Resonance (EPR) Studies  

All EPR measurements were performed with a BenchTop EPR spectrophotometer e-scan 

R (Noxygen Science Transfer & Diagnostics GmbH, Elzach, Germany). Three different spin 

probes were used for EPR studies.  CMH was used to measure total tissue reactive oxygen 

species (ROS) and superoxide (O2
•-), and mitochondrial total ROS and O2

•-; CPH was used for 

measurement of tissue peroxynitrite (OONO-); and PPH was used for mitochondrial hydrogen 

peroxide (H2O2) studies.  In this EPR protocol, ‘total ROS’ represents all reactive oxygen 

species; however, the major sources trapped by the spin trap used are superoxide, hydrogen 

peroxide, and hydroxyl radical, with other species as minimal contributors.  Small portions (15-

20 mg each) of kidney tissue from each animal were minced and placed into four wells of a 24-

well tissue culture plate containing 20μM KHB with DF and DETC. Tissue pieces were then 

washed twice with the same buffer to remove any trace contamination, and incubated at 37oC 

with specific spin probes for 30 minutes. The incubation of tissue was terminated by placing the 

plate on ice. All tissue EPR experiments were conducted at 20°C in disposable capillary tubes as 

previously described [123], under the following settings: center field g = 2.002; field sweep 

9.000G; microwave power 20 mW; modulation amplitude 1.90 G; conversion time 10.24 ms; 

time constant 81.92 ms; receiver gain 3.17 e+0003.  Mitochondrial total ROS production 

experiments were performed at 37°C under 20 mmHg of oxygen partial pressure. The setup of 

the oxygen concentration in KHB was performed using Gas-Controller NOX-E.4-GC (Noxygen 

Science Transfer & Diagnostics GmbH, Elzach, Germany).  For mitochondrial O2
•- production, 

the values obtained from incubation with SOD and CMH were subtracted from the values 

obtained from incubation with CMH only.  
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Separate spin trap solutions were prepared by dissolving 2.2 mg of CMH, 2 mg of CPH, 

or 2 mg of PPH in 1 ml KHB (20 mM, pH 7.4), prepared with 25 μM DF and 5 μM DETC.  All 

spin probes are non-toxic. CMH is a cyclic hydroxylamine which is a highly cell permeable spin 

probe for the quantification of slow-released intracellular and mitochondrial ROS.    CPH is an 

effective, partially cell permeable spin probe for the in vitro detection of ONOO- and other 

radicals. The spin adduct is resistant to reduction by vitamin C and thiols [123, 124]. PPH is a 

non-cell permeable spin probe for the detection of mitochondrial H2O2 production [125].  ROS 

released by tissues and mitochondria react with these probes to form stable adducts which can be 

measured using EPR spectroscopy.   

Cortical tissues were incubated at 37oC with 6.6 μl of CMH (200 μM) for 30 minutes for 

ROS measurement; CMH for 30 minutes, then 1.5 μl of PEG-SOD (50 U/μl) for an additional 30 

minutes for O2
•- measurement; or 30 μl of CPH (500 μM) for 30 minutes for OONO- 

measurement.   Aliquots of incubated probe media were then taken in 50 μl disposable glass 

capillary tubes (Noxygen Science Transfer and Diagnostics, Elzach, Germany) for determination 

of total cortical ROS, O2
•-, or OONO- production.   Renal cortical mitochondria (approximately 

4-6 μg protein) from each animal were probed with CMH for mitochondrial total ROS and O2
•- 

measurements and with PPH (500 µM) and catalase (50 U/ml) for H2O2 measurement.  

Superoxide detection in mitochondria was confirmed by inhibition of the O2
•- signal with 50 

U/ml superoxide dismutase (SOD).  After adequate mixing, 50 μl mitochondria were taken in 

disposable glass capillary tubes.  Mitochondrial total ROS, O2
•-, or H2O2 production was detected 

using EPR under the settings mentioned above.  
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Statistical Analyses  

Data were analyzed with GraphPad Prism 5 software.  All data are presented as means ± 

SEMs.  One-way repeated measures ANOVA with a post-hoc Bonferroni procedure was used to 

compare differences in blood pressure measurements; one-way ANOVA with a Bonferroni 

procedure was used to assess renal parameters, EPR measurements, antioxidant activities, and 

ATP production.  Two-way ANOVA with a Bonferroni procedure was used in comparisons of 

NAD(P)H oxidase-dependent superoxide production rates and mitochondrial swelling assays.  

Results were considered significant when p<0.05. 

Results 

There were no significant differences in body weights, food intake, or water intake 

among groups in this study.  The average daily delivered dose of PDTC was ~85-105 mg/kg/day 

in both groups. WKY rats had significantly lower MAP and SBP than SHR at baseline and study 

end (Table 2.1). SHR+ PDTC animals had lower SBP than SHR by week 6, and these values 

remained significantly lower than the values in SHR for the remainder of the study (Figure 2.2). 

 
 
 
 
 
 

Table 2.1.  Mean final body weights and mean baseline and ending arterial and systolic 
pressures (MAP and SBP, respectively) of study groups.   

 Values are reported as means ± SEM.  * p<0.05 vs. SHR;  † p<0.05 vs. SHR+PDTC. 

 

Group 
(n=6 each) 

Final Body 
Weight (g) 

MAP-Baseline MAP-Week 15 SBP-Baseline SBP-Week 15 

WKY 384.7±6.08 99.5±1.96*† 94.5±2.84* 121.8±4.62*† 120.2±10.14* 

WKY+PDTC 392.3±5.99 99.0±3.40*† 99.9±0.83* 112.8±3.42*† 119.5±6.65* 

SHR 375.3±5.95 141.2±6.16 168.9±7.94† 160.4±8.23 196.4±9.76† 

SHR+PDTC 387.5±9.26 132.7±10.12* 105.0±1.13* 161.4±8.30 151.4±2.12* 
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Figure 2.2.  Systolic blood pressure trends for each study group.  Values are reported as means ± 
SEM.  * p<0.05 vs. SHR;  † p<0.05 vs. SHR+PDTC. 

 

Significant decreases in glomerular filtration rate (GFR) and renal blood flow (RBF) 

were noted in SHR when compared to other groups.  Creatinine clearances (CCr), which were 

calculated to verify inulin clearance data, followed the same trend. Additionally, urine albumin, 

plasma creatinine, and BUN were all significantly higher in SHR than in other groups.  Mean 

values for each parameter appear in Table 2.2. 

 

Table 2.2.  Mean values of selected urine and plasma parameters for each study group. 

Values represented are means±SEM.  *p<0.05 vs.SHR; †p<0.05 vs.SHR+PDTC. 
 
 

Total ROS, O2
•- , and OONO- tissue production rates and total ROS, O2

•-, and H2O2 

production rates in mitochondria, as determined by EPR, were all significantly higher in cortical 

Groups 
(n=6) 

GFR 
(ml/min/g KW) 

RBF 
(ml/min/g 

KW) 

Plasma Cr 
(mmol/L) 

BUN 
(mmol/L) 

UA 
 mmol/L/24 

hr) 
Alb/Cr 

WKY 0.972±0.104* 9.70±0.791* 0.72±0.04* 16.74±1.13* 441.2±35.7* 0.320±0.022* 

WKY+PDTC 1.020±0.049* 11.03±0.610* 0.49±0.13* 11.41±2.21* 345.2±25.7* 0.341±0.006* 

SHR 0.641±0.043† 3.83±0.589† 1.71±0.24† 25.18±1.15† 925.6±33.3† 0.511±0.033† 

SHR+PDTC 0.938±0.063* 7.70±0.804* 0.51±0.09* 16.78±0.86* 358.7±31.2* 0.334±0.029* 
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tissues of untreated SHR than in WKY, WKY+PDTC, and SHR+PDTC animals (Table 2.3).   

These results indicate that production rates of reactive oxygen and nitrogen species are higher in 

both the kidney cortex tissue and the cortical mitochondria of the SHR than in the normotensive 

WKY, and that PDTC attenuates these increases in production.  Further, peak values of 

NAD(P)H-dependent O2
•- production, as measured by lucigenin assay, were significantly higher 

in the SHR group than in other groups (Figure 2.2).   

 

Table 2.3. Mean production values for tissue total reactive oxygen species (ROS), superoxide 
(O2

•-), and peroxynitrite (OONO-) ; and for mitochondrial total ROS, O2
•-, and hydrogen 

peroxide (H2O2), as measured by EPR. 

Values represented are means±SEM.  *p<0.05 vs.SHR; †p<0.05 vs.SHR+PDTC. 
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Figure 2.3.  NAD(P)H–dependent superoxide production in cortical tissues. * p<0.05 vs. SHR, † 
p<0.05 vs. SHR+PDTC. 

TISSUE 
(µmol/mg protein/minute) 

 MITOCHONDRIA  
(nmol/mg protein/minute) 

Groups (n=6) Total ROS  
 

O2
•- 

 
OONO- 

  
Total ROS  

 
  O2

•- 
 

H2O2 
WKY 0.2132±0.0375* 0.0103±0.0019* 0.00524±0.0101* 

 
0.4386±0.0305* 0.0411±0.014* 0.0032±0.0001* 

WKY+PDTC 0.1314±0.0329* 0.0206±0.0041* 0.00510±0.0157* 
 

0.4981±0.0699* 0.0337±0.0124* 0.0031±0.0002* 

SHR 0.4615±0.0779† 0.0925±0.0188† 0.01974±0.0392† 
 

1.100±0.1246† 0.2505±0.0649† 0.0063±0.0005† 

SHR+PDTC 0.2013±0.0318* 0.0193±0.0043* 0.00641±0.0444* 
 

0.6385±0.0789* 0.0605±0.0166* 0.0041±0.0006* 
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Protein expression levels of desmin (Figure 2.4A), NOX4 (Figure 2.4B), and NOX2 

(gp91phox; Figure 2.4C) were all significantly lower in WKY, WKY+PDTC, and SHR+PDTC 

rats than in SHR; mRNA expression followed a similar trend (Table 2.4). Expression levels of 

NF-κB p65, p50 and IκBα followed similar trends (Figure 2.5A). SHR also exhibited 

significantly higher DNA binding activity of NF-κB p65 (Figure 2.5B). 

 

 
Figure 2.4. Immunofluorescence staining and luminometric analysis for glomerular desmin (A), 
NAD(P)H oxidase (NOX)2 (gp91phox; B), and NOX4 (C). 
 
 
 

Table 2.4. Gene expression values of desmin, NOX homologs, cytokines, IκBα, and NF-κB p65 
in cortical tissues of WKY and SHR animals after 15 weeks of PDTC treatment.  

Values are expressed as mean  ± SEM fold change (2-ΔΔCt) vs. WKY control.  *p<0.05 vs. SHR; 
†p<0.05 vs. SHR+PDTC. 

Gene WKY+PDTC SHR SHR+PDTC 
Desmin 0.839±0.258* 1.737±0.111 0.333±0.223* 
NOX2 0.716±0.024* 3.428±0.693 0.251±0.666* 
NOX4 0.814±0.356* 2.970±0.291 0.494±0.151* 
TNFα 0.695±0.050* 2.901±0.985 1.038±0.147* 
IL-1β 0.893±0.025 1.091±0.125 0.873±0.416 
IL-6 0.403±0.014*† 1.834±0.183 0.638±0.030* 
IκBα 1.261±0.080* 0.372±0.080 1.381±0.197* 
NF-κB p65 0.785±0.148*† 1.451±0.084 0.112±0.022* 
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Figure 2.5. Representative western blots for NF- B p65, p50, I B , and GAPDH (housekeeping) 
in cortical tissues (A) and EMSA for NF-κB p65 DNA binding activity (B).   *P < 0.05 vs. SHR; 
P < 0.05 vs. SHR+PDTC. 

 

SHR exhibited significantly lower activities of tissue antioxidant levels of catalase and 

glutathione peroxidase and lower mitochondrial glutathione peroxidase activity (Figure 2.6A), 

along with significantly decreased ATP production (indicative of electron transport chain 

damage) (Figure 2.6B).  Plasma levels of IL-6 and TNF-α, but not IL-1β, were significantly 

higher in SHR than in other animals (Figure 2.7A); protein and mRNA expressions of these 

cytokines followed a similar trend (Table 2.4; Figures 2.7B-2.7D).  Increased mitochondrial 

swelling (indicative of mitochondrial membrane damage) was also observed in SHR (Figure 2.8). 
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Figure 2.6.  Mean enzyme activities for tissue and mitochondrial glutathione peroxidase (GPx) 
and tissue catalase (A) and mean ATP production rates in experimental groups (B). * p<0.05 vs. 
SHR, † p<0.05 vs. SHR+PDTC. 
 

A. B. 
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Figure 2.7. Mean plasma cytokine levels (A) and cytokine protein expression levels (B, C) for 
all study groups. Representative western blots and densitometric analyses for IL-6 and IL-1β 
appear in (B). Immunofluorescence staining and luminometric analysis for glomerular TNF-  
appear in (C). Scale bars = 50 µm. *P < 0.05 vs. SHR. P < 0.05 vs. SHR+PDTC. 
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Figure 2.8.  (A) Mean basal optical density (OD) and (B) mean OD with 50mM calcium added 
for mitochondrial swelling assay. * p<0.05 vs. SHR,  † p<0.05 vs. SHR+PDTC. 
 

B. A. 
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Discussion 

 In this study, we examined the effects of chronic NF-κB blockade with PDTC on cortical 

tissue and mitochondrial ROS production in the hypertensive kidney. The salient findings of the 

present study are: 1) cytosolic and mitochondrial oxidative stress, caused by up-regulation of 

NF-κB and NF-κB-induced PIC, contribute to renal damage and hypertension in SHR; and 2) 

NF-κB blockade partially attenuates blood pressure, and normalizes renal function parameters 

and cytosolic and mitochondrial redox status in SHR.  These data suggest that NF-κB plays a 

role in hypertensive injury in renal cortical tissue and mitochondria by increasing production of 

PIC and ROS, and that long-term NF-κB blockade can ameliorate these detrimental effects.  

 We found significant decreases in MAP and SBP in SHR+PDTC rats when compared 

with untreated SHR, and saw no change in MAP or SBP in WKY treated with PDTC.  PDTC 

treatment also improved GFR, RBF, plasma creatinine levels and BUN, and urinary albumin 

levels in SHR.   Other researchers have used PDTC in hypertensive rat models, and have found 

similar improvements in blood pressure and end organ damage [112, 126, 127].    

 Renal and vascular oxidative stress are known to accompany hypertension in the SHR 

[128].  Increased ROS production, the exact cause of which remains unknown, is thought to be 

both a cause and a consequence of hypertension [111].  A number of mediators of this oxidative 

stress have been identified, including PIC (such as TNF-α and IL-6) and angiotensin II (ANGII); 

both can degrade IκBα to cause NF-κB activation and further increase ROS production.   PDTC 

is believed to exert its inhibitory effects on NF-κB by directly impeding IκBα degradation[129].   

 PDTC treatment in SHR attenuated the up-regulation of protein and mRNA expression of 

desmin (a marker of glomerular injury).  Desmin expression in most rat strains is confined to 

mesangial cells; podocytes only express desmin following injury [130].   ROS are known to alter 
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several signaling cascades in podocytes [131]. Further,  NF-ĸB activation has been shown to 

upregulate ROS-induced inflammation in mouse podocytes [132].  This evidence, along with our 

current findings, suggests a critical role for NF-κB in glomerular epithelial injury.  NAD(P)H 

oxidase  is the predominant source of ROS production in the renal cortex, and the predominant 

NOX isoform expressed in the kidney cortex is NOX4 [133].  PDTC administration also 

attenuated protein and mRNA expression of NOX2 (gp91phox) and NOX4 in glomeruli. 

NAD(P)H-dependent O2
•- production was also decreased in the cortical tissues of PDTC-treated 

SHR.  Taken together, these results suggest that NF-κB-mediated activation of NAD(P)H 

oxidases, and of desmin, contributes at both the transcriptional and translational levels to the 

renal damage seen in SHR.   

 Both mitochondria and NAD(P)H oxidases are important sources of ROS in cells. 

NAD(P)H oxidases are activated and upregulated in SHR prior to the onset of hypertension in 

this model [103].  Although O2
•- from NAD(P)H oxidases is considered the  major player in 

glomerular injury, the possible contributory role of mitochondrial ROS in perpetuating renal 

dysfunction in hypertension cannot be ignored. Recently, Doughan et al [134] demonstrated that 

the full enzymatic activity of NAD(P)H oxidase was required for ANGII-induced mitochondrial 

damage.  Also in that study, NAD(P)H oxidase blockade with apocynin was shown to attenuate 

ANGII-induced mitochondrial damage in endothelial cells [134].  The same effects on 

mitochondrial dysfunction were also seen in a study by De Cavanaugh et al, which demonstrated 

decreased mitochondrial oxidant production and improved mitochondrial membrane potential in 

SHR with angiotensin II receptor blockade [135].  These results suggest that NAD(P)H oxidase-

dependent O2
•-   can act as an upstream signal to cause increased mitochondrial O2

•- production.  

This mitochondrial O2
•-, along with H2O2 which can diffuse out of the mitochondrion, can then 
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act to further stimulate NAD(P)H activation in a feed-forward mechanism.   Further, O2
•-  

produced from NAD(P)H oxidases can activate NF-ĸB either directly, or indirectly through an 

increase in mitochondrial ROS production; however,  further studies are needed to elucidate the 

degree of involvement of both mitochondria and NAD(P)H oxidases in the activation of this 

ROS-dependent transcription factor. 

 Until now, no studies have examined the effect of NF-κB blockade on mitochondrial 

functionality in the hypertensive kidney.  We employed EPR, a reliable and sensitive method of 

measuring and quantifying ROS production, to analyze production of various ROS in both tissue 

and isolated mitochondria of experimental animals.  As expected, PDTC treatment decreased 

production of total ROS, O2
•-, and OONO- as determined by EPR in the renal cortical tissue of 

SHR, thereby signifying the role of NF-κB in tissue ROS production.   

 Mitochondrial total ROS, O2
•-, and H2O2 production rates were all significantly lower in 

PDTC-treated SHR.   Mitochondrial membrane integrity and ATP production rates were also 

significantly improved in PDTC-treated SHR.  Hypertension is associated with mitochondrial 

dysfunction in several tissues including the heart and kidney [97, 135].  ROS generated by the 

mitochondrial electron transport chain (ETC) may act as second messengers to the activation of 

NF-κB by cytokines such as TNF-α [136].  Also, cells lacking functional mitochondrial ETC 

show significant down-regulation of NF-κB activation [137], thus reinforcing  a role for  

mitochondrial ROS in activation of NF-κB.  However, some caution must be used in interpreting 

these results, as isolated mitochondria were used.  Further studies should employ in vivo 

mitochondrial blockade and ROS measurement; results from these procedures would allow us to 

provide more representative data in regard to the function of mitochondrial ROS in the 

hypertensive kidney as a whole.   
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 NAD(P)H-dependent  O2
•- and other cytoplasmic ROS can also activate NF-κB, causing a 

further increase in ROS production, which leads to increased mitochondrial ROS production and 

further perpetuates this vicious positive feedback cycle.  In this study, increased activity and 

expression of NF-κB and the cytokines TNF-α and IL-6 were associated with increased tissue 

ROS production (especially that of O2
•-), as determined by EPR and lucigenin assay.  Increased 

NF-κB and PIC expression were also associated with increased mitochondrial ROS production 

and decreased ATP production, both of which suggest a contributory role for mitochondrial 

dysfunction in hypertensive renal injury.  Decreased ATP production is an indicator of ETC 

dysfunction, as is increased mitochondrial ROS production; damage to the ETC results in free 

radical leakage, thereby perpetuating mitochondrial damage and ROS production.  Chronic NF-

κB blockade with PDTC may have attenuated increases in ROS by partially inhibiting the 

positive feedback between mitochondrial and cytosolic ROS, NF-κB, and NF-κB-regulated PIC 

in the hypertensive kidney.  

 Superoxide generated by the mitochondrial ETC can be converted to H2O2 in the 

mitochondrial matrix or in the intermembrane space. H2O2 can be detoxified to water by 

mitochondrial glutathione peroxidase, or to water and oxygen by catalase. These enzymes 

comprise a complex mitochondrial defense system that is critical in ROS detoxification. In this 

study, SHR exhibited lower activities of catalase and glutathione peroxidase, and an increased 

H2O2 production rate, as measured by EPR, indicating the impairment of the mitochondrial 

antioxidant defense system in the presence of increased NF-κB activity. Long-term NF-κB 

blockade with PDTC restored the activities of these antioxidant enzymes to near control levels in 

SHR.   These results suggest that impairment of mitochondrial antioxidants, combined with 
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overproduction of mitochondrial ROS, could contribute to the mitochondrial damage seen in 

hypertensive renal injury. 

 This study provides a first glance at the role of NF-κB in mitochondrial ROS production 

in the hypertensive rat kidney.    Although this study is the first to quantify mitochondrial ROS in 

the kidney cortex in the presence or absence of NF-κB blockade, some limitations exist.  First, 

our results suggest an obvious role for mitochondrial ROS in renal injury, but they do not allow 

us to determine the exact source of mitochondrial ROS overproduction, or the degree of 

involvement of mitochondrial ROS, since mitochondrial inhibitors were not used. Second, we 

cannot exclude the possibility that the antioxidant properties of PDTC are also involved in the 

reduction of ROS production in our study.  Lastly, there was a significant decrease in SBP 

(196.4±9.76 vs. 151.4±2.12) with PDTC treatment; this also could have altered the 

antioxidant/oxidant parameters measured in this study, thereby contributing to the beneficial 

effects seen with PDTC.  However, the EMSA results and mRNA and protein expression data 

showing decreased IκBα and increased p65 and p50 in SHR kidney cortex suggest that direct 

inhibition of NF-κB is responsible, at least in part, for the beneficial effects seen in this study.  In 

an extension of this study that is currently ongoing, we are using mitochondrial inhibitors; this 

will allow us to better define the role of the mitochondrion in contributing to renal abnormalities 

in SHR.    

 In conclusion, the results of the present investigation support a possible role for 

mitochondrial ROS in hypertensive renal injury (in addition to cytosolic ROS), and suggest that 

NF-κB-induced PIC negatively affect mitochondrial and tissue ROS production in the 

hypertensive renal cortex.  Successful prevention of renal damage should therefore involve 

therapies that not only inhibit cytokine-induced NF-κB activation, but also offer mitochondrial 
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protection from NF-κB-induced PIC and ROS production.  Future research should focus on the 

precise signaling mechanisms by which NF-κB-induced PIC and ROS and mitochondrial ROS 

interact in the kidney in the setting of essential hypertension.  
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CHAPTER 3 

CHRONIC EXERCISE PRESERVES RENAL STRUCTURE AND HEMODYNAMICS 
IN SPONTANEOUSLY HYPERTENSIVE RATS 

Introduction 

Hypertension-induced renal dysfunction is a significant cause of morbidity and mortality 

in hypertensive patients, and remains a leading cause of end-stage renal disease in the United 

States [138]. Current anti-hypertensive treatments are mostly effective in reducing the severity of 

hypertensive renal disease; however, its progressive clinical course underscores the need for new 

therapeutic approaches.  The benefits of non-pharmacological interventions, such as diet and 

exercise, on several chronic diseases are well-established.  To date, no detailed reports exist that 

examine the effects of exercise training (ExT) on renal redox status, renal hemodynamics, or 

renal structure in the hypertensive condition.   Therefore, we chose to examine the effects of ExT 

on renal function and injury and also examined ExT-induced changes in oxidative, nitrosative, 

and inflammatory parameters in the spontaneously hypertensive rat (SHR), a genetically 

hypertensive rat model that exhibits many features of human essential hypertension. 

We and others have demonstrated that proinflammatory cytokine (PIC) production and 

several renin-angiotensin system (RAS) components are increased in the hypertensive kidney 

[139-141].  Reactive oxygen species (ROS) production is also increased in the renal tissue of the 

SHR. Further, PICs and RAS components have been found to increase ROS production [142-

144], which in turn can activate various intracellular signaling pathways, including that of the 

transcription factor nuclear factor-kappa B (NF-κB) [139]. Activation of NF-κB induces 

transcription of PIC genes, leading to further increases in ROS production and fostering a cyclic 

positive feedback mechanism, thereby accelerating the progression of hypertension and its 

associated renal changes.   
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 Several previous studies have investigated the effects of exercise on hypertension and 

kidney diseases; however, most of the studies were performed on patients or animals with 

established disease or the exercise was combined with other interventions [145-149].  However, 

the effects of ExT on delaying or preventing the progression of hypertension-induced renal 

injury have not yet been elucidated.  The mechanisms by which chronic ExT may affect renal 

function are unknown, although various mechanisms have been proposed, which include a direct 

lowering of blood pressure, leading to reduced peripheral vascular resistance [150] and 

reductions in oxidative stress [149].  Here, we hypothesized that chronic ExT would preserve 

renal structure and function by modulating oxidative stress and inflammation in the SHR model 

of hypertension.   

Materials and Methods 

All procedures in this study were approved by the Louisiana State University Institutional 

Animal Care and Use Committee and were performed in accordance with the National Institutes 

of Health Guide for the Care and Use of Laboratory Animals. 

Animals and Experimental Design  

Seven-week-old male normotensive Wistar-Kyoto (WKY) and spontaneously 

hypertensive rats (SHR), from colonies maintained at the Louisiana State University School of 

Veterinary Medicine, were used in this study. The original source of the breeder animals was 

Harlan (Indianapolis, IN).  Prior to the initiation of any experimental protocols, five WKY and 

five SHR were subjected to acute renal clearance experiments as previously published, to obtain 

baseline values for glomerular filtration rate (GFR) and renal plasma flow (RPF) [139]; animals 

were euthanized by thiobutabarbital overdose immediately following clearance experiments.   

Four groups of eight animals each were used for the experimental protocol: sedentary WKY 

(WKY-S), sedentary SHR (SHR-S), exercise WKY (WKY-E), and exercise SHR (SHR-E). 
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Animals in exercise groups were subjected to moderate-intensity exercise on a motor-driven 

treadmill for a period of 16 weeks (5 days per week; 60 min per day at 18 m/min, 0o inclination) 

which includes an acclimation period of 2 weeks. After acclimation, training intensity was set at 

approximately 60% of maximal aerobic velocity, which corresponds to moderate intensity 

exercise (18-20m/min). This protocol is established in our lab and has been used in previous 

studies . 

At the end of the study, six animals from each experimental group were anesthetized and 

subjected to acute renal clearance experiments [139]. Animals in the exercise groups were 

sacrificed 24 hours after the last exercise session (at age 24 weeks); sedentary animals were 

sacrificed at the same age.  Animals were euthanized immediately after clearance experiments 

and kidneys were excised; one kidney from each animal was sectioned, with unstained sections 

being used for immunofluorescence studies and stained sections being used for histopathological 

examination.   Cortical tissue was separated from the other kidney and stored for later analyses. 

We performed the following experimental procedures as previously described in Chapter 2: real-

time RT-PCR, western blot, electron paramagnetic resonance (EPR) studies, 

immunofluorescence, antioxidant assays, and statistical analysis.  A NF-ĸB p65 DNA binding 

assay was also performed, using an assay kit from Active Motif, as previously described [151]. 

Renal Clearance Experiments  

Acute renal clearance experiments were performed according to previously published 

methods [139].   

Glomerular Injury Scoring  

For light microscopy, renal tissues were fixed with formalin, embedded in paraffin, cut 

into 4-5 um sections, and stained with periodic acid-Schiff reagent. All tissue sections were 

evaluated by a veterinary pathologist that was blinded to experimental conditions.  A semi-
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quantitative glomerular lesion scoring method was used, which was based upon previously 

published methods for glomerulosclerosis scoring [152] and expanded to include the following 

criteria: tubular epithelial metaplasia of Bowman’s capsule, glomerulosclerosis, mesangial 

proliferation, and glomerular capillary basement membrane thickening.   Since it is well-

accepted that tubular metaplasia is the first evidence of glomerular structural alteration in SHR 

[153], this was the primary lesion used in our scoring system.  One hundred glomeruli in each 

section were examined and severity of each glomerular lesion was graded from 0 to 4 according 

to the percentage of glomerular involvement; 0 = no sign of tubular metaplasia, +l = 0 to 25% of 

glomerulus exhibiting tubular metaplasia, +2 = 25 to 50% of glomerulus exhibiting tubular 

metaplasia, +3 = 50 to 75% of glomerulus exhibiting tubular metaplasia, and +4 = 75 to 100% of 

glomerulus exhibiting tubular metaplasia. For each specimen, the grade of the lesion severity 

determined in this manner was totaled, giving rise to a glomerulosclerosis score for each section 

examined, which ranges 0 to 400. 

Measurement of Cortical Nitrate/Nitrite Production  

The reaction of nitric oxide (NO) with oxygen can cause the oxidation of NO, leading to 

nitrate/nitrite production; therefore, levels of nitrate/nitrite are considered an indirect indicator of 

NO production.  Nitrate/nitrite levels were measured in renal cortical tissues of animals from all 

experimental groups with a commercially available colorimetric assay kit (Cayman Chemical; 

Ann Arbor, MI), as previously described [151]. 

Measurement of Cortical NF-κB p65 DNA Binding Activity  

 Activated NF-ĸB translocates to the nucleus, where the p65 subunit binds to DNA to 

promote transcription.  The binding activity of free NF-κB p65 in nuclear extracts was assessed 

with a NF-κB p65 TransAM ELISA kit (Active Motif, Carlsbad, CA) as per manufacturer’s 

instructions, as previously described [154].  
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Measurement of Cortical Glutathione and Glutathione Peroxidase Levels  

Antioxidant status was assessed in renal cortical tissues of animals from all groups by 

measurement of reduced and oxidized glutathione and glutathione peroxidase, with 

commercially available colorimetric assay kits (Cayman Chemical, Ann Arbor, MI), as 

previously described [144]. 

Analysis of mRNA Expression by Real-Time PCR  

 Total RNA isolation from renal cortical tissues, cDNA synthesis and real-time RT-PCR 

were performed as previously described in detail [139, 151].   

Analysis of Protein Expression by Western Blotting  

 Protein expression in renal cortical tissues was determined by western blot analysis as 

described previously in detail [139, 151].   

Electron Paramagnetic Resonance Spectroscopy  

Total ROS, superoxide, and peroxynitrite were measured in renal cortical tissues using 

electron paramagnetic resonance spectroscopy as described previously in detail [139, 144, 155, 

156]. In this EPR protocol, ‘total ROS’ represents all reactive oxygen species; however, the 

major sources trapped by the spin trap used are superoxide, hydrogen peroxide, and hydroxyl 

radical, with other species as minimal contributors.   

Immunofluorescence  

 Immunofluorescence detection of 3-nitrotyrosine (Cayman Chemical, Ann Arbor, MI; 

1:100 dilution) in paraffin-embedded kidney sections was conducted as previously described 

[139].   

Statistical Analyses  

All data are presented as means ± SEM. For baseline analyses between WKY and SHR, 

Student’s t-tests were used.  At study completion, Student’s t-tests were used to execute planned 
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comparisons between WKY-S and SHR-S; WKY-E and SHR-E; and SHR-S and SHR-E groups.  

In all cases, results were considered significant when p<0.05. 

Results 

Body Weights 

 There were no significant differences in body weights between WKY and SHR groups at 

baseline (Table 3.1).  However, body weights were significantly lower in both WKY and SHR 

exercise groups at study end when compared to their sedentary counterparts (Table 3.2). 

ExT Preserves Renal Hemodynamics in SHR  

 No differences in systolic blood pressure (SBP) or mean arterial pressure (MAP) were 

noted between WKY and SHR at baseline (Table 3.1).  At study end, the pressures for SHR-E 

animals were significantly lower than those for SHR-S animals (Table 3.2).  There were also no 

differences observed in GFR, RBF, or renal vascular resistance (RVR) between the WKY and 

SHR groups at baseline (Table 3.1).  Lower GFR and RBF values and higher RVR values were 

found in SHR-S rats when compared to SHR-E rats at study end (Table 3.2).  There were no 

significant differences in GFR, RBF, or RVR values between WKY-S and WKY-E animals or 

between SHR-S and SHR-E animals.  

 

Table 3.1.  Baseline hemodynamic data for WKY and SHR (obtained at 7 weeks of age). 

Data are presented as mean ± SEM. 

 WKY (n=5) SHR (n=5) 

BW (g) 193.9 ± 1.61 189.4 ± 2.83 

SBP (mmHg) 120.6 ± 3.32 124.7 ± 1.99 

MAP (mmHg 106.3 ± 2.94 106.8 ± 2.12 

GFR (ml/min/g KW) 1.01 ± 0.04 0.94 ± 0.05 

RBF (ml/min/g KW) 6.97 ± 0.33 6.25 ± 0.77 

RVR (mmHg/ml/min/g KW) 11.41 ± 1.01 14.89 ± 0.51 
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Table 3.2.  Mean body weights and hemodynamic measurements from rats from all groups 
(obtained at study conclusion). 

* p<0.05 vs. SHR-S; † p<0.05 vs. SHR-E; $ p<0.05 vs. WKY-S. 
 
 
 
 
 
 
 
 
 
 
 
 

ExT Preserves Glomerular Morphology in the SHR Kidney  

PAS-stained kidney sections from rats (n=5 from each group) were examined at the end 

of the study by a veterinary pathologist who was blinded to the experimental conditions.  One 

hundred glomeruli from each section were scored.  Representative photomicrographs of 

glomeruli for each lesion score appear in Figures 3.1A – 3.1E.  There was no significant 

difference in glomerular lesion scores for WKY or SHR at baseline (WKY score 27 ± 1.44 and 

SHR score 34 ± 2.61).  SHR-S rats had significantly higher glomerular lesion scores than WKY-

S and SHR-E rats at the completion of the study (Figure 3.1F).  No differences in scores were 

found between WKY-S and WKY-E rats. 

 

Parameter WKY-S 
(n=6) 

WKY-E 
(n=6) 

SHR-S 
(n=6) 

SHR-E 
(n=6) 

BW (g) 372.4 ± 4.61 323.0 ± 7.64$ 
 

370.8 ± 2.63† 314.4 ± 11.69* 

SBP (mmHg) 121.1 ± 2.37* 130.7 ± 2.36 189.2 ± 3.47†$ 144.8 ± 3.50* 

MAP (mmHg) 93.9 ± 1.83* 98.6 ± 2.21 163.4 ± 9.30†$ 120.0 ± 4.73* 

GFR (ml/min/g KW) 0.90 ± 0.09* 0.90 ± 0.05 0.45 ± 0.08†$ 0.73 ± 0.05* 

RBF (ml/min/g KW) 8.26 ± 1.11* 7.24 ± 0.79 3.58 ± 0.45†$ 7.51 ±0.58* 

RVR 
 (mmHg/ml/min/g KW) 

13.61 ± 1.61* 16.22 ± 0.49 42.49 ± 7.81†$ 15.96 ± 2.84* 
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Figure 3.1.  Representative photomicrographs for scoring of glomerular injury at study 
completion.  Scale bars = 50 μm.  A) Grade 0 – glomerulus with no lesions; B) Grade 1 – 0-25% 
of glomerular area affected; C) Grade 2 – 25-50% of glomerular area affected; D) Grade 3 – 50-
75% of glomerular area affected; E) Grade 4 – 75-100% of glomerular area affected. F)  Average 
glomerular lesion scores for each experimental group (n=5 animals per group).  * p<0.01; ** 
p<0.05; ***p<0.001. 
 

 

ExT Decreases Total ROS and Superoxide Production in the SHR Kidney  

We measured total ROS and superoxide production rates using EPR spectroscopy in 

cortical tissues from rats (n=6 per group) in all experimental groups.  Production rates of both 

species were significantly decreased in cortical tissues of SHR-E rats when compared to SHR-S 

rats (Figures 3.2A and 3.2B).  Significant differences in total ROS measurements were found 

between WKY-S and WKY-E rats, but not between WKY-E or SHR-E rats.  No significant 

differences superoxide measurements were found between WKY-S and WKY-E rats or between 

WKY-E and SHR-E rats. 
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ExT Decreases Peroxynitrite Production and NT Formation in the SHR Kidney  

 We measured cortical peroxynitrite levels in all rat groups (n=6 per group) using EPR 

spectroscopy.  We also examined expression of 3-nitrotyrosine (NT), a footprint of peroxynitrite 

formation, via immunofluoresence.  In the SHR-E rats, peroxynitrite production rates were 

significantly decreased and NT expression levels were lower when compared to those of SHR-S 

rats (Figures 3.2C and 3.2D, respectively). 

 

 

 
 

Figure 3.2. Free radical production rates as determined by electron paramagnetic resonance 
spectroscopy, and immunofluorescence staining for 3-nitrotyrosine.  A) Total reactive oxygen 
species (ROS), B) superoxide, and C) peroxynitrite production rates in renal cortical tissues of 
rats from each experimental group, D) Immunofluorescence for 3-nitrotyrosine, an indirect 
indicator of peroxynitrite formation.  * p<0.01; ** p<0.05; ***p<0.001. 
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ExT Improves Antioxidant Status in the SHR Kidney  

We measured glutathione peroxidase (GPx) and reduced and oxidized glutathione (GSH 

and GSSG, respectively) in cortical tissues from each experimental group (n=5 per group), using 

commercially available kits.  Levels of GPx and both GSH and GSSG were significantly lower 

in SHR-S animals than in any other group (Figures 3.3A-3.3D).  Exercise treatment increased 

GPx, GSH, and GSSG levels in SHR animals. 

 
 
 
 
 
 

Figure 3.3.  Levels of reduced glutathione (GSH; A) and oxidized glutathione (GSSG; B), 
GSH/GSSG ratio (C), and glutathione peroxidase (GPx; D) as measured in cortical tissues.    
* p<0.01; ** p<0.05; ***p<0.001. 
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ExT Decreases NF-κB Activity and TNF-α Expression in the SHR Kidney 

Renal cortical NF-κB p65 DNA binding activity was measured in tissues from all groups 

(n=6 per group).  Rats from the SHR-S group had significantly higher cortical NF-κB activity 

than WKY-S rats (Figure 3.4A).  The SHR-E rats had NF-κB activity levels comparable to the 

WKY-S and WKY-E rats, suggesting that chronic ExT prevents the increase in cortical NF-κB 

activity seen in SHR.  Since the proinflammatory cytokine tumor necrosis factor-alpha (TNF-α) 

acts through a NF-κB-dependent pathway, we measured protein and gene expression of this 

cytokine in the cortical tissues of animals from all experimental groups.  Expression of TNF-α 

was significantly increased in SHR-S rats, but was completely normalized in SHR-E rats 

(Figures 3.4B and 3.4C).   

 

Figure 3.4.  NF-κB p65 DNA binding activity (A) and protein (B) and mRNA (C) expression 
levels of TNF-α in renal cortical tissues.  * p<0.01; ** p<0.05; ***p<0.001. 
 

ExT Alters NO Production and NOS Isoform Expression in the SHR Kidney  

Protein and gene expression levels of eNOS and iNOS were measured in all experimental 

groups at study completion (Figures 3.5A and 3.5B, respectively).  Cortical nitrate/nitrite levels 

(indirect indicator of NO production) were also measured (Figure 3.5C).  Both protein and gene 

expression levels of eNOS, along with NO production, were decreased in SHR-S rats, while 

iNOS levels were significantly increased. These effects were normalized in the SHR-E animals.  
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ExT Alters Expression of RAS Components in the SHR Kidney  

Protein (Figure 3.6A) and gene expression (Figure 3.6B) levels of ACE, ACE2, AT-1 

receptor (AT-1R), and Mas receptor (MasR) were measured in all experimental groups at study 

completion.  Circulating AngII levels were also measured in plasma samples from animals from 

all experimental groups at study end (Figure 3.6C).  Both protein and gene expression levels of 

ACE and AT-1R were higher in SHR-S rats, while ACE2 and MasR levels were significantly 

lower.  Similarly, AngII levels were also elevated in SHR-S animals.  In SHR-E animals, ACE2 

and MasR expression levels were elevated, while ACE and AT-1R expression levels were 

decreased.  Circulating AngII levels were also lower in SHR-E animals.  

 

 

 

 

Figure 3.5. Protein (A) and mRNA expression (B) of eNOS and iNOS,  and NO production (C) 
as assessed by nitrate/nitrite measurement, in kidney cortical tissues from each group.  *p<0.01; 
** p<0.05; ***p<0.001. 
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Figure 3.6.  A) Protein and B) mRNA expression of various renin-angiotensin system 
components and C) mean plasma ANGII levels.  * p<0.01; ** p<0.05; ***p<0.001. 
 
 
Discussion 

Primary (essential) hypertension remains a major cause of morbidity and mortality in 

Western society, and is the second leading cause of end-stage renal disease in the United States 

[157]. The most effective way to avoid the development of hypertension-induced renal injury is 

to prevent hypertension or to delay its progression.  Current pharmacological therapies have 

proven beneficial in the treatment of hypertension, but the focus has recently shifted to include 

non-pharmacological approaches, such as exercise, as adjunct therapies to prevent or mitigate 

hypertension and its end-organ effects.  Here, we examined the effects of ExT on renal function 

and injury and assessed exercise-induced changes in oxidative, nitrosative, and inflammatory 

parameters in SHR.  We initiated chronic ExT at 7 weeks of age, an age when SHR are still 
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normotensive and have normal renal hemodynamic indices.  We also performed baseline 

measurements of arterial pressures and renal hemodynamic parameters in 7-week old WKY and 

age-matched SHR, with no statistically significant differences found between strains for any of 

the parameters measured (Table 1).   Results from our endpoint studies demonstrate that chronic, 

moderate-intensity ExT prevents renal oxidative stress and inflammation, maintains renal 

antioxidant defense, and modulates both intrarenal and extrarenal renin-angiotensin system 

components in SHR.  Chronic exercise also resulted in a delayed increase in body weight, 

prevented the development of severe hypertension, and preserved renal structure and renal 

hemodynamics in these animals.  

Oxidative stress is characteristic of the adult SHR, and has been shown to precede the 

development of hypertension in this rat strain by several weeks [158, 159]. Conversely, 

hypertension has been shown to cause oxidative stress in the kidney [160].  This self-

perpetuating cycle, if left unchecked, can lead to progressive renal disease. Several key 

mediators of renal oxidative stress have been identified, including PIC and the effector peptide of 

the renin-angiotensin system, AngII; both can cause activation of the key redox-sensitive 

transcription factor, NF-κB, and increase production of ROS and reactive nitrogen species 

(RNS), such as superoxide and peroxynitrite, respectively.  These ROS/RNS themselves can 

increase NF-κB activity, leading to further oxidative/nitrosative insult and RAS activation, which 

perpetuates this vicious positive feedback cycle and accelerates hypertension-induced renal 

damage [139].  A schematic representation of this cycle appears in Figure 3.7. 
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Figure 3.7.  Schematic depiction of the interactions of oxidative stress, inflammation, RAS 
activation, and NO imbalance in the pathogenesis of hypertensive renal injury, and the effects of 
exercise training on this vicious positive feedback cycle. 
 

NF-ĸB can induce and respond to oxidative stress; when activated, NF-ĸB can activate 

the promoters of two proinflammatory molecules - TNF-α [161] and iNOS [162].  A key finding 

in the present study is that NF-ĸB p65 DNA binding activity, along with cortical protein and 

gene expression levels of iNOS and TNF-α, did not increase in the SHR kidney when ExT was 

initiated prior to development of hypertension, while all three parameters increased significantly 

in sedentary SHR.  Conversely, gene and protein expression levels of eNOS were significantly 

higher in SHR-E animals then in SHR-S animals.   Further, chronic ExT prevented the increases 

normally seen in cortical total ROS, superoxide, and peroxynitrite production rates in SHR.   Our 

current finding that decreased oxidative stress is associated with decreased TNF-α expression and 

decreased NF-ĸB activity in SHR-E rats raises the possibility that decreased PICs might be 

responsible for the exercise-induced decrease in oxidative stress in SHR.    
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Oxidative stress, by definition, involves an excess of free radicals; in the case of renal 

oxidative stress during hypertension, the predominant free radical is superoxide, which is mostly 

produced by NADPH oxidases [163]. We have previously demonstrated an up-regulation in 

NADPH oxidase expression and activity in the cortical tissues of SHR; this was associated with 

a decline in renal hemodynamic parameters and with increased arterial pressure [139].  In 

addition to its direct detrimental effects, superoxide can interact with NO to form the highly 

cytotoxic peroxynitrite radical.   Peroxynitrite can then react with tyrosine residues in various 

proteins to generate NT [164, 165].  Although NT can be formed from reactions that do not 

include NO [166], the contribution of these reactions to total tissue NT abundance is minimal; 

thus, tissue NT abundance is largely considered a function of the interaction between superoxide 

and NO [164].  In this study, the increase in arterial blood pressure and alterations in renal 

hemodynamics seen in sedentary SHR were accompanied by cortical accumulation of NT and 

increased tissue production rates of total ROS, superoxide, and peroxynitrite.  These findings 

were also accompanied by a marked reduction in renal cortical NO metabolites, which is 

suggestive of diminished NO bioavailability, likely resulting from an enhancement of NO 

inactivation by superoxide. We also found decreased GPx and GSH levels and decreased 

GSH/GSSG ratio in cortical tissues of SHR-S animals, which is indicative of insufficient 

antioxidant status. Lee and colleagues recently found similar impairments in the glutathione 

system in SHR from the age of 8 weeks [167]; our results suggest that this impairment continues 

through age 24 weeks, and that ExT prevents these alterations in antioxidant status.  

In exercised SHR, there was a delayed, moderate increase in arterial pressure and a 

normalization of cortical NO metabolites.  Further, SHR-E exhibited no evidence of cortical NT 

accumulation and no appreciable increases in tissue production rates of total ROS, superoxide, or 

peroxynitrite.  These results were associated with a preservation of renal hemodynamics and 
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renal antioxidant status in these animals, and with alterations in cortical gene and protein 

expression levels of iNOS and eNOS.   Our results are in line with a previous report from our 

lab, where the same ExT regimen resulted in preserved cardiac function, decreased ROS 

formation, decreased iNOS expression, and increased NO metabolites in the SHR myocardium 

[151].  Taken together, these observations suggest that chronic ExT can decrease the severity of 

hypertension and its associated alterations in renal hemodynamics in SHR by ameliorating the 

renal oxidative stress known to exist in these animals.  These beneficial effects seem to involve 

preservation of redox status and an improvement in NO bioavailability.   

Activation of the RAS and the resulting AngII-induced pressor response are key 

mediators of renal damage [168, 169], and have renal pro-oxidant and proinflammatory effects 

which negatively alter renal hemodynamic parameters [168, 170].  For example, AngII can 

antagonize the effects of NO [171], potentiate superoxide production [170], and activate NF-ĸB 

[172]; these actions of AngII represent another arm of the vicious positive feedback cycle 

involved in hypertension-induced renal injury.  We measured protein and gene expression levels 

of several RAS components (AT-1R, ACE, ACE2, and MasR) and circulating AngII levels to 

assess the possible involvement of the RAS in the renoprotection afforded by ExT in this study.  

We found down-regulation of AT-1R and ACE and decreased plasma AngII, with concomitant 

up-regulation of ACE2 and MasR, in exercised SHR when compared to SHR-S animals.  These 

findings were associated with renal hemodynamic improvements, decreased cortical NF-ĸB 

activity, and improved cortical redox status in SHR-E animals.  Overall, our results indicate a 

role for decreased RAS activation in the renoprotective effects of ExT in SHR. 

The normal parietal tissue of Bowman’s capsule consists of simple squamous epithelium 

[153].  Tubular metaplasia of Bowman’s capsule has been well-characterized in SHR and in 

aging male Sprague-Dawley rats [153, 173, 174]; however, the exact cause of such metaplasia 
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remains uncertain.  Metaplasia usually occurs in response to chronic inflammation and allows for 

substitution of cells that are better able to survive under circumstances in which a more fragile 

cell type might succumb. Although the normal squamous epithelium that lines Bowman's capsule 

is robust and more resistant to many insults than is cuboidal epithelium, local changes in 

cytokine, growth factor, or extracellular matrix components arising from either increased 

glomerular pressure or proteinuria may favor metaplasia to renal tubular epithelium [175].  In 

this study, a higher incidence of tubular metaplasia was seen in SHR-S glomeruli than in 

glomeruli from any other group, while the incidence of metaplasia in SHR-E glomeruli was 

similar to that of WKY-S and WKY-E animals.  These differences were not present in WKY or 

SHR that were sacrificed at 7 weeks of age, suggesting that the metaplasia seen in SHR-S 

glomeruli at study completion may indeed be the result of increased pressure and increased 

inflammation, as previously suggested [153].  The absence of significant structural alterations in 

SHR-E kidneys was associated with improved renal hemodynamics and decreased inflammation, 

while the increased incidence of metaplasia in SHR-S kidneys was associated with a decline in 

renal hemodynamics and an increase in inflammation.  These results suggest that ExT can 

decrease the incidence of pathological changes in SHR kidneys, possibly through a delay in 

progression of hypertension and attenuation of inflammation.   

We have previously reported an association of PICs and their transcription factor, NF-κB, 

with oxidative stress and hemodynamic alterations in the adult SHR kidney [139]. Given the 

results from that report and our current results, it is plausible to suggest that the lower NF-κB 

activity levels seen in SHR-E animals may be attributable to reductions of PIC and ROS 

production and of RAS activation, and thus lead to disruption of the positive feedback cycle 

involved with hypertension-induced renal dysfunction.  This study is the first to provide 

mechanistic evidence surrounding the effects of chronic exercise on NF-κB activity, oxidative 
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stress, hemodynamics, and structure in the SHR kidney. Our results suggest a major role for 

exercise training in modulating hypertensive renal injury via decreases in inflammation, 

oxidative stress, and RAS activation, and suggest that chronic, moderate-intensity ExT may be a 

cost-effective non-pharmacological approach to preventing hypertension and preserving renal 

hemodynamics in susceptible patients. 
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CHAPTER 4 
 

A BLUEBERRY-ENRICHED DIET ATTENUATES NEPHROPATHY IN A RAT 
MODEL OF HYPERTENSION VIA REDUCTION IN OXIDATIVE STRESS 

 
Introduction 
 

Oxidative stress produced by overproduction of reactive oxygen species/reactive nitrogen 

species (ROS/RNS) or inefficient antioxidant defenses appears to be involved in the 

development and progression of hypertension and hypertension-induced renal injury [176, 177].  

The detrimental role of ROS/RNS in hypertension-induced renal injury has fostered an increased 

interest in the therapeutic potential of antioxidants; however, the majority of studies thus far have 

employed synthetic antioxidants to prevent or attenuate the detrimental effects of ROS both in 

vivo and in vitro. Recently, attention has been directed to natural products as sources of 

antioxidants [178]. Most plant cells contain antioxidant mechanisms to detoxify free radicals, 

which are produced during normal cellular metabolic processes; exogenous stimuli can also 

promote free radical production in plants [179].  In particular, small berry fruits have been 

demonstrated to have high contents of several antioxidant compounds, including anthocyanins 

and other phenolics.  These metabolites function to protect plants against photodynamic 

reactions by quenching ROS, and have been suggested to have protective effects against several 

human diseases [180, 181].   

Blueberries (BB) have among the highest antioxidant capacities of fruits and vegetables 

tested to date, and contain polyphenols such as anthocyanins, anthocyanadins, and isoflavones 

[182]. BB-enriched diets and BB extracts have been shown to attenuate and even improve age-

related behavioral and neuronal deficits in rodents [183-186]. BB-enriched diets can also 

attenuate proinflammatory cytokine production in rat glial cells [187] and protect the rat heart 
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from ischemia [188]. Additionally, hypertensive rats on BB-supplemented diets exhibit 

significantly lower systolic and mean arterial pressures and renal nitrite content [189].  

Therefore, it is plausible to suggest that BB supplementation of the diet may have a tissue-

protective effect in various pathologic conditions.  In this light, the general objective of the 

current study was to assess the chronic effects of a BB-enriched diet on blood pressure (BP) and 

renal hemodynamics in a rat model of hypertension-induced renal injury.  The hypothesis was 

that the BB supplementation of the diet would reduce oxidative stress and thus attenuate renal 

damage.  As an extension of this hypothesis, rats were also subjected to a short-term (2-day) 

exposure of the BB-supplemented diet to determine whether a hormetic effect would be 

observed.  Hormesis has been proposed as the mechanism mediating the protective effects of 

many plant products [190, 191].  Specifically, the hypothesis was that during short-term 

exposure, increased ROS/RNS production would be observed which would lead to upregulation 

of antioxidant defense mechanisms to enhance long-term protection. 

Materials and Methods 

Experiment 1: Chronic Feeding Studies  

Forty-eight male stroke-prone spontaneously hypertensive rats (SHRSP) and thirty-two 

male normotensive Wistar-Kyoto (WKY) rats were used for chronic feeding studies.  Rats were 

7 weeks old with baseline body weights between 130 and 150 grams.  Rats were randomly 

divided into four diet groups for each chronic study: WKY cornl (WC), WKY blueberry (WBB), 

SHRSP corn (SC), or SHRSP BB (SBB).  Animals were fed corn or BB-enriched diets for 6 

weeks or 12 weeks.  All animals were subjected to acute renal clearance experiments, as 

previously described [176], at the end of the 6-week or 12-week feeding periods.  Rats were 
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euthanized immediately following renal clearance experiments; kidneys were excised, and cortex 

and medulla separated for analyses.    

Experiment 2: Short-Term Feeding Studies  

For short-term feeding studies to evaluate hormetic effects, 24 additional 7-week-old male 

SHRSP were used.  Rats (n=12 in each group) were fed corn or BB-enriched diets for 2 days.  

Rats were euthanized after which heart, brain, kidney, and liver tissues were collected.  In both 

2-day and chronic studies, fresh tissues were used for electron paramagnetic resonance (EPR) 

spectroscopy studies, and frozen tissues were used for antioxidant studies 

Diets 

Diets were prepared by Harlan Teklad (Madison, WI) using a reformulated NIH-31 diet 

by adding 20 g/kg lyophilized BB or 20 g/kg dried corn. To prepare the 2% BB diet, the berries 

were homogenized in water, centrifuged, lyophilized and added to the NIH-31 rodent chow. The 

amount of corn in the corn diet was adjusted to compensate for the added volume of BB [192], in 

order to make the two diets isocaloric [193]. Food consumption was measured weekly for the 

chronic feeding studies by weighing feed before placing it in each cage, and subtracting the 

weight of remaining feed at the end of each week. Rats maintained on BB diets for 6 weeks 

consumed an average of 371 mg/day (WBB) or 374 mg/day (SBB) of lyophilized blueberries, 

roughly equivalent to 4.1g/day or 4.2 g/day, respectively, of fresh blueberries. Rats maintained 

on BB diets for 12 weeks consumed an average of 397 mg/day (WBB) or 399 mg/day (SBB) of 

lyophilized blueberries, roughly equivalent to 4.4 g/day or 4.5 g/day, respectively, of fresh 

blueberries. 
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Blood Pressure Measurements 

In rats from all chronic feeding groups, tail blood pressures (BP) were measured 

noninvasively using a Coda 6 Volume-Pressure Recording System (Kent Scientific, Torrington, 

CT), as previously described [194].  Briefly, eight unanesthetized rats from each group were 

warmed to an ambient temperature of 30°C by placing them in a holding device mounted on a 

thermostatically controlled warming plate. Tail cuffs were placed on animals, and animals were 

allowed to acclimate to cuffs for 10 minutes prior to each pressure recording session. Each 

session consisted of 30 cycles. BP was measured on five consecutive days each week, and values 

were averaged from at least six consecutive cycles. BP was measured at baseline (7 weeks of 

age) and then weekly until the end of either chronic study period.  

Acute Renal Clearance Experiments  

Nine rats from each 6-week feeding group and nine rats from each 12-week feeding 

group were subjected to renal clearance experiments at the end of their respective feeding 

periods as previously described [176].  Briefly, the right inguinal area was shaved, a small (< 2 

cm) incision made, and femoral vessels isolated. The right femoral artery was cannulated with 

heparin-primed (100 U/ml) PE-50 polyethylene tubing connected to a pressure transducer 

(PowerLab data acquisition system; ADInstruments, Colorado Springs, CO) for continuous 

measurement of arterial pressure. The right femoral vein was catheterized with heparin-primed 

PE-50 tubing for infusion of solutions at 20 μl/min. An isotonic saline solution containing 6% 

albumin was infused via the venous line during surgery for arterial line and bladder catheter 

placement. After surgery, the infusion fluid was changed to isotonic saline containing 2% bovine 

serum albumin (BSA), 7.5% inulin (Inutest), and 1.5% PAH. The bladder was exposed via a 

suprapubic incision and catheterized with a PE-200 tube (with one end flanged) for gravimetric 
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urine collection. After a 15- to 20-minute stabilization period, a 30-minute clearance period was 

conducted to assess values of renal hemodynamic parameters. An arterial blood sample was 

collected at the end of the 30-minute clearance collection period for measurement of plasma 

inulin and PAH concentrations. Plasma inulin and PAH concentrations were measured 

colorimetrically to determine glomerular filtration rate (GFR) and renal plasma flow (RPF), 

respectively.  

Electron Paramagnetic Resonance (EPR) Spectroscopy  

Total ROS, superoxide (O2
•-), and peroxynitrite (OONO-) production rates were 

measured in pieces of kidney cortex or medulla (chronic and 2-day feeding studies) and in liver 

and cerebral cortex (2-day feeding study) via EPR spectroscopy as previously published [194-

199] and described in Chapter 2.  In this EPR protocol, ‘total ROS’ represents all reactive 

oxygen species; however, the major sources trapped by the spin trap used are superoxide, 

hydrogen peroxide, and hydroxyl radical, with other species as minimal contributors.  Briefly, 

tissue pieces were incubated at 37oC with 6.6 μl of CMH (200 μM) for 30 minutes for ROS 

measurement; 1.5 μl of PEG-SOD (50 U/μl) for 30 minutes, then CMH for an additional 30 

minutes for superoxide measurement; or 30 μl of CPH (500 μM) for 30 minutes for peroxynitrite 

measurement.   Aliquots of incubated probe media were then taken in 50 μl disposable glass 

capillary tubes (Noxygen Science Transfer and Diagnostics, Elzach, Germany) for determination 

of total ROS, superoxide, or peroxynitrite production.  

Measurement of Antioxidant Status  

Catalase activity and total glutathione (GSH) levels were measured in kidney cortex and 

medulla (chronic and 2-day feeding studies) and also in liver and left ventricle (2-day feeding 
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study) using commercially available kits (Cayman Chemical, Ann Arbor, MI) according to 

manufacturer’s instructions, as previously described [200].  

Statistical Analyses 

A two-way ANOVA (strain x diet) was used to analyze blood pressure, food 

consumption, body weight, physiological, biochemical, and EPR data at each time-point.  Where 

significant main effects or interactions were found, individual planned comparisons were made 

using Student’s t-tests for all other chronic feeding study data specifically to compare WC and 

WBB animals; WC and SC animals; and SC and SBB animals.  T-tests were also used to 

compare results from SHR C and SHR BB groups for the 2-day feeding study.  In all cases, 

p≤0.05 was accepted as the level of statistical significance.  

Results  

Chronic Feeding Studies 

 Consistent with past studies using similar dietary formulations [183, 188, 189, 201], 

weekly food consumption and body weight gain did not differ among any of the diet groups in 

the chronic feeding studies.  Mean starting body weights in the WKY and SHR animals at 

baseline before assignment to groups were 138 ± 3 g and 142 ± 2 g, respectively; at the end of 

the 6 week study, the mean body weights were as follows: WC = 252 ± 9 g; WBB = 246 ± 3 g; 

SC = 250 ± 3 g; and SBB = 252 ± 3g.  At the end of the 12 week study, mean body weights were 

as follows: WC = 346 ± 4 g; WBB = 342 ± 5 g; SC = 334 ± 6 g; and SBB = 333 ± 8 g.   

Figure 4.1 presents the BP trends for each group of rats in both the 6-week and 12-week 

studies.  Compared to SC rats, the mean arterial and systolic pressures of the SBB rats were 

significantly lower by the second week of the 6-week and 12-week studies, and remained 

significantly lower for the remainders of both chronic studies.  Table 4.1 presents the 
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renoprotective effects of BB diet in SHRSP rats fed for 6 weeks or 12 weeks.  Glomerular 

filtration rate and renal blood flow were higher, and renal vascular resistance was lower, in 6-

week and 12-week SBB rats when compared to SC rats.  There were no significant differences in 

renal hemodynamic or BP measures between WC or WBB animals.  The decreases in total ROS, 

superoxide, and peroxynitrite seen with chronic BB feeding for 6 or 12 weeks appear in Table 

4.2.  For both 6- and 12-week studies, SBB rats exhibited significantly lower free radical 

production rates than SC rats.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.  Blueberry-enriched diet delays the progression of hypertension.  Mean arterial and 
systolic blood pressures were assessed in rats fed a corn diet or a blueberry-enriched diet for 6 
weeks (A) or 12 weeks (B).  * p<0.05 vs. SC; † p<0.05 vs. SBB. 
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Table 4.1.  Renal hemodynamic indices in corn- or blueberry-fed rats after 6 weeks or 12 weeks 
of feeding. 

* p<0.05 vs. SC; † p<0.05 vs. SBB. 

 

 

 

Table 4.2.  Total ROS, superoxide, and peroxynitrite production rates as measured by EPR in 
tissues of corn- or blueberry-fed rats after 6 or 12 weeks of feeding. 

* p<0.05 vs. SC; † p<0.05 vs. SBB. 

 

  WC WBB SC SBB 

6 
WEEKS 

GFR 0.95 ± 0.05* 0.92 ± 0.05 0.59 ± 0.04† 0.97 ± 0.07* 
RBF 7.98 ± 0.25* 8.42 ± 0.32 5.96 ± 0.35† 7.71 ± 0.17* 
RVR 13.33 ± 0.70* 14.28 ± 1.24 28.04 ± 1.39† 13.34 ± 0.63* 

12 
WEEKS 

GFR 0.90 ± 0.06* 1.11 ± 0.09 0.53 ± 0.04† 1.02 ± 0.07* 
RBF 7.03 ± 0.25* 8.42 ± 0.75 3.62 ± 0.22† 6.80 ± 0.59* 
RVR 15.98 ± 1.14* 14.05 ± 1.41 36.71 ± 2.10† 15.49 ± 1.22* 

 WC WBB SC SBB 

KIDNEY CORTEX 
  Total ROS 
       6 weeks 
       12 weeks 

 
0.067 ± 0.012* 
0.115 ± 0.013* 

 
0.099 ± 0.005$ 
0.112 ± 0.009$ 

 
0.199 ± 0.027† 
0.429 ± 0.038† 

 
0.069 ± 0.011* 
0.195 ± 0.026* 

  Superoxide 
       6 weeks 
       12 weeks 

 
0.040 ± 0.014* 
0.067 ± 0.018* 

 
0.028 ± 0.006 
0.063 ± 0.013 

 
0.136 ± 0.026† 
0.165 ± 0.013† 

 
0.030 ± 0.007* 
0.063 ± 0.006* 

  Peroxynitrite 
       6 weeks 
       12 weeks 

 
0.017 ± 0.002* 

0.020 ± 0.006* 

 
0.022 ± 0.003$ 
0.028 ± 0.004 

 
0.053 ± 0.011† 
0.111 ± 0.021† 

 
0.011 ± 0.003* 
0.028 ± 0.020* 

KIDNEY MEDULLA 
  Total ROS 
       6 weeks 
       12 weeks 

 
0.077 ± 0.011* 
0.157 ± 0.014* 

 
0.087 ± 0.007$ 
0.151 ± 0.018 

0.188 ± 0.025† 
0.314 ± 0.017† 

 
0.118 ± 0.010* 
0.170 ± 0.017* 

  Superoxide 
       6 weeks 
       12 weeks 

 
0.056 ± 0.011* 
0.079 ± 0.012* 

 
0.051 ± 0.013 
0.075 ± 0.008 

0.122 ± 0.009† 
0.164 ± 0.017† 

 
0.048 ± 0.011* 
0.089 ± 0.019* 

  Peroxynitrite 
       6 weeks 
       12 weeks 

 
0.027 ± 0.006* 
0.052 ± 0.017* 

 
0.021 ± 0.005 
0.065 ± 0.005$ 

0.050 ± 0.005† 
0.128 ± 0.009† 

 
0.025 ± 0.005* 
0.031 ± 0.007* 
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The increases in cortical and medullary catalase and glutathione activities noted with 

chronic BB-enriched diet feedings appear in Figures 4.2 and 4.3, respectively.  For both chronic 

feeding studies, SBB rats exhibited significantly higher catalase and glutathione activities than 

SC rats.  There were no differences in antioxidant activities between WC and WBB rats at the 

conclusion of the 6- or 12-week studies.   

 

 

 

Figure 4.2. Blueberry-enriched diet improves glutathione activity in hypertensive rats.  
Glutathione activities were assessed in renal cortical and medullary tissues of rats fed a corn diet 
or a blueberry-enriched diet for 6 weeks (A) or 12 weeks (B).  *p<0.05; ** p< 0.01; *** p<0.001. 
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Figure 4.3. Blueberry-enriched diet improves catalase activity in hypertensive rats.  Catalase 
activities were assessed in renal cortical and medullary tissues of rats fed a corn diet or a 
blueberry-enriched diet for 6 weeks (A) or 12 weeks (B).  *p<0.05; ** p< 0.01; *** p<0.001. 
 
 
 

Short-Term Feeding Studies 

No significant differences were found in body weights between corn- or BB-diet fed 

animals in the 2-day feeding study. As noted in Table 4.3, significant increases in production 

rates of total ROS, superoxide, and peroxynitrite were observed in cerebral cortex, liver, kidney 

cortex, and kidney medulla of rats fed a BB diet for 2 days compared to those on corn diet.  

Table 4.4 depicts the catalase and glutathione activities recorded in heart, liver, and kidney 

tissues of 2-day BB-fed SHRSP when compared to corn diet-fed SHRSP.  In the left ventricle 

and kidney cortex of SHRSP fed BB-diet for 2 days, catalase activities were increased when 

compared to those of SHRSP fed a corn diet for 2 days.  However, total GSH levels were lower 
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in the left ventricle of 2 day BB-fed rats when compared to 2-day corn diet-fed rats, with no 

significant changes in GSH levels noted in other tissues assayed.  

Table 4.3.  Total ROS, superoxide, and peroxynitrite production rates as measured by EPR in 
tissues of corn- or blueberry-fed rats after 2 days of feeding. 
 Corn (n= 7) Blueberry (n= 7) P 
CEREBRAL CORTEX    
  Total ROS 0.126 ± 0.008 0.156 ± 0.015 0.0417 
  Superoxide 0.024 ± 0.003 0.039 ± 0.005 0.0087 
  Peroxynitrite 0.005 ± 0.001 0.022 ± 0.003 0.0004 
LIVER    
  Total ROS 0.371 ± 0.026 0.530 ± 0.057 0.0129 
  Superoxide 0.150 ± 0.007 0.246 ± 0.023 0.0046 
  Peroxynitrite 0.014 ± 0.002 0.042 ± 0.007 0.0069 
KIDNEY CORTEX    
  Total ROS 0.140 ± 0.013 0.210 ± 0.022 0.0289 
  Superoxide 0.041 ± 0.005 0.063 ± 0.004 0.0275 
  Peroxynitrite 0.015 ± 0.002 0.034 ± 0.004 0.0044 
KIDNEY MEDULLA    
  Total ROS 0.146 ± 0.011 0.189 ± 0.019 0.0136 
  Superoxide 0.060 ± 0.011 0.106 ± 0.025 0.0258 
  Peroxynitrite 0.035 ± 0.006 0.075 ± 0.011 0.0158 

 
 
 
 
 
 
 

Table 4.4.  Catalase and total glutathione (GSH) levels as measured by colorimetric assays in 
tissues of corn- or blueberry-fed rats after 2 days of feeding. 

 Corn (n= 8-10) Blueberry (n= 8-10) P
LEFT VENTRICLE   
  Catalase 0.293 ± 0.019 0.373 ± 0.022 0.0285 
  Total GSH 2.68 ± 0.243 1.89 ± 0.213 0.0495 
LIVER    
  Catalase 0.287 ± 0.011 0.276 ± 0.016 n.s. 
  Total GSH 1.91 ± 0.159 1.85 ± 0.065 n.s. 
KIDNEY CORTEX    
  Catalase 0.246 ± 0.012 0.306 ± 0.020 0.0331 
  Total GSH 2.11 ± 0.187 2.23 ± 0.091 n.s. 
KIDNEY MEDULLA    
  Catalase 0.325 ± 0.010 0.310 ± 0.028 n.s. 
  Total GSH 2.23 ± 0.207 2.17 ± 0.065 n.s. 
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Discussion 

Primary (essential) hypertension remains a major cause of morbidity and mortality in 

Western society, and continues to be a leading cause of heart and kidney diseases [202].  The 

cause(s) of primary hypertension remain elusive; however, oxidative stress and proinflammatory 

cytokine production are known contributors [203, 204].  Nephropathy resulting from 

hypertension is the second leading cause of end-stage renal disease in the United States [202]; 

therefore, the most effective way to avoid the development of hypertensive nephropathy is to 

prevent hypertension or to delay its progression.   In many cases, hypertension can be attenuated 

with pharmacological treatments including, but not limited to: diuretics, beta receptor 

antagonists, angiotensin converting enzyme antagonists, and angiotensin II receptor antagonists; 

however, these commonly used anti-hypertensives can also have undesirable side effects. 

Therefore, it is valuable to consider natural products, such as foods, as potentially therapeutic 

sources of antioxidants for a variety of conditions.   

Thus far, a variety of pharmacotherapies have proven successful in decreasing renal 

damage in hypertensive animals; however, the possible benefits of dietary interventions have 

only recently come into focus.  BB-enriched diets have been shown to decrease renal nitrite 

content, protect the myocardium from ischemia, and correct neurological deficits in rats [183, 

185-189].  In the present study, we show for the first time that regular dietary supplementation 

with blueberries in SHRSP rats preserves renal hemodynamics and prevents oxidative stress in 

the kidney.  We also demonstrate that BB may act via a hormetic mechanism in preventing 

oxidative stress in the SHRSP rat.  

After 6 weeks and 12 weeks of BB feeding, GFR and RBF measures were higher, 

estimated RVR was lower, renal free radical production was attenuated, and renal antioxidant 
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levels were preserved in BB-fed SHRSP when compared to those of SHRSP maintained on a 

corn diet.  The results of our chronic feeding experiments also demonstrate that total ROS, 

superoxide, and peroxynitrite production rates were significantly lower and antioxidant activities 

were significantly higher in BB-fed SHRSP than in corn-fed SHRSP. These results clearly 

demonstrate a protective antioxidant effect of BB feeding.  The imbalance between superoxide 

production and NO production in the kidney is a primary contributor to renal oxidative stress and 

salt-sensitive hypertension [205, 206].  Oxidative stress is further enhanced in the kidneys of 

SHRSP that are salt-loaded (as were the SHRSP in this study) [206, 207]. We demonstrate here 

that the BB diet protected against oxidative renal damage by attenuating free radical production 

and preserving antioxidant status, and thereby improving BP and renal hemodynamics.  

A possible mechanism for this renoprotection may be the scavenging of superoxide in 

kidney tissues, which has been shown to lower BP in various models of hypertension [206, 208]. 

BB are known scavengers of ROS/RNS, including superoxide, in vitro [209].  In further support 

of a renal superoxide scavenging mechanism, we found that the cortical and medullary 

production rates of peroxynitrite in BB-fed rats from both 6- and 12-week time-points were 

significantly lower compared to rats fed the corn diet. Nitric oxide reacts readily with superoxide 

to form the highly cytotoxic peroxynitrite radical; therefore, one explanation for the decline in 

peroxynitrite production in BB-fed animals is an increase in nitric oxide, which can foster the 

removal of superoxide. Further study is needed to determine conclusively whether this effect is 

responsible for the renoprotection afforded by chronic BB feeding. 

These chronic feeding studies were not intended to analyze specific signaling pathways 

responsible for preservation of renal hemodynamics and/or reduction of oxidative stress in the 

kidneys of hypertensive animals on a BB-enriched diet, but rather as a proof of concept.  One 
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assertion that can be made on the basis of these findings is that alterations in signaling were 

likely associated with decreases in ROS/RNS production and improvements in ROS/RNS 

scavenging, which likely affected inflammatory status.  Although we did not examine 

inflammation in these studies per se, we can infer, based on our previous research, that this effect 

was mediated in part through the inflammatory nuclear factor kappa B (NF-ĸB) pathway, which 

can both induce and respond to oxidative stress [193].  Inferences can also be made on the basis 

of previous studies.  BB extract can significantly inhibit the lipopolysacharide-induced 

inflammatory response in brain microglia by downregulating inducible nitric oxide synthase; 

therefore, BB extract may indeed inhibit an early step of the inflammatory stress pathway 

transcribed by NF-ĸB [187]. In the same model of mouse microglial cells, BB extract also 

inhibited the expression of cyclooxygenase-2, which is known to be associated with the NF-ĸB-

regulated proinflammatory cytokines, interleukin-1β and tumor necrosis factor-α [187].  

Extrapolating from these findings, it is plausible to suggest that some of the same 

oxidative/inflammatory mechanisms may be at work in the hyptertensive kidney.  

Our results from the 2-day feeding study indicate that a hormetic effect of BB may 

indeed exist in the prevention of hypertension-induced renal hemodynamic alterations. The 

‘xenohormesis’ hypothesis proposes that animal species have evolved the ability to use chemical 

cues from plant species to mount a preemptive defense response that increases its chances of 

survival [191, 210].  Polyphenols, among other phytochemicals, are thought to exert many of 

their beneficial effects via hormetic mechanisms [210].  In contrast to the clear evidence of 

reduced ROS/RNS production in the long-term studies, results from the 2-day feeding study 

indicated significant increases in total ROS, superoxide, and peroxynitrite production in kidney, 

brain, and liver tissues of BB-fed rats when compared to corn-fed rats.  As a response to this 
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situation, increased catalase activities were found with 2-day BB feeding, but only in kidney 

cortex and left ventricular tissues.  Overall, the EPR and antioxidant assay results suggest that, in 

the case of BB feeding, an initial oxidative stimulus is produced, which is presumably required 

for the antioxidant defense to be activated, thereby supporting the assertion that a hormetic effect 

is involved in the protection afforded by BB in vivo.  Since we evaluated hormetic responses 

only at the 2-day time-point of BB exposure, further analysis is required to document in detail 

the kinetics of ROS production and antioxidant responses.  

In summary, our experiments examining rats chronically maintained on a BB-enriched 

diet for 6 or 12 weeks found preservation of renal hemodynamics and decreased blood pressure. 

Further, the BB diet decreased ROS/RNS production and preserved antioxidant status in the 

kidney cortex and medulla of chronically fed hypertensive rats.  The beneficial effects of the BB 

diet may be due to a hormetic effect, as evidenced by our results from the 2-day feeding 

experiment, where ROS/RNS production was increased in all tissues of BB-fed animals, while 

response of the antioxidant system was in a state of flux, with some systems elevated at that 

time-point and others unresponsive.  This is the first demonstration, to our knowledge, of the 

effectiveness of a readily available natural product in an acceptable, consumable quantity to 

significantly attenuate hypertension-induced renal functional alterations. 
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CHAPTER 5 

A BLUEBERRY-ENRICHED DIET DELAYS RENAL FAILURE IN THE STROKE-
PRONE SPONTANEOUSLY HYPERTENSIVE RAT 

 
Introduction 
 

Nephropathy is a leading cause of morbidity and mortality in hypertensive patients [211].  

Many preferred pharmacological treatments for hypertension are renoprotective; however, the 

clinical courses of hypertension and its associated target organ damage remain progressive.  

Therefore, a continuous need for new therapeutic approaches exists.  Oxidative stress and 

inflammation are common features of hypertensive nephropathy and also contribute to its 

progression [212-215]. Oxidative stress in hypertension is caused by a combination of increased 

reactive oxygen species (ROS) production and impaired antioxidant defenses [215-220].  

Increased ROS production can modify various structural and functional molecules and activate 

redox-sensitive transcription factors, thereby leading to tissue injury and promoting 

inflammation, fibrosis, and further ROS production [221, 222].  

The beneficial effects of antioxidant-rich diets in attenuating hypertension and improving 

endothelial function are well-established in animals and humans [223-227].   The Dietary 

Approaches to Stop Hypertension study, which implemented a fruit- and vegetable-rich diet in 

hypertensive patients, resulted in significant blood pressure reductions in those patients [228].  

Further, epidemiological evidence indicates that dietary antioxidants may delay the onset of 

hypertension in some individuals [229, 230].  Previous studies have shown that polyphenol-rich 

fruits and vegetables are beneficial in both delaying and treating hypertension [231, 232].  The 

protective effects observed in these studies may be due to the antioxidant and anti-inflammatory 

properties attributed to polyphenolic compounds.  Since inflammation and oxidative stress are 
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associated with hypertension-related renal injury, it is plausible to suggest that consumption of 

foods high in antioxidants and anti-inflammatory agents may delay or prevent its development. 

The oxygen radical absorbance capacity (ORAC) assay is a widely accepted method for 

measuring the total antioxidant capacities of fruits and vegetables [233, 234].  The ORAC value 

for blueberries is one of the highest among all fruits and vegetables [235, 236]; consequently, 

blueberries have been shown to protect against inflammation [237, 238], oxidative stress [237, 

239, 240], and chronic diseases [241].  Recent research has highlighted the promise of 

blueberries in lowering blood pressure and tissue nitrites in spontaneously hypertensive stroke-

prone (SHRSP) rats [227], in addition to protecting the heart from ischemic damage [242] and 

improving cognition and other neurological parameters [239, 243].  However, the direct effects 

of a blueberry-enriched diet on renal hemodynamics and renal oxidative stress have not yet been 

examined; this was the focus of the present study.  Here, we hypothesized that supplementing a 

stroke-permissive rodent diet with 2% blueberry (BB) extract for 10 weeks would preserve renal 

hemodynamics and beneficially alter redox status in the SHRSP kidney. 

Materials and Methods 

All experimental procedures were in compliance with all applicable principles set forth in 

the National Institutes of Health Guide for the Care and Use of Laboratory Animals (Publication 

No.. 85-23, revised 1996).  This study was approved by the Institutional Animal Care and Use 

Committee of the Louisiana State University School of Veterinary Medicine. 

Chemicals and Drugs 

Inulin (polyfructosan-S; Inutest) was obtained from Fresenius-Kabi (Graz, Austria) and 

para-aminohippurate (PAH) was obtained from Merck, Sharp & Dohme (West Point, PA).  The 

spin probes 1-hydroxy-3-methoxycarbonyl-2, 2, 5, 5-tetramethylpyrrolidine (CMH), 1-hydroxy-
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3-carboxypyrrolidine (CPH), and 1-hydroxy-4-phosphono-oxy-2, 2, 6, 6-tetramethylpiperidine 

(PPH); the metal chelators defferoxamine (DF) and diethyldithiocarbamate (DETC); and Krebs-

HEPES buffer (KHB) were obtained from Noxygen Science Transfer and Diagnostics (Elzach, 

Germany).  Polyethylene glycol-conjugated superoxide dismutase (PEG-SOD) and 

thiobutabarbital (Inactin) were obtained from Sigma-Aldrich (St. Louis, MO).  All other 

chemicals and reagents used were of analytical grade and were purchased from Sigma-Aldrich 

unless otherwise specified. 

Animals 

Eighteen male spontaneously hypertensive stroke prone rats (SHRSP) and six 

normotensive Wistar-Kyoto (WKY) control rats were used in this study.  Animals were 21 days 

old at the start of the experiment.  All animals were provided food and water ad libitum, and 

maintained in a temperature (23 ± 2°C)- and light (12 hour light/dark cycle)-controlled 

environment.  Prior to the start of the experiment, rats were randomly assigned to one of four diet 

groups.  Rats were maintained on diets for ten consecutive weeks: WKY Japanese stroke 

permissive (JSP) diet, SHRSP regular diet, SHRSP JSP diet, or SHRSP JSP BB-supplemented 

(JSP BB) diet.  The JSP diet is low in protein and potassium and high in sodium, and has been 

demonstrated to accelerate organ pathology in the SHRSP rat [244-246]. Rats were fed their 

respective diets for 10 weeks, from date of weaning (age 3 weeks) until the age of 14 weeks. All 

animals were provided 1% NaCl in tap water for the duration of the study; when combined with 

JSP diet, this has previously been demonstrated to induce early renal damage in the SHRSP 

model [244-247]. 
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Diets 

Blueberry preparations were a generous gift from Drs. Barbara Shukitt-Hale and James 

A. Joseph (Tufts University, Boston, MA).  Blueberries were prepared as previously described 

[248, 249].  Briefly, blueberries were homogenized and centrifuged, and the supernatant was 

then frozen, crushed, and lyophilized.  Freeze-dried blueberry preparations were then shipped to 

Harlan Teklad (Madison, WI), where they were combined with the JSP control diet at 20 grams 

per kilogram diet (2% w/w).  Macronutrient compositions of both diets appear in Table 5.1.     

 

Table 5.1.  Macronutrient contents of control and blueberry-enriched diets. 
 
 
 

% kcal from: Control Diet BB-Enriched Diet 

Protein 22 21 
Carbohydrate 66 69 
Fat 12 10 

 

Animal Monitoring and Surgical Procedures  

After ten weeks on the control, JSP, or JSP BB diets, each rat was anesthetized with 

Inactin (thiobutabarbital; 100 mg/kg), and then underwent surgery for catheterization of the 

femoral artery, femoral vein, and bladder; acute renal clearance experiments were then 

performed as previously described [222].  Arterial pressures were obtained for each animal 

during surgery, via a fluid-filled pressure transducer.  After completion of renal clearance 

studies, rats were euthanized by Inactin overdose.  The chest was then cut to expose the heart, 

and blood was removed via cardiac puncture.  Kidney tissues and plasma were collected for later 

analyses. 

% by weight Control Diet BB-Enriched Diet 

Protein 16.4 16.0 
Carbohydrate 48.5 53.5 
Fat 4.0 3.5 
Kilocalories/gram 3.0 3.1 



98 

 

Glomerular Injury Scoring and Histopathological Evaluation 

Trichrome-stained kidney sections (3 μm) from rats were examined by a veterinary 

pathologist who was blinded to the experimental conditions.  One hundred glomeruli from each 

section were scored.  A semi-quantitative glomerular lesion scoring method was used, which was 

based upon previously published methods for glomerulosclerosis scoring [250] and expanded to 

include the following criteria: tubular epithelial metaplasia of Bowman’s capsule, 

glomerulosclerosis, mesangial proliferation, and glomerular capillary basement membrane 

thickening.   A detailed explanation of this scoring method appears in Chapter 3. 

NF-ĸB p65 DNA Binding Activity Assay 

The binding of NF-ĸB p65 to its DNA consensus binding site was measured in renal 

cortical nuclear extracts with a TransAM NF-ĸB p65 ELISA Kit (Active Motif; Carlsbad, CA), 

according to manufacturer’s instructions, as previously described in Chapter 3.   

Western Blotting 

Protein expression in renal cortical nuclear and cytoplasmic extracts was analyzed by 

western blot as previously described [222, 251], using anti-p65, anti-SIRT1, anti-JNK, anti-

phospho-JNK, anti-histone H1 and anti-GAPDH antibodies.  Densitometry analyses were 

performed with Image J software.  Three blots each were performed for the SIRT1 antibody; 

each membrane was then reblotted with anti-histone H1 antibody (nuclear loading control).  

Three blots each were performed for JNK and phospho-JNK antibodies; each membrane was 

then reblotted with anti-GAPDH antibody (cytoplasmic loading control). 

Cortical Tissue EPR Measurements 

Cortical total ROS, superoxide, and peroxynitrite production rates were measured using 

EPR spectroscopy as previously described [222, 252].  In this EPR protocol, ‘total ROS’ 
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represents all reactive oxygen species; however, the major sources trapped by the spin trap used 

are superoxide, hydrogen peroxide, and hydroxyl radical, with other species as minimal 

contributors.    

Measurement of Nitrate/Nitrite Levels 

Nitrate/nitrite levels (indirect indicator of NO activity) were measured in kidney cortex 

using a commercially available kit, according to manufacturer’s instructions (Cayman Chemical, 

Ann Arbor, MI), as previously described [252]. 

Measurement of Catalase and Glutathione Levels 

Cortical antioxidant status was assessed by measurement of catalase and total glutathione 

levels in kidney cortex using commercially available kits, according to manufacturer’s 

instructions (Cayman Chemical, Ann Arbor, MI), as previously described [222, 253]. 

Statistical Analyses  

All data are presented as means ± SEMs.  A two-way ANOVA (strain x diet) was used to 

analyze blood pressure, food consumption, and body weight data.  Where significant main 

effects or interactions were found, individual planned comparisons were made using Student’s t-

tests for all other parameters measured, specifically to compare WKY and SHRSP animals; 

SHRSP and JSP animals; and JSP and JSP BB animals.  In all cases, p≤0.05 was accepted as the 

level of statistical significance.  

Results 

In a pilot study with eight SHRSP rats fed the JSP diet, only three rats survived until 10 

weeks of age (Figure 5.1).  In the WKY, SHR, and JSP BB groups, all animals survived until 

study end.  These results indicate that BB supplementation prolongs survival in the SHRSP 

model of hypertensive nephropathy.  At study end, JSP animals had significantly lower body 
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weights than SHRSP and JSPBB animals.  No differences in body weights were noted between 

WKY and SHRSP animals (Table 5.2). 

Mean arterial pressures and systolic blood pressures were significantly higher in the JSP 

group than in the JSP BB or SHRSP groups at study end (Table 5.2).  Interestingly, WKY 

animals fed the JSP diet did not exhibit elevations in blood pressure.  Significantly higher GFR 

and RBF values and significantly lower RVR and urine albumin values were seen in JSP BB 

animals when compared to the JSP group; these results suggest that BB supplementation 

preserves renal hemodynamics in the SHRSP rat fed a stroke-permissive diet.  Further, urinary 

albumin levels were significantly higher in the JSP group than in the JSP BB or SHRSP groups 

at study end; these results further demonstrate the preservation of renal function in BB-fed rats. 

 

 

Figure 5.1. A survival curve was constructed to determine the effects of a blueberry-enriched 
diet on survival in stroke-prone SHR.  JSP animals began to die at 5 weeks of age; only 3 
animals remained at the conclusion of the study.  All WKY and all JSP BB animals survived the 
duration of the 10 week study. 
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Table 5.2.  Renal hemodynamic parameters obtained from all animals at study conclusion. 
 WKY SHRSP JSP JSP BB 
BW (g) 322±8.95 309±5.81*  281±7.14†# 301±1.65* 
MAP (mmHg) 92.7±2.61† 131.1±2.21$ 153.9±2.63# 126.2±7.42* 
SBP (mmHg) 120.8±3.71† 158.6±5.59$ 182.6±7.69# 143.9±6.84* 
GFR (ml/min/g KW) 0.99±0.10† 0.65±0.04*$ 0.42±0.04†# 0.80±0.04* 
RBF (ml/min/g KW) 6.94±0.62† 5.81±0.46*$ 3.07±0.21†# 5.69±0.25* 
RVR(mmHg/ml/min/g KW) 13.64±1.16† 24.09±3.53*$ 43.74±1.68†# 29.27±2.85* 
Urine Albumin (mg/dl) 41.8±3.79† 53.3±1.65$ 65.7±2.67†# 49.9±2.21* 
$ p<0.05 vs. WKY; † p<0.05 vs. SHRSP; * p<0.05 vs. JSP; # p<0.05 vs. JSP BB. 

 

 

 

 

 

Rats from the JSP group had significantly higher glomerular lesion scores than rats from 

SHRSP and JSP BB groups at the completion of the study (Figure 5.2A).  There were similar 

histopathologic changes in all hypertensive rats; however, the prevalence and severity of changes 

differed between groups (Figures 5.2B-E).  In the end-stage kidneys seen in the JSP rats, 

profound arterial sclerosis and frequent arterial thrombosis were present.  JSP BB rats also had 

arteriosclerosis but had less frequent thromboses. As expected, given the circulatory 

compromise, the degree of tubular degeneration and dilation in the JSP rats was much more 

severe than in JSP BB rats.  Although changes in glomeruli were similar in JSP and JSP BB 

groups, greater protein accumulation in Bowman’s space and in tubules suggests that the JSP rats 

had more severe glomerular leakage/damage; these findings are further supported by the 

significantly higher urinary albumin levels in the JSP animals and the decrease in urinary 

albumin levels seen with BB feeding.   
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Figure 5.2. A) Glomerular scores for rats in all experimental groups.  B) WKY rat kidneys had 
mild periarterial fibrosis and minimal smooth muscle hyperplasia (long arrow).  Mild interstitial 
fibrosis was also present (in the right upper corner of the image) and there was rare tubular 
degeneration (*). C) SHRSP kidneys exhibited moderate periarterial fibrosis (long arrow) and 
mild smooth muscle hyperplasia.  Occasional senescent glomeruli (#) were also present.  D)  JSP 
rat kidneys exhibited medium-sized arteries with hypertrophied tunica media and moderate 
periarterial fibrosis, which were often thrombosed with remodeling and recanalization (long 
arrow).  The JSP kidneys also had more frequent tubular degeneration (*) and areas of tubular 
regeneration (short arrow – tubules lined by increased numbers of plump epithelial cells).  They 
also had more frequent tubular ectasia (**) with eosinophilic to lightly basophilic proteinaceous 
casts.  Occasional hemoglobin casts within degenerate tubules were also seen in this group (>).  
E)  In JSP BB rat kidneys, medium-sized arteries typically had hypertrophied tunica media with 
moderate periarterial fibrosis (black arrow), occasional mildly dilated tubules lined by flattened 
tubular epithelium (* tubular degeneration), occasional glomeruli with mild glomerular 
sclerosis/fibrosis (<), and occasional dilated tubules with flattened epithelium and lightly 
eosinophilic proteinaceous casts (**).  Scale bars = 100 μm.  
 
 

 
 Protein expression levels of collagen III and TGF-β were assessed in animals from all 

experimental groups.  There were no significant differences in collagen III or TGF-β levels 

between WKY and SHRSP rats; however, levels of both proteins were significantly higher in 

JSP rats when compared to SHRSP rats.  JSP BB rats had significantly lower expression of both 

proteins, indicating a decrease in profibrotic molecules in the kidneys of these animals.   
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Figure 5.3.  A) Representative western blots for collagen III and TGF-β in animals from all 
experimental groups.  B) Densitometric analyses of western blots for collagen III and TGF-β.  * 
p<0.05; ** p<0.01; ***p<0.001. 
 

 

We measured total ROS, superoxide, and peroxynitrite production rates using EPR 

spectroscopy in cortical tissues from rats in all experimental groups.  Production rates of all 

species measured were significantly lower in tissues of WKY rats when compared to SHRSP 

rats, in SHRSP rats when compared to JSP rats, and in JSP BB rats when compared to JSP rats 

(Table 5.3).   

Catalase and total glutathione levels were measured in renal cortical tissues from animals 

from all experimental groups. We found significantly lower catalase and glutathione levels in 

SHRSP animals when compared to WKY animals, and in JSP animals when compared to 

SHRSP or JSP BB animals (Table 5.3) 
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Table 5.3.  Free radical production rates and antioxidant activities obtained from cortical tissues 
at study conclusion.  
 WKY SHRSP JSP JSP BB 
Total ROS 
Superoxide 
Peroxynitrite 

0.094±0.019† 
0.032±0.008† 
0.026±0.005† 

0.174±0.021*$ 
0.066±0.006*$ 
0.050±0.002*$ 

0.414±0.085†# 
0.119±0.015†# 
0.089±0.013†# 

0.069±0.007* 
0.023±0.009* 
0.025±0.005* 

Catalase 0.99±0.09† 0.57±0.05$ 0.54±0.04# 0.79±0.08* 
Total GSH 6.98±0.83† 4.56±0.54*$ 2.71±0.35†# 6.47±0.61* 
$ p<0.05 vs. WKY; † p<0.05 vs. SHRSP; * p<0.05 vs. JSP; # p<0.05 vs. JSP BB. 

 

NF-ĸB p65 DNA binding activity was measured in cortical nuclear extracts from animals 

from all experimental groups.  There was no difference in p65 DNA binding activity levels 

between WKY and SHRSP groups.  A significant increase was seen in p65 DNA binding activity 

in the JSP group when compared to the SHRSP group; this increase was prevented with BB 

feeding (Figure 5.4). 

 

 
Figure 5.4.  NF-ĸB p65 DNA binding activity measurements for cortical tissues from each 
experimental group.  The p65 DNA binding activity of JSP tissues was greater than that of 
SHRSP, and BB feeding attenuated this increase. ***p<0.001. 
 

 Interestingly, total JNK expression only differed between SHRSP and JSP rats, while 

increased pJNK expression was seen in SHRSP rats when compared to WKY rats.  A further 
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increase in pJNK expression was seen in JSP rats when compared to SHRSP rats; this increase 

was alleviated in the JSP BB rats.   A significant decrease in SIRT1 expression was observed in 

JSP rats when compared to SHRSP rats, while this decrease was attenuated in JSP BB rats. 

 

 
Figure 5.5.  A) Representative western blots showing protein expression for total JNK, 
phosphorylated JNK, and SIRT1.  GAPDH was used as the cytoplasmic loading control and 
histone H1 was used as the nuclear loading control.  B) Densitometric analyses of total JNK, 
phospho JNK, and SIRT1 expression levels.  * p<0.05; ** p<0.01; ***p<0.001. 
 

Discussion 

This study is the first to examine the beneficial effects of BB supplementation on renal 

structure and function in a model of severe hypertensive nephropathy. We hypothesized that 

supplementation of a stroke-permissive diet with 2% lyophilized blueberry would result in 

preservation of renal function and decreased oxidative stress in the salt-loaded SHRSP.  When 
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fed a BB-enriched stroke-permissive diet, salt-loaded SHRSP demonstrated a preservation of 

renal hemodynamics, decreased urinary albumin loss, and a significant decrease in ROS/RNS 

production.  Preservation of these parameters was accompanied by decreases in blood pressure 

and inflammation.  

Renal damage is a major contributor to the development of hypertension in rats [254-

257]. An imbalance between renal superoxide and nitric oxide production is a primary 

determinant of renal oxidative stress, leading to salt-sensitive hypertension [255, 258]. Further, 

oxidative stress is enhanced in the kidneys of SHRSP that are salt-loaded [255, 256], and 

becomes even more severe with the addition of a stroke-permissive diet, as was done in this 

study.  In JSP rats, albuminuria was evident, along with significant declines in renal 

hemodynamic parameters and increased severity of renal lesions, indicating severe renal damage.  

Blueberry supplementation led to decreased urine albumin, preservation of renal hemodynamics, 

and decreased severity of renal pathology, suggesting that BB feeding can mitigate renal 

damage. 

One possible mechanism for the protection seen with BB feeding may be scavenging of 

renal superoxide, which can significantly reduce BP in various animal models of salt-sensitive 

hypertension [240, 255, 256, 259]. Blueberries are potent scavengers of superoxide and other 

ROS in vitro [260, 261] and have been shown to reduce renal nitrites.  Other antioxidants lower 

BP in SHR by diminishing renal damage and proteinuria [259, 262, 263]. Studies have also 

demonstrated that blueberry extract can inhibit NF-ĸB translocation and subsequently suppress 

the promoter activities of genes involved in inflammation in microglial cells, including iNOS and 

COX2 [264].  BB-enriched diets have also been shown to down-regulate the signaling cascades 

of several MAP kinases known to respond to oxidative stress, including that of JNK [265, 266].  
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The reduction in renal ROS/RNS production found in the JSP BB rats, along with improved 

activity of catalase and GSH, suggests an overall improvement in redox status in these animals, 

and implies an antioxidant effect of BB in the kidney.   Similar effects have been found with the 

use of pharmacological antioxidants in hypertensive rats [267].  Also in agreement with those 

studies, we found a decrease in blood pressure elevation and improved renal hemodynamics in 

BB-fed rats, which can be attributed to decreased oxidative stress.  Further, we found decreases 

in phosphorylated JNK, a redox-sensitive signaling molecule, and in activation of the redox-

sensitive transcription factor, NF-ĸB.   

We and others have demonstrated that increased ROS/RNS production can increase renal 

NF-κB activation in the hypertensive condition, thereby promoting the inflammatory response 

[213, 222, 268]. In the present study, we show an increase in NF-κB activation in kidney tissues 

of SHRSP rats compared to WKY rats, with a further increase in NF-κB activation in JSP 

kidneys compared to SHRSP kidneys.  We also demonstrate that NF-κB activation is attenuated 

in kidneys of JSP rats fed a BB-enriched diet.  Further, the decrease seen in NF-κB activation  in 

the JSP BB animals was associated with decreased expression of phosphorylated JNK, a MAP 

kinase known to be up regulated in the kidneys of hypertensive rats [269, 270].   Historically, 

JNK has been shown to act through the transcription factor, activator protein-1 (AP-1).  

Recently, however, Cuhlmann et al reported a JNK-dependent activation of NF-κB in mouse 

arteries in response to disturbed blood flow, which led to arterial inflammation [271].   It is 

possible that this mechanism may be at work in the kidney, given our results demonstrating 

increased pJNK expression in association with increased NF-ĸB activation.  Also, nuclear 

expression of the oxidative stress-responsive histone deacetylase SIRT1 was increased in the JSP 
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BB rats; this finding also supports the decrease seen in NF-κB activity, since SIRT1 is known to 

deacetylate p65 at lysine 310, thereby inhibiting its transactivation potential [272].   

In a study by Nasrin and colleagues, JNK1 was recently shown to phosphorylate SIRT1 

in kidney epithelial cells in response to hydrogen peroxide treatment, leading to an increase in 

the enzymatic activity of SIRT1 [273].  In contrast to those results, we found that the increase in 

JNK expression expected in JSP rats was associated with decreased SIRT1 nuclear expression in 

the kidney.  There is one explanation for the differences in these results.  The cellular hydrogen 

peroxide treatment in the study by Nasrin et al was of short duration (1 hour), with contrasting 

results found with 6 hours of treatment.  The authors proposed that prolonged exposure to 

oxidative stress may lead to DNA damage and depletion of cellular NAD+ (a SIRT1 co-

substrate), thereby leading to decreased SIRT1 activity, while acute exposure to low levels of 

oxidative stress may lead to increased SIRT1 activity in an initial attempt to promote cell 

survival.  In our study, severe oxidative stress was observed in kidney tissues of JSP rats, thus, it 

is possible that this chronic oxidative stress did indeed deplete NAD+, causing a down-regulation 

of SIRT1.  Further confirmatory studies are needed to verify this course of events.   

Interestingly, SIRT1 is well-known for its role in promoting longevity [274].   In a pilot 

study we conducted with 8 JSP rats, only 3 rats survived the 10-week study period – a mortality 

rate of 63%.  In this study, JSP rats gained less weight and were often severely debilitated or 

moribund at time of sacrifice.  However, all JSP BB rats survived the study period, had more 

regular weight gain, and did not demonstrate signs of illness at study end.  It is possible that the 

up regulation of SIRT1 seen in these animals is responsible for some of these benefits.  Although 

this study was not intended to examine the detailed signaling pathways involved in the 

renoprotective effects of blueberries, but rather to examine the physiological effects of blueberry 
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supplementation, our findings do present the possibility that one or more novel signaling 

mechanism is at work.  Additional studies are required to confirm these possibilities. 
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CHAPTER 6 

CONCLUDING REMARKS 

Overall Summary of Findings 

  Hypertension-induced renal disease remains a leading cause of morbidity and mortality in 

hypertensive patients [275-277]. The redox-responsive transcription factor NF-ĸB has been 

shown to contribute to the deleterious effects of reactive species and inflammatory molecules on 

kidney structure and function [278].  Although obvious putative roles for oxidative stress and 

NF-ĸB exist in the development and progression of hypertension-induced renal disease [278-

281], the exact signaling mechanisms that perpetuate their effects on the hypertensive kidney 

remain unclear.  The overall hypothesis of this dissertation was that pharmacological or non-

pharmacological approaches to reducing both inflammation and oxidative stress would prevent 

or delay hypertension-induced renal injury in the spontaneously hypertensive rat (SHR), a model 

for human essential hypertension. 

In Chapter 2, we examined the effects of chronic pharmacological NF-κB blockade with 

pyrrolidine dithiocarbamate (PDTC) on renal dysfunction and mitochondrial redox status in 

spontaneously hypertensive rats (SHR). PDTC or vehicle was administered orally to 8-week-old 

SHR and their respective controls for 15 weeks.  We showed that PDTC treatment partially 

attenuated the increase in SBP and normalized renal hemodynamic and excretory parameters and 

ATP production rates in SHR. PDTC treatment also attenuated the higher levels of cytosolic and 

mitochondrial ROS generation and tissue mRNA and protein expression levels of NF-κB and 

oxidative stress genes in SHR without any comparable responses in control rats. These findings 

suggest that NF-κB activation by ROS induces the cytosolic and mitochondrial oxidative stress 



117 

 

and tissue injury that contribute to renal dysfunction observed in SHR, and highlight a role for 

NF-ĸB as a contributor to hypertensive renal disease in this rat model. 

In Chapter 3, we focused on exercise as a non-pharmacological method to attenuate NF-

ĸB and decrease oxidative stress in SHR.  Normotensive WKY rats and SHR underwent 

moderate-intensity exercise training, beginning at age 7 weeks, for a total of 16 weeks. Exercise 

training delayed hypertension, prevented oxidative stress and decreased NF-ĸB activation in the 

kidney, while preserving renal hemodynamics and structure in SHR. These results again 

highlight a role for NF-ĸB in the oxidative stress and renal dysfunction observed in SHR, and 

suggest that exercise is a viable non-pharmacological option to decrease renal injury in the SHR 

model of hypertension. 

 In Chapter 4, another non-pharmacological approach to preventing hypertension-induced 

renal disease in the stroke-prone SHR model (SHRSP; a model of more severe renal disease than 

is seen in SHR) was examined.  In this model, we assessed the renoprotective effects of a 

blueberry (BB)-enriched diet in the setting of hypertension.  Blueberries have among the highest 

antioxidant capacities of fruits and vegetables tested to date and are readily available to 

consumers, and have been shown to decrease NF-ĸB activation and ROS production in vivo.  

Male SHRSP were fed a BB-enriched diet (2% by weight) or an isocaloric control diet for 2 

days, 6 weeks, or 12 weeks. In the 6- and 12-week studies, significant decreases in total ROS, 

peroxynitrite, and superoxide production rates were observed in kidney tissues, which were 

consistent with reduced pathology and improved function.  Additionally, at both time-points, 

measures of antioxidant status were enhanced.  Similar measurements were made in rats fed the 

same diet for only 2 days, which yielded evidence of increased oxidative stress.   This was 

evidence of hormesis during this short-term exposure, which dissipated with time as indicated by 



118 

 

the initiation of enhanced levels of catalase in the left ventricle and liver of BB-fed rats.  Thus, 

the addition of BB to the diet may be another viable non-pharmacological approach to prevent 

hypertension-induced renal injury, and may operate via a hormetic effect.   

 As discussed in Chapter 4, BB-enriched diets are renoprotective and have antioxidant 

properties in the SHRSP rat.  In Chapter 5, we examined the effects of BB in this model in more 

detail.  When fed a ‘stroke-permissive’ diet (low in protein and altered sodium/potassium ratio) 

and allowed to drink salt water, mortality will reach 100% in these animals by 15 weeks of age.  

We examined the effects of BB supplementation of a stroke-permissive diet on mortality, renal 

function and structure, NF-ĸB activation, and oxidative stress.  SHRSP were fed a stroke-

permissive diet or a BB-supplemented stroke-permissive diet from 3 weeks of age to 15 weeks of 

age.  Renal hemodynamic parameters were improved, blood pressure was decreased, ROS 

production was decreased, and NF-ĸB activation was decreased in animals fed a BB-

supplemented stroke-permissive diet.  We also demonstrated that renal pathology was improved 

in these animals.  Further, we found an up regulation of the histone deacetylase, SIRT1, which 

may be partly responsible for the decrease in NF-ĸB activation and improved survival seen with 

BB diet.  This study solidifies the possibility that addition of BB to the diet may represent a non-

pharmacological option for preventing hypertension-induced renal injury. 

Significance of Research 

 Despite advances in its treatment, hypertension remains the second leading cause of renal 

failure in the United States [277].   Oxidative stress and inflammation are two major contributors 

to the progression of hypertension and its associated renal effects [278-281].  Many current 

antihypertensive therapies modulate both oxidative stress and inflammation in the kidney, but the 

complexities of hypertension and its renal effects, along with the continued incidence of renal 
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failure secondary to hypertension, continue to warrant the need for new strategies for and 

approaches to its treatment.   

 An abundance of evidence exists that implicates the redox-sensitive transcription factor 

NF-ĸB in the progression of oxidative stress and inflammation in the hypertensive kidney [278, 

282-288]; however, several mechanisms are believed to contribute to NF-ĸB activation in 

hypertension, and these mechanisms are far from completely understood.  Thus, a deeper 

understanding of the interaction between oxidative stress and inflammation in the kidney, and a 

better understanding of the contributory role of NF-ĸB to hypertension-induced renal disease is 

critical to the development of new approaches to prevent or delay its progression. 

 We believe that our studies have helped identify new pharmacological and non-

pharmacological approaches to prevent hypertension-induced renal injury.  It is clear that 

attenuation of both oxidative stress and inflammation in the kidney are crucial to the prevention 

of hypertension-induced renal damage, and we have shown that targeting NF-ĸB by drug 

administration, aerobic exercise, or diet modification is an effective method of mitigating 

hypertension and preserving renal structure and function.  Overall, these proof-of-concept studies 

have provided a basis for further studies that will advance the understanding of the relationship 

among NF-ĸB, oxidative stress, and inflammation in the hypertensive kidney. 

Future Directions 

 Although the aforementioned studies have made significant contributions to identifying a 

molecular role for NF-ĸB in perpetuating oxidative stress and inflammation in the hypertensive 

kidney, further studies are required to understand the underlying molecular mechanisms of NF-

ĸB activation in the kidney.   Recent evidence suggests that several other transcription factors 

can undergo ‘cross-talk’ with NF-ĸB, and therefore, the influence of oxidative stress and 
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inflammation on these transcription factors in the setting of hypertension should be examined.  

Also, there are several signaling pathways that activate NF-ĸB and promote oxidative stress; 

however, it remains unclear which of these pathways is the major contributor to the hypertensive 

changes in the kidney, and further studies are needed to determine this.  NF-ĸB regulates the 

transcription of many genes, and the effects of renal NF-ĸB activation on these genes should also 

be examined in more detail.   

Finally, an understanding of the temporal sequence of events leading to NF-ĸB 

activation, oxidative stress, and inflammation in the hypertensive kidney will help us better 

define appropriate interventions to prevent these deleterious renal effects in the setting of 

hypertension.  In summary, our studies have laid a foundation for a collection of future studies 

aimed at better understanding the relationship between NF-ĸB, oxidative stress, and 

inflammation, and their roles in the development and progression of hypertensive renal injury. 
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